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Abstract. The Periodic Event Scheduling Problem (PESP) is the method of choice
for real-world periodic timetabling in public transport. Its MIP formulatiors ha
been studied intensely for the case of uniform modules, i.e., whenealtehave

the same period. In practice, multiple modules are equally important. Trestr

of current methods for uniform modules rests on three ingredientsyHeasible
instance allows for an optimal solution with a certain structure. Thereitaran

be reformulated with the use of an integral cycle basis. Finally, a certagndiyp
rounding cuts arising from cycles has proven very powerful. All of fhiks in

the multi-module case. Therefore, applications with multiple periods wediyha
solvable so far.

We analyze a certain type of Diophantine equation systems closely relates to th
multi-module PESP. Thereby, we identify a structure, so-called shagp, tiieat
allows to solve the system iff(n?) time. We show, a sharp tree is guaranteed to
exist and found by a similar algorithm, if the modules form a linear latticeeBas
on this we develop the machinery to solve multi-module PESPs on real-world
scale. In particular, we recover all three ingredients for the multi-modade.

In our computational results the new MIP-formulations drastically impitbee
solvability of multi-module PESPs. We also demonstrate that without shap tre
no similar approach can be hoped for.

1 Introduction

The Periodic Event Scheduling Problem (PESP) is a combinatorial optioniza
problem of great practical importance. It is the model of choice faiopé
timetabling in public transport, has been used for periodic job shop arfit traf
signal scheduling, and has successfully and repeatedly been apgiettiice.
The task is to schedule periodic recurring events, e.g., the arrivdldepartures
of trains, such that between pairs of periodic events periodic consteamfsil-
filled. A periodic constraint between periodic evengsd j means that for every
realization ofi there is at least one realization jpfwith time difference greater or
equal some lower respectively less or equal some upper bounk c8ostraints
can model for periodic timetables the headway constraints, the stoppirg time
that passengers can quickly transfer between trains of different limésct, the
high modeling power of the PESP (cf. [7]) even allows to include rollingkstoc
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minimization and crew scheduling into the timetabling. This facilitated the con-
struction of the first mathematically optimized railway timetable, namely for the
Berlin underground in 2005.

The PESP is most powerfully solved as a (mixed) integer linear progdhiR).
Apart from their practical importance, the IPs arising from the PESPie
dependent theoretical interest. Any such IP is naturally associated toagpldig
There are variableg for each nodé andk, for each ar@. Two constraints cor-
respond to each a@= (i, |): {a < T — 7§ + KkaP < Ua. Thus, for each arc the
difference of the node variables must be in the inteffalu,] modulo a constant

P. This constant is the period of the application, e.g., the time that elapsies un
the next train of the same line arrives. This special class of IPs hastatira

lot of research attention from combinatorics and integer programmirgpee-
tives. It has been shown to be NP-complete, even MAXSNP-hardodmalve an
unbounded Chvatal rank [22]. Nevertheless, research effguteigrg the graph
structure have led to a rich understanding of these IPs. These insighitata
methods that are eventually capable to solve instances of considerdlpeaan
tically relevant size—e.g., the timetable optimization of a complete national rail-
way system. Some of these instances are challenging enough to beiricthied
MIPLIB. (These are the instances on which we base the computatidigdtian

of our method.)

The strong methods for uniform-module PESP have three ingrediégnfs@p:

first, if the instance is feasible, then for any tree exist optimal solutions, tha
have offsets equal to zero on that tree, second, a strong formuldttbe MIP
constructed by an integral cycle basis, and finally, a class of rounditsg(ihe
Odijk inequalities) also based on a well chosen set of cycles.

All of this fails, if the modules are not uniform. In general, solutions neend-
zero offsets on all arcs. In general, an integral cycle basis doeguecdn equiva-
lent formulation, and the Odijk inequalities become arbitrarily loose for multiple
modules.

The powerful previous results apply to PESPs with a single moBuier all
constraints. Yet multi-module PESPs are justified and even desired feoapth
plications perspective: A public transport system is often comprisedex livith
different periods, e.g., subways running every ten minutes, sasgeb running
every 30 minutes, other every five minutes, and regional trains eweny Also
traffic lights in the same urban area may well have different periodspifethis
ample practical need, until now we lack the theory for a strong apprnoaolulti-
module PESPs.

For solving PESPs a special class of linear Diophantine equation sydpés3 (
naturally related to the PESP is important. Again, given a digraph oneiatesoc
variablesrt to the nodes andd to the arcs, and each arc represents an equation
of the form: m; — 75 4- kaPa = X4. Note, the coefficients of the node variables are
equal to 1. Setting the arc coefficiefs= 1 would allow for a trivial solutiork =

x, T= 0. In this sense the proposed class is the simplest non-trivial class®f DE
one can associate to a digraph. Therefore, we call them Graphicah@itpe
Equation Systems (GDES). GDESs are not only similar to PESPs, theylayso p
arole in the state-of-the-art solving methods for PESPs. In the spasialwhen

all modulesP, are equal, the GDES can be solved in linear time by a straight
forward algorithm. For the general case so far one has to resorngiraoting

the Hermite Normal Form (HNF) of the GDES matrix, which can be done in
(high) polynomial time.



In this work, starting from an analysis of and a new algorithm for GDES we
develop a method capable of solving real-world multi-module PESPs. Waites
on multi-period instances which we get by changing the periods in the umifor
PESP instances that can be found in the MIPLIB, namalytabl andtimtab2.
These MIPLIB instances are real-time railway timetabling instances.

Related work: The PESP has been introduced by [23] and applied to timetabling
problems by [21, 22], periodic job shop [23], and traffic signalingi|5/n [20]

a set of particularly useful rounding cuts have been proposed fdirshéme. A
concise exposition of the PESP and the state-of-the-art theory andgsoteitn-
ods can be found in [7]. We summarize some of these results at thef ¢nig o
section. The NP-hardness has first been shown in [18,20] and th¢SMR-
hardness is proven in [7]. Recently, it has been shown [22] that tI8PRias
unbounded Chvatal rank. In [13] optimization over the first Chvatak iaf the
PESP has been studied.

Diophantine equations systems can be solved as any other linear eqyatam,s
once they are presented by their Hermite Normal Form (HNF). Thergtéaard
polytime algorithm for constructing the HNF [24]. While further reseanatife
HNF focuses on algorithms that use less space, we are not awarepetifics
algorithm for GDES.

The GDES are a special, and particularly simple class of DES. Similar filagor
Mixing Set Problem defines a particularly simple class of Diophantine inequa
ities that has been studied intensively [1, 2] and also has practical appiga
Another very important class of DES that are closely related to GDES are th
so-calledunique game§s].

For practical instances which feature two different mod&e$”’ (e.g., a system

of trains of which some run every hour and others every two hoursjttte-
of-the-art [7] approach is to use a PESP with uniform mod®iland double the
events that have higher frequency. The duplications of such an kseatto be
mutually fixed by additional constraints. This increases the size of the. PESP
Our contribution and outline: We show in Section 2 that in case a so-called
sharptree exists, the offsets can be chosen zero on it. These trees exisirand c
be found inﬁ(nz) time, if the modules are nested, i.e., form a linear lattice with
respect to division. In Section 3 we show that the existence of a sharpltosvs

for a cycle basis formulation, which is equivalent to the original arc fdation

and gives a stronger IP. Moreover, we show that we can prune a maodiitle
PESP, such that the fundamental cycles of a sharp tree give paitiogéard
inequalities.

The same algorithm that finds a sharp tree in case of nested modulesplaks®

a GDES in time quadratic in the number of nodes (cf. Section 2). We alse sho
that without the existence of a sharp tree similar approaches to strengehdh
formulation or to quickly solve a GDES do not extend in general.

In the final section we report on twelve instances derived from thee af@n-
tioned MIPLIB timetabling problems. The computations impressively testdy th
strength of our method.

Definitions and basics:Firstly, we define the two main mathematical objects
under consideration.

Definition 1. A digraph GV, A) together with a natural valued function on the
arc set, P A— N, and an integer valued function on the arc sefx— Z is called
a graphical representation of the following system of Diophantine equations



variable vectorgm, k) € ZVIAl:
T —Ti+kaPa=Xa Va(= (i, ])) € A @

A system for which a graphical representation exists is callepaghical Dio-
phantine equation systef@DES).

The results we derive also holdxfmaps to the rationals arRican be negative,
but we can restrict w.l.0.g. (cf. [7]) to natural numbers for simplictyd also
for its significance in a practical context. From a GDES one can straighafd
construct its representation and this representation is unique up to idasrorp
So we speak dhe representationf a GDES.

Definition 2. Given a digraph GV,A) together with two rational functions on
the arc set/ : A— Q and u: A — Q, a third natural valued function on the arcs,
P:A— N, and a vector & QI*. The following mixed integer program is called
a classical formulation for the periodic event scheduling prob(BESP):

min 3 c(@)(rm 7+ kaPa)
(i,j)=acA

Ua <TG — 75 +KaPa < fa Va(=(i,])) €A 2
meQVl ke zA

The reader is referred to [7] for a comprehensive work on the PESE may
distinguish between the Periodic Event Scheduling Problem as such and its f
mulation as a MIP. Originally, the constraints ang:< 15, — 75 < £5 modP,. We
ignore this notational difference. It is more important that in most apiica the
events, i.e., the nodes—not primarily the arcs—are periodic. So thetraons
should rather readia < (11 +KjPj) — (15 + kiR) < {a. It is easily checked that
this is equivalent to the formulation above, when we chdgse gcd{R, P;}.

We will use subscripts for the arguments of the functigns ¢ andP in the re-
mainder. We abbreviate:=|V | andm:=| A|. We will useV(G) andA(G) to
denote node and arc sets of a graph. Generally the vallRsuaf called periods
or modules, those oftensions, those af potentials, an those &foffsets. In the
remainder we will assume w.l.o.g. the graphs to be connected. Itysteaee,
that if the image ofu andl are in the integers there is always an optimal solu-
tion with all rrintegral. So basically, the PESP is an IP, although it is constantly
referred to in the literature as a MIP.

We summarize some basics on the PESIRotice, the objective function only
refers to pairwise differences of potentials. This is partly due to the pattape
plications, partly to the mathematical structure. Khariables model the modulo
operator. It would be strange to count them in a practical objectiveeter, for
any feasible solutioiirr, k) and anyg € Q also(g+ 11, k) is also feasible.

Assume allP; are equal, and let be the vector of arc differences of a solution
(1K), i.e.,x j) = M — T +Kj j)P. A vectorx arising from a solution in this way

is called itstension It is easily checked—and we will re-prove it as a by-product
of a more general theorem—that for any tie¢here is a vecto(r, k)’ with the
same tensior butk}, = 0 for allae T. Note, that(1r,k)’ is also a feasible solution
and has the same objective valug(ask), because it has the same tension. This
gives rise to two important features of the PESP with uniform modules.



First, if we know the tensior, we can construct a feasible solution in a simple
way: Setrg = O for an arbitrary nodé Choose an arbitrary spanning treegand
propagatert starting from i along T with respect ta Propagation means, that
we solve the equality system — 75 = x, for all a € A(T) iteratively fixing the
node values as we traverse the tree.

Itis helpful to notice, that any aiwith u; — ¢5 > P; states a redundant condition.
Also, we can replace a directed arc by its antiparallel arc, simply by multgplyin
both constraint by—1).

The second important concept argcle basesA cycle basis is a basis for the
linear subspace spanned by the incidence vectors of cycles in the spaie
Q™ spanned by the arc incidence vectors. Note that a cycle may haveréorwa
and backward arcs. For the latter the incidence vector of the cycle fiag)a
entry. A cycle basis is calleidtegral, if all cycles are integer linear combination
of the elements of the basis. Given a spanningTreethe graph, the fundamental
cyclesC(a,T) of all non-tree arce ¢ A(T) form a cycle basis. Aundamental
cycle Qa, T) of a non-tree ara with respect to a spanning trdeis composed

of the arc itself and the unique pathThconnecting its endnodes. Such a basis
is called alundamental cycle bas{sometimes also: strictly fundamental). Every
fundamental cycle basis is integral.

Finally, in the case of uniform modules, we can sum the constraints alopg a c
cleC, yielding a new, valid constraint. Replacimg — 75 by X ;) this constraint
reads:y oec Xa = kcP, wherekc = 3 5cc ka, and we assume w.l.0.g. all arcs to be
directed in the orientation of the cycle. If a tension veatéulfills this cycle con-
straint for all cycles of an integral cycle basis, then it is the tension ofudisn
(k). If in additionxa € [¢a,Ua] it is the tension of a feasible solutidm, k). In
other words, for uniform modules an integral cycle basis gives rise egaiva-
lent MIP formulation. Thiscycle basis formulatiohas proven [10] significantly
stronger than the originalrc formulation

For a cycleC we abbreviate gd€€) := gcd{P,: a€ C}.

2 Graphical Diophantine Equations Systems

Both, the Diophantine and the MIP results in this paper are based on Lemma 1
that guarantees the existence of well structured solutions under centaiitions.
To state these conditions we define the following.

Definition 3. Let¥ be a GDES and G the graph of its representation. A spanning
tree T in G is called asharp tregif each of its fundamental cycle&T) has
greatest common divisor equal tg,Phe module of the cycle’s non-tree areca
AG)\A(T).

Lemmal. Let¥ be a GDES and T a sharp tree in the graph of its representa-
tion. If ¢ has a solution, then there is a solution@fwith ky =0Oforallae T.

Proof. Reorder the matrix of the GDES such that the following holds: The new
matrix M starts with then— 1 rows corresponding to the arcsTn Restricted to

the columns affecting tha variables, these rows form a lower triangular matrix
(the first column omitted). The columns affectik@prm a diagonal matrix.

Index the nodes according to their column and arcs according to thesrindw.

For two nodew andw denote byZ?(v,w, T) the unique path fromtowin T.



Let (11,k)° be some solution. We construct a solutiank)"~1 overn— 1 stages
denoted(m, k)i € {1...n—1}. For eachi € {1...n— 1} successively with in-
creasing row index we take four steps:

1. Setk =0.

2. Re-establish the correctness of ttik equation by changing the node value
i corresponding tdvl; j, the right most non-zero entry in the finst-1
columns, i.e.Jt := 7}“1+sgr(Miﬁi)kPP.. Let£(i) be minimal withM; ;) #

0, i.e., the other node of arc

3. Propagate the new node value downwards along the tree. Formallgll Fo
remaining tree rows € {i+1...n— 1} successively with increasing row
index setrg := 711 4 sgn(M; ) KR in casel(i) ¢ 2(i,t, T).

4. Re-establish correctness (in arbitrary order) for the equation®rotree
arcs by adjusting their arc variables. Formally: For jalt {n,...,m} let
1<r <s<n-1be the nodes of arg i.e.,Mj andM; s # 0. Setk‘j =
kij—l _ sgr(MJﬁ(nr‘—d’l);rsgr(MJ.s)(fé—@’l) _

(We were a bit sloppy dropbing exceptional handling of first row ardroa, and
omitting whenrt := n}‘l and likewise fork.)

Obviously, each k) fulfills all equalities. Observe, we touch the arc variable
k. of any tree row only in stage Therefore, (T, k)i the solution of any stage
ic{l...n—1} hask =0forallt € {1...i}. It remains to show for the non-tree
arcsj € {n...m} that everykij is an integer, in particular, that

Py | [soriM; 1) (7 — 78%) + sgrM o) (76— & 1))

For all nodess we haverd, — 751 =| k°R |. Now, distinguish whethef(i) €
2(r,s,T) ornot. If£(i) is in, so isi and thei-th arc is on the fundamental cycle
of jinT. Thus,P; | R by condition of the lemma and we are done. In cdég ¢
2(r,5,T) both nodes are changed by the same value. ThereforgMsgy(7} —
1) +sgnMj ¢) (1§ — 1¢~1) = 0, which completes the proof. |

To guarantee the existence of sharp trees we need the following property

Definition 4. We say a GDES (or a PESP) has nested modules, if for each pair
of its modules < R, we have R| R,.

We will show that GDES with nested modules have sharp trees, wherags sh
trees do not exist in general. Therefore, we can solve GDES with nestddles

in a fast way.

Nested modulesThe following DENDI-algorithm (Diophantine Equations with
Nested Dlvisors) solves GDES with nested modules. In addition it corstauc
sharp tree.

The algorithm considers the arcs in subsequent levels according to theiden
On the first level, it constructs spanning trees in the connected comisoofen
arcs with maximal modules. Then it shrinks these components to sodesand
carries on with the next smaller level of modules. This way DENDI contira
tree, along which one can propagate the potentiad&cording to the tensions.
Finally, it verifies whether the equations of the non-tree arcs can aladfilled

for the chosern. A formal description can be found in the appendix. For the
correctness of the algorithm we show two lemmata.

Lemma 2. The subgraph T returned by the DENDI-algorithm is a sharp tree.



Proof. Obviously,T is a spanning tree. Consider a non-treeaand its module

P, = P’. Every other ard in the fundamental cycl€(a, T) either belongs to the
same component ason levell or to a tree of a component shrunk into a super-
node on an earlier level. In both cage/s< R,. The modules being nested, this
impliesP; | By, and thusT is sharp. O

Thus, we have:

Theorem 1. A GDES with nested modules has a sharp tree.

Lemma 3. The DENDI-algorithm returns failure, iff the GDES is infeasible.
Moreover, the offsetk= 0 for all tree arcs ac A(T).

Proof. The offsets vanish on the tree arcs by construction, and becausee$the

in the final loop(1T, k) is a solution to the GDES, if they are returned. By Lemma 2
subgraphT is sharp and we can apply lemma 1 to know that the GDES has a
solution iff it has a solution with, = 0 for alla € A(T). If such a solution exists,

it is fully determined by the potential of one nofeébecause one can propagate
along the spanning tree. But, if 77 is such a solution, ther* + zis also one for

all ze Z. In particular, therr constructed in DENDI is one. Thus, if thisfails

one of the equations, there can be no solution to the GDES. O

Observe that one can force any minimum spanning tree algorithm to rtsirn
same tree as the (weighted) DENDI-algorithm by introducing the followirighs:
The weight of an arc is (the sum of its original weigh&ind) a multiple of a large
constantM (> ¥ w), where arcs with larger period get smaller multiplesivbf
Therefore, we can substitute DENDI by any MST algorithm and conclugarin
ticular:

Theorem 2. The DENDI-algorithm is correct, and has a running timeriiin?),
where n is the dimension of the solution vector.

General modules:Requiring nested modules may be suitable for the application
but constitutes a strong mathematical restriction. Still, the example on thé left o
Figure 1(a) shows that we cannot hope for similar results in the gecesal

Example 1.In Figure 1(a) the numbers next to the arcs and nodes give the mod-
ules of the arcs respectively the nodes. On the right, the arc moduldsaggcd

of the node modules. Assume the tensions along the cycle sum up to 1. This is
feasible, because the gcd of all arcs is 1. Yet, a feasible solution muesk a0

on all arcs for the left graph, and either on the two vertical or the two botét

arcs for the right graph.

In general, a solution for any cycte must have non-zero offsekson a subset
Sof C’s arcs, such that g¢8) = gcd(C). As in the example this may require all
offsets to be non-zero.

Looking at GDESs from the perspective of the PESP and its applicatianflth
lowing objection is valid: In the application we are given periods for the &yen
i.e., the nodes. The period (module) of anate (i, j) arises in an equivalent for-
mulation asP; = gcd{R, P;}. Thus, the situation on the left of Figure 1(a) cannot
occur. This is true. But, in general (cf. the example on the right in Fid(ag)
node modules can be such, that a solution must have non-zero offsetsubset
of the arcs, that forms a maximal matching on any cycle.
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3 Solving PESP with multiple modules

The methods for the PESP with uniform modules rest on a strong formulatio
based on an integral cycle basis and on certain rounding cuts, thatextsérem
cycles. We will show that in general an integral cycle basis for a multiuteod
PESP doesot give an equivalent formulation. Whereas, if a sharp tree exists,
we will show that, its fundamental cycle basis provides for the desiredgstro
formulation. In general, a multi-module PESP need not have a sharfBueee
have seen in the previous section that a sharp tree can be found irf ceestenl
modules.

The proper generalization of integral cycle bases for multi-module BESRe
following type of basis:

Definition 5. A fundamental cycle basis stemming from a sharp tree is called a
sharp cycle basis

In particular, this means for each cydlzin a sharp basis, that the @) is
attained by the non-arc @f. Recall, that any fundamental cycle basis, and thereby
any sharp cycle basis is integral.

Lemma 4. Let Z be a sharp cycle basis in a PESP model. For an arc vector x
the following three statements are equivalent:
1. The vector x is the arc tension of a node poterntial
2. The vector x fulfills the cycle equality for every cycle C, i.e., there s K
such thaty 5cc Xa = ke - gcd(C).
3. The vector x fulfills the cycle equality for every cycle @.

Proof. The inclusion 2= 3 being trivial, we show & 2 and 3= 1.
1=2: According to (1) we have ;) = m — 75 + k;; ;)R j) for all ares(i, j) € A.
Summing along a cycl€ (multiplying the equation o& with (—1) for arcs
athat lie inC contrary to its orientation) we gg(i‘j)ec X('l) = k(l,])P(I,])
3=-1: Define a node potentiat by settingrs = 0 for some node and propagate
thex value along the sharp trde It remains to show that for every non-tree
arc(i, j) € A\ T there isk; j) € Z such that

T = T8+ XG,j) = K, Pl j)- @)
The fundamental cycl€ := (2(i, j,T),(i,)) is in # andP; ;) = gcdC),

and Equation (3) follows.
]



Together with Theorem 2 we get:

Theorem 3. Let¥ be a PESP in the arc formulation. If a sharp cycle basis for-
mulation for¥ exists, itis equivalent. # has nested modules, then a sharp cycle
basis formulation exists and can be found in timeifn?).

For multiple modules the cycle basis formulation is not equivalent to theoarc f
mulation even if the modules are nested. In the following example we shaw tha
non-sharp trees do not guarantee an equivalent cycle basis feionula

Example 2.Consider the graph on the left of Figure 1(b). Set the moBte 6
for all arcs except the diagonal one. For this set the module to 3. Theahtesxt

to an arc shows its upper and lower bounds. As cost vector choosaitivector.
On the right of Figure 1(b) we show two fundamental cycle bases sjporaling

to two different trees. The non-tree arcs of a fundamental cycleravenddashed.
On top, the cycle basis consists of two triangles. The corresponding tneé as
sharp tree, because for both cycles the non-tree arc has modulelteanytle’s
ged is 3. Again, the example cannot occur if the periods stem from thesnod
Still, if one replaces the diagonal arc by two arcs of period 3 one carsehbe
node periods accordingly.

Index the arcs clockwise starting left and put the diagonal arc last. fhieempti-
mal solution for this cycle basis formulationxs= (2,2, 1,2, 2), for which Algo-
rithm 1 returns failure, i.e., it is not a tension of a feasible solution andtteis
cycle basis formulation isot equivalent to the original arc formulation.

Yet, if we consider the sharp tree consisting of the left, upper, and loweer a
the corresponding cycle basis, shown at the bottom right of Figure di(i®s a
formulation which is equivalent to the arc formulation, as stated in The@rém
particular, the optimal solution we gebis= (3,2,3,2,1), for which Algorithm 1

is able to find a feasible set of potentials.

Algebraic pruning: Assume again nested modules. Consider aradhat is in

no cycle or only in cycle€ with gcd(C) strictly smaller tharP;. Assume we
have a solutiorix, k)* to a DENDI-cycle basis formulation of the PESP. The arc
a must lie in the DENDI-tredl’ of any such formulation. Therefore, recovering
node potentials from* will result in a solution(7z, k)" with kPa = ke(a 7y 9cd(C).
Thus, the inequality of are is also fulfilled modulo gcC)—which is strictly
smaller tharP,;. This observation allows to simplify a PESP with nested divisors:

Theorem 4. Given a PESP¥ with nested modules containing an arc a with
gcd(C) < Py for all cycles C> a. The PESE//, resulting from by replacing B
by its largest divisor P+# Py, is equivalent t¢7.

One may repeatedly apply Theorem 4 to simplify the PESP in a pre-phogess

In case the considered arc is in no cycle, its module is ultimately set to 1, which
is equivalent to removing the arc. Indeed any solution for the (afterctmeval)
disconnected graph can easily be amalgamated to a solution of the origiagl P

in a linear time post-processing. Recall, that we can also remove areghiich

the difference between upper and lower bound is greater or equal todtiele.
Therefore, even reducing to a non-trivial module can result in thédeairgy ob-
solete. This way we can reduce the dimension of the MIP. A side effetttiof
pruning is, that we can assume the following property for the sharp fmasisl

by the DENDI algorithm:



Observation 1 W.l.0.g. for every arc a a sharp cycle basis contains a cycle C,
such thaigcd(C) = Pa.

The basis of the DENDI algorithm is sharp and thus has a tight cycle fdr eac
arc. This will be exploited in the last section, where we seek to give a setalf s
strong cuts derived from cycle inequalities.

Cuts and the sharp tree:We now turn to the last ingredient that makes state-of-
the-art solvers for uniform-module PESPs powerful. Solving a umiforodule
PESP cycles are also used to produce a special class of roundingheuss-
calledOdijk inequalities:

{Za_ecea;ZageCUa—‘gkc and {Zmecua;ZmecfaJch

The key question is, for which cycles one should add the correspoiitijg
inequalities to the MIP formulation. For the case of uniform modules there is a
well established heuristic reasoning: The right-hand side is rounded @owp)
by a value between 0 arfel— 1. If the total value of the right-hand side is large
in comparison td the effect of rounding cannot be large.
Therefore, one is interested in shortest integral cycle bases. Theoeislyno-
mial time algorithm know for this problem. Yet, there are many heuristics tb fin
short integral cycle bases. A standard approach is to constructlarhental cy-
cle bases from a minimum spanning tree (MST). Here the heuristic ideats, th
the non-tree arcs feature in exactly one cycle, whereas the minimizedrtge
can occur in several cycles of the basis. Thus, the sum of all cyclebeviither
small, and the Odijk inequalities on average rather tight.
For multiple modules one has to consider a second argument. In this ease th
rounding on a cycl€ is between 0 and g¢@). Assume the cycl€ contains an
arcawith a significantly smaller module, than that of all other arcs i@. Recall,
that we can assume the difference between upper and lower bounchonta be
less than its module. Nevertheless, the contribution to the right-hand sidelof e
other arch can be much larger tha®y, because they have larger modules. Still,
the rounding cannot be larger th& If an arcb is in no cycleC with gcd(C)
close to its own modul®,, the set of cuts will not have a relevant effect on the
number of choices fax,.
Now, Theorem 4 allows to assume that every lare A is in at least one cycle
C with gcd(C) = R,. And a sharp cycle basis will for every abccontain such
a cycleC with tight rounding. So, for multiple-modules PESPs we propose to
choose the following type of cycle basig to derive strong Odijk inequalities:

1. #is asharp cycle basis.

2. % arises from a sharp tree with minimal sum of arc weights (with respect to

(u—¢)) among all sharp trees.

Note, that the weighted version of Algorithm 1 finds a sharp tree as déwired

4 Computational results

We study twelve instances derived frotimtabl andtimtab2, the MIPLIB
PESP instancésThese two MIPLIB instances are anonymized real-world timetabling

1 We like to thank Elmar Swarat for providing us with the raw datanftab 1 and 2.



problems of a major European railway provider. The second oneriigsecently
been solved. We changed the original periods of 60 omtitesrandomly to the
nested periods 1260,30,15 and 5, giving lower probability to the small periods
as they dominate in the transition from node to arc periods. After this transition
the bounds on the arcs were adjusted relative to the change in period.

On these instances we compare the standard formulation to a sharp agele b
formulation with the basis’ Odijk inequalities. For each we use CPLEX 10.0
with a timelimit (TL) of 2 hours on a 2.4Ghz processor. The results in Table
clearly show the advantage of the formulation that is possible because thigth
ory developed here. Especially the increase in speed for detectingibiifitais
striking. Further, all except one of the feasible instances are solvedawitt-

ter gap by the sharp cycle base formulation. (The interested readéerieeteto

the appendix for a small example in which one can study the influence of the
formulation explicitly.)

Classical ___ Sharp Treer Odijks__
instance status GAP% time (sec.) status GAP% time (sec.)
mpespl feasible 5.99 TL feasible 4.19 TL
mpesp2 feasible 6.13 TL feasible 5.73 TL
mpesp3 feasible 5.58 TL feasible 3.83 TL
mpesp4 feasible 2.94 TL feasible 2.50 TL
mpesp5 feasible 5.33 TL feasible 5.29 TL
mpesp6* feasible 9.81 TL feasible 10.26 TL
mpesp?7 feasible 12.09 TL feasible 9.72 TL
mpesp8 feasible 12.87 TL feasible 9.71 TL

mpesp9 - - TL infeasible - 0
mpesp10 - - TL infeasible - 3431
mpespll infeasible - 6934 infeasible - 0
mpespl2 infeasible - 657 infeasible - 0

Table 1. multi-period miplib PESP statistics

5 Conclusion

We develop the theory and method to solve the MIPs of real-world multi-teodu
PESPs with nested modules. Our computations on adjusted MIPLIB ingtsice
tify the superiority of our method.

To this end we introduce the conceptdifarp treeswhich we show to be a pre-
requisite for both a propagation approach to solve GDES and for theystyaie
basis formulations of the PESP. We show that and how sharp can letifocase
of nested divisors.

The advantage of nested periods for timetable optimization suggests tesied n
periods in practice. But nested periods are also recommendable fequertspec-
tive of quality of service: They yield that more passenger actually éxpes the
optimized transfer time, because for co-prime periegsrytransfer time will be
experienced by some passengers.
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A A small example on the power of sharp cycle basis
formulations

We now demonstrate the power of such minimum-sharp trees on a smaapéx
The following example rises three important observations about the tigghtfe
IP formulations for PESPs with nested modules.

Example 3.Consider a PESP instance derived from the 5-wheel graph on the
left of Figure 1(c). There are 10 arcs. bebe the vector of arcs variables, and
consider the input data of Table 2.

X1|X2|X3|X4 | X5 | X6 | X7 |Xg|X9|X10
(111111111
29|129|129|129|129|129|1|2|2]| 2

10|15|45/13|12|18|16(61(34({ 41
28|28/28|28|28/28/0 11| 1
30/30(30{30{30[60]30|30|30| 30
Table 2. Input data for the 5—-wheel PESP

TU=Esoc —

formulation |LP# tight Odijk ineq.$
classical 0 -
sharp-basis |18 1
short sharp-basig9 2

Table 3. Statistics for the 5—wheel PESP

Note, all periods are equal to 30, except Rgr= 60. By ¢, u, andc we denote
the lower and upper bound and the cost vector. We also define a weigfior v

w = u—/, since the tightness of an Odijk inequality can be heuristically mea-
sured as — Xa. The optimal value of this PESP instance is 1327, and in Table
3 we report some statistics for three different formulations. In particwia con-
sider the classical PESP formulation and two different cycle basis fations,
corresponding to the two trees in Figure 1(c). Both trees are sharpegaitre
cycle basis formulations equivalent to the original arc formulation. Téeeitr the
middle is not minimal among the sharp trees, it contains arcs with large tseigh
The tree on the right is a minimum-sharp tree. For each formulation we ste

LP bound and for the cycle basis formulations we also indicate the nunfiber o
fully tight Odijk inequalities.

The data in Table 3 show that:
1. the sharp basis leads to dody tight Odijk inequality & = x4 = 0), whereas
the minimum-sharp basis leads to two such inequalitigs=(x; = 0, X5 =
X5 = 0),
2. the LP bound of the sharp basis and additionally that of the minimunp-shar
basis improves drastically,



B Pseudocode for the DENDI-algorithm

We give a formal description of the weighted and unweighted DENDI+élyn
sketched before.

Algorithm 1: The DENDI-algorithm for GDES with nested modules (and arc
weights).

Input: A GDES with nested modules given by a digrapfV, A), arc tensions: A — Z,
modulesP: A— {P" | P"~1... | P1} (and arc weightsv: A — Z).
Output: FAILURE or a feasible solution given by node potentiajsand offsetk, and a
sharp tredl’ with ky =0 for alla € A(T).

1 Initialize: Super-nodes of level 0% = {{1}...{n}}. Node potentialst= 0. Tree:
T+ (V,0).
2 for Levell </¢<rdo

3 Gy + G(¥_1,{(st,a):s#t e ¥_1,a= (W) e AP, =P/ ,veswet}).
4 % + The set of connected componentsGn

5 for C € %, do

6 T(C) + a (minimum forw) spanning tree K.

7 A(T) « AT)UA(T(C)).

8 end

9 Vi {t=Usey(c)s:C € G}

10 end

11 Setry < O for an arbitrary node and propagater alongT according tox.
12 for a= (v,w) € A\ A(T) do Ka + (Ty — 7% — Xa)/Pa.

13 if kg ¢ Z then Return FRAILURE.

14 ReturnrandT.

Line 3: The graphG, may contain parallel arcs. They can be distinguished by
their corresponding ar@e G. Line 7: We slightly misuse notation here: It makes
no sense to add arcs between super-nodegT9. Instead, we ad@ € A(G):

the arc corresponding {@,t,a) € A(T(C)). Line 9: Notice, each elementof %,
contains nodes but no super-nodes.



