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Abstract In this paper, at first we describe a graph representing all 

the weak-order extensions of a partially ordered set and an algorithm 

generating them. Then we present a graph representing all of the min- 

imal weak-order extensions of a partially ordered set, and implying a 

generation algorithm. Finally, we prove that the number of weak-order 

extensions of a partially ordered set is a comparability invariant, whereas 

the number of minimal weak-order extensions of a partially ordered set 

is not a comparability invariant. 

1 Introduction and Motivations 

In this paper, we are interested in the algorithmic and structural study of exten- 

sions of a partially ordered set, orders for short. The extensions are restricted to 

a certain class of orders. A lot of previous works deals with studies of restricted 

extensions classes: 

— The linear extensions (extensions which are total orders) of an order are 
in one-to-one correspondence with the maximal chains of the lattice of the 

antichains of the order [2]. 
— The minimal interval extensions of an order are in one-to-one correspondence 

with the maximal chains of the lattices of the maximal antichains of the order 

[8]. 

— The MacNeille completion of an order studied in [3, 9] is an extension of an 
order belonging to the class of lattices. 

— Series-parallel orders are used as extensions of an order to resolve scheduling 

problems [11]. 

Among these classes, exist particular extensions which are the extensions of 

an order obtained by only adding some comparabilities in the order, as the linear 

extensions or the minimal interval extensions. We are interested in these exten- 

sions, especially the weak-order extensions of an order. Informally, a weak-order 

is an order composed of a set of complete bipartite orders one above an other. 

Weak-order extensions are suited for the scheduling of tasks [5, 6]: consider a 
partial order of tasks, a weak-order extension of this order is a scheduling of the 

* This work was supported by the PROCOPE Program. To appear in WG’97.
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tasks over processes or machine in the time. In this way, Lamport’s work on 

time-stamping in [10] can be seen as on-line computing of a particular weak-order 

extension of the causal order associated to a distributed execution. 

In Sect. 3 we present a one-to-one correspondence between all the weak-order 

extensions of an order and all the paths from the unique source to the unique 

sink of a certain graph. This result is related to the similar characterization of 

linear and minimal interval extensions cited above. We use this characterization 

to develop an efficient generation algorithm. 

Sect. 4 deals with the minimal weak-order extensions of an order. We first 

present a one-to-one correspondence between all the minimal weak-order exten- 

sions of an order and all the paths from any source to any sink of a particular 

graph. This graph is not a suborder of the above graph since the minimal weak- 

order extensions of an order are not directly implied from the weak-order exten- 

sions as we illustrate with an example. We also present an efficient generation 

algorithm implied from this graph. 

The notion of comparability invariance is fundamental in the study of orders 

[4, 7, 8]. It is based on the notion of a comparability graph associated to any 
order. A comparability graph of an order is the undirected graph obtained by 

deleting the direction on the edges of the order. A parameter of an order is 

a comparability invariant if it has the same value on any other order having 

the same comparability graph. Almost all classical parameters on orders are 

comparability invariants. For example, the number of linear extensions, the 

dimension, the jump number, the number of the minimal interval extensions 

are comparability invariants. On the other hand, the number of the interval 

extensions of an order is not a comparability invariant. 

Surprisingly, the inverse statement than for the interval extensions holds for 

the weak-order extensions: the number of weak-order extensions is a compara- 

bility invariant whereas the number of minimal weak-order extensions is not a 

comparability invariant, as we show in Sect. 5. 

2 Definitions and Notations 

A partially ordered set P = (X,<p) is a reflexive, antisymmetric and transitive 

binary relation on a se X. Instead of partially ordered set, we often talk about 

an order. We represent an order by a diagram (Hasse diagram) where x <p y if 
and only if there is a sequence of connected lines moving upwards from x to y. 

Two distinct elements x and y are said to be comparable if x <p y or y <p x. 

Otherwise, they are said incomparable, denoted by x ||p y. We say that y covers 
x, x ~<p y, iff x <p y and there is no z such that x <pz<py. 

We define the following sets for P, for an element x of P, and for a subset A
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of P: 

Max(P 

Min(P 

)= {x eX | for ally €X,y pp x} 

)={xeX | for ally €X,x <p y} 

Ideal(A) = {y € X | y <p x, for some x € A} 

Pred(x) = {y € X | y <p x} 

) 

) 
) 

Pred(A) = Uses Pred(x) 

Suce(x) = {y € X | y >p x} 

Succ(A) = Uses Succ(x) 

A subset A of X is called an antichain (resp. chain) of P if it contains only 
pairwise incomparable (resp. comparable) elements. We denote by Ap the set of 

all antichains of P. A subset A of X is a maximal antichain (resp. chain) if it is 
maximal under inclusion. 

A(P) is the order on Ap defined as follows: A <,(p) B iff for all x in A, there is 
y in B such that x <p y. It is well known that A(P) equipped with that order is a 
distributive lattice. By AM(P), we denote the suborder of A(P) restricted to the 
maximal antichains of P. AM(P) is a lattice, but in general it is not distributive. 

The ordering on P is a weak-order iff it does not contain the order 2@ 1 as 

a suborder. Here, 2@ 1 denotes the union of a singleton and a chain composed 

of two elements. An other characterization of a weak-order P is that AM(P) is 
a total order such that for all A #4 B in AM(P), ANB = 9. This allows us to 
represent a weak-order by a sequence of antichains Ao, ... ,An with Aj <,(p) Ai41- 

A directed graph G = (X,E) is given by a set X of elements or nodes, and a 
subset E C X x X, the arcs. A subset x1,... ,X%, of X such that (x;,xj41) € E for 

i< nis called a path from x; to x,. An node x € X such that for all y € X there 

is no arc (x,y) is called a sink. If there is no arc (y, x), x is called a source. 

3 Weak-Order Extensions of an Order 

In this section, we define a graph which represents all weak-orders extensions 

of an order P. It gives rise to a one-to-one correspondence between certain 

paths and all the weak-orders extensions of the P. From this graph we define an 

efficient generation algorithm. 

An order Q = (X, <Q) is an extension of an order P = (X, <p) if and only if 

for all x and y in X, x <p y implies x <g y. Then we say that P is a reduction of 

Q. If P is not a weak-order, it clearly admits weak-order extensions. 

Definition 3.1. Let P = (X,<p) be an order. We define the directed graph 

WE(P) = (Ap, Ewe) as follows. For A # B two antichains of P, (A,B) € Eye iff 
the following two conditions are satisfied: 

A C Ideal(B) (1) 
B\ A = Ideal(B) \ Ideal(A). (2)
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The binary relation induced by Eye is an anti-reflexive and antisymmetric 

relation. So, the reflexo-transitive closure of WE(P) is A(P). 
Since A(P) admits a minimal element which is @ and a maximal element 

which is Max(P), the same holds for WE(P) which admits a unique source and 
a unique sink. 

a ¢ 

d 

d 
c 

b 

a a b 

5 6 

c d Cc 

d 

a 

a 
b 

b 

10 11 

  

    
  

Figure 1. Weak-Order Extensions of an Order 

Let P be the order in (a) in Fig. 1. The directed graph WE(P) is given in 

(b), with arcs labeled with the difference between the two corresponding vertices 

(direction of the arcs is from bottom to top). The eleven weak-order extensions 
of P are represented in (c). All these orders are represented by their Hasse 

diagram. We see that there is a correspondence between the labeled arcs of 

WE(P) and the weak-order extensions of P, and that WE(P) admits a unique 
source, and a unique sink. This correspondence is such that WE(P) represents 

all the weak-orders extensions of P as follows: 

Theorem 3.2. There is a one-to-one correspondence between all the paths of 

WE(P) from the unique source to the unique sink and all the weak-orders exten- 

sions of P. 

For a sketch of a proof let us just describe the mapping. Let Aop,... ,An be a path 

of WE(P) from the source to the sink. Then A; \Ao,... ,A;\Ai-1,--- ;An \An—1 

are the maximal antichains of a weak-order extension of P.
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The definition of WE(P) can easily be modified as follows: For A 4 B two 
antichains of P, (A,B) € Eye iff the following two conditions are satisfied: 

A C Ideal(B) (3) 
B\ AC Min(P \ Ideal(A)) (4) 

This new definition gives us a way to compute all the weak-orders extensions 

of an order: Consider that we have Min(P \ Ideal(A;)), for a path Ao,... ,An 
of WE(P) from the source to the sink. Then we compute Bj,; = Aj41 \ A; by 

choosing a subset of this set, and 

Min (P \ Ideal (Aj41)) = Min (P \ (Ideal (A;) U Bi41)). (5) 

At the beginning, Ag = @ and Min(P \ Ideal(0)) = Min(P). So we may conclude 
that 

Aisi = Max (Ideal (A;) U Bi+1). (6) 

Algorithm 1: Weak-Order Extensions of an Order 

Input: The arrays Succ and Pred for an order P reduced transitively 

Output: The weak-orders extensions of P and the number of weak-order 

extensions of P 

begin 

let L be an inverse linear extension of P; 

for x in L such that x not visited do 

y=x; 
while |Pred(y)| = 1 and |Succ(Pred(y))| = 1 do 

y = Pred(y); 
EndChain(y) = x; 

mark y visited; 

nbext = Find1(Min(P)); 
print “there are” nbext “weak-order extensions” ; 

end 

Algorithm 1 computes all the weak-orders extensions of an order by using 

the recursive function Find1 that is presented in Algorithm 2. It distinguishes 

the special case that Min(P \ Ideal(A;)) contains only one element. This allows 
to amortize the complexity as it is done in the following theorem. Here m is 

the number of comparabilities of the transitive reduction of P, ny is the number 

of weak-order extensions of P, and A is the maximum number of immediate 

successors of the elements of P. 

Theorem 3.3. Algorithm 1 computes all the weak-order extensions of an order 

P, and requires O(m) space and O(n,A +m) time.
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The main idea of the proof is to amortize the work that is done for an individual 

extension by distributing the cost of a call to Find1 to the subsequent recursive 

calls that are issued by this call. 

Algorithm 2: The Function Find1 

Input: X a subset 

Output: The weak-orders extensions of P\(Ideal(X)UX) and the number 
of weak-order extensions of P \ (Ideal(X) UX) 

begin 

nbext = 0; 

if X = @ then 

print “End of a weak-order extension” ; 

| return 1; 

if |X| = 1 then 
if EndChain(X) exist then 

print “X — EndChain(x)”; 
| X = Succ(EndChain(X)); 

else 

print “X”; 

X = Succ(X); 

foreach BC X,B #0 do 

print “B”; 

X = Min((X \ B) U Succ(B)); 
nbext+ = Find1(Xx); 

return nbext; 

end 

It is also possible to obtain a better time complexity by increasing the space 

complexity if we explicitly compute WE(P). 
Algorithm 1 entirely computes all the weak-order extensions of P, but these 

extensions have common parts which are computed several times. With the 

knowledge of parts of these extensions already computed during the execution 

of the algorithm, we can avoid this. If we consider WE(P), at each step i we 
can compute the corresponding node A; of WE(P) which is Max(Ideal(A;) U B;). 
If this node already exists in WE(P) then the corresponding part of the path is 
already computed and vice-versa. 

Algorithm 3 describes the function Find2 which is a modified version of 

Find1 that enables us to compute WE(P) in addition. Initially, it is called as 
Find2(Min(P),@). Let n’ be the number of elements of WE(P), m’ be the number 
of comparabilities of WE(P) transitively reduced, and w be the width of P, that 
is the maximum size of an antichain of P. Then we have: 

Theorem 3.4. Algorithm 3 computes WE(P) and uses a space of O(wn' + m’)
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Algorithm 3: The Function Find2 

Input: Y a subset, A an antichain of P 

Output: The arrays Succ for WE(P) 

begin 

if Y =@then 

[_ return ; 

foreach BC Y,B#0do 

A’ = Max(Ideal(A) U B); 
Succ(A) = Succ(A) UA’; 
if A’ not visited then 

Y' = Min((Y \ B) U Succ(B)); 
| Find2(Y’,A’); 

return; 

end 

  

      and a time of O(m'wlogn). 

Then, to compute all the weak-order extensions of P, we have to visit all the 

paths of WE(P) from the source to the sink. So, we have: 

Corollary 3.5. By Algorithm 3, it is possible to compute all the weak-order 

extensions of an order P in O(m+m'wlogn+ny,) time and O(wn' +m’) space. 

4 Minimal Weak-Order Extensions of an Order 

Now, we characterize the minimal weak-order extensions of an order. Then we 

present a one-to-one correspondence between all the minimal weak-order exten- 

sions of an order and certain paths of a graph and we use this correspondence 

to develop an efficient generation algorithm. 

A weak-order extension Q of P is a minimal weak-order extension of P if there 

is no weak-order extension Q’ of P such that Q is an extension of Q'. Informally, 

a minimal weak-order extension of P is a weak-order extension of P which is as 

close as possible to P. 

The main part of Algorithms 1 and 3 was to choose a subset B of Y, and to 

delete this subset from Y. In this way, all the weak-orders extensions of an order 

have been computed. We easily could add conditions to this choice, as e.g the 

size of the chosen subset. But if we want all the minimal weak-order extensions of 

P, there are no obvious local conditions that only involve the subset B chosen in 

Y at each step. The way to define and to compute them is not directly inherited 

from the general case. 

We have the following characterization of a minimal weak-order extension of 

an order:
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Lemma 4.1. Let P = (X, <p) be an order. Let Q = Ao,... ,An be a weak-order 

extension of P. The two following properties are equivalent: 

1. Q is a minimal weak-order extension of P. 

2. For all A; such that i <n, there are x in Aj, y in Aj4, such that x <p y. 
  

      

In the same way as for the weak-order extensions of P, our goal is now to 

define a directed graph such that there is a one-to-one correspondence between 

certain paths of this graph and the minimal weak-order extensions of P. Suppose 

we choose WE(P) restricted to the paths from the source to the sink such that 

the corresponding weak-order extension verify Lemma 4.1. Let us demonstrate 

by Fig. 2 that this graph contains paths that do not correspond to a minimal 
weak-order extension of P. 

  

  

    
  

Figure 2. Creation of Wrong Paths 

Let P be the order in (a) and WE(P) in (b) of Fig. 2. The minimal weak- 
order extensions of P are represented in (c), with covering relations as required 

for Lemma 4.1 in bold. The corresponding paths of WE(P) are given in bold, 

too. Indeed the subgraph induced by these paths contains 5 paths from 9 to ef 

instead of 4: ab,c,d,ef does not correspond to a minimal weak-order extension 

of P because 

{c,d} \ {b,c} U {b,c} \ {a,b} = {c,d} (7)
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is an antichain of P. 

To avoid this, we use the linegraph transformation: We replace a node of 

WE(P) belonging to a valid path by an arc, and an arc of WE(P) belonging to 
a valid path by a node associated with one of the extremities of this arc. Then 

we differentiate nodes with the same label. 

Let us now give a formal definition of this directed graph representing the 

minimal weak-order extensions of an order: 

Definition 4.2. Let P = (X,<p) be an order. We define WE,,(P) = (X,€), 
with X the set of pairs of antichains of P, as follows. For Ao,... ,An a path of 

WE(P) from the source to the sink, and B; = A; \ Aj_1 with 0 <i<n such that 

B;U Bj; is not an antichain of P include the following objects into WE,,: 

(Aj, B;) Ex for allO<i<n 

((Aj, Bi) ; (Ais1, Bis1)) € € for alliwithO<i<n 

  

  

    Figure 3. Minimal Weak-Order Extensions of an Order 

Let P be the order in (a) of Fig. 2; the directed graph WE,,(P) for P is shown 
in Fig. 3; the corresponding minimal weak-order extensions are given in (c) of 
Fig. 2. 

This graph represents the minimal weak-order extensions of an order as fol- 

lows: 

Lemma 4.3. There is a one-to-one mapping between the paths of WE,,(P) from 

any source to any sink and the minimal weak-orders extensions of P. 
  

      

Now, our goal is to compute all the minimal weak-order extensions of P. Con- 

sider the function Find1 in Algorithm 2 and the function Find2 in Algorithm 3.
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The principal step in these functions is to choose a subset B in Y, Y being the 

current set of minimal elements. Suppose the last set that was chosen is called 

B’, then computing a minimal weak-order extension of P consists in choosing a 

subset Bin Y with respect to Lemma 4.1 which is equivalent to the two following 

conditions: 

C1: There are x’ € B’ and x € B with x’ <px. 

C2: The deletion of B introduces a new minimal element x”. 

These conditions are clearly necessary. They are also sufficient since there al- 

ways is a trivial choice possible in each step: choosing the whole set of minimal 

elements. 

Let New = Min(Succ(Y)). Then x” is in New and we may choose a new 
subset B of Y such that 

Z = Min((Y \ B) U Succ(B)) MN New F 0. (8) 

Then, to verify condition C1, we have to choose a subset B of Y such that B 

contains x as above. This can easily be done with a set Mark containing all 

these x added in Y in the previous recursive call. In this way, we have to choose 

B such that 

BN Mark # 0. (9) 

So, conditions C1 and C2 are detailed by Eq. 9 and 8, resp. 

Every valid pair (B,Z) contains a pair (i,j) where i € Mark B and j € Z. 

Then if we assume that Mark and New are totally ordered, we can associate to 

each such pair (that is each B) the lexicographically minimal such pair (i, /). 

Using that fact, it is possible to avoid the generation of invalid subsets of Y 

and to enumerate all valid B in time asymptotically smaller than n* times the 

number of valid B. A more subtle analysis leads to a better bound but has to 

be omitted for the sake of brevity. We can state the following result. 

Proposition 4.4. It is possible to compute all the minimal weak-order exten- 

sions of an order with an amortized complexity which requires O(m) space and 

O(nwmn?A + m) time. 
  

    
  

In a second approach we compute WE,,,(P) in order to avoid computing parts 
of minimal extensions several times as in Algorithm 3 of Sect. 3, and we compute 

all the minimal weak-orders extensions with a visit of WE;,(P). So, we have the 
following complexity, where n” is the number of elements of WE,,(P) and m" is 
the number of comparabilities of the transitive reduction of WE,,(P): 

Proposition 4.5. It is possible to compute all the minimal weak-orders exten- 

sions of an order in space O(wn" +m") and in time O(m"w?A + nym). 
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5 Comparability Invariants 

Here, we will prove that the number ny of weak-order extensions and the number 

Nwm Of minimal weak-order extensions behave quite differently with respect to 

the property of being a comparability invariant. Indeed, whereas the first is such 

an invariant, the second is not, as will be shown by an example. 

The comparability graph of an order P is the undirected graph obtained from 

P -seen as a directed graph— by deleting the direction of the arcs. A parameter 

of an order is comparability invariant if whenever two orders P and Q have 

isomorphic comparability graphs, the value of the parameter is the same for P 

and Q. 

The reversed order P’ = (X,<pa) of P is defined by x <pa y iff y <p x. 

Definition 5.1 (Substitution). Let P = (X,<p) and M = (Y,<w) be two 
orders such that XNY = @. Let a be in X. Pi’ = (X \ {a} UY, <p), the 
substitution of a by Q, is defined by x <pw y iff one of the following cases holds: 

x,yEX and x<py 

x,y€Y and x<my 

xE€X,yeY and x<pa 

yEeX,xe€Y and a<py. 

Below we will use the following theorem: 

Theorem 5.2. /7] A parameter a of finite orders is a comparability invariant 

iff for every pair of finite orders P and M, W = M%, and every element a of P, 

a (Py') = a (Pi') (10) 
Let us first demonstrate that ny, is not a comparability invariant with the 

counter example represented in Fig. 4. Let P and M be the orders in (a) and (b) 
respectively and W = M¢. Then WEy, (Py’) is represented in (c) and WEm (P,’) 

in (d). Clearly, Pl!’ admits seven minimal weak-order extensions, and Pj’ eleven. 

Theorem 5.3. n, is a comparability invariant. 

Proof. We prove this by giving a one-to-one correspondence between the weak- 

order extensions of P” and the weak-order extensions of P”, for any P, M, 

W=M?% anda€eP. 

Let Q =Cp,... ,Cm be a weak-order extension of P”. Clearly, the suborder 

of Q induced by the elements of P is a weak-order extension of P \ {a}, and the 
suborder of Q induced by the elements of M is a weak-order extension of M. Let 

QOp = Bo,... , By and Qy = Ao,... ,An be these two suborders respectively. We 

define the mapping turny = QO! = Cj,...,C,, for the weak-order extensions of 
PY such that for each j < m: 

Cc, _ io \Aj) UAn-; for some i <n such that Aj CC; (11) 

Cj if there is no such i. 
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(bed,d) 

  

  

(bcef,bc) (beef, bef) (beef, bef) 

     
(bcef,bcef) (bcef,bce) (bcef,ef) (bcef,cef) 

(aef,aef) (ae,ae) 

(bed, bcd) (bd|bd) 

(ad,ad) (d,d) (a,a) 

(c) 

(bcd,bd) (bcd,cd) (bed,be\bed,bed) 

(ad,dd) 

(af,af) (ef,ef) (aef,aef) 

(d) 

Figure 4. A Counter Example 
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