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ABSTRACT 
 
Dynamic behavior of Berlin sand and the preloading effects on shear modulus and 
damping properties of sand were investigated by resonant column tests in this study, 
in addition, a new reliable calibration method for the Stokoe resonant column 
apparatus is also presented. The influences of confining pressure, void ratio, water 
content, sampling method, stress history, confinement duration and others on dynamic 
properties of Berlin sand were examined by resonant column tests. An empirical 
equation was proposed to predict the small-strain shear modulus, and two empirical 
models were proposed to simulate the nonlinear modulus and damping properties of 
Berlin sand, a brief comparison of small-strain shear modulus by resonant column and 
bender element tests is addressed as well.  
 
In this study, the author initially introduced the preloading concept to investigate 
vibration history effects on dynamic sand behavior, which is quite different from the 
prestraining concept conventionally employed in previous investigations. For the 
preloading concept, the previous vibration applied to specimen is employed by the 
non-resonant vibration mode of stress-controlled shear by resonant column apparatus. 
With this concept the number of loading cycles can be enlarged to a range from one to 
any desired number. By contrast the prestraining concept cannot investigate low 
number of cycles due to the necessary several hundreds of cycles to determine the 
resonant frequency. In addition, the use of the preloading concept can also ensure 
constant preloading stress during the previbration is applied to the tested specimen at 
the same vibration frequency and input drive voltage. The prestraining concept may 
introduce less precision of the calculation of prestraining amplitude if the set vibration 
frequency and input drive voltage are not adjusted during previbration. That is due to 
variation of the resonant vibration frequency and other parameters, if the stiffness of 
tested specimen varies with number of cycles, and therefore the set vibration 
frequency is not the resonant frequency of the vibration system any more.  
 
The effects of many factors which may influence the preloading effects on the 
dynamic behavior of sand were fully explored in this study. One of the most important 
findings is that the shear modulus or stiffness of sand decreases with number of cycles 
if it does not exceed a threshold number and increases when the number of cycles 
exceeds this threshold. A theoretical interpretation of the reduction of stiffness of sand 
subjected to preloading was proposed herein. 
 
Key Words: Berlin sand, shear modulus, damping ratio, resonant column test, number 

of cycles, preloading frequency, unloading, reloading, water content 
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CHAPTER 1 INTRODUCTION 
 
 
 
 
1.1 Background 
 
In nature, there exist all kinds of vibrations action on the ground, such as earthquake, 
traffic loads, water wave, storm, vibration machinery, wind power, construction 
operations, and so forth. In practical geotechnical engineering, many problems are 
focus on the response of dynamic properties of subsoil subjected to these vibrations. 
Shear modulus and damping properties are required for analyzing and understanding 
the response of subsoil subjected to dynamic loads.  
 
The prediction of settlements or transforms of earth constructions under cyclic loading 
under drained condition for saturated soils as well as unsaturated soils has been 
attracted by researches and civil engineers in practice in the last decades. Some high 
speed transport system (e.g. express way, high speed rail way, airstrip) have 
developed, which transmits dynamic loading to subsoil and whose serviceability is 
extremely sensitive to the differential settlements. In addition, other examples may be 
subjected to steady-state vibration are construction and operation of a facility, wind 
power plant, bulwark, and pile penetration, which may induce magnitude of vibration  
exceeding elastic range. 
 
The settlements of subsoil in these cases are very much related to the stiffness of soil, 
there is of importance to well understand the dynamic shear modulus of soil subjected 
to such a long term dynamic loading for a better knowledge of work capacity of soil. 
A few investigations had focused on the influence of previbration history on dynamic 
properties of sand using the previbration shearing strain amplitude and number of 
cycles as the controlled conditionings. However, there seems no study using the 
preloading stress amplitude as conditioning to investigate this effect. In addition, the 
effect of previbration history on dynamic sand properties is far from consistent; 
especially the interpretation of the increase in shear modulus and variation in damping 
ratio after samples subjected to a given number of loading cycles. In addition, in 
previous investigations the number of loading cycles is normally greater than 1,000 
cycles due to the prestraining was applied by resonant vibration mode, which resulting 
a lack of low number of cycles effects. 
 
Berlin has been one of Europe’s biggest construction sites since 1990s; reconstruction 
project of inner city traffic lines (VZB-Project) takes a primary role among these 
projects. Berlin sand is the dominating soil which extensively distributes in most areas 
of Berlin; a lot of investigations have been conducted by carrying out conventional 
tests using triaxial, and cyclic triaxial devices in laboratory; and many field tests have 
also been made in site, extensive data have been collected. Unfortunately, however, 
few studies have been carried out to the dynamic properties of Berlin sand by resonant 
column method. As known, the resonant column apparatus is one of the most reliable 
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equipment to determine the shear modulus of soil at very small strain level, and as 
well as at the shearing strain not exceeding the threshold volume strain, normally 
0.01% for most soils. 
 
In addition, a few numbers of literatures present the detailed drive system calibration 
of a Stokoe fixed-free resonant column apparatus, especially tests on higher stiffness 
specimen like frozen soil. There are efforts (Kumar and Clayton 2007; Clayton, Priest 
et al. 2009) focused on this aspect, especially Clayton et al. (2009) made a detailed 
investigation on the factors influence calibration results. They suggested using the 
equivalent mass polar moment of inertia of drive system according to the determined 
resonant frequency. Using the equivalent mass polar moment of drive system can 
derive a relative accurate shear modulus; however, this may result in an 
inconvenience in calculation of shear wave for a given specimen under different 
confining pressure. 
 
 
1.2 Objectives 
 
Based the background and problems mentioned in previous paragraphs, this study 
aimed at proposing a simple and reliable calibration method for a fixed-free resonant 
column apparatus, comprehensively investigating the dynamic properties of Berlin 
sand, and preloading effects on dynamic sand properties, the followings give a brief. 
 
(1) By preparation of eight aluminum calibration bars with various torsional stiffness 

to achieve a large range of resonant frequency, the calibration tests were carried 
out to determine the mass polar moment if inertia of the drive system of resonant 
column apparatus. A novel simple and reliable method for determination of mass 
polar moment of inertia of drive system was proposed based on testing results. 
The influence of torsional stiffness of calibration bar on tested mass polar moment 
of inertia of drive system will be examined and compared with conclusions drawn 
in literature. In addition, the calibration factors for torsional shear test mode added 
by the used resonant column apparatus were determined. One factor was used to 
calculate the actual torsional stress during test; the other was used to estimate the 
preloading stress amplitude replacing prestraining to study the preloading effects.  

 
(2) To examine factors influence small-strain shear modulus, shear modulus reduction 

curve, and damping curve of Berlin sand, and propose an empirical equation to 
estimate the small-strain shear modulus for the case of no tested data at hand. 
Built up two empirical models for predicting shear modulus and damping ratio at 
a given shearing strain amplitude under various confining pressure for dry Berlin 
sand. In addition, some bender element tests were performed on the same 
specimen before the resonant column tests were conducted. The relationship 
between the values of small-strain shear modulus measured by resonant column 
and bender element methods were correlated for Berlin sand. 

 
(3) To investigate the preloading effects on small-strain shear modulus, modulus 

reduction relationship with shearing as well as the damping increase curve. 
Besides effect of number of cycles, effects of confining pressure, density of soil, 
frequency of preloading, preloading ratio, unloading and reloading of confining 
pressure, water content, sample preparation method, and duration of confinement 

 2



 

 3

on the preloading effects on dynamic properties of sands were detailedly 
investigated. Established an empirical relationship between void ratio and 
accumulated axial strain of specimen during testing to consider the densification 
effect by remeasuring the dimensions of tested specimens after tests. Interpreted 
the variation of dynamic properties of sands after preloading was applied. 

 
 
1.3 Organization 
 
This dissertation is organized in seven chapters. Factors influence dynamic properties 
of sands (shear modulus and damping ratio) are reviewed based on existing literature 
in Chapter 2. The existing empirical equations for predicting small-strain shear 
modulus of cohesionless soils are summarized in this chapter.  
 
In Chapter 3, the configurations of the used resonant column apparatus and bender 
element test, the fundamental of resonant column test, torsional shear test, definitions 
of shear modulus and damping ratio, calibration of mass polar moment of inertia of 
drive system and torque factor in torsional shear test mode, are described in detail.  
 
In Chapter 4, the basic properties of the used sands, sample preparation method 
(raining and tamping methods), dimension measurement method and its precision, 
deviation of small-strain shear modulus induced by the deviation in dimension 
measured, apparatus installation, and testing procedures are presented herein. 
 
In Chapter 5, dynamic properties of Berlin sand are presented. Some influence factors, 
an empirical equation for predicting small-strain shear modulus, two empirical models 
for evaluating nonlinear dynamic shear modulus and damping ratio, and comparison 
between resonant column and bender element testing results, are addressed.  
 
In Chapter 6, initially an empirical equation for correlating the accumulated axial 
strain to void ratio during is developed, then some factors influence small-strain shear 
modulus are analyzed, in succession, factors affecting nonlinear shear modulus and 
damping properties are addressed. Theoretical interpretation of preloading effects on 
dynamic properties of sand are presented in the end of this chapter. 
 
In Chapter 7, some important findings are drawn from this study, and a few worthy 
suggestions are pointed out for further investigation. 
 
 
 



 

 
 
 
 

CHAPTER 2 LITERATURE REVIEW  
 
 
 
 
2.1 Introduction 
 
In engineering practice, soil properties can be divided into static and dynamic soil 
properties according to the loading type to which soil are subjected. Soil demonstrates 
two different engineering properties under static load and dynamic load. As well 
known, static soil properties are rather complicated according to the knowledge of 
current researches, there is not one perfect model that can exactly characterize these 
various properties. However, dynamic soil properties seem more complicated due to 
the sources of loading with more various characteristics, regularity and irregularity.  
 
Hardin and Drnevich (1972; 1972) pointed out that the critical parameters for many 
dynamic soil properties were shear modulus and damping ratio. Soil dynamics 
primarily focuses on small-strain shear modulus, Gmax, reduction of shear modulus 
with strain amplitude, damping ratio, and variation of damping with strain amplitude. 
To well understand the nature of dynamic soil properties, the influence factors should 
be completely investigated. A comprehensive general stress-strain relation for soil was 
extremely complicated simply because of the large number of parameters that affect 
the behavior of soils (Hardin and Drnevich 1972). Dynamic soil properties are 
affected by various factors such as strain amplitude, confining pressure, void ratio, 
overconsolidation ratio, loading frequency, temperature, anisotropic stress, and so 
forth. Hardin and Black (1968) proposed a function to describe factors influence shear 
modulus as follows: 
 

0 0( , , , , , , , , , , )G F e H S C A f T Kσ τ= θ                   (2.1) 
 
in which, G is shear modulus, σ0 is mean principal effective stress (or isotropic 
confining pressure), e is void ratio, H is ambient stress history, S is degree of 
saturation, τ0 is deviatoric component of ambient stress, C is grain characteristics such 
as grain shape, gradation and mineralogy, A is strain amplitude of vibration or loading, 
f is frequency of vibration or loading, T is secondary effects that are functions of time 
and magnitude of load increment, θ is soil structure, and K is temperature.  
 
Equation 2.1 does not necessarily imply independence between factors. For instance, 
effective confining stress and void ratio are often observed to affect each other. 
Hardin and Drnevich(1972) classified the importance of these factors on shear 
modulus and damping ratio into three groups: very important, less important, and 
relatively unimportant, see Table 2.1. 
 
The shear modulus keeps at a highest value as long as the shearing strain is less than 
one certain value because of the linearity of the curve in nature. The modulus is well 
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known as the small-strain shear modulus or the maximum shear modulus, whose value 
is the slope of the linear part of the curve. With an increase in strain amplitude beyond 
a threshold level, this curve demonstrates an apparent nonlinearity in nature. And the 
shear modulus related to these strain is known as the secant shear modulus.  
 
As the response of soil deposit under cyclic loading at different strain amplitude 
ranges varies so significantly, this chapter will review these effects in detail through 
two aspects, namely small-strain and nonlinear dynamic soil properties, based on the 
existing literatures. As mentioned above, the dynamic soil properties vary with the 
strain amplitude. To understand the small-strain and nonlinear dynamic soil properties, 
the cyclic threshold strains should be exactly defined. On the basis of a synthesis of 
previous studies on various types of soils, Vucetic (1994) systematically discussed 
two types of cyclic threshold shearing strains. Figure 2.1 shows the variation of 
normalized modulus and damping with an increase in shearing strain amplitude as 
well as the zones of cyclic shearing strain. As shown in Figure 2.1, the cyclic 
threshold shear stain is classified as the linear threshold cyclic shearing strain, 
symbolized with tlγ , and the volumetric cyclic shearing strain, symbolized with tvγ . 
 
 
Table 2. 1  Parameters affecting shear modulus and damping Ratio (after Hardin and 

Drnevich 1972) 
 

Importance 
Modulus Damping Parameter 

Clean 
sands 

Cohesive 
soils 

Clean 
sands 

Cohesive 
soils 

Strain amplitude Va V V V 
Effective mean principal stress V V V V 
Void ratio V V V V 
Number of cycles of loading Rb R V V 
Degree of Saturation R V Lc Ud 
Overconsolidation ratio R L R L 
Frequency of loading (above 0.1 
Hz) R R R L 

Other time effects (thixotropy) R L R L 
Grain characteristics, size, shape, 
gradation, mineralogy R R R R 

Soil structure R R R R 
Volume change due to shearing 
strain (for strain less than 0.5%) U R U R 

a V means very important, b R means relatively unimportant except as it may affect another 
parameter, c L means less important, and d U means relative importance is not clearly known 
at that time. 
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Figure 2.1  Normalized modulus and damping curves with different zones of cyclic 
shearing strain amplitude for soil (slightly modified from Vucetic 1994) 

 
 
Volumetric cyclic threshold shearing strain tvγ  
 
For any soil cyclic shearing strain amplitude below volumetric cyclic threshold 
shearing strain amplitude, permanent microstructural change of soil essentially does 
not occur; residual cyclic pore-water pressure essentially does not develop if the soil 
is fully saturated and cyclically sheared in undrained conditions; and the permanent 
volume change is negligible if the soil is dry, partially saturated, or fully saturated in 
drained conditions. If the shearing strain amplitude exceeds this threshold value, the 
microstructure changes irreversibly; soil stiffness changes permanently; a permanent 
pore-water pressure builds up in fully saturated cyclically shear loading in drained 
conditions, and for dry soil, partially saturated soil, or fully saturated soils with 
drainage allowed, a permanent volume change accumulates. Vucetic (1994) 
determined the value of tvγ  at which the ratio of the modulus to maximum modulus 
is proximately 0.65 in his study. He also summarized the range of tvγ  as shown in 
Figure 2.2 considering the soil plasticity index varying from 0 to 200 and with various 
overconsolidation ratios. 
 
Linear cyclic threshold shearing strain tlγ  
 
As shearing strain amplitude below the linear cyclic threshold shearing strain, which 
less than the volumetric cyclic threshold shearing strain, soil behaves essentially as a 
perfect linearly elastic material. The shear modulus at strains less than tlγ  is the 
initial tangent shear modulus or the maximum shear modulus. The tlγ  was defined as 
the strain at which the ratio of the modulus to maximum modulus is 0.99 by Vucetic 
(1994). 
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As the shearing strain amplitude within the range of the linear cyclic threshold 
shearing strain and volumetric cyclic threshold shearing strain ( tl tvγ γ γ< < ), soil 
behaves slightly elastoplastic material. In this range, the permanent microstructural 
change can be considered as negligible. 
 
These two threshold shearing strains generally increase as an increase in the plasticity 
index (PI) of soil due to the increase of the size of soil particles (or the clay mineral 
composition). The correlation of these two threshold strains with the PI can be 
described as Figure 2.3. Normally the linear cyclic threshold shearing strain and the 
volumetric cyclic threshold shearing strain vary from 4×10-6 to 4×10-5, and 10-4 to 10-3, 
respectively. 

 
 

 
 

Figure 2.2  Relationship between volumetric cyclic threshold shearing strain and 
modulus reduction and damping curves (Vucetic and Dobry 1991; 
Vucetic 1994) 
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Figure 2.3  Variation of cyclic threshold shearing strain with plasticity index from 
cyclic triaxial tests (from Vucetic 1994) 

 
 
 
2.2 Factors Influence Small-strain Shear Modulus 
 
The importance of small-strain shear modulus for many repeated load or dynamic 
problem was referred to as the same level as that of shear strength for stability 
analysis (Hardin and Black 1968). Lefebvre, et al. (1994) pointed out small-strain 
shear modulus is a basic characterization of soil deformability and plays a key role in 
dynamic response analyses. Gmax is widely regarded as one of the most essential 
parameters for earthquake engineering, traffic engineering, vibration machine 
foundation, vibration isolation measures, and analysis of dynamic soil structure 
interactions (Savidis, Vrettos et al. 1993; Kalteziotis, savidis et al. 1994; Park 1998; 
Savidis and Vrettos 1998; Vrettos and Savidis 1999). Dobry, et al.(1980) employed 
the stiffness method for predicting the liquefaction potential of saturated sand under 
the condition of knowing of the shear modulus at small strains for soil layers to 
determine the threshold ground acceleration. This threshold acceleration is that which 
is sufficient to initiate the development of excess pore pressure in the layer. Chen and 
Lee (1994) found that liquefaction resistance increases linearly with for different 
densities and confining pressures.  
 
 
2.2.1 Void Ratio 
 
Void ratio is a very important factor influence small-strain shear modulus. Hardin and 
Richart (1963) evaluated the shear wave velocity of granular soils, and drew the 
conclusion that shear wave velocity decreased linearly with void ratio (from 0.37 to 
1.40), independent of grain size, gradation, and relative density. Richart et al.(1970) 
compiled data and illustrated the influence of void ratio on the shear wave velocities 
(Vs) of clean sands with void ratio from 0.37 to 1.26, and reported similar conclusions.  
 
Hardin and his colleagurs (1968; 1969; 1972) pointed out that the shear modulus of 
soils decreased with void ratio by using resonant column technique and proposed the 
following Equations to express the effects of void ratio on Gmax,  
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for round-grained sands (e<0.80) , and 
 

2(2.973 )( )
(1 )

eF e
e
−

=
+

                       (2.3) 

for angular-grained sands and clayey soil.  
 
Hardin and Drnevich (1968) also limited the validity of the  for soils with void 
ratio less than 2.0 to account for the effects of void ratio on Gmax. To consider a further 
large range of void ratio of clayey soil, Marcuson and Wahls (1972) proposed another 
equation to replace Equation 2.3 as  

( )F e

 
2(4.4 )( )

(1 )
eF e
e

−
=

+
                         (2.4) 

 
Considering the weakness of Equation 2.3 in evaluation clayey soils with void ratio 
higher than 2.0, Hardin (1978) proposed the following expression to describe the 
effects of void ratio,  

2

1( )
(0.3 0.7 )

F e
e

=
+

                        (2.5) 

 
While Kokusho et al. (1982) gave a higher influence function of void ratio on the 
small-strain shear modulus for clayey soils as follows, 
 

2(7.32 )( )
(1 )

eF e
e
−

=
+

                          (2.6) 

 
Later, Seed et al. (1986) drew a similar conclusion that the shear modulus of 
well-graded gravels increased with an increase in the relative density by the 
evaluation of the shear modulus coefficient, K2, of a simplified equation earlier 
proposed to estimate the small-strain shear modulus for sands. 
 
The void ratio effects on small-strain shear modulus and the conclusion that the 
small-strain shear modulus decreased with an increase in void ratio for soils have been  
studied and confirmed by several investigators since 1990s (Qian, Gray et al. 1991; 
Kagawa 1992; Qian, Gray et al. 1993; Guha 1995; Baig, Picornell et al. 1997; Lo 
Presti, Jamiolkowski et al. 1997; Simonini and Cola 2000; Fam, Cascante et al. 2002; 
Kallioglou, Tika et al. 2008). Some empirical equations for sand are summarized in 
Table 2.2.  
 
 
2.2.2 Confining Pressure 
 
The effects of confining pressure on small-strain shear modulus were studied by 
extensive investigators in the past few decades. The effects of confining pressure are 
admittedly assumed as one of the two very important factors (another is void ratio) 
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which significantly influence the maximum shear modulus of sandy and clayey soils 
(Hardin and Drnevich 1972). Confining pressure (or mean principal effective stress) 
together with void ratio are recognized as the very important parameters which 
influence the small-strain shear modulus of soil by many investigators (Hardin and 
Drnevich 1972; Marcuson and Wahls 1972; Afifi and Richart 1973; Yu and Richart 
1984; Chien and Oh 2002; Kallioglou, Tika et al. 2008; Mayoral, Rorno et al. 2008, 
and others). From the very beginning, investigators have managed to build up this 
relation to evaluate the small-strain shear modulus in the case of without knowledge 
of at hand. maxG
 
As foregoing, a correlation of small-strain shear modulus with void ratio and 
confining pressure for sandy soils was initially developed by Hardin and Richart 
(1963) by measured the modulus of round-grained and angular-grained Ottawa sands 
as with resonant column method at the strain level less than 10-4. Hardin and 
Music(1965) confirmed the variation of shear wave velocity with confining pressure 
by carrying out tests on dry sands with developing a new apparatus at that time. 
Drnevich et al. (1966) reported that the small-strain shear modulus was a function of 
void ratio and confining pressure by determining the small-strain shear modulus of the 
C-190 Ottawa sand with resonant column apparatus by tests on both solid and hollow 
cylindrical specimens. 
 
The effects of confining pressure on shear modulus are presented in Figure 2.7. Figure 
2.7 illustrates the small-strain shear modulus of Ottawa 20-30 sands almost linearly 
increases with an increase in mean confining pressure.  
 
 

 

Figure 2.4  Relation between shear modulus with mean confining pressure 
(Alarcon-Guzman, Chameau et al. 1989) 

 

 10



 

Normally, the small-strain shear modulus increase with confining pressure in a power 
ranges from 0.4 to 0.7, a various equations for predicting the small-strain shear 
modulus of many particular sands were continually reported in literatures (Seed and 
Idriss 1970; Hardin and Drnevich 1972; Afifi and Richart 1973; Iwasaki and Tatsuoka 
1977; Hardin 1978; Kokusho 1980; Chung, Yokel et al. 1984; Seed, Wong et al. 1986; 
Saxena and Reddy 1989; Chien and Oh 2002; Sawangsuriya, Bosscher et al. 2006). 
Although these proposed equations are quite different in some parameters, they could 
be classified into three general formulas in general as follows, 
 

max 0( ) nG SF e σ=                       (2.7) 
 

(1 )
max 0( ) n

aG SF e P nσ−=                   (2.8) 
 

max 2 max 01,000( ) nG K σ=                   (2.9) 
 

in which, Gmax is small-strain shear modulus, S is soil stiffness coefficient depends 
upon soil type, F(e) is void ratio function, Pa is atmospheric pressure (reference 
pressure), expressed as the same system of units of σ0, σ0=(σ1+σ2+σ3)/3 is mean 
principal effective stress or isotropic confining pressure, (K2)max is maximum soil 
modulus coefficient, for sands, 30<(K2)max<75, and for gravels, 80<(K2)max<180 (Seed, 
Wong et al. 1986). These empirical equations are summarized in Table 2.2 
 
 
Table 2.2  Reported Relations to Estimate Small-strain shear modulus for Sandy 

Soils Based on Laboratory Tests 
 

Valid Units 
General formula Reference Equation Strain  

0σ  maxG  

Hardin and  
Richart (1963)a  

2 0.5
0max

(2.17 )326
(1 )

eG
e

σ−
=

+
 for 

round-grained sands ( e <0.80)
2 0.5

0max
(2.97 )700

(1 )
eG

e
σ−

=
+

 

for angular-grained sands 

<10-4 kg/cm2 kg/cm2

Afifi and  
Richart (1973)a 

2 0.5
0max

(2.17 )2630
(1 )

eG
e

σ−
=

+
,  

for round-grained sands 
(0.30< <0.80), and e

2 0.5
0max

(2.97 )1230

max 0( ) nG SF e= σ

(1 )
eG

e
σ−

=
+

,  

for angular-grained 
sands(0.60< <1.30) e

<10-5 psi psi 

 

Hardin (1965)a 

2 0.5
0max

(32.17 14.8 )
(1 )

eG
e

σ−
=

+
, 

( 0σ >2000psf ) 

 
2 0.6

0max
(22.52 10.6 )

(1 )
eG

e
σ−

=
+

, 

( 0σ <2000 psf) 

 
2.5×10-5 

 

 
Psf 

 

 
Psi 
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Valid Units 
Drnevich and 
Richart (1970)a 

2 0.5
0max

(32.17 14.8 )
(1 )

eG
e

σ−
=

+
 <10-5 psf psi 

2 0.4
0max

(2.17 )900
(1 )

eG
e

σ−
=

+
 10-6 

2 0.44
0max

(2.17 )850
(1 )

eG
e

σ−
=

+
 10-5 Iwasaki and  

Tatsuoka (1977)b 
2 0.5

0max
(2.17 )700

(1 )
eG

e
σ−

=
+

 10-4 

kg/cm2 kg/cm2

Hardin and  
Drnevich (1972)b 

2 0.5
0max

(2.97 )1230
(1 )

eG
e

σ−
=

+
 <2.5×10-5 psi psi 

Dmevich (1978)c 
2 0.5

0max
(2.97 )1230

(1 )
eG

e
σ−

=
+

 <10-5 psi psi 

Hardin (1978)b 
0.50.5

0max 2

625
(0.3 0.7 ) aG P

e
σ=

+
 10-5 any 

units 
same 
as 0σ  

Kokusho (1980)d 
2 0.5

0max
(2.17 )840

(1 )
eG

e
σ−

=
+

 10-6 kg/cm2 kg/cm2

Chien and 
Oh (2002)e 

2 0.553
0max

(2.17 )87.296
(1 )

eG
e

σ−
=

+
 <10-5 MPa MPa 

Sawangsuriya et 
al. (2006)a 

Roundness=0.85 

2 0.5
0max

(2.17 )6900
(1 )

eG
e

σ−
=

+
 5×10-5 kPa kPa 

Chung et al. 
(1984)c 

0.480.52
0max 2

523
(0.3 0.7 ) aG P

e
σ=

+
 10-5 any 

units 
same 
as 0σ

max
(1 )

0

( )
         n n

a

G SF e
P σ−

=
×

 

Saxena and  
Reddy (1989)c 

0.5740.426
0max 2

428.2
(0.3 0.7 ) aG P

e
σ=

+
 <10-5 any 

units 
same 
as 0σ

max

2 max 0

1,000
         ( ) n
G

K σ
=
×  

Seed and Idriss 
(1970), Seed et 
al. (1986)f 

0.5
0max 2 max1,000( )G K σ=  <10-4 psf psf 

a Ottawa Sand, b Clean Sand, c Monterey No.0 sand, d Toyoura and Gifu Sand, e 

Reclaimed soils (sand) f Sand and Gravel;  
 
 
 
2.2.3 Stress Ratio 
 
The effects of anisotropic stress condition or initial static state of stress on small-strain 
shear modulus for soils have been investigated by a few investigators in the past five 
decades (Hardin and Richart 1963; Lawrence 1965; Hardin and Black 1966; Hardin 
and Black 1968; Hardin and Drnevich 1972; Schmertmann 1978; Roesler 1979; 
Tatsuoka, Iwasaki et al. 1979; Knox, Stokoe II et al. 1982; Yu and Richart 1984; 
Ahlvin 1985; Schmertmann 1985; Tatsuoka 1985; Yu and Richart 1985; Taya, 
Hatanaka et al. 1999; Chien and Oh 2002; Hoque and Tatsuoka 2004; Yuan, Sun et al. 
2005; Wang and Siu 2006; Vassallo, Mancuso et al. 2007). The effects of stress 
condition (or stress ratio) on small-strain shear modulus are far from the last word. 
There are some different arguments regarding this aspect from these investigations 
during the past decades. 
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Minor Influence 
 
Lawrence (1965) measured the ultrasonic wave velocity pulses in triaxial samples 
built by three type soils (a coarse, round-grained sand, and two types of saturated clay) 
subjected to anisotropic stress condition and concluded that the level of anisotropic 
stress has a minor influence on shear wave velocity. Hardin and Black (1966) used 
resonant column technique to measured the shear modulus of dry sands subjected to 
various static states of stress and reported that the shear modulus was independent of 
the deviatoric component ( 1 3σ σ− ) of the initial static state of stress. This conclusion 
was found to be suitable also for clays (Hardin and Black 1968; Hardin and Black 
1969). Schmertmann (1978) reported that no effects of stress ratio from his tests 
results were found by measuring the shear wave velocity propagation in a larger 
chamber dry sand sample 1.2 m in diameter and 1.2 m in height with burying four 
accelerometers in the sample. The scope of the testing included the relative densities 
of sand with 30% and 80%, and stress ratio 1 / 3σ σ  as 1 and 3 under the mean principal 
stress with 34.5 kPa, 69kPa, and 138 kPa; and concluded that the shear wave velocity, 
and therefore shear modulus did not change significantly with the direction of travel 
in an anisotropic stress state. Schmertmann and Woods (1980), further argued this 
findings as discussions of (Roesler 1979) and (Yu and Richart 1984). Schmertmann 
(1985) further proved their findings by comparison their data in (Schmertmann and 
Woods 1980) with the prediction value obtained from the two modified equations 
suggested by Yu and Richart (1984). Sully and Campanella (1995) reported the shear 
wave velocity ratio of anisotropic stress state to isotropic stress state is relatively 
independent of stress ratio based on the results obtained from the in situ velocity data 
measured by crosshole and downhole shear wave velocity technique. A similar 
relation was also reported by Taya et al. (1999) that the influence of stress ratio on 
small-strain shear modulus is negligible as the stress ratio ( r / aσ σ ) within 0.5 to 1.5 
for sandy or gravel soils. 
 
Recently，based on the measurement of the small-strain Young’s moduli of several 
large prismatic sand specimens in which mounted four pairs lateral and one pair of 
vertical local displacement transducers, Hoque and Tatsuoka (2004) reported 
small-strain stiffness of sand under triaxial shearing was independent of stress ratio as 
the ratio of vertical principal stress to horizontal principal stress was less than 3.0. 
However, an increase in stress ratio greater than 3.0 would reduce the Young’s 
modulus remarkably due to damage of the initial fabric caused by large increment of 
plastic straining (Figure 2.13). The similar conclusion was also reported by Kuwano 
and Jardine (2002) by using three pairs of bender elements installed on the specimens, 
and by Teachavorasinskun (2006) by tests on clayey soils. They did, however, not 
conducted these tests under a constant mean principal stress but a variable confining 
pressure situations, therefore, the effects of stress ratio on the small stiffness of sand 
only demonstrated by the damage of initial fabric caused by over plastic straining. 
 
Significant Influence 
 
Tatsuoka et al.(1979) reported that under a constant mean principal stress, the effects 
of stress ratio on shear modulus were more significant in triaxial extension case than 
in triaxial compression case, namely the shear modulus decreased with an increase in 
stress ratio both triaxial compression and triaxial extension cases. Additionally, shear 
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modulus could be considered almost independent of the stress ratio on as less than 4.0 
for shear strain variation from 5×10-5 to 3×10-3, in triaxial compression cases. 
 
Roseler (1979) pointed out that anisotropic stress state induced the shear modulus to 
be a vector not a scalar quantity, and then the shear wave velocity depended upon the 
direction of wave propagation and polarization, was independent of the third direction. 
He proposed that the shear wave velocity was proportional to the principal stresses as 
follows: 
 

0.149 0.107 0~s a pV sσ σ σ                        (2.10) 
 
and resulting small-strain shear modulus as 
 

0.298 0.214 0
max ~ a pG sσ σ σ                       (2.11) 

 
in which, σa is the principal stress along the direction of shear wave propagation, σp is 
the principal stress in the direction of the soil grain vibration or the applied dynamic 
shear stress; and σs is the third principal stress. 
 
Knox et al.(1982) reported that the small-strain shear modulus depended equally on 
the principal stress in the direction of the shear wave propagation and in the direction 
of particles motion, and was independent of the principal stress in the out-of-plane 
direction. The relationship between small-strain shear modulus with the three 
principal stresses was proposed by Knox et al.(1982) as follows: 
 

0.18 0.18 0.12
max,I 1 a p sG S σ σ σ=                    (2.12) 

 
0.22 0.22 0

max,A 2 a pG S sσ σ σ=                     (2.13) 
 
in which,  is the shear modulus in isotropic plane, is the shear modulus in 
anisotropic plane for biaxial loading, and ,  are the simple coefficients. 

max,IG max,AG

1C 2C
 
Yu and Richart (1984) investigated the effects of stress ratio on the shear modulus by 
resonant column tests on three clean dry sands solid cylindrical samples under biaxial 
loading conditions with both compression and extension cases. Yu and Richart (1984) 
concluded that the effects of stress ratio on shear modulus did exist, increasing the 
stress ratio decreased the shear modulus, up to a maximum of 20-30%. They 
suggested two modified empirical equations for Hardin’s and Roseler’s equations 
considering the effects of stress ratio as follows, respectively:  
 

0.5
0.5 1.5

max ( ) (1 0.3 )
2

a p
a nG SF e P K

σ σ+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
−

−

          (2.14) 

 
0.49 0.26 0.25 2

max ( ) (1 0.18 )a a p nG SF e P Kσ σ=            (2.15) 
 

 14



 

( ) ( )
13 1 3

13 1 3max max

1 /
1 /n

KK
K

1
1

σ σ
σ σ

− −
= =

− −
               (2.16) 

 
in which, K13 is stress ratio, expressed as 1 / 3σ σ  in compression case, and 3 1 /  σ σ in 
extension case, Kn is normalized stress ratio; (K13)max is the maximum stress ratio 
possible, or the failure criterion of sands, and Pa is atmospheric pressure in the same 
unit system as principal stress, other notations are the same as previous. 
 
In contrast, some recent investigations indicate that the shear modulus of soils 
increase with an increase in stress ratio (Chien and Oh 2002; Yuan, Sun et al. 2005). 
Chien and Oh(2002) performed resonant column tests on hydraulic claimed soil (sand 
fill) obtained from the offshore area at Yunlin on the west coast of Taiwan. They 
compared the tested small-strain shear modulus with the predicted modulus obtained 
from Hardin equation built in their paper, and presented that the small-strain shear 
modulus remarkably increased as the increase of stress ratio from 1.0 to 3.0, and the 
increment may be up to 32% at the stress ratio of 3.0 under the confining pressure of 
196 kPa, see Figure 2.5.  
 
Yuan et al. (2005) reported that the practical influence of stress ratio on the 
small-strain shear modulus may much higher than that predicted from Hardin equation 
(Hardin and Richart 1963) by conducted some resonant column tests on Harbin sand 
and Fujian sand in China, and concluded that the increase of shear modulus caused by 
the increase of stress ratio may increase up to 60% when  the stress ratio went up to 
3.0. Unfortunately, however, they did not compare the tested results under the 
condition that kept the mean principal stress level constant, but those values 
calculated from Hardin equation based on using the confining pressure as the 
confining pressure ( 3 r or σ σ ), which will magnify the effects of the stress ratio on 
shear modulus because the increase of stress ratio will result in an increase of mean 
principal stress. 
 

 
 

Figure 2.5  Increment of small-strain shear modulus with Stress Ratio (after Chien 
and Oh 2002) 
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2.2.4 Grain Characteristics 
 
Hardin and Richart (1963) determined the compression and shear wave velocities in 
specimens of Ottawa sand, crushed quartz sand, and crushed quartz silt by using 
resonant column method in laboratory, and indicated that the grain size, grain shape, 
and grading of sands retained on the No. 120 sieve did not affected shear modulus, 
and interpreted that grain size affects the shear wave velocity in sand only entered 
their influence on void ratio. Generally, the smaller grain sizes the larger void ratios; 
thus, small-grained materials have a lower shear wave velocity, resulting in lower 
shear modulus. 
 
Iwasaki and Tatsuoka (1977) proposed a modified empirical expression to describe 
the shear modulus of various clean sands as follows: 
 

2
( )

0
(2.17 )( )

1
meG A B

e
γγ −

=
+

σ                (2.17) 

 
in which, A(γ) and m(γ) are functions of low shear strain amplitude, A(γ)=900 and 
m(γ)=0.4 for γ=10-6, A(γ)=850 and m(γ)=0.44 for γ=10-5, A(γ)=700 and m(γ)=0.5 for 
γ=10-4, respectively; and B is a parameter which is dependent on the variety of 
normally consolidated clean sands, and independent of γ, e, and σ0. 
 
Iwasaki and Tatsuoka (1977) presented the relationship between the value of B and 
mean grain size D50 in Figure 2.6, and reported that the grain sizes had no effect on 
shear modulus for clean sands with uniform coefficient less than 1.8 and the D50 
within the range of 0.16 mm to 3.2 mm. 
 

 
 

Figure 2.6  Relation between parameter B and mean grain size D50 for clean sands 
(after Iwasaki and Tatsuoka 1977) 
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Similarly, Iwasaki and Tatsuoka (1977) used uniform coefficient (Cu) and the content 
of fine particles less than 0.074 mm in diameter as the indices of grain size 
characteristics to develop the relationship between B-value and uniform coefficient 
(Cu) and fine particle content for various sands, and concluded that shear modulus of 
normally consolidated sands were significantly influenced by grain size distribution 
characteristics; in detail, various sands with well-graded (higher ) and having 
higher fine particle content had smaller shear modulus than clean sands under the 
condition of the same mean confining pressure, void ratio, and shear strain amplitude. 

uC

 
 
2.2.5 Degree of Saturation 
 
Hardin and Richart (1963), and Lawrence (1965) reported that the degree of saturation 
had only small effect on small-strain shear modulus for sand at low pressures. In a 
very excellent paper, Hardin and Drnevich (1972) classified degree of saturation as 
the very important parameter for cohesive soils but unimportant parameter for 
cohesionless soils. Pore pressures may build up in saturated cohesionless soils but are 
accounted for by applying effective stress theory. For the difficulty in determining the 
effective stress in partially saturated cohesive soils, degree of saturation has been used 
as a parameter for such soils. Hardin and Drnevich (1972) reported that the 
small-strain shear modulus of a silty clay with the liquid limit of 48% and plasticity 
limit of 28% decreased to a half with an increase in degree of saturation from 70% to 
100% under mean principal stress of about 390 kPa.  
 
Wu (1983) and Wu et al. (1984) reported the small-strain shear modulus rapidly 
increased from the value at dry condition to a peak value corresponding to an 
optimum degree of saturation, thereafter slowly decreased as the increase of degree of 
saturation as shown in Figure 2.7. 
 
 

 
 
Figure 2.7   Variation of small-strain shear modulus with degree of saturation for 

Glacier Way silt (after Wu, Gray et al. 1984) 
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The normalized small-strain shear modulus, , based on data in Figure 
2.7 varies with degree of saturation is illustrated in Figure 2.8. The value of 

 increased up to 2.0 at the lowest confining pressure of 3.6 psi, this 
value decreased with an increase in confining pressure. In addition, the 

 did not monotonically decrease from the peak value to 1, but 
continuously decreased to some values which were less than 1.0 as the degree of 
saturation is within the range of about 70% to 100% as shown in Figure 2.8. They 
accounted for this phenomenon by the method of sample constructing on the pedestal 
of resonant column apparatus at pre-specified moisture contents. At high degree of 
saturation, some air bubbles were closed in the soil, as high confining pressure applied, 
as the volume decreases, at the same time the air bubbles are compressed resulting in 
an increase in air pressure, and caused resultant effective pressure less than external 
applied confining pressure. 

max( ) max( )/G Gwet dry

max( ) max( )/G Gwet dry

max( ) max( )/G Gwet dry

 
Qian et al. (1993) further investigated the degree of saturation on small-strain shear 
modulus by using resonant column method, and reported that grain shape affected 
both small-strain shear modulus ratio and optimum degree of saturation, these two 
parameters for angular-grained cohesionless soils were higher than for 
subround-grained cohesionless soils. The small-strain shear modulus ratio linearly 
decreased with void ratio for both angular-grained sand and subround-grained sands, 
and the decreasing slope was not affected by the confining pressure and grain size 
distribution, and only depended on the grain shape. 
 

 
 
Figure 2.8  Variation of Normalized small-strain shear modulus with degree of 

saturation for Glacier Way silt (after Wu, Gray et al. 1984) 
 
 
2.2.6 Frequency of Loading 
 
It is very important to assess the shear modulus and hysteretic damping of soils when 
predicting or back analyzing the response of ground or soil structures subjected to 
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various types of cyclic loading. The frequency of transient loadings from wave, 
seismic, traffic, and machine loadings may range from 0.01 to 100 Hz (Shibuya, 
Mitachi et al. 1995).  
Several investigations had revealed that loading frequency or strain rate had only 
small or no influence on small-strain shear modulus for cohesionless soils. Hardin and 
Richart (1963) found that frequency of loading had no obviously effect on shear wave 
velocity propagation in granular soils for the frequencies in the range from 200 to 
2500 Hz. Hardin (1965) measured the static (frequency of loading lower than 0.1 Hz) 
small-strain shear modulus of solid specimens of dry sand, by comparing with 
dynamic shear modulus previously published, concluded that rate of loading had no 
effect on small-strain shear modulus for sands. He addressed that the difference 
between the static and dynamic values were caused by the failure of the devices used 
for static test for measuring the accurate small deformation for conventional dynamic 
vibration tests.  
 
Hardin and Black (1966) founded small-strain stiffness for sands was independent of 
rate of loading. Iwasaki et al. (1978) compared the values of shear modulus obtained 
from torsional shear and resonant column tests at the shear strain amplitudes were 10-4 
or less for dry and saturated Toyoura sands, and reported that frequency of loading 
had little effect on shear modulus even the frequencies of loading of resonant column 
tests were about 500 to 1000 times higher than those of torsional shear tests. Bolton 
and Wilson (1989) investigated the soil properties of a dry sand at medium to large 
strain amplitude with a torsional shear device at the frequency of 0.001 Hz and with 
resonant column apparatus at 45 to 95 Hz, and test results showed no appreciable 
difference between the values for torsional shear tests and for resonant column tests. 
 
Thus, It could be said that the frequency of loading or strain rate has little effect on 
the shear modulus at small shear amplitude for sands (Lo Presti, Jamiolkowski et al. 
1997; Tatsuoka, de Magistris et al. 1998; Tatsuoka, Modoni et al. 1999; Matesic and 
Vucetic 2003). 
 
 
2.2.7 Duration of Confinement 

 
The dynamic properties of soil may also vary with time elapse under certain steady 
confining pressure; this time-dependency has attracted some investigators (Hardin and 
Black 1968; Afifi and Woods 1971; Hardin and Drnevich 1972; Marcuson and Wahls 
1972; Afifi and Richart 1973; Anderson and Stokoe 1978; Marcuson and Wahls 1978; 
Amini 1995; Tatsuoka, de Magistris et al. 1998; Amini 1999 and others) since 1960s.  
 
Hardin and Black (1968) reported that a secondary increase of vibration shear 
modulus with time did exist at constant confining pressure, not accounted for the 
change of void ratio. They presented that the stiffness built-up was sensitive to 
particle disturbance and can be partially or totally destroyed by the change of effective 
confining stress, and addressed that this time-dependency may be quite important for 
soil in situ, this conclusion was further confirmed in Hardin and Drnevich (1972). 
 
Normally in the laboratory, the time-dependent behavior for shear modulus could be 
separated into primary and second behaviors. The secondary period is characterized 
by shear modulus increases with time following the primary period. In general, it has 
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been shown for cohesive soils that the shear wave velocities determined in laboratory 
after one day of sample consolidation are much lower than those obtain from in situ. 
However, the difference values decrease as the increase in the duration of sample 
consolidation at a certain confining pressure. Therefore, it is essential to consider an 
appropriate increase in velocity caused by the secondary time effects when the in situ 
shear wave velocities are predicted on the basis of laboratory tests. 
 
Two significant features of the secondary property of the shear modulus for soils have 
been identified in literature (Marcuson and Wahls 1972; Anderson and Stokoe 1978; 
Athanasopoulos 1993; Amini 1995; Tatsuoka, de Magistris et al. 1998; Amini 1999), 
involving the rate and magnitude of increase. The rate of secondary increase in shear 
modulus or shear wave velocity is a function of the logarithm of time. The magnitude 
of secondary increase, as defined by change in modulus per logarithmic cycle of time, 
was found to vary with soil type.  
 
Some investigations (Hardin and Scott 1966; Hardin and Black 1968; Humphries and 
Wahls 1968), Afifi and Woods (1971) initiated the quantitative study of the rate, 
extent or characteristics of the stiffness build-up with time which lasted up to 803 
days for dry soils. Three types of soils including air-dry sand, air-dry silt, and air-dry 
kaolinite clay, were employed to study using resonant column device. On the basis of 
tested data, they concluded that: 
(1) The shear modulus of air-dry sands and silts increased with time up to 430 days, 

the shear modulus of air-dry kaolinite clays might reach a peak or level off near a 
time of about 200 days, and the percentage increase in shear modulus increase 
with decreasing particle size (2%-5% for sands, 5%-12% for air-dry silt and 
kaolinite clays). 

(2) The shear modulus of an air-dry soil under a constant confining pressure for a 
period of 2 years could be predicted with 10%-15% from a 48-hr test (3,000 min). 

(3) The increases of shear modulus was accounted for the decrease of void ratio with 
time were 0%, 0%-5%, and 10%-15% for air-dry sand, silt, and kaolinite clay, 
respectively. 

(4) A step increase of confining pressure of 10 psi (68.95 kPa) did not significantly 
affect the shear modulus accumulated with time in air-dry sands and silts, such 
increase, however, might be destroyed up to 40% of shear modulus accumulated 
with time in air-dry kaolinite clays, and this loss stiffness might accumulate with a 
period of time. Figure 2.9 and 2.10 are the typical variation of shear modulus with 
time from Afifi and Woods (1971) for dry sand and kaolinite clay, respectively. 

 
It is interesting to mention that the sudden drop of low-amplitude shear modulus after 
the increment of confining pressure, this decrease is temporary and the modulus 
regained its initial value after a certain time, which was also reported by Hardin and 
Black (1968). This phenomenon is quite different from the drop when a temporary 
release of confinement. Hardin and Black (1968) interpreted that this decrease of 
modulus was due to the destruction of the stiffness built-up during secondary 
compression under the previous pressure increment because this stiffness build-up 
was sensitive to particle disturbance and can be partially or totally destroyed by 
changes in effective stress. It was also found that the drop occurred even when only 
primary consolidation was allowed under the previous pressure increment (Afifi and 
Woods 1971; Anderson and Woods 1976). Athanasopoulos and Richart (1983) 
assumed that the fast rate deformation developing immediately after the application of 
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a confining pressure increment are responsible for the immediate decrease of the 
modulus for cohesive soils. 
 

 
 

Figure 2.9  Variation of shear modulus and vertical strain with time for dry sand at 
constant confining pressure (after Afifi and Woods 1971) 

 
 

 
 

Figure 2.10  Variation in Shear Modulus and Vertical Strain with Time for Dry Sand 
at Constant Confining Pressure (after Afifi and Woods 1971) 

 
 
2.2.8 Prestraining 

 
The effects of number of loading cycles have been extensively investigated in the past 
decades. Drnevich et al. (1966; 1967) investigated the large amplitude vibration effect 
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on shear modulus of dry C-190 Ottawa sand by measurement of shear modulus of 
hollow and solid specimens using resonant column apparatus. The variation of 
small-strain shear modulus with number of large amplitude was reported as shown in 
Figure 2.11. The small-strain shear modulus was hardly influenced by the number of 
loading cycles for the case that the prestraining is 1.6×10-4; and significantly 
increased with number of cycles for the case that the prestraining is 6×10-4; this 
increment may be up to 100% after 1,000,000 cycles. Drnevich and Richart (1970) 
presented that the shear modulus of both dense and loose dry sands increased after 
application a large number of cycles of loading with shear strain amplitudes larger 
between 10-5 and 10-4. The small-strain shear modulus increased up to 300% after the 
application of 22 millions cycles of vibrations at strain amplitude of 6×10-4. They 
addressed that this stiffness could not be accounted for the densification of samples, 
related to the large number of the high frequency vibrations. 
 

 
 

Figure 2.11  Variation of small-strain shear modulus with number of cycles at 
various cyclic shear strain amplitude for hollow dry sand specimen 
(Drnevich, Hall et al. 1967)  

 
 
Anderson and Richart (1976) measured the shear wave velocity in hollow saturated 
clay specimen after some desired number of cycle loading (500-100,000) applied by 
resonant column apparatus. They stated that the low amplitude of shear modulus was 
significantly affected by number of loading cycles at strain amplitudes larger than 10-4, 
and not effect was detected when the strain amplitude less than this threshold value. 
They normalized the shear modulus after large number of loading cycles at various 
prestraining amplitudes to the shear modus before cyclic loading to evaluate the 
number of cycle loading on low amplitude shear moduli; and reported that the 
small-strain shear modulus decreased as an increase in number of loading cycles at 
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various prestaining amplitudes exceeding the threshold strain 0.01%. Based on tests 
on dry sand by torsional shear technique, Sherif and Ishibashi (1976) reported that the 
shear modulus increased up to 28% as number of loading cycles equal to 25 and 
remained nearly constant thereafter, for sands.  
 
Shen et al.(1985) measured the small-strain shear modulus of both dense sands and 
loose sands by resonant column technique after a given number of cyclic loading 
cycles applied by free vibration generated by the resonant column apparatus at the 
shear strain amplitude at about 1.4 × 10-4 with the frequency of 30 Hz, and stated that 
after application of the first 500 cycles of vibration, the small-strain shear modulus 
increased by more than 25% for loose sand and 20% for dense sand, respectively, and 
the shear modulus measured at the end of 20,000 cycles, could increase by up to 35% 
for dense sand and 80% for loose sand, respectively. Lo Presti et al. (1997) reported 
that the shear modulus of sands was not influenced by the number of cycles of loading 
at small shear strain amplitude. 
 

 
 
Figure 2.12  Development of small-strain shear modulus with number of cycles at 

various prestraining amplitude for fine sand (after Wichtmann and 
Triantafyllidis 2004) 

 
 
Alarcon-Guzman et al.(1989) investigated the prestraining effect on small-strain shear 
modulus for dry coarse sand by application of a large number of cycles with the 
amplitude of 1.3 ×10-4 in the resonant column mode of the apparatus. The increase of 
small-strain shear modulus after the prestraining was observed only 5%. They stated 
that the increase was caused by the reduction of void ratio due to prestraining, thus 
small-strain shear modulus was insensitive to strain history. Recently, Wichtmann and 
Triantafyllidis (2004) reported that the small-strain shear modulus for hollow fine 
sand specimens was affected by the number of loading cycles from 104 to 5 × 106 at 
the cyclic strain amplitudes of 0.5×10-4, 1×10-4, and 2×10-4; by contraries, the 
small-strain shear modulus was not influenced by the number of cycles as the 
prestraining less than 0.5×10-4, as the prestraining amplitude exceeded 0.5×10-4 the 
small-strain shear modulus slightly decreased with number of cycles at these cyclic 
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strain amplitudes for hollow medium sand specimens as shown in Figures 2.13.  
 

 
 
Figure 2.13  Development of small-strain shear modulus with number of cycles at 

various prestraining amplitude for medium sand (after Wichtmann and 
Triantafyllidis 2004) 

 
 
 
2.3 Factors Influence Nonlinear Dynamic Soil Properties 
 
As the same importance as small-strain dynamic properties of soil, the nonlinear 
dynamic soil properties of soil play an essential role in analyzing the dynamic 
behavior of ground motion during strong earthquakes, such as Sichuan Earthquake 
(Richter magnitude scale, M = 8.0), which recently took place at 14:28 on May 12, 
2008 in Sichuan province, China, killed more than 70,000, injured around 300,000 
people, and caused millions of residents homeless. The shear strains induced in 
surface deposits during such earthquakes motions may be estimated around 10-2 % to 
1% (Iwasaki and Tatsuoka 1977). It is very necessary to investigate the 
strain-dependent dynamic characteristics of soils at shear strain within the range from 
10-4 to 10-2 in laboratory.  
 
As known, the shear modulus decreases and damping ratio increases as shearing strain 
amplitude increases exceeding the threshold level defined in Section 2.2, these 
properties is regarded as the nonlinear dynamic properties. These properties are 
usually described by the modulus reduction and damping curves, which are of 
importance for the response analysis of several dynamic problems especially for high 
strain cases such as strong ground motion caused by horizontal force due to strong 
earthquake. 
 
 
2.3.1 Confining Pressure 

 
Confining pressure is recognized as one of the most important factors influence 
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small-strain shear modulus, its influence on nonlinear shear modulus properties of soil. 
Figure 2.14 illustrates the influence of confining pressure on shear modulus of Berlin 
sand with the relative densities around 63%. It is seen that the shear modulus versus 
shearing strain amplitude reduction curve plots higher with increasing confining 
pressure from 50 kPa to 400 kPa. Usually the shear modulus is normalized by the 
small-strain shear modulus to analyze the nonlinear shear modulus properties versus 
shearing strain amplitude. Figure 2.15 is the typical normalized shear modulus versus 
shearing strain amplitude obtained from sand. The normalized shear modulus 
reduction curve is shifted to right higher position as increasing confining pressure. 
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Figure 2.14  Variation of shear modulus with shearing strain amplitude for Berlin 

sand under various confining pressures 
 
 
Several investigators have synthesized this work and proposed nonlinear generic 
curves for use in earthquake analyses (Seed, Wong et al. 1986; Vucetic and Dobry 
1991; Darendeli 2001; Zhang, Andrus et al. 2005). The threshold shear strain, at 
which G/Gmax starts to decrease, is greater at high effective confining pressures than at 
low effective confining pressures(Vucetic 1994). Modulus reduction behavior is more 
influenced by effective confining pressure, particularly for soils of low plasticity 
(Iwasaki, Tatsuoka et al. 1978; Kokusho 1980; Ishibashi and Zhang 1993; Zhang, 
Andrus et al. 2005). Hardin and Drnevich (1972) classified the effect of confining 
pressure as an very important parameter on the damping properties for both sands and 
cohesive soils, the damping ratios for both sands and cohesive soils obviously 
decreased with the square root of confining pressure at a given strain amplitude. 
Figure 2.16 illustrates the variation of damping ratio with shear strain amplitude under 
various confining pressure for sands. This figure shows that the damping ratio 
decreases with confining pressure when the shear strain amplitudes are greater than a 
given value, say 0.01%; in other words, the damping curve shifts to the right lower 
location as the confining pressure increases.  
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Figure 2.15  Effect of confining pressure on normalized shear modulus reduction 

curve for sand (after Ishibashi 1992) 
 
 

 
 
Figure 2.16  Effect of confining pressure on damping curve for silty sand (after 

Darendeli 2001) 
 
 
2.3.2 Frequency of Loading 
 

Hardin and Drnevich (1972; 1972) reported the shear moduli of sands were not 
sensitive to loading frequency. Iwasaki et al. (1978) presented that the values of shear 
modulus obtained from torsional shear and resonant column tests at the shear strain 
amplitudes of 10-4 for dry and saturated Toyoura sands in some figures, from those 
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figures, it can be seen that frequency of loading has little effect on shear modulus 
even the frequencies of loading of resonant column tests were about 500 to 1000 
times higher than of torsional shear tests. Bolton and Wilson (1989) investigated the 
soil properties of a dry sand at medium to large strain amplitude with a torsional shear 
device at the frequency of 0.001 Hz and with resonant column apparatus at 45 to 95 
Hz, and test results showed no appreciable difference between the values for torsional 
shear tests and for resonant column tests. Alarcon-Guzman et al.(1989) also reported 
that well agreement of the shear modulus of Ottawa sand were obtained from resonant 
column and torsional shear methods at the shear strain amplitude of 0.01% despite of 
the great disparity in the loading frequencies. 
 
Shibuya et al. (1995) used torsional shear method to investigate strain rate effect on 
shear modulus and damping of normally consolidated clay with relatively low loading 
frequencies ranging from 0.005 to 0.1 Hz. Test data indicated that the shear modulus 
was essentially not affected by the loading frequency within the range between 0.005 
and 0.1 Hz with the shear strain amplitudes between 1.5 × 10-5 to 2 × 10-4. The 
damping ratio, however, significantly influenced by the loading frequency with the 
identical frequency and shear strain ranges; i.e. the damping ratio decreased with 
increasing loading frequencies from 0.005 to 0.1 Hz, especially in the range of 0.01 to 
0.1 Hz.  
 
Lo Presti et al. (1997) compared the data obtained from torsional shear and resonant 
coloumn tests, and reported that loading frequency had no influence on shear modulus 
and the normalized shear modulus reduction relationship of sands, however, the 
damping ratios obtained from resonant column tests were greater than from torsional 
shear tests at small shear strain amplitude, and at higher strains, the opposite was true.  
 
 
2.3.3 Stress Ratio 

 
Kuribayashi et al. (1975) pointed out that stress ratio had no influence on shear 
modulus reduction curves was observed because the same decrease rate of shear 
modulus at shear strain amplitude of 0.005% and 0.01% was demonstrated, but the 
damping ratio increased with stress ratio. Similar results were presented by Tatsuoka 
et al.(1979) for shear modulus, i.e., the shear modulus ratio versus shear strain 
amplitude curves was not affected by the stress ratios ranging from 1.5 to 5.0 for 
Toyoura sand. Additionally, they pointed out that shear modulus could be considered 
almost independent of the stress ratio on less than 4.0 for shear strain amplitude 
ranging from 0.005% to 0.3%, in triaxial compression cases. There was no obviously 
dependent relationship between damping ratio and stress ratio due to the scatter of the 
data, however, a trend of illustrating that damping ratio increased slightly with 
increasing stress ratio in both compression and extension cases for shear strain 
amplitude less than 0.05% was observed.  
 
Hoque and Tatsuoka (2004) reported small-strain stiffness of sand under triaxial 
shearing was independent of stress ratio as the ratio of vertical principal stress to 
horizontal principal stress was less than 3.0. However, an increase in stress ratio 
greater than 3.0 would reduce the Young’s modulus remarkably due to damage of the 
initial fabric caused by large increment of plastic straining.  
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2.3.4 Number of loading cycles 

 
Silver and Seed (1971) measured the shear modulus and damping ratio of dry sands at 
the 1st, 10th, and 300th cycles of loading, and indicated that, in general, the shear 
modulus slightly increased and damping ratio significantly decreased with increasing 
number of loading cycles, the primary increase in shear modulus and decrease in 
damping ratio occurred within the first 10 cycles of loading.  
 
Hardin and Drnevich (1972) presented the variation of the shear modulus and 
damping ratio for clean dry sands versus shear strain amplitude varying from around 
10-6 to more than 10-3 as shown in Figures 2.17 and 2.18. As shown in these figures, 
the shear modulus reduction curves trend to slightly locate higher as if the number of 
cycles increases, which is similar to the conclusion drown by Silver and Seed (1971) 
however, this effect on damping ratio is quite clear, the damping ratio clearly 
decreases as an increase in the number of loading cycles, especially when the shear 
strain amplitudes vary from 0.02% to 0.06%. 

 
As for the effect of the number of loading cycles on shear modulus for dry sands, 
Sherif and Ishibashi (1976) reported that shear modulus could increase up to 28% at 
N=25 and remained essentially constant thereafter at the shear strain amplitude of 
0.03%. Ray and Woods (1988) also reported similar results that the shear modulus 
could increase up to 20% at N=200 for a given strain level for sands, and deceased for 
silt; and the damping ratio decreased for both sands and silts, especially for silty soils 
might decrease to 50% of the initial values at N=200.  
 

 
 

Figure 2.17  Effects of number of cycles on the location of shear modulus curves for 
clean dry sand (after Hardin and Drnevich 1972)  
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igure 2.18  Effects of number of cycles on the location of damping curves for clean 

 

o Presti et al. (1997) showed that the shear modulus increased and damping ratio 

F
dry sand (after Hardin and Drnevich 1972)  

 
L
decreased with increasing number of cycles for both virgin and stepwise specimens; 
and the increase in shear modulus for virgin specimens was larger than for multistage 
specimens, which well agrees with the findings of Silver and Park (1975), and Silver 
and Seed (1971), it reached a stable value as the number larger than 5 or 10 cycles. 
Unlike shear modulus, the damping ratio was strongly influenced by the number of 
cycles in both tests, which might continuously decease even after hundreds of cycles. 
Li and Cai (1999) reported that the shear modulus moderately increased the damping 
ratio might strongly decrease as the increase of number of cycles at the shear strain 
amplitude of 0.025% as shown in Figure 2.19. 
 

 
 

igure 2.19  Effects of number of cycles on shear modulus and damping ratio for dry F
sand (Li and Cai 1999) 
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2.3.5 Prestrai

that the tested specimen is initially subjected to a given number of 

ning 

Prestraining means 
loading cycles of at a given strain amplitude before its dynamic parameters are tested. 
Drnevich and Richart (1970) conducted resonant column tests on hollow, cylindrical 
Ottawa sand specimens, test results indicated that prestraining at shear strain 
amplitudes of 0.06% can double the dynamic shear modulus and damping as shown in  
Figure 2.20 for shear modulus and Figure 2.21 for damping ratio. Density changes can 
not account for this no changes occur for prestraining at shearing strains less than 
0.001%. The effects were dependent on confining pressure, initial void ratio, 
prestraining amplitude, and number of loading cycles. Millions of cycles may be 
necessary to produce these changes. They reported that the variation of density or 
void ratio could not account for the total change in these parameters imparted to dry 
sands by vibratory loading. This is important in determining the dynamic response of 
foundations and the compaction improvement of sand soils. As shown in Figure 2.20, 
the normalized shear modulus reduction curves plot for specimens subjected to 
prestraining decreased faster compared with the shear modulus reduction curve for the 
virgin specimen. Figure 2.21 shows that the damping curves for specimens subjected 
to prestraining are always higher than for virgin specimen at all confining pressures, 
with the confining pressure increases the rate of increase in damping ratio decreases. 
They explained that, the wearing process at particle contact may be responsible for the 
prestraining effects on the increase in shear modulus increased and damping ratio. 
Prestraining generated abrasive action and caused the original minute asperities to 
wear, flattening these asperities, increasing contact areas, and forming additional 
contacts. These changes can occur without considerably changing the porosity.  
 
 

 
 

Figure 2.20  Effect of number of cycles on shear modulus reduction curves (after 

 
Drnevich and Richart 1970)  
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Tatsuoka et al. (1979) measured the shear modulus and damping ratio of hollow 

art 

cylindrical specimen of saturated Toyoura sand, and presented that the shear stress 
history have only slight influence on the location of the shear modulus ratio versus 
logarithmic shearing strain amplitude. Unlike the findings of Drnevich and Rich
(1970), the shear strain history slightly decreased damping ratio of sand. And they 
concluded that shear strain history at large prestraining amplitude had less influence 
on both shear modulus reduction and damping curves. 

 

 
 

igure 2.21  Effect of prestraining on damping ratio of Ottawa sand at various 

 

i and Yang (1998) used a multilayer multipath closed-loop control scheme called the 

F
confining pressures (data from Drnevich and Richart 1970)) 

 
L
energy-injecting virtual-mass (EIVM) resonant column system, whose idea was 
originally proposed by Li in 1982 and extend and proposed by Li et al. (1998), to 
study the influence of vibration history on dynamic properties of dry sand. Specimens 
with four combinations of relative density and confining pressure were prestrained at 
various given prestraining amplitudes with increasing number of loading cycles. To 
the writer’s knowledge, it seems that Li and Yang (1998) initially attempted to 
measured and plotted the shear modulus and damping ratio versus shear strain 
amplitude beyond the applied prestraining amplitude. They reported that there existed 
a signature of vibration history in both shear modulus and damping curves if the 
prestraining amplitude exceeds 0.01%. Figure 2.22 is representative modulus and 
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damping curves with and without vibration history found by Li and Yang (1998). This 
figure showed that after 1.2 × 106 cycles of loading at γ=0.0254%, the shear modulus 
after vibration keeps slightly higher than their counterparts before vibration if the 
increasing shear strain amplitude was lower than the defined prestraining amplitude; 
whereas, there is no difference between the damping curves of before and after 
vibration when the increasing shear strain amplitude is lower than the elastic shear 
strain threshold, 0.01%. A significant plateau is developed as the shear strain 
amplitude approaches the defined prestraining amplitude in both curves for modulus 
and damping versus shear strain amplitude, especially for damping curve; Li and Yang 
(1998) reported that the signature of vibration history for damping curve was 
influenced by the number of loading cycles, a vibration signature was identified if the 
number of cycles was greater than 900 at prestraining shear strain amplitude 
γ=0.0667%. In addition, they also reported that the signature of vibration history was 
not affected by the initial relative density and confining pressure applied to the sand.  
 

 
 

Figure 2.22  Modulus and damping curves before and after 1,200,000 cycles of 

 

ichtmann and Triantafyllidis (2004) further investigated the influence of vibration 

vibration (after Li and Yang 1998) 

 
W
history on the shear modulus and damping properties of sand by conducting series of 
resonant column tests on both solid and hollow cylindrical specimens. They further 
confirmed the signature of vibration history for dry sand which originally reported by 
Li and Yang (1998). Figure 2.23-1 and2.23-2 is the typical shear modulus and 
damping curves before and after 3,000,000 cycles of loading with the prestraining 
amplitude of 0.01% for dry sand with Dr =64% under confining pressure of 200 kPa. 
It is interesting to note that, as illustrated in Figure 2.23, the modulus reduction curve 
of the first increase of shear strain amplitude plotted at the highest location in Figure 
2.23-1 and the corresponding damping curve plotted at the lowest location in Figure 2. 
23-2, furthermore, the modulus and damping curves for the first increase of shear 
strain amplitude are much higher and lower than those of re-increase and reduction of 
shear strain amplitude, respectively. And the modulus reduction and damping curves 
of all the re-increase and reduction of shear strain amplitude maintained at a very 
narrow range, the modulus reduction curves in the case of the re-increase of shear 
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strain amplitude are always plotted higher than in the case of the reduction of shear 
strain amplitude, and the curves in the case of re-increase of shear strain amplitude 
keep lower than in the case of reduction shear strain amplitude, for damping curves. It 
is notable that, contrarily, unlike previous findings (Tatsuoka, Iwasaki et al. 1979; Li 
and Yang 1998) , test results presented by Wichtmann and Triantafyllidis (2004) 
showed that the shear modulus decreased and damping increased if the specimens are 
subjected to shear stress or strain history. Further work was made using the areas of 
the development plateau to quantitative analyze the influence of vibration history on 
the shear modulus and damping properties of dry sands. 
 

 
 

Figure 2.23  Modulus and damping curve (1) shear modulus, and (2) damping ratio, 

 

.4 Summary 

he factors influence shear modulus and damping ratio of sands are addressed in this 

s 
for fine dry sand before and after 3×106 cycles of loading (after 
Wichtmann and Triantafyllidis 2004) 

 
2
 
T
chapter, these factors including void ratio, confining pressure, stress ratio, grain 
characteristics, degree of saturation, frequency of loading, number of loading cycles, 
and previbration history. Among these factors, void ratio and confining pressure are 
the primary parameters affecting dynamic properties of sand. 



 

 
 
 
 

CHAPTER 3 TESTING EQUIPMENT AND 
CALIBRATION 

 
 
 
 
3.1 Introduction 
 
The resonant column method has been used to analyze the dynamic soil behavior 
since the 1930’s when it was originally developed by Japanese engineers (Ishimoto 
and Iida 1936; 1937); one of earlier type of resonant column device in the United 
States was used to determine the torsional shear velocities of rock specimens(Birch 
and Bancroft 1938). In the 1960's, the resonant column device was popularly 
employed in the study of the dynamic response of soil in geotechnical engineering by 
many researchers such as Hall and Richart (1963), Hardin and Richart (1963), and 
Drnevich, et al(1967). These achievements have included the application of 
anisotropic stresses(Hardin and Black 1966), modifications to apparatus to allow 
hollow specimens (application of constant shearing strain(Drnevich 1967)), ability to 
test at large strains(Anderson and Stokoe 1978) and testing at high confining stresses 
(Hardin, Drnevich et al. 1994). Modifications have also been made to extend the tests 
undertaken to allow torsional shear(Kim and Stokoe 1994). Drnevich has contributed 
to this subject area extensively and has helped standardize the test procedure(Dmevich 
1978; Dmevich, Hardin et al. 1978) so that the assumptions made in the mathematical 
model are valid during tests. More recent advancements were achieved high strain 
amplitudes in combined cyclic torsional shear and resonant column apparatus 
developed by Professor Stokoe and his graduate students at the University of Texas at 
Austin, which is well known as the Stokoe torsional shear/resonant column device 
(TS/RC), and has been continually refined in the last four decades. At present, the RC 
testing method is regarded as one of the most reliable, efficient, and pragmatic 
laboratory test methods for testing shear modulus  and material damping ratio of 
soils and other materials (ASTM-D4015-92).  
 
During the last two decades, the bender element method has been employed as a swift 
measure procedure to determine the maximum shear modulus of soils (Dyvik and 
Madshus 1985; Thomann and Hryciw 1990; Souto, Hartikainen et al. 1994; Viggiani 
and A tkinson 1997; Arulnathan, Boulanger et al. 1998; Zeng and Ni 1998; Blewett, 
Blewett et al. 2000; Clayton, Theron et al. 2004; Lee and Santamarina 2005; Zeng and 
Grolewski 2005). In this study, the bender elements used to measure the wave velocity 
transmitting in cylinder specimen were mounted in the top cap and the pedestal in the 
resonant column device. 
 
In this chapter, the resonant column apparatus and bender elements testing system 
employed in study are described, as well as the calibration methods are proposed in 
this chapter. 
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3.2 Detail of Resonant Column Apparatus 
 
The resonant column apparatus employed in this study was developed by GDS 
Instruments Ltd. (England). It is a Stokoe fixed-free type resonant column device. The 
specimen is fixed to the pedestal at bottom end, to the drive plate through the top cap 
at other end. This system has four testing modules; they are resonant column test, 
torsional shear test, triaxial compression test, and bender element test. These tests can 
be performed on the same specimen; therefore, testing results from different testing 
modes are readily compared in case of the discrepancy in individual specimen. 
 
The used testing system are composed of testing unit (or testing chamber), axial 
loader, axial loader controller, control computer, back pressure system, cell pressure 
controller, resonant column controller, data acquisition box, temperature controlling 
system, as well as bender element system. Their arrangement is presented in Figures 
3.1 and 3.2, and the section of testing cell in Figure 3.3. In this study, samples were 
tested under unsaturated state and isotropic confining conditions; therefore, axial load 
component, back pressure component, and fridge component were removed. A 
majority of tests were carried out under resonant column technique, as well as bender 
element method.  
 

 
 

Figure 3. 1  Arrangement of the testing components of resonant column apparatus 
and bender element testing instrument 
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3.2.1 Procedure of Resonant Column Test 
 
Figure 3.2 presents the arrangement of the combing resonant column and bender 
element apparatus. After the installation of specimen is completed, switch on all 
components the testing program may concern. When a resonant column test is run, the 
control computer sends an order signal to the resonant column controller to generate a 
desired voltage signal (sine wave signal with a given amplitude and frequency), after 
that the signal is transferred to the power amplifier to magnify, then sent back to the 
resonant column controller, and split into four even parts and sent to four pairs of coils 
in the testing unit, then the specimen is vibrated by the drive plate by the torque 
generated by the electromagnetic system. As vibration, the charge signal measured by 
the accelerometer is sent to charge amplifier, then sent to resonant column controller 
and sent back to the computer and the relative vibration amplitude versus time curve 
is displayed on the screen, and the vibration frequency and its corresponding mean 
value of vibration amplitudes for the stack are recorded. After that the system repeats 
this procedure at the subsequent higher frequency. As the sweep is finished, the 
amplitude frequency response curve is given, and X-coordinate of the peak point on 

 
 

 
 

Figure 3. 2  Arrangement of main components of resonant column apparatus and 
bender element testing instrument 
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the curve is the resonant frequency corresponding to the input signal. The 
Y-coordinate of the peak point is the amplitude of the specimen when the resonance 
occurs. The calculation of shear modulus and damping ratio will be described in detail 
later this chapter. 
 
 
3.2.2 Drive system 
 
The drive system is the core part of resonant column testing unit. It is composed of a 
flat aluminum four-armed drive plate, with a cubic permanent magnet encircled by a 
pair of drive coils at each end, and the top cap and four screws connecting the drive 
plate to the top cap, and two drainage tubes for saturated specimen test, see Figure 3.3. 
The masses of the components which added to the top of tested specimen are 352 g 
for the top cap, 15.35 g for these screws, 777 g for the drive plate, and the total 
additional axial stress on the specimen is 5.7 kPa considering the diameter of 
specimen being 5 cm. The core part of drive system is normally referred to the drive 
plate and the drive coils. The magnets are securely fixed to the four ends of the spider. 
Each pair of drive coils is housed by a cubic polymeric box. The four cubic boxes are 
rigidly mounted on a flat aluminum ring plate, which is used to hold the coil boxes 
and to provide a platform for connecting the drive system to the sport cylinder. Figure 
3.4 presents the photographs of top and side views of the drive system.  
 
 

 
 

Figure 3. 3  Sketch map of the configuration of the resonant column testing unit  
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This drive system of this apparatus can provide two kinds of excitation to the 
specimen, one is torsional excitation, and the other is flexural excitation. For 
achievement of torsional excitation, the four pair of drive coils is connected in series 
so that a net torque is applied to the specimen (Figure 3.5(a)). To apply flexural 
vibrations, the coils are automatically switched (controlled by testing program) so that 
only two magnets are used to produce a horizontal force to the specimen inducing 
flexural excitation (Figure 3.5(b)). This allows the same coil and magnet arrangement 
to be used in both flexural and torsional vibration. 
 
 

 
Figure 3. 4  Photographs for drive system of resonant column apparatus 

 
 

 
 

Figure 3. 5  Sketch map for drive excitation modes for drive system 
 
 

3.2.3 Rotation Monitoring 
 
Torsional motion monitoring system is consisted of an accelerometer rigidly mounted 
on the drive plate and an associated counter balance mounted on the opposite side of 
the four-armed drive plate, and a proximeter, mounted on the top plate, measuring the 
rotation of specimen when the torsional shear test is performed, see Figures 3.3 and 
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3.6. As known, the accelerometer may generate a high impedance charge signal 
proportional to the imposed acceleration, which requires conditioning to a low 
impedance voltage suitable for measurement. This is achieved by a charge amplifier. 
Then the charge signal is sent from the charge amplifier to resonant column controller, 
finally is sent to data acquisition card in computer terminal, see Figure 3.2.  
 
The proximeter is mounted on the top plate for monitoring the distance between the 
front face of proximeter and the target mental plate as shown in Figure 3.3. Normally, 
the proximeter is mounted at a location 1.5 mm far from the target mental plate. 
 

 
 
Figure 3. 6  Accelerometer and counter balance on the drive system (top view) 
 
 
3.2.4 Confining Chamber and Cell Pressure 
 
Figure 3.7 is the photographs of the hollow cylinder and base plate. In the bottom 
plate, there are many ports, which are used to house pore pressure cables, back 
pressure cables, accelerometer cable, current input cables of drive coils, and others. 
The confining chamber is consisted of a bottom metal plate and a up hollow cylinder 
with one closed top and one open bottom end; the top end is enforced by a metal plate 
and the bottom end is reinforced by a metal ring, the metal ring and plated are 
connected with six pairs of metal rods used to strengthen the stiffness of the up hollow 
cylinder. The confining chamber is proofed to normally work under the confining 
pressure of 1.7MPa, and the maximum can be 2.5MPa, noted by the manufacturer. 
 
The air cell pressure is applied to specimen by the computer controlled pressure 
controller from the top of the confining chamber; a secondary cell pressure sensor is 
mounted on the air tube close to the confining chamber. The air is supplied by the 
laboratory house air system. The used cell pressure controller can supply the 
maximum pressure up to 1000 kPa. 
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Figure 3. 7  Up and bottom parts of confining chamber used in this study 
 
 
 
3.3 Resonant Column Test 
 
3.3.1 Shear Modulus 
 
Shear modulus, , is an extremely significant parameter in the analysis on the 
dynamic response of soil properties; it can be obtained by the following equations: 

G

 
2

sG Vρ=                                    (3.1) 

                     m
V

ρ =                                     (3.2) 

                     
2

4
d HV π × ×

=                                (3.3) 

 
in which, ρ = mass density of specimen, sV =shear wave velocity propagation in the 
specimen, =mass of specimen, =diameter of specimen, = height or length of 
specimen. 

m d H

 
The mass, diameter, and height of the tested specimen can be readily determined by 
the balance and appropriate calipers, respectively. The shear wave velocity, however, 
cannot be directly measured with the resonant column method. Based on the theory of 
one dimension wave propagation in a fixed-free solid cylinder rod, shear wave 
velocity, sV  can be expressed as following equation: 
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f HV π
β

=                              (3.4) 

 
in which, nf = natural frequency of system (Hz). 
 
The frequency equation of motion of a fix-free resonant column specimen subjected 
to harmonic torque at the free end can be expressed as 
 

0

tanI
I

β β=                            (3.5) 

 
in which, I = mass polar moment of inertia of specimen; 0I = mass polar moment of 
inertia of resonant column driving system. 
 
The mass polar moment of inertia of the tested specimen considering its shape as a 
cylinder, can be obtained as 
 

2

8
mdI =                              (3.6) 

 
The mass polar moment of inertia of drive system is the summation of the mass polar 
moment of each component consisted of the excitation head connected to the top end 
of the specimen, it can be obtained by 
 

0

n

i
i

I I= ∑                              (3.7) 

 
in which, = the th component; = the number of all components;i i n iI = the mass 
polar moment of inertia of the th component connected to the top of specimen. i

 
Actually, it is very difficult to calculate the mass polar moment of inertia of excitation 
head from Equation 3.7 due to the irregular shape of these components. Normally, 
therefore, the value of 0I  be obtained by the calibration of excitation head with a 
known properties of standard specimen. As the ratio of the mass polar moment of 
inertia of specimen to that of the excitation head obtained, the value of β  can be 
readily calculated from Equation 3.5. Consequently, the shear wave velocity of 
specimen can be easily calculated by Equation 3.4.  
 
To get shear wave velocity, the natural frequency of vibration system (specimen and 
all components added to the top of specimen), nf , must be determined. In practice, the 
natural frequency can be replaced by the resonant frequency of vibration system, rf , 
which is obtained from resonant column test. In theory, using the rf , to substitute the 

nf  in Equation 3.4 is exact under the condition that no damping occurs in the testing 
material. The relationship between the rf  and the nf  can be expressed as 
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21 2r nf f= − D

n

                           (3.8) 
 
in which = Damping ratio of sample material; D
As shown in Equation 3.8, the distance between resonant frequency and natural 
frequency increases with an increase in material damping ratio. As the damping ratio 
decreases to zero, resonant frequency equals to natural frequency; there is no a zero 
damping material in the universe, thus the resonant frequency of material is always 
less than its natural frequency. Yet, normally, material damping ratio of most soils is 
less than 20%. Substituting the damping ratio as 20% into Equation 3.8, yields to  
 

0.9592rf f=                           (3.9) 
 

The distance between resonant frequency and natural frequency equals to 4.08%, 
hence, it is reasonable to replace natural frequency with resonant frequency in 
determination of shear wave velocity from Equation 3.4. 
 
Substituting Equation 3.4 with replacing nf  with rf  into Equation 3.1 yields 
 

2 2 2

2

4 rf LG πρ
β

=                          (3.10) 

 
Reviewing on Equation 3.10, all parameters except the resonant frequency can be 
calculated or directly measured, hence in order to obtain the shear modulus of a 
sample; the resonant frequency should be determined by resonant column test. The 
resonant frequency of excitation head can be read from the frequency response curve 
obtained from resonant test, see Figure 3.8. 
 
 
3.3.2 Damping Ratio 
 
Nothing can freely vibrate forever, thus, energy dissipation always exists. This 
inherent dynamic property, attenuation or energy losses, is very important to analyze 
the dynamic response of ground amplification by earthquake motion (Vucetic and 
Dobry 1991). Total material damping consist of many component such as geometric 
spreading, apparent attenuation, and material losses, and so on; the detailed damping 
mechanisms were discussed in Wang (2001). 
 
Another important function of resonant column apparatus is to determine material 
damping ratio for sample. Damping ratio measurement can be classified into two 
different techniques, namely, one is the bandwidth method using the frequency 
response curve obtained from resonant column test (Figure 3.8); the other is the 
logarithmic decrement method from decaying curve of free vibration of specimen. In 
this study, the latter was employed in calculation of the damping ratio from resonant 
column test. 
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Figure 3. 8  Typical frequency response curve obtained from resonant column test  
 

 
The decaying curve of free vibration of specimen is acquired by the vibration 
amplitude record of the accelerometer mounted on the resonant column drive plate. 
After a resonant frequency determination test at specific signal amplitude is complete, 
a sinusoidal signal whose amplitude and frequency are the same characteristics as 
those during the system resonance occurs is applied to the specimen; as the vibration 
becomes steady, then the power (or signal) is switched off and the resulting decaying 
vibrations are recorded from which the logarithmic decrement is calculated. Figure 
3.9 shows a typical decaying curve obtained from such resonant column test. 
 
The logarithmic decrement (δ ) of the decaying curve is calculated by the following 
equation (Richart, Hall et al. 1970) 
 

1

1

1 ln
n

A
n A

δ
+

⎛ ⎞
= ⎜

⎝ ⎠
⎟                         (3.11) 

 
in which, = the amplitude of the first cycle vibration after applied power turned off; 

= the amplitude of the ( )th cycle vibration after applied power turned off; and 
= the number cycles of between two peak points in the recorded time. 

1A

1nA +

n
1n +

 
The material damping ratio ( ) can then be calculated from Equation 3.12 using the 
logarithmic decrement 

D

 
2

24
D δ

2π δ
=

+
                         (3.12) 
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Figure 3. 9  Typical free vibration decaying curve for measurement of material 

damping ratio from resonant column test 
 
 
3.3.3 Shearing Strain  
 
Torsional shearing strain is calculated from the twist angle (θ ) of the tested specimen. 
When the top of specimen is subjected to a given torque (T), resulting in a given 
torsional displacement, and the resulting torsional strain (γ ) within this specimen 
cylinder depends on the distance between this point and the axis of specimen cylinder, 
as well as the height of the horizontal section of this specimen cylinder which this 
point locates. As for the fixed-free vibration mode, the twist angle (θ ) of a given 
height horizontal section depends on its height, it varies from zero at the bottom to the 
maximum value (θ max) at the top of this test specimen cylinder. In theory, therefore, 
the zero torsional strain of those points of the test specimen cylinder distribute within 
the bottom section and the axis of this specimen. This concept is schematically 
depicted as shown in Figure 3.10. 
 
The torsional strain of specimen column can be determined by the following equation 
 

r
h
θγ ×

=                            (3.13) 

 
in which, θ  and  are the twist angle and height of the section which the 
calculated point locates, and  is the distance between the calculated point and the 
axis of the specimen. 

h
r

 
Normally, the top section of tested specimen is used to evaluate the properties of this 
material. As for the top section, the torsional shearing strain (γ ) can be calculated by 
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=                          (3.14) 
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A

A

xx
R l

θ = =                        (3.15) 

 
in which, x = length of the arc which a given point at the edge of specimen during 
vibration; R =radius of tested cylindrical specimen; Ax = displacement of 
accelerometer mounted on the drive plate; and = offset of accelerometer from the 
axis of the tested specimen. 

Al

 
 

 
 

 Figure 3. 10  Diagram of the concept for torsional strain in a fixed-free cylinder 
specimen  

 
 
Strictly, the displacement of accelerometer is less than the exact length of the arc 
through which the accelerometer vibrates during testing. In practice, however, it is 
sufficiently exact to substitute the length of this arc with the displacement of the 
accelerometer thanks to the torsional strain is small during resonant column testing. 
Therefore, the maximum rotation of the specimen column can be measured by the 
accelerometer mounted on the drive plate using Equation 3.15.  
 
To calculate the angle of twist of the specimen cylinder, firstly the voltage output of 
accelerometer must be converted from the peak output of +/- G into m/s2. According 
to GDS instruments Ltd.(2003), the conversion is performed by  
 

0.981 outa V=                          (3.16) 
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in which, = voltage output from charge amplifier. outV
 
The displacement of the accelerometer, Ax , is calculated by the following Equations 
 

2/Ax a ω=                              (3.17) 
 

2 rfω π=                              (3.18) 
 

in which, rf = the resonant frequency of vibration system. 
 
Hence the maximum displacement of the accelerometer is 
 

2 2 2 2

0.981 0.024849
4 39.4784

out out
A

r r r

V Vax
f f fπ

= = =              (3.19) 

 
Submitting Equation 3.19 and the offset of the accelerometer ( ) from the axis of 
specimen cylinder into Equation 3.15) yields 

Al

 

max 22

0.024849 outA

A A r

Vx
l l f

θ = =                       (3.20) 

 
Then submitting Equation 3.20 into Equation 3.14 yields the torsional strain (γ ) 
within the top section of specimen cylinder as 
 

2

0.024849 out

A r

rV
Hl f

γ =                        (3.21) 

 
For the resonant column apparatus used in this study, the offset of the accelerometer 
from the center of rotation is 0.04325 m, therefore Equation 3.21 is rewritten as  
 

2

0.5745 out

r

rV
Hf

γ =                          (3.22) 

 
Equation 3.22 is used to calculate a discretionary point within the top section of a 
tested specimen. Considering the specimen geometry, the average torsional shearing 
strain of at the top section of solid cylindrical specimen is assumed equal to that of 
point whose distance to the axis is 0.8 time of the radius of the specimen, it is given as 
(ASTM-D4015-92 2000) 
 

2

0.8 0.5745 0.4596out out

r r
2

RV
Hf Hf

γ RV×
= =               (3.23) 

 
The use of Equation 3.23 is more than the calculation of torsional shearing strain 
when the drive system vibrates at resonant frequency; it can be employed to 
approximately evaluate the applied load of the test using the rearrangement of 
Equation 3.23 as 
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3.4 Torsional Shear Test  
 
An additional test mode of the used resonant column apparatus in this study is to 
determine the shear modulus of specimen by running a torsional shear test. The 
applied torque or force is applied by the some drive system. A torque is calculated by 
the rotation of a known shear modulus calibration bar specimen, which is measured 
by a proximeter mounted at the top plated as shown in Figure 3.3. With achievement 
of the torque, the shear stress is obtained based on mass polar moment of inertia of 
specimen, and the radius of calculated point. And the shearing strain of specimen is 
obtained by the readings of proximeter. The derivation of the torque and shear stress 
in torsional shear test mode will present later in this chapter. The shearing strain of 
this test mode is calculated by Equation 3.14. However, the torsional shear test is not 
the primary tests used in this study; the necessity of presentation herein is to quantify 
the preloading stress amplitude which was used as an important controlled parameter 
in this study.    
 
The theory of the application of cyclic torsional shear test to measure the shear 
modulus and material damping of soil sample is based on the stress-strain relationship 
hysteresis loop generated by the torque applied at the top of the specimen and the 
resulting displacement monitored by a proximeter mounted on the top plate (Figure 
3.3); the voltage on drive coils is monitored, and the applied torque is calculated. The 
calculation of shearing strain is similar to the concept depicted in Figure 3.10.  
 
The secant shear modulus for each loading cycle is calculated by the evaluation of the 
slope of the line which connected the two ends of the stress-strain hysteresis loop as 
described in Figure 3.11. 
 
Material damping ratio is defined by calculating the ratio of the area within the 
hysteresis loop (AL) to the maximum potential energy stored in each cycle of vibration 
as represented by the triangular area (AT). The area AT is calculated using the end 
point of the hysteresis loop as illustrated in Figure 3.11. Material damping ratio is 
computered by 
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Figure 3. 11  Concept of shear modulus and material damping ratio in torsional shear 

test 
 
 
 

 
3.5 Bender Element Test 
 
Bender element method is a swift and simple technique to determine the small-strain 
shear modulus of soil by measuring the wave velocity transmitting through sample at 
small strain. This method is initially developed and regarded as the most useful 
measurement to determine the wave velocity of high-porosity laboratory sediments by 
Shirley and Hampton(1978). 
 
The used bender element is manufacture as an insert that can be mounted in top cap or 
pedestal by GDS instrument Ltd as shown in Figure 3.12. The insert for the pedestal is 
made from stainless steel. The insert for the top cap is manufactured from titanium. 
This reduces the weight of the insert by half, minimizing the axial load on the sample 
caused by the top cap. The inserts are mounted in a modified top cap and pedestal.  
 
The bender element is made from piezoelectric ceramic bimorphs. Two sheets are 
bonded together with a flexible shim in-between them as shown in Figures 3.13. An 
excitation voltage is applied to generate a displacement in the source transducer, 
resulting in a wave propagating through the specimen. This wave poses a 
displacement in the receiver, which induces a voltage that can be measured by an 
automatic acquisition testing system (Figure 3.14). The used bender element is 
measured to be 2.5 mm in the length out from the top cap and pedestal (Lc), 11.0 mm 
in width, 1.35 mm in thickness, and the total length is unknown.  
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Figure 3. 12  An example of bender element insert made by GDS used in this study 
 
 
The principle of shear wave propagation through a specimen is illustrated in Figure 
3.14-1. In this testing mode, the bender element embedded in top cap service as the 
source transmitter, and that mounted in pedestal works as the receiver. The shear wave 
source element is polarized in the same direction, and the two sheets of the receiver in 
opposite direction, when excitation voltage is applied to the bender elements, resulting 
in one piezoelectric ceramic bimorph contracts and the other stretches simultaneity, 
which induces a displacement of the free end of the bender element and a motion in 
sample, as shown in Figure 3.14-1. Hence the generating shear wave starts to 
propagate in sample. The arrival of the transmission of shear wave to the receiver 
results in a motion in receiver bender element, and generating a voltage. A source 
voltage reverses inducing the bender element motioning in opposite direction. 
 
 

 
 
Figure 3. 13  Configuration of bender element (left: dimension, right: inside 

configuration) (after Yamashita, Fujiwara et al. 2009) 
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Figure 3. 14  Transmission of shear and compression wave in bender elements test 
 
 
In compression wave velocity testing mode, as shown in Figure 3.14-2, the bender 
element embedded in the pedestal services as an excitation source and the other in top 
cap as a receiver. When an excitation voltage is applied both sheets extend; when the 
excitation voltage reverses these sheets contract. As extension and contraction of 
bender elements, a compression wave propagates in sample. The arrival of 
compression wave at the bender element in the top cap induces a motion generating a 
voltage. 
 
With time distance ( ) between the excitation moment and receiving moment, wave 
velocity is calculated by 

TΔ

 
LV
T

=
Δ

                           (3.26) 

 
in which, = velocity of shear (compression) wave propagation in specimen 
depends on the testing mode; and L = distance between the source and receiv

V
er 

lement tips. 

 the near field effect, and 
Point C is used to identify the arrival of the received wave. 

e
 
The input signal used in bender element test in this study is a sine wave with the 
frequency of 10 Hz. Based on a large number of investigations, the start to start 
method is the most popular method which is used to determine the time arrival of 
wave propagation in a sample. The detailed description of identification of time 
arrival could be found in literatures (Lee and Santamarina 2005; Yamashita, Fujiwara 
et al. 2009). A brief of this method is illustrated in Figure 3.15. Generally, the section 
of received wave between Point A and Point C is caused by
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Figure 3. 15  Example of shear wave signal within near field: (A) first deflection, (B) 

first bump maximum, (C) zero after first bump, and (D) major first 
peak 

 
 
 
3.6 Calibration of Drive System for Resonant Column Test 
 
Testing instrument calibration is extremely of importance to achieve reliable testing 
results. As known, the instrument components may vary with using age, especially 
those electronic components, the permanent magnets, as well as the bender of drive 
plate arms after a great number of oscillations at very high level. In this section, drive 
system of resonant column testing mode and torque calibrations are addressed in 
detail. The calibration certificates of cell pressure controller, secondary cell pressure 
transducer, linear variable differential transducer (LVDT), and proximeter for 
torsional shear test, are given in Appendix. 
 
Note that the drive system herein is referred to the components added on the top of 
specimen during resonant column test; it includes the top cap, drive plate, and the 
screws using to connect these two components.  
 
From the theory of wave propagation, the velocity of the shear wave propagation is 
computed using measured value of resonant frequency, specimen dimension, and the 
mass polar moment of inertia of drive system (ASTM-D4015-92 2000). Due to the 
complicated design of drive system, the mass polar moment of inertia of drive system 
normally is determined from a number of separate on calibration bars (Dmevich 1978; 
ASTM-D4015-92 2000; GDSRCA-Manual 2003; Kumar and Clayton 2007; Clayton, 
Priest et al. 2009). 
 
In this study, drive system calibration was performed with a large range of resonant 
frequency from 23.5 Hz to 235.8 Hz on different torsional stiffness calibration bars 
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inspired by the investigation on dynamic properties on frozen soil by resonant column 
test. In general, it is assumed that during interpretation of resonant column test data 
that the measured resonant frequency of the specimen results from torsional 
single-degree of freedom oscillation, due only to distortion of the specimen. However, 
there are many causes, in theory, why this might not be the case. These causes were 
well reported by (Dmevich 1978; Kumar and Clayton 2007; Clayton, Priest et al. 
2009). In this section, a brief is listed as follows. 
 
(1) The existence of other patterns of distortion. In theory, the resonant column data 

are analyzed on the basis of single-freedom horizontal oscillation, however, other 
specimen oscillations might occur, such as flexure, axial shortening, and so forth, 
interference of these oscillations may lead to underestimate the resonant 
frequency. 

(2) Compliance in test apparatus or calibration system. Additional distortion may arise, 
say, from the bender of drive components; as a result the measured frequency 
might be significantly reduced, particularly testing on stiffer material. These 
compliances may be induced from design of calibration bar(Clayton, Priest et al. 
2009), slippage between stiffer specimen and top cap and pedestal (Dmevich 
1978), drive system and platen (Clayton, Priest et al. 2009), and support system  
(Dmevich 1978). 

(3) Introduction of additional degree freedom due to significant compliance within 
drive and slippage between them (Dmevich 1978). All these may induce the 
system to resonance at a number of frequencies, even under torsional excitation 
alone, the fundamental frequency of the whole system may be changed (Clayton, 
Priest et al. 2009). 

 
3.6.1 Theory Background  
 
Usually, experimental procedure is used to determine the mass polar moment of 
inertial of the drive system; this may involve submitting a calibration bar as the soil 
specimen and measure the resonant frequency of the system. Combining Equations 
3.4 and 3.5 and rearranging yields 
 

0

tans n n

s s

I L L
I V V

ω ω
=                       (3.27) 

 
And the system is considered as a torsional pendulum with a single degree of freedom, 
where the calibration is regarded as s torsional spring and the drive system is 
considered as the pendulum mass, the circular frequency of motion for this system can 
be expressed as 
 

0 s / 3
T

n
K

I I
ω =

+
                        (3.28) 

 
in which,  is the torsional stiffness of the calibration bar, TK sI  is the mass polar 
moment of inertia of calibration bar. 
 
The resonant frequency of system is remeasured after additional masses are added on 
the drive plate; and Equation 3.28 can be rewritten as  
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in which, amI  is the mass polar moment of the added masses, which can be 
calculated from the mass and dimension of the standard shape added masses. It is 
clear that Equation 3.28 take a form of a standard linear equation. Through plotting 
the value of amI  as a function of 21/ nω  for each test, 0 s( /I I 3)+  is identified by 
the negative Y-axis intercept, and the torsional stiffness by the slope of the straight 
line. The mass polar moment of the calibration bar is assumed negligible in 
interpretation of Equations 3. 28 and 3.29 by Clayton et al. (2009), they reported that 
the maximum error for the biggest bar (28.1 mm in diameter) they used is less than 
1% when the small-strain shear modulus measured is compared with its corresponding 
value calculated by the more rigorous approach. The used biggest bar used in this 
study has a diameter of 26 mm, which is smaller than that used in Clayton, Priest et al. 
(2009). However, for minimizing this error, the sI  of central stem of each calibration 
bar is considered in this study. 
 
 
3.6.2 Calibration Bars and Weights  
 
Eight calibration bars and three calibration weights were prepared to for the purpose 
of the determination of the mass polar moment of inertia of drive system; their 
photographs are shown in Figure 3.16 Each bar has a central column to connect a 
large and thin circular plate at two ends, enabling the bar can be bolted to the pedestal 
and drive head. The central stem has a diameter varying from 7.5 mm to 26 mm, and 
two circular plates have the same dimensions with 50 mm in diameter and 5 mm in 
thickness. Within each plate, six small screw holes with 4.5 mm in diameter were 
opened for tightening the bar to the top cap and pedestal, and a cylindrical pit with 
20.5 mm in diameter and 3 mm in depth was made for accommodating the bender 
element embedded in the top cap and pedestal, the design of calibration bar is 
illustrated in Figure 3.17. All the bars are made of aluminum. Three copper calibration 
weights have a shape in rectangular block with 20 mm in width, 100 mm in length, 
and 8 mm in height, and have 132 g in mass. The calibration weight was tightly fixed 
on the drive plate by two screws as shown in Figure 3.18. 
 
The torsional stiffness, KT, of calibration bar is not only measured from resonant 
column test, but calculated by the following equation (Higdon, Ohlsen et al. 1985):  
 

1 2

T p1 1 p2 2 p p

1 ... ...i

i i n n

HH H
K J G J G J G J G

= + + + + nH              (3.30) 

 
in which, Hi is the height of center stem of calibration bar, the Jpi is the polar moment 
of inertia of section of round bar, and Gi is the shear modulus of calibration bar. For 
the design calibration bar as shown in Figure 3.16, the central stem is used to calculate 
the value of KT, which is simply dependent on the height, the polar moment of inertial 
of section, and the shear modulus, the number, n, is 1 herein. 
 
 

 53



 

 

Material: 
Aluminum 

 
Figure 3. 16  Design of the calibration bar used in resonant column test  
 
 

 
 

    
 

Figure 3. 17  Photographs of calibration bars and weights used in this study 
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Figure 3. 18  Set up of resonant column calibration test 
 
 
The masses, dimensions, mass polar moment of inertias, and the torsional stiffness 
based on Equation 3.30 of the central stems of calibration bars are listed in Table 3.1. 
The mass polar moment of inertias of calibration weights and other unimportant 
components on calibration bar are summarized in Table 3.2. 
 
 
Table 3. 1  Dimension and mass polar moment of inertia of the central rod 

calibration bars  
 

Bar 
Number 

Height 
H 

(mm) 

Diameter 
Db  

(mm) 

Mass† 
m (kg) 

Mass Polar 
Moment of 
Inertia, Is 

 (10-3 kg m2)

Calculated 
Torsional 

Stiffness, ‡ TK

(kN m/rad) 
1 100 7.5 0.01177 8.27E-05 0.082 
2 100 10 0.02092 2.61E-04 0.260 
3 100 12.5 0.03269 6.38E-04 0.635 
4 100 15 0.04707 1.32E-03 1.317 
5 100 17.5 0.06406 2.45E-03 2.440 
6 100 20 0.08367 4.18E-03 4.163 
7 100 23 0.11066 7.32E-03 7.280 
8 100 26 0.14141 1.19E-02 11.889 

 
† The density of aluminum was measured as 2663.42 kg/m3.  
‡ Calculated from Equation 3.30 by assuming 26.5 GPa as the shear modulus of 
aluminum. 
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Table 3. 2  Dimension and mass polar moment of inertia of calibration weights 
 
Component on Calibration Bar I 

(10-3 kg m2) Number Total I  
(10-3 kg m2)

One Calibration Weight 0. 1144 1 0. 1144 
Screw Tightening One Weight 3.85×10-4 2 7.7×10-4 
One Calibration Weight and Screws   0.1152 
Two Calibration Weights 0. 1144 2 0. 2288 
Screw Tightening Two Weights 5.25×10-4 2 1.05×10-3 
Two Calibration Weight and Screws   0.2299 
Three Calibration Weights 0. 1144 3 0.3432 
Screw Tightening Three Weights 6.29×10-4 2 1.26×10-3 
Three Calibration Weight and Screws   0.3445 
Screw Tightening Calibration Bar 6.14×10-4 3 1.84×10-3 
BE Pit in Upper plate -1.48×10-4 1 -1.48×10-4 
Screw Hole in Upper plate -5.90×10-5 6 -3.54×10-4 
Upper plate no Considering Holes 8.17×10-3 1 8.17×10-3 
Upper plate Considering Holes   7.75×10-3 
Upper plate Including Tightening Screws   9.51×10-3 
Screw Tightening Filter Stone on Top Cap 2.79×10-4 3 8.37×10-4 
 
Note: The mass polar moment of inertias of screw and holes in these components are 
calculated on the basis of assuming them as mass points using 2I mr= , where  is the 
mass, and  is the distance of mass point to the O-O axis. The 

m
r I of weight is calculated 

using , where is the width, and  is the length. 2 2( ) /W L= + 12I m W L
 
 
3.6.3 Testing Results  
 
The resonant column tests were carried out by the increment of frequency of 0.1 Hz, 
which is usually used in soil properties determination in resonant column test. The 
tested results of calibration bars are presented in Table 3.3 and Figures 3.19 and 3.20. 
 
Figure 3.21 illustrates the comparison of the tested and calculated torsional stiffness 
for three sets of data presented in Tables 3.4 and 3.5. It is seen that the calculated the 
data points locate at the 45 degree line when stiffness of calibration bar is relatively 
small, as the stiffness increase the data point starts deviate from the straight line, 
which implies that the compliance within the drive system increases as the system 
vibrates at higher frequency. The data points of this study starts to deviate earlier than 
those of two previous investigations, which is accounted for the case that top cap was 
mounted in this study but were not in used in the previous investigations, as a results 
more compliance might occur in this study. It should be noted that the calculated 
torsional stiffness is generally greater than its corresponding tested value in this study; 
however, as for the data reported in previous investigations show an opposite 
regularity, namely the calculated torsional stiffness is greater than the tested value, 
which is possibly contributed to the fact that the calibration discs were directly 
mounded on the top of the calibration bar in these two investigations (Kumar and 
Clayton 2007; Clayton, Priest et al. 2009) resulting in an increase in stiffness of the 
tested bar to a value greater than the real value. Considering the calculation of 
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torsional stiffness is based on an assumption that there is no compliance between the 
top and bottom plates of the calibration bar (Clayton, Priest et al. 2009), then the 
calculated values should be theoretically greater than those obtained by tests due to 
some compliance of bar or other components actually occurs during vibrating. In this 
regard, the data of this study seems better than those in previous studies. 
 
 
Table 3. 3  Tested results of all calibration bars used in this study 
 

No Weight With One weight With Two Weights With Three Weights 
Bar  

fr (Hz) γ (%) fr (Hz) γ (%) fr (Hz) γ (%) fr (Hz) γ (%) 
1 23.2 0.00105 22.8 0.00105 22.5 0.00110 22.2 0.00108 
2 40.2 0.00067 39.6 0.00067 39.1 0.00065 38.6 0.00061 
3 61.5 0.00048 60.6 0.00048 59.8 0.00048 59 0.00049 
4 87.6 0.00031 86.3 0.00032 85.2 0.00035 84.0 0.00033 
5 118.5 0.00035 116.9 0.00036 115.3 0.00037 113.8 0.00038 
6 151.1 0.00055 148.1 0.00055 146.1 0.00057 144.3 0.00059 
7 195.8 0.00074 193.4 0.00075 191.0 0.00076 188.8 0.00077 
8 235.8 0.00055 233.3 0.00059 230.6 0.00057 228.0 0.00058 
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Figure 3. 19  Results of calibration of a Stokoe resonant column apparatus with 

different calibration bars (Bars 1-3): Iam plotted against 1/ωn
2 
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Figure 3. 20  Results of calibration of a Stokoe resonant column apparatus with 

different calibration bars (Bars 4-8): Iam plotted against 1/ωn
2 

 
 
Table 3. 4  Tested and calculated torsional stiffness of all calibration bars used in this 

study 
 

Bar 
Db 

(mm) 
fr 

(Hz)
TK  

(kN m/rad) 
T
CK ‡ 

(kN m/rad)

I0 
(10-3 kg m2)

I0
C1 

(10-3 kg m2) 
I0

C2 

(10-3 kg m2)

1 7.5 23.2 0.081 0.082 3.796 3.864 3.791 
2 10 40.2 0.260 0.260 4.079 4.068 3.991 
3 12.5 61.5 0.595 0.635 3.971 4.244 4.163 
4 15 87.6 1.227 1.317 4.044 4.338 4.255 
5 17.5 118.5 2.281 2.440 4.104 4.391 4.308 
6 20 151.1 3.756 4.163 4.214 4.607 4.520 
7 23 195.8 6.945 7.280 4.579 4.798 4.707 
8 26 235.8 10.917 11.889 4.960 5.403 5.300 

‡Based on Equation 3.29 using Iam = 9.51×10-6 kg m2 as the mass polar moment of 
inertia of upper plate of the calibration bar, seen in Table 3.2. 
C1 and C2 calculated based on Equation 3.29 and Equation 3.27, respectively.  
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Table 3. 5  Tested and calculated results from other investigators (data after Kumar 

and Clayton 2007; Clayton, Priest et al. 2009) 
 

Investi-
gations 

Bar Db 

(mm) 
fr 

(Hz) 
TK  

(kN m/rad)
T
CK † 

(kN m/rad)

 I0 
(10-3   

kg m2) 

I0
C1 

(10-3    
kg m2) 

I0
C2 

(10-3   
kg m2) 

1 13 59.8 0.44 0.432 2.99 2.968 2.910 
2 18 111.7 1.55 1.590 2.98 3.132 3.069 
3 23 175.2 4.23 4.238 3.37 3.402 3.331 

Clayton 
et al. 

(2009) 
4 28.1 244.3 10.48 9.441 4.32 3.912 3.826 

A1 13 61.03 0.42 0.41 2.734 2.692 2.704 
A2 18.03 114.64 1.47 1.52 2.828 2.832 2.839 
A3 22.94 178.46 4.14 4.00 3.093 3.081 3.076 

Kumar 
and 

Clayton 
(2007) A4 28.1 247.27 9.35 8.99 3.812 3.619 3.619 

† To calculate the , Clayton et al. (2009) considered only the central stem of calibration 
bar based on G=27 GPa, however, Kumar and Clayton (2007) considered the whole 
dimension not just the central stem of the calibration bar based on Vs=3086 m/s, considering 
the density of aluminum is 2700 kg/m3, accordingly the G=26.2 GPa is obtained. The Iam of 
the upper plate of the calibration bar is taken as 9.6×10-5 kg m2 according to Clayton et al. 
(2009). 

TK

 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

This study
Clayton et al. (2009)
Kumar and Clayton (2007) 

Tested Torsional Stiffness, KT (kN m/rad)

C
al

cu
la

te
d 

To
rs

io
na

l S
tif

fn
es

s,
 K

TC
 (k

N
 m

/ra
d)

 
 
Figure 3. 21  Comparison of the tested and calculated torsional stiffness of 

calibration bar by a Stokoe resonant column apparatus 
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3.6.4 Mass Polar Moment of Inertia of Drive System 
 
Figure 3.22 presents the variation of the tested mass polar moment of inertia of drive 
system with the tested torsional stiffness of calibration bar; both results of previous 
investigations are also illustrated in this figure for comparison. It can be seen that, in 
general, the mass polar moment of inertia of drive system increases with torsional 
stiffness except for the data of the 10 mm calibration bar. This relationship is in 
agreement with those of reported by Kumar and Clayton (2007), and Clayton et al. 
(2009).  
 
Figure 3.23 plots the tested and calculated values of mass polar moment of inertia of 
drive system against the tested resonant frequency. Both tested and calculated mass 
polar moments of inertia of the drive system increase with the tested resonant 
frequency. It can be seen that the value of the calculated of mass polar moment of 
inertia of drive system is greater than its corresponding tested value for a given tested 
frequency; the values calculated by Equation 3.29 are plotted highest among these 
values. This implies that in real soil specimen test, the mass polar moment of inertial 
of drive system should be increased to get an accurate shear modulus when the system 
vibrates at higher frequency. 
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Figure 3. 22  Variation of the tested mass polar moment of inertia of drive system 

with the tested torsional stiffness of calibration bar  
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Figure 3. 23  Variation of the mass polar moment of inertia of drive system (tested 

and calculated) with the tested resonant frequency of calibration bar  
 
 
 
3.6.5 Discussion  
 
Conventionally, the tested mass polar moment of drive system may be approximately 
obtained from a test on a softer torsional stiffness calibration bar due to the 
compliance in the drive system is usually negligible. The average value method is 
suggested by GDS instrument Ltd, to achieve the mass polar moment of inertia of 
drive system, several softer stiffness known shear modulus calibration bars are used to 
determine the I0, and takes the mean value of these I0 as the mass polar moment of 
inertia of drive system (GDSRCA-Manual 2003).  
 
Figure 3.24 illustrates the shear modulus and reduction of shear modulus of each 
calibration bar based on Equation 3.27 using the measured value of I0 obtained from 
the smallest bar as well as the mean value of I0 for all bars. As shown in this figure, 
the shear modulus rapidly reduces with the resonant frequency (or torsional stiffness) 
for these three sets of data, the speed of reduction of the data in this study is faster 
than those by Clayton et al. (2009) and Kumar and Clayton (2007) due to the more 
components on the upper plate in the calibration test in this study. The reduction of 
shear modulus starts from 5% at 40.2 Hz to 29% at 235.8 Hz in this study. When the 
average I0 is used to analysis shear modulus, it may overestimate the shear modulus at 
lower frequency and underestimate at higher frequency. It may overestimate the shear 
modulus to 10.9% at the frequency of 23.2 Hz and underestimate the shear modulus to 
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21.5% at 235.8 Hz. It is concluded that both the smallest I0 and average I0 methods 
may cause very great deviation of shear modulus from the reference value, which is 
not acceptable in practice. 
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Figure 3. 24  Variation of shear modulus with the tested resonant frequency based on 

the smallest and average mass polar moment of inertia of drive system 
 
 
Figure 3.25 presents the variation of the measured shear wave velocity of aluminum 
with tested resonant frequency. Equation 3.27 is used to interpret the shear wave 
velocity based on the tested values of mass polar moment of inertia of drive system 
and corresponding resonant frequency. Data of previous investigations are also plotted 
in this figure for comparison. As shown in this figure, all the wave velocities (except 
for the value at 244.4 Hz for Clayton et al. (2009)) locate around the Vs=3086 m/s 
suggested by De Billy (1980) within the range reported by Lambe and Whitman 
(1979). The shear wave velocity obtained from previous investigations suddenly 
jumps up when the frequency reaches maximum, which seems somewhat mysterious 
according to the fact that the shear wave velocity should be smallest when the 
torsional stiffness of specimen is greatest in theory. Furthermore, actually, these four 
calibration bars and resonant column apparatus used in their studies should be the 
same in these two investigations due to both tests were carried out on the same 
calibration bars in Southampton University by Clayton. In this regard, the testing 
results presented in this study show a better result. As shown in this figure, the 
measured shear wave velocities are always lower than the reference velocity of 
3124.19 m/s considering the measured density of 2663.42 kg/m3 and referent the 
shear modulus of 26.5 GPa. Even though these tested mass polar moments of inertia 
of drive system are individually used to interpret shear modulus, some deviation of 
shear modulus from reference value can not be avoided. It is necessary to propose a 
correction method to eliminate the influence of torsional stiffness on shear modulus. 
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Figure 3. 25  Shear wave velocity with the tested resonant frequency of calibration 

bar based on the tested I0 from resonant column test 
 
 
3.6.6 Correction Procedure 
 
To correct the tested shear modulus Clayton et al. (2009) suggested using a series of 
calculated values of I0 instead of the I0 determined from the smallest calibration bar. 
By this method, the I0 should be accordingly adjusted with measured resonant 
frequency, as a result the value of Is/I0 varies with resonant frequency, consequently 
induces inconvenience in calculation of shear velocity, as shown in Equation 3.27. 
Using a constant I0 during test may simplify Equations 3.4 and 3.5 1 into a single 
variable (ωn=2πfr) function. In theory, for a given drive system, there should be a 
unique mass polar moment of inertia; therefore, the application of a constant I0 has 
more significance. The mass polar moments of inertia of drive system (including the 
I0 of upper plate of calibration bar) calculated by Equation 3.27 are plotted against the 
tested frequency in Figure 3.26. As shown in this figure, a four order polynomial 
function may fit testing data, 
 

C 4 3 2
0 r r r r 0 ua +b c d +( )pI f f f f I I= + + +              (3.31) 

 
in which, I0

C is the calculated mass polar moment of inertia of drive system for each 
calibration test, a, b, c, and d are the fitting constants, they are listed in Table 3.6 for 
the data in this study, I0 is the mass polar moment of inertia of drive system, and Iup is 
the mass polar moment of inertia of the upper plate of calibration bar. The I0 is 
obtained by subtracting the intercept of the I0

C versus resonant frequency curve to the 
Iup.  
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Figure 3. 26  Determination of mass polar moment of inertia of drive system of a 

fixed-free resonant column apparatus 
 
 
Table 3. 6  Fitting parameters and mass polar moment of inertia of drive system for 

Equation 3.31 
 

a b c d I0+ Iup 
 (10-3 kg m2) 

I0 
(10-3 kg m2) 

9.949×10-11 3.273×10-7 -1.241×10-4 0.01754 3.4655 3.4560 
 
 
Using the determined I0 for all tested frequency without correction may underestimate 
the shear modulus, especially at high frequency. To accurately interpret shear modulus 
the tested frequency must be corrected to an appropriate value. The correction is 
carried out by developing a relationship between the calculated frequency by Equation 
3.27 with the I0 determined by Equation 3.31 with knowledge of Vs and the tested 
frequency as shown in Figure 3.27. The relationship between the calculated and tested 
resonant frequency is given as  
 

C 4 3 2
r r r r rm+ nl o +pf f f f f= + +               (3.32) 

 
in which, the l, m, n, o, and p are fitting constants, these values and correlative 
coefficients are listed in Table 3.7.  
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Figure 3. 27  Correction of resonant frequency of the used calibration bars based on 

Equation 3.27 for the fixed-free resonant column apparatus used in this 
study 

 
 
Table 3. 7  Fitting parameters and correlative coefficients for Equation 3.32 
 

l m n o p r2 

5.5085×10-8 -2.0972×10-5 0.00305 0.95817 0.82978 0.99996 

 
 
Figure 3.28 presents the shear moduli of calibration bars obtained from Equation 3.27 
after frequency correction by Equation 3.32 using I0=3.456×10-3 kg m2. It is seen that 
shear modulus after correction well agrees with the reference value of shear modulus 
of 26.5 GPa for aluminum, the relative deviation of shear modulus plots within a 
small range from -1.29% to 1.37% for the frequency range from 23.2 Hz to 235.8 Hz 
with, which is acceptable in practice.  
 
The application of the method proposed in this study, the following steps may 
concern, 
(1) Prepare several calibration bars whose shear wave velocity is known with a large 

range of torsional stiffness which may cover a large range of resonant frequency 
in tests. 

(2) Conduct resonant column tests on these calibration bars to obtain the resonant 
frequencies without using extra calibration weights. 

(3) Use Equation 3.27 to calculate the mass polar moment of inertia of drive system 
corresponding to each calibration bar by using the measured frequency. 

(4) Plot the calculated mass polar moment of inertia of drive system against the 
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measured resonant frequency in a diagram like Figure 3. 26 
(5) Find an appropriate function to fit the data like Equation 3.31, and then take the 

intercept of the fitting curve as I0+Iup, and then the mass polar moment of inertia 
of drive system is obtained. 

(6) Calculate the frequency by Equation 3.27 using the I0 obtained in Step 5 for each 
calibration bar. 

(7) Plot the calculated frequency in Step 6 against the tested frequency in a diagram 
like Figure 3.27, and find a suitable function like Equation 3.32 to fit the data. 

(8) Analyze shear modulus of specimen based on specimen density and shear wave 
velocity calculating by Equation 3.27 using the resonant frequency corrected by 
Equation 3.32. 
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Figure 3. 28  Shear modulus of aluminum before and after correction in this study  
 
 
 
3.7 Calibration of Torque for Torsional Shear Test 
 
3.7.1 Theory Background  
 
The torque action on the top of specimen is applied by the same drive system as 
resonant test mode for the used apparatus. For such a resonant column combining 
torsional test, in torsional shear test mode, the test is stress controlled not strain 
controlled; the torque can not be directly controlled as that applied by a standard 
torsional shear device. Usually the torque is obtained by calibration test on a known 
shear modulus round bar, say aluminum bar. The torque is related to the angle of twist 
for a solid cylindrical bar as (Shigley and Mishcke 1990) 
 

GJT
H

θ
=                          (3.33) 

 
in which, T is the torque action at the top of the specimen, G is shear modulus of 
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tested specimen, J is the polar moment of inertia of section of specimen, θ is angle of 
twist, and H is the height. For a solid round rod, the shear stress is zero at the center 
and maximum at surface, at the free end as for the fixed-free model. The distribution 
of stress at the top section is proportional to the radius ρ as  
 

T
J
ρτ =                           (3.34) 

 

max
TR
J

τ =                          (3.35) 

 
in which R is the radius of specimen, an average torsional stress is taken as 0.8τmax 
according to ASTM-D4015-92 (2000). 
 
Note that: some assumptions are adopted in the analysis as follows, 
 
(1) The bar is acted upon by a pure torque, and the sections under consideration are 

remote from the point of application of the load and from a change in diameter. 
(2) Adjacent cross sections originally plane and parallel remain plane and parallel 

after twisting, and any radial line remains straight. 
(3) The material obeys Hook’s law. 
 
For the used apparatus, the twist angle (θ) is measured by a proximeter mounted on 
the top plate as shown in Figure 3.3. During a calibration test, the torque generated by 
the electromagnetic system and displacement of target mental plate from the front 
surface of the proximeter are both output in voltages. 0.2860 mm/V was taken as the 
calibration factor of the proximeter used in this study, which is slightly lower than 
0.2920 mm/V calibrated by GDS Ltd according to the author’s measured calibration 
results. Consequently, the torque related to the corresponding displacement of the 
mental target is calculated by Equation 3.33. Then correlate the calculated torque to 
the output voltage in drive coils, and the torque calibration factor is obtained. The 
used calibration bars were Bar 1 to 6, whose dimensions and relative physical 
properties are already listed in Table 3.1. 
 
 
3.7.2 Effect of Torsional Stiffness 
 
Herein two kinds of calibration factor are introduced, F1 is the factor obtained by 
dividing the torque to the output voltage in drive coils, which is used to input in the 
testing program; and F2 is the factor obtained by dividing the torque to the input 
voltage in the testing program, which is used to estimate the shear stress based on 
Equation 3.35. 
 
Figure 3.29 illustrates the relationship between torque calibration factor and torsional 
stiffness of calibration bar under input voltage of 2 volts at the shear frequency of 1 
Hz. It is seen that the calibration factors increase with an increasing in torsional 
stiffness of calibration bar, especially for the F2. Inputting a medium F1 is in the 
testing program will lead to an overestimation of stress for a specimen which has 
lower stiffness than that of the calibration bar corresponding to F1, and an 
underestimation of stress for a specimen which has higher stiffness than that of the 
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calibration bar. This can be interpreted by the decrease of electromagnetic force acting 
on permanent magnets when they offset from the center of drive coils during test. 
Figure 3.30 illustrates the relationship between the calibration factor and the offset of 
the metal target plate from the proximeter, which qualitatively stands for the offset of 
magnet from the center of the coils. As shown in this figure, the calibration factors 
decrease with an increase in the offset of target plate from the proximeter.  
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Figure 3. 29  Influence of torsional stiffness of calibration bar on the torque factor 
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Figure 3. 30  Variation of torque calibration factor with offset of proximeter from 

target mental plate 
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3.7.3 Effect of Input Voltage 
 
0.5 V, 1 V, 1.5 V, and 2 V were employed to analysis the influence on torque factor in 
torque calibration test. In analysis, data of Bars 1-5 are considered herein, and data of 
Bar 6 are not included due to less precision of measurement by the proximeter 
because the displacement of target plat is too small when the input voltage is less than 
2 V.  
 
Figure 3.31 presents the variation of calibration factor with the input voltage. As 
shown in this figure, in general, the tested values of F1decrease with increasing input 
voltage, however, the values of F2 do not show a clear tendency as F1 due to data 
scatter. The reduction is possibly accounted for the offset of the proximeter from the 
target plate as addressed above. Figure 3.32 presents the variation of relative deviation 
of torque factor with input voltage for five calibration bars. In analysis, the mean 
torque factor of each bar is used as the reference factor. The relative deviation of 
torque factor slightly increases with input voltage, but the relative deviation is relative 
low. In general, the relative deviation just varies from -1.733% to 1% under input 
voltage increasing from 0 V to 2 V, and the maximum range of deviation is still within 
the range from -2% to 2%. One can conclude that influence of input voltage on testing 
results of shear modulus is negligible in practice. 
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Figure 3. 31  Variation of torque calibration factor with offset of proximeter from 

target mental plate 

 69



 

-20

-10

0

10

20

0 0.5 1.0 1.5 2.0 2.5

δF = 1.4034Vin -1.7333

Shear frequency: 1Hz
Bar 1-5

Input Voltage , Vin (V)

R
el

at
iv

e 
D

ev
ia

tio
n 

of
 T

or
qu

e 
Fa

ct
or

, δ
F 

(%
)

 
 
Figure 3. 32  Relative deviation of torque factor versus input voltage in torsional 

shear test 
 
 
3.7.4 Proposed Procedure 
 
Considering the fact that the input voltage has less influence on the torque factor 
during test, the influence of torsional stiffness is the unique factor considered in the 
proposed method herein. To minimize the influence of input voltage on torque factor, 
the average value of torque factors obtained from all input voltage for each bar is 
plotted against torsional stiffness in Figure 3. 33.  
 
As shown in Figure 3.33, the relationship between torque factor and torsional stiffness 
can be predicted by an exponential function as 
 

a n
TF K b= +        (3.36) 

 
in which, a, b, and n are fitting parameters, KT is the torsional stiffness of tested 
specimen. 
 
Figure 3. 34 compares the relative deviation of torque factor with torsional stiffness of 
calibration bar based on the mean torque factor (a factor obtained from a medium bar 
is suggested by GDS instrument Ltd (GDSRCA-Manual 2003) ) with the correction 
method (Equation 3. 36) proposed herein. As shown in this figure, using mean torque 
factor may overestimate torque factor resulting the shear modulus of softer specimen 
and underestimate that of stiffer specimen. The deviation of torque factor and 
resulting shear modulus may varies from -19% to 14% for the tested calibration bars. 
The proposed method may significantly reduce the deviation to nearly zero; the 
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maximum deviation is only 2%. 
 
The proposed method for torque calibration is summarized as follows,  
(1) Prepare several round bars with knowledge of shear modulus; calculate the 

torsional stiffness of calibration bar by Equation 3.30. 
(2) Measure the torque factor by testing on these bars. 
(3) Plot torque factor against torsional stiffness in a diagram like Figure 3.33, and find 

an empirical relationship between these two parameters as Equation 3.36. 
(4) In a torsional shear test on soil specimen, the torsional stiffness of specimen can 

be calculated by Equation 3.30, and the shear modulus of tested specimen may be 
roughly estimated by resonant column test. 

 
Though the proposed method may well estimate shear modulus of calibration bar, 
when it is applied in soil test, special care should be taken due to the torsional 
stiffness decreases with shearing strain amplitude. Using the shear modulus by 
resonant column test at lower strain amplitude may be somewhat overestimated 
torsional stiffness of specimen at higher strain level; as a result shear modulus by 
torsional shear test will be overestimated at higher strain shear amplitude, especially 
for stiffer specimen. 
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Figure 3. 33   Diagram of determination of torque factor for torsional shear test 
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Figure 3. 34   Comparison of the relative deviation of torque factor versus torsional 

stiffness by the mean value and proposed methods 
 
 
 
3.8 Summary 
 
The used apparatus and relative fundamentals are described in chapter. Two simple 
and reliable methods are presented for determination of the mass polar moment of 
inertia of drive system and the torque factor for torsional shear test. The procedure for 
resonant column test can minimize the deviation of shear modulus to around 1% 
compared to the maximum deviation of conventional method, which may reach 28.3% 
when the mass polar moment of inertia from the smallest calibration bar and 20.35% 
from the mean value of data for all calibration bars at the frequency of 235.8 Hz. The 
method for calibration of torque factor may also reduce the deviation of shear 
modulus from by the mean factor method from 19% to 1%.  
 
 



 

 
 
 

CHAPTER 4 MATERIALS AND TESTING 
PROCEDURES 

 
 
 
 
4.1 Introduction 
 
The geotechnical properties of soils in site are influenced by a lot of factors, such as 
grain characters, plasticity, Water Contents, void ratio, stress state, and so forth. The 
testing boundary conditions simulating that of soil in the field are also of importance. 
Therefore, it is essential to well know the basic physical properties of testing soils and 
design an appropriate testing program to simulate in-situ conditions during tests. In 
the following sections, the characters, testing procedures, as well as the sample 
preparation will be described in detail. 
 
 
4.2 Properties of Testing Sands 
 
Four different source sands, Berlin sand, Cuxhaven fine sand, Cuxhaven medium sand, 
and Braunschweig coarse sand with gravel, were used in this study. Considering the 
distribution and importance of Berlin sand, most tests were carried out on this sand, 
and some accessorial tests were performed to confirm the findings or comparison 
purpose. In addition, Berlin sand is the primary soil material used in the Geotechnical 
Engineering Institute of the Technical University of Berlin for other research projects 
for many years. Soil particles of the used sands are round or secondary round in shape, 
Figures 4.1-4.4 are the microscopes of the material used in this study. The primary 
coarse mineral of used sands is quartz, but Berlin sand includes a small content of 
feldspar, as well as a little amount of mica. The basic properties of these soils are 
listed in Table 4.1, and the grain size characteristic curves are shown in Figure 4.5. 
 
Table 4. 1 Basic physical and mechanical properties of sands used in this study 
 

Sands 
d10 

(mm) 
d30 

(mm) 
d50 

(mm) 
d60 

(mm)
Cu Cc emin emax 

ρs 

(g/cm3) 
φc 

(º) 
BS 0.229 0.390 0.620 0.777 3.39 0.86 0.368 0.708 2.65 32.64

CFS 0.094 0.103 0.112 0.116 1.23 0.96 0.569 0.980 2.61 33.20
CMS 0.142 0.263 0.369 0.437 3.08 1.12 0.409 0.753 2.66 32.69
BRCS 0.253 0.502 1.000 1.459 5.76 0.68 0.349 0.690 2.67 -----
BS=Berlin sand, CFS= Cuxhaven fine sand, CMS= Cuxhaven medium sand, BRCS= 
Braunschweig coarse sand with gravel 
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Figure 4. 1  Micrographs of Berlin sand (Left: 2000 μm, Right: 1000 μm) 
 
 

    
 
Figure 4. 2  Micrographs of Cuxhaven fine sand (Left: 1000 μm, Right: 200 μm) 
 
 

    
 
Figure 4. 3  Micrographs of Cuxhaven medium sand (Left: 1000 μm, Right: 500 μm) 
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Figure 4. 4  Micrographs of Braunschweig coarse sand with gravel (Left: 2000 μm, 

Right: 2000 μm) 
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Figure 4. 5  Grain size distribution of the used sands in this study according to 

German Industry Standard (DIN 18123 (1996)) 
 
 
 
4.3 Specimen Preparation  
 
Two methods were adopted to prepare specimens in this study, one is raining 
technique, and the other is tamping method. Both methods make specimens inside the 
triaxial chamber. Cylindrical specimens of 5 cm in diameter and 10 cm in height were 
prepared no matter which technique was taken. In general, the raining technique was 
used to prepare dry specimens with the relative densities lower than 50%, and the 
tamping technique was used to make wet specimens and those specimens having the 
relative densities larger than 50%. In the following sections, these two methods will 
be addressed in detail. 
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4.3.1 Tamping Method 
 
Tamping method has an advantage of raining method in controlling the density of 
specimen even though the operator is not very much familiar with it. Tools used in 
this method are shown in Figure 4.6. They are five cups to contain soil, one split 
specimen mold with two tubes connecting to a vacuum, callipers, funnel, scoop, 
screwdrivers, feather brush, mold clamp, scissors, mold extension, membrane, two 
strips of filter paper, three O-rings, spirit bubble, and tamping hammer.  
 
For getting a uniform density, the under-compaction effect induced by the energy 
from tamping next layers during specimen preparation. The under-compaction of each 
layer can be calculated by the following equation, and the relative parameters are 
illustrated in Figure 4.7. 
 

1uu (
1n m n

m
)= × −

−
                      (4.1) 

 

(( 1) (1 u /100))n
Hh n
m

= × − + + n

n

                   (4.2) 

 
*

n relh h h= −                           (4.3) 
 

in which, is the under-compaction of the nth layer, is the under-compaction of 
the first layer, giving by experience (3% is taken for the sands used in this study),  
and are the total number and number of layer, respectively, is the height 
between the top of the nth layer and top plane of filter stone, is the height between 
the top of the split mold and top plane of the filter stone (102.35 mm is the length of 
the used mold), is the controlling length of tamping hammer for the nth layer 
tamping, and is the height between the top of extension and the top of bottom 
filter stone.  

un 1u
m

n nh
H

*
nh

lreh

 

 
 
Figure 4. 6  Tools and accessories used for specimen preparation in this study 
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Figure 4. 7  Sketch map of specimen preparation by tamping method and relative 

controlled parameters 
 
 
Specimens were tamping in five layers; the total mass required can be readily 
calculated based on the knowledge of the potential volume of specimen and sand 
specific gravity, maximum and minimum void ratios, and the desired relative density. 
Five parts of sand with identical mass were stored in five glass cups as shown in 
Figure 4.6. The progress of specimen preparation is shown in Figure 4.8. The steps of 
specimen preparation are given as follows. 
 
(1) Weigh five parts of sand with identical mass, and store in five cups; 
(2) Cut the membrane in an appropriate length, and place it on the base pedestal, then 

entangle two O-rings to seal the membrane to the pedestal with the help of the 
specimen mold; 

(3) Place the split mold on the pedestal, and fix it with clamp, then entangle one 
O-ring to the mold head, connect the vacuum to the mold and drain tube and close 
the drain valves. 

(4) Insert two trips of filter paper, and out entangle the membrane to mold head, and 
then apply -30 kPa by the vacuum to ensure the membrane is well stick to the 
mold wall; thereafter mount the mold extension; 

(5) Place the funnel with the extensional tube stays on the filter stone inside the mold, 
then pluviate dry sand into the funnel, then slowly fall sand by lifting the funnel 
with tube mouth gently contacting sand surface. For wet sample preparation, sand 
is immediately fallen into the mold after being mixed with given amount of water 
to avoid too much water evaporation. 
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Figure 4. 8  Steps of specimen preparation by tamping method used in this study 
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(6) Adjust the length of tamping hammer according to Equation 4.3, and then use the 
feather brush to gently flatten the sand surface, thereafter, tamp the sand surface to 
the desired elevation. Repeat this step to complete sand tamping.  

(7) Carefully mount the top cap to the specimen after the mold extension is removed, 
then open the drain valves to apply -30 kPa to hold the specimen, then remove the 
negative pressure which is used to hold the membrane stick to the mold wall. 

(8) Up push the membrane and entangle the O-ring to seal the membrane to the top 
cap, then dismount the split mold and the preparation steps are complete (see 
Figure 4.8-8). 

 
 
4.3.2 Raining Method 
 
Steps of raining method are similar to those of tamping method addressed above 
except missing Step 6 and a little bit difference in Step 5. Normally, this method can 
just be suitable for dry specimen preparation; the desired density is obtained by 
controlling the opening and falling height from funnel mouth to the sand surface. 
During the falling, the height between the mouth and sand surface is kept stable to get 
a uniform specimen. At the end of Step 5, the top of specimen is flattened by a scraper. 
The mass of specimen can be measured by the distance of sand mass weighed before 
and after sample preparation. 
 
 
4.3.3 Dimension Measurement 
 
After specimen is prepared, the next step followed is dimension measurement. 
Normally, five elevations of specimen with heights of rough 1 cm, 3 cm, 5 cm, 7 cm 
and 9 cm from the top of bottom filter stone are measured, and the mean value is 
taken as the diameter; three locations distributing in 120 degrees interval on the top 
view of the circle are measured, and the mean value is taken as the height of specimen, 
measurement were conducted as shown in Figure 4.9. All performances of 
measurement were carried out by the callipers with the precision of 0.01 mm.   
 

    
 
Figure 4. 9  Dimension measurement by callipers (Left: Diameter, Right: Height ) 
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4.3.4 Deviation in Dimension Measurement 
 
The precision of dimension measurement is an important and difficult subject in 
geotechnical investigation both in the laboratory and in situ. The deviation in 
measurement may be caused by precision of measuring instruments, measuring 
methods, and operators, and so forth. Among these factors, the deviation intruded by 
operators may be the primary factor, and it can not be eliminated even the operator is 
very skilled.  
 
The core investigation of this study involves preloading effects on dynamic properties 
of sand, the dimension of specimen may vary a lot during the preloading is applying. 
The accumulated axial strain at the end of preloading on medium dens specimen may 
be up to over 3% after a large number of preloading cycles under large vibration 
amplitude. No considering the change of dimension may introduce some errors in 
results analysis; therefore, it is very of importance to know the deviation in specimen 
dimension caused by measuring. Herein, the deviation caused by operator is addressed 
by taking three density specimens as example. In addition, the deviation in 
small-strain shear modulus introduced by the measuring deviation in specimen 
dimensions is also discussed in the end of this section.  
 
Precision Evaluation 
 
In this section, three relative densities of 30%, 60%, and 90% of Berlin sand are here 
analyzed for the evaluation of the precision of dimension measurement. Standard 
cylindrical specimens prepared in this study may have a dimension of 4.900 cm in 
diameter and 10.150 cm in height for the Dr=30% specimen, 4.970 cm in diameter 
and 10.230 cm in height for the Dr=60% specimen, 5.000 cm in diameter and 10.240 
cm in height for the Dr=90% specimen based on a large number of dimension 
measurement data. The basic physical properties are shown in Table 4.1. Based on 
previous experience of measurement, the range of measuring deviation in diameter 
may vary from -0.02 cm to 0.02 cm with the increment of 0.005 cm, and that of height 
may vary from -0.01 cm to 0.01 cm with the increment of 0.005 cm. 
 
Figure 4.10 illustrates the variation of relative density with deviation in specimen 
dimension for three different reference densities specimen. It is shown in this that, the 
measured relative density may range from 25.7% to 34.3% for the Dr=30% specimen, 
from 56% to 64% for the Dr=60% specimen, and from 86.3% to 93.7% for the 
Dr=90% specimen, respectively, under the same range of deviation in specimen 
dimension. The total range of deviation in relative density is 8.6% for the Dr=30% 
specimen, 8% for the Dr=60% specimen, and 7.4% for the Dr=90% specimen, 
respectively. The total deviation of relative density seems decreasing with the relative 
density of specimen, which may be partially influenced by the choosing dimension of 
the reference specimen.  
 
It should be noted that the deviation in relative density of relative dense specimen 
normally is lower than that of relative looser specimen; the cause of this deviation is 
due to higher precision of dimension measurement of relative dense specimen. As 
known, the fact that the looser specimen is easier compressed than that of denser one 
during the measurement is carried out by calipers, results in the reading being much 
more deviation even the pressure applied by hand can be well controlled.  
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Figure 4. 10  Variation of relative density with deviation in diameter at various 

deviations in height for various density specimens 
 
 
Deviation in Small-strain Shear Modulus 
 
Deviation in small-strain shear modulus analyzed herein is based on the deviation of 
specimen dimension measurement presented above. Several confining pressures are 
used to analyze this effect, they are 15 kPa, 25 kPa, 50 kPa, 100 kPa, 200 kPa, and 
400 kPa, and 800 kPa. The empirical equation (Equation 5.4) of small-strain shear 
modulus proposed for Berlin sand is adopted for this purpose, the deriving process 
will be presented in Chapter 5 later. The maximum positive and negative deviations of 
dimension are adopted to analyze their influence on small-strain shear modulus. They 
are 0.02 cm in diameter and 0.01 in height for positive value, and 0.02 cm in diameter 
and 0.01 in height for negative value, respectively. 
 
Figure 4.11 illustrates the variation in small-strain shear modulus with isotropic 
confining pressure due to the maximum positive and negative deviations for three 
reference density specimens. Figure 4.12 presents the deviation of small-strain shear 
modulus of these three reference specimens with confining pressure due to the 
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deviation of measuring dimension. It is seen that in this figure, the deviation of 
small-strain shear modulus increase with confining pressure for all specimens, this 
deviation increases with the density of specimen as well. The deviation under the 
confining pressure of 800 kPa ranges from -23.3 MPa to 24.5 MPa for the 30% 
specimen, from -16.5 MPa to 17.3 MPa for the 60% specimen, and from -11.7 MPa to 
13.3 MPa for the 30% specimen for the range of dimension deviation from -0.02 cm 
to 0.02 cm in diameter and from -0.01 cm to 0.01 cm in height, respectively. The 
relative deviation in small-strain shear modulus under any confining pressure level is 
relative small, it ranges from -3.7% to 3.9% for the Dr=30% specimen, from -3.8% to 
4.0% for the Dr=60% specimen, and from -4.0% to 4.2% for the Dr=90% specimen, 
respectively.  
 
Actually, the measuring relative density of specimen normally deviates from the 
expected density by -2% to 3% based on a large number of measuring data, which 
implies that the actual deviation of relative density may less. The deviation range of 
relative density falls into the range of the deviation range which has been discussed 
above.  
 
Based on the discussion foregoing, one can conclude that the influence of deviation in 
dimension measuring on small-strain shear modulus is relatively less; therefore the 
precision of dimension measurement can be acceptable. 
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Figure 4. 11  Variation of small-strain shear modulus due to the deviation of 

measuring dimension for various reference specimens 
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Figure 4. 12  Deviation in small-strain shear modulus due to the deviation of 

measuring dimension for three reference specimens 
 
 
 
4.4 Testing System Installation 
 
After specimen is prepared as shown in Figure 4.8-8, the installation of drive system 
is followed as the following steps. 
 
(1) Rigidly mount the hollow support cylinder on the base plate by six screws (Figure 

4.13-1 and 4.13-2).  
(2) Place the drive system on the support cylinder and gently adjust the drive plate in 

place (Figure 4.13-3). 
(3) Connect the accelerometer cable to the accelerometer mounted on the drive plate 

(Figure 4.13-4). 
(4) Place four screw shoots to the bottom of leveling screws in case that the 

penetration of the screws into the top of support cylinder occurs when the drive 
system is tighten to support cylinder (Figure 4.13-5). 

(5) Carefully screw in four screws to tightly connect the drive plate to the top cap 
(Figure 4.13-6-4.13-8). 

(6) Level and center the drive coils to ensure the permanent magnets staying at the 
centers of drive coils for conventional resonant column test, and slightly higher of 
the centers of coils to have sufficient place for the sediment of drive plate (Figure 
4.14-1 and 4.14-2). 

(7) Screw the fixing screws to ensure the drive system rigidly connected to support 
cylinder tightened on the base plate (Figure 4.14-3). 

(8) Connect the coil cables to their corresponding connection ports (Figure 4.14-4 and 
4.15-1). Now make a trial resonant column test at minimum small strain level to 
test if the test is successful, if not, find the problem. 
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Figure 4. 13  Steps of drive system installation of resonant column apparatus (1) 
 

 84



 

(9) Mount the LVDT on the top of drive plate and connect the LVDT cable to its 
connection port (Figure 4.15-2 and 4.15-3). Then go to computer to read the 
LVDT reading to test if the connection is correct or not. If correct, fix the top plate 
to drive coil boxes (Figure 4.15-4). 

(10)  Mount the proximeter to the top plate and adjust the proximeter an appropriate 
location, normally 1.4 mm is taken as the reasonal distance between the 
proximeter and metal target plate considering the accurate measurement scope of 
the used proximeter is within the range from 0.2 mm to 3.0 mm (Figure 4.15-5). 

(11)  Lower the up part of confining chamber in place and fix it to the base plate by 
six dig screws (Figure 4.15-6).   

 
Note that, if the torsional shear test is not conducted, Steps 10 and 11 are not included 
for the system set up. In addition, the bender elements are permanent mounted in the 
base pedestal and the top cap; therefore, the installation is automatically completed 
after the drive system installation is complete. 
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Figure 4. 14  Steps of drive system installation of resonant column apparatus (2) 
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Figure 4. 15  Steps of drive system installation of resonant column apparatus (3) 
 
 
4.5 Testing Procedures 
 
4.5.1 Confining Pressure 
 
Dynamic properties of Berlin sand (Chapter 5) 
 
The confining pressure mentioned in this study is isotropic pressure; its range varied 
from 10 kPa to 800 kPa. For stage tests, the pressure was applied starting from low 
stress level to the maximum of 800 kPa for small-strain shear modulus and damping 
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ratio tests. The nonlinear dynamic properties were measured under the maximum 
confining pressure for each specimen, these maximum pressures were 50 kPa, 100 
kPa, 200 kPa, 400 kPa, and 800 kPa, the test for each sample was stopped after the 
high strain amplitude dynamic shear modulus and damping properties had been 
complete. 
 
Preloading Effects on Dynamic sand Properties (Chapter 6) 
 
Three levels of confining pressure, under which the preloading was applied to 
specimens, were adopted in this study. They are 50 kPa, 100, and 200 kPa, based on 
the fact that long term vibrations normally occur at a relative shallow depth under 
ground, which involving traffic engineering, wind power plant, offshore engineering, 
machine foundation, and so forth. In addition, the confining pressure may increase 
from 50 kPa to 400 kPa after the preloading under 50kPa was completed to 
investigate reloading effect on the small-strain shear modulus, and decrease from 200 
kPa to 10 kPa after the preloading under 200kPa was completed to investigate 
unloading effect on the small-strain shear modulus. 
 
 
4.5.2 Specimen Density 
 
The densities of specimens range from 18% to 90.6% were prepared for the 
investigation of dynamic properties of Berlin sand, and the empirical equation for 
predicting small-strain shear modulus was proposed based on this range of density. 
The nonlinear dynamic properties were primarily tested on four groups of the 
densities of 32.5%-34.4%, 48.1%-49.6%, 62.2%-63.7%, and 77.5%-78.2%. 
 
Specimens of medium dense density around 40% and dense density around 75% were 
prepared to study the preloading frequency effects and preloading ratio on dynamic 
properties of sand. In addition, two specimens with the Dr=88% and 96.4% were 
prepared for the preloading ratio effect as well. Five specimens of the relative 
densities around 40% and one specimen of 90.4% relative density and the 96.4% 
density specimen prepared for the preloading ratio effect were reloaded to study the 
reloading effect on small-strain dynamic properties. Nine medium density (Dr=40%) 
and six high density (Dr=90%) Berlin sand specimens and three other type medium 
dense sand specimens were prepared to investigate the unloading effect after 
preloading. 
 
Seven Berlin sand specimens with the relative density ranging from 42.2% to 55.9% 
and one high dense specimen with relative density of 85.5% are prepared to study the 
water content effect on dynamic properties of Berlin sand. 
4.5.3 Water Content 
 
Four medium dense specimens with the relative density ranging from 51.3% to 55.9% 
were prepared with the water content ranging from 0% to 9% in the in increment of 
3%, they were initially tested at small strain amplitude under the confining pressure 
increasing from 15 kPa 200 kPa to investigate the water content influence on 
small-strain dynamic properties, thereafter the preloading stress amplitude of 40 kPa 
was applied to the specimens under the confining pressure of 200 kPa up to 100,000 
cycles of vibration except for the Dr=51.3% specimen with 6% water content 
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specimen which was subjected to 800,000 cycles of preloading. The 6% and 9% water 
content specimens were made the nonlinear dynamic properties tests after the 
vibration rested for 10 minutes. And the 0% and 3% water content specimens were 
conducted small-strain shear modulus tests at unloading path of confining pressure 
from 200 kPa to 15 kpa after the pressure was unloaded the desired level for 10 
minutes, then the confining pressure was reloaded to 200 kPa to make the nonlinear 
dynamic properties tests after the pressure was stable for 10 minutes. 
 
In addition, two medium dense specimens with relative density of 55.5% and 55.8% 
were prepared with water content of 3% to study the water content effects under the 
confining pressure of 50 kPa and 100 kPa. The Dr=55.8% and Dr=55.5% specimens 
were vibrated with the preloading stress of 10 kPa and 20 kPa to 100,000 cycles under 
the confining pressure of 50 kPa and 100 kPa, respectively. After the vibration was 
complete, the Dr=55.8% specimen was made the small-strain dynamic properties tests 
under high confining pressure by increasing the pressure up to 200 kPa, meanwhile 
made the nonlinear dynamic properties tests as well. As for the Dr=55.5% specimen, 
after the preloading was complete, the confining pressure was unloaded to study the 
effect of water content on small-strain shear modulus at unloading path.  
 
 
4.5.4 Shearing Strain Amplitude 
 
As reported in previous investigations, strain has an extreme influence on dynamic 
properties of soil; therefore tests should be carried out at definite strain amplitude. For 
small-strain tests, the shearing strain amplitude was controlled bellow 0.001% for any 
test in this study. As for the nonlinear dynamic properties tests, the shearing strain 
amplitude was increased from possible low level to possible high level, in this study, 
normally the shearing strain amplitude is range from 0.0001% to 0.09%. 
 
 
4.5.5 Number of Preloading Cycles 
 
In previous investigations, most researchers applied the prestraining on specimens by 
resonant vibration mode; the starting previous vibration number normally was beyond 
several hundred cycles, the starting number of cycles was 1,000 for Drnevich (1967), , 
10,000 for Wichtmann and Triantafyllidis (2004), the absence of low number data is 
attributed to the resonant vibration mode by which around hundreds of vibrating 
cycles are necessary to find the system vibration resonant frequency. Therefore the 
influence of low number of cycles on small-strain shear modulus could not be studied 
when applied the previbration by resonant column mode. In this study, the influence 
of number of cycles can be studied from the first cycle to very large cycles as 
expected by preloading concept (stress-controlled) replacing prestraining concept 
(strain-controlled). Thus the absent information of previous works could be well 
supplemented in this study. The number of preloading cycles applied for each 
specimen is presented on its corresponding curve. 
 
 
4.5.6 Preloading Stress and Frequency 
 
In previous investigations, the prestraining level was generally adopted as the 
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controlling vibration parameter. Actually, however, the shearing strain amplitude 
calculated in resonant column tests is a function of resonant frequency (fr) and the 
voltage output (Vout) from charge amplifier corresponding to this resonant frequency. 
In resonant column test, even if the same the voltage input (Vin) is applied, the Vout 
and fr corresponding to this Vin may change with the stiffness (shear modulus) of 
specimen, therefore the shearing strain amplitude may vary due to the change in these 
parameters during the test. Hence, one should alter the input voltage after each stack 
of vibration to achieve constant shearing strain amplitude, as well as the vibration 
frequency. However, it is impossible to keep changing these parameters if a large 
number of cycles are applied to specimen. Therefore, in previous researches, the 
shearing strain amplitude was approximately kept by high strain modulus test by 
changing the input voltage value and frequency (Drnevich and Richart 1970; 
Wichtmann and Triantafyllidis 2004). Thus the prestraining is not at a constant level 
using this concept as the change of the stiffness.  
 
In practice, the dynamic response is not strain controlled but stress controlled problem, 
therefore using dynamic preloading standing for prestraining has more practical 
significance than, furthermore, using preloading can also overcome the disadvantage 
of the deviation due to the usage of prestraining to study the effect of vibration history 
on dynamic properties of sand. The calculation of preloading stress is based on the 
torsional shear test calibration method described in Chapter 3. 
 
The preloading stress amplitudes used in this study were 5 kPa, 10 kPa, 15 kPa, and 
20 kPa for the case of the confining pressure is equal to 50 kPa to investigate the 
preloading ratio effects; 20 kPa for the case of the confining pressure is equal to 100 
kPa to investigate the preloading frequency effects; and 40 kPa for the case that 
specimens were vibrated under the confining pressure of 200 kPa. 
 
 
4.5.7 Pressure Release Effects 
 
Pressure release effect was accidentally inspired by one trial preloading test on on 
medium sand under the confining pressure of 100 kPa. This test was carried out by 
applying preloading stress amplitude of 20 kPa at the frequencies of 10 Hz. Figure 
4.13 illustrate the variation of small-strain shear modulus with number of preloading 
cycles including the pressure release effect on small-strain shear modulus. The 
specimen was prepared by raining sand method; there was a flaw in the shape of the 
specimen that the size of two ends were much bigger than the middle due to the air 
leakage when the vacuum was applied to suck the membrane to stick on the sample 
mold. As the small-strain shear modulus was complete after 20,000 cycles of 
preloading, the preloading was applied again; unfortunately, however, as the vibration 
continuously further ran for around 1,000 cycle, one magnet turned to lean on the 
coils of drive system thanks to uneven sediment of specimen and partial slippage 
between the top cap and specimen, which resulted in the preloading had to be stopped 
to adjust the coils the right place. The same problem occurred again after 15,000 
cycles of vibration was complete, and confining pressure had to be released and 
applied the vacuum to hold the specimen during the confining pressure was removed. 
For these to stage, the vacuum was applied to 30 kPa as the level during the 
preparation of specimen. Additionally, to further confirm the pressure release effect on 
dynamic shear modulus, confining pressure was intentionally unloaded to 30 kPa for 
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20 minutes after applying 200,000 cycles of preloading, then reloaded the pressure to 
100 kPa again to determine the small-strain shear modulus after pressure release. 
Thereafter the preloading vibration was applied to 1,000,000 cycles. 
 
As shown in Figure 4.13, the small-strain shear modulus after pressure release jumps 
much higher its corresponding value before pressure release. As the vibration 
continues the small-strain shear modulus rapidly reduce, if one connects the those data 
points without pressure release the Gmax(Nc) curve becomes near smooth sunken in 
shape. 
 
To systemically investigate this effect, two dense specimens with similar density were 
subjected to 100,000 cycles of preloading with stress amplitude of 40 kPa at the 
frequency of 20 Hz under 200 kPa. The confining pressure was gradually unloaded to 
a lower pressure and held for 10 minutes, then reloaded to 200 kPa to make the 
small-strain shear modulus test, repeated this procedure to the minimum pressure of 
25 kPa.   
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Figure 4. 16  Development of small-strain shear modulus with number of cycles after 

confining pressure release for Berlin sand under the confining pressure 
of 100 kPa. 

 
 
4.5.8 Accumulated Axial Strain  
 
The accumulated axial strain was monitored by a linear variable differential 
transducer (LVDT) mounted at top center of drive plate for each test in this study. 
Based on the LVDT data, the variation of void ratio during testing was obtained. The 
calculation process and discussion will be presented in Chapter 6 later. In addition, the 
accumulated axial displacement can also used to recalculate the distance between two 
bender elements mounted at the top cap and bottom pedestal when the bender element 
test is performed. 
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For getting the LVDT data, the initial reading was set zero after the cell chamber was 
fixed before the confining pressure was applied. The negative readings mean 
specimen sediment and positive readings indicate extension during tests. 
 
 
4.5.9 Bender Element Test 
 
For the purpose of comparison of the small-strain shear modulus obtained from 
resonant column tests, some bender element tests were made on the same specimen. 
Normally, the bender element test was carried out before the resonant column test was 
performed to avoid the influence of vibration. The testing results presented in this 
study are the data obtained from a sinusoidal signal with excitation frequency of 10 
Hz. The LVDT was used to monitor the variation of the height of specimen, and the 
height of specimen could be changed all the time during testing. Note that the tested 
velocity was shear wave velocity, and the compression wave velocity was not 
determined in this study. 
 
 
4.6 Summary 
 
The properties of testing four used sands are presented in detail in the beginning parts, 
the tamping and raining method of specimen preparation are detailedly descried, 
influence of deviation in specimen dimension on the relative density of sample is 
presented, within the deviation range from -0.02 cm to 0.02 cm for diameter and from 
-0.01 cm to 0.01 cm for height. Meanwhile the influence of deviation in dimension on 
small-strain shear modulus of Berlin sand are analyzed, and finally testing procedures 
are addressed in detail in this chapter.  
 
 



 

 
 
 
 
CHAPTER 5 DYNAMIC PROPERTIES OF BERLIN SAND 
 
 
 
 
5.1 Introduction 
 
Berlin sand extensively distributes in Berlin area, which have been employed in many 
practical projects, in which many geotechnical problem are observed especially 
dynamic problems which are related to traffic foundations, and tunneling. It is of 
importance to well understand the dynamic properties of Berlin sand not only for its 
basic dynamic behaviors but also giving evidence to analyze the dynamic preloading 
effects on dynamic behaviors of sand in Chapter 6.  
 
 
 
5.2 Small-strain Shear Modulus 
 
By definition, the small-strain shear modulus, or maximum shear modulus, Gmax, is 
assumed to be constant with increasing shearing strain amplitude when the strain level 
is lower than a cyclic threshold, which is called elastic or linear cyclic threshold 
shearing strain, tlγ . Berlin sand is nonplastic material, whose tlγ  is assumed to be 
4×10-6 according to large numbers of testing data by resonant column test. Drnevich 
and Richart (1970) reported that sand could be vibrated for many cycles at the 
shearing strain amplitude less than 1×10-4 without appreciable change in density and 
shear modulus. For the purpose of practical application, Hardin and Drnevich (1972) 
suggested 2.5×10-5 as the linear shearing strain threshold to determine the Gmax. Some 
researchers (Hardin and Richart 1963; Isenhower and Stokoe 1981; Shen, Li et al. 
1985; Qian, Gray et al. 1993) has reported that when the shearing strain amplitude 
less than 1×10-5, shearing strain influence on shear modulus of various soils is 
negligible. As mentioned in Chapter 2, the tlγ  was defined as the strain at which the 
ratio of the modulus to the Gmax is 0.99, it ranges from 4×10-6 to 4×10-5 with an 
increase in plasticity index of soils (Vucetic 1994). 
 
Figure 5.1 shows the reduction tendency of shear modulus with increasing shearing 
strain amplitude for Berlin sand. It is seen that the reduction of Gmax is less than 1% 
when the shearing stain is less than 6×10-6 for confining pressure ranging from 50 kPa 
to 800 kPa. The shear modulus measured at the strain of 1×10-5 is 0.97 of that 
measured at 6×10-6 under confining pressure of 50 kPa, which means that using the 
strain of 1×10-5 to determine the Gmax is not reliable when the confining pressure is 
relatively low. Therefore, the Gmax should be determined at the shearing strain 
amplitude below 6×10-6 for Berlin sand if possible. However, for some very low 
confining pressure tests, it is very difficult to reach this small strain due to the limit of 
instrument to read a clear signal at very low vibrating amplitude thanks to the softer 
sample. Consequently, the small-strain shear moduli measured in this study is actually 
measured at strain larger than 6×10-6 but lower than 1×10-5 for low pressure tests. 
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Figure 5. 1  Normalized modulus curves at various confining pressures for Berlin sand 
 
 
5.2.1 Effect of Void Ratio 
 
Small-strain shear moduli of Berlin sand with various densities determined under four 
levels of confining pressure are plotted on Figure 5.2. As shown in this figure, the 
Gmax decreases with increasing void ratio, which is in agreement with previous results 
in literature. It seems that the decrease of modulus with void ratio is faster for higher 
confining pressure than for lower pressure. This phenomenon is possibly caused by 
the influence of confining pressure. To eliminate the influence of confining pressure, 
the Gmax is normalized by square root of confining pressures ( 0.5

0σ ), which was 
suggested by most investigators. The analyzing results are plotted in Figure 5.3. The 
variation of shear modulus with void ratio can be approximately expressed by the 
following empirical equation: 
 

0.5 b
max 0/ / (0.3 0.G Sσ = + 7 )e                   (5.1) 

 

b

1( )
(0.3 0.7 )

F e
e

=
+

                   (5.2) 

 
in which, Gmax and 0σ  are small-strain shear modulus and isotropic confining 
pressure, respectively, have the unit in kilo pascal (kPa); S=4285 is stiffness 
coefficient, and b=2.96 is fitting parameter. 
 
For the purpose of comparison, previous empirical equations were also employed to 
fit these data; unfortunately, however, these equations fail to predict these data, this 
failure exhibits not only in large maximum deviation but also low correction 
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coefficient as depicted in Figure 5.3. 
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Figure 5. 2  Variation of Small-strain shear modulus with void ratio under different 
confining pressures 
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Figure 5. 3  Relationship between small-strain shear modulus normalized by square 
root of confining pressure and void ratio of Berlin sand 
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5.2.2 Effect of Confining Pressure 
 
Confining pressure and void ratio are acknowledged as two of the most important 
factors which affect the stiffness of particulate materials. It has been extensively 
confirmed that shear modulus increases with an increase in confining pressure. 
 
Figure 5.4 plots the relationship between small-strain shear modulus and isotropic 
confining pressure both in logarithmic scale for various densities of Berlin sand. It is 
shown that the relationship could be well fitted by exponential function. As Figure 5.4 
shown, it seems that the pressure effect exponent, n, slightly decreases from 0.515 to 
0.477 with an increase in relative density from 33.7% to 90.6%. As we all know, the 
density of sand may increase with increasing pressure which it is subjected to, the 
magnitude of increase is greater for lower density sample than for higher density 
sample. However, the densities of samples are assumed constant under all stress level 
during tests. As a result, shear modulus shows a slightly higher pressure dependency 
for lower density sand than for higher density sand. 
 
In despite of the slight variation of the pressure exponent, n, the variation of 
small-strain shear modulus with confining pressure well follows linear relation on 
double logarithmic graph, which well agrees with existing results. 
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Figure 5. 4  Relationship between small-strain shear modulus and confining pressure 
of Berlin sand 

 
 
Measured small-strain shear moduli are normalized void ratio function Equation 5.2, 
for comparison, they were also normalized by the following void ratio functions: 
F(e)=1/(0.3+0.7e2), F(e)=(2.17-e)2/(1+e), and F(e)=1/(0.3+0.7e2.96), respectively. 
Fitting results are illustrated in Figure 5.5.  
 
As illustrated in this figure, it can be clearly seen that the normalized modulus linearly 
increases with confining pressure for all these functions. Previous functions have less 
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capacity to fit the relationship between the normalized shear modulus and confining 
pressure. It should be noted that relationship between confining pressure and shear 
modulus normalized by Equation 5.2 is well fitted by Gmax/F(e)=S101.3(1-n)(σ0)n. This 
pressure power is 0.504, which is quite close to 0.5, which was employed to derive the 
void ratio function in this study.  
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Figure 5. 5  Influence of isotropic confining pressure on the small-strain shear 

modulus normalized by various void ratio functions 
 
 
5.2.3 Empirical Equation 
 
5.2.3.1 Equation proposal 
 
In Sections 5.2.2 and 5.2.3, the effects of confining pressure and void ratio on Gmax 
are discussed separately; in fact, however, both factors jointly influence the Gmax, it is 
difficult to purely analyze one effect by separating this effect from other effect. In this 
section, data obtained from 43 specimens with the void ratios vary from 0.38 to 0.608. 
The tested confining pressures vary from 10 kPa to 800 kPa. The data analysis code 
EasyPlot4 was used to perform the three D curve fitting. 
 
Considering the void ratio function proposed in Section 5.2.1, the following 
expression is used to fit all data, 

(1 )
max 0 0( , )

(0.3 0.7 )
n

ab

SG e p
e

nσ σ−=
+

                (5.3) 
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in which, ap is atmospheric pressure, and the standard value of 101.3 kPa is adopted 
in this study, b and  are the powers of void ratio and confining pressure, 
respectively, the others are the same as previous notations. The fitting results are 
presented in Figure 5.6. 
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Figure 5. 6  Variation of small-strain shear modulus with void ratio and confining 

pressure for Berlin sand 
 
 
To examine the validity of the proposed empirical equation, some classic empirical 
equations are also used to fitting these data. The relative fitting parameters are listed 
in Table 5.1 On the basis of the comparison of the maximum deviation of these fitting 
empirical equations, it can be seen that the first two expressions with similar fitting 
parameters can best fit the whole data points; especially the second expression not 
only has the pressure power of 0.5, which is the most popular value suggested in 
literature, but the minimum deviation. Therefore, Equation 5.4 is recommended to 
predict the small-strain shear modulus of dry sands. 
 

(1 )
max 0 02.67( , )

(0.3 0.7 )
n

a
SG e p

e
nσ σ−=

+
                   (5.4) 

 
The meanings of these notations are the same as Equation 5.3, for Berlin sand the 
pressure power, n=0.5, S=488, Gmax and σ0 have the same unit in kPa. 
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Table 5. 1 Laboratory parameters of Berlin sand for various Gmax predicting equations 
 

No. Expressions S b n 
Mean 
Dev 

(MPa) 

Max 
dev. 

(MPa) 
1 (1 )

max 0( , ) (0.3 0.7 )b n
aG e p S e p nσ−= +  490 2.68 0.494 3.56 24.6 

2 0.5 0.5
max 0( , ) (0.3 0.7 )b

aG e p S e p σ= +  488 2.67 0.500 2.66 23.8 
3 2 (1 )

max 0( , ) (0.3 0.7 ) n n
aG e p S e p σ−= +  663 2 0.499 6.05 37.4 

4 2 (1 )
max 0( , ) (0.3 0.7 ) n n

aG e p S e p σ−= +  751 ---- 0.504 7.54 55.8 
5 2 (1

max 0( , ) (2.17 ) (1 ) n n
aG e p S e e p )σ−= − + 851 ---- 0.500 6.95 43.5 

6 2 (1
max 0( , ) (2.97 ) (1 ) n n

aG e p S e e p )σ−= − + 388 ---- 0.504 7.51 59.9 
Note:  is atmospheric pressure 101.3 kPaap =

n

 
 
5.2.3.2 Application to other sands 
 
Four other type sands were tested by resonant column apparatus to examine the 
validity of the applicability of Equation 5.4. Equations N0.3 to No.5 in Table 5.1 are 
employed to compare with Equation 5.4. The following general expression stands for 
these equations, 
 

(1 )
max 0 0( , ) ( ) n

aG e SF e pσ σ−=                    (5.5) 
 
As shown in Table 5.2 and Figure 5.7, all these empirical equations can very well fit 
test results with identical pressure power, correlative coefficient, and maximum 
deviation but different stiffness coefficients. This well agreement confirms the validity 
of proposed equation to other sources of soils. 
 
Table 5. 2 Laboratory fitting parameters of four sands for various Gmax predicting 

equations 
 

Sands F(e) Parameters 
BRFS BRCS CFS CMS 

S 574 405 653 519 
n 0.484 0.603 0.490 0.476 
r2 1 0.999 0.999 1 2.67

1
(0.3 0.7 )e+

 

Max dev.(kPa) 727 1770 3705 2008 
S 667 571 748 710 
n 0.484 0.603 0.490 0.476 
r2 1 0.999 0.999 1 2

1
(0.3 0.7 )e+

 

Max dev.(kPa) 727 1770 3705 2008 
S 654 523 736 658 
n 0.484 0.603 0.490 0.476 
r2 1 0.999 0.999 1 2

1
(0.3 0.7 )e+

 

Max dev.(kPa) 727 1770 3705 2008 
S 833 658 944 826 
n 0.484 0.603 0.490 0.476 
r2 1 0.999 0.999 1 

2(2.17 )
(1 )

e
e
−

+
 

Max dev.(kPa) 727 1770 3705 2008 
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Figure 5. 7  Comparison of Equation 5.4 with previous equations for four different 

sands 
 
 
5.2.4 Effect of stress history 
 
It is recognized that small-strain shear moduli of soils increase with overconsolidation 
ratio (OCR), especially for clayey soils; Hardin and Richart (1963), Hardin and Black 
(1966) reported that the OCR had only small or no effect on the small-strain shear 
wave for sand, others also reported the OCR had negligible effect on shear modulus of 
sand. In theory, as soil is loaded to higher stress, the relative movement between 
particles occurs resulting in soil having higher density, resulting in an increase in Gmax. 
To examine this effect on sand, three different densities Berlin sand were tested under 
confining pressure varying from 10 kPa to 800 kPa.  
 
On basis of previous knowledge, OCR has the positive increase effect on shear 
modulus of soils, the relative increase of Gmax, IG, is expressed as 
 

max max

max

(Unloading) (Loading) 100%
(Loading)G

G GI
G

−
= ×              (5.5) 

 
in which, GI  is relative increase of Gmax, has the unite of %; Gmax (Loading) and Gmax 

(Unloading) are the Gmax determined at loading and unloading paths of confining 
pressure, respectively. 
 
The testing results of three density samples are illustrated in Figure 5.8. Unlike 
previous observation, the small-strain shear moduli obtained at loading path slightly 
keep higher than their counterparts at unloading path for these samples but the scatter 
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value obtained under 150 kPa for the Dr=64.2% sample. As indicated in Figures 5.8 
and 5.9, the magnitudes of the distance in Gmax between loading and unloading paths 
are observed larger for the Dr=88.2% and Dr=39.7% samples which subjected to the 
maximum confining pressure of 800 kPa than for the Dr=39.7% sample experienced 
the maximum confining pressure of 200 kPa. The decrease in Gmax is dependent on 
the maximum confining pressure which the sample has experienced. The maximum 
reduction of Gmax may be up to 8% for these two samples which have experienced to 
800 kPa.  
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Figure 5. 8  Comparison of Small-strain shear modulus at loading and unloading 
paths for three different densities of Berlin sand 

 
 
For further investigate the influence of stress history, the overconsolidation ratio 
(OCR) is used to analyze this finding. The OCR is defined as follows: 
 

0

0

(max)OCR σ
σ

=                             (5.6) 

 
in which, σ0(max) is the maximum confining pressure which the sample experienced 
herein. The variation of GI  with OCR is illustrated in Figure 5.10 
 
As shown in Figures 5.9 and 5.10, in general, the reduction degree of Gmax with OCR 
is dependent upon the density of the specimen, which decreases with increasing the 
density. This decrease in Gmax is thanks to the reorientation of soil particle in vertical 
direction induced by increasing confining pressure. As the density increases, the 
reorientation is not easy to occur, and further discussion on the change of 
microstructure will be addressed in Chapter 6 later. As the OCR continuously 
increases, the Gmax starts to increases, which is accounted for the reduction of void 
ratio after high confining pressure. 
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Figure 5. 9  Relative increase of Gmax versus isotropic confining pressure 
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Figure 5. 10  Relative increase of Gmax ( GI ) versus overconsolidation ratio (OCR) 
 
 
5.2.5 Effect of Confinement Duration 
 
Figure 5.11 illustrates the development of small-strain shear modulus with increasing 
confinement duration under confining pressure of 200 kPa for the relative density of 
64.3% of dry Berlin sand. It can be seen that the Gmax rapidly increases within the first 
20 minutes especially within the first 10 minutes, thereafter slowly increases as time 
lapses, which indicates that the primary consolidation is complete after 20 minutes. As 
a whole, the increase in Gmax with time is small even if the sample rests under the 
constant pressure for 200 minutes; the increase in Gmax at the 10th and 200th minutes 
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merely reaches 1% and 3% compared to that at the 3th minute. Therefore, to measure 
the Gmax obtained at the 10th minute is acceptable in this study for shortening testing 
period. Normally influence of time on the shear modulus of sand is unimportant 
compared to those of confining pressure and void ratio. 
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Figure 5. 11  Variation of small-strain shear modulus with confinement duration 

under confining pressure of 200 kPa for the Dr=64.2% Berlin sand 
 
 
5.2.6 Effect of Water Content 
 
Four similar densities Berlin sand samples were tested to investigate the influence of 
water content on small-strain shear modulus and damping ratio (will presented in 
Section 5.4.3), water contents of 0%, 3%, 6%, and 9% were used to prepare the 
specimens. The test results are presented in Figure 5.12. To eliminate the influence of 
void ratio, the Gmax is also normalized by 2.67( ) 1 (0.3 0.7 )F e e= + , the results are 
presented in Figure 5.13.It is clearly seen in Figures 5.12 and 5.13 that moisture has 
certain influence on the Gmax of sand; the Gmax of the w=3% sample is slightly higher 
than that of the identical dry sand. Small-strain shear modulus increases with 
increasing water content as it is lower than 6% beyond which it starts to decrease.  
 
Figure 5.14 illustrates the percentage increase of Gmax/F(e) normalized by that of dry 
sample with water content based on the data depicted in Figure 5.13. The small-strain 
shear moduli determined under confining pressures of 50 kPa, 75 kPa, 100 kPa, 150 
kPa, and 200 kPa were used to demonstrate this influence. For the purpose of analysis, 
the following equations are introduced: 
 

max

( )
e
G

GN
F e

=                           (5.6) 

 
(wet) (dry) 100%

(dry)

e e
w G G
G e

G

N NI
N

−
= ×                    (5.7) 
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in which,  is small-strain shear modulus normalized by F(e)=1/(0.3+0.7e)2.67; e
GN w

GI  
is the relative increase of Gmax due to water content in percentage (%); and 

 are Gmax normalized by void ratio function for wet and dry samples, 
respectively, both have the unit in MPa;  

(wet)e
GN

(dry)e
GN
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Figure 5. 12 Variation of Small-strain shear modulus with confining pressure at 

various water contents for Berlin sand 
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Figure 5. 13  Influence of water content on normalized small-strain shear modulus 

against confining pressure 
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As addressed previously, Figure 5.14 clearly shows the increase in shear modulus 
with water content as it reaches the water content of 6%; thereafter the increase in 
shear modulus starts to decrease as water content continuously increases. It is very 
interesting to note that the increase magnitude of Gmax is dependent on the confining 
pressure, namely, the w

GI  decreases with confining pressure as the water content is 
lower than 6%. The increase in shear modulus with increasing water content may 
reach the maximum 15.2% at water content of 6% under confining pressure of 50 kPa. 
One can conclude that there exists an optimum water content below which the shear 
modulus increases and beyond which decrease with increasing water content. This 
influence is affected by confining pressure, namely increasing confining pressure may 
decrease this influence. 
 

0

5

10

15

20

0 3 6 9

σ0=200 kPa
σ0=150 kPa
σ0=100 kPa
σ0=75 kPa
σ0=50 kPa

Water Content, w (%)

In
cr

ea
se

 o
f N

or
m

al
iz

ed
 G

m
ax

, I
Gw
 (%

)

 
 
Figure 5. 14  Variation of increase of normalized small-strain shear modulus with 

water content under various confining pressures 
 
 
5.2.7 Effect of Sampling Technique 
 
Raining sand and dry tamping methods were employed to build tested samples. It is 
very difficult to achieve the samples with absolutely identical density; therefore, to 
investigate this influence on dynamic properties of sand, the feasible way is to carry 
out the analysis by comparing the normalized shear modulus. Testing results of three 
different samples are presented in Figure 5.15, the small-strain shear moduli are 
normalized by the proposed void ratio function in this study. 
 
As shown in this figure that samples prepared by tamping method have a higher 
stiffness than that of specimen prepared by raining method. The distance between 
these two values increases with an increase in sample density. The Gmax of the 
Dr=77.3% sample by tamping method plots highest among these samples, which 
indicates a fact that particles are highly orientated due to large number of blows by 
tamping hammer, results in a larger number of contacts in vertical direction than 
samples prepared by raining method, consequently demonstrates higher stiffness.  
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Figure 5. 15  Sampling technique effect on small-strain shear modulus 
 
 
 
5.3 Nonlinearity in Shear Modulus 
 
5.3.1 Effect of Confining Pressure 
 
Figures 5.16-5.19 present the degradation of shear modulus with shearing strain 
amplitude for four group samples with different densities under various confining 
pressures varying from 50 kPa to 800 kPa. It can be seen in these figures that, at the 
same shearing strain level, the shear modulus increases with increasing confining 
pressure. The distance in shear modulus under various confining pressures decreases 
with increasing shearing strain amplitude, which implies that shearing strain 
amplitude may eliminate the influence of confining pressure on shear modulus at very 
high strain level.  
 
It should be noted that the shear modulus of lower density samples starts to increase 
with strain as the shearing strain amplitude exceeding a given strain threshold at rear 
part of curve, especially for those curves obtained from low confining pressure as 
shown in Figure 5.16. This increase with shearing strain amplitude is attributed to an 
increase in density after a given number (normally 1,000 cycles induced by the 
resonant column frequency finding) of high strain vibrations, especially for low 
density sand. As the density increases, this tendency vanishes, but the degradation of 
shear modulus with strain slows down as shown in Figures 5.17-5.19. As shown in 
Figure 5.16, the increase in shear modulus with increasing strain also disappears due 
to less reduction in void ratio under the 400 kPa curve. The threshold strain for 
increasing shear modulus increase as the confining pressure increase, under high 
confining pressure, the threshold strain is out of the range of testing strain. 
 
Considering the influences of void ratio and other influences (such as deviation in 
measurement of dimension of specimen) on the shear modulus reduction curves, it is 
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much more convenient to normalize shear modulus by small-strain shear modulus for 
analyzing the nonlinear shear modulus behavior of soil. Figures 5.20-5.23 present the 
development of the normalized shear modulus and accumulated axial strain with 
shearing strain amplitude. For the purpose of analyzing the axial strain due to the high 
strain vibration, the accumulated axial strains presented in these figures are obtained 
by subtracting the total strain to the initial axial strain which is induced by the 
confining pressure. As shown in Figures 5.20-5.23, the normalized shear modulus 
reduction curve shifts to right higher position as confining pressure increases, which 
indicates that the degradation in shear modulus under higher confining pressure is less 
than under lower confining pressure at the same strain level.  
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Figure 5. 16  Shear modulus versus shearing strain amplitude for Berlin sand 
(Dr=32.5% ~ 34.4%) 
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Figure 5. 17  Shear modulus versus shearing strain amplitude for Berlin sand 
(Dr=48.1% ~ 49.6%) 
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Figure 5. 18  Shear modulus versus shearing strain amplitude for Berlin sand 

(Dr=62.2% ~ 63.7%) 
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Figure 5. 19  Shear modulus versus shearing strain amplitude for Berlin sand 
(Dr=77.5% ~ 78.0%) 
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Figure 5. 20  Normalized shear modulus and accumulated vertical strain versus 
shearing strain amplitude (Dr=33.1% ~ 34.2.0%) 
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Figure 5. 21  Normalized shear modulus and accumulated vertical strain versus 
shearing strain amplitude (Dr=48.1% ~ 49.6%) 
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Figure 5. 22  Normalized shear modulus and accumulated vertical strain versus 

shearing strain amplitude (Dr=62.2% ~ 63.7%) 
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Figure 5. 23  Normalized shear modulus and accumulated vertical strain versus 
shearing strain amplitude (Dr=77.5% ~ 78.0%) 

 
 
Table 5.3 lists the linear and volumetric threshold strains for all samples. As listed in 
this table, these threshold strains are dependent on confining pressure; the density of 
sand shows no significant influence on the magnitude of linear threshold strain but on 
volumetric threshold strain. In general, the volumetric threshold strain increase with 
soil density. The linear threshold strain of Berlin sand is within the range from 
0.00065% to 0.0014% under confining pressure from 50 kPa to 800 kPa. 
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Table 5. 3  Summarization of linear threshold and volumetric strains of Berlin sand 
 
Number Relative density Confining 

pressure (kPa)
Linear threshold 

strain† 
Volumetric threshold 

strain‡ 
1 33.1% 50 0.0007% 0.0044% 
2 33.2% 100 0.0009% 0.0051% 
3 34.4% 200 0.0011% 0.0045% 
4 32.5% 400 0.0012% 0.0056% 
5 48.3% 50 0.0008% 0.0055% 
6 48.1% 100 0.00075% 0.0061% 
7 49.6% 200 0.00095% 0.0043% 
8 48.1% 400 0.0011% 0.0042% 
9 62.2% 50 0.0007% 0.0063% 

10 63.7% 100 0.00065% 0.0042% 
11 62.6% 200 0.0011% 0.0057% 
12 62.6% 400 0.0014% 0.008% 
13 78.0% 50 0.0007% 0.0038% 
14 77.5% 100 0.0008% 0.0033% 
15 77.7% 200 0.0085% 0.0038% 
16 77.5% 400 0.0011% 0.0085% 
17 78.8% 800 0.0014% 0.0148% 

† Linear threshold strain is the strain at which G/Gmax is 0.99 
‡ Volumetric threshold strain is the strain at which Acc

aε is 0.01% for resonant column test 
 
5.3.2 Effect of Void Ratio 
 
Data in Figures 5.16-5.19 are replotted at the same confining pressure with various 
densities and depicted in Figure 5. 24-5.27 except for the Dr=78.8% sample. The 
shear modulus analogically reduces with the shearing strain amplitude under each 
level of confining pressures except for that of the Dr=33.1% sample under confining 
pressure of 50 kPa, which increase with shearing strain amplitude exceeding 0.034% 
due to greater reduction of void ratio. Turnup tails are observed for the lowest density 
samples when the confining pressure is lower than 400 kPa. The influence of void 
ratio on shear modulus is affected by the shearing strain amplitude; the increase in 
shear modulus due to reduction of void ratio is diminished by the shearing strain 
amplitude similar to that of confining pressure. The normalized shear modulus 
reduction curves are plotted on the same diagram to analyze the effect of density. 
Figures 5.28-5.32 show that density has no significant influence on the position of the 
normalized shear modulus reduction curve under the same level of all confining 
pressures. Figure 5.31 illustrated the normalized shear modulus reduction curves for 
the samples with relative density ranging from 32.5% to 87.7% under confining 
pressure of 400 kPa. It is seen in this figure that all curves plot in a very narrow range, 
which further confirms the fact that void ratio has no significant influence on the 
reduction of shear modulus with shearing strain amplitude. The observation is in 
agreement with the conclusion reported in literature. 
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Figure 5. 24  Effect of density on shear modulus versus shearing strain amplitude 
reduction curves under confining pressure of 50 kPa 
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Figure 5. 25  Effect of density on shear modulus versus shearing strain amplitude 
reduction curves under confining pressure of 100 kPa 
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Figure 5. 26  Effect of density on shear modulus versus shearing strain amplitude 
reduction curves under confining pressure of 200 kPa 
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Figure 5. 27  Effect of density on shear modulus versus shearing strain amplitude 
reduction curves under confining pressure of 400 kPa 
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Figure 5. 28  Effect of density on normalized shear modulus versus shearing strain 
amplitude reduction curves under confining pressure of 50 kPa 
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Figure 5. 29  Effect of density on normalized shear modulus versus shearing strain 
amplitude reduction curves under confining pressure of 100 kPa 
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Figure 5. 30  Effect of density on normalized shear modulus versus shearing strain 
amplitude reduction curves under confining pressure of 200 kPa 
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Figure 5. 31  Effect of density on normalized shear modulus versus shearing strain 
amplitude reduction curves under confining pressure of 400 kPa 
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Figure 5. 32  Effect of density on normalized shear modulus versus shearing strain 
amplitude reduction curves under confining pressure of 800 kPa 

 
 
5.3.3 Empirical Modeling 
 
5.3.3.1 Proposed Equation 
 
Figure 5.33 presents five typical normalized shear modulus reduction curves for 
Berlin sand under the confining pressure ranges from 50 kPa to 800 kPa. Thanks to 
the last three data points in the 50 kPa and 100 kPa curves do not well follow the 
general reduction tendency due to large reduction in void ratio during test, therefore, 
these data points are not included in the fitting. The fitting is carried out by the 
following modified hyperbolic equation: 
 

max

1
m

G
G a bγ

=
+

                            (5.8) 

 
in which, a is experimental constant, b and m are fitting variables, both are dependent 
on confining pressure, and γ is the shearing strain amplitude.  
 
The initial fitting parameters and correlative coefficient are listed in Table 5.4. As 
listed in this table, the parameter a seems no significant dependency on confining 
pressure, for the purpose of easy application of Equation 5.8, the mean value of 
parameter a=0.9602≈0.96 is taken to perform the second time fitting on these data. 
The second fitting curves are illustrated in Figure 5.34 and their fitting parameters are 
summarized in Table 5.5. One can see that these fitting curves may well predict the 
normalized shear modulus at any given shearing strain amplitude.  
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Figure 5. 33  Typical normalized shear modulus reduction curves under various 
confining pressures for Berlin sand 
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Figure 5. 34  Fitting curves for typical normalized shear modulus versus shearing 

strain amplitude reduction curves under various confining pressure for 
Berlin sand 
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Table 5. 4  Fitting parameters of typical normalized shear modulus versus shearing 
strain amplitude reduction curves under various confining pressure for 
Berlin sand 

 
0σ (kPa) a b m Dev Max r2 
50 0.952 1065 0.831 0.0138 0.998 

100 0.963 369 0.741 0.0115 0.998 
200 0.948 139 0.657 0.0175 0.995 
400 0.964 106 0.658 0.0098 0.998 
800 0.974 98.8 0.695 0.0102 0.997 

 
 
Table 5. 5 Second fitting parameters of typical normalized shear modulus versus 

shearing strain amplitude reduction curves under various confining 
pressure for Berlin sand 

 
0σ (kPa) a b m Dev Max r2 
50 0.96 1293 0.854 0.0145 0.997 

100 0.96 338 0.730 0.0103 0.998 
200 0.96 154 0.674 0.0227 0.994 
400 0.96 98.3 0.648 0.0110 0.998 
800 0.96 64.6 0.638 0.0162 0.995 

 
 
As shown in Table 5.5, both parameters b and parameter m decrease with confining 
pressure, they rapidly decrease when the confining pressure is less than 200 kPa, 
hereafter slow down, particularly parameter b, the relationship between these 
parameters and confining pressure is illustrated in Figure 5.35.  
 
For practical application of Equation 5.8, both parameters are correlated to the 
confining pressure by the following equations,  
 

0

1110 1.29E7 kb
σ

= +                        (5.9-1) 

 
for 050 kPa 200 kPaσ≤ ≤ , and 
 

0

113 6567 kb
σ

= +                         (5.9-2) 

 
for 0200 kPa 800 kPaσ≤ ≤  
 

0

10.619 11.6m
σ

= +                          (5.10) 

 
in which,  is experimental constant, 2.38 and 0.725 are taken for Equation 5.9-1 
and Equation 5.9-2, respectively. 

k
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Figure 5. 35  Relationship between parameters b and m and confining pressure 
 
 
5.3.3.2 Comparison 
 
The equation suggested by Stokoe et al.(1999) is employed to compare with Equation 
5.8, the equation is given as follows,  
 

max

1

1
k

r

G
G γ

γ

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

                         (5.11) 

 
in which, γr is reference strain,  and k is second curve-fitting variable called the 
curvature parameter. The reference strain corresponds to the shear strain amplitude 
when G/Gmax is equal to 0.5.  
 
Stokoe et al. (1995) suggested the following expression to determine γr, 

 

0
1

j

r r
aP

σγ γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                            (5.12) 

 

in which, γr1 is reference strain at mean effective principal stress of 100 kPa; Pa is 

reference stress of 100 kPa; and j is stress correction exponent, which can be 

determined by combining Equations 5.11 and 5.12, and conducting regression on data 

for specimens tests at multiple confining pressure using the resulting equation.  
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According to this standard, the reference strain for the data in Figure 5.36 is 
summarized in Table 5.6. In this study, there is no need to determine the j value due to 
the γr can be directly determined from the normalized shear modulus reduction curves 
illustrated in Figure 5.36. 
 
 
Table 5. 6  Reference strain and fitting parameters for Equation 5.11 under various 

confining pressures 
 

0σ (kPa) k  rγ  Dev Max r2 
50 0.976 2.37×10-4 0.0268 0.988 

100 0.834 3.62×10-4 0.0196 0.991 
200 0.766 6.0×10-4 0.0262 0.995 
400 0.735 9.00×10-4 0.0277 0.991 
800 0.844 1.15×10-3 0.0323 0.987 

 
 
The fitting curves predicted by Equation 5.11 are depicted in Figure 5.36 combining 
with those by Equation 5.8. The corresponding curvature parameter and correlative 
coefficients are listed in Table 5.6. As shown in Table 5.6 and Figure 5.36, Equation 
5.11 may fit the tested data, but are slightly higher and scatter compared to Equation 
5.8.  
 

0

0.2

0.4

0.6

0.8

1.0

1.2

10-6 10-5 10-4 10-3

by Equation 5.11, Stokoe et al.(1999)
by Equation 5.8, in this study
G/Gmax, σ0=800 kPa, Dr=68.3%
G/Gmax, σ0=400 kPa, Dr=68.4%
G/Gmax, σ0=200 kPa, Dr=49.6%
G/Gmax, σ0=100 kPa, Dr=63.7%
G/Gmax, σ0=50 kPa, Dr=48.3%

Shearing Strain Amplitude, γ (-)

N
or

m
al

iz
ed

 S
he

ar
 M

od
ul

us
, G

/G
m

ax
 (-

)

 
 
Figure 5. 36  Comparison of the fitting capacity of Equations 5.8 and Equation 5.11 for 

Berlin sand 
 
 
Comparison of Equations 5.8 and Equation 5.11 gives following advantages of 
Equation 5.8, 
(1) Equation 5.8 can predict the variation of normalized shear modulus with shearing 

strain amplitude at any confining pressure without knowledge of the reference 
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strain, γr. However, the reference strain should be required before the Equations 
5.11 is used. 

(2) The k of Equation 5.11 has no dependency on confining pressure; it can only be 
obtained by fitting the existing data. 

(3) The curve fitting parameters in Equation 5.8 can easily determined by Equations 
5.9 and 5.10; they have a good dependence of confining pressure. 

(4) The only disadvantage of Equation 5.8 is based on Berlin sand, if it is application 
on other sands more investigations are necessary. 

 
 
5.4 Damping Properties 
 
Damping ratio is another important parameter in the analysis on dynamic problems. 
Small-strain damping ratio, Dmin, is rather difficult to accurately determine due to 
many factors such as equipment damping, environmental noise, back electromagnetic 
force (Back-EMF), therefore, Dmin measured by resonant column method is somewhat 
higher scatter, but these effects become unimportant when tests are made at high 
strain amplitude. 
 
5.4.1 Effect of Void Ratio 
 
Small-strain damping ratios presented herein were determined at the shearing strain 
amplitude lower than 1×105 under all confining pressures; they are illustrated in 
Figures 5.37-5.41. It can be seen in these figures that, the density or void ratio has no 
influence on the small-strain damping ratio in spite of confining pressure under which 
tests are made. The damping ratio of Berlin sand slightly increases with shearing 
strain amplitude when it does not exceed the strain of 1×105, the rate of increase 
decreases with confining pressure. Testing scatter decreases with increasing confining 
pressure, this is contributed to better coupling between tested sample and top cap 
under higher confining pressure.  
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Figure 5. 37  Variation of damping ratio with shearing strain amplitude on small-strain 

test under confining pressure of 50 kPa 
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Figures 5.42-5.46 indicate the variation of damping ratio with shearing strain 
amplitude under various confining pressures. As shown in these figures, void ratio or 
density demonstrates no significant influence on damping ratio at any shearing strain 
amplitude under all confining pressures. Data scatter significantly decreases with 
increasing confining pressure as well, especially after confining pressure increases to 
beyond 100 kPa. In general, one can draw a conclusion that damping ratio slightly 
increases with decreasing void ratio. 
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Figure 5. 38  Variation of damping ratio with shearing strain amplitude on small-strain 

test under confining pressure of 100 kPa 
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Figure 5. 39  Variation of damping ratio with shearing strain amplitude on small-strain 

test under confining pressure of 200 kPa 
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Figure 5. 40  Variation of damping ratio with shearing strain amplitude on small-strain 

test under confining pressure of 400 kPa 
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Figure 5. 41  Variation of damping ratio with shearing strain amplitude on small-strain 

test under confining pressure of 800 kPa 
 
 

 
 

 122



 

 
 

 

0

5

10

15

10-6 10-5 10-4 10-3

y=aγn+b max dev:0.69541 a=235, b=-0.871, n=0.427, r2=0.993
Dr=78.0%, σ0=50 kPa 
Dr=62.2%, σ0=50 kPa 
Dr=48.3%, σ0=50 kPa
Dr=33.1%, σ0=50 kPa 

Shearing Strain Amplitude, γ (-)

D
am

pi
ng

 R
at

io
, D

 (%
)

 
 
Figure 5. 42  Variation of damping ratio with shearing strain amplitude under 

confining pressure of 50 kPa 
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Figure 5. 43  Variation of damping ratio with shearing strain amplitude under 

confining pressure of 100 kPa 
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Figure 5. 44  Variation of damping ratio with shearing strain amplitude under 

confining pressure of 200 kPa 
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Figure 5. 45  Variation of damping ratio with shearing strain amplitude under 

confining pressure of 400 kPa 
 
 

 124



 

0

5

10

15

10-6 10-5 10-4 10-3

D=aγn+b max dev:0.174 a=817, b=0.247, n=0.737, r2=0.997
Dr=82.5%, σ0=800 kPa 
Dr=78.8%, σ0=800 kPa 
Dr=62.3%, σ0=800 kPa 

Shearing Strain Amplitude, γ (-)

D
am

pi
ng

 R
at

io
, D

 (%
)

 
 
Figure 5. 46  Variation of damping ratio with shearing strain amplitude under 

confining pressure of 800 kPa 
 
 
5.4.2 Effect of Confining Pressure 
 
The fitting curves of damping ratio illustrated in Figures 5.42 to 5.46 are replotted on 
Figure 5.47 to project the effect of confining pressure. As shown in this figure, the 
damping curve shifts to a right lower with increasing confining pressure, namely 
damping ratio decreases with increasing confining pressure when shearing strain 
amplitude is the same.  
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Figure 5. 47  Effect of confining pressure on damping ratio for Berlin sand 
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The tested data can be well fitted by the following empirical equation, 
 

min( )nD a b Dγ= + +                             (5.13) 
 
in which, D is damping ratio, a and b are laboratory variables, Dmin is the small-strain 
damping ratio (take the damping ratio corresponding to 0.0004%, they vary from 
0.33%~0.39%, for convenience 0.036% is taken) for each confining pressure, n is the 
power of shear strain amplitude, a, b, and n are dependent on confining pressure, they 
can be determined by Equation 5.14-5.16, the relationship between them and 
confining pressure is presented in Figures 5.48 and 5.49. 
 

8 4.17
04.63 10 335a σ−= × +                     (5.14-1) 

for 050 kPa 200 kPaσ≤ ≤ , and 
-3 1.82

01.69 10 487a σ= × +                      (5.14-2) 
for 0200 kPa 800 kPaσ≤ ≤ . 

-4 1.35
01.17 10 0.454n σ= × +                     (5.15-1) 

for 050 kPa 200 kPaσ≤ ≤ , and 
-3 0.647

03.04 10 0.507n σ= × +                    (5.15-2) 
for 0200 kPa 800 kPaσ≤ ≤ . 
 

0.0688
01/ ( 44.481 33.777 )b σ= − − +                    (5.16) 
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Figure 5. 48  Diagram for determination of parameters a and n of Equation 5.13 
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Figure 5. 49  Diagram for determination of parameters b of Equation 5.13 
 
 
5.4.3 Effect of Water Content 
 
One dry and three wet samples with various water contents were tested under 
confining pressures of 100 kPa and 200 kPa to determine the small-strain damping 
ratio, the small-strain shear moduli of these samples, which have been presented in 
Section 5.2.6. Testing results are illustrated in Figures 5.50 and 5.51. 
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Figure 5. 50  Water content effect on small-strain damping ratio under 100 kPa 
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Figure 5. 51  Water content effect on small-strain damping ratio under 200 kPa 
 
As shown in Figures 5.50 and 5.51, there is no distinguishable distance between the 
damping ratios of these samples. The influence of water content on the small-strain 
damping is negligible based on the range of water content used in this study. The 
influence of water content on dynamic properties of soil is another study subject; it is 
out of range to go into detail in this study. 
 
 
5.5 Comparison of Gmax by RC and BE Tests 
 
Bender element technique has been broadly applied to determine small-strain shear 
wave velocity of soil in practice thanks to the simple, fast performance of application. 
To further go insight into the dynamic properties of Berlin sand, several dry samples 
with the density ranging from 18% to 82.5% were tested under confining pressure 
varying from 10 kPa to 800 kPa. Source signal used is sinusoidal wave with the 
frequency of 10 kHz and amplitude of 10 V. Bender element tests were performed 
before resonant column tests were carried out. Testing results are presented in Figures 
5.52-5.55, based on data in Figures 5.52 and 5.53, the following conclusions are 
drawn. 
(1) The Gmax linearly increases with confining pressure on the double logarithmic 

diagram, curves tested by resonant column method (RC) have significantly higher 
slopes than those by bender element method (BE). In another word, the Gmax 
obtained by RC test increases with confining pressure slightly faster than by BE 
test. 

(2) As illustrated in Figure 5.52, there is a threshold pressure at which the RC
maxG  by 

RC is equal to BE
maxG  by BE, below which RC

maxG  is lower and beyond which is 
higher than BE

maxG , and the distance between RC
maxG  and BE

maxG  increases with 
confining pressure. Based on these data, the threshold pressure is normally lower 
than 20 kPa 
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The Vs tested by RC method marked as Vs
RC, and by BE method marked as Vs

BE. As 
shown in Figures 5.54 and 5.55, both Gmax and Vs by RC test are higher than their 
counterparts by BE test if the Gmax and Vs are higher than a threshold value. It is very 
clear that is a function of , and similarly the Vs

RC is also a function of Vs
BE. 

Their relationships can be expressed by the following linear equations: 

RC
maxG BE

maxG

 
RC BE
max max1.3 18G G −= 7.6                      (5.17) 

 
RC BE1.24 36.3Vs Vs= −                      (5.18) 

 
As mentioned above, the threshold values of Gmax and Vs can be obtained by assuming 

 and in Equations 5.17 and 5.18, for Berlin sand, the 
threshold values are , . 

RC BE
max maxG G= RC BEVs Vs=

t
maxG = 46.3 MPa t 151.25 m/sVs =
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Figure 5. 52  Comparison of small-strain shear modulus by RC and BE tests under 

various confining pressures (Dr=18%-51.3%) 
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Figure 5. 53  Comparison of small-strain shear modulus by RC and BE tests under 

various confining pressures (Dr=60.1%-82.5%) 
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Figure 5. 54  Comparison of small-strain shear modulus by RC and BE methods for 

a large number of data of dry Berlin sand 
 
 
To comprehensively investigate capacity of the bender element technique, a three D 
fitting method is adopted to fit the testing data. The fitting surface of the BE testing 
results is illustrated in Figure 5.56. The fitting surface is given by  
 

0.542 0.458
max 0 02.67

393( , )
(0.3 0.7 ) aG e p

e
σ =

+
σ                   (5.19) 

The S is 393 for Equation 5.19, which is smaller than 488 in Equation 5.4, the 
n=0.458 is less than 0.5 in Equation 5.4. The smaller S and n in Equation 5.19 induce 
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a lower value in Gmax when the confining pressure exceeds 20 kPa. This is possibly 
attributed to the fact that the Gmax measured by resonant column test is normally 
determined at relatively higher shearing strain amplitude under low confining pressure 
under which the minimum tested small-strain actually exceeds the elastic strain range. 
In addition, the coupling between tested sample and top cap and bottom platen is 
another factor inducing lower value in shear modulus. Therefore, this effect should be 
considered when resonant column test is carried out under low confining pressure 
based on the information given above. 
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Figure 5. 55  Comparison of small-strain shear wave velocity by RC and BE 

methods for a large number of data of dry Berlin sand 
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Figure 5. 56  Comparison of empirical equations for Gmax by BE and RC tests for 

Berlin sand 
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5.6 Summary 
 
In this chapter, the dynamic properties (G and D) of Berlin sand are fully addressed 
based on resonant column tests on 43 dry and 3 three wet sand samples. Many factors 
including void ratio, confining pressure, stress history, duration of confinement, water 
content, and sample preparation method, were affected on dynamic properties of 
Berlin sand. An empirical equation is proposed to predict the small-strain shear 
modulus based on the void ratio and confining pressure. Tow equations are developed 
to model nonlinear dynamic sand properties at any give shearing strain amplitude 
under various confining pressures. Bender element tests are compared to resonant 
column tests, the relationship between the Gmax measured by the resonant column and 
bender element tests was developed as well. 
 
 
 



 

 
 
 
 

CHAPTER 6 PRELOADING EFFECTS ON DYNAMIC 
PROPERTIES OF SAND 

 
 
 
 
6.1 Introduction 
 
 
Along with the fast development of modern society, more and more traffic 
infrastructures (such as highroad and railroad), wind power plants, and offshore 
engineering, machine engineering have been booming after the second war. The 
dynamic problems regarding these engineering projects have become more and more 
important to rationally design and analyze. Berlin sand is the largest distribution and 
most application in practice in Europe, the shear modulus and damping ratio of Berlin 
sand are the two key parameters in these dynamic problems. The preloading effects on 
dynamic properties of sand become more and more important; therefore, it is essential 
to well know the development of shear modulus and damping properties. In the 
following sections, the preloading effects are fully presented. 
 
 
6.2 Void Ratio during Testing 
 
 
The volumetric strain of saturated specimen in triaxial chamber can be readily 
determined by measuring the water volume change in measuring cylinder or back 
pressure controller; and the axial strain is normally measured by the linear vertical 
differential transducer (LVDT) mounted on the testing apparatus, with knowledge of 
volumetric and axial strains, the radial strain is obtained accordingly.  
 
Unfortunately, however, it is nearly impossible to directly and accurately measure the 
volume change of dry specimen during a test due to a lack of water inside the sample. 
The void ratio or density of soil is one of the most important parameters influencing 
the stiffness of soil. As the variation of confining pressure and application of 
preloading on the specimen during test, the density changes accordingly. Normally, 
the density of sample increases with increasing confining pressure and the number of 
preloading cycle as the strain exceeds the volume change threshold strain in resonant 
column tests. Shear dilatation is reckoned no occurring in resonant column tests due 
to the shearing strain amplitude is far below the destruct strain. Therefore, it is 
essential to investigate the variation of void ratio during tests for the purpose of well 
knowing the preloading effect on dynamic properties of sand.  
 
In general, the change of the height of specimen is conventionally the unique 
dimension parameter which could be monitored during a test on dry sample; therefore, 
it is indispensable to build an approximate relationship between the void ratio and 
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axial strain. For this purpose, dimensions of 39 sand samples were measured at the 
end of tests by applying a negative pressure of 30 kPa to support the sample avoiding 
collapse. The initial void ratios of these samples measured after tests vary from 0.38 
to 0.578 for Berlin sand, 0.574 for Braunschweig coarse sand and 0.828 for Cuxhaven 
fine sand.  
 
 
6.2.1 Empirical Expression  
 
The testing data of these 39 samples are presented in Figures 6.1 to 6.3. All three sets 
of data can be well fitted by a linear function. The empirical equation of the 
relationships between volumetric strain, vε , radial strain, rε , and relative change in 
void ratio, f 0( ) /e e e e0ε = −  (  is the void ratio at the end of test, and  is the 
initial void ratio), and accumulated axial strain, 

fe 0e
Acc
aε , can be expressed by the 

following general formula, 
 

Acc
a=aε ε                             (6.1) 

in which, ε  is the general symbol for strain of volume, radius, and void ratio, and 
is the incremental coefficient of volumetric strain, radial strain, and relative change 

in void ratio, a is equal to 4.05 for volumetric strain, 1.57 for radial strain, and 11.3 
for relative change in void ratio, respectively. All these strains have the same unit in 
percentage. 

a

 
For the purpose of examination of the proposed relationship of Equation 6.1, the 
relationship between volumetric strain and axial strain and radial strain is correlated 
as 
 

Acc
v a=a b rε ε + ε

r

                        (6.2) 
in which, a=0.992, b=1.95 according to the fitting surface illustrated in Figure 6.4. 
 
The measured data and fitting equation are compared to the typical relationship 
equation (Wood 1990) 
 

Acc
v a= 2ε ε + ε                          (6.3) 

 
Comparison of Equation 6.2 with Equation 6.3 shows that the parameters a=0.992, 
and b=1.95 for Equation 6.2 are slightly lower than 1 and 2 for Equation 6.3. The 
distance between these two equations is possibly attributed to the different Water 
Contents and data scatter in the measurement of dimensions. This similar relationship 
of dry sand confirms the validity of the proposed Equation 6.1. Therefore, the 
following equation is proposed to predict the void ratio of sample during the tests. 
 

Acc
0 a= (1 11.3 /100)e e ε−                        (6.4) 

in which,  is initial void ratio, and e  is void ratio corresponding to the 
accumulated axial strain, 

0e
Acc
aε , during the test. 
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Figure 6. 1  Relationship between volumetric strain and accumulated axial strain 
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Figure 6. 2  Relationship between Radial strain and accumulated axial strain 
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Figure 6. 3  Relationship between relative change in void ratio and accumulated 

axial strain 
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Figure 6. 4  Relationship between volumetric strain and accumulated axial strain and 

radial strain 
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The relative deviation of void ratio calculated by Equation 6.4 from the measured 
void ratio at the end of test is depicted in Figures 6.5 to 6.7. The relative deviation is 
expressed by 
 

cal mea

mea

= 100e
e e

e
δ −

×                        (6.5) 

 
in which, eδ  is relative deviation in percentage,  and  are the void ratio 
measured at the end of test and the void ratio calculated by Equation 6.5, respectively. 

meae cale

 
Figures 6.5 to 6.7 show that the relative deviation of the void ratio calculated by 
Equation 6.4 is relatively small, the maximum deviation does not exceed 2.5%. These 
errors demonstrate no dependency on the final axial strain, initial void ratio and 
relative density. Evidences presented above indicate that it is advisable to use 
Equation 6.4 to predict the void ratio of sample during test. 
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Figure 6. 5  Relative deviation of radial strain by Equation 6.5 versus accumulated 

axial strain 
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Figure 6. 6  Relative deviation of void ratio by Equation 6.5 versus initial relative 

density 
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Figure 6. 7  Relative deviation of void ratio by Equation 6.5 versus initial void ratio 
 
 
6.2.2 Variation of Void Ratio with Number of Cycles 
 
Figure 6.8 presents the variation of void ratio with number of preloading cycles for 
three types of sands. It can be seen that the void ratios of all samples decrease with 
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increasing number of cycles, the rate of reduction decreases with increasing density. 
For instance, the reduction of void ratio of the 90.4% relative density Berlin sand is 
very small even if the number of cycles reaches 105. In addition, the grain characters 
has an influence on this reduction, which can be shown by the comparison of the 
curves of the 36.9 relative density Cuxhaven fine sand, the 43.7% relative density 
Berlin sand, and the 41.7% relative density Braunschweig coarse sand, it is accounted 
for the uniform coefficients of these two sands (the values of Cu these sands are 1.23, 
3.39, and 5.76, respectively). 
 
The reduction of void ratio is not only affected by the density of soil but the 
prestraining applied to the sample. Taking Berlin sand for an example, both samples 
are preloaded under the same condition of preloading of 40 kPa and frequency of 20 
Hz under 200 kPa, the prestraining on the 43.7% relative density sample is higher 
than that of 90.4% sample because of the higher stiffness of the dense sample. This 
effect will be addressed in the next coming section in this chapter. 
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Figure 6. 8  Reduction of void ratio with number of preloading cycles for various 

sands 
 
 
6.3 Small-strain Shear Modulus Correction  
 
As known, the void ratio of sample decreases with increasing confining pressure, 
however the reduction of void ratio due to an increase in confining pressure normally 
is minor and not taken into account during resonant column test, therefore the initial 
void ratio is reckoned as a representative of tested sample. In this section, the 
variation of void ratio is taken into account based on the proposed empirical equation 
in Section 6.2.1 (Equation 6.4). The analysis is based on monitoring the axial 
sediment of the height of soil sample by the linear variable differential transducer 
(LVDT) placed on the top of tested specimen. 
 
For the purposed of comparison, the small-strain shear modulus measured by 
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assuming the dimension constant in the whole test, is marked , the Gmax 
measured based on accurately considering dimensions (both the height and diameter) 
change (the change of height of specimen can be readily measured by LVDT, and the 
change of diameter could be obtained from Equation 6.1), is marked , and the 
Gmax corrected considering void ratio variation by Equation 6.4, is marked . 
These small-strain shear moduli are defined by, 

Uncor
maxG

Rea
maG l

x
Cor
maxG

 
Uncor 0 0 2
max ( )d sG ρ= V

V

                        (6.5) 
 

Cor 1 0 2
max ( )d sG Vρ=                          (6.6) 

 
Real 2 2
max ( )d sG ρ=                          (6.7) 

 
0

0/d m Vρ =                             (6.8) 
 

1

1
s

d e
ρρ =
+

                            (6.9) 

 
2 /d m Vρ =                            (6.10) 

 
2

0 0
0

( )
4

H dV π
=                          (6.11) 

 
Acc Acc 2

0 0(1 /100)( (1 1.5657 /100))
4

aH dV π ε ε− −
= a             (6.12) 

 
in which, 0

dρ  is initial dry density of specimen, 1
dρ  and 2

dρ  are dry density 
considering the dimension variation, sρ  is specific gravity of soil,  is the mass of 
specimen, 0  and 0d  are initial height and diameter of specimen, 0

m
H sV is shear wave 

velocity based on the measured system resonant frequency and initial dimensions, and 
sV  is the shear wave velocity based on the measured system resonant frequency and 

dimensions after correction, e  is the void ratio after correction based on Equation 
6.4. 
 
Data of two Berlin sand samples are contrastively analyzed herein for this purpose, 
one sample with the initial relative density of 70.9% experienced multi-stage test 
under the confining pressure varying from 50 kPa to 800 kPa at the shearing strain 
amplitude around 6×10-6, and the other sample with the relative density of 43.9% was 
vibrated by the shear stress of 20 kPa at the frequency of 20 Hz up to one million 
cycles under the confining pressure of 100 kPa.  
 
Figures 6.9-6.11 illustrate the analysis results of the Dr=70.9% Berlin sand. As shown 
in Figure 6.9,  and  are visibly higher than  as the confining 
pressure exceeds 400 kPa, and the corresponding accumulated axial strain exceeds 

Real
maxG Cor

maxG Uncor
maxG
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0.15%. The deviation of  from  is relatively small even if the confining 
pressure reaches 800 kPa with the corresponding accumulated axial strain of 0.35%. 
The magnitude relationship among these small-strain shear moduli is 

> > . The distance between , and and  are presented 
in Figures 6.10 and 6.11. Both the deviation and relative deviation of  increase 
with an increase axial strain due to increasing confining pressure. The deviation of 

 from  keeps lower than its counterpart of  from , the 
maximum relative deviation of  from  is around 1.7%. Therefore, it is 
acceptable to take  as G  in conventional resonant column tests. In other 
words, the error resulting from assuming dimensions constant in the whole test is 
negligible in practice.  
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Figures 6.12-6.14 illustrate the analysis results of the Dr=43.9% Berlin sand, which 
were subjected to one million cycles of vibration with the shear stress amplitude of 20 
kPa at the frequency of 20 Hz under the confining pressure 100 kPa. Similar to the 
Dr=70.9% Berlin sand, as illustrated in Figure 6.12, the  curve locates at 
the highest position, the  curve at the second, and the  curve at 
the lowest position. The distances between   and , and  increase 
with increasing the accumulated axial strain due to the increase of number of 
preloading cycles, especially that between  and . 
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Figure 6. 9 Various type small-strain shear modulus and accumulated axial strain 

under various confining pressures 
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Figure 6. 10  Deviation of small-strain shear modulus under various confining 

pressures 
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Figure 6. 11  Relative deviation small-strain shear modulus under various confining 

pressures 
 
 
Figures 6.13 and 6.14 show the deviations of  between  and , and 

 and . The distance between  and  is much greater than that 
between  and , both deviations increase with increasing number of cycles 
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due to the increasing accumulated axial strain, the deviation of ncor
x  from Real

max  
may be up to 11 MPa after one million cycles, however, that of Cor

maxG  fro Real
max  is 

ly 2.3 MPa. As shown in Figure 6.14, the relative deviation of Uncor
maxG  from 

Real
maxG may be up to 7.5%, however, that of maxG  from Cor

maxG  is only 1.7% as the 
accumulated axial strain increases to 1.5% when the number of cycles reaches one 

illion. Actually, for some tests, the accumulated

 
m

mere

 axial

 
fluence of dimension variation during test is taken into account. 

U
maG

a

 

 G

%, 

 when

 G

eal
x

m
w

 strains m y exceed 2.5

R
maG

hich may induce the relative deviation over 10%. 
 
As mentioned above, the enormous deviation Real

maxG  and Uncor
maxG is attributed to use the 

initial dimensions to calculate the shear modulus during the whole test and no 
considering the densification of sample during test. Comparison shows that the 
deviation between Real

maxG  and Cor
maxG  is relatively small even if the accumulated axial 

strain increases up to 1.5% after one million cycles of vibration. The shear wave 
velocity obtained by resonant column test is dependent upon the mass polar moment 
of inertial of specimen (diameter of specimen) and specimen height. In practice, 
however, the dimensions (Diameter and height) of specimen and polar inertial 
moment are reckoned constant during conventional resonant column test. It is a very 
time consuming work to modify these parameters even if the dimensions of specimen 
can be approximately obtained from Equation 6.1 based on the accumulated axial 
strain measured by LVDT. Therefore, it is rational to assume Cor

maxG  as 
the in
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Figure 6. 13  Deviation of small-strain shear modulus with number of cycles 

(Dr=43.9%) 
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Figure 6. 14  Relative deviation of small-strain shear modulus with number of cycles 

(Dr=43.9%) 
 
 
6.4 Small-strain Shear Modulus 
 
Note that, the small-strain shear moduli mentioned in the following sections are 
referred to  but marked as Gmax. In this section, the small-strain shear Cor

maxG
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modulus determined before the preloading, is marked as Gmax(0) and plotted on the 
half logarithmic diagram at the horizontal coordinate of 10-1 due to 0 can not be 
plotted in logarithmic scale.  
 
6.4.1 Effect of Number of Cycles 
 
Figures 6.15 and 6.16 illustrate the variation of small-strain shear modulus and 
accumulated axial strain with number of cycles for four different source sands tested 
under the confining pressure of 200 kPa. The preloading stress amplitude of 40 kPa 
was applied at the frequency of 20 Hz. As shown in these two figures, the Gmax(Nc) of 
Berlin sand decreases with number of preloading cycles when it less than twenty 
thousand cycles thereafter nearly keeps stable. As for the Braunschweig coarse sand, 
the Gmax(Nc) greatly reduces after one cycle of preloading then slightly decreases with 
increasing number of cycles up to 100,000 except the data point obtained after 20,000 
cycles. The variation of Gmax(Nc) of Cuxhaven medium sand shows a similar 
tendency to that of Braunschweig coarse sand when the number of cycles is lower 
than 2,000, thereafter nearly keeps stable up to 20,000, then start to increase as 
number of cycles continues. Unlike the three foregoing sands, the Gmax(Nc) of the 
Cuxhaven fine sand slightly degrades after the first three cycles of vibration, then 
slightly increases with an increase in the number of cycles as shown in Figure 6.16.  
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Figure 6. 15  Development of Gmax and Acc

aε  with number of cycles of various sands 
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Figure 6. 16  Development of normalized Gmax with number of preloading cycles for 

various sands 
 
 
6.4.2 Effect of Preloading Frequency 
 
Eight Berlin sand samples with medium density and four samples with high density 
were preloaded by the same torsional shear stress of 20 kPa under the confining 
pressure of 100 kPa at the vibrating frequency varying from 0.1 Hz to 40 Hz. Testing 
results are presented in Figures 6.17-6.20.  
 
As mentioned above, Figures 6.17 and 6.18 indicate that the small-strain shear 
modulus decreases with number of cycles when it is lower than a given number 
thereafter slightly increases for these samples except for the sample excited at 40 Hz. 
The data presented in Figure 6.17 are scatter due to the tested error and individual 
diversity in sample. Figure 6.18 presents the variation of Gmax with number of cycles, 
Nc, by the ratio of Gmax after preloading, Gmax(Nc), to the Gmax before preloading, 
Gmax(0). As shown in Figure 6.18, the location of the Gmax(Nc)/ Gmax(0) curve is 
dependent on the applied vibrating frequency, it plots higher as the frequency increase. 
And the corresponding accumulated axial strain curve plots higher accordingly.  
 
The maximum reduction of Gmax with Nc was found at the sample excited at 0.1 Hz, 
in this case the Gmax may decrease to a value greater than 20% of the Gmax(0). In 
general, this maximum reduction decreases with increasing the applied preloading 
frequency, especially when the frequency increases beyond 30 Hz as shown in Figure 
6.18.  
 
Unlike the cases of lower vibrating frequency, in the case of 40 Hz, the reduction in 
Gmax with Nc was not observed partially thanks to the lack of data at lower number of 
cycles, but a significant increase of Gmax is seen as indicated in Figures 6.17 and 6.18. 
The rate of the increase in Gmax with Nc may be up to 155% after 1,000,000 cycles at 
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which the accumulated axial strain accordingly develops to 2.3%. The increase of 
Gmax is accounted for great densification of sample and possibly wear process occur 
during vibration. The greatest reduction of void ratio was caused by the corresponding 
high strain amplitude because the vibrating frequency of 40 Hz is possibly close to the 
resonant frequency of the system. As illustrated in Figure 3.8, the vibrating amplitude 
decreases with the distance between the resonant frequency and vibrating frequency. 
It should be noted that the increase relationship of 40 Hz case is similar to previous 
investigations, in which the applied vibrating frequencies were normally around the 
resonant frequency and the starting number of cycles is normally larger than 1000.  
 
As for the dense Berlin sand, the testing scatter is relatively lower, it can been clearly 
seen that the influence of preloading frequency on the is much more obvious when the 
frequency is greater than 20 Hz, as shown in Figures 6.19 and 6.20. It There is no 
significant influence of preloading on the Gmax(Nc)/ Gmax(0) curve when it is lower 
than 20 Hz due to the frequency is far away from the system resonant frequency 
(normally is 80 Hz). Therefore, it can be concluded that the decrease in small-strain 
shear modulus with number of cycles is affected by the preloading frequency. 
Normally, the decrease degree in small-strain shear modulus increases with increasing 
frequency when the number of cycles is less than a given number for a given sample. 
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Figure 6. 17  Development of Gmax and Acc

aε  with number of cycles at various 
preloading frequencies for medium dense Berlin sand  
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Figure 6. 18  Development of normalized Gmax with number of cycles at various 

preloading frequencies for medium dense Berlin sand 
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Figure 6. 19  Development of Gmax and Acc

aε  with number of cycles at various 
preloading frequencies for dense Berlin sand 
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Figure 6. 20  Development of normalized Gmax with number of cycles at various 
preloading frequencies for high dense Berlin sand  

 
 
6.4.3 Effect of Preloading Ratio 
 
Three medium dense and four dense Berlin sand samples were tested under the 
confining pressure of 50 kPa at the preloading frequency of 20 Hz. The preloading 
stresses of 5 kPa, 10 kPa, and 15 kPa for the medium dense samples, and 5 kPa, 10 
kPa , and 20 kPa for the dense samples, were applied, respectively. The preloading 
ratio is defined by the ratio of preloading stress (τpre) to confining pressure (σ0), τpre/σ0; 
then the τpre/σ0 of 0.1, 0.2, 0.3 and 0.4 are obtained respectively. Testing results are 
presented in Figures 6.21-6.24. 
 
Figures 6.21 and 6.22 illustrate the results for the medium dense samples. As shown 
in figures, the rate of reduction in shear modulus increases with increasing preloading 
ratio for the first ten cycles thereafter decreases to cause the Gmax(Nc)/Gmax(0) plots 
higher with increasing preloading ratio. The small-strain shear moduli of the samples 
preloaded by the preloading ratios of 0.1 and 0.2 continue decreasing with number of 
cycles to around the number of 10,000, beyond which start to increase. Unlike the 
cases of the preloading ratio of 0.1 and 0.3, the Gmax in the case of 0.3 starts to 
increase to larger than the Gmax measured before preloading. As for the sample 
subjected to the preloading ratio of 0.1; the Gmax may reduce to 78% after 20,000 
cycles. The accumulated axial strain indicates that the densification of sample account 
for the increase of small-strain shear modulus. For the case of τpre/σ0=0.1, the axial 
strain is very small even if the sample was subjected to 700,000 cycles. The decrease 
of Gmax is related to some other factors, which will be expatiated in the end of this 
chapter. 
 
As for the cases of the dense samples, the influence of preloading ratio on Gmax is not 
so much significant. The small-strain shear modulus of the sample which was 
subjected to preloading ratio of 0.1 decreases very slowly with number of cycles. As 
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for the sample subjected to preloading ratio of 0.4, the Gmax fast decreases with 
number of cycles at the first 5 cycles, then keeps nearly stable from 5 to 10,000 cycles, 
thereafter fast increases in the half logarithmic diagram. As mentioned previously, as 
the preloading ratio increases, resulting in the corresponding prestraining increase, 
consequently the reduction of void ratio of sample becomes faster. The maximum 
magnitude of decrease in shear modulus was observed for the sample subjected to 
lower preloading ratio generally higher than the sample subjected to higher preloading 
ratio. The preloading ratio effect on small-strain shear modulus is attributed to the 
prestraining amplitude induced by preloading stress amplitude. 
 

0

30

60

90

120

150

10-1 101 103 105
0

1

2

3

4

5

τpre/σ0=0.1, Dr=41.3%τpre/σ0=0.2, Dr=38.6%

τpre/σ0=0.3, Dr=43.7%

 εa
Acc

Gmax(Nc)

Preloading conditions:
σ0=50 kPa, f=20.0 Hz

Number of cycles, Nc (-)

 S
m

al
l-s

tra
in

 S
he

ar
 M

od
ul

us
, G

m
ax

(N
c)

 (M
P

a)

Ac
cu

m
ul

at
ed

 A
xi

al
 S

tra
in

, ε
aAc

c  (%
)

 
 
Figure 6. 21  Development of Gmax and Acc

aε  with number of cycles at various 
preloading ratios for medium dense Berlin sand 
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Figure 6. 22  Development of normalized Gmax with number of cycles at various 

preloading ratios for medium dense Berlin sand 
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Figure 6. 23  Development of Gmax and Acc

aε  with number of cycles at various 
preloading ratios for dense Berlin sand (Dr=75.1%-76.1%) 
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Figure 6. 24  Development of normalized Gmax and Acc

aε  with number of cycles at 
various preloading ratios for dense Berlin sand (Dr=75.1%-76.1%) 
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6.4.4 Effect of Void Ratio 
 
Three dense samples were tested under the confining pressure of 50 kPa with the 
preloading stress of 20 kPa at the frequency of 20 Hz, and one medium dense sample 
was also tested under the same conditions but the preloading stress of 5 kPa. Testing 
results are presented in Figures 6.25 and 6.26. 
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Figure 6. 25  Development of Gmax and Acc

aε  with number of cycles for Berlin sand 
with various void ratios 

 
 
As shown in Figure 6.26, the Gmax(Nc)/Gmax(0) curve plots higher as the void ratio 
decreases. It can be seen that the decrease in small-strain shear modulus of the 
Dr=75.4% sample with number of cycles is more significant than the two higher 
dense samples of 88.4% and 96.4%. Normally, the small-strain shear modulus rapidly 
decreases before 5 cycle of preloading, thereafter keeps nearly stable until the number 
of cycles reaches 1,000, then start to increase for the Dr=96.4% sample, its maximum 
reduction is just 5%, and the increase in shear modulus after 1.2 million cycles of 
preloading is also just around 5%. For the Dr=75.4% sample, the small-strain shear 
modulus after 5 cycles of preloading may decrease to 90% of the modulus without 
preloading, thereafter keeps nearly stable until 50,000 cycles, after that starts to 
increase. The Gmax of the Dr=43.7% sample decreases to the maximum at the fifth 
cycles and gradually increases with number of cycles up to 10, 000 cycles, and 
beyond which rapidly increase in the semilogarithmic diagram and reaches 55% after 
one million cycles. The fact that the higher density the lower maximum reduction in 
Gmax is attributed to the particle reorientation during preloading, this aspect will 
discussed in the end of this chapter. 
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Figure 6. 26  Development of normalized Gmax with number of cycles for Berlin sand 

with various void ratios 
 
 
6.4.5 Effect of Confining Pressure 
 
Three medium dense and two dense Berlin sand samples were tested under the 
confining pressures of 50 kPa, 100 kPa, and 200 kPa. The applied preloading ratio is 
equal to 0.2, and the preloading frequency is 20 Hz. The testing results of medium 
dense samples are illustrated in Figures 6.27 and 6.28. 
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Figure 6. 27  Development of Gmax with number of cycles under various confining 

pressures for medium dense Berlin sand  
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Figure 6. 28  Development of normalized Gmax and Acc

aε  with number of cycles 
under various confining pressures for medium dense Berlin sand  

 
 
As shown in these figures, there seems no significant difference between the 
Gmax(Nc)/Gmax(0) curves of 100 kPa and 200 kPa for the first 10,000 cycles. The 
curve of 50 kPa keeps slightly higher than the others after the number of cycles 
exceeds 5 cycles. One can conclude that the influence of confining pressure on the 
development of Gmax with number of cycles is less if the confining pressure exceeds 
100 kPa for medium sand. 
 
As for the dense samples, Figures 6.29 and 30 show that the Gmax(Nc)/Gmax(0) curves 
of 100 kPa is higher than the curve of 50 kPa. The maximum decrease of shear 
modulus may reach 15% when the number of cycles reaches 50,000; thereafter, the 
small-strain shear modulus starts to increase for the case of 50 kPa confining pressure. 
Confining pressure demonstrates a different influence on the variation of Gmax for 
different density of sample.  
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Figure 6. 29  Development of Gmax with number of cycles under various confining 

pressures for dense Berlin sand  
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Figure 6. 30  Development of normalized Gmax and Acc

aε  with number of cycles for 
dense Berlin sand under various confining pressures 

 
 
6.4.6 Effect of Reloading 
 
The concept “reloading” herein means that the confining pressure increases to a 
higher level after the expected number of cycles is complete. The prepared samples 
were initially tested under the confining pressure of 50 kPa at the small strain 
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amplitude below 1×10-5 to determine the Gmax, thereafter the previbration was applied 
and the Gmax was measured at a series of given number of cycles, as the preloading 
was complete, the Gmax was measured after the preloading had been stopped for 10 
minutes under the confining pressure of 50 kPa. After that the confining pressure was 
increased to a series of higher pressure level and the Gmax was determined after each 
target higher confining pressure was stable for 10 minutes. 
 
Note that, in these diagrams, the solid triangle down marks stand for the measured 
value of Gmax, marked , the solid triangle up marks stand for the predicted value, 
marked  and the solid circle marks stand for the value measured before 
preloading. 

Mea.
maxG

Cal.
maxG

 
Figures 6.31-6.37 illustrate the variation of small-strain shear modulus, obtained by 
measuring and predicting by Equation 5.4 based on the void ratio corrected by 
Equation 6.4 after preloading, with confining pressure after preloading. Testing results 
show that the values of measured Gmax were observed to plot higher than their 
corresponding predicted values, both values obtained after preloading plot higher than 
the Gmax predicted curve by Equation 5.4 under all higher confining pressures based 
on the initial void ratio of the sample before preloading. 
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Figure 6. 31  Reloading effect on Gmax after 1,000 cycles of preloading (Dr=38.8%) 
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Figure 6. 32  Reloading effect on Gmax after 10,000 cycles of preloading (Dr=45.6%) 
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Figure 6. 33  Reloading effect on Gmax after 100,000 cycles of preloading 

(Dr=42.4%) 
 
 
Figures 6.34 and 6.35 illustrate the increase of small-strain shear modulus with 
confining pressure for two samples which have been subjected to 700,000 and 
1,000,000 cycles of the preloading stress of 5 kPa and 15 kPa at the same vibrating 
frequency under the confining pressure of 50 kPa, respectively. It is seen in Figures 
6.33-6.35 that the preloading stress has significant influence on the shear modulus 
confining pressure relationship after preloading. The distance between the measured 
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and predicted Gmax increases with the applied stress amplitude, this magnitude of 
distance in Figure 6.34 is much smaller than that in Figure 6.33 even if the number of 
cycles for the case in Figure 6.34 is seven times of that in Figure 6.33. The distance 
between these two values is smallest among all the cases presented herein.  
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Figure 6. 34  Reloading effect on Gmax after 700,000 cycles of preloading 

(Dr=41.3%) 
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Figure 6. 35  Reloading effect on Gmax after 1,000,000 cycles of preloading 

(Dr=43.7%) 
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Figure 6. 36  Reloading effect on Gmax after 1,100,000 cycles of preloading 

(Dr=76.1%) 
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Figure 6. 37  Reloading effect on Gmax after 1,200,000 cycles of preloading 

(Dr=96.4%) 
 
 
As shown in Figures 6.31-6.33, the distance between measured and predicted Gmax 
under all confining pressures higher than 50 kPa under which the preloading was 
applied increase with number of cycles. Comparison of Figure 6.33 with Figure 6.35 
shows that the influence of number of cycles on this distance becomes stable when the 
number of cycles exceeds 100,000 even if the preloading stress in the case of Figure 
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6.35 is 15 kPa. The wear process of soil particles accounts for this phenomenon, 
which will be addressed later in Section 6.6. 
 
Comparison of Figure 6.35 with Figure 6.36 indicates that the distance between 
measured and predicted Gmax decreases with decreasing void ratio of sample, which is 
accounted for the higher resulting prestraining amplitude for lower density sample 
than that for higher density sample because of higher stiffness of the denser sample 
when they are subjected to the same preloading stress. 
 
Table 6.1 summarizes the fitting parameters and correlative coefficient of Equation 
5.4 for the measured small-strain shear moduli for seven samples after preloading. 
The relative characteristic indices are also listed in this table. Fitting results show that 
the Gmax measured under reloading path after preloading can still be well fitted by 
the general formula of Equation 5.4. It is seen in this table that the influence powers, n, 
of confining pressures on Gmax are higher than 0.5 for virgin samples except for fitting 
curves for the 43.7% and 96.4%, which means that the Gmax has a more pressure 
dependency after preloading. For the cases of 43.7% and 96.4%, the Gmax show a 
lower pressure dependency with the values of n less than 0.5 due to a rather higher 
soil stiffness coefficient because of the high density after preloading. The measured 
Gmax is normalized by the calculated Gmax based on the void ratio predicted by 
Equation 6.4.  
 
The application of /  eliminates the influence of soil densification 
and indicates structure alternation of sand under the confining pressure of 50 kPa after 
preloading. The magnitude relationship of the /  approximately 
agrees with that of the stiffness coefficient as shown in Table 6.1. The 

/G  implies the stable state of soil structure, generally the lower 
/G  the less stable of soil structure, there the Gmax shows higher 

pressure sensitivity after preloading. The /G  curves of all samples 
are presented in Figure 6.38 to show the reloading influence on soil structure of 
sample after preloading. 
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Table 6. 1  Fitting parameters and correlative coefficient of Equation 5.4 for Gmax of 

various samples after preloading 
 

No. Nc Dr 
(Initial) 

Dr† 
(Final) 

Mea.
max

Mea.
max

( )
(0)

G Nc
G

Mea.
max
Cal.
max

( )
( )

G Nc
G Nc

S n r2 

1 700,000 41.3% 45.8% 0.82 0.79 0.464 0.576 0.998
2 1,000 38.8% 47.0% 0.86 0.80 0.461 0.554 0.998
3 10,000 45.6% 58.8% 0.91 0.80 0.456 0.579 0.997
4 100,000 42.4% 64.5% 0.96 0.78 0.472 0.585 0.996
5 1,000,000 43.7% 88.1% 1.55 1.00 0.575 0.487 0.994
6 1,200,000 96.4% 99.1% 1.06 1.03 0.582 0.420 0.998
7 1,100,000 76.1% 83.3% 0.89 0.84 0.504 0.586 0.996
 
† Calculated based on the void ratio calculated by Equation 6.4 after preloading under 
the confining pressure of 50 kPa. 
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Figure 6. 38  Influence of reloading on Gmax after preloading under the confining 

pressure of 50 kPa (Reloading path) 
 
 
Figure 6.38 presents the influence of reloading on the Gmax depicted in Figures 
6.31-6.37. As shown in Figure 6.38, the values of /  for all cases 
are apparently affected by the increase of confining pressure after preloading. As for 
all cases (1-7), /  rapidly increase with increasing confining 
pressure when it increases not exceeding 75 kPa, thereafter the Gmax ratios slowly 
increase with pressure when it is not exceeding100 kPa for case 7 and 200 kPa for 
Cases 1-4, and then the values of /  keep stable. It should be 
noted that the / curve plots higher with the number of preloading 
cycles for Cases 2-4 as the confining pressure starts to increase. The shape of curve 1 
is similar to Curves 2-4 but plots lowest among these curves. In these cases, the wear 
process of inter-particles, which is related to the number of cycles and preloading 
stress amplitude, plays an important role on the influence of confining pressure on the 
value of G N / , which will be discussed in Section 6.6. Case 7 
demonstrates a similar regularity to the four foregoing cases. 
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Unlike the five cases mentioned above, Cases 5 and 6 indicate a different variation of 

/  with confining pressure after preloading. As shown in Figure 
6.38, the /  increases up to around 120% when the pressure 
increases to 100 kPa for the Dr=96.4% sample and to 123% when the pressure 
increases to 150 kPa for the Dr=43.7% sample, thereafter starts to decrease as 
confining pressure increases but it still keeps higher than 100% for both cases. The 
decrease of /  is faster for Case 6 than Case 5. The decease of 

/  is possibly accounted for the final density of sample after 
preloading.  
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In conclusion, reloading confining pressure transforms soil structure into a stabler 
state for the sample subjected to preloading under lower confining pressure, which 
induces the small-strain shear modulus greater than its counterpart of the sample 
without experiencing vibration history. The maximum increase of Gmax may be up to 
20% when confining pressure increases to a range from 100 kPa to 200 kPa, thereafter 
Gmax keeps stable or decrease but still greater than that obtained before preloading for 
the used samples. The greater reduction of Gmax under preloading confining pressure 
the greater increase of Gmax under confining pressure which is larger than the 
preloading confining pressure at reloading path. 
 
 
6.4.7 Effect of Unloading 
 
The concept “unloading” herein means that the confining pressure is unloaded to a 
lower level after the desired number of preloading cycles has been complete. 
Multistage tests were initially performed at strain amplitude below 1×10-5 under a 
series of confining pressures which were increased from a very low level to 100 kPa 
or 200 kPa, under which dynamic preloading is applied. After the small-strain shear 
modulus has been measured, preloading was applied to the sample until a desired 
number of cycles was reached, then the Gmax was determined after the vibrating was 
stopped for 10 minutes. After that the confining pressure was unloaded to a lower 
level to measure the Gmax after the confining pressure was stable for 10 minutes. 
Testing results are presented in Figures 6.39-6.51. 
 
As shown in these figures, the small-strain shear moduli measured under each 
confining pressure at unloading path after preloading are much lower than those 
determined at loading path before preloading except for the measured Gmax under 200 
kPa for the Dr=43.7% sample due to tremendous reduction of void ratio (see Figure 
6.41). The small-strain shear moduli calculated by Equation 5.4 based on the change 
of void ratio corrected by Equation 6.4 are presented in these figures marked as the 
empty triangle up marks. The calculated small-strain shear moduli plot at the highest 
positions compared to those measured values before and after preloading. The 
distances between calculated Gmax after preloading and measured Gmax before 
preloading are dependent on the densification of sample after the preloading. 
 
As shown in Figures 6.39 to 6.41 and Figure 6.47, the reduction of shear modulus 
increases with increasing number of preloading cycles, however, when the number of 
cycles reaches 1,000,000 the reduction becomes less than that of 100,000 cycles but 
larger than that of 10,000 cycles under the same preloading coditions. This tendency 
demonstrates that the microstructure of sample develops to an unstablest state when 
the number of preloading cycles reaches 100,000 cycles; more cycles of vibration 
cause the structure change into a stabler state than that after 100,000 cycles. As shown 
in Figures 6.42 and 6.47, the Dr=47.6 % sample was subjected to 2,000 cycles of 
vibration with the preloading stress amplitude of 20 kPa at the frequency of 0.1 Hz 
under the confining pressure of 100 kPa. The distance between the measured Gmax 
before preloading and the calculated Gmax after preloading is relatively small due to 
small reduction of void ratio thanks to the low vibrating frequency and low number of 
cycles applied. The /  curve in this case plots much higher than 
those obtained from similar density samples under 200 kPa as shown in Figure 6.47.  
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Figure 6. 39  Unloading effect on Gmax after 10,000 cycles of preloading (Dr=43.4%) 
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Figure 6. 40  Unloading effect on Gmax after 100,000 cycles of preloading (Dr=43.5%) 
 
 
Figure 6.43 illustrates the results of the Dr=90.4% sample, which was subjected to 
100,000 cycles of vibration with the same preloading amplitude and frequency as the 
first three medium dense samples, the distance between the measured and calculated 
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Gmax after preloading is relative smaller compared to those medium samples 
illustrated in Figures 6.39-6.41 due to low reduction of void ratio after preloading. 
The relative reduction in shear modulus can also be clearly seen in Figure 6.47, the 

 plots higher than those medium dense samples due to less change of 
mircostructure as mentioned previously.  
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Figures 6.44-6.46 present the testing results of three Berlin sand samples of the 
similar densities varying from 74.9% to 77.5%. These samples were subjected to the 
same preloading amplitude but different frequencies and number of cycles under the 
same confining pressure of 100 kPa. It is very clear that the vibration frequency has 
strongly influence on the reduction of shear modulus, which increases with increasing 
frequency of preloading as shown in Figure 6.47. The influence of frequency is 
regarded to be the prestraining action on the soil structure when the same preloading 
stress amplitude is applied on the sample.  
 
It is very interesting to note that the  decreases with decreasing confining 
pressure as the confining pressure reaches 50 kPa or 35 kPa, the maximum reduction 
of  may reach 52% for these medium samples, then starts to increase as 
the confining pressure continues decreasing for some cases, the reason that accounts 
for this increase is in question. Sample density and preloading frequency have 
significant influence on the influence of unloading on the . 
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Figure 6. 41  Unloading effect on Gmax after 1,000,000 cycles of preloading 

(Dr=43.7%) 
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Figure 6. 42  Unloading effect on Gmax after 2,000 cycles of preloading (Dr=47.6%) 
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Figure 6. 43  Unloading effect on Gmax after 100,000 cycles of preloading 

(Dr=90.4%) 
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Figure 6. 44  Unloading effect on Gmax after 20,000 cycles of preloading (Dr=77.5%) 
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Figure 6. 45  Unloading effect on Gmax after 200,000 cycles of preloading 

(Dr=74.9%) 
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Figure 6. 46  Unloading effect on Gmax after 100,000 cycles of preloading 

(Dr=77.2%) 
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Figure 6. 47  Influence of unloading on Gmax after preloading under the confining 

pressure of 100 kPa and 200 kPa (unloading path) 
 
 
For the purpose of investigation on the influence of sand type on the unloading effect 
on small-strain shear modulus after preloading, three more different sand samples 
with medium density were prepared to test under the same preloading conditions 
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(preloading amplitude of 40 kPa, frequency of 20 kPa, number of cycles of 100,000, 
and confining pressure of 200 kPa). Similarly, the Gmax was also determined at 
loading path with confining pressure increasing from 15 kPa to 200 kPa. For analysis, 
the measured Gmax of these three sands were initially fitted by Equation 5.4 to 
determine the stiffness coefficients, S, and pressure influence power, n, for these sands; 
and the obtained equation was used to predict the Gmax base on void ratio after 
preloading. Figures 6.48 to 6.50 show the testing results of Cuxhaven fine and 
medium sands, and Braunschweig coarse sand with gravel, respectively. As shown in 
Figure 6.48, it is clear that the distance between the measured Gmax before and 
calculated Gmax after preloading is very small even though the relative density of the 
sample is merely 36.9% due to the densification of sample is relative low. The 
measured Gmax at unloading path after preloading is just slightly lower than the 
predicted value under each confining pressure. 
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Figure 6. 48  Unloading effect on Gmax after 100,000 cycles of preloading for 

Cuxhaven fine sand (Dr=36.9%) 
 
 
Unlike Cuxhaven fine sand, as shown in Figures 6.49 and 6.50, the distances among 
these Gmax of Cuxhaven medium sand and Braunschweig coarse sand are much larger 
than those illustrated in Figure 6.48, the variation of Gmax is similar to that of Berlin 
sand. Figure 6.51 presents the testing results of these three different type sands 
together with Berlin sand with similar densities, which were subjected to the same 
preloading conditions. It is clear that soil type has very significant influence on the 
unloading effect on the   after preloading. The  of Cuxhaven 
fine sand is slightest affected by the unloading of confining pressure, it decreases 
from 102% under 200 kPa to 77.6% under 25 kPa after preloading. As shown in 
Figure 6.51, the  curve of Braunschweig coarse sand with gravel, plots 
lowest compared to others, the  decreases from 65.6% under 200 kPa to 
40.9% as the confining pressure was unloaded to 15 kPa. As for the Cuxhaven 
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medium sand and Berlin sand, the  curves locate at middle positions. 
Therefore, it can be concluded that the decrease of Gmax after preloading is dependent 
on the mean grain size of soils, namely increasing grain size results in an increase in 
the reduction of Gmax at unloading path of confining pressure. 
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Figure 6. 49  Unloading effect on Gmax after 100,000 cycles of preloading for 

Cuxhaven medium sand (Dr=52%) 
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Figure 6. 50  Unloading effect on Gmax after 100,000 cycles of preloading for 

Braunschweig coarse sand (Dr=41.7%) 
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Figure 6. 51  Influence of unloading on Gmax after preloading under the confining 

pressure of 200 kPa for various sands (unloading path) 
 
 
It is worthy to note that, as shown in Figures 6.48-4.50, unlike Equation 5.4 can well 
fit the Gmax at reloading path after preloading, Equation 5.4 fails to fit the Gmax 
measured at unloading paths after preloading for all the samples, but a linear equation 
can well do this work, see Figures 6.39-6.46 and Figures 6.48-6.50.Unfortunately, it is 
not clear what makes the change of the relationship between Gmax and confining 
pressure after preloading, further investigation and theoretical interpretation should be 
carried out to better understand this phenomenon. 
 
 
6.4.8 Effect of Water Content 
 
6.4.8.1 on Number of Cycles 
 
Figures 6.52 and 6.53 illustrate the variation of small-strain shear modulus with 
number of cycles for two similar medium dense Berlin sand samples with water 
contents of 0% and 3%, which were subjected to the preloading stress amplitude of 20 
kPa at the frequency of 20 Hz under the confining pressure of 100 kPa. 
 
Figures 6.52 and 6.53 show that the small-strain shear moduli of both samples 
decrease with increasing number of cycles before it reaches 5,000 cycles thereafter 
start to increase. As shown in Figure 6.53, the  curve of the 
w=3% sample plots lower than that of the dry sample in the range of the number of 
cycles applied in these two tests. The Gmax of the dry sample merely decreases to 87% 
of that obtain before preloading when the number of cycles reaches 5,000, however, 
the reduction of Gmax of the w=3% sample may reach 68% of that obtain before 
preloading after the same number of cycles of 5,000 was reached. In addition, the 
accumulated axial strain of the dry sample keeps higher than that of the w=3% sample 
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within the range of number of cycles applied due to the capillary effect of the 
existence of water. 
 
Besides two samples tested under the confining pressure of 100 kPa, four similar 
medium dense samples with different water contents were tested under the confining 
pressure of 200 kPa with preloading stress amplitude of 40 kPa at the frequency of 20 
Hz, the testing results are presented in Figures 6.54 and 6.55. The water contents 
employed in these tests vary from 0% to 9% at the increment of 3%. 
 
Similar to Figure 6.53, Figure 6.55 shows that the small strain shear moduli decrease 
with increasing number of preloading cycles as it reaches a given cycles thereafter 
starts to increase. The  curve plots lower as the water content 
increases from 0% to 6%, the reduction of small-strain shear modulus may up to 32%, 
beyond 6% the  curve shifts to a higher position but lower than 
the curves of 0% and 3%. This finding is opposite to the influence of water content on 
Gmax obtained before preloading as addressed in Chapter 5. Comparison of the 

 curve of the Dr=42.2% sample with that of the Dr=55.9% sample 
shows void ratio and the preloading confining pressure might have no influence on the 
water content effect on the variation of Gmax with number of cycles for medium dense 
sands. 
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Therefore, one can conclude that Water Content has significant influence on the effect 
of number of cycles on small-strain shear modulus of sand. The reduction of shear 
modulus with number increase with an increase in water content before it reaches the 
optimum value of 6%, beyond which the influence becomes less for the used Berlin 
sand in this study. 
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Figure 6. 52  Effect of water content on the variation of Gmax and Acc

aε  with number 
of cycles under confining pressure of 100 kPa 
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Figure 6. 53  Effect of water content on the variation of normalized Gmax with 

number of cycles under confining pressure of 100 kPa 
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Figure 6. 54  Effect of water content on the variation of Gmax and Acc

aε  with number 
of cycles under confining pressure of 200 kPa 
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Figure 6. 55  Effect of water content on the variation of normalized Gmax with 

number of cycles under confining pressure of 200 kPa 
 
 
6.4.8.2 on Effect of Unloading  
 
The Dr=55.5% dry sample and the Dr=55.9% wet sample with the water content of 
3% were used to analyze the influence of Water Content on the Gmax determined at 
unloading path. The water content influence on the development of Gmax with number 
of cycles can be seen in Figures 6.54 and 6.55. The small-strain shear modulus tests 
were initially performed under the confining pressure increasing from 15 kPa to 200 
kPa, and then the preloading was applied and Gmax was determined at a given interval 
number of cycles until 100,000 cycles of vibration was reached; thereafter determined 
the Gmax after the sample had rested under the preloading confining pressure of 200 
kPa for 10 minutes. Then the Gmax test was repeated after the confining pressure was 
released to a series of lower levels for 10 minutes at the unloading path of the pressure 
from 200 kPa to 25 kPa. Another Dr=55.5% sample with the water content of 3% was 
also tested through a testing program similar to that of these two foregoing samples 
but the preloading confining pressure is 100 kPa, the detailed preloading conditions 
are presented on Figure 6.58. 
 
Figures 6.56-6.58 present the values of three different type small-strain shear moduli 
( , , and ) for the dry sample and wet samples, respectively. 
Figure 6.56 shows an influence of unloading effect on Gmax of the dry sample similar 
to those described in Section 6.47. As for the two w=3% wet samples with the same 
density, the measured Gmax obtained before preloading keeps higher than the measured 
Gmax after preloading under the same confining pressure at unloading path, and the 
calculated Gmax based on the void ratio corrected after preloading locates at the 
highest position. As mentioned previously, the Gmax measured after preloading linearly 
decreases with decreasing confining pressure at the unloading path for the dry 
samples as shown in Figure 6.56. It is very interesting to note that, unlike the variation 
pf Gmax with confining pressure in a linearity way at unloading path after preloading 
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for dry sample, the relationship between Gmax and confining pressure for the wet 
samples can not be expressed by a linear function at unloading path of confining 
pressure after preloading, but well expressed by an exponential function as illustrated 
in Figures 6.57 and 6.58. In addition, confining pressure under which preloading is 
applied shows no influence on this relationship between Gmax and confining pressure 
observed at unloading path. Unfortunately, however, the theoretical interpretation of 
the change of relationship between Gmax and confining pressure at unloading path for 
the wet samples after preloading. 
 
Figure 6.59 presents the variation of the ratio of the measured Gmax to calculated Gmax 
for these two samples which were subjected to the same preloading conditions under 
the confining pressure of 200 kPa. It can be seen in this figure that the  
curve of the w=3% sample locates lower than that of the dry sample, the maximum 
reduction of Gmax may increase 67% as the confining pressure is unloaded to 50 kPa 
which is much greater than 55% of the dry sample under the confining pressure of 25 
kPa. This finding further confirms that Water Content has influence on the unloading 
effect on the reduction of Gmax after preloading.  
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Figure 6. 56  Effect of water content on unloading effect on Gmax after 100,000 

cycles of preloading under confining pressure of 200 kPa (w=0%, 
Dr=55.5%) 
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Figure 6. 57  Effect of water content on unloading effect on Gmax after 100,000 

cycles of preloading under confining pressure of 200 kPa (w=3%, 
Dr=55.9%) 
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Figure 6. 58  Effect of water content on unloading effect on Gmax after 100,000 

cycles of preloading under confining pressure of 100 kPa (w=3%, 
Dr=55.5%) 
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Figure 6. 59  Influence of water content on unloading effect on normalized Gmax after 

preloading of 100,000 cycles under confining pressure of 200 kPa 
 
 
6.4.9 Miscellaneous Effects 
 
Sample Preparation Method 
 
Two dense samples were prepared to investigate the influence of sample preparation 
method on the preloading effect on shear modulus of sand. One sample was prepared 
by the raining technique, which has the relative density of 65.7%; the other was built 
by the tamping method, which has the relative density of 66.7%. These two samples 
were tested under the same testing program, multistage small-strain shear modulus 
tests were carried out under the confining pressure varying from 15 kPa to 200 kPa, 
thereafter the preloading was applied and Gmax was determined at a given interval of 
number of cycles until it reached 100,000 cycles.  
 
Figure 6.60 presents both measured and calculated Gmax predicted by Equation 5.4 
based on the variation of void ratio during vibrating versus number of cycles for these 
two samples. Figure 6.61 presents , , and 
accumulated axial strain with number of cycles. Figures 6.62 and 6.63 illustrate the 
unloading effect on the Gmax after preloading for these samples prepared by tamping 
and raining methods. As illustrated in these figures, sampling technique has no 
significant influence on the variation of Gmax with number of cycles for the samples 
prepared by raining and tamping methods, as well as the reduction of Gmax at 
unloading path after the sample were subjected to 100,000 cycles of preloading under 
the confining pressure of 200 kPa. 
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Figure 6. 60  Sampling method effect on the development of Gmax and Acc

aε  with 
number of cycles for dense sample 
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Figure 6. 61  Sampling method effect on the development of normalized Gmax with 

number of cycles for dense sample 
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Figure 6. 62  Sampling method effect on unloading effect on Gmax after preloading 

under confining pressure of 200 kPa 
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Figure 6. 63  Sampling method effect on unloading effect on normalized Gmax after 

preloading under confining pressure of 200 kPa  
 
 
Pressure Release 
 
The term “pressure release” means that the confining pressure is unloaded to a lower 
pressure than the preloading confining pressure after preloading is applied, then it is 
reloaded to the preloading confining pressure. Data presented herein were obtained 
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from two samples mentioned above. After 100,000 cycles of vibration were 
completely applied, the sample rested at 200 kPa for 10 minutes and made the Gmax 
test, then unloaded confining pressure to 150 kPa and made Gmax test after pressure 
reached the target confining pressure for 10 minutes, in succession reloaded confining 
pressure to 200 kPa and made the Gmax test after the pressure was stable for 10 
minutes. The confining pressure was released from 200 to 100 kPa, 75 kPa, 50 kPa, 
and 25 kPa in decreasing order as the procedure described for the 150 kPa.  
 
Figure 6.64 indicates the effect of pressure release on the small-strain shear modulus 
of two samples subject to the preloading conditions as described in above paragraphs. 
In this figure, the Gmax measured under the confining pressure of 200 kPa without 
pressure release after preloading is marked as , and those measured after 
pressure release are marked as  in general. It is seen that the  increases 
with decreasing the target release pressure. The increase of  may be up to 22% 
after the pressure was released to 25 kPa. In addition, there is no significant influence 
of sample preparation technique on the effect of pressure release on the small-strain 
shear modulus after preloading. 
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Figure 6. 64  Influence of pressure release on Gmax under confining pressure of 200 

kPa after preloading 
 
 
Vibration Mode and Time 
 
One dry sample was prepared with the relative density of 61.3% by raining technique; 
which was subjected to multistage small-strain tests under the confining pressure 
varying from 15 kPa to 200 kPa. The sample was preloaded to 100,000 cycles by 
application of the flexural vibration generated by the two magnets of the drive system 
of the resonant column apparatus with the input voltage of 1.90 V at the frequency of 
20 Hz under the confining pressure of 200 kPa, unfortunately the stress amplitude of 
the vibration is unkown due to a shortage of calculation technique. After the 
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preloading, the sample was consolidated under 200 kPa for 900 minutes to study the 
effect of time on small-strain shear modulus of the sample. Thereafter the confining 
pressure was released by the procedure described in the previous paragraph to 
investigate the influence of vibration mode on the Gmax after preloading. 
 
For the purpose of comparison, data of the Dr=65.7% sample were replotted in 
Figures 6.65 and 6.66 together with those of the Dr=61.3% sample preloading by 
flexural vibration. As illustrated in these two figures, the qualitative variation of Gmax 
with number of cycles for the Dr=61.3% sample preloaded by flexural vibration 
similar to that for the Dr=65.7% sample preloaded by torsional vibration. The 

 and  curves of the Dr=61.3% sample are 
slightly and significantly higher than those of the 65.7% sample, respectively. The 
accumulated axial strain during vibrating of the sample subjected to flexural vibration 
keeps lower than that of the sample subjected to the torsional shear vibration at the 
same number of cycles. The distance between these two vibrating modes is accounted 
for the fact that the flexure is generated by the electromagnetic power induced by a 
pair of magnets and two pairs of coils as illustrated in Figure 3.5; consequently, the 
resulting shear stress is smaller than that by torsional vibration. 
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Figures 6.67 and 6.68 illustrate the influence of the different types of vibration on the 
unloading effect on the small-strain shear modulus after 100,000 cycles of vibration. 
As shown in these figures, the tendency of the decease in Gmax with confining 
pressure for the sample vibrated by flexural vibrating mode is similar to by torsional 
vibrating mode. Similarly, the reduction degree of Gmax obtained at unloading path 
after preloading is slightly smaller for flexural vibration mode than for torsional 
vibration mode due to a much unstabler structure caused by the torsional vibration 
compared to that by the flexural vibration thanks to a higher preloading stress 
amplitude induced by the electromagnetic force generating by the four pairs of coils 
of drive system.  
 
Figure 6.69 presents the increase of small-strain shear modulus with confinement of 
duration under confining pressure of 200 kPa for the Dr=61.3% sample after 
preloading together with that of the Dr=64.2% sample without preloading illustrated 
in Figure 5.11. The testing history of the Dr=61.3% sample has already been 
described in previous paragraph in this section, and that of the Dr=64.2% sample can 
be seen in Section 5.2.5 in Chapter 5. In this figure, the Gmax is normalized by the 
Gmax measured after the sample rested for three minutes after the preloading was 
stopped. It can be seen in this figure that both small-strain shear moduli of virgin 
sample and the sample subjected to vibration history slightly increase with time, the 
increase of Gmax after preloading is slightly greater than that of the virgin sample. The 
Gmax(T)/Gmax(3) might increase to 1.07 after the sample rested for 900 minutes after 
preloading, which indicates that time effect on the Gmax of sample subjected to 
preloading history is also unimportant as for virgin sample. 
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Figure 6. 65  Vibration mode effect on the development of Gmax and Acc

aε  with 
number of cycles under confining pressure of 200 kPa  
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Figure 6. 66  Comparison of the reduction of Gmax with number of cycles by 

torsional and flexural vibrations under confining pressure of 200 kPa  
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Figure 6. 67  Effect of vibration mode on unloading effect on Gmax after 100,000 

cycles of preloading 
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Figure 6. 68  Effect of preloading vibration mode on the unloading effect on relative 

reduction of  after preloading maxG
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Figure 6. 69  Effect of time on small-strain shear modulus of samples without 

preloading and after preloading under confining pressure of 200 kPa 
 
 
 
6.5 Nonlinear Dynamic Properties 
 
6.5.1 Effect of Preloading Frequency 
 
Three medium dense samples were measured the shear modulus and damping ratio at 
shearing strain varying from small-strain to high strain after they were preloaded 
under the confining pressure of 100 kPa with the torsional shear stress of 20 kPa at the 
frequency of 5 Hz, 20 Hz, and 40 Hz, respectively, the total number of cycles of each 
test is presented in Figures 6.70-6.72. 
 
Figure 6.70 presents the variations of shear modulus and damping ratio with shearing 
strain amplitude under confining pressure of 100 kPa for the Dr=41.4% sample, which 
had been subjected to 1,000,000 cycles of preloading at the frequency of 40 Hz under 
the confining pressure of 100 kPa before the nonlinear properties were determined. 
The Dr=43.9% sample experienced the preloading conditions similar to those for the 
Dr=41.4% sample except for the frequency of 20 Hz, as shown in Figure 6.71. The 
Dr=44.3% sample was also preloaded to 200,000 cycles under the confining pressure 
of 100 kPa with identical preloading stress amplitude at the frequency of 5 Hz. For the 
purpose of comparison, shear modulus and damping ratio at various strains are 
predicted by Equations 5.8 and 5.13, respectively, and collectively depicted in these 
figures. 
 
The shear moduli measured after preloading illustrated in Figures 6.70 and 6.71, are 
greater than the measure and predicted values before preloading. The increase in shear 
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modulus is dependent on the frequency at which the previbration was applied. It can 
been seen that the increase in shear moduli for the sample vibrated at the frequency of 
40 Hz are much higher than those measured and predicted before preloading, see 
Figure 6.70. However, the modulus increment is relatively lower for that of the 
Dr=43.9% sample vibrated at the frequency of 20 Hz compared to the Dr=41.4% 
sample as shown in Figure 6.71. The more increase in shear modulus of the sample 
vibrated at higher frequency is accounted for the higher prestraining due to higher 
frequency. For the Dr=44.3% sample which was vibrated at the frequency of 5 Hz, the 
shear modulus was measured lower than both measured and predicted shear moduli 
before preloading, see Figure 6.72. The decrease in shear modulus is because of the 
number of preloading cycles was insufficient large to increase the shear modulus 
higher than before preloading. 
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Figure 6. 70  Shear modulus and accumulated axial strain versus shearing strain 

before and after preloading at 40 Hz (Dr=41.4%) 
 
 
The development of the accumulated axial strain with shearing strain amplitude is 
also depicted in Figures 6.70-6.72. As shown in these figures, the Acc

aε  nearly keeps 
stable with increasing shearing strain amplitude increases if the shearing strain is 
lower than its corresponding threshold strain, thereafter slightly increases. The rate of 
increase in Acc

aε with shearing strain decreases with the preloading frequency due to 
greater densification of the sample when it was preloading at higher frequency. For 
instance, the Acc

aε of the sample after preloading at 5 Hz is smallest compared to the 
others, and the densification resulting from preloading is lowest among these samples.  
 
Figure 6.73 indicates the normalized shear modulus and damping ratio versus 
shearing strain amplitude after preloading. As shown in this figure, there seems no 
significant influence of preloading frequency on the normalized shear modulus for the 
samples preloaded at the frequency of 20 Hz and 40 Hz. The normalized shear 
modulus reduction curve of the sample subjected to 200,000 cycles at the frequency 
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of 5 Hz plots highest among these curves. The rate of increase in normalized shear 
modulus with shearing strain amplitude increases with decreasing preloading 
frequency as illustrated in Figure 6.73. 
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Figure 6. 71  Shear modulus and accumulated axial strain versus shearing strain 

before and after preloading at 20 Hz (Dr=43.9%) 
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Figure 6. 72  Shear modulus and accumulated axial strain versus shearing strain 

before and after preloading at 5 Hz (Dr=44.3%) 
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Figure 6. 73  Normalized shear modulus and damping ratio with shearing strain after 

preloading under confining pressure of 100 kPa 
 
 
It is clear that damping ratios of these samples are well in agreement with the 
predicted curve by Equation 5.13 under the confining pressure of 100 kPa for virgin 
samples, and they were measured significantly greater than the predicted curve as the 
shearing strain ranges from 0.001% to 0.04%. The preloading frequency shows no 
significant influence on the damping ratio curve.  
 
 
6.5.2 Effect of Number of Cycles  
 
Five medium dense samples are here used to investigate the influence of number of 
preloading cycles on the nonlinear dynamic properties of sand after preloading. Four 
samples were initially previbrated by the preloading stress amplitude of 10 kPa at the 
frequency of 20 Hz under the confining pressure of 50 kPa with the number of cycles 
varying from 1,000 to 1,000,000 cycles, thereafter they were tested by increasing the 
shearing strain amplitude from possible small to large level, one sample was tested 
without vibration history for the purpose of comparison. 
 
Figure 6.74 illustrates the normalized modulus and damping versus shearing strain 
amplitude curves for these five samples, the normalized modulus and damping curves 
predicted by Equations 5.8 and 5.13 for virgin specimen are also plotted for analysis. 
As shown in this figure, the number of cycles has significant influence on the 
positions of these curves. Both normalized modulus and damping curves of the virgin 
specimen follow the predicted tendencies very well; which further confirms the 
precision of the predicted equations proposed in Chapter 5. The normalized modulus 
curve plots at the highest position for the sample subject to 1,000 cycles of preloading, 
when the number of cycles is lower than 100,000 it shifts to a left lower position if the 
number of cycles increases but still higher than the virgin curve. As the number of 
cycles increases to 1,000,000, the normalized modulus curve shifts to a position 
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totally lower than the virgin curve.  
 
Unlike the tendency of normalized shear modulus curve with number of cycles, the 
damping curve contrarily shifts left higher with increasing number of cycles 
especially the damping curve obtained after 1,000,000 cycles of preloading shifts to a 
position which is much higher than the curve for the virgin sample. This phenomenon 
further confirms the fact that damping ratio increases with reducing normalized shear 
modulus at the same shearing strain amplitude reported by previous investigations. 
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Figure 6. 74  Influence of number of cycles on nonlinear dynamic properties of 

medium dense sand under the confining pressure of 50 kPa 
 
 
6.5.3 Effect of Reloading 
 
Figure 6.75 presents the nonlinear dynamic properties of four medium dense Berlin 
sand samples (Dr=40%-48.3%) which had been previbrated to 10,000 cycles with the 
preloading stress amplitude of 10 kPa at frequency of 20 Hz under confining pressure 
of 50 kPa. One sample was determined the nonlinear dynamic properties under 50 kPa, 
the others were tested under the confining pressure of 100 kPa, 200 kPa, and 400 kPa 
after preloading under confining pressure of 50 kPa, respectively. 
 
As shown in this figure that both normalized shear modulus and damping ratio 
measured under higher confining pressure are influenced by the preloading applied 
under the confining pressure of 50 kPa. The normalized shear modulus curve of 
sample after preloading determined under the confining pressure greater than 50 kPa 
keeps higher than its counterpart for the virgin sample under the same confining 
pressure if the confining pressure was increased not exceeding 400 kPa. It can be seen 
that the distance between the normalized modulus curve of the sample subjected to 
preloading under 50 kPa and that of virgin sample is decreased by increasing 
confining pressure. By contraries, the damping curves locate at lower positions than 
their counterparts of virgin samples, as the confining pressure increases to 400 kPa, 
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the damping ratios well agree with the curves of the virgin sample obtained under 
confining pressure of 400 kPa. It can be concluded that increasing the confining 
pressure may reduce the influence of preloading under lower confining pressure. 
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Figure 6. 75  Reloading effect on nonlinear dynamic properties after preloading 

under confining pressure of 50 kPa for medium dense sand  
 
 
6.5.4 Effect of Unloading 
 
Two medium sand samples (44.4% and 44.8%) were preloaded under confining 
pressure of 200 kPa with preloading stress amplitude of 40 kPa at frequency of 20 Hz 
to 10,000 cycles. The confining pressures were decreased to 100 kPa and 50 kPa; then 
the shear modulus and damping ratio were tested with the shearing strain amplitude 
ranging from a possible low to high strain level. Besides, three high dense samples 
(89.7% to 90.5%) were subjected to the same preloading conditions as previous two 
medium samples but 100,000 cycles of vibration. One sample was directly measured 
the shear modulus and damping ratio under the preloading confining pressure (200 
kPa), and the others were tested after the confining pressure was unloaded to 100 kPa 
and 50 kPa, respectively. For comparison, three similar dense density samples were 
prepared to test the nonlinear properties under confining pressures of 50 kPa, 100 kPa, 
and 200 kPa without vibration history, respectively. Two medium dense samples with 
the relative densities of 46.7% and 42.1% were preloaded under identical preloading 
conditions from 100 and 1,000,000 cycles and unloaded the confining pressure to 100 
kPa to show the influence of number of cycles on the unloading effect on nonlinear 
dynamic properties.  
 
As shown in Figure 6.76, the normalized shear modulus reduction curves of both 
medium dense samples plot much higher and flatter than those predicted by Equation 
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5.8 for virgin samples as shearing strain amplitude exceeds 0.001%. For the case that 
the confining pressure was unloaded to 50 kPa, the modulus reduction curve plots 
higher than the 50 kPa predicted curve and even higher than the 100 kPa curve, and 
for the case that pressure was unloaded to 100 kPa the curve locates higher than the 
100 kPa predicted curve even higher than the 200 kPa curve. Accordingly the 
damping curve for the case that confining pressure was unloaded to 50 kPa plots 
lower than their corresponding curve of virgin sample; the curve for the case that 
confining pressure was unloaded to 100 kPa plots much lower the predicted damping 
curve, and agrees with the 200 kPa predicted damping curve. 
 
As shown in Figure 6.77 for dense samples, unlike that in Figure 6.76, confining 
pressure shows no significant influence on the location of the normalized modulus 
reduction curves measured after these samples were subjected to the same preloading 
conditions. These curves are much flatter than those measured from virgin samples. 
The normalized modulus starts to up deviate from its counterpart as shearing strain 
amplitude exceeds the strain of 0.0032% for the 50 kPa curve; and 0.0046% for the 
100 kPa curve, the magnitude of deviation increases with an increase in shearing 
strain amplitude. Unlike those measured under 50 kPa and 100 kPa, the normalized 
shear modulus measured under confining pressure of 200 kPa after preloading was 
observed obviously lower than that of virgin sample when the shearing strain is lower 
than 0.017% beyond which it becomes greater. 
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Figure 6. 76  Unloading effect on nonlinear dynamic properties after preloading 

under confining pressure of 200 kPa for medium dense sand 
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Figure 6. 77  Unloading effect on nonlinear dynamic properties after preloading 

under confining pressure of 200 kPa for dense sand 
 
 
Damping ratios measured under the confining pressures of 50 kPa after preloading are 
much lower than those of virgin sample as shearing strain greater than 0.005%. The 
damping ratio of the 100 curve was found to the virgin damping curve of 200 kPa. 
And damping ratios of the 200 kPa curve are measured larger than those of its 
corresponding of virgin sample when the shearing strain is lower than 0.022% beyond 
which they are nearly the same.  
 
Figure 6.78 indicates that these normalized modulus reduction curves after various 
numbers of preloading cycles all plot much higher than the 100 kPa curve of virgin 
sample even over the 400 kPa curve of virgin sample as shearing strain exceeds 
0.02%. The modulus reduction curves of 100 and 10,000 cycles of preloading slightly 
higher than that of 1,000,000 cycles as the shearing strain amplitude is lower than 
0.013%, beyond which the curve of 10,000 cycles plots always highest. The damping 
curves also plot lower than the 100 kPa curve of virgin specimen and well agree with 
the 200 kPa curve of virgin sample as the shearing stress lower than 0.013% for the 
100-cycle curve. The 1,000,000-cycle damping curve has a good agreement with the 
200 kPa damping curves. Number of preloading cycles under higher confining 
pressure has relatively small influence on the nonlinear dynamic properties measured 
under the confining pressure lower than the preloading confining pressure. 
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Figure 6. 78  Nonlinear dynamic properties under confining pressure of 100 kPa after 
various numbers of cycles under confining pressure of 200 kPa for 
medium dense sand 

 
 
6.5.5 Effect of Water Content 
 
Four samples were prepared by tamping technique with relative densities varying 
from 51.3% to 55.9%, their water contents varies from 0% to 9%. All the samples 
were previbrated with the preloading stress of 40 kPa at 20 Hz under the confining 
pressure of 200 kPa, all samples except the w=6% sample were preloaded to 100,000 
cycles of vibration before the nonlinear shear modulus and damping ratio were 
determined. The w=6% sample was subjected to 800,000 cycles before the nonlinear 
dynamic properties were tested. 
 
As shown in Figure 6.79, the normalized modulus curve of the dry sample plots 
clearly higher than the predicted curve and the curves of wet samples. As the water 
content increases the curve starts to shift left lower and reach to the lowest position 
when the water content reaches the water content of 6%, as the water content 
continuously increases to 9% the curve shifts right higher but lower than the w=3% 
curve. It should be noted that the number of cycles of the w=6% sample is much 
higher than others, which might contribute some influence on the position of the curve. 
Accordingly, the damping curves shift in the opposite direction to that of normalized 
modulus reduction curves. Water content does not change the qualitative relationship 
between normalized shear modulus and damping ratio. 
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Figure 6. 79  Influence of water content on normalized shear modulus and damping 

ratio after preloading under the confining pressure of 200 kPa for 
medium dense sample (Dr=51.3%-55.9%) 

 
 
6.5.6 Effect of Prestraining 
 
A medium dense sample (Dr=44.1%) was prepared to apply the vibration as previous 
investigations. This sample was initially tested from a possible low to the shearing 
strain amplitude of around 0.026% under the confining pressure of 200 kPa, shear 
modulus and damping determined at the first increase of shearing strain is regarded as 
no prestraining. And then directly decreased the shearing strain to the possible low 
level to make shear modulus and damping once more, in this stage, the sample is 
assumed to be vibrated with 1,000 cycle of prestraining amplitude of 0.026% 
according the testing program settings. After the sample was subjected 2.3 million 
cycles of prestraining at 0.026%, the tests was carried out from a possible low strain 
to 0.069%; and then decreased the strain to a possible low level repeated the tested as 
described for the application of the 0.026% prestraining for that of the prestraining 
amplitude of 0.069% to 10,000 cycles. Testing results are presented in Figures 6.80 
and 6.81. 
 
The variation of shear modulus and damping ratio with number of cycles is similar to 
the cases that samples vibrated by the preloading concept (stress-controlled shear). 
Shear modulus decreases with number of cycles when it does not exceed 100,000 
cycles for the prestraining amplitude of 0.026%, the distance between shear modulus 
before and after prestraining decreases with increasing shearing strain amplitude and 
approaches smallest at the prestraining amplitude. After 2.3 million cycles of 
prestraining of 0.026%, shear modulus was measured higher when the strain lower 
than 0.0003% beyond which lower than those obtained after 10,000 cycles 
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prestraining. 
 
The shear moduli rapidly increase to approach those before prestraining when the 
shearing strains are lower than 0.0062% after 1,000 cycles of prestraining of 0.069%. 
Further cycles of prestraining seem have less increasing effect on the shear modulus. 
All normalized modulus curves obtained after prestraining but the curve after 2.3 
million cycles plot higher than the first increasing strain curve. Number of cycles 
seems no significant influence on the normalized shear modulus if it is lower than 
100,000. The normalized shear modulus curve plots much lower and damping curve 
plots much higher than their corresponding virgin curves after 2.3 million cycles of 
prestraining, which is similar to those of the sample subjected to 1 million cycle of 
preloading as illustrated in Figure 6.74. Possibly large number of cycles is accounted 
for the greater deviations of normalized shear modulus and damping ratio from those 
obtained before prestraining. In addition, after 1,000 and 10,000 cycle of prestraining 
at 0.069% the normalized shear modulus curve slightly plots lower and damping 
curve slightly plots higher than those prestraining at 0.26%.  
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Figure 6. 80  Shear modulus and accumulated axial strain versus shearing strain 

amplitude after various numbers of cycles of prestraining 
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Figure 6. 81  Normalized shear modulus and damping ratio versus shearing strain 

amplitude after various numbers of cycles of prestraining 
 
 
 
6.6 Theoretical Interpretation 
 
 
Previous investigations indicate that shear modulus of dry sand increases with number 
of loading cycles if the prestraining amplitude exceeds the threshold volumetric strain. 
Some researches reported the increase of shear modulus could not be accounted for 
the densification of sand (Drnevich and Richart 1970), but the wear process of soil 
particles, they pointed out that the large amplitude shearing strains occurring within 
the specimen were sufficient large to make the relative motion between particles occur, 
but the large amplitude shearing strains were not large enough to cause large the 
particles reorientation (densification or dilation) to occur, the prestraining applied 
abrasive action and caused the nature of these points of contact to wear, and generated 
additional contacts, hence the actual contact area increased; however, others 
(Alarcon-Guzman, Chameau et al. 1989) indicated that the influenced of prestraining 
on small-strain shear modulus was small, the increase is due to the densification after 
prestraining. Wichtmann and Triantafyllidis (2004) interpreted that two possible 
causes were accounted for the increase of shear modulus of sand, one was the change 
of the shape of particle contacts from conus-sphere to sphere-sphere contact shape 
after prestraining; the other was the reduction of stress fluctuation due to the 
application of prestraining. Reversely, Cundall and Strack (1979), Cundall et al. 
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(1982), Chen and Ishibashi (1990), and Chen and Hung (1991) studied the variation of 
fabric of granular material by numerical simulation, and indicated that the number of 
contacts might loss with the development of anisotropy of even in the case that the 
material was contracting.  
 
In torsional resonant column test, it typically is recognized that the wave travels 
through isotropic media, consequently has the same wave speed in all directions. 
Actually, the wave is vertically propagated from the top to bottom of tested sample 
along the axis of the sample. As mentioned in Chapter 2, the shear wave velocity is 
much more sensitive to the stress in the direction in which the wave propagating. In 
nature, the increase of velocity is accounted for the increase of contact number or area 
in the plane which is perpendicular to the wave propagating direction. The structural 
anisotropy effect on natural soil stiffness has already been investigated by previous 
investigations by various means.  
 
Saada, et al. (1978) demonstrated the importance of the clay fabric and its influence 
on the dynamic behavior. They concluded that, when determining the shear moduli of 
clay, the relative arrangement of its particles should not be ignored. It was shown that 
substantial difference exists among the moduli obtained from vertical and horizontal 
specimen. Macari and Ko (1994) presented that the small-strain shear moduli of 
remolded silt in vertical direction (deposit direction) kept greater than those in 
horizontal direction. This phenomenon can be accounted for the orientation of soil 
particle resulting in the loss contact area in the direction in which particle aligning. 
 
Berlin sand, Cuxhaven medium sand, and Braunschweig coarse sand are round and 
elliptical in shape, and Cuxhaven fine sand has somewhat lower roundness than others, 
and higher sphericity, as shown in Figures 4.1-4.4. Medium dense sample shows a 
homogenous performance in structure, orientation of soil particles is hardly formed, as 
shown in Figure 6.82-left. When the sample is subjected to sufficient large shearing 
strain amplitude exceeding the threshold volumetric strain, the motion or slippage 
between particles occurs, resulting in the volume of sample contracting under 
isotropic confinement condition, which usually occurs in resonant column test at high 
strain. As vibration goes on, the soil particles gradually align in vertical direction 
(Figure 6.82-right), which induces a reduction of number of contacts in vertical 
direction and an increase in radial direction. This change can be confirmed by the 
relationship between the vertical and radial strain as presented in Figure 6.2, in which 
the radial strain is 1.57 times great of the vertical strain. The orientation of soil 
structure is dependent on the sphericity of individual soil particle, the lower sphericity 
the higher orientation occurs after vibration. In nature, soil particles of sands are 
almost ellipsoid in shape, applying a shear to soil causes structure orientation, 
especially for granular material like sand.  
 
In the author’s opinion, during the process of vibrating in torsional shear or simple 
shear mode, the wear process of soil particles, densification, the reorientation of soil 
particles, and loss of net number of contact occur simultaneity. The former two 
processes increase the number or area of contacts; contrarily the latter two ones 
reduces particle contact area in the direction in which wave propagation, and increase 
the contact area in horizontal direction in resonant column test. The reorientation of 
particles and contact number loss easier occur in looser sample than in denser sample, 
and the wear process easier occurs in dense sample. Shear modulus is a function of 
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the area of contact in the direction in which the shear wave propagates. The area of 
contact is dependent on three foregoing actions, as for a given sample, there exists a 
critical state below which decrease effect has an overwhelming action on changing 
contact area than increasing effect of densification and wear process in the direction 
that the shear wave propagates, and beyond which the wear process and or 
densification play an more significant role than particle reorientation and contact 
number loss effect. The wear process and densification are both dependent on the 
shearing strain, namely the degree of wear process and densification increases with 
the shearing strain after same number of vibrating cycles, besides the degree of wear 
process also increase with a decrease in particle roundness due to abrasion of sharp 
points during motion between particles.  
 

 
 
Figure 6. 82  Sketch map of development of the microstructure of sand before and 

after preloading by torsional shear: (1) wear process; (2) reorientation 
of soil particles 

 
 
As indicated in Figure 6.16, Cuxhaven fine sand demonstrates a significantly different 
variation tendency of small-strain shear modulus with number of loading cycles, the 
observed reduction in Gmax is very small; however, other sands show much greater 
reduction in shear modulus compared to the fine sand. It seems that the magnitude of 
reduction in Gmax increases with an increase in grain size. Inspired by this finding, two 
different diameter uniform glass beads (2.5 g/cm3 was taken as the specific gravity); 
one has 0.06 mm in diameter the other has 0.5 mm, and a sieved Berlin sand which 
were stay on the 0.125 mm opening sieve but passing the 0.25 mm sieve were tested 
for this purpose, 0.188 mm is regarded as the mean grain size. All the samples are 
prepared by raining technique by keeping the opening of tube of funnel slightly 
contacting material surface during falling to have a relatively low density. These 
samples were subjected to the same preloading stress amplitude of 30 kPa at the 
frequency of 20 Hz under confining pressure of 200 kPa. The small-strain shear 
moduli were measured at given interval of number of cycles after the vibration had 
been stopped for three minutes. Figure 6.83 presents the testing results of these three 
materials combing with the data of Cuxhaven fine sand illustrated in Figure 6.16. 
Note that the accumulated axial strains in Figure 6.83 were obtained by subtracting 
the total axial strains to those induced by the confining pressure before vibration. 
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As shown in Figure 6.83, the sieved Berlin sand (fine sand) shows a similar 
development tendency of Gmax with number of cycles as that of Cuxhaven fine sand, 
the slightly increase in Cuxhaven find is contributed to the reduction of void ratio 
demonstrated by the greater accumulate axial strain. As for the case of 0.06 mm glass 
beads, the shear modulus decreases to 88% when the number of cycles reaches 5, 
thereafter starts to increase and reaches 150% after 1,000,000 cycles of vibration, 
which is accounted for the reduction of void ratio as well wear process as mentioned 
above. As for the case of 0.5 mm glass bead, the shear modulus continuously 
decreases with increasing number of cycles and may reduce to approximate 82% 
when it is lower than 20,000, thereafter recovers with number of cycles and increases 
to 97.4% after the number reaches 1,3000,000 cycles. The change of void ratio of 
sample is very small as exhibited by the accumulated axial strain curve as shown in 
Figure 6.83. The decrease in shear modulus is accounted for the loss of net contacts 
after large amplitude preloading (Cundall and Strack 1979; Cundall, Drescher et al. 
1982; Chen and Ishibashi 1990; Chen and Hung 1991). The increase in shear modulus 
after 100,000 cycles is attributed to the abrasive action between particles and no 
change of net contacts. Comparison the sieved Berlin sand curve and the 0.5 mm glass 
bead curve shows the influence of grain size the development of shear modulus with 
number of cycles.  
 
The measured Gmax is normalized the calculated Gmax considering reduction of void 
ratio based on Equation 6.4 after preloading to present the vibration amplitude 
influence on the effect of wear process and particle reorientation on shear modulus. 
Analytical results are presented in Figure 6.84. 
 
As shown in Figure 6.84, the reduction speed of ratio of Gmax with number of cycles 
decreases with increasing preloading frequency, the maximum reduction of shear 
modulus for each curve similarly decreases with increasing preloading frequency, 
which implies that shearing strain plays an important role in the reduction action of 
shear modulus. As known, the shearing strain amplitude increases with vibrating 
frequency if the frequency is lower than the resonant frequency with a given shear 
stress amplitude. 
 
When the sample is sheared at relatively lower strain level, the abrasive action 
between particles is small and the reorientation action plays an overwhelming role in 
change of shear modulus, consequently shear modulus demonstrates to decrease with 
number of cycle. As the number of cycles increases the reorientation of particles 
continues develops and reaches a critical state when the number achieves a relatively 
larger threshold value then soil stiffness reaches the minimum value. Thereafter, the 
shear modulus is not affected by reorientation action but the wear process continues 
with number of cycles, and the shear modulus demonstrates to increase with number 
of cycles. If the sample is sheared at relative higher strain amplitude, the wear process 
plays a larger role in increasing shear modulus; hence the maximum reduction in 
shear modulus is lower and reached earlier, especially for the case of 40 Hz as shown 
in this figure.  
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Figure 6. 83  Grain size influence on the development of small-strain shear modulus 

with number of cycles for various granular materials 
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Figure 6. 84  Influence of preloading frequency on Gmax considering variation of 

void ratio with number of cycles under confining pressure of 100 kPa 
for medium dense Berlin sand 

 
 
Increasing confining pressure may significantly increase the contact area of sample 
subjected to preloading under lower confining pressure, which may increase the 
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contact area to an extent that is larger than the area before preloading, consequently 
shear modulus demonstrates to be higher than that no preloading at the same higher 
confining pressure. However, unloading the confining pressure to a lower level may 
further decrease the contact area, therefore the shear modulus exhibits lower than both 
moduli measured before and after preloading.  
 
The normalized shear modulus curve higher and damping curve plots lower if the soil 
structure is at an unstabler state, which is observed in the reloading and unloading 
effect on the nonlinear dynamic properties of sample after preloading. This can be 
explained by the fact that after preloading the shear modulus of soil has already 
decreased a lot further shear can only decrease a small magnitude of shear modulus. 
As for the damping ratio, as the soil structure is in unstable state and the friction 
between particles is less than in stable state, which resulting in less energy loss during 
damping test. 
 
 
 
6.7 Summary 
 
 
An empirical equation was proposed to consider the variation of void ratio during 
vibrating is developed based on the measured dimensions before and after test. A 
simple Gmax correction method is also generated to improve the calculation precision 
of Gmax if great change of dimensions of specimen occurs during tests. The factors 
affecting preloading effect on small-strain and nonlinear shear modulus and damping 
properties are detailedly analyzed. The nonlinear dynamic properties of sand after 
preloading are presented and discussed. Reorientation of soil particle during 
preloading is assumed to be the cause of the reduction in shear modulus even if the 
void ratio decreases after preloading.  
 



 

 
 
 
 

CHAPTER 7 CONCLUSIONS AND OUTLOOK 
 
 
 
 
7.1 Conclusions 
 
7.1.1 Calibration 
 
A simple and reliable calibration method for determination of the mass polar moment 
of inertia of drive system (I0) of the Stokoe resonant column apparatus was proposed 
based on the testing results of eight various torsional stiffness aluminum calibration 
bars. Study shows that the tested I0 increases with an increase in torsional stiffness of 
calibration bar, which is accounted for the compliance among the components on the 
top of specimen. To achieve the I0, the equivalent I0 for each resonant frequency of 
corresponding calibration bar was back compute based on the tested resonant 
frequency by assuming the shear modulus of aluminum as 26.5 GPa. The equivalent 
values of I0 were plotted against the tested resonant frequencies; the data were fitted 
by a polynomial with the correlative coefficient larger than 0.999; finally the intercept 
of the polynomial was taken as the mass polar moment of initial of the drive system. 
The proposed method may decrease the deviation of the tested shear modulus from 
the average I0 method, which is suggested by GDS instrument Ltd, from 20% to 
around 1% at the frequency of 235.8 Hz. For the torsional shear test, the influence of 
torsional stiffness and input voltage on calibration factor was analyzed, torque factor 
slightly decrease with the input voltage, but apparently increases with torsional 
stiffness of calibration bar, which is accounted for the offset of permanent magnets 
from the center of drive coils. 
 
7.1.2 Dynamic Properties of Berlin Sand 
 
Small-strain Shear Modulus 
 
(1) Small-strain shear modulus significantly increases with confining pressure and 

distinctly decreases with void ratio, this relationship can be well expressed by 
Equation 5.4. It should be noted that Equation 5.4 shows the best fitting results 
compared to those popular equations listed in Table 5.1 with the lowest mean and 
maximum deviation. 

 
(2) Unlike clayey soil, a slight influence of overconsolidation ratio on small-strain 

shear modulus was observed on Berlin sand, the values of Gmax obtained at 
loading path were measured slightly higher than those at unloading path. Shear 
modulus increase with an increase in confinement of duration, this increase is 
relatively unimportant compared to confining pressure and void ratio.  

 
(3) Water Content has a visible influence on shear modulus of Berlin sand. For a 

given density specimen, there exists optimum water content below which the Gmax 
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initially increases with increasing water content and beyond which decreases with 
water content. The rate of increase in Gmax with water content decreases with 
increasing confining pressure. 

 
(4) Small-strain shear moduli were measured slightly higher in specimens prepared by 

the tamping method than those by raining method, which is accounted for the 
orientation of soil particles for samples prepared by tamping method especially for 
relatively higher density samples. 

 
Nonlinear Dynamic Properties 
 
Confining pressure has a significant influence on the shear modulus reduction and 
damping curves. As confining pressure increases the modulus reduction curve shifts to 
at a higher position and the damping curve shifts to a lower position. These 
relationships can be well modeled by Equations 5.8 and 5.13 for Berlin sand. Void 
ratio shows no significant influence on both modulus reduction and damping curves. 
Water content also was observed no affecting on the damping curve. 
 
Comparison of RC and BE Tests 
 
Comparison of resonant column and bender element tests indicates that small-strain 
shear moduli measured by resonant column tests were determined greater than by 
bender element tests when the stiffness of specimen exceeds a threshold value. The 
distance in Gmax between RC and BE tests increases with increasing confining 
pressure, and the relationship between these two values can be correlated by 
Equations 5.17 or 5.18.  
 
7.1.3 Effects of Preloading on Dynamic Properties of Sand 
 
Small-strain Shear Modulus Correction 
 
A simple and feasible small-strain shear modulus correcting method considering the 
change of dimensions and density of specimen due to the variation of confining 
pressure and preshear contracting was propose at the beginning of Chapter 6. In 
general, the deviation of Gmax without correction is relatively low due to the pressure 
contracting; however, it may be very large up to around 8% for a medium dense 
sample when the accumulated axial strain approaches 1.5% as the preloading stress 
amplitude is relative high after large number of cycles. Actually, if the number of 
cycles reaches very large number, the deviation may increase up more than 10%. The 
proposed method may minimize the deviation of shear modulus to lower than 2%. 
 
Small-strain Shear Modulus 
 
(1) Small-strain shear modulus initially decreases with number of preloading cycles if 

the number does not exceed a threshold value, thereafter, it starts to increase with 
number of cycles. The reduction in Gmax may reach over 20% for looser samples.  

 
(2) Preloading frequency has a significant influence on the variation of Gmax with 

number of cycles. The Gmax(Nc)/Gmax(0) curve plots higher with an increase in 
preloading frequency, which is accounted for the higher densification and strong 
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wear process of interparticles due to higher prestraining amplitude resulting from 
higher preloading frequency. The influence of preloading frequency decreases 
with increasing density of sample. 

 
(3) Preloading ratio was observed to have influence on the variation of small-strain 

shear modulus with number of preloading cycles. The magnitude of reduction of 
Gmax with number of cycles increases with decreasing preloading ratio if the ratio 
induces the prestraining amplitude exceeds the threshold volumetric strain.  

 
(4) Density has an influence on the variation of small-strain shear modulus with 

number of cycles. The maximum magnitude of the reduction in Gmax decreases 
with increasing density, as the density of sample increases the capacity of particle 
reorientation decreases resulting in the less reduction in Gmax. 

 
(5) After preloading increasing the confining pressure (Reloading) may increase the 

small-strain shear modulus under the same confining pressure compared to that of 
specimen without preloading. The increase in Gmax may be up to 20% under a 
concern confining pressure. The greater reduction of Gmax under the preloading 
confining pressure the greater increase of Gmax under the confining pressure which 
is larger than the preloading confining pressure at reloading path. 

 
(6) By contraries, after preloading decreasing the confining pressure (Unloading) may 

further decrease the small-strain shear modulus under the same confining pressure 
compared to that of specimen without preloading. The decrease in Gmax may be up 
to 40.9% under the confining pressure of 15 kPa for Braunschweig coarse sand. 
The greater reduction of Gmax under preloading confining pressure the greater 
reduction of Gmax under confining pressure which is less than the preloading 
confining pressure at unloading path.  

 
(7) Water Content has significant influence on the development of Gmax with number 

of cycles and the unloading effect on Gmax after preloading. The degree of 
reduction in Gmax with an increase in water content when it does not exceed a 
threshold content beyond which the reduction starts to decrease at a given number 
of cycles. The magnitude of reduction in Gmax at unloading path after preloading 
for the wet sample was observed greater than that for dry sample. The relationship 
between the confining pressure and Gmax measured at unloading path after 
preloading can not predicted by linear function but exponential function. 

 
(8) Sample preparation method and vibration mode were observed to have no 

influence on the preloading effects on small-strain shear modulus of sand; the 
increase of Gmax with time after preloading is unimportant as that for virgin 
sample. Releasing the confining pressure to a lower level then reloading to the 
preloading confining pressure may increase the Gmax after preloading, the lower 
target pressure the confining pressure has been released to the greater of increase 
of Gmax is.  

 
Nonlinear Dynamic Properties 
 
(1) The preloading frequency was observed to has no significant influence on the 

normalize shear modulus and damping ratio. The damping ratio measured after 
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preloading was found to be higher than that of virgin sample if the shearing strain 
amplitude exceeds the elastic threshold shearing strain amplitude if the number of 
cycles increases to a number larger than 100,000. 

 
(2) Number of cycles has significant influence on the normalized shear modulus and 

damping ratio of sample subjected to vibration history. The normalized shear 
modulus decreases and damping ratio increases with number of cycles. The 
normalized shear modulus reduction curves of those medium dense samples 
subject to preloading stress amplitude of 10 kPa at frequency of 20 Hz under 
confining pressure of 50 kPa the number of cycle lower than 100,000 all plot 
higher than that of the virgin sample, however as the number of cycles reaches 
1,000,000 the curve plots lower than this curve of virgin sample. And the damping 
ratio shows a contrary tendency to that of the normalized shear modulus. 

 
(3) The normalized shear modulus reduction and damping measured after preloading 

are dependent on the variation of small-strain shear modulus after preloading, if 
the Gmax after preloading is larger than the Gmax before preloading the modulus 
reduction curve after preloading plots lower than the virgin sample curve under 
identical confining pressure, accordingly the damping curve plots higher; 
contrariwise, the modulus reduction curve after preloading plots higher and the 
damping curve plots lower. Unloading confining pressure may further urge the 
normalized shear modulus reduction curve to plot higher and damping ratio curve 
lower. Number of cycles under higher confining pressure has no significant 
influence on the normalized shear modulus and damping properties if the 
confining pressure is unloaded to the same lower confining pressure for medium 
dense sand. Confining pressure has less influence on the normalized shear 
modulus after preloading under higher confining pressure at unloading path, but 
has significant influence on damping ratio for dense sample. 

 
(4) Water content plays an important role in the variation of normalized shear 

modulus and damping ratio with shearing strain amplitude after preloading. The 
normalized shear modulus decreases and damping ratio increases with increasing 
water content if the water content does not exceed the optimum value, over which 
the normalized modulus starts to increase and damping ratio decreases.  

 
(5) Prestraining and preloading have similar influence on dynamic properties of sand. 

In practice, the concept of preloading may have more practical significance than 
prestraining. 

 
(6) Preloading effects on shear modulus and damping ratio of sand may be accounted 

for the jointed effects of wear process and reorientation of interparticles during 
vibration. 

 
 
7.2 Outlook 
 
Although a lot of work has been performed to investigate the dynamic sand properties 
and dynamic preloading effects on shear modulus and damping properties of sand, 
some more investigations are necessary to be carried out in the future. They are given 
as follows: 
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(1) As addressed in Chapter 3, the torque factor for torsional shear test of the Stokoe 
resonant column apparatus varies with the sample stiffness. Using a mean value of 
calibration factor may overestimate the shear modulus of softer sample and 
underestimate that of stiffer sample. A reliable correction method is necessary 
proposed to analyze the shear modulus of various stiffness samples. 

 
(2) Water content was found having significant influence on small-strain shear 

modulus of virgin sample and on preloading effects on dynamic properties of 
Berlin sand. More levels of water content, particularly fully saturated, are needed 
to prepare for further study on the influence of water content on shear modulus 
and damping ratio, especially water contents on nonlinear dynamic sand 
properties. 

 
(3) Comparison of resonant column and bender element tests shows that the 

small-strain shear modulus measured by resonant column test is greater than that 
by bender element test. This finding is disagreement with some results presented 
in literature. More comparison tests are need to carried out on various source soil 
including clayey and sandy soils. 

 
(4) Although Equation 6.4 may approximately predict the variation of void ratio of 

dry Berlin sand based on the axial strain measured by LVDT by measuring the 
dimensions of sample before and after test, which may include some extent 
measuring deviation. To accurately monitor the change of diameter of sample 
during test a high precision method should be used if possible, such as the 
application of proximeter. 

 
(5) The cause of the increase effect of pressure release on shear modulus after 

preloading is possibly caused the alternation of microstructure of soil due to the 
fluctuation of confining pressure; further work is needed to be done to better 
understanding. 

 
(6) Flexural vibrating is similar to the dynamic shear existing in the wind power plant 

engineering. However, the flexural stress is unable to estimate in this study, an 
estimating method is essential to find for further investigation on the dynamic 
properties of sample preloaded by this vibration mode. 

 
(7) Grain size characteristic was found to have influence on preloading effects on 

dynamic sand properties; more source sands with different grain properties are 
worthy to investigate for better understanding the nature of preloading effects. 
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