
Data and Container Placement in Scalable

Data Analytics Platforms

VORGELEGT VON

M.SC. THOMAS RENNER

GEB. IN QUAKENBRÜCK

VON DER FAKULTÄT IV - ELEKTROTECHNIK UND INFORMATIK

DER TECHNISCHEN UNIVERSITÄT BERLIN

ZUR ERLANGUNG DES AKADEMISCHEN GRADES

DOKTOR DER INGENIEURWISSENSCHAFTEN

-DR. ING. -

GENEHMIGTE DISSERTATION

PROMOTIONSAUSSCHLUSS:

VORSITZENDER: Prof. Dr. David Bermbach

GUTACHTER: Prof. Dr. Odej Kao

GUTACHTERIN: Prof. Dr. Ivona Brandić

GUTACHTER: Prof. Dr. Tilmann Rabl

TAG DER WISSENSCHAFTLICHTEN AUSSPRACHE: 30. OKTOBER 2018

BERLIN 2018

Acknowledgments

Writing a thesis requires support from various sides. I want to take the opportunity

to thank some people who have supported me during that time.

First and foremost, I would like to thank my advisor Odej Kao for his ideas,

inspiration, and support since my master’s thesis. He provided me a great working

environment in his research group over the last years and the opportunities to present

my work at international conferences. I also would like to express my appreciation

to Ivona Brandić and Tilmann Rabl for their helpful comments and agreeing to

review this thesis.

I am thankful to my colleagues and former colleagues at TU Berlin. Especially to

Lauritz Thamsen and Andreas Kunft for reading this thesis and giving me valuable

input and suggestions. More importantly, we became good friends over the last

years, spending a lot of time together in and outside the office.

Furthermore, I would also like to give credit to the former and current members

of the CIT team. Especially to Andreas Kliem, Marc Körner, and Alexander Stanik

who helped me with my first research efforts. I would also like to thank the students

who worked with me during the last years, especially Johannes Müller, Adrian

Warszewski, Julian Böhm, and Marius Meldau.

Thanks to Jana Bechstein for proofreading this thesis, helping me with so many

administrative issues, and discussions on handling plants and growing vegetables.

Finally, I would like to say thank you to all my family and friends who knew

when to ask about my progress and when to distract and support me. Especially, I

want to thank Lilian Heim for her patience and support during the last month.

Abstract

Distributed dataflow systems process large volume of data in parallel on multiple

machines. In production, multiple dataflow applications are scheduled for execution

in virtual containers on a per-job basis. Furthermore, they access datasets parti-

tioned into datablocks across the cluster machines’ disks. Runtime performance

is important for many of these jobs, as their users expect fast results. However,

optimizing performance is difficult, because dataflow jobs are very diverse and used

in a wide variety of domains such as relational processing, machine learning, and

graph processing. Container and datablock placement decisions impact a job’s run-

time performance significantly. Furthermore, changing placements affects runtime

performance without modifying the application’s code, and thus can be applied to

many jobs without much configuration effort from the user’s side. However, jobs

benefit differently from placement decisions, because their resource demands differ

from job to job. Hence, there is not a single placement strategy that is optimal for

all possible jobs. Besides that, users require a secure long-term data retention for

their documents and datasets.

This thesis presents container and datablock placement strategies to optimize

the runtime performance of distributed dataflow applications running on shared

data analytics platforms. It contributes two placement methods for this. The first

method improves the efficiency of a job’s dataflow operations and the degree of data

locality by colocating its input datablocks and containers on a selected set of nodes.

The second method places a job’s containers based on network distances between

containers and its input datablocks as well as container interference. In addition,

this thesis explores the problem of data retention in shared data analytics platforms.

Therefore, it contributes a method of storing and accessing lineage metadata through

smart-contracts executed on a decentralized blockchain network.

The methods presented in this thesis have been implemented in a research proto-

type that has been integrated with Hadoop and Ethereum. For evaluation, we used a

64 nodes commodity cluster and workloads consisting of applications implemented

in Flink from the domains of relational processing, machine learning, and graph

processing. We compared the runtime performance of workloads scheduled with

our methods with Hadoop’s default placement method. For our blockchain-based

data retention method, we measured overhead in terms of additional response time

and reported costs using it on Ethereum’s blockchain network.

Zusammenfassung

Verteilte Datenflusssysteme ermöglichen, große Datenmengen parallel auf mehreren

Rechnern zu verarbeiten. Ressourcen werden ihnen mittels virtueller Container

zugewiesen und Eingabedaten werden von den lokalen Festplatten der verteilten

Rechner gelesen. Mehrere Datenflussprogramme können zeitgleich auf einem

gemeinsamen Rechencluster ausgeführt werden. Schnelle Ergebnisse sind ein

wichtiges Kriterium für viele Nutzer. Wesentlichen Einfluss auf die Ausführungs-

geschwindigkeit der Datenflussprogramme haben der Ausführungsort der Con-

tainer sowie der Speicherort der Eingabedatenblöcke. Zudem sind die Datenflus-

sanwendungen vielseitig und unterscheiden sich hinsichtlich ihres Ressourcenbe-

darfs, wodurch sie unterschiedlich auf ausgewählte Ausführungs- und Speicherorte

reagieren. Aus diesem Grund ist es schwierig, eine Platzierungsstrategie zu entwick-

eln, welche eine optimale Ausführungsgeschwindigkeit für alle Arten von Daten-

flussanwendungen erzielt. Neben einer schnellen Ausführungsgeschwindigkeit

benötigen Nutzer eine langfristige und sichere Speicherung ihrer Daten.

Diese Doktorarbeit präsentiert zwei Datenblock- und Containerplatzierungsmeth-

oden, um die Ausführungsgeschwindigkeit von Datenflussanwendungen zu verbes-

sern. Die erste Methode verbessert die Effizienz der Datenflussoperatoren eines

Jobs, indem sie die Eingabedatenblöcke mit Ausführungscontainer auf einer Gruppe

von Rechnern kolokalisiert. Die zweite Strategie platziert die Container eines

Jobs basierend auf Netzwerk-Hops zwischen Containern und seinen Eingabedaten-

blöcken sowie Containerinterferenzen. Außerdem erforscht die Arbeit das Problem

der Datenspeicherung in geteilten Datenanalyseplattformen durch eine Methode

zum Speichern von Linage-Metadaten in einem Blockchain-Netzwerk.

Die vorgestellten Methoden wurden in einem Prototyp implementiert und mit den

Open-Source Systemen Hadoop und Ethereum integriert. Die Evaluierung wurde

auf einem Commodity Cluster bestehend aus 64 Rechnern ausgeführt. Für die

Experimente wurde das verteilte Datenflusssystem Flink verwendet und Programme

aus den Domänen relationale Datenverarbeitung, maschinelles Lernen, und verteilte

Graphanalyse ausgeführt. Es wurden die Ausführungszeiten der in dieser Arbeit

entwickelten Methoden platzierten Anwendungen gegenüber Ausführungszeiten

durch Hadoop platzierten Anwendungen verglichen. Für die Blockchain-basierte

Langzeitspeicherungsmethode haben wir zusätzliche Antwortzeit, Skalierbarkeit

sowie anfallenden Kosten auf Ethereums Blockchain-Netzwerk gemessen.

Contents

1 Introduction 1

1.1 Problem Definition . 3

1.2 Contributions . 4

1.3 Outline of the Thesis . 7

2 Background 9

2.1 Scalable Data Analytics Concepts and Systems 9

2.1.1 Distributed Dataflow Systems 10

2.1.2 Resource Management Systems 13

2.1.3 Distributed File Systems 15

2.1.4 Data Analytics Cluster Setup 16

2.2 Blockchain Fundamentals . 18

2.2.1 Blockchain Network and Consensus Algorithms 18

2.2.2 Smart Contract-Based Blockchain 19

3 Related Work 21

3.1 Scalable Data Analytics Systems 21

3.1.1 Distributed Dataflow Systems 22

3.1.2 Resource Management Systems 23

3.1.3 Distributed File Systems 24

3.2 Placement Strategies in Data Analytics Platforms 26

3.2.1 Datablock Placement . 26

3.2.2 Task and Container Placement 28

3.3 Blockchain-Based Data Retention 30

4 Problem and Concepts 33

4.1 Problem and State of the Art . 33

4.2 Dynamic Data and Container Placement Approach 35

4.2.1 Solution Overview . 35

4.2.2 Methods and Components Description 37

4.3 Assumptions and Requirements 40

x Contents

4.3.1 Shared Data Analytics Clusters 40

4.3.2 Distributed Dataflow Systems 40

4.3.3 Batch Processing Workloads 41

5 Data and Container Colocation Placement 43

5.1 Colocating Related Data and Containers 44

5.1.1 Optimization Goals . 44

5.1.2 Two-Stage Data and Container Placement 45

5.2 Placement Workflow and Components Overview 48

5.3 Related Data and Container Colocation Enforcement 50

5.3.1 Definitions and Parameters 50

5.3.2 Placement Process and Algorithms 51

5.4 Evaluation . 56

5.4.1 Cluster Setup . 56

5.4.2 Jobs and Workload Description 56

5.4.3 Standalone Job Colocation Results 58

5.4.4 Multi-Job Colocation Results 60

6 Network-Aware Container Placement 63

6.1 Placing Containers Network-Aware 64

6.1.1 Data-Locality versus Container Closeness 64

6.1.2 Network-Aware Placement Strategy 66

6.2 Placement Workflow and Components Overview 68

6.3 Placement Method and Algorithm 70

6.3.1 Placement Algorithm Using Simulated Annealing 71

6.3.2 Placing Containers Close Together 74

6.3.3 Placing Containers Close to Input Datablocks 76

6.4 Evaluation . 77

6.4.1 Cluster Setup . 78

6.4.2 Jobs and Workload Description 79

6.4.3 Results of Different Workload Scenarios 81

Contents xi

7 Data Retention Placement 85

7.1 Improving Long-term Data Retention 86

7.2 System Overview and Integration 88

7.3 Smart Contract Blockchain-based File Tracking 91

7.3.1 File Tracking Contract Template 91

7.3.2 File Tracking Transaction Management 92

7.4 Placement and Validation Workflow 94

7.5 Evaluation . 96

7.5.1 Cluster Setup . 96

7.5.2 Benchmark Description and Results 97

8 Conclusion 101

Bibliography 119

Chapter 1: Introduction

Many organizations store and process large volumes of data. Companies like

Facebook and Google reported that some of their data analytics applications operate

on datasets in the tens of terabytes [1, 2]. Typically, these applications run on

dedicated data analytics platforms shared by multiple users and their applications.

For instance, CERN runs a data analytics platform for its particle accelerators that

subscribes to 20,000 sensors generating two terabytes data per day [3]. Furthermore,

its users submit five million analytic jobs daily. Another example affecting our daily

lives is given by the Spanish city of Santander, running a smart city deployment with

over 15,000 sensors to monitor and analyze the city’s environmental conditions [4].

A major challenge is to store and process these large volumes of data at scale in an

economically viable way. For this, many distributed storage and processing systems

that scale out horizontally using clusters of shared-nothing commodity nodes have

been developed by companies, researchers, and open source communities. A

driving force for this development has been the high scalability of these systems and

the favorable price-performance ratio of using inexpensive commodity hardware,

compared to using costly specialized high performance hardware [5].

Many data analytics platforms for batch processing are composed of at least

three types of distributed systems [6]. (1) A distributed storage system such as

HDFS [7] or Ceph [8] that splits datasets into series of replicated blocks stored

across all cluster node’s disks. (2) Distributed processing systems such as Spark [9]

or Flink [10] that access and process these datasets in parallel on multiple nodes.

(3) A resource management system such as YARN [11] or Mesos [12] that provides

distributed processing systems access to the cluster’s compute resources through

virtual containers. This platform design allows to run multiple data analytics

applications simultaneously, sharing the resources of a single cluster infrastructure.

2

One advantage of this shared platform design is the support of a broad range

of applications. This is because the resource management and distributed storage

systems are application-agnostic and, thus, support multiple distributed processing

systems focusing on different types of applications. Furthermore, processing sys-

tems like Flink and Spark provide a unified engine for batch and stream processing

and include libraries for machine learning and graph processing. Workload traces

from production clusters imply that these platforms scale up to more than thousands

of applications [13, 14]. At this scale, automation is required, because management

and configuration of the platform itself and its large variety of applications goes

beyond the capabilities of human administrators. At a first glance, this seems to be

important only for a few organizations that operate large-scale deployments. How-

ever, even start-ups with smaller cloud deployments and less applications face cost

pressure and benefit from platform automation by increasing the utilization of their

resources, reducing maintenance costs, and increasing runtime performance [15].

Runtime performance of data analytics applications is important as it can improve

the usability of a service due to faster results [16,17]. Twitter, for instance, promises

its users that they update the indexes for their search completion on terabytes of

data within ten minutes to always provide relevant results [18]. However, runtime

performance in shared data analytics platforms requires a good coordination between

task, data and container placement. Poor placement decisions, for instance when

placing processing tasks on over-utilized nodes or far away from other connected

tasks, can degrade performance [19]. In situations with high cluster utilization,

antagonistic workloads can occur in which applications and container combinations

interfere with each other, decreasing the runtime performance [20]. Furthermore,

jobs benefit differently from placement decisions, because their resource demands

differ from job to job. For instance, some tend to benefit more from placing

containers close to each other, reducing the amount of intermediate data send

through the network between their tasks. While others tend to benefit more from

colocating containers and datablocks, improving the degree of data locality.

Furthermore, some data needs to be stored safely and reliably for a long period

of time. Reason for a growing demand for long-term storage solutions is a trend

towards more organization policies, government laws, and regulations for retaining

data. For instance, some companies are required to keep tax information, contracts,

and business reports for up to ten years depending on the country they operate

in [21]. Another example concerns research data and results that should be publicly

Chapter 1. Introduction 3

available for a long period of time [22]. These policies result not only in more data

that needs to be archived. Moreover, ensuring it’s integrity and longevity becomes

an important task as well [23]. For instance, proving that data stored long time ago

has not been changed or, if it did to track when a file has changed by whom.

1.1 Problem Definition

The topic of this thesis is the design of datablock and container placement methods

as well as a long-term data retention method for shared data analytics platforms.

The research question of this thesis is:

“How to optimize the runtime performance of distributed dataflow applications and

provide long-term data retention on shared data analytics platforms?”

The problem embodied in this question and addressed in this thesis is twofold:

Runtime Performance: Data and container placement decisions are major factors

for runtime performance of distributed data processing applications in shared

data analytics platforms. The first part of the problem therefore asks how

runtime performance can be optimized by a better coordination between dat-

ablock and container placement decisions without allocating more resources.

Data Retention: Data integrity and longevity are important to ensure long-term

data retention in shared data analytics platforms. The second part of the

problem therefore asks how long-term storage can be improved by storing

and accessing necessary lineage metadata through a blockchain network.

The proposed solution of this thesis is a platform that automatically selects an

appropriate datablock and container placement strategy for storing a dataset or

executing an application. Besides a system architecture, we present two methods

that optimize runtime performance through better coordination between application

containers and datablock placement decisions. A third method presents a de-

centralized approach to support long-term data retention in this platform, which

runs on a peer-to-peer blockchain network.

4 1.2. Contributions

We make the following three assumptions while addressing the problem:

Shared Data Analytics Clusters We assume that applications are executed on

commodity clusters, in which they get a cluster share in form of virtual con-

tainers and access data from a colocated distributed file systems. Furthermore,

we assume control over the placement of these containers and datablocks.

Distributed Dataflow Systems We assume workloads that consists of distributed

dataflow applications with task executed in virtual containers.

Batch Processing Workloads We assume mixed batch workloads that consists of

iterative machine learning programs, graph processing and data-intensive

relational database queries.

We use standardized benchmarks and algorithms used in different domains for

evaluation. In addition, we do not modify the distributed dataflow system. Instead,

we treat it as black box that is executed in virtualized containers and optimize its

runtime performance by only changing its container and datablock locations.

1.2 Contributions

This thesis proposes a set of solutions to the previously described challenges. These

solutions make contributions in three areas.

The first area of contribution covers two placement methods to optimize the

runtime performance of distributed dataflow applications in shared data analytics

platforms. The first placement method is called CoLoc and focuses on data-intensive

recurring applications. It consists of a data and a container placement algorithm

that colocates a job’s input datablocks and containers on the same set or subset of

pre-selected nodes. As a result, these applications benefit from a high degree of

data locality and more local inter-process communication between containers. The

second placement method is called NeAwa and is using network metrics for making

placement decisions. It takes network distances between all involved containers as

well as between containers and input datablocks into account when placing contain-

ers. Furthermore, it balances containers on selected nodes to avoid interference with

each other. NeAwa’s placement algorithm is based on a cost function reflecting these

Chapter 1. Introduction 5

objectives and it uses Simulated Annealing (SA) for approximating a placement

with the lowest costs.

The second area of contribution explores the problem of long-term data retention

in shared data analytics platforms. For this, a framework called Endolith is presented

that uses a smart contract-based blockchain to improve long-term storage. In this

approach metadata that describes the lineage of data transformed by the platform

is stored immutable on a blockchain network. These metadata is only accessible

through well-defined functions that are invariant as they are deployed and executed

as smart contracts on the blockchain. As a result, it is possible to store datasets and

results reliably for a long-term, without relying on a central trust authority.

The third area of contribution is given by the architecture of a data and resource

management system to improve runtime performance and data retention in data

analytics platforms. This is done by automatically selecting an appropriate place-

ment strategy per dataset and application. Emphasis will be given on the strategy

selection mechanism and integration with related state of art systems.

We have implemented all methods in a research prototype system that is integrated

with YARN as resource management system, HDFS as distributed file system and

Ethereum as smart contract-based blockchain. We use Flink as reference distributed

dataflow system for our evaluation and different types of batch applications. We

evaluated all three prototypes with several application workloads on a 64 worker

nodes commodity cluster and a 8 worker node fat-tree testbed at TU Berlin.

Main contributions of this thesis have been published as follows:

1. Thomas Renner, Johannes Müller and Odej Kao. Endolith: A Blockchain-

based Framework to Enhance Data Retention in Cloud Storages. In the

Proceedings of the 26th Euromicro International Conference on Parallel,

Distributed and Network-based Processing (PDB). IEEE. 2018

2. Thomas Renner, Lauritz Thamsen and Odej Kao. Adaptive Resource Man-

agement for Distributed Data Analytics based on Container-level Cluster

Monitoring. In the Proceedings of the 6th International Conference on Data

Science, Technology and Applications (DATA). SciTePress. 2017.

3. Thomas Renner, Lauritz Thamsen and Odej Kao. CoLoc: Distributed

Data and Container Colocation for Data-Intensive Applications. In the

6 1.2. Contributions

Proceedings of the 2016 International Conference on Big Data (BigData).

IEEE. 2016.

4. Thomas Renner, Lauritz Thamsen and Odej Kao. Network-Aware Resource

Management for Scalable Data Analytics Frameworks. In the Proceedings of

the 2015 International Conference on BigData (BigData). IEEE. 2015.

The following publications are related to this thesis:

1. Lauritz Thamsen, Ilya Verbitskiy, Jossekin Beilharz, Thomas Renner, An-

dreas Polze and Odej Kao. Ellis: Dynamically Scaling Distributed Dataflows

to Meet Runtime Targets. In the Proceedings of the 9th International Con-

ference on Cloud Computing Technology and Science (CloudCom). IEEE.

2017.

2. Lauritz Thamsen, Benjamin Rabier, Florian Schmidt, Thomas Renner and

Odej Kao. Scheduling Recurring Distributed Dataflow Jobs Based on Re-

source Utilization and Interference. In the Proceedings of the 6th International

Congress on Big Data (Big Data Congress). IEEE. 2017.

3. Lauritz Thamsen, Thomas Renner, Ilya Verbitskiy and Odej Kao. Adaptive

Resource Management for Distributed Data Analytics. In Advances in Parallel

Computing. IOS Press. 2017.

4. Thomas Renner, Johannes Müller, Lauritz Thamsen and Odej Kao. Address-

ing Hadoop’s Small File Problem With an Appendable Archive File Format.

In the Proceedings of the 2017 Computing Frontiers Conference (CF). ACM.

2017.

5. Lauritz Thamsen, Thomas Renner, Marvin Byfeld, Markus Paeschke, Daniel

Schröder and Felix Böhm. Visually Programming Dataflows for Distributed

Data Analytics. In the Proceedings of the 2016 International Conference on

Big Data (BigData). IEEE. 2016.

6. Lauritz Thamsen, Ilya Verbitskiy, Florian Schmidt, Thomas Renner and

Odej Kao. Selecting Resources for Distributed Dataflow Systems According

to Runtime Targets. In the Proceedings of the 35th International Performance

Computing and Communications Conference (IPCCC). IEEE, 2016.

Chapter 1. Introduction 7

7. Lauritz Thamsen, Thomas Renner and Odej Kao. Continuously Improving

the Resource Utilization of Iterative Parallel Dataflows. In the Proceedings of

the International Conference on Distributed Computing Systems Workshops

(ICDCSW). IEEE. 2016.

8. Thomas Renner, Marius Meldau and Andreas Kliem. Towards Container-

Based Resource Management for the Internet of Things. In the Proceedings of

the International Conference on Software Networking (ICSN). IEEE. 2016.

9. Tobias Herb, Lauritz Thamsen, Thomas Renner and Odej Kao. Aura: A

Flexible Dataflow Engine for Scalable Data Processing. In the Proceedings

of the 9th International Workshop on Parallel Tools for High Performance

Computing. Springer. 2016.

1.3 Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Background presents the necessary background on related data

analytics systems and concepts. First, we present the concepts of distributed

data processing focusing on distributed dataflow systems. Afterwards, a

typical data analytics setup is presented with focus on distributed file systems

and cluster resource management systems. We also describe the concept and

functionality of smart contract-based blockchain networks, which we use for

our decentralized data retention method.

Chapter 3: Related Work first presents related distributed systems used in data

analytics platforms. In particular, these are distributed dataflow systems, dis-

tributed file systems and resource management systems. Afterwards, related

task, container and data placement strategies and schedulers are presented.

Finally, related work on Blockchains like Ethereum and alternative implemen-

tations as well as Blockchain-based data retention approaches are presented.

Chapter 4: Problem and Concepts presents the problem we address with this

thesis. Therefore, we introduce the state of the art and its limitations. Based on

this, we introduce our approach and its methods to tackle selected challenges.

At the end of this chapter, we discuss assumptions and requirements.

8 1.3. Outline of the Thesis

Chapter 5: Data and Container Colocation Placement presents our work on

data and container colocation in detail. First, the concept of data and container

colocation is discussed. Afterwards, its placement process and algorithms are

presented. Finally, an evaluation based on a 64-nodes commodity cluster and

different workloads is presented.

Chapter 6: Network-Aware Container Placement presents a container place-

ment strategy based on a cost function that takes possible container and

datablock locations as well as load balancing into account. First, the method

behind our approach is discussed in detail. Afterwards, the SA-based place-

ment algorithm is presented. Finally, an evaluation based on different work-

loads on a fat-tree testbed is presented.

Chapter 7: Data Retention Placement presents the concept of our decentralized

data retention placement approach. First, we describe the motivation and

design principles of our smart contract-based blockchain approach for long-

term data retention. Afterwards, we present the workflow and implementation

of the approach in more detail. Finally, we present an evaluation of the

prototype using HDFS as distributed file system and Ethereum’s official

testnet as blockchain network.

Chapter 8: Conclusion concludes this thesis by summarizing our results and

identifying directions for future work.

Chapter 2: Background

Contents

2.1 Scalable Data Analytics Concepts and Systems 9

2.1.1 Distributed Dataflow Systems 10

2.1.2 Resource Management Systems 13

2.1.3 Distributed File Systems 15

2.1.4 Data Analytics Cluster Setup 16

2.2 Blockchain Fundamentals 18

2.2.1 Blockchain Network and Consensus Algorithms . . . 18

2.2.2 Smart Contract-Based Blockchain 19

Based on the problem definition, this chapter provides an introduction to scalable

data analytics systems and concepts. Afterwards, the design of a data analytics

platform widely used in research and industry is presented. Finally, fundamentals of

smart contract-based blockchains are introduced, which we applied to data analytics

platforms for improving data retention.

2.1 Scalable Data Analytics Concepts and Systems

Scalable data analytics solve problems that involve large amounts of data and com-

putation. For this, three types of systems are often used in conjunction: distributed

processing systems, resource management systems and distributed file systems [6].

All systems have in common that they are highly scalable and designed for clusters

10 2.1. Scalable Data Analytics Concepts and Systems

built from commodity hardware, from which they gained a lot of popularity in

industry and research due to its favorable price-performance ratio.

2.1.1 Distributed Dataflow Systems

Distributed dataflow systems such as MapReduce [24], Spark [9], and Flink [10]

are a class of distributed processing systems that solve analytic tasks by using the

concept of data parallelism. In regard to this, the data to be processed is split into

multiple partitions and each one is distributed across different nodes that execute

the same task on their partition in parallel. Furthermore, all nodes are synchronized

and exchange data when the parallel processed data must be combined and merged.

Beside data parallelism, the concept of pipeline parallelism is used when multiple

tasks depend on each other and can interleave. In this case, the output of one task is

streamed as input to the next task.

From the user’s perspective, dataflow systems allow to develop scalable data-

parallel applications from sequential building blocks. Developers can choose from a

set of predefined dataflow operators such as map, reduce and join. Furthermore, they

can add individual sequential code as User-Defined Functions (UDF) to the second-

order functions map and reduce. Other specific variants of map and reduce are filter

and pre-defined aggregations for computing like sums and counts. A join operator

combines two dataflows into one by a user-defined join criteria. Furthermore, an

Iteration operator allows to execute the same UDF multiple times until a user-

defined number of iterations or other criterion has been reached. It is important

to emphasize that each operator receives an input and provides an output. As

shown in Figure 2.1, operators are connected as a dataflow job graph. In the shown

sample graph, two different datasets are read-in and pre-processed by two different

operators, afterwards, both flows are joined, reduced and stored.

Source 1

Source 2

Join Reduce Sink

Map

Reduce

Figure 2.1: A dataflow graph with multiple connected operators.

Internally, these systems distribute and parallelize the execution of the dataflow

graph automatically. Therefore, multiple data-parallel task instances of each operator

Chapter 2. Background 11

are generated. The number of parallel instances is called Degree of Parallelism

(DoP) and must be set by the user manually. This can either be done system wide for

all operators via a global configuration file or explicitly for each individual operator

in the job’s source code. As tasks are data-parallel, each task instance receives a

partition of the input dataflow, performs the operator’s UDF on it and produces a

partition of the output dataflow. Partition can either be created by reading parts of

the input file from a storage system or it can be received from a predecessor task

instance. Moreover, the locality of input data partitions and tasks plays an important

role in the performance. This is because tasks are scheduled with priority on nodes

storing it’s input data in order to access it from local disks. Figure 2.2 parallelizes

the previously defined dataflow graph of Figure 2.1 with a DoP of two.

Join1

Join2

Reduce1

Reduce2Source 22

Source 22

Reduce1

Reduce2

Source 11

Source 12

Map1

Map2 Sink1

Sink2

Figure 2.2: A dataflow graph parallelized with a DoP of two.

From an architectural design perspective, distributed dataflow systems often

follow a master-worker pattern. One single master manages multiple interconnected

workers, on which the task execution takes place. Typically, they assume homo-

geneous capacities on all workers, so that each worker offers the same amount

of cores and memory available for task processing. Task instances are scheduled

and executed on all available workers. Each worker provides execution slots that

represent the compute units. The number of slots per node is per default equal to

its numbers of CPU cores. Moreover, a slot can execute a task or a chain of tasks.

Task chains can be executed in parallel by adding pipeline parallelism. Expect for

pipeline breaking operators such as joins and iterations that require all elements

with certain keys to be available before they start.

Especially, joins and group-based aggregations can be network intensive, as they

require all elements of the same group or with the identical join key to be available at

the same task instance. Therefore, if the data is not already partitioned by these keys,

the dataflow needs to be shuffled. By this, all elements with the same key need to

12 2.1. Scalable Data Analytics Concepts and Systems

be moved to the same task instance, leading to all-to-all communication. Moreover,

some operators have multiple implementation strategies, which require different

synchronization and communication. For instance, if two dataflows are joined, a

Broadcast-Forward or Repartition-Repartition join strategy can be applied [25].

The Broadcast-Forward strategy shuffles one dataflow to all parallel task instances,

allowing the other dataflow to be pipelined without any shuffling. This strategy

is selected when one dataflow is smaller than the other one. The Repartition-

Repartition strategy involves shuffling both dataflows, so all elements with the

same key are received by the same task instances. Such strategies are automatically

selected by the dataflow systems optimizer.

Distributed dataflow systems also support the concept of iterations. They are

for instance used in machine learning algorithms such as K-Means or Stochastic

Gradient Descent and graph processing algorithms like Page Rank or Connected

Components [26]. Figure 2.3 illustrates the concept of iterations in dataflow systems.

In each iteration, the same step function that consists of an arbitrary dataflow of

operators will be executed multiple times until a termination criterion has been

reached. This can either be a maximum number of iterations or a custom aggregators

and convergence criterion. The first execution of a step function execution consumes

the entire iteration input, computes the next version of the partial solution which in

turn is the input for the next step function execution. It is important to emphasize

that step functions are executed data-parallel. That is, multiple instances of a step

function are executed in parallel on different data partitions. In order to realize

synchronization, all parallel step functions must complete before the next iteration

will start. Therefore, a synchronization barrier exists between any step function

execution. The termination criteria will also be evaluated at these synchronization

barriers. Furthermore, iterations can be network-intensive as data needs to be

shuffled and repartitioned before a next step function execution starts.

1st Step Function 2nd Step Function 3rd Step Function

Synchronization

Barrier

Figure 2.3: An iterative dataflow graph with three step functions.

Chapter 2. Background 13

2.1.2 Resource Management Systems

Data analytics platforms run a diverse mix of data processing frameworks and

applications supporting batch, stream and iterative processing [19]. Instead of

running multiple dedicated clusters for each framework, data analytics applications

are typically executed on top of a resource management system like YARN [11],

Mesos [12] or Firmament [27]. These systems allow to execute different applications

in parallel by hosting its tasks in virtual containers on multiple nodes. Furthermore,

they allow to share resources of a single cluster efficiency among multiple users.

From the user’s perspective, data scientists also have more freedom to choose the

most appropriate frameworks for their analysis task at hand.

Applications in resource management systems are executed on a per-job basis.

Each job gets a share of the cluster for its execution through requesting and allocating

multiple containers. These containers are allocated on nodes with sufficient space

and released when the job execution is finished. Thus, depending on the size of

containers and node capabilities, multiple containers can run on a single node

utilizing its resources. In comparison to using Virtual Machines (VMs), operating-

system-level virtualization by using containers allows allocating and releasing

resources faster. Moreover, containers have less resource overhead, as they do not

need a separate operating system per container. Another aspect is that most resource

management systems use containers without strict resource isolation. Therefore,

they can get more resources than beforehand requested and multiple containers

hosted on a node struggle for its shared disk and CPU resources. Jobs often have

different dominant resources phases and its resource demands fluctuate over time.

Therefore, they benefit from statistical multiplexing and allocate free resources that

are not used by other colocated jobs at a moment [28, 29].

Figure 2.4 shows the design of a centralized resource management system based

on YARN [11] following a master-worker pattern. A single master called Resource

Manager receives job submissions and is responsible for scheduling and tracking

its statuses. On each worker node, a Node Manager starts, monitors ands releases

containers and manages its own resources. Furthermore, one container per job,

which is called Application Master, hosts the master of the particular distributed

processing system that in turn manages all its workers hosted in further containers,

and negotiates resources from the Resource Manager.

14 2.1. Scalable Data Analytics Concepts and Systems

Container Allocation

Running Job

Job SubmissionResource

Manager

Job

Scheduler

Applications

Manager

Client

Client

Node

Manager

Node

Manager

Node

Manager

Node

Manager

M M

M Application Master

Physical Machine

Figure 2.4: A resource management system hosting two different data analytics jobs
in multiple containers.

A major component of the Resource Manager is scheduling job containers and

making the decision on which node to place them. It performs this scheduling

function based on the resource requirements of the job in terms of number of

containers and its size, which incorporates CPU cores and memory. Furthermore,

many systems allow to use different schedulers focusing on different goals like

fairness [30], throughput [31], data locality [32], or deadlines completion [33].

Beside scheduling, the Resource Manager is responsible for managing applications

by tracking their status, negotiating the first container of an application and providing

fault tolerance features such as restarting containers on failures.

The scheduler in resource management systems often follows a monolithic or

two-level approach. Monolithic schedulers [27, 34, 35] are composed of a single

scheduling component that handles all job submissions. Also, they place all con-

tainers with the same logic, which has lead to some sophisticated schedulers being

developed. For example, machine learning-based approaches that avoid bad interfer-

ence between jobs competing for resources [20,36]. In two-level schedulers [11,12]

resource allocation and task placement are separated. Therefore, each framework

implements its own placement logic to request containers from a central resource

manager. For both, the Resource Manager needs a global view of the available

resources and running applications. Beyond this centralized design, decentralized

approaches exist [13, 37], in which multiple Resource Manager processes are used

for increasing scalability and fault tolerance.

Chapter 2. Background 15

2.1.3 Distributed File Systems

Datasets and analytic results in data analytics platforms are often stored in a shared

storage system such as a distributed file system. The concept behind these sys-

tems is to split files into multiple smaller blocks with a fixed size. These blocks

are replicated and distributed on the disks of multiple nodes. This leads to high

scalability and read performance, because a file’s datablocks can be read in parallel

from multiple node’s disks by a user’s file system client or data analytics applica-

tion. Moreover, datablock redundancy provides fault tolerance as blocks can be

recovered and it allows to continue working when a node stops unexpectedly or a

block becomes corrupted. Furthermore, the system can scale-out easily by adding

new nodes to the cluster.

Figure 2.5 illustrates the design of a distributed file system based on HDFS [7].

It follows a master-worker architecture. The master, called Name Node, stores

metadata that represents the structure of directories and files in a tree. This metadata

also covers attributes of files and directories, such as ownership, creation time,

permissions and replication factor. Furthermore, the Name Node tracks where

across the worker nodes, called Data Node, a file’s datablocks are stored. When a

client or data analytics application requests a file from the Name Node, it returns

the block locations, which the client consequently uses to read the actual file blocks

directly from the workers using TCP/IP sockets.

Name Node

Disk

Datablock

A1 A3A2

Data Node

A1 A3

B1

Data Node

A2 B1

B2

Data Node

A2 B2

A3

Data Node

A1 B1

A2

Data Node

A3 B2

A1

Dataset

Client

Client

Metadata

Management

Data Block

Placement

Physical Machine

Dataset

Replication and Balancing

Secondary

Name Node

Figure 2.5: A distributed file system storing two different datasets that are partitioned
in datablock across the cluster nodes’ local disks.

16 2.1. Scalable Data Analytics Concepts and Systems

The Name Node is also responsible for datablock placement. When a user or

data-parallel processing system writes a file or output to the distributed file system,

it writes blocks simultaneously on a number of Data Nodes. Therefore, write

performance is low compared to read performance. A common strategy to write

new datablocks is to highly distribute a block’s replicas among different nodes and

racks, mainly due to fault tolerance and balancing reasons. HDFS, for instance, uses

a rack aware data placement strategy that assumes three replicas per block, the first

block is stored locally, if possible, the second copy on a node of the same rack, and

a third one on a node of a different rack.

Distributed file systems specialized for data analytics such as HDFS focus on

storing and processing large files in the range of gigabytes to terabytes. Therefore,

they are optimized for large files, and provide high aggregate bandwidth and capacity.

Under the hood, they use a large default block size of 128 MB. The main reason

for this is due to the commonly applied data locality-based task scheduling of the

colocated dataflow systems, which schedule its data-parallel task with priority on

nodes storing a file’s datablock. By this, the task function can be executed on the

same node on which the input data is stored without additional network overhead,

as a block must not be transferred from another node. Other types of storage system

such as Storage Area Networks, Network Attached Storages or cloud-based storages

like S3 are also supported by many distributed processing frameworks. However,

when using these types of systems, data storage and processing is separated from

each other, thus data locality cannot be archived.

2.1.4 Data Analytics Cluster Setup

Data analytics platforms run multiple distributed systems for storing and processing

large datasets in conjunction. Figure 2.6 shows the setup of such a platform, which

is also recommended by Hadoop and widely used in research and industry [6]. A

resource management system is typically colocated with the distributed file system.

Jobs of different data processing frameworks run in temporarily reserved containers

on top of the resource management system. When a job is submitted, multiple

containers are allocated. Afterwards, the required data processing framework is

bootstrapped into these containers and the job starts. The containers are released

when the job is finished. While running, they access datasets from the colocated

distributed file system and also store their results there. Due to the colocation, data

Chapter 2. Background 17

analytics frameworks can schedule a job’s task directly on nodes storing the input

data, which reduces the network overhead and increases runtime performance.

Worker Worker Worker Worker

Input Data Block

Application Container

Local Disk

Dataflow Job

Hierarchical Network

Physical Machine

Figure 2.6: A data analytics cluster setup running multiple applications using a
colocated resource management system and distributed file system.

Unlike High Performance Computing (HPC) environments, where compute and

storage are separated from each other and dedicated nodes are interconnected with

high speed links like InfiniBand [38], each node offers its compute and storage

capacity for storing and processing data and is equipped with commodity hardware

and interconnected by Ethernet. Moreover, the network is organized in a hierarchical

topology built with commodity hardware [39]. Nodes are grouped into racks at

the lowest level and multiple paths with different hop counts can exist between two

nodes of different racks. However, bandwidth between nodes within a rack is higher

than between nodes in different racks, because switches are often oversubscribed due

to cost saving and maintenance reasons [32, 40]. At the same time, performance of

storage mediums like Solid-state drives (SSDs) increase and become more popular

in data analytics clusters [41–43]. Also, in-memory storages, like Alluxio, formally

known as Tachyon [44], become more popular.

Workload traces from Microsoft with over 20,000 machines [13] and Google [14]

with over 12,000 machines imply that productive cluster setups can scale up to more

than tens of thousands of nodes and applications. At this scale, management and

configuration of the platform itself and its large variety of applications needs to

be done in automation, as it goes beyond the capabilities of human administrators.

Also, this automation provides the opportunity to increase resource utilization and

reduce costs [19]. Therefore, automatic placement and scheduling of data analytics

workloads is an important topic in data analytics platforms.

18 2.2. Blockchain Fundamentals

2.2 Blockchain Fundamentals

A blockchain enables distributed ledgers that store data immutably in a secure and

encrypted way. This section focuses on the fundamentals of blockchains technology,

which we apply for improving data retention in data analytics platforms.

2.2.1 Blockchain Network and Consensus Algorithms

A blockchain, also known as shared ledger, is an append-only list of records, which

are linked and secured using cryptography. Prominent blockchain implementations

include Bitcoin [45], Ethereum [46] and Hyperledger [47]. Writes to the blockchain

are called transactions. They are broadcasted to all nodes of the blockchain network.

Moreover, multiple transactions are grouped and permanently stored into a single

block. These blocks are in a chronological and linear way connected to form a

blockchain, similar to a linked-list. Each block within the blockchain is uniquely

identified by a hash of the block header. A block header includes the Merkle

Tree [48] root that is generated by recursively hashing pairs of all transactions stored

in a block until there is only one hash left. Additionally, each block stores the hash

of a previous block header as a reference. Therefore, the sequence of hashes linking

to its previous block creates a chain going back all the way to the first block ever

created. Figure 2.7 illustrates the structure of a blockchain.

Prev.

Hash

Block n+1

Time-

stamp

Merkle

Root

Block Header

Tx0 Tx1 Tx2 Tx3

H0 H1 H2 H3

H01 H23

Nonce

Prev.

Hash

Block n

Time-

stamp

Merkle

Root

Block Header

Tx0 Tx1 Tx2 Tx3

H0 H1 H2 H3

H01 H23

Tx HBlockchain Transaction Hash Value

Nonce

Figure 2.7: Data structure of a blockchain storing multiple transactions.

Chapter 2. Background 19

A blockchain is managed by a private or public peer-to-peer network that col-

lectively validates and generates new blocks. Therefore, the blockchain network

consists of multiple nodes, where each node has a local copy of the blockchain.

Some nodes participate in a leader election process that determines which node gets

the privilege to append the next block to the chain. These nodes, which are actively

competing to become the leader of the next round, are called miners.

Most blockchains such as Bitcoin and Ethereum use Proof-of-Work as consensus

protocol. At the start of each leader election round, all miners start working on a new

computational problem, e.g. producing a hash, that depends on three different input

data: new blocks of transactions, the last block on the blockchain and a random

number. This refers collectively as block header for the current block. Each time a

miner performs the hash function on the block header with a new random number,

they get a new result. To win the election process, a miner must find a hash that

begins with a certain number of zeros. Just how many numbers of zeros are required

is a shifting parameter determined by how many miners and how much computing

power is attached to the network. The first miner that solves the problem gets the

privilege to write the new block with pending transactions that are not yet included

in any block.

Motivation for participating and winning the election is a monetary reward. The

winners may issue themselves an amount of the mined currency and they get to

collect all fees that are charged for transactions. In order to have their transaction

prioritized, users may offer to pay a higher fee. As a result, the blockchain forms

a system that enables decentralized consensus without the need of any central

authority. Beyond that, other consensus algorithms such as Proof-of-Stake exist,

which select the generator of the next block based on combinations of random

chosen values, instead of solving a computationally intensive problem.

2.2.2 Smart Contract-Based Blockchain

Smart contracts are programs to verify or enforce the negotiation or performance

of a contract. They are automatically enforced by the consensus mechanism of the

blockchain without relying on a trusted authority. The consensus protocol of the

blockchain has the goal to ensure the correct execution of smart contracts.

20 2.2. Blockchain Fundamentals

Ethereum is a prominent smart contract-based blockchain. Its underlying Eth-

ereum Virtual Machine (EVM) has a notion of global state including accounts,

balances and storage. Each smart contract is stored on the underlying blockchain

in bytecode, so called EVM opcodes with fixed definitions, and is executed by the

EVM. Furthermore, any transaction must ensure a valid transition from the canoni-

cal state preceding a transaction to the new state it leaves the EVM in. Therefore,

the order in which transactions are processed and written into a mined block is

crucial. All EVM transitions are executed by every participant of the network and

stores new states on the blockchain. The smart contracts inherit the blockchain

properties of decentralization, zero downtime and security against fraud.

Smart contracts are written in Solidity, a Turing-complete bytecode language,

which compiles into a special assembly code that can be interpreted by the EVM.

Therefore, a contract is a set of functions, each one defined by a sequence of byte-

code instructions. Figure 2.8 illustrates smart contracts through an example written

in Solidity. It can receive money from other blockchain users, and its owner can

split and send the collected money to others users, whose wallet addresses are stored

in the outflow hashtable. The collected money is recorded via the balance variable,

which cannot be altered by the program logic.

contract AWallet{

address owner;

mapping (address => uint) public outflow;

function AWallet(){ owner = msg.sender; }

function pay(uint amount , address recipient) returns (bool){

if (msg.sender != owner || msg.value != 0) throw;

if (amount > this.balance) return false;

outflow[recipient] += amount;

if (!recipient.send(amount)) throw;

return true;

}

}

Figure 2.8: A sample smart contract code [49].

Chapter 3: Related Work

Contents

3.1 Scalable Data Analytics Systems 21

3.1.1 Distributed Dataflow Systems 22

3.1.2 Resource Management Systems 23

3.1.3 Distributed File Systems 24

3.2 Placement Strategies in Data Analytics Platforms 26

3.2.1 Datablock Placement 26

3.2.2 Task and Container Placement 28

3.3 Blockchain-Based Data Retention 30

This section presents related work on data and container placement strategies

for data analytics platforms. First, related work on scalable data analytics systems

that are widely used in data analytics platforms is presented. Second, related work

on data, task and container placement strategies for these systems are presented.

Finally, related blockchain-based data retention approaches are discussed.

3.1 Scalable Data Analytics Systems

In the last few years, data analytics platforms build up on shared-nothing commodity

machines have gained a lot of momentum. They typically consist of a colocated

resource management system and distributed file system, and multiple distributed

processing system running on top in parallel. This section describes similarities and

differences between systems of each class.

22 3.1. Scalable Data Analytics Systems

3.1.1 Distributed Dataflow Systems

This section describes related work on distributed dataflow systems, which we used

for evaluating our placement methods. Distributed dataflow systems allow users

to develop distributed applications. In general, they provide developers predefined

operators known from functional programming such as Map and Reduce. They

extend these operators with sequential code and connect them to form a dataflow

graph, where edges represent the dataflow. After deploying a distributed dataflow

system, users can submit these dataflow graphs as applications. The framework then

automatically parallelizes and distributes the application on multiple nodes.

MapReduce [24] introduced a programming and an execution model for dis-

tributed data analytics on shared-nothing clusters. The programming model is based

on the two higher order functions Map and Reduce. Both functions are enriched with

UDFs. The execution models comprises the data-parallel execution of task instances

of these two operations, where each Map phase is followed by a Reduce phase.

In between both phases, the intermediate results are written to disk and shuffled.

Moreover, the results of a Map task are sorted by a key, so that a successor Reduce

task can read and reduce defined groups of elements efficiency. Fault tolerance is

given because a distributed file system is used for storing intermediate results in

between stages of map and reduce tasks. A major implementation of the model is

the open-source Hadoop MapReduce [6]. Other work extend this implementation

with iterations [50, 51] or SQL-like declarative language [52].

Nephele [53] and Dryad [54] added the possibility to express data analytics jobs

in arbitrary Directed Acyclic Graphs (DAGs), instead of combinations of subsequent

Map and Reduce tasks. Further work on Nephele under the name Stratosphere [55]

extend it with different features. PACTs introduces second order functions to

perform concurrent computations on datasets in parallel [56]. Meteor introduces

an operator-oriented query language [57]. Hueske et. al [58] and Rheinlander et.

al. [59] introduce various dataflow optimization techniques to Stratosphere. Ewen

et. al [26] add support for bulk and incremental iterations, which are often used in

graph and machine learning algorithms. Thamsen et. al. [60] use synchronization

barriers between iterations to adapt resource allocation at runtime.

Spark [9] is another widely-used distributed dataflow system that offers the users

a set of second order functions. The system relies on the concept of Resilient Dis-

Chapter 3. Related Work 23

tributed Datasetss (RDDs) to efficiently execute iterative and interactive jobs [61].

Moreover, Spark’s RDDs provide fault tolerance using lineage. Compared to check

pointing that writes intermediate results to disk, this can significantly speed up

the dataflow computation. Furthermore, Spark provides higher-level programming

abstractions including processing relational data with automatic query plans op-

timization [62, 63] and graph processing [64, 65]. Spark also provides stream

processing features by using micro-batches [66].

Flink [10], the successor of the Stratosphere Platform, and Google’s Dataflow [67]

add further features regarding scalable stream processing. They are based on the

concept of windows over continuous data streams. Furthermore, they provide

mechanisms to cover late elements, which arrive after the system’s event time clock

has already passed the time of the late element’s timestamp. Flink uses the stream

processing engine for both, batch and stream processing.

3.1.2 Resource Management Systems

Resource management systems are orchestration software that automatically manage

different applications and machines. They allow to share cluster resources among

multiple users, applications, and frameworks by temporarily assigning resources to

them through virtual containers. The rest of this section presents related work on

resource management systems that support data analytics batch jobs.

Kubernetes [34], Firmament [27] and Borg [35] follow a monolithic scheduling

design, where a central resource manager assigns containers and tasks to machines.

Moreover, all upcoming applications are handled by the same scheduler logic. This

uniform approach has lead to sophisticated schedulers. For instance, Paragon [36],

Quasar [20] and Thamsen et. al. [29] use machine learning techniques to avoid

negative interference between applications. Other examples are Maui [68] and the

LSF platform [69] that involve different weight factors to determine placements

and to support different policies. Firmament [27] shows that centralized scheduling

approaches based on sophisticated algorithms can be fast enough to scale up to over

ten thousands of applications and machines using a Google cluster workload trace.

YARN [11], Mesos [12], Nomad [70] and KOALA-F [71] follow a two-level

scheduling design by separating the concerns of resource allocation and container

24 3.1. Scalable Data Analytics Systems

placement. In particular, different framework specific schedulers interact with a

central resource manager that assigns partitions of the cluster resources for each

application. Beside resource sharing, this allows to design more flexible container

placement logic towards framework requirements. However, the framework-level

schedulers do not have a global view on all available resources anymore.

In Mesos [12], a central resource manager offers resources to individual application-

level schedulers, which can autonomously decide to accept or reject these offers.

By accepting an offer, the framework schedule tasks on allocated containers. One

advantage is that each framework can optimize the placement for their own goals.

This allows to execute heterogeneous workloads that for instance cover web serving,

batch analytics, stream analytics and machine learning more efficiently.

YARN [11] is part of Hadoop and supports a broad range of distributed pro-

cessing frameworks such as MapReduce, Spark, Flink as well as machine learning

frameworks like TensorFlow [72]. Users allocate resources for their application by

specifying the number of containers and their size in terms of memory and CPU

cores. In comparison to Mesos, resource allocations are request-driven. Frame-

work specific schedulers request the central resource management for resources

and receive container allocations in return. We used YARN for implementing and

evaluating our placement strategies.

Omega [37] and Apollo [13] follow a shared-state design, in which the cluster

state is independently updated by the application-level schedulers. The shared

cluster is materalized in a single location, which is called ’cell state’ in Omega

and ’resource monitor’ in Apollo. Moreover, both are coordinated using optimistic

concurrency control. In Apollo, the shared-state is read-only and the transactions are

directly sent to all nodes. Afterwards, each node checks independently for conflicts

and accepts or rejects changes. By this, it keeps running even when the shared-state

is temporarily not available.

3.1.3 Distributed File Systems

Distributed file systems handle datasets by splitting them into series of datablocks.

These datablocks are placed among a set of nodes in a cluster. Moreover, each

block is replicated and redundantly stored on multiple nodes. Thus, if a node stops

Chapter 3. Related Work 25

working or datablocks got corrupted unexpectedly, copies of the datablocks are

available on other nodes for recovery.

HDFS [7] and GFS [73] are distributed file systems that focus on storing large

datasets on commodity hardware for distributed data processing. GFS is a propri-

etary storage system developed by Google. HDFS is an open source implementation

of GFS and the official storage system of Hadoop. Both systems focus on storing

large files and high throughput for sequential reads and writes. Also, they follow

a master slave paradigm, where a single master node is responsible for metadata

management that includes maintaining the directory tree of all files in the file system

and tracking where across the available nodes the file’s datablocks are kept. The

file itself is stored on the slave nodes, which serve as a pure data storage. The

default datablock size in HDFS is 128 MB and in GFS 64 MB. Both systems

focus on storing and providing fast access to large datasets for dataflow systems,

which try to schedule their tasks directly on datablocks of the input file. By this,

the task function can be executed locally on the node on which the input data is

stored without additional network overhead. Storing all metadata in-memory on a

central master has been reported as the limit for scaling out the number of files and

datablocks in both systems. To overcomes this limitation, HopsFS integrates HDFS’

central metadata service into a distributed in-memory NewSQL database [74]. Other

authors introduce new file formats that merge multiple files into one that require a

further indexing mechanism [75–78].

Ceph [8] is a distributed storage system whose base is an object-storage. It

stripes datablocks across multiple nodes to achieve higher throughput, similar to

a Redundant Array of Independent Disks (RAID)-0 that stripes partitions across

multiple hard drives. Moreover, it replicates the datablocks on multiple nodes to

provide fault-tolerance. In comparison to HDFS, it does not focus on accessing

large files and thus, stripes datablocks with a smaller size of 64 KB per default

instead of 128 MB. By this, it balances the load more effectively across the nodes

and prevents bottlenecks in storage accesses.

GlusterFS [79] provides a POSIX-compliant distributed storage system. All

nodes export a local file system as a volume. The GlusterFS client creates composite

virtual volumes from multiple data nodes using stackable translators. In comparison

to the other related storage system, it stores files without striping, and distributes

and locates them using a hashing algorithm, instead of a using a metadata server.

26 3.2. Placement Strategies in Data Analytics Platforms

Alluxio, formerly known as Tachyon [44], is an in-memory distributed file system.

It can run on top of HDFS, GlusterFS or Amazon S3 [80] and uses the chosen system

as a persistence layer. Alluxio itself is a memory management layer that buffers data

in-memory and accelerates computation. Therefore, it provides high read and write

performance for local data access. Moreover, it relies on the concept of lineage for

fault-tolerance, instead of replication, to recompute lost data.

Furthermore, distributed dataflow systems support other storage systems to access

data. Flink, for instance, provides connectors [81] to distributed databases such

as MongoDB [82] and the proprietary cloud storage systems Amazon S3 [80] and

Google Cloud Storage [83]. However, these connectors allow data access only

remotely and therefore, achieving data locality is not possible, which can have a

significant impact on the runtime performance of dataflow applications.

3.2 Placement Strategies in Data Analytics Platforms

This section describes different datablock, container, and meta data placement

strategies. Scheduling is an important topic in the previously analyzed systems,

because it directly affects the costs of operating a cluster. A placement resulting in

a low utilization leaves expensive machines idle. A high utilization, on the contrary,

can lead to antagonistic workloads and application combination that interfere with

each other and decrease the performance of the running application [19]

3.2.1 Datablock Placement

A datablock placement policy determines the particular nodes for each datablock.

Beside high scalability and fault tolerance, replication and file splitting can increase

the performance of distributed dataflow engines, because tasks can access and

process parts of the data in parallel stored on different nodes. However, when the

processing task is not directly scheduled on the node where the input datablock

relies on, the block has to be transfered through the network to the node executing

the processing task. Especially in large data analytics clusters that comprise of

hundreds or thousands of nodes, storing a large number of different files and running

many different jobs at the same time, the input data and execution can be very likely

Chapter 3. Related Work 27

distributed on different nodes. In addition, data-intensive jobs that, for instance,

join or merge two or more files require a lot of network resources, because the

related datablocks are likely not to be stored on the same set of nodes. Therefore,

efficient data placement is important in order to minimize the communication costs

of data-intensive jobs.

Recent activities in data placement in data analytics clusters can be categorized

in proactive data placement and active data placement.

The objective in proactive data placement is to place datablocks on desired nodes

when they are loaded into the file system, and afterwards schedule job execution

on these nodes. Examples are recurring jobs, in which data is loaded from another

system into the data analytics clusters and afterwards, a data-analytic job is triggered

on the new dataset. Examples can be found in click stream log analysis [84] or

Surveillance Video Processing [85].

Coral [84] introduces a data and compute placement framework that jointly

optimizes the location of data and tasks. It places input data and later job tasks on a

small number of racks to reduce the load on the often oversubscribed core network

and to improve the data locality.

CoHadoop [86], Hadoop++ [87] and GridBatch [88] enable the colocation of

related files and its datablocks on the same set of data nodes based on user-defined

property. Therefore, the user has to tag which files are related and should be

colocated. In CoHadoop, the first file and its datablocks are distributed with the

default data placement scheduling approach. For the second, CoHadoop places the

datablocks on the same set of nodes like the previous file. CoHadoop focuses on

technical issues and leaves the responsibility of choosing the placement of related

files to the user and does not take data locality into account.

Amoeba [89] proposes a datablock placement technique for HDFS called hyper-

partitioning. It generates many small partitions of data potentially from a differ-

ent subset of attributes to answer queries by reading only a subset of partitions.

AdaptDB [90] is a datablock manager for Amoeba that re-partitions the placement

based on partitioning trees at runtime. In comparison to CoHadoop and Hadoop++ it

requires no prior knowledge of the running jobs. Furthermore, the system introduces

a join mechanism for Spark that identifies datablocks of the joining files that overlap

on the join attribute.

28 3.2. Placement Strategies in Data Analytics Platforms

Golab et. al. [91] automate the data placement process by proposing graph

partitioning algorithms for computing nearly optimal data placement strategies for

a given job. The objective is to decide where to store the data and where to place

the tasks to minimize data communication costs. In contrast to CoHadoop, the

workload must be known in advance. Additionally, they do not take care of parallel

execution of tasks, which is an important feature of scalable dataflow systems.

The objective in active data placement is to move and change the number of

datablock replications while they are residing in the file system. Techniques like

Scarlett [92], ERMS (Elastic Replica Management System) [93], DARE (Adaptive

Data Replication) [94], and Bui et. al [95] use file system logs and application access

patterns to increase and decrease data the replication factor at runtime in order to

reduce job execution time. Replications are spread across the whole cluster to avoid

hot spots and increase the change of data locality. These systems are off-line systems,

and their replication factor for each file is based on past accesses for that file. One

drawback of these techniques are the additional network communication and storage

overhead for dynamic replication. Ciritoglu et. al. [96] present a Workload-aware

Balanced Replica Deletion algorithm (WBRD) for HDFS that goes in the other

direction and decreases the number of replicas to reduce unbalancing and avoid hot

spots.

3.2.2 Task and Container Placement

Containers provide a virtual abstraction in which the tasks of distributed dataflow

systems are executed. Therefore, containers narrow the locations of nodes on which

task by the framework itself can be scheduled and can have a significant impact on

runtime performance. In the following we present different strategies for task and

container scheduling focusing on data analytics.

YARN [11] supports per default four different schedulers. The fair scheduler

that assigns resources across multiple users such that all users get, on average, an

equal share of resources over time. Ghodsi [30] introduced the concept of Dominant

Resource fairness (DRF) to YARN’s fair scheduler that allows allocating multiple

resources to users with heterogeneous demands. It determines each user’s dominant

resource and use it as a measure of the cluster usage and fair resource allocation.

The capacity scheduler defines queues with resource quotas, for instance, giving

Chapter 3. Related Work 29

each user group a minimum capacity guarantee. The other two are First In, First

Out (FIFO)-based and priority-based. Furthermore, Medea [97] introduces a YARN

container scheduler focusing on long running applications such as streaming systems

like Flink and Heron [98] and machine learning frameworks such as TensorFlow.

All these YARN schedulers focus on resource allocation only, as it follows a two-

level scheduling approach. The container placement is done on framework-level, so

each framework implements its own placement logic by requesting containers from

YARN’s central resource manager.

Much research has been done on data locality, the idea of placing task or con-

tainers on nodes storing parts of the input data. For instance, in combination with

fairness [38,39,92,99,100], in heterogeneous environments [101–103], or in virtual-

ized environments by taking interference into account [104,105]. Most data-analytic

frameworks such as MapReduce, Flink and Spark implement data locality as well.

Bell [106], SMiPE [107] and Ernest [108] use runtime estimation techniques

to automatically allocate containers for distributed dataflow systems. Ellis [109]

uses estimation techniques to dynamically scale distributed dataflows after synchro-

nization barriers according to runtime targets. However, it allocates and releases

containers without taking their node location into account.

Quasar [20], Bubble-flux [110], Heracles [111] and Thamsen et. al. [29] place

containers by taking interference with colocated jobs into account. Quasar profiles

unknown applications before they are executed. It does this by running sample

runs on a few nodes. Afterwards, it is matched to previous jobs to classify the job

based on collaborative filtering. Bubble-flux probes the nodes to measure the current

pressure on the shared hardware resources. Moreover, it presents a method to predict

how a running job will be affected by a potential colocated job. Heracles guarantees

jobs resources due to coordinated management of multiple isolation mechanism.

Thamsen et. al. [29] use a reinforcement learning algorithm to continuously learn

good job container placements that are best executed simultaneously.

The proposed network-aware container placement method of this thesis combines

data locality, interference and network distances as placement factors. It can adjust

these factors differently based on user-defined weights. In comparison to two-level

schedulers, our approach can adjust the placement logic per job, instead of having a

specific scheduler per framework.

30 3.3. Blockchain-Based Data Retention

3.3 Blockchain-Based Data Retention

This section presents related work for using blockchain technology to increase

data retention in shared storage systems, which are also used in data analytics

platforms. First, related blockchains are introduced that are followed by data

retention approaches using blockchain technology.

A blockchain, also known as shared ledger, is an append-only list of records,

which are linked and secured using cryptography. Prominent blockchain imple-

mentations include Bitcoin [45], the first blockchain network implementation, and

Ethereum [46]. Recent activities in blockchains can be categorized in bitcoin clones

and alternative-chains.

Bitcoin clones copy the Bitcoin implementation and merely modify some of its

parameters, for instance the reward, the consensus algorithm or the generation time

of new blocks. Examples of Bitcoin clones are IXCoin [112] featuring a higher

reward, BitcoinScrypt [113] using scrypt, a different proof-of-work algorithm that

is resistant to GPU, FPGA, and ASIC implementations and Litecoin [114] using a

block generation time of 2.5 minutes compared to the original 10 minutes.

Alternative-chains are not primarily designed as a currency. Instead, they rep-

resent a token to be used like a resource or a contract. Prominant examples are

Ethereum [46] and Hyperledger [47]. Both allow developers to design Decentralized

Applications (DApps) that run de-centralized on its peer-to-peer blockchain network

and are not controlled by any single entity. Examples are real-life use cases, ranging

from asset management to resource planning. Ethereum’s DApps are based on smart

contacts executed on its Turing-complete EVM. Hyperledger provides a framework

to build business-oriented DApps.

Ghoshal and Paul [115] present an auditing scheme for cloud data that requires

no third party involvement. Similar to our data retention approach, their approach al-

lows to ensure and check integrity of a selected file based on blockchain technology.

In particular, they propose to split the selected files into fixed-length file-blocks,

hash the file-blocks, and generate a Merkle Tree per file based on all file-blocks

hashes. The Merkl Tree root, the previous block hash, and other file metadata are

then appended as a new block to the blockchain. In order to speed up the verification

process, they use on a leaf number-based verification technique. The authors report

Chapter 3. Related Work 31

that their approach suits only well for files with rare updates, because changing a

file leads to a modification of the corresponding block, and thus, any subsequent

block needs to be rewritten. In comparison, we append the file metadata as a trans-

action to the blockchain and do not change any block due to transparency reasons.

Additionally, their approach is not suitable for a public blockchain network, where

modifications on already written and confirmed blocks are explicitly unintended.

ProvChain [116] is a data provenance system for cloud storage systems using

blockchain technology. It monitors all operations on files and publishes them to a

blockchain. ProvChain hashes data operations, constitutes a Merkl tree, and anchors

the root node into a blockchain transaction. By this, it is possible to guarantee

that data provenance was not tampered. ProvChain tracks files on operation level

including read, move, and copy operations, and does not offer a functionality for a

content-based file validation.

SmartProvenance [117] is a data provenance management framework for doc-

uments. Similar to our data retention method it is based on Ethereum’s smart

contract-based blockchain network. Furthermore, it uses the Open Provenance

Model (OPM) to record the data trail immutable. In particular, it is based on access

control policies and a voting mechanism to ensure that no malicious changes are

made to the provenance data.

Blockstack [118] presents a blockchain-based naming and storage system. They

present their knowledge about running a public key infrastructure service on top of

Namecoin and how they migrate to bitcoin. In Blockstack, users can register and

securely associate data with them. Only the owner of the particular private key can

write or update the name-value pair.

Other systems like Filecoin [119], Permacoin [120], Storj [121], and SIA [122]

provide decentralized storage services on top of a blockchain. Users can rent

unused portions of their hard drive space in a peer-to-peer network. Metadata

management and payment of the decentralized storage is done based on a blockchain

network. Instead of rewarding miners for offering compute resources, they reward

miners for offering their storage. ETH Drive [123] runs IPFS [124], a peer-to-peer

distributed file system, and uses Ethereum as blockchain to provide tamper-proof

data provenance to check data integrity.

Chapter 4: Problem and Concepts

Contents

4.1 Problem and State of the Art 33

4.2 Dynamic Data and Container Placement Approach 35

4.2.1 Solution Overview 35

4.2.2 Methods and Components Description 37

4.3 Assumptions and Requirements 40

4.3.1 Shared Data Analytics Clusters 40

4.3.2 Distributed Dataflow Systems 40

4.3.3 Batch Processing Workloads 41

This chapter describes the problem we address with this thesis including the

state of the art and its limitations. Based on this, we introduce our approach and

its methods to tackle this problem. The chapter concludes with assumptions and

requirements for our methods and prototype system.

4.1 Problem and State of the Art

Runtime performance of data analytics applications is important to end users as they

expect fast results and response times. In some cases, a poor runtime performance

can even lead to negative financial consequences due to Service-Level Agreements

(SLAs) violations. Runtime performance depends on many different factors besides

increasing the amount of available resources per job. These include a precise control

of application containers and input datablocks placements, job and algorithm specific

34 4.1. Problem and State of the Art

parameters, system configurations, dataset characteristics such as its partitioning

and properties of the physical hardware as well as virtualization overhead.

Especially placement decisions can affect runtime performance, because, depend-

ing on the placement, more or less network traffic is required, which is often a major

bottleneck in distributed data analytics. Furthermore, good placement decisions can

avoid antagonistic workloads: application combination that interfere negatively with

each other as well as many concurrent operations on the shared node’s resources.

Especially the latter can decrease the performance of applications, because the nodes

resources can become overutilized and tasks executed on these nodes are likely to

become a straggler. This, for instance, is the case when a node hosts multiple con-

tainers that require the same resource simultaneously, because containers are often

executed without strict resource isolation in state of the art resource management

systems. Another advantages is that a job’s runtime performance can be optimized

by good container and datablock placements without changing the application itself.

Data analytics workloads are diverse and include different types of batch and

stream processing. This is because state of the art resource manager and storage

systems are application-agnostic and thus, allow to run different frameworks and

applications onto shared platforms. Furthermore, modern dataflow frameworks like

Flink and Spark provide a unified engine for batch and stream processing including

libraries for machine learning and graph processing. As a consequence, optimizing

the runtime is difficult, as workloads are diverse. However, runtime performance

optimizations based on container and datablock placement decisions are applicable

to a broader range of jobs and require less application-specific and fine-grained

configuration effort.

Furthermore, most state of the art systems such as HDFS and YARN leave some

optimization opportunities out of account by placing all datablocks and containers

with the same logic and without taking application-specific characteristics into

consideration. For instance, they place datablocks and containers by spreading them

on many different nodes, mainly due to provide high fault tolerance. However, when

an application’s containers is deployed in a randomly chosen and distributed cluster

share, the chance of exploring data locality is limited by the particular nodes hosting

the containers. This leads unnecessary network overhead and a worse runtime

performance, because input datablocks may need to be accessed from a remote

node, although the containers could have been placed on nodes that store parts of

Chapter 4. Problem and Concepts 35

the input data. And yet other applications, such as iterative programs, benefit from

placing containers and tasks close to each other, which reduces the amount of data

send through the network between tasks. Overall, selecting good node locations to

optimize runtime performance is difficult, as its quality depends on the application

type, available cluster resources and nodes.

In addition, a lack of support for long-term data retention exists. Besides the

large amount of data that needs to be accessed and processed quickly, a lot of

data exists that is less frequently accessed. However, this data is still valuable to

organizations and thus, needs to be stored safely and reliably for a long period of

time. For instance, eBay [125] stores hundreds of petabytes of data and analytics

results long-term using a HDFS-based automated tiered archive storage. This results

not only in more data volume that needs to be archived. Moreover, ensuring its

integrity, validity, and provenance becomes an important, but also a difficult task,

for instance, proving that a file stored a long time ago has not been altered without

notice and, if it did, to track when it has been changed by whom.

4.2 Dynamic Data and Container Placement Approach

This section introduces the approach of this thesis to improve runtime performance

of diverse data analytics workloads and to improve data retention by automatically

selecting an appropriate placement strategy. First, an overview of the approach is

given. Afterwards, the major components and methods are described in detail.

4.2.1 Solution Overview

A major goal of this thesis is to optimize runtime performance of data analytics

applications in terms of its completion time. Therefore, its containers and input

datablocks require precise control of their placement. However, different placement

strategies can affect the runtime of a job significantly. For instance, depending on

the application it can be beneficial to colocate or separate datablocks and containers

across groups of nodes. Besides performance, long-term data retention is important

to protect data, in case disaster or disruption occurs. Therefore, we argue that

data analytics platforms should be improved with a dynamic resource and data

36 4.2. Dynamic Data and Container Placement Approach

management system together with a higher degree of automation. This system

should select an individual data and container placement strategy for each upcoming

file and job, independently of the job’s framework and type of application or file. It

should select an appropriate strategy automatically based on data provided by the

platform itself to decrease user intervention. Platform data includes job statistics of

previous runs, available cluster utilization, datablock locations and dependencies

between jobs and datasets.

Figure 4.1 gives an overview of our approach. The data analytics platform has

two different user entry points, in which the datablock and container placement is

triggered: One when a user or other application uploads or modifies a files. And

another one, when a user or other application submits a job to run a data analysis

task. Instead of executing a centralized placement algorithm, in our approach, a

system for dynamic data and resource management receives this as input, before

the actual datablock or container placement takes place. The green boxes present

new placement methods and components designed in this thesis. Also, these are the

major contributions of this thesis and will be discussed in the respective chapters in

detail, as indicated in the figure. The blue boxes present monitoring and management

components that we developed to monitor the underlying infrastructure and used as

input to calculate appropriate placement decisions.

Data Analytics Infrastructure

Dynamic Data and Resource Management

Placement

Strategy Selection

Monitoring &

Management

Cluster

Monitoring

Historical

Workload

Data

Insertion

Job

Submission

Colocation
Network-

Aware

Long-Term

Retention Metadata

Management
Data Block

Placement

Container

Placement

Metadata

Placement

Strategy

Repository

New Placement

Methods

Monitoring &

Management

Existing

Infrastructure

Chapter

Reference

Platform

Extensions

Figure 4.1: Dynamic datablock and container placement strategy selection to im-
prove runtime performance and data retention in data analytics platforms.

The environment in which the approach operates is shown in Figure 4.2. Many

nodes together form the processing and storage infrastructure. To be more precise,

containers running on the worker nodes provide data analytics jobs a virtual environ-

Chapter 4. Problem and Concepts 37

ment for their tasks. Datasets are stored in a distributed file system, which splits the

dataset into series of replicated datablocks across the nodes. Both are colocated to

allow local data access. Furthermore, a monitor client collects resource utilization

metrics per jobs on container level. All worker nodes are organized in racks with

a hierarchical network topology. In addition, the infrastructure is integrated with

a blockchain network, which provides an immutable data storage. We use it for

storing metadata of what is happening in terms of changes to the datasets stored in

the distributed file system.

Data Analytics Infrastructure

Monitoring

Containers

Datablocks

Blockchain

network

Worker Worker Worker Worker

Dynamic Data and Resource

Management SystemData insertion

Job submission

Job and cluster utilization statistics

Miner

Placement Decisions

A dataflow job running in containers Input datablocks of a dataflow job

Hierarchical network topology

Monitor

Client

Monitor

Client

Monitor

Client

Monitor

Client

Monitor

Client

Blockchain Merkl Tree structure

Figure 4.2: Overview of the environment in which the dynamic data and resource
management approach operates.

4.2.2 Methods and Components Description

The proposed system consists of a Strategy Selection that shall automatically select

a matching datablock or container placement strategy for each upcoming file or job

from a repository of pre-defined strategies. The approach is shown in Figure 4.3.

The focus of this thesis is to explore new placement strategies. Therefore, a matching

between a both is currently done manually defined by a user. However, to reduce

38 4.2. Dynamic Data and Container Placement Approach

user interventions and improve automation, the system is supposed to automatically

select the strategy based on historical data and machine-learning techniques. As

proof of concept, our approach consists of, but is not limited to, three different

placement strategies to choose from: Colocation, Network-Aware and Long-Term

Retention, which are described as follows.

Data Insertion

Placement Strategy Selection

Job Submission

Clicklog-082018.csv

Orders-072018.csv

TPC H Query 3

KMeans Clustering

High Distribution

CoLoc

Network Aware

Data Analytics

Infrastructure

Known Jobs and Datasets
Placement Strategies

Figure 4.3: Overview of the placement strategy selection component.

Colocation is a datablock and container placement strategy that colocates both

on a pre-selected set or subset of nodes. This strategy is mainly suitable for data-

intensive recurring batch jobs. For this class of jobs it is possible to know in

advance related files that are processed jointly by an upcoming job. In particular,

the approach consists of a two-phase scheduler with a data placement and container

placement phase. The data placement pro-actively determines on how many nodes

and which particular nodes the corresponding datablocks of the file should be placed.

Furthermore, it partitions the datablocks in a manner to reduce load imbalance and

data skew. For this, it takes previous runs of that job, the current cluster utilization,

dataset size, and other upcoming jobs into account. The container placement

automatically determines the nodes storing most of the colocated input datablocks

and places its container on these nodes. By this, distributed dataflow systems

internally schedule tasks on local input splits of the data and reduce partitioning

costs for several dataflow operations.

Network-Aware is a container placement strategy based on network distances

between an application’s input datablocks and their possible container locations.

Furthermore, it takes into account that containers are executed with no strict resource

isolation and thus, compete for the shared node resources such as CPU, disk, and

network I/O. In particular, the strategy is based on a cost function that defines

data locality, network distances and resource isolation in a weight cost function.

Depending on the job, different weights can be beneficial. I/O-intensive jobs, for

instance, tend to gain more performance advantage when their execution containers

Chapter 4. Problem and Concepts 39

are placed close to the input data, instead of placing them on a small group of

nodes. In combination with job profiles and classification, the system can learn

good weights automatically based on previous runs. In comparison to colocation,

this strategy works for recurring and non-recurring jobs, where data is already stored

without colocation.

Long-Term Data Retention is a strategy to improve the retention of stored data. Its

approach is to detect and collect metadata of file changes and place them immutably

on a blockchain network using dedicated smart contracts. By this, it is possible

to prove that a file stored a long time ago in a shared storage system has not been

changed without notification. Or, if it did, track when it was changed by whom.

As the smart contracts are executed on the blockchain network, it is not possible

to alter the stored data and the functionality of the data retention without access

to the smart contract. Moreover, it explores blockchain network capabilities and

operates autonomously without the need of a central controlling and trust entity.

One method to automatically annotate files for data retention is through dedicated

policies. For instance, based on their age and usage frequency, similar to policies

used in automated tiered storages that assign data to a specific data tier. Putting both

together provides a data retention approach with less user intervention needed.

Monitoring and Management features are required to gather various information

for selecting and adjusting the most appropriate data and container placement

strategy. Resource utilization metrics of executed jobs are recorded and stored

in a central repository. These are required for job classification, for instance to

determine if a job is I/O-intensive. Moreover, all file operations and job submissions

are monitored. These are required for identifying files that are related and often

processed jointly as well as for detecting changes that will affect data retention.

Additionally, the current topology and available bandwidth is monitored. Also, we

require the node locations of all datablocks, which we collect from the distributed

file system. The component also stores user-defined information about recurring

jobs and annotated files for data retention.

40 4.3. Assumptions and Requirements

4.3 Assumptions and Requirements

Before describing the placement methods in detail, this section discusses assump-

tions and requirements to our approach. Shared data analytics clusters, distributed

dataflow systems and batch processing workloads are assumed in this thesis. Obser-

vations leading to these three assumptions are introduced as follows.

4.3.1 Shared Data Analytics Clusters

We make two assumptions for the data analytics infrastructure. First, data analytics

applications are executed on commodity clusters, in which compute resources are

virtualized in containers and the input datasets are stored colocated in series of

replicated datablocks. Second, these clusters are shared by multiple users and their

applications and datasets. Thus, available resources are shared and users have more

freedom to choose the most appropriate frameworks for their analysis task at hand.

It is important to emphasize that for scheduling decisions, we assume full control

over datablock placement and container placement. This is because both have large

impact on the throughput and runtime performance of single applications as well as

the entire platform.

4.3.2 Distributed Dataflow Systems

We assume workloads that consist of applications running on distributed dataflow

systems. One reason for that is that they allow to execute a diverse mix of appli-

cations such as batch, stream, graph and iterative processing. We do not assume a

specific distributed dataflow system. However, we assume that they are executed

and integrated with a resource management system and a distributed file system.

Moreover, we do not change the source code of the dataflow system itself. This is

because our optimizations are based on the container and datablock placement level

of the storage and resource management system to support a broad range of analytic

frameworks and applications.

Chapter 4. Problem and Concepts 41

4.3.3 Batch Processing Workloads

We assume only batch analytic jobs as workload, which make a large portion in

production clusters [37] and are executed in short-lived containers in the order

of minutes [97]. Batch processing contains many different types of applications

with various characteristics, such as ad-hoc queries, graph, iterative, and machine

learning jobs. In this thesis, we do not assume long-lived allocations such as stream

processing applications.

Moreover, we assume that some batch jobs are recurring jobs. In these jobs, the

execution logic of a job stays the same for every execution, but the input data is

changing for every run. Recurring jobs are for instance triggered when new data

becomes available or at a discrete time for further analysis, e.g. hourly or nightly

batch jobs. For these jobs, it is possible to adjust the selected placement strategy and

its parameters to increase runtime performance in a more fine-grained way based on

previous execution.

Studies of productive clusters show that a large number of jobs are recurring

jobs [16, 17, 126, 127]. In numbers, Microsoft engineers reported that up to 60% of

a 2700-node cluster are recurring batch jobs [17]. Another productive cluster study

from Microsoft’s Bing service shows that up to 40% are recurring [16].

Chapter 5: Data and Container

Colocation Placement

Contents

5.1 Colocating Related Data and Containers 44

5.1.1 Optimization Goals 44

5.1.2 Two-Stage Data and Container Placement 45

5.2 Placement Workflow and Components Overview 48

5.3 Related Data and Container Colocation Enforcement . . . 50

5.3.1 Definitions and Parameters 50

5.3.2 Placement Process and Algorithms 51

5.4 Evaluation . 56

5.4.1 Cluster Setup . 56

5.4.2 Jobs and Workload Description 56

5.4.3 Standalone Job Colocation Results 58

5.4.4 Multi-Job Colocation Results 60

This chapter presents CoLoc [128], a data and container placement method

for optimizing runtime performance of batch applications in shared data analytics

platforms. It focuses on recurring jobs, for which it is possible to know a priori

which files are processed together. The method aims to place related datablocks and

execution containers on the same group of nodes. As a consequence, it increases

performance of some dataflow applications in comparison to using Hadoop’s default

placement strategies by a) reading more input data from local disks and b) having

more local inter-process communication between containers, tasks and iterations.

44 5.1. Colocating Related Data and Containers

The chapter is structured as follows. First, it describes the concept of CoLoc’s related

data and container colocation placement. Then it presents the system overview and

placement workflow. Afterwards, the placement algorithms are discussed. Finally,

it presents an evaluation based on different workload scenarios and applications

from various domains using Flink as reference distributed dataflow system.

5.1 Colocating Related Data and Containers

We identified two possibilities to optimize job completion time without using more

resources that are presented first in this section. The two-stage placement strategy

that make use of these two optimization findings is introduced afterwards.

5.1.1 Optimization Goals

CoLoc’s goal is to optimize runtime performance of data analytics batch jobs by

improving the interaction between datablock and container placement. It does this

by optimizing the usage of given cluster resources without allocating more compute

resources per job. We identified two possibilities of improving runtime performance

this way, by increasing data locality and by avoiding unnecessary data shuffling

over the network.

The first optimization possibility is related to the decreasing chance of exploring

data locality, due to the container virtualization introduced by the resource manage-

ment system. When frameworks and jobs are deployed on such a system, its tasks

are running in distributed containers that are colocated with the storage nodes of a

distributed file system. Internally, these frameworks optimize local data access by

scheduling its tasks on nodes storing partitions of the input data. However, the nodes,

which host the containers for task processing, are determined before the framework

is deployed by a resource manager. Thus, the internal scheduling possibilities of

frameworks exploiting data locality are limited by the set of nodes chosen before.

For instance, when a job gets a cluster share of eight nodes in a cluster with 128

nodes in total, the framework is not able to schedule its tasks on the 120 nodes

outside of its allocated share, and thus, can’t access a lot of datablocks locally.

Therefore, runtime performance can be improved when containers are scheduled

Chapter 5. Data and Container Colocation Placement 45

directly on nodes storing datablocks of the job’s input data, as the task schedulers

of the frameworks can achieve a higher degree of data locality.

The second optimization possibility is related to the increasing data transfer

between tasks over the network, when they run in containers highly distributed

across different nodes. To be more precise, some dataflow operations can be very

network-intensive. For instance, operators for group-based aggregations or joining

two dataflows require all elements of the same group or with the identical join

key to be available at the same task instance. Therefore, if the data is not already

partitioned by these keys, the dataflow needs to be shuffled. In this case, all elements

with the same key need to be moved to the same task instance, leading to all-to-all

communication. The more the predecessor tasks are distributed across different

nodes, the more data need to be shuffled across the network. Furthermore, iterative

applications often tend to be network-intensive [129]. This is because the network is

burdened by exchanging intermediate results between tasks and iterations, which are

executed in data-parallel and require synchronization after each finished iteration.

Placing tasks and containers of a job on the same set of nodes can reduce the network

demand and optimize the job execution time. This is because inter-process transfer

rates are higher compared to network exchange.

5.1.2 Two-Stage Data and Container Placement

We designed a two-stage placement strategy that makes use of these two optimization

findings. The strategy consists of a data colocation phase and a container colocation

placement phase that work closely together.

Data Colocation Stage

The strategy of data colocation is to actively place related files and their correspond-

ing datablocks on the same set or subset of nodes, instead of highly distributing

them among all available nodes. Furthermore, the selected nodes are prioritized

for hosting job containers that process these datablocks. Besides improving the

chance of local data access, data colocation enables to save network bandwidth by

performing some parts of dataflow operations like joins locally. This is because

involved datablocks are placed conjunctively and thus, such operations are partly

46 5.1. Colocating Related Data and Containers

performed locally with less data-shuffling across the network. However, a container

that executes the operation later needs to be placed on this node as well.

Figure 5.1 explains the method of data colocation by an example. It shows a

cluster running a distributed file system consisting of five nodes. It stores multiple

files, by which file A and file B are tagged as related. Both files consist of a

replication factor of three. File A consists of two datablocks (A1, A2) and file B

consists of three datablocks (B1, B2, B3). The main idea is to place the datablocks

of both files on the same group of nodes. First, file A was loaded into the system and

the strategy places their datablocks on the first and second node, except one block

that is placed on a random chosen node to increase fault tolerance. Second, file B

was loaded into the system. This time, it knows that file A and B are related, and

partitions file B’s datablocks evenly on the same set of data nodes. The algorithms to

determine the node group size and its explicit nodes are described in Section 5.3.2.

Block 1

Block 2

File A

Block 1

Block 2

File B

Block 3

A data analytic

cluster with five

nodes.

A1 A2 A1 A2

E2 H1

B1 E3 F2

B1 B2 B3 B1 B2 B3

O1 O2 C1 C2

O2 A2

D2 D1 E1

C3 B3

A1 O3

F1 B2 B3

D1

Related Data and Container

File A File B

Figure 5.1: Illustrating the strategy of data colocation with two related files on a
exemplary five nodes cluster.

Container Colocation Stage

The strategy of container colocation is to place a job’s containers on the same set or

subset of nodes storing the input data. Consequently, distributed data processing

frameworks running in that containers are able to explore a higher degree of data

locality, because they have direct disk access to the input datablocks. The nodes on

which the containers are scheduled are determined and prioritized for job execution

by the previous data colocation strategy. In addition, multiple containers of a job

Chapter 5. Data and Container Colocation Placement 47

are colocated on these nodes, so that intermediate results between stages are more

likely to be exchanged via inter-process communication. One challenge at this

point is not to place too many containers of the same job on the pre-selected group

of nodes. This is because containers in resource management systems for data

analytics such as YARN are executed with weak resource isolation. Furthermore,

many containers have the same resource utilization profile, as its task inside execute

the same data-parallel task. For instance, when performing a complex computation

in a map function, CPU is likely the dominant resource. And when multiple of such

containers simultaneously try to utilize the chosen nodes CPU or other resources,

this can cause a decrease of performance. Therefore, it is important to maintain

balance and not overload nodes with containers of the same job.

Figure 5.2 explains the method of container colocation by an example. It extends

the related data colocation example of Figure 5.1 with a job A that uses file A and

file B as input. The idea behind container colocation is to place the containers on the

same set or subset of nodes, where the input data is residing in. Consequently, in the

example the four containers (C1, C2, C3, C4) of Job A are distributed randomly on

the first and second node. Internally, the nodes were reserved until a job with File

A or File B was scheduled or no other cluster resource were available for cluster

execution. In the case when the first and second node are busy, the scheduler waits

a period of time or schedules the execution on other nodes. The phases’ algorithms

are described in detail in Section 5.3.2.

Block 1

Block 2

File A

Block 1

Block 2

File B

Block 3

Cont. 1

Cont. 2

Job A

Cont. 3

Related Data and Container

Job A File A File B

Cont. 4

A data analytic

cluster with five

nodes.

A1 A2 A1 A2

E2 H1

B1 E3 F2

B1 B2 B3 B1 B2 B3

O1 O2 C1 C2

O2 A2

D2 D1 E1

C3 B3

A1 O3

F1 B2 B3

D1

C1 C2 C3 C4

Figure 5.2: Illustrating the method of container colocation with a job accessing two
related files on an exemplary five nodes cluster.

48 5.2. Placement Workflow and Components Overview

5.2 Placement Workflow and Components Overview

CoLoc is a placement system for data and container colocation enforcement. It is

integrated with Hadoop’s YARN and HDFS as well as Freamon [130]. Figure 5.3

gives an overview of CoLoc and its integration with the mentioned data analytics

systems. The rest of this section describes CoLoc’s components and its workflow.

Freamon

Monitoring

Master

HDFS

Name Node

YARN

Resource

Manager

Colocation

Data Block

Placement Policy

Colocation

Container

Placement Policy

Job Submission

Data Insertion Colocation

Entry

Placement Options

Resource and Job Monitoring

Colocation

Placement

Decision Maker

Slave Node

HDFS

Data Node

YARN

Node Manager

Slave Node

HDFS

Data Node

YARN

Node Manager

…

Freamon

Client

Freamon

Client

CoLoc

Freamon

YARN

HDFS

Node

Figure 5.3: System overview and integration of CoLoc into Hadoop.

Name Node and Data Node are components of HDFS. The Name Node is

responsible for metadata management and datablock placement. This includes

maintaining the directory tree of all files in the file system and deciding and tracking

where across the available nodes the file is kept. The data placement decision is

made by a pluggable data placement policy, which we used to integrate CoLoc. The

file itself is stored on the Data Node, which serves as a pure data storage.

Resource Manager and Node Manager are components of YARN. The Resource

Manager is the central arbitrator of all compute resources and is responsible for

scheduling jobs and containers on available resources. Similar to the data placement,

container placement decisions are made by a placement policy, which we used to

integrate CoLoc. A Node Manager running per-node is responsible for monitoring

and managing containers. Inside the containers, the data analytics jobs are executed.

Chapter 5. Data and Container Colocation Placement 49

The Colocation Placement Decision Maker is the core component of CoLoc.

It determines and provides scheduling options as guideline to the datablock and

container placement policy. It is implemented in Java and consists of a REST

API created in Spark1. Users and applications define via this API, which files are

related and processed jointly by an upcoming job. The decision maker uses this

information to determine on how many nodes and on which nodes related files and

their datablocks should be placed based on the current cluster utilization and other

files and job dependencies. Afterwards, it reserves the resources on these nodes for

a matching job for a period of time and as long as the remaining cluster resources

can cover the current workload.

Colocation Container Placement Policy is responsible for container placement.

Similar to the datablock policy, it communicates with the Colocation Placement

Decision Maker and checks before the container deployment and job execution

starts, if related colocation entries exist. If this is the case, it places the containers

on the provided colocated set of nodes. When no entry exists, the default container

scheduling policy is used with prioritization on nodes that are not reserved for

an upcoming job. Also, the component is implemented as a pluggable container

scheduler, thus it can be used without any YARN source code modification.

Freamon2 is the monitoring system that we developed to record resource utiliza-

tion statistics for the containers of distributed applications. In addition, it provides

live data about file changes, submitted applications, block changes, block locations

as well as the current cluster utilization. The Colocation Placement Decision Maker

uses the resource metrics to determine an appropriate set of nodes. It is implemented

in Scala. Akka3 is used for asynchronous message parsing of resource utilization

metrics between the monitoring clients and their master. For collecting resource

utilization statistics per node and container different libraries are used. The virtual

file system /proc is used for recording CPU and memory utilization per container

process. Nethogs4 for recording the network utilization per container process. Pid-

Stat5 for recording the disk and CPU utilization per container process. Dstat6, to

capture the overall resource utilization of a worker node. Moreover, Freamon uses

1https://github.com/perwendel/spark , accessed 2018-08-06.
2https://github.com/citlab/freamon , accessed 2018-08-06.
3https://github.com/akka/akka , accessed 2018-08-06.
4https://github.com/raboof/nethogs , accessed 2018-08-06.
5https://github.com/sysstat/sysstat , accessed 2018-08-06.
6http://dag.wiee.rs/home-made/dstat , accessed 2018-08-06.

https://github.com/perwendel/spark
https://github.com/citlab/freamon
https://github.com/akka/akka
https://github.com/raboof/nethogs
https://github.com/sysstat/sysstat
http://dag.wiee.rs/home-made/dstat

50 5.3. Related Data and Container Colocation Enforcement

Hadoop7 REST API to get current cluster utilization metrics, application statuses,

container locations, as well as data node information and datablock locations. All

historical data is stored in MonetDB8, a time series based database.

5.3 Related Data and Container Colocation Enforcement

This chapter introduces the data and container placement strategy in detail. First,

parameters and definitions that are necessary for the designed placement process

and its algorithms are introduced, which are presented afterwards.

5.3.1 Definitions and Parameters

The general purpose of the data colocation stage is to colocate datablocks of related

files that serve as input for a recurring job. In a distributed file system, a file f

is stored in series of datablocks dbi. Datablocks have a fixed datablock size dbs.

Thus, the number of datablocks dbn per file is determined by dbn = ⌈ f s
dbs
⌉, where

f s is the total file size. Additionally, all datablocks are replicated with a datablock

replication factor dbr across all available storage nodes. Both variables, dbs and

dbr are user-defined per file. Formally, a file is defined as: f : ∑
dbn
i=1 ∑

dbr
j=1(db

i, j
,).

For recurring jobs, it is possible to know the input files and number of execution

containers a priori. With this motivation, CoLoc allows users to define two different

colocation entries ci with the following characteristics. File Colocation ci : { f li,ns},

where f li: { f1, f2, ... fn} is a list of related files and ns is the minimum number of

nodes, i.e. node size, on which all datablocks of the ci entry will be distributed.

Folder Path Colocation ci : { f pi,ns}, where f pi is a unique folder path containing

files f li that are stored under the path. These files are defined as related without

knowing in advance how many files will be stored under this path.

A job j describes a data analytics application. It consists of a unique job sig-

nature jsig, for instance the job’s jar signature name. Additionally, a job has

multiple user-defined configuration parameters. These parameters are often used

as reference to the job’s input file paths f ii and output file paths f oi. Other

7https://hadoop.apache.org/docs/stable , accessed 2018-08-06.
8https://github.com/MonetDB/MonetDB , accessed 2018-08-06.

https://hadoop.apache.org/docs/stable
https://github.com/MonetDB/MonetDB

Chapter 5. Data and Container Colocation Placement 51

parameters jvar are often application and algorithm related such as thresholds,

number of iterations, or keywords for filtering. Formally a job is defined as:

j : jsig,∑
f in
i=1(f ii,),∑

f on
i=1(f oi,), jvar.

A job resource allocation jra describes the amount of resources a job gets for its

execution. It consists of the number of containers cn and its resources per container

in terms of memory cmem and CPU cores ccpu. The relation between a specific

job and a job resource allocation is given by the job signature jsig. A job resource

allocation is specified by the user when submitting a job. Formally a resource

allocation is defined as follows: jra : jsig,cn,cmem,ccpu.

A colocation description cd connects a job j and its input files f in with colocation

nodes ni, on which all related datablocks and containers of the colocation description

entry will be placed with priority. The nodes size ns determines the maximum

number of nodes. The colocation nodes n1..nns are determined by CoLoc based on

the cluster utilization and existing colocation descriptions. An exp timer defines

how long the nodes that are prioritized in the system, after all files are uploaded to

the storage system. During that time, other jobs are scheduled on other nodes, if

enough cluster resources are available. Formally a colocation description is defined

as follows: cd : j,∑ns
i=1(ni,),exp.

5.3.2 Placement Process and Algorithms

This section gives an overview of the algorithm and process, which is shown in

Figure 5.4. First, before the data of a job is load into the system, a colocation

description needs to be set. Afterwards, the nodes on which the data and containers

should be colocated are determined and prioritized for this job. Next, the data and

containers are placed with priorization on this group of nodes. Finally, after job

execution, the prioritized nodes are released.

7. Release

Nodes

2. Size

Selection

3. Nodes

Selection

6. Job

Execution

4. Data Block

Placement

5. Container

Placement

1.Colocation

Description

Figure 5.4: CoLocs Scheduling Process in a Process Diagram.

52 5.3. Related Data and Container Colocation Enforcement

1. Colocation Description Definition

In order to use CoLoc, a colocation description must be specified by a user or

another application. It contains the job signature jsig of the upcoming job, all its

input files ∑(f ii), and an expiration timer exp. This description must be set before

the datablock and container placement starts. Moreover, ∑(f ii) are placeholders for

files that will be uploaded later into the file system. When all files are uploaded, the

nodes are prioritized for related containers until the timer exp expires. CoLoc is

primarily designed for recurring jobs, for which the input files and executing jobs

can be known in advance. When no description entry exists, the default datablock

and container scheduling takes place.

2. Determine the Size for a Job Description

The goal of this algorithm step is to determine a favorable node size ns, on which

all upcoming datablocks and containers that are linked with a colocation entry cd

should be placed. Algorithm 1 describes the procedure in more detail. The node

size ns is automatically determined and adjusted, when one of the linked files of a

colocation entry is loaded into the file system. Therefore, every time a new file n f is

loaded into the system, all colocation description entries cds are selected based on

its file name, where n f matches with one of the colocation description files cds. f in.

Afterwards, for every matching cd two cases are traversed to determine a good

initial node size ns for upcoming data and container placement.

1. The node size ns is set or adjusted to a higher value of an existing colocation

description cd.ns. The cd.ns parameter can either be set by a previous exe-

cution of step two or by the user manually. An adjustment can take place,

because a file can be part of multiple cd. In this case, the value with the

highest cd.ns is selected.

2. Additionally, the ns parameter can be calculated by Freamon based on previ-

ous job runs. In this case, Freamon.average() determines the average number

of containers of all previous runs of job cd. jsig that also used n f as an input

parameter and whose total size of n f is within the threshold range of n f .th,

which is important because the scale out behavior depends on the dataset size.

Afterwards, the median number of containers c of these jobs are returned. In

Chapter 5. Data and Container Colocation Placement 53

order to calculate the node size ns for this case, we use c
nm.max

, where nm.max

is the maximum possible number of containers per node.

Algorithm 1 Node Size Selection Algorithm
1: function ONSIZESELECTION(n f)
2: ns← 0
3: cds←∀cd, where n f ∈ cd. f in ⊲ get all matching coloc descriptions
4: for each cd ∈ cds do

5: if cd.ns > ns then

6: Adjust node size to a higher cd value
7: ns← cd.ns

8: else

9: Select node size based on historical average
10: c← 0
11: c← Freamon.average(cd.sig,n f .size, th)
12: if c 6= 0 then

13: ns← c
nm.max

⊲ transform container size to node size

14: return ns

3. Determine the Node Locations of a Job Description

In this algorithm step, specific node locations are determined, on which the data and

containers of a colocation entry cd are placed. The procedure of the algorithm is

shown in Algorithm 2. Similar to the previous step for determining the node size,

this step is executed, when a new file n f is placed and a cd exists for that file. The

approach is to first select all nodes cd.nodes that already store datablocks of a file

that are related to n f . If these nodes are less than the determined node size, the

favored node collection f n is filled up with not already used random nodes rn, until

the size of f n equals to the requested size.

4. Datablock Placement

The purpose of the data colocation stage is to colocate datablocks of related files.

The algorithm is shown in Algorithm 3. First, when a new file n f is loaded into

the file system, the favorable node locations f n for that file are determined. This is

done based on the previous algorithms. When any colocation description containing

n f as input exists, all datablocks and its replicas of that files are distributed on the

54 5.3. Related Data and Container Colocation Enforcement

Algorithm 2 Node Location Selection Algorithm
1: function ONNODESELECTION(n f)
2: cds←∀cd, where n f ∈ cd. f in ⊲ get all matching coloc descriptions
3: f n← /0

4: for each cd ∈ cds do

5: Set or adjust node size
6: cd.ns← ONSIZESELECTION(n f)
7: if cd.nodes 6= /0 then

8: Set favorable nodes with known nodes
9: f n.add(cd.nodes)

10: while cd.ns > f n.size do

11: Fill up favorable nodes with random nodes
12: rn← nodes.random

13: if n /∈ f n then

14: f n.add(n)
return f n

selected nodes f n. Thereby, for every upcoming datablock, the node is chosen that

currently stores the minimum number of n f datablocks. Expect one replica for

each datablock is stored on a random node, which is not in the favorable collection

for improving fault tolerance. We distributed the datablocks on the select nodes

uniformly to improve the chance to read datablocks in parallel. At the end of the

algorithm, it is validated if all files of a colocation description are stored. If this is

the case, the nodes are prioritized job container execution for cd.exp time value.

Algorithm 3 Datablock Placement Algorithm
1: function ONFILEPLACEMENT(curFile)
2: f n← NODESELECTION(nf)
3: if f n 6= /0 then

4: for each dbi, j ∈ n f do

5: if j < rep then

6: n← f nmindb∈n f

7: PLACE(dbi, j, f n.ran)
8: else

9: r← randomNode /∈ f nodes

10: PLACE(dbi, j,r)

11: if all cd. f in exist then

12: RESERVE(cd,cd.exp)

13: else

Use HDFS default block placement scheduler

Chapter 5. Data and Container Colocation Placement 55

5. Container Colocation Placement

The aim of the container colocation algorithm is to place a job’s containers on

the set or subset of nodes, where most blocks of its input data are already stored.

The algorithm is shown in Algorithm 4. When a job is submitted to the cluster,

CoLoc first parses the input file paths of the job submission job. f in. Afterwards,

it is checked whether a colocation description for its job’s input data exists based

on the previous described Node Location Selection Algorithm. On success, the

nodes are stored as favorable nodes f n. Afterwards, the container scheduler receive

these nodes as preferences and places containers on these nodes. It is important to

mention that the approach is best effort, so if not enough resources are available

on these nodes, the remaining containers are distributed randomly across other

available nodes with sufficient resources. Additionally, if the favorable nodes return

an empty set, the containers will be placed with the default scheduling approach.

Algorithm 4 Container Placement Algorithm
1: function ONCONTAINERPLACEMENT(job)
2: f n← NODESELECTION(job.fi)
3: for each c ∈ job do

4: if f n.size > 0 then

5: n← f .ran

6: if n has enough resources then

7: PLACE(c,n)
8: else

9: f n.rm(n)

10: else

Use YARN default scheduling behavior on non-reserved nodes

6. Job Execution and 7. Release Nodes

Finally, a job’s container is deployed and the job execution starts. After the execution

is finished and the containers are released, the colocation node reservations are

released as well. By this, they are not related anymore and their datablocks locations

can change again, for instance, when the data is not balanced across all nodes,

because of adding or removing nodes from the cluster.

56 5.4. Evaluation

5.4 Evaluation

We evaluated CoLoc on a 64 node worker commodity cluster in a standalone and

multi-job scenario. The evaluation is structured as follows: First, the cluster setup

and experimental workloads are described in detail, which consists of standardized

benchmarks and productive data analytics jobs. Afterwards, the results in terms of

runtime performance of the workload scenarios are presented.

5.4.1 Cluster Setup

All experiments were done using a 64 worker node cluster. Each node is equipped

with a quad-core Intel Xeon CPU E3-1230 V2 3.30GHz, 16 GB RAM, and three 1

TB disks with 7200RPM organized in a RAID-0. All nodes are connected through

a single switch with a 1 Gigabit Ethernet connection. Each node runs Linux (kernel

version 3.10.0), Java 1.8.0, Flink 0.10.1 and Hadoop 2.7.1.

One node acts as master and the other 64 as slaves. The master runs YARN’s

Resource Manager with CoLocs’ Container Placement Policy and HDFS’ Name

Node with CoLoc’s Datablock Placement Policy. This node also runs CoLoc’s

Placement Decision Maker for calculating and providing placement options to both

components. All slaves are responsible for workload execution and each node runs

YARN’s Node Managers and HDFS’s Data Nodes. In total, the cluster provides

896 GB memory and 256 cores, as we configured YARN’s Node Manager to allocate

14 GB memory and 4 cores per node. We chose Flink as dataflow framework and

use 3 GB memory and 2 task slots per Flink’s Task Manager container as well as

2 GB per Application Master container, which runs Flink’s Job Manager.

5.4.2 Jobs and Workload Description

The workloads of our evaluation consists of standardized benchmarks and pro-

ductively used data analytics algorithms. The dataset size ranges from 8 GB to

250 GB per job. Furthermore, the jobs are diverse including relational database

queries, machine-learning, and graph processing jobs. All jobs are implemented

and executed in Flink. Table 5.1 gives an overview of the workload jobs.

Chapter 5. Data and Container Colocation Placement 57

Application Type Parameters Dataset Size

TPC-H
Query 3

Relational
Database Query

- 250 GB

TPC-H
Query 10

Relational
Database Query

- 250 GB

K-Means
Clustering

Machine
Learning

8 clusters,
10 iterations

8 GB

Connected
Components

Graph
Processing

5 connectivity 25 GB

Table 5.1: Overview of the benchmark jobs used for evaluating CoLoc.

TPC-H [131] defines standardized benchmark queries for databases and transac-

tion processing systems. We chose the TPC Benchmark suite H (TPC-H)

Query 3 and 10. Both are business oriented ad-hoc analytical queries that

examine large volumes of data. For each job, we generated a unique input

dataset using the official TPC-H data generator.

K-Means Clustering [132] is a compute intensive data processing algorithm, which

is used in the area of Machine Learning. It is an iterative algorithm that groups

a large set of multi-dimensional data points into k distinct clusters without

supervision. For our evaluation, we generated eight random fixed centers and

600 million points, resulting in approximately 8 GB input data.

Connected Components [133] is an iterative graph algorithm that identifies the

maximum cardinality sets of vertices that can reach each other in an undirected

graph. We used a label propagation-based implementation due to its better

scalability and parallelization capability [134]. For our evaluation, we used a

Twitter dataset with around 25 GB input data [135].

We designed a benchmark and performance evaluation tool to define, execute,

and analyze cluster workloads called YARN Workload Runner (YWR)9. It allows

to reproducibly measure and compare the performance and resource utilizations

of CoLoc. The tool consists of two configuration files. A job configuration file

allows to define different jobs and their parameters, and a schedule configuration

9https://github.com/citlab/yarn-workload-runner, , accessed 2018-08-06.

https://github.com/citlab/yarn-workload-runner

58 5.4. Evaluation

file allows a time-based schedule of these jobs based on their start time. At the end

of an experiment, all results are stored in a central database for further analyzing.

5.4.3 Standalone Job Colocation Results

This section describes the results of evaluating CoLoc when execution a job in

standalone. By this, all resources are exclusively available to a single job and no

others are running on the cluster at the same time.

Figure 5.5 compares CoLoc with Hadoop’s default datablock and container

placement strategies. We report the execution times of a TPC-H Query 3 executed in

32 containers with a varying dataset size ranging from 125 GB to 1000 GB. The blue

bar reports the job completion time when using Hadoop’s default placement. The

orange bar represents the job completion time when using CoLoc. The minimum

number of nodes ns per colocation entry was set to eight. Thus, all data and

containers of the colocated TPC-H job were placed on eight nodes in this experiment

evaluation. Each of the experiments was done seven times. We report the median

execution time. The results show that CoLoc can decrease job completion time

between 19.51% and 31.19% depending on the input dataset size. Furthermore, the

performance increases when the volume of processed data increases.

125 250 500 1000
Input Dataset Size in Gigabytes

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
es

 in
 M

in
ut

es

-19.52%
-27.09%

-27.46%

-31.19%
Hadoop Default Placement
CoLoc Placement

Figure 5.5: Comparing CoLoc with Hadoop’s default placement strategy by running
a colocated and non-colocated TPC-H Query 3 job with varying input sizes.

Figure 5.6 reports the effects on the execution time when using 32 containers

and varying the cluster share of data nodes storing its input dataset. The number of

data nodes increased for every iteration in the range between 4 and 64. Therefore,

the data was partitioned differently for every experiment iteration, starting with a

dense distribution on a few data nodes and ending with a high data distribution on

Chapter 5. Data and Container Colocation Placement 59

many data nodes. The x-axis defines the ratio between container host nodes and

data nodes. Container host nodes are the number of nodes that host the containers.

Figure 5.6a shows the results using 8 nodes as container hosts, whereas Figure 5.6b

shows the results using 16 nodes as container hosts. The y-axis reports the execution

time of a run, which was done seven times and the median time was reported.

The lowest execution times for all jobs are at a container host node and data nodes

ratio close to 1, indicated with the dotted vertical line at x = 8/8 and x = 16/16.

At this point, all containers are balanced evenly across the used data nodes and it

can be reported that the data-intensive jobs TPC-H query 3 and query 10 benefit

more from CoLoc than a CPU-intensive like K-Means. In numbers, using 8 nodes

as container hosts, TPC-H query 3’s runtime decreases 27.37% and query 10’s

runtime decreases 19.87%, whereas K-Means decreases only 7.40%. It is important

to emphasize that in a placement without CoLoc, all datablocks are scheduled on 64

data nodes. Therefore, we use this 64 data node placement case as baseline value to

compare the runtime variances when using CoLoc.

0

2

4

6

8

10

8 / 4 8 / 6 8 / 8 8 / 12 8 / 16 8 / 32 8 / 64

Jo
b

E
xe

cu
ti

on
T

im
e

in
M

in
ut

es

Container Host Node / Data Node Ratio

TPC-H Query 3
TPC-H Query 10

K-Means Clustering

(a) Using 8 Container Host Nodes

0

2

4

6

8

10

16 / 4 16 / 6 16 / 8 16 / 12 16 / 16 16 / 32 16 / 64

Jo
b

E
xe

cu
ti

on
T

im
e

in
M

in
ut

es

Container Host Node / Data Node Ratio

TPC-H Query 3
TPC-H Query 10

K-Means Clustering

(b) Using 16 Container Host Nodes

Figure 5.6: Execution times of various jobs using CoLoc with different Container
Host Node and Data Node Ratios.

Figure 5.7 shows the degree of data locality for each run. When the container

host node and data nodes ratio is close to 1, nearly all input data can be read from

a local disk. A major reason for runtime variance is when the data is distributed

on more nodes, as the chance of exploring data locality for the distributed dataflow

framework decreases. This is because more datablocks are stored on nodes that

do not host any of the job’s container. Therefore, the framework internally cannot

schedule its task on these nodes and needs to access it from remote disks.

60 5.4. Evaluation

0

0.2

0.4

0.6

0.8

1

8 / 4 8 / 6 8 / 8 8 / 12 8 / 16 8 / 32 8 / 64

D
at

a
L

oc
al

it
y

R
at

io

Container Host Node / Data Node Ratio

TPC-H Query 3
TPC-H Query 10

K-Means Clustering

(a) Using 8 Container Host Nodes

0

0.2

0.4

0.6

0.8

1

16 / 4 16 / 6 16 / 8 16 / 12 16 / 16 16 / 32 16 / 64

D
at

a
L

oc
al

it
y

R
at

io

Container Host Node / Data Node Ratio

TPC-H Query 3
TPC-H Query 10

K-Means Clustering

(b) Using 16 Container Host Nodes

Figure 5.7: Data locality ratio of the TPC-H Query 3 and 10 and K-Means clustering
on different CoLoc cluster shares.

5.4.4 Multi-Job Colocation Results

We evaluate the performance of CoLoc in a multi-job scenario, where multiple jobs

share a data analytics platform. In particular, we execute eight jobs concurrently

that allocate all available resources of the 64 node cluster. Furthermore, each job is

accessing its own dataset stored in the shared distributed file system.

The workload of this experiment consists of two K-Means clustering (KM), two

Connected Components (CC), two TPC-H Query 3 (T3), and two TPC-H Query 10

(T10) jobs. The job submission order was defined by: {T 101, KM1, CC1, T 31, T 102,

KM2, CC2, T 32}. In addition, the number of nodes ns per colocation entry was set

to eight. When the datasets were loaded into the system, CoLoc checked if the data

was tagged with a colocation entry. If this was the case, the data was colocated

and the nodes were prioritized for later processing. The described workload was

executed seven times by using YWR. We report the median of all job runs.

Figure 5.8 reports the execution times of the first multi-job benchmark. It com-

pares two workload situations. In the first scenario, the workload consists of three

colocated jobs using CoLoc, and five non-colocated jobs are scheduled with the

default Hadoop schedulers. We colocate three of the eight jobs, because in produc-

tion clusters, it is reported that around 30 % are recurring and for these jobs, it is

possible to colocate. The job’s execution times of this workload are represented

as orange bars. The three colocated jobs are represented as orange bars with black

Chapter 5. Data and Container Colocation Placement 61

vertical stripes. In the second scenario, the workload consists of the same jobs.

However, this time all are placed the default scheduling behavior of Hadoop. The

blue bars show the execution times of all jobs of this Hadoop based workload. We

compare both workload scenarios with each other.

0 1 2 3 4 5 6 7 8 9 10 11
Job Execution Time in Minutes

T10_1

KM_1

CC_1

T3_1

T10_2

KM_2

CC_2

T3_2

Jo
b

ID

10.3 min

4.39 min

5.04 min

7.33 min

10.19 min

4.56 min

5.31 min

6.19 min

9.93 min

4.96 min

6.94 min

4.41 min

4.96 min

4.0 min

8.3 min

4.48 min

Hadoop Default Placement CoLoc Placement

Figure 5.8: Job runtimes of a workload consisting of three colocated jobs and five
non-colocated jobs.

In this benchmark scenario, CoLoc reduces the execution time for colocated

jobs by average 20.63% (KM1 = 9.29%, T 102 = 20.43%, T 32 = 32.16%). The

execution time of colocating jobs decreases, because less network congestion occurs

and more data was read from local disks. Additionally, colocated jobs are running

more resource isolated with less interference in its own cluster shares. In addition,

we report that non-colocated jobs do not have any negative change on their execu-

tion time. In the experiment they even benefit by average 4.11% (T 101 = 3.63%,

CC1 = 1.47%, T 31 = 5.48%, KM22 = 3.28%, CC2 = 6.79%,) less job competition

time from CoLoc. A reason for that is that their execution containers are out of

necessity placed on a smaller group of nodes, which increases the inter-process

communication between containers. Taking all jobs into account, CoLoc decreases

total job completion time by 10.32%. Further benchmarks show that by colocating

all jobs, it is possible reduce execution time by average 34.88%.

62 5.4. Evaluation

In Figure 5.9, we execute the same job sequence with a delay of 30 seconds

after each job. We do this, because in the previous scenario, we had clear network-

intensive phases. For instance, when all jobs are in the same stage like at the

beginning, when they all start reading the data from the distributed file system. In

this delayed scenario, CoLoc decreases the average execution time of colocated

jobs by 13.69% (KM1 = 8.1%, T 102 = 13.96%, T 32 = 19.02%). We have less

performance gain in comparison to previously workload scenario without any delay.

This is because in this scenario less phases overlap and concurrent reads from local

disks occur. Taking all jobs into account, CoLoc decreases total job completion

time by 7.07% of this delay workload scenario. Hence, there is less performance

gain. However, it is important to emphasize there is not a single job, regardless of

whether colocated or not, that has a worse runtime.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Job Execution Time in Minutes

T10_1

KM_1

CC_1

T3_1

T10_2

KM_2

CC_2

T3_2

Jo
b

ID

9.22 min

4.95 min

5.17 min

5.54 min

9.63 min

4.35 min

5.18 min

5.62 min

8.9 min

5.1 min

5.38 min

4.2 min

4.96 min

4.56 min

8.37 min

4.64 min

Hadoop Default Placement CoLoc Placement

Figure 5.9: Job runtimes of a workload consisting of three colocated jobs and five
non-colocated jobs scheduled with a 30 second delay.

Chapter 6: Network-Aware

Container Placement

Contents

6.1 Placing Containers Network-Aware 64

6.1.1 Data-Locality versus Container Closeness 64

6.1.2 Network-Aware Placement Strategy 66

6.2 Placement Workflow and Components Overview 68

6.3 Placement Method and Algorithm 70

6.3.1 Placement Algorithm Using Simulated Annealing . . . 71

6.3.2 Placing Containers Close Together 74

6.3.3 Placing Containers Close to Input Datablocks 76

6.4 Evaluation . 77

6.4.1 Cluster Setup . 78

6.4.2 Jobs and Workload Description 79

6.4.3 Results of Different Workload Scenarios 81

NeAwa [136] is a container placement method that aims to increase runtime

performance of dataflow batch applications in shared data analytics platforms. It

takes various network information for container placement into account. This

includes distances between possible nodes hosting a job’s execution containers as

well as distances to and between nodes storing a job’s input datablocks. Furthermore,

the method does not assume recurring jobs like CoLoc and thus, it can be applied

also on jobs that are executed only once or for the first time.

64 6.1. Placing Containers Network-Aware

Finding a good container placement in large data-analytic platforms based on

network distances is an optimization problem with a potentially huge search space.

Therefore, we choose SA, a probabilistic method to find an approximation of the

global optimum of a given cost function in a fixed amount of time. Our cost function

reflects network distances between a job’s containers and datablocks as well as

other characteristics such as container isolation and datablock replication. NeAwa’s

placement strategy is integrated with Hadoop YARN and HDFS and we compare it

with Hadoop’s default placement strategy. For the evaluation, we used Flink and

set-up a testbed with a hierarchal fat-tree topology and evaluate our method with

different workloads.

This chapter is organized as follows. First, NeAwa’s concept is introduced. After

that, a system overview and integration with other data-analytic systems is given.

This is followed by a description of the SA-based placement algorithm including its

cost function. Finally, an evaluation of NeAwa is presented.

6.1 Placing Containers Network-Aware

The approach of NeAwa is a job’s container placement based on network infor-

mation and locations. Therefore, it is based on network distances between each

other, and between containers and nodes storing the input datablocks. For this, it

takes the current network topology, possible container locations, interference from

other containers, job’s input datablock location and current data analytics cluster

utilization into account when scheduling containers. Many applications can benefit

from this optimization that reduces network demand, resulting in lower completion

times. However, we found out that there is a trade-off between placing a job’s

containers close to the input data and placing them close to each other, to which

different jobs benefit differently.

6.1.1 Data-Locality versus Container Closeness

Placing a job’s containers directly on nodes that store the input datablocks leads to

a high distribution of containers on different nodes. The reason of this distribution

is due to the datablock placement strategy of the underlying distributed file system

Chapter 6. Network-Aware Container Placement 65

primary designed with focusing on fault tolerance. Datasets are stored in series of

datablocks that are replicated and spread across different data nodes. Besides fault

tolerance, this increases access performance allowing to read a file’s datablocks in

parallel from different disks and nodes. The node storing a particular datablock is

determined by the distributed file system itself without taking its later processing

location into consideration. As a consequence, datablocks are highly distributed

and by placing the containers on nodes storing most of the input datablocks, the

containers are highly distributed as well. The main advantage of this data and

container colocation is that jobs achieve a high degree of data locality and access

more data from local disks. However, communication between successor tasks is

often carried out through the physical network.

Placing a job’s containers close to each other, so that they run on a small group

of nodes increases network throughput between these containers. This is because

they are partly placed on the same physical host or on the same rack, in which the

available bandwidth is higher than between nodes in different racks. Yet, some

jobs benefit from placing containers and tasks close to each other on the same

set of nodes. For instance, jobs with operators for group-based aggregations or

joining two dataflows require all elements of the same group or with the identical

join key to be available at the same task instance. Therefore, if the data is not

already partitioned by these keys, the dataflow needs to be shuffled. The more

the predecessor tasks are distributed across different nodes, the more data need to

be shuffled across the network [25]. Another example are iterative jobs [26, 137].

For instance, Page Rank iteratively updates a rank for each node of an input graph

by summing rank contributions of adjacent nodes. In each iteration a shuffle is

required for aggregating values to compute page ranks, and a second shuffle is

required to update each page rank. The more iterations are executed and its tasks

are distributed among different nodes, the more data needs to be shipped over the

network. However, on the contrary to the previously described idea of placing

containers directly on nodes that store the input datablocks, placing containers a

smaller set of nodes decreases the chance of achieving data locality. This is because

reading data locally is limited to the set of nodes on which the containers are placed.

Furthermore, containers in data-analytics clusters are executed with no strict re-

source isolation, and thus, they compete for shared node resources such as CPU, disk

and network I/O. The advantage of this method is based on the fluctuating resource

demands of long-running analytics jobs. By running multiple jobs colocated in this

66 6.1. Placing Containers Network-Aware

way, it is possible to increase resource utilization and overall throughput due to

statistical multiplexing [32]. Since dataflow systems are based on data parallelism,

its tasks and containers execute the same program logic in parallel and thus tend to

stress the same resources at the same time. For this reason, resources of a node in

the best case are shared by containers of different jobs. For NeAwa’s idea of placing

a job’s containers on a small group of nodes, this implies that some resources of

these node should be allocated by other or even no jobs, instead of allocating all

resources for one particular job.

NeAwa focuses and optimizes placements in large and shared data-analytic

clusters that are often organized in hierarchical networks like fat trees [138]. In

such designs, nodes are grouped into racks of 20 - 80 nodes at the lowest level and

multiple paths with different hop counts can exist between two nodes of different

racks [39]. However, bandwidth between nodes within a rack is higher than the

bandwidth between nodes in different racks. This is because the network and its

switches are often oversubscribed and blocked for cost saving and maintenance

reasons. A blocking network means that the number of links per switch that go to

the upper level are lower than of those to the bottom level. Therefore, less switches

are needed, however, paths between switches are shared by multiple nodes. Authors

report productive data analytics clusters with a blocking factor of 1:5 [32, 40]. At

the same time, local storage mediums become faster and popular in data analytics

clusters such as SSDs [41–43] or virtual in-memory storages like Alluxio [44]. As

a consequence, it is favorable to reduce network bandwidth in the core network.

6.1.2 Network-Aware Placement Strategy

The goal of archiving high data locality and placing containers close to each other

on a small set of nodes acts antagonistically to each other. In Figure 6.1a, containers

are colocated with the input data, and thus spread across a large number of nodes.

On the contrary, in Figure 6.1b all containers are placed on a dense group of nodes

with less network hops in between. Furthermore, it is important to emphasize that

data analytics jobs have different characteristics. Data-intensive jobs benefit often

more from achieving data locality, whereas some CPU-intensive and iterative jobs

benefit more from being executed on the same set of nodes. Therefore, the NeAwa

placement strategy is based on a dynamic weight cost function that takes both into

account.

Chapter 6. Network-Aware Container Placement 67

Data Block ContainerSwitch Node

(a) Data locality, placing containers close to
nodes that store the input datablocks.

Data Block ContainerSwitch Node

(b) Container togetherness, placing containers
close together on the same set of nodes.

Figure 6.1: Comparison of both container placement goals data locality and con-
tainer closeness.

• Data locality. Placing containers close to the job’s input data to allow more

local reads from the underlying distributed file system as remote reads cause

network traffic.

• Container closeness. Placing a job’s containers close together with a low

number of network hops in between them to reduce network traffic on links

in the core network and by taking weak resource isolation into account.

Container closeness also reflects load balancing. This is because containers share

the resources of the nodes they are placed on. Consequently, the container load

should be balanced over the selected set of nodes.

Depending on the application type, we can weight both factors differently. Cur-

rently, we use dry runs with different weight factors and choose the best weight for

an application. However, in combination with job profiles and classification, the

system could learn good weights automatically based on previous runs.

Furthermore, in large deployments with hundreds or thousands of nodes, finding

good container placements is an optimization problem with a potentially huge

search space [139]. For this reason, we use SA, a probabilistic method to find an

approximation of the global optimum of the given function in a fixed amount of

time. Our SA-based algorithm and cost function is described in Section 6.3.

68 6.2. Placement Workflow and Components Overview

6.2 Placement Workflow and Components Overview

NeAwa is integrated with the resource management system YARN, the distributed

file system HDFS, the dataflow engine Flink and the Software-Defined Networking

(SDN) controller OpenDaylight. The architecture, which is shown in Figure 6.2,

follows a master and slave model.

Network

Slave Node

YARN

Node Manager

HDFS

Data Node

Freamon

Client

Slave Node

YARN

Node Manager

HDFS

Data Node

Freamon

Client

Master Node

SDN Network

Controller

HDFS

Name Node

YARN

Resource Manager

NeAwa

Placement

Flink

AM

Flink

Task

Flink

Task

Flink

Task

Figure 6.2: NeAwa’s System Overview and Integration.

Node Manager and Data Node are the slave components of Hadoop’s YARN

and HDFS. Both are running on each slave node, which makes up the majority

of nodes, and are responsible for storing the data and running the data-analytics

computations within containers. In addition, a Freamon Client runs on every slave

node to collect container utilization metrics that can be used to generate detailed

job profiles. These profiles can be used to automatically adapt NeAwa’s placement

configuration parameters to gain knowledge of previous job runs.

Resource Manager, Name Node and Network Controller manage data storage,

network and computing functionalities. The YARN’s Resource Manager receives

job submissions from the users, and is responsible for allocating needed resources

and containers. Moreover, it provides cluster and node utilization statistics. The

SDN [140] network controller automatically gets the current network topology

and network utilization on the core network. The HDFS’ Name Node provides

information about datablock localities, which we use to improve data locality.

Chapter 6. Network-Aware Container Placement 69

For later evaluation, we used Flink. Every job consists of one container running an

Application Master (AM) that coordinates and monitors all n execution containers of

a job, which are, for instance in Flink called Task Manager. The Application Master

requests the Resource Manager for resources and receives container allocations in

return that are confirmed by NeAwa.

NeAwa Placement is the core component and contains the logic for our placement

algorithm. It decides where to place a job and its container best based on available

resources, topology information, block location and running applications. The

component uses the existing REST interface to all other master components.

Figure 6.3 shows a sequence diagram to illustrate the work flow between all

system components to find a good container placement. This process is executed,

when NeAwa was selected as container placement strategy.

First, an application is submitted to YARN’s Resource Manager. The submission

contains the amount of needed containers and their computation specification as

well as the path of the input data.

The Resource Manager deploys an Application Master on the available slave

node. The Application Master is responsible for allocating containers from the

Resource Manager. Therefore, it first requests our placement component NeAwa

where to place containers. NeAwa receives an application request specified with

a resource profile, which contains the amount of needed containers and its virtual

cores and memory demand per container as well as distributed file input path.

Afterwards, the NeAwa component calculates container placement hints based

on information provided by the Resource Manager, Network Controller and Name

Node including available resources, running application containers, distributed file

system path and network topology.

The result are placement hints that are send back to Application Master, which

afterwards sends container requests for these hints to the Resource Manager. Fi-

nally, the Resource Manager will allocate the containers and the execution of the

application starts.

70 6.3. Placement Method and Algorithm

ClientClient
Resource

Manager

Resource

Manager

App.

Master

App.

Master

NeAwa

Placement

NeAwa

Placement

Network

Controller

Network

Controller

Name

Node

Name

Node

Job

submission

AM

instantiation

Resource

specification

Request

topology

Send

block location

Request

block locations

Send

topology

Request

available resources

Send

available resources

Placement

hints

Container

request

Container

allocation

Figure 6.3: NeWa’s components interaction and placement process.

6.3 Placement Method and Algorithm

The goal of our network-aware container placement is to find a good set of nodes

for hosting a job’s containers that provides good runtime performance. This is

achieved by incorporating the objectives container closeness and data locality

into the placement decision making process. Container closeness aims to place

containers of jobs close together with a low number of network hops in between

Chapter 6. Network-Aware Container Placement 71

them to reduce network traffic on links in the core network and by taking weak

resource isolation into account. Data locality aims to place containers close to their

application’s input data to allow more local reads from the underlying distributed

file system as remote reads cause network traffic. We use SA, a probabilistic method

to find an approximation of the global optimum of the given function in a fixed

amount of time, to find a good container placement. The cost function we propose

consists of two main components, reflecting the objectives container closeness and

data locality. All components are normalized and assigned with weights, depending

on their importance and the cluster infrastructure.

6.3.1 Placement Algorithm Using Simulated Annealing

This section describes the network aware container placement algorithm in detail.

Finding good placements for a job’s containers in large data-analytics clusters is

an optimization problem with a potentially huge search space. For this reason, the

algorithm is based on SA [141], a probabilistic method to find an approximation of

the global optimum of the given cost function. As cost function, we use and combine

the previously defined container closeness and data locality terms. Moreover, both

terms can be weighed manually or depending on previous runs of the job. The cost

function itself is described in the next section in detail.

We select SA for determining a good container placement for two reasons. First,

it allows to move from a initial random container placement selection to one with a

low cost in a fixed amount of time. Second, during this finding process, it avoids

to getting caught at local maxima, which are container placements with lower

costs than other placements with just a few containers on different nodes, but

which are not the optimal placement. In particular, our algorithm consists of five

steps. Starting with a random container selection and iteratively finding a least-cost

container placement. The following describes the algorithm steps in more detail.

1. Initial Random Placement. Generate an initial random container placement.

Therefore, nodes with sufficient resources for hosting a job’s containers are

selected randomly.

2. Cost Calculation. Calculate the container placements cost using our network-

aware cost function and weights.

72 6.3. Placement Method and Algorithm

3. Random Neighboring Placement. Generate a new container placement that

is close to the previous placement. In particular, we switch the node of one

randomly selected container of the previously placement with a new randomly

selected node with sufficient resources.

4. Cost Re-Calculation. Re-calculate the cost of the new container placement.

5. Placement Selection. Compare the costs of both placements.

• If CnewCP ≤ColdCP: If the new placement has a smaller cost than the old

placement, the new one is selected as the base for the next iteration. By

this, the placement is iteratively getting closer to an optimum.

• If CnewCP > ColdCP: If the new placement has higher costs than the

old placement, an acceptance probability decides to keep the worse

placement or not. By this, it is possible to chose a worse solution and to

get out of a local maxima.

6. Final Placement. Steps 3-5 are repeated until a maximum number of itera-

tions is reached.

Algorithm 5 presents our container placement algorithm in detail. The anneal

method is the entry point and is executed when a job is submitted and the network

aware placement strategy is selected for its container placement.

As SA was inspired by a method of heating and cooling metals, the maximum

number of iterations is determined by a temperature function. Therefore, the

algorithm consists of a temperature parameter T . NeAwa starts with T = 1 and is

decreased at the end of each iteration by multiplying it with a constant α = 0.9 until

it reaches Tmin = 0.00001.

In each temperature iteration, a neighbor-cost-compare is done. Therefore, the

previous container selection is slightly changed by choosing one new node with

sufficient resources for one randomly selected container, which is shown in the

neighbor function. In our algorithm, this comparison is done i = 100 times.

The cost comparison is based on an acceptance probability function ap. As

input, it takes in the cost of the previously placement Cold , the current placement

Cnew, current temperature T , and the Euler’s number e into account. It returns

Chapter 6. Network-Aware Container Placement 73

Algorithm 5 Network aware container placement algorithm based on simulated
annealing.

1: function ANNEAL(cp)
2: Cold ← COST(cp)
3: T ← 1.0
4: Tmin← 0.00001
5: α← 0.9
6: i← 0
7: while T > Tmin do

8: while i < 100 do

9: cpnew← NEIGHBOR(cp)
10: Cnew← COST(cpnew)

11: ap← e
cold−cnew

T

12: if ap > RANDINT(0,1) then

13: cpold ← cpnew

14: Cold ←Cnew

15: i++

16: T ← T ∗α

return cpold

17: function NEIGHBOR(cp)
//Get all possible container allocations

18: ac← availableContainers(csize)
// Get a random container of ac

19: crand ← RAND(ac)
//Switch a random container of cp with crand

20: cp[rand]← crand

return cp

21: function COSTS(cp)
22: weightd ← 0.5
23: weightc← 0.5
24: CCloseness← COSTCONTAINERCLOSENESS(cp)∗weightc
25: CDataLoc← COSTDATALOCALITY(cp)∗weightd
26: C←CCloseness ∗CDataLoc

return C

a normalized number between 0 and 1 that is compared with a random number

between 0 and 1. This allows in some cases to choose a worse solution and get

out of a local maxima. However, when ap gets smaller, which is the case when T

becomes low or Cnew is lower compared to Cold , the chance that a worse solution is

selected decreases. Therefore, the chosen placement is more likely to stay in the

last iterations and the chance of accepting placements with higher costs decreases.

74 6.3. Placement Method and Algorithm

The cost function consists of two parts. CCloseness describes the container close-

ness costs and CDataLoc the data locality costs. The total costs are calculated by

multiplying both costs. Additionally, both costs are weighed with weightc and

weightd . Per default we weighted both with 0.5, however, it is important to em-

phasize that these weights can be configured individually for each job. The cost

function is a major component of the algorithm, and thus is described in the next

sections in detail.

6.3.2 Placing Containers Close Together

This section describes the container closeness term of our network-aware container

placement model. Its goal is to place containers of a job close together with a low

number of network hops in between them to reduce network demand. Especially

on the core network layer, in which traffic aggregates more as multiple nodes share

these links. However, it is important to emphasize that in some cases it is not

beneficial to place all containers of a job dense on a small group of nodes. This is

because containers in resource management systems such as YARN are instantiated

without strict resource isolation. Hence, it is possible to oversubscribe and take

advantage of temporarily unused resources of other colocated containers. However,

dataflow task often stress the same resources at the same time, mainly due to their

data parallelism execution concept. For instance, map tasks are often CPU-bound.

When a map phase of a distributed dataflow job starts and all containers are placed

on a few nodes, all containers compete for these few nodes CPUs at the same

time. In this case, the advantage of oversubscription is invalid, as there is one

single dominant resource that can slow down a job’s execution time significantly.

Therefore, instead of placing all containers of a job densely on a small group of

nodes, it is more beneficial to balance them on a group of nodes that are close to

each other in terms of network hops and leave some container slots free for job

colocation and interference. The container closeness term CCloseness of our cost

function covers both, network hop costs CHops and balance costs CBalance.

CCloseness(cp) =CHops(cp)∗CBalance(cp) ∈ [0,1] (6.1)

In hierarchical multi-path networks, different container placement results in different

involved communication paths. In addition, reducing communication over network

Chapter 6. Network-Aware Container Placement 75

links on the core layer is beneficial in a oversubscribed and blocked network,

because the available bandwidth between nodes within a rack is higher than the

bandwidth between nodes across racks [32]. For instance, placing a jobs’ containers

on a single rack involves only the single top-of-rack switch, thus all traffic is kept on

rack level and network congestions on the core network can be avoided. Therefore,

it is preferable to place a job and its containers close to each other with a small

number of links on the core network involved.

In order to determine the container closeness hop costs CHops of a container place-

ment cp, we calculate and rate all network hops between the involved containers C.

In particular, we determine and sum up each shortest path sp between all container

pairs ∑
C
i=0 ∑

C
j=i+1 sp(ci→ c j). For instance, when a container pair is host on the

same node the hop count between both is 0. When a container pair is host on two

different racks in a hierarchical fat-tree topology the hop count between both is 3,

as three switches need to be passed. As a consequence, the cost function weights

involved links on the core layer higher. In order to normalize the costs between 0

and 1, we take the current network topology diameter as the max value, which is

the maximum hop count between two nodes. Formally, the container closeness hop

costs CHops are determined as:

CHop(cp) =
∑

C
i=0 ∑

C
j=i+1 sp(ci→ c j)

∑
C
i=1 (C− i)∗diameter

∈ [0,1] (6.2)

Containers are executed with no strict resource isolation, and thus, they compete

for shared node resources such as CPU, disk and network Input/Output (I/O). The

advantage of this method is based on the fluctuating resource demands of long-

running analytics jobs. By running multiple jobs colocated in this way, it is possible

to increase resource utilization and overall throughput due to statistical. At the

same time, different tasks utilize different resources to different amounts. Sorting

operations, for example, often require lots of memory whereas map tasks can,

for instance, be mainly CPU-bound. Since dataflow systems are based on data

parallelism, its tasks and containers execute the same program logic in parallel and

thus tend to stress the same resources at the same time. For this reason, resources of

a node are ideally shared by containers of different jobs. In other words, containers

of a job should not be placed on just a few nodes. As a consequence, we define a

container balance term that increases the costs when too many containers of a job

76 6.3. Placement Method and Algorithm

are placed on the same node. Combining this with the previously described hop

costs, a good placement with low costs occurs, when a job’s containers are placed

in one rack and balanced across the available nodes in this rack.

In order to determine the container closeness balance costs CBalance, we first

determine all nodes N that cover at least one container of the placement cp. The

number of containers that a single node covers is specified as ncn
. The maximum

number of containers a node can host is specified as nmax. When an jobs’ container

makes up to more than the balance threshold bt = 0.75 of the containers of a node,

the cost increases. In order to normalize the costs between 0 and 1, we take the

number of nodes hosting at least one container N as maximum value. Formally, the

container closeness balance costs CBalance is determined as:

CBalance(cp) =
∑

N
i=0 1, if

nci

nmax
> bt

N
∈ [0,1] (6.3)

6.3.3 Placing Containers Close to Input Datablocks

This section describes the data locality term of our container placement model. The

goal is to place containers close to their job’s input data to allow more local reads

from the distributed file system. Most frameworks try to achieve data locality by

placing source tasks on top of input data when possible. This can reduce network

traffic and improve job execution time. Reading blocks locally is only constrained

by the disk read speed, not additionally by the network throughput. Therefore, our

goal is to place containers so that the jobs can explore data locality.

First, we determine the datablock cover ratio CdbCover of a container placement

cp. In particular, we determine how many datablocks dbi of a job are covered by

the container placement. Therefore, we loop over every datablock dbi, and check if

there exists at least one replica of the datablock dbi,rep that is stored on the same

node as a container of the container placement cp. If this is not the case, the costs

are incremented. In order to normalize the result between 0 and 1, we determine the

ratio between covered blocks and total datablocks. Formally, the datablock covered

ratio CdbCover of a container placement cp is defined as follows:

Chapter 6. Network-Aware Container Placement 77

CdbCover(cp) =
∑

db
i=0 1, if ∄ node(dbi,rep) ∈ cp

db
∈ [0,1] (6.4)

Second, we determine the datablock replica cover ratio CdbRepCov of a container

placement cp. In particular, we determine how many datablock replicas the place-

ment cover in total. As blocks are replicated to provide fault-tolerance, placements

can cover multiple replicas per block. Covering more than one replica introduces

degrees-of-freedom for the framework’s scheduling that often has to satisfy other

constraints. When a node that stores a datablock replica dbi,rep is not hosting any

container of the placement, the costs increase. In order to normalize the result

between 0 and 1, we determine the ratio between covered datablock replicas and

total datablock replicas. Formally, the datablock replica cover ratio CdbRepCov of a

container placement cp is defined as follows:

CdbRepCov(cp) =
∑

db
i=0 ∑

rep
j=0 1, if node(dbi, j) /∈CP

db∗ rep
∈ [0,1] (6.5)

The data locality cost CDataLoc covers both previously described terms. However,

covering all blocks is more important than covering many replicas. Therefore, the

ratio of blocks covered CdbCov is given more weight than the amount of replicas

covered CdbRepCov. Formally, the costs are defined as:

CDataLoc(cp) =
2 CdbCov(cp)

3
∗

CdbRepCov(cp)

3
∈ [0,1] (6.6)

6.4 Evaluation

This section describes the evaluation of our container placement approach on a 8x8

core cluster organized in four racks using a fat tree topology. First, we provide

details about our experimental setup and testbed. Afterwards, we describe our work-

load that consists of two iterative algorithms, K-Means Clustering and Connected

Components, as well as two different TPC-H benchmark queries. Furthermore,

we submit a number of concurrent Flink jobs, reflecting a high and mid cluster

utilization. Afterwards, we present results of our experiments.

78 6.4. Evaluation

6.4.1 Cluster Setup

The evaluation took place on an eight node cluster, in which each node is equipped

with eight cores, 32 GB of RAM, a single SATA disk and a 1 Gbps Ethernet

network interface. The eight worker nodes are organized in four racks, so each rack

consists of two nodes. The nodes are connected through a fat tree topology with

two switching elements on the core and four on the edge layer. All switches (HP

ProCurve Switch 1800-24G) are SDN capable and support OpenFlow 1.1.

Figure 6.4 gives an overview of our testbed. It is important to emphasize that we

configured the switches into six different VLANs through port isolations. Further-

more, we connected the switches so that the VLANs form a hierarchical fat tree

topology. VLAN 1.1 and VLAN 1.2 represent the two core switches and VLAN 2.1,

VLAN 2.2, VLAN 3.1 and VLAN 3.2 represent the edge switches. So each host pair

in different VLANs needs to communicate over one of the core switches VLAN 1.1

or VLAN 1.2.

VLAN 2.1 VLAN 2.2 VLAN 3.2VLAN 3.1

VLAN
1.1

VLAN
1.2

Core
Network

Node

Switch Port

VLAN

Switch

Ethernet Link

Figure 6.4: Overview of the cluster testbed.

We used an additional node as the master node for the cluster. This node man-

ages the data storage and computing functionalities. Therefore, it runs YARN’s

ResourceManager, HDFS’s Name Node and OpenDaylight as an SDN network

controller. In addition, NeAwa’s placement core-component to calculate a good

container placement is hosted here. The remaining eight slave nodes are responsible

for storing the data and running the workloads within containers. Therefore, each

node runs YARN’s Node Manager and HDFS Data Node. In our experiments all

workloads run within containers with 1 vcore and 3 GB memory. Thus, we were

Chapter 6. Network-Aware Container Placement 79

able to run 64 containers at the same time. In terms of software all nodes run Ubuntu

14, Apache Hadoop 2.7 and Apache Flink 0.9.

Since our testbed has only a few nodes, yet our approach targets hierarchical

networks with hundreds or thousands of nodes of which network traffic aggregates

on the core network, we simulated the targeting environment by shaping the net-

work interfaces of the core network. Assuming ptotal = 48 port switches available

on the rack level with pbw = 1 Gbps available per port and a blocking factor of

1:5 [40] (b f = 0.16), we have pup = 8 ports with collectively 8 Gbps up-link band-

width available between the core switches. The remaining pdown = 40 ports of the

top-of-rack switches are available for hosts. In our testbed, we have n = 2 nodes per

rack instead of 40, therefore, we have only a twentieth of possible nodes per rack.

We define this as shape ratio sr = nodes
pdown

= 0.05. Based on this, we shape the total

available core bandwidth cbw between the top-of-rack switches and core switches

by cbw = Ptotal ∗Pbw ∗b f ∗ sr = 400Mbps. Therefore, each up-link port pup has a

max bandwidth of cbw

pup
= 50 Mbps, and each top-of-rack switch has an up-link with

200 Mbps to each of the two core switches in our fat tree topology.

6.4.2 Jobs and Workload Description

This section introduces the workload that was used for evaluation. It consists of

standardized benchmarks and productively used data analytics algorithms. The

dataset size ranges from 8 GB to 250 GB per job. Furthermore, the jobs are diverse

including relational database queries, machine-learning, and graph processing jobs.

All jobs are implemented and executed in Flink.

Table 6.1 gives an overview of all four jobs that were used showing the algorithms,

datasets, parameters and cost function weights. The cost function weights are

calculated for each jobs individually by a certain calibration experiments, which is

described in detail after the benchmark job description.

TPC-H [131] defines standardized benchmark queries for databases and transac-

tion processing systems. We chose the TPC Benchmark suite H (TPC-H)

Query 3 and 10. Both are business oriented ad-hoc analytical queries that

examine large volumes of data. For each job, we generated a unique input

dataset using the official TPC-H data generator.

80 6.4. Evaluation

Algorithm

Name

Dataset

Size

Algorithm

Parameters

Closeness

Weight (wc)
Data Loc.

Weight (wd)

K-Means
Clustering

8 GB
8 clusters,

10 iterations
0.7 0.3

Connected
Components

25 GB 5 connectivity 0.7 0.3

TPC-H
Query 3

250 GB - 0.2 0.8

TPC-H
Query 10

250 GB - 0.3 0.7

Table 6.1: Overview of NeAwa’s Benchmark Jobs.

K-Means Clustering [132] is a compute intensive data processing algorithm, which

is used in the area of Machine Learning. It is an iterative algorithm that groups

a large set of multi-dimensional data points into k distinct clusters without

supervision. For our evaluation, we generated eight random fixed centers and

600 million points, resulting in approximately 8 GB input data.

Connected Componenents [133] is an iterative graph algorithm that identifies

the maximum cardinality sets of vertices that can reach each other in an

undirected graph. We used a label propagation-based implementation due to

its better scalability and parallelization capability [134]. For our evaluation,

we used a Twitter dataset with around 25 GB input data [135].

Cost Function Calibration. NeAwa is based on a weighed cost function with

the two weights for container closeness (wc) and data locality (wd). In order to

derive good initial weights for each job, we execute a calibration experiment with

varying weights. Starting with wc = 0 and wd = 1, in each run r, we increase

wcr
= wc(r−1)

+ 0.1 and decrease wdr
= wd(r+1)

− 0.1, until both weights are 1 and

0. As the final initial weights for a job, we chose the two pairs of a run (wcr
,wdr

)

with the lowest execution time. The results for each job are shown in Table 6.1.

It is important to emphasize that we run all experiments in standalone without

interference to other jobs. Besides that, the weights depend on the cluster setup as

well as job specific characteristics such as the amount of allocated resources, input

dataset size and its block partitioning.

Chapter 6. Network-Aware Container Placement 81

Workload Description We defined two different workloads of terms of cluster

utilization. A high cluster utilization using nearly all available resources and a mid

utilization using the half. The reasons for that is twofold. First, the network is no

bottleneck when it is not shared by multiple jobs, as all bandwidth is assigned to

this job. Second, interference between different jobs is important in data analytics

platforms, as they are executed with weak isolation to allocate or deallocate more

local resources on demand.

High cluster utilization. For the first experiments, we used 60 of 64 available

cores. We submitted five applications, each using 12 containers, in which one

was used for the application master and eleven for Flink tasks. Each container

allocated 3 GB of RAM and 1 vcore. We run five different experiments under this

utilization. Four experiments containing only one specific type of job. Another

mixed experiment with five job types of algorithms. For instance, in one experiment

we run five K-Means jobs at the same time. In the mixed one, we execute a K-Means,

Connected Components, TPC-H Query 3 and two TPC-H Query 10 at the same

time. In all experiments, we submitted the five applications with a delay of 10

seconds in-between. For each job we generated a separate dataset to have a different

location for the input datablocks of different applications. For instance we have a

total of 40 GB input data for the K-Means clustering workload and 125 GB for the

Connected Components workload.

Mid cluster utilization. For the second experiments, we used 36 of 64 available

cores. In this experiment we submitted three applications, each using 12 containers.

Each container allocated 3 GB of RAM and 1 vcore. Similar to the high cluster

utilization scenario, we execute five different workloads under this utilization. Four

workloads containing only one specific type of algorithm. Another mixed workload

with three different types of algorithms, in which we chose K-Means, Connected

Components and TPC-H Q3. For each job we generated a separate dataset to have

different locations for the input datablocks.

6.4.3 Results of Different Workload Scenarios

This section presents the results of the previously described workload scenarios. We

compare execution times with NeAwa’s placement with Hadoop YARN’s default

container placement. Table 6.2 gives an overview of the results.

82 6.4. Evaluation

Cluster Utilization Workload Speed-Up

High
(60 of 64 cores)

K-Means 39.6%
Connected Components 67.9%

TPC-H Q 3 21.6%
TPC-H Q 10 21.7%

Mixed 26.8%

Mid
(36 of 64 cores)

K-Means 41.2%
Connected Components 45.1%

TPC-H Q 3 16.0%
TPC-H Q 10 17.3%

Mixed 25.0%

Table 6.2: Overview of the results comparing NeAwa and Hadoop’s default container
placement.

High cluster utilization results. Figure 6.5a shows the results of the high cluster

utilization workload, in which we execute five jobs at the same time that uses nearly

all available cluster resources. In the bar chart, each block represents the execution

time of a job, stacked to sum the execution time of all five jobs. The speed-ups

are ranging between 16.0% and 45.1%. For the K-Means workload, in which we

executed five different K-Means jobs at the same time, the runtime decreases by

39.6%. For Connected Components 67.9%, for TPC-H Query 3 22% and for TPC-H

Query 10 17.3%. For the mixed workload the speep-up was 26.8%, in which we

executed one K-Means, one Connected Components, one TPC-H Query 3 and two

TPC-H Query 10 at the same time. Figure 6.6 shows the execution time of the

mixed workload in a time-sequenced view.

Mid cluster utilization results. Figure 6.5b shows the results where each block

represents the execution time of an application, stacked to sum the execution time

of all three applications. The speed-up for the K-means clustering workload was

41.2%, for the Connected Components workload 45.1%, for the TPC-H Query 3

16.0%, for the TPC-H Q 10 21.7%, and for the mixed workload 25.0%. The mixed

workload consisted of one K-Means, one Connected Components and one TPC-H

Query 3 job.

Discussion. Comparing workloads with different utilizations, the speed-up is

higher when the cluster is more utilized. This is because, the network becomes

shared by more jobs and thus, it becomes a sacred resource. It is important to

emphasize that we simulated a blocking factor with traffic shaping on the core

Chapter 6. Network-Aware Container Placement 83

0

10

20

30

40

50

60

70

80

90

100

Kmeans
Clustering

Connected
Components

TPC-H
Query 3

TPC-H
Query 10

Mixed

Jo
b

ex
ec

ut
io

n
ti

m
e

in
m

in
ut

es

Default placement
NeAwa placement

(a) Workloads consisting of five jobs.

0

10

20

30

40

50

60

70

80

90

100

Kmeans
Clustering

Connected
Components

TPC-H
Query 3

TPC-H
Query 10

Mixed

Jo
b

ex
ec

ut
io

n
ti

m
e

in
m

in
ut

es

Default placement
NeAwa placement

(b) Workloads consisting of three jobs.

Figure 6.5: Comparing NeAwa and the default container placement implementation
of Hadoop and Flink with different workloads.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Job Execution Time in Minutes

CC_1

KM_1

T3_1

T3_2

T10_1

Jo
b

ID

12.5 min

15.84 min

10.67 min

11.17 min

15.42 min

8.55 min

10.38 min

9.45 min

9.79 min

12.52 min

Hadoop Default Placement NeAwa Placement

Figure 6.6: Runtimes of a mixed workload that consists of five different jobs
scheduled simultaneously and utilizing all compute resources.

network. Even having considered this, NeAwa should increase the performance in

productive clusters, as these are often deployed with a blocking factor, too. Another

finding is that iterative machine learning and graph processing jobs, which are in

our experiments K-Means and Connected Components, gain more performance

optimization, compared to relational database queries such as TPC-H. This is

because containers of this class of jobs are scheduled closer to each other, compared

to the default placement scheduling, and thus, can exchange intermediate results

more locally. Furthermore, the testbed consists of only eight nodes. Hence, the input

datablocks are locally available in almost every placement. However, when scaling

up to more nodes than that, the performance may increases even more significantly.

Chapter 7: Data Retention Placement

Contents

7.1 Improving Long-term Data Retention 86

7.2 System Overview and Integration 88

7.3 Smart Contract Blockchain-based File Tracking 91

7.3.1 File Tracking Contract Template 91

7.3.2 File Tracking Transaction Management 92

7.4 Placement and Validation Workflow 94

7.5 Evaluation . 96

7.5.1 Cluster Setup . 96

7.5.2 Benchmark Description and Results 97

Endolith [142] is a data placement framework for improving data retention in data

analytics platforms. In general, it provides a tamper-proof tracking and management

of shared datasets and analytic results. Endolith does this by automatically gener-

ating metadata describing changes of these shared data and storing it immutably

on a blockchain network. These sensitive metadata are only accessible for chosen

users and through unchangeable program code and functions, as they are deployed

and executed as smart contracts on a blockchain network. Therefore, Endolith

supports storing datasets as well as data analytics results long-term reliably, because

a tamper-proof status of these data is stored on the blockchain that can be used for

validation, auditing and change tracking. As Endolith is based on a smart contract-

based blockchain, it does not rely on a central trust authority. Furthermore, the data

analytics platform provider that integrates Endolith and its users interact with each

other in a fully decentralized and automated fashion.

86 7.1. Improving Long-term Data Retention

This chapter is structured as follows. First, it describes the concept of Endolith

long-term data retention approach. The chapter then presents the system overview.

Afterwards, the smart contract, its deployment and execution mechanism are dis-

cussed. This is followed by a description of Endolith’s workflows. Finally, a

performance evaluation of Endolith at scale showing its feasibility is reported.

7.1 Improving Long-term Data Retention

Data Retention is the process of storing data securely with the purpose of using

it later again in the exact same state as it was stored. However, this is difficult to

achieve in a shared data analytics platform with many users sharing one storage

system. The problem with data retention is not necessarily the data storage itself.

Data backups procedures, disk and data stripping are widely used techniques to deal

with it. The problem comes in ensuring the data’s integrity. For instance, proving

that data stored a long time ago has not been changed or become corrupt, and if it

happened, tracking what has changed, by whom and when.

Most storage systems in data-analytic platforms provide a log file that contains

all operations happening on files. This log file is often used for tracking and audit

purposes. However, this information is for due to privacy reasons only accessible

for a few people like system administrators and applications that focus on system

security features like intrusion detection. Also, it is difficult to prove that this log file

was not changed by an unauthorized user, too. Therefore, from a user’s perspective,

it is challenging to validate if a file’s content in a shared remote storage system is

changed or got corrupted.

This motivated us to design a novel long-term data retention method by sup-

porting tamper-proof data tracking and verification using a smart contract-based

blockchain. In particular, the method follows the DApp [143] principle, where the

logic of the method is executed as smart contracts on a decentralized peer-to-peer

blockchain network. Therefore, it operates autonomously without the need of a

central controlling entity. The method’s input data, which is metadata describing

the current state of a file, is automatically generated and placed on the blockchain

when a file operation occurs in the storage system. Users interact with well-defined

smart contract functions to access these data.

Chapter 7. Data Retention Placement 87

Modify

file

+ -

Blockchain Network

File Tracking

Contract(s)

Generate and update contracts

Load

file
Data Analytics Storage System

Annotated

Files

Annotation

Policies

Indexing

Contract

Deploy contract on blockchain

Access

metadata

for auditing

Check for annotation

Endolith Data Retention Integrated Systems

Figure 7.1: Improve data retention by storing selected file metadata on the block-
chain and offering the user a functionality to evaluate files against it.

Figure 7.1 shows the method of our smart contract-based blockchain approach

for improving data retention on data analytics platforms. When a file is modified on

the data analytics storage system, it is validated if the file is annotated for tracking.

If this is the case, then, Endolith long-term data retention takes place and unique

metadata and attributes of the file’s new state is automatically generated.

Afterwards, either a new dedicated smart contract for that file is automatically

generated and deployed on the blockchain network, or an existing smart contract is

updated with the file’s metadata. The file tracking smart contract stores all necessary

data for file validation and tracking. This includes the current and all past file hashes

of the tracked file as well as its modification time and user. A file tracking contract

belongs to exactly one file.

After a file tracking contract is successfully deployed, the unique smart contract

address provided by the blockchain network is stored in a global index smart contract.

This index smart contract maintains all file Uniform Resource Identifiers (URIs)

and smart contract address relations.

88 7.2. System Overview and Integration

In addition, a smart contract consists of an access control mechanism based on

public key cryptography. Only selected people based on their key are allowed to

execute functions, for instance, to add and access data of the smart contract.

Later, when the same or another user wants to validate their file, he or she can

look up the metadata on the blockchain via the dedicated smart contract for auditing

processes. Based on this, it is possible to ensure file integrity without the reliance

on a central trust authority. In particular, we use the MD510 algorithm to produce

a 128-bit hash value of a file. This checksum is used to verify data integrity by

comparing the local and remote blockchain hash of a file.

It takes a certain time until a transaction or smart contract creation is mined

and confirmed on the blockchain. Also, writing a transaction is expensive, due to

the proof-of-work consensus algorithm that is used in most blockchain networks.

Therefore, Endolith is best applied for files that are infrequently modified and where

user response time for creating or modifying a file is not critical. An example for

this class of files are archive files.

7.2 System Overview and Integration

This section provides the system overview of Endolith, as shown in Figure 7.2. It

is integrated with a storage system and smart contract-based blockchain network,

and acts as mediator between both. Endolith monitors annotated files and translates

operations on it to blockchain transactions. In addition, it provides auditing func-

tionalities to its users based on smart contracts that operate on these transactions.

The remainder of this section describes Endolith’s components in detail.

Storage User. The user stores its files or results of a data analytics job on a

remote storage system. Files can be annotated to be tracked with Endolith by the

user or the system itself based on an automated annotation policy. Similar to public-

key encryption, only users whose public key is defined in the file tracking smart

contract can execute smart contract functions with their private key. Thus, only

these users can access the data stored on the blockchain network. Other users with

no access to the smart contract can only see data stored in the smart contract and its

code in form of raw binary data within transactions on the blockchain network.

10https://tools.ietf.org/html/rfc1321, , accessed 2018-08-06.

https://tools.ietf.org/html/rfc1321

Chapter 7. Data Retention Placement 89

Endolith

ChangeInsert Remove

Data

Upload

Users

File System

Monitoring APIAuditing

File

Validation

History

Tracking
Annotation

Repository

Annotation

Policies

Annotation

File Tracking

Contract

Transaction

Manager

Blockchain

Manager

Core

Smart Contract Based

Blockchain Network

Mining

Nodes

Data Analytics

Storage System
Tracked File

Modifications

Figure 7.2: Overview of Endolith and its components.

File System Monitoring API. The Application Programming Interface (API)

provides methods for adding information about file creation, changes, and deletion

to Endolith. Additionally, it can be used to add information in the other direction

from Endolith to files. For instance, to add the smart contract address as metadata

to its corresponding file, which allows an easier association between both. It can

also be used by a storage provider to automatically monitor their storage systems

by using hooks that listen to file operations and then automatically use the API to

forward the collected data to Endolith. In our prototype, we integrate Endolith with

our monitoring system Freamon that monitors file operations of HDFS. In addition,

Freamon collects necessarily metadata and attributes of the annotated files such as

the file hash, user name, and modification time.

File Tracking Contract. We designed a File Tracking Contract template of

which Endolith automatically deploys an instance of any annotated file. An instance

is responsible for tracking all changes of exactly one file. Due to scalability require-

ments for handling a large volume of files and changes, it is not feasible to store all

metadata in one global smart contract. This is because it would take a lot of time

to index that contract and there is a limitation in terms of size for a smart contract.

After a new file is stored and its related smart contract is successfully deployed, its

90 7.2. System Overview and Integration

smart contract address is attached to the file and stored in a global index contract to

find the corresponding file on the blockchain network for later changes on that file.

Transaction Manager. The transaction manager deploys the previously de-

scribed file tracking contracts on the blockchain network. Additionally, it converts

data provided by the file system API into a smart contract executable format. In the

other direction, it translates transaction receipts to a file system API capable file

format. Additionally, it buffers transaction if needed. This is because it takes time

until a transaction becomes available on the blockchain. Instead of waiting until the

transaction is available and verified, we collect the status and periodically check if

the transaction is successfully written to the blockchain. If a transaction is rejected

by the blockchain, the transaction is submitted again. Following transactions that

effect the same file are queued in a first in, first out queue and submitted after the

ancestor was successfully written to the blockchain.

Blockchain Manager. The manager acts as gateway to the smart-contract-based

blockchain network and provides access to it. This component participates in the

blockchain network and thus, has a local copy of the blockchain. However it is

decoupled from the mining network, thus not acting as a miner to perform the

proof-of-work algorithm. The reason for that is to save compute resources for

Endolith’s main tasks. In particular, the blockchain manager has two tasks. First,

sending contract creation and execution transactions to the blockchain network,

where they are mined and executed. Second, some smart contract functions are

directly executed on the manager, as they do not modify the global state of the

blockchain. The latter functions operate on the local copy of the blockchain, thus

returning fast results.

Annotation Repository and Policies. The repository consists of a collection of

all known annotated files. An annotation can either be done directly by a user or an

automated policy. The latter can be based on its age and usage frequency, similar to

policies used in automated tiered storages that assign data to a specific archive data

tier. In addition, the unique smart contract address per file is stored to a global index

smart contract. This index smart contract maintains all annotated file URI and smart

contract address relations. It serves as fall back mechanism, as there is a possibility

that the contract ID directly attached as metadata to a file may get accidentally or

maliciously deleted or changed.

Chapter 7. Data Retention Placement 91

File Validation and File History Tracking. Both auditing functions are em-

bedded in smart contracts and are executed locally on the node running Endolith.

Also, they are executed on an up-to-date copy of the blockchain and do not change

the state of the contract, and thus can be executed without the need of writing a

transaction on the blockchain. File Validation ensures that the file is correct. The

user can validate if the local and remote files are the same, based on the local and

remote baseline hash stored on the blockchain. This can be useful after uploading

or downloading a file from the storage system. File History Tracking refers to the

process of tracing and recording files with explanation of how it got to the present

state. Therefore, every modifications on selected files is immutably recorded on the

blockchain network. Endolith uses the information to provide track change history

of a file record.

7.3 Smart Contract Blockchain-based File Tracking

This section describes the Endolith smart contract blockchain-based file tracking

mechanism. First, we present Endolith file tracking smart contract template. Af-

terwards, we discuss the transaction manager in more detail, which deploys and

executes the smart contracts to the blockchain network.

7.3.1 File Tracking Contract Template

For any file that is annotated for data retention, a corresponding File Tracking

Contract is generated and deployed on the blockchain network through Endolith’s

Blockchain Manager. Each contract is derived from a generic template. Table 7.1

gives an overview of this template and describes its parameters and functions in

detail. A File Tracking Contract belongs to exactly one file, and thus, for every

annotated file exactly one contract exists on the blockchain network. It is important

to emphasize that a file URI of a File Tracking Contract can change due to file

renaming or moving. Therefore, each unique smart contract address is attached to

the corresponding file as a metadata attribute and to a global index smart contract

that maintains all file URIs and smart contract address relations. Afterwards, every

file modification is stored on the blockchain using its corresponding smart contract,

which is identifiable by the smart contract address.

92 7.3. Smart Contract Blockchain-based File Tracking

Variable Description

contractAddr A blockchain-wide unique address to load and execute a smart
contract.

owners A list that contains all public keys of users that can execute the
smart contract functions and constructor.

contractCreation Timestamp of the contract creation.
lastOperation Timestamp of the last file operation.
currentHash A cache variable that stores the last known hash to speed-up

requests for validation.
currentFileURI The current URI, which can be changed when a file name, path,

or the storage system changes.
operations A list of all tracked file operations and its metadata and at-

tributes. This includes all file hashes of the tracked file, its
timestamp, operation type, user, fileURI and block locations.

Functions Description

FileTracking When constructing an file contract, the corresponding file URI
and hash is required.

fileOperation This function is executed when an operation on the correspond-
ing file occurs. Thus, it requires operation type, files path and
the new file hash as input. All new values are pushed onto the
list of operations. This function invocation changes the global
state of the contract and results in a transaction.

validate The validate function verifies that any given hash equals the
current value stored on the blockchain and returns a boolean
value accordingly. The validate call does not alter the state of
the EVM and therefore does not require a transaction to be sent
and can be performed locally.

getEntryAtTime Any hash for any point in time since contract creation can be
retrieved and used for history tracking and file validation.

modifier onlyBy This modifier is used to ensure that an annotated function can
only be executed from an address stored in the owners list.

Table 7.1: Overview and explanation of Endolith’s file tracking smart contracts
variables and functions.

7.3.2 File Tracking Transaction Management

The Transaction Manager is responsible for deploying and executing Endolith’s

smart contracts to the blockchain network. An important characteristic here is that

it takes up to several seconds until a submitted transaction for contract creation

or execution is mined and confirmed by the blockchain network. We estimate the

confirmation time ct of a transaction tx by:

Chapter 7. Data Retention Placement 93

∆ct(tx) = (∆bt ∗ c)+∆
bt

2
(7.1)

Let ∆bt be the average block time that the blockchain network takes to generate

a new block. c is the number of subsequent blocks that must confirm that the

transaction is valid and is part of the blockchain. ∆ bt
2 is the estimated pickup time

between transaction submission and transaction being mined in a block, assuming

the transaction gets mined in the next mined block. On the Ethereum main net the

average block time ∆bt = 15 seconds11. The Ethereum whitepaper suggests to wait

c = 7 block confirmations [143]. As a result, we estimate the conformation time of

a transaction ct(tx) = 112.5 seconds.

Taking this high conformation time into account, Endolith fits only for files that

are less frequently modified such as archive datasets. However, to overcome this

limitation that results in a high overhead response time when writing a file, Endolith

caches transactions until they are included into the blockchain and enables to work

on them during this time. In particular, Endolith’s Transaction Manager holds

a list of all pending contract transactions and periodically checks if the creation

is successfully deployed. In order to allow modification on that file during its

waiting time, all subsequent changes are stored in a dedicated waiting queue for

that file. Once the contract creation transaction is confirmed, the contract address is

received and used to write all updates to the corresponding tracking contract. We

implemented this as a first in, first out queue, when a transaction is successfully

written and confirmed, the next transactions are submitted. In blockchain networks

the order of transactions is important. For instance, to avoid replay attacks, in which

a valid transaction is maliciously over and over to the network. Therefore, we buffer

and count transactions in memory and wait until the predecessor was successfully

confirmed. It is important to emphasize that Endolith uses one central wallet for

Endolith that allows to submit a pool of transactions. To ensure transactions are

processed only once, the wallet has a transaction counter called ’account nonce’.

It describes the number of transactions sent from an account. If a transaction is

submitted with an account nonce that has already been transacted, the transaction

will be rejected by the network. In such a situation, or if a transaction fails due to

other reasons, it is possible to reconstruct the nonce based on buffer and last known

transaction receipts.

11https://etherscan.io/chart/blocktime, , accessed 2018-08-06.

https://etherscan.io/chart/blocktime

94 7.4. Placement and Validation Workflow

7.4 Placement and Validation Workflow

This section describes the placement and validation workflows of Endolith for file

tracking, validation, and history tracking in more detail.

File Tracking. The workflow is shown in Figure 7.3 and consists of the fol-

lowing steps. (1) The user or annotation policy annotates a file for long-term file

tracking. (2) A dedicated smart contract for that file is automatically generated

based on Endolith’s file tracking template. (3) The generated file tracking contract

is submitted to the blockchain network. (4) A unique smart contract address is

returned after it is successfully deployed on the blockchain. This contract address is

attached as meta data to the file residing in the storage system to make a connection

between the smart contract and the file. In addition, it is stored in a global indexing

smart contract for long-term. (5) The file hash is calculated using a cryptographic

one-way hash function. Additionally, unique meta data and attributes like user name,

modification time, and block location is collected from the storage system. It is

important to emphasize that hashing is not done within the smart contract on the

blockchain. This would be expensive and even impossible for large files, due to the

file data that needs to be sent to and processed on the blockchain network. (6) All

data is parsed to the corresponding file contract, which is identifiable by the contract

address attached as metadata to the file. (7) Endolith receives a receipt confirming

that the transaction was successfully written to the blockchain. (8) Afterwards, once

the transaction is successfully written to the blockchain, the user is notified and, if

additional queued transactions for that annotated file exist, they are submitted to

the blockchain network. Step (1 - 4) are only done once, when the file is annotated.

Steps (5 - 8) are repeated every time a file changes. In order to reduce the waiting

time until a transaction is available on the blockchain, subsequent transactions are

queued in the transaction manager.

File Validation. The workflow of validating a tracked file with Endolith is shown

in Figure 7.4 and consists of the following steps. (1) The user requests a file from

the file system. (2) The corresponding file tracking contract is loaded based on the

smart contract address attached as metadata to the file. (3)Endolith requests the last

known hash from the loaded file tracking contract. (4) The smart contract validate

function is executed locally by Endolith on the up-to-date copy of the blockchain,

to get the last known hash stored on the blockchain for that requested file. (5) The

Chapter 7. Data Retention Placement 95

hash of the file version stored in the storage system is calculated. (6) The current

resulting hash value and the last value stored in the smart contract are compared to

each other. If both values match, the file is presumed to be the same, because the

probability of an accidental hash collision, which means that a file will hash to the

exact value, is very small. (7) The user loads the validated file.

1. Annotate file

for tracking
E

E

… … 010

111

Wait until transaction

is available

Users File Endolith Blockchain

2. Generate file

track contract

3. Deploy file

track contract

4. Attach contract

address to file

5. Calculate

file hash
6. Add metadata

to contract

E

… 010

111
…

… 010

111

101

001

… 010

111

101

001

Wait until transaction

is available

Id

E

7. Send trans-

action receipt

Modify

annotated file

8. Notify

#

Figure 7.3: Workflow of annotating and monitoring with Endolith.

1. Request

file
E

E

… 010

111

010

111

Users File Endolith Blockchain

2. Load file

tracking contract

3. Request last

known hash

4. Execute smart

contract locally

6. Compare file system

and blockchain hash

E

7. Load validated file

Id

5. Get stored

file hash

#

Figure 7.4: Workflow of validating a file with Endolith.

In addition, Endolith allows its users to validate their local copies of a file against

the ground truth stored on the blockchain network without touching the remote

file. Also, he or she can validate, if the local version existed at any time. Another

96 7.5. Evaluation

advantage of this hash-based file verification is its good performance without the

need of comparing bit per bit and it is possible to compare files without making its

content visible to anyone. Also the hash size is relatively small in size compared to

the file size, and thus is suitable to be stored on the blockchain.

History Tracking. By storing the file hashes including additional file attributes

maintained by the storage system, such as owner, time stamp, and URI, on a

blockchain using dedicated smart contract, it is possible to guarantee and exactly

determine when and how a file has being changed at any moment in time. If an

already stored file is modified, the updated file attributes including the new file hash

is appended to the smart contract and is stored in the blockchain network. As soon

as the transaction is mined and confirmed, we can indisputably prove that the file

record in the storage exists and securely track who changed a file when, because

transactions on the blockchain cannot be modified or deleted. Additionally, all that

functionality can be done without any third party interference.

7.5 Evaluation

This section presents the evaluation of Endolith. First, the benchmark setup and

testbed is described. Afterwards, the overhead and costs of writing and reading a

file with Endolith is presented.

7.5.1 Cluster Setup

All experiments were done using a 11 node cluster. Each node is equipped with a

quad-core Intel Xeon CPU E3-1230 V2 3.30GHz, 16 GB RAM, and three 1 TB

disks with 7200RPM organized in a RAID-0. All nodes are connected through a

single switch with a one Gigabit Ethernet connection. Each node runs Linux, kernel

version 3.10.0, and Java 1.8.0. 10 Nodes run Hadoop HDFS 2.7.1 with default

configuration. One Node runs Endolith and Geth12 version 1.7.1 as gateway to

Ethereum’s public testnet Ropsten13. In contrast to the ethereum main net, writing

transactions is free on the testnet. Additionally, new blocks on the testnet are mined

12https://github.com/ethereum/go-ethereum, , accessed 2018-08-06.
13https://github.com/ethereum/ropsten, , accessed 2018-08-06.

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/ropsten

Chapter 7. Data Retention Placement 97

with a less difficulty parameter, and thus are generated and validated faster. At

the time of writing this paper, the block time on Ethereum main net is average

15 seconds. The testnet does not provide detailed historical data about the block

time, our observations show a varying block time between 10 and 15 seconds.

Furthermore, the geth client waits 5 blocks for confirmation, instead of 7 blocks, as

suggested in the Ethereum whitepaper [143].

7.5.2 Benchmark Description and Results

The evaluation consists of three benchmarks. First, the response times of writing

a single file and multiple files to test Endolith at scale are measured. Second, the

response time or reading and evaluating are reported. We repeat all experiments

seven times and report the median. Third, the additional costs of using Endolith are

reported.

Writing Response Time. This benchmark measures the overhead in terms of

response time when writing a file caused by Endolith. Therefore, we generate

multiple random files with fixed file sizes ranging from 64 MB to 8192 MB by using

dd, a command-line utility for Unix and Unix-like operating systems. Figure 7.5

reports the results of writing files with varying sizes. The blue bar represents the

response time until the file is available in HDFS. The orange bar represents the

additional response time until the metadata is collected, the contract is generated,

deployed and confirmed by the Ethereum network.

The median response time for collecting the metadata as well as sending and

confirming the contract transaction is 42.5 seconds. This response time is approxi-

mately the same, independent of the file size, because the opcode and input data for

deploying a file tracking smart contract has approximately the same size indepen-

dent of the file size. However, maximum and minimum values are far from each

with 15.59 seconds and 105.8 seconds. This is because block time varies heavily

on the testnet. Collecting the metadata and sending the contract creation took 0.7

seconds on the average. Transaction confirmation took most of the response time.

When the file size increases, the proportion of the overhead caused by Endolith de-

creases, because more time is spent on the file transfer. It is important to emphasize

that Endolith allows the user to use HDFS during that time due to the Transaction

98 7.5. Evaluation

0

20

40

60

80

100

120

140

64 128 256 512 1024 2048 4096 8192

R
es

po
ns

e
T

im
e

in
S

ec
on

ds

File Size in Megabyte

Endolith Overhead
HDFS Only

Figure 7.5: Response time of writing a file with varying size to HDFS with and
without Endolith.

Manager that caches transactions until they are included into the blockchain and

enables to work on them during this time. However, due to the long response time

until a transaction is confirmed, Endolith is more suitable for archival data, which is

modified rarely or not at all.

Figure 7.6 reports Endolith writing performance at scale. Therefore, we generate

a new file every 15 seconds and every already stored file is changed after these 15

seconds too. As a result, the number of newly submitted transactions increases by 1

after every 15 seconds. For instance, after the first 15 seconds one new transaction

was submitted, after 30 seconds two transactions (one contract creation for a new

file and one for a file update), after 45 seconds three transactions (one contract

creation and two file updates), and so on. By this, the load increases consequently

while the test is running. In total, we ran the experiment for 3000 seconds. During

that time we generated 20301 total transactions, as shown in the red graph. The

blue graph shows the total number of confirmed transactions by the network. The

gap between both lines indicates how long it takes until transactions are confirmed.

It can be seen that it takes approximately the same time as in the response time

benchmark, even when the system load and number of transaction increases.

Reading and Validating Response Time. Similar to the writing benchmark, we

generate random files with varying sizes between 64 MB and 8192 MB. Figure 7.7

reports the results of reading and validating the files with varying sizes. Before

Chapter 7. Data Retention Placement 99

0

5000

10000

15000

20000

0 500 1000 1500 2000 2500 3000

T
ot

al
N

um
be

r
of

T
ra

ns
ac

ti
on

s

Benchmark Runtime in Seconds

Total Submitted Transactions
Total Confirmed Transactions

Figure 7.6: Evaluating Endolith write performance at scale by tracking and changing
multiple files simultaneously.

reading the file with Endolith, we modify it 50 times to generate data within the

corresponding file tracking contract. The blue bar represents the response time

until the file is copied from HDFS to the local disk. The orange bar represents the

response time until the local file is hashed and validated against the value stored

on the ethereum blockchain. The overhead varies between 0.54 to 1.20 seconds.

The red line represents the overhead in percent, which varies from 87.83% to

1.62%. When the file size increases, the overhead caused by Endolith decreases,

because more time is spent on the file transfer. In comparison to the write response

time, the reading and validating overhead is small. This is because the smart

contract execution for retrieving the file hash can be done locally without writing

any transaction on the blockchain network.

Costs of Creating And Modifying a File. This benchmark measures the cost

of creating and modifying a single file in terms of gas [143]. Gas is the name for

a special unit used in Ethereum. It measures how much work an action or set of

actions takes to perform. Every operation that can be performed by a transaction or

contract on the Ethereum platform costs a certain number of gas, with operations

that require more computational resources costing more gas than operations that

require few computational resources.

We generated a 1024 MB file, loaded the file to HDFS, and repeated both steps

10 times for overriding the file in HDFS. When a file is created, a corresponding

100 7.5. Evaluation

0

10

20

30

40

50

60

70

80

64 128 256 512 1024 2048 4096 8192
0

20

40

60

80

100

R
es

po
ns

e
T

im
e

in
S

ec
on

ds

O
ve

rh
ea

d
in

P
er

ce
nt

File Size in Megabyte

Endolith Overhead
HDFS Only

Endolith Overhead in Percent

Figure 7.7: Response time of reading and validating a file with varying size from
HDFS with and without Endolith.

smart contract is deployed that costs 18.901 gas. These are 0.062e based on the gas

price14 and Ethereum-Euro exchange rate15 on 2018-08-13. Every file modification

costs constantly 2.632 gas, which are 0.009e. It costs the same amount, because

independent of the file size, the opcode and input data deploying a file tracking

smart contract or adding new data to an existing one has approximately the same

size independent of the file size. However, users should be thoughtful which and

how many files to track when using Endolith on a public network, because executing

code on the blockchain generates costs. It is important to emphasize that reading and

validating generates no costs in terms of gas usage, as the contract is executed locally

based on a valid blockchain copy without the need for writing any transaction.

14https://etherscan.io/chart/gasprice, , accessed 2018-08-06.
15https://trade.kraken.com/kraken/etheur, , accessed 2018-08-06.

https://etherscan.io/chart/gasprice
https://trade.kraken.com/kraken/etheur

Chapter 8: Conclusion

This thesis presented methods that optimize the runtime performance of distributed

dataflow applications running in shared data analytics platforms. In particular,

two methods are presented that optimize the runtime performance of distributed

dataflow applications through a better coordination between datablock and container

placements. By this, runtime performance can be improved without allocating more

containers and resources per job, increasing the amount of datablock replicas in

the cluster, or changing the application itself. In addition, this thesis tackles the

problem of long-term data retention by a method that allows to validate and track

files based on metadata stored on a blockchain network. Besides the metadata, the

validation and tracking logic is also immutable as it is implemented and executed as

dedicated smart contracts on the blockchain network.

The thesis made contributions in three areas. The first contribution are two con-

tainer and datablock placement methods to optimize the runtime performance of

distributed dataflow batch applications. The first placement method, which is called

CoLoc, places related datablocks and containers on a pre-selected set of nodes.

By this, it improved the runtime performance of various dataflow applications in

comparison to using Hadoop’s default placement method by reading more input

data from local disks and having more local inter-process communication between

containers and connected dataflow tasks running inside it. The second placement

method, which is called NeAwa, improved the runtime performance by approxi-

mating a good container placement using Simulated Annealing. Its cost function

takes network distances between a job’s containers and input datablocks as well

as balancing and interference into account. The second contribution is a method

called Endolith. It supports long-term storing of shared files by embedding metadata

describing the lineage of data transformations on a blockchain through dedicated

smart contracts. Users can use well-defined functionalities of these contracts to

102

validate data integrity. The third contribution is given by the specification of a

dynamic data and resource management system to improve automation, runtime

performance and data retention in data analytics platforms.

All methods of this thesis are implemented in a research prototype system and

have been evaluated on a 64 node commodity cluster. In order to show runtime

performance improvements, workloads consisting of different standardized bench-

marks, datasets, and applications used in production are used. We use Flink as

reference distributed dataflow system for our evaluation and different types of batch

applications. The results are promising. CoLoc shows a reduction of execution

times up to 31.19% depending on the job, workload, and number of colocated jobs.

NeAwa shows a reduction of execution times between 25.04% and 26.81% for

mixed workloads consisting of graph, machine learning and data-intensive relational

queries. Endolith is based on Ethereum and is evaluated on its official testnet. Its

performance evaluations demonstrate that the method can improve retention at scale

and with low overhead in terms of additional response time.

Although this thesis already shows promising results for improving runtime per-

formance and data retention in data analytics platforms, some interesting directions

for further investigation exist. The placement strategies affect runtime performance

differently depending on the type of application. Therefore, we would like to

investigate more methods to automatically select the most appropriate strategy

for upcoming applications. Furthermore, we used Flink as reference distributed

dataflow system, allowing us to run a broad mix of applications. However, further

evaluations with other non-distributed dataflow systems should be investigated to

determine if the placement methods are applicable to them as well. Other direc-

tions can be derived from our method’s limitations. One limitation of data and

container colocation is that dataset and job dependencies need to be set manually.

In order to decrease the required user intervention, we would like to combine the

placement strategy with file access prediction techniques to identify datasets that

are accessed and processed together automatically and re-balance the datablock

distribution at runtime. Our blockchain-based data retention method is best applied

for cold data, which is infrequently modified and whose user response time for

creating or modifying a file is not critical. Therefore, we would like to find out how

Endolith performs on a private blockchain with a lower block time. In addition,

using a private blockchain allows being independent from price fluctuations and

speculations.

Bibliography

[1] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google News Personalization:

Scalable Online Collaborative Filtering,” in Proceedings of the 16th Inter-

national Conference on World Wide Web, WWW ’07, pp. 271–280, ACM,

2007.

[2] S. Kedia, S. Wang, and A. Ching, “Apache Spark @Scale: A 60

TB+ Production Use Case.” https://code.facebook.com/posts/

1671373793181703/apache-spark-scale-a-60-tb-production-use-

case/, 2016. Last Accessed: 2018-09-30.

[3] J. Wozniak, “The Architecture of the Next CERN Accelerator

Logging Service.” https://databricks.com/blog/2017/12/14/

the-architecture-of-the-next-cern-accelerator-logging-

service.html, 2017. Last Accessed: 2018-09-30.

[4] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a Big

Data Platform for Smart Cities: Experience and Lessons from Santander,”

in 2015 IEEE International Congress on Big Data, BigDataCongress ’15,

pp. 592–599, IEEE, 2015.

[5] R. W. Wisniewski, M. Michael, D. Shiloach, and J. E. Moreira, “Scale-up x

Scale-out: A Case Study using Nutch/Lucene,” in Proceedings of the 2007

IEEE International Parallel and Distributed Processing Symposium, IPDPS’

07, pp. 1–8, IEEE, 2007.

[6] “Apache Hadoop.” https://hadoop.apache.org/. Last Accessed: 2018-

09-30.

https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/
https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/
https://code.facebook.com/posts/1671373793181703/apache-spark-scale-a-60-tb-production-use-case/
https://databricks.com/blog/2017/12/14/the-architecture-of-the-next-cern-accelerator-logging-service.html
https://databricks.com/blog/2017/12/14/the-architecture-of-the-next-cern-accelerator-logging-service.html
https://databricks.com/blog/2017/12/14/the-architecture-of-the-next-cern-accelerator-logging-service.html
https://hadoop.apache.org/

104 Bibliography

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed

File System,” in 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies, MSST ’10, pp. 1–10, IEEE, 2010.

[8] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph:

A Scalable, High-Performance Distributed File System,” in Proceedings of

the 7th Symposium on Operating Systems Design and Implementation, OSDI

’06, pp. 307–320, USENIX Association, 2006.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster Computing with Working Sets,” in Proceedings of the 2Nd USENIX

Conference on Hot Topics in Cloud Computing, HotCloud ’10, pp. 10–10,

USENIX Association, 2010.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,

“Apache Flink: Stream and Batch Processing in a Single Engine,” IEEE Data

Engineering Bulletin, vol. 38, no. 4, pp. 28–38, 2015.

[11] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,

S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop YARN: Yet

Another Resource Negotiator,” in Proceedings of the 4th Annual Symposium

on Cloud Computing, SOCC ’13, pp. 5:1–5:16, ACM, 2013.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained Resource

Sharing in the Data Center,” in Proceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation, NSDI ’11, pp. 295–308,

USENIX Association, 2011.

[13] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and

L. Zhou, “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale

Computing,” in Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation, OSDI ’14, pp. 285–300, USENIX

Association, 2014.

[14] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Het-

erogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis,” in

Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12,

pp. 7:1–7:13, ACM, 2012.

Bibliography 105

[15] K. Kambatla, V. Yarlagadda, I. Goiri, and A. Grama, “UBIS: Utilization-

Aware Cluster Scheduling,” in Proceedings of the 2018 IEEE International

Parallel and Distributed Processing Symposium, IPDPS’ 18, pp. 358–367,

IEEE, 2018.

[16] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou, “Re-

optimizing Data Parallel Computing,” in In Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation, NSDI ’12,

pp. 281–294, USENIX Association, 2012.

[17] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov,

J. Yaniv, R. Mavlyutov, I. n. Goiri, S. Krishnan, J. Kulkarni, and S. Rao,

“Morpheus: Towards Automated SLOs for Enterprise Clusters,” in Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and

Implementation, OSDI ’16, pp. 117–134, USENIX Association, 2016.

[18] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin, “Fast Data in the Era

of Big Data: Twitter’s Real-time Related Query Suggestion Architecture,”

in Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’13, pp. 1147–1158, ACM, 2013.

[19] M. Schwarzkopf, “Cluster Scheduling for Data Centers,” ACM Queue, vol. 15,

no. 5, p. 70, 2017.

[20] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-aware

Cluster Management,” in Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS ’14, pp. 127–144, ACM, 2014.

[21] Ernst & Young Law, “Data Retention and Preservation - Overview on

Requirements in Selected Countries.” https://eylaw.ey.com/2015/07/

17/data-retention-and-preservation-in-selected-countries/,

2015. Last Accessed: 2018-09-30.

[22] S. Childs, J. McLeod, E. Lomas, and G. Cook, “Opening Research Data:

Issues and Opportunities,” Records Management Journal, vol. 24, no. 2,

pp. 142–162, 2014.

[23] B. Lee, A. Awad, and M. Awad, “Towards Secure Provenance in the Cloud:

A Survey,” in Proceedings of the 8th International Conference on Utility and

Cloud Computing, UCC’ 15, pp. 577–582, IEEE, 2015.

https://eylaw.ey.com/2015/07/17/data-retention-and-preservation-in-selected-countries/
https://eylaw.ey.com/2015/07/17/data-retention-and-preservation-in-selected-countries/

106 Bibliography

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in Proceedings of the 6th Conference on Symposium on

Operating Systems Design & Implementation, OSDI ’04, pp. 10–10, USENIX

Association, 2004.

[25] F. Hüske, “Peeking Into Apache Flink’s Engine Room.” https:

//flink.apache.org/news/2015/03/13/peeking-into-Apache-

Flinks-Engine-Room.html/, 2015. Last Accessed: 2018-09-30.

[26] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning Fast Iterative

Data Flows,” Proceedings of the VLDB Endowment, vol. 5, no. 11, pp. 1268–

1279, 2012.

[27] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and S. Hand, “Firmament:

Fast, Centralized Cluster Scheduling at Scale,” in Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation,

OSDI ’16, pp. 99–115, USENIX Association, 2016.

[28] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making

Sense of Performance in Data Analytics Frameworks,” in 12th USENIX

Symposium on Networked Systems Design and Implementation, NSDI ’15,

pp. 293–307, 2015.

[29] L. Thamsen, B. Rabier, F. Schmidt, T. Renner, and O. Kao, “Scheduling

Recurring Distributed Dataflow Jobs Based on Resource Utilization and

Interference.,” in 2017 IEEE International Congress on Big Data, BigData-

Congress ’17, pp. 145–152, IEEE, 2017.

[30] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,

“Dominant Resource Fairness: Fair Allocation of Multiple Resource Types,”

in Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, NSDI ’11, pp. 323–336, USENIX Association, 2011.

[31] M. Veiga Neves, C. De Rose, K. Katrinis, and H. Franke, “Pythia: Faster Big

Data in Motion Through Predictive Software-Defined Network Optimization

at Runtime,” in Parallel and Distributed Processing Symposium, Proceedings

of the 28th International Conference on Parallel and Distributed Processing,

IPDPS ’14, pp. 82–90, 2014.

https://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html/
https://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html/
https://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html/

Bibliography 107

[32] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay Scheduling: A Simple Technique for Achieving Locality

and Fairness in Cluster Scheduling,” in Proceedings of the 5th European

Conference on Computer Systems, EuroSys ’10, pp. 265–278, ACM, April

2010.

[33] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and

S. Rao, “Reservation-Based Scheduling: If You’re Late Don’t Blame Us!,” in

Proceedings of the 14th ACM Symposium on Cloud Computing, SOCC ’14,

pp. 1–14, ACM, 2014.

[34] “Kubernetes - Production-Grade Container Orchestration.” https://

kubernetes.io/. Last Accessed: 2018-09-30.

[35] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,

“Large-Scale Cluster Management at Google With Borg,” in Proceedings of

the Tenth European Conference on Computer Systems, EuroSys ’15, pp. 18:1–

18:17, ACM, 2015.

[36] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware Scheduling for Het-

erogeneous Datacenters,” in Proceedings of the 18th International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’13, pp. 77–88, ACM, 2013.

[37] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega:

Flexible, Scalable Schedulers for Large Compute Clusters,” in Proceedings

of the 8th ACM European Conference on Computer Systems, EuroSys ’13,

pp. 351–364, ACM, 2013.

[38] Z. Guo, G. Fox, and M. Zhou, “Investigation of Data Locality in MapReduce,”

in 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, CCGrid ’12, pp. 419–426, IEEE, 2012.

[39] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg,

“Quincy: Fair Scheduling for Distributed Computing Clusters,” in Proceed-

ings of the 22nd Symposium on Operating Systems Principles, OSDI’ 09,

pp. 261–276, ACM, 2009.

[40] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards Predictable

Datacenter Networks,” in Proceedings of SIGCOMM 2011, vol. 41 of SIG-

COMM ’11, pp. 242–253, 2011.

https://kubernetes.io/
https://kubernetes.io/

108 Bibliography

[41] S. Moon, J. Lee, and Y. S. Kee, “Introducing SSDs to the Hadoop MapReduce

Framework,” in Proceedings of the 7th International Conference on Cloud

Computing, CloudCom ’14, pp. 272–279, 2014.

[42] K. Kambatla and Y. Chen, “The Truth About MapReduce Performance on

SSDs,” in Proceedings of the 28th Large Installation System Administration

Conference, LISA14 ’14, pp. 118–126, USENIX Association, 2014.

[43] K. Krish, M. S. Iqbal, and A. R. Butt, “Venu: Orchestrating Ssds in Hadoop

Storage,” in Proceedings of the 2014 IEEE International Conference On Big

Data, BigData ’14, pp. 207–212, IEEE, 2014.

[44] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reliable,

Memory Speed Storage for Cluster Computing Frameworks,” in Proceedings

of the ACM Symposium on Cloud Computing, SOCC ’14, pp. 1–15, ACM,

2014.

[45] S. Nakamoto, “Bitcoin: A Peer-To-Peer Electronic Cash System.” http:

//www.bitcoin.org/bitcoin.pdf, 2008. Last Accessed: 2018-09-30.

[46] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction

Ledger.” http://gavwood.com/Paper.pdf, 2014. Last Accessed: 2018-

09-30.

[47] Hyperledge, “Hyperledger Architecture, Volume 2: Smart Contracts.”

https://www.hyperledger.org/wp-content/uploads/2018/04/

Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf. Last Accessed:

2018-09-30.

[48] R. C. Merkle, “Protocols for Public Key Cryptosystems,” in IEEE Symposium

On Security and Privacy, pp. 122–122, IEEE, 1980.

[49] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum

Smart Contracts SoK,” in Proceedings of the 6th International Conference

on Principles of Security and Trust, POST ’17, pp. 164–186, Springer, 2017.

[50] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient Iterative

Data Processing on Large Clusters,” VLDB, vol. 3, no. 1-2, pp. 285–296,

2010.

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://gavwood.com/Paper.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf

Bibliography 109

[51] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox,

“Twister: A Runtime for Iterative MapReduce,” in Proceedings of the 19th

ACM International Symposium on High Performance Distributed Computing,

HPDC ’10, pp. 810–818, ACM, 2010.

[52] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: A Warehousing Solution over a Map-

Reduce Framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,

pp. 1626–1629, 2009.

[53] D. Warneke and O. Kao, “Nephele: Efficient Parallel Data Processing in the

Cloud,” in Proceedings of the 2Nd Workshop on Many-Task Computing on

Grids and Supercomputers, MTAGS ’09, pp. 8:1–8:10, ACM, 2009.

[54] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed

Data-Parallel Programs From Sequential Building Blocks,” in Proceedings of

the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, pp. 59–72, ACM, 2007.

[55] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,

O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer,

M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and D. Warneke, “The

Stratosphere Platform for Big Data Analytics,” The VLDB Journal, vol. 23,

no. 6, pp. 939–964, 2014.

[56] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke, “Nephele/-

PACTs: A Programming Model and Execution Framework for Web-Scale

Analytical Processing,” in Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC ’10, pp. 119–130, ACM, 2010.

[57] A. Heise, A. Rheinländer, M. Leich, U. Leser, and F. Naumann, “Meteor/So-

premo: An Extensible Query Language and Operator Model,” in Proceedings

of the International Workshop on End-To-End Management of Big Data,

BigData 2012, pp. 1–10, VLDB Endowment, 2012.

[58] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer, R. Bergmann, A. Kret-

tek, and K. Tzoumas, “Opening the black boxes in data flow optimization,”

Proceedings of the VLDB Endowment, vol. 5, no. 11, pp. 1256–1267, 2012.

110 Bibliography

[59] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and F. Naumann, “SOFA:

An Extensible Logical Optimizer for UDF-heavy Data Flows,” Information

Systems, vol. 52, no. C, pp. 96–125, 2015.

[60] L. Thamsen, T. Renner, and O. Kao, “Continuously Improving the Resource

Utilization of Iterative Parallel Dataflows,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems Workshops, ICDCSW 2016,

pp. 1–6, IEEE, 2016.

[61] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A Fault-

Tolerant Abstraction for In-Memory Cluster Computing,” in Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implementa-

tion, NSDI ’12, pp. 2–2, USENIX Association, 2012.

[62] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,

“Shark: SQL and Rich Analytics at Scale,” in Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’13,

pp. 13–24, ACM, 2013.

[63] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,

T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark SQL: Relational

Data Processing in Spark,” in Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’15, pp. 1383–1394,

ACM, 2015.

[64] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and

I. Stoica, “GraphX: Graph Processing in a Distributed Dataflow Framework,”

in Proceedings of the 11th USENIX Conference on Operating Systems Design

and Implementation, OSDI ’14, pp. 599–613, USENIX Association, 2014.

[65] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: A Resilient

Distributed Graph System on Spark,” in First International Workshop on

Graph Data Management Experiences and Systems, GRADES ’13, pp. 2:1–

2:6, ACM, 2013.

[66] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

Streams: Fault-Tolerant Streaming Computation at Scale,” in Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP

’13, pp. 423–438, ACM, 2013.

Bibliography 111

[67] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-

Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whit-

tle, “The Dataflow Model: A Practical Approach to Balancing Correctness,

Latency, and Cost in Massive-Scale, Unbounded, Out-Of-Order Data Process-

ing,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792–1803,

2015.

[68] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of the Maui Sched-

uler,” in Workshop on Job Scheduling Strategies for Parallel Processing,

pp. 87–102, Springer, 2001.

[69] S. Iqbal, R. Gupta, and Y.-C. Fang, “Planning Considerations for Job Schedul-

ing in HPC Clusters,” Dell Power Solutions, pp. 133–136, 2005.

[70] “Nomad.” https://www.nomadproject.io/. Last Accessed: 2018-09-30.

[71] A. Kuzmanovska, R. H. Mak, and D. Epema, “KOALA-F: A Resource

Manager for Scheduling Frameworks in Clusters,” in Proceedings of the 16th

International Symposium on Cluster, Cloud and Grid Computing, CCGrid

’16, pp. 80–89, IEEE/ACM, 2016.

[72] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., “TensorFlow: A System for Large-

Scale Machine Learning,” in Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation, OSDI ’16, pp. 265–283,

USENIX Association, 2016.

[73] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in

Proceedings of the 19th Symposium on Operating Systems Principles, SOSP

’03, pp. 29–43, ACM, 2003.

[74] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, and M. Ron-

ström, “HopsFS: Scaling Hierarchical File System Metadata Using NewSQL

Databases,” in Proceddings of the 15th Conference on File and Storage

Technologies, FAST ’17, pp. 89–104, USENIX Association, 2017.

[75] G. Mackey, S. Sehrish, and J. Wang, “Improving Metadata Management for

Small Files in HDFS,” in Proceedings of the International Conference on

Cluster Computing, Cluster ’09, pp. 1–4, IEEE, 2009.

https://www.nomadproject.io/

112 Bibliography

[76] X. Liu, J. Han, Y. Zhong, C. Han, and X. He, “Implementing WebGIS on

Hadoop: A Case Study of Improving Small File I/O Performance on HDFS,”

in Proceedings of the International Conference on Cluster Computing, Clus-

ter ’09, pp. 1–8, IEEE, 2009.

[77] C. Yan, T. Li, Y. Huang, and Y. Gan, “HMFS: Efficient Support of Small

Files Processing Over HDFS,” in International Conference on Algorithms

and Architectures for Parallel Processing, ICA3PP ’14, pp. 54–67, Springer,

2014.

[78] T. Renner, J. Müller, L. Thamsen, and O. Kao, “Addressing Hadoop’s Small

File Problem With an Appendable Archive File Format,” in Proceedings

of the 2017 Computing Frontiers Conference, CF ’17, pp. 367–372, ACM,

2017.

[79] A. Davies and A. Orsaria, “Scale Out with GlusterFS,” Linux Journal,

vol. 2013, no. 235, 2013.

[80] “Amazon S3.” https://aws.amazon.com/s3/. Last Accessed: 2018-09-30.

[81] “Apache Flink Documentation: Connectors.” https://ci.apache.org/

projects/flink/flink-docs-master/dev/batch/connectors.html.

Last Accessed: 2018-09-30.

[82] “MongoDB.” https://www.mongodb.com/. Last Accessed: 2018-09-30.

[83] “Google Cloud Storage.” https://cloud.google.com/storage/. Last Ac-

cessed: 2018-09-30.

[84] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-

sar, “Network-aware scheduling for data-parallel jobs: Plan when you can,”

SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 407–420, 2015.

[85] H. Zhang, B. Xu, J. Yan, L. Liu, and H. Ma, “Proactive Data Placement for

Surveillance Video Processing in Heterogeneous Cluster,” in Proceedings of

the International Conference on Cloud Computing Technology and Science,

CloudCom’ 16, pp. 206–213, 2016.

[86] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPher-

son, “CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop,”

Proceedings of the VLDB Endowment, vol. 4, no. 9, pp. 575–585, 2011.

https://aws.amazon.com/s3/
https://ci.apache.org/projects/flink/flink-docs-master/dev/batch/connectors.html
https://ci.apache.org/projects/flink/flink-docs-master/dev/batch/connectors.html
https://www.mongodb.com/
https://cloud.google.com/storage/

Bibliography 113

[87] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad,

“Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It

Even Noticing),” Proceedings of the VLDB Endowment, vol. 3, no. 1-2,

pp. 515–529, 2010.

[88] H. Liu and D. Orban, “Gridbatch: Cloud Computing for Large-Scale Data-

Intensive Batch Applications,” in Proceedings of the 8th IEEE International

Symposium On Cluster Computing and the Grid, CCGrid’ 08, pp. 295–305,

IEEE, 2008.

[89] A. Shanbhag, A. Jindal, Y. Lu, and S. Madden, “A Moeba: A Shape Changing

Storage System for Big Data,” Proceedings of the VLDB Endowment, vol. 9,

no. 13, pp. 1569–1572, 2016.

[90] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden, “AdaptDB: Adaptive Parti-

tioning for Distributed Joins,” Proceedings of the VLDB Endowment, vol. 10,

no. 5, pp. 589–600, 2017.

[91] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha, “Distributed Data

Placement to Minimize Communication Costs via Graph Partitioning,” in

Proceedings of the 26th International Conference on Scientific and Statistical

Database Management, SSDBM’ 14, p. 20, ACM, 2014.

[92] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,

D. Harlan, and E. Harris, “Scarlett: Coping with Skewed Content Popularity

in Mapreduce Clusters,” in Proceedings of the Sixth Conference on Computer

Systems, EuroSys ’11, pp. 287–300, ACM, 2011.

[93] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang, and G. Guan,

“ERMS: An Elastic Replication Management System for HDFS,” in Proceed-

ings of the IEEE International Conference on Cluster Computing Workshops,

Cluster’ 12, pp. 32–40, 2012.

[94] C. L. Abad, Y. Lu, and R. H. Campbell, “DARE: Adaptive Data Replication

for Efficient Cluster Scheduling,” in Proceedings of the IEEE International

Conference on Cluster Computing, Cluster’ 11, pp. 159–168, IEEE, 2011.

[95] D. M. Bui, S. Hussain, E. N. Huh, and S. Lee, “Adaptive Replication Man-

agement in HDFS Based on Supervised Learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no. 6, pp. 1369–1382, 2016.

114 Bibliography

[96] H. E. Ciritoglu, T. Saber, T. Buda, J. Murphy, and C. Thorpe, “Towards a

Better Replica Management for Hadoop Distributed File System,” in 2018

IEEE International Congress on Big Data, BigDataCongress ’18, pp. 1–8,

IEEE, 2018.

[97] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao, “Medea:

scheduling of long running applications in shared production clusters,” in

Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, p. 4, ACM,

2018.

[98] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.

Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream Processing at

Scale,” in Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’15, pp. 239–250, ACM, 2015.

[99] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and

I. Stoica, “The Power of Choice in Data-Aware Cluster Scheduling,” in

Proceedings of the 11th USENIX Symposium on Operating Systems Design

and Implementation, OSDI ’14, USENIX Association, 2014.

[100] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Sto-

ica, “Job Scheduling for Multi-User Mapreduce Clusters,” Tech Report of:

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2009-55, 2009.

[101] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and

X. Qin, “Improving Mapreduce Performance Through Data Placement in

Heterogeneous Hadoop Clusters,” in Proceedings of the IEEE International

Symposium On Parallel & Distributed Processing, Workshops and Phd Fo-

rum, IPDPSW’ 10, pp. 1–9, IEEE, 2010.

[102] X. Zhang, Z. Zhong, S. Feng, B. Tu, and J. Fan, “Improving Data Locality of

MapReduce by Scheduling in Homogeneous Computing Environments,” in

Proceedings of the 9th International Symposium On Parallel and Distributed

Processing With Applications , ISPA ’11’, pp. 120–126, IEEE, 2011.

[103] X. Zhang, Y. Feng, S. Feng, J. Fan, and Z. Ming, “An Effective Data Locality

Aware Task Scheduling Method for MapReduce Framework in Heteroge-

neous Environments,” in Proceedings of the 2011 International Conference

On Cloud and Service Computing, CSC ’11’, pp. 235–242, IEEE, 2011.

Bibliography 115

[104] X. Bu, J. Rao, and C.-z. Xu, “Interference and Locality-Aware Task Schedul-

ing for MapReduce Applications in Virtual Clusters,” in Proceedings of

the 22Nd International Symposium on High-Performance Parallel and Dis-

tributed Computing, HPDC ’13, pp. 227–238, ACM, 2013.

[105] C.-H. Hsu, K. D. Slagter, and Y.-C. Chung, “Locality and Loading Aware

Virtual Machine Mapping Techniques for Optimizing Communications in

MapReduce Applications,” Future Generation Computer Systems, vol. 53,

pp. 43–54, 2015.

[106] L. Thamsen, I. Verbitskiy, F. Schmidt, T. Renner, and O. Kao, “Selecting

Resources for Distributed Dataflow Systems According to Runtime Targets,”

in Proceedings of the 35th IEEE International Performance Computing and

Communications Conference, IPCCC ’16, pp. 1–8, IEEE, 2016.

[107] J. Koch, L. Thamsen, F. Schmidt, and O. Kao, “SMiPE: Estimating the

Progress of Recurring Iterative Distributed Dataflows,” in Proceedings of the

International Conference on Parallel and Distributed Computing, Applica-

tions and Technologies, PDCAT ’17, pp. 156–163, IEEE, 2017.

[108] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:

Efficient Performance Prediction for Large-Scale Advanced Analytics,” in

Proceedings of the 13th Usenix Conference on Networked Systems Design

and Implementation, NSDI ’16, pp. 363–378, USENIX Association, 2016.

[109] L. Thamsen, I. Verbitskiy, J. Beilharz, T. Renner, A. Polze, and O. Kao,

“Ellis: Dynamically Scaling Distributed Dataflows to Meet Runtime Targets,”

in Proceedings of the 2017 IEEE 9th International Conference on Cloud

Computing Technology and Science, CloudCom ’17, pp. 146–153, IEEE,

2017.

[110] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-Flux: Precise Online

QoS Management for Increased Utilization in Warehouse Scale Computers,”

in Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pp. 607–618, ACM, 2013.

[111] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Hera-

cles: Improving Resource Efficiency at Scale,” in Proceedings of the 42Nd An-

nual International Symposium on Computer Architecture, ISCA ’15, pp. 450–

462, ACM, 2015.

116 Bibliography

[112] “IXcoin.” https://bitcoinscrypt.io/. Last Accessed: 2018-09-30.

[113] “Bitcoin sCrypt.” https://bitcoinscrypt.io/. Last Accessed: 2018-09-30.

[114] “Lite Coin.” https://litecoin.org/. Last Accessed: 2018-09-30.

[115] S. Ghoshal and G. Paul, “Exploiting Block-Chain Data Structure for Auditor-

less Auditing on Cloud Data,” in Proceedings of the Internal Conference on

Information Systems Security, ICISS ’16, pp. 359–371, Springer, 2016.

[116] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,

“Provchain: A Blockchain-Based Data Provenance Architecture in Cloud

Environment With Enhanced Privacy and Availability,” in Proceedings of

the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, CCGrid ’16, pp. 468–477, IEEE, 2017.

[117] A. Ramachandran and M. Kantarcioglu, “SmartProvenance: A Distributed,

Blockchain Based DataProvenance System,” in Proceedings of the Eighth

ACM Conference on Data and Application Security and Privacy, CODASPY

’18, pp. 35–42, ACM, 2018.

[118] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A Global

Naming and Storage System Secured by Blockchains,” in USENIX Annual

Technical Conference, ATC ’16’, pp. 181–194, 2016.

[119] Filecoin, “A Cryptocurrency Operated File Network.” http:

//filecoin.io/filecoin.pdf, 2014. Last Accessed: 2018-09-30.

[120] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repurposing

Bitcoin Work for Data Preservation,” in Proceedings of the IEEE Symposium

on Security and Privacy, SP ’14’, pp. 475–490, 2014.

[121] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a Peer-To-

Peer Cloud Storage Network.” https://storj.io/storj.pdf (accessed

November 2017), 2014. Last Accessed: 2018-09-30.

[122] D. Vorick and L. Champine, “Sia: Simple Decentralized Storage.” https:

//www.sia.tech/whitepaper.pdf, 2014. Last Accessed: 2018-09-30.

[123] X. L. Yu, X. Xu, and B. Liu, “EthDrive: A Peer-to-Peer Data Storage

with Provenance,” in Proceedings of the 29th International Conference on

Advanced Information Systems Engineering, CAiSE ’17, pp. 25–32, 2017.

https://bitcoinscrypt.io/
https://litecoin.org/
http://filecoin.io/filecoin.pdf
http://filecoin.io/filecoin.pdf
https://storj.io/storj.pdf
https://www.sia.tech/whitepaper.pdf
https://www.sia.tech/whitepaper.pdf

Bibliography 117

[124] J. Benet, “IPFS - Content Addressed, Versioned, P2P File Sys-

tem.” https://github.com/ipfs/ipfs/blob/master/papers/ipfs-

cap2pfs/ipfs-p2p-file-system.pdf. Last Accessed: 2018-09-30.

[125] B. Antony, “HDFS Storage Efficiency Using Tiered Storage.”

https://www.ebayinc.com/stories/blogs/tech/hdfs-storage-

efficiency-using-tiered-storage/, 2015. Last Accessed: 2018-09-

30.

[126] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic Resource

Inference and Allocation for Mapreduce Environments,” in Proceedings of

the 8th ACM International Conference on Autonomic Computing, ICAC ’11,

pp. 235–244, ACM, 2011.

[127] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:

Guaranteed Job Latency in Data Parallel Clusters,” in Proceedings of the 7th

ACM European Conference on Computer Systems, EuroSys ’12, pp. 99–112,

ACM, 2012.

[128] T. Renner and L. Thamsen and O. Kao, “CoLoc: Distributed Data and

Container Colocation for Data-intensive Applications,” in 2016 IEEE In-

ternational Conference on Big Data, BigData 2016, pp. 3008–3015, IEEE,

2016.

[129] O.-C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez, “Spark versus Flink:

Understanding Performance in Big Data Analytics Frameworks,” in Pro-

ceedings of the IEEE 2016 International Conference on Cluster Computing,

Cluster 2016, pp. 433–442, IEEE, September 2016.

[130] T. Renner, L. Thamsen, and O. Kao, “Adaptive Resource Management for

Distributed Data Analytics Based on Container-level Cluster Monitoring,” in

7th International Conference on Data Science, Technology and Applications

(DATA), pp. 38–47, SCITEPRESS, 2017.

[131] “TPC-H Benchmark.” http://www.tpc.org/tpch/. Last Accessed: 2018-

09-30.

[132] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the Fifth Berkeley Symposium on Mathemat-

ical Statistics and Probability, pp. 281–297, University of California Press,

1967.

https://github.com/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://www.ebayinc.com/stories/blogs/tech/hdfs-storage-efficiency-using-tiered-storage/
https://www.ebayinc.com/stories/blogs/tech/hdfs-storage-efficiency-using-tiered-storage/
http://www.tpc.org/tpch/

118 Bibliography

[133] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient Algorithms for Graph

Manipulation,” Communication ACM, vol. 16, no. 6, pp. 372–378, 1973.

[134] I. Verbitskiy, L. Thamsen, and O. Kao, “When to Use a Distributed Dataflow

Engine: Evaluating the Performance of Apache Flink,” in Proceedings of the

IEEE International Conference on Cloud and Big Data Computing, CBDCom

2016, pp. 698–705, IEEE, July 2016.

[135] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social Network

or a News Media?,” in Proceedings of the 19th International Conference on

World Wide Web, WWW ’10, pp. 591–600, ACM, April 2010.

[136] T. Renner, L. Thamsen, and O. Kao, “Network-Aware Resource Manage-

ment for Scalable Data Analytics Frameworks,” in Proceedings of the 1st

First Workshop on Data-Centric Infrastructure for Big Data Science, Co-

Located With the 2015 IEEE International Conference on BigData, DIBS

’15, pp. 2793–2800, IEEE, 2015.

[137] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,

“Naiad: A Timely Dataflow System,” in Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, pp. 439–455, ACM,

November 2013.

[138] C. E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient

Supercomputing,” IEEE Transactions on Computers, vol. 34, no. 10, pp. 892–

901, 1985.

[139] H. Alkaff, I. Gupta, and L. Leslie, “Cross-Layer Scheduling in Cloud Sys-

tems,” in Proceedings of International Conference On Cloud Engineering,

IC2E ’15’, pp. 236–245, 2015.

[140] K. Kirkpatrick, “Software-defined networking,” Communications of the ACM,

vol. 56, no. 9, pp. 16–19, 2013.

[141] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simulated

annealing,” SCIENCE, vol. 220, no. 4598, 1983.

[142] T. Renner, J. Müller, and O. Kao, “Endolith: A Blockchain-Based Framework

to Enhance Data Retention in Cloud Storages,” in Proceedings of the 26th

Euromicro International Conference on Parallel, Distributed and Network-

Based Processing, PDP ’18, pp. 627–634, Euromicro, 2018.

Bibliography 119

[143] Ethereum White Paper, “A Next-Generation Smart Contract and Decentral-

ized Application Platform.” https://github.com/ethereum/wiki/wiki/

White-Paper. Last Accessed: 2018-09-30.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

	Title Page
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Problem Definition
	Contributions
	Outline of the Thesis

	Background
	Scalable Data Analytics Concepts and Systems
	Distributed Dataflow Systems
	Resource Management Systems
	Distributed File Systems
	Data Analytics Cluster Setup

	Blockchain Fundamentals
	Blockchain Network and Consensus Algorithms
	Smart Contract-Based Blockchain

	Related Work
	Scalable Data Analytics Systems
	Distributed Dataflow Systems
	Resource Management Systems
	Distributed File Systems

	Placement Strategies in Data Analytics Platforms
	Datablock Placement
	Task and Container Placement

	Blockchain-Based Data Retention

	Problem and Concepts
	Problem and State of the Art
	Dynamic Data and Container Placement Approach
	Solution Overview
	Methods and Components Description

	Assumptions and Requirements
	Shared Data Analytics Clusters
	Distributed Dataflow Systems
	Batch Processing Workloads

	Data and Container Colocation Placement
	Colocating Related Data and Containers
	Optimization Goals
	Two-Stage Data and Container Placement

	Placement Workflow and Components Overview
	Related Data and Container Colocation Enforcement
	Definitions and Parameters
	Placement Process and Algorithms

	Evaluation
	Cluster Setup
	Jobs and Workload Description
	Standalone Job Colocation Results
	Multi-Job Colocation Results

	Network-Aware Container Placement
	Placing Containers Network-Aware
	Data-Locality versus Container Closeness
	Network-Aware Placement Strategy

	Placement Workflow and Components Overview
	Placement Method and Algorithm
	Placement Algorithm Using Simulated Annealing
	Placing Containers Close Together
	Placing Containers Close to Input Datablocks

	Evaluation
	Cluster Setup
	Jobs and Workload Description
	Results of Different Workload Scenarios

	Data Retention Placement
	Improving Long-term Data Retention
	System Overview and Integration
	Smart Contract Blockchain-based File Tracking
	File Tracking Contract Template
	File Tracking Transaction Management

	Placement and Validation Workflow
	Evaluation
	Cluster Setup
	Benchmark Description and Results

	Conclusion
	Bibliography

