

Real demonstration results of BEM performance simulation using BIM-SPEED Toolset

Deliverable 4.2 – Energy Performance Report – Tempelhof demo

Deliverable Report: Final version, issue date on 31.10.2022

BIM-SPEED

Harmonised Building Information Speedway for Energy-Efficient Renovation

This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Disclaimer

The contents of this report reflect only the author's view and the Agency and the Commission are not responsible for any use that may be made of the information it contains.

ENERGY REPORT - TEMPELHOF

Deliverable 4.2 – Energy Performance Report

Issue Date31st October 2022Produced byTUB (Saket S.)Version:V 01DisseminationPublic

Colophon

Copyright © 2019 by BIM-SPEED consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BIM-SPEED Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement. This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Contents

ΤΑΙ	TABLE OF FIGURES						
ΤΑΙ	BLE OF T	ABLES	4				
1.	. GENERAL INFORMATION						
	1.1	Building description	5				
	1.2	GIS and environmental data	7				
2.	ENERG	Y MODELLING	8				
	2.1	BIM-to-BEM procedure and software tools used	8				
	2.2	Description of BEM's technical features	11				
		2.2.1 Envelope components and materials	12				
		2.2.2 HVAC systems	16				
		2.2.3 Occupancy, lighting, equipment, and operating patterns	16				
3.	BEM C	ALIBRATION	17				
4.	BUILDI	NG ENERGY PERFORMANCE SIMULATION RESULTS	18				
	4.1	General considerations	18				
	4.2	Energy KPIs	18				
5.	BUILDI	NG RENOVATION SCENARIOS	19				
	5.1	Renovation scenarios proposed	19				
	5.2	Scenario 1: description and results	20				
	5.3	Scenario 2: description and results	23				
	5.4	Scenario 3: description and results	24				
6.	TIME REDUCTION EVALUATION 2						

Table of Figures

Figure 1: Aerial view of the urban context and building location	5
Figure 2: Main façade of the building	6
Figure 3: Berlin's Weather information	7
Figure 4: External temperature imported into the BEM model	8
Figure 5: Software tools used to complete the BIM-to-BEM procedure	8
Figure 6: BIM SPEED_Tempelhof Project on the BIMserver.center platform	9
Figure 7: Tempelhof demo – IFC Builder	9
Figure 8: Tempelhof demo – Open BIM Analytical Model 1	LO
Figure 9: Tempelhof demo – Open BIM Construction Systems 1	11
Figure 10: Typical floor layout Tempelhof BEM 1	11
Figure 11: 3D graphical representation of the Tempelhof BEM 1	12
Figure 12: Heating schedule 1	L7
Figure 13: Occupancy, lighting and equipment schedule 1	17

Table of tables

Table 1: General information	7
Table 2: General environmental data	7
Table 3: Materials	. 12
Table 4: Construction systems	. 13
Table 5: Construction systems	. 16
Table 6: HVAC systems	. 16
Table 7: Internal gains features	. 16
Table 8: BS.OPED Operational Primary Energy Demand	. 18
Table 9: BS.TED Total Energy Demand	. 18
Table 10: BS.TEC Total Energy Consumption	. 19
Table 11: Overview of the Tempelhof Renovation Scenarios	. 20
Table 12: Construction systems	20
Table 13: BS.OPED Operational Primary Energy Demand	. 22
Table 14: BS.TED Total Energy Demand	. 22
Table 15: BS.TEC Total Energy Consumption	. 22
Table 16: BS.TES Total Energy Savings	23
Table 17: BS.OPED Operational Primary Energy Demand	. 24
Table 18: BS.TED Total Energy Demand	. 24
Table 19: BS.TEC Total Energy Consumption	. 24
Table 20: BS.TES Total Energy Savings	. 24
Table 21: BS.OPED Operational Primary Energy Demand	. 25
Table 22: BS.TED Total Energy Demand	. 25
Table 23: BS.TEC Total Energy Consumption	. 25
Table 24: BS.TES Total Energy Savings	. 26
Table 25: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process	. 27

1. General information

1.1 Building description

Tempelhof demo case (H2rund) is a multi-story residential building, which was formerly the officers' hotel of the US Americans, located in Berlin (Germany), in the south-central Berlin borough of Tempelhof-Schöneberg, it ceased operating in 2008. The Tempelhof airport complex consists of several staggered structures: The plaza, originally planned as a circle, is surrounded by four-story wings, which were to house the administrations of Deutsche Lufthansa and the Berlin Airport Company, as well as sections of the Reich Aviation Ministry. The buildings surround a 90-meter-long front courtyard, which leads to the monumental lobby building. This structure in turn leads to the 18-meter-high, longitudinally oriented terminal building.

Figure 1: Aerial view of the urban context and building location

The building was formerly the officers' hotel of the US Americans. The first tenant was Deutsche Lufthansa, which was founded in 1926 in Tempelhof. Along with its subsidiary Hansa Luftbild, it moved in 1938 in the airport building designed by Ernst Sagebiel. H2rund forms a representative access to central headquarters with its large reception hall. The rooms used for military purposes in the Second World War were completely destroyed and burnt out by the end of the war. In 1950, Berliner Flughafen Gesellschaft began reconstruction for US Air Force, which built the Officers' Club and Officers' mess with dining room and club rooms under the name "Columbia House". Officers' quarters were built from former office rooms on upper floors. The reception area on the ground floor was completely redesigned in 1987. Even the projecting roof comes from the US American period. The staircases with characteristic aluminum rails and "oak hall" have largely been preserved in their original state. This room spanning over two floors got its name because of wood paneling and candlesticks adorned with oak leaves. Originally it served Lufthansa as a conference and lecture hall with inbuilt screen for movie screenings.

The building consists of 6 floors (4 floor with 2underground floors), 2 stairwells on each floor. The constructive characteristics of the building are consistent with the construction period and are characterized by brick walls with limestone shells, reinforced concrete and brick mixed floors, and a slope roof.

Regarding the HVAC systems, the building is characterized by central heating systems. The whole building is equipped with district heating for the heating and domestic hot water production. No cooling systems or mechanical ventilation systems are installed. The following photos show the external view of the building.

This project, sponsored by the European Union's Horizon 2020 research and innovation initiative, aims to provide a comprehensive approach to transforming European cities into sustainable, smart, and resource-efficient urban settings. The renovation efforts will include repurposing the airport building into an office building and defining different renovation scenarios for better energy performance which will be building envelope insulation, with a focus on the façades and roof, as well as internal horizontal partitioning.

Figure 2: Main façade of the building

page 6 - 28

Following a summary of the demo general data

Table 1: General information

General information					
Location	Berlin (Germany)				
Use category	Residential				
Building type	Multi-story building				
Construction year	1926				
Renovation year	2022				
Number of floors	4 + 2 Underground				
Number of apartments/units					

1.2 GIS and environmental data

Berlin (Tempelhof) climate data was downloaded directly from the <u>climate.onebuilding.org</u> website.

	January	February	March	April	May	June	July	August	September	October	November	December
Avg. Temperature °C (°F)	0.5 °C	1.4 °C	4.4 °C	9.7 °C	14.4 °C	17.8 °C	19.8 °C	19.5 °C	15.5 °C	10.4 °C	5.6 °C	2.2 °C
	(33) °F	(34.5) °F	(40) °F	(49.4) °F	(58) °F	(64) °F	(67.7) °F	(67.1) °F	(59.8) *F	(50.7) °F	(42.1) °F	(36) °F
Min. Temperature °C (°F)	-1.9 °C	- <mark>1.4 °C</mark>	0.6 °C	4.6 °C	9.4 °C	12.9 °C	15.2 °C	14.9 °C	11.4 °C	7.3 °C	3.2 °C	0.1 °C
	(28.6) °F	(29.5) °F	(33.2) °F	(40.3) °F	(48.9) °F	(55.2) °F	(59.4) °F	(58.9) °F	(52.6) °F	(45.1) °F	(37.7) °F	(32.2) °F
Max. Temperature ^a C	2.8 °C	4.4 °C	8.4 °C	14.4 °C	18.9 °C	22.1 °C	24 °C	23.9 °C	19.6 °C	13.8 °C	8 °C	4.2 °C
(°F)	(37) °F	(40) °F	(47.1) °F	(57.9) °F	(66.1) °F	(71.8) °F	(75.3) °F	(75) °F	(67.2) °F	(56.8) °F	(46.4) °F	(39.6) °F
Precipitation / Rainfall	56	41	53	42	60	67	81	62	56	49	48	54
mm (in)	(2)	(1)	(2)	(1)	(2)	(2)	(3)	(2)	(2)	(1)	(1)	(2)
Humidity(%)	84%	81%	77%	68%	88%	84%	65%	65%	71%	80%	86%	84%
Rainy days (d)	9	7	9	8	8	8	9	8	7	7	8	9
avg. Sun hours (hours)	2.7	3.9	5.4	8.7	10.2	11.0	10.9	10.2	7.4	5.0	3.5	2.6

Figure 3: Berlin's Weather information

The following a brief summary of the climate data.

Table 2: General environmental data

General environmental data					
Location	Berlin (Germany)				
Weather file	DEU_BE_Berlin-Tempelhof.AP.103840_TMYx				
Altitude [m]	34				
Latitude [degrees]	52°52′0″ N				
Longitude [degrees]	13°40′5″ E				

The external temperatures imported into the BEM model are shown in the following graph.

2. Energy modelling

2.1 BIM-to-BEM procedure and software tools used

To complete the BIM-to-BEM process of the Tempelhof demo case, the CYPETHERM-based procedure has been applied and the following tools have been used:

Figure 5: Software tools used to complete the BIM-to-BEM procedure

The BIM model has been developed with Revit software. To integrate the Tempelhof BIM into the Open BIM workflow using the IFC standard, a dedicated add-in "Open BIM-Revit" has been used and the Tempelhof.ifc file linked to the "BIM SPEED_Tempelhof" project on the BIMserver.center platform.

Figure 6: BIM SPEED_Tempelhof Project on the BIMserver.center platform

As a result of the Open BIM integration, models of the BIM-to-BEM procedure can be stored and synchronized in the cloud via the BIMserver.center. Starting from the IFC Builder tool, the Tempelhof.ifc file has been checked and the internal spaces added.

Figure 7: Tempelhof demo – IFC Builder

The model has then been exported and synchronized in BIMserver.center and opened with the Open BIM Analytical model tool in order to create the analytical model of the building with the definition of all the geometric parameters and the generation of all the spaces needed for the creation of a BEM. A few simplifications and

corrections are automatically made, and 7 different thermal zones have been defined and associated with the relevant spaces defined previously with IFC Builder:

- Z01: Basement (not heated)
- Z02: Common Area (not heated)
- Z03 to Z07: Office floors (heated)

Figure 8: Tempelhof demo – Open BIM Analytical Model

The analytical model, once generated, has been exported once again in BIMserver.center and the project has been synchronized to be open within the Open BIM Construction Systems for the characterization of the building elements under the thermal point of view. With the Open BIM Construction Systems tool all the building typologies (external walls, party walls, internal partitions, external and internal floors, roofs, etc.) have been defined layer by layer and associated to proper elements.

Figure 9: Tempelhof demo – Open BIM Construction Systems

As previously done, the model has been exported to the BIMserver.center ready to move to the last step with the completion of the BEM model with the CYPETHERM EPlus tool for the definition of the systems, the identification of internal gains (equipment, lighting, and people) and the user profiles as described within 2.3 paragraph.

2.2 Description of BEM's technical features

Tempelhof BEM consists of 90 office spaces, 2 common not-heated stairwell, a not-heated corridor in each floor, and a flat roof. Figure 11 shows the layout of a typical floor while Figure 12 provides the 3D graphical representation of the Tempelhof BEM as completed in Cypetherm Eplus.

Figure 10: Typical floor layout Tempelhof BEM

Figure 11: 3D graphical representation of the Tempelhof BEM

2.2.1 Envelope components and materials

This paragraph summarises the construction systems implemented within the Tempelhof BEM to characterize the thermal behavior of the building. The elements, as well as the single material, have been created and stored in structured libraries. Table 3 summarises all the materials implemented within the BEM.

		Layers			
Material	e	ρ	λ	RT	Ср
Facadeshellimestone	6.00	2750.00	1.200	0.05	840.00
Eq. Brick wall	30.00	1920.00	0.500	0.60	840.00
Plaster	2.00	1400.00	0.667	0.03	1000.00
Eq.masonry	42.00	1920.00	0.500	0.84	840.00
Facadeshelllimestone	6.00	2750.00	1.200	0.05	840.00
Eq. Brick wall	32.00	1920.00	0.500	0.64	840.00
Plaster	2.00	1400.00	0.667	0.03	1000.00
Plaster	1.50	1400.00	0.750	0.02	1000.00
Brick	9.00	1000.00	0.200	0.45	840.00
Eq.masonry	35.00	1950.00	0.407	0.86	840.00
Eq.masonry	47.00	1950.00	0.392	1.20	840.00
Eq. Brick wall	38.00	1920.00	0.500	0.76	840.00
Eq. Brick wall	48.00	1920.00	0.500	0.96	840.00
Eq. Brick wall	36.00	1920.00	0.500	0.72	840.00
Internalflooring	2.00	2300.00	1.000	0.02	800.00
Screed	6.00	2000.00	1.500	0.04	1000.00
Concrete	4.00	2400.00	2.000	0.02	1000.00
Eq.floorslab	16.00	1600.00	0.320	0.50	840.00
Bitumenmembrane	2.00	1100.00	0.180	0.11	900.00
Eq.floorslab	22.00	1600.00	0.400	0.55	840.00
Eq.floorslab	16.00	1600.00	0.400	0.40	840.00
Screed	5.00	2000.00	1.250	0.04	1000.00
Reinforcedconcrete	10.00	2400.00	2.500	0.04	1000.00
Gravel	15.00	1500.00	0.395	0.38	840.00
		Used abbreviat	ions	0.000	
hickness cm		RT 7	hermal resistance (m	2-K)/W	
ensity kg/m³		Cp S	pecif <mark>ic</mark> heat J/(kg·K)		
hermal conductivity W/(m·K)					

Table 3: Materials

Within Table 4 all the construction systems created for the Tempelhof BEM using the Open BIM Construction Systems tool and stored within a dedicated library linked to the workflow on BIMserver.center have been reported.

Table 4: Construction systems

The following table 5 summarises all the façade openings and windows.

	Table 5: Construction sy	rstems			
3.1 Façade openings					
	Heat transfer coefficient (U)	3.00 W/(m ² ·K)			
Main entrance door	Absorptance	0.6			
3.2 Windows					
Standard Floor Window	Thermal transmittance, U: 5.72 W/(m²·K) Solar factor, g: 0.950 Opaque fraction, Ff: 0.200				
THF Speisesaal EG	THF Speisesaal EG Thermal transmittance, U: 5.72 W/(m²·K) Solar factor, g: 0.950 Opaque fraction, Ff: 0.200				

. .

2.2.2 HVAC systems

Regarding the HVAC systems, the building is characterized by central heating systems. The whole building is equipped with a district heating for heating and domestic hot water production and radiators as terminals. No cooling systems or mechanical ventilation systems are installed. Following table 6 summarises the main parameters of the HVAC systems.

Table 6: HVAC systems						
HVAC Systems	Office spaces					
Reference name	District heating					
Year of installation	n.a.					
Location of the generator	Central location					
Rated capacity [kW]	-					
Average seasonal efficiency	1					
Energy fuel	Natural gas					
Supply/return [°C]	80/60					
Terminal units	Radiators					

2.2.3 Occupancy, lighting, equipment, and operating patterns

Tempelhof BEM has been characterised also from the point of view of the internal gains as summarised in the following table 7.

Table 7: Internal gains features

OCCUPIED Space	Ventilation rates	LIGHTING Installed power	EQUIPMENT Installed power	PEOPLE	ACTIVITY level
All Office floors	8.50 (l/s)person	8.8 W/mq	10.80 W/mq	20 mq/person	130 W/person

Relevant operating schedules and occupational patterns have been assumed based on standard office space type and on a few information collected from the users. Following figures show a few of the patterns set for the Tempelhof BEM.

_							
O Annual	() Week	ly 🖲 Wa	orking day / \	Veekend	() All v	veek Pr	ofiles 📝
Conside	er Saturday	as being a	working day				
✓ Distingu	ish progra	imming pe	r month				
Months		v	Vorking days			Weel	kend
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
January	Heating s	chedule Of	N.			Heating sch	nedule OFF
February	Heating schedule ON					Heating schedule OFF	
March	Heating schedule ON					Heating sch	nedule OFF
April	Heating schedule ON					Heating schedule OFF	
May	Heating s	chedule Of	F			Heating sch	nedule OFF
June	Heating s	chedule Of	F			Heating sch	nedule OFF
July	Heating s	chedule Of	F			Heating sch	nedule OFF
August	Heating s	chedule Of	F			Heating sch	nedule OFF
September	er Heating schedule OFF					Heating sch	nedule OFF
October	Heating schedule ON					Heating sch	nedule OFF
November	Heating s	chedule Of	N			Heating sch	nedule OFF
	Heating o	de al de Ol				Heating col	adula OFF

Figure	12:	Heating	schedule
inguic	±2.	neuting	Schedule

3. BEM calibration

The BEM has not been calibrated with the BIM SPEED new procedure (sufficiently detailed data were not available from both the energy bills side and the energy model side).

4. Building energy performance simulation results

4.1 General considerations

The high energy consumption of the building is mainly due to the poor thermal insulation properties of the building envelope both for what concern opaque elements, walls, and slabs are not insulated with thermal transmittance varying between 1.18 - 1.41 W/mqK, and windows characterized by thermal transmittance of 5.72 W/mqK.

4.2 Energy KPIs

The following Energy KPI has been calculated according to D4.1 descriptions.

BS.OPED: Operational Primary Energy Demand

The primary energy demand has been calculated from the final energy consumption at the consumption point and multiplied by the conversion factor (specific for Germany) for final energy to primary energy. The table below summarises the primary energy demand related to natural gas and network electricity.

	Table 8: BS.OPED	Operatio	onal Prima	iry En	ergy Den	nand
	BS.OPED: Opera	tional Pr	imary End	ergy D	Demand	
	Ep [kWh/m ²]		162.98			
	-		C _{ef}		1	Cep
	Energy vector	(kWh/year)	(kWh/m²·year)	cep	(kWh/year)	(kWh/m ² ·year
Natural ga Electricity	energy vector as obtained from the network	(kWh/year) 497635.71 91463.54	(kWh/m²·year) 99.97 18.37	1.195 2.368	(kWh/year) 594674.68 216585.66	(kWh/m²·year 119.47 43.51

Cer: Energy consumption at consumption point (final energy), kWh/m²·yea

*f*_{cep}: Conversion factor for final energy to primary energy.

C_{ep}: Primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

BS.TEC: Total Energy Consumption

The energy demand of the building is the total amount of energy the technical systems of the building (heating and cooling) have to provide to maintain its indoor environment in comfortable conditions. The table below summarises the results obtained from the calculation of the heating energy demand (there is no cooling for the Tempelhof demo)

					Table	9: BS.	TED T	otal E	inergy	Dem	and		_		
			BS	S.TED:	Total	Ener	gy Der	nand							
			Q	QHEATING [kWh/m ² year]				99.5							
			Q	Q _{DHW} [kWh/m ² year]					0.4			1			
			Q	гот [k\	Nh/m ²	²year]]			1	00		1		
	Jan (kWh)	Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	Y (kWh/year)	'ear (kWh/m²·year)
BUILDING (S. =	4977.78 m²	; V = 17775.4	13 m³)												
Energy demand	Heating DHW TOTAL	107806.3 187.4 107993.7	91029.7 169.2 91198.9	65424.8 187.4 65612.1	39329.0 181.3 39510.3	187.4 187.4	 181.3 181.3	187.4 187.4	 187.4 187.4	181.3 181.3	34733.5 187.4 34920.8	68445.9 181.3 68627.2	88660.6 187.4 88848.0	495429.8 2205.9 497635.7	99.5 0.4 100.0

Total Energy Consumption has been calculated directly using the simulation engine of CYPETHERM EPlus. The following table summarises Primary energy consumption for heating and domestic hot water production.

BS.TEC: Total Energy Consumption						
EP _{heat} [kWh/m ²] 118.9						
EP _{cool} [kWh/m ²] Cooling not present						
EP _{light} [kWh/m ²] 43.5						
EP _{dhw} [kWh/m ²] 0.5						
ЕРтот[kWh/m ²] 162.9						

T 40	DC TECT I	-	C 1.
Table 10:	BS. LEC LOTAL	Energy	Consumption

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	3	/ear
BUILDING /F	1077 78 ~?	(NWR)	(1400)	(enul)	(wan)	Teraul	(kan)	(reau)	(kwn)	(kwn)	(wan)	front	(wan)	(kWh/year)	(kWh/m²-year)
BUILDING (5, =	4977.78 m*	, v = 17775.	43 m-)												
	Heating	107806.3	91029.7	65424.8	39329.0	Ster.	and the second	. 8	. There		34733.5	68445.9	88660.6	495429.8	99.5
Energy demand	DHW	187.4	169.2	187.4	181.3	187.4	181.3	187.4	187.4	181.3	187.4	181.3	187.4	2205.9	0.4
	TOTAL	107993.7	91198.9	65612.1	39510.3	187.4	181.3	187.4	187.4	181.3	34920.8	68627.2	88848.0	497635.7	100.0
	EFhat	107806.3	91029.7	65424.8	39329.0	-		3753	1000	(T))	34733.5	68445.9	88660.6	495429.8	99.5
	EPhant	128828.5	108780.5	78182.6	46998.2						41506.5	81792.9	105949.5	592038.6	118.9
	EP., bast	128184.4	108236.6	77791.7	46763.2						41299.0	81383.9	105419.7	589078.4	118.3
	EF.mt						-							-	
(fm = 1.189)	EP.m						144								
	EPercent														
	EF	187.4	169.2	187.4	181.3	187.4	181.3	187.4	187.4	181.3	187.4	181.3	187.4	2205.9	0.4
	EP	223.9	202.2	223.9	216.7	223.9	216.7	223.9	223.9	216.7	223.9	216.7	223.9	2636.1	0.5
	EP., abo	222.8	201.2	222.8	215.6	222.8	215.6	222.8	222.8	215.6	222.8	215.6	222.8	2622.9	0.5
	EF		- 22	1.1			1925	200	100	- 123	128				
	EPhant		22							(22)	(11)			0.44	
	EP., best														
	EF.										2				
	EP.m													8+4	
Electricity	EP												a contra de la contra		
$(f_{up} = 1.954)$	EF						12.5								
	EP			(***)					1999						
	EPaulte		-									-			
	EF	8060.0	7008.7	7709.6	7359.1	8060.0	7359.1	7709.6	8060.0	7008.7	8060.0	7709.6	7359.1	91463.5	18.4
	EP	19086.1	16596.6	18256.3	17426.4	19086.1	17426.4	18256.3	19086.1	16596.6	19086.1	18256.3	17426.4	216585.7	43.5
	EP.	15749.8	13695.5	15065.1	14380.3	15749.8	14380.3	15065.1	15749.8	13695.5	15749.8	15065.1	14380.3	178726.5	35.9
Auto concurred	EF													1	
electricity	EP														
(f _{eep} = 1.954)	EP_		12				122-1			140		-			
		116053.7	98207.6	73321.7	46869.4	8247.4	7540.4	7896.9	8247.4	7190.0	42980.9	76336.8	96207.1	589099.2	118.3
	C.,	148138.5	125579.3	96662.7	64641.3	19310.0	17643.1	18480.1	19310.0	16813.3	60816.5	100265.8	123599.8	811260.3	163.0
	6	144157.0	122133.3	93079.5	61359.0	15972.6	14595.9	15287.8	15972.6	13911.1	57271.6	96664.6	120022.8	770427.8	154.8

where:

S.: Residential area of the building, m².

V: Net residential area of the building, m³.

f_{eep}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh.EP: Primary energy consumption, kWh.

EP_n: Non-renewable primary energy consumption, kWh.

C_{utuuu}: Energy consumption at consumption point (final energy), kWh/m²·year.

C_{ee}: Total primary energy consumption, kWh/m²·year.

C_{eo,w}: Non-renewable primary energy consumption, kWh/m²·year.

5. Building renovation scenarios

To perform and assess multiple energy simulations for building renovation scenarios, the CYPETHERM EPlus has been used taking the Calibrated BEM baseline as a reference. The interventions have been modelled by changing the relevant parameters within the Calibrated Model.

5.1 Renovation scenarios proposed

For the Tempelhof demo case, the following building renovation scenarios have been assessed according to Task 7.1 premises. The following table summarises the configuration of each scenario.

	External Wall insulation	Roof insulation	Windows replacement	Heating System replacement	Floor insulation	Additional Energy Source
Scenario 01	ETICS	+ Grafipol	Energy 82 mm - PVC	-	+ Grafipol	-
Scenario 02	ETICS	+ Grafipol	-	-	-	-
Scenario 03	Ventilated	+ Grafipol	Energy 82 mm - PVC	-	+ Grafipol	Photovoltaic

Table 11: Overview of the Tempelhof Renovation Scenarios

5.2 Scenario 1: description and results

In scenario 1, the following interventions has been analysed:

- 1. An insulation layer made up of EPS Grafipol TR 31 (thickness 0.08 m and thermal conductivity 0.031 W/mK) was added on the external side of the external walls.
- 2. An insulation layer made up of EPS Grafipol TR 32 (thickness 0.08 m and thermal conductivity 0.032 W/mk) was added on the internal side of the roof.
- 3. All the existing windows were replaced with new pvc windows (Energy 82 mm PVC) with a glazing heat transfer coefficient Uw of $0.79 \text{ W/m}^2\text{K}$.
- 4. An insulation layer made up of EPS Grafipol TR 32 (thickness 0.08 m and thermal conductivity 0.032 W/mk) was added on the internal side of each floor slab.

The following table summarises the new construction systems.

1.1 Façades		
Basic wall STB 380 (38.00 cm) + internal insulation	Layer list: 1 - Facade shel limestone 2 - Eq. Brick wall 3 - Plaster 4 - Poliestireno expandido (EPS) 5 - Gypsum board Thermal transmittance, U: 0.17 W/(m ² ·K) Total thickness 38.00 cm Properties Thermal transmittance, U: 0.28 W/(m ² ·K) Total thickness 47.50 cm	6.00 cm 30.00 cm 2.00 cm 8.00 cm 1.50 cm
Basic wall STB 500 (50.00 cm) + internal insulation	Properties Layer list: 1 - Facade shel limestone 2 - Eq. Brick wall 3 - Plaster 4 - Poliestireno expandido (EPS) 5 - Gypsum board	6.00 cm 42.00 cm 2.00 cm 8.00 cm 1.50 cm

1.2 Waiis in cont			
BW STB 400 + internal insulation	Properties	Layer list: 1 - Eq. Brick wall 2 - Plaster 3 - Poliestireno expandido (EPS) 4 - Gypsum board Thermal transmittance, U: 0.13 W/(m ² ·K) Total thickness 49.50 cm	38.00 cm 2.00 cm 8.00 cm 1.50 cm
BW STB 500 + internal insulation	Properties	Layer list: 1 - Eq. Brick wall 2 - Plaster 3 - Poliestireno expandido (EPS) 4 - Gypsum board Thermal transmittance, U: 0.13 W/(m ² ·K) Total thickness 59.50 cm	48.00 cm 2.00 cm 8.00 cm 1.50 cm
2.1 Roof			
		Layer list:	
Roof slab (30.00cm) + internal insulation	©	 1 - Bitumen membrane 2 - Concrete 3 - Eq. floor slab 4 - Plaster 5 - EPS Grafipol TR 32 6 - Plasterboard Thermal transmittance, U: 0.28 W/(m²·K) Total thickness 39.50 cm 	2.00 cm 4.00 cm 22.00 cm 2.00 cm 8.00 cm 1.50 cm
Roof slab (30.00cm) + internal insulation 2.2 Internal horiz	O O Image: Control partitioning	 1 - Bitumen membrane 2 - Concrete 3 - Eq. floor slab 4 - Plaster 5 - EPS Grafipol TR 32 6 - Plasterboard Thermal transmittance, U: 0.28 W/(m²·K) Total thickness 39.50 cm 	2.00 cm 4.00 cm 22.00 cm 8.00 cm 1.50 cm
Roof slab (30.00cm) + internal insulation 2.2 Internal hori Hochlsteindeck e 300 (30.00 cm) + internal insulation	Properties	 1 - Bitumen membrane 2 - Concrete 3 - Eq. floor slab 4 - Plaster 5 - EPS Grafipol TR 32 6 - Plasterboard Thermal transmittance, U: 0.28 W/(m ² ·K) Total thickness 39.50 cm Layer list: 1 - Internal flooring 2 - Screed 3 - Concrete 4 - Eq. floor slab 5 - Plaster 6 - EPS Grafipol TR 32 7 - Plasterboard Thermal transmittance, U: 0.30 W/(m ² ·K) Total thickness 39.50 cm	2.00 cm 4.00 cm 22.00 cm 8.00 cm 1.50 cm 6.00 cm 4.00 cm 16.00 cm 2.00 cm 8.00 cm 1.50 cm
Roof slab (30.00cm) + internal insulation 2.2 Internal hori Hochlsteindeck e 300 (30.00 cm) + internal insulation 3.1 Windows	O Properties O Properties O Properties O	 1 - Bitumen membrane 2 - Concrete 3 - Eq. floor slab 4 - Plaster 5 - EPS Grafipol TR 32 6 - Plasterboard Thermal transmittance, U: 0.28 W/(m²·K) Total thickness 39.50 cm Layer list: 1 - Internal flooring 2 - Screed 3 - Concrete 4 - Eq. floor slab 5 - Plaster 6 - EPS Grafipol TR 32 7 - Plasterboard Thermal transmittance, U: 0.30 W/(m ² ·K) Total thickness 39.50 cm	2.00 cm 4.00 cm 22.00 cm 8.00 cm 1.50 cm 6.00 cm 4.00 cm 16.00 cm 2.00 cm 8.00 cm 1.50 cm

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 13: BS.OPED	Operational	Primary	Energy	Demand
-------------------	-------------	---------	--------	--------

S1.OPED: Ope	erational Prima	ary Energy Dema				
Ep [kWh/m ²]	95.11					
Energy vector	(kWh/year)	C _{er} (kWh/m²∙year)	f _{cep}	C _{ep} (kWh/year) (kWh/m²·year)		
Natural gas	214931.24	43.18	1.195	256842.83	51.60	
Electricity obtained from the network	91463.54	18.37	2.368	216585.66	43.51	

BS.TED: Total Energy Demand

				Tabl	e 14: B	S.TED	Total	Energy	Dema	nd					
			S1.TE	I.TED: Total Energy Demand											
			QHEAT	HEATING [kWh/m ² year]				42.7							
			Qdhw	J _{DHW} [kWh/m²year]				0.4							
			Q TOT	[kWh/	m²yea	r]		43.2							
		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	Y (kWh/year)	ear (kWh/m²·year)
BUILDING (S _u = 4	1977.78 m²	; V = 17775	i.43 m³)				AC.475.1749					200.00.00.00			
	Heating	49575.6	42338.9	27830.6	15179.3						9735.7	28154.2	39911.0	212725.3	42.7
Energy demand	TOTAL	187.4 49763.0	169.2 42508.1	187.4 28017.9	181.3 15360.6	187.4 187.4	181.3 181.3	187.4	187.4 187.4	181.3 181.3	187.4 9923.0	181.3 28335.6	187.4 40098.3	2205.9 214931.2	0.4 43.2

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

S1.TEC: Total Energy Consumption							
$EP_{heat}[kWh/m^2]$	51.1						
EP _{cool} [kWh/m ²]	Cooling not present						
$EP_{light}[kWh/m^2]$	43.5						
$EP_{dhw}[kWh/m^2]$	0.5						
ЕРтот[kWh/m ²] 95.1							

Table 15: BS.TEC Total Energy Consumption

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		ear
		(kWh)	(kWh)	(kwn)	(KWB)	(kWh)	(KWh)	[xWh]	(s/wn)	(kinh)	(kave)	(kwh)	(kwn)	(kWh(year)	(kWitym2-year)
BUILDING (5. = 4	1977.78 m²	; V = 17775	i.43 m ^a)												
	Heating	49575.6	42338.9	27830.6	15179.3						9735.7	28154.2	39911.0	212725.3	42.7
Energy demand	DHW	187.4	169.2	187.4	181.3	187.4	181.3	187.4	187.4	181.3	187.4	181.3	187.4	2205.9	0.4
	TOTAL	49763.0	42508.1	28017.9	15360.6	187.4	181.3	187.4	187.4	181.3	9923.0	28335.6	40098.3	214931.2	43.2
	EFine	49575.6	42338.9	27830.6	15179.3	1.77					9735.7	28154.2	39911.0	212725.3	42.7
	EPhone	59242.9	50595.0	33257.5	18139.3					-	11634.2	33644.3	47693.6	254206.7	51.1
	EPagan	58946.7	50342.0	33091.2	18048.6				-	-	11576.0	33476.1	47455.1	252935.7	50.8
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	EF														
Natural gas	EP	44										-			
(int - round)	EP			-			-	-	-				-	-	
8.	EF	187.4	169.2	187.4	181.3	187.4	181.3	187.4	187.4	181.3	187.4	181.3	187.4	2205.9	0.4
	EP	223.9	202.2	223.9	216.7	223.9	216.7	223.9	223.9	216.7	223.9	216.7	223.9	2636.1	0.5
	EP.m.	222.8	201.2	222.8	215.6	222.8	215.6	222.8	222.8	215.6	222.8	215.6	222.8	2622.9	0.5
	EFree														
	EP	22					122				-		2	12	
	EPenner									-			-	-	
	EF														
	EP												~		
Destricity	EP												-		
(1., = 1.954)	EF.				2										
	EP.										277				
	EP												-		
6	EF	8060.0	7008.7	7709.6	7359.1	8060.0	7359.1	7709.6	8060.0	7008.7	8060.0	7709.6	7359.1	91463.5	18.4
	EP	19086.1	16596.6	18256.3	17426.4	19086.1	17426.4	18256.3	19086.1	16596.6	19086.1	18256.3	17426.4	216585.7	43.5
	EP	15749.8	13695.5	15065.1	14380.3	15749.8	14380.3	15065.1	15749.8	13695.5	15749.8	15065.1	14380.3	178726.5	35.9
	EF		-												
electricity	EP									2.1		<u>_</u>	<u></u>		
(f_ = 1.954)	EP.		1	22			12		120	-	-		2	1	
		57823.0	49516.8	35727.5	22719.7	8247.4	7540.4	7896.9	8247.4	7190.0	17983.1	36045.1	47457.4	306394.8	61.6
	C	78552.9	67393.8	51737.7	35782.4	19310.0	17643.1	18480.1	19310.0	16813.3	30944.1	52117.3	65343.9	473428.5	95.1
		74010 7			33644 4	15077.6							£3058 3	474705 1	

where:

S.: Residential area of the building, m².

V: Net residential area of the building, m³.

f_{cm}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh. EP: Primary energy consumption, kWh.

EP_w: Non-renewable primary energy consumption, kWh.

Certain: Energy consumption at consumption point (final energy), kWh/m²·year.

C_{ap}: Total primary energy consumption, kWh/m²·year.

C_{mpr}: Non-renewable primary energy consumption, kWh/m²·year.

BS.TES: Total Energy savings

S1.TES: Total Energy Savings								
	Baseline	Scenario 01	SAVING					
$EP_{heat}[kWh/m^2]$	118.9	51.1	67.8					
$EP_{cool}[kWh/m^2]$	Wh/m ²] Cooling not present							
$EP_{light}[kWh/m^2]$	43.5	43.5	0					
EP _{dhw} [kWh/m ²]	0.5	0.5	0					
EPTOT[kWh/m ²]	162.9	95.1	67.8					

Table 16: BS.TES Total Energy Savings

5.3 Scenario 2: description and results

Scenario 2 is like scenario 1 with the internal insulation of the external walls and roof. There are two differences: the windows and the internal floor slabs are kept as the pre-existing ones.

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Т	Table 17: BS.OPED Operational Primary Energy Demar						
]	S2.OPED: Operational Primary Energy Demand						
	Ep [kWh/m²]	107.53					

Energy vector		Cet	£		Cep
Energy vector	(kWh/year)	(kWh/m²·year)	Cep	(kWh/year)	(kWh/m²·year)
Natural gas	266683.64	53.57	1.195	318686.95	64.02
Electricity obtained from the network	91463.54	18.37	2.368	216585.66	43.51

BS.TED: Total Energy Demand

				Г	able 18	3: BS.T	ED Tot	al Ene	rgy De	mand					
			S	2.TED:	Total E	nergy	Demai	nd							
			Q	HEATING	[kWh/r	n²year	·]	53	.1						
			Q	dнw [k∖	۷h/m²y	/ear]		0.4	ŀ			1			
			Q	тот [kV	۷h/m²y	/ear]		53	.6						
		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	(kWh/year)	(ear (kWh/m²·year)
BUILDING (S. =	4977. <mark>7</mark> 8 m²	; V = 17775	.43 m³)												
Energy demand	Heating DHW TOTAL	60568.0 187.4 60755.3	51479.1 169.2 51648.3	34280.0 187.4 34467.4	19415.4 181.3 19596.7	187.4 187.4	 181.3 181.3	187.4 187.4	187.4 187.4	181.3 181.3	14183.1 187.4 14370.4	35327.0 181.3 35508.4	49225.0 187.4 49412.4	264477.7 2205.9 266683.6	53.1 0.4 53.6

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

S2.TEC: Total Energy Consumption						
EP _{heat} [kWh/m ²]	63.5					
EP _{cool} [kWh/m ²]	Cooling not present					
EP _{light} [kWh/m ²]	43.5					
EP _{dhw} [kWh/m ²]	0.5					
EΡτοτ[kWh/m²]	107.5					

Table 19: BS.TEC Total Energy Consumption

BS.TES: Total Energy savings

Table 20: BS.TE	S Total	Energy	Savings
-----------------	---------	--------	---------

S2.TES: Total Energy Savings								
E	Baseline	Scenario 02	SAVING					
EP _{heat} [kWh/m ²]	118.9	63.5	55.4					
EP _{cool} [kWh/m ²]	Cooling not present							
EP _{light} [kWh/m ²]	43.5	43.5	0					
EP _{dhw} [kWh/m ²]	0.5	0.5	0					
ЕРтот[kWh/m ²] 162.9 107.5 55.4								

5.4 Scenario 3: description and results

In scenario 3, the following interventions have been analysed:

- An insulation layer made up of EPS Grafipol TR 32 (thickness 0.08 m and thermal conductivity 0.032 W/mk) was added on the internal side of the roof (Same as scenarios 1 and 2).
- 2. All the existing windows were replaced with new pvc windows (Energy 82 mm PVC) with a glazing heat transfer coefficient Uw of 0.79 W/m2K. (Same as scenario 1).
- An insulation layer made up of EPS Grafipol TR 32 (thickness 0.08 m and thermal conductivity 0.032 W/mK) was added on the internal side of each floor slab. (Same as scenario 1)
- 4. An insulation layer made up of Rockwool (thickness 0.08 m and thermal conductivity 0.034 W/mK) and air gap was added on the external side of the external walls and makes it as a ventilated wall.
- 5. Photovoltaic Solar panels (450wp SUNERGY, 2108×1048×35) were added with a total power installed of 18kW. They have the potential of producing 19045.0 kWh/year.

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Т	able 21: BS.OPED	Operational	Primary Energy	[,] Demar	ld			
	S3.OPED: Opera	tional Primar	y Energy Dema	nd				
	Ep [kWh/m²]		87.32					
Franciscus			C_	£	C.o			
Energy ve	ector	(kWh/year)	(kWh/m²·year)	Cep	(kWh/year)	(kWh/m²·year)		
Naturalgas	3	204275.70	41.04	1.195	244109.46	49.04		
Electricityobtained fro	72418.54	14.55	2.368	171487.10	34.45			
Electricityproducedon	19045.00	3.83	1.000	19045.00	3.83			

BS.TED: Total Energy Demand

					Table 2	2: BS. ⁻	TED To	tal En	ergy De	mand					
			S	3.TED:	Total E	Energy	Dema	nd							
			C	HEATING	[kWh/	m²yea	r]	4	0.6						
			C) DHW [k	Wh/m ²	year]		0	.4						
			C	TOT [k	Wh/m²	year]		4	1.0						
		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	۲ (kWh/year)	'ear (kWh/m²·year)
BUILDING (S. =	4977.78 m²	; V = 17775	5.43 m³)												
Energy demand	Heating DHW	47561.7 187.4 47749 1	40757.3 169.2 40926 5	26699.3 187.4 26886 7	14193.6 181.3	187.4	181.3	187.4	187.4 187.4	181.3 181 3	7981.2 187.4 8168 5	26731.6 181.3 26912.9	38145.1 187.4 38332.5	202069.8 2205.9 204275.7	40.6 0.4 41.0

S3.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

S3.TEC: Total Energy Consumption					
EP _{heat} [kWh/m ²]	48.5				
EP _{cool} [kWh/m ²]	Cooling not present				
EP _{light} [kWh/m ²]	43.5				
EP _{dhw} [kWh/m ²]	0.5				
EP _{solar} [kWh/m ²]	-9.1				
EP _{τοτ} [kWh/m ²]	83.4				

		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	(kWh/year)	ear (kWh/m²-year)
BUILDING (S. = 4	977.78 m²	; V = 17775	5.43 m ³)											(,),	(,,,
	Heating	47561.7	40757.3	26699.3	14193.6		-				7981.2	26731.6	38145.1	202069.8	40.6
Energy demand	DHW	187.4	169.2	187.4	181.3	187.4	181.3	187.4	187.4	181.3	187.4	181.3	187.4	2205.9	0.4
	TOTAL	47749.1	40926.5	26886.7	14374.9	187.4	181.3	187.4	187.4	181.3	8168.5	26912.9	38332.5	204275.7	41.0
Naturalgas (f _m = 1.189)	EFheat	47561.7	40757.3	26699.3	14193.6			(7981.2	26731.6	38145.1	202069.8	40.6
	EPhat	56836.2	48704.9	31905.7	16961.3						9537.5	31944.2	45583.4	241473.4	48.5
	EP _{nt,heat}	56552.1	48461.4	31746.1	16876.5		-				9489.8	31784.5	45355.5	240266.0	48.3
	EF cost														
	EP cost				7.70									100	
	EP ns, cool			-		-	-				-			-	
	EFdhw	187.4	169.2	187.4	181.3	187.4	181.3	187.4	187.4	181.3	187.4	181.3	187.4	2205.9	0.4
	EPdhw	223.9	202.2	223.9	216.7	223.9	216.7	223.9	223.9	216.7	223.9	216.7	223.9	2636.1	0.5
	EPar,dhw	222.8	201.2	222.8	215.6	222.8	215.6	222.8	222.8	215.6	222.8	215.6	222.8	2622.9	0.5
	EFheat							100							
	EPhast														
	EP _{nr,heat}	-	-	-			-	-			-	-		-	
	EF cost														
	EP cosi														
Electricity	EP nr, cool		-								-				
(f _{ee} = 1.954)	EFdhw														
	EPdhw														
	EPnadhw														
	EFight	8060.0	7008.7	7709.6	7359.1	8060.0	7359.1	7709.6	8060.0	7008.7	8060.0	7709.6	7359.1	91463.5	18.4
	EPilght	19086.1	16596.6	18256.3	17426.4	19086.1	17426.4	18256.3	19086.1	16596.6	19086.1	18256.3	17426.4	216585.7	43.5
	EP nr, light	15749.8	13695.5	15065.1	14380.3	15749.8	14380.3	15065.1	15749.8	13695.5	15749.8	15065.1	14380.3	178726.5	35.9
Auto-consumed	EF													-19045.0	-3.8
electricity	EP													-45098.6	-9.1
(f _{op} = 1.954)	EP ar													-37215.3	-7.5
	C _{ef,total}	55809.1	47935.2	34596.2	21734.0	8247.4	7540.4	7896.9	8247.4	7190.0	16228.5	34622.4	45691.6	276694.2	55.6
	C.,,	76146.2	65503.8	50385.8	34604.4	19310.0	17643.1	18480.1	19310.0	16813.3	28847.5	50417.1	63233.8	415596.6	83.5
	C _{ep,nr}	72524.7	62358.1	47034.0	31472.4	15972.6	14595.9	15287.8	15972.6	13911.1	25462.4	47065.1	59958.6	384400.1	77.2

where:

 S_a:
 Residential area of the building, m².

 V:
 Net residential area of the building, m³.

 f_{cop}:
 Conversion factor for final energy to primary energy obtained from non-renewable sources.

 EF:
 Final energy consumed by the system at consumption point, kWh.

 EP:
 Primary energy consumption, kWh.

 Conversion factor for final energy consumption for final energy to primary energy obtained from non-renewable sources.

 EF:
 Final energy consumption, kWh.

EP ...: Non-renewable primary energy consumption, kWh.

 C_{etcour} : Energy consumption at consumption point (final energy), kWh/m²·year. C_{ep} : Total primary energy consumption, kWh/m²·year.

 $C_{_{ep,n}}: \ \ \text{Non-renewable primary energy consumption, kWh/m^2 \cdot year.}$

BS.TES: Total Energy savings

Table 24: BS.TES Total Energy Savings

S3.TES: Total Energy Savings								
E	Baseline	Scenario 03	SAVING					
EP _{heat} [kWh/m ²]	118.9	48.5	70.4					
EP _{cool} [kWh/m ²]	Cooling not present							
$EP_{light}[kWh/m^2]$	43.5	43.5	0					
EP _{dhw} [kWh/m ²]	0.5	0.5	0					
EP _{solar} [kWh/m ²]		-9.1	9.1					
EPTOT[kWh/m ²]	162.9	83.4	79.5					

6. Time reduction evaluation

Following table shows the results of the time reduction for the Tempelhof democase. The BIM SPEED process completed as previously described has been compared to the creation of a BEM using a traditional process, based on the expertise of the energy modeler on similar buildings.

Table 25: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process

		Traditio	nal process	BIM SPEED PROCESS			
	Workflow required for the BEM creation	activity description	time required (working days)	activity description	time required (working days)		
1	BUILDING DATA COLLECTION (site inspection, document/drawing analysis,), specific data for the thermal characterization are needed						
	 a) direct geometrical measurements (needed if detailed and reliable technical drawings are not available) 		4	Information extracted directly from BIM	0		
	 b) collection and detection of the thermal characteristics of building components (mapping of windows type, wall type) 		1	Information extracted/partially extracted from BIM	1		
	c) collection and identification of relevant HVAC characteristics (installed power, type of terminals,)		1	Not included in BIM (same for traditional process)	1		
	d) data on building operational uses		0,5	Not included in BIM (same for traditional process)	0,5		
2	Building geometry creation						
	a) 2D floorplans reconstruction from on site measurements (needed if detailed and reliable technical drawings are not available)		3	Not needed - geometrical information extracted directly from BIM	0		
	b) creation of the 3D geometry of the building directly with specific Building Energy Simulation tools		3	creation of the Analytical model using BIM (just minor adjustments may be needed)	2		
3	Building thermal characterisation						
	a) creation of the building components and related libraries (e.g. materials, stratigraphies)		2	the same as traditional process	2		
	b) definition of the thermal zones (uses, internal gains - occupancy, lighting, equipment schedules - temperatures)		2	the same as traditional process	2		
4	HVAC characterisation						
	a) creation of the HVAC components (and related libraries)		1	the same as traditional process	1		
	b) definition of the systems		2	the same as traditional process	2		
	TOTAL TIME REQUIRED		16		9		
BIM-to-BEM time reduction compared to current practice: 41%							

