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Abstract. The Periodic Event Scheduling Problem (PESP) is the method of choice
for real-world periodic timetabling in public transport. Its MIP formulation has
been studied intensely for the case of uniform modules, i.e., when all events have
the same period. In practice, multiple modules are equally important. The strength
of current methods for uniform modules rests on three ingredients: Every feasible
instance allows for an optimal solution with a certain structure. Therefore,it can
be reformulated with the use of an integral cycle basis. Finally, a certain type of
rounding cuts arising from cycles has proven very powerful. All of thisfails in
the multi-module case. Therefore, applications with multiple periods were hardly
solvable so far.
We analyze a certain type of Diophantine equation systems closely related to the
multi-module PESP. Thereby, we identify a structure, so-called sharp trees, that
allows to solve the system inO(n2) time. We show, a sharp tree is guaranteed to
exist and found by a similar algorithm, if the modules form a linear lattice. Based
on this we develop the machinery to solve multi-module PESPs on real-world
scale. In particular, we recover all three ingredients for the multi-modulecase.
In our computational results the new MIP-formulations drastically improvethe
solvability of multi-module PESPs. We also demonstrate that without sharp trees
no similar approach can be hoped for.

1 Introduction

The Periodic Event Scheduling Problem (PESP) is a combinatorial optimization
problem of great practical importance. It is the model of choice for periodic
timetabling in public transport, has been used for periodic job shop and traffic
signal scheduling, and has successfully and repeatedly been applied inpractice.
The task is to schedule periodic recurring events, e.g., the arrivals and departures
of trains, such that between pairs of periodic events periodic constraintsare ful-
filled. A periodic constraint between periodic eventsi and j means that for every
realization ofi there is at least one realization ofj, with time difference greater or
equal some lower respectively less or equal some upper bound. Such constraints
can model for periodic timetables the headway constraints, the stopping times, or
that passengers can quickly transfer between trains of different lines. In fact, the
high modeling power of the PESP (cf. [7]) even allows to include rolling stock
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minimization and crew scheduling into the timetabling. This facilitated the con-
struction of the first mathematically optimized railway timetable, namely for the
Berlin underground in 2005.
The PESP is most powerfully solved as a (mixed) integer linear program ((M)IP).
Apart from their practical importance, the IPs arising from the PESP areof in-
dependent theoretical interest. Any such IP is naturally associated to a digraph.
There are variablesπi for each nodei andka for each arca. Two constraints cor-
respond to each arca = (i, j): ℓa ≤ π j − πi + kaP≤ ua. Thus, for each arc the
difference of the node variables must be in the interval[ℓa,ua] modulo a constant
P. This constant is the period of the application, e.g., the time that elapses until
the next train of the same line arrives. This special class of IPs has attracted a
lot of research attention from combinatorics and integer programming perspec-
tives. It has been shown to be NP-complete, even MAXSNP-hard, andto have an
unbounded Chvatal rank [22]. Nevertheless, research efforts exploiting the graph
structure have led to a rich understanding of these IPs. These insights facilitate
methods that are eventually capable to solve instances of considerable and prac-
tically relevant size—e.g., the timetable optimization of a complete national rail-
way system. Some of these instances are challenging enough to be foundin the
MIPLIB. (These are the instances on which we base the computational validation
of our method.)
The strong methods for uniform-module PESP have three ingredients (cf. [10]):
first, if the instance is feasible, then for any tree exist optimal solutions, that
have offsets equal to zero on that tree, second, a strong formulation of the MIP
constructed by an integral cycle basis, and finally, a class of rounding cuts (the
Odijk inequalities) also based on a well chosen set of cycles.
All of this fails, if the modules are not uniform. In general, solutions neednon-
zero offsets on all arcs. In general, an integral cycle basis does notgive an equiva-
lent formulation, and the Odijk inequalities become arbitrarily loose for multiple
modules.
The powerful previous results apply to PESPs with a single moduleP for all
constraints. Yet multi-module PESPs are justified and even desired from the ap-
plications perspective: A public transport system is often comprised of lines with
different periods, e.g., subways running every ten minutes, some busses running
every 30 minutes, other every five minutes, and regional trains every hour. Also
traffic lights in the same urban area may well have different periods. Despite this
ample practical need, until now we lack the theory for a strong approachto multi-
module PESPs.
For solving PESPs a special class of linear Diophantine equation systems (DES)
naturally related to the PESP is important. Again, given a digraph one associates
variablesπ to the nodes andk to the arcs, and each arc represents an equation
of the form:π j −πi +kaPa = xa. Note, the coefficients of the node variables are
equal to 1. Setting the arc coefficientsPa = 1 would allow for a trivial solutionk≡
x,π ≡ 0. In this sense the proposed class is the simplest non-trivial class of DES
one can associate to a digraph. Therefore, we call them Graphical Diophantine
Equation Systems (GDES). GDESs are not only similar to PESPs, they also play
a role in the state-of-the-art solving methods for PESPs. In the special case, when
all modulesPa are equal, the GDES can be solved in linear time by a straight
forward algorithm. For the general case so far one has to resort to constructing
the Hermite Normal Form (HNF) of the GDES matrix, which can be done in
(high) polynomial time.



In this work, starting from an analysis of and a new algorithm for GDES we
develop a method capable of solving real-world multi-module PESPs. We test this
on multi-period instances which we get by changing the periods in the uniform
PESP instances that can be found in the MIPLIB, namely,timtab1 andtimtab2.
These MIPLIB instances are real-time railway timetabling instances.
Related work: The PESP has been introduced by [23] and applied to timetabling
problems by [21, 22], periodic job shop [23], and traffic signaling [5,4]. In [20]
a set of particularly useful rounding cuts have been proposed for thefirst time. A
concise exposition of the PESP and the state-of-the-art theory and solving meth-
ods can be found in [7]. We summarize some of these results at the end of this
section. The NP-hardness has first been shown in [18, 20] and the MAXSNP-
hardness is proven in [7]. Recently, it has been shown [22] that the PESP has
unbounded Chvatal rank. In [13] optimization over the first Chvatal rank of the
PESP has been studied.
Diophantine equations systems can be solved as any other linear equation system,
once they are presented by their Hermite Normal Form (HNF). There is astandard
polytime algorithm for constructing the HNF [24]. While further research on the
HNF focuses on algorithms that use less space, we are not aware of a specific
algorithm for GDES.
The GDES are a special, and particularly simple class of DES. Similar flavorthe
Mixing Set Problem defines a particularly simple class of Diophantine inequal-
ities that has been studied intensively [1, 2] and also has practical applications.
Another very important class of DES that are closely related to GDES are the
so-calledunique games[6].
For practical instances which feature two different modulesP | P′ (e.g., a system
of trains of which some run every hour and others every two hours) thestate-
of-the-art [7] approach is to use a PESP with uniform moduleP′ and double the
events that have higher frequency. The duplications of such an eventhave to be
mutually fixed by additional constraints. This increases the size of the PESP.
Our contribution and outline: We show in Section 2 that in case a so-called
sharptree exists, the offsets can be chosen zero on it. These trees exist and can
be found inO(n2) time, if the modules are nested, i.e., form a linear lattice with
respect to division. In Section 3 we show that the existence of a sharp tree allows
for a cycle basis formulation, which is equivalent to the original arc formulation
and gives a stronger IP. Moreover, we show that we can prune a multi-module
PESP, such that the fundamental cycles of a sharp tree give particularly good
inequalities.
The same algorithm that finds a sharp tree in case of nested modules, alsosolves
a GDES in time quadratic in the number of nodes (cf. Section 2). We also show
that without the existence of a sharp tree similar approaches to strengthenthe IP
formulation or to quickly solve a GDES do not extend in general.
In the final section we report on twelve instances derived from the afore men-
tioned MIPLIB timetabling problems. The computations impressively testify the
strength of our method.
Definitions and basics:Firstly, we define the two main mathematical objects
under consideration.

Definition 1. A digraph G(V,A) together with a natural valued function on the
arc set, P: A→N, and an integer valued function on the arc set x: A→Z is called
a graphical representation of the following system of Diophantine equationson



variable vectors(π,k) ∈ Z|V|,|A|:

π j −πi +kaPa = xa ∀a(= (i, j)) ∈ A. (1)

A system for which a graphical representation exists is called agraphical Dio-
phantine equation system(GDES).

The results we derive also hold ifx maps to the rationals andP can be negative,
but we can restrict w.l.o.g. (cf. [7]) to natural numbers for simplicityand also
for its significance in a practical context. From a GDES one can straight forward
construct its representation and this representation is unique up to isomorphism.
So we speak ofthe representationof a GDES.

Definition 2. Given a digraph G(V,A) together with two rational functions on
the arc set,ℓ : A→Q and u: A→Q, a third natural valued function on the arcs,
P : A→ N, and a vector c∈Q|A|. The following mixed integer program is called
a classical formulation for the periodic event scheduling problem(PESP):

min ∑
(i, j)=a∈A

c(a)(π j −πi +kaPa)

ua ≤ π j −πi +kaPa ≤ ℓa ∀a(= (i, j)) ∈ A (2)

π ∈Q|V|,k∈ Z|A|

The reader is referred to [7] for a comprehensive work on the PESP. One may
distinguish between the Periodic Event Scheduling Problem as such and its for-
mulation as a MIP. Originally, the constraints are:ua≤ π j −πi ≤ ℓa modPa. We
ignore this notational difference. It is more important that in most applications the
events, i.e., the nodes—not primarily the arcs—are periodic. So the constraints
should rather read:ua ≤ (π j + k jPj )− (πi + kiPi) ≤ ℓa. It is easily checked that
this is equivalent to the formulation above, when we choosePa = gcd{Pi ,Pj}.
We will use subscripts for the arguments of the functionsx,u, ℓ andP in the re-
mainder. We abbreviaten :=| V | andm :=| A |. We will useV(G) andA(G) to
denote node and arc sets of a graph. Generally the values ofP are called periods
or modules, those ofx tensions, those ofπ potentials, an those ofk offsets. In the
remainder we will assume w.l.o.g. the graphs to be connected. It is easy to see,
that if the image ofu and l are in the integers there is always an optimal solu-
tion with all π integral. So basically, the PESP is an IP, although it is constantly
referred to in the literature as a MIP.
We summarize some basics on the PESP:Notice, the objective function only
refers to pairwise differences of potentials. This is partly due to the pertinent ap-
plications, partly to the mathematical structure. Thek variables model the modulo
operator. It would be strange to count them in a practical objective. Moreover, for
any feasible solution(π,k) and anyq∈Q also(q+π,k) is also feasible.
Assume allPa are equal, and letx be the vector of arc differences of a solution
(π,k), i.e.,x(i, j) = π j −πi +k(i, j)P. A vectorx arising from a solution in this way
is called itstension. It is easily checked—and we will re-prove it as a by-product
of a more general theorem—that for any treeT there is a vector(π,k)′ with the
same tensionx butk′a = 0 for all a∈ T. Note, that(π,k)′ is also a feasible solution
and has the same objective value as(π,k), because it has the same tension. This
gives rise to two important features of the PESP with uniform modules.



First, if we know the tensionx, we can construct a feasible solution in a simple
way: Setπi = 0 for an arbitrary nodei. Choose an arbitrary spanning treeT, and
propagateπ starting from i along T with respect to x. Propagation means, that
we solve the equality systemπ j −πi = xa for all a∈ A(T) iteratively fixing the
node values as we traverse the tree.
It is helpful to notice, that any arca with ua−ℓa≥Pa states a redundant condition.
Also, we can replace a directed arc by its antiparallel arc, simply by multiplying
both constraint by(−1).
The second important concept arecycle bases. A cycle basis is a basis for the
linear subspace spanned by the incidence vectors of cycles in the vectorspace
Qm spanned by the arc incidence vectors. Note that a cycle may have forward
and backward arcs. For the latter the incidence vector of the cycle has a(−1)
entry. A cycle basis is calledintegral, if all cycles are integer linear combination
of the elements of the basis. Given a spanning treeT in the graph, the fundamental
cyclesC(a,T) of all non-tree arcsa /∈ A(T) form a cycle basis. Afundamental
cycle C(a,T) of a non-tree arca with respect to a spanning treeT is composed
of the arc itself and the unique path inT connecting its endnodes. Such a basis
is called afundamental cycle basis(sometimes also: strictly fundamental). Every
fundamental cycle basis is integral.
Finally, in the case of uniform modules, we can sum the constraints along a cy-
cleC, yielding a new, valid constraint. Replacingπ j −πi by x(i, j) this constraint
reads:∑a∈C xa = kCP, wherekC = ∑a∈C ka, and we assume w.l.o.g. all arcs to be
directed in the orientation of the cycle. If a tension vectorx fulfills this cycle con-
straint for all cycles of an integral cycle basis, then it is the tension of a solution
(π,k). If in addition xa ∈ [ℓa,ua] it is the tension of a feasible solution(π,k). In
other words, for uniform modules an integral cycle basis gives rise to an equiva-
lent MIP formulation. Thiscycle basis formulationhas proven [10] significantly
stronger than the originalarc formulation.
For a cycleC we abbreviate gcd(C) := gcd{Pa : a∈C}.

2 Graphical Diophantine Equations Systems

Both, the Diophantine and the MIP results in this paper are based on Lemma 1
that guarantees the existence of well structured solutions under certain conditions.
To state these conditions we define the following.

Definition 3. LetG be a GDES and G the graph of its representation. A spanning
tree T in G is called asharp tree, if each of its fundamental cycles C(a,T) has
greatest common divisor equal to Pa, the module of the cycle’s non-tree arc a∈
A(G)\A(T).

Lemma 1. Let G be a GDES and T a sharp tree in the graph of its representa-
tion. If G has a solution, then there is a solution ofG with ka = 0 for all a ∈ T.

Proof. Reorder the matrix of the GDES such that the following holds: The new
matrix M starts with then−1 rows corresponding to the arcs inT. Restricted to
the columns affecting theπ variables, these rows form a lower triangular matrix
(the first column omitted). The columns affectingk form a diagonal matrix.
Index the nodes according to their column and arcs according to their rows inM.
For two nodesv andw denote byP(v,w,T) the unique path fromv to w in T.



Let (π,k)0 be some solution. We construct a solution(π,k)n−1 overn−1 stages
denoted(π,k)i , i ∈ {1. . .n−1}. For eachi ∈ {1. . .n−1} successively with in-
creasing row index we take four steps:

1. Setki
i = 0.

2. Re-establish the correctness of thei-th equation by changing the node value
π j corresponding toMi,i , the right most non-zero entry in the firstn− 1
columns, i.e.,π i

i := π i−1
i +sgn(Mi,i)k0

i Pi . Let ℓ(i) be minimal withMi,ℓ(i) 6=
0, i.e., the other node of arci.

3. Propagate the new node value downwards along the tree. Formally: For all
remaining tree rowst ∈ {i + 1. . .n− 1} successively with increasing row
index setπ i

t := π i−1
t +sgn(Mi,i)k0

i Pi in caseℓ(i) /∈P(i, t,T).
4. Re-establish correctness (in arbitrary order) for the equations of non-tree

arcs by adjusting their arc variables. Formally: For allj ∈ {n, . . . ,m} let
1≤ r < s≤ n−1 be the nodes of arcj, i.e., M j,r andM j,s 6= 0. Setki

j :=

ki−1
j −

sgn(M j,r )(π i
r−π i−1

r )+sgn(M j,s)(π i
s−π i−1

s )
Pj

.
(We were a bit sloppy dropping exceptional handling of first row and column, and
omitting whenπ i

j := π i−1
j and likewise fork.)

Obviously, each(π,k)i fulfills all equalities. Observe, we touch the arc variable
kt of any tree row only in staget. Therefore,(π,k)i the solution of any stage
i ∈ {1. . .n−1} haski

t = 0 for all t ∈ {1. . . i}. It remains to show for the non-tree
arcs j ∈ {n. . .m} that everyki

j is an integer, in particular, that

Pj |
[

sgn(M j,r)(π i
r −π i−1

r )+sgn(M j,s)(π i
s−π i−1

s )
]

.

For all nodess we haveπ i
s− π i−1

s =| k0
i Pi |. Now, distinguish whetherℓ(i) ∈

P(r,s,T) or not. If ℓ(i) is in, so isi and thei-th arc is on the fundamental cycle
of j in T. Thus,Pj | Pi by condition of the lemma and we are done. In case,ℓ(i) /∈
P(r,s,T) both nodes are changed by the same value. Therefore, sgn(M j,r )(π i

r −
π i−1

r )+sgn(M j,s)(π i
s−π i−1

s ) = 0, which completes the proof. ⊓⊔

To guarantee the existence of sharp trees we need the following property:

Definition 4. We say a GDES (or a PESP) has nested modules, if for each pair
of its modules Pa ≤ Pb we have Pa | Pb.

We will show that GDES with nested modules have sharp trees, whereas sharp
trees do not exist in general. Therefore, we can solve GDES with nestedmodules
in a fast way.
Nested modules:The following DENDI–algorithm (Diophantine Equations with
Nested DIvisors) solves GDES with nested modules. In addition it constructs a
sharp tree.
The algorithm considers the arcs in subsequent levels according to their module.
On the first level, it constructs spanning trees in the connected components of
arcs with maximal modules. Then it shrinks these components to super-nodes and
carries on with the next smaller level of modules. This way DENDI constructs a
tree, along which one can propagate the potentialsπ according to the tensions.
Finally, it verifies whether the equations of the non-tree arcs can also be fulfilled
for the chosenπ. A formal description can be found in the appendix. For the
correctness of the algorithm we show two lemmata.

Lemma 2. The subgraph T returned by the DENDI–algorithm is a sharp tree.



Proof. Obviously,T is a spanning tree. Consider a non-tree arca and its module
Pa = Pℓ. Every other arcb in the fundamental cycleC(a,T) either belongs to the
same component asa on levelℓ or to a tree of a component shrunk into a super-
node on an earlier level. In both casesPℓ ≤ Pb. The modules being nested, this
impliesPa | Pb, and thusT is sharp. ⊓⊔

Thus, we have:

Theorem 1. A GDES with nested modules has a sharp tree.

Lemma 3. The DENDI–algorithm returns failure, iff the GDES is infeasible.
Moreover, the offset ka = 0 for all tree arcs a∈ A(T).

Proof. The offsets vanish on the tree arcs by construction, and because of thetest
in the final loop(π,k) is a solution to the GDES, if they are returned. By Lemma 2
subgraphT is sharp and we can apply lemma 1 to know that the GDES has a
solution iff it has a solution withka = 0 for all a∈ A(T). If such a solution exists,
it is fully determined by the potential of one nodei, because one can propagate
along the spanning treeT. But, if π∗ is such a solution, thenπ∗+z is also one for
all z∈ Z. In particular, theπ constructed in DENDI is one. Thus, if thisπ fails
one of the equations, there can be no solution to the GDES. ⊓⊔

Observe that one can force any minimum spanning tree algorithm to returnthe
same tree as the (weighted) DENDI-algorithm by introducing the following weights:
The weight of an arc is (the sum of its original weightw and) a multiple of a large
constantM(> ∑w), where arcs with larger period get smaller multiples ofM.
Therefore, we can substitute DENDI by any MST algorithm and conclude inpar-
ticular:

Theorem 2. The DENDI-algorithm is correct, and has a running time inO(n2),
where n is the dimension of the solution vector.

General modules:Requiring nested modules may be suitable for the application
but constitutes a strong mathematical restriction. Still, the example on the left of
Figure 1(a) shows that we cannot hope for similar results in the generalcase.

Example 1.In Figure 1(a) the numbers next to the arcs and nodes give the mod-
ules of the arcs respectively the nodes. On the right, the arc modules result as gcd
of the node modules. Assume the tensions along the cycle sum up to 1. This is
feasible, because the gcd of all arcs is 1. Yet, a feasible solution must have k 6= 0
on all arcs for the left graph, and either on the two vertical or the two horizontal
arcs for the right graph.

In general, a solution for any cycleC must have non-zero offsetsk on a subset
Sof C’s arcs, such that gcd(S) = gcd(C). As in the example this may require all
offsets to be non-zero.
Looking at GDESs from the perspective of the PESP and its applications, the fol-
lowing objection is valid: In the application we are given periods for the events,
i.e., the nodes. The period (module) of an arca= (i, j) arises in an equivalent for-
mulation asPa = gcd{Pi ,Pj}. Thus, the situation on the left of Figure 1(a) cannot
occur. This is true. But, in general (cf. the example on the right in Figure1(a))
node modules can be such, that a solution must have non-zero offsetson a subset
of the arcs, that forms a maximal matching on any cycle.
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3 Solving PESP with multiple modules

The methods for the PESP with uniform modules rest on a strong formulation
based on an integral cycle basis and on certain rounding cuts, that also stem from
cycles. We will show that in general an integral cycle basis for a multi-module
PESP doesnot give an equivalent formulation. Whereas, if a sharp tree exists,
we will show that, its fundamental cycle basis provides for the desired strong
formulation. In general, a multi-module PESP need not have a sharp tree. But we
have seen in the previous section that a sharp tree can be found in case of nested
modules.
The proper generalization of integral cycle bases for multi-module PESPs is the
following type of basis:

Definition 5. A fundamental cycle basis stemming from a sharp tree is called a
sharp cycle basis.

In particular, this means for each cycleC in a sharp basis, that the gcd(C) is
attained by the non-arc ofC. Recall, that any fundamental cycle basis, and thereby
any sharp cycle basis is integral.

Lemma 4. Let B be a sharp cycle basis in a PESP model. For an arc vector x
the following three statements are equivalent:

1. The vector x is the arc tension of a node potentialπ.
2. The vector x fulfills the cycle equality for every cycle C, i.e., there is kC ∈ Z

such that∑a∈C xa = kC ·gcd(C).
3. The vector x fulfills the cycle equality for every cycle C∈B.

Proof. The inclusion 2⇒ 3 being trivial, we show 1⇒ 2 and 3⇒ 1.
1⇒2: According to (1) we havex(i, j) = π j −πi + k(i, j)P(i, j) for all arcs(i, j) ∈ A.

Summing along a cycleC (multiplying the equation ofa with (−1) for arcs
a that lie inC contrary to its orientation) we get∑(i, j)∈C x(i, j) = k(i, j)P(i, j).

3⇒1: Define a node potentialπ by settingπs = 0 for some nodes and propagate
thex value along the sharp treeT. It remains to show that for every non-tree
arc(i, j) ∈ A\T there isk(i, j) ∈ Z such that

π j −πi +x(i, j) = k(i, j)P(i, j). (3)

The fundamental cycleC := (P(i, j,T),(i, j)) is in B andP(i, j) = gcd(C),
and Equation (3) follows.

⊓⊔



Together with Theorem 2 we get:

Theorem 3. Let G be a PESP in the arc formulation. If a sharp cycle basis for-
mulation forG exists, it is equivalent. IfG has nested modules, then a sharp cycle
basis formulation exists and can be found in time inO(n2).

For multiple modules the cycle basis formulation is not equivalent to the arc for-
mulation even if the modules are nested. In the following example we show that
non-sharp trees do not guarantee an equivalent cycle basis formulation.

Example 2.Consider the graph on the left of Figure 1(b). Set the modulePa = 6
for all arcs except the diagonal one. For this set the module to 3. The interval next
to an arc shows its upper and lower bounds. As cost vector choose the unit vector.
On the right of Figure 1(b) we show two fundamental cycle bases corresponding
to two different trees. The non-tree arcs of a fundamental cycle are drawn dashed.
On top, the cycle basis consists of two triangles. The corresponding tree isnot a
sharp tree, because for both cycles the non-tree arc has module 6 andthe cycle’s
gcd is 3. Again, the example cannot occur if the periods stem from the nodes.
Still, if one replaces the diagonal arc by two arcs of period 3 one can choose the
node periods accordingly.
Index the arcs clockwise starting left and put the diagonal arc last. Thenthe opti-
mal solution for this cycle basis formulation isx= (2,2,1,2,2), for which Algo-
rithm 1 returns failure, i.e., it is not a tension of a feasible solution and thusthe
cycle basis formulation isnot equivalent to the original arc formulation.
Yet, if we consider the sharp tree consisting of the left, upper, and lower arc,
the corresponding cycle basis, shown at the bottom right of Figure 1(b), gives a
formulation which is equivalent to the arc formulation, as stated in Theorem3. In
particular, the optimal solution we get isx= (3,2,3,2,1), for which Algorithm 1
is able to find a feasible set of potentials.

Algebraic pruning: Assume again nested modules. Consider an arca that is in
no cycle or only in cyclesC with gcd(C) strictly smaller thanPa. Assume we
have a solution(x,k)∗ to a DENDI-cycle basis formulation of the PESP. The arc
a must lie in the DENDI-treeT of any such formulation. Therefore, recovering
node potentials fromx∗ will result in a solution(π,k)′ with k′aPa = kC(a,T) gcd(C).
Thus, the inequality of arca is also fulfilled modulo gcd(C)—which is strictly
smaller thanPa. This observation allows to simplify a PESP with nested divisors:

Theorem 4. Given a PESPG with nested modules containing an arc a with
gcd(C)< Pa for all cycles C∋ a. The PESPG ′, resulting fromG by replacing Pa
by its largest divisor P′a 6= Pa, is equivalent toG .

One may repeatedly apply Theorem 4 to simplify the PESP in a pre-processing.
In case the considered arc is in no cycle, its module is ultimately set to 1, which
is equivalent to removing the arc. Indeed any solution for the (after the removal)
disconnected graph can easily be amalgamated to a solution of the original PESP
in a linear time post-processing. Recall, that we can also remove arcs, for which
the difference between upper and lower bound is greater or equal to themodule.
Therefore, even reducing to a non-trivial module can result in the arcbeing ob-
solete. This way we can reduce the dimension of the MIP. A side effect ofthis
pruning is, that we can assume the following property for the sharp basisfound
by the DENDI algorithm:



Observation 1 W.l.o.g. for every arc a a sharp cycle basis contains a cycle C,
such thatgcd(C) = Pa.

The basis of the DENDI algorithm is sharp and thus has a tight cycle for each
arc. This will be exploited in the last section, where we seek to give a small set of
strong cuts derived from cycle inequalities.
Cuts and the sharp tree:We now turn to the last ingredient that makes state-of-
the-art solvers for uniform-module PESPs powerful. Solving a uniform-module
PESP cycles are also used to produce a special class of rounding cuts,the so-
calledOdijk inequalities:

⌈

∑a+∈C ℓa−∑a−∈C ua

P

⌉

≤ kC and

⌊

∑a+∈C ua−∑a−∈C ℓa

P

⌋

≥ kC

The key question is, for which cycles one should add the correspondingOdijk
inequalities to the MIP formulation. For the case of uniform modules there is a
well established heuristic reasoning: The right-hand side is rounded down (or up)
by a value between 0 andP−1. If the total value of the right-hand side is large
in comparison toP the effect of rounding cannot be large.
Therefore, one is interested in shortest integral cycle bases. There isno polyno-
mial time algorithm know for this problem. Yet, there are many heuristics to find
short integral cycle bases. A standard approach is to construct a fundamental cy-
cle bases from a minimum spanning tree (MST). Here the heuristic idea is, that
the non-tree arcs feature in exactly one cycle, whereas the minimized treearcs
can occur in several cycles of the basis. Thus, the sum of all cycles willbe rather
small, and the Odijk inequalities on average rather tight.
For multiple modules one has to consider a second argument. In this case the
rounding on a cycleC is between 0 and gcd(C). Assume the cycleC contains an
arca with a significantly smaller modulePa than that of all other arcs inC. Recall,
that we can assume the difference between upper and lower bound on an arc to be
less than its module. Nevertheless, the contribution to the right-hand side of each
other arcb can be much larger thanPa, because they have larger modules. Still,
the rounding cannot be larger thanPa. If an arcb is in no cycleC with gcd(C)
close to its own modulePb, the set of cuts will not have a relevant effect on the
number of choices forxb.
Now, Theorem 4 allows to assume that every arcb ∈ A is in at least one cycle
C with gcd(C) = Pb. And a sharp cycle basis will for every arcb contain such
a cycleC with tight rounding. So, for multiple-modules PESPs we propose to
choose the following type of cycle basisB to derive strong Odijk inequalities:

1. B is a sharp cycle basis.
2. B arises from a sharp tree with minimal sum of arc weights (with respect to

(u− ℓ)) among all sharp trees.
Note, that the weighted version of Algorithm 1 finds a sharp tree as desiredhere.

4 Computational results

We study twelve instances derived fromtimtab1 andtimtab2, the MIPLIB
PESP instances1. These two MIPLIB instances are anonymized real-world timetabling

1 We like to thank Elmar Swarat for providing us with the raw data oftimtab 1 and 2.



problems of a major European railway provider. The second one hasonly recently
been solved. We changed the original periods of 60 on thenodesrandomly to the
nested periods 120,60,30,15 and 5, giving lower probability to the small periods
as they dominate in the transition from node to arc periods. After this transition,
the bounds on the arcs were adjusted relative to the change in period.
On these instances we compare the standard formulation to a sharp cycle base
formulation with the basis’ Odijk inequalities. For each we use CPLEX 10.0
with a timelimit (TL) of 2 hours on a 2.4Ghz processor. The results in Table1
clearly show the advantage of the formulation that is possible because of the the-
ory developed here. Especially the increase in speed for detecting infeasibility is
striking. Further, all except one of the feasible instances are solved witha bet-
ter gap by the sharp cycle base formulation. (The interested reader is referred to
the appendix for a small example in which one can study the influence of the
formulation explicitly.)

Classical Sharp Tree+ Odijks
instance status GAP% time (sec.) status GAP% time (sec.)
mpesp1 feasible 5.99 TL feasible 4.19 TL
mpesp2 feasible 6.13 TL feasible 5.73 TL
mpesp3 feasible 5.58 TL feasible 3.83 TL
mpesp4 feasible 2.94 TL feasible 2.50 TL
mpesp5 feasible 5.33 TL feasible 5.29 TL
mpesp6* feasible 9.81 TL feasible 10.26 TL
mpesp7 feasible 12.09 TL feasible 9.72 TL
mpesp8 feasible 12.87 TL feasible 9.71 TL
mpesp9 - - TL infeasible - 0
mpesp10 - - TL infeasible - 3431
mpesp11 infeasible - 6934 infeasible - 0
mpesp12 infeasible - 657 infeasible - 0

Table 1.multi-period miplib PESP statistics

5 Conclusion

We develop the theory and method to solve the MIPs of real-world multi-module
PESPs with nested modules. Our computations on adjusted MIPLIB instancetes-
tify the superiority of our method.
To this end we introduce the concept ofsharp treeswhich we show to be a pre-
requisite for both a propagation approach to solve GDES and for the strong cycle
basis formulations of the PESP. We show that and how sharp can be found in case
of nested divisors.
The advantage of nested periods for timetable optimization suggests to use nested
periods in practice. But nested periods are also recommendable from the perspec-
tive of quality of service: They yield that more passenger actually experience the
optimized transfer time, because for co-prime periodseverytransfer time will be
experienced by some passengers.
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A A small example on the power of sharp cycle basis
formulations

We now demonstrate the power of such minimum-sharp trees on a small example.
The following example rises three important observations about the tightness of
IP formulations for PESPs with nested modules.

Example 3.Consider a PESP instance derived from the 5–wheel graph on the
left of Figure 1(c). There are 10 arcs. Letx be the vector of arcs variables, and
consider the input data of Table 2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

l 1 1 1 1 1 1 1 1 1 1
u 29 29 29 29 29 29 1 2 2 2
c 10 15 45 13 12 18 16 61 34 41
w 28 28 28 28 28 28 0 1 1 1
P 30 30 30 30 30 60 30 30 30 30

Table 2. Input data for the 5–wheel PESP

formulation LP # tight Odijk ineq.s
classical 0 -

sharp-basis 18 1
short sharp-basis79 2

Table 3.Statistics for the 5–wheel PESP

Note, all periods are equal to 30, except forP6 = 60. By ℓ, u, andc we denote
the lower and upper bound and the cost vector. We also define a weight vector
w = u− ℓ, since the tightness of an Odijk inequality can be heuristically mea-
sured asxa− xa. The optimal value of this PESP instance is 1327, and in Table
3 we report some statistics for three different formulations. In particular, we con-
sider the classical PESP formulation and two different cycle basis formulations,
corresponding to the two trees in Figure 1(c). Both trees are sharp, so they give
cycle basis formulations equivalent to the original arc formulation. The tree in the
middle is not minimal among the sharp trees, it contains arcs with large weights.
The tree on the right is a minimum-sharp tree. For each formulation we show the
LP bound and for the cycle basis formulations we also indicate the number of
fully tight Odijk inequalities.

The data in Table 3 show that:
1. the sharp basis leads to onefully tight Odijk inequality (x4 = x4 =0), whereas

the minimum-sharp basis leads to two such inequalities (x1 = x1 = 0, x5 =
x5 = 0),

2. the LP bound of the sharp basis and additionally that of the minimum-sharp
basis improves drastically,



B Pseudocode for the DENDI-algorithm

We give a formal description of the weighted and unweighted DENDI-algorithm
sketched before.

Algorithm 1 : The DENDI–algorithm for GDES with nested modules (and arc
weights).

Input : A GDES with nested modules given by a digraphG(V,A), arc tensionsx : A→ Z,
modulesP : A→{Pr | Pr−1 . . . | P1} (and arc weightsw : A→ Z).

Output : FAILURE or a feasible solution given by node potentialsπ, and offsetsk, and a
sharp treeT with ka = 0 for all a∈ A(T).

Initialize: Super-nodes of level 0:V0 = {{1} . . .{n}}. Node potentials:π ≡ 0. Tree:1

T← (V, /0).
for Level1≤ ℓ≤ r do2

Gℓ←G(Vℓ−1,{(s, t,a) : s 6= t ∈ Vℓ−1,a= (v,w) ∈ A,Pa = Pℓ,v∈ s,w∈ t}).3

Cℓ← The set of connected components inGℓ.4

for C∈ Cℓ do5

T(C)← a (minimum forw) spanning tree inC.6

A(T)← A(T)∪A(T(C)).7

end8

Vℓ←{t = ∪s∈V(C)s : C∈ Cℓ}.9

end10

Setπv← 0 for an arbitrary nodev and propagateπ alongT according tox.11

for a= (v,w) ∈ A\A(T) do ka← (πw−πv−xa)/Pa.12

if ka /∈ Z then Return FAILURE.13

Returnπ andT.14

Line 3: The graphGℓ may contain parallel arcs. They can be distinguished by
their corresponding arca∈G. Line 7:We slightly misuse notation here: It makes
no sense to add arcs between super-nodes toA(T). Instead, we adda ∈ A(G):
the arc corresponding to(s, t,a) ∈ A(T(C)). Line 9:Notice, each elementt of Vℓ

contains nodes but no super-nodes.


