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Abstract

The role of the different helical components of the magnetic and velocity fields in the inverse spectral
transfer of magnetic helicity is investigated through Fourier shell-to-shell transfer analysis. Magnetic helicity
transfer analysis are performed on chosen data from direct numerical simulations of homogeneous isothermal
compressible magnetohydrodynamic turbulence, subject to both a large-scale mechanical forcing and a small-
scale helical electromotive driving. The root mean square Mach number of the hydrodynamic turbulent
steady-state taken as initial condition varies from 0.1 to about 11. Three physical phenomena can be
distinguished in the general picture of the spectral transfer of magnetic helicity towards larger spatial scales:
local inverse transfer (LIT), non-local inverse transfer (NLIT) and local direct transfer (LDT). A shell
decomposition allows to associate these three phenomena with clearly distinct velocity scales: the LDT
is driven by large-scale velocity shear and associated with a direct magnetic energy cascade, the NLIT is
mediated by small-scale velocity fluctuations which couple small- and large-scale magnetic structures and the
LIT by the intermediate spatial scales of the velocity field. The helical decomposition shows that like-signed
helical interactions and interactions with the compressive velocity field are predominant. The latter has a
high impact on the LDT and on the NLIT, but plays no role for the LIT. The locality and relative strength
of the different helical contributions are mainly determined by the triad helical geometric factor, derived
here in the compressible case.

1 Introduction

In three-dimensional turbulent hydrodynamic systems, the kinetic energy cascades to ever smaller scales through
the break-up of eddies in smaller ones, which are successively subject to this process as well. As such, turbulence
continuously transforms large-scale coherence into smaller scale structures which are eventually dissipated by
viscous effects. Contrary to this intuition, turbulence in 3D magnetohydrodynamics (MHD) inherently generates
large-scale magnetic structure, as well. One fundamental mechanism which is relevant in this perspective is
the inverse spectral transfer (from large to small wavenumbers) of an ideal quadratic invariant, the magnetic
helicity HM = (a - b), with a the magnetic vector potential, b = V x a the magnetic field and (-) denoting
the volume average. In astrophysical systems, where the MHD single-fluid approximation is often a satisfactory
approximation for the description of nonlinear dynamics of ionised gases on large scales, the resistivity is
typically very low so that rotational motion leads naturally to helical magnetic fields [4]. Magnetic helicity
dynamics are thought to play a crucial role in solar flares and coronal mass ejections [38, 31] while the solar
wind is also associated with magnetic helicity transport [12, 11]. In fusion experiments, such as the reversed-
field-pinch, the injection of magnetic helicity may improve plasma confinement [40, 21]. Moreover, magnetic
helicity conservation plays e.g. a very important role in dynamo processes [55, 14, 15].

The inverse transfer of magnetic helicity has first been suggested by absolute-equilibrium statistical models
[25] and successively has been verified by numerical experiments [47, 48, 42, 8, 18, 14, 3, 39, 44, 51, 35, 37]. In the
present work, the terminology “inverse transfer” is preferred to “inverse cascade”, since the word “cascade” is
usually associated with a local transfer in Fourier space, involving fluctuations characterised by wavenumbers k,
p, and g with similar moduli. As shown here and in previous research by shell-to-shell transfer analysis [3], both
local and non-local aspects are present in this inverse spectral transport. Furthermore, using a decomposition of
the fields along eigenvectors of the curl operator (“helical decomposition”), it has been shown that the inverse
transfer of magnetic helicity in a wavevector triad, k+p-+q = 0, is stronger and more non-local when the three
interacting magnetic and velocity helical modes have the same helical sign [37].

The above-mentioned studies [3, 37] have been performed in the incompressible case. This approximation,
which is usually chosen for the sake of simplicity, is however of limited applicability for many natural and mainly
astrophysical flows, which often are highly supersonic. For example, the root mean square (RMS) turbulent



Mach number varies typically between 0.1 and 10 in the interstellar medium ([20], section 4.2). In the present
work, both the shell-to-shell transfer analysis and the helical decomposition are combined to study the inverse
transfer of magnetic helicity in compressible isothermal ideal MHD turbulence. The aim is to disentagle the role
of the different helical components of the magnetic and velocity fields by analysing data from direct numerical
simulations of large-scale-mechanically-driven turbulence, with either a purely solenoidal or purely compressive
forcing, and Mach numbers ranging from 0.1 to about 11. In these flows, small-scale helical magnetic fluctuations
are injected.

The numerical experiments considered are described in section 2. The energetic exchanges in isothermal
MHD are depicted in section 3, with an emphasis on the main differences with the incompressible case. Sections 4
and 5 describe the analytical tools used, namely the shell-to-shell transfer analysis and the helical decomposition,
respectively. The results are reported in section 6, while section 7 summarises the findings and gives some
concluding remarks.

2 Numerical experiments

The numerical data is generated by solving the isothermal compressible ideal single-fluid MHD equations, in
the presence of both a mechanical and an electromotive driving. They read, in conservative form:

dhp = —=V-(pv), (1)
d(pw) = -V <pva +(pc2 + S b)T - bbT) +ofv. (2)
b = Vx(vxb)+ fu, (3)
Vb = 0, (4)

where p is the mass density, v the velocity and b the magnetic field. The 3 x 3 identity matrix is denoted by I.
In the isothermal case, the sound speed c; is constant, giving the (thermal) pressure p = pc2. Energetically, this
simple thermodynamic approximation introduces a new reservoir of specific potential energy, u = c¢2In(p/po)
(with a reference density pp), that couples via velocity field dilatation and density fluctuations with the kinetic
energy. Kinetic and magnetic energy are linked via incompressible transversal shear Alfvénic fluctuations
and via magnetic pressure generated by longitudinal magnetosonic fluctuations (see section 3). This physical
approximation can thus be regarded as the structurally next step when going beyond the simplifying assumption
of strict incompressibility.

The driving terms fy, and f,, inject kinetic energy at large scales and small scale magnetic helical fluc-
tuations respectively and are described below. The equations are solved using a fourth-order shock-capturing
finite-volume solver, which makes use of the constrained-transport approach to ensure the solenoidality of the
magnetic field. It is described in detail in [52, 54]. The main reconstruction method used is a fourth-order
Central Weighted Essentially Non-Oscillatory (CWENO) method [33], with a passage through point values in
order to keep fourth-order accuracy [41, 17]. The Riemann problems at the cell interfaces are solved using the
Rusanov approximation [50] and a multidimensional version of the same is used for the line-integrated electric
field in the constrained-transport framework [9], which inherently maintains the solenoidality of the magnetic
field up to machine precision [22]. The time-stepping is done through a Strong Stability Preserving Runge-Kutta
(SSPRK) method, namely the one described by pseudocode 3 in [29], with a timestep limited by the Courant-
Friedrichs-Lewy criterion with a Courant number Ceopy, = 1.5. In order to prevent the appearance of negative
mass densities as a result of numerical inaccuracies at strong discontinuities and shocks prevalent in high Mach
number flows, a local reduction of the scheme’s order is used in the vicinity of discontinuities, a technique
often referred to as “flattening” or “fallback approach”[19, 10, 45]. The increased accuracy of this higher-order
numerical model permits to obtain results comparable to a standard second-order accurate numerical model at
a significantly reduced resolution of the numerical grid [54].

The numerical experiments are performed as follows. Hydrodynamic turbulent steady-states are first gen-
erated from a fluid at rest (b = v = 0, p = pg = 1) in 5123 cubic simulation boxes of size L = 1 with
triply periodic boundary conditions by injecting large-scale kinetic energy through an acceleration field fy .
The isothermal sound speed is ¢, = 0.1. The mechanical driving is carried out similarly to the experiments
in [24, 23]. Tt is governed by an Ornstein-Uhlenbeck process, which injects either purely solenoidal or purely
compressive energy at the wavenumber shells 1 < K < 2 (with the shell K € N defined by the wavevectors k
such that K < |k|/k < K + 1, with k = 27t/L the smallest wavenumber in the system). The energy injection
rate efflj governs the turbulent RMS Mach number M of the statistical steady-state obtained when numerical
dissipation balances the injected energy. The forcing auto-correlation time is roughly the turbulent turnover
time t7 = L/(2¢sM). The weak mean velocity field which appears as a result of the forcing is removed at each
iteration. When the steady-state is reached, a delta-correlated electromotive driving f,, is switched on at a



particular instant, which injects fully positive helical magnetic fluctuations at small scales K € [48,52] with
a defined magnetic energy injection rate e%j. This means that only one sign of magnetic helicity is injected
(i.e. the electromotive forcing is only along one helical eigenvector, see section 5), so that at each wavevector
k where the driving injects both magnetic energy E,JCVIm ; and magnetic helicity H, ,]c”m ;» the so-called “realizabil-
ity condition” is saturated: H. ,]c”m] = 2E,i\/7[mj /|k| and one can estimate the global magnetic helicity injection

rate through eZ-fL;\-l = (2e%jhf)/(27tK}\4/L), with hy = +1 the helical fraction of the injected fluctuations and
K ]{VI = 50 the shell around which magnetic helicity is injected. As a consequence, only one sign of magnetic
helicity (the positive one) dominates the system at all scales. This simplification allows to limit the complexity
of the present study to a practical level. The mechanical (large-scale) and the electromotive (small-scale) driv-
ings are done at different spatial scales in order to observe the effects of compressibility. Indeed, these enter the
magnetic helicity dynamics via a term ~ V - v, so that if both the kinetic and magnetic fields would be driven
at small scales (cf [44]), the velocity field at larger scales would be solely excited by an inverse transfer of the
magnetic field and hence far too weak to have observable effects.

In the present paper, shell-to-shell helical analysis of the least and most compressible runs presented in [53]
are considered, which are labelled by “M01s4”, “M11s”, “M1c¢” and “M8c”. An outline of that work is given at
the beginning of section 6. The number in the label stands for the approximate RMS Mach number during the
hydrodynamic turbulent steady-state, which is M =~ 0.116,11.1,0.797 and 7.87 respectively, and the letter for
the forcing type, either purely solenoidal or compressive. The magnetic-to-kinetic energy injection rate e%j / e{f,, j
is taken as unity for all the runs but the M01s4 one for which e%j / Gf;j = 4, a value that has been observed to
result in faster relaxation of spectral dynamics as compared to unity.

3 Isothermal energetics

In compressible isothermal MHD, energy can be stored in three reservoirs: as kinetic energy £¥ = %p|v|2, as
magnetic energy €M = 1|b|?> and as potential energy, in the form of density fluctuations £ = pc?1In(p/po),
with pp the mean density in the system [30]. Their time evolution and the energetic exchanges between them
is described in the following.

Starting with the ideal induction equation, Eq. (3), without forcing term 9;b = —(v-V)b+(b-V)v—b(V-v),
the magnetic energy is governed by:

HEM = —b-(v-V)b+b-(b-V)v—|b*V - 0. (5)
Bl 82
The terms By and By can be reformulated as:

1 1
B, = b (v-V)b=-V- (§\b|2v) + §\b|2V . (6)
By = b-(b-Vv=V-((v-b)b)—v-(b-V)b. (7)
Plugging these terms in equation (5) leads to:

HEM = -V . (%|b|2v —(v-b)b) —v-(b-V)b— %|b\2v v (8)

As compared with the incompressible case, the only new term is —%|b|2V -v. The conservative first term on
the right-hand-side of Eq. (8) corresponds to energetic transfers inside the magnetic energy reservoir, whereas
the two remaining ones, —v - (b- V)b and —% |b|?V - v, correspond to conversion of energy between the magnetic
and kinetic energy reservoirs, through magnetic tension and magnetic pressure respectively. Their counterparts
appear in the kinetic energy equation, as shown below.

Using the time evolution of the mass density and the velocity field:

Y (p), (9)
1 T o Lo
ov = —(v-Viv+ ;V - (bb" — (pcs + §|b| ), (10)

3tp

yields the time evolution of the kinetic energy:

1
8,58K = pvU- 8{0 + §|’U|28tp, (11)
1 1
— (- V)v+v- (b V)b—2v- V(b2) v - V(pcd) +5[v[2ip. (12)
V1 V'2 V3



The terms V; can be reformulated as:

1 1
Vi = oo (0 V= V- (plef*v) L oo, (13)
1 1 1
Vi = v V(b = V- (3[bl%) + 2 b’V -, (14)
Vs = —v-V(pc?) =~V - (pctv) + pcV - v. (15)

Plugging them into equation (12), one obtains:

1 1
hEX = -v. (§p|v|2v +pv)+v-(b-V)b+ g\b\2V v+ pc?V v, (16)

with p* = pc? + 1|b|? the sum of thermal and magnetic pressure. In this equation (16), the same —v-(b-V)b
and —% |b|2V -v terms of equation (8) appear as well, but with an opposite sign, confirming that they correspond
to energetic exchanges between the magnetic and kinetic energy reservoirs. Compared to incompressible MHD,
where energy conversion can only take place through magnetic stretching i.e. shear Alfvén fluctuations, isother-
mal MHD allows energetic conversion through two additional channels: kinetic<»magnetic through magnetic
pressure (fast and slow magneto-sonic fluctuations) and kinetic<»potential through the velocity field’s dilata-
tional part V - v, i.e. work done by the interaction of the velocity field with thermal pressure. Indeed, the last
term on the right hand-side of (16) can be found with an opposite sign in the potential energy £” = pc2 In(p/po)
time evolution:

e’ = ((8:p) n(p/po) + pdip/p), (17)
= c(=V - (pv)(1 +1n(p/po)), (18)
= -V (&v) - pc?V -v. (19)

To summarize, the energy conversion terms between reservoirs can be underlined by performing a volume-
average of equations (8), (16) and (19) over a closed or triply-periodic domain:

OUES) = (0-(b-V)b) + (5IBPV - v) + (p2V ), (20)
2EM) = (- (b-V)b) — (3[bPV ), (21)
aUEN = ~(pV ). (22)

Conservative cross-scale nonlinear fluxes for each energy reservoir are present as well in the form of divergence
terms in Egs. (8), (16) and (19).

In summary, the influence of isothermal compressibility has two dynamic consequences: (i) the emergence
of a potential energy reservoir that is linked with kinetic energy via the interaction of thermal pressure and the
velocity field, and (i7) the emergence of magneto-sonic waves which, in addition to inherently incompressible
shear Alfvén waves (with perturbations orthogonal in Fourier space to the plane spanned by the wavevector
and the large-scale magnetic field), open a second channel of kinetic<>magnetic energy conversion via the
interaction of velocity and magnetic pressure. In addition, the compressive velocity component may modify
also the magnetic tension exchange. All these effects have in common that they appear as dependencies on the
velocity dilatation.

This brief overview of isothermal MHD energy dynamics is given to aid the subsequent interpretation of
magnetic helicity transfer which is the main focus of the present work.

4 Shell-to-shell transfers

The formalism used in the incompressible case in [3] for magnetic helicity and energetic shell-to-shell transfers
is reviewed and extended here for compressible MHD. For a field f, the field obtained by keeping only the
wavenumbers in a certain shell K € N, defined by the wavevectors k such that K < |k|/kx < K + 1 (with
k = 21/ L the smallest wavenumber in the system) is labelled by f .

In the absence of forcing and of dissipative effects, H¥ = (ax - bx), the magnetic helicity present in shell
K, is governed by [3, 46]:

oMM =" T (Q.K) =Y 2(bxk - (v x bg)), (23)
Q Q



where 77" (Q, K) corresponds to the transfer rate of magnetic helicity from shell @ to shell K. This transfer
function, derived in the incompressible case, remains valid without formal modification in compressible MHD
because of the magnetic field solenoidality. However, as outlined in section 3, isothermal compressibility changes
the energetic dynamics of the MHD system fundamentally and impacts the nonlinear transfer of magnetic
helicity via compressible modifications of velocity and the magnetic field. The interpretation as a transfer rate
of magnetic helicity between shells is justified through the antisymmetric property TH (Q,K)= —THM (K,Q),
and because magnetic helicity is a purely magnetic ideal invariant. Hence, the velocity field cannot exchange
helicity with the magnetic field and plays only a mediating role for transfers of magnetic helicity between two
magnetic modes. The situation regarding energetic transfers is more subtle and left for future work, as outlined
below. Please note that in [3], the inverse convention is used, with T, (Q, K) the transfer of magnetic helicity
received by shell @ from shell K. The magnetic helicity is also defined there as HM = % Ja-bdV so that a
factor 2 is not present in the transfer rates. The velocity field can also be decomposed in shells, yielding the
transfer function:

THY(Q, P,K) = 2(b - (vp x bg)), (24)

which represents the transfer of magnetic helicity from shell @ to shell K mediated by the velocity field at
shell P. Summing the function of three variables THY (Q, P, K) along @Q allows to quantify the importance of
the mediating velocity field with respect to magnetic helicity transfers to shell K as a function of the scale P:

M (P ) =3 T (Q, P, K). (25)
Q

In this work, the indices K and @ always correspond to magnetic field shells, whereas the index P always
corresponds to the velocity field.

Following section 3, a shell decomposition allows to derive the time evolution of £} = (1|bk|?), the magnetic
energy contained in shell K:

atglj\({l = Z%g—)b(Q7Pa K) + Z(%g?)b(P7Q7K) + 7;‘g?>l)(F)7CQ7[())7 (26)
QP QP

with the transfer functions:

TEwQ P.K) = (~bi-(vp-V)bg — 5(bxc bV -vp), (27)
Tin(PQK) = (b (bg- V)ve), (28)
TEW(PQK) = (—5(bic-bQ)V - vp). (29)

The 7;)5_)17 term represents transfers inside the magnetic energy reservoir, and the other two between magnetic

and kinetic energy reservoirs through magnetic tension (7:)5_”)) and magnetic pressure (7;‘9_”)) They have
T P

respectively the following counterpart for kinetic energy exchanges:

ﬁ%v(K,Q,P) = (vp-(bg-V)bk), (30)
1
These transfer functions have appropriate antisymmetries so that they could be interpreted as transfers of
energy between fields and shells. Indeed, for magnetic<»magnetic transfers, 7,¢,,(Q, P, K) = =T, (K, P,Q),
and for kinetic<>magnetic transfers T2, (K, Q, P) = —T_,,(P,Q, K) for magnetic stretching, and similarly
T T

for the magnetic pressure contribution 7;5_>b. However, as pointed out in [6] by using a coarse-graining approach,

P
magnetic stretching does not result in a cross-scale conversion term between magnetic and kinetic energy

reservoirs in incompressible MHD. It has been shown that the Lorentz force has two simultaneous effects: a
local-in-scale energy conversion between both reservoirs, and a transfer across scales inside each of the reservoir.
With other words, even though ng?)v(K,Q,P) = —T%b(P,Q,K) shows the total effect of the magnetic

v
stretching term, the energy is in fact transferred from vp to bp in a Fourier-local fashion, and simultaneously,
magnetic<>magnetic and kinetics>kinetic transfers across scales occur. How to split these contributions in
incompressible MHD is described in that reference.



In compressible MHD, the situation is more complex, since in addition to these two effects which need to be
considered separately, transfers across scales could occur directly through the coupling with the mass density
field, which is now included in the kinetic energy field. Moreover, the energy contained at a certain length-scale
lp ~ 1/P is not [ %|vp|? any longer, but may be defined in several ways — using [ 3(p“v)p - (p'~“v)p for
any « € [0,1/2], typical choices being a = 0 or a = 1/2 [28, 27, 5]. Given this level of additional complexity
regarding energetic transfers, we restrict the scope of this paper to shell-to-shell magnetic helicity transfers,
where only the velocity field, without the density, enters into play.

Some insight on the impact of the physics underlying energetic exchanges on the magnetic helicity shell-to-
shell transport can be determined by noticing that:

OHM = 2(bg-0a), (32)
= 2(bg -rot™(9;b)), (33)
= 2(bg -rot ' (—(v-V)b+ (b-V)v — bV -v)), (34)

where rot ~!(f) returns the solenoidal field g whose curl is the solenoidal part of field f (defined as §; =
ikxf
2

in Fourier space). The first equality is obtained through the divergence theorem and the fact that
(fr -9g) = 0 for any two fields when K # @ since they have no wavenumber in common. Motivated
by the different energetic transfer terms (relations (27)-(28)), this leads to the decomposition TH" (Q, K) =
M M M .
UL (Q ) + U (Q K) + UL, (Q, K) with:

U(@Q.K) = 2{br ot~ (~v- V)bg — LbgV -v)) (3)
UL (Q.K) = 2b-tot ™ ((bg - V)v)), (36)
U@ K) = 2bkrot (—5baV ) (37)

Contrary to their sum, the Ug"_]i (Q,K), U Z{ib(Q K) and UM, (Q,K) functions cannot be on their own

interpreted as magnetic helicity shell-to-shell transfers, since they are not antisymmetric. However they still
shed some light on the impact of magnetic<>magnetic energy transfers and kinetic<>magnetic energy transfers
due to magnetic tension and pressure on the magnetic helicity dynamics, as described in section 6.4.

5 Helical transfers

The helical decomposition is based on the diagonalisation of the curl operator in Fourier space f' — ik X f ,
which possesses the eigenvalues (0, +k, —k) (with k = |k|) associated respectively with the unitary eigenvectors
RO = k/k and [56, 16]:

i’%:ikzx(kxé):mk(kxé)’ (38)

V2 k21— (k- é/k)?
with é an arbitrary vector of unitary length non-parallel to k. This decomposition can be viewed as an
extension of the Helmholtz decomposition in a solenoidal (orthogonal to k) and a compressive (parallel to k)

part. The plane orthogonal to k is spanned by (i:l,;:, ﬁ;) so that the solenoidal modes are further decomposed
in circularly polarised waves with opposite polarity, corresponding in configuration space to flow lines forming
either a right-handed or a left-handed helix. Thus, the (ﬁg, ﬁ:, fL,:) eigenvectors form an orthonormal basis in
Fourier space. The study of helical mode interactions allows to find possibilities for inverse transfer dynamics in
three-dimensional hydrodynamic turbulence, in the absence of rotation or confinement (quasi-2D flow) [56, 13],
which may be relevant for turbulence models in large-eddy simulations [1]. Extensions to the MHD case seem
promising to clarify the intertwined dynamics of magnetic and kinetic helicities, for example analytically [34, 37],
through direct numerical simulations [37, 36] and shell models [32, 49] — see [2] for a review.
Using the helical decomposition, the velocity and magnetic fields read [32]:

b o= > > brhire*e, (39)
k sk

v = szzph;peip-m, (40)
P Sp



with s, € {4+, —} corresponding to the positively and negatively helical modes and s, € {+,—,0}, corre-
sponding to both helical modes and the compressive mode along k. Since the magnetic field is solenoidal, it
cannot have components along ilg

Plugging the helical decomposition (39)-(40) in (3) in the absence of forcing leads to [32, 34, 37]:

O = sk > Y v bt gt (41)

k+p+qg=0 sp,sq

Sk,S }qu

with Irp a geometric factor depending on the triad shape and the helical components considered. Its

modulus G kz; v % can be viewed as a weight of the respective helical triad interaction. With regard to a given
wavenumber k = |k|, the geometric factor maps a weight to every possible shape of a nonlinear interaction
triangle formed by the corresponding wave vectors k + p + g = 0. This shape is uniquely determined by k and
the leg ratios p/k and g/k. The weight signature on the strip defined by the triad condition in the (p/k,q/k)
plane (see section 6.3) gives an indication of the level of spectral locality of the most dominant interactions
distinguishing the different helical contributions. As shown in section 6, it is interesting to observe that the
nonlinear transfer of magnetic helicity comprises of three clearly separable interaction families. Those are (i)
a local direct transfer linked with a direct magnetic energy cascade due to the advective flux of magnetic
helicity (transfer contribution L{gﬂ;, see relation (35)) and (i7) a local inverse transfer due to advection and
predominantly shear-Alfvénic magnetic tension effects. Pronounced nonlocal inverse transfer (iii), the hallmark
of inverse magnetic helicity dynamics, is generated through the small-scale velocity field, coupling the small-
and large-scale magnetic fields through advective flux, magnetic stretching and magnetic pressure. More details
are given in section 6.4.

The geometric factor has been derived in [56] for triads in the incompressible hydrodynamic case. Since the
magnetic field is solenoidal, these derivations remain formally valid in incompressible MHD as noted in [32].
In the same way, they remain valid in compressible MHD when one considers only solenoidal velocity modes
sp € {+, —}, which leads to [56]:

rorsn€lt—hsa _ |3F 4 spp + 500|V/2K2P° + 29’07 + 2¢°k° — k' — p* — ¢
k,p,q - 2kpq :

These derivations are repeated in appendix A and remain valid in compressible MHD when considering only
solenoidal modes s, sp, sq € {+,—}. The only difference that appears in this case is that the velocity field
can have compressive components (s, = 0). An extension of these derivations for compressible flows is also
presented in appendix A, leading for s, = 0 and s = S, s = £S5 to:

(42)

si=S.5,=0,5,~5 _ [(a F k)(0* — K — ¢* F 2qk)|
k,p.q 2kpq ’

The shell-to-shell transfer approach described in section 4 can be extended to hehcally—decomposed shell-
to-shell transfers. The magnetic field is projected in Fourier space on the helical eigenvectors h: and h,c and
then transformed into configuration space, giving b™ and b~ respectively. In the same way, the velocity field is
decomposed in v+, v~ and v°, with v its compressive part (obtained through a projection along fzg in Fourier
space). The magnetic helicity transfer function (relation (24)) is then extended to:

THQ.PK) = Y 3 ST (44)

sx€{+,—}spe{+,0,—}sqoe{+,—}

G (43)

with twelve different helical contributions:

T a0 (Q, P K) = 2(b35 - (03 x b)), (45)

SKSPSQ
The six helical transfer functions for which sx = SQ can be interpreted as antisymmetric magnetic helic-
ity transfers between shells THY (Q,P,K) = A (K, P,Q). These terms are labelled “+ + 4, + —

SKSPSK SKSPSK
+,404+,— + —,— — =7 and “—0—" in the following, where the first letter corresponds to sk, the second to
sp and the third to sq. However, the terms where sxg # sg, labelled henceforth as “heterochiral” are not
antisymmetric on their own but need to be considered in pairs, as in [1]: the three “(s)ymmetrised” terms
7""'6‘13 g = ’7'/”g o T ’Tf'éf 4 verify the antisymmetric property and can thus be interpreted as magnetic helicity
transfers between shells. They are noted similarly “S + 5,5 — S” and “S05”.

Even though the triad helical geometric factor Gsk’Sp’S“ is strictly speaking only valid for single triad inter-
actions, one can expect the helically-decomposed shell to-shell transfers to be weighted essentially by the same
geometric factor, especially for K, P,Q large enough.

In order to relate more easily to physical quantities, the Fourier spectra shown in the present work are nor-

malised by the isothermal sound speed squared, i.e., the specific kinetic energy spectrum is E}. = %(\v x|?),
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Figure 1: Magnetic helicity HM, magnetic energy EM and specific kinetic energy EV spectra (decomposed in solenoidal EV>5°! =
EV:+ 4+ EV>~ and compressive EV-0 parts such that EV = EV»*°! 4+ EV:9) for the M8c run at an instant when T, n ~ L/10.
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the magnetic energy EM = (|bx|?) with pg = 1 the mean density in the system, since b has the same

dimension as ,/pv and similarly H M= p()%(a;( -bg). Projecting the Fourier coefficients on the helical eigen-

vectors, one can obtain the spectral repartition of energy among the helical modes. For example, the positive
helical specific kinetic energy is E}?’+ = ﬁ<|v}|2> and similarly for the negative helical specific kinetic energy

EV~ and its compressive part EV:°.

6 Results

The helically-decomposed shell-to-shell transfer functions are considered for the least and most compressible
runs MO1s4, M11s, M1lc and M8c at the respective instant in time where the magnetic helicity integral scale
Iym = L([,, K '"HMdAK)/([,, HMdK) ~ L/10. Even though magnetic helicity is not sign-definite, since only
one helical sign is injected, positive magnetic helicity dominates the system at all scales so that considering
its integral scale is meaningful. This instant is chosen so that scaling laws are considered while the spectral
pollution caused by finite-size effects remains negligible, as shown through the spectra displayed in figure 1.

Spectral scaling laws of different hydrodynamic (such as kinetic energy, kinetic helicity and density spectra)
and magnetic quantities have been explored in [53], as well as their dependency on the mechanical forcing
type and the Mach number over a range M ~ 0.1 — 10. Only a brief summary is outlined here for the sake
of completeness. As compared to the incompressible case [44, 39], the absolute value of the magnetic helicity
and energy spectra tend to be lower for higher compressibility. The forcing type (purely solenoidal or purely
compressive) has more impact on the dynamics than the RMS Mach number of the flow: for the solenoidally-
driven M11s run, the deviations are smaller than a compressively-driven run with a RMS Mach number of the
order 3. A dynamical balance, interpreted as an equilibrium between shearing and twisting effects [44, 43, 26],
has been extended in supersonic turbulence, using an appropriate change of variables. In particular, considering
the Alfvén velocity b/,/p in place of the magnetic field allows to find a universal behaviour in the scaling
exponents over a wide range of compressibility, from subsonic M ~ 0.1 to supersonic M ~ 10.

In the following, only the most compressible M8c run is analysed in greater detail, because it is an extreme
and clear realisation of similar inverse transfer dynamics, which have been observed in previous research only
at lower Mach numbers or in the incompressible case [8, 18, 14, 44]. A short comparison with the other runs

is made in section 6.5. The plots are in units of the (estimated) magnetic helicity injection rate, 6%;4 =

(2e%jhf)/(27'[K}V[/L), with hy = 1 the helical fraction of the injected fluctuations and K}W = 50 the shell
around which magnetic helicity is injected. Other instants in time and discussions about possible transients are
made in section 6.6.

Figure 2 shows the general aspect of the shell-to-shell magnetic helicity transfers TH (Q, K) for the M8c
run. As expected, this figure is antisymmetric about the main diagonal. A positive value (yellow/bright colour)
above the diagonal means a positive transfer from shell Q < K to shell K, that is a direct transfer, whereas a
negative value (blue/dark colour) above the diagonal means an inverse transfer, and vice-versa for the values

below the diagonal. The farther from the diagonal, the more distant the shells K and @ are, which indicates
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Figure 2: Left: magnetic helicity transfer rates from shell Q to shell K for the M8c run, at an instant when Z,, » =~ 1—%4 Right: a
sketch of these transfer rates expliciting the non-local inverse transfer (NLIT), the local inverse transfer (LIT) and the local direct
transfer (LDT).

the transfers’ level of locality. Since a linear binning of the shells is chosen here, care has to be taken when
interpreting the figures, since such a binning may lead to an overestimation of the transfers’ non-locality [7, 28, 6].
A linear binning is chosen here in order to see better the different features, since a logarithmic binning would
leave only few shells. For visualisation purposes also, the colour bar extremes are smaller than the extremes
of the transfer functions. The aim of the 2D plots is indeed to present a qualitative behaviour regarding the
strength, direction and locality of the transfers. Cuts along one direction are shown when a more quantitative
aspect needs to be underlined.

Three phenomena can thus be distinguished in the general picture of a magnetic helicity inverse transfer
as sketched in figure 2, right: a local inverse transfer (corresponding to the “wings” in the lower left corner
close to the diagonal, henceforth named “LIT”), a non-local inverse transfer (corresponding to vertical and
horizontal stripes, hereafter “NLIT”) and a local direct transfer (along the diagonal, “LDT” in the following).
Test simulations have shown that the NLIT stripes at the electromotive forcing scale are not artifacts due to
interactions between the mechanical and electromotive drivings but are indeed present because of small-scale
magnetic helicity excess, whether the forcing terms are switched on or not.

The main aim of the next subsections is to shed some light on their respective origin.

6.1 Role of the mediating velocity field at different scales

Figure 3 shows that each of the LDT, LIT and NLIT feature can be associated with different velocity scales.
The function M*" (P, K) (Eq. 25), which quantifies the importance of the mediating velocity field at shell P
with respect to transfers of magnetic helicity to shell K allows to delimitate three different regions along the
P-axis (figure 3.(a)). The small-scale velocity field (defined as 30 < P) transfers magnetic helicity from the
electromotive driving scale to significantly larger scales, and corresponds hence to the NLIT. This process can
be interpreted as the spectrally nonlocal merging of small-scale magnetic fluctuations with a magnetic structure
of much larger size. The intermediate-scale velocity field (defined as 4 < P < 30) transports magnetic helicity
from shells 5 $ K 5 25 to larger scales which are quite close spectrally (within a factor two). This allows
the interpretation of merging like-sized magnetic fluctuations and corresponds hence to the LIT. Finally, the
large-scale velocity field (1 < P < 4), with alternating signs along the K-axis is associated with the LDT. Along
the same line of interpretation, the LDT would correspond to the effect of the direct cascade of kinetic and
magnetic energy, i.e. the destruction of magnetic structures by advective shear exerted by the velocity field, as
confirmed in section 6.4. The separation of transfer dynamics in Fourier space is confirmed on figures 3.(b-d),

where the sum of 7H" (Q, P, K) for P corresponding to the three above-mentioned velocity scales is plotted.
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Figure 3: Role of the mediating velocity field, M8c run at an instant when Z,;n &~ L/10. (a) Sum of THM (Q, P,K) along Q.

(b-d) Sum of THM (Q, P, K) along P for different velocity field shells, showing that the three features are associated with mediation
at different scales.
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Figure 4: (a — ¢) The nine helically-decomposed fluxes of magnetic helicity, compared to the total flux (in black), showing which
ones are dominant, for the M8c run at an instant when Z,,» =~ L/10. The plots are normalised by the magnetic helicity injection

M
rate. The insets are zooms close to the horizontal T = 0. (d) Comparison of successive sums of dominant terms.

6.2 Helical components

Since only magnetic helicity of one sign is injected by the electromotive forcing, the dominant transfer terms
are expected to be the ones involving the positively helical magnetic field, labelled +X+ in section 5, with
X € {+,—,0} corresponding respectively to the positively (“like-signed” in the context of dominant positive
magnetic helicity) and negatively (“opposite-signed”) helical parts of the velocity field and its compressive part.
These terms hence allow to assess the role of the velocity field’s helical components, as well as the role of its
compressive part. Figure 4 shows the shell-integrated fluxes H?;(AipsQ (K) =2 pg Zﬁozo 7’:}"(}:}33(9 (Q, P, Ky)
for the M8c run at an instant when Zym ~ L/10, as well as the successive sums of the dominant terms, in this
order: + + +,+40+, 505 and + — + (subfigure (d)). An approximate plateau behaviour is observed. Section
6.6 discusses the dominant helical contributions at other instants. The + + + and +0+ terms alone account for
about 75% of the inverse transfer. The plots being normalised by the magnetic helicity injection rate, a value
of 1 for K < 48 would mean that all the injected magnetic helicity is transferred to larger scales. This gives
a rough idea of the numerical dissipation in the system: for the considered runs, about 50-70% of the injected
magnetic helicity is transferred to scales larger than the electromotive driving scale, where its conservation
improves the larger the scale, see [53] for further details.

For the M8&c run, both dominant + + 4+ and +0+ terms, mediated by the like-signed helical velocity field
and its compressive part respectively, contribute to the NLIT in a similar way, but their contributions to the
LDT and the LIT differ significantly (figure 5). The +0+ term takes the leading role in the LDT, but does
essentially not contribute to the LIT. A more quantitative view of these aspects is available through figure 6,
where cuts of figure 5 along different K = K are shown.

The other helical contributions are relatively small (figure 5.(c)). The three biggest remaining contributions,
corresponding to the + — 4+, —0— and S0S terms, are displayed in figure 7. The + — 4 term, mediated by the
opposite-signed helical velocity field, presents a small contribution to the LIT and the LDT (please note that
the colour bar extremes are a factor 10 smaller than those of figure 5), and a minor contribution to the NLIT.
The —0— term corresponds to a local direct transfer of negative magnetic helicity, mediated by the compressive
velocity field, which results in a local inverse transfer of magnetic helicity. The heterochiral S0S term exhibits
a more exotic shape. Its analysis is more complex since it is the sum of two terms corresponding to different
geometric helical triad factors. Although its contribution is not negligible, it is still relatively small and hence
not analysed in more detail here. The remaining — — —, — 4+ —, 5 + S and S — S helical contributions are an
order of magnitude smaller as compared to the + — +, —0— and S0S terms and are not shown here.

To summarise, for the M8c run and concentrating on the homochiral terms, the LIT is almost exclusively
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Figure 5: Contributions from the + + + and 40+ terms to the magnetic helicity transfer rates for the M8c run, at an instant

when 7y v & % Their sum is close to the total transfer function from figure 2 and the remaining contributions come mostly from
the terms shown in figure 7.
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Figure 6: Cuts from the 2D plots of figure 5 for Ko € {10,30,50}. The horizontal dotted line corresponds to y = 0 and the
vertical one to @ = Kp.
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Figure 7: Contributions from the + — 4+, —0— and S0S terms to the magnetic helicity transfer rates for the M8c run, at an
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instant when Z; v ~ 5
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Figure 8: (a-c) Triad helical geometric factor’s modulus for the + + +, +0+ and + — + terms respectively (see relations (42)
and (43)), (d) Sketch showing to which regions the NLIT (non-local inverse transfer), the LIT (local inverse transfer) and the LDT
(local direct transfer) correspond.

mediated by the solenoidal part of the velocity field (+ + 4+ and + — + terms), with a significantly greater
importance of the like-signed (+ 4 +) helical part. The velocity field’s compressive part (+0+ term) takes the
leading role in the LDT, even though its solenoidal part contributes to it to a smaller extent. As for the NLIT,
it is essentially mediated by both the like-signed velocity helical field and its compressive part, while the role of
the opposite-signed helical velocity field is comparatively very small. The compressive part of the velocity field,
which is not present in incompressible turbulence, enhances hence the direct magnetic energy cascade through
shearing effects and the nonlocal merging of small-scale magnetic structures to structures of much larger size.

6.3 Interpretation through the geometric factor

The results from section 6.2 regarding the role of the +++, +—+ and +0+ terms can be explained through the
moduli Gt GT=F and GT0F of the respective helical geometric triad factors (relations (42)-(43)), displayed
in figure 8. The sketch in that figure summarises the results from section 6.1. The LDT that is associated
with the large-scale velocity field corresponds to p < k & ¢, whereas the LIT, associated with the intermediate-
scale velocity field, corresponds to p &~ k =~ ¢q. The NLIT is mediated by the small-scale velocity field, that is
k<pxqgand gL p=k.

Comparison of the geometric factors’ moduli has lead to the predictions that the + + 4 transfers, mediated
by the velocity field of like-signed helicity, are both more efficient and more non-local than the + — 4 ones,
where the mediating field has an opposite-signed helicity in the incompressible case [37]. The same idea is used
here, extending these results in compressible MHD and allowing to determine the relative importance of the
+ 4+ 4, + — + and +0+ terms for the three NLIT, LIT and LDT features:

e In the region k ~ p =~ ¢ corresponding to the LIT, the Gt*+ term is biggest with a maximum at
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Figure 10: Average of the forty six NJ'SZPSQ (Q, P, Ky) slices for Kg € [5,50], obtained through the procedure described in

appendix B. Each plot is normalised by its own maximum absolute value.

3v/3/2 ~ 2.6 for k = p = ¢, whereas GT—F < GTt* by a factor of about 3 and G*°F vanishes in this
region. This explains why the LIT is mediated by the like-signed helical velocity field (+ + + term) and
to a lesser extent by the opposite-signed helical velocity field (+ — +), but is essentially absent from the
40+ term, corresponding to a mediation by the compressive velocity field.

e In the region corresponding to the NLIT, both G**+ and G°F are high, which explains why the like-
signed helical velocity field and its compressive part play an important role for this feature. However, for
k ~ ¢, GTOF is vanishing, which explains why the NLIT is more non-local for the compressive velocity
field as compared to the like-signed helical one (see figure 6.(c), where the inverse transfer for the +0+
term is visible only for shells K < 30 whereas it is visible for all shells K < 50 for the 4+ + + one). As for
GT~T, it is vanishing in this region so that the role of the opposite-signed helical velocity field is small
for this feature.

e Finally, all three terms have a non-vanishing geometric factor at low p, corresponding to the large-scale
velocity field. This is why they all contribute to the LDT. The reason why the compressive velocity field
plays the leading role for this feature cannot be explained alone by the fact that more energy is associated
with it, as compared to the positively or negatively helical components (see figure 9.(d)). Indeed, for
the M11s run (see section 6.5), the contributions of the + + + and +0+ terms to the LDT have similar
amplitudes, even though significantly more energy is contained in the positively helical velocity field
for this run (figure 9.(b)). The +0+ term is favoured geometrically because (i) on the ¢ = p + k and
q = —p + k lines, GToF = 2, whereas Gt*+ = G*=F = 0 and (i) the ¢ = k horizontal line, where
GTTT and G~ are high at low p, does not play a role for shell-to-shell transfers between shells K
and Q since TH" (K, K) = 0. However, as shown in section 6.5, even though the +0+ term is favoured
geometrically, it can play a less important role depending on the energy repartition among the helical
velocity components.

The analysis above assumed that the helically-decomposed shell-to-shell transfer rates T (Q,P,K)

SKSPSQ
have a similar shape as the single triad geometric factors’ one, which is of course ilot guaranteed. The magnetic
. . bt A PN .
helicity at a wavevector k can be written H} = +(|b, > — |b |?), with by, = by, h,:i: the helically-decomposed
magnetic field, whose time evolution is governed by:

1 At E s Ak
8tH’iM = E<2§}E(bk atbk +bk atbk)), (46)

where $(z) denotes the real part of the complex number z. Hence, according to relation (41), the magnetic
helicity transfers depend, apart from the phase information and the geometric factor, on the moduli of the
interacting helical modes in the triads. In order to isolate the geometric factors’ role, slices at particular K
of the different helical components T (Q, P, Ky) normalised by the typical interacting fields’ moduli are

SKSPSQ
considered:
M
M ﬁ;spsQ (Q7P7 KO)
NSKSPSQ(Q7P7 KO) = M % M.s ) (47)
2\ 2EM K EL BN
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Figure 11: Decomposition of the magnetic helicity transfer rate from shell @ to shell K (subfigure (a), which is the same as figure
2) in different contributions: (b) associated with B <> B exchanges, (c) associated with V' <+ B exchanges, the latter being the sum
of: (d) contributions through the magnetic tension and (e) through the magnetic pressure.

with Eg[ *? the power spectrum of the magnetic field sg-helical part (obtained by projecting b on the (fsz)
helical eigenvectors in Fourier space) and similarly for the other two energetic contributions. An average of all
the K € [5,50] slices of sz(s Psg (Q, P,K) in one plot is shown in figure 10. This plot has been obtained by
normalising, resizing and merging the 46 slices present in this wavenumber shell range, through the procedure
described in appendix B.

The geometric triad factors’ shape is very well reflected in figure 10 for the + + +,+ — + and +0+ terms.
In this figure, the blue/yellow corner at small P/K corresponds to the LDT: it is negative for Q/K > 1 and
positive for @Q/K < 1 which means that magnetic helicity is transferred from larger to smaller scales, whereas
the reversal of colours at higher P/K corresponds to inverse transfers (LIT and NLIT).

This illustrates why the geometric triad factor moduli govern the role and relative importance of the dominant
helical contributions with respect to shell-to-shell magnetic helicity transfers.

6.4 Energetic transfers

Using the decomposition of the magnetic helicity transfer function in contributions related to energetic transfers
(relations (35)-(37), plotted in figure 11) allows to see that the LDT is essentially associated with a direct
cascade of magnetic energy within the magnetic energy reservoir (hereafter labelled as “B <+ B” exchanges).
This magnetic energy cascade is due to the advective flux of magnetic helicity and magnetic pressure. On the
contrary, the LIT and the NLIT are associated with both B <+ B and V <> B exchanges (where “V < B”
represents the effects of transfers between the magnetic and kinetic energy reservoirs). As expected from
the analysis in section 6.2, the LIT is mostly associated with V <+ B transfers due to magnetic tension (shear-
Alfvénic effects), which dominate over the B <+ B ones. The NLIT is caused by all three mechanisms (advection,
magnetic tension and magnetic pressure) and linked both with B <+ B and V « B transfers.

6.5 Other runs

The other runs, M01s4, M11s and Mlc, are also considered at an instant when Zy;m = L/10. Even though the
compressibility of these runs extends over a wide range, they exhibit a lot of common properties with the M8c
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Figure 12: (a-c) Magnetic helicity transfer rates between the shells Q and K and their greatest helical contributions for the M11s
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Figure 13: (a-c) Magnetic helicity transfer rates between the shells Q and K and their greatest helical contributions for the M1lc
run at an instant when Z, v =~ L Please note that the extremes of the colour bar of subfigure (b) are an order of magnitude
lower as compared to subfigures (a) and (¢). (d-f) Cuts of the subfigures (a-c) at Ko = 10, Ko = 30 and Ko = 50 respectively.
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The transfers are expressed in units of the magnetic helicity injection rate €/, i

run: the same three features (LDT, LIT and NLIT) are present and mediated by the velocity field at the same
scales. The LDT is always mostly associated with B <> B exchanges whereas the LIT and NLIT are associated
with both B <+ B and V <« B exchanges. The differences observed are essentially quantitative and concern
the different helical contributions’ importance. They can be explained through the energy repartition in the
velocity field’s helical components, given in figure 9.

For the M11s run (figure 12), both the velocity field’s compressive and like-signed helical parts contribute
in equal proportions to the LDT, contrary to the situation for the M8c run. For this run indeed, the positively
helical velocity field entails significantly more energy EV>t than its compressive part EV:? at large scales. This
confirms that the compressive velocity field is indeed geometrically favoured for the LDT.

The other extreme happens for the M1c run, for which the EV-0/EV"* ratio is very large at large scales and
small at small scales. As a consequence, the LDT has a very large magnitude as compared to the NLIT and
the LIT (figures 13.(a-c), where the colour bar extremes in the (b) plot are an order of magnitude smaller) and
the 40+ term does not contribute much to the NLIT (subfigures (c, f)).

Lastly, the LDT is carried by both velocity field’s helical components for the subsonic M01s4 run (figure
14), since there is only a negligible amount of energy in the compressive velocity field. For this run, both + 4 +
and + — 4 terms have the same importance with respect to the LDT because similar amounts of energy are
present in the positively and negatively helical parts of the velocity field and the geometric factors’ magnitude
Gt and Gt~ (see relation (42)) have very close values for p < k = ¢.

6.6 Discussion: other instants in time and transient effects

The results presented in this work are based on a single snapshot, taken at an instant in time when the
magnetic helicity peak is still relatively far from the largest available scales (Zym =~ L/10) so as to avoid
finite-size effects. Figure 15 shows the transfers and fluxes at different instants in time for the M8c run and can
directly be compared with figure 4. At a later instant in time, when Zym &~ L/6, the main instant considered
for the study of spectral scaling laws in [53], the general behaviour looks qualitatively very similar. At a clearly
earlier instant in time, Zyym & L/40, when no approximate plateau behaviour is observed and no large-scale
structure has emerged yet, the transfers are significantly different. Even though nonlocal transfers are already
present, local transfers are dominant, in agreement with [3, 35], where nonlocal transfers from the electromotive

18



MO01s4

0.06 0.06
0.03 0.03
0. 0.
—0.03 —0.03
—0.06 —0.06
10 20 30 40 50 60 10 20 3%2 40 50 60
M
o0 0.03 |
0.02 |
50 0.03 0.01!
40 0
~ 3 0. 001}
2 0.021
) —0.03 003l "
: o 0043535030 40 50 60
020 3 40 50 ' ™ — Tl — 7T
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Figure 15: (a) Time evolution of the magnetic helicity transfer Fourier spectra ) p o TR (Q, P, K) for the M8c run, 5 snapshots
equally spaced in time between instants when Z,,» ~ L/40 and Zym =~ L/6. (b,c) Magnetic helicity transfer spectra at the

extreme instants of subfigure (a) and some important helical contributions. (d-f) Same as (a-c) but with the magnetic helicity
M

fluxes TTH" (K) = Zgozo THY (K).

forcing directly to the largest energetically containing scales only appear at later times. It can be noted in
passing that the heterochiral SOS term plays a negligible role at such an early instant, and becomes important
only later.

The finite size of the numerical system in combination with the deliberately chosen lack of large-scale dissi-
pation to avoid artefacts in the nonlinear flux measurements, does not allow us to obtain a standard statistically
stationary turbulent state. Ensemble averaging, an alternative ansatz, would be numerically too costly for the
present isothermal system. Therefore, lurking dangers to avoid are the dependence of our measurements on the
chosen point in time and on the initial conditions. The presence of the inherently non-local dynamics of tur-
bulent magnetic fields make the latter aspect relevant for almost any kind of magnetohydrodynamic simulation
or experiment. Indeed, considerations in [53], from which the extreme runs are considered in the present work,
show that the observed spectral scaling laws strongly depend on the choice of the initial frame for compressively-
driven runs with turbulent Mach numbers close to 5, labelled M5cA and M5cB. This is an indication that the
snapshots considered could still be in a transient phase.

Nevertheless, the main results exposed in that work, the dynamical balance between shearing and stretching
and the scaling laws of appropriately chosen quantities (e.g. considering the Alfvén velocity in place of the
magnetic field) have been shown to be valid over a wider range of compressibility, to be roughly constant as
the systems are evolved in time, and to be independent of the chosen initial conditions (runs M5cA and M5cB).
They have furthermore been confirmed at higher resolutions.

Single snapshot data is considered in the present work, too. However, the qualitatively very similar behaviour
of the flows over a wide range of compressibility (extending from Mach 0.1 solenoidally-driven close to Mach
8 compressively-driven) as well as the explanation of the results through the geometric helical factor and the
energy contents in the helical modes are strong arguments that hint at the robustness of the presented main
results of this work when considering the cautionary remarks above.

7 Conclusion

The helically-decomposed shell-to-shell analysis reveals the presence of three distinct phenomena occuring in the
global picture of the inverse transfer of magnetic helicity and sheds some light on their origin. Since one sign of
magnetic helicity dominates the system at all scales, the role of the different helical components of the velocity
field as well as that of its compressive part can be distinguished. The analysis has been performed on particular
states taken from direct numerical simulations of magnetic helicity inverse transfer in compressible isothermal
MHD flows [53]. The range of Mach numbers varies from subsonic to RMS Mach numbers of the order of
10, with either a purely solenoidal or compressive mechanical large-scale forcing. The results are consistent
with previous research done in the incompressible case regarding the transfer’s direction and locality [3] and
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Figure 16: Definition of the notations for the derivations of the geometric triad factor. Remade from [56].

relative strength and locality of triad interactions involving the like-signed and opposite-signed helical part of
the velocity field [37].

For all the runs considered, a local inverse transfer (LIT), a non-local inverse transfer (NLIT) and a local
direct transfer (LDT) are observed:

1. The LIT is caused predominantly by magnetic stretching involving the solenoidal velocity field at interme-
diate scales, i.e. shear Alfvénic fluctuations. The like-signed helical velocity field plays here the dominant
role. Tt is associated with both magnetic<>magnetic (B <> B) and kinetic<»magnetic (V' > B) energetic
exchanges.

2. The leading role in the NLIT is taken by the small-scale velocity field, through both the like-signed helical
velocity field and its compressive part.

3. Finally, the LDT is caused by the large-scale velocity field. It is essentially associated with a direct cascade
of kinetic and magnetic energy. The compressive part of the velocity field is geometrically favoured for the
LDT even though both velocity helical components, which have geometrically a similar importance, can
take the leading role depending on the specific kinetic energy repartition among the helical and compressive
modes.

Thus the velocity field’s compressive part, which is not present in the incompressible case, plays an important
role in the LDT and the NLIT, which affects the magnetic helicity scaling properties [53].

The locality and strength of these phenomena can surprisingly well be explained by the geometric triad
helical factors [56], which have been extended for compressible MHD.

Since magnetic helicity is not sign-definite, in astrophysical systems of interest, magnetic helical components
of mixed signs are expected to be present. In this context, the heterochiral terms (labelled “S + 5,5 —S” and
“S0S5”) may play a greater role, even though they are more difficult to interpret [52]. In particular, in the present
work, even though magnetic helicity of one sign dominates the system, the heterochiral term S0S associated
with the compressive velocity field plays a relatively small but not negligible role at high compressivity, in
contrast to the other S + S and S — S heterochiral terms. This would deserve further studies. Nevertheless,
the study presented here, which focuses on the dominant homochiral terms, provides insights which should help
the interpretation of future results in more general cases.
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that have contributed to the research results reported in this paper. Computing resources from the Max Planck
Computing and Data Facility (MPCDF) are also acknowledged. JMT gratefully acknowledges support by the
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A Geometric factor derivation

The geometric factor appearing in relation (41) has been derived in [56] in the incompressible case. The
derivations are reviewed here, keeping the same notations shown in figure 16. The helical eigenvectors hz*, thP

and hflq are expressed for each triad in a well-chosen basis:

hem = e mPm (X 4 iSy oy, ), (48)
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with m € {k,p, ¢}, ¢, a certain angle and A and p,,, the unitary vectors:

kxp pXxXq qgxk

A = = = 3 49
lkxp| |pxq| |gxEk] (49)
m X A\
P = : (50)
|m|

In the incompressible case (sg, sp, sq € {+, —}), this gives after some algebra the geometric triad factor [56]:

Sk,Sp,Sq
k.p,q

= (h3P* x i) - hk™, (51)

= e indutsrdotsada) g 5 s, (55, sin(og) + s, sin(ay) + 548in(ay)), (52)

it Sk5pSq(sKk 4 8pp + 549)/2k2p% + 2p2q% + 2¢2k2 — k4 —pt — ¢4

53
o 7 (5)

with ¢s = (spdr + spdp + sqPq). The last equality is obtained by using the law of sines and Heron’s formula.
In the compressible case, when s, =0, s, =S € {+, —}, s = £5, the geometric factor becomes:

s.:S,O,Sq:ﬂ:S P "Sq* 7 Sp*
gk]:p,q = (5 X h’q ) : h’kk ) (54)
= Sie” 102 (cos(ay) F cos(ag)), (55)
2 2_ 2
_ G- Si(érEay) (qF k)(p* — k% — ¢° F 2qk) (56)
2kpq ’
where the last equality is obtained using the cosine rule cos(ay) = %

B Technical details: merging transfer functions’ slices

Figure 10 is obtained by merging the N, i‘(lfps o (@, P, K) slices (relation (47)) for K € [5,50] through the following
procedure (see figure 17):

1. Each slice is considered as a “picture” and is resized so that the angles P = K and @Q = K arrive at the
same location for each of them. The slices are normalised by the maximum of their respective absolute
value so that they all have the same weight in the final merged picture. Only the slices starting K = 5
are considered since low K slices are more imprecisely resized, causing square-like artifacts.

2. For each (P, Q) coordinate, the sum of all resized pictures is considered, leading to their superposition,
the new “picture” S.

3. Each (P, Q) coordinate in the S picture is normalised by the amount of pictures that contributed to it (it
differs for each point since all resized pictures occupy a different domain, see figure 17).

4. The obtained S is finally normalised by its maximum absolute value.
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