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Abstract

Climate change alters the relationship between climate regimes and ecosystems in manifold
ways. The interplay of multiple climatic drivers as well as the seasonal timing of extreme
weather events is essential in determining the magnitude of detrimental impacts on ecosystems.
Thus, this thesis analyses changes in compound hot and dry conditions in the face of climate
change and investigates which combinations of temperature and water availability lead to
adverse effects on ecosystems at certain stages during the course of the year. For this purpose,
low states of ecosystem productivity in the Mediterranean Basin as well as crop failure in the
Northern Hemisphere are attributed to their meteorological drivers.

The Mediterranean Basin is a climate change hot spot with strong land-atmosphere feed-
backs, where temperature increases at a faster rate than the global average, which leads
to substantial changes in ecosystem composition, productivity and phenology in this region.
Therefore, one focus is put on changes in the frequency of compound warm spells and droughts
and the impact of temperature and soil moisture anomalies on ecosystem productivity in the
Mediterranean Basin. Changes in compound warm spells and droughts over the last four
decades are analysed, considering events that are extreme in both their absolute value as
well as respective to the time of their seasonal occurrence. Furthermore, seasonal ecosystem
vulnerability in the Mediterranean Basin is analysed. Low states of ecosystem productivity –
indicated by the fraction of absorbed photosynthetically active radiation – are attributed to
temperature and soil moisture anomalies during the course of the year.

The results show that the number of compound warm spells and droughts in the Mediter-
ranean has significantly increased over the last four decades. This increase is primarily driven
by rising temperatures, rather than lack of precipitation. Especially the compound events
with high duration and magnitude are strongly increasing, indicating the emergence of novel
climatic conditions, which are exceeding the previous climatic variability. Compound events,
which are extreme relative to their seasonal time of occurrence, are increasing in particular
in spring and early summer. This is concerning, since this is the main growing season in the
Mediterranean Basin and thus potentially harmful for agricultural and natural ecosystems.
Moreover, three main vulnerability regimes of Mediterranean ecosystems are identified: a)
vulnerability to hot and dry conditions in late spring to midsummer, b) vulnerability to cold
and dry conditions from the end of summer to mid-autumn and c) vulnerability during cold
and wet conditions from the end of autumn to mid-spring. However, there are also prominent
regional differences within the Mediterranean Basin. The period of vulnerability to hot and
dry conditions is particularly long in Turkey, ranging from spring to autumn. On the other
hand, the Balkans are mostly energy-limited throughout the course of the year and ecosystems
rarely show vulnerability to hot anomalies.

A further aspect of this work addresses the drivers of declines in wheat yield in the North-
ern Hemisphere. Winter wheat is one of the most cultivated crops in the world and plays an
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essential role in human diet and food security, which highlights the importance of gaining a
better understanding of environmental conditions leading to crop failure. Therefore, an auto-
mated variable selection approach to detect the most relevant meteorological drivers leading
to crop failure of winter wheat in the Northern Hemisphere using 1600 years of simulated
weather and crop yield data is presented.

Crop failure of winter wheat in the Northern Hemisphere is often related to vapour pressure
deficit during the reproductive phase. In addition, diurnal temperature range and the number
of frost days in the growing season are identified as further relevant predictors. Both monthly
means of common climate variables as well as climate extreme indicators play an important
role in the prediction of crop failure.

The methodology used in this thesis is flexible and can easily be transferred to other
ecoclimatological settings with a focus on seasonality. Both satellite-derived data sets as well
as data from model observations are considered in this work. The increasing maturity and
long-term availability of remote sensing time series make satellite products a valuable asset
for assessing the interplay of ecosystems and meteorological drivers at large spatial scales. In
addition, model simulations allow to examine a large range of environmental conditions, which
is crucial for the investigation of the impacts of climatic extremes and thus model data is used
to complement satellite observations.

The work presented here can facilitate monitoring of changes in environmental drivers and
detect corresponding detrimental impacts on ecosystems, which can be useful to take measures
to adapt crop choice, cropping calendars and irrigation management.
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Zusammenfassung

Der Klimawandel verändert die Wechselwirkungen zwischen klimatischen Bedingungen und
Ökosystemen auf vielfältige Weise. Das Zusammenspiel mehrerer klimatischer Einflussfaktoren
sowie das jahreszeitliche Auftreten von Extremwetterereignissen spielt eine wesentliche Rol-
le für das Ausmaß negativer Auswirkungen auf Ökosysteme. Daher untersucht diese Arbeit
klimawandelbedingte Änderungen zeitgleich auftretender heißer und trockener Bedingungen
und erforscht, welche Kombinationen von Temperatur und Wasserverfügbarkeit im Jahresver-
lauf zu nachteiligen Auswirkungen auf Ökosysteme führen. Zu diesem Zweck werden niedrige
Ökosystemproduktivität im Mittelmeerraum und Ernteausfälle in der nördlichen Hemisphäre
ihren meteorologischen Einflussfaktoren zugeordnet.

Der Mittelmeerraum ist ein klimatischer Brennpunkt und gekennzeichnet durch starke
Rückkopplungen zwischen Landoberfläche und Atmosphäre. Die Temperatur steigt schneller
an als im globalen Durchschnitt, was grundlegende Änderungen in der Phänologie, Zusammen-
setzung und Produktivität der dortigen Ökosysteme zur Folge hat. Aus diesem Grund liegt ein
Schwerpunkt dieses Werks auf der Untersuchung von Veränderungen in der Häufigkeit zeitglei-
chen Auftretens von Hitze- und Trockenphasen sowie den Auswirkungen von Temperatur- und
Bodenfeuchteanomalien auf die Ökosystemproduktivität im Mittelmeergebiet. Veränderungen
in der Koinzidenz von Hitze- und Trockenphasen in den letzten vier Jahrzehnten werden un-
tersucht. Hierbei werden sowohl solche Ereignisse betrachtet, die absolut gesehen als extrem
eingestuft werden, als auch Ereignisse, die relativ zu ihrem saisonalen Erscheinen im Jahres-
gang als extrem gelten. Darüber hinaus wird die saisonale Vulnerabilität von Ökosystemen
im Mittelmeergebiet untersucht. Der Anteil der absorbierten photosynthetisch aktiven Strah-
lung wird als Indikator für niedrige Ökosystemproduktivität verwendet und Temperatur- und
Bodenfeuchteanomalien im Jahresverlauf zugeordnet.

Die Ergebnisse zeigen, dass die Anzahl der zeitgleich auftretenden Hitze- und Trocken-
phasen im Mittelmeerraum in den letzten vier Jahrzehnten signifikant angestiegen ist. Diese
Zunahme ist in erster Linie auf steigende Temperaturen zurückzuführen und nicht auf man-
gelnden Niederschlag. Insbesondere bei Ereignissen mit langer Dauer und hoher Magnitude
ist ein starker Anstieg zu verzeichnen. Dies deutet auf das Vorkommen neuartiger klimati-
sche Bedingungen außerhalb der bisherigen klimatischen Variabilität hin. Ereignisse, die im
Bezug zu ihrem zeitlichen Auftreten als extrem anzusehen sind, nehmen vor allem im Früh-
ling und zu Beginn des Sommers zu, der Hauptvegetationsperiode im Mittelmeergebiet. Ein
Anstieg zu dieser Jahreszeit ist daher besorgniserregend, da er ungünstige Auswirkungen auf
landwirtschaftliche und natürliche Ökosysteme zur Folge haben könnte. Der Jahresgang der
ökologischen Vulnerabilität ist durch drei Phasen charakterisiert: a) Vulnerabilität während
heißer und trockener Bedingungen im späten Frühling bis zum Hochsommer, b) Vulnerabilität
während kalter und trockener Bedingungen von Ende Sommer bis Mitte Herbst und c) Vul-
nerabilität während kalter und feuchter Bedingungen von Ende Herbst bis Mitte Frühling. Es
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gibt jedoch regionale Abweichungen von diesem Muster. Der Zeitraum der Vulnerabilität bei
heißen und trockenen Bedingungen in der Türkei ist besonders lang und erstreckt sich vom
Frühling bis in den Herbst. Die Balkanhalbinsel ist hingegen fast ganzjährig energielimitiert
und Vulnerabilität unter heißen Bedingungen tritt kaum auf.

Ein weiterer Fokus dieser Arbeit liegt auf der Untersuchung von Einflussfaktoren, die Er-
tragsminderungen der Weizenernte in der nördlichen Hemisphäre verursachen können. Winter-
weizen ist eine der meistangebauten Feldfrüchte weltweit und von grundlegender Bedeutsam-
keit für die menschliche Ernährungssicherheit. Aus diesem Grund ist es essenziell, ein besseres
Verständnis der Umweltbedingungen zu erlangen, die Ernteausfälle verursachen können. Zur
Identifikation der wichtigsten meteorologischen Einflussfaktoren, die zu Missernten von Win-
terweizen in der nördlichen Hemisphäre führen können, wird ein automatisiertes Verfahren
zur Variablenselektion auf simulierte Wetter- und Ernteertragsdaten über einen Zeitraum von
1600 Jahren angewandt.

Ernteausfälle von Winterweizen in der nördlichen Hemisphäre stehen oftmals im Zusam-
menhang mit einem Wasserdampfsättigungsdefizit in der Luft während der generativen Wachs-
tumsphase. Weiterhin stellen die tägliche Temperaturspanne und die Anzahl an Frosttagen
innerhalb der Vegetationsperiode wichtige Prädiktoren dar. Sowohl monatliche Mittelwerte
üblicher Klimavariablen als auch Indikatoren für Klimaextrema spielen eine bedeutsame Rolle
für die Prognose von Missernten.

Die in dieser Arbeit verwendete Methodik ist flexibel und leicht auf andere ökoklimatolo-
gische Forschungsfragen mit einem Fokus auf Saisonalität anwendbar. Es fanden sowohl sa-
tellitenbasierte als auch modellgestützte Datensätze Verwendung. Fernerkundungsdaten sind
zunehmend ausgereift und mittlerweile über lange Zeiträume verfügbar, was ihren herausra-
genden Wert für die Untersuchung von Wechselwirkungen zwischen Ökosystemen und meteo-
rologischen Einflussfaktoren auf großen räumlichen Skalen unterstreicht. Modellsimulationen
sind darüber hinaus von großem Nutzen, um Fernerkundungsdaten zu komplementieren. Sie
ermöglichen es, eine große Spannweite von Umweltbedingungen zu untersuchen, was von hoher
Bedeutung für die Beobachtung der Auswirkungen von klimatischen Extrema ist.

Das hier vorgelegte Werk kann dazu beitragen, Änderungen von Umweltbedingungen und
damit verbundene negative Auswirkungen auf Ökosysteme zu überwachen. Auf dieser Basis
können Maßnahmen ergriffen werden, um die Auswahl geeigneter Feldfrüchte, den Zeitpunkt
des Anbaus und das Bewässerungsmanagement zu optimieren.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 A short introduction to compound events

There is a rising awareness of the importance of compound events since the first introduction of
the term in 2012 in the Intergovernmental Panel on Climate Change (IPCC) Special Report
on Climate Extremes (SREX) (Seneviratne et al., 2012). Zscheischler et al. (2018) define
compound weather and climate events as “the combination of multiple drivers and/or hazards
that contributes to societal or environmental risk”. However, several other definitions exist,
which are addressed in more detail in section 1.3.2. The joint occurrence of multiple drivers
and/or hazards can often lead to amplified impacts (Liu et al., 2016, Zscheischler et al., 2020b).
Research on compound events is a recently emerging scientific field with substantial societal
relevance, yet the available scientific literature is still scarce and knowledge on the changes of
such events in regard to global warming is still limited (Horton et al., 2016, Hoegh-Guldberg
et al., 2018).

One of the most addressed examples of compound events so far is the joint occurrence of
heat and drought (Zscheischler et al., 2021). Climate change will strengthen land-atmosphere
feedbacks, which augments the negative interannual correlation between temperature and
precipitation over land areas (Fischer and Knutti, 2013, Zscheischler and Seneviratne, 2017).
Further details hereof are given in section 1.3.3. The amount of extremely hot and dry warm
seasons in many regions is 10-fold higher in the period 2001–2100 compared to 1870–1969
assuming climate projections based on the Representative Concentration Pathway (RCP) 8.5
scenario (Zscheischler and Seneviratne, 2017). Some of the most severe compound droughts
and heat waves on record have been occurring in recent history, e.g. in Europe (2003), Russia
(2010), California (2014) and the “Black Summer” in Australia (2019–2020) (Ciais et al., 2005,
Rahmstorf and Coumou, 2011, AghaKouchak et al., 2014, van Oldenborgh et al., 2021). Many
compound events will become more frequent due to global warming including concurrent heat
waves and droughts. Compound events, which have been rare or even unobserved in the past
have an increased likelihood of occurrence at 2 °C global warming (Masson-Delmotte et al.,
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Figure 1.1: Historical atmospheric warming in the Mediterranean Basin (green) and globally
(blue) with (light curves) and without (dark curves) smoothing. The figure is obtained from
Cramer et al. (2018).

2021). This highlights that detailed knowledge of dependence and impact of droughts and
heat waves is crucial (Manning et al., 2018).

1.1.2 Climate change in the Mediterranean

Mediterranean ecosystems are particularly affected by climate change and the region is con-
sidered to be a climate change hot spot (Giorgi, 2006, Gao and Giorgi, 2008, Diffenbaugh and
Giorgi, 2012). The temperature rise in the Mediterranean exceeds the global average rate and
the mean temperature is currently at approximately 1.4 °C above pre-industrial levels (see Fig.
1.1) (Cramer et al., 2018). Increases in hot extremes and soil moisture droughts have been
observed in the Mediterranean during the last decades (Perkins-Kirkpatrick and Gibson, 2017,
Tramblay et al., 2020, Masson-Delmotte et al., 2021). Precipitation is projected to decreases
for all seasons in the Mediterranean for the twenty-first century, except for precipitation in
northern regions during winter where changes are insignificant (Lionello and Scarascia, 2018).
Temperature extremes are projected to increase at faster rates than the mean temperature
in the Mediterranean (Lewis et al., 2019, Masson-Delmotte et al., 2021). Intensification of
extreme events is one of the most worrisome aspects of climate change and society is poten-
tially more vulnerable to changes in extremes compared to changes in the mean of climatic
conditions (Jentsch et al., 2007, Sedlmeier et al., 2018). Therefore, a focus is put on the
Mediterranean Basin in this thesis.
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1.1.3 The role of climatic drivers and their seasonal timing as causes of
adverse ecosystem impacts

Increasing frequency and intensity of droughts and heat waves in the Mediterranean Basin
can affect its ecosystems in many ways. The associated changes include e.g. increasing tree
mortality and fire risk (Sarris et al., 2011, Ruffault et al., 2018), pronounced shifts in the
occurrence of phenological phases (Gordo and Sanz, 2009, 2010), reductions in agricultural
yields and the ability to provide ecosystem services (Peñuelas et al., 2017, Peña-Gallardo et al.,
2019, Fraga et al., 2020). The identification of ecological effects of compound events is thus
a crucial research gap (Hegerl et al., 2011, Mahony and Cannon, 2018), which motivates the
investigation of ecosystem responses to temperature and soil moisture anomalies in this work.

The seasonal timing of climatic anomalies forms another main aspect throughout this
thesis. Ecosystem responses depend on the seasonal timing of events and small temporal
shifts can affect the magnitude of the corresponding ecosystem response substantially (Sippel
et al., 2016, Denton et al., 2017, Sippel et al., 2018b). Particularly the impact of heat and
drought stress on crop yield depends highly on the timing of the climatic stressors (Zhu et al.,
2021). Moreover, the combined effect of heat and drought stress is more severe for cereal
growth and productivity than the individual effects of these stressors (Jagadish et al., 2014,
Schauberger et al., 2017, Ribeiro et al., 2020a, Hamed et al., 2021). Agricultural production
has been increasingly negatively affected by compound hot and dry events over the course of
the last decades (Feng et al., 2021). In addition to the focus on Mediterranean ecosystems,
the relationship of climatic conditions on crop failure in the Northern Hemisphere is therefore
a further aspect emphasized in this thesis, due to its high relevance for food security.

1.2 Perils associated with climate change in the Mediterranean
Basin

1.2.1 Mediterranean climate

The Mediterranean Basin is located in a transition zone between arid subtropical and mesic
mid-latitude regimes and does not form a homogeneous biogeographical unit (Blondel and
Aronson, 1995, Lionello et al., 2006, 2012). It should be noted that the term “Mediterranean”
does not only refer to a geographical region but also to a climatic zone. Aside from the
Mediterranean Basin, which encompasses more than half of the world’s regions with Mediter-
ranean climate (Archibold, 1995), Mediterranean climate can be found on the west sites of
continents between 30° and 40° in California, Chile, South Africa and Australia (Archibold,
1995, Rubio, 2009). The area of the Mediterranean Basin with Mediterranean climate accord-
ing to the Köppen-Geiger classification encompasses most areas located at the coast around
the Mediterranean Sea as well as the Atlantic coast of Portugal, whereas the coasts of Libya,
Egypt and north-eastern Spain do not form part of the Mediterranean climate regime due to
their aridity. The climate of the Mediterranean Basin is characterised by mild, wet winters
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and hot and dry summers, thus exhibiting a strong annual seasonality in both temperature
and precipitation (Lionello et al., 2006, Bonada and Resh, 2013). Periods of frost occur in the
northern part of the Basin, while they are seldom in the south (Schönfelder and Schönfelder,
2018). Heat waves are a frequent characteristic of the Mediterranean summer (Conte et al.,
2002) and are often connected to persistent anti-cyclonic regimes (Ulbrich et al., 2012). There
is also a large interannual and seasonal variability of precipitation (Bonada and Resh, 2013,
Spano et al., 2013). This is related to the influence of several large-scale atmospheric oscilla-
tion patterns and the transitional climate regime of the Mediterranean Basin as well as the
substantial circulation changes from summer to winter (Lionello et al., 2006, Tramblay et al.,
2020). In addition, the land use, soil type and topography exhibit a large spatial heterogeneity
(Thornes, 2002, Lionello et al., 2012, Bonada and Resh, 2013).

The vegetation is dominated by sclerophyllous plants, while woody deciduous plants as
well as succulents and perennial and annual herbs are also present (Archibold, 1995, Cheru-
bini et al., 2003, Bonada and Resh, 2013, Spano et al., 2013). Scrublands are the dominant
vegetation type, whereas evergreen forests occur mainly at relatively wet sites (Cherubini
et al., 2003). Maquis and garrigue are typical examples of Mediterranean scrublands, while
Quercus ilex, an evergreen oak species, is the characteristic main species of Mediterranean
forests (Spano et al., 2013, Schönfelder and Schönfelder, 2018).

Vegetation growth is primarily constrained by water scarcity in summer and low temper-
atures in winter (however, the latter limitation is primarily affecting northern regions and
higher altitudes) (Terradas and Savé, 1992, Archibold, 1995, Cherubini et al., 2003). This
so-called double stress results in a bimodal vegetation growth pattern (Terradas and Savé,
1992, Cherubini et al., 2003, Camarero et al., 2010, Gutiérrez et al., 2011). The main growing
phase usually occurs during spring, while there is also a minor growing season during autumn
(Gutiérrez et al., 2011, Camarero et al., 2021). Some species shed their leaves during the dry
season in summer (Spano et al., 2013). The onset of photosynthetic activity after summer is
triggered once a sufficient amount of precipitation is reached (Luo et al., 2020).

1.2.2 Land degradation and land cover change in the Mediterranean Basin

The combination of torrential rains occurring in the period from October to March, hot and
dry summers, overgrazing, deforestation and wildfires makes the Mediterranean particularly
prone to land degradation (Zdruli, 2011). Mediterranean soils are susceptible to soil erosion,
their profile development is slow and due to seasonal drying and salinization, clay and organic
colloids are often prone to shrinking and swelling processes (Postiglione, 2002, Spano et al.,
2013). High levels of evaporation during summer lead to salt accumulation, which causes
reduced soil fertility. In combination with soil moisture depletion accompanied by sparse veg-
etation cover in summer, this enhances soil erosion and subsequently causes land degradation
(Postiglione, 2002, Thornes, 2002). Such processes can be potentially irreversible since soil
depth of eroded areas might no longer be sufficient to support the prior vegetation cover (Basso
et al., 2002).
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The Mediterranean vegetation is adapted to high temperatures and water deficits during
the dry season (Bonada and Resh, 2013). Nevertheless, an intensification of climate extreme
events and increasing aridity imperil the delicate equilibrium of Mediterranean ecosystems and
might lead to loss of ecosystem resilience, soil erosion and ultimately desertification (Conte
et al., 2002, Rubio, 2009). Already an incremental decrease in water resources can evoke trans-
formations of semiarid to arid drylands and of non-dryland to drylands in the Mediterranean
(Rubio, 2009). By the end of the 21st century, the Mediterranean climate zone is projected
to expand northward and eastward into formerly temperate zones, while it will likely be sub-
stituted by arid climate at the southern margin (Alessandri et al., 2014). At 2 °C warming,
the Mediterranean biome area is projected to shrink by approximately 12–15% (Guiot and
Cramer, 2016). Increasing temperature accompanied by water deficits due to climate change
might render the Mediterranean Basin unsuitable for olive and wine cultivation (Moriondo
et al., 2013a,b, Fraga et al., 2020). The length of the Mediterranean growing season is also
changing: winter and spring are becoming shorter, whereas autumn potentially extends (Kot-
sias et al., 2020).

Currently, there is still a greening trend in the Mediterranean due to migration from rural
to urban areas (Pausas and Millán, 2019). This land abandonment leads to conversion of
agricultural areas to wildlands and grazing reduction due to the absence of livestock. The
following biomass increase leads to higher fuel availability and consequently a heightened fire
hazard. Unprecedented fire weather with simultaneously hot, dry and windy conditions is
likely in the near future in the northern Mediterranean (Ruffault et al., 2018). Therefore,
fire and drought risk might revert this greening trend in future (Pausas and Millán, 2019).
Furthermore, the increased vegetation density and plant competition due to this biomass
increase may cause additional drought vulnerability (Vilà-Cabrera et al., 2011, Lloret et al.,
2012, Vayreda et al., 2012)

Besides compound heat waves and droughts, increasing drought lengths combined with
a rising number of heavy precipitation events (Seneviratne et al., 2012, Toreti and Naveau,
2015, Samaniego et al., 2018) increases the susceptibility of Mediterranean ecosystems to
degradation. Droughts followed by heavy precipitation might increase tree mortality and
reduced vegetation cover, rendering the soil prone to erosion, which further reduces ecosystem
productivity (Frank et al., 2015).

1.2.3 Societal relevance of droughts in the Mediterranean Basin

Increasing drought severity in the Mediterranean can be primarily linked to rising atmospheric
evaporative demand caused by higher temperatures rather than changes in the precipitation
patterns (Tramblay et al., 2020, Vicente-Serrano et al., 2020). In addition, the development
of anomalous surface anticyclones is projected to drive precipitation declines in the Mediter-
ranean Basin. These anomalies are caused by a reduced land-sea temperature gradient and
changes in the circulation in the upper troposphere of the Northern Hemisphere (Tuel and
Eltahir, 2020). Regional climate model simulations indicate earlier starting and longer-lasting
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droughts in the Mediterranean until the end of the 21st century (Beniston et al., 2007). Given
a 1.5 °C and 2 °C warming, the length of dry spells in the Mediterranean is projected to
increase by 7% to 11%, respectively (Schleussner et al., 2016). The projected risks linked to
higher drought frequency and magnitude in the Mediterranean region are much more severe at
2 °C warming compared to 1.5 °C warming (Allen et al., 2018). Furthermore, water demand
is likely to increase further in future (Cramer et al., 2018). The Mediterranean is considered
one of the regions with the highest socio-economic exposure to drought in the world and this
will potentially worsen in the future (Gu et al., 2020). Thus, climate change will likely lead
to increasing social instability (Guiot and Kaniewski, 2015, Schilling et al., 2020).

There have been several multi-year droughts in recent decades in the Mediterranean Basin,
most of which have occurred in the western Mediterranean, Greece and the Levant (Kelley
et al., 2015, Cook et al., 2016). The recent persistent droughts in the Western Mediterranean
and Greece are the most severe since the beginning of records in 1100. For the Levant, there
is a 98% probability that the recent drought (1998–2012) is the driest on record within the
last 500 years (Cook et al., 2016).

The high precipitation variability and subsequently crop yield variability are an important
risk factor for the economy in the region (Lionello et al., 2006, Kaniewski et al., 2012, Gouveia
et al., 2016). Mediterranean countries are heavily dependent on irrigation for agriculture
(Thornes, 2002). Also the provision of seasonal precipitation is of great importance for non-
irrigated winter crops, which depend on the accessibility of deep soil moisture (Trigo et al.,
2010). Declining agricultural productivity due to drought conditions has been identified as a
crucial factor in both historical and recent societal crises in the Mediterranean Basin (Guiot
and Cramer, 2016).

Water resources are distributed unevenly among Mediterranean countries, which causes
international conflicts (Cramer et al., 2018, Tramblay et al., 2020). Concurrent heat waves
and droughts and the subsequent crop failures in the years 1998–2010 might have played a role
in the Syrian crisis (Trigo et al., 2010, Kelley et al., 2015, Guiot and Cramer, 2016), which
points out the societal relevance of such compound events. Also social conflicts during the
Arab Spring in North Africa are partially related to insufficient supply of food and water for
the population (Schilling et al., 2020). Moreover, ancient Mediterranean societies were highly
susceptible to crop failure caused by droughts. It is assumed that prolonged droughts have
led to migration, socio-economic crises and the collapse of societies, such as the “Late Bronze
Age collapse” (Kaniewski et al., 2015, Guiot and Cramer, 2016).

1.3 Terminology

1.3.1 Definition of extremeness

According to a review by McPhillips et al. (2018) definitions of extreme events are often
incoherent. The term “disturbance” is commonly used instead of the terms “extreme event”
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or “extreme impact” in ecology, although this has changed in recent years (Frank et al., 2015,
McPhillips et al., 2018). Hegerl et al. (2011) elaborate on the difficulties of defining extreme
events: Definitions can be based on statistical rareness (regarding historical data) or the
impact of extremes. They can include frequency, intensity, duration or all three of them.

The distinction between climate and weather extremes is imprecise; usually, events lasting
up to a few days are referred to as extreme weather events, whereas longer events are called
extreme climate events, which also can encompass several extreme weather events (Seneviratne
et al., 2012). According to this definition, heat waves (usually lasting up to several days) are
considered weather extremes, whereas droughts (usually lasting several months) are considered
climate extremes.

1.3.2 Definitions and importance of compound events

The term “compound event” was first defined by the IPCC SREX (Seneviratne et al., 2012)
as “(1) two or more extreme events occurring simultaneously or successively, (2) combinations
of extreme events with underlying conditions that amplify the impact of the events, or (3)
combinations of events that are not themselves extremes but lead to an extreme event or
impact when combined” (Seneviratne et al., 2012). Leonard et al. (2014) define a compound
event as “an extreme impact that depends on multiple statistically dependent variables or
events”. The authors criticize the definition of the IPCC SREX report because of a) the
artificial boundaries created by coining three distinct classes and b) the imprecise definition
of the temporal and spatial scale attributed to the terms “successive” and “simultaneous”.

Compound events can be correlated by a) a common external forcing factor, b) mutual
reinforcements due to feedback mechanisms and c) conditional dependence of the occurrence of
one event on the occurrence of another event (Seneviratne et al., 2012). However, according to
the definition by the IPCC SREX special report (Seneviratne et al., 2012), compound events
can also be causally unrelated, whereas Leonard et al. (2014) point out in their definition
that the variables or events have to be statistically dependent. Note that according to the
definition by Leonard et al. (2014) a compound event can be composed of several events such
as a compound drought and heat wave, but an event itself – e.g. a drought – also can be seen
as a compound of several coinciding extreme variables.

Finally, Zscheischler et al. (2020a) proposed a more refined typology of compound events,
which classifies these events into the four categories a) preconditioned events, b) multivari-
ate events, c) temporally compounding events and d) spatially compounding events, while
acknowledging that the boundaries between these groups are sometimes ambiguous.

The assessment of the occurrence probability of compound events is often challenging
because the sample size for such events is usually small (Hao et al., 2018, Zscheischler et al.,
2020a). Furthermore, standardised assessment approaches are still scarce (Kappes et al.,
2012).

If environmental drivers are statistically dependent, the probabilities of the individual
drivers cannot be simply multiplied to infer their joint occurrence probability. Analysing the
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variables’ marginal distributions in isolation would underestimate the tail risks (Leonard et al.,
2014, Little et al., 2015, AghaKouchak et al., 2020). Furthermore, the joint impact of several
drivers or hazards can be much larger than the effect of the individual components in isolation
(Liu et al., 2016, Zscheischler et al., 2020b) and many disasters can be traced to a combination
of climatic drivers (AghaKouchak et al., 2018, Zscheischler et al., 2018). Nevertheless, studies
often focus on single drivers or hazards, whereas multivariate analyses accounting for the
dependence of drivers and/or hazards are required for an adequate assessment of the risk
associated with compound events.

1.3.3 Feedback mechanisms of heat waves and drought

In many regions of the world, the number of hot days in the hottest month is correlated with
antecedent precipitation deficits, indicating that heat waves are strongly linked to surface
moisture deficits, particularly for long duration times (Mueller and Seneviratne, 2012). The
increased incoming shortwave radiation heating during conditions of reduced cloud cover (and
vice versa reduced heating during high cloud cover) is one reason for the anticorrelation of
temperature and precipitation over land (Berg et al., 2015). In addition, land-atmosphere
feedbacks play a crucial role in the co-occurrence and intensification of heat waves and droughts
(see Fig. 1.2) (Miralles et al., 2019). There is strong coupling between heat waves and droughts
in transitional zones between wet and dry climate such as the Mediterranean Basin (Green
et al., 2017). This is due to two feedback mechanisms: a) increasing evapotranspiration caused
by heat waves leading to soil dryness and b) sensible heat increasing at the expense of latent
heat, which gets limited by the soil moisture deficit (Seneviratne et al., 2010, 2012). The
persistence of such compound hot and dry spells in southern Europe is especially long during
the occurrence of stationary anticyclones, so-called atmospheric blocks (Röthlisberger and
Martius, 2019).

These land-atmosphere feedbacks lead to increased climate variability, making high intra-
and interannual climate variability a typical feature of the Mediterranean (Dünkeloh and
Jacobeit, 2003, Lionello et al., 2006, Seneviratne et al., 2010, Gouveia et al., 2016), which in
turn increases the likelihood of ecological disturbance events (Potter et al., 2003). Soil moisture
is the main driver of vegetation growth in the Mediterranean (Wu et al., 2021) and strongly
influenced by land-atmosphere coupling (Seneviratne et al., 2010), which further illustrates
the strong influence of such feedback mechanisms on plant functioning (Tramblay et al., 2020).

Climate change will alter the occurrence of compound events in various ways (AghaK-
ouchak et al., 2020, Zscheischler et al., 2020a). For example, there is an increasing frequency
in the occurrence of compound hot and dry events due to land-atmosphere feedbacks (Zscheis-
chler and Seneviratne, 2017, AghaKouchak et al., 2020). Due to the intensification of heat
waves by droughts via feedback mechanisms, increases in temperature extremes exceed the rise
in mean temperatures (Mueller and Seneviratne, 2012, Seneviratne et al., 2014). Furthermore,
current droughts are likely to be amplified by high evaporation rates due to more frequent
heat waves (Sheffield and Wood, 2008). This is illustrated by the Syrian droughts in 1960
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Figure 1.2: Schematic display of land-atmosphere feedback cycles leading to the intensification
of hydro-meteorological extremes in the atmospheric boundary layer (ABL). Arrows with red
colouring indicate a positive relation (for example temperature increases leading to increasing
vapour pressure deficit), whereas arrows with blue colouring indicate a negative relation. The
figure is obtained from Miralles et al. (2019).

and 2008: While the temperatures during the 1960 drought were within the typical range, the
2008 drought was characterised by especially high temperatures (Kelley et al., 2015).

1.3.4 Identification and attribution of extremes

The interlinkages of climate extremes to corresponding ecosystem responses are poorly un-
derstood; there is a need for knowledge on how magnitude, type and combination of climate
extremes might lead to the surpassing of ecosystem response thresholds (Smith, 2011). Frank
et al. (2015) point out the need for consistent definitions of climatic extreme conditions and
their corresponding ecological impacts. The authors state that comparative meta-analyses
are challenging due to this lack of well-defined studies. The impact of climatic drivers on
ecosystems can be addressed using either a forward or a backward assessment. The former
first identifies climate extremes and then investigates their respective impacts from a driver
perspective, whereas the latter identifies extreme impacts and investigates their respective
drivers from an impact perspective (Zscheischler et al., 2014). McPhillips et al. (2018) give an
overview of extreme event definitions based on 10 years of scientific literature in six academic
disciplines. They suggest that events should be defined based on drivers rather than their
impact because the effectiveness of measures taken to increase system resilience cannot be
assessed adequately otherwise.
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On the other hand, definitions of extreme events based on climatic data alone might be
inadequate for assessments of ecosystem impacts (Reichstein et al., 2013). Moreover, in a
forward assessment one defines a priori which drivers – and combinations thereof – are im-
portant for an extreme impact, which inhibits revealing potential unexpected combinations
of driver variables. In addition, not every climate extreme triggers an extreme ecosystem
response (Kreyling et al., 2008, Smith, 2011, Rolinski et al., 2015). It is crucial to identify
those climatic events that have a relevant influence on ecosystem processes (Kreyling et al.,
2008, Jentsch et al., 2011, Niu et al., 2014) and a backward approach also allows to deter-
mine when an environmental driver cannot explain a certain ecosystem response and other
potential drivers might have to be considered (Rolinski et al., 2015). Moreover, a backward
assessment allows to identify multiple causes of a single outcome, which makes such an ap-
proach particularly appropriate to assess compound events (Zscheischler et al., 2018). As an
example, heat waves in combination with droughts can be particularly detrimental for ecosys-
tem productivity, but their impacts can also cancel each other out with regard to ecosystem
respiration (von Buttlar et al., 2018). The impact of such variables should thus be addressed
jointly rather than independently, due to the positive feedback mechanisms via which they are
connected (Mueller and Seneviratne, 2012). For these reasons, backward approaches from an
impact perspective have been recommended by several members of the scientific community
(Reichstein et al., 2013, Leonard et al., 2014, Ribot, 2014, Ahlström et al., 2015, Rolinski
et al., 2015, Zscheischler et al., 2018, 2020a).

However, definitions based on the impact of climatic events on ecosystems depend on the
respective ecosystem’s functioning and the seasonal timing (Hegerl et al., 2011, von Buttlar
et al., 2018). Furthermore, ecosystem impacts can also vary substantially on a temporal scale
from e.g. temporary changes in productivity to persistent regime shifts (Crausbay et al., 2017).
Smith (2011) provides a more holistic framework to attribute the effects of climate extreme
events to ecosystem responses from an ecological perspective. Considering both driver and
impact, the author terms a climate extreme that provokes an extreme ecosystem response
an “extreme climatic event”. Reichstein et al. (2013) refined this definition further describ-
ing biosphere-relevant climate extremes as “conditions where an ecosystem function (such as
carbon uptake) is higher or lower than a defined extreme percentile during a defined time
period and over a certain area, traceable to single or multivariate anomalous meteorologi-
cal variables”. This definition specifically includes compound events such as combined heat
waves and droughts. Furthermore, the authors put an emphasis on the impact perspective,
suggesting to first identify ecosystem extremes and then attribute them to the corresponding
meteorological variables. This definition is applied in chapter 3 in a modified form.

1.3.5 Definitions of droughts and heat waves

A drought is defined as “a period of abnormally dry weather long enough to cause a seri-
ous hydrological imbalance” (Field et al., 2012). Generally, four categories of droughts are
distinguished: meteorological, agricultural or soil moisture, hydrological and socio-economic
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droughts (Wilhite and Glantz, 1985, Mishra and Singh, 2010, Seneviratne et al., 2012). These
drought types are interrelated. A meteorological drought relates to a precipitation deficit
for a certain period of time. Such droughts have usually few direct impacts, however, they
can further propagate into agricultural and hydrological droughts. Agricultural or soil mois-
ture droughts are characterised by a deficit of root-zone soil moisture. Hydrological droughts
refer to deficits of surface and subsurface water resources, usually indicated by reductions
in streamflow and/or groundwater levels. Finally, a socio-economic drought refers to water
demand exceeding the supply of water resources (Heim, 2002, Mishra and Singh, 2010, Senevi-
ratne et al., 2012, West et al., 2019). There are also attempts to encompass several drought
types comprehensively within one multivariate drought index (Hao and AghaKouchak, 2014,
AghaKouchak et al., 2015, Rajsekhar et al., 2015, Mathbout et al., 2021). Drought is a relative
term, indicating a temporary deviation from a state and can thus occur in any region. This
discriminates it from aridity, a term characterizing a permanent climate with low rainfall and
high potential evapotranspiration (Heim, 2002, Rubio, 2009).

Drought definitions are usually anthropocentric and need to be broadened to include e.g.
the ecological dimension of drought (Crausbay et al., 2017). As proposed by Seneviratne et al.
(2012), the term “soil moisture drought” is used preferentially in this thesis for describing
a deficit of root-zone soil moisture instead of the more commonly used term “agricultural
drought”, to emphasize its holistic nature, which is not restrained to agricultural systems
solely.

There are numerous definitions of heat waves and almost every study uses a different defi-
nition for what comprises a heat wave (Perkins, 2015, Fenner et al., 2019). Often the applied
metric is tailored for a specific impact group (Perkins, 2015). This renders the comparison of
studies a difficult task. The definition of heat waves is not trivial, since magnitude, spatial
and temporal scale, relevant variables and choice of relative or absolute thresholds have to
be decided on (Horton et al., 2016). Sometimes, the term “heat wave” is restricted only to
temperature extremes during the warm season, but it can also be used in a broader sense
year-round including warm anomalies during the cold season (Perkins and Alexander, 2013,
Horton et al., 2016). Calendar-day based percentiles can serve to link each event with the
respective time of the year (Perkins, 2015, Horton et al., 2016).

Horton et al. (2016) state that a heat wave definition should encompass several metrics
because essential information is neglected otherwise. For this reason, Perkins and Alexander
(2013) created a universally applicable framework with multiple characteristics. The frame-
work consists of three definitions of heat waves (the 90th percentile of daily minimum and
maximum temperature and the Excess Heat Factor) applied on five characteristics (number of
heat wave days, number of discrete events, length of the longest event, mean event magnitude
and highest magnitude). The 90th percentile was considered as the optimum balance to ensure
on the one hand that data points can be regarded as extreme and on the other hand not to
have too few data points. Nonetheless, the complexity of this framework makes it infeasible
to apply it in the joint assessment of warm spells and droughts in this thesis.
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1.4 Ecological impacts of climate extremes

1.4.1 Impacts on ecosystem productivity

Extreme events can accelerate ongoing ecosystem changes evoked by shifts in mean values of
climate parameters (Jentsch et al., 2007). Increasing severity of climate extremes can lead to
irreversible shifts in ecosystems (Bahn et al., 2014). A transition from analyses focussing on
the impact of changes in mean climate on ecosystems to an emphasis on the effects of extreme
events on ecosystems has occurred in the last years. Extreme responses in ecosystems related
to climate extreme events receive increasing attention (Zscheischler et al., 2013).

Climate extremes will become more frequent due to climate change and therefore events
considered currently extreme will be part of the future interannual climatic variability (Bahn
et al., 2014). These changes in frequency might affect resilience, functionality and sensitivity
of ecosystems (Hegerl et al., 2011). There is still a knowledge gap about how the intensification
of climate extremes will impact ecosystem recovery long-term (Piao et al., 2019), as well as
regarding the impacts on ecosystems caused by sequential events and interactions of several
drivers (Miao et al., 2009, Sippel et al., 2018b, Shukla et al., 2019). Due to increasing frequency
of climate extremes, plants may not be able to fully recover in the shortened regeneration
phases between two events. However, ecological stress memory could mitigate the adverse
effects partially (Walter et al., 2013). Decreases in the survival rate of the affected vegetation
might finally lead to a single drought event triggering a regime shift in the ecosystem (Lloret
et al., 2004, Hegerl et al., 2011, Gouveia et al., 2016).

The impacts of compound events on ecosystem productivity are complex. The impacts
of droughts on plant mortality have been studied primarily in consideration of increasing
temperature so far, whereas studies, where the increasing number and intensity of heat waves
is also incorporated, are missing (Matusick et al., 2018). It is difficult to disentangle the
individual effects of temperature and precipitation extremes and there are strong differences
depending on the respective ecosystem (Lloret et al., 2012, Niu et al., 2014, Sippel et al., 2016,
Vogel et al., 2019). For example, the combination of a warm winter followed by a wet spring
in 2015–2016 led to extreme crop yield reductions in northern France, whereas vegetation
productivity on the Iberian Peninsula was exceptionally high during that time (Ben-Ari et al.,
2018, Sippel et al., 2018a). Gross primary productivity in grasslands and agricultural areas
shows higher sensitivity to heat waves and drought in comparison to forests (Flach et al.,
2021). Sensible heat increases more over forests than grasslands under heat waves due to
higher evapotranspiration rates over grasslands compared to forests, which exhibit stronger
stomata control. However, this might lead to quicker soil moisture depletion in grasslands,
therefore in the long term, the sensible heat can become higher over grasslands compared to
forests (Teuling et al., 2010). In a simulation by de Boeck et al. (2016) heat waves alone did not
evoke heat stress on grasslands. Nonetheless, they found signs of heat stress in combination
with drought. The occurrence of heat stress only under drought conditions can likely be
explained by the reduced heat mitigation by transpiration in this case. The amplifications
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Figure 1.3: Conceptual display showing the current (green) and future (orange) climate vari-
ability for temperature, drought and precipitation, where the red line indicates a threshold
beyond which plant mortality is induced. The figure is obtained from Allen et al. (2015), who
modified it based on Allen et al. (2010).

of heat waves and droughts in forests can lead to tree mortality (Teskey et al., 2015) and
climate change might exacerbate the vulnerability of forests towards droughts and heat waves
further (see Fig. 1.3) (Anderegg et al., 2013, Allen et al., 2015). However, impacts potentially
differ between various forest ecosystems. For example, transpirational cooling is used by
some tree species to reduce heat stress, but it remains unclear how many species use this
strategy (Teskey et al., 2015). The compound event literature usually focuses on climatic
compound events (see e.g. Zscheischler et al. (2020a)). However, interactions between climate
extremes and non-climatic disturbances such as pests and diseases are also relevant and seldom
researched (Frank et al., 2015, Piao et al., 2019). As an example, grazing pressure can reduce
ecosystem resilience to drought (He et al., 2017). Furthermore, hot and dry conditions often
foster bark beetle outbreaks (Breshears et al., 2005, Kurz et al., 2008, Allen et al., 2010).

Droughts reduce gross primary productivity and ecosystem respiration, while heat waves
do not significantly affect gross primary productivity and increase ecosystem respiration in
Mediterranean and temperate ecosystems (Teskey et al., 2015, von Buttlar et al., 2018, Piao
et al., 2019). In combination, both drivers lead to negligible changes in ecosystem respira-
tion, but gross primary productivity gets reduced, which results in a reduced net ecosystem
productivity. As a consequence, compound heat waves and droughts result in a much more
pronounced decline in net ecosystem productivity than heat waves or droughts in isolation (von
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Buttlar et al., 2018). An increasing number of droughts might turn carbon sinks to sources,
and therefore counteract the effect of extended growing seasons due to warming (Ciais et al.,
2005).

Increasing levels of CO2 in the atmosphere lower stomatal conductance and thus transpira-
tion, while increasing photosynthesis rates, thereby improving water use efficiency – defined as
the ratio of net photosynthesis to transpiration. This way, plants save water and can partially
mitigate the effects of heat waves and droughts (Ainsworth and Long, 2005, Norby and Zak,
2011, Lemordant et al., 2016).

Moreover, extreme events can have different effects depending on the season (de Boeck
et al., 2011, Denton et al., 2017, Piao et al., 2019), which is illustrated by the compound
heat wave and drought in the USA in 2012: while vegetation activity in spring was enhanced
due to the earlier onset of the vegetation period caused by higher spring temperatures, it
was reduced during summer by mutually reinforcing biosphere-atmosphere feedbacks. The
elevated activity in spring led to increased water uptake, which in combination with the
high temperatures resulted in high evapotranspiration rates and subsequently depletion of soil
moisture storages in summer. The dry conditions further exacerbated the heat wave and vice
versa (Wolf et al., 2016). In addition, interactions over time also have to be accounted for: wet
conditions early in the season might lead to smaller root depths, which constraints the ability
of plants to cope with dry conditions at later stages during the growing season (Raymond
et al., 2020).

In addition, elevation plays also an important role in determining the ecological effects.
Reduction in net primary productivity was observed in the majority of Anatolian Forests for
the period from 2000–2010, with the exception of high-elevation coniferous ecosystems, where
productivity increased in response to rising temperatures (Erşahin et al., 2016). Furthermore,
the increasing anthropogenic nitrogen deposition also has effects on the functioning of ecosys-
tems (Phoenix et al., 2012): higher amounts of nitrogen lead to an accelerated depletion of
water during spring, which causes earlier drying of the Mediterranean vegetation (Luo et al.,
2020).

1.4.2 Physiological and structural effects

Heat waves and droughts have a variety of physiological and structural effects on vegetation
and often amplify each other’s effects (Teskey et al., 2015). Heat waves heighten the atmo-
spheric evaporative demand, leading to increased evapotranspiration, which in turn favours
the emergence of soil moisture droughts. Therefore, drought stress has a higher intensity and
starts earlier under heat wave conditions. Heat stress is exacerbated if transpirational cool-
ing is minimised due to closing of stomata under drought conditions (de Boeck et al., 2011,
Teskey et al., 2015). Plants close their stomata to reduce transpiration, which increases the
temperature inside their leaves and causes heat stress (de Boeck et al., 2011). In addition, the
reduced mesophyll and stomatal conductance evoked by droughts slows CO2 fixation (Rennen-
berg et al., 2006, Keenan et al., 2010). These processes can ultimately lead to plant mortality
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via two ways: Either hydraulic failure – in case the water demand exceeds the supply – or else
carbon starvation (Bréda et al., 2006, McDowell et al., 2008). In the latter case, autotrophic
respiration exceeds the rate of photosynthesis and as a consequence carbohydrate reserves
are depleted and the plant’s metabolism can no longer be sustained (van der Molen et al.,
2011). It is hypothesized that carbon starvation is more likely to occur in isohydric species,
which reduce stomatal conductance under drought conditions, whereas hydraulic failure is
more common for anisohydric species, which have little control over stomatal conductance un-
der drought conditions (McDowell et al., 2008). However, there is also evidence that carbon
starvation is less usual than hydraulic failure in isohydric forest ecosystems (Hartmann et al.,
2013, Rowland et al., 2015).

In the context of the influence of heat and drought on plant functioning and photosyn-
thesis, the atmospheric vapour pressure deficit (VPD) also plays a crucial role. Heat and soil
moisture drought are associated with high vapour pressure deficits and it remains challenging
to disentangle the individual effects of the variables temperature, radiation, VPD and atmo-
spheric CO2 concentrations on vegetation (Grossiord et al., 2020). Increased VPD exacerbates
water stress by increasing the demand of plants for soil water and the subsequent heightened
transpiration rates then lead to earlier depletion of soil water resources (Lobell et al., 2013).
Nevertheless, the impact of VPD is often neglected in agricultural studies and still not fully
understood (Novick et al., 2016, Zhang et al., 2017). Global warming will potentially lead
to increasing VPD and it is projected that VPD will become a limiting factor for ecosystem
productivity (Novick et al., 2016, Zhang et al., 2017, Grossiord et al., 2020).

Plant physiology is affected by hot and dry conditions in many ways, e.g. via Rubisco
inactivation, worsened functioning of thylakoid membranes and heightened photo-oxidative
stress (Crafts-Brandner and Salvucci, 2000, Schrader et al., 2004, García-Plazaola et al., 2008,
Teskey et al., 2015). In addition, there is a reduction of net photosynthesis and chlorophyll
concentration and osmolyte production is heightened to sustain water uptake (Rennenberg
et al., 2006, García-Plazaola et al., 2008, Teskey et al., 2015). Moreover, the photosystem
II is particularly susceptible to heat stress and damages are considered irreversible above air
temperature of 40 °C for trees (Yordanov, 1992, Allakhverdiev et al., 2008). Furthermore,
heat waves and droughts can lead to reduced leaf area, leaf shedding, growth reduction and
changes in biomass allocation (Reichstein et al., 2013, Teskey et al., 2015, Denton et al., 2017).

Increased leaf temperature can provoke accelerated phenological development in some
species (Bernal et al., 2011). Nonetheless, mortality caused by climatic events can be at-
tenuated by stabilizing processes in plant communities. Such an event can lead to enhanced
recruitment as well as increased growth and survival rate in the remaining population in the
aftermath (Lloret et al., 2012). Climate extreme events can also be beneficial and potentially
cause reductions in pest and pathogens, while at the same time they can also be favourable
for pollinators and seed dispersers and consequently alleviate vegetation stress (Dale et al.,
2001, Rosenzweig et al., 2001, Lloret et al., 2012).
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1.4.3 Importance of climate extremes for agricultural production

Wheat covers the largest area worldwide of all crops and is ranked third in the amount of
annual production. It contributes approximately one fifth of daily calories and protein in the
human diet (Shiferaw et al., 2013, FAOSTAT, 2019). It is the main crop in temperate zones
but is also grown in a wide range of other climate zones (Monneveux et al., 2012, Peña-Bautista
et al., 2017, Mäkinen et al., 2018).

Climate change has negatively affected wheat yield in lower latitudes in the last decades,
whereas the effects have been positive in higher latitudes (Iizumi et al., 2018, Mbow et al.,
2019). A wheat yield reduction by 6% per °C is estimated (Asseng et al., 2015). According to a
counterfactual analysis by Iizumi et al. (2018), global average wheat yield was reduced by 1.8%
between 1981 and 2010. A significant part of yield increases due to technological advancements
and carbon dioxide fertilization were counterbalanced during this time by global warming
(Lobell et al., 2011). In future, the frequency of unfavourable climatic conditions for crop
production is projected to increase, which will lead to larger temporal and spatial variability
of yields (Trnka et al., 2011, 2014, Asseng et al., 2015, Ben-Ari et al., 2018). However, the
higher exposure to extreme events also might lead to acclimation and thus better adapted
crops (Hegerl et al., 2011, Mäkinen et al., 2018), which could attenuate yield reductions.

Heat and drought stress can impair growth and development at most developmental stages
of the growth cycle (Jagadish et al., 2014), but the impact on crop yield depends highly on the
timing of climatic stressors (Zhu et al., 2021). The life cycle of cereals consists of three broad
stages, the vegetative, reproductive and the grain filling stage. The latter two are primarily
important in determining crop yield, whereas negative effects during the vegetative stage can
potentially still be compensated later on (Jagadish et al., 2014). For example, drought during
the vegetative phase only reduces the photosynthesis rate and thus plant growth, whereas
drought during the reproductive phase may induce ovule abortion and pollen sterility, which
directly limits crop yield (Barnabás et al., 2008). Thus, wheat is particularly vulnerable to
heat stress during anthesis and grain filling and less so in its vegetative phase (Porter and
Gawith, 1999, Luo, 2011). While most studies highlight the vulnerability to drought during
the reproductive phase, there is nevertheless also evidence that the vegetative phase, e.g.
during stem elongation is equally sensitive (Daryanto et al., 2016, Le Gouis et al., 2020)
The vulnerability to heat is likely to exacerbate and the regions for wheat production will
shift due to climate change (Schlenker and Roberts, 2009, Rezaei et al., 2015, Lischeid et al.,
2022). While it will be challenging to sustain productivity in low-latitude areas with increasing
temperatures, wheat is comparatively well adapted to water stress and might thus become
more competitive in arid regions than the crops which are currently grown there (Shiferaw
et al., 2013).

The frequency of days during the reproductive stage exceeding critical temperature thresh-
olds is projected to increase more than threefold by 2050 in Europe (Gourdji et al., 2013). Due
to the high vulnerability of crops to heat stress during this phase, this poses a large threat
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to crop production (Porter and Gawith, 1999, Trnka et al., 2014). Anthesis might advance
by 2 weeks by 2060 due to accelerated crop growth under warmer conditions (Trnka et al.,
2014). Global warming accelerates the development of plants, leading to a shorter time span
until maturity. This way, the reproductive period occurs earlier and thus under comparatively
cooler temperatures, so crops might avoid the exposure to heat and drought stress during
the reproductive phase (Trnka et al., 2014, Rezaei et al., 2015). However, it remains unclear
if an earlier vegetation period can actually compensate for increased heat stress in summer
during anthesis. For example, the reduced effective global radiation due to a shift to shorter
day lengths might offset the benefits of warmer spring temperatures for plant growth (Trnka
et al., 2014, Rezaei et al., 2015). Furthermore, the potential for heat stress mitigation by
advancement of the reproductive stage is limited for spring crops in comparison to winter
crops (Rezaei et al., 2015, Strer et al., 2018). Moreover, according to a study by Gourdji et al.
(2013), this strategy would likely be less effective for other crops like maize, rice and soybean
compared to wheat. In addition, while higher temperatures increase the grain growth rate, the
grain filling period is also shortened, which in summary leads to reduced grain size (Prasad
et al., 2008, Rezaei et al., 2015).

Wheat yield reductions are primarily driven by heat and droughts, whereas water logging
and frost are less frequent causes, although they can be regionally important (Lesk et al., 2016,
Zampieri et al., 2017, van der Velde et al., 2018). Indicators of meteorological drought such
as the Standardised Precipitation Index (SPI) are insufficient for predicting yield anomalies
and indicators that incorporate soil moisture drought like the Standardised Precipitation-
Evapotranspiration Index (SPEI) or gridded soil moisture data sets might be more appropriate
(Vogel et al., 2019). Nevertheless, in a study by Lischeid et al. (2022) soil moisture was
a less relevant driver of crop yield than precipitation. However, the soil moisture data set
was simulated based on meteorological variables and thus its information content might be
already mostly contained in the meteorological predictors used in this study. Therefore, a
satellite-based soil moisture data set could potentially add further predictive power compared
to a simulated soil moisture data set. It is unclear if heat or drought stress is the main
driver of crop failure. In some cases, temperature is more important (Lobell et al., 2011,
Vogel et al., 2019), while in other cases precipitation dominates (Ribeiro et al., 2020b). Under
current conditions, exceedances of critical temperatures are still rare (Schauberger et al., 2017).
However, according to Zhu et al. (2021), a paradigm shift from water limitation to extreme
temperatures as the primary cause of crop failure is projected.

In addition to the detrimental effects of heat waves and droughts in isolation, the combined
effect of heat and drought stress can be particularly detrimental for growth and productivity
(Jagadish et al., 2014, Schauberger et al., 2017, Ribeiro et al., 2020a, Hamed et al., 2021).
Wheat canopy temperature rises during heat stress, particularly when additionally evaporative
cooling is reduced due to the lack of water availability during drought conditions (Mäkinen
et al., 2018). According to findings by Ribeiro et al. (2020a), in comparison to heat stress,
less extreme levels of drought stress cause an equivalent detrimental impact on crop yield,
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indicating that drought is the dominant driver in compound events. Climate change will not
only lead to warming temperatures but also to changes in the coupling of heat and moisture,
which will affect crop yield negatively (Lesk et al., 2021). In addition, temporally compounding
events, like the combination of a warm winter and a wet spring leading to crop failure have
not been addressed adequately so far (Ben-Ari et al., 2018, Zscheischler et al., 2020a)

The increasing intensity and frequency of extreme events need to be accounted for in the
breeding of new cultivars (Mäkinen et al., 2018). For this aim, it is crucial to maintain a
large genetic variability to be able to deal with the uncertain nature of future extreme events
(Le Gouis et al., 2020). Adaptation measures, such as shifts in cropping calendars will also
be required (Strer et al., 2018), e.g. earlier spring wheat cultivars could potentially prevent
negative impacts of heat and drought during reproductive phases (Mäkinen et al., 2018).

1.5 Objectives and structure of the thesis

This thesis consists of one study with a climatological focus and two interdisciplinary studies at
the interface of climatology and ecology. The first two studies are located in the Mediterranean
Basin, while the third study comprises the entire Northern Hemisphere. The Mediterranean
Basin was chosen as a focus region for this thesis because it is a climate change hot spot with
strong land-atmosphere feedbacks, which faces substantial changes in ecosystem composition,
productivity and phenology. This combination of climatological and ecological transformations
makes it a particularly interesting study region for the ecoclimatological context of this thesis.
In the final study, unfavourable weather conditions leading to crop failure for winter wheat
are investigated, which is of major interest due to the tremendous importance of this crop for
global food security.

Objective of the first study (chapter 2): Quantification of changes in the number of
compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin
In the first study, the ERA5 reanalysis data set is used to detect changes in compound warm
spells and droughts in the Mediterranean over the last four decades in the Mediterranean
Basin. The study aims to a) assess if there are significant trends in compound warm spells
and droughts, b) quantify the magnitude of these trends and identify the regions with the
largest increases, c) identify which component – namely warm spells and droughts – primarily
drives increases in compound events and d) identify months with the highest increases in
warm spells, droughts and compound events. The study investigates both warm season events
– events during the time span from May to October, which are extreme in their absolute value
– as well as year-round deseasonalised events – which are extreme relative to the time of their
occurrence.

Objective of the second study (chapter 3): Identification of seasonal ecosystem
vulnerability to temperature and soil moisture anomalies in the Mediterranean Basin
The second study investigates the seasonal ecosystem vulnerability to climatic drivers in the
Mediterranean Basin by attributing states of low ecosystem productivity to the related climatic
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conditions during the course of the year. For this purpose, significant deviations of temperature
and soil moisture during periods with low levels of the fraction of absorbed photosynthetically
active radiation (FAPAR) are identified for each month of the year. Temperature is obtained
from the ERA5 Land reanalysis data set, soil moisture is retrieved from both ERA5 Land and
the satellite-based European Space Agency’s Climate Change Initiative (ESA CCI) product
and the FAPAR is acquired from the Copernicus Global Land Service (CGLS) for the time
span 1999–2019. The study aims to identify during which time of the year ecosystem are
vulnerable to certain combinations of temperature and soil moisture deviations for various
subregions and land cover classes.

Objective of the third study (chapter 4): Automated detection of the main meteo-
rological drivers of crop failure in the Northern Hemisphere
In the third study, least absolute shrinkage and selection operator (LASSO) logistic regression
is applied to predict crop failure in the Northern Hemisphere based on a set of meteorological
variables. Weather data from the global climate model EC-Earth and annual winter wheat
yield data from the Agricultural Production Systems sIMulator (APSIM) crop model for 1600
simulated growing seasons are applied in this study. The objective of this study is to assess the
usability of LASSO regression to accurately predict crop failure and identify relevant meteoro-
logical drivers in an automated way, which allows its usage in other applications where extreme
impacts are attributed to their drivers. To assess the performance of LASSO regression, the
model is compared to a generalized linear model and a random forest binary classification.
The key drivers of crop failure are identified from a large variable set encompassing monthly
meteorological variables including maximal temperature, VPD, precipitation as well as several
climate extreme indicators for the entire growing season.

Chapter 5 condenses the results of the articles from the chapters 2, 3 and 4 and draws
conclusions thereof. Finally, challenges in regard to the work of this thesis are presented and
future research directions are indicated.

1.6 Author contributions
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A B S T R A C T   

The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, 
largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of 
compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We 
analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in 
the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in 
relative terms respective to the time of the year. The number of compound events increases significantly and 
especially warm spells are increasing strongly – with an annual growth rates of 3.9 (3.5) % for warm season 
(deseasonalised) compound events and 4.6 (4.4) % for warm spells –, whereas for droughts the change is more 
ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is pri-
marily driven by temperature changes and not the lack of precipitation. The months July and August show the 
highest increases in warm season compound events, whereas the highest increases of deseasonalised compound 
events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a 
significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem pro-
ductivity and a vital phenophase.   

1. Introduction 

1.1. Climate change in the mediterranean 

The Mediterranean Basin is a region particularly prone to the effects 
of climate change and was characterized as one of the climate change 
hot-spots areas of the 21st century (Giorgi, 2006; Orlowsky and Sen-
eviratne, 2012; Lionello and Scarascia, 2018). Temperature increases at 
a faster pace in the Mediterranean compared to the global average due to 
regional feedback mechanisms enhancing changes in extreme temper-
atures (Diffenbaugh et al., 2007; Orlowsky and Seneviratne, 2012). A 
global increase in 1.5 and 2 ◦C is thought to correspond to a 2.2 and 3 ◦C 
increase of the daily maximum temperature in the Mediterranean Basin, 
respectively (Seneviratne et al., 2016). Future warming rates in the 
Mediterranean are expected to be 20% higher than globally – in summer 
even up to 50% –and increasing inter-annual variability in the warm 
season is projected (Giorgi, 2006; Lionello and Scarascia, 2018). In-
creases in extreme events were observed in the past decades and are 
projected to continue in the 21st century in the Mediterranean Basin 
(Giannakopoulos et al., 2009; Hartmann et al., 2013; IPCC, 2019) for 

heat wave intensity and duration (Diffenbaugh et al., 2007; Fischer and 
Schär, 2010; Lionello et al., 2012; Christidis et al., 2015), as well as 
drought and aridity (Sousa et al., 2011; Dai, 2013; Cook et al., 2016; 
Samaniego et al., 2018; Spinoni et al., 2018). Heat wave intensity in the 
Mediterranean shows the largest growths worldwide and particularly 
extremely intense heat waves are becoming more frequent (Perkin-
s-Kirkpatrick and Gibson, 2017). Soil water content also decreases in all 
seasons due to global warming, with the largest reductions in winter and 
spring (Samaniego et al., 2018). 

1.2. Socio-economic and ecological relevance 

Increases in hot and dry days have manifold detrimental impacts, 
including forest mortality (Allen et al., 2010), decreasing crop yields 
(World Bank, 2014; Zscheischler et al., 2017; IPCC, 2019), increasing 
fire risk (Ruffault et al., 2018), vegetation stress, rising energy demand, 
declining summer tourism (Giannakopoulos et al., 2009; van Lanen 
et al., 2016) and health effects (Poumadère et al., 2005; Fischer and 
Schär, 2010). 

In addition, severe climatic changes are likely to provoke land cover 
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changes and ecosystem regime shifts (Feng and Fu, 2013). Above 2 ◦C 
warming, desertification is projected to take place in the Mediterranean 
Basin until the end of the 21st century, rendering it inappropriate for e.g. 
olive cultivation (Moriondo et al., 2013; Guiot and Cramer, 2016; Fraga 
et al., 2020). Reduced water availability accompanied by increasing 
aridity elicited primarily by changes in precipitation and temperature 
will result in loss of Mediterranean ecosystems and their current biodi-
versity in the next decades (Guiot and Cramer, 2016; Cramer et al., 
2018). Moreover, the increasing severity of heat and drought will lead to 
the loss of the function of semiarid ecosystems as carbon sink (Ciais 
et al., 2005; Ma et al., 2015). 

Jentsch and Beierkuhnlein (2008) point out that changes in the 
disturbance regime associated with extreme weather events might be 
more harmful to ecosystem functioning than trends and shifts in mean 
conditions. Short-term events are likely to affect the long-term 
ecosystem state by shifting it to an alternate stable state (Kreyling 
et al., 2011). Changes in frequency and amplitude of extreme climatic 
events potentially result in non-linear alterations in ecosystem resil-
ience, functionality and sensitivity (Hegerl et al., 2011). The effects of 
such disturbance regime shifts on ecosystem resilience and resistance 
are not yet well understood and therefore need to be addressed in further 
research (Jentsch and Beierkuhnlein, 2008; Hegerl et al., 2011; Mahony 
and Cannon, 2018). 

1.3. Definition and importance of compound events 

A dependence structure between variables increases the occurrence 
probability of multivariate extremes. For example, high temperatures 
and low precipitation are usually negatively correlated, i.e. that the 
probability of an extreme hot and dry summer is much higher compared 
to an extremely hot and wet summer (Zscheischler et al., 2018). This 
illustrates that univariate analyses might fall short of precisely repre-
senting the potential risks associated with compound events (Agha-
Kouchak et al., 2014; Zscheischler and Seneviratne, 2017). In addition, 
the impacts of combinations of extremes can be much higher than the 
summed up impact of their individual components (Hegerl et al., 2011; 
Zscheischler et al., 2020). Many past hazard-related climatological 
studies focused on single drivers, while the majority of recent meteo-
rological and climatological events with extreme impacts are compound 
effects by multiple drivers – often in the form of compound heat waves 
and droughts (Zscheischler et al., 2018; Collins et al., 2013; Sedlmeier 
et al., 2018). The risk of concurrent droughts and heat waves was not 
analysed extensively to date (AghaKouchak et al., 2014; Kong et al., 
2020), although their thermodynamical relationship through soil 
moisture is well-known (Horton et al., 2016). Recent studies investi-
gated concurrent droughts and heat waves e.g. in the USA (Mazdiyasni 
and AghaKouchak, 2015), India (Sharma and Mujumdar, 2017), Europe 
(Manning et al., 2019), China (Wu et al., 2019; Ye et al., 2019; Kong 
et al., 2020) and globally (Zscheischler and Seneviratne, 2017; Hao 
et al., 2018). The amplification of risks from interlinked impacts are 
particularly pronounced in the Mediterranean Basin (Cramer et al., 
2018), e.g. increased fire risk due to heat waves and droughts (Gouveia 
et al., 2016). In addition, the interaction of drivers and corresponding 
hazards is likely to change due to climate change, leading to the 
occurrence of novel climatic conditions (Zscheischler et al., 2018). 

Several definitions of compound events were framed in recent years 
(Seneviratne et al., 2012; Leonard et al., 2014; Zscheischler et al., 2018). 
Here, we follow the confined definition according to the workshop on 
correlated extremes, held in New York City from May 29–31, 2019, 
which defined compound/multivariate events as events occurring at the 
same time and in the same place (Horton and Raymond, 2018). In this 
study, a compound event is termed as the co-occurrence of warm spells 
and droughts at the same time. 

We investigate two types of compound events: 1) compound events 
defined by the extremeness of their absolute values and 2) compound 
events, which are extreme in relation to the respective time of the year. 

We call the first category warm season compound events and the latter 
deseasonalised compound events. Warm season compound events are 
analysed only for the period May–October, whereas deseasonalised 
compound events are investigated year-round (for further details see 
section 2.3). We analyse deseasonalised compound events in addition to 
warm season compound events because extremes outside the warm 
season are rarely assessed in comparison to summertime events (Perkins, 
2015). Moreover, the impact of events on agriculture and ecosystems 
depends on their seasonal timing and thus requires a year-round anal-
ysis. (de Boeck et al., 2011; Hegerl et al., 2011; Sippel et al., 2016; 
Ben-Ari et al., 2018). To assess the risks imposed by these events on the 
Mediterranean Basin, it is therefore crucial to incorporate also events, 
which might not be high in absolute values, however are considered 
extreme in regard of the time of the year of their occurrence (de Boeck 
et al., 2011). While compound warm spells and droughts have been 
assessed in the Mediterranean Basin before (Russo et al., 2019), this is 
the first paper encompassing a year-round investigation according to our 
knowledge. 

1.4. Research questions 

Within this article, the following research questions are examined. 
Does the number of warm season and deseasonalised compound events 
increase significantly in the Mediterranean Basin over the last 40 years 
(cf. section 3.1)? If so, how large is the increase and in which countries is 
it largest? Which is the major component – namely warm spells and 
droughts – for increases of warm season and deseasonalised compound 
events (cf. section 3.2)? Which months show the highest increase in the 
number of warm season and deseasonalised warm spells, droughts and 
compound events (cf. section 3.3)? 

2. Methods 

2.1. Study area 

The study area is refined to the zones, which are part of the Köppen- 
Geiger categories Csa and Csb within the Mediterranean Basin (cf. 
Fig. 1). The Csa and Csb categories refer to “Warm temperate climate 
with dry and hot summer” and “Warm temperate climate with dry and 
warm summer”, respectively. The Köppen-Geiger classification map was 
obtained from Kottek et al. (2006) and Rubel et al. (2017). 

2.2. Data 

Hourly 2 m air temperature, total precipitation and potential evap-
oration were obtained from the ERA5 reanalysis data set with a spatial 
resolution of 0.25◦× 0.25◦– encompassing 2 883 pixels in total – for the 
40-year period from 1979 to 2018 (Copernicus Climate Change Service, 
2017; Hersbach et al., 2019). The daily maximum 2 m air temperature 
was extracted from hourly data. Hourly total precipitation and potential 
evaporation were summed up monthly. 

2.3. Definition of events 

The typical time scales of droughts and warm spells diverge – 
droughts typically are investigated on a monthly to yearly scale, 
whereas warm spells are observed on a daily to weekly scale (Miralles 
et al., 2019). Therefore, using a single time scale might not capture all 
relevant temporal dynamics (Le Page and Zribi, 2019) and separate time 
scales for both phenomena are required. We use a peak over threshold 
approach to define extremes. Here, we define daily maximum temper-
ature above the 90th percentile of the daily maximum 2 m air temper-
ature of the period 1979–2018 with a duration of at least 5 days for each 
pixel as the standard case for a warm spell. In addition to that, also warm 
spells defined by the 85-, 90-, 95th percentile and a duration of 3, 5 and 7 
days (leading to nine cases of warm spells in total) are investigated for 
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assessing the impact of the choice of duration and magnitude on the 
obtained changes in the number of events. For the definition of 
droughts, two indices are applied, the Standardised Precipitation Index 
(SPI) (McKee et al., 1993) and the Standardised Precipitation Evapo-
transpiration Index (SPEI) (Vicente-Serrano et al., 2010). 

For the calculation of the SPI, precipitation is summed monthly, a 
probability distribution function is fitted (a gamma distribution for the 
SPI and a log-logistic distribution for the SPEI, respectively) and trans-
formed to a normal distribution with mean of 0 and standard deviation 
equal to 1, where positive values indicate wet conditions and negative 
values indicate dry conditions. The SPEI is calculated similarly to the 
SPI, but it is based on the difference of precipitation and potential 
evapotranspiration – not solely on precipitation as it is the case for the 
SPI. Both indices are calculated monthly based on the current and the 
two preceding months separately for each pixel. This means, that e.g. the 
SPI and SPEI value for the month of July always includes also precipi-
tation data from May and June. This 3-month SPI and SPEI is abbrevi-
ated as SPI-3 and SPEI-3 hereafter, respectively. According to Szalai 
et al. (2000), soil moisture drought is correlated best with SPI-2 and 
SPI-3, thus the SPI-3 can serve as a proxy for soil moisture conditions 
(WMO, 2012). A drought is defined as SPI-3 < −0.8 and SPEI-3 < − 0.8 
respectively following the methodology of Mueller and Seneviratne 
(2012) and Mazdiyasni and AghaKouchak (2015). 

Compound warm spells and droughts are defined as warm spells 
coinciding with SPI-3 droughts according to the approach by Mazdiyasni 
and AghaKouchak (2015). We analyse first the changes in compound 
events (cf. section 3.1) and then examine their individual components – 
namely warm spells and SPI-3 droughts (cf. section 3.2). In the latter 
part, also SPEI-3 droughts – which are not part of the definition of 
compound events – are included in addition to SPI-3 droughts to cover 
not only the precipitation aspect of droughts, but also the influence of 
potential evapotranspiration to acquire a more comprehensive charac-
terisation of the drought regime in the Mediterranean. 

Compound events are categorized in two ways regarding absolute 
extremes – which we refer to as warm season compound events – and 
extremes relative to their respective timing of the year – which we refer 
to as deseasonalised compound events. 

Warm season compound events are defined as the joint occurrence of 
a warm season warm spell and a warm season SPI-3 drought. A warm 
season warm spell is defined as the 5-day exceedance of the 90th 

percentile threshold of the daily maximum temperature values of the 40- 
year period (Mazdiyasni and AghaKouchak, 2015). For the calculation 
of the warm season SPI-3 drought, the entire distribution of the 
respective time span from March to October is used (Note: March and 
April are included because they are required for the calculation of the 
SPI-3 in May and June. Otherwise, their values are neglected in this 
study.). Therefore, a warm season SPI-3 drought is a representative 
measure for a drought condition during the period from March to 
October. The process is performed similarly for SPEI-3 droughts. 

Deseasonalised compound events are defined as the joint occurrence 
of a deseasonalised warm spell and a deseasonalised SPI-3 drought. A 
deseasonalised warm spell is defined as the 5- day exceedance of the 90th 

percentile threshold of the deviation of the daily maximum temperature 
from the long-term mean condition of the respective date of the year. 
Daily maximum temperature is deseasonalised by subtracting the mean 
of the respective calendar day k of the year as stated below (cf. equation 
(1)). 

The deseasonalised temperature Tdes
nκ is defined as: 

∀n ∈ N(Tdes
nκ = Tnκ − Tnk) (1)  

where Tnκ is the temperature of the given day κ and Tnk is the mean 
temperature for the given calendar day k for all pixels n ∈ N, where N 
denotes the set of all pixels in the Mediterranean Basin belonging to the 
Köppen-Geiger categories Csa and Csb. Tnk is calculated by averaging 
over all days κ with the same calendar day k (e.g. the first day of January 
01.01.) within the time span 1979–2018 and subsequently smoothing 
the obtained curve of the mean annual temperature cycle for each pixel 
n ∈ N to minimise stochastic fluctuations in the annual temperature 
curve. 

For the calculation of the deseasonalised SPI-3 drought, the SPI is 
calculated based on the distribution of each month of year – and its 2 
preceding months – separately, i.e. it is representative for the extreme-
ness with respect to the given time of the year. The process is performed 
similarly for SPEI-3 droughts. 

2.4. Challenges of the SPI and the SPEI 

All drought indices have certain limitations. The applicability of the 
SPI in dry seasons has been questioned because in such cases, periods 
without rainfall are the norm and cannot be considered as a drought (Wu 
et al., 2007). If there are too many zero precipitation values, it is 
infeasible to fit a suitable gamma distribution and thus to yield normally 
distributed SPI values (Mishra and Singh, 2010). In addition, relatively 
small deviations can lead to disproportionately large changes in the SPI 
value in case of periods with scarce rain (WMO, 2012). In the Medi-
terranean Basin such periods without precipitation are common during 
summer time (Palutikof et al., 1994; Manning et al., 2019). This is the 
reason why there are particularly few droughts detected for the desea-
sonalised summer months. In our study, this limitation is partially 
alleviated by using the SPI-3 to avoid covering a period with insufficient 
length for rainfall occurrence. 

The SPEI is highly correlated with temperature (Kong et al., 2020) 
and is thus to a certain degree also already an indicator for a compound 
event. For this reason SPEI droughts are not investigated in 
co-occurrence with warm spells in this study. Nevertheless, it can serve 
as good additional indicator to verify the analyses of warm spells and SPI 
droughts as it is related to both measures – directly to SPI, because it has 
a precipitation component and indirectly to warm spells because tem-
perature is a driver of potential evapotranspiration. 

Furthermore, estimations of potential evaporation can vary 
depending on the applied method (Zhao et al., 2013). Potential evapo-
ration of a vegetated land surface, which may be partially water-limited, 
cannot be measured routinely for large regions. Therefore, several 

Fig. 1. Mediterranean study area for which the Köppen-Geiger climate category is “Mediterranean hot summer climate” (light green) or “Mediterranean warm 
summer climate” (dark green). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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approaches exist for its calculation or estimation, e.g. physically-based 
(i.e. based on the energy budget of the land surface) ones like the 
Penman-Monteith equation and temperature-based estimation ap-
proaches like the Thornthwaite and the Hargreaves equation 
(Thornthwaite, 1948; Monteith, 1965; Hargreaves, 1975; Zhao et al., 
2013). Potential evaporation values from ERA5 are based on surface 
energy balance calculations (such as the Penman-Monteith equation) 
with the vegetation parameters set for well watered agricultural land 
(Copernicus Climate Change Service, 2017). The Penman-Monteith 
equation is energy-balance-based and requires air temperature, rela-
tive air humidity, net radiation and wind speed as input atmospheric 
variables and estimates for water conductance through the vegetation 
cover (Allen et al., 1998; Bonan, 2016). It usually yields rather realistic 
estimations of evapotranspiration with a high spatial and temporal 
resolution. However, due to its comprehensive data requirements its 
usage is limited in many regions (Donohue et al., 2010). In such cases 
the application of the empirical Hargreaves equation can be recom-
mended, which was designed for simplicity and is based solely on 
temperature (Allen et al., 1998; Hargreaves and Allen, 2003). Another 
widely applied method in cases of data scarcity is the Thornthwaite 
equation (Garcia et al., 2004). 

2.5. Detection of temporal change 

The number of compound events are aggregated yearly and divided 
by the number of pixels to obtain the average yearly number of com-
pound events per pixel. Using this aggregation, autocorrelation is 
reduced. Trend detection is performed using the non-parametric Mann- 
Kendall test for the aggregated time series from 1979 to 2018. A 
modified version of the Mann-Kendall Test was used to account for 
temporal autocorrelation based on the Hamed and Rao (1998) variance 
correction approach. Additionally, we corrected for multiple testing 
using the Benjamini and Hochberg (1995) correction. 

Moreover, the 40-year time span from 1979 to 2018 is divided into 
two 20-year periods to analyse changes over time. The percentage 
change in the number of events between both time spans 1979–1998 and 
1999–2018 is investigated by calculating the proportion of compound 
events Eprop from the total number of compound events that occurred in 
each 20-year period as stated in equation (2), where N79−98, N99−18, 
N79−18 are events occurring in the time spans 1979–1998, 1999–2018 
and 1979–2018, respectively. 

Eprop =
N99−18 − N79−98

N79−18
(2) 

Furthermore, the two-sample Cramér-von-Mises test and the two- 
sample Kolmogorov-Smirnov test are applied for comparing the differ-
ences in the distributions of compound events between the two time 
spans 1979–1998 and 1999–2018. These tests evaluate the distance 
between the cumulative distribution functions of the two time spans 
1979–1998 and 1999–2018. The tests indicate, whether the two sample 
distributions stem from the same population based on the rejection of 
the null hypothesis indicated by the significance level of the p-value. A 
p-value < 0.05 (5% significance level) is considered to be significant for 
the Mann-Kendall test, Cramér-von-Mises test and the Kolmogorov- 
Smirnov test. In addition, we apply a change vector analysis to 
compare the relative increases of warm spells in relation to droughts 
between the time periods 1979–1998 and 1999–2018. The change 
vector analysis is a visualisation technique often used for display of 
temporal changes in two spectral bands in satellite imagery (Malila, 
1980; Johnson and Kasischke, 1998). A more detailed explanation of 
this visualisation tool is given in section 3.2 and Fig. 9. 

The analysis was carried out using R version 3.6.1 and Python 

version 3.7.3. The R package ‘SPEI’ was applied for calculating SPI-3 and 
SPEI-3 (Beguería and Vicente-Serrano, 2017) and the R package 
‘RStoolbox’ was used to perform the change vector analysis (Leutner 
et al., 2019). 

3. Results 

3.1. Temporal changes in compound events over the period 1979–2018 

The development over time of compound events from 1979 to 2018 
shows a significant increase for both warm season and deseasonalised 
compound events (cf. Fig. 2). According to the slope of the fitted 
regression, the number of events rises from 0.27 (0.29) events per year 
in 1979 to 1.22 (1.16) in 2018 with an average standard deviation of 
0.99 (1.06) for warm season (deseasonalised) compound events. The 
average annual growth rate is 3.9% (3.5%) for warm season (desea-
sonalised) compound events. These trends are statistically significant 
(cf. Table 1). Extreme hot and dry years such as 2003, 2012 and 2017 
show notable peaks in the number of warm season compound events. 
Another striking feature is the high number of deseasonalised compound 
events in the years 2014–2017, which all rank among the highest six 
years within the entire 40-year period. 

The average yearly number of warm season (deseasonalised) com-
pound events per pixel in the entire period 1979–2018 is 0.72 (0.72), 
with an average event number of 0.46 (0.48) in the first period from 
1979 to 1998 and 0.98 (0.96) in the second period from 1999 to 2018 
(cf. Fig. 3). The boxplots and the empirical cumulative distribution 
functions of the average yearly number of events per pixel deviate 
strongly between the two time periods for both warm season and 
deseasonalised compound events (cf. Figs. 3 and 4). Particularly in the 
upper tail of the distribution of warm season compound events the 
divergence is highly pronounced (cf. left panel in Fig. 4), indicating that 
especially the years with the highest number of extreme events are 
getting more frequent. This increase in the upper tail – i.e. increase in 
years with substantially high numbers of events and/or particularly long 
events – can also be seen in Fig. 3 in the large extension of the right 
whisker of warm season compound event in the period 1999–2018. 

The spatial patterns of changes in event number are mostly consis-
tent for warm season compound events compared to deseasonalised 
compound events (cf. Fig. 5). The number of compound events has 
increased substantially in the years 1999–2018 compared to 1979–1998 
in most areas of the Mediterranean Basin. For warm season (deseason-
alised) compound events, 86.7% (91.1%) of all pixels have a higher 
number of events in the time period from 1999 to 2018 compared to 
1979–1998 with the increases being most pronounced in Morocco, 
south-eastern Spain and western Turkey. There are only few pixels, 
where the number of (warm season/deseasonalised) compound events 
has not changed (4.4%/2.0%) or decreased (8.9%/6.9%) from the first 
to the second period, notably in southern Turkey and the north-eastern 
region of the Iberian Peninsula. 

The highest increases over the 40-year period have occurred in the 
Western Balkan countries (Albania, Bosnia and Herzegovina, Croatia, 
Montenegro and North Macedonia) for warm season compound events 
(cf. Fig. 6), followed by Italy, Morocco, France and Spain. Libya is the 
only country showing decreases over time. Interestingly, on the other 
hand, Libya has the second highest increases regarding deseasonalised 
compound events – only superseded by Syria –, which is in contrast to 
the temporal decrease for warm season compound events. However, we 
consider this contrast between warm season and deseasonalised com-
pound events insignificant, because the Mediterranean region in Libya is 
fairly small and the strong increase in deseasonalised compound events 
is mainly driven by a few events in the last decade (cf. Fig. A11). The 
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only country with a significant trend for both warm season and desea-
sonalised compound events is Turkey indicated by an asterisk in Fig. 6. 
Additionally, for warm season compound events, a significant trend 
occurs in Israel and Palestinian territories (Palest. ter.), Italy, Morocco 
and Spain, as well as in France, Syria and Tunisia for deseasonalised 
compound events. The peak of 2003 compound event in the Western 
Mediterranean stands out clearly in France, Italy, Tunisia and the 
Western Balkan, whereas the most pronounced event in the Eastern 
Mediterranean occurs in 2010, clearly observable in Cyprus, Israel and 
Palestinian territories, Lebanon and Syria (cf. Fig. A11). 

3.2. Investigation of the drought and the warm spell component of 
compound events 

There is a significant trend from 1979 to 2018 for the number of 

compound events, warm spells and SPEI-3 droughts for both warm 
season and deseasonalised compound events (cf. Table 1). Only SPI-3 
droughts show no significant trend. Likewise, the distribution of 
events differs significantly between 1979 - 1998 and 1999–2018 for the 
number of compound events, warm spells and SPEI-3 droughts for both 
warm season and deseasonalised compound events – except for dea-
seasonalised compound events according to the Kolmogorov-Smirnov 
test –, but not for SPI-3 droughts. The average number of events in-
creases from 0.40 (0.62) events per year in 1979 to 2.39 (3.44) events 
per year in 2018 for warm season (deseasonalised) warm spells ac-
cording to the fitted linear regression. For SPEI-3 droughts, the average 
number of events rises from 2.02 (1.94) to 2.59 (3.63), respectively. For 
SPI-3 droughts, none of the tests shows any significance, i.e. there are no 
indications of changes over time. 

Compound events are increasing – indicated by an annual growth 

Fig. 2. Number of warm season (brown) and 
deseasonalised (green) compound events in the 
Mediterranean averaged yearly over all pixels for 
the 40-year period 1979–2018. The standard devi-
ation is displayed as shaded area in the respective 
colour. The average annual growth rate in per-
centage is stated adjacent to the regression lines for 
warm season (brown) and deaseasonalised (green) 
compound events. The three years with the highest 
number of warm season compound events (2003, 
2012 and 2017) are marked by grey vertical lines. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Table 1 
First column: Mann-Kendall (MK) trend detection for the number of compound 
events, SPI-3 and SPEI-3 droughts and warm spells averaged yearly over all 
pixels in the Mediterranean over the period 1979–2018. Second and third 
column: Statistical analysis of changes in event distributions for the periods 
from 1979 to 1998 and 1999–2018 for compound events, SPI-3 and SPEI-3 
droughts and warm spells averaged yearly over all pixels in the Mediterra-
nean using the Cramér-von-Mises test (CvM) and the Kolmogorov-Smirnov test 
(KS). Significant p-values are depicted bold. Forth column: Average annual 
growth rate (AAGR) in percentage. 
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rate of 3.9 (3.5) % for warm season (deseasonalised) compound events –, 
but to a lesser degree than warm spells alone – indicated by an annual 
growth rate of 4.6 (4.4) % for warm season (deseasonalised) warm spells 
(cf. Table 1). SPI-3 droughts on the other hand show no notable in-
creases. Therefore, the changes in compound events can likely be mostly 
attributed to increases in warm spells alone. However, in contrast to SPI- 
3 droughts, SPEI-3 droughts are increasing substantially. This means 
while precipitation is not showing large changes, potential evapotrans-
piration is increasing because of the higher frequency of warm spells. 

Finally, it should be noted that, the choice of duration and magnitude 
in the definition of warm spells affects the obtained annual growth rates 
in the number of events substantially. Notably, the higher the chosen 
definition for the respective warm spell duration and magnitude is, the 
higher are the changes in number of compound events over time (cf. 
Fig. 7), ranging from an annual growth rate of 2.4% (2.2%) for the 3-day 
duration and 85th percentile to 7.4% (5.8%) for the 7-day and 95th 

percentile for warm season (deaseasonalised) compound events. Inter-
estingly, for the most extreme events defined by 7-days durations above 
the 95th percentile, in many regions these events occur only in the time 

period from 1999 to 2018. This indicates that novel climatic conditions 
are emerging; producing extremes with a magnitude and duration, 
which did not occur in earlier times. 

Increases of deseasonalised and warm season warm spells are highly 
consistent (cf. Fig. 8). Except for Portugal and Galicia, warm spells in-
crease throughout the entire Mediterranean. SPI-3 droughts decrease in 
many regions, especially in southern Italy, Albania, Greece and western 
and southern Turkey. SPEI-3 droughts show also decreases at some lo-
cations in these regions, however to a lesser degree. In general, SPEI-3 
droughts slightly increase throughout the Mediterranean, but not as 
pronounced as warm spells. 

Fig. 9 shows how droughts and warm spells change in relation to 
each other in space between the first (1979–1998) and second period 
(1999–2018), qualitatively and quantitatively. The direction of change 
given by the angle indicates how both components are changing over 
time, e.g. if both warm spells and SPI-3 droughts are increasing (cyan 
colouring), mostly SPI-3 droughts are increasing, while warm spells are 
stagnant (green colouring) or mostly warm spells are increasing with 
stagnant SPI-3 droughts (dark blue colouring). For warm season com-
pound events the average angle of all pixels is 82.5◦, i.e. the prevailing 
case in the Mediterranean Basin are increasing warm spells with stag-
nant SPI-3 droughts over time (indicated by dark blue colouring) or 
sometimes even with decreasing SPI-3 droughts, e.g. in Cyprus, southern 
Turkey and southern Italy (purple colouring). By contrast, in the Iberian 
Peninsula and the Maghreb states often also SPI-3 droughts are 
increasing (cyan colouring) and sometimes only droughts are increasing, 
whereas warm spells remain stagnant (green colouring). Decreases and 
stagnation in warm spells are rare, but occur e.g. in southern Turkey and 
Portugal (yellow, orange, red and rose colouring). 

For deseasonalised compound events primarily the warm spells in-
crease, whereas SPI-3 droughts remain constant, illustrated by an 
average angle of all pixels of 86.5◦(indicated by dark blue colouring in 
the lower left panel in Fig. 9). In Morocco, eastern Turkey and Libya, 
both droughts and warm spells are increasing (cyan colouring). More-
over, regions with decreasing SPI-3 droughts and increasing warm spells 
are prominent in southwestern Spain, southern Italy and Greece (purple 
colouring). A remarkable different behaviour is detectable near the 
Atlantic Coast of the Iberian Peninsula, where many pixels with 
increasing SPI-3 droughts are located (indicated by cyan, green and 
yellow colouring). Northwestern Iberia was also identified as a region 
with increasing moisture availability during the 20th century by Sousa 
et al. (2011). However, the magnitude of the change is often not very 

Fig. 3. Boxplots of the number of warm season (brown) and deseasonalised 
(green) compound events in the Mediterranean for the time periods 1979–1998 
and 1999–2018 averaged yearly over all pixels. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 4. Event frequency specified by the empirical cumulative distribution functions of the number of warm season (left panel) and deseasonalised (right panel) 
compound events in the Mediterranean averaged yearly over all pixels for both time periods 1979–1998 (green) and 1999–2018 (brown). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Regional change detection of compound events between the two periods 1979–1998 and 1999–2018 showing the proportion of compound events from the 
total number of compound events that occurred in each 20-year period for warm season (upper panel) and deseasonalised (lower panel) compound events in the 
Mediterranean. The percentage is given by the difference between both periods divided by the entire time span 1979–2018 (cf. equation (2)). A value of 100% 
indicates all events occurred in the period 1999–2018, a value of −100% indicates all events occurred in the period 1979–1998 and a value of 0% indicates an equal 
number of events in both periods. 

Fig. 6. Absolute change in the number of warm season (upper panel) and deseasonalised (lower panel) compound events over the 40-year-period 1979–2018 for 
each country. Note that only the regions located within the study area (cf. Fig. 1) of the respective countries are incorporated. Significant trends based on the Mann- 
Kendall test are marked with an asterisk. The corresponding time series are shown in Fig. A11. 
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pronounced, so the behaviour of the warm spells has to be carefully 
interpreted here. 

Quantitatively, the increase for both warm season and deseasonal-
ised compound events is highest in western Turkey and Andalusia, 
whereas the smallest changes occur at the Atlantic coast of the Iberian 
Peninsula and southern Turkey (cf. right panels in Fig. 9). This shows 
that within Turkey, there is a substantial gradient in the change of the 
number of compound events on a relatively small spatial scale. 

3.3. Monthly assessment of compound events, warm spells and droughts 

The absolute number of warm season compound events increased 
from 1979 to 2018 by 0.19 events per pixel in July and 0.69 in August, 
whereas the other months showed virtually no changes (cf. Fig. 10). 

According to Conte et al. (2002), two thirds of all heat waves happen 
within July and August, which explains why these are also the months 
where compound events are predominantly increasing. However, the 
number of deseasonalised compound events increases most in February, 
May and June by 0.11, 0.11 and 0.17 events per pixel from 1979 to 
2018, respectively, whereas July, August and September have rather 
small increases by only 3.8⋅10−1, 6.2⋅10−1 and 1.8⋅10−1 events per pixel, 
respectively (cf. Fig. 10). 

Both deseasonalised and warm season warm spells have increased 
over the 40-years time period in all months (cf. Fig. 10 and Table 1). 
Warm season warm spells particularly increased in July and August – 
with the maximum increase in August of 1.10 in the number of events 
from 1979 to 2018, whereas deseasonalised warm spells increased most 
in the months from April to June – with a maximum increase of 0.44 in 
April. SPI-3 and SPEI-3 droughts show varying behaviours. Warm season 
(desasonalised) SPI-3 droughts show decreases in a third of the months, 
especially in autumn with a minimum of −0.13 in September (−0.14 in 
October). Warm season SPEI-3 droughts have a maximum of 0.29 in July 
– and are much smaller in all other months. Deseasonalised SPEI-3 
droughts increase in all months except March and November, where 
the difference is approximately zero, with maximum increases during 
the summer months – up to an increase of 0.34 events in August. 

4. Discussion 

4.1. Changes in the number of warm spells, droughts and compound 
events 

The increases in the number of compound events confirms the 
findings by Manning et al. (2019), who found an increasing number in 
dry and hot events in Europe for the period 1950–2013, which is pri-
marily driven by increases in temperature. Especially warm spells have 
been increasing strongly, whereas SPEI droughts have been increasing – 
presumably because of increases in the potential evapotranspiration – to 
a lesser degree and SPI droughts are generally constant over time. This 
indicates that the rise in the number of compound events is primarily 
driven by temperature changes and not lack of precipitation. A notable 
exception are the findings of Gudmundsson and Seneviratne (2015), 
who state there are few significant changes in southern Europe over the 
30-year period 1961–1990 based on an analysis of SPI droughts. 
Notably, the detection of changes in the number of droughts in the 
Mediterranean Basin is dependent on the choice of drought index and 

Fig. 7. Comparison of the effect of different warm spell lengths and magnitudes 
on change rates of compound events in the Mediterranean: Percentage change 
in the number of warm season (brown) and deseasonalised (green) compound 
events averaged yearly over all pixels from 1979 to 2018 for nine warm spell 
definitions using all nine combinations of the three warm spell durations (3, 5 
and 7 days) and three warm spell intensities (85th, 90th and 95th percentile). 
The 5-Day 90th percentile is the standard case used in this article and is high-
lighted in bold. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 8. Same as Fig. 5 for warm season (left column) and deseasonalised (right column) warm spells (upper panels), SPI-3 (central panels) and SPEI-3 (lower panels) 
droughts in the Mediterranean. 
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the reference time period (Spinoni et al., 2017). Therefore, the 
non-significant trends for SPI droughts in this study have to be inter-
preted with caution. 

The increase rate of warm spells depends on the choice of percentile 
used for defining the warm spell magnitude in the Mediterranean, with 
larger increases at higher percentiles. The most extreme compound 
events - i.e. those with the highest heat wave duration and magnitude – 
occur primarily in the period from 1999 to 2018, which indicates the 
emergence of novel unprecedented climatic conditions in the Mediter-
ranean in recent decades. This is consistent with previous findings 
indicating that temperatures at the hot tail, i.e. the highest percentiles, 
increase much faster than mean temperature, up to 6 ◦C for 1.5 ◦C mean 
warming due to surface moisture and atmospheric feedbacks in the 
Mediterranean Basin, (Diffenbaugh et al., 2007; Fischer and Schär, 
2010; Mueller and Seneviratne, 2012; Orlowsky and Seneviratne, 2012; 
Lewis et al., 2019). 

4.2. Discrepancy between SPI and SPEI droughts 

Lack of precipitation and high evapotranspiration rates are the 
general drivers of Mediterranean droughts (Sousa et al., 2011; Spinoni 
et al., 2017). In contrast to SPI droughts, SPEI droughts are increasing 
substantially (cf. Fig. 10 and Table 1), indicating that while precipitation 
is not showing large changes, potential evapotranspiration is increasing. 
This is in line with Vicente-Serrano et al. (2020) who link increasing 
drought severity in the Mediterranean primarily to increasing atmo-
spheric evaporative demand rather than precipitation deficits. There-
fore, the Mediterranean is likely getting drier in spite of unchanged 
precipitation patterns. The SPEI is particularly suitable to detect the 
warming impact by climate change (Vicente-Serrano et al., 2010), 
whereas the SPI cannot show such warming-induced changes in 
droughts as it is based solely on precipitation (Dubrovsky et al., 2009). 
This leads to the conclusion that, while compound events are strongly 

Fig. 9. Detection of change in the number of warm spells and SPI-3 droughts in the Mediterranean between the time periods 1979–1998 and 1999–2018 using a 
change vector analysis: A change vector is defined by two points given by the number of warm spells and the number of SPI-3 droughts in the period from a) 
1979–1998 and b) 1999–2018. The angle (left column) and the magnitude (right column) of the change vector are displayed, where the angle is defined by the vector 
and the y-axis – the y-axis displays the number of droughts in this case – and the magnitude is given by the length of the vector, i.e. the Euclidean distance between 
both points. Warm spells and SPI-3 droughts are normalised by division through the number of droughts and warm spells in the first period (1979–1998), 
respectively. The colouring of the angular plot divides the angles into eight 45◦sections (see schematic illustration of the change vector analysis with an exemplary 
vector at the bottom of the plot). 
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Fig. 10. Absolute change in the number of warm season (left column) and deseasonalised (right column) events in the Mediterranean averaged yearly over all pixels 
over the 40-year-period 1979–2018 for each month for compound events (first line), warm spells (second line), SPI-3 droughts (third line), SPEI-3 drought 
(fourth line). 
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increasing in the Mediterranean, the increases of compound events 
calculated by the definition based on the SPI used here is presumably 
underestimating the drought component. Future research should aim for 
adequately incorporating the water balance and land-atmosphere feed-
backs by using direct measurements of soil moisture droughts and actual 
evapotranspiration, e.g. based on remote sensing (Sharma and Mujum-
dar, 2017; Toulios et al., 2020). However, such an approach can be 
presumably only be undertaken reliably for the last two to three decades 
due to the scarce spatio-temporal satellite coverage before (Dorigo et al., 
2017). Furthermore, remote sensing only retrieves surface soil moisture, 
but users are often requiring deeper reaching root-zone soil moisture 
(Albergel et al., 2008; Dorigo et al., 2017). 

Increases in SPEI-3 droughts are highly relevant, as heat waves 
jointly with increasing evapotranspiration can lead to a drier climate 
state, potentially leading to desertification in the Mediterranean Basin 
with drastic impacts on its ecosystems (Conte et al., 2002; Gao and 
Giorgi, 2008; Guiot and Cramer, 2016; Samaniego et al., 2018). The 
Mediterranean biome will extend northwards in future due to global 
warming (Seneviratne et al., 2006; Feng and Fu, 2013), potentially 
leading to similar exacerbations in the number of compound events in 
those regions. 

4.3. Timing of events 

The rate of change in number of events differs between warm season 
and deseasonalised compound events. The months July and August 
show the highest increases in warm season compound events by far, 
whereas the highest change rates of deseasonalised compound events 
occur in spring and early summer and are relatively low from July to 
September. It has been noted that the onset of droughts is starting earlier 
in the year, shifting towards spring (Beniston et al., 2007; Giannako-
poulos et al., 2009; Trenberth et al., 2014; Samaniego et al., 2018). 
Spinoni et al. (2017, 2018) found that changes in the number of drought 
frequency and severity differed substantially depending on the season 
and are highest in spring and summer in the Mediterranean Basin. This 
increase in deseasonalised compound events in spring is potentially very 
relevant for Mediterranean ecosystems and agriculture as this is the peak 
phase of ecosystem productivity and a vital phenophase. This is in line 
with findings by Samaniego et al. (2018), stating plant development is 
affected negatively due to decreasing soil moisture availability during 
the growing season in Europe. This shows the importance of incorpo-
rating deseasonalised compound events, because these patterns are not 
visible for warm season compound events and might be missed if only 
warm season compound events are investigated. Compound warm spells 
and droughts may occur earlier in the year than they used to in the past, 
which potentially explains the high rate of change in spring and early 
summer compared to the relatively low rate of change in late summer for 
deseasonalised compound events. This shift could be due to earlier 
depletion of water resources in the ecosystems (e.g. soil moisture) 
caused by increased temperatures and the associated ecosystem pro-
ductivity and evapotranspiration in springtime (Buermann et al., 2018; 
Bastos et al., 2020). Mediterranean winter and spring droughts are 
linked to the occurrence of subsequent summer heat anomalies in the 
Mediterranean and central Europe (Vautard et al., 2007; Russo et al., 
2019). For example, the increased evapotranspiration in spring 
contributed roughly as much as evapotranspiration in summer to the 
summer heat wave and drought in 2018 (Bastos et al., 2020). This soil 
moisture deficit can in turn fortify the development of heat waves due to 
lack of evaporative cooling (Lian et al., 2020). So far, the evidence 
supporting this mechanism is scarce (Lian et al., 2020) and this study 
contributes to add to evidence supporting this hypothesis. Drought im-
pacts also depend on seasonality. However, seasonal differences were 
rarely analysed for Europe up to this point (Spinoni et al., 2017, 2018). 

Further research is crucial for a better understanding of the effect of 

weather extremes on transpiration rates in European ecosystems 
(Teuling et al., 2010), as the effects of warm spells and droughts on 
vegetation dynamics are not one-sided and vegetation dynamics in turn 
also influence magnitude and duration of warm spells and droughts 
(Lemordant et al., 2016). 

5. Conclusion 

Our research supports prior findings that increases in the number of 
compound events in the Mediterranean Basin in the last four decades are 
mostly driven by temperature changes. A continuing and regular com-
bined monitoring of the changes in warm spells and droughts and their 
future development is crucial to provide the necessary data and infor-
mation base for an adequate risk management. Such a risk management 
might include adaptation of crop choice, sowing schedules, and irriga-
tion options. The interdependence between warm spells and droughts 
and the associated feedback mechanisms for warm spells and droughts 
are still under debate and the question if droughts primarily drive warm 
spells or vice versa is nontrivial (Sheffield et al., 2012). In this respect, 
the onset and development of compound warm spells and droughts is 
still not well understood and it remains unclear how these events and 
their interactions will be altered by climate change (Sheffield and Wood, 
2008; Miralles et al., 2019) and thus how these compound events will 
evolve in future. A better insight into these intertwined mechanisms and 
feedbacks of such compound events might be derived from detailed 
coupled local or regional meteorological and soil-hydrological model-
ling experiments, where energy fluxes and water storages can be 
modelled and analysed under observed boundary conditions, such as 
conducted e.g. by Niu et al. (2014) and Senatore et al. (2015). Such 
modelling experiments, however, require data from comprehensive 
on-site measurements campaigns for meteorological and 
soil-hydrological variables to enable a model validation of both energy 
and water fluxes. 

Increases in deseasonalised compound warm spells and droughts 
might have major implications for Mediterranean ecosystems and agri-
culture. An earlier onset of compound events in the year is likely to affect 
the growing season length and ecosystem productivity and in turn 
evapotranspiration rates. This might lead to unforeseen changes in the 
complex land-atmosphere feedbacks in this region. This highlights the 
importance of incorporating deseasonalised compound events, because 
these patterns are not visible for warm season compound events and 
might be missed if only warm season compound events are investigated. 
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AppendixA

Fig. A.11. Number of warm season (brown) and deseasonalised (green) compound events for each country averaged yearly over all pixels for the 40-year period 
1979–2018. Note that only the regions located within the study area (cf. Fig. 1) of the respective countries are incorporated. 
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Abstract. Mediterranean ecosystems are particularly vulner-
able to climate change and the associated increase in cli-
mate anomalies. This study investigates extreme ecosystem
responses evoked by climatic drivers in the Mediterranean
Basin for the time span 1999–2019 with a specific focus on
seasonal variations as the seasonal timing of climatic anoma-
lies is considered essential for impact and vulnerability as-
sessment. A bivariate vulnerability analysis is performed for
each month of the year to quantify which combinations of
the drivers temperature (obtained from ERA5-Land) and soil
moisture (obtained from ESA CCI and ERA5-Land) lead
to extreme reductions in ecosystem productivity using the
fraction of absorbed photosynthetically active radiation (FA-
PAR; obtained from the Copernicus Global Land Service) as
a proxy.

The bivariate analysis clearly showed that, in many cases,
it is not just one but a combination of both drivers that
causes ecosystem vulnerability. The overall pattern shows
that Mediterranean ecosystems are prone to three soil mois-
ture regimes during the yearly cycle: they are vulnerable to
hot and dry conditions from May to July, to cold and dry con-
ditions from August to October, and to cold conditions from
November to April, illustrating the shift from a soil-moisture-
limited regime in summer to an energy-limited regime in
winter. In late spring, a month with significant vulnerability
to hot conditions only often precedes the next stage of vul-
nerability to both hot and dry conditions, suggesting that high
temperatures lead to critically low soil moisture levels with
a certain time lag. In the eastern Mediterranean, the period
of vulnerability to hot and dry conditions within the year is
much longer than in the western Mediterranean. Our results

show that it is crucial to account for both spatial and tempo-
ral variability to adequately assess ecosystem vulnerability.
The seasonal vulnerability approach presented in this study
helps to provide detailed insights regarding the specific phe-
nological stage of the year in which ecosystem vulnerability
to a certain climatic condition occurs.

1 Introduction

Drought frequency and intensity are increasing in the
Mediterranean, accompanied by rising temperatures and heat
wave intensities (Perkins-Kirkpatrick and Gibson, 2017;
Samaniego et al., 2018; IPCC, 2019; Tramblay et al., 2020).
These climatic changes are linked to vulnerability of ecosys-
tems in various ways, e.g. to reductions in forest growth
and increasing tree mortality (Sarris et al., 2007, 2011) as
well as extended fire risk (Sarris et al., 2014; Ruffault et al.,
2018) and declining agricultural yields (Peña-Gallardo et al.,
2019; Fraga et al., 2020). Furthermore, the ability to provide
ecosystem services is impaired due to alterations in function-
ing and structure of Mediterranean ecosystems (Ogaya and
Peñuelas, 2007; Peñuelas et al., 2017). Broad-scale vegeta-
tion shifts and replacement of species are projected, and ul-
timately desertification is expected in many Mediterranean
regions (Gao and Giorgi, 2008; Zdruli, 2011; Feng and Fu,
2013; Liu et al., 2018).

The Mediterranean climate is characterised by great spa-
tial and temporal variability, which makes the investiga-
tion of ecosystem impacts challenging. The Mediterranean
Basin is marked by complex topography and is influenced
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by several large-scale atmospheric patterns (Lionello et al.,
2006, 2012). Furthermore, the Mediterranean climate has an
intricate seasonal cycle, alternating between water-limited
conditions in summer and energy-limited conditions in win-
ter (Spano et al., 2013). An assessment of ecosystem vulner-
ability in the Mediterranean therefore needs to account for
both its spatial and temporal variability.

In this study, we build on the ecosystem vulnerability anal-
ysis proposed by van Oijen et al. (2013, 2014) and Rolinski
et al. (2015), adapted with a focus on seasonal and multi-
variate impacts using remote sensing and reanalysis data. We
enhance the ecosystem vulnerability concept with a focus on
the seasonal timing of impacts. Ecosystem responses differ
depending on the seasonal timing of the event (de Boeck
et al., 2011; Smith, 2011; Sippel et al., 2016). Shifts of only
a few weeks in drought occurrence can make the difference
between negligible and detrimental impacts (Denton et al.,
2017; Sippel et al., 2017, 2018). Even though accounting
for seasonality is crucial in investigating climatic impacts
on ecosystems, it is still often neglected (Piao et al., 2019).
Studies are frequently limited to particular periods of interest
within the year – usually a period of up to half a year centred
around summer – when investigating seasonality (van Oi-
jen et al., 2014; Baumbach et al., 2017; Nicolai-Shaw et al.,
2017; Karnieli et al., 2019) but rarely investigate the sea-
sonality year-round. In addition, combinations of climatic
events in the seasonal cycle are seldom addressed (Smith,
2011; Hatfield and Prueger, 2015). Due to the pronounced
land–atmosphere feedback mechanisms in the Mediterranean
(Seneviratne et al., 2006; Green et al., 2017; Tramblay et al.,
2020), it is particularly important to analyse the impacts of
climatic anomalies in soil moisture and temperature jointly
rather than in isolation (Mueller and Seneviratne, 2012).
Such joint impacts of multiple stressors on ecosystems are
still little researched (IPCC, 2019). Relationships between
climatological and ecological variables at the tails of the dis-
tribution can show distinctly different behaviour compared to
the findings based on conventional linear correlation, which
makes it especially important to investigate the impact of
climate anomalies on ecosystems, not only their mean be-
haviour (Jentsch et al., 2007; Reyer et al., 2013; Baumbach
et al., 2017; Ribeiro et al., 2020).

Soil moisture is a particularly relevant variable for as-
sessing the state of ecosystems as it is directly related to
plant activity, biomass and agricultural yields (McWilliam,
1986; Sherry et al., 2008; Seneviratne et al., 2010; Zscheis-
chler et al., 2013), especially in seasonally water-limited ar-
eas such as the Mediterranean (Szczypta et al., 2014). How-
ever, large-scale soil moisture data covering long time spans
are scarce. Therefore, soil moisture proxies are applied in
most cases, e.g. land surface models or drought indicators
such as the standardised precipitation index (SPI) (Dorigo
et al., 2017; Nicolai-Shaw et al., 2017). However, the SPI
is primarily an indicator for meteorological droughts, which
do not necessarily propagate into soil moisture droughts

(de Boeck et al., 2011). Only a few studies use soil mois-
ture data derived from satellite imagery because long-term
coverage was not available until recently. Individual satellites
do not cover sufficiently long time spans, but long-term cov-
erage can be achieved by merging soil moisture data from
several satellites. The European Space Agency’s Climate
Change Initiative (ESA CCI) soil moisture data set provides
a unique, globally consistent multi-decadal time series based
on several active and passive microwave sensors (Dorigo and
de Jeu, 2016; Dorigo et al., 2017). It was first published in
2012 and has continuously improved since (Dorigo et al.,
2017). It has proven capability to assess land–vegetation–
atmosphere dynamics (de Jeu and Dorigo, 2016; Dorigo and
de Jeu, 2016; Nicolai-Shaw et al., 2017; Gruber et al., 2019).
So far, satellite-based soil moisture data are still rarely used
in ecosystem research (Dorigo et al., 2017), and Rolinski
et al. (2015), for example, point out the need to use obser-
vational data in the assessment of ecosystem vulnerability.
Therefore, we seek to put greater emphasis on the possibil-
ities arising from newly available remote sensing products
within the last years. In addition, we also performed the anal-
ysis using the soil moisture product from the ERA5-Land re-
analysis data set. The fraction of absorbed photosynthetically
active radiation (FAPAR) is used as an indicator of ecosystem
productivity in our study. The FAPAR is crucial for monitor-
ing climatic impacts on terrestrial ecosystems and is directly
related to the photosynthetic activity of vegetation and thus
to its greenness and health (Potter et al., 2003; Gobron et al.,
2010; Ivits et al., 2016). Vegetation indices such as the nor-
malised difference vegetation index (NDVI) are closely re-
lated to the FAPAR and can be seen as proxies (Myneni and
Williams, 1994; Pinty et al., 2009).

This study aims to quantify ecosystem vulnerability by as-
sessing which combinations of climatic drivers lead to ex-
treme reductions in ecosystem productivity in the Mediter-
ranean Basin using a bivariate vulnerability analysis with
a specific focus on seasonal variations. Soil moisture and
temperature are investigated as climatic drivers, and the
FAPAR is used to assess the ecological response. Further-
more, ecosystem vulnerability is calculated separately by
land cover class and subregion to account for the spatial com-
plexity of the Mediterranean Basin.

2 Methods

2.1 Study area

The study area is constrained to all grid points in the Mediter-
ranean Basin belonging to the Köppen–Geiger classes Csa
(“warm temperate climate with dry and hot summer”) and
Csb (“warm temperate climate with dry and warm summer”;
cf. Fig. 1) to ensure a certain level of comparability within
the study area. Furthermore, the study area is subdivided into
land cover classes and subregions. The land cover classes
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Figure 1. Study area in the Mediterranean Basin: the Köppen–Geiger climate categories “Mediterranean hot summer climate” (light green)
and “Mediterranean warm summer climate” (dark green) are included in this study. The study area was divided into six subregions: the
Iberian Peninsula (IBE), Italy and France (IAF), the Balkan Peninsula (BAL), Turkey and Cyprus (TAC), the south-eastern Mediterranean
(SEM), and north-western Africa (NWA)

were aggregated according to Table B1 using the ESA CCI
land cover classification map of 2018. Grid points where the
land cover changed between 1999 and 2018 were excluded in
this study as well as grid points belonging to the land cover
classes “water bodies’’ and “urban areas’’. The countries be-
longing to each subregion are listed in Table B2.

2.2 Data

Daily satellite-based soil moisture data from ESA CCI were
obtained at a resolution of 0.25◦ from 1978–2019 (Gruber
et al., 2019). The merged data set (v04.7), containing data
from both active and passive sensors, is used. The quality
of this data set has continuously improved over the years
due to the incorporation of an increasing number of satel-
lites (Dorigo et al., 2017). The data set is representative of
the topsoil surface layer of up to 2 cm thickness (Kidd and
Haas, 2018). Monthly air temperature and soil moisture re-
analysis data are retrieved from ERA5-Land produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) at a resolution of 9 km from 1981–2019 (Muñoz-
Sabater, 2019). The three soil moisture layers correspond-
ing to the depths 0–7, 7–28 and 28–100 cm are used in the
analysis. This study is conducted using the ESA CCI soil
moisture data set as well as the ERA5-Land soil moisture
data set to verify the robustness of our results. The FAPAR is
obtained from the Copernicus Global Land Service (CGLS)
(Baret et al., 2013; Verger et al., 2014). It is derived from
SPOT/VGT from 1999–2013 and PROBA-V from 2014–
2019 and is provided in 10 d steps (Verger et al., 2019). Fur-
thermore, the ESA CCI land cover classification for the years
1999 and 2018 with a spatial resolution of 300 m (v2.1.1)
was used (ESA, 2017). The Köppen–Geiger classification
map was acquired from Kottek et al. (2006) and Rubel et al.
(2017).

2.3 Data preprocessing

All data sets are resampled to a common spatial and temporal
resolution of 0.25◦ and a monthly time step, respectively. The
investigated time span encompasses 21 years from 1999–

Figure 2. Percentage of available monthly soil moisture values from
1999–2019. All grid points excluded from this study are marked
with a dot.

2019. Grid points with more than 60 months of missing soil
moisture data within the period from 1999–2019 were ex-
cluded from this study (see Fig. 2). These are primarily grid
points located close to the coast. In a next step, all variables
are deseasonalised by subtracting the annual cycle to account
for extremeness relative to the respective time of the year.
The variables are z-transformed by subtracting the monthly
mean and dividing by the year-round standard deviation of
the deseasonalised time series (Eq. 1); z-score transforma-
tion allows for a direct comparison of values despite their
different physical units (Orth et al., 2020).

zi =
Xi −µi,month

σi
(1)

The impact of environmental drivers on ecosystems may
show a time lag of up to a few months – so-called “legacy
effects” (von Buttlar et al., 2018; Piao et al., 2019). Hence, a
moving average of 3 months n= 3 is applied to the environ-
mental driver variables env temperature and soil moisture;
i.e. the preceding 2 months are included with equal weight
for each monthly time step i in the time span ofm= 21 years
(Eq. 2) to account for lagged effects.

envi =
1
n

i∑
k=i−2

envk for i ∈ (1, . . .,m× 12) (2)
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2.4 Derivation of ecosystem vulnerability

In the context of our study, ecosystem vulnerability depicts
if ecosystems are susceptible or sensitive to a certain haz-
ard. It allows states of low ecosystem productivity to be at-
tributed to certain climatic conditions by linking such states
to corresponding deviations in temperature and soil mois-
ture. The terminology on ecosystem vulnerability is confus-
ing since several partially ambiguous terms exist due to the
concept being still rather new in ecological research (van Oi-
jen et al., 2013; Weißhuhn et al., 2018). Following the defini-
tion by Rolinski et al. (2015), “ecosystem vulnerability VE
is the average deviation of the environmental variable un-
der hazardous ecosystem conditions from values under non-
hazardous ecosystem conditions” in our approach. Here, the
environmental variable env is either temperature or soil mois-
ture, respectively, and the ecosystem variable sys is the FA-
PAR. Ecosystem vulnerability VE is calculated according to
Eq. (3) as the difference in the expectation value Enonhaz of
the environmental variable env under non-hazardous condi-
tions of the ecosystem variable sys and the respective value
Ehaz under hazardous conditions of the ecosystem variable
sys (van Oijen et al., 2013; Rolinski et al., 2015).

VE = E(env|sysnonhaz)−E(env|syshaz), (3)

with conditional expectational values defined following
Eq. (4):

E(env|◦)=
∫

envP(env|◦)denv, (4)

where P is the probability of env under the specified con-
dition ◦ (sysnonhaz or syshaz). The probability of hazard
occurrence PH is given by the number of data points under
hazardous conditions Nhaz divided by the total number of
data points N, which gives PH =Nhaz/N . The discrimination
threshold between non-hazardous and hazardous ecosystem
conditions is set as the 10th percentile of the FAPAR values
for each grid point individually; i.e. P(sys haz) is fixed to 0.1
in this study. Such a threshold is commonly used in ecocli-
matological studies (Ahlström et al., 2015; Baumbach et al.,
2017; Nicolai-Shaw et al., 2017). To investigate the robust-
ness of our results, we also performed the analysis using the
5th and 15th percentile for discrimination of hazardous and
non-hazardous ecosystem conditions. The spatial and tempo-
ral patterns for these cases were in agreement with the 10th
percentile chosen in our study (results not shown), which in-
dicates that our results are not sensitive to the choice of the
percentile. Every grid point has the same number of months
with hazardous ecosystem conditions; i.e. the same risk of
exceeding the threshold is assumed uniformly for all grid
points.

We used the Mann–Whitney U test to investigate signifi-
cant deviations in climatic conditions during non-hazardous
and hazardous ecosystem conditions, which was adjusted for

Figure 3. Illustration of the vulnerability to all potentially occurring
climatic conditions.

multiple testing using the Benjamini and Hochberg (1995)
correction. Significant positive values indicate ecosystem
vulnerability VE to cold (dry) conditions for the climatic
driver temperature (soil moisture). Similarly, significant neg-
ative values are associated with vulnerability to hot (wet)
conditions. In the case of two climatic drivers, this leads to
nine possible vulnerability conditions (see Fig. 3). The cor-
responding p values are not shown throughout the article
due to the large number of data. A schematic display of the
calculation of ecosystem vulnerability VE is given in Fig. 4
for an exemplary grid point with vulnerability to hot and
dry conditions for the month of July. The two drivers tem-
perature and soil moisture are assessed for their effects on
ecosystem vulnerability. In this example, the average tem-
perature in July during non-hazardous ecosystem conditions
Enonhaz is lower than the average during hazardous ecosys-
tem conditions Ehaz, leading to a negative vulnerability to
temperature, i.e. vulnerability to hot conditions (Fig. 4a).
For soil moisture, the average soil moisture during non-
hazardous ecosystem conditions Enonhaz is higher than soil
moisture during hazardous conditions Ehaz; therefore vul-
nerability is positive, indicating vulnerability to dry condi-
tions (Fig. 4b). Our approach is impact-based; i.e. it focusses
on the extremeness of the impact rather than the extreme-
ness of the driver as this enables relating multiple drivers
to a single outcome (Zscheischler et al., 2014, 2018). Ac-
cording to the framework by Smith (2011), vulnerability to
extreme climatic events is defined as a climate extreme lead-
ing to an extreme ecological response. Therefore, our defi-
nition differs in that regard in that it comprises extremeness
only for the ecological response, not necessarily for the cli-
matic driver. The definition used here is broader than the one
by Smith (2011) because it includes significant deviations in
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the driver variable in general, not only extremes. In our case,
ecosystem vulnerability rather shows if the ecosystem vari-
able is susceptible to certain climatic conditions (which do
not need to be extreme). The analysis was carried out using
R version 3.6 and Climate Data Operators (CDO) version 1.9
(Schulzweida, 2019; R Core Team, 2020).

3 Results

3.1 Ecosystem vulnerability by land cover

Figure 5 displays the ecosystem vulnerability to soil moisture
and temperature for each land cover class and each month
of the year as well as the corresponding statistical signifi-
cance indicated by the background colour (see explanation
in Fig. 3). The vulnerability to temperature and soil mois-
ture can be summarised into three major regimes during the
course of the year (see Fig. 5). From May to July, the veg-
etation is especially prone to hot and dry conditions. From
August to October, there is a shift to a vulnerability to cold
and dry conditions in general. Finally, from November to
April cold and wet conditions are usually associated with
high vulnerability of the vegetation. There are sharp tran-
sitions in ecosystem vulnerability from April to May, from
July to August, and from October to November for most land
cover classes.

In the period from November to March the vast major-
ity of land covers are vulnerable to cold conditions. From
March to May there is a transition phase from cold to hot
conditions. While in March almost all land covers are vul-
nerable to cold conditions, in April only four of them still
remain vulnerable (“forest (broadleaved)”, “forest (needle-
leaved)”, “ mixed” and “shrubland”), and none are vulner-
able in May, when the majority shift to vulnerability to hot
conditions. In summer, a period with significant vulnerability
to hot conditions only precedes the next phase of vulnerabil-
ity to both hot and dry conditions, e.g. for “crops (rainfed)”
and “grassland”, indicating that the heat desiccates the soil
first until it reaches critically low soil moisture levels in the
following months. The cycle reverses around July and Au-
gust. While four land cover classes are still vulnerable to hot
conditions in July, none of the classes are in August. Vul-
nerability to high temperatures is almost entirely restricted
to the period from May to July. From August to October,
most land cover classes exhibit vulnerability to cold and dry
conditions, and from midsummer to the beginning of autumn
almost all land cover classes are prone to drought. In the fol-
lowing period from November to March, cold and wet condi-
tions prevail on average. The vulnerability to wet conditions
is highest from November to January, whereas many land
cover classes are insensitive to soil moisture during most of
the time from February to May. Exemptions are, for exam-
ple, “ forest (broadleaved)”, “crops (rainfed)” and “mixed”,

where low ecosystem productivity coincides with wet condi-
tions, e.g. in March to April.

The vulnerability to hot conditions of “grassland” is 1
month ahead of most other land classes, starting already in
April. This could indicate a faster response of this land cover
class to environmental drivers than other land cover classes.
Sparse vegetation is probably well adapted to high tempera-
tures as it never shows vulnerability to hot conditions, which
means that temperature during extreme ecosystem conditions
is not significantly higher than during non-extreme ecosys-
tem conditions. It also never coincides with significantly wet
conditions, which might point out that transpiration in these
areas is never so high that it could contribute substantially
to the desiccation of the soil, and thus its influence on soil
moisture is negligible.

3.2 Ecosystem vulnerability by subregions

Similarly to Fig. 5, ecosystem vulnerability for each subre-
gion is shown in Fig. 6. There is more variability than re-
garding land cover classes, and the general pattern of most
land cover classes with a “hot and dry” regime followed by a
“cold and dry” regime and subsequently by a “cold and wet”
regime does not hold true for most of the Mediterranean sub-
regions. The vulnerability to soil moisture usually peaks dur-
ing summer or autumn and reaches a minimum in spring or
winter – exceptions are Italy and France as well as the south-
eastern Mediterranean. The yearly development of vulnera-
bility to temperature is characterised by a minimum around
late spring or summer.

There is an extended period of time in which ecosystems
are prone to hot conditions from March to October in Turkey,
whereas in other regions this period often only lasts for 2 to
3 months in spring and summer. North-western Africa and
the south-eastern Mediterranean are prone to dry conditions
9 and 8 months of the year, respectively, indicating that these
regions are usually soil-moisture-limited. Italy and France
have the lowest sensitivity to soil moisture, with only small
deviations from zero. Nevertheless, these deviations are sig-
nificant for half of the months in the year. Interestingly, the
Balkan Peninsula is never prone to hot conditions. Outside of
the summer season, wet conditions particularly coincide with
low ecosystem productivity in Italy and France, the Balkans,
and the Iberian Peninsula.

The number of events per month is not equally distributed
throughout the year. There is a decline from June to Novem-
ber with a minimum usually around September in which only
few events are detected. This reflects the time span of the
dormant season since these months are usually too dry for
ecosystem activity. There are some notable exceptions for
land covers involving trees (“forest (broadleaved)”, “forest
(needleleaved)”, ‘mixed” and “crops (irrigated)”) (see Fig. 5)
as well as the northernmost subregions of the Mediterranean,
Italy and France, and the Balkan Peninsula (see Fig. 6),
where the number only decreases slightly during this period.
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Figure 4. Schematic display of ecosystem vulnerability VE for an exemplary grid point for (a) temperature and (b) soil moisture as environ-
mental drivers for the month of July.

These land cover classes and subregions are less affected by
the characteristic dry period in summer. Forests have better
access to soil moisture because they develop deeper roots
(Bréda et al., 2006; Zhang et al., 2016), whereas irrigated
areas obviously have an external water supply. The northern
subregions are also moister than the southern Mediterranean.

Satellite-derived soil moisture data sets are prone to uncer-
tainty, even though there have been considerable improve-
ments in the last years (Gruber et al., 2019). Therefore,
ecosystem vulnerability was also assessed for all land cover
classes and subregions using soil moisture layers at 0–7, 7–
28 and 28–100 cm depth from the ERA5-Land reanalysis
data set and compared to results obtained from the ESA CCI
soil moisture product to verify the robustness of our results
and whether specific biases are apparent (see Appendix A).
Furthermore, certain land cover classes and subregions en-
compass a relatively small subset of grid points, and thus
non-significant ecosystem vulnerability might be related to
data scarcity in some of these cases.

The spatial patterns of ecosystem vulnerability are dis-
played for four exemplary months of the year (see Fig. 7),
whereas all 12 months can be found in the Appendix (see
Fig. B1). In March in most western Mediterranean regions,
low FAPAR values are associated with cold and wet condi-
tions (blue colouring), whereas in the eastern Mediterranean
vulnerability to hot conditions (purple and orange colouring)
are already emerging at this time of the year. In June, al-
most all regions are vulnerable to hot conditions and often
also to dry conditions (purple and orange colouring), with
exceptions in the northernmost regions such as the French
Riviera as well as mountainous regions such as the Pelo-
ponnese in Greece and the High Atlas in central Morocco.
In September, there are often no low FAPAR anomalies oc-

curring (black colouring), particularly in southern and inland
regions, which are the hottest regions of the Mediterranean.
The reason for this is that this time usually corresponds to
the dormant season in these areas. In regions where events
are detected during this time of the year, vulnerability to cold
and dry conditions (green colouring) prevails in most of the
Mediterranean. In December, in most areas in the central
Mediterranean, low FAPAR values coincide with cold and
wet conditions (blue colouring), whereas in central Turkey
and the southern Iberian Peninsula, vulnerability to hot con-
ditions (purple and orange colouring) occurs. It is noteworthy
that for a given grid point at a given month, only 21 obser-
vations are available. Therefore, the robustness of the mag-
nitude of ecosystem vulnerability of individual grid points is
limited and should thus be interpreted with care. The maps
in Figs. 7 and B1 primarily aim to identify large-scale spatial
patterns but do not provide information on statistical signifi-
cance at a grid point scale.

4 Discussion

4.1 Interpretation of temporal and spatial patterns in
the Mediterranean

Our findings are in accordance with the characteristics of the
Mediterranean climate regime, which is primarily energy-
limited during winter and soil-moisture-limited during sum-
mer (Schwingshackl et al., 2017). The vulnerability analy-
sis allows a more detailed investigation of the changes in
ecosystem vulnerability to soil moisture and temperature
throughout the course of the year for different land cover
classes and subregions. In a wet regime, ecosystem activ-
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Figure 5. Median monthly ecosystem vulnerability per land cover: vulnerability to temperature (ERA5-Land) is shown in white, and vulnera-
bility to soil moisture (ESA CCI) is shown in black for each month of the year (columns) for each land cover (rows). Months with statistically
significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the Mann–Whitney U test
based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The number of grid points in
which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper left corner of each panel.

ity is energy-limited, depending primarily on temperature
and radiation, whereas in a transitional or dry system, soil
moisture content is reduced, and thus ecosystem activity is
water-limited (Seneviratne et al., 2010; Zscheischler et al.,
2015). From May to July, the Mediterranean is often vul-
nerable to hot and dry conditions, which is a typical feature
of a soil-moisture-limited regime (Seneviratne et al., 2010).
Heat waves are a frequent characteristic of the Mediterranean
summer (Conte et al., 2002) and are often connected to
persistent anti-cyclonic regimes and droughts (Mueller and
Seneviratne, 2012; Ulbrich et al., 2012). The vulnerability to
dry conditions in autumn indicates that moisture reservoirs
are often still depleted after the summer, impairing the on-
set of the next vegetation cycle. By contrast, plant growth

is inhibited by too-low temperatures in autumn, which dis-
tinguishes it from the antecedent summer period. The gen-
eral transition to vulnerability to cold conditions already in
August is astonishing. However, it should be noted that es-
pecially for the warmer regions – e.g. north-western Africa,
Turkey and the interior of Spain – either vulnerability to hot
conditions prevails or no FAPAR anomalies are detected dur-
ing this time (see Figs. 6 and B1) because August is out-
side of the growing season and the FAPAR values are usu-
ally at their annual minimum at this time of the year. During
the phase of the water-limited regime, soil moisture deple-
tion in combination with high atmospheric evaporative de-
mand leads to plant water stress and can ultimately cause
plant mortality due to hydraulic failure or carbon starvation
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Figure 6. Median monthly ecosystem vulnerability per subregion: vulnerability to temperature (ERA5-Land) is shown in white, and vulnera-
bility to soil moisture (ESA CCI) is shown in black for each month of the year (columns) for each land cover (rows). Months with statistically
significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the Mann–Whitney U test
based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The number of grid points in
which an event has occurred in this month and subregion within the period 1999–2019 is shown in the upper left corner of each panel.

(van der Molen et al., 2011; Vicente-Serrano et al., 2020).
As a coping strategy, plants, for example, reduce stomatal
conductance to avoid hydraulic failure due to water loss by
leaf transpiration, which consequently leads to reduced car-
bon uptake and thus decreased photosynthetic activity (van
der Molen et al., 2011; Reichstein et al., 2013; Piao et al.,
2019; Vicente-Serrano et al., 2020). The vulnerability to cold
conditions in most months from November to April confirms
that ecosystems are energy-limited in this period and is prob-
ably related to frost damage during cold spells. Related to the
Cyprus Low, cold spells often co-occur with heavy precipi-
tation in the eastern Mediterranean during this time (de Luca
et al., 2020). Presumably, wet conditions only coincide with
cold conditions but are not damaging ecosystems as such.
However, vulnerability of crops to wet conditions in win-
ter was observed, for example, on the Iberian Peninsula in
a study by Páscoa et al. (2017). While ecosystem activity in
the northern Mediterranean is low during winter, this does
not hold true for the southern Mediterranean; e.g. for some
regions in Tunisia the NDVI peaks as early as December
(Le Page and Zribi, 2019). Cloudiness during precipitation
leads to reduced solar radiation and consequently lower sur-

face temperature (Berg et al., 2015). This way, cold and wet
conditions can lead to low transpiration rates of plants ac-
companied by low photosynthetic activity, leading to reduced
extraction of soil moisture during that time period (Zscheis-
chler et al., 2015). This highlights the bidirectional relation
between vegetation and soil moisture; i.e. not only is the
state of the vegetation dependent on soil moisture but also
vice versa. This mutual linkage is neglected in many studies
(Dorigo et al., 2017).

Energy-limited regimes merge gradually into water-
limited regimes from Scandinavia southwards to the Mediter-
ranean in Europe (Teuling et al., 2009). Karnieli et al. (2019)
investigated the relationship of the NDVI and land surface
temperature at the European scale, hypothesising that a pos-
itive relationship indicates an energy-limited condition and
a negative one a water-limited condition. Our results are
mostly in agreement with the findings of their study that tem-
perature and the NDVI are comprehensively negatively re-
lated in summer in Mediterranean Europe, whereas in spring
this is only the case in the southernmost regions of Mediter-
ranean Europe, while in other areas either neutral or nega-
tive relationships prevail. According to Le Page and Zribi
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Figure 7. Average monthly vulnerability to soil moisture (ESA CCI) and temperature (ERA5-Land) in the Mediterranean Basin for (a) March,
(b) June, (c) September and (d) December. Grid points without any events during the respective month are displayed in black.

(2019), temperature and the NDVI are always negatively cor-
related in north-western Africa, while soil moisture and the
NDVI are positively correlated. This indicates that this region
is soil-moisture-limited year-round, which is in good agree-
ment with our results obtained using the ESA CCI soil mois-
ture data set. However, the ERA5-Land soil moisture data
set exhibits vulnerability to wet conditions in north-western
Africa in several months of the year, which might indicate
lower suitability of this reanalysis data set to represent the
soil moisture conditions in this region (see Figs. 6 and A2).

Extreme ecosystem impacts are not always connected to
climatic extremes but can also be caused by a combination
of concurrent moderate climatic drivers (Pan et al., 2020;
van der Wiel et al., 2020). Furthermore, extreme ecosys-
tem impacts are not solely related to soil moisture and tem-
perature anomalies. Other potential causes are, for exam-
ple, windthrow, pest outbreaks and fires, which often exhibit
synergistic effects in combination with droughts and heat
waves (Gouveia et al., 2012; Reichstein et al., 2013; Batl-
lori et al., 2017; Ruffault et al., 2018). Furthermore, many
ecosystems are managed, which also affects ecosystem pro-
ductivity (Smit et al., 2008). These additional drivers should
be taken into consideration when interpreting the results of
this study.

The impact of climate extremes on ecosystems depends
highly on their timing (Smith, 2011; Wolf et al., 2016; Piao
et al., 2019). The sensitivity to heat varies with phenophase
(Hatfield and Prueger, 2015), and the effect on the carbon
cycle can differ seasonally. High temperatures might, for ex-
ample, increase carbon uptake by advancing spring onset but
may lead to uptake reductions in summer (Piao et al., 2019).
In the same way, droughts can either accelerate the pheno-
logical cycle or inhibit plant productivity, and their impact on
vegetation is strongly connected to the seasonal variations in

the water balance (Spano et al., 2013; Gouveia et al., 2017).
The highest detrimental impacts on ecosystems by droughts
in the Mediterranean have been reported at the beginning of
the year at the peak of the growing season (Ivits et al., 2016;
Peña-Gallardo et al., 2019). The drought and heat wave in
2003 were comparably not that harmful to Mediterranean
ecosystems as they occurred in August, which is outside the
main growing season (Ivits et al., 2016). The approach pre-
sented in this study helps to gain a better understanding of
which stages of the year are vulnerable to which climatic
condition. To our knowledge, none of the previous studies
which applied the framework for ecosystem vulnerability ac-
counted for the effects of seasonality so far. However, ecosys-
tem responses are highly sensitive to the timing of events;
therefore, it is crucial to consider this.

Climate change leads to seasonal shifts, which already
becomes apparent in the strong phenological changes in
the Mediterranean (Menzel et al., 2006; Gordo and Sanz,
2009, 2010). For example, higher temperatures lead to in-
creased ecosystem productivity and subsequently higher
evapotranspiration earlier in the growing season. Due to this,
soil moisture is depleted faster, and therefore more energy
is transferred into sensible heat instead of latent heat. As
a consequence of these hot and dry conditions, the grow-
ing season might end prematurely (Seneviratne et al., 2010;
Lian et al., 2020). The time series used here encompasses
21 years and is thus still too short for analysing long-term
trends. Nevertheless, our approach can potentially be used
to monitor how vulnerability changes in future for all 12
months of the year by comparing vulnerability during dif-
ferent multi-year time spans if time series of sufficient length
are available. Hot and dry days are getting more persistent
in summer, and unprecedented heat waves associated with
Saharan warm air intrusions have occurred within the last
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years (Sousa et al., 2019; de Luca et al., 2020). Neverthe-
less, droughts and warm spells are increasing in spring as
well (Vogel et al., 2021), which can have detrimental implica-
tions for the Mediterranean ecosystems as spring is the main
growing season. With temperature increases in future, vul-
nerability to cold conditions might be constrained to a shorter
time frame, whereas the time span with vulnerability to hot
conditions might expand within the year. Increasing aridity
is projected in the Mediterranean, especially during winter
and spring (Samaniego et al., 2018), while at the same time
heavy precipitation events are projected to increase (Toreti
and Naveau, 2015). Thus, it remains difficult to determine
how vulnerability to dry and wet conditions will evolve in
future.

4.2 Potential limitations of the methodological
procedure

The presented method depends heavily on the quality of the
employed data types for both the two drivers and the impact
proxy. Several limitations regarding moisture data are well
known; e.g. the coarse spatial resolution impairs assessments
at local scales. Furthermore, satellite-based soil moisture is
limited to the retrieval of surface soil moisture, while deeper-
reaching root-zone soil moisture is the actual ecologically
relevant variable. Satellite-based soil moisture is only rep-
resentative of the first 2–5 cm of the soil layer. The root zone
of plants is usually deeper, which reduces the explanatory
power of satellite-based soil moisture for drought impacts on
ecosystems (Liu et al., 2016; Dorigo et al., 2017; West et al.,
2019). For example, soil drying during summer affects pri-
marily the top soil layer, while drying in deeper layers shows
a lagged response because upward capillary flow from these
layers is comparatively slow (Berg et al., 2017). Nicolai-
Shaw et al. (2017) found that soil moisture data from ESA
CCI were a good indicator for drought in grasslands, while
forests exhibited weaker responses, probably due to access to
deeper soil layers for forests compared to grasslands. How-
ever, we also assessed vulnerability to soil moisture at the
depths 0–7, 7–28 and 28–100 cm using reanalysis data from
ERA5-Land, and the patterns obtained at the deeper layers
7–28 and 28–100 cm are in large part similar to the ones of
the layer at 0–7 cm (see Appendix A). This indicates that the
assessment of the top soil layer is able to yield results which
are valid for a larger proportion of the soil column. Coupling
of land surface models with satellite-based surface soil mois-
ture can further enhance knowledge on the status of root-
zone soil moisture in future (Dorigo et al., 2017; Tramblay
et al., 2020). Furthermore, it should be noted that validations
of the ESA CCI soil moisture data set with in situ observa-
tions from Mediterranean sites in Spain, France and Turkey
showed high agreement (Albergel et al., 2013; Dorigo et al.,
2015; Bulut et al., 2019). Also the FAPAR product from the
CGLS has been validated with observation data from Tunisia,
Italy, Spain and France, primarily for a variety of crop types

as well as a deciduous broadleaf forest in Italy and a needle-
leaf forest in Spain (Fuster et al., 2020). The FAPAR is of-
ten assumed to be directly linked to productivity. However,
droughts might lead to physiological changes such as stomata
closure, which are not apparent in the spectral characteristics
of the canopy and thus in the FAPAR but nevertheless invoke
a decreased productivity. This was the case, for example, in
forest ecosystems during the drought-and-heat-wave event in
2003 in Europe (Reichstein et al., 2007; Zhang et al., 2016).

The Mediterranean Basin is characterised by large spa-
tial variability because of its complex topography (Lionello
et al., 2006). The relatively coarse resolution of the ESA CCI
soil moisture data set is currently limiting the representation
of this high spatial complexity (Crocetti et al., 2020). Many
land cover classes express similar patterns over the course
of the year according to our results. This could potentially
indicate that grid points are sometimes not homogeneous
enough but rather represent a mixture of several land cover
classes due to the coarse resolution of 0.25◦. The ESA CCI
land cover product applied in this study is a state-of-the-art
data set; a more detailed data set is currently not available
for the Mediterranean Basin as a whole. The ESA CCI land
cover classification allows only for the differentiation of ma-
jor plant functional types, and future studies might benefit
from a more refined land cover classification scheme with a
broader variety of land cover classes. Furthermore, the sub-
regions used in this study are not fully homogeneous, and
there is a certain variability within a given subregion. Thus,
the patterns identified in this study (see Figs. 5 and 6) can-
not always be inferred for an entire subregion. Therefore, the
ecosystem vulnerability maps (Figs. 7 and B1) should be ad-
ditionally examined for the identification of potentially devi-
ating patterns within subregions.

Many studies do not consider lagged effects in their de-
sign and the choice of a suitable timescale to account for
such effects is not trivial and under debate (Zeng et al., 2013;
Ivits et al., 2016). Response time varies depending on the
type of event and the affected ecosystem. The response lag
of vegetation is land-cover-specific as plants have various
regulatory physiological functions to react to changes in soil
moisture such as stress memory, water storage and stabilisa-
tion activities at the community level (van der Molen et al.,
2011; Niu et al., 2014; Zhang et al., 2017). Faster response
times to droughts are observed for pasture and crops com-
pared to shrubs and forests (Chen et al., 2014; Bachmair
et al., 2018). Generally, responses to drought are slower in
semi-arid and sub-humid biomes compared to arid biomes
(Vicente-Serrano et al., 2013). A study by Ivits et al. (2016)
at the European scale found that vegetation in the Mediter-
ranean responds slowly to meteorological droughts com-
pared to most other European regions. Impacts on vegeta-
tion by meteorological and soil moisture droughts are often
largest within the preceding 1 to 2 months (Zeng et al., 2013;
Chen et al., 2014; Wu et al., 2015; Papagiannopoulou et al.,
2017; Bachmair et al., 2018), which is the reason we de-
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cided on a 3-month timescale in the moving average applied
to the environmental drivers in our approach. Temperature
responses are usually faster than responses to drought but
can still exhibit lagged responses up to a few months (Zeng
et al., 2013; Papagiannopoulou et al., 2017). Temperature
and soil moisture anomalies are usually analysed on different
timescales (typically on a daily scale for temperature and on
a monthly scale for soil moisture), which renders their joint
assessment difficult. Ecosystem impacts can also vary sub-
stantially on a temporal scale from, for example, temporary
changes in productivity to persistent regime shifts (Crausbay
et al., 2017). Therefore, using a single timescale might not
capture all relevant temporal dynamics. The choice of the op-
timal timescale is non-trivial, and, for example, timescales of
less than a month for investigating drought impacts on vege-
tation have also been suggested (West et al., 2019).

Our analysis is year-round without being explicitly re-
stricted to the months of the growing season, which makes it
easily transferable to any study area. We decided this for two
reasons. First, it is complex to account only for the months
of the growing season as there is a large variability depend-
ing on latitude and longitude within the Mediterranean Basin
(Lionello et al., 2006). Second, the analysis is implicitly lim-
ited to the growing season because FAPAR deviations during
the dormant season are expected to be small and thus will
exceed the extremeness threshold only on rare occasions. In
our study, it can be clearly noted that the number of detected
events is not distributed equally throughout the course of the
year. They are at a minimum at the transition from summer
to autumn, when ecosystem activity is low in the Mediter-
ranean (see Sect. 3.2). Therefore, large areas – especially
in the interior of the countries – are under-represented in
these months. Results for months during the dormant season
should be interpreted cautiously (Ivits et al., 2016), taking
into account that they depend on a considerably lower num-
ber of events. These events might be representative solely of
specific ecosystems that are still active at this time of the year
or may partially result from noise in the data.

5 Conclusions

The seasonal ecosystem vulnerability analysis presented in
this study helps identify the time of the year at which vul-
nerability to a certain climatic condition occurs. The vulner-
ability of Mediterranean ecosystems to the concurrent cli-
matic drivers temperature and soil moisture was success-
fully assessed using the FAPAR as a proxy for ecosys-
tem productivity, with a focus on the variation in impacts
with seasonality. Our results are in line with the character-
istic intra-annual change between an energy-limited and a
water-limited regime from winter to summer in the Mediter-
ranean (Schwingshackl et al., 2017). In general, three sea-
sonal stages of vulnerability are identified throughout the
year: (1) vulnerability to hot and dry conditions in late spring

to midsummer, (2) vulnerability to cold and dry conditions
from the end of summer to mid-autumn, and (3) vulnerabil-
ity during cold and wet conditions from the end of autumn
to mid-spring. There are several regions which deviate from
this pattern; e.g. the “hot and dry” regime is extended from
spring to autumn in Turkey, whereas the Balkan Peninsula
is continuously energy-limited throughout the year and not
vulnerable to hot conditions. Our results point out the neces-
sity to incorporate seasonality in the vulnerability analysis
concept as well as to examine vulnerability at a subregional
scale to account for the large spatial and temporal variabil-
ity in the Mediterranean. Increasing aridity and fast changes
in the phenological cycle are observed in the Mediterranean
Basin due to climate change (Gao and Giorgi, 2008; Gordo
and Sanz, 2010). The approach for detecting seasonal ecosys-
tem vulnerability opens novel opportunities for developing
early-warning tools to identify detrimental ecosystem con-
ditions, water limitations and irrigation demand in near-real
time and for performing long-term assessments of ecosystem
vulnerability and change for the near- and mid-future climate
scenarios.

Appendix A: Comparison of ecosystem vulnerability
using soil moisture from ESA CCI and ERA5-Land

The ERA5-Land soil moisture layer at 0–7 cm gives very
similar results compared to the ESA CCI data set in the
second half of the year (August–December) for most land
cover classes (see Fig. A1), where the patterns are identi-
cal in most cases; for “all land cover classes” they are in
agreement from June to December. However, in spring they
often deviate, e.g. in May, when dry conditions arise in the
ERA5-Land data set, whereas using ESA CCI there is no sig-
nificant vulnerability to dry conditions for many land cover
classes. For land cover classes such as “crops (rainfed)” vul-
nerability to dry conditions in May seems realistic as various
crops are prone to drought in their reproductive phase (Zhang
and Oweis, 1999; Daryanto et al., 2016), which indicates that
ERA5-Land might give more plausible results for the month
of May. “Shrubland” is often prone to dry conditions in the
second half of the year in the ESA CCI data set, whereas
according to the ERA5-Land data set it is not. Also “forest
(broadleaved)” is prone to dry conditions from June to Octo-
ber in the ESA CCI data set, unlike in the ERA5-Land data
set, where it is vulnerable to dry conditions from September
to October but not during summer. However, there is no ap-
parent systematic bias over all classes, but rather it changes
by month. So, in February, vulnerability in the ERA5-Land
data set, for example, leans more towards dry conditions,
whereas in July this pattern is reversed.

During most of the year, the majority of subregions co-
incide well in both data sets, but there are exceptions (see
Fig. A2). There is vulnerability to dry conditions in August
in the Balkans, the Iberian Peninsula and in north-western
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Africa for ESA CCI soil moisture, whereas for ERA5-Land
this is reversed or insignificant. For north-western Africa,
ERA5-Land detects lower vulnerability to dry conditions
than ESA CCI throughout the course of the year. In ad-
dition, in the Iberian Peninsula vulnerability to wet condi-
tions is pronounced at the beginning of the year for ESA
CCI, whereas for ERA5-Land most months during this pe-
riod show vulnerability to dry conditions.

Figure A1. Median monthly ecosystem vulnerability per land cover. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 0–7 cm) is shown in black for each month of the year (columns) for each land cover (rows).
Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the
Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The
number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper left
corner of each panel.

In addition to the soil moisture layer corresponding to 0–
7 cm soil depth, vulnerability to soil moisture was also anal-
ysed for the layers at 7–28 and 28–100 cm (see Figs. A3, A4,
A5, A6). The patterns at these deeper layers largely coincide
with the surface soil moisture layer (see Figs. A1, A2).
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Figure A2. Median monthly ecosystem vulnerability per subregion. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 0–7 cm) is shown in black for each month of the year (columns) for each land cover (rows).
Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according to the
Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey. The
number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper left
corner of each panel.
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Figure A3. Median monthly ecosystem vulnerability per land cover. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 7–28 cm) is shown in black for each month of the year (columns) for each land cover
(rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according
to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey.
The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper
left corner of each panel.
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Figure A4. Median monthly ecosystem vulnerability per land cover. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 28–100 cm) is shown in black for each month of the year (columns) for each land
cover (rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions
according to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown
in grey. The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the
upper left corner of each panel.
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Figure A5. Median monthly ecosystem vulnerability per subregion. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 7–28 cm) is shown in black for each month of the year (columns) for each land cover
(rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions according
to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown in grey.
The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the upper
left corner of each panel.
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Figure A6. Median monthly ecosystem vulnerability per subregion. Vulnerability to temperature (ERA5-Land) is shown in white, and
vulnerability to soil moisture (ERA5-Land at depth 28–100 cm) is shown in black for each month of the year (columns) for each land
cover (rows). Months with statistically significant deviation in climatic drivers during non-hazardous and hazardous ecosystem conditions
according to the Mann–Whitney U test based on a significance level α = 0.05 are shown in colour (see legend); all other months are shown
in grey. The number of grid points in which an event has occurred in this month and land cover within the period 1999–2019 is shown in the
upper left corner of each panel.
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Appendix B: Further materials

Table B1. Overview of the aggregation of land cover classes.

Number Original class Aggregated class

10 Cropland, rainfed Crops (rainfed)
11 Cropland, rainfed, herbaceous cover
12 Cropland, rainfed, tree or shrub cover

20 Cropland, irrigated or postflooding Crops (irrigated)

30 Mosaic cropland (> 50 %) or natural vegetation Mixed
(tree, shrub, herbaceous cover) (< 50 %)

40 Mosaic natural vegetation
(tree, shrub, herbaceous cover) (> 50 %) or cropland (< 50 %)

100 Mosaic tree and shrub (> 50 %) or herbaceous cover (< 50 %)

60 Tree cover, broadleaved, deciduous, closed to open (> 15 %) Forest (broadleaved)
62 Tree cover, broadleaved, deciduous, open (15 %–40 %)

70 Tree cover, needleleaved, evergreen, closed to open (> 15 %) Forest (needleleaved)

120 Shrubland Shrubland

130 Grassland Grassland

150 Sparse vegetation (tree, shrub, herbaceous cover) (< 15 %) Sparse vegetation
153 Sparse herbaceous cover (< 15 %)
200 Bare areas

190 Urban areas None (Omitted)

210 Water bodies None (Omitted)

Table B2. Overview of the six subregions and the corresponding countries used in this study.

Short name Long name Countries

IBE Iberian Peninsula Portugal, Spain

IAF Italy and France France, Italy

BAL Balkan Peninsula Albania, Bosnia and Herzegovina, Bulgaria,
Croatia, Greece, North Macedonia, Montenegro

TAC Turkey and Cyprus Cyprus, Turkey

SEM South-eastern Mediterranean Iran, Iraq, Israel and Palestinian territories,
Jordan, Lebanon, Libya, Syria

NWA North-western Africa Algeria, Morocco, Tunisia
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Figure B1. Average monthly vulnerability to soil moisture (ESA CCI) and temperature (ERA5-Land) in the Mediterranean Basin for (a) Jan-
uary, (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November and (l) December.
Grid points without any events during the respective month are displayed in black.
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Code and data availability. The code can be retrieved from https://
gitup.uni-potsdam.de/joschavogel/ecosystem_vulnerability (Vogel,
2021). All data sets used in this study are publicly available.
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tinig, A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur,
A., and Dorigo, W.: Earth Observation for agricultural drought
monitoring in the Pannonian Basin (southeastern Europe): cur-
rent state and future directions, Reg. Environ. Change, 20, 123,
1–17, https://doi.org/10.1007/s10113-020-01710-w, 2020.

Daryanto, S., Wang, L., and Jacinthe, P.-A.: Global Synthesis of
Drought Effects on Maize and Wheat Production, PloS one, 11,
e0156362, https://doi.org/10.1371/journal.pone.0156362, 2016.

de Boeck, H. J., Dreesen, F. E., Janssens, I. A., and Nijs, I.: Whole-
system responses of experimental plant communities to climate
extremes imposed in different seasons, New Phytol., 189, 806–
817, https://doi.org/10.1111/j.1469-8137.2010.03515.x, 2011.

de Jeu, R. and Dorigo, W.: On the importance of satellite ob-
served soil moisture, Int. J. Appl. Earth Obs., 45, 107–109,
https://doi.org/10.1016/j.jag.2015.10.007, 2016.

de Luca, P., Messori, G., Faranda, D., Ward, P. J., and
Coumou, D.: Compound warm–dry and cold–wet events
over the Mediterranean, Earth Syst. Dynam., 11, 793–805,
https://doi.org/10.5194/esd-11-793-2020, 2020.

Denton, E. M., Dietrich, J. D., Smith, M. D., and Knapp, A. K.:
Drought timing differentially affects above- and belowground
productivity in a mesic grassland, Plant Ecol., 218, 317–328,
https://doi.org/10.1007/s11258-016-0690-x, 2017.

Dorigo, W. and de Jeu, R.: Satellite soil moisture for ad-
vancing our understanding of earth system processes
and climate change, Int. J. Appl. Earth Obs., 48, 1–4,
https://doi.org/10.1016/j.jag.2016.02.007, 2016.

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G.,
Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E.,
Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., La-
hoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw,
N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R.,
Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil
Moisture for improved Earth system understanding: State-of-the
art and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.

Dorigo, W. A., Gruber, A., de Jeu, R., Wagner, W., Stacke, T., Loew,
A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M., and
Kidd, R.: Evaluation of the ESA CCI soil moisture product using
ground-based observations, Remote Sens. Environ., 162, 380–
395, https://doi.org/10.1016/j.rse.2014.07.023, 2015.

ESA: Land Cover CCI Product User Guide Version 2: Tech.
Rep, available at: http://maps.elie.ucl.ac.be/CCI/viewer/index.
php (last access: 5 November 2021), 2017.

Feng, S. and Fu, Q.: Expansion of global drylands under a
warming climate, Atmos. Chem. Phys., 13, 10081–10094,
https://doi.org/10.5194/acp-13-10081-2013, 2013.

Fraga, H., Pinto, J. G., Viola, F., and Santos, J. A.: Climate change
projections for olive yields in the Mediterranean Basin, Int. J.
Climatol., 40, 769–781, https://doi.org/10.1002/joc.6237, 2020.

Fuster, B., Sánchez-Zapero, J., Camacho, F., García-Santos, V.,
Verger, A., Lacaze, R., Weiss, M., Baret, F., and Smets, B.: Qual-
ity Assessment of PROBA-V LAI, fAPAR and fCOVER Collec-
tion 300 m Products of Copernicus Global Land Service, Remote
Sens., 12, 1017, https://doi.org/10.3390/rs12061017, 2020.

Gao, X. and Giorgi, F.: Increased aridity in the Mediter-
ranean region under greenhouse gas forcing estimated
from high resolution simulations with a regional cli-

mate model, Glob. Planet. Change, 62, 195–209,
https://doi.org/10.1016/j.gloplacha.2008.02.002, 2008.

Gobron, N., Belward, A., Pinty, B., and Knorr, W.: Monitoring
biosphere vegetation 1998–2009, Geophys. Res. Lett., 37, 1–6,
https://doi.org/10.1029/2010GL043870, 2010.

Gordo, O. and Sanz, J. J.: Long-term temporal changes of plant phe-
nology in the Western Mediterranean, Glob. Change Biol., 15,
1930–1948, https://doi.org/10.1111/j.1365-2486.2009.01851.x,
2009.

Gordo, O. and Sanz, J. J.: Impact of climate change on plant phenol-
ogy in Mediterranean ecosystems, Glob. Change Biol., 16, 1082–
1106, https://doi.org/10.1111/j.1365-2486.2009.02084.x, 2010.

Gouveia, C. M., Bastos, A., Trigo, R. M., and DaCamara, C. C.:
Drought impacts on vegetation in the pre- and post-fire events
over Iberian Peninsula, Nat. Hazards Earth Syst. Sci., 12, 3123–
3137, https://doi.org/10.5194/nhess-12-3123-2012, 2012.

Gouveia, C. M., Trigo, R. M., Beguería, S., and Vicente-Serrano,
S. M.: Drought impacts on vegetation activity in the Mediter-
ranean region: An assessment using remote sensing data and
multi-scale drought indicators, Glob. Planet. Change, 151, 15–
27, https://doi.org/10.1016/j.gloplacha.2016.06.011, 2017.

Green, J. K., Konings, A. G., Alemohammad, S. H., Berry,
J., Entekhabi, D., Kolassa, J., Lee, J.-E., and Gentine,
P.: Regionally strong feedbacks between the atmosphere
and terrestrial biosphere, Nat. Geosci., 10, 410–414,
https://doi.org/10.1038/ngeo2957, 2017.

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and
Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate
data records and their underlying merging methodology, Earth
Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-
717-2019, 2019.

Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on
plant growth and development, Weather and Climate Extremes,
10, 4–10, https://doi.org/10.1016/j.wace.2015.08.001, 2015.

IPCC (Ed.): Climate Change and Land: an IPCC special report
on climate change, desertification, land degradation, sustainable
land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo
Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.
C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M.,
Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portu-
gal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M.,
Malley, J., https://www.ipcc.ch/srccl/, 2019.

Ivits, E., Horion, S., Erhard, M., and Fensholt, R.: Assess-
ing European ecosystem stability to drought in the vegeta-
tion growing season, Glob. Ecol. Biogeogr., 25, 1131–1143,
https://doi.org/10.1111/geb.12472, 2016.

Jentsch, A., Kreyling, J., and Beierkuhnlein, C.: A new generation
of climate-change experiments: events, not trends, Front. Ecol.
Environ., 5, 365–374, 2007.

Karnieli, A., Ohana-Levi, N., Silver, M., Paz-Kagan, T.,
Panov, N., Varghese, D., Chrysoulakis, N., and Provenzale,
A.: Spatial and Seasonal Patterns in Vegetation Growth-
Limiting Factors over Europe, Remote Sens., 11, 2406,
https://doi.org/10.3390/rs11202406, 2019.

Kidd, R. and Haas, E.: ESA Climate Change Initiative Plus Soil
Moisture: Soil Moisture ECV Product User Guide (PUG) Revi-
sion 3: D3.3.1 Version 4.5, Earth Observation Data Centre for
Water Resources Monitoring (EODC) GmbH, available at: https:

https://doi.org/10.5194/bg-18-5903-2021 Biogeosciences, 18, 5903–5927, 2021

60



5924 J. Vogel et al.: Seasonal ecosystem vulnerability to climatic anomalies

//www.esa-soilmoisture-cci.org/node/145 (last access: 5 Novem-
ber 2021), 2018.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.:
World Map of the Köppen-Geiger climate classification up-
dated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-
2948/2006/0130, 2006.

Le Page, M. and Zribi, M.: Analysis and Predictability of
Drought In Northwest Africa Using Optical and Microwave
Satellite Remote Sensing Products, Sci. Rep., 9, 1466,
https://doi.org/10.1038/s41598-018-37911-x, 2019.

Lian, X., Piao, S., Li, L. Z. X., Li, Y., Huntingford, C., Ciais, P.,
Cescatti, A., Janssens, I. A., Peñuelas, J., Buermann, W., Chen,
A., Li, X., Myneni, R. B., Wang, X., Wang, Y., Yang, Y., Zeng, Z.,
Zhang, Y., and McVicar, T. R.: Summer soil drying exacerbated
by earlier spring greening of northern vegetation, Sci. Adv., 6,
eaax0255, https://doi.org/10.1126/sciadv.aax0255, 2020.

Lionello, P., Malanotte-Rizzoli P., Boscolo, R., Alpert, P., Artale, V.,
Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich,
U., and Xoplaki, E.: The Mediterranean Climate: An Overview
of the Main Characteristics and Issues, in: Mediterranean cli-
mate variability, edited by: Lionello, P., Malanotte-Rizzoli, P.,
and Boscolo, R., Developments in earth & environmental sci-
ences, Elsevier, Amsterdam, 1–26, 2006.

Lionello, P., Abrantes, F., Congedi, L., Dulac, F., Gacic, M., Gomis,
D., Goodess, C., Hoff, H., Kutiel, H., Luterbacher, J., Planton,
S., Reale, M., Schröder, K., Struglia, M. V., Toreti, A., Tsimplis,
M., Ulbrich, U., and Xoplaki, E.: Mediterranean Climate: Back-
ground Information, in: The climate of the Mediterranean region,
edited by Lionello, P., Elsevier insights, Elsevier Science, Ams-
terdam, xxxv–xc, 2012.

Liu, D., Ogaya, R., Barbeta, A., Yang, X., and Peñue-
las, J.: Long-term experimental drought combined with nat-
ural extremes accelerate vegetation shift in a Mediter-
ranean holm oak forest, Environ. Exp. Bot., 151, 1–11,
https://doi.org/10.1016/j.envexpbot.2018.02.008, 2018.

Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., and Ma, Y.: Agricul-
tural drought monitoring: Progress, challenges, and prospects,
J. Geogr. Sci., 26, 750–767, https://doi.org/10.1007/s11442-016-
1297-9, 2016.

McWilliam, J. R.: The National and International Importance of
Drought and Salinity Effects on Agricultural Production, Aust.
J. Plant Physiol., 13, 1–13, 1986.

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas,
R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A.,
Chmielewski, F.-M., Crepinsek, Z., Curnel, Y., Dahl, Å., De-
fila, C., Donnelly, A., Filella, I., Jatzcak, K., Måge, F., Mestre,
A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifin-
ger, H., Striz, M., Susnik, A., van Vliet, A. J. H., Wielgo-
laski, F.-E., Zach, S., and Zust, A.: European phenological re-
sponse to climate change matches the warming pattern, Glob.
Change Biol., 12, 1969–1976, https://doi.org/10.1111/j.1365-
2486.2006.01193.x, 2006.

Mueller, B. and Seneviratne, S. I.: Hot days induced by precipitation
deficits at the global scale, P. Natl. Acad. Sci. USA, 109, 12398–
12403, https://doi.org/10.1073/pnas.1204330109, 2012.

Muñoz-Sabater, J.: ERA5-Land monthly averaged data
from 1981 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.68d2bb30, 2019.

Myneni, R. B. and Williams, D. L.: On the relationship be-
tween FAPAR and NDVI, Remote Sens. Environ., 49, 200–211,
https://doi.org/10.1016/0034-4257(94)90016-7, 1994.

Nicolai-Shaw, N., Zscheischler, J., Hirschi, M., Gudmundsson, L.,
and Seneviratne, S. I.: A drought event composite analysis using
satellite remote-sensing based soil moisture, Remote Sens. En-
viron., 203, 216–225, https://doi.org/10.1016/j.rse.2017.06.014,
2017.

Niu, S., Luo, Y., Li, D., Cao, S., Xia, J., Li, J., and
Smith, M. D.: Plant growth and mortality under climatic
extremes: An overview, Environ. Exp. Bot., 98, 13–19,
https://doi.org/10.1016/j.envexpbot.2013.10.004, 2014.

Ogaya, R. and Peñuelas, J.: Tree growth, mortality, and above-
ground biomass accumulation in a holm oak forest under a
five-year experimental field drought, Plant Ecol., 189, 291–299,
https://doi.org/10.1007/s11258-006-9184-6, 2007.

Orth, R., Destouni, G., Jung, M., and Reichstein, M.: Large-
scale biospheric drought response intensifies linearly with
drought duration in arid regions, Biogeosciences, 17, 2647–2656,
https://doi.org/10.5194/bg-17-2647-2020, 2020.

Pan, S., Yang, J., Tian, H., Shi, H., Chang, J., Ciais, P., Fran-
cois, L., Frieler, K., Fu, B., Hickler, T., Ito, A., Nishina,
K., Ostberg, S., Reyer, C. P., Schaphoff, S., Steinkamp, J.,
and Zhao, F.: Climate Extreme Versus Carbon Extreme: Re-
sponses of Terrestrial Carbon Fluxes to Temperature and Pre-
cipitation, J. Geophys. Res.-Biogeo., 125, e2019JG005252,
https://doi.org/10.1029/2019JG005252, 2020.

Papagiannopoulou, C., Miralles, D. G., Dorigo, W. A., Verhoest,
N. E. C., Depoorter, M., and Waegeman, W.: Vegetation anoma-
lies caused by antecedent precipitation in most of the world,
Environ. Res. Lett., 12, 074016, https://doi.org/10.1088/1748-
9326/aa7145, 2017.

Páscoa, P., Gouveia, C. M., Russo, A., and Trigo, R. M.: The role
of drought on wheat yield interannual variability in the Iberian
Peninsula from 1929 to 2012, Int. J. Biometeorol., 61, 439–451,
https://doi.org/10.1007/s00484-016-1224-x, 2017.

Peña-Gallardo, M., Vicente-Serrano, S. M., Domínguez-Castro, F.,
and Beguería, S.: The impact of drought on the productivity of
two rainfed crops in Spain, Nat. Hazards Earth Syst. Sci., 19,
1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, 2019.

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya,
R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O.,
Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asen-
sio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-
Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol,
G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I.,
Camino-Serrano, M., Vives-Ingla, M., Stocker, B., Balzarolo,
M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-
Mejías, K., Mu, Z., Descals, A., Castellanos, A., and Terradas, J.:
Impacts of Global Change on Mediterranean Forests and Their
Services, Forests, 8, 463, https://doi.org/10.3390/f8120463,
2017.

Perkins-Kirkpatrick, S. E. and Gibson, P. B.: Changes in regional
heatwave characteristics as a function of increasing global tem-
perature, Sci. Repo., 7, 12256, https://doi.org/10.1038/s41598-
017-12520-2, 2017.

Piao, S., Zhang, X., Chen, A., Liu, Q., Lian, X., Wang, X., Peng,
S., and Wu, X.: The impacts of climate extremes on the ter-

Biogeosciences, 18, 5903–5927, 2021 https://doi.org/10.5194/bg-18-5903-2021

61



J. Vogel et al.: Seasonal ecosystem vulnerability to climatic anomalies 5925

restrial carbon cycle: A review, Sci. China Earth Sci., 1, 1285,
https://doi.org/10.1007/s11430-018-9363-5, 2019.

Pinty, B., Lavergne, T., Widlowski, J.-L., Gobron, N., and Ver-
straete, M. M.: On the need to observe vegetation canopies in the
near-infrared to estimate visible light absorption, Remote Sens.
Environ., 113, 10–23, https://doi.org/10.1016/j.rse.2008.08.017,
2009.

Potter, C., Tan, P. N., Steinbach, M., Klooster, S., Kumar, V., My-
neni, R., and Genovese, V.: Major disturbance events in terres-
trial ecosystems detected using global satellite data sets, Glob.
Change Biol., 9, 1005–1021, 2003.

R Core Team: R: A Language and Environment for Statistical
Computing, available at: https://www.R-project.org/ (last access:
5 November 2021), 2020.

Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S.,
Viovy, N., Cramer, W., Granier, A., Ogée, J., Allard, V., Aubi-
net, M., Bernhofer, C., Buchmann, N., Carrara, A., Grünwald,
T., Heimann, M., Heinesch, B., Knohl, A., Kutsch, W., Loustau,
D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Pile-
gaard, K., Pumpanen, J., Rambal, S., Schaphoff, S., Seufert, G.,
Soussana, J.-F., Sanz, M. J., Vesala, T., and Zhao, M.: Reduction
of ecosystem productivity and respiration during the European
summer 2003 climate anomaly: a joint flux tower, Remote Sens-
ing and Modelling Analysis, Glob. Change Biol., 13, 634–651,
https://doi.org/10.1111/j.1365-2486.2006.01224.x, 2007.

Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D.,
Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N.,
Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K.,
van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.:
Climate extremes and the carbon cycle, Nature, 500, 287–295,
https://doi.org/10.1038/nature12350, 2013.

Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus,
R. P., Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P.,
Abou Jaoudé, R., Klein, T., Kuster, T. M., Martins, M.,
Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P.,
de Dato, G., François, L., Menzel, A., and Pereira, M.: A
plant’s perspective of extremes: terrestrial plant responses to
changing climatic variability, Glob. Change Biol., 19, 75–89,
https://doi.org/10.1111/gcb.12023, 2013.

Ribeiro, A. F., Russo, A., Gouveia, C. M., and Pires, C. A.:
Drought-related hot summers: A joint probability analysis in the
Iberian Peninsula, Weather and Climate Extremes, 30, 100279,
https://doi.org/10.1016/j.wace.2020.100279, 2020.

Rolinski, S., Rammig, A., Walz, A., von Bloh, W., van Oi-
jen, M., and Thonicke, K.: A probabilistic risk assessment for
the vulnerability of the European carbon cycle to weather ex-
tremes: the ecosystem perspective, Biogeosciences, 12, 1813–
1831, https://doi.org/10.5194/bg-12-1813-2015, 2015.

Rubel, F., Brugger, K., Haslinger, K., and Auer, I.: The climate
of the European Alps: Shift of very high resolution Köppen-
Geiger climate zones 1800–2100, Meteorol. Z., 26, 115–125,
https://doi.org/10.1127/metz/2016/0816, 2017.

Ruffault, J., Curt, T., Martin-StPaul, N. K., Moron, V., and Trigo,
R. M.: Extreme wildfire events are linked to global-change-
type droughts in the northern Mediterranean, Nat. Hazards Earth
Syst. Sci., 18, 847–856, https://doi.org/10.5194/nhess-18-847-
2018, 2018.

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec,
O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and

Marx, A.: Anthropogenic warming exacerbates European
soil moisture droughts, Nat. Clim. Change, 8, 421–426,
https://doi.org/10.1038/s41558-018-0138-5, 2018.

Sarris, D., Christodoulakis, D., and Körner, C.: Recent decline in
precipitation and tree growth in the eastern Mediterranean, Glob.
Change Biol., 13, 1187–1200, https://doi.org/10.1111/j.1365-
2486.2007.01348.x, 2007.

Sarris, D., Christodoulakis, D., and Körner, C.: Impact of re-
cent climatic change on growth of low elevation eastern
Mediterranean forest trees, Climatic Change, 106, 203–223,
https://doi.org/10.1007/s10584-010-9901-y, 2011.

Sarris, D., Christopoulou, A., Angelonidi, E., Koutsias, N.,
Fulé, P. Z., and Arianoutsou, M.: Increasing extremes of
heat and drought associated with recent severe wildfires
in southern Greece, Reg. Environ. Change, 14, 1257–1268,
https://doi.org/10.1007/s10113-013-0568-6, 2014.

Schulzweida, U.: CDO Climate Data Operator, Zenodo,
https://doi.org/10.5281/zenodo.3539275, 2019.

Schwingshackl, C., Hirschi, M., and Seneviratne, S. I.: Quantifying
Spatiotemporal Variations of Soil Moisture Control on Surface
Energy Balance and Near-Surface Air Temperature, J. Clim., 30,
7105–7124, https://doi.org/10.1175/JCLI-D-16-0727.1, 2017.

Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.: Land-
atmosphere coupling and climate change in Europe, Nature, 443,
205–209, https://doi.org/10.1038/nature05095, 2006.

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M.,
Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling,
A. J.: Investigating soil moisture–climate interactions in a
changing climate: A review, Earth-Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.

Sherry, R. A., Weng, E., Arnone, J. A., Johnson, D. W.,
Schimel, D. S., Verburg, P. S., Wallace, L. L., and Luo, Y.:
Lagged effects of experimental warming and doubled precip-
itation on annual and seasonal aboveground biomass produc-
tion in a tallgrass prairie, Glob. Change Biol., 14, 2923–2936,
https://doi.org/10.1111/j.1365-2486.2008.01703.x, 2008.

Sippel, S., Zscheischler, J., and Reichstein, M.: Ecosys-
tem impacts of climate extremes crucially depend on
the timing, P. Natl. Acad. Sci. USA, 113, 5768–5770,
https://doi.org/10.1073/pnas.1605667113, 2016.

Sippel, S., Forkel, M., Rammig, A., Thonicke, K., Flach, M.,
Heimann, M., Otto, F. E. L., Reichstein, M., and Mahecha,
M. D.: Contrasting and interacting changes in simulated spring
and summer carbon cycle extremes in European ecosystems,
Environ. Res. Lett., 12, 075006, https://doi.org/10.1088/1748-
9326/aa7398, 2017.

Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange,
H., Flach, M., and Frank, D.: Drought, Heat, and the Car-
bon Cycle: a Review, Curr. Clim. Change Rep., 4, 266–286,
https://doi.org/10.1007/s40641-018-0103-4, 2018.

Smit, H. J., Metzger, M. J., and Ewert, F.: Spatial distribution of
grassland productivity and land use in Europe, Agr. Syst., 98,
208–219, https://doi.org/10.1016/j.agsy.2008.07.004, 2008.

Smith, M. D.: An ecological perspective on extreme climatic
events: a synthetic definition and framework to guide future
research, J. Ecol., 99, 656–663, https://doi.org/10.1111/j.1365-
2745.2011.01798.x, 2011.

Sousa, P. M., Barriopedro, D., Ramos, A. M., García-Herrera, R.,
Espírito-Santo, F., and Trigo, R. M.: Saharan air intrusions as a

https://doi.org/10.5194/bg-18-5903-2021 Biogeosciences, 18, 5903–5927, 2021

62



5926 J. Vogel et al.: Seasonal ecosystem vulnerability to climatic anomalies

relevant mechanism for Iberian heatwaves: The record breaking
events of August 2018 and June 2019, Weather and Climate Ex-
tremes, 26, 100224, https://doi.org/10.1016/j.wace.2019.100224,
2019.

Spano, D., Snyder, R. L., and Cesaraccio, C.: Mediterranean Phe-
nology, in: Phenology: An Integrative Environmental Science,
edited by: Schwartz, M. D., Springer Netherlands, Dordrecht,
173–196, https://doi.org/10.1007/978-94-007-6925-0_10, 2013.

Szczypta, C., Calvet, J.-C., Maignan, F., Dorigo, W., Baret, F., and
Ciais, P.: Suitability of modelled and remotely sensed essential
climate variables for monitoring Euro-Mediterranean droughts,
Geosci. Model Dev., 7, 931–946, https://doi.org/10.5194/gmd-7-
931-2014, 2014.

Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M.,
Ciais, P., Buchmann, N., Ammann, C., Montagnani, L., Richard-
son, A. D., Wohlfahrt, G., and Seneviratne, S. I.: A regional
perspective on trends in continental evaporation, Geophys. Res.
Lett., 36, 1–5, https://doi.org/10.1029/2008GL036584, 2009.

Toreti, A. and Naveau, P.: On the evaluation of climate model sim-
ulated precipitation extremes, Environ. Res. Lett., 10, 014012,
https://doi.org/10.1088/1748-9326/10/1/014012, 2015.

Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano,
S. M., Volaire, F., Boone, A., Le Page, M., Llasat, M. C., Al-
bergel, C., Burak, S., Cailleret, M., Kalin, K. C., Davi, H., Dupuy,
J.-L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-
StPaul, N., Martínez-Vilalta, J., Mouillot, F., Pulido-Velazquez,
D., Quintana-Seguí, P., Renard, D., Turco, M., Türkeş, M.,
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Abstract. Compound weather events may lead to extreme impacts that can affect many aspects of society
including agriculture. Identifying the underlying mechanisms that cause extreme impacts, such as crop failure,
is of crucial importance to improve their understanding and forecasting. In this study, we investigate whether
key meteorological drivers of extreme impacts can be identified using the least absolute shrinkage and selection
operator (LASSO) in a model environment, a method that allows for automated variable selection and is able
to handle collinearity between variables. As an example of an extreme impact, we investigate crop failure using
annual wheat yield as simulated by the Agricultural Production Systems sIMulator (APSIM) crop model driven
by 1600 years of daily weather data from a global climate model (EC-Earth) under present-day conditions for the
Northern Hemisphere. We then apply LASSO logistic regression to determine which weather conditions during
the growing season lead to crop failure. We obtain good model performance in central Europe and the eastern half
of the United States, while crop failure years in regions in Asia and the western half of the United States are less
accurately predicted. Model performance correlates strongly with annual mean and variability of crop yields; that
is, model performance is highest in regions with relatively large annual crop yield mean and variability. Overall,
for nearly all grid points, the inclusion of temperature, precipitation and vapour pressure deficit is key to predict
crop failure. In addition, meteorological predictors during all seasons are required for a good prediction. These
results illustrate the omnipresence of compounding effects of both meteorological drivers and different periods
of the growing season for creating crop failure events. Especially vapour pressure deficit and climate extreme
indicators such as diurnal temperature range and the number of frost days are selected by the statistical model
as relevant predictors for crop failure at most grid points, underlining their overarching relevance. We conclude
that the LASSO regression model is a useful tool to automatically detect compound drivers of extreme impacts
and could be applied to other weather impacts such as wildfires or floods. As the detected relationships are of
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purely correlative nature, more detailed analyses are required to establish the causal structure between drivers
and impacts.

1 Introduction

Climate extremes such as droughts, heatwaves, floods and
frost events can have substantial impacts on crop health
(Shah and Paulsen, 2003; Singh et al., 2011; Lesk et al.,
2016; Ben-Ari et al., 2018). However, not all climate ex-
tremes lead to an extreme impact, and large impacts can be
related to moderate drivers (Zscheischler et al., 2016; Van der
Wiel et al., 2019a, 2020; Pan et al., 2020). Whether a large
impact occurs does not only depend on a climate hazard but
also on the vulnerability of the underlying system (Oppen-
heimer et al., 2015), which varies strongly for crops during
the course of the growing season (Iizumi and Ramankutty,
2015; Ben-Ari et al., 2018). The mechanisms that translate a
climate hazard into crop failure are often very complex and
associated with lagged effects that are difficult to disentangle
(Frank et al., 2015).

While climate extremes may lead to large impacts, ex-
treme climate-related impacts are often the result of multi-
ple contributing factors (Tschumi and Zscheischler, 2020).
The concept of compound events has recently been promoted
to address climate impacts from an impact-centred perspec-
tive. For instance, compound events have been defined as ex-
treme impacts that depend on multiple statistically dependent
drivers (Leonard et al., 2014) or, more recently, simply as
the combination of multiple drivers that contributes to envi-
ronmental or societal risk (Zscheischler et al., 2018). Drivers
in this context refer to climate and weather processes and
phenomena. With respect to yields at the local scale, mul-
tiple drivers can compound an impact through a sequence
of weather events (temporally compounding); one weather
event may also change the vulnerability of the crop to a sub-
sequent weather event (preconditioning), or multiple drivers
may interact and impact crops at the same time (multivariate
events) (Zscheischler et al., 2020).

Understanding the drivers that lead to extreme impacts
helps to better predict and mitigate the potential impacts of
such events. One way of identifying the relevant drivers of an
impact is to perform a bottom-up analysis, that is, start from
an impact and identify key drivers through statistical analysis
(Zscheischler et al., 2013; Ben-Ari et al., 2018). In this con-
text, linear regression analysis can identify the most relevant
drivers of an impact variable and reveal potential interactions
between drivers (Forkel et al., 2012; Ben-Ari et al., 2018).
More sophisticated approaches such as random forests might
yield higher predictive power at the cost of losing explain-
ability (Vogel et al., 2019). When the set of possible predic-
tors is very large, suitable variable selection approaches need
to be applied to reduce the number of predictors. In order

to be applicable to a large number of locations and a variety
of impacts, an automatic approach is desired that only re-
quires a limited amount of expert knowledge and parameter
tuning. An example of such an approach is the least abso-
lute shrinkage and selection operator (Tibshirani, 1996), or
short LASSO regression, which obtains a reduced number of
predictors by penalizing the number of variables in the loss
function.

The aim of this study is to present a method that can iden-
tify drivers of extreme impacts in an automatic manner and
that is suitable for many applications. We use crop failure
as an example of an extreme impact in a model environ-
ment; that is, we use simulated data from a climate and a
crop model. End-of-season crop yield is related to climate
drivers via highly complex interactions at different temporal
scales. Temperature and precipitation are the two basic cli-
mate variables that regulate crop health (Lobell and Asner,
2003; Lobell et al., 2011; Leng et al., 2016). Furthermore,
vapour pressure deficit (VPD), the difference of water vapour
pressure at saturated condition and its actual value at a given
temperature, determines crop photosynthesis and water de-
mand (Rawson et al., 1977; Zhang et al., 2017; Yuan et al.,
2019).

Here, we use 1600 years of wheat yield data from a global
gridded crop model driven by simulated meteorological data
under present-day conditions. Based on this large database
of yield data, we showcase approaches to identify multiple
drivers of crop failure in different regions of the world and
highlight results for the LASSO regression. Using a model
environment to explore new analytical approaches to iden-
tify drivers of extreme impacts, we circumvent common lim-
itations associated with observational data, such as a small
sample size, measurement uncertainties and data coverage.
Among the large amount of information provided by the crop
model simulations, the statistical model summarizes the link
between crop failure and climate conditions.

This paper is structured as follows. The data and meth-
ods used in this study are introduced in Sect. 2. In this sec-
tion, the reader can first find a description of the data, includ-
ing an introduction to the global climate model and the crop
model used in this study. We further describe which meteo-
rological variables are considered in the statistical analysis;
Sect. 2 also introduces the LASSO logistic regression to pre-
dict years of low yield based on meteorological drivers and
the metrics employed to assess the performance of the statis-
tical model. The results of the LASSO regression are shown
in Sect. 3, where the performance and the summary statis-
tics for the variables that have been selected as being critical
to predict crop failure events are presented. Finally, we sum-
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marize and discuss the LASSO regression’s results in Sect. 4
and give some perspective to this study in Sect. 5.

2 Data and methods

2.1 Climate and crop model simulations

To investigate the influence of natural variability and cli-
matic extreme events, a large ensemble simulation experi-
ment was set up with the EC-Earth global climate model
(v2.3; Hazeleger et al., 2012). We use this climate model
data set, consisting of 2000 years of present-day simulated
weather, to investigate if we can identify the drivers of ex-
treme low crop yield seasons. Large ensemble modelling is
at the forefront of climate science (Deser et al., 2020); due
to the computational expenses involved, a balance between
ensemble size, horizontal resolution and number of climate
models has to be found. We have found the climate data
used here to be suitable for the present study. A detailed de-
scription of these climate simulations is provided in Van der
Wiel et al. (2019b); here, we provide a short overview of the
experimental setup. The present day was defined as the 5-
year model period in which the simulated global mean sur-
face temperature matched that observed in 2011–2015 (Had-
CRUT4 data; Morice et al., 2012). Because of a cold bias in
EC-Earth, in the model this period is 2035–2039. To create
the large ensemble, 25 ensemble members were branched off
from 16 long transient climate runs (forced by Representative
Concentration Pathway (RCP) 8.5). Each ensemble member
was integrated for 5 years. Differences between ensemble
members were forced by choosing different seeds in the at-
mospheric stochastic perturbations (Buizza et al., 1999). This
resulted in a total of 16×25×5= 2000 years of meteorolog-
ical data at T159 horizontal resolution (approximately 1◦).

Biases in the EC-Earth simulations result in unrealis-
tic growing conditions for crops. Therefore, minimum and
maximum temperatures and precipitation fields were bias
corrected. The Agricultural Model Intercomparison and
Improvement Project (AgMIP) Modern-Era Retrospective
Analysis for Research and Applications (AgMERRA) re-
analysis (Ruane et al., 2015) was used as “truth”. From
AgMERRA, the years 1981–2010 were used as a training
set, while EC-Earth uses the long transient runs (16 times
for 2005–2034). Daily minimum and maximum temperatures
were corrected on a grid point basis; a model bias field was
defined as the difference between the model climatology and
the AgMERRA climatology. The climatology was defined to
be the mean plus the first three annual harmonics. Daily pre-
cipitation was corrected towards having the correct number
of rainy days and total amount of precipitation. Firstly, for
each month, the number of rainy days in AgMERRA was
computed (threshold of 0.1 mm d−1); then the same thresh-
old was determined for EC-Earth data, which resulted in the
same number of rainy days. All days with simulated precipi-
tation lower than this threshold were set to 0 mm d−1. Lastly,

the total amount of precipitation was corrected by means of a
multiplicative factor, also on a month-by-month basis. Other
meteorological variables were not bias corrected.

Northern Hemisphere winter wheat yields were simu-
lated using the Agricultural Production Systems sIMulator
(APSIM)-Wheat model (Zheng et al., 2014), which is a
process-based model incorporating wheat physiology, water
and nitrogen processes under a wide range of growing con-
ditions. It was previously used for field (Li et al., 2014), re-
gional (Asseng et al., 2013) and global-scale (Rosenzweig
et al., 2014) wheat studies. A grid-point-specific sowing date
was used based on Sacks et al. (2010). The application of
nitrogen was exacted from Mueller et al. (2012). Soil param-
eters (including pH, soil total nitrogen, organic carbon con-
tent, bulk density and soil moisture characteristics curves for
each of five 20 cm deep soil layers) were derived from the
International Soil Profile Data Set (Batjes, 2012). In addi-
tion, we also input the grid-specific thermal time accumula-
tion parameters, which were derived from phenology (Sacks
et al., 2010) and AgMERRA data. The atmospheric CO2 con-
centration was set to 394 ppm. The growing season of win-
ter wheat spans 2 calendar years (e.g. sowing in Novem-
ber and harvest in June). As such, each climate model in-
tegration of 5 years covers four winter-wheat-growing sea-
sons; the 2000 years of EC-Earth climate data thus result
in 1600 simulated wheat-growing seasons. Further details on
the settings of the APSIM-Wheat model can be found in Ap-
pendix A. For model validation, the grid-based wheat yield
simulations were aggregated to country level and then val-
idated against the yield statistics during 2011–2015 (FAO-
STAT, 2020). Most simulated yields are closely related to ob-
served yields (Fig. B1), indicating good model performance.

2.2 Data processing

The APSIM model provided crop data for 995 grid points in
the Northern Hemisphere. For our analysis, we chose to dis-
card all grid points for which the annual mean yield is below
the 10th percentile of annual mean yield across all grid points
because many of these grid points were also associated with
unrealistically long (> 365 d) or short (< 90 d) growing sea-
sons, or had an overall average crop yield of 0 kg ha−1 yr−1.
Overall, 895 grid points remained for the analysis.

At each grid point, a year with yield lower than the 5th per-
centile for this grid point is considered as a year with crop
failure and called “bad year” in the remainder, whereas all
other years are referred to as “normal years”. Grid points for
which the 5th percentile yield was equal to 0 were excluded
to avoid the co-occurrence of years without yield in the bad
and normal years. This excluded six more grid points so that
889 remained for further analysis. Figure 1a shows the sim-
ulated mean annual yield, and Fig. 1b displays the relative
difference between the 5th percentile and the mean annual
yield. These two figures also indicate grid points that were
discarded for further analysis. Finally, we discarded individ-
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ual years with a growing season longer than 365 d, leading to
a slightly lower number of years than 1600 for 82 grid points,
i.e. for about 5 % of the grid points.

The data were split into training and testing data sets by
randomly assigning 70 % of the data to the former and 30 %
to the latter. For the logistic regression (Sect. 2.4), explana-
tory variables and yield were normalized by rescaling them
to a range of [−1, 1] for each grid point individually.

2.3 Explanatory data analysis

The APSIM model uses six meteorological variables on a
daily basis as input – dew-point temperature (Td), precipita-
tion (Pr), 10 m wind speed (Wind), incoming shortwave ra-
diation (Rad), maximum temperature (Tmax) and minimum
temperature (Tmin). From these variables, we additionally
calculated VPD as an important variable for plant growth
(Rawson et al., 1977; Zhang et al., 2017; Yuan et al., 2019).
For a given grid point, the sowing date is the same for the
1600 simulated years, but the harvest dates differ. We there-
fore define the growing season for a given grid point as
starting on the month containing the sowing date and fin-
ishing with the month containing the latest harvest date. Fig-
ure 2 illustrates the temporal evolution of composites of these
seven variables over the course of a growing season for nor-
mal (blue) and bad years (red) for one grid point in France
(47.7◦ N, 1.1◦ E; Fig. 2a). The composites provide some indi-
cation about which of the meteorological variables may con-
tribute to crop failure. In addition, the temporal evolution of
the two composites reveals during which part of the growing
season the different variables are relevant. The various com-
posites suggests that, for this grid point, 30 d Pr, VPD and
Tmax during the summer (June–August) have a high impact
on crop yield (Fig. 2c, f and h). The other variables appear
to be less relevant (Fig. 2b, d, e and g). Similar composites
for grid points in the US (44.3◦ N, 90.0◦W) and in China
(30.8◦ N, 118.1◦ E) are shown in Figs. B2 and B3, respec-
tively.

In addition to the seven meteorological variables, we con-
sidered seven climate extreme indicators as potential pre-
dictors of crop failure (mean diurnal temperature range, dtr;
number of frost days, frs; maximum temperature, TXx; min-
imum temperature, TNn; maximum five day precipitation
sum, Rx5day; number of warm days, TX90p; number of cold
days, TN10p; following Vogel et al., 2019) (Table 1). For
both the monthly means of the meteorological variables and
the growing season means/totals of the indicators of climate
extremes, we calculated the Pearson correlation coefficient
between the variables and annual yield (Fig. 3a and b for
the same grid point as in Figs. 2 and 3c and d as average
correlation over all grid points). These correlations are com-
putationally and conceptually very simple, and together with
Fig. 2, they serve as a first estimation of the importance of
the available variables. Some variables, such as wind speed,
do not have a discernible influence on yield and thus can be

neglected for this study. We use monthly means of Tmax, Pr
and VPD during the growing season, as well as the seven
extreme indicators for further analysis.

2.4 LASSO regression

The aim of this study is to provide an interpretable statisti-
cal model that is able to predict years with extremely low
yields (bad years) with meteorological variables. We use the
LASSO (Tibshirani, 1996) logistic regression for an auto-
matic selection of meteorological variables that are statisti-
cally linked to low yields. The approach is explained below.

For a given grid point, let Y ∈ {0,1}n be the binary yield
vector, with n the number of years. If the year i ∈ {1, . . . , n} is
a bad year, then Yi = 1; otherwise, Yi = 0. Let X1, . . . ,Xp ∈
Rn be the explanatory variables vectors (monthly meteoro-
logical variables and climate extreme indicators, rescaled as
explained in Sect. 2.2). Using a generalized linear model and,
more specifically, a logistic regression, we can identify how
much of the occurrence of bad yields is explained by which
explanatory variable:

P[Y = 1] =
1

1+ exp
(
β0+β1X1+ . . .+βpXp

) , (1)

where β0, β1, . . . ,βp are the regression coefficients.
However, a simple logistic regression presents two chal-

lenges here. Firstly, some variables might be highly cor-
related (e.g. correlation between temperature in May and
temperature in June, or the correlation of extreme indices
with meteorological variables). This correlation implies a
high variability of the coefficients. For instance, if the vari-
ables Xj and Xk are highly correlated, the information
brought by a high absolute value of βj and a low absolute
value of βk might be the same as the information brought by a
low absolute value of βj and a high absolute value of βk . An-
other issue is the large number of potential explanatory vari-
ables (up to 43 for some grid points). The relatively straight-
forward relationship of a generalized linear model (simpler
than the crop model equations themselves) allows us to re-
veal which meteorological variables explain bad yields best.
However, if the number of a priori explanatory variables is
very large, the regression becomes rather complex and many
coefficients will be close to zero, rendering an interpretation
difficult.

LASSO regression tackles both challenges with an auto-
matic variable selection using a regularization by penalizing
the number of coefficients different from 0 using the `1 norm
on the vector of coefficients (Tibshirani, 1996). Thus, the re-
gression coefficients are obtained by minimizing an objec-
tive function consisting of the sum of the usual loss function
for logistic regression and a penalty term on the coefficient
norm:
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Figure 1. (a) Mean annual yield over the 1600 years (t ha−1). (b) Relative difference between the 5th percentile and the mean annual yield.
Grid points discarded for our study are crossed out (specified in Sect. 2.2).

Table 1. Meteorological drivers used in the analysis.

Variable name Description Type

Tmax Maximum temperature Monthly mean

VPD Vapour pressure deficit Monthly mean

Pr Precipitation Monthly mean

dtr Mean diurnal temperature range in the growing season Climate extreme indicator

frs Number of frost days in the growing season Climate extreme indicator

TXx Maximum temperature in the growing season Climate extreme indicator

TNn Minimum temperature in the growing season Climate extreme indicator

Rx5day Maximum 5 d precipitation sum in the growing season Climate extreme indicator

TX90p Number of warm days in the growing season with daily Climate extreme indicator
maximum temperature above the 90th percentile∗

TN10p Number of cold days in the growing season with daily Climate extreme indicator
minimum temperature below the 10th percentile∗a

∗ Note: percentiles are grid point based; i.e. they are representative of the local climate.

min(β0,β)∈Rp+1 −

[
1
n

n∑
i=1

yi

(
β0+ x

T
i β
)

− log
(

1+ eβ0+x
T
i β
)]
+ λ‖β‖1, (2)

for a fixed λ > 0. The penalty term on the coefficient norms
prevents a high variability of these coefficients. Furthermore,
the `1 norm implies a variable selection. Coefficients associ-
ated with non-relevant explanatory variables are set to 0.

We use the R package glmnet (Friedman et al., 2010) to
perform the LASSO regression with R version 3.6 (R Core
Team, 2019). Through 10-fold cross-validation in the train-
ing data set, we obtain the optimal λmin and λ1SE = λmin+SE
with “SE” the standard error of the lambda that achieves the
minimum loss, and the coefficients β = (β1, . . . ,βp), which
is the solution to the optimization in Eq. (2) for λ= λ1SE.
Our preference for λ= λ1SE is motivated by the balance be-
tween number of selected variables and accuracy of the loss
function minimization (Friedman et al., 2010; Krstajic et al.,
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Figure 2. Daily evolution of meteorological variables used as input for the APSIM model over the course of the year for an exemplary grid
point in France (47.7◦ N, 1.1◦ E; shown as a red dot in panel a). Red lines indicate the composite mean of the bad years (80 seasons); blue
lines indicate the composite mean of the normal years (1520 seasons). Shading shows the range between the 10th and 90th percentiles of the
respective years. Variables shown are (b) dew-point temperature, (c) 30 d running sum of precipitation, (d) incoming shortwave radiation,
(e) wind speed, (f) maximum temperature, (g) minimum temperature and (h) vapour pressure deficit.

2014). Indeed, less variables are selected with λ1SE than
with λmin, because λ1SE > λmin and thus the penalty term on
the norm of coefficient is stronger, but the minimization of
the Eq. (2) is still sensible, because λ1SE lies within the un-
certainty range of the optimal λ.

2.5 Other models

To compare the performance of the LASSO regression with
other regression methods we also perform the analysis with a
generalized linear model (GLM) and a random forest binary
classification.

For the application of the GLM, a pre-selection of the ini-
tial variables is required, since the number of predictors is
limited. Only the variables with the highest Pearson correla-
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Figure 3. Linear correlations between potential meteorological predictors and annual yield. (a) Correlation between the monthly, seasonal
and growing season (GS) averages of the meteorological variables and annual yield for a grid point in France (47.7◦ N, 1.1◦ E). (b) Correlation
of the climate extreme indicators (Table 1) and annual yield for the same grid point. (c, d) Average of the same correlations across all Northern
Hemisphere grid points. Note that panel (a) shows the correlation for all months included in the growing season of the grid point in France,
while panel (c) shows the average correlation for a given month computed over all grid points containing this month in their growing season.

tion coefficients (ρ > 0.30) were selected as initial predictors
from an initial data set composed of all months of the grow-
ing season for each of the three variables (Tmax, Pr and VPD)
and the seven extreme indicators. Next, the subset of best
predictor variables is identified with the leaps algorithm (Fur-
nival and Wilson, 1974). We use the implementation of the
R package bestGLM (McLeod et al., 2020), using a bino-
mial family with a logit link function. Overall, GLM achieves
lower performance (Sect. 2.7) compared to the LASSO logis-
tic regression (not shown). The weaknesses of this approach
include its sensitivity to outliers and multicollinearity, and
overfitting.

Finally, a random forest approach – a common machine
learning technique – was also performed using the R package
randomForest (Breiman, 2001; Liaw and Wiener, 2002)
serving as a benchmark for the model performance of the
LASSO logistic regression. The random forest binary classi-
fication achieves comparable performance (Sect. 2.7) but is
not superior to the LASSO approach.

2.6 Segregation threshold adjustment

The segregation threshold for assigning a continuous predic-
tion to either a bad or normal year was adjusted in a grid-
point-wise manner to account for the unbalanced data set
with 19-fold higher occurrences of normal years than bad
years. Let s be the local segregation threshold between a bad
year predicted and a good year predicted. In other words, if
the probability p = P[Y = 1] predicted for a given grid point
by the LASSO logistic regression model is greater or equal
to s (lower than s), then the year is predicted as a bad year
(normal year). We want to choose s as a good compromise
in prediction of normal years and bad years, given that bad

years are rare. In other words, we want to find an optimal
trade-off between specificity and sensitivity. To this purpose,
a cost function C = C(s) is calculated based on the false pos-
itive rate RFP = RFP(s), the associated cost for a false pos-
itive instance CFP, the sum of observed normal years ONY,
the false negative rate RFN = RFN(s), the associated cost for
a false negative instance CFN and the sum of observed bad
yearsOBY of the training data set (Hand, 2009). A false pos-
itive means that a normal year was observed while a bad year
was predicted, and a false negative refers to the observation
of a bad year, whereas a normal year was predicted. For a
given grid point, FP, FN, TP and TN denote the total num-
ber of false positives, false negatives, true positives and true
negatives, respectively (Fig. 4). The value of C(s) is given by

C(s)= RFP(s)CFPONY+RFN(s)CFNOBY, (3)

where RFP =
FP

FP+TN , RFN =
FN

FN+TP and CFP = CFN = 100.
In this study, the costs associated with false positive CFP and
false negatives CFN are given equal weight.

The optimal segregation threshold s∗ for a given grid point
is s∗ = argmins∈(0,1)C(s). The segregation threshold selected
in this study is the mean value of s∗ over all grid points.

2.7 Model performance assessment and sensitivity
analysis

Model performance is assessed using the critical success in-
dex (CSI). The CSI is frequently used for evaluating the pre-
diction of rare events, as it neglects the number of correct
predictions of non-extremes, which dominate the confusion
matrix (Mason, 1989). General performance measures such
as the misclassification error are biased by the high number
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Figure 4. Confusion matrix for classification of observed and pre-
dicted normal and bad years.

of normal years and are therefore not meaningful for the as-
sessment of model performance in unbalanced data sets with
under-represented extreme events. The CSI is defined as

CSI=
TP

TP+FP+FN
. (4)

To evaluate the robustness of our model, in addition to
the 5th percentile threshold, we repeated the analysis with
thresholds of 2.5 % and 10 %, reaching qualitatively simi-
lar performance. In addition to the normalization by rescal-
ing the data to the interval [−1, 1], we also performed a
z-score transformation, which yielded comparable results.
Therefore, our choice of normalization is arbitrary to a de-
gree and a z-score transformation can potentially also be ap-
plied in the LASSO logistic regression model. Moreover, we
applied two more combinations of splitting training and test-
ing data sets: a 60/40 and an 80/20 split. With increasing
size of the training data set, the CSI increased slightly, how-
ever, at the expense of stochastic under-representation of bad
yield years in the smaller testing data sets. As a trade-off, we
decided for the 70/30 split.

The adjustment of the segregation threshold was carried
out with equal weight to false positive and false negative pre-
dictions. It can be argued that the latter case – where a normal
year is predicted, but crop failure is observed – is more detri-
mental and should therefore be given a higher weight. Due to
the subjectivity in the determination of this weight, an adjust-
ment of the weight term was not applied. However, it should
be noted that the attribution of a higher weight of false neg-
ative predictions would yield a lower segregation threshold
and hence improve the overall CSI.

3 Results

3.1 Overall performance

The LASSO logistic regression model can predict bad years
with an average CSI= 0.43 across all grid points. Best per-

formance is obtained in the eastern half of the United States
with a maximum of CSI= 0.82 (Fig. 5), which decreases
westwards in the Great Plains and is lowest in the wheat-
growing regions located close to the Rocky Mountains. Fur-
thermore, especially the most northern and southwestern grid
points in North America show a lower performance in gen-
eral. Also central Europe shows high performance up to
CSI= 0.80. A notable regional exception with low perfor-
mance can be found in the Alps. Many Asian and African
growing regions show medium prediction accuracy such as
northern China, Myanmar, Turkey and the Maghreb, with ex-
ceptions of some regions including Pakistan, southern China
and Japan, which show a low performance in general. For
30 grid points, it is not possible to obtain reasonable pre-
dictions of bad years with our approach, indicated by a CSI
equal to 0. Overall, regions with high prediction accuracy of
bad years are often those that also have high mean yields
(Fig. 1). CSI is positively correlated with mean yield with a
Pearson correlation coefficient of ρ = 0.46 (Fig. 6a); an even
stronger correlation is found with yield variability (ρ = 0.57)
(Fig. 6b).

3.2 Explanatory variables

Here, we summarize properties of the variables selected by
the LASSO logistic regression as relevant explanatory vari-
ables, i.e. those which are statistically linked to bad years. A
median of 11 variables per grid point has been selected as
explanatory variables, and for 50 % of grid points the num-
ber of selected variables lies between 7 and 14 (Fig. 7a).
The inclusion of extreme indicators provides a useful addi-
tion to the monthly predictors, shown by a median number
of two selected extreme indicators per grid point (Fig. 7b).
Grid points without extreme indicators are found only in few
areas such as eastern Europe, the Alps and southern China.
In total, 72 % of all grid points include monthly predictors of
VPD, Pr and Tmax, and almost all grid points (97 %) incorpo-
rate VPD (Fig. 7c). Interestingly, in the Great Plains (USA),
in many cases temperature is not included, whereas in most
other regions of the US all meteorological variables are se-
lected to achieve a good prediction. In southern China, tem-
perature is not needed by the models, whereas in the north-
ern areas, usually all meteorological variables are part of the
model. In most wheat-growing regions, particularly in the
northeastern US, southeastern Europe and Turkey, all four
seasons contain relevant predictors for predicting bad years
(Fig. 7d). Generally, the number of seasons included de-
creases towards the southeastern regions in the US, whereas
in western Europe no clear pattern emerges. In lower lati-
tudes such as in southern Asia, growing seasons are gener-
ally shorter (Fig. B4), and consequently often only predic-
tors from one or two seasons are included in the respective
models.

At the global scale, VPD in May and June, as well as Pr
in April, are the predictors which are most often included in
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Figure 5. Critical success index (CSI; Eq. 4) of the LASSO logistic regression model (see Sect. 2.7 for definition).

Figure 6. Correlation between CSI and annual crop yield mean and variability for the 889 grid points included in the LASSO logistic
regression model. (a) Scatterplot between CSI and mean annual yield. (b) Scatterplot between CSI and annual yield standard deviation.

the LASSO regression, followed by the climate extreme in-
dicators diurnal temperature range (dtr) and number of frost
days (frs) (Fig. 8a). In nearly all cases, the sign of the co-
efficient is positive for VPD in May and June, and negative
for Pr in April. This implicates that higher VPD increases
the risk of crop failure and is similar for the other vari-
ables. In North America and Europe, in addition to dtr and
frs, VPD and Pr in spring to early summer are the most fre-
quent monthly predictors (Fig. 8b and c). The growing season
for wheat varies with latitude. Consequently, in more north-
ern regions, mostly in Europe and North America, monthly
predictors from the months between March and July are in-
cluded in the LASSO regression, whereas in southern regions
such as in Asia and Africa, November to May are usually the
most frequent months (Fig. 8d).

This clear latitudinal shift can be visually identified in
North America from February to July, especially for VPD
(see maps in the Supplement). In central Europe, the growing
season ends latest; thus, VPD in August is usually included in
the model. In addition to the most common climate extreme
indicators, dtr and frs, Rx5day and TXx are among the most
frequent predictors in Asia and North America, respectively.
Overall, frs is mostly included in northern grid points, with
notable exceptions in western Europe (Fig. B5a) and mainly
with a positive coefficient (higher frs leads to more crop fail-

ure events), which can likely be attributed to the influence of
mild maritime climate in those regions. In contrast, dtr is im-
portant in most Asian grid points and especially in western
Europe and the Maghreb, whereas in the Pannonian Basin
and Turkey it is a less common predictor (Fig. B5b). The
coefficient associated with dtr in the LASSO regression is
mainly positive, except in parts of India and Myanmar. Some
variability in the mean diurnal temperature range might be
beneficial for regions close to the Equator where the vari-
ability in diurnal temperature is usually low. Generally, both
low and high dtr values can influence wheat yield beneficially
depending on the growing region; e.g. a low dtr can be ad-
vantageous because of a reduced occurrence of frost days,
whereas a higher dtr might also indicate a favourable effect
because of increased solar radiation (Lobell, 2007). Rx5day
is predominant in the western US, the western Mediterranean
and central Asia (Fig. B5c), which are all growing regions
with comparably low average annual precipitation. TX90p
is a common variable in low latitudes with a positive coeffi-
cient, especially in the southern US and Myanmar (Fig. B5d).
This indicates that in these regions physiological temperature
thresholds are occasionally exceeded, making TX90p a cru-
cial variable in these areas.
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Figure 7. Maps illustrating the selected predictors by the LASSO logistical regression. (a) Total number of selected variables. (b) Number of
selected climate extreme indicators. (c) Combination of selected meteorological variables. “None” means that only climate extreme indicators
were selected; “All” means that at least 1 month from each of the three meteorological variables (VPD, Pr, Tmax) is selected. (d) Number of
selected seasons (out of the four seasons – DJF, MAM, JJA, SON).

4 Discussion

4.1 Predicting bad yield years

In this study, we presented a method for identifying drivers
of extreme impacts using crop failure as an example. Such
approaches are highly sought after to identify compound
drivers of large impacts (Zscheischler et al., 2020; Van der
Wiel et al., 2020). Our method allows us to investigate poten-
tial drivers at a global scale using a highly automated scheme
based on LASSO regression. The benefits of LASSO regres-
sion include its usage for automatic variable selection, its
consideration of correlation between explanatory variables
and its performance. Moreover, the statistical model obtained
provides a logistic linear relationship between crop failure
and selected variables, which is much simpler to interpret
than the crop model equations themselves or results obtained
with more complex machine learning approaches.

We defined bad years as years where the annual crop yield
is below the 5th percentile and were able to predict those

years by using the LASSO regression with an average CSI
of 0.43. This means that on average, the sum of the num-
bers of false positives and false negatives is slightly higher
than the number of true positives (or accurate predictions of
bad years). Our model performance is somewhat compara-
ble to results from Vogel et al. (2019), who were able to ex-
plain 46 % of variation in spring wheat anomalies using a
similar set of predictors based on a random forest algorithm.
In our case, more sophisticated machine learning regression
models such as random forests did not yield better prediction
skill, indicating that performance in the current setup using
monthly predictors for a binary classification of bad years
likely cannot be much improved. This is probably also re-
lated to the fact that predicting extremes of a continuous vari-
able is challenging because no natural separation between
extremes and non-extremes exists. Another challenge arises
from the highly asymmetric distribution of observed bad and
normal years. Even though in our case the total amount of
samples per grid point is relatively large (1600, because we
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Figure 8. For each possible predictor, we show the percentage of grid points for which this predictor has a non-zero coefficient in the
LASSO logistic regression. (a) All continents (889 grid points in total), (b) North America (419 grid points), (c) Europe (233 grid points)
and (d) Asia (210 grid points). The extension “Y1” means that the respective month belongs to the first calendar year of the growing season,
while “Y2” means it belongs to the second calendar year of the growing season.

used simulated crop yield data) the number of observed bad
years is only 80 and thus can still be considered fairly small.

We analysed the robustness of our results using (a) the
10th percentile as a threshold to discriminate between bad
and normal years and (b) a smaller data subset with only
400 entries per grid point (i.e. a quarter of the available data).
The spatial patterns of the selected predictors and the CSI us-
ing the 10th percentile threshold are very similar compared
to those of the 5th percentile, and the average CSI increases
slightly from 0.43 to 0.52. Using a sample size of 400 we still
obtain an average CSI of 0.33, indicating that performance
decreases only slightly with decreasing data size, while the
spatial patterns remain consistent (results not shown). Fur-
thermore, the spatial coherence of our results (Fig. 7) addi-
tionally suggests robustness of our analysis. An application
of the approach on real data might still be challenging, as
observational sample sizes generally are much smaller than
even 400 years. In addition, observational data are often not
available at such spatial resolution and extent as is the case
for the crop model data used in this study. This will make it

difficult to use spatial coherence of the identified drivers as
an indicator of model robustness when using observational
data. Furthermore, modelling winter wheat yield is particu-
larly challenging due to its long growing season (Vogel et al.,
2019).

A limitation to our study design is the pre-selection of po-
tential predictor variables. Here, we used monthly mean val-
ues and a number of climate extreme indicators. More flexi-
ble averaging time periods for the predictors might result in
higher prediction accuracy due to better overlap with sensi-
tive periods of the impact variable. For instance, in our crop
yield example, meteorological predictors need to coincide
with the respective phenological development stage because
their impact can vary depending on the phenophase. Wheat,
for example, is known to require wet conditions in the vege-
tative phase; however, it prefers dry conditions during ripen-
ing (Seyfert, 1960). Therefore, the application of monthly
meteorological predictors might be insufficient for accurate
matching of meteorological drivers to the respective pheno-
logical phases. We explored the option of automatically gen-
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erating optimal time periods for the meteorological predic-
tors by maximizing the difference between the composites
between normal and bad years. For instance, 30 d cumulative
precipitation differs between normal and bad years starting
in February and ending in August for a grid point in France
(Fig. 2c), whereas VPD only differs from May to Septem-
ber (Fig. 2h). Composite plots for a grid point in the US and
in China are shown in Figs. B2 and B3, respectively. How-
ever, deciding when the separation between normal and bad
years is large enough to start and end the optimal time peri-
ods is challenging and difficult to generalize and thus auto-
mate, which was the aim of our method design. Nevertheless,
such a well-tuned selection of predictors has the potential to
improve the prediction of bad years significantly and should
thus be explored in future research.

We find a strong correlation of the yearly mean and stan-
dard deviation of annual yield with the LASSO regression
performance indicator CSI (Fig. 6). Low model performance
at grid points with low yield variability suggests that the dis-
tinction between normal and bad years is challenging at these
locations, e.g. in southern China and Japan (Figs. 1b and 5).
Regions with high annual yield are found primarily in cen-
tral Europe and the eastern half of the United States, which
also represent the regions with highest model performance.
In contrast, many regions in Asia generally have lower aver-
age yields and lower prediction skill of bad years. This could
be related to a calibration bias in the crop model, leading to a
better representation of wheat-growing processes in regions
where wheat reaches higher yields in the real world. A fur-
ther explanation for this phenomenon could be that the crop
model is primarily designed for crop growth at typical envi-
ronmental conditions, whereas growing regions with condi-
tions at the edge of the ecological niche of wheat might be
less well represented.

Our analysis was based on fitting a local model at each lo-
cation, which is one of the three principal statistical methods
used to link crop yield with weather conditions, along with
cross-section models and panel models, which are global
models that adjust for spatial variability using fixed or ran-
dom effects (Lobell and Burke, 2010; Shi et al., 2013).
Collinearity between explanatory variables is a recurrent is-
sue when using these methods (Shi et al., 2013) that we ad-
dressed with the LASSO regression. One example is VPD
and Tmax, which might be highly correlated but still might in-
dividually contribute relevant information because they have
a different impact on the plant process, as explained in Kern
et al. (2018). LASSO regression did not completely discard
one of these two variables, despite their high correlation.

4.2 Important predictors

For most grid points, VPD is the most important monthly
predictor of bad years, followed by Pr and Tmax, in that
order. While their importance in time differs between grid
points, depending on the timing of the respective growing

season (Sippel et al., 2016), their order changes little across
space. In addition, the order of importance of extreme indi-
cators is quite similar in North America, Europe and Asia.
One notable distinction is the higher importance of Rx5day
in Asian grid points compared to North America and Eu-
rope. The consistent selection of similar predictors across
large spatial scales may suggest that the LASSO regression
is fairly robust. However, this may also be related to the
inevitable simplifications of crop-growing processes in the
employed crop model. In particular, the same model is ap-
plied at all locations, likely creating certain homogeneity by
default. Kern et al. (2018) conducted a comparable analy-
sis on observed winter wheat crop yield in Hungary. With
a linear regression using a step-wise selection of monthly
meteorological variables, they found that a positive anomaly
in VPD and Tmin during May decreases yield. Additionally,
April, May and June appear to be the most relevant months in
our global analysis, which is consistent with regional studies
(Kern et al., 2018; Kogan et al., 2013; Ribeiro et al., 2020).

Climate extreme indicators are important predictors as the
occurrence of an extreme weather event may induce crop
failure in a given year. However, in years without such ex-
treme events, crop yields are still governed by the weather
during the growing season (Iizumi and Ramankutty, 2015).
We found that both climate extreme indicators as well as
monthly means of common climate variables have proven
to be valuable predictors of years resulting in crop failure.
Droughts and heatwaves are well known to affect crop yield
(Lesk et al., 2016; Jagadish et al., 2014), and temperature
and precipitation explain a large fraction of interannual crop
yield variability (Lobell and Burke, 2008). In contrast, VPD
is often overlooked in statistical analyses of crop yield vari-
ability (Zhang et al., 2017). We show that VPD is a key pre-
dictor for crop failure. It is known to play a crucial role in
plant functioning and is projected to increase as main limit-
ing driver in the face of climate change (Novick et al., 2016;
Grossiord et al., 2020). High VPD values can lead to plant
mortality via carbon starvation and hydraulic failure (Mc-
Dowell et al., 2011; Grossiord et al., 2020). However, its co-
variation with temperature and solar radiation makes it dif-
ficult to disentangle their respective effects (Stocker et al.,
2019; Grossiord et al., 2020). There are well-defined temper-
ature thresholds for wheat; e.g. a temperature of 31 ◦C before
flowering is considered to evoke sterile grains and thus re-
duces yield (Porter and Gawith, 1999; Daryanto et al., 2016).
Tmax is a secondary predictor in our statistical model, which
is in line with results based on observed and simulated yields
(Schauberger et al., 2017), and can be attributed to the rare
exceedance of critical temperature thresholds in the grow-
ing season. Crops are particularly vulnerable during key de-
velopment stages, so extreme events during that time span
can lead to large yield reductions, even in the event of other-
wise favourable weather conditions during the growing sea-
son (Porter and Gawith, 1999; Moriondo and Bindi, 2007).
The vulnerability of wheat to climatic events depends largely
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on phenophases, and generally wheat possesses a higher sen-
sitivity to temperature and precipitation during its reproduc-
tive phase than during its vegetative phase (Porter and Gaw-
ith, 1999; Luo, 2011; Daryanto et al., 2016). Future research
could investigate the importance of time of occurrence of ex-
treme indicators (Vogel et al., 2019). For instance, due to cli-
mate change, false spring events may become more likely
in some regions (Moriondo and Bindi, 2007; Allstadt et al.,
2015), and thus the timing of frost days could provide a valu-
able addition to the model.

The frequent inclusion of the extreme indicators such as
dtr and frs in our regression model highlights that short-term
extreme events can potentially have larger impacts than grad-
ual changes over time (Jentsch et al., 2007). The variable dtr
was also identified as an important predictor by Vogel et al.
(2019), whereas frs was of minor importance for explaining
variation in spring wheat yield. By contrast, frs is one of the
most predominant predictors in our study, which might be
explained by the differing growing season of winter wheat,
which is encompassing primarily the cold seasons.

We explored the relevance of interactions between pre-
dictors; however, this did not significantly improve model
performance. This might hint at the inability of the APSIM
crop model to account adequately for such compound effects,
which is consistent with Ben-Ari et al. (2018), who linked the
crop failure 2016 in France to an extraordinary combination
of warm winter temperatures followed by wet spring condi-
tions. The commonly used crop models employed for crop
yield forecasts were not able to predict the 2016 yield failure
in France (Ben-Ari et al., 2018).

Overall, our results illustrate the omnipresence of com-
pounding meteorological events for crop failure. In nearly all
grid points, most seasons and meteorological variables were
relevant to predict years with crop failure (Fig. 7). This sug-
gests that the co-occurrence of certain weather conditions
as well as the combination of weather conditions in differ-
ent seasons are associated with crop failure. With our ap-
proach we have identified meteorological conditions that are
statistically linked to crop failure. Our results confirm prior
findings by Van der Wiel et al. (2020) that such conditions
are not necessarily extreme but can also be moderate. How-
ever, for interpretation of the selected variable set, one should
be aware that the variables in our model are selected based
on correlation, and thus attributing them as potential phys-
ical drivers needs further careful investigation. To identify
such causal relationships, more advanced methods from the
emerging field of causal inference could be employed (Runge
et al., 2019).

5 Conclusions

In this paper, we presented a robust statistical approach –
namely LASSO logistic regression – for predicting crop fail-
ure and automatically selecting relevant predictors among
a large number of meteorological variables and climate ex-
treme indicators. We illustrated our approach on 1600 years
of simulated winter wheat yield for the Northern Hemisphere
under present-day climate conditions. LASSO regression can
serve as a tool for identifying important variables with au-
tomated variable selection while accounting for collinearity
and achieving overall good predictive power. Consistent with
earlier knowledge, we find that predicting crop failure re-
quires accounting for a number of different meteorological
drivers at different times of the growing season, which is il-
lustrated by the large number of variables at all seasons in-
cluded in our statistical model (Fig. 7). This indicates that
compounding effects are ubiquitous across time and meteo-
rological drivers, and highlights the usefulness of approaches
such as LASSO regression to reveal multiple meteorological
drivers of crop failure. We identified vapour pressure deficit
as one key variable to predict crop failure, which underlines
the importance of its consideration in statistical crop yield
models, in particular because it is often overlooked in statis-
tical analyses of crop yield variability. Furthermore, climate
extreme indicators such as diurnal temperature range and the
number of frost days have proven to be valuable additions
to the predictive models, highlighting the necessity to ad-
dress not only monthly mean conditions but especially also
climatic extremes in such models. Overall, this study helps
to enhance the knowledge required to improve seasonal fore-
casts and undertake adaptation measures against crop fail-
ure. The flexibility of our approach allows an application to
other climate impacts that are influenced by a large range of
variables varying with seasonality, for instance, wildfires or
flooding.
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Appendix A: APSIM-Wheat model settings

A total of 11 phenological phases are included in the APSIM-
Wheat model, and the length of each phase is simulated
based on thermal time accumulation, which is adjusted for
other factors such as vernalization, photoperiod and nitro-
gen. To calculate thermal time, crown minimum (Tcmin) and
maximum (Tcmax) temperatures are first simulated for non-
freezing temperatures (Tmin and Tmax; Eqs. A1 and A2)
and then used to compute the crown mean temperature (Tc;
Eq. A3). Finally, daily thermal time (1TT) is calculated
based on three cardinal temperatures (Tbase, Topt and Tceiling;
Eq. A4) (Zheng et al., 2014):

Tcmax ={
2+ Tmax

(
0.4+ 0.0018(Hsnow− 15)2) Tmax < 0

Tmax Tmax ≥ 0 (A1)

Tcmin ={
2+ Tmin

(
0.4+ 0.0018(Hsnow− 15)2) Tmin < 0

Tmin Tmin ≥ 0
(A2)

Tc =
(Tcmin+ Tcmax)

2
(A3)

1TT=
Tc Tbase < Tc ≤ Topt
Topt
Tbase

(
Tceiling− Tc

)
Topt < Tc ≤ Tceiling

0 Tc ≤ Tbase or Tc ≥ Tceiling,

(A4)

whereHsnow is set to 0, and Tbase, Topt and Tceiling are set to 0,
26 and 34 ◦C, respectively.

The dry-matter above-ground biomass (1Q; Eq. A8)
is calculated as a potential biomass accumulation result-
ing from radiation interception (1Qr) and soil water defi-
ciency (1Qw) (Zheng et al., 2014). The radiation-limited
dry-biomass accumulation (1Qr; Eq. A6) is calculated by
the intercepted radiation (I ), radiation use efficiency (RUE),
stress factor (fs) and carbon dioxide factor (fc). The
stress factor (fs) comprises stresses that crops may en-
counter during growth and is the minimum value of a tem-
perature factor (fT ,photo) and a nitrogen factor (fN,photo)
(Eq. A5). The water-limited dry above-ground biomass
(1Qw; Eq. A7) is a function of radiation-limited dry above-
ground biomass (1Qr), the ratio between the daily water up-
take (Wu) and demand (Wd):

fs =min
(
fT ,photo,fN,photo

)
(A5)

1Qr = I ·RUE · fs · fc (A6)

1Qw =1Qr
Wu

Wd
(A7)

1Q=

{
1Qr Wu =Wd
1Qw Wu <Wd.

(A8)
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Appendix B: Additional figures

Figure B1. Comparison between the country-specific simulated yields and yield statistics (FAOSTAT, 2020). The dashed line is the 1 : 1 line.
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Figure B2. As Fig. 2 but for a grid point in the United States (44.3◦ N, 90.0◦W).
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Figure B3. As Fig. 2 but for a grid point in China (30.8◦ N, 118.1◦ E).
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Figure B4. Number of months in the growing season (number of months between the earliest sowing date and the latest harvest date).
The growing season starts at the month containing the sowing date and ends with the month containing the latest harvest date among the
1600 model years. We discarded years with harvest date later than 365 days after the sowing date. Some growing seasons are 13 months long
because we include both the entire first month and the entire last month.

Figure B5. Selected climate extreme indicators (Table 1) in the LASSO logistic regression model for each location: dtr (a), frs (b), Rx5day (c)
and TX90p (d).
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Code availability. The code to reproduce the figures is available
from GitHub (https://github.com/jo-vogel/Identify_crop_yield_
drivers, last access: February 2021) (Vogel et al., 2021).

Data availability. The climate and crop simulations are avail-
able from Karin van der Wiel (wiel@knmi.nl) and Tianyi Zhang
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Supplement. The Supplement contains monthly binary maps
showing whether a specific predictor was included to predict crop
failure by the LASSO logistic regression. Maps are provided for
(a) VPD, (b) Tmax and (c) Pr. The extension “Y1” means that the re-
spective month belongs to the first calendar year of the growing sea-
son, while “Y2” means it belongs to the second calendar year of the
growing season. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-151-2021-supplement.
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Chapter 5

Synthesis

5.1 Main findings and conclusions

This thesis presents three articles, which are all connected by temperature and water avail-
ability in the face of climate change and the ecological impacts related to them (see objectives
in section 1.5). While the main aspect of the first study lies on the investigation of changes in
compound weather events, the other two studies focus on the identification of meteorological
drivers of extreme ecological impacts, namely ecosystem productivity and agricultural yields
in the former and latter case.

The first study (see chapter 2) analysed changes in compound warm spells and droughts
in the Mediterranean Basin within the last 40 years. The number of such events increased
significantly within this time period with an annual growth rate of 3.9% and 3.5% for warm
season (extreme in absolute terms) and deseasonalised (extreme relative to their time of oc-
currence during the course of the year) compound events, respectively. Especially in recent
years, a high frequency of deseasonalised events has occurred, shown by the fact that the years
2014–2017 all belong to the six years with the highest number of such events. Temperature
extremes are increasing faster than the temperature mean due to land-atmosphere feedbacks
in the Mediterranean Basin (Orlowsky and Seneviratne, 2012, Lewis et al., 2019). This is
in line with the findings of this study, which showed that the highest increase in compound
events is found for the definition with the highest level of extremeness regarding duration and
magnitude (7-Day and 95th percentile). In many regions, events exceeding this threshold have
occurred exclusively within the last two decades. This illustrates that unprecedented climatic
conditions are arising in the Mediterranean Basin, which are outside the previous climatic vari-
ability. The frequency of warm season and deseasonalised compound warm spells and droughts
between the periods 1979–1998 and 1999–2018 increased for almost the entire Mediterranean
Basin, with few exceptions such as the Atlantic coast of Portugal and Galicia, where decreases
occurred. The frequency between these two time spans has particularly increased in Morocco,
south-eastern Spain and western Turkey. The absolute change in the number of warm season
compound events from 1979 to 2019 was highest in the Western Balkan.
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Both warm spells and SPEI droughts showed a significant increase, whereas no significant
trend was detected for SPI droughts. This indicates that while precipitation amounts remain
unchanged, atmospheric evaporative demand is increasing and as a consequence the Mediter-
ranean is getting drier despite the stagnant rainfalls. The findings from the change vector
analysis showed that the rising number of compound events can primarily be attributed to
an increase in temperature and not to a lack of precipitation. The analysis of deseasonalised
compound warm spells and droughts particularly showed increased frequencies in late spring
and early summer with potentially harmful impacts on ecosystems and agriculture since this
is the main growing season in the Mediterranean Basin. This increase in deseasonalised com-
pound events could be explained by higher evapotranspiration levels caused by the overall
temperature rise. As a consequence, water resources are potentially depleted earlier in the
year, which in turn fortifies the occurrence of warm spells. However, such increases during this
time of the year were not noticeable in the absolute extremes, i.e. the warm season compound
events, which highlights the importance to consider also increases in relative extremes and to
account for the seasonality in the joint assessment of warm spells and droughts. Furthermore,
the differing patterns of SPI and SPEI droughts showed that the choice of the drought index
is essential. The SPI is presumably not an adequate choice to investigate drought impacts
on vegetation, as it does not incorporate evapotranspiration. The SPEI is an improvement in
that regard, however, it only accounts for potential evapotranspiration, not actual evapotran-
spiration. These shortcomings formed the motivation to use satellite-derived measurements
of soil moisture instead of indices such as SPI and SPEI in the ecoclimatological context of
the subsequent ecosystem vulnerability analysis. Nevertheless, it should be noted that remote
sensing products of soil moisture also have several downsides, which are addressed in section
5.2.1 and chapter 3.

The second study (see chapter 3) investigated the seasonal pattern of ecosystem vulner-
ability to temperature and soil moisture anomalies in the Mediterranean Basin. Three main
regimes of ecosystem vulnerability during the course of the year were identified: a) vulner-
ability to hot and dry conditions in late spring to midsummer, b) vulnerability to cold and
dry conditions from the end of summer to mid-autumn and c) vulnerability during cold and
wet conditions from the end of autumn to mid-spring. The general transition from an energy-
limited regime in winter to a soil-moisture-limited one in summer is well reflected in the annual
cycle of ecosystem vulnerability to temperature and soil moisture anomalies depicted in this
study. However, there are regional differences from this pattern. In Turkey, vulnerability to
hot and dry conditions is present from spring to autumn, longer than in any other subregion.
By contrast, the Balkan Peninsula exhibits an energy-limited regime almost year-round and
vulnerability to hot conditions is nearly absent. However, the preceding study on compound
warm spells and droughts presented in chapter 2 showed high increases of compound events in
the Western Balkan, so it is likely that vulnerability to heat will become more prevalent in the
near future. Ecosystems in north-western Africa are soil-moisture-limited almost year-round
according to the results obtained from the ESA CCI satellite-based data set. This diverges
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from the findings received from the ERA5-Land reanalysis product, where vulnerability to
dry conditions is much less pronounced. This suggests that the reanalysis data set is not as
well-suited as the satellite-derived data set to represent ecosystem vulnerability to soil mois-
ture in this region. The patterns of seasonal vulnerability are often similar to one another for
many land cover classes. Grasslands are the only land cover class exhibiting vulnerability to
hot conditions already in April, whereas for half of the land cover classes the onset occurs in
May. This indicates that grasslands might show a faster response time to adverse climatic
conditions compared to other land cover classes.

Not only climate conditions affect ecosystems but also vice versa: an example hereof is the
mechanism of land-atmosphere feedbacks described earlier with temperature increases leading
to higher transpiration rates of the vegetation, which in turn can lead to the onset of compound
warm spells and droughts. In addition, the coincidence of wet conditions and low ecosystem
productivity in winter, which is prevalent in the study on ecosystem vulnerability, depicts a
case where the direction of causal relation is uncertain. While wet conditions can be harmful
to ecosystems, it is also plausible that transpiration is reduced during states of low ecosystem
productivity and therefore less soil moisture is extracted, leading to overall wetter conditions.
In conclusion, this study provides a suitable approach to identify at which stage of the year
ecosystem vulnerability to certain climatic conditions occurs for various land cover classes and
subregions of the Mediterranean Basin.

The third study (see chapter 4) aimed to develop a method for the automated selection
of relevant meteorological drivers of crop failure of winter wheat in the Northern Hemisphere.
This requires the consideration of a variety of different meteorological drivers at different
times of the growing season. It was shown that LASSO logistic regression is a suitable tool
for automated variable selection, which accounts for multicollinearity while at the same time
achieving good model performance. The approach was designed in a way that it is transferable
to other multivariate ecoclimatological settings with a focus on seasonality of the respective
variables. The most important predictors of crop failure include VPD at late stages of the
growing season – i.e. during the reproductive phase – as well as the diurnal temperature
range and the number of frost days. Interestingly, the regional model performance correlates
strongly with the annual mean and standard deviation of wheat crop yield. This suggests
that the discrimination of years with normal and bad yield is more challenging when there is
generally a low interannual variability of crop yields. Good model performance is achieved in
Central Europe and the eastern half of the USA, whereas prediction accuracy is relatively low
in Asia and the western half of the USA.

The selection of some of the climate extreme indicators follow temperature gradients, for
example the number of frost days is less often included in southern grid points. Furthermore,
the number of frost days has a higher importance in eastern European grid points compared to
western European ones, which can potentially be linked to the increasingly continental climate
eastward. It is also notable that the number of warm days with daily maximum temperature
above the 90th percentile is predominantly included as a predictor in southern grid points,
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especially in the United States. This shows that frost generally poses a lower risk in hotter
as well as in maritime climate zones, whereas critical high-temperature thresholds for crop
growth are primarily surpassed in southern regions. However, this is likely to shift due to
climate change and thus critical high temperatures might be reached in temperate regions in
future, where they were previously uncommon.

All three articles highlight the importance of incorporating seasonality for a better under-
standing of year-round dynamics. Studies often only concentrate on a single season, while an
examination of the entire growing season could provide additional insights in many ecological
contexts. The first two studies illustrate that it is crucial to account for the seasonality of
climate extreme events. The third study also accounts for the seasonality of mean climatic
conditions, however, the aspect of seasonality of extremes is not specifically addressed here and
thus further research could complement this by explicitly addressing the timing of extremes.
The two ecoclimatological studies presented in chapter 3 and 4 account for all combinations
of temperature and water availability, whereas the first study presented in chapter 2 has a
more narrow focus on hot and dry extremes solely since these are of particular interest due
to their increasing joint occurrence with climate change (Zscheischler and Seneviratne, 2017).
While the study on crop failure is based exclusively on model data, the vulnerability analysis
applies primarily remote sensing data sets. This illustrates the main difference between both
studies. The study on crop failure encompasses 1600 growing season simulations, whereas only
a fraction of this time span is available for the second study, which covers 21 years. Due to
this data scarcity, only few extremes are present in each of the time series and a much longer
temporal coverage of satellite products would be required to be able to utilise more sophisti-
cated methods such as the LASSO logistic regression, which was applied in the study on crop
failure, at a pixel level. Both studies differentiate between extreme and non-extreme states
based on percentile threshold. While a sensitivity analysis using other percentiles was carried
out in both cases, such a threshold is nevertheless a purely statistical choice and thus its
meaningfulness for real-world applications might be limited in that regard. This is discussed
further in section 5.2.3.

5.2 Challenges and future research

5.2.1 Challenges and opportunities of remote sensing for ecoclimatological
studies

The rapid advancement of remote sensing technologies enables to quantify variables such as
soil moisture and the FAPAR consistently at large spatial scales for multiple decades. Satellite-
based soil moisture and the FAPAR are recognised as important variables for terrestrial earth
observation and are part of the essential climate variables (ECV) according to the Global
Climate Observing System (GCOS) (GCOS-138, 2010, Dorigo et al., 2017, Smets et al., 2019).
Despite facilitating new ways to investigate interactions between climate and the biosphere,
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there are still some constraints regarding the usage of satellite-based soil moisture and the
FAPAR.

The retrieval of soil moisture data is inhibited by frozen soils and dense vegetation (Dorigo
et al., 2017). Furthermore, the optimal hydrologic variable referring to ecosystem vulnerability
is plant available water within the root zone, rather than surface soil moisture (Wagner et al.,
2007). However, observations of this variable are not available for large spatial scales. Satellite-
based soil moisture data is only obtainable for approximately the first centimetres of the top
soil and thus it is not representative of the entire root zone (Kidd and Haas, 2018). While
soil water dynamics of deeper soil layers show dampened and delayed dynamics compared to
the surface layer, there is nevertheless a significant correlation between these layers (Akbar
et al., 2018). Furthermore, Denissen et al. (2020) state that satellite-derived surface soil
moisture is well suited to infer the state of the vegetation and corresponding land-atmosphere
interactions during climate extremes. In addition, the satellite-based ESA CCI soil moisture
data set was used to create a global precipitation product, which was compared to state-of-
the-art precipitation data sets and showed relatively good performance (Ciabatta et al., 2018).
In conclusion, remote sensing has enabled large-scale long-term drought monitoring and thus
contributed tremendously to the progress in this field (West et al., 2019).

Within the last decade, Cosmic-Ray Neutron Sensing (CRNS) has been established as a
complementary technique to retrieve soil moisture (Andreasen et al., 2017). It operates at
a scale of several hectares and has a penetration depth of tens of centimetres (Desilets and
Zreda, 2013, Köhli et al., 2015), which renders it useful for assessing root-zone soil moisture.
It is therefore a promising tool for agricultural applications and can also be used for the
validation of soil moisture products from satellites or hydrological models (Andreasen et al.,
2017, Stevanato et al., 2019).

Before the emergence of biophysical variables such as the FAPAR, studies on vegetation
dynamics had to rely on vegetation indices such as the normalised difference vegetation index
(NDVI) (Gobron et al., 2010). The NDVI serves as a proxy for net primary productivity
and is commonly used for ecological applications (Kerr and Ostrovsky, 2003, Pettorelli, 2013).
It can be calculated for sensors with only few spectral bands such as the Advanced Very-
High-Resolution Radiometer (AVHRR) and can therefore be obtained for comparably long
time spans (Scholze et al., 2017). However, the NDVI has certain limitations, e.g. there are
potential biases in sparse vegetation (the signal gets impaired due to noise from soil reflectance)
and dense vegetation canopies (the NDVI value saturates under such conditions) (Asrar et al.,
1984, Huete, 1988, Pettorelli et al., 2005).

Biophysical variables such as the FAPAR are alternatives to overcome the limitations of the
NDVI. The FAPAR is defined as “the fraction of the photosynthetically active radiation (i.e.
incoming solar radiation in the spectral region 0.4-–0.7 µm) that is absorbed by the vegetation
canopy” (Scholze et al., 2017). Nevertheless, there is not always a linear relationship between
the FAPAR and drought conditions. Anisohydric grass species only loosely control the closure
of their stomata during droughts and tend to dry out, turning from green to yellow colour and
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thus there is a direct relation between drought severity and the FAPAR. However, isohydric
tree species might close their stomata, which prevents water loss but also CO2 assimilation.
This way, absorbed radiation is directly dissipated again, leading to a reduced photosynthetic
productivity, while at the same time changes in the FAPAR are comparably small (Reichstein
et al., 2007).

Vegetation optical depth (VOD) and sun-induced fluorescence (SIF) provide recent promis-
ing alternatives for the observation of vegetation activity from space (Sippel et al., 2018b,
Crocetti et al., 2020). VOD measures the degree of attenuation of microwave radiation evoked
by vegetation (Jackson and Schmugge, 1991, Moesinger et al., 2020). It depends on vegeta-
tion density, biomass and water content and is related to plant productivity (Owe et al., 2008,
Konings et al., 2019, Teubner et al., 2019). The comparatively short life span of individual
microwave sensors is a challenge for the long-term investigation of VOD dynamics. The cre-
ation of a merged product incorporating input from several sensors is demanding, but such
products have become publicly available in recent years (Moesinger et al., 2020). SIF is de-
fined as “an electromagnetic signal emitted as a two-peak spectrum between 650 and 850 nm
by the chlorophyll α of green plants under solar radiation” (Scholze et al., 2017). Its exact
relationship to gross primary productivity is still unclear and data quality is not satisfying so
far (Gu et al., 2020). Moreover, long-term time series of SIF are not available yet and there is
no operational satellite designed for its measurement currently (Duveiller et al., 2020). How-
ever, the European Space Agency plans to launch the Fluorescence Explorer in 2024, which is
designed for this purpose (Moreno, 2021).

5.2.2 Methodological tools in the context of ecoclimatological studies

The methods used in the first and second study are focussing on the simultaneous occurrence of
events within several time series and can be denominated as event coincidence analyses (Donges
et al., 2016). An event coincidence analysis is a common statistical approach for investigating
compound events (Raymond et al., 2020). In recent years the application of copulas has also
become more popular for studying compound events e.g. in the context of agrometeorological
studies (Ribeiro et al., 2019, Raymond et al., 2020). Besides such statistical approaches,
process-based models are frequently applied in such contexts. Such models have the advantage
that they possess physical meaning, but they usually require a large amount of input data
(Tilloy et al., 2019). Machine learning tools such as the LASSO regression (Tibshirani, 1996)
presented in the third article in this thesis are promising for ecoclimatological studies. While
they usually provide high performance, limited interpretability often is a major disadvantage
of machine learning approaches (Reichstein et al., 2019, Roscher et al., 2020). Although
interpretability of machine learning has often been neglected (Mateo-Sanchis et al., 2021),
there is an increasing number of ways how to enhance model interpretability. By now there
are various crop science studies applying machine learning to determine variable importance
of environmental drivers and gain an understanding of their relationship to crop yields, e.g.
using accumulated local effects, Shapley additive explanations, partial dependence and pseudo-
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sample plots (Sanz et al., 2018, Vogel et al., 2019, Peichl et al., 2021, Zhu et al., 2021, Lischeid
et al., 2022).

The risk of simultaneous crop failure in several breadbasket regions will increase dispro-
portionately due to climate change and thus pose a threat to global food security (Gaupp
et al., 2019, Kornhuber et al., 2020). Investigation of such spatial compounds using a set-up
similar to the one presented in the third study in this thesis is therefore a relevant field of
future research (Bevacqua et al., 2021).

5.2.3 Choice of appropriate time scales and thresholds for extreme impacts

The definition of an adequate time scale for attributing meteorological drivers to ecological
impacts posed a main challenge in both ecoclimatological studies presented in the chapters 3
and 4. The choice for the study on crop failure is more straightforward compared to the study
on ecosystem vulnerability: the relevant time frame was given by the length of the growing
season of winter wheat for each respective grid point and the impact is represented by a
single variable for each year, i.e. annual crop yield. However, the inclusion of several months
preceding the beginning of the growing season might arguably also be relevant, since e.g. VPD
and precipitation before the beginning of the growing season affect soil moisture contents in
the following months. In the case of the vulnerability analysis, the entire course of the year
is analysed for each pixel, rather than a fixed growing season and the impact variable – the
FAPAR, a proxy for ecosystem productivity – is investigated independently for each of the
12 months of the year. This adds further complexity to the choice of an adequate time scale.
In addition, droughts usually operate on longer time scales than heat waves, which makes it
challenging to find an optimal time scale (Miralles et al., 2019). Finally, it was decided to link
ecosystem productivity to climatic conditions in the same and the two preceding months, a
time scale commonly used in the scientific literature.

Nevertheless, clear guidelines on how to define an optimal time span for the attribution of
climatic impacts on ecosystems are lacking and many scientific studies do not provide a sound
argument for the choice of their respective time span. Moreover, the choice of a monthly
time step is convenient and widely used but nevertheless debatable. Plants exhibit varying
sensitivity to climatic conditions depending on the phenological stage of their growing cycle
(Seyfert, 1960). Due to the coarseness of the temporal scale, e.g. the start of the growing
season might not be well-aligned with a calendar month (Wu et al., 2021). Furthermore, some
important growth stages such as anthesis and grain-filling (Prasad and Djanaguiraman, 2014)
might be too short to be captured well using a monthly time scale (Lischeid et al., 2022).
Accounting for the time intervals of the actual phenophases instead of using a monthly time
step would likely improve the explanatory power of ecoclimatological studies. However, this
requires precise information on crop phenology at a given location. Based on the literature
examined in the course of this thesis, the consideration of compound events and the importance
of seasonal timing of events during critical growth stages appears to be well recognised in
agricultural science, whereas these topics seem to be not as broadly investigated in other
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ecological contexts yet. When studying ecological impacts of climate change, many problems
require multivariate solutions. Furthermore, accounting for seasonal differences and choosing
an appropriate time scale is crucial. Both approaches presented in chapters 3 and 4 illustrate
ways to account for multiple climatic drivers and their seasonal timing. In addition, they are
flexible and can easily be transferred to other ecoclimatological settings.

The definition of critical thresholds of ecosystem responses is challenging. Scientific stud-
ies are often restricted to case studies focussing on single outstanding events or they apply
a definition of extremes using either percentiles or absolute values. However, the universal
application of an absolute threshold to a multitude of ecosystems might not be equally repre-
sentative for all of them (Flach et al., 2021). On the other hand, a percentile-based threshold
is arbitrary to a degree and does not have any direct physical interpretation (Horton et al.,
2016). Nonetheless, the vast majority of studies uses percentile-based thresholds (van Oijen
et al., 2013, Ahlström et al., 2015, Baumbach et al., 2017, Nicolai-Shaw et al., 2017, von
Buttlar et al., 2018, Sutanto et al., 2020). Percentile-based thresholds are presumably widely
used because alternative, ecologically meaningful thresholds are often not readily obtainable.
For example, heat stress levels leading to plant mortality are often not well quantified (Niu
et al., 2014). An exception are major staple crops such as maize, wheat and soybean, for
which thresholds for heat, frost and drought stress are well-known (Porter and Gawith, 1999,
Luo, 2011, Hatfield and Prueger, 2015, Horton et al., 2016, Strer et al., 2018). Both stud-
ies in chapters 3 and 4 applied percentile-based thresholds and might benefit from alternative
thresholds. Another approach is presented by Liu et al. (2013), who developed a method based
on Student’s t-test for the detection of significant vegetation extremes events. Furthermore,
it is possible to use a setting for the assessment of ecosystem vulnerability, which does not
require the definition of a threshold for extremeness. For example, Simelton et al. (2009) use
an approach for detecting regions of crop-drought vulnerability, which is based on the ratio of
a crop failure index and a drought index. These two indices are based on harvest and precip-
itation anomalies, respectively. Another example is depicted in the assessment of vegetation
sensitivity to climatic drivers by Wu et al. (2021), who link vegetation index anomalies to air
temperature, solar radiation and soil moisture using the partial correlation coefficient.

Due to the complexity of the concept of drought, a large variety of drought indices exists
(Heim, 2002, Svoboda and Fuchs, 2016). A general agreement on which drought index is most
preferential for which kind of impact is missing (Bachmair et al., 2016). Thresholds for drought
definition are usually arbitrary and lack a sound theoretical or empirical basis. Furthermore,
their choice also depends on the drought impact under investigation (Bachmair et al., 2016).
There is a need for a paradigm shift from the focus on extremeness of hazards to the extreme-
ness of impacts (see also section 1.3.4 in the introduction). Definition of droughts only rarely
consider their impact, although the impacts are usually the subject of interest (Wilhite and
Glantz, 1985, Tramblay et al., 2020). Assessing drought severity using solely thresholds de-
rived from indices like the SPI falls short of adequately assessing drought impacts. Instead, it
is recommendable to design thresholds that are meaningful for the respective sector of interest
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e.g. “agro-ecological drought indices” to evaluate the impact of droughts across various agroe-
cosystems in the Mediterranean Basin (Tramblay et al., 2020). Such indices should account for
plant-available soil water, plant functional responses and plant density as well as species com-
position (Tramblay et al., 2020). However, impacts of droughts are considerably more difficult
to identify in comparison to instantaneous events (Vicente-Serrano and Beguería-Portugués,
2003, Hayes et al., 2011). There is a need for drought impact data bases (Tramblay et al.,
2020), but long-term information on impacts is currently still lacking and to date, a standard
framework for the assessment of drought impacts and standards for different sectors are still
missing (Kreibich et al., 2019). One step towards a systematic assessment of drought impacts
is the European Drought Impact Inventory, which also includes ecological impacts (Stahl et al.,
2016). Nevertheless, the usage of such inventories for attribution of drought impacts to cli-
matic drivers remains difficult. For example, increasing trends in drought impacts might also
be attributed to rising awareness and easier and faster distribution of information through the
internet, creating a reporting bias over time (Stahl et al., 2016).

The results of the first study in this thesis stress the importance to view drought indices
in the context of their impacts. The frequency of SPI droughts has not significantly decreased
over the last 40 years in the Mediterranean Basin, whereas SPEI droughts showed a significant
decrease (see chapter 2). This indicates that the region has become drier due to increasing
atmospheric evaporative demand, despite negligible changes in precipitation. Thus, the SPEI
seems a more adequate choice for assessing ecosystem impacts in this setting. This illustrates
that it is crucial to identify a suitable drought index for the problem at hand. While the
usage of indices such as the SPI and SPEI is typical at large spatial scales, the emergence of
satellite-based soil moisture products with long-term coverage, which are thoroughly validated
has given new opportunities to investigate droughts, which are especially promising for the
monitoring of ecosystem states.
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Code availability

The code corresponding to the article in chapter 2 is available from https://github.com/

jo-vogel/compound_events_mediterranean (Vogel, 2021b).
The code corresponding to the article in chapter 3 is available from https://github.com/

jo-vogel/ecosystem_vulnerability (Vogel, 2021a).
The code corresponding to the article in chapter 4 is available from https://github.com/

jo-vogel/Identify_crop_yield_drivers (Vogel et al., 2021).

Software and packages

The work was carried out using R version 3.6 (R Core Team, 2020), Python version 3.7 (van
Rossum and Drake, 2009) and Climate Data Operators (CDO) version 1.9 (Schulzweida, 2019).
The R package SPEI was used for calculating the SPI and SPEI (Beguería and Vicente-Serrano,
2017) and the R package RStoolbox was used to perform the change vector analysis (Leutner
et al., 2019) for the article in chapter 2. The R packages glmnet, bestglm, and randomForest

were applied to perform the analysis for the article in chapter 4 using a LASSO regression
(Friedman et al., 2010), a generalized linear model (McLeod et al., 2020) and a random forest
approach (Breiman, 2001, Liaw and Wiener, 2002).

Data availability

Table A1 provides an overview of all data sets, which were used in this thesis.
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https://github.com/jo-vogel/compound_events_mediterranean
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https://github.com/jo-vogel/ecosystem_vulnerability
https://github.com/jo-vogel/Identify_crop_yield_drivers
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