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Abstract

One of the great challenges in modern biology is understanding the genome and its
translation into biological structures and function. In this context, the aim of this
dissertation is to show that combinatorial approaches of traditional methods and novel
machine learning ideas can be developed and successfully applied to analyze large-scale
biological datasets and provide novel insights into genetic and transcriptomic variation.
This proposed thesis is validated in two fields of biological research: genome-wide
association studies (GWAS) and single-cell RNA sequencing (scRNA-Seq). For the
analysis of such data, we propose three novel methods, each consisting of traditional
methods on the one hand and state-of-the-art machine learning algorithms on the other.
It is shown that these combinatorial approaches outperform both their individual
methodological components and existing techniques on suitable corresponding datasets
in terms of statistical power and accuracy.

The standard approach to the evaluation of GWAS is based on testing each position in
the genome individually for statistical significance of its association with the phenotype
under investigation. To improve the analysis, we propose a combination of machine
learning and statistical testing that takes correlation structures within the set of
single-nucleotide polymorphisms (SNP) under investigation in a mathematically
well-controlled manner into account. The general idea is to train an appropriate
state-of-the-art classification algorithm, selecting a subset of candidate locations that are
most relevant for the classifier’s decisions and examining only those for significant
associations via multiple statistical hypothesis testing. This dissertation’s first
methodological contribution, the two-step algorithm, COMBI, first trains a support
vector machine to determine a subset of candidate SNPs and then performs hypothesis
tests for these SNPs together with an adequate threshold correction. Applying COMBI
to generated datasets as well as data from a WTCCC study (2007), we show that the
novel method outperforms ordinary raw p-value thresholding and other state-of-the-art
methods. COMBI presents higher power and precision than the examined alternatives
while yielding fewer false (i.e. non-replicated) and more #rue (i.e. replicated)
discoveries when its results are validated on later GWAS.

Deep learning has become one of the leading methodologies in data science, which
oftentimes greatly improves prediction performances in comparison to conventional
approaches. Recently, explainable artificial intelligence has emerged as a novel area of
research that goes beyond pure prediction improvement by extracting knowledge from
deep learning methodologies through the interpretation of their results. Following these
developments, we present the second methodological contribution of this dissertation,
DeepCOMBI - an improved, deep learning- and explanation-based extension of the
previously proposed method COMBI. The three-step algorithm of DeepCOMBI first
trains a neural network to classify subjects into their respective phenotypes. Second, it
explains the classifier’s decisions by applying layer-wise relevance propagation as one



example from the pool of explanation techniques. The resulting importance scores are
eventually used to determine a subset of the most relevant locations for multiple
hypothesis testing in the third step, which remains unchanged as in the original COMBI
method. DeepCOMBI is shown to outperform COMBI, raw p-value thresholding and
other baseline methods on generated datasets and the 2007 WTCCC study.

Beyond improving the identification of associations between phenotypes and genotypes,
in this dissertation, we contribute to understanding how genetic information is translated
into physical structures and biological function. When exploring the flow of sequential
information from DNA to mRNA to proteins, we interpret the genome in the context of
cell types and aim to identify the genes that are active in certain cells. Within this frame
of reference, the goal of scRNA-Seq experiments is to define and catalog cell types
from the transcriptional output of individual cells, which refers to an unsupervised
clustering problem. To improve the clustering of small disease- or tissue-specific
datasets, for which the identification of rare cell types is often problematic, we propose
to combine conventional clustering algorithms with the machine learning concept of
transfer learning to utilize large and well-annotated reference datasets. This
dissertation’s third methodological contribution modifies the target dataset while
incorporating key information from the reference dataset via non-negative matrix
factorization before providing the modified dataset to a traditional downstream
clustering algorithm. We empirically evaluate the benefits of the novel approach on
simulated scRNA-Seq data as well as on publicly available datasets. Finally, we present
results for analyzing a recently published small dataset and find improved clustering
when transferring knowledge from a large independent reference dataset.

To summarize, this dissertation contributes to a better understanding of the genome and
the processes around its translation into biological structures and function. By proposing
three approaches for the analysis of large-scale biological datasets combining traditional
methods and state-of-the-art machine learning algorithms, it is shown that, in this
regard, too, “the whole is greater than the sum of its parts” (indirect quote derived from
Aristotle, 4th century BC).



Zusammenfassung

Eine der groBiten Herausforderungen der modernen Biologie besteht darin, das Genom
und seine Umwandlung in biologische Strukturen und Funktionen zu verstehen. In
diesem Zusammenhang wird in dieser Dissertation gezeigt, dass kombinatorische
Ansidtze traditioneller Methoden und neuartiger Ideen des maschinellen Lernens
entwickelt und erfolgreich angewendet werden konnen, um grofle biologische
Datensitze zu analysieren und neue Einblicke in genetische und transkriptomische
Variationen zu erhalten. Diese fiir diese Arbeit aufgestellte These wird in zwei
Bereichen der biologischen Forschung validiert: genomweite Assoziationsstudien
(GWAS) und Einzelzell-RNA-Sequenzierung (scRNA-Seq). Es werden insgesamt drei
neue Methoden vorgeschlagen, die jeweils aus traditionellen Methoden auf der einen
Seite und modernen maschinellen Lernalgorithmen auf der anderen Seite bestehen. Es
wird gezeigt, dass diese kombinatorischen Ansitze sowohl ihre einzelnen methodischen
Komponenten als auch andere bereits existierende Konkurrenzmethoden bei der
Anwendung auf entsprechenden Datensédtzen hinsichtlich statistischer Power und
Accuracy tiibertreffen.

Der Standardansatz fiir die Auswertung von GWAS basiert darauf, jede Position im
Genom einzeln auf statistische Signifikanz ihrer Assoziation mit dem untersuchten
Phénotyp zu testen. Um die Analyse zu verbessern, schlagen wir eine Kombination aus
maschinellem Lernen und statistischem Testen vor, bei der Korrelationsstrukturen
zwischen den untersuchten Einzelnukleotid-Polymorphismen (SNP) mathematisch
kontrolliert beriicksichtigt werden. Die zugrundeliegende Idee besteht darin, zunédchst
einen geeigneten Klassifizierungsalgorithmus zu trainieren, danach die Teilmenge aller
SNPs auszuwéhlen, die fiir die Entscheidungen des Klassifizierers am relevantesten sind
und letztendlich diese mit multiplen statistischen Hypothesentests auf signifikante
Assoziationen zu untersuchen. Der erste im Rahmen dieser Dissertation entwickelte,
zweistufige Algorithmus COMBI trainiert zunichst eine Support Vector Machine, um
die Teilmenge der bedeutendsten Kandidaten-SNPs zu bestimmen und fiihrt dann
Hypothesentests mit einer entsprechenden Anpassung des Signifikanzlevels fiir diese
SNPs durch. Mit der Anwendung von COMBI auf generierten Datensétzen sowie auf
Daten aus einer WTCCC-Studie (2007) wird gezeigt, dass die neue Methode bessere
Ergebnisse  liefert als  gewohnliches  multiples  Testen sowie  andere
Konkurrenzmethoden. COMBI ermdoglicht hohere statistische Power und Prizision als
die untersuchten Alternativen und liefert weniger falsche (d.h. nicht replizierte) und
mehr wahre (d.h. replizierte) Entdeckungen, wenn die jeweiligen Ergebnisse mit
unabhéngigen GWAS validiert werden.

In den letzten Jahren wurde tiefes Lernen zu einer der fiihrenden Methoden der
Datenwissenschaften, die die Vorhersageleistungen im Vergleich zu herkdmmlichen
Ansétzen haufig erheblich verbessert. In jiingster Zeit hat sich zudem erkldrbare
kiinstliche Intelligenz (Explainable AI) zu einem neuartigen Forschungsgebiet
entwickelt, das iiber die reine Vorhersageverbesserung hinausgeht und Wissen aus



Deep-Learning-Methoden extrahiert, indem ihre Ergebnisse interpretiert und erklart
werden. Im Rahmen dieser Fortschritte entwickeln wir eine Erweiterung von COMBI,
die auf tiefem Lernen und erklérbarer kiinstlicher Intelligenz basiert. Dieser zweite im
Rahmen der Dissertation entwickelte, dreistufige Algorithmus DeepCOMBI trainiert
zundchst ein neuronales Netzwerk fiir die Klassifizierung von Probanden in ihre
jeweiligen Phénotypen. Anschliefend werden die Entscheidungen der Klassifizierung
mit Layerwise Relevance Propagation erkliart und die Ergebnisse verwendet, um die
relevantesten SNPs zu identifizieren. Wie bei der urspriinglichen COMBI-Methode
werden diese SNPs im dritten Schritt auf statistische Assoziation getestet. Auf
generierten Datensdtze und der bereits genannten WTCCC Studie von 2007 wird
gezeigt, dass DeepCOMBI bessere Vorhersageleistungen erbringt als COMBI,
gewOhnliches multiples Testen und andere Konkurrenzmethoden.

Uber die Verbesserung der Identifizierung von Assoziationen zwischen Phénotypen und
Genotypen hinausgehend, tragen wir in dieser Dissertation dazu bei, besser zu
verstehen, wie genetische Informationen in phénotypische Strukturen und biologische
Funktionen {iibersetzt werden. Bei der Untersuchung der Umwandlung genetischer
Informationen von DNA {iber mRNA zu Proteinen wird das Genom héufig im Kontext
von Zelltypen interpretiert, indem untersucht wird, welche Gene in bestimmten Zellen
aktiv sind. In diesem Kontext ist das Ziel von scRNA-Seq-Experimenten die Definition
und Katalogisierung von Zelltypen basierend auf dem Transkriptom einzelner Zellen,
was auf ein uniiberwachtes Clustering-Problem hinauslduft. Beim Clustern von kleinen
krankheits- oder gewebespezifischen Datensédtzen ist die Identifizierung seltener
Zelltypen hidufig problematisch. Deshalb schlagen wir vor, herkdmmliche
Clustering-Algorithmen mit dem Konzept des Transfer Learnings zu kombinieren, um
grofle und gut untersuchte Referenzdatensidtze verwenden zu koénnen. Der dritte im
Rahmen der Dissertation vorgeschlagene, kombinatorische Ansatz modifiziert daher
den Zieldatensatz, indem Informationen aus dem Referenzdatensatz iiber eine
nichtnegative Matrixfaktorisierung einbezogen werden, bevor der modifizierte
Datensatz mit einem Clustering-Algorithmus analysiert wird. Die Leistung der
vorgeschlagenen Methode wird auf simulierten sScRNA-Seq-Daten sowie auf 6ffentlich
verfligbaren Datensédtzen empirisch evaluiert. Schlielich prisentieren wir die
Ergebnisse der Analyse eines kiirzlich verdffentlichten kleinen Datensatzes und finden
ein verbessertes Clustering beim Transfer von Informationen aus einem grof3en
Referenzdatensatz.

Zusammenfassend tragt diese Dissertation zu einem besseren Verstéindnis des Genoms
und der Prozesse rund um seine Ubersetzung in biologische Strukturen und Funktionen
bei. Mit der Entwicklung dreier kombinatorischer Ansitze fiir die Analyse biologischer
Datensitze aus traditionellen Methoden einerseits und modernen Algorithmen des
maschinellen Lernens andererseits, wird gezeigt, dass auch hier “das Ganze mehr ist als
die Summe seiner Teile” (sinngemil Aristoteles, 4. Jh. v. Chr.).
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1 Overview

1.1 The author’s thesis

This dissertation regards the validation of the following thesis:

“Combinatorial approaches of traditional methods and novel machine learning ideas
for the analysis of large-scale biological datasets can be developed and successfully
applied to better understand the translation of genetic code into phenotypes and
biological function increasing the statistical power and accuracy of existing
techniques.”

1.2 General storyline of this dissertation

This dissertation focuses on developing and applying artificial intelligence methods for
the interrogation of large-scale biological data to improve our understanding of genetic
variation and its translation into biological function in health and disease. In particular,
the thesis to be validated in this work is that machine learning and traditional methods
can be combined and successfully applied to biological datasets to provide greater
insight into cellular and organismal phenotype, function and processes. It is to be shown
that such combinatorial approaches can outperform appropriate competitor techniques
on suitable biological datasets in terms of statistical power and accuracy. The
dissertation’s overall storyline is described in the following sections explaining, in brief,
biological background, general ideas and methods, empirical results and concluding
findings.

The entirety of an organism’s genetic material is called a genome and is present in each
of its individual (somatic) cells'. In most organisms, it is composed of multiple
deoxyribonucleic acid (DNA) biopolymer chains built from four basic chemical units
(including adenine (A), cytosine (C), guanine (G) and thymine (T)) called nucleotides.
The genome sequences contain both coding regions called genes, which encode protein
sequences, and noncoding regions, which serve other important functions such as gene
regulation'. For information transfer, genes are transcribed into intermediate chain
molecules of messenger ribonucleic acid (mRNA), which are then translated into
sequences of amino acids. Eventually, these polypeptides may post-translationally be
folded, combined and modified further to generate proteins, which are considered to be
amongst the most essential functional molecules of life. They form structures, catalyze
chemical reactions and hence determine phenotypes and functionalities of cells and,
ultimately, the organism'.

The process of determining the order of nucleotides in the genome is called DNA
sequencing and has enabled great advances in the field of biological and medical
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research’. The first time an entire human genome was sequenced and all genes were
mapped to specific positions on the sequence was the result of over ten years of research
and cost almost three billion dollars®*. Once the Human Genome Project - a large team
of research groups and scientists - succeeded in 2003, the entire human genome
sequence of three billion letters was published®*. One might have concluded that the
mystery of the human genome and its hereditary function was solved. However, the
published sequence was only an exemplary chimeric genome sequence: No two
individuals ever have the same DNA sequence. In addition to large structural variations,
they always differ at a large number of specific locations in the genome, which are
called genetic variants or single-nucleotide polymorphisms (SNPs)'. At this point, the
interdisciplinary scientific field of genomics was only at its beginning and more and
more individuals’ DNA was sequenced to identify those SNPs.

What followed in the years after 2003 was an impressive genome sequencing
revolution’. Nowadays, sequencing a single human genome no longer takes ten years
and three billion dollars but can be done in less than 24 hours (e.g. with the Illumina
NovaSeq 6000 platform) for less than 1,000 dollars’. Millions of different genomes
have been sequenced and large-scale datasets are available for analysis®. The
methodological challenge has shifted away from one of physical sequencing to one of
data storage, handling, analysis and interpretation. To gain biological insight, the aim is
now to convert the sheer abundance of data (i.e. millions of sequences of three billion
letters each) into an improved understanding of health and disease. In this dissertation,
the aim is to contribute to discovering what can be learned from all of this data by
introducing state-of-the-art machine learning methods that, in combination with more
traditional analysis approaches, can improve our understanding of the genome and,
ultimately, provide novel biological insights.

One way to identify and understand the meaning of genetic sequences is by conducting
genome-wide association studies (GWAS), where the genomes of a group of cases (with
a disease or trait) and a group of (healthy) controls (without the trait) are sequenced and
compared. SNPs that are statistically associated with the disease or trait under
investigation are discovered by creating tables of genotype counts and calculating the
corresponding p-values. One of the most widely used repositories for the findings of
such studies is the GWAS Catalog, which is a valuable resource that - as of April 2021 -
contains the results of almost 5,000 published GWAS identifying over 250,000
associated SNPs’. Surprisingly, however, these SNPs explain only a small fraction of
individual traits and most of the heritability remains unexplained. This phenomenon is
referred to as the ,,mystery of missing heritability*®® and might be caused by the fact
that all SNPs are separately tested for association. An individual p-value of a SNP only
depends on the data in that SNP ignoring any interactions between SNPs and possible
correlations with the rest of the genome. To overcome this drawback of the conventional
multiple testing methods to analyze GWAS, we propose to employ the potential of
artificial intelligence. Machine learning approaches aimed at predicting a phenotype are
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not based only on the information at a specific SNP but take the entire dataset, i.e. all
SNPs and correlation structures, into account. If we identify the specific positions in the
genome that are most important for the decision of a classifier, we can use this
information as an indicator for the relevance of each specific SNP in addition to the raw
p-values of statistical testing. This dissertation’s contribution lies in developing
combinatorial approaches that use a machine learning-based algorithm and statistical
testing to identify disease-associated SNPs.

The proposed method, called COMBI', first trains a support vector machine (SVM)'"?
to predict a phenotype based on genotypic data. Subsequently, in the second step, the
resulting SVM weight vector is interpreted as an importance score to select an
appropriate subset of candidate SNPs based on their relevance for phenotype prediction.
The final third step consists of statistically testing only those preselected SNPs for
association with the phenotype under investigation. As a result of the screening step,
COMBI elegantly filters out any irrelevant noise SNPs and enables a clear identification
of the most important associated SNPs via multiple testing. It is shown on both
generated semi-real datasets as well as on real 2007 data of seven major diseases that
COMBI outperforms all relevant baseline methods in terms of both power and
precision.

Following recent developments in machine learning and the rise of deep neural
networks (DNN) as the most successful prediction tools'*, we develop an improved
version of COMBI by introducing DeepCOMBI'" as a deep learning-based extension of
the proposed method. Here, a DNN is trained instead of an SVM and layer-wise
relevance propagation (LRP)'®'® is used as an explanation method for identifying
relevant SNPs. The final step of statistical testing remains unchanged. High-performing
deep learning techniques and state-of-the-art explanation methods significantly improve
the statistical power of the combinatorial approach and are shown to perform even
better than the original COMBI method. Both methods help to increase the heritability,
which can be accounted for in the GWAS Catalog.

With the proposal of two novel methods for the analysis of GWAS, a substantial
contribution is made for identifying important positions in the genome when
considering genome trait associations. Beyond that, when trying to understand how
genetic information is translated into phenotypic structures and function, the goal is to
focus on actual causation rather than raw association. The scientific question often
asked is whether a genetic variant is biologically meaningful. Why do we find a specific
SNP to be associated with a disease or trait? What happens with the associated gene
during the natural process of a cell’s life to actually cause disease? If we stop our
investigation after identifying significant SNP disease associations, it is, metaphorically
speaking, like having discovered the ingredients list of a recipe while knowing the
resulting dish but missing any kind of cooking instructions. To figure out the entire
recipe, we have to explore the flow of genetic information and investigate how the
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genome is translated into function. To this end, it is essential to interpret the genome in
the context of cell types. There is an enormous variety of cell types and tissues in the
human body'. Some are easily distinguishable, e.g. skin cells from brain cells or blood
cells from muscle cells; others look morphologically identical but still have entirely
different functions or even change their function over time'. All of them contain the
exact same genome, indicating that an identical genetic sequence is being implemented
into function differently. Cells do not constantly express the whole genome but the
specific pieces of the genetic sequence that are activated in different combinations vary
from cell to cell and can additionally change over time. Hence, instead of investigating
genetic function only at the DNA level, it is crucial to examine which genes are active
in certain cells by following the flow of genetic information from DNA to mRNA to
proteins. Because specific genes are activated and repressed in different cell types at
different points in time and the goal is to explain how genetic information causes
biological function, we need to explore which and how many mRNA molecules can be
found in certain cells. Going back to the initial challenge of explaining the results of a
GWAS and determining why specific significant GWAS SNPs increase the risk of
developing a disease, we need to identify where these SNPs are transcribed, in what
types of cells the corresponding genes are active and hence where the corresponding
mRNA molecules can be found.

A novel technology in this area of biology, called single-cell RNA sequencing
(scRNA-Seq), was developed in 2009" and has given rise to a very fast-moving
research field in the following years®. It allows us to analyze the entirety of mRNA
molecules - called the transcriptome - of individual cells when it was previously only
possible to look at pooled transcriptomes. All cells of a sample taken from the tissue
under investigation are separated and the number of the different mRNA molecules
present in each cell is determined in a complicated process of extraction, amplification,
sequencing and library alignment. One of the most urgent research questions about the
resulting datasets is clustering the individual cells into groups based on their
transcriptomes through unsupervised clustering®!. The challenge that often remains is
that high experimental barriers in scRNA-Seq (e.g. relative cost and inaccessibility of
rare tissues) cause many datasets to be small but high-dimensional, where rare subtypes
of cells are poorly represented’’. To overcome this, the idea presented in this
dissertation is to use the machine learning concept of transfer learning for clustering
scRNA-Seq data. We propose to utilize prior knowledge from large, well-annotated
reference datasets to modify small novel target datasets and, as a consequence, improve
the clustering of traditional downstream clustering algorithms?. The general
methodological approach of the proposed method is to use non-negative matrix
factorization (NMF)** of the source dataset to reconstruct a modified version of the
target dataset, which is of improved quality having been adjusted to the clustering
information available in the source dataset. The reconstructed target dataset is
eventually clustered with a widely used single-cell clustering algorithm. In this
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dissertation, we show that clustering the modified dataset performs better than
clustering the original dataset or the concatenation of source and target dataset. Once
again, a combinatorial approach of existing analysis methods and novel machine
learning ideas can help analyze biological datasets.

To summarize, this dissertation validates the thesis proposed by the author and
contributes to one of the most important challenges in biology of understanding the
genome by proposing combinatorial approaches of traditional methods and machine
learning. This is in agreement with Aristotle, who once claimed “the whole is greater
than the sum of its parts™*® (indirect quote derived from Aristotle, 4th century BC) while
trying to explain the ambivalent facets of the definition and terms of objects and parts.
The first two proposed methods can identify positions in the genome that influence the
risk of developing a disease or trait and the third method improves the clustering of cells
into groups based on the active genes in that cell. All methods help us to better
understand the translation of genetic code into biological function, increasing the
statistical power and accuracy of existing techniques. In combination, the three
proposed methods could be used to first identify SNPs that are significantly associated
with a disease or trait and second determine in what types of cells the corresponding
gene is active. As an outlook, it can be envisioned that the results of the proposed
methods will find their way into practical applications. For example, the outcome of
such studies could be used for data-driven diagnosis, predictive personal prognosis, the
identification of potential drug targets or the design of optimal treatment plans.
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1.3 Organization of this dissertation

Chapter 1 provides an overview of this dissertation and begins with stating the general
thesis to be investigated in the course of this work. A short and easy-to-read summary
for a general audience follows, containing, in brief, the overall storyline of this
dissertation. A guide through the chapters of the dissertation is given, along with a list
of the author’s relevant publications. A list of abbreviations is presented at the end of
this chapter.

Important notation is always defined and collected in a list at the beginning of each
chapter. Please note that the respective notation is only valid in the corresponding
chapter.

Chapter 2 introduces essential background information that is necessary to address the
author’s proposed thesis of superior combinatorial approaches that improve traditional
methods with the application of machine learning for research questions concerning the
translation of genetic information into biological structures and function. After covering
the biological topics this dissertation focuses on, the specific challenges of
genome-wide association studies and single-cell RNA sequencing datasets are
presented. Finally, the corresponding traditional approaches to solving such problems
and the relevant machine learning concepts are introduced to set up their combined
application in subsequent chapters.

In the following main part of this dissertation, three completely novel methods are
introduced and it is shown that combinatorial approaches for the presented datasets can
be successfully implemented outperforming its individual components as well as other
appropriate baseline methods.

In Chapter 3, traditional methods for the analysis of genome-wide association studies
are combined with machine learning approaches to increase the statistical power of such
studies. We present two novel methods, called COMBI and DeepCOMBI, which are
based on a combination of multiple hypothesis testing and a support vector machine or a
deep neural network, respectively. It is shown that both methods outperform relevant
competitor approaches on generated datasets in a controlled environment as well as on a
real 2007 GWAS dataset of seven major diseases.

Chapter 4 introduces a novel method, called TransferCluster, to combine the machine
learning concepts of transfer learning and non-negative matrix factorization with a
traditional clustering method to analyze single-cell RNA sequencing datasets. In an
empirical study of three different settings - generated, subsampled and independent
source and target datasets - the performance of the proposed method is investigated and
found to be preferable compared to all investigated baseline methods.




The dissertation concludes on the validity of the author’s thesis in Chapter 5 and shows
that successful combinatorial approaches of machine learning and traditional methods
were developed to better understand the translation of genetic code into biological
function. The main findings of this dissertation are summarized, open problems are
discussed and an outlook on future research directions is presented.

The Appendix includes a number of additional experiments. At the end of the
dissertation, there is a list of all of the author’s publications, along with statements of
contributions. Please note that references in the Bibliography are numbered in
consecutive order as they appear in the text and superscript Arabic numerals are used to
cite.







1.4 Previously published work

Parts of this dissertation have previously been published as journal articles, which are
listed below.

A. Bettina Mieth, Marius Kloft, Juan Antonio Rodriguez, Séren Sonnenburg,
Robin Vobruba, Carlos Morcillo-Suarez, Xavier Farr¢, Urko M. Marigorta, Ernst
Fehr, Thorsten Dickhaus, Gilles Blanchard, Daniel Schunk, Arcadi Navarro &
Klaus-Robert Miiller. Combining Multiple Hypothesis Testing with Machine
Learning Increases the Statistical Power of Genome-wide Association Studies.
Scientific Reports, volume 6, article number: 36671 (2016)"°.

B. Bettina Mieth, James R.F. Hockley, Nico Gornitz, Marina M.-C. Hohne,
Klaus-Robert Miiller, Alex Gutteridge & Daniel Ziemek. Using transfer learning
from prior reference knowledge to improve the clustering of single-cell
RNA-Seq data. Scientific Reports, volume 9, article number 920353 (2019)*.

C. Bettina Mieth, Alexandre Rozier, Juan Antonio Rodriguez, Marina M.-C.
Hoéhne, Nico Gornitz & Klaus-Robert Miiller. DeepCOMBI: Explainable
artificial intelligence for the analysis and discovery in genome-wide association
studies. Currently under review at NAR Genomics and Bioinformatics. bioRxiv.
doi.org/10.1101/2020.11.06.371542 (2020)".

The content of this dissertation is related to the above publications in the following way:
Chapter 2 contains parts of A-C. Chapter 3 is based on A and C; Chapter 4 is based
on B; Chapter 5 contains material from A-C.

I thank all of my co-authors for allowing me to include parts of our publications in this
dissertation.
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1.5 Abbreviations

Abbreviation

A

Al
ARI
AUC
BD

CAD
CD
cDNA
CNN
CPM
DNA
DNN
DRG
ENFR
eQTL
FN

FP
FPR
FWER

gFWER
GWAS
HT
KTA
LD
LMM
LRP
ML
mRNA
NMF

PCA
PFI
PMID

Definition (page it is introduced on)

Adenine (16)

Artificial intelligence (27)

Adjusted Rand index (127)

Area under the curve (74)

Bipolar disorder (65)

Cytosine (16)

Coronary artery disease (65)

Crohn’s disease (65)

Complementary deoxyribonucleic acid (22)
Convolutional neural network (35)
Counts per million (22)
Deoxyribonucleic acid (16)

Deep neural network (32)

Dorsal root ganglia (120)

Expected number of false rejections (23)
Expression quantitative trait locus (89)
False negative (74)

False positive (74)

False-positive rate (74)

Family-wise error rate (23)

Guanine (16)

Generalized family-wise error rate (23)
Genome-wide association studies (21)
Hypertension (65)

Kernel target alignment (117)

Linkage disequilibrium (18)

Linear mixed model (73)

Layer-wise relevance propagation (37)
Machine learning (27)

Messenger ribonucleic acid (19)
Non-negative matrix factorization (40)
Neural network (31)

Principal component analysis (25)
Permutation feature importance (49)

PubMed identification number (88)
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PR
RA
ReLU
RNA
ROC
RPM
RPKM
RPVT
scRNA-Seq
SNP
SVM
T

N

TP
TPM
TPR
tRNA
t-SNE
T1D
T2D

WTCCC
XAI

Precision-recall (74)

Rheumatoid arthritis (65)

Rectified linear unit (activation function) (33)
Ribonucleic acid (19)

Receiver operating characteristic (74)

Reads per million (22)

Reads per kilobase per million mapped reads (22)
Raw p-value thresholding (23)

Single-cell RNA sequencing (22)
Single-nucleotide polymorphism (17)

Support vector machine (28)

Thymine (16)

True negative (74)

True positive (74)

Transcripts per million (22)

True-positive rate (74)

Transfer ribonucleic acid (20)

t-Distributed stochastic neighbor embedding (26)
Type 1 diabetes (65)

Type 2 diabetes (65)

Uracil (19)

Wellcome Trust Case Control Consortium (21)

Explainable artificial intelligence (37)

11



12



2 Fundamentals

This chapter lays the foundation for the methodological innovations presented later on
in this dissertation. Since the content of this work heavily relies on concepts from across
several scientific disciplines, necessary background information is given here for all of
those areas. After presenting detailed information on the fundamental biology of the
genome to provide sufficient applicative context, we introduce the corresponding
analysis methods that are traditionally used to explore genome-wide association studies
and single-cell RNA sequencing datasets, which are under investigation in this
dissertation. To validate the thesis proposed by the author in this dissertation in
Chapter 1.1, these conventional methods are combined with sophisticated artificial
intelligence techniques in the course of this dissertation. Hence, this chapter’s final
section presents the related machine learning concepts, including classification,
explanation and information transfer. This chapter contains parts of articles A-C'*'>*
from Chapter 1.4 on previously published work.
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2.0 Notation of chapter 2

Symbol Definition (page it is introduced on)

Q Optimization variables in the dual problem of an SVM (30)

0 pp Parameter of the of -LRP rule for positive contributions (39)
Oy s Penalty multiplier of the elastic net in NMF (41)

Birp Parameter of the off -LRP rule for negative contributions (39)
b Bias term in linear predictive functions or in propagation functions of an NN (28)
C SVM regularization parameter (29)

12 Chi-square test statistic (23)

d Number of dimensions in a dataset for SVM training (28)

d. ..p Number of selected eigenvectors in SC3 clustering (26)

e Index of an outputclass in an NN (34)

E Number of output nodes in an NN (34)

€ Parameter of the € -LRP rule (39)

eps Number of epochs for NN Training (36)

& Slack variables in an SVM (29)

f(.) Predictive function in ML (27)

g Number of dimensions in a source dataset for NMF (40)
g(.) Propagation or pre-activation function in an NN (33)

Y Parameter of the LRP-v rule (39)

h(.) Activation function in an NN (33)

h;’ Output of neuron ¢ at layer ¢ in an NN (34)

H Dictionary in NMF (40)

H* Initial starting point of H in NMF (41)

i Index of a datapoint in ML (28)

k Number of clusters to find with a clustering algorithm (24)
k(C.,.) Kernel function (31)

Avwr Parameter of the elastic net in NMF controlling L1 and L2 regularization (41)
n Number of datapoints in a dataset for SVM training (39) or NMF (40)
nn Number of neurons per dense hidden layer (36)

n Learning rate of an NN (36)

p Index of a predecessor layer of layer g in an NN (37)

q Index of successor layer of layer p in an NN (33)

0] Output layer of an NN (34)

o) Parameter of gFWER (23)
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Shape of the activation function in an NN (33)

Dropout rate in an NN (35)

Relevance score of neuron s in layer p for sample i (37)

Index of predecessor neuron at layer p of neuron ¢ at layer g in an NN (33)
Sign function (30)

Index of successor neuron at layer ¢ of neuron s at layer p in an NN (33)
L1 norm regularization parameter in a loss function of an NN (36)
Vectorization of a given matrix (41)

L2 norm regularization parameter in a loss function of an NN (36)

Weight vector in linear predictive functions (28)

Weight of the connection from neuron s at layer p to neuron ¢ at layer g (33)
Reconstruction data matrix in NMF (40)

Initial starting point of # in NMF (41)

Observed input data in ML (27)

Unseen input data in ML (27)

Observed label to be predicted in ML (27)

Prediction score of a datapoint x; in an NN (36)

Label of unseen data in ML (27)

L1 Manhattan Norm (36)

L2 Euclidean norm (29)

Frobenius norm (41)
Dot product (31)
Positive value selector (39)

Negative value selector (39)
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2.1 Biological background

This section introduces the fundamental biological concepts that play an important role
in this dissertation’s applications. Background information on the human genome and
the central processes surrounding its translation into biological function is provided and
important terms are defined.

2.1.1 The human genome

The human genome is a long deoxyribonucleic acid (DNA) chain created by stringing
together thousands of its four unique basic units called nucleotides.' Each nucleotide
consists of a five-carbon sugar (deoxyribose in the case of DNA), a phosphate group
and a nitrogenous base. The latter determines the type of a nucleotide and can be either
adenine, cytosine, guanine or thymine, which are usually abbreviated with the letters A,
C, G and T in sequential genomic datasets. Genetic information is captured in the linear
code of long sequences of single DNA strands. Together with a second strand, where
complementary nucleotides bind together in base pairs (bp) via hydrogen bonds (A
binds with T and C binds with G), DNA chains are stored in double helix structures and
only unwound and opened when access to the retained information is necessary. See
Figure 1 for a graphical representation of DNA, its double helix structure and the
chemical binding of base pairs.

Hydrogen bonds
Adenlne

Nitrogenous bases: Thymine o 3
3 5 D Adenine _ OH
= et W\FS\
< ; 70’
r—3 _guanli:e o N O O.P.Oe
&e==—>) ==X Cytosine o
JHeN
0, N Q"
oo X N YA S
Base pair [$) o. N NH }—N o‘p‘;O
= He ™" o Cytosine ds,
Sugar- © Guanine = e
phosphate | | Il | Il | |
backbone
Sugar-phosphate Bases Sugar-phosphate
3 5¢ backbone backbone

Figure 1: DNA double helix structure, nucleotides and base pairing. A DNA chain is a strand of thousands of
nucleotides (A, C, G, T), consisting of a five-carbon sugar, a phosphate group and a nitrogenous base. Together with a
second strand, where complementary nucleotides bind together in base pairs (bp) via hydrogen bonds (two between A

and T, three between C and G), DNA chains are stored in double helix structures.

Image “DNA Nucleotides” by OpenStax College licensed under the Creative Commons Attribution 3.0 Unported license. Source:
https://commons.wikimedia.org/wiki/File:0322_DNA_Nucleotides.jpg

The human genome comprises approximately 3.2 billion bp and is split up into 23
strands of DNA, called chromosomes.! For notation, the autosomes have been
numbered according to their lengths ranging from the longest sequence of around 120
million bp on chromosome 1 and around 25 million bp on chromosome 22. The 23rd
chromosome is the allosome containing genetic information to determine the sex of the
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individual." All human cells (except for reproductive cells) contain two copies of each
chromosome, where one originates from the biological mother and one from the
biological father. The genetic information on these chromosome pairs determines an
individual’s genotype, which is described at each position as a pair of two letters (A, C,
G and T) - one from each chromosomal copy.

The human genome consists of several thousand genes, which are specific
subsequences of DNA, encode protein sequences and represent the basic physical and
functional unit of heredity.! Besides these coding regions, the genome contains
noncoding regions, which perform other crucial functions such as gene regulation.

DNA sequencing refers to the technical procedure of determining the order of
nucleotides in a genetic sequence and has allowed extraordinary progress in the
biological and medical sciences’. In 2003 the Human Genome Project - a large
consortium of research groups and scientists - published their result of over ten years of
research, which had cost almost three billion dollars: They had sequenced the entire
human genome for the first time and mapped all of its genes to specific positions on the
sequence®*. However, the mystery of the genome and its biological function remained
somewhat unsolved since the published sequence was only an exemplary chimeric
genome sequence composed of three human genomes of Asian, European and African
ancestry. The DNA sequence differs significantly between any two individuals. More
and more genomes had to be sequenced in order to identify how much and why
genomes differ from each other. Nowadays, sequencing a single human genome can be
done in less than 24 hours (e.g. with the Illumina NovaSeq 6000 platform) for less than
1,000 dollars*’. Consequently, large-scale genetic datasets of millions of DNA
sequences have been collected and are available for analysis to gain biological
insights*®. Challenges no longer lie in the sequencing process itself but in appropriately
storing, handling, analyzing and interpreting these big datasets. It was found that a
typical genome differs from the reference human genome at four to five million
locations®” (i.e. loci) widely distributed in the genome. Large structural variations,
chromosomal duplications or chromosomal rearrangements can lead to differences
between the genome of two individuals. When the genetic information of an individual
differs from the consensus sequence at a specific position, a mutation has occurred at
some point in the individuals’ ancestry, which is typically caused by errors during the
natural process of copying DNA. A specific substitution of a single nucleotide at a
specific locus, as shown in Figure 2, is called a genetic variant or single-nucleotide
polymorphism (SNP) if it appears in at least 1% of the human population." When
determining an individual’s genetic information at these specific positions, three
possible genotypes can occur. In the first case, both chromosomal copies are identical
and match the consensus sequence, i.e. carry the so-called major allele: The individual
is said to be homozygous of the wild-type allele for this locus in the genome. The
second option is that the subject is heterozygous and carries one wild-type (major) and
one mutant-type (minor) allele, which appears only in the minority of the population.
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Finally, the subject could even have two copies of the minor allele and is hence
homozygous for that. The described variations enable diversity in the population
because the corresponding genes are translated into proteins, which amongst other
influences determine key characteristics of the cell and, ultimately, the organism'.

Figure 2: Single-nucleotide polymorphism. A single-nucleotide polymorphism (SNP) is a specific substitution of a
single nucleotide at a specific locus in a DNA strand. In this example, individual 1 has the wild-type allele C at the
highlighted position and individual 2 has the mutant-type allele A.

Image “SNP model” by David Eccles licensed under the Creative Commons Attribution 4.0 International license.
Source: https://commons.wikimedia.org/wiki/File:Dna-SNP.svg

A SNP is called informative and statistically associated when linked to the development
of a trait under study. These observable characteristic traits of an organism (or cell) are
called phenotypes and are mostly not only determined by the corresponding genotypes
but also influenced by environmental factors?®. When investigating susceptibility to
diseases, a subject’s phenotype is usually either determined to be healthy or ill. In this
context, it is important to note that the penetrance of a genetic variation, i.e. the
proportion of people who carry a specific genetic mutation (i.e. the risk allele) and also
carry the corresponding phenotypic trait, can vary significantly from phenotype to
phenotype. For example, it is very high for genetic disorders like cystic fibrosis® and
can be rather low for chronic diseases like rheumatoid arthritis®®. Since genetic factors
often play an important role in the risk of developing a disease, many studies focus on
hereditary aspects of certain diseases. In this context, it is important to note that genes
and SNPs are not passed down to successors independently of each other and the
tendency of two genes to be inherited together is called genetic linkage®'. It has been
shown that the closer two loci are physically together on a chromosome, the more likely
they are to be inherited together simply because of the physical link between the two?>.
Beyond that, there is an effect called linkage disequilibrium (LD), indicating an
increased statistical association between allelic variants that are not necessarily
physically linked®. LD can be caused by selective pressures on these loci in a genomic
region (i.e. when certain combinations of alleles reduce reproductive success in any
way) and in the case of long-range LD by epistatic interactions (when a mutation at one
position changes the local environment of another position either by directly contacting
it or by causing changes in the corresponding protein structure®).
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2.1.2 From DNA to protein - the central dogma of molecular
biology

As mentioned in the previous section, genes are the basic physical and functional unit of
heredity and are translated into proteins, which determine important characteristics and
functionalities of the organism. Here, we describe the natural processes around the
transfer and conversion of genetic information.

The central dogma of molecular biology was first introduced by Francis Crick in
1958% and describes the flow of genetic information within a biological system. There
are three biological molecules that can contain sequential information: DNA, as it was
described above, ribonucleic acid (RNA) - a polymeric molecule almost identical to
DNA but with a ribose instead of deoxy sugar in the backbone of the chain and the
nucleobase uracil (U) instead of thymine (T) - and protein - which is also a biopolymer
consisting of a sequence of amino acids.

Crick grouped the different directions that genetic information could be transferred from
one of these molecules to another into three classes according to their likeliness to
appear in natural or artificial circumstances. The most common pathways in living cells
are from DNA (the structure the information is stored in) to DNA as part of the
replicative cycle, from DNA to RNA (the intermediate transport molecule) and from
RNA to protein (the final product and functional unit of the pathway). Information
transfer from protein to protein or back to nucleic acids is stated to be impossible*. The
third group of pathways (from RNA to RNA or DNA and from DNA directly to protein)
are extremely rare - so-called special - transfers that can occur but only under specific
conditions in the case of some viruses or in a laboratory®®. In this dissertation, however,
we focus on the general pathways that happen most frequently in natural cells and
describe them in more detail in the following sections.

When a cell is duplicated, the DNA it contains needs to be copied to provide a complete
genome for both offspring cells. This process is called replication and consists of
several substeps that are performed by specialized functional proteins®’. At first, the
DNA helix structure is unwound and the hydrogen bonds between complementary
nucleotides are opened up by an enzyme called helicase. Subsequently, a primer
molecule is bound to both DNA strands to start the replication process at the correct
starting positions. Complementary nucleotides are now added to both of the original
DNA strands by the enzyme DNA polymerase III, creating two new identical DNA
double strands, which are eventually separated and brought back into helix structure to
be stored in the nuclei of the two newly emerging offspring cells.’

When a gene is activated during the natural life cycle of a cell, the sequential
information of its DNA is copied into messenger RNA (mRINA), which is subsequently
used as a template to build a sequence of amino acids that eventually form a protein
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(shown in Figure 3). The first step of transforming DNA into mRNA is called
transcription and the second step of transforming mRNA into protein is called
translation.
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Figure 3: The flow of genetic information from DNA to mRNA to protein. When a gene is activated, its DNA
sequence is first converted into pre-mRNA during transcription, which is further transformed into mature mRNA.
During translation and after transport out of the nucleus, the mRNA chain is converted into a sequence of amino acids
to eventually create a protein.

Image “mRNA interaction” by National Institutes of Health licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Source: https://commons.wikimedia.org/wiki/File:MRNA-interaction.png

During transcription, proteins called transcription factors identify specific promoter
regions on the genome and indicate the starting position for the transcription process.'
The DNA double helix is unwound and an enzyme called RNA polymerase progresses
along the template strand to synthesize a complementary RNA strand. When it reaches a
termination sequence, the precursor mRNA molecule (pre-mRNA) is detached and
further processed to add a specific cap and tail to both ends of the molecule. In an
additional step called alternative splicing, different subsequences are removed or
combined in eukaryotic cells to increase the number of proteins a single mRNA
sequence can produce. The created mature mRNA is transported out of the cell nucleus
- where DNA is usually stored - into the cytoplasm - where translation takes place.

The translation process begins with the mRNA binding to a ribosome, which moves
along the mRNA sequence and synthesizes a specific amino acid for each set of three
consecutive nucleotides called triplet codons.' The process of attaching new nucleotides
to a growing polypeptide chain begins at a defined start codon (AUG) and ends at one
of three stop codons (UAA, UGA, or UAG). All other codons are matched to an
anticodon of a transfer RNA (tRNA) molecule, which carries the corresponding amino
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acid. The chain of amino acids immediately folds into the correct conformation, but
further post-translational modifications are often necessary to build a functional protein.

Many mechanisms exist that control the production of mRNA and protein in specific
cells and at specific points in time'. For example, noncoding regions in the DNA serve
important regulatory functions. Other mechanisms by which the same genotype can lead
to various phenotypes include changes in transcription rate, mRNA turnover,
chromosome accessibility, promoter activity, enhancer access and antisense mRNAs!'.

2.1.3 Study types under investigation in this dissertation

In the course of this dissertation, novel methodologies for two different types of
biological studies, i.e. genome-wide association studies and single-cell RNA sequencing
experiments, are introduced. An overview of the general ideas of these two study types
is presented here. More detailed information is given in the problem setting sections of
the corresponding chapters (Chapter 3.2.1 and Chapter 4.2.1).

Genome-wide association studies

Genome-wide Association Studies (GWAS) are observational studies that explore the
meaning of genetic sequences by investigating the phenotypic effects of SNPs. The goal
is to examine the relationship between SNPs and individual traits, which are usually
complex major diseases, behavioral characteristics or anthropometric traits. The
genotypes of a large set of SNPs are sequenced for a group of patients with a disease (or
trait) and compared to the genotypes of a group of healthy controls (without a trait). To
identify locations in the sequence that are associated with the disease (or trait), tables of
genotype counts are created and the corresponding p-values are compared against a
multiple testing significance threshold, which usually lies between 1 x 10 for
rigorous studies and 1 % 10~ to report weaker associations as well*®. The first GWAS
was published in 2002***' and several years later, a landmark study - the largest GWAS
ever conducted at the time of its publication in 2007 - was presented by the Wellcome
Trust Case Control Consortium (WTCCC)*, sequencing the genotypic data of over
500,000 SNPs and including 14,000 cases of seven common diseases and 3,000 shared
controls. The corresponding dataset is used in Chapter 3 of this dissertation to evaluate
the performance of the proposed methods. Since then, sample sizes, rates of discovery
and numbers of studied traits have been rising continuously*’. A repository for
collecting the results of such studies is the GWAS catalog’ which includes almost 5,000
studies and more than 250,000 SNP-phenotype associations with p-values below
1x107° (accessed on April 3. 2021). Especially for common human diseases such as
diabetes, autoimmune disorders or psychiatric illnesses, GWAS have provided valuable
insight into the corresponding genetic inheritance processes®*. A few studies have
included over 1 million subjects enabling the identification of SNPs with lower risks
and frequencies**,

21


https://paperpile.com/c/QS9fGm/sAv0
https://paperpile.com/c/QS9fGm/sAv0
https://paperpile.com/c/QS9fGm/TncZ
https://paperpile.com/c/QS9fGm/AxMX+DQmk+OgCq
https://paperpile.com/c/QS9fGm/TncZ
https://paperpile.com/c/QS9fGm/TEgR
https://paperpile.com/c/QS9fGm/K4LM
https://paperpile.com/c/QS9fGm/0bwK+Phwg
https://paperpile.com/c/QS9fGm/7zx3+cyda

Single-cell RNA sequencing studies

Single-cell RNA sequencing (scRNA-Seq) was introduced in 2009" and enables the
analysis of the transcriptome (i.e. the entirety of mRNA molecules) of singular cells at
a certain point in time. Previously it was only possible to look at pooled transcriptomes
for multiple cells in microarray or bulk RNA sequencing experiments, where
differences between individual cells were lost. During most common scRNA-seq
protocols, the cells of a sample taken from the tissue under investigation are isolated. To
determine the number of different mRNA molecules in each cell, one of multiple
available protocols is executed’’. Most of them include variations of the following
substeps: mMRNA extraction, reverse transcription for conversion of mRNA to
complementary DNA (cDNA), DNA amplification, sequencing and library generation.
Eventually, the sequenced fragments are aligned to reference genomes. As a result, a
count table is obtained, where each transcript is assigned a number referring to one of
various expression units such as raw read counts, reads per million (RPM), counts per
million (CPM), transcripts per million (TPM) or reads per kilobase per million mapped
reads (RPKM). Numerous scRNA-Seq protocols are available'**®, which, for example,
implement alternative ways of reverse transcription, cDNA synthesis or amplification.

With improved technical possibilities and increased sample sizes, sSCRNA-Seq has been
applied successfully in many research areas®®*~? and the progress of SCRNA-Seq in the
field of embryo development was named the “2018 Breakthrough of the Year” by
Science™.

The most relevant research questions about scRNA-Seq datasets concern either the
identification of gene expression patterns through gene clustering analyses™ or the
determination of cell types through cell clustering into groups based on their
transcriptomes?'. In this dissertation, we focus on the latter and employ unsupervised
clustering approaches to interpret the genome in the context of cell types. Even though
all (somatic) cells contain the same genetic material, there is a huge variety of cell
types, functions and tissues in the human body'. The genome is implemented into
function differently, expressing only specific pieces of the genetic sequence in different
combinations. Via numerous types of regulation, the transcriptomes of cells differ
significantly not only between cells but also for one cell at different points in time'.
When investigating the transcriptome of individual cells in scRNA-Seq studies, we can
cluster cells according to which genes are (currently) activated in those cells. In contrast
to bulk sequencing, sScRNA-Seq allows identifying and examining rare cell types, e.g.
highly specialized lung cells*°. The granularity of assessing individual cellular
transcriptomics has highlighted the vast heterogeneity in cell types previously believed
to be relatively homogeneous”. When adding tissue context, diversity increases
dramatically. Due to the relatively high cost of sScRNA-Seq studies and the difficulty of
accessing rare tissues, many of these datasets are small but high-dimensional and only
include poor representations of rare subtypes of cells®.
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2.2 Traditional analysis methods

In the following section, we describe the traditional methods used to analyze the two
types of studies that are relevant in this dissertation and are described in Chapter 2.1.3.
Multiple hypothesis testing for GWAS and different clustering approaches for
scRNA-Seq data are introduced and important competitor approaches are discussed.

2.2.1 Multiple statistical hypothesis testing for GWAS

Traditional approaches for the analysis of GWAS can be categorized into two main
categories: While some methods focus on phenotypic risk prediction based on the given
genetic information®®', others try to explain these risk effects by highlighting which
SNPs are having an effect on a given trait® *. Generally, a GWAS investigates the
observed genotypes of a set of SNPs (represented by the number of minor alleles) and a
group of subjects labeled with the corresponding phenotypes separating controls from
cases. The classic approach - which we refer to as raw p-value thresholding (RPVT) -
consists of carrying out a statistical association test to assign a p-value to each
individual SNP. The null hypothesis of this single-locus test is that there is no difference
between the trait means of any genotype group, which indicates that the genotype at a
specific SNP is independent of the phenotype under investigation®. Via a y* test,
RPVT calculates a p-value for each SNP and declares it significantly associated with the
phenotype if it is smaller than a predefined threshold*%*®. This threshold has to be
chosen carefully as the significance level in the case of a single test. Since generally, a
large number of statistical tests are performed in parallel, the threshold has to be
adjusted for multiple testing to bound, for example, the expected number of false
rejections (ENFR), the family-wise error rate (FWER), i.e. the probability of at least
one false-positive test result, or the generalized FWER (gFWER), i.e. the probability
of at least p >1 false-positive test results. Some standard methods for choosing the
threshold for the purpose of controlling multiple type I error rates are reviewed in
Chapter 3.2.1. Bonferroni correction is the most straightforward way to take
multiplicity into account by dividing the significance level by the number of conducted
tests.

When the p-values of all SNPs have been calculated and the corresponding threshold
was defined, a so-called Manhattan plot can be created’’. An exemplary Manhattan
plot is shown in Figure 4. For each genomic position of the corresponding SNP on the
x-axis, it displays the negative logarithmic p-value on the y-axis. SNPs that are strongly
associated with the disease or trait appear as high values in the plot and are commonly
referred to as towers. If they exceed the predefined significance threshold - which is
usually represented by a horizontal line in those plots - they are considered to be
statistically associated with the trait under investigation.
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Figure 4: Exemplary RPVT Manhattan plot. The negative logarithmic y? test p-values of the Crohn’s Disease
WTCCC dataset are plotted against position on each chromosome. The threshold indicating statistical significance is
represented by the dashed horizontal line and significant p-values are highlighted in green.

The problem setting for RPVT and the analysis of GWAS, in general, is described in
full detail, including formula and notation in Chapter 3.2.1 and Chapter 3.2.5.

2.2.2 Clustering methods for scRNA-Seq studies

Whilst the analysis of scRNA-Seq data has many challenges, including
normalization’”, dealing with noise’, zero inflation and missing values™’®,
dimensionality reduction”’”” and visualization’”, one of the key analytical techniques
to address questions of cell type identification is that of unsupervised clustering.
Unsupervised algorithms learn from using only input data (in this case, representing
RNA counts) without the knowledge of any outcome variables (in this case, referring to
the underlying true cell categories). Clustering of cells into discrete groupings
according to their transcriptional state is the fundamental analysis required in many
scRNA-Seq experiments. A range of approaches has been taken to address the problem
of clustering scRNA-Seq data, including hierarchical and iterative clustering®*®!,
principal component analysis based approaches®*®, ensemble clustering®** and
graph-based approaches® ™. As the number of cells in scRNA-Seq datasets increases,
the development of machine learning-based”*”!

learning-based®*® clustering approaches has expanded.

and specifically deep

One traditional and simple unsupervised approach to clustering cells in scRNA-Seq
datasets is to apply k-means clustering’®®’ and group similar datapoints (i.e. individual
cells) together in a fixed number of & clusters (i.e. cell types). These clusters are defined
by a point in the center of each cluster, called centroid, which is calculated by averaging
all datapoints belonging to that cluster. The aim of k-means clustering is now to assign
each datapoint to the closest centroid and minimize the variance within a cluster (i.e. the
within-cluster sums of squares). According to the law of total variance, this is
equivalent to minimizing the pairwise squared distances of points in one cluster, which
is again equivalent to maximizing the sum of squared distances between points in
different clusters (i.e. the between-cluster sum of squares)’®.
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The most common method that implements k-means clustering - called k-means
algorithm or Lloyd’s algorithm after his creator Stuart P. Lloyd - was developed in the
1950s and follows an iterative approach”. At first, the k-means algorithm identifies an
initial group of & centroids either by selecting a random set of k£ datapoints or by
randomly assigning each datapoint to a cluster and calculating the initial centroids by
averaging all datapoints belonging to those initial clusters. Now, each datapoint is
assigned to the nearest initial cluster centroid in terms of squared distance and the new &
centroids referring to those updated allocations are calculated. This process of
alternating between the expectation step of assigning every datapoint to the cluster with
the nearest centroid and the maximization step of updating the centroids of each cluster
is repeated until convergence (i.e. the cluster assignments and centroids do not change
anymore) or the limit of iterations is reached. The k-means algorithm is not guaranteed
to find the global optimum and might instead converge to a local optimum® since the
result of the algorithm depends heavily on the initial clusters and running the algorithm
multiple times results in different solutions. Adjusted k-means algorithms exist that
escape local optima®.

The k-means algorithm can be adjusted to different problems through the application of
different distance functions. The most commonly used measures are the Euclidean
distance (i.e. the classical length of a line between two datapoints)'”’, the Pearson
correlation (i.e. the covariance of two datapoints divided by the product of their
standard deviations)'”! and the Spearman correlation (i.e. the Pearson correlation
between the rank of two datapoints)'®?. Another way to adapt to different problems is to
apply data transformation techniques to the distance matrices before running the
clustering algorithm. For example, with a principal component analysis (PCA)'*'* -
which is often used for visualization of high-dimensional datasets - a linear change of
basis can be performed to reduce the number of features while preserving most of the
variance in the data. A Laplacian graph Eigen decomposition'®® is a similar
dimensionality reduction algorithm that - in contrast to PCA - allows for the data to lie
on a nonlinear manifold.

To combine the different solutions into a consensus clustering and harness the full
potential of all ~~-means variations for sScRNA-Seq data, a combinatorial approach called
SC3 was developed in 2017%. SC3 is a popular method - commonly used to solve
unsupervised scRNA-Seq clustering problems - that is based on the combination of
multiple A-means clustering solutions based on different distance metrics and
transformations to determine a consensus clustering. The basic steps of the SC3
algorithm are shown in Figure 5. Given an expression matrix, SC3 first applies a gene
filter and log-transforms the data. Then, three different cell distance matrices are
calculated using Euclidean, Pearson and Spearman metrics, respectively. The three
distance matrices are then transformed by applying both PCA and Laplacian graph
Eigen decomposition. Subsequently, A-means clustering is performed D times on the
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first d, , eigenvectors of the resulting six matrices, where d;, , comes from a

predefined range of values. The clustering results are now combined by applying the
Cluster-based Similarity Partitioning Algorithm'® to compute a consensus matrix.
Hierarchical clustering'® is finally used to cluster the resulting matrix into k clusters.
SC3 is not deterministic and produces different results when solving the same clustering
problem multiple times.
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Figure 5: The SC3 framework by Kiselev ez al. 2017%. SC3 is a consensus clustering approach for scRNA-Seq data
that combines a number of different distance measures, transformation techniques and clustering methods to
eventually determine a consensus cluster assignment for the cells in a given dataset.

Image “The SC3 framework for consensus clustering” by Kiselev et al. 2017* licensed under the Creative Commons Attribution 4.0 International
license. Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410170/figure/F1/

In this dissertation, we use SC3% as an exemplary clustering algorithm whose

performance can be improved through the application of transfer learning (see Chapter
4).

For visualizing the clustering results of scRNA-Seq data, we can, for example, employ
PCA!%1% or t-distributed stochastic neighbor embedding (t-SNE)” as a nonlinear
dimensionality reduction technique, which projects the points from higher-dimensional
space to lower-dimensional space while at the same time trying to preserve the local
neighborhoods of each point.

26


https://paperpile.com/c/QS9fGm/7IE3
https://paperpile.com/c/QS9fGm/5lh6
https://paperpile.com/c/QS9fGm/ehpU
https://paperpile.com/c/QS9fGm/ehpU
https://paperpile.com/c/QS9fGm/ehpU
https://paperpile.com/c/QS9fGm/kYd6+12wN
https://paperpile.com/c/QS9fGm/w6HP

2.3 Machine learning concepts

In the following sections, we introduce the basic machine learning concepts that are of
importance in the methodological proposals of this dissertation. We start with a section
about the general ideas of machine learning and go on to present the specific learning
models of support vector machines and deep neural networks to which we refer to in
Chapter 3. Afterward, we introduce the field of explainable artificial intelligence and
layer-wise relevance propagation as an exemplary explanation method, which is also
utilized in Chapter 3. Finally, we present the methodology of non-negative matrix
factorization and the concept of transfer learning, which is employed in Chapter 4.

2.3.1 Machine learning basics

Artificial intelligence (Al) is a scientific research area that concerns various forms of
intelligence demonstrated by machines. As one of its branches, machine learning (ML)
is a generic term first coined in 1959 by Arthur Samuel for the artificial generation of
knowledge based on experience and observation'®. The goal in ML is to determine,
based on a sample called training data and without being explicitly programmed to do
so, a predictive statistical model, which does not only represent the examples at hand
but rather detects patterns and laws that enable future prediction for unseen data. ML
techniques have seen a huge success in the field of data analysis and have been applied
with flying colors in countless different data science problems, e.g. automatic
translation'”, speech and text recognition'’, physical property prediction'"!?,
automated patient diagnosis'”’, credit card fraud'?, email spam detection'”, stock

market analysis''® and autonomous driving''’.

In ML, a predictive function f(x) is learned that predicts the class label y (e.g. a
phenotype) based on the observation of the corresponding data x (e.g. the genotype). It
is crucial to require such a function to not only capture the sample at hand but to also
generalize, as well as possible, to new and unseen measurements''®, i.e. to ensure that
the sign of f(x) is a good predictor for y for previously unseen patterns x,., and
labels y,.,, - A model is said to be overfitting when it fails to generalize well to unseen

data and only represents the sample at hand''®.

ML algorithms can be divided into two groups depending on the availability of true
class labels in the training dataset. Unsupervised learning refers to techniques that
describe an input dataset by discovering categories and patterns without any previous
knowledge on the corresponding class labels'”’. Clustering methods like k-means, as
described in Chapter 2.2.2, assign each training datapoint to one of multiple groups
that the machine considers to be a good partitioning of the data.
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During supervised learning, the machine is presented with training data that consists of
pairs of input data and expected output labels enabling the algorithm to learn the
association between input and output variables'®.

Depending on the assumptions made about the mapping function f, we distinguish
between linear and nonlinear learning models. Linear methods assume that the input
variables affect the outcome variables only through a linear relationship and usually
have the form f, , (x) = wlx +b, where w is called a weight vector and b is a bias

term. The prediction functions of nonlinear methods can be much more complex and
are used when the data under investigation is not linearly separable.

Please refer to Chapter 2.2.2. for an exemplary unsupervised clustering algorithm
(k-means), Chapter 2.3.2 for an exemplary linear supervised learning algorithm (i.e. a
support vector machine) and Chapter 2.3.3 for an exemplary supervised nonlinear
algorithm (i.e. a neural network).

2.3.2 Support vector machines

A popular approach to learning a supervised linear model as described above is training
a support vector machine (SVM)''"". Here, a linear model f, , (x) = wlix +b is
learned that predicts the class labels y (e.g. the phenotypes) based on the observation of
the corresponding data x (e.g. the genotypes).

In this dissertation, binary classification is considered, where a training set consists of n
d-dimensional datapoints and their corresponding labels, i.e. x = (x;) and y = (y;) with
i=1,.,n,x€ SRd, d, n €N and y; € {+ 1,— 1} . The idea behind an SVM is then to
find a hyperplane in the feature space R’ that linearly separates the two groups of
datapoints from each other. Additionally, the goal of a reliable classifier is to maximize
the smallest distance between any two points of opposite classes. This distance is called
margin and can also be defined as the distance between two lines parallel to the
hyperplane that pass through the two points closest to the hyperplane. See Figure 6 for
a visual representation in two-dimensional space.

The hyperplane is defined by b, the intercept term, the inner product of the data x and
the weight vector w. Then, w’x+b corresponds to the aforementioned linear
classification model f,,(x). In order to solve this equation for the w and b of an

optimal hyperplane, a canonical hyperplane is created by normalizing its parameters to
the observed data with

V; (wai+b) >1vi=1, .., n.
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Figure 6: A support vector machine in two-dimensional space. A support vector machine (SVM) aims to identify
a hyperplane that linearly separates the two groups of blue points with positive labels and green points with negative
labels from each other. Hence, the smallest distance between any two points of opposite groups, i.e. the margin, is
maximized. The hyperplane is highlighted in red and the corresponding maximum-hard-margin is shown in yellow.
The datapoints on the dashed lines defining the margin are called support vectors.

Image “SVM margin” by Lahrmam licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
Source: https://commons.wikimedia.org/wiki/File:SVM_margin.png

In practical applications, where outliers or random noise occur, complete linear
separation of classes - called hard margin classification - is often not possible. The
concept of soft margin classification introduces slack variables §;,>0Vi=1, .., n

allowing some datapoints to lie within the margin as follows:
V; (wal.er) >1-&VvVi=1, .., n.

Now, since the margin is equal to ==, where Iwl, is the euclidean norm of the weight

lwl,

vector w, maximizing the margin corresponds to minimizing Iwl,, which can be
achieved by solving the following optimization problem for C>0:

min,, . (21 iy + Cigl)
=
sty (wal.er) >1-EVi=1,..,n
E=>20Vi=1, .., n
This is known as the primal problem and can be rewritten as
min,, (Ilwllg + Czn: max (0, 1 —yl.wai)) .
=

It is similar to regression problems and can be interpreted as follows: we aim to
minimize the trade-off between a vector w with a small norm (the term on the left-hand
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side) and small errors on the data (the term on the right-hand side). The trade-off is
controlled by the regularization parameter C, which has to be chosen carefully'-'*"-'>2,
While high values of C cause high penalties for datapoints that fall on the wrong side of
the hyperplane and may lead to overfitting, small values of C might prevent the
algorithm from capturing the underlying pattern in the data. Once a classification
function f has been determined by solving the above optimization problem, it can be
used to predict the label y,,,, of any unseen datapoint x,, by putting

Vnew = SN (f (Xnew)) = sgn (WTxnew) .

A different version of the above optimization problem can be generated based on the
fact that the weight vector w can be written as a linear combination of training examples

as follows:

w= Zl oYX,
=

The o, can be interpreted as the contribution of the i-th datapoint to the final solution
w. With that knowledge, the above primal problem can be reformulated as the following

dual problem'*:
i’ 1
argmaxy y' o; — 5
=1 f

N

n
T
2, %YV

J

Il
—

n

st Y oy, =0

=1
0<a,<C Vi=1, .,n

After optimization, a new datapoint x,., can be classified with

Vrow = 581 (f () = 51 (z 0 (5 o) + b) -
=1

The dual is equivalent to the primal problem in such a way that solutions to the dual can
be directly converted into solutions to the primal and vice versa. Since the primal is a

quadratic program with d+n+1/ optimization variables (w € iRd, & € R" and b) and the
dual is a quadratic program with n+/ optimization variables (a € R" and b), it is
always advantageous to solve the dual problem when d>>n. This is the case for the data
application presented in Chapter 3, where the number of SNPs is much higher than the
number of subjects in a study. In the same manner, if d is large, it is a lot more

expensive to classify an unseen datapoint x,., by explicitly computing the scalar
n
product Ww! Xpe from the primal problem than to calculate Y o,V {X;, Xpew) + b from the

i=1

dual problem.
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There is another important scenario, where it is of great advantage to solve the dual
instead of the primal problem. When the underlying classification problem is not linear
and it is impossible to find a linear hyperplane in feature space that separates the classes
well, the data is projected into a higher-order space, where linear separation is possible.
The challenges for this approach lie in very high computational cost for the necessary
data transformations and the usually highly complex presentation of the hyperplane
back in lower-dimensional space. At this point, a technique commonly referred to as the
kernel trick'"'** is applied. Instead of explicitly performing the forward and reverse
transformations to and from the higher-dimensional space, suitable kernel functions
k(x;,x;) are calculated for all pairs of datapoints ((x;,x;) in the case of linear kernels)

that describe the hyperplane in high-dimensional space well and remain manageable in
low-dimensional space. Since the prediction of a class label in the dual problem

n

contains a scalar product only involving data vectors (i.e. Y oy {x;,Xnew) +b), it is

=1

possible to apply the kernel trick in this setting.

2.3.3 Neural networks

Artificial neural networks (NN) are a powerful tool for learning nonlinear
relationships between an input and an output variable by transferring information
through “a computing system made up of a number of simple, highly interconnected
processing elements”'”*. NNs have seen an unprecedented rise in data science'?® and
created enormous progress in numerous fields, e.g. image classification'"'**, natural
language processing'?, speech recognition'*® and quantum chemistry!''"!""?, NNs mimic
the behavior of natural biological neurons in a nervous system of an organism.
However, instead of only recreating the biological neural networks, the aim of NNs in
ML is to enable powerful modeling of information processing in areas where no direct
modeling laws are given. Through the interaction of numerous simple parts of the same
type, NNs can create extremely complex behavior and are therefore another example for
the validity of the famous saying that “the whole is greater than the sum of its parts”*
(derived from Aristotle, 4th century BC), which undeniably plays an important role in
this dissertation. Although NNs are often referred to as novel modern ML techniques,
historically, they have been around for more than 70 years. In 1943 Warren McCulloch
and Walter Pitts were the first to describe the connection of elementary units as a type of
network - similar to the network of neurons in the nervous system - that could
practically learn any logical or arithmetic function'!. In the fifties, the first
computational machines and the perceptron'*” (the most simple NN consisting of a
single artificial neuron) were created to implement such learning algorithms and the
scientific field of AI was born. NNs found their way into practical application shortly
after. However, following a number of publications revealing the boundaries of
perceptrons (e.g. with linear separability and exclusive-or-operands'**) and a lack of
sufficient computing power, funding was limited and research in Al temporarily lost its
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momentum in the late sixties. It took many years of slow progress and improving
technology to increase computing power until Al finally came back to the forefront of
data science. In 1985 some of the initially claimed boundaries concerning linear
separability were refuted with the use of multi-layer perceptrons and the technique of
backpropagating error'**. In the 1990s and 2000s, numerous novel AI methods were
developed'"*>13¢, When GPUs, distributed computing and the vast amount of available
data in the 2010s allowed the use of large multi-layer networks, called deep neural
networks (DNN), the performance of the corresponding deep learning approaches
increased significantly'*”'**, In recent years Al methods have taken over data science by
storm, winning important international competitions'”® and providing outstanding
performances on benchmark datasets'”®. An advantage of (D)NNs over traditional ML
methods is that they can often be applied as end-to-end learning approaches from the
sampled datasets to the desired results'®’, avoiding any hand-crafted intermediary
algorithms, such as feature engineering, which are required for most traditional ML
methods.

In the following paragraphs, we describe the basic topology of NNs and their various
components. See Figure 7 for a graphical representation of the interconnected
elementary subunits of an NN - called artificial neurons - and a simple NN, where -
according to common practice - neurons are represented by nodes and interneuronal
connections by edges.

A. Artificial neuron B. Artificial neural network

. outputs
inputs

%

input layer hidden layer output layer

Figure 7: Graphical representation of an artificial neuron and a simple artificial neural network. A The
artificial neuron weights and sums up input information it receives from predecessor neurons through a propagation
function. The result, i.e. the pre-activation, is subsequently processed through a nonlinear activation function and the

corresponding output is the input to any successor neurons. B Multiple artificial neurons are connected and form a
simple dense artificial neural network (NN) with an input layer, one hidden layer and an output layer.

Image “Artificial Neuron” by Raquel Garrido Alhama licensed under the Creative Commons Attribution-Share Alike 4.0 International license. Source:
https://commons.wikimedia.org/wiki/File: Artificial Neuron.svg

Image “Multilayer Neural Network ” by Chrislb licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Source: https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger english.png

Artificial neurons are mathematical functions that act as computational units, which
perform specified calculations based on the information they receive from other neurons
they are connected to'*?. At neuron ¢, all dimensions s of its input x (either from an input
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datapoint or a previous neuron) are firstly weighted and summed up by a propagation
function g(x) to produce a pre-activation output

g =3 Wf,xs + b,

where wft

layer ¢ and b, is the bias term of node ¢. The pre-activation g(x) is subsequently

is the weight of the connection between node s at layer g-/ and node ¢ at

processed through a predefined (often nonlinear) output activation function
h(x) = ¢(g(x)) to transform the output into a certain range.

There are various choices for the shape of ¢ (see Figure 8), which has a huge effect on
the functionality of the network.
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Figure 8: Various activation functions. Displayed are the sigmoid (A), the tanh (B), the ReLU (C) and the leaky
ReLU (D) activation functions.

Image “Activation functions” by Kuo et al.’*' licensed under the Creative Commons Attribution 4.0 International license. Source:
https://journals.sagepub.com/doi/figure/10.1177/1550147720923529?

When nonlinear data is being modeled, nonlinear activation functions provide the
means to successfully capture those structures in the data. A popular (and often the
default) choice of ¢ is the rectified linear unit (ReLU) function o¢(x) = max(0,x),
which sets all negative values in the input to 0. It is often preferable to complicated
activation functions like the sigmoid or the tanh function because it is so simple and
reduces running times'*?. In addition, the ReLU function produces sparse results, which
increase the ability of a network to learn meaningful information and reduce overfitting.
It also reduces the risk of creating a phenomenon called the “vanishing gradient
problem”, which can occur when applying activation functions that are only sensitive

around the origin (e.g. the tanh or the sigmoid function)'®*. During training (which

33


https://paperpile.com/c/QS9fGm/XhDJ
https://paperpile.com/c/QS9fGm/GmyT
https://paperpile.com/c/QS9fGm/QNm8

includes the gradient descent approach) and because the derivatives of these functions
are flat in the tails, the gradients keep decreasing with increasing number of layers and
oftentimes, the initial layers are not able to learn properly. In contrast to this behavior,
ReLU functions stay sensitive at all stages'*>. However, when the input gets very large,
they might cause exploding gradients, which cause the model to be unstable'**. Another
problem arises when neurons are stuck within the negative values and fail to recover
because of the hard “below zero rule” of the ReLU function. These issues can be
resolved by employing lower learning rates (i.e smaller steps in the learning process) or
a less stringent activation function called leaky ReLU"* ¢(x) = max(0.01 x x, x) .

The topology of an artificial NN describes its internal structure, which is mostly
determined by the number of artificial neurons on a specified number of layers and the
way they are connected to each other. The simplest NN is a perceptron, a single-layer
network with one artificial neuron. The more neurons and layers are added, the higher
the depth of the network. While the first layer of an NN represents the input data and is
referred to as the input layer, the last layer is referred to as the output layer and
represents the outcome variables of the problem under investigation'”. All
intermediate layers are usually not accessible to the user and are therefore called
hidden layers. All NNs with more than one hidden layer are considered to be deep and
are therefore called DNNs.

The most common type of an intermediate layer is a fully connected or dense layer,
where neurons are connected to all neurons of the previous layer'”. We define

h(x) = htq as the output of neuron ¢ at layer ¢, which is computed based on the outputs

q
st
the current neuron ¢ and the bias term b, in the following way:

of all neurons s of the preceding layer g-/, the weights w’ connecting those neurons to

hi=¢ (; wipd ™+ bt) :

The output layer Q at the end of an NN is usually a fully connected layer that consists of
E output nodes, where E is the number of potential outcome classes. To perform the
classification task, it takes the input values heQ for each class e and converts them into a
probability that the input data belongs to class e. This is achieved by applying the
softmax output activation function

which converts the vector of input numbers into a vector of probabilities that are
proportional to the relative scale of the corresponding value in the vector. These class
probabilities naturally sum up to 1.
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A regularization strategy to avoid overfitting is to implement dropout layers, where a

predefined proportion (called dropout rate ¢p ) of randomly selected neurons are turned
off and not passed on to the next layer'®,

Networks, where each layer is only connected to subsequent layers towards the output
layer, are called feedforward networks. Recurrent networks allow connections (i.e.
feedback loops) in both directions of the network'®. In this dissertation, only
feedforward networks are applied. Convolutional neural networks (CNN) have at
least one convolutional layer, where a so-called kernel or filter moves across the image
to check whether a specific feature is present'”’. CNNs provide superior performance,
especially in image recognition, by extracting features from the input image while
spatial relationships between pixels are preserved'”® but are not utilized in this
dissertation.

After determining the architecture of an NN, defining all hyperparameters, initializing
the weights randomly to small values and setting the biases to 0, the training process is
started. The underlying data structure is now learned by assigning output values to
specific input patterns and repeatedly improving the performance of the model. In
supervised learning, this is achieved through adjusting the weights wft from neuron s
to neuron ¢ at layer ¢ in an iterative process of passing information from the given
datapoints through the network towards the desired output variables and
backpropagating information on the classification performance to update the weights of
the network'*"*!. The following four-step training process is called an iteration of the
NN training and is repeated for each datapoint until the whole dataset is passed through

the network at least once.'** !

1. Forward propagation: A training datapoint is passed through the
network, starting at the input layer and going through all intermediate
layers, where all neurons process the incoming data with the activation
function and pass it on to all successive neurons. When the information
has reached the final layer, outcome probabilities are assigned to each
class.

2. Error calculation: A predefined loss function is evaluated, comparing
the current output probabilities with the desired class label of the
datapoint under investigation.

3. Backward propagation: Starting from the output layer, the calculated
error term is processed backwards through the network by calculating the
gradients/derivatives of all parameters.

4. Optimization: With the activations (from step 1) and the gradients (from
step 3), the weights and biases of the network are updated to minimize
the error / loss function (from step 2) using stochastic gradient descent'>*.
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A suitable loss function has to be chosen before training. In this dissertation, classic
cross-entropy loss is applied'”. To enable good generalization to unseen samples and
avoid overfitting despite the large number of model parameters, the binary

cross-entropy loss is coupled with an L1-L2 mixed regularization term'**:

l033 =3, (0 + og(7) + (1 -y;)  log(1 ~ )+ » qzlllwitlll 0 *thIIW‘itllz

with y; being the ground-truth label of sample i, y; the corresponding predicted class,

which depends on the learned parameters w?

, of the NN and 7,v > 0 the regularization

parameters. This loss function contributes to prevent the network from overfitting by
minimizing the trade-off between small errors on the data on the one hand and small L1
and L2 norms of the weights on the other hand'*.

Instead of passing a single datapoint through the network in each iteration, steps 1-3 can
be repeated for a batch of points before going on to optimize the weights in step 4,
accumulating errors over the entire set of points. Passing the training points of one batch
through the network is then called an iteration and the number of points in one batch is
referred to as the batch size. Randomly selecting batches of datapoints from the dataset
can cause a faster and more stable descent to a local minimum but can also lead to
memory problems.

The process of passing the entire training dataset through the NN exactly once (as a
whole, for each datapoint separately or in batches) is called an epoch. If the number of
epochs (eps) is increased, the NN is trained repeatedly, passing the same data through
the network multiple times. The number of datapoints divided by the batch size gives
the number of iterations required to finish one epoch.

The learning rate n is a hyperparameter of the model that represents the step size at
each iteration when moving towards the minimum of the loss function in step 4 from
above. In order to avoid undesired learning behavior inside the network, such as
alternating connection weights and finding local minima, and to improve the rate of
convergence, an adaptive learning rate can be used that increases or decreases m as
appropriate. The easiest form entails a learning rate reduction with a specific factor after
a predefined number of epochs of no improvement.

While the weights of an NN are called parameters and are learned through learning,
hyperparameters are constant and fixed before training. Important hyperparameters
that can have significant effects on the learning behavior of an NN are the number of
hidden layers, the number of neurons in each layer (nn), the interconnectedness of the
network, the regularization parameters T and v, the learning rate n of the network, the
batch size, the number of epochs eps and the choice of activation and loss functions.
These important properties and configurations of an NN, as well as the initial weights,
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have to be chosen carefully, fitting the respective dataset under investigation.
Oftentimes this can only be done in a trial and error approach, but sophisticated guesses
can be made with the help of appropriate literature'.

2.3.4 Explainable Al and layer-wise relevance propagation

Explainable AI (XAI) is a field of Al that has been gaining importance recently'>> %,
It refers to techniques, which open the so-called “black box” of ML methods and reveal
the processes underlying their decisions so that the results can be better understood.

In XAI, we distinguish between local and global explanations depending on whether
they provide sample-dependent explanations or generate explanations of the model as a
whole. While some explanation methods depend on feature permutation'’, others
provide local interpretable model-agnostic explanations'®, build generalized additive
models'®! or compute class-specific gradient-based saliency maps'®>. A very popular
method to generate local relevance scores from trained NNs is layer-wise relevance
propagation (LRP)'®'
automatically taking correlation structures and possible interactions into account. The

, which provides a way to compute feature importance scores,

visual or computational investigation of heat maps generated based on LRP can reveal
which features in the input datapoints are most relevant for the class prediction of the

NN. LRP has been applied successfully in numerous data science problems to explain
decisions of NNg!®*164,

The process of explaining the prediction of an NN through LRP consists of the
following two steps:

1. After an NN f'is trained on a prediction task, the prediction scores of a datapoint
x; are computed by f(x;) =y, , a forward pass through the network.

2. Following a specific backpropagation rule, a single output score, i.e. the highest
output score, y; is backpropagated successively layer-by-layer through the
network until reaching the input layer.

See Figure 9 for a graphical representation of an NN trained on image data and
subsequent explanation via LRP. When an NN is trained on a binary image

classification task to separate cats from dogs , the relevance score Rfj”") of neuron s in
layer p demonstrates to which extent this specific neuron affected the classification
decision f(x;) into a cat or a dog'’. Once the input layer is reached, the corresponding
relevance scores represent the level of impact each input feature (i.e. pixel) had on the
decision of the network for that specific image. Plotting the relevance scores as a
heatmap on the corresponding pixels highlights the parts of the images that are most
important for the classifier’s decision. If x; is indeed the image of a cat, LRP of a
successful NN highlights the cat’s ears and whiskers or other cat-specific features.
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Figure 9: Image classification and subsequent pixel-wise explanation via layer-wise relevance propagation. A
During explanation via layer-wise relevance propagation (LRP), the prediction score of an image is first calculated
through a forward pass through the NN. B Following a backpropagation rule, the output score is then backpropagated
through the network layer by layer until reaching the input layer, where a relevance heatmap is displayed. The image
is classified as a cat and the LRP heatmap highlights cat-specific features like its ears and whiskers.

Image “Computational flow of deep Taylor decomposition” by Montavon et al.” licensed under the Creative Commons Attribution 4.0 International
license. Source: https://ars.els-cdn.com/content/image/1-s2.0-S0031320316303582-gr2.jpg

The backpropagation process begins with assuming that the relevance scores at the last
layer equal the output of its activation functions. Thus, without loss of generality, it is
assumed that the relevance distribution at layer ¢ is known and the relevance
distribution at the predecessor layer g-/=p can be extracted. LRP aims to find the

relevance score RS”") of neuron s at layer p based on the following equation, which
indicates that no relevance is lost and the sum of relevances in all layers is equal to the
output activations of the last layer:

fe)=.= 3 R =5 RPI == ¥ R
tE(q) SE(p) VE(I)

Additionally, all relevance scores are constrained to be positive (i.e., Vi,p,s : RS’”’ >0
). Based on these constraints, the relevance of one neuron is distributed amongst its
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predecessors following one of several backpropagation rules'®, some of which we
present here. The LRP-0 rule simply redistributes relevance proportionally to the
contribution of neuron s to its successors ¢ in terms of weights and activation:

. Wi
Rgpsl) — Z (S_) R(q l)
t Zhl:

where 7 denotes the activation of neuron s and w;’[ is the weight between the two

neurons s and ¢.

When applying the LRP-e€ rule, noise is removed by reducing weak or contradictory
(i.e. alternating) activations:

The LRP-Z rule distributes the relevance of neurons only amongst predecessor neurons
linked through positive weights, indicating that only features with a positive influence
on the classification of a specific sample as the resulting outcome are highlighted.
Features with the opposite effect of not supporting this particular choice of the network
are ignored when applying this rule:

@) _ ) @
R! Z Rt
! ( )
When applying the so-called LRP-af rule, the relevance Rgp’i) of neuron s in layer p
depends on the relevance of all of its successors ¢ in layer p+/=q in the following way:
i Hwl h’f-W‘f, ) i
Rgp’)zz (0 rp (_ BLRP(_A)f)XREq)a
(2 3 (4,

+
This rule allows us to weigh the positive and negative contributions ((hf wgt) and

(hfw?t)_, respectively) of neurons s to their predecessor ¢ differently by the

hyperparameters o;zp and B;zp -

The LRP-y rule controls how much positive evidence is favored over negative
evidence with its parameter y. This is particularly helpful to smooth out relevances
close to the input layer, where patterns are already captured.

. H(w! a~ .
R§p’l) = Z (M) X qual)

W ACUA AT

Depending on the network architecture and other data-specific factors different
backpropagation rules are to be preferred.
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2.3.5 Non-negative matrix factorization

In recent times technological possibilities are improving in many fields, causing very
large datasets to be available for analysis. Hence, to enable further processing, it is often
necessary to reduce the dimensions of such datasets without a loss of crucial
information. When the corresponding data is limited to positive values (e.g. for physical
reasons) and expected to represent linear combinations of recurring patterns with added
noise, methods referred to non-negative matrix factorization (NMF)>% can be
applied. Under the constraint of non-negativity, NMF aims to identify a list of such
basic recurring patterns and the corresponding set of coefficients to recreate the dataset
under investigation. If both of these entities are unknown, the solution is non-convex
and approximate solutions have to be determined numerically in an iterative process.
The result provides a lower-dimensional representation of the original dataset as a linear
combination of basic patterns. The concept of NMF was first introduced in the 1990s*
and became more popular in the early 2000s*2*
employed in various fields such as text clustering
filtering'®’. Applications that are relevant for this dissertation lay in bioinformatics,
where NMF was able to improve performances, for example, in protein alignment'®®,

microarray analysis'®, various omics tasks'” or clustering gene expression data'”’.

, when it started to be successfully

195 image imputation'®® or information

During NMF of a dataset X € R®"" of n datapoints in g-dimensional space, the set of
recurring patterns H € REF called dictionary and the corresponding coefficients to

reconstruct the data matrix W € RY”" are learned so that HW = X . See Figure 10 for
a schematic representation of the underlying approach.

9 }(H[

Figure 10: Non-negative matrix factorization. A data matrix X € R¢™ of n datapoints in g-dimensional space is

approximately factorized into a set of recurring patterns, i.e. the dictionary H € RE* and the corresponding
coefficients W € R to reconstruct the data matrix.

Image “NMEF” by Qwertyus licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Source: https://commons.wikimedia.org/wiki/File:NMF.png
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A number of different optimization functions for measuring the error between the
dataset and its factorization exist that can also include regularization terms for the two
learned matrices. Here, we employ a function based on the squared error (or Frobenius
norm) and regularize the denseness of the results with an elastic net'>*:

. 2 .
H W = argminy, (31X = HWIIg,, + oy hygge (vee (EDIL + Hvee (1) + 24 (1= (HHIIE,, #1711, ) )

where Ay, 1s the elastic net mixing parameter controlling the combination of L1 and
L2 (Frobenius) regularization and ay,,r is the corresponding penalty multiplier. Please
note that without loss of generality, X is sometimes defined to have dimension n x g
and NMF is used to learn WH = X, where the data matrix W and the dictionary H
have reversed dimensions.

If any prior knowledge is available, an initial starting point W* for W or H* for H
can be provided to the expectation-maximization algorithm that solves this equation by
alternately optimizing A and W. A number of different solvers can be applied to the
above equation, the multiplicative update rule** being one of the most popular options.
In this dissertation, an optimization algorithm called coordinate descent'’* is used,
which successively minimizes the function along each coordinate while keeping all
other directions constant.

Naturally, NMF can be viewed as a form of clustering”?*, where the cluster

memberships are selected based on the column-wise maxima of W, ie.

V= argmaxe k}(W)li .

There are a number of hyperparameters in NMF that need specification before learning,
e.g. the number of patterns or clusters & in the dictionary, the elastic net parameters
ayyr and Ay, and the maximum number of iterations until convergence up to a
specified level of relative error.

2.3.6 Transfer learning

In many different areas of scientific research, datasets are constrained by the scarcity,
feasibility and expense of collecting samples. In such scenarios, it is often not possible
to apply methodologies like deep learning, which require large and well-annotated
datasets. To address this common problem, the ML concept of transfer learning can be
employed to integrate a priori knowledge from large reference datasets into smaller
datasets to generate additional insights'”*!'™. To be able to use previously learned
knowledge can not only help in situations of data scarcity, but it can also be an
advantage in terms of efficiency, computing power and time when large datasets are
analyzed. In general, transfer learning refers to applying knowledge gained from one
context to another - distinct but related - context in a setting where the solution of one or
multiple source tasks is applied to a related target task. The term and corresponding
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mathematical ideas in relation to NNs were first introduced in 1976'” and further
developed in the following years. Thrun contributed to the emergence of the field in
1996 by asking if “learning the n-th thing [is] any easier than learning the first?”""®,
which was motivated by findings in human psychology. One of the key insights was that
humans build upon related concepts when learning new tasks, which Thrun coined
lifelong learning. Another influential line, which popped up around the same time,
introduced the term multitask learning'*. Instead of learning a sequence of related
tasks, multiple related tasks are learned in parallel using a shared representation. In
combination, transfer learning is an umbrella term for problems'” such as multitask
learning, domain adaptation and covariate shift'”’, which have been applied in many
fields, including cognitive science'’®, EEG data analysis'”, web search'™, spam

181

detection'! and speech and text recognition'®2.

Transfer learning algorithms can be based on very different approaches but always have
in common that they aim to help improve the learning of a target task by using
knowledge previously gained in learning a source task. Some exemplary methods

183 184

include the application of hierarchical bayesian models'®’, Markov logic networks **,

kernel methods' or deep CNNs'®6,
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3 Combining machine learning with
multiple statistical hypothesis testing for
genome-wide association studies

In this chapter, we propose two novel methods that combine advanced machine learning
algorithms (from Chapter 2.3.1, 2.3.2, 2.3.3 and 2.3.4) with traditional multiple
statistical hypothesis testing (from Chapter 2.2.1) to identify genotype-phenotype
associations in GWAS (as described in Chapter 2.1.3). Given a GWAS dataset, the
proposed methods improve the identification of disease trait associations by training an
appropriate state-of-the-art classification algorithm, selecting a subset of candidate
locations, which are most relevant for the classifier’s decisions and examining only
those SNPs for significant associations via multiple statistical hypothesis testing. In
support of the author’s proposed thesis of this dissertation, these combinatorial
approaches help to better understand the genetic architectures of different traits and
diseases and therefore examine the translation of genetic code into biological function.
This chapter is based on and contains parts of articles A'® and C" from Chapter 1.4 on
previously published work. It also builds upon work published in a master thesis written
by Alexandre Rozier and supervised by the author of this dissertation'®’.
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3.0 Notation of chapter 3

Symbol

T e

'\W

filter
n

nn

Ny

n

Ocq
pfilter
P> P

Peg

Definition (page it is introduced on)

Significance level to bound type 1 error rates (54)

Parameter of the aff -LRP rule for positive contributions (39 and 61)
Bias term in an SVM (28 and 55)

Number of Monte Carlo repetitions in the permutation test (58)
Parameter of the off -LRP rule for negative contributions (39 and 61)
Case-control status of a subject (53)

SVM regularization parameter (29 and 56)

Chi-square test statistic (54)

Number of SNPs under investigation in a GWAS (53)

Number of epochs for NN Training (36 and 68)

Expected frequencies of genotype g in combination with case-control status c (72)
Predictive function (27 and 55)

Genotype group of a subject (53)

Effect size parameter for generation of synthetic GWAS data (64)
Null hypothesis of equal p, and p, at SNP j (54)

Index of a subject in a GWAS (53)

Index of a SNP in a GWAS (53)

Parameter vector of the statistical model of a GWAS with 9 = (Sj) p (54)

J=1
Pair of probability vectors gj = (p(li), p(2/'>) of SNP (54)

Number of SNPs to select in the COMBI and the DeepCOMBI method (55)
Two-sided alternative of unequal p, and p, at SNPj (54)

Filter length or window size of a p-th-order moving average filter (56)

Number of subjects in a GWAS (53)

Number of neurons per dense hidden layer (36 and 68)

Numbers of individuals in the group of case-control status ¢ and genotype g (53)
Learning rate of an NN (36 and 68)

Observed frequencies of genotype g in combination with case-control status ¢ (72)

Norm parameter of a p-th-order moving average filter (56)

Probability vectors of cases p, = @11:P12:P13)T and controls p, = (pzl,pzz,pB)T at a
specific SNP (54)
Probability of an individual having case-control status ¢ and genotype g at a specific

SNP (54)

p-value of SNP j corresponding to testing H, (54)
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.1,

Probability distribution under the global null hypothesis of no informative SNPs (58)
The smallest of the & p-values of the selected positions (58)

Unknown true data-generating distribution (58)

Index of a successor layer of layer p in an NN (33 and 61)

Parameter of gFWER (23 and 59)

Dropout rate in an NN (35 and 61)

Global relevance scores in the input layer with » = (rj) , where the r; are averaged

over all subjects (60)
Relevance scores of the input layer for sample i (61)

Squared correlation coefficients of SNPs in LD (66)

Relevance score of subject i and SNP j with p, = ZR(L,O’i)) /3, where u are the

indices of the three features that one-hot-encode the corregponding genotype (62)
Index of predecessor neuron of neuron ¢ in an NN (33 and 61)
Sign function (56)

Index of successor neuron of neuron s in an NN (33 and 61)

Multiple testing significance threshold (48)
L1 norm regularization parameter in the loss function of an NN (36 and 68)
L2 norm regularization parameter in the loss function of an NN (36 and 68)

Weight vector of SVM (28 and 55)
k -th largest value in w in absolute value (57)

Weight of the connection from neuron s to neuron ¢ at layer ¢ in an NN (33 and 61)

Observed genotypes of a set of SNPs and a set of subjects with x = (x,]) (53)
Genetic information of subject i in SNP j with x; € {(1,0,0),(0,1,0),(0,0, 1)} (53)
Genotype of an unseen subject (56)

p-value threshold to preselect SNPs for NN training (61)

Observed phenotypes of a set of subjects with y = (y;) (53)

Label of subject i with y, € {+ 1,1} or y;, € {0,1} (53)

Prediction scores of a datapoint x; (61)

Phenotype of an unseen subject (56)

Random permutation of the phenotypes y (58)

L2 Euclidean norm (56)
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3.1 Introduction

The goal of GWAS (as described in Chapter 2.1.3) is to examine the relationship
between small genetic variations called SNPs and individual traits, which are usually
complex diseases or behavioral characteristics. The approaches to the analysis of
GWAS either investigate phenotypic risk prediction® ' or the explanation of the
corresponding risk effects by determining the set of SNPs are associated with the
trait® %, This dissertation aims at both of these goals but puts focus on the latter by
using ML-based prediction methods in combination with statistical testing to identify
SNPs associated with the phenotype under investigation.

Please refer to Chapters 2.1.3 and 2.2.1 for an introduction to GWAS and the
corresponding traditional analysis methods.

In order to analyze GWAS datasets, a huge number of statistical tests are performed in
parallel, each SNP being individually tested for association*®*®, The traditional
approach - referred to as RPVT and introduced in Chapter 2.2.1 - consists of carrying
out individual statistical association tests for all SNPs and comparing the resulting
p-values to a predefined significance threshold ¢*. Per definition, precisely those SNPs

t$34 We review

with p-values smaller than ¢* are declared to be associated with the trai
some standard methods for choosing ¢* for the purpose of controlling multiple type I
error rates (in particular, FWER and the ENFR) in Chapter 3.2.1. Following
developments in biotechnology, GWAS have developed into a powerful tool that
provides valuable insights into the genetic causes of several important phenotypes.
Especially for common diseases, GWAS have improved our understanding of the
underlying genetic inheritance processes***. However, variants reported by GWAS tend
to explain only small fractions of individual traits and the genetic architectures and
variances of most traits and complex diseases remain largely unexplained. This
phenomenon - often referred to as “the mystery of missing heritability” - is assumed to
be - at least partially - caused by the way GWAS datasets are traditionally analyzed®®.
RPVT is based on testing SNPs individually and in parallel, which intrinsically ignores
any potential epistatic interactions”'*® between or correlation structures among the set of
SNPs under investigation®®. Studies fail to identify multi-locus effects by using the
traditional RPVT approaches and a large amount of potentially available information is
lost'®. Only very few diseases rely on single genetic defects with large effects, while
most complex diseases are caused by epistatic interactions of multiple genetic factors
with small effects. Further influence originates from correlation structures due to both
population genetics (i.e. LD) and biological relations (i.e. functional relationships
between genes)*. The latter issue by itself is likely to introduce confounding factors and
artifacts, implying a loss in statistical power'® and a lack of reliable insights about
genotype-phenotype associations. Brute force multivariate approaches to identify the
aforementioned dependencies are oftentimes computationally too expensive for large
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GWAS datasets and are limited by low statistical power due to excessive multiple
testing. A few attempts have been made to identify genetic interactions, but most of

them are not able to find strong, statistically significant associations'8%190-1%2,

To overcome these limitations of traditional approaches and following the rise of ML in
data science and the increase in the amount of available large-scale GWAS datasets, a
number of methods have been proposed to introduce ML tools for the analysis of such
studies. Linear approaches such as multivariate logistic regression and sparse penalized
methods, including Lasso, have been applied to GWAS datasets. In general, penalized
models achieve better performances than non-penalized methods®*!'**1%°
models, such as random forests, gradient boosted trees and bayesian models

investigate interactions and correlations in the genetic architecture of traits but are
60,190,193,196

. Nonlinear
60,193,196,197

mostly found to be outperformed by linear penalized methods

To harness even more sophisticated nonlinear ML methods for the analysis of GWAS,
attention has recently been drawn to NNs, which we have introduced in Chapter 2.3.3.
NNs have been applied to the analysis of GWAS datasets"*'”, but most of the
corresponding publications focus on risk prediction'”*?*2% and only very few methods

have been proposed for identifying SNP disease associations'**2%,

Romagnoni et al.’”® present a thorough comparison of conventional statistical
approaches, traditional ML-based techniques and state-of-the-art deep learning-based
methods in terms of both prediction rates and the identification of SNP associations on a
Crohn’s Disease immunochip dataset. Classification performances of numerous
methods (Lasso as a reference, penalized logistic regression, gradient boosted trees,
NNs) are compared and found to be similar for most methods (linear and nonlinear)
implicating potentially “/imited epistatic effects in the genetic architecture™*. However,
when investigating the associated genetic regions identified by the different methods,
ML and deep learning-based methods are indeed found to provide new insights into the
genetic architecture of the trait. Romagnoni et al. achieve this by applying the concept
of XAI, which we have introduced in Chapter 2.3.4 of this dissertation as a
fast-moving field of Al that has emerged recently'>>'**, The explanation method used
by Romagnoni ef al. - permutation feature importance (PFI)"*’ - is a generalized,
model-agnostic approach and more sophisticated methods specifically tailored to NNs
are available.

In this dissertation, we aim to validate the proposed thesis that it is preferable to develop
methods that combine the advantages of traditional and novel technologies and
approaches. With this in view, we propose two combinatorial approaches to couple
multiple hypothesis testing with ML-based methods for the analysis of GWAS. Some
models have previously been introduced for GWAS that combine statistical testing and
ML for identifying SNP disease associations®*%*. However, most of these methods do
not provide validation on real data comparing to the GWAS database and very few
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provide a full evaluation of identified genetic variants in terms of comparison to
previously published GWAS.

The core idea of this work is to develop principled, reliable and replicable methods for
identifying significant SNP-phenotype associations that can be described as two-step
algorithms consisting of

1. an ML and SNP selection step that drastically reduces the number of candidate
SNPs by selecting only a small subset of the most predictive SNPs; and

2. a statistical testing step, where only the SNPs selected in step 1 are tested for
association.

In this dissertation, we propose two novel methods - called COMBI and DeepCOMBI -
that implement this general idea in different ways. Figure 11 shows graphical
representations of both approaches.

A The COMBI method B  The DeepCOMBI method

Phenotypes Genotypes

Phenotype Feature

Feature vector matrix

matrix

Sujuies| dasg
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Figure 11: Graphical representations of the COMBI and the DeepCOMBI method: A The COMBI method.
Receiving genotypes and corresponding phenotypes of a GWAS as input, the COMBI method first trains an SVM to
select a set of most predictive candidate SNPs and then calculates p-values and corresponding significance thresholds
in a statistical testing step. B The DeepCOMBI method. Receiving genotypes and phenotypes of a GWAS as input,
the DeepCOMBI method first applies a deep learning step to train a DNN to classify subjects. Afterwards, in the
explanation step, it selects the most relevant SNPs by applying LRP to calculate relevance scores for each SNP.
Finally, for this set of most relevant SNPs, DeepCOMBI calculates p-values and corresponding significance
thresholds in a statistical testing step.
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The COMBI and the DeepCOMBI method share the same types of input and output
variables but differ in the way they identify candidate locations by training an SVM and
using the weights as importance scores on the one hand (Figure 11 A - COMBI) or
learning a DNN and applying LRP to compute relevance scores on the other (Figure 11
B - DeepCOMBI). In identical final steps, both methods apply multiple hypothesis
testing and appropriate thresholding to calculate p-values and obtain a list of significant
phenotype-genotype associations.

The first novel methodology of this dissertation, the COMBI method (Figure 11 A),
employs the ML technique of an SVM'""" in the first step of the aforementioned general
idea. Crucially, SVMs are tailored to predict the target output (here, the phenotype)
from high-dimensional data with a possibly complex, unknown correlation structure. In
our application, COMBI trains an SVM based on a sample of observed genotypes and
corresponding phenotypes and interprets the absolute values of the parameter vector as
a measure of importance of each SNP for the prediction function. After post-processing
the weights through a p-th-order moving average filter, the SNPs corresponding to the
largest weights are selected for multiple hypothesis testing while all other SNPs are
discarded. Since the SVM is trained using the complete SNP data of one chromosome,
the first step acts as a filter, selecting only SNPs that are relevant for phenotype
classification with either high individual effects or effects in combination with the rest
of the SNPs of that chromosome, while discarding artifacts due to correlation structures.
The second step uses multiple statistical hypothesis testing for a quantitative assessment
of the individual relevance of the selected SNPs. The significance threshold is calibrated
using a permutation-based method over the whole procedure. All in all, the two steps
extract complementary types of information, which are combined in the final output.
Importantly, the calibration of the method is such that a global statistical error criterion
is controlled for the entire procedure consisting of steps 1 and 2.

The second contribution of this dissertation - the DeepCOMBI method (Figure 11 B) -
employs artificial NNs and XAl in the first step of the general algorithm from above for
identifying SNP-phenotype associations. The method is based on a deep learning step
that trains a DNN to classify GWAS subjects into their respective phenotype class.
Using an explanation method, the contributions of all SNPs to each individual
classification result are assessed. The obtained relevance scores are used to select the
subset of most relevant SNPs for the final multiple testing step, where only the SNPs
selected in step 2 are tested for statistically significant association with the trait under
investigation. The same permutation-based procedure used in COMBI is applied here to
calibrate the significance threshold. DeepCOMBI can be viewed as an extension of the
COMBI method replacing the prediction step of the SVM with a more sophisticated
deep learning method and using the concept of explainability to extract SNP relevance
scores via LRP'*'™. To the best of our knowledge, deep Taylor-based explanation
techniques'’ have not yet been applied in the field of GWAS for the analysis of such
data. LRP provides a direct way to compute feature importance scores and has been
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applied very successfully in numerous data science problems to explain decisions of
NNs!'%2% Instead of basing the importance score of a SNP on the data of that SNP
alone, correlation structures and possible interactions are automatically taken into
account. The main motivation behind DeepCOMBI is to harness the immense potential
of sophisticated, state-of-the-art AI methods to examine complex and potentially
nonlinear structures in high-dimensional data by applying the concept of DNNs to
GWAS in the first step of the algorithm. Subsequently, in step 2, DeepCOMBI identifies
a set of SNPs that have strong effects on the classification result of the DNN either
individually or in combination with other SNPs and not due to correlation structures by
calculating an explanation score for each SNP, which reflects its contribution to the final
classification decision.

In the following Chapter 3.2, we first describe the methodologies behind COMBI and
DeepCOMBI and then provide details on our approach to validating their superiority
over other methods on both controlled generated datasets as well as on a 2007 GWAS
dataset of seven common diseases'®. The performances of the COMBI and
DeepCOMBI methods are reported and compared in Chapter 3.3, where we also
include and discuss the highly favorable comparisons with the algorithms that could
potentially compete with both methods. Note that COMBI and DeepCOMBI yield
better predictions with fewer false (i.e. non-replicated) and more true (i.e. replicated)
discoveries when its results are validated on later, larger GWAS. DeepCOMBI
compares favorably to the COMBI method in terms of both classification accuracy as
well as SNP association prediction when validated with all associations reported within
the GWAS catalog accessed in 2020. A thorough discussion of the results and all related
ML work, along with a concluding summary, is given in Chapter 3.4.

An implementation of both methods in Python is available on GitHub at
https://github.com/AlexandreRozier/DeepCombi. Further Implementations of the
COMBI method are available in R, MATLAB and JAVA, as a part of the GWASpi
toolbox 2.0  (https://bitbucket.org/gwas combi/gwaspi/, login user name:
gwas_combi_guest, password: combil23).
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3.2 Methods

In the following sections, we formally introduce the statistical problem under
investigation in a GWAS, present the detailed methodology behind the two proposed
methods - COMBI and DeepCOMBI - and present the corresponding evaluation
procedures on generated synthetic data and a real-world application on a known GWAS

dataset.

3.2.1 Problem setting

A GWAS, as described in Chapter 2.1.3, investigates the observed genotypes x of a set
of SNPs and a set of subjects labeled with the corresponding phenotypes y. Let n
denote the number of subjects in the study and d the number of SNPs under

investigation. Given a sample of observed genotypes x = (xl.j) € R and
1<i<n,1<j<d

corresponding phenotypes y = (yy, ..., »,) € R", each x;_and each x,; corresponds to
a subject and a SNP, respectively. Both the genotypic information in SNP ; and the
phenotypes of subject i are encoded in a binary way. The number of minor alleles in
SNP j of subject i is represented by x; € {(1,0,0),(0,1,0),(0,0,1)} and
v, €E{+1,—1} or y;€ {0,1} forall i=1, ..., n is the binary label separating cases
from controls. The data of one SNP can be summarized in a contingency table as
presented in Table 1.

Table 1: Tabular representation of single SNP data. Single SNP data is summarized in categories according to
phenotypes (cases, Y = +1 and controls, Y = -1) and genotypes (A,A,, A|A, and A,A,). The numbers n,, denote the
numbers of individuals within the corresponding group. The total number of subjects in the study is n.

AlAl AIAZ AZAZ z

Y= +1 ny, ny, N3 ny,
Y= -1 Ny, Ny, N3 n,
> n, n, n; n

The numbers 7, denote the number of cases (¢ = 1) and controls (¢ = 2), respectively,
which exhibit the genotype corresponding to column g. Notice that the row sums n, and
n, are fixed and non-random by the experimental design (case-control study). Hence,
the two random vectors (7,1, 1, 3)T and (ny,n,,, n23)T follow a multinomial
distribution with three categories each, sample sizes n, and n, and unknown vectors of

.y T r .
probabilities py = (py1,p12,p13) and py = (Py1,P2,P23) , respectively.
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The parameter 9= (9],)4 .y of the statistical model for the whole study thus
J=1

consists of all such pairs 9j = (p({), p(zf)) of multinomial probability vectors, one for each
of the d SNPs under investigation. For every SNP j, we are interested in testing the null

hypothesis H; : p({) = p(zf), where we introduce the superscript j to indicate the SNP.
This hypothesis is equivalent to the null hypothesis that the genotype at locus j is
independent of the binary trait of interest. In general, the null hypothesis of a
conventional single-locus test is that there is no difference between the trait means of
the genotype groups, which indicates that the genotype at SNP ; is independent of the
phenotype under investigation®’. Standard asymptotic tests for H; versus its two-sided
alternative K, (genotype j is associated with the trait) are the ¥* test for association and
the Cochran-Armitage trend test’”. Both tests employ test statistics that are
asymptotically (as min(n, n,) tends to infinity) ¥? distributed under H,. The number of
degrees of freedom equals two for the ®> test for association and 1 for the

Cochran-Armitage trend test. Thus, p-values (p; : 1<j<d) corresponding to these tests

can be calculated by applying the upper-tail distribution function of the y> distribution
with the corresponding degrees of freedom to the observed values of these statistics, and
this for every SNP. Observe that the test statistics obtained for different SNPs are highly
correlated if these SNPs are in strong LD to each other; consequently, the corresponding
p-values also exhibit strong dependencies®®**”’. RPVT, as described in Chapter 2.2.1,
calculates a p-value p; for each SNP j via a ¥> test and declares it significantly

associated with the phenotype if p; <¢*. If there was a single test to perform (i.e.

d=1), then * would be taken as a predefined significance level a, as in the classical
approach to statistical hypothesis testing. In multiple testing, however, the threshold ¢*
is modified to take the multiplicity of the problem (the fact that 4> 1) into account.
The simplest method to take multiplicity into account is the so-called Bonferroni
correction, which sets /"= ¢.” This choice guarantees that the FWER (that is, the
probability of one or more erroneously reported associations) of the multiple tests is
bounded by a. A variety of other RPVT methods are explained, for instance, in the

208

monograph by Dickhaus

3.2.2 Proposed workflow

The individual RPVT p-value for an association of the j-th SNP only depends on x,;

and thus ignores any possible correlations and interactions with other SNPs — which
could yield additional information. In contrast, ML approaches aimed at prediction take
the information of the whole genotype into account at once and thus implicitly consider
all possible correlations to strive for an optimal prediction of the phenotype. Based on
this observation, we propose to calculate p-values only for the SNPs that are of
importance in the decision process of such machines. We combine the advantages of
both worlds - i.e. statistical hypothesis testing as the traditional way to compute

54


https://paperpile.com/c/QS9fGm/O6pU
https://paperpile.com/c/QS9fGm/nnP6
https://paperpile.com/c/QS9fGm/ak5Q+DZYx
https://paperpile.com/c/QS9fGm/MuvS
https://paperpile.com/c/QS9fGm/Cg0W

associations scores and ML, which takes multi-locus effects into account - by
developing algorithms that consist of the following two basic steps:

e the ML step, where an appropriate subset of candidate SNPs is selected, based
on their relevance for the prediction of the phenotype;

e the statistical testing step, where a hypothesis test is performed for the selected
set of candidate SNPs together with an appropriate threshold calibration.

The ML step can be implemented in various ways and in this dissertation, we
investigate two possible options: SVMs, where the learned weight vector is interpreted
as an importance score, and DNNs, where LRP scores are computed as relevance
indicators. The two resulting methods - COMBI and DeepCOMBI - are discussed in
detail in the following sections.

The COMBI method

Combining the concepts of SVMs (as described in Chapter 2.3.2) and statistical testing
(as described in Chapter 2.2.1), we propose a novel algorithm consisting of the
following two steps (See Figure 11A):

1. SVM training and SNP-selection: Given the genotypes x = (xy) and the
corresponding phenotypes y =(y;) of a GWAS - an SVM is trained for
phenotype prediction. The SVM returns a linear function f, , (x) = wlix +b
and the sign of f, , (Xnew) is a prediction of the unknown phenotype of a
previously unseen genotype xXpew . For each SNP j, the absolute value |w,| of the

corresponding component of the parameter vector w is interpreted as a measure
of importance for the prediction function. The SNPs corresponding to the &

largest values of the scores |w;| are selected; all other SNPs are discarded.

2. Statistical testing: A hypothesis test is performed for each of the selected SNPs.
Those SNPs with a p-value less than a significance threshold ¢* are returned.
The threshold ¢* is calibrated using a permutation-based method over the whole

procedure.

The above steps are presented in detail in the following sections.

The first step of COMBI - SVM training and SNP selection

The goal in ML is to determine, based on the sample, a function f(x) that predicts the
phenotype y based on the observation of genotype x. COMBI trains an SVM based on

the sample of observed genotypes x = (xl.j) with x,; € {(1,0,0),(0,1,0),(0,0,1)} and
corresponding phenotypes y = (y;) with y; € {+1,—1}. The SVM determines the
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parameter w of the linear model f , (xi*)sz x, +b by solving, for C>0, the

following optimization problem:

w = argmin,, (Ilwllg +Cy max (0,1 _inTxi*)) .
=

Here, we aim to minimize the trade-off (controlled by C) between a vector w with a
small norm (on the left) and small errors on the data (on the right). In a preprocessing
step, the data is centered and scaled.

The learned prediction function f* can be used to predict the phenotype of any genotype
by calculating

Vnew = SEN(f (Xnew)) = sgn (WTxnew) .

The above equation shows that the largest components (in absolute value) of the vector
w (called SVM parameter or weight vector) also have the most influence on the
predicted phenotype. Note that the weight vector contains three values for each position
due to the feature embedding, which encodes each SNP with three binary variables. To
convert the vector back to the original length, we simply take the average over the three
weights. We also include an offset by including a constant feature that is all one.

Considering that the use of SVM weights as importance measures is a standard
approach?”, for each j, the absolute value lw| can be interpreted as a measure for the
importance of the j-th SNP for the phenotype prediction task. The main idea is to select
only a small number & of candidate SNPs before statistical testing, namely those SNPs
having the largest scores.

Before selecting the most relevant SNPs, the parameter vector w is processed through a
p-th-order moving average filter, that is:
]

im(d.j+(1.,, —1)/2
, mm( o (/mer )/ ) Prilter

lw, 1= > wy, )
h:max(l :j_(lfilter_l )/2)
where [, €1, ..., d denotes a fixed filter length or window size (required to be an

odd number). The value p;;,,,€]0,0[ is a free norm parameter; in the case p,, =1, a

standard moving average filter is obtained.

Finally, the SNPs corresponding to the k largest values of the scores Iw;ewl are
selected; all other SNPs are discarded.
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The second step of COMBI - Statistical testing

In the statistical testing step, a hypothesis test (carried out as a y? test) is performed for
each of the k selected SNPs exactly as described above for RPVT, with the only
modification that p-values for SNPs not ranked among the top £ in terms of their filtered
SVM weights are set to 1, without calculating a test statistic. A SNP j is said to be
statistically associated with the trait if its p-value p; is smaller than a threshold ¢*,

which is carefully chosen to bound the FWER by a.

In summary, the proposed methodology of the COMBI method, including the first and
the second step from above, is formally stated as Algorithm 1.

Algorithm 1

TrE ComBI METHOD.

Require: genotypes x = (x,j) and phenotypes y =(y;), a reasonable upper bound
k€ {1, ..., d} for the number of informative SNPs, and an FWER level a

1: train an SVM using genotypes x and phenotypes y, resulting in scores w,, ..., w,

2: filter the weights w,, ..., w, through a p-th-order moving average filter

3: let w* (k) denote the k-th largest of the w;’s in absolute value and re-number the
corresponding positions from 1, ..., k

4: forall j=1, ..., k do

5: compute the p-value of the j-th SNP p; (x*j, y)

6: end for

7: decide that SNP j is associated with the trait if w; >w* (k) and p, < ", where

"=t (k,a) is chosen as the o-quantile of the permutation distribution of the
smallest of the k p-values (see Algorithm 2 for details)

Return predicted set of informative SNPs

The methodological challenge now consists of finding a threshold #* for the remaining
k p-values such that the FWER is controlled for the multiple tests defined by the entire
workflow, including SVM training, filtering of weights, p-value calculation and
thresholding. The Bonferroni correction can only attain the prescribed FWER upper
bound and therefore have maximal power if the p-values (p; : 1<5j<d) do not exhibit

strong (positive) dependencies. This assumption is violated in GWAS due to strong LD
in blocks of SNPs and also in the proposed COMBI method, where the SVM weight of
a SNP j depends heavily on the information in other SNPs. To this end, we investigated
previously proposed approaches*®?!! in order to split the sample, meaning that the
selection of £ SNPs is made on one (randomly chosen) sub-sample of individuals, while
the p-value calculation and thresholding for the selected SNPs are performed on
another. In this scheme and regardless of the SNP selection method used on the first
sub-sample, a Bonferroni-type threshold ¢* = ¥ guarantees FWER control at level o for
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the p-values computed on the second sub-sample. Since k<d, this correction is much
less conservative than the original Bonferroni correction using all SNPs. However, this
is severely mitigated by the loss of power in the p-values due to the sample splitting. In
fact, computer simulations indicate very low power for detecting true associations with
such a method because of the reduced sample size for calculation of test statistics and
p-values (see Figure 19 in Chapter 3.3.1). An alternative way to calibrate the threshold
t* for FWER control, taking the dependencies into account, is the Westfall-Young
permutation procedure?'?, which controls the FWER under an assumption termed
“subset pivotality” (see Westfall and Young?? as well as Dickhaus and Stange®"’).
Furthermore, Meinshausen ef al. *" prove that this permutation procedure is
asymptotically optimal in the class of RPVT procedures, provided that the subset
pivotality condition is fulfilled. A thorough discussion and derivation of the extension
of the Westfall and Young procedure its assumptions and validity, in general, can be

found here®’?3,

Based on these findings, our suggestion is to resample the entire workflow of Figure
11A, following a Westfall and Young type procedure, and to choose ¢* based on the
permutation distribution of the resampled p-values. FWER control at level o of the
multiple tests defined by Algorithm 1 can be proven under a relaxed form of the subset
pivotality condition, the validity of which is checked empirically in Appendix Chapter
I. To describe this condition formally, let P, denote any probability measure under the
global null hypothesis of no informative SNPs in {1, ..., d} at all. We assume that the
following condition holds true: Let p,. denote the smallest of the & p-values
corresponding to the positions selected by the SVM method for which the null
hypothesis of no association between SNP and trait is true. Regarding p . as a random

variable, assume that its distribution under the true data-generating distribution Pgq
(which is unknown) is stochastically not smaller than under P, . The distribution under
P of the k p-values corresponding to positions chosen by applying the SVM method is
now estimated by the resampling procedure given below as Algorithm 2. We estimate
the distribution of p-values under the global null hypothesis of no informative SNPs by
repeatedly assigning a random permutation of the phenotypes y,, ..., Vay t0 the

observed genotypes x;_, ..., X,, and applying the complete workflow of the COMBI
method to save the resulting p-values of the B Monte Carlo repetitions. The empirical
lower a-quantile of the smallest of these k p-values is then a valid choice for ¢ in the
sense that the FWER for the entire procedure defined by Algorithm 1 is bounded by a.
In contrast to the Bonferroni calibration, this procedure takes all dependencies in GWAS
datasets caused by strong LD into account.
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Note that the choice & = d leads to skipping the SVM step and arriving at the popular

2

MinP procedure, originally proposed in Westfall and Young??. Following the
argumentation in Dudoit and van der Laan?", it is also possible to control the gFWER
with the aforementioned resampling scheme as well as the ENFR. For gFWER control

with parameter p, one has to consider the (p + 1)th-smallest of the resampled p-values
instead of pgfgn in Algorithm 2. For ENFR control, one has to store all B * k computed

p-values and determine the p-value threshold that leads to an average number of
rejections (over the B Monte Carlo repetitions), which matches the desired ENFR level.

Algorithm 2

RESAMPLING-BASED THRESHOLD DETERMINATION.
Require: genotypes x = (xl-j) and phenotypes y = (y;), the number k€ {1, ..., d} as in
Algorithm 1, an FWER level a and a number B of Monte Carlo repetitions

1: for b=1, ..., B do
pick a random permutation m and set y® = (yn(l), s yn(n))

3: carry out steps 1-6 in Algorithm 1 with taking y® as phenotypes, resulting
in corresponding p-values p; (x*j, y(b))

4: store the smallest of the k computed p-values as p,;, .

5: end for

e

Order the p(,f?n : 1<b<B increasingly as (p(b) : 1§b§B).

ordered *

(0xB)
ordered

Return the value p

Implementation details of the COMBI method

The COMBI method is implemented in Matlab/Octave, R and Java as a part of the
GWASpi toolbox 2.0 (https://bitbucket.org/gwas combi/gwaspi/, login user name:
gwas _combi_guest, password: combil23.). The implementation for Matlab/Octave is
cluster-oriented and uses libLinear?'>. The Java implementation is desktop computer
oriented and makes use of the following packages: libLinear’"”, libSVM?'® and apache
commons math?'’. Finally, the R implementation requires LiblineaR*"®, ggman?",
data.table*®, gtools**! and snpStats**2. The COMBI method is also available in Python
as part of the DeepCOMBI implementation, which can be found at
https://github.com/AlexandreRozier/DeepCombi.
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The DeepCOMBI method

Combining the concepts of DNNs (as described in Chapter 2.3.3), explanation methods
(as described in Chapter 2.3.4) and statistical testing (as described in Chapter 2.2.1),
we propose another novel algorithm consisting of the following three steps (see Figure
11B):

1. Deep learning: Given the genotypes x = (xl,j) and the corresponding

phenotypes y =(y;) of a GWAS, a DNN is trained for phenotype
prediction.

2. Explanation and SNP selection: A subset of SNPs is selected by
applying LRP''® as an explanation method for each individual
prediction and averaging the absolute values of the resulting explanations

to compute global prediction relevance scores r = (rj) for all d SNPs ;.

The relevance scores are processed through a moving average filter with
a window size [, . Given a predefined upper bound k€ {1, ..., d} for

the number of informative SNPs, we select the & most relevant SNPs
based on r.

3. Statistical testing: A hypothesis test is performed for all SNPs selected
in the previous step to compute the p-values of those SNPs, while the
p-values of all other SNPs are set to one. Via a permutation-based
threshold calibration and given a FWER level o, we decide that SNP ; is
associated with the trait if p; <#*, where * =1 (k,0) is chosen as the

a-quantile of the permutation distribution of the k& smallest p-values.

The proposed algorithm can be viewed as an extension of the COMBI method replacing
the SVM with a state-of-the-art deep learning method in combination with an
explanation technique. The above steps are presented in detail in the following sections.

The first step of DeepCOMBI - Deep learning

The first step of the proposed method consists of constructing and training a
well-performing DNN for the prediction of the phenotypes y = (y;) (here y; € {0,1})

of a GWAS given the corresponding genotypes x = (xl]) . Selecting a DNN architecture

is often critical for achieving good performance for a specific - in this case, SNP-based -
classification task. Montaez et al.””’ developed a 2-class DNN for the classification of
polygenic obesity and showed its performance to be superior to numerous competitor
methods. Romagnoni et al.’”® compared the performance of similar architectures and
presented a detailed review of the best design choices for an NN on a Crohn’s Disease
dataset. Taking inspiration from the conclusions of both of these works and
investigating performances on synthetic datasets, we use an architecture of two fully
connected layers with 64 neurons and ReLU activations and a dense softmax output
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layer with two output nodes. To improve validation accuracy by reducing overfitting,
each hidden layer is followed by a dropout layer with a dropout probability of ¢ . We
employ a classic cross-entropy loss function coupled with an L1-L2 mixed
regularization term (defined as in Chapter 2.3.3) to avoid overfitting by minimizing the
trade-off between small errors on the data and small L1 and L2 norms of the weights.
Adam™ is used as an adaptive learning rate optimizer to minimize the given loss
function. To overcome limitations due to imbalanced datasets, class weights are
calculated according to the class frequencies and used to direct the DNN to balance the
impact of controls and cases. In a preprocessing step, the data is centered and scaled by
subtracting the global mean and dividing by the global standard deviation. To minimize
computational effort and limit the number of model parameters in the DNN, a p-value
threshold k can be applied in order to only select SNPs with p-values smaller than « to
be used for training.

Once the parameters w? of the DNN have been trained by optimizing the

st

corresponding learning problem (See Chapter 2.3.3 for details), the network is able to
predict the phenotype of any unseen genotype x,.. . Regarding this binary classification

problem, the output node with the highest score represents the predicted phenotype.

The second step of DeepCOMBI - Explanation and SNP selection

To harness the potential of DNNs for identifying SNP disease associations in GWAS,
we now apply the concept of XAI. Once the DNN is fully trained, the aim is to define
an importance measure that determines which loci play an important role in the
determination of a phenotype. Generating relevance scores from trained DNNs can be
achieved by utilizing LRP'*'® which we have introduced and described in detail in
Chapter 2.3.4. LRP firstly computes the prediction scores of a datapoint x; by
f(x;) =y;, a forward pass through the network after a DNN f'is trained on a prediction
task. Secondly, following a specific propagation rule, a single output score y;, i.e. the
highest output score, is backpropagated successively layer-by-layer through the network
until reaching the input layer. Here, the LRP-af rule (also see Chapter 2.3.4 for a
definition) is used, which allows us to weigh the positive and negative contributions of
each neuron to their predecessor differently with the hyperparameters o, zp and B;pp -

Once the input layer R € ®¥* is reached, the relevance score p; of SNP j in
subject i is attributed to each dimension of x; with Py = (Z R(uo,i)) /3. Since the
u

original relevance vector R contains three values for each one-hot-encoded location,
it is converted back to size d by averaging over the three nodes
u€ {(jx3)-2,(Gx3)—1, (j*3)} corresponding to SNP j in the input layer. Please
note that all relevance scores p;; are positive since a softmax output layer with two

output nodes for the binary classification problem is used and only the highest of the
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two output activations is backpropagated. p; now demonstrates to which extent the

dimension j of x; plays a role in the classification decision f(x;) and can be used to
uncover the most relevant SNPs for prediction. Note, however, that LRP is applied
individually to each datapoint i. By averaging the values of all individual LRP
explanations p;; of SNP j, we propose to generate a global explanation, that is:

which is independent of datapoints. The relevance scores of one sample sum up to the
activation value of the output prediction, which means that datapoints classified with
low certainty also have a small impact on the global explanation. Intuitively, the global
LRP score r; of each SNP j can now be interpreted as a measure of relevance regarding
the prediction: The higher r,, the greater the influence of locus j on the decision process
of the DNN. To achieve better performance, the SNP relevance scores are now filtered -
like the SVM weights of the COMBI method - before using them to select the highest
scoring locations. The vector r is post-processed through a p-th-order moving average
filter, that is:
l
min(dj+(Line—1)/2)
r]{ww .= 12 Z (rh)P/ilzer

h:max( 1 z/‘*(lﬁlleri 1 )/2)

where [5,,.€1, ..., d denotes the window size and py;,,,€]0, [ is a norm parameter.

We have now generated relevance scores showing which SNPs played an important role
in the classification decision and can use them for the selection of promising locations.
For the next step of DeepCOMBI, we choose to test all SNPs with the & largest values

of the scores rl.”ew and eliminate all SNPs with lower relevance.

The third step of DeepCOMBI - Statistical testin

The statistical testing step of the DeepCOMBI method is identical to the second step of
the COMBI method. A y? hypothesis test is performed for each of the k SNPs selected

in the LRP explanation step and the p-values for all other SNPs are set to one.
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In summary, the proposed methodology, including all steps, is formally stated as
Algorithm 3.

Algorithm 3

TrE DEEPCOMBI METHOD.

Require: genotypes x = (x,-j-) and phenotypes y =(y;), a reasonable upper bound
k€ {1, ..., d} for the number of informative SNPs and an FWER level o

1: train a DNN using genotypes x and phenotypes y

2: calculate global relevances Fis v Py via averaging local LRP scores

3: filter the weights Fis oo Ty through a p-th-order moving average filter

4: let 7* (k) denote the k-th largest of the r;’s in absolute value and re-number the
corresponding positions from 1, ..., k

5: forall j=1, ..., k do

6: compute the p-value of the j-th SNP p; (x*j, y)

7: end for

8: decide that SNP j is associated with the trait if r, >7* (k) and p;, <", where

t* =t (k,a) is chosen as the o-quantile of the permutation distribution of the
smallest of the £ p-values (see Algorithm 2 for details)

Return predicted set of informative SNPs

To identify statistically significant associations, the p-value threshold ¢* is calibrated to
control the FWER for multiplicity by applying the same permutation procedure as
proposed above for COMBI in Algorithm 2, replacing “Algorithm I’ with “Algorithm
3” in the requirements and in line 3.

Implementation details of the DeepCOMBI method

The DeepCOMBI method is implemented in Python and the source code is available at
https://github.com/AlexandreRozier/DeepCombi. The implementation uses the DNN
development library Keras** in combination with the LRP library iNNvestigate'*®. The
code for simulating GWAS datasets is also available at
https://github.com/AlexandreRozier/DeepCombi.
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3.2.3 Datasets and corresponding validation strategies

To evaluate the performances of the proposed methods in comparison to their
competitor methods, we analyze a number of different datasets. First, we generate
semi-real GWAS datasets, where the underlying truth of associated SNPs is known and
the methods can be investigated in a controlled environment. Afterwards, we examine
seven real GWAS datasets from a 2007 study”® and evaluate the findings of the methods
in terms of replication in independent studies. The datasets and corresponding
validation strategies are presented in the following paragraphs.

Validation on generated datasets

First, we aim to assess the performance of the two proposed methods in comparison to
other methods in controlled simulation experiments. To create a realistic but controlled
environment where the ground-truth labels of a dataset, i.e. the SNPs that are indeed
linked to the disease, are known, we generate semi-real datasets with real genotypes and
synthetic phenotypes. The basic concept is to take an ensemble of real genotypes and
generate a synthetic phenotype for each subject according to a specific rule. With this
method, the underlying architecture of the genome, including, for example, genetic LD
and correlation structures, is kept intact while control over the phenotypic labels is
gained at the same time. We use the WTCCC data®® described in more detail below and
randomly select 300 subjects of the Crohn’s disease dataset. We draw a random block of
20 consecutive SNPs from chromosome 1 and a random block of 10,000 consecutive
SNPs from chromosome 2 without breaking linkage. The former, smaller block
represents the set of informative SNPs to be associated with the phenotype in this
experiment, while the latter, larger block constitutes the set of uninformative SNPs.
These noise SNPs are placed surrounding the 20 informative loci, which thus are to be
found at the positions 5,001 to 5,020. Synthetic phenotypes are now generated based on
only one of the 20 associated SNPs (at position 5,010), using a logistic regression
model. The corresponding probability function describes the statistical distribution of
phenotypes as

PO 060 (e (- mein s))

where, y is an effect size parameter, x;  1is the allele sequence in nominal feature

encoding (i.e. x; is the number of minor alleles in SNP j of subject /) and Y, is the

generated phenotype of subject i. Basing the label of a subject on the SNP at position
5,010 creates associations to all 20 informative SNPs because there are real covariance
structures and LD within this set of SNPs. A typical tower-shaped p-value formation
with realistic covariances appears in the resulting Manhattan plot. The tower structure is
limited to those 20 informative positions because there are no correlations of those
SNPs with the surrounding 10,000 noise SNPs coming from chromosome 2. The
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random generation process also ensures that the datasets have associations of different
strengths to the 20 informative SNPs, which increases similarity to real GWAS datasets.
Three exemplary datasets are shown and investigated in Figure 13 in Chapter 3.3.1.
The complete process of drawing random genotypes and generating the corresponding
phenotypes is repeated 1,000 times to generate 1,000 datasets. COMBI, DeepCOMBI
and all baseline methods are applied to each dataset with an 80:20 class balanced split
into training and test data. The results on the test data are evaluated with the known
ground truth of only 20 informative SNPs at the positions 5,000 to 5,020 and the
corresponding performance can be measured in terms of the number of true and false
positives for each method.

An additive heritability model is assumed appropriate for this simulation study for a
number of different reasons. Most importantly, it is the standard model in the field of
SNP effect estimation, genomic risk score computation and other related problems®**%,
This is especially true for the seven diseases that are studied in this dissertation. In the
original WTCCC study, an additive test is used as the null model, spotting only a few
cases where departure from this additivity are observed®. Additive, infinitesimal
models have been shown to perform well in the research area of quantitative genetics
and, indeed, most GWAS hits seem to behave additively**?*. It is also the most
agnostic model, with few parameters and no assumptions on values of dominance or
complex interactions between loci******. The investigation of other models for the
genetic architecture of a disease could be the subject of future research projects.

The validation results using the generated semi-real datasets are presented in Chapter
3.3.1. In addition to assessing the effectiveness of the proposed algorithms, the
generated datasets with access to the true set of informative SNPs are also used to
identify optimal parameter settings for both COMBI and DeepCOMBI in a controlled
environment, as described in Chapter 3.2.4.

Validation on WTCCC data

For evaluation on real-world genomic data, the performances of COMBI and
DeepCOMBI are assessed on the WTCCC phase 1 dataset, released in 2007°®, featuring
the genotypic information of 17,000 British subjects. With 3,000 shared controls and
2,000 case samples for seven major human diseases (Crohn’s disease (CD), type 1
diabetes (T1D), type 2 diabetes (T2D), coronary artery disease (CAD), hypertension
(HT), bipolar disorder (BD) and rheumatoid arthritis (RA)), it was a landmark study
both in terms of sample size and dimensionality at the time of its publication.

Here and in contrast to the simulation experiments described above, the true underlying
genetic architectures of the traits under investigation, i.e. the sets of informative SNPs
for each disease, are largely unknown. Hence, for evaluation purposes, the concept of
replicability in independent studies is used as a measure of performance. An
approximation of the true set of informative SNPs is created by employing the GWAS
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catalog’ and examining the results of the 13 years of independent studies after the
WTCCC dataset was published. In summary, we proceed as follows: the application of
some method (for instance, COMBI, DeepCOMBI or RPVT) to the 2007 WTCCC data
results in a list of SNPs that are potentially associated with the trait (this is illustrated on
the left-hand side of Figure 12).

Inference Validation

WTCCC (2007) \ Data from
data GWAS catalog
(2020}
Inference
method

List of
associated SNPs

List of
confirmed
associated SNPs

Predictability

. ~/

Figure 12: Illustration of the validation methodology on WTCCC data. After producing a list of associated SNPs
via an appropriate inference method (i.e. COMBI, DeepCOMBI or RPVT), the GWAS catalog is used in an
independent validation step to confirm or refute those candidate SNPs accessing the predictability of the used
inference method.

This list of potentially associated SNPs is then evaluated considering replicability on
independent data to obtain a “List of confirmed associated SNPs” (illustrated on the
right-hand side of Figure 12). All studies for the WTCCC diseases included in the
GWAS catalog constitute the set of studies examined for replicability. Most of these
studies are performed either with larger sample sizes or using meta-analysis techniques
and were published after the original WTCCC paper. In a sense, we thus examine how
well any particular method, when applied to the WTCCC dataset, is able to make
discoveries in that dataset that are actually confirmed by later research using RPVT in
independent publications. To evaluate the reported finding of a method (COMBI,
DeepCOMBI or competitor), the GWAS catalog is inquired for that SNP and all SNPs
in LD (R*>0.2) within a 200kb window around that SNP. LD calculations are performed
with PLINK?* based on the genomic sequences of the 85 CEU individuals from Phase 1
of the 1000 Genomes Project’’. A hit indicates that a GWAS other than the original
WTCCC study has since reported this SNP (or SNP in LD) to be associated with the
disease. Note that the GWAS catalog only contains SNPs with p-values <10~, meaning
that we miss some hits that are statistically weak, but that might be biologically relevant
in the sense that they contribute to the classification of individuals according to
phenotypes. With this procedure, methods can be compared by counting the respective
number of replicated and unreplicated reported associations. If an association with the
disease with p-value <107 of the SNP itself or the SNPs in LD was reported by at least
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one independent GWAS published after the WTCCC study, the reported SNP is counted
as a true-positive finding. In contrast, all SNPs that were not replicated count as false
negatives.

The seven 2007 WTCCC datasets were downloaded from the EGA website (European
Genome-phenome Archive, ega.crg.eu) after being granted the corresponding access
licenses. Since it is not publicly available, access can be requested from the owners at
https://www.wtccc.org.uk/info/access to data samples.html and
https://www.sanger.ac.uk/legal/ DA A/MasterController. The validation results using the
seven WTCCC datasets are presented in Chapter 3.3.2.

3.2.4 Preprocessing and parameter selection

The application of COMBI and DeepCOMBI requires some preprocessing and the
determination of a number of free parameters. In the following sections, we present the
selected preprocessing steps and optimal parameter values for both methods. We
describe the process of finding these values for the different datasets under
investigation. For future applications, the choice of exact parameter values needs to be
adapted for each particular phenotype or disease under study since they will have
different genetic architectures and distribution of effect sizes***°. For this manuscript
and in order to provide a comprehensive and comparable set of results across many
diseases, we employ a unique set of parameter values supported by the results of our
simulation study and other findings in related literature.

Preprocessing and parameter selection for generated datasets

For the generation process of semi-real datasets, the effect size parameter is set to
vy = 6. One-hot-encoded genotypic feature encoding is utilized, where all features are
normalized such that the 6™ centered moments equal one (this is similar to the common
practice of scaling each feature to unit standard deviation).

The application of the COMBI method requires the selection of a number of free
parameters (e.g. the SVM optimization parameter C, the window size /;,,, of the

moving average filter or the filter norm parameter pj,, ). To this end, the generated

semi-real datasets are used to determine performance changes induced by varying those
free parameters. Most findings are in agreement with related literature and biologically
sensible. For example, it is found that aggregating SNPs within the filtering step based
on a filter window size of 35 is optimal, which is on the same magnitude as in
Alexander and Lange®', who find that grouping of SNPs into bins of size 40 helps the
performance of their algorithm. The moving average filter of the COMBI method is
designed to correct for non-independence of statistical tests within LD blocks. Given the
SNP density in the arrays used by the original WTCCC study and LD patterns in the
CEU population (1000 Genomes?’), we estimate that the average LD block (12 >0.8)
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harbors no more than 20-30 SNPs*?, which supports our findings of setting the filter
window size [, to 35 in the sense that we average-out blocks and conservatively add

a bit of noise by potentially smoothing out signals across blocks. The norm parameter
Pjiier Of the moving average filter is set to 2 and the SNP selection parameter to & = 30.

Choosing an optimal SVM parameter using cross-validation-based model selection in
each repetition of the Westfall-Young permutation procedure in order to maximize the
(estimated) generalization ability of the function f does not result in a higher power of
the COMBI method. Performance results for constant and cross-validated C are almost
identical. Thus, time-consuming cross-validation is avoided and a fixed C =0.00001 is
used for all further applications of the COMBI method. A linear L2 regularized L1-loss
dual classifier’ is used to solve the SVM minimization problem. The simulation
experiments show better performance when the x* test for associations is applied instead
of the Cochran-Armitage test.

When applying the DeepCOMBI method to the generated datasets, we study the effect
of all hyperparameters on the performance of the DNN. An accuracy-based random grid
search with a stratified split in 90% training and 10% testing data is conducted. Here,
we present the selected most successful values and the investigated parameter intervals
in parentheses:

number of neurons per dense hidden layer nn = 64 [2, 4, 8, 16, 64],

L1 regularization coefficient T = 0.0001 [0, le-6, le-5, le-4, 1e-3,1e-2, le-1],

L2 regularization coefficient v = 0.000001 [0, 1e-6, le-5, le-4, 1e-3,1e-2, le-1],

dropout rate ¢p = (.3 [0.3, 0.5],

learning rate m =0.01 with a learning rate reduction on a plateau with factor 0.7125 after 50
epochs of no improvement,

e number of epochs eps = 500 [100, 500, 1000].

A few different parameter values of theoaf - backpropagation rule are manually
investigated on exemplary datasets. By visually inspecting the resulting LRP vectors
and their corresponding DeepCOMBI p-values, the combination of a;zp =1 [0, 1, 2]
and B;zp =0 [0, 1, 2] is found to be most successful.

For post-processing the global relevance scores and selecting the most relevant SNPs,
we assume that the most successful values found for COMBI would also be a good
choice for DeepCOMBI. Hence, we set the window size of the moving average filter to
Liter = 35 , the norm parameter of the moving average filter to py;,,, =2 and the SNP

selection parameter to k£ = 30.
Preprocessing and parameter selection for WTCCC data

Given the original WTCCC dataset®®, a case-control dataset for each disease is created,
removing all SNPs and samples that did not fulfill the quality control criteria of the
original paper using the lists provided at the WTCCC website (www.wtccc.org.uk). This
results in seven datasets, including more than 500,000 SNPs distributed across all 23
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chromosomes. The sex chromosome is left out of our analysis since it would have to be
treated differently than the other chromosomes®™. Based on lists provided by the
WTCCC, we remove an additional set of 579 false-positive SNPs from the analysis (e.g.
SNPs that are significant, isolated hits, with no significance in the surrounding high LD
SNPs, i.e. with no tower around them). Since (at the time of our study in June 2015)
these lists lack the information corresponding to the CAD study, all genome-wide
significant CAD SNPs (<5 « 1077) that do not appear in the original WTCCC paper
are manually removed. The one-hot-encoded genotypic feature encoding method is
utilized and all features are normalized such that the 6™ centered moments are one.

Since the findings on optimal parameter values on the generated datasets are in
agreement with related literature and biologically sensible, the optimal settings there are
assumed to be good choices for the application of COMBI and DeepCOMBI to real
data. For example, we transfer the optimal values of the filter window size I, = 35

and the norm parameter py;,,, =2 to the application on the WTCCC dataset. Similarly,

a linear L2 regularized Ll-loss dual classifier’ is employed and the y* test for
association is applied instead of the Cochran-Armitage test. Since we find no significant
effect of the penalty parameter C on the generated semi-real datasets, we fix it to C =
0.00001 for the investigation of the real data, economizing computation time and
memory space.

Some parameters of the COMBI and DeepCOMBI methods cannot be investigated
within the simulation study but have to be chosen manually for the WTCCC data. The
decision to train the SVM separately on each chromosome is one of those tuning steps,
as genome-wide training is very time- and memory-consuming on the one hand and can
only improve performance marginally on the other hand, as intergenic correlations
between chromosomes are very rare. Hence, in agreement with the lack of
inter-chromosomal LD, the COMBI method, the DeepCOMBI method and all baseline
methods are applied to each chromosome separately. Another parameter that has to be
chosen manually is the number of active SNPs in one chromosome, i.e. the parameter £,
which is set to 100 SNPs per chromosome for the COMBI method after careful
consideration. This choice is admittedly a wide, arbitrary upper bound for the number of
SNPs that can present a detectable association with a given phenotype. As of June 2015,
the maximum total number of SNPs (not independent signals) associated with any
phenotype is ~450 for human height and 922 for Crohn’s Disease (GWAS Catalog), so
with £ = 100 per chromosome, one is well within what evidence would support. After
all, for future applications of COMBI, £ is a tuning parameter, which has to be chosen
by the researcher according to the assumed number of relevant loci.

To choose hyperparameters for the DNN trained on WTCCC data in the first step of
DeepCOMBI, a parameter search is run on a single dataset. The Crohn’s disease
chromosome 3 dataset is selected as a good representative and an accuracy-based
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parameter search with a stratified split in 90% training and 10% testing data is
conducted. We study the effect of the hyperparameters on the performance of the DNN
and the best performing hyperparameters are as follows (tested intervals in parentheses):

number of neurons per dense hidden layer nn = 64 2, 4, 8, 16, 64],

L1 regularization coefficient T = 0.001 [0, le-6, le-5, 1e-4, 1e-3,1e-2, le-1],
L2 regularization coefficient v = 0.0001 [0, 1e-6, le-5, le-4, 1e-3,1e-2, le-1],
dropout rate ¢ = (0.3 [0.3, 0.5],

p-value threshold k= le-2 [1e-4, le-2, 1],

learning rate n = 0.00001 [le-7, le-6, 1e-5, le-4, le-3,1e-2, le-1],

number of epochs eps = 500 [100, 500, 1000].

Detailed results on the classification performance of the final training parameter settings
can be found in Chapter 3.3.2.

As before, we visually investigate a few different parameter values of the off -
backpropagation rule and their influence on both the resulting relevance scores and
p-values. On the Crohn’s disease chromosome 3 dataset, the combination of o;zp =2
[0, 1,2]and B;zp =1 [0, 1, 2] is found to be optimal.

After manually investigating the global LRP scores and the corresponding DeepCOMBI
p-values of the exemplary dataset (Crohn’s disease chromosome 3), we find that slightly
different settings than for the analysis of the generated datasets should be applied for
post-processing the relevance vectors of DeepCOMBI and selecting the most relevant
SNPs. Namely, the window size of the moving average filter is set to /. =21 and the

SNP selection parameter is increased to k& =200. The need for a decreased filter
window size and an increased number of selected SNPs might be caused by the
application of the p-value based preselection step for limiting the number of model
parameters, which is only applied to the real dataset and not the generated datasets.

Regarding significance levels, we aim to stay as close in line with the original WTCCC
study as possible, reporting not only the strong associations at the significance level of
5x 107" but also weak associations at 1 x 10~ . Within our validation pipeline, we
consider the full NHGRI GWAS Catalog' with the inclusion criterion of having

achieved a p-value of 1 x 107 in a GWAS. The “somewhat liberal statistical threshold

-5 o . .
of p<1x10 " was chosen to allow examination of borderline associations and to
accommodate scans of various sizes while maintaining a consistent approach™®.

When comparing the performance of the COMBI and DeepCOMBI methods with that
of RPVT on WTCCC data, the challenge now is to determine the type 1 error level a to
be used in the permutation test procedure that corresponds to the error level applied in
the original study. We apply the basic idea of estimating the empirical distribution of
p-values using the Westfall-Young?'? procedure and select the error level that the RPVT
threshold used in the WTCCC publication corresponds to.
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In the original study, when considering the stringent thresholding, ¢* =15 x 107 is
determined to be a reasonable threshold for type 1 error control in RPVT stating that,
“the posterior odds in favor of a ‘hit’ being a true association would be 10:1** using
this threshold. A sound upper bound on the ENFR level that this threshold implies is
obtained by calculating the empirical distribution of p-values using the
Westfall-Young?'? procedure. It turns out that the threshold of #* =5 x 107, on average,
produces 0.17 non-replicated discoveries per disease, or 1.19 for all seven. Out of the 24

SNPs reported in WTCCC at ¢ =5x 107, only one can be expected to be a
false-positive, which corresponds to a true-to-false-positives ratio of 23:1. WTCCC also

reports SNPs at the level =1 x 107, stating that “if we relax the significance
threshold by a factor of ten [...], the posterior odds that a ‘hit’ is a true association

would also be reduced by a factor of ten.”*® The relaxed threshold of # =1x 10" thus
refers to posterior odds of 1:2. According to our simulations, the controlled number of
non-replicated discoveries to be expected is 3.32 per disease on average. This suggests

that out of the 82 loci reported by the WTCCC at " =1 x 10_5, we can expect that
approximately 23 are false-positives, corresponding to an actual rate of
true-to-false-positives of ~ 3:1.

To compare the performances of the COMBI and DeepCOMBI methods with that of
RPVT in a fair way, we consequently calibrate both of these methods (using the
Westfall and Young-type procedure described in Algorithm 2 presented in Chapter
3.2.2) in a way such that the number of non-replicated discoveries is bounded by 3.32
per disease (using the augmentation for ENFR control of both algorithms). It should be
noted that, when investigating the performance of the COMBI method with semi-real
data simulations, we observe that the COMBI method produces only approximately
20% of the number of type 1 errors it is aiming to control for (see Appendix Chapter
I.). Although it is not known whether this relation is true in the case of real data, one
can still expect substantially fewer errors than what the calibration aims for, i.e. around
0.664 instead of 3.32 per disease if the data distribution was identical to that in the
simulations.

3.2.5 Baseline methods

In order to evaluate the performances of the proposed COMBI and DeepCOMBI
methods in comparison to competitor approaches, we select a set of representative
baseline methods. RPVT is chosen as the most widely used traditional, purely statistical
testing approach. In addition, we investigate two more important competitor methods,
where we interpret the raw SVM weights and LRP scores as test statistics and threshold
them directly. The three baseline methods of RPVT, the thresholding of raw SVM
weights and the thresholding of raw LRP scores represent the separate components of
the COMBI and DeepCOMBI methods and are therefore crucial in order to validate the
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proposed thesis of this dissertation of combinatorial approaches being superior over
their individual components in this setting.

Finally, three other combinatorial ML-based approaches (by Roshan et al.®,
Meinshausen et al.?”’ and Wasserman and Roeder*'’) and two purely statistical analysis

tools (by Lippert et al.’**'%?) are investigated.
All baseline methods are described in detail in the following sections.
RPVT as a baseline method

RPVT is the statistical framework traditionally used in GWAS for identifying
significant associations between SNPs and traits. Please refer to Chapter 2.2.1 and
Chapter 3.2.1 for an introduction. The single-locus null hypothesis to be tested states
that the SNP at locus j is independent of the binary trait of interest, i.e. that there is no
correlation between this particular SNP and the development of the disease under
investigation. A standard statistical test for this hypothesis is the > -test’®*, which tests
for independence of the two multi-level variables genotype (three different levels: 0, 1
or 2 minor alleles) and phenotype (two different levels: case or control) by calculating

the test statistic x = z M where O., and E., are the observed and expected

cg
frequencies of genotype g in combination with the phenotype case-control status c. To

compute a p-value, 22 is then compared to a y* distribution with two degrees of

freedom. It represents the probability of observing a sample statistic as extreme as )22
under the assumption of no association between genotype and phenotype. If the p-value
is smaller than a predefined threshold #*, the null hypothesis is rejected and we declare
the SNP under investigation to be significantly associated with the phenotype. If there
was a single test to perform, #* would usually be equal to the significance level
a = 0.05. When performing multiple testing, however, the threshold is modified to take
the multiplicity of the problem into account. The simplest method is the so-called
Bonferroni correction™, where ¢* is divided by the number of tests performed, i.e. the
number of SNPs d in this case, which guarantees that the FWER, the probability of one
or more erroneously reported associations, is bounded by a. The Bonferroni correction
performs well under the assumption that all null hypotheses are independent of each
other, which is not the case here. Indeed, since SNPs show high degrees of correlation
through LD, the Bonferroni correction can become extremely conservative, leading to a
high rate of false negatives, which is why the scientific community mostly applies a
fixed threshold that remains constant for multiple GWAS. Here, based on the original
publication of the data we are analyzing (WTCCC data, see Chapter 3.2.3%), we
present not only the strong associations at a significance level of ¢* = 5x1077 but also
weak associations at £ =1 x 107
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Raw SVM weights and LRP scores without statistical testing as
baseline methods

Instead of interpreting the SVM weights from COMBI and the LRP scores from
DeepCOMBI as relevance scores to select a subset of SNPs to calculate p-values for,
this step can be skipped to instead use them as direct test statistics. For evaluation, the
vector of raw SVM weights and LRP scores is treated like the vector of p-values of
RPVT to calculate performance curves. We compare COMBI and DeepCOMBI to these
baseline methods of raw relevance scores and RPVT to show that only the combination
of ML / deep learning and multiple testing produce the desired performance increase,
which cannot be achieved individually by one of the components.

Other baseline methods

In addition to comparing the proposed methods with the RPVT approach and the raw
relevance scores, we investigate whether slight alterations and simplifications of the
COMBI method can achieve the same level of effectiveness. On the generated datasets,
we investigate the performance of the COMBI method without the moving average
filter and the performance of RPVT when such a filter is applied to the raw p-values to
show that both the SVM and the filter are crucial.

A number of experiments are performed to show that the novel methods also
outperform other combinatorial ML-based approaches. There are only a few related ML
methods, out of which we select three techniques as representatives to be compared to
the COMBI method on the generated datasets. The first one was proposed by Roshan et
al.” and is a version of the COMBI method where the order of the two steps (SVM
training and statistical testing) is reversed. The second method proposed by Wasserman
and Roeder?'’ separates the two steps of the COMBI method and performs the ML step
on one half of the data and the statistical testing step on the other half. The third
competitor method by Meinshausen ef al?”’ is an extension of this method, which
aggregates the results of multiple random splits.

In a functional study on the WTCCC dataset, we also compare COMBI to two methods
proposed by Lippert et al.’**%?, one linear and one identifying epistatic interactions,
which both employ linear mixed models (LMM) and are widely used purely statistical
analysis tools.
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3.2.6 Performance metrics

To assess the performance of COMBI, DeepCOMBI and the baseline methods, a
number of statistical metrics are evaluated. The performances of both the intermediate
classification step (i.e. either SVM or DNN) and the final step of predicting informative
SNPs need to be explored.

Assuming we know the ground truth, the metrics are defined as follows:

Number of true positives = TP; False positives = FP; True negatives = TN; False negatives = FN
Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

True-positive rate TPR = TP / (TP + FN)

False-positive rate FPR = FP / (TP + FN)

Family-wise error rate FWER = P(FP >=1)

Expected number of false rejections ENFR = E(FP)

Balanced accuracy = (TPR + TNR )/2

The following performance curves and the area under these curves (AUC) are

investigated:

Receiver operating characteristic curve (ROC): Power vs. error rate, e.g. TPR vs. FPR, TP vs.
FP, TPR vs. FWER or TPR vs. ENFR for varying thresholds

Precision-recall curve (PR): Precision vs. power, e.g. Precision vs. TPR or Precision vs. TP for
varying thresholds
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3.3 Results

In the following sections, we present the results of the proposed COMBI and
DeepCOMBI methods evaluated on generated as well as on real-world data.
Performance in terms of both classification accuracy and SNP prediction is examined in
comparison to a number of baseline methods, which are presented in full detail in
Chapter 3.2.5. As evaluation criteria, we report prediction accuracy for the
classification step and FWER, precision and TPR for the SNP selection step. See
Chapter 3.2.6 from above for a detailed description of the evaluated performance
metrics.

3.3.1 Results on generated datasets

Here, we report the results averaged over 1,000 datasets generated in the simulation
process described in Chapter 3.2.3 (“Validation on generated datasets™). We show that
on these datasets, COMBI and DeepCOMBI perform better than the traditionally used
method for analyzing GWAS, RPVT, and other competitor methods. In addition, it is
demonstrated that the deep learning-based approach DeepCOMBI outperforms the
SVM-based method COMBI.

Prediction performance on generated datasets

The first steps of both COMBI and DeepCOMBI consist of training a learning
algorithm for the classification of subjects into their respective phenotypic group given
their genotypic information. Since all following steps depend on the performance of
these classifiers, high prediction accuracy is crucial. On the generated datasets, the
SVM (as part of the COMBI method) achieves 59% accuracy on average and 54%
balanced accuracy. In comparison, the DNN (as part of the DeepCOMBI method)
performs significantly better with an average of 74% classification accuracy. It also
achieves higher balanced accuracy (74%) by counteracting against the negative effects
of unbalanced datasets through the application of class weights in the DNN training
process. All accuracy scores and summary statistics are presented in Table 2.

Table 2. Classification performances of COMBI and DeepCOMBI on generated datasets from Mieth ez al.
(2020)". Summary statistics of the classification accuracy of the SVM (as in the first step of COMBI) and the DNN
(as in the first step of DeepCOMBI) are presented. Values corresponding to accuracy and balanced accuracy in
parentheses are given.

Mean accuracy | Standard deviation Minimum of Maximum of
(balanced of accuracy accuracy (balanced | accuracy (balanced
accuracy) (balanced accuracy) accuracy) accuracy)
SVM (as in 0.59 (0.54) 0.05 (0.06) 0.41 (0.35) 0.76 (0.71)
COMBI)
DNN (as in 0.74 (0.74) 0.07 (0.07) 0.55 (0.50) 0.97 (0.98)
DeepCOMBI)
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Following these promising intermediate results, we investigate whether the entire
workflow of the DeepCOMBI method can outperform COMBI and the other baseline
methods in terms of SNP prediction in the next sections.

SNP selection performance on generated datasets

To provide some intuitive understanding of the advantages of the novel methods and to
compare the relevance scores and p-values obtained with the LRP-based method
DeepCOMBI to those derived from the SVM weights in the COMBI method, we look at
three exemplary synthetic datasets and the corresponding results (See Figure 13). They
can be distinguished by the level of association of the 20 informative SNPs (highlighted
in pink) with the phenotype. In the first column of subfigures, the strength of
association for each replication at positions 5001 - 5020 is shown in the corresponding
RPVT Manhattan plots. While the first row of subfigures represents a replication with
very weak associations (small pink tower), the second has a moderate association
(medium-sized tower) and the third shows a very strong association (large tower). In the
second and third columns, the raw SVM weights and LRP scores are shown. For strong
associations (bottom row), both COMBI and DeepCOMBI not only precisely identify
the correct tower but also flatten out any noise SNPs, even when - by chance - they
achieve considerably high significance. The methods thus not only increase the
probability of finding the correct tower but also, and potentially more importantly,
decrease the probability of falsely selecting a noise tower.

Furthermore, It can be seen that LRP yields clearer relevance distributions in
comparison to the SVM-based method. Even with the huge number of trained
parameters, the explanation scores of DeepCOMBI vyield a lot less noise than the SVM
weights of COMBI. This results in the COMBI method only being able to classify the
very strong association correctly (third row of subfigures in Figure 13) while it misses
the weak and moderate ones. In contrast, DeepCOMBI is successful for both the second
and third replication with moderate and strong associations and only misses the very
weak association (last row of subfigures in Figure 13). Please note that moderate
associations (second row of subfigures in Figure 13), again, DeepCOMBI not only
identifies the correct informative tower but also filters out a relatively high noise tower

at position ~ 600, which - just by chance - achieved a p-value < 10~ and is therefore
incorrectly classified as an informative locus by RPVT.
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To investigate whether these exemplary findings represent a general trend, we now
examine the results of all competitor methods averaged over all 1,000 generated

datasets. In Figure 14, the corresponding ROC and PR curves are shown. By increasing
the significance threshold of each method from very conservative (i.e.

=0, no
significant SNPs) to very liberal (i.e. ¢* =, all SNPs significant), we investigate here

how the different methods perform for different levels of error. In both subfigures,

COMBI (dark blue line) outperforms RPVT (light blue line) in terms of power (as
measured by the 7PR) and precision.
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Figure 14: Performance curves of COMBI, DeepCOMBI and competitor methods on generated datasets from
Mieth et al. (2020)". A ROC curves and B PR curves of RPVT, the COMBI method, direct thresholding of SVM
weights, the DeepCOMBI method and direct thresholding of LRP scores averaged over the 1,000 generated datasets

are shown.

The COMBI method improves performance by correctly filtering out the noise SNPs
and identifying the informative SNPs accurately in the selection step of the COMBI
method. The identification of SNPs that have an effect on the phenotype in the semi-real
datasets can be improved even further by applying the DeepCOMBI method (pink line),
which consistently achieves better results than the COMBI approach. The LRP based

relevance scores predict more accurately than the SVM weights where the informative
SNPs can be found.

The combinatorial approaches, COMBI and DeepCOMBI, also perform better than their
individual components of an ML algorithm (i.e. SVM or DNN with LRP) and a
multiple testing step (i.e. RPVT). This can be deduced from the fact that RPVT, as well
as the other two baseline methods of directly thresholding the raw LRP scores (dashed
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pink line) and SVM weights (dashed dark blue line), cannot achieve the same
performance as their combinations (i.e. DeepCOMBI and COMBI).

During the development phase of the COMBI method and for the original publication of
2016', a number of additional experiments were conducted. The remainder of Chapter
3.3.1 and Appendix I present the corresponding results. Please note that during this
initial phase of the dissertation, a slightly different experimental setup for the generated
datasets was employed and DeepCOMBI was not introduced yet. For example, 10,000
datasets are generated here instead of 1,000 in the DeepCOMBI publication'’.

To understand the results in more detail, we now investigate in which cases from the
original publication (2016') the COMBI method can or cannot increase the
performance of the SNP prediction. Figure 15 shows for all 10,000 synthetic datasets
the level of difficulty of the problem (represented by the 7PR of RPVT) and how well it
can be solved using the COMBI method (represented by the gain in 7PR of the COMBI
method over RPVT). In the majority of cases, the COMBI method helps performance,
i.e. increases the TPR. However, it decreases performance in some cases (about 3% of
the 10,000 datasets). As expected, those cases represent difficult problems with high
noise where the baseline 7PR of RPVT is very low.

061+

0.2¢+

R R R
.

tre st
S
e e e
e
R
+ee s

B R
.
.

B Y
B ¢ e

P T
sres e e a ety
B
tres e e

R
D

et s rss s restaeae e

o

TPR gain of COMBI Method

06l + All Replications i
Replication with maximum TRP gain

.} Replication with medium TRP gain and medium noise

8 Replication with minimum TRP gain and high noise

Replication with minimum TRP gain and low noise

1 1 i
1] 0.2 04 0.6 0.8 1

TPR of RPVT

Figure 15: TPR gain of the COMBI method against 7PR of RPVT on generated datasets from Mieth et al.
(2016)". Each dot represents one dataset and indicates how much is gained in terms of TPR by applying the COMBI
method instead of RPVT to this specific dataset. TPR of RPVT can be interpreted as a measure of the difficulty of the

problem. Four replications are highlighted. Three of them represent special cases with extraordinary characteristics
(i.e. maximum 7PR gain, minimum 7PR gain with low and high noise) and the fourth represents an average run with
medium 7PR gain and medium noise. See Figure 16 for the individual results of those replications.

In order to investigate the different situations to be encountered in a real-world setting,
we now analyze a number of special replications. Detailed plots of exemplary runs that
either represent an average run (i.e. medium 7PR gain and medium noise) or have
extraordinary characteristics (i.e. maximum 7PR gain, minimum 7PR gain with low and
high noise) are shown in Figure 16.
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Figure 16: Manhattan plots of four exemplary generated datasets of varying levels of TPR gain and corresponding COMBI results from Mieth ef al. (2016)'°. The negative
logarithmic p-values are plotted against position for four exemplary datasets: one with with maximum 7FPR gain (yellow, first row of subfigures), one with medium 7PR gain and medium
noise (light green, second row), one with minimum 7PR gain and high noise (red, third row) and one with minimum TPR gain and low noise (dark green, fourth row). The Manhattan plots

of the corresponding RPVT p-values (first column) as well as the p-values of the COMBI method (second column) and the SVM weights (third column) are presented. Thresholds
indicating statistical significance are represented by horizontal lines.
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The first row in Figure 16 represents the replication with maximum 7PR gain, where
the COMBI method performs extremely well. Although there is a lot of noise and the
tower of SNPs associated with the phenotype located at positions 5,001-5,020 is not
very high in this example, the COMBI method finds it accurately. An average
replication with medium noise and medium 7PR gain, i.e. where both methods find the
tower and the COMBI method can only moderately help performance, is presented in
the second row. The third example illustrates that RPVT is sufficient for very easy
problems (i.e. low noise and high tower yielding minimum 7PR gain) and that using the
COMBI method does not decrease performance. The most crucial case is presented in
the last row. In this worst-case scenario of minimum 7PR gain and high noise, there is
an extremely small tower that is very hard to identify. In addition, there is another
high-noise tower with very high SVM weights. In contrast to the RPVT approach,
which identifies the correct tower, the COMBI method selects the wrong tower. This
example shows that the COMBI method selects the wrong towers in very few cases.

We now investigate whether these pathological cases can be identified a priori. As
observed in Figure 16, they are characterized by high noise levels, indicating that very
hard problems must be solved. Identifying the datasets where an SVM trained for the
classification of subjects does not have high accuracy is an intuitive idea. The COMBI
method would be expected to fail in those cases, which is indeed what can be seen when
investigating the SVM accuracies for each replication in Figure 17. As expected, the
problematic cases - where power is lost with the COMBI method - are characterized by
low SVM classification accuracies. These cases can thus roughly be estimated in
advance and a measure of trust in the results of the COMBI method could be reported
along with the results of the COMBI method for each dataset.
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Figure 17: AUC gain of the COMBI method against SVM accuracy on generated datasets from Mieth ez al.
(2016)". Each dot represents one dataset and indicates how much is gained in terms of AUC of the ROC curve by
applying the COMBI method for varying degrees of SVM accuracy. Negative AUC gain marks the cases where
power is lost in comparison to RPVT.
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Precision

Comparison to other baseline methods on generated datasets

In addition to comparing the proposed methods with the RPVT approach, we investigate
here whether slight alterations and simplifications of the COMBI method can achieve
the same level of effectiveness and also examine other appropriate state-of-the-art
algorithms. Since DeepCOMBI was previously shown to outperform COMBI on the
generated datasets, it is sufficient here to only look at the performance of the latter in
order to show that both proposed methods outperform the competitor methods.

Beginning with the investigation of simplifications of the COMBI method, we show
now that applying a moving average filter to the SVM weights prior to the selection step
is crucial to significantly improve performance. Observe in Figure 18 that the COMBI
method cannot increase the power or precision of RPVT at all without this filtering step.
As a consequence, one might suspect that the filtering step alone and not the SVM
screening step is responsible for improving performance in comparison to RPVT. To
refute this thesis, we apply the moving average filter to the p-values in log-space and
then employ RPVT in the original p-value space. Figure 18 illustrates that this
decreases the performance of the RPVT method and thus cannot reach the effectiveness
of the COMBI method. In conclusion, the filter is not the only effective tool in COMBI
and both screening approaches (i.e. SVM and filter screening) are crucial in order to
achieve high performance rates.

03

o o o o
S o = ~
T y

(Family-wise) True-positive rate

o
w
T

RPVT

RPVT with filtered p-values

COMBI method without filter
= COMBI method

L
0 0.2 0.4 06 0.8
True-positive rate

01

RPYT

== COMBI method

RPVT with filtered p-values
COMBI method without filter

02

1
03

1 L
04 05 06 07 03
Family-wise error rate

09

Figure 18: Performance curves of COMBI, RPVT and modifications thereof on generated datasets from Mieth
et al. (2016)". A PR curves and B ROC curves of RPVT, RPVT with a filter directly applied to the p-values on
log-scale, the COMBI method without the filter and the complete COMBI method, including the filter, averaged over
the 10,000 generated datasets are shown.
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Besides checking whether easy simplifications of the COMBI method achieve the same
effect, the performances of other competitor methods are investigated. There are a
number of related ML methods, out of which we select three as representatives to be
compared to the COMBI method in this simulation setup. See Figure 19 for the
corresponding results.
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Figure 19: Performance curves of COMBI, RPVT and additional competitor methods on generated datasets
from Mieth et al. (2016)'°. A PR curves and B ROC curves of RPVT, the COMBI method, the reversed-order
COMBI method proposed by Roshan et al.””, the single-split COMBI method proposed by Wasserman and Roeder*"’
and the multi-split COMBI method proposed by Meinshausen et al.”’’ over the 1,000 generated datasets are shown.
Please note that in B, the yellow curve is hardly visible because it is almost identical to the green one.

The most closely related method proposed by Wasserman and Roeder?'? separates the
two steps of the COMBI method, i.e. ML and statistical testing, from each other in
terms of the data they use in each step. First, they randomly select half of the datapoints
(i.e. half of the individuals) and train an SVM to identify the £ SNPs with the highest
corresponding weights. In the second step, p-values are computed on the other half of
the dataset, considering only the SNPs identified in the previous step. Even though the
significance threshold o can now simply be corrected with # (which is much less

conservative than the Bonferroni correction ¥ on the complete dataset considering

k << d), this method comes with a great loss of power, where the corresponding curves
are constantly below the curve of the COMBI method.

Meinshausen et al.’’’ present an extension of the method proposed by Wasserman and

Roeder?"’. Instead of splitting the data once into two sets and using one for SVM
training and the other for statistical testing, they suggest aggregating the results of
multiple random splits, arguing that this would decrease error rates and increase power.
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They propose using quantiles as summary statistics for the p-values of the multiple
splits. In our simulation, this method does not reach the performance levels of the
COMBI method and also fails to reach that of the RPVT approach.

To summarize, the results here indicate that it is more effective to use the full dataset for
both the selection of candidate SNPs and multiple testing (as in the COMBI method),
rather than using a subset for selection and another subset for testing (as in the single-

210

and multi-split methods by Wasserman and Roeder?'’ and Meinshausen et al.?").

Another method for identifying associated regions was proposed by Roshan et al.%. It
consists of a statistical testing step, where the top y>-ranked SNPs are selected and put
into the next step to train an SVM. The SVM weights are then used directly as a test
statistic. This basically boils down to a version of the COMBI method, where the order
of the two steps (SVM training and statistical testing) is reversed. Applying this method
to our 10,000 simulated datasets yields no gain in performance, suggesting that it is
important to select SNPs for multiple testing according to their relevance in SVM
prediction (as in the COMBI method) rather than selecting SNPs according to their
p-value for SVM training (as Roshan et al. propose).
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3.3.2 Results on WTCCC data

Here, we report the results of the proposed methods on the seven WTCCC datasets
described in Chapter 3.2.3 (“Validation on WTCCC data”). On these datasets, we
compare the performance of COMBI and DeepCOMBI to that of the traditionally used
method, RPVT, and other competitor methods. We also show that the deep
learning-based approach DeepCOMBI outperforms the SVM-based method COMBI.

Prediction performance on WTCCC data

In order to perform well in the SNP selection step, both COMBI and DeepCOMBI
depend on high accuracies in the prediction steps. In Figure 20, we present the
classification performances on all diseases and chromosomes of the WTCCC dataset of
the SVM as used in the first step of the COMBI method and of the DNN as used in the
first step of the DeepCOMBI method. The DNN of DeepCOMBI performs consistently
better than the SVM of COMBI in terms of all four validation metrics described in

Chapter 3.2.6.

60

50 1

40

30 -

20 1

107 mmm SvM (COMBI)

DNN (DeepCOMBI)

o

Accuracy Balanced accuracy  AUC ROC  AUC preC|5|on recall
Validation measure

Value in %

Figure 20: Classification performance on WTCCC data from Mieth ef al. (2020)"°. Mean validation measures of
the SVM (as in the first step of COMBI) and the DNN (as in the first step of DeepCOMBI) averaged over all diseases
and chromosomes are given with standard deviation. All seven datasets are split into 80% training and 20% validation

data.

SNP selection performance on WTCCC data

In the following section, we first present the SNP selection results of the COMBI
method applied to the WTCCC dataset as published in Mieth et al. 2016'. Afterwards,
we present the SNP selection results of the DeepCOMBI method as published in Mieth
et al. 2020". Please note that for the latter publication, COMBI is re-applied to the same
dataset and due to the nondeterministic nature of the permutation procedure, slightly
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different results are obtained. Hence, DeepCOMBI is compared to the re-calculations of
COMBI, not necessarily to those of the original COMBI publication. In addition, the
GWAS catalog - which is the basis for all validation procedures - included a very
different (to be specific a much smaller) set of associations in 2015 than in 2020, which
- without loss of generality - causes some of the DeepCOMBI performance curves to
look slightly different than the ones presented first in the COMBI figures. Please refer
to Appendix Chapter II. for an investigation of internal stability of the COMBI
method, where we find that the COMBI method produces more stable results than
RPVT.

Please also note that the RPVT results correspond to the y* p-values we have calculated
here, not necessarily to the original WTCCC publication, where they also investigate
Cochran-Armitage trend test p-values and presumably apply slightly different
preprocessing steps.

The COMBI method on WTCCC data

Figure 21 displays Manhattan plots for all seven diseases resulting from the standard
RPVT approach (left) and the COMBI method (center), as well as the corresponding
SVM weights (right). In each Manhattan plot, the negative logarithmic p-values of all
SNPs at a given position in a chromosome are shown. Chromosomes are shown in
alternating colors for clarity. SNPs that show genome-wide statistical significance are
highlighted in green in the left and right panel and all statistically significant SNP
associations are highlighted in green. For standard RPVT, the threshold indicated by the
horizontal dashed line is fixed a priori genome-wide to t* =1 x 10~ (i.e. 5 in the plot).
For the COMBI method, it is determined chromosome-wise via the permutation-based
threshold over the whole COMBI procedure described in Chapter 3.2.2. to match the
ENFR of RPVT as described in Chapter 3.2.4.

The center and right graphs illustrate that the COMBI method discards SNPs with low
SVM scores. Hence, the p-values for such SNPs are set to one without performing a
statistical test, thereby drastically reducing the number of candidate associations. In
contrast, the RPVT method results in p-values based on a formal significance test for
every SNP, where many of these p-values are small by chance and produce a lot of
statistical noise.
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In Table 3, we present all significant associations reported by the COMBI method.
Besides showing basic information (associated disease, chromosome, identifier and
p-value) for all of these SNPs, the fifth column indicates whether they are found to be
significant by RPVT with the application of ¢ =1 x 107 . Associations with a raw
p-value >107 are not reported using only RPVT. If they are selected by the COMBI
method, we consider them to be new findings. To validate all reported associations, the
sixth and seventh columns of Table 3 report whether - and if so in which external study
- they have been found significantly associated with the given disease according to the
GWAS catalog. By investigating whether the identified SNPs have been discovered as
significant in an independent GWAS published after the original WTCCC study, it can
be determined whether those novel findings can be confirmed to be true associations.
The COMBI method finds 46 significant locations. 34 of these 46 significant locations
have a p-value below 10 and are thus also found by the RPVT approach. Crucially, the
COMBI method finds 12 additional SNPs. Out of these, ten (>83%) have already been
replicated in later GWAS or meta-analyses. The COMBI discoveries that have been
replicated independently using individual SNP testing are for bipolar disorder
1s2989476 (Chr. 1), rs1344484 (Chr. 16), rs4627791 (Chr. 3) and rs1375144 (Chr. 2);
for coronary artery disease rs6907487 (Chr. 6) and rs383830 (Chr. 5); for Crohn’s
disease rs12037606 (Chr. 1), rs10228407 (Chr. 7) and rs4263839 (Chr. 9) and for type 2
diabetes rs6718526 (Chr. 2). Given the current debate on the replicability of GWAS
findings obtained by single-SNP analyses*®, it is remarkable that GWAS published later
have already replicated more than 83% of novel SNPs the COMBI method detects by
reanalyzing data published in 2007.

Table 3 : Significant SNPs of the COMBI method on seven WTCCC datasets and related association details

from Mieth et al. (2016)'’. For each SNP identifier on a specific chromosome that is found to be significantly
associated with a disease by the COMBI method in Mieth et al. (2016)'°, the corresponding y” test p-value is shown

and it is indicated whether the RPVT p-value is <1 x 107 (i.e. the SNP is a significant finding of RPVT as well) and

whether the SNP has been found significant with a p-value <1 x 10~ in an external study with a corresponding
PubMed identification number (PMID). Please note that the RPVT result in the fifth column corresponds to the i
p-values calculated here, not necessarily to the original WTCCC publication, where they investigate
Cochran-Armitage trend test p-values and presumably apply slightly different preprocessing steps.

Disease Chromosome Identifier ¥ p-value Significant p-value < 107 in at References
in RPVT least one ext. GWAS (PMID)
Bipolar 1 1s2989476 1.05e-05 YES 19416921
disorder 2 rs1375144 1.26e-05 YES 21254220
(BD) 2 157570682 1.77¢-06 YES YES 21254220
3 rs4627791 1.18e-05 YES 21254220
14 1511622475 8.02e-06 YES YES 21254220
16 rs1344484 1.10e-05 YES 21254220
9 rs7860360 1.82¢-06 YES
20 rs3761218 7.15e-06 YES YES 21254220
Coronary 5 rs383830 1.35¢e-05 YES 21804106
artery disease 6 rs6907487 1.22e-05 YES 17634449
(CAD) 9 151333049 1.12e-13 YES YES 21606135
22 rs688034 2.75e-06 YES
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Disease Chromosome Identifier XZ p-value Significant p-value < 107%in at References
in RPVT least one ext. GWAS (PMID)
Crohn’s 1 rs11805303 6.35¢e-12 YES
disease 1 1s12037606 1.02e-05 YES 17554261
(CD) 2 1510210302 | 4.52¢-14 YES YES 23128233
3 rs11718165 2.04e-08 YES YES 21102463
5 rs6596075 3.11e-06 YES
5 1517234657 2.42e-12 YES YES 18587394
7 1s10228407 1.08e-05
9 rs4263839 1.61e-05 YES 21102463
10 rs10883371 5.23e-08 YES YES 21102463
16 1s2076756 7.55e-15 YES YES 21102463
18 rs2542151 1.93e-07 YES YES 18587394
Hypertension 1 rs2820037 7.41e-07 YES
(HT) 12 rs11110912 1.58e-05
15 rs2398162 6.01e-06 YES
Rheumatoid 1 rs6679677 <1.0e-15 YES YES 20453842
arthritis 4 rs3816587 7.28e-06 YES
(RA) 6 159272346 7.38e-14 YES
Type 1 1 1s6679677 <1.0e-15 YES YES 19430480
diabetes 2 1s231726 1.43e-06 YES
(T1D) 4 rs17388568 | 3.07¢-06 YES YES 21829393
5 1517166496 5.97e-06 YES
6 1s9272346 <1.0e-15 YES YES 18978792
7 rs6950410 1.03e-05
12 1s17696736 1.55e-14 YES YES 18978792
12 rs11171739 8.36e-11 YES YES 19430480
16 1s12924729 7.86e-08 YES YES 17554260
Type 2 2 rs6718526 1.00e-05 YES 20418489
diabetes (T2D) 4 rs1481279 9.44e-06 YES
4 rs7659604 9.61e-06 YES
6 rs9465871 3.38e-07 YES
10 rs4506565 5.01e-12 YES YES 23300278
12 rs1495377 7.21e-06 YES
16 rs7193144 4.15e-08 YES YES 22693455
18 rs1025450 1.98e-06 YES

Two out of the 12 SNPs with p-values exceeding 1 X 10~ have not yet been reported in
any GWAS or meta-analyses as being associated with the corresponding diseases. Those
are 1s11110912 (Chr. 12) for hypertension and rs6950410 (Chr. 7) for type 1 diabetes.
SNP rs11110912 is included in the original WTCCC analysis, but a p-value higher than
1x 107 is obtained ( 1.94 x 10~ )*, so it was not collected in the GWAS Catalog. SNP
1$6950410 has been detected as associated with multiple complex diseases™*. Regarding
the biological plausibility of these two non-replicated SNPs, we examine a number of
functional indicators to assess their potential role in disease (See Table 4). In particular,
we explore the genomic regions in which they map, their potential roles as regulatory
SNPs, their status as expression quantitative trait loci (eQTL) and their role in
Mendelian disease.
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Table 4: Functional analysis of unreplicated SNPs from WTCCC datasets detected by the COMBI method
from Mieth et al. (2016)". The two SNPs - detected by the COMBI method - which, according to Table 3, were not

replicated in a subsequent independent GWAS are functionally analyzed.

SNP detected by COMBI
rs11110912 rs6950410
Disease HT (Hypertension) T1D (Type 1
diabetes)

Chr / Position (hg19)

12:102042213

7:4038917

Functional consequence Intronic MYBPCI1 Intronic SDK1
(myosin binding (sidekick cell
protein C) adhesion molecule 1)

OMIM (Role in disease evidence of the gene the

Yes (involved in

associated SNP lies in (available at http://omim.org/)) familial hypertrophic
cardiomyopathy)
GWAS Catalog (Presence in the “reported gene” field No No

in the GWAS Catalog
(http://www.genome.gov/gwastudies/))

Genes (in 200 Kb window) MYBPCI, CHPTI, SDK1
SYCP3
eQTL activity (p-value) (Evidence about the CHPT1 (P<10-8) -
activity as eQTL in blood (gathered from the ”Blood eQTL
browser”; http://genenetwork.nl/bloodeqtlbrowser/))
RegulomeDB (RegulomeDB. Summary of DNA 1d (“strong”) -
regulatory evidence (in http://regulomedb.org/))
Haploreg (Noncoding regulatory evidence of the Transcription factor DNAse activity (in
haplotype block activity (BATEPUI) Osteoblasts)

(www.broadinstitute.org/mammals/haploreg/haploreg.php))

Overall, there is no strong evidence of functional roles for the two non-replicated SNPs,
but SNP rs11110912 (Chr. 12), for which COMBI suggests a link to hypertension, is an
intronic SNP mapping on a gene, MYBPCI, that has been previously linked to familial
hypertrophic cardiomyopathy, suggesting that COMBI has given rise to another
interesting true-positive finding.

Instead of investigating the significant findings of the two methods achieved by
matching a specific error level, we now examine the performance of those methods for
different levels of error. Figure 22 shows the ROC and PR curves that have been
generated based on the replication of SNPs according to the GWAS catalog (here, due to
the absence of basic truth knowledge, replicated reported associations are again counted
as true positives and non-replicated associations as false-positives). The COMBI
method outperforms the RPVT approach for different type 1 error levels. As the dark
blue lines are consistently above the light blue lines, the COMBI method achieves both
higher numbers of frue positives (i.e. higher TPR) as well as a higher precision (i.e.
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Number of true-positives

proportion of replicated associations amongst the SNPs classified as associated with the
trait) for given numbers of false and true positives than RPVT for almost all levels of
error. For comparison, we also show the result achieved when selecting SNPs based on
the highest SVM weights in absolute value (after filtering). The results show that
discarding either one of the two steps in the COMBI method (ML or statistical testing
step) leads to a decrease in performance. Please note that the COMBI lines end at some
point and the RPVT and the raw SVM lines continue. At the endpoint of the COMBI
curve, all SNPs selected in the SVM step are also significant in the statistical testing
step; i.e. if one wanted to add just one more SNP to the list of reported associations, all
other SNPs would also become significant, as they have a p-value of 1.
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Figure 22: Manhattan plots of seven WTCCC datasets and corresponding COMBI results from Mieth ez al.
(2016)"°. The negative logarithmic p-values are plotted against position on each chromosome for all seven diseases.
The Manhattan plots of the corresponding RPVT p-values (first column), as well as the p-values of the COMBI
method (second column) and the SVM weights (third column) are presented. Thresholds indicating statistical
significance are represented by dashed horizontal lines and significant p-values are highlighted in green. Please note
that the y-axes of all plots have the same limits (0 to 15 for p-values and 0 to 4 for SVM weights) to enable direct
comparison.

We now investigate the points on the curves that correspond to the application of
*=1x10" in the case of RPVT and to the values of ¢ resulting from the
permutation-based method in the case of the COMBI method in more detail. See Table
5 for the numbers corresponding to those points, which summarize the findings of Table
3 and a potential equivalent list of the significant findings of RPVT. A total of 78 SNPs

are found to be significant with RPVT, which only performs the statistical testing step
and only 46 with the COMBI method since it has the additional layer of the ML
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screening step prior to statistical testing. Although the COMBI method finds fewer
SNPs than RPVT, the number of replicated SNPs is greater (28 in contrast to 24 of
RPVT). The COMBI method also classifies only 18 unreplicated SNPs as associated
with the trait (yielding a precision of 61%). This is in contrast to RPVT, which classifies
52 unreplicated SNPs as associated with the trait (yielding a precision of only 32%). In
other words, if both methods are calibrated with respect to the same type I error
criterion, the COMBI method reports significantly more replicated associations
(Fisher’s exact test p-value of 0.0014).

Table 5: Quantitative summary of the significant findings of RPVT and COMBI from Mieth et al. (2016)"°. For
each method, the number of replicated and unreplicated hits (i.e. the number of true and false positives) as well as
precision and error rates are presented. A pairwise test for the null hypothesis of identical distributions for COMBI
and RPVT is performed and the corresponding p-value is given. The table represents the information given by the
points on the RPVT and COMBI lines in Figure 22.

Number of SNPs reaching significance applying
RPVT COMBI Method
SNPs that have achieved < 10 in at least 24 28
one external study (32% precision) (61% precision)
SNPs that have not achieved < 10% in an 52 18
external study (68% error) (39% error)
Overall 76 46
p-value (one-sided Fisher’s exact test) 0.0014

The DeepCOMBI method on WTCCC data

We now present the results of the DeepCOMBI method as published in Mieth et al.
2020". For this publication, COMBI is re-applied to the same dataset as a competitor
method and due to the nondeterministic nature of the permutation procedure, slightly
different results are obtained. DeepCOMBI is, therefore, now compared to the
re-calculations of COMBI, not necessarily to those of the original COMBI publication.
In addition, the GWAS catalog - which is the basis for all validation procedures -
included a very different (to be specific a much smaller) set of associations in 2015 than
in 2020, which - without loss of generality and amongst other things - causes some of
the performance curves to look slightly different than in previously presented figures.
Please refer to Appendix Chapter II for an investigation of the internal stability of the
COMBI method.

In Figure 23, we present the results of the traditional RPVT approach, the
(re-calculated) COMBI method and the DeepCOMBI method applied to the seven
diseases of the WTCCC 2007 dataset. While RPVT assigns p-values smaller than one
(i.e. nonzero in the plots on a logarithmic scale) to all SNPs and, in consequence,
produces a lot of statistical noise, both COMBI and DeepCOMBI discard most SNPs by
assigning p-values of one (i.e. zero in the plot on a logarithmic scale) and hence reduce
the level of noise significantly. The COMBI method selects 100 SNPs with high SVM
weights per chromosome and DeepCOMBI chooses 200 SNPs with high LRP scores.
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All SNPs reaching statistical significance in the permutation-based thresholding
procedure of the DeepCOMBI method are presented in Table 6. As in Table 3 for the
findings of COMBI, we present basic information (associated disease, chromosome,
identifier and y* p-value) for all of the findings of DeepCOMBI. The fifth and sixth
columns indicate whether they are found to be significant by RPVT with the application

of #=1x10" or by the COMBI method. Again, to validate all findings, the seventh
and eighth columns report whether - and if so, in which external study - they have been
found significantly associated with the given disease according to the GWAS catalog.

The DeepCOMBI method finds 39 significant associations. According to the fifth
column of Table 6, 31 of these SNPs are also discovered by the traditional RPVT

approach because they have p-values <1 x 10 . The other 8 of those 39 SNPs have

p-values > 1 x 10~ and are hence not determined to be associated with the disease with
RPVT in the original WTCCC publication. They are of special interest because they
represent additional SNP disease associations, which the traditional analysis of the data
is not able to identify. Out of these eight novel discoveries, six have been validated
independently in later GWAS or meta-analyses: rs7570682 on chromosome 2 and
rs1375144 on chromosome 2 for bipolar disorder; rs6907487 on chromosome 6 for
coronary artery disease; rs12037606 on chromosome 1 for Crohn’s disease; rs231726 on
chromosome 2 for type 1 diabetes and rs6718526 on chromosome 2 for type 2 diabetes.

Table 6: Significant SNPs of the DeepCOMBI method on seven WTCCC datasets and related association
details from Mieth et al. (2020)". For each SNP identifier on a specific chromosome that is found to be significantly
associated with a disease by the DeepCOMBI method in Mieth et al.(2020)", the corresponding ) test p-value is
shown and it is indicated whether the RPVT p-value is <1 x 10° (i.e. the SNP is a significant finding of RPVT as
well), whether its COMBI p-value is smaller than the corresponding COMBI threshold (i.e. the SNP is a significant
finding of the COMBI method as well) and whether the SNP has been found significant with a p-value <1 x 10~ in
an external study with a corresponding PubMed identification number (PMID). Please note that the RPVT result in
the fifth column corresponds to the * p-values calculated here, not necessarily to the original WTCCC publication,
where they investigate Cochran-Armitage trend test p-values and presumably apply slightly different preprocessing
steps. Similarly, the COMBI result in the sixth column corresponds to the re-calculations of COMBI we perform in
the course of validating DeepCOMBI, not necessarily to those of the original COMBI publication, where slightly
different results were produced due to the random nature of the permutation procedure.

Disease Chromosome Identifier y*p-value |Significant in| Significant | p-value < 10°in | References
RPVT in COMBI at least one (PMID)
external GWAS
or meta-analysis
Bipolar 2 rs7570682 1.77e-05 YES YES 21254220
disorder 2 151375144 1.26e-05 YES YES 21254220
(BD) 3 15514636 2.53¢-06 YES YES YES 21254220
16 rs420259 5.87e-08 YES YES YES 21254220
Coronary 6 1$6907487 2.92e-05 YES 17634449
artery disease 9 rs1333049 1.12e-13 YES YES YES 17634449
(CAD) 16 158055236 5.32¢-06 YES YES
22 rs688034 2.75e-06 YES YES
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Disease Chromosome Identifier y*p-value |Significant in| Significant | p-value < 10in | References
RPVT in COMBI at least one (PMID)
external GWAS
or meta-analysis
Crohn’s 1 1511805303 6.35e-12 YES YES YES 17435756
disease 1 1512037606 1.02e-05 YES 17554261
(CD) 2 1510210302 452¢-14 YES YES YES 23128233
3 1511718165 2.04e-08 YES YES YES 21102463
5 1$6596075 3.11e-06 YES YES
5 1517234657 2.42¢-12 YES YES YES 18587394
5 rs11747270 1.05¢-06 YES YES YES 18587394
7 rs7807268 5.43¢-06 YES YES 26192919
10 rs10883371 5.23¢-08 YES YES YES 21102463
10 rs10761659 1.69¢-06 YES YES YES 22936669
16 rs2076756 7.55e-15 YES YES YES 21102463
Hypertension 1 rs10889923 1.38e-05
(HT) 15 rs2398162 6.01e-06 YES
Rheumatoid 1 16679677 <1.0e-15 YES YES YES 20453842
arthritis 4 153816587 7.28¢-06 YES YES
(RA) 6 159272346 738¢-14 YES YES
22 18743777 1.01e-06 YES YES 23143596
Type 1 1 156679677 <1.0e-15 YES YES YES 19430480
diabetes 2 1$231726 1.43¢-05 YES 30659077
(T1D) 4 rs17388568 3.07e-06 YES YES YES 21829393
6 rs9272346 <1.0e-15 YES YES YES 18978792
12 rs17696736 1.56e-14 YES YES YES 18978792
12 rs11171739 8.36e-11 YES YES 19430480
13 rs4769283 1.20e-05
16 rs12924729 7.86e-08 YES YES YES 17554260
Type 2 2 rs6718526 1.00e-05 YES YES 20418489
diabetes 4 rs1481279 9.44¢-06 YES YES YES 28869590
(T2D) 6 r$9465871 3.38e-07 YES YES YES 21490949
10 rs4506565 5.01e-12 YES YES YES 23300278
12 rs1495377 7.21e-06 YES YES YES 22885922
16 rs7193144 4.15e-08 YES YES YES 22693455

Observe from Table 6 that two out of the eight novel DeepCOMBI SNPs with p-values

>1x10" have not yet been replicated in an independent GWAS or meta-analyses.
They have also not been identified by the COMBI method. Those entirely novel
DeepCOMBI discoveries are rs10889923 on chromosome 1 for hypertension and
rs4769283 on chromosome 13 for type 1 diabetes. To determine whether those two
SNPs are biologically plausible discoveries for an association with the respective
disease, their genomic regions are investigated in terms of functional indicators. Strong
evidence of potential functional roles in the diseases is found.

Firstly, rs10889923 maps on an intron for NEGRI (neuronal growth receptor 1), a very
important gene many times linked to obesity, body mass index, triglycerides, cholesterol
and many other phenotypes highly correlated with hypertension**>*’. Even though
NEGRI has been associated with many phenotypes in the GWAS Catalog, no GWAS
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has yet been able to link it to hypertension directly. Furthermore, rs10889923 is part of a
high LD region (according to LDmatrix Tool**) with variants that have been reported to
be significantly associated with a number of psychiatric disorders and phenotypes, e.g.
educational attainment (in Lee et al.* rs12136092 with p-value < le”!'! and a degree of
LD R®=0.86 to rs10889923; rs11576565 with p-value < le™® and R® = 0.63). This
link suggests a potential connection between hypertension and related phenotypes with
mental traits. rs10889923 can thus altogether be considered an excellent candidate for
association with hypertension.

Secondly, rs4769283 on chromosome 13 lies in an intergenic region very close to a gene
called MIPEP (mitochondrial peptidase), which cannot be directly linked to T1D but is
reported as a significant eQTL for two other genes, namely CIQTNF9B and PCOTH>”,
Thus, MIPEP and therefore rs4769283 significantly control expression levels of
mRNAs from these two genes in a particular tissue. Most remarkably, rs4769283 is a
significant eQTL (with p-value = 1.1e7%) for CIQTNF9B (complement C1q and tumor
necrosis factor-related protein 9B) in (amongst several other tissues) the pancreas,
which produces very little or no insulin in T1D patients. So even though the association
of 154769283 with Type 1 diabetes is not an obvious one, it is indeed an interesting
novel discovery of the DeepCOMBI method.

To present a more condensed view of these discoveries, Table 7 summarizes the
findings of the three competitor methods, RPVT, COMBI and DeepCOMBI.

Table 7: Quantitative summary of the significant findings of RPVT, COMBI and DeepCOMBI on seven
WTCCC datasets from Mieth et al. (2020)". For each of the three competitor methods, the numbers of replicated
and unreplicated hits (i.e. the number of true and false positives) as well as precision and error rates are presented.
Pairwise tests for the null hypothesis of identical distributions for DeepCOMBI and the two baseline methods are
performed and corresponding p-values are given.

Number of significant SNPs of
RPVT DeepCOMBI method COMBI method
SNPs that have achieved p <107 33 31 31
in at least one external study (49% precision) (79% precision) (58% precision)
SNPs that have not achieved 35 8 22
p <107 in an external study (51% error rate) (21% error rate) (42% error rate)
Overall 68 39 53
Pairwise p-value DeepCOMBI vs. DeepCOMBI vs.
(one-sided Fisher’s exact test) RPVT COMBI
=0.00106 =0.01910

When no screening step is conducted and RPVT p-values are calculated for all SNPs, 68
locations with p < 107 are identified as significant RPVT hits. COMBI and
DeepCOMBI both apply a learning-based SNP preselection step and thus, find fewer
significant associations. The DNN-based approach to this is seen to be more
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conservative than the SVM-based one, with only 39 identified locations of
DeepCOMBI in comparison to 53 findings of the COMBI method. Even though the
DeepCOMBI method finds fewer significant SNPs than RPVT and COMBI, the number
of independently replicated SNPs of DeepCOMBI (= 31 replicated SNPs, yielding a
precision of 79%) is identical to that of COMBI (31, precision = 58%) and almost
identical to that of RPVT (33, precision = 49%). In addition, the DeepCOMBI method
misclassifies only eight unreplicated SNPs as associated with the disease (yielding an
error rate of only 21%), while RPVT wrongly classifies 35 SNPs (error rate = 51%) and
the COMBI method makes 22 mistakes (error rate = 42%). These observations are
quantified with pairwise one-sided Fisher’s exact tests for the null hypothesis of equal
error rates for both methods. They produce significant p-values for both comparisons:
DeepCOMBI vs. RPVT (p-value of 0.00106) and DeepCOMBI vs. COMBI (p-value =
0.01910).

In Figure 24, we present the ROC and PR curves of the three competitor methods,
where we interpret the replication of SNPs according to the GWAS catalog as a
validation, i.e. we count a SNP as a true positive if it has achieved p < 107 in at least
one external study. Overall, the findings obtained by the DeepCOMBI method are better
replicated than those obtained by RPVT and COMBI for all levels of error. The
performance metrics of the DeepCOMBI method (pink line) are consistently better than
that of RPVT (light blue lines) and COMBI (dark blue lines). The DeepCOMBI method
finds more true positives for different levels of error and yields higher levels of
precision for different levels of recall than COMBI and RPVT.
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Figure 24: Performance curves of DeepCOMBI and competitor methods on seven WTCCC datasets from
Mieth et al. (2020)"°. A ROC curves and B PR curves of RPVT, the COMBI method, the DeepCOMBI method,
direct thresholding of SVM weights and direct thresholding of LRP scores averaged over all diseases and

chromosomes are shown. Replicability according to the GWAS catalog is used for validation.
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Figure 24 also shows the performance curves of the other two baseline methods that
threshold SNPs solely based on raw LRP relevance scores or raw SVM weights,
respectively. As we can view these two methods and RPVT as the individual
components of the combinatorial approaches and neither of these three can achieve the
same level of performance as COMBI and DeepCOMBI, it can be deduced that all
components are essential. Only the combination of the two components of the COMBI
method (SVM and statistical testing) and the DeepCOMBI method (DNN with LRP and
statistical testing) can achieve the desired performance increase.

Comparison to other baseline methods on WTCCC datasets

In a functional study, we now compare COMBI against two other state-of-the-art
methods proposed by Lippert et al’**'?. They devise a novel univariate analysis
method to improve WTCCC findings and also implement an LMM to uncover new
epistatic associations by means of brute force comparison of pairwise interactions. They
apply both methods to the seven WTCCC datasets, searching for new univariate signals
and for epistatic associations. For the univariate analysis, they report a total of 573
novel SNP-disease associations'®® with p-values less than 5x107 distributed over all
WTCCC diseases except for CAD, for which no novelty is reported. A lot of these 573
SNPs are part of small SNP clusterings, so we select representative markers for each
locus through the LD pruning option in PLINK and compute pairwise LD with a sliding
window of two SNPs (with steps of 1 SNP at a time). We then discard one SNP out of
each pair if they are in high LD (R? > 0.8). We run the final list of SNPs, consisting of 1
discovery for BD, 0 for CAD, 19 for CD, 1 for HT, 3 for RA, 39 for TID and 9 for
T2D, through our validation pipeline (described in Chapter 3.2.3, Figure 12) using the
same parameters that we use for COMBI in this dissertation (physical distance to
tag-SNP: <200 kb. LD with tag-SNP: R? > 0.8). The results are presented in Table 8.
Table 8: Quantitative comparison of the significant findings of the COMBI method from Mieth et al. (2016)"°
and the univariate method from Lippert ef al.”®. The significant SNPs of the COMBI method from Table 3 are

compared with the significant findings of the univariate analysis presented by Lippert et al. BD, CAD, HT and T1D
are summarized because no discoveries of Lippert et al. for these diseases are validated in independent studies.

Disease COMBI Lippert ef al. univariate analysis
Discoveries Validated Discoveries Validated
discoveries discoveries
CD 11 8 19 3
RA 3 1 3 1
T2D 8 3 9 1
BD, CAD, HT, T1D 24 16 41 0
Overall 46 28 72 5
p-value of one-sided Fisher’s exact test: <0.00001
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In Table 8, the number of true-positive SNPs from Lippert et al. (that is, of discoveries
that have been validated in the literature) is very small, with only five of the reported
SNPs featured in GWAS published after the WTCCC study (CD: 3 true positives, RA: 1
and T2D 1 true positive each). This figure is much smaller than for COMBI, which
reports 12 validated SNPs for these diseases. Not only does COMBI give rise to more
validated discoveries, but these discoveries cover the whole range of WTCCC diseases.
Overall, the advantage of COMBI over the univariate analysis of Lippert ef al. is
significant with a p-value < 0.00001.

The epistasis analysis by Lippert et al.’*® consists of a brute force computation of all

possible pairwise SNP associations for the seven diseases (~63 billion pairs; no hits
reported for CD) and testing their epistatic interaction in disease risk for significance.
The authors report a final list consisting of 707 pairs of SNPs with p-values lower than
7.9 x 10, Applying the LD pruning method as described above, Lippert ef al. identify
two pairs of SNPs for BD, 32 for CAD, 0 for CD, 2 for HT, 7 for RA, 13 for T1D and 2
for T2D. We evaluate all individual SNPs taking part in the significant reported
interactions via our validation pipeline. We are aware that this is only a suboptimal
validation since epistasis is not the sum of separated SNP effects, which are those that
are registered in the GWAS catalog, but some associations could still emerge. By
running the corresponding markers through our validation pipeline, we find a single
association for T1D, while no markers are found for the other diseases. A comparison
against the validated discoveries of COMBI is presented in Table 9. The superiority of
the COMBI method over the epistatic analysis of Lippert et al. in this context is
significant with a p-value < 0.00001 .

Table 9: Quantitative comparison of the significant findings of the COMBI method from Mieth et al. (2016)"°
and the epistatic analysis method from Lippert ef al.’®. The significant SNPs of the COMBI method from Table 3
are compared with the significant findings of the epistatic analysis presented by Lippert ef al. BD, CAD, CD, HT, RA

and T2D are summarized in the table because no discoveries of Lippert et al. for these diseases are validated in
independent studies.

Disease COMBI Lippert et al. univariate analysis
Discoveries Validated Discoveries Validated
discoveries discoveries
T1D 9 6 13 1
BD, CAD, CD, HT, RA, T2D 37 22 45 0
Overall 46 28 58 1
p-value of one-sided Fisher’s exact test: < 0.00001
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3.4 Summary and discussion

Numerous different approaches for the analysis of GWAS have been introduced since
the first of its kind was published in 2002. Traditionally, they focus either on accurate
phenotype prediction®” or the identification of SNP-phenotype associations® 366, At
first, most of these approaches were of a purely statistical nature**, but since ML has
become increasingly important in data science, it also found its way to the investigation
of genomic data. Like traditional methods, these ML-based approaches can be classified
into two groups:

1. methods that construct an ML model from genetic data in order to carry out
accurate predictions of a phenotypet®-6!:193:196:197.240242. 4 d

2. methods that use ML to construct a statistical association test or rank genetic
markers according to their predicted association with a phenotype®%63:66:213.243-246

The set of papers that fall into the first category, for example, study the predictive
performance of non-penalized or penalized, linear or nonlinear regression and
classification models, including SVMs"™", random forests*’’ and sparsity-inducing
methods such as the elastic net'*, on various complex diseases (including the ones
studied here), showing that ML methods such as SVMs — if appropriately applied - can

perform well at predicting disease risks.

This dissertation aimed at both of the goals presented above but put focus on the second
category by using ML-based prediction methods in combination with statistical testing
to identify SNPs associated with the phenotype under investigation. We first proposed a
novel method - called COMBI - which utilizes the advantages of an SVM trained for
phenotype prediction to select a set of candidate SNPs for multiple hypothesis testing. It
was shown that COMBI outperformed the traditional RPVT statistical testing approach
on generated as well as real GWAS datasets. In addition, it was found that the individual
components of the proposed combinatorial approach - SVM training, statistical testing
and the moving average filter - cannot achieve comparable performance when their raw
scores are used as test statistics and directly thresholded for significance. Only the
combination of these components can improve the identification of associated SNPs
successfully.

The COMBI method was furthermore compared to alternative methods that stem from
the second category from above, some of which include two-stage approaches, first
performing statistical testing and then ML to refine the set of predicted associations®®,
These approaches, however, are unable to take correlation structures of SNPs that have
been excluded in the first step into account and neither method was validated on real
data in terms of a comparison to the GWAS database. Similarly, Pahikkala et al.**® and
He and Lin®* developed methods for ranking genetic markers based on the sure
independence screening strategy®” and stability selection analyzing only one SNP at a
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time. The approach was extended to detect gene-to-gene interactions by Li et al.?*%,

but neither of the methods was validated on independent external studies. Another
approach was introduced by Alexander and Lange*', who applied the stability selection
method of Meinshausen and Biihimann® to the WTCCC dataset to rank SNPs according
to their predicted association with a phenotype. We found that stability selection
effectively controls the FWER when applied to GWAS data but suffers a loss of power
while at the same time rendering conservative results. The work that is probably most
closely related to the present research is the two-step algorithm by Wasserman and
Roeder*(and the extension by Meinshausen et al.?’’), who split the data into two equal
parts performing marker selection on the first part and then testing the selected markers
on the second part.

In order to investigate and compare the performance of the COMBI method to other ML
approaches, the work of Wasserman and Roeder*"’, Meinshausen et al.?’’ and Roshan et
al.”? were selected as representative baseline methods. In Chapter 3.3.1, it was shown
that the COMBI approach outperformed all of these methods on semi-real generated
data. Wasserman and Roeder?'* and also the extension by Meinshausen et al.?’ lose a
great amount of statistical power by splitting the GWAS dataset under investigation into
two parts, performing SNP preselection on one part and statistical testing on the other.
This approach is significantly less successful in identifying SNP disease associations
than COMBI, which performs all substeps on the complete (and therefore statistically
more powerful) dataset. Another important and very closely related method by Lippert
et al.”®'*? aims to identify putative significant disease-marker associations using two
approaches based on LMMs: a univariate test and a test for pairwise epistatic
interactions. LMMs, like COMBI, address the issue of population stratification in
GWAS, cf. Mimno et al.”?. However, in contrast to COMBI, they still test SNPs (or
pairs of SNPs) individually, one after the other and thus potentially lose detection
power. Another possible shortcoming of LMMs and related methods over SVMs is that
they are tailored for regression and not binary classification. Recently the approach of
Lippert et al. has been extended for disease risk prediction (Rakitsch et al.*) and
related approaches have been proposed by Loh ef al.”’* and Song et al.*”, suffering the
same drawbacks as discussed above. For a comparison of COMBI with Lippert et
al.’®1%? on real WTCCC data, see Chapter 3.3.2. When the results of the univariate
method of Lippert ef al. were checked against the same validation criteria we used for
COMBI, it turned out that our method reported 17 more true positives (4.4 times more
positives) for the three diseases for which their univariate method reported at least one
hit and performed significantly better on all datasets. The COMBI method also holds
great potential for testing pairwise SNP-trait associations, as it drastically reduces the
number of candidate associations by selecting a subset of the most predictive SNPs in
the ML step. Again, a comparison to the method Lippert et al.’**’*? proposed for
detecting epistatic interactions was also significantly favorable to COMBI. An
extension of LMMs to multivariate cases was developed by Zhou and Stephens®¢ but
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has not yet been applied to WTCCC. Fitting LMMs to multiple phenotypes provides no
novel insight into analyzing multiple genotypes/SNPs at once, which is the issue
COMBI addresses.

With the increasingly large amounts of available data, deep learning-based approaches
and artificial NNs are now also being applied to GWAS datasets'”®!”. However, most of
these publications focus on pure classification or regression prediction tasks'®*2%2%2
rather than the identification of associated SNPs in the corresponding datasets'***®, To
harness the great potential of DNNs for the analysis of GWAS, we proposed another
novel method - called DeepCOMBI - which uses a deep learning-based phenotype
prediction in combination with statistical testing for identifying SNPs that are associated
with the phenotype under investigation. DeepCOMBI could be considered an extension
of COMBI, replacing the rather simple linear SVM with a more sophisticated method
and using the concept of explainability to reveal the underlying decision-making
process. In particular, DeepCOMBI trains a DNN and extracts SNP relevance scores via
LRP'“™, To our knowledge, Romagnoni et al.””* were the first and only scientists (up
until the publication of DeepCOMBI) to use XAl in the context of GWAS and propose
to apply PFI. Even though they were able to identify some novel predictors, the
prediction performance of their NN was not better than that of traditional ML-based
tools. In addition, PFI is a generalized, model-agnostic approach and with the
DeepCOMBI method, we utilized more advanced deep Taylor-based explanation
techniques by adopting LRP for the analysis of GWAS data.

DeepCOMBI was shown to compare favorably to its main competitor COMBI on both
generated controlled datasets as well as seven real-world GWAS datasets. These
findings are in accordance with Romagnoni et al’”’, who found that deep
learning-based methods can provide novel insights into the genetic architecture of
specific traits. By applying LRP, we were able to leverage the power of DNNs and
generate relevance scores that are less noise inflicted than the SVM importance scores
of COMBI. In return, the preselection of candidates SNPs is better than that of COMBI
and higher TPR and precision can be achieved for all levels of error. In addition to the
main competitor method, COMBI, we also compared DeepCOMBI to the baseline
methods of RPVT, raw LRP relevance scores and raw SVM importance scores and
showed that only the combination of deep learning and multiple testing show the
desired performance increase, which cannot be achieved individually by one of these
components. Since the COMBI method itself was shown before to outperform other
combinatorial ML-based approaches (Roshan et al.”’, Meinshausen et al?”’ and
Wasserman and Roeder?'’) and two purely statistical analysis tools (Lippert et al.’%!%?),

it can be directly deduced that DeepCOMBI also outperforms those approaches.

To summarize, we proposed two novel and powerful methods for analyzing GWAS data
that are based on applying a carefully designed ML step before applying a classical
multiple testing step. Certain ML models, in particular appropriately designed linear
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SVMs and DNNs, take high-dimensional correlation structures into account and thus
implicitly incorporate interactions between different loci. A subset of predictive
candidate SNPs is extracted within the ML step. The COMBI method implements the
ML step with an SVM and interprets the learned weights as importance scores in order
to select candidate SNPs for multiple statistical testing. The p-values corresponding to
association tests are then thresholded with a permutation-based procedure for these
candidate SNPs in a subsequent statistical testing step. COMBI was shown to
outperform the RPVT approach both on controlled, semi-real data and on data from the
WTCCC 2007 study, for which reported associations were validated by their
replicability in later external studies. The empirical analysis showed a significant
increase in detection power for replicated SNPs while yielding fewer unconfirmed
discoveries. Two new (as yet unreplicated) candidate associations were reported. The
second method we proposed is called DeepCOMBI and implements the ML step as
follows: After training a carefully designed DNN to classify subjects into their
respective phenotype, the concept of XAl is applied by backpropagating the class
prediction score to the input layer through the network via LRP. The resulting SNP
relevance scores are used to select the most relevant SNPs for multiple testing in
combination with the same permutation-based thresholding procedure of the COMBI
method. On both generated, controlled datasets as well as seven real GWAS datasets,
DeepCOMBI was shown to outperform COMBI and a number of other competitor
methods in terms of classification accuracy of the DNN and in terms of ROC and PR
curves when using either the generated labels or replicability in external studies as a
validation criterion. In addition, two very promising, entirely novel SNP disease
associations were discovered. Located on an intron for NEGR1, an important gene many
times linked to obesity, body mass index and other correlated factors, rs10889923 on
chromosome 1 was found to be significantly linked to hypertension. Another novel
location found by DeepCOMBI to be associated with type 1 diabetes is rs4769283. It is
part of an intergenic region on chromosome 13 and was previously found to be an eQTL
for CIQTNF9B in the pancreas, the affected organ in T1D patients.

In reference to the author’s thesis of this dissertation, in this chapter, two novel methods
for the analysis of GWAS were proposed that are both based on a combination of the
traditionally used analysis tool - multiple hypothesis testing - and a novel ML-based
technique - SVM and DNN, respectively. Validating the proposed thesis, they were
successfully applied to GWAS datasets and contributed to a better understanding of the
translation of genetic code into phenotypes. The proposed methods were shown to rely
on each of its individual components and increase the statistical power and accuracy of
existing techniques. In this framework, too - “the whole is greater than the sum of its
parts”*® (derived from Aristotle, 4th century BC).

A number of alternatives and possible options for future research exist. The proposed
approach can be extended to explore different directions by substituting one of the two
steps of the general algorithm (first ML, second statistical testing) with other suitable
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procedures. The effects of replacing the > test in the final step of the two proposed
methods with a different, more sophisticated kind of test should be studied. For
example, procedures correcting for population structures or other confounding
factors'¥**" or investigating pairwise hypotheses or other multivariate effects could be
examined. Another goal could be to extend the COMBI and DeepCOMBI methods to a
regression setup, where the phenotype is not binary. DNNs and SVMs can easily be
adjusted to non-binary phenotypes. Considering the first step of the method, one could
apply other ML prediction methods instead of training an SVM. For example, the SVM
training could be replaced by SNP selection via random forests or component-wise
boosting. Future work on the subject of deep learning and XAI in the context of
analyzing GWAS datasets could also focus on replacing the first step of a DNN in the
DeepCOMBI method. DNNs with different architectures or other suitable analysis tools
could be investigated. For example, future research could aim to harness the potential of
CNNs** as a promising candidate network architecture since CNNs implement similar
feature extracting properties of short-range local effects as the moving average filter of
the proposed methods. By integrating multiple output nodes for multiple phenotypes,
the DNN could also be extended to cover multivariate output variables and examine
multimorbidities. Improvement ideas for the second step of the DeepCOMBI method
(explanation) include the application of different explanation methods or LRP
backpropagation rules, for example, according to the layer types, as advised by
Montavan et al.”’. Great potential lies in finding more sophisticated ways to combine
the local LRP explanations of each individual subject to a single global explanation
used for SNP selection. A very promising candidate in this regard would be a method
called SpRAy*”’, which clusters the individual explanations and simplifies the
identification of explanatory structures in subsets of subjects.

Considering the weaknesses of the proposed methods, it is important to note that the
most crucial limitation in ML is the amount and quality of the training data. DNNSs, as
utilized in the DeepCOMBI method, especially rely on large datasets. However, in
GWAS, the number of features (i.e. SNPs) is often much bigger than the number of
datapoints (i.e. subjects). Trying to recruit subjects for studies is often not only a
cost-based problem but can also be difficult when rare phenotypes are studied. On the
other hand, more and more genomic sequences can be accessed on public web platforms
(such as openSNP) where people who have paid commercial genetic testing companies
(such as 23andMe) to sequence their genome and have then decided to share their
results for various reasons®®. In the future, these open-source datasets might present a
huge potential for biological and medical research. However, the quality and
consistency of such data will be far from the conventional standards of GWAS, which
limits the applicability, robustness and stability of ML methods. For example, neither of
the methods proposed here would be able to handle datasets where the genetic
sequences contain the information of different SNPs. They could only analyze these
datasets when limiting their feature space to the SNPs that are available for all

104


https://paperpile.com/c/QS9fGm/c5in+caAQ
https://paperpile.com/c/QS9fGm/6lkE
https://paperpile.com/c/QS9fGm/cbyk
https://paperpile.com/c/QS9fGm/IpEu
https://paperpile.com/c/QS9fGm/kNiP

sequences. Possible solutions to this problem could be learning joint and retractable
representations of all datapoints in a shared feature space®' 2% or applying the concepts
of transfer and multitask learning to allow for datapoints to lie in different spaces®®.

As an additional limitation of the proposed methods, it is essential to note that
identifying associated SNPs in GWAS can only indicate association, not causation. The
findings of GWAS always need to be biologically verified. Building trust in the
corresponding methodologies is especially important in the sensitive field of medical
applications. Although the proposed methods utilize explanation techniques, they
remain black boxes in the sense that it is unclear Zow the associated SNPs affect, for
example, the risk of developing a disease. Our validation pipeline enquiring the GWAS
catalog can be a great approach in this respect and we further address the issue of
meaningful associations in Chapter 4. Additional interpretability and explanation
techniques should be adopted in the future to verify the results of GWAS. However, the
judgment of experts will always remain crucial and machines can only guide the
processes in medical decision-making.

Furthermore, another important limitation of the proposed methods is that they are
stochastic and non-deterministic at multiple stages of the algorithms causing
reproducibility to be a potential problem. The gradient-based SVM and DNN training
and the permutation test procedure both introduce a certain level of randomness. We
have shown in Appendix II that when applying the methods repeatedly and to varying
subsets of the WTCCC data, the results of the COMBI method are more similar and
thus more stable than those of RPVT. However, even though high-performing
fast-converging optimizers exist, they are never guaranteed to find the optimal solutions
during training. In addition, the quality of a given classifier always depends on their
architecture, the hyperparameters and the initial weights which are selected by the user.
DNNs, especially, are known to be highly sensitive to such a priori choices*”. In this
context, it is also important to note that finding a global optimum is often
time-consuming®® and performing the proposed permutation test procedure increases
the computation times even further. Dense DNNs scale poorly with the number of
datapoints and features studied. However, as mentioned above, GWAS tend to include
much fewer subjects than SNPs and we have shown that DeepCOMBI performs well in
combination with a p-value based SNP preselection step. To avoid an explosion of
computing times and required resources, more direct approaches to thresholding could
be developed. However, directly thresholding the learned weights of the ML algorithms
was shown here not to perform as well as the proposed p-value thresholding.

Another issue to address in the context of the methods’ randomness is a common
phenomenon in scientific research where people tend to re-analyze a dataset until
something “publishable” is found*”’. For the proposed methods, the permutation test
procedure is aiming to guarantee that data dredging and p-hacking is not possible, but of
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course, these methods, too, can be applied repeatedly until they produce the desired
results.

Whenever training Al algorithms on human-related data, it is crucial to mention the
ethical aspect of such studies**®. Machines do not intrinsically have morals and cannot
unsolicitedly distinguish between right or wrong, especially when they are trained on
unbalanced data. It is always the researcher’s responsibility to ensure a fair and just
representation of all humans in their data or communicate if that is not the case. When
GWAS are conducted in the social-behavioral field, for example, there is a risk of
supporting existing discrimination (e.g. on the basis of race, gender or origin) because
of unbalanced training datasets and hence failing to appropriately study the targeted
phenotypes (e.g. personality traits). GWAS datasets need to be carefully created and
account for various factors via stratification. There exist numerous techniques to do
$0?*?"" and both the COMBI and the DeepCOMBI method would benefit greatly from

an adaption of such concepts.

To sum up the limitations mentioned above, as always in Al, the performances of the
proposed methods depend on the ability and willingness of future users to train a good
model and perform sincere research. Additionally, to account for the challenges they
face when applied in various biological and medical studies, the presented methods
should be developed further, adapted and improved according to the current state of Al
research.
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4 Combining transfer learning with
clustering methods for
single-cell RNA sequencing studies

In this chapter, we propose a novel method that combines traditional clustering
approaches (from Chapter 2.2.2) with an innovative transfer learning technique (from
Chapter 2.3.5 and 2.3.6) to cluster individual cells according to their transcriptomic
output in scCRNA-Seq datasets (described in Chapter 2.1.3). Given a well-known source
dataset with clustering labels, the proposed method improves the clustering of an
unlabeled target dataset by transferring knowledge from source to target data via
NMF*%, The modified target dataset can then be provided to any kind of clustering
algorithm. In support of the author's thesis in this dissertation, the proposed
combinatorial approach helps to better understand gene expression in different cell
types and therefore examines the translation of genetic code into biological function.
This chapter is based on and contains parts of article B** from Chapter 1.4 on
previously published work.

109


https://paperpile.com/c/QS9fGm/P3V2+i8c5+D99H
https://paperpile.com/c/QS9fGm/sFdH

4.0 Notation of chapter 4

Symbol

OnpF

g
H, H

src
i
k

A‘N MF
Ngre

ntrg

0
vec(.)

W.W,., W,

sre? rg

Wtrg

W*

src
Xeells
X expression

Xgenes

XS‘VC
X

trg

new
Xtrg

Src
y

Definition (page it is introduced on)

Penalty multiplier of the elastic net in NMF (41 and 115)

Number of dimensions, i.e. genes, in a sSCRNA-Seq dataset (115)

Dictionary in NMF (40 and 115)

Index of a cell in a sScRNA-Seq dataset (116)

Number of clusters to find in a scRNA-Seq dataset (115)
Parameter of the elastic net in NMF controlling L1 and L2 regularization (41 and 115)
Number of points, i.e. cells, in a source scRNA-Seq dataset (115)
Number of points, i.e. cells, in a target sScCRNA-Seq dataset (115)
Mixture parameter of the transfer learning method (115)
Vectorization of a given matrix (115)

Reconstruction or clustering data matrix in NMF (40 and 115)
Simplified version of the target reconstruction matrix W, (116)
Initial starting point of W,.in NMF (116)

Cutoff value for percentage of cells for gene filter (122)

Cutoff value for expression level for cell and gene filter (122)
Cutoff value for number of genes for cell filter (122)

Source dataset for transfer learning (115)

Target dataset for transfer learning (115)

Newly constructed target dataset (116)

Known cluster memberships of the cells in the source dataset (115)
Predicted cluster memberships of the cells in the source dataset (117)
Predicted cluster membership of the cells in the target dataset (116)

L1 Manhattan Norm (115)

Frobenius norm (115)
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4.1 Introduction

Sorting objects into groups with limited or no a priori knowledge is a common problem
in many different areas of scientific research?’*’2, In biological and medical sciences,
datasets are often constrained by the scarcity, feasibility and expense of collecting
samples. As such, it is not straightforward to apply state-of-the-art methodologies, like
deep learning, which requires large and well-annotated datasets to solve many problems
sufficiently well. To address this, the concept of using transfer learning (as described in
Chapter 2.3.6) to integrate a priori knowledge from reference datasets into target
datasets has been proposed as one way to generate additional insights'”*!'7*, One of the
scientific fields where these problems are of interest is scRNA-Seq, as described in
Chapter 2.1.3. Figure 25 shows a graphical representation of the scRNA-Seq
procedure and the application of transfer learning to its specific problem setting.
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Figure 25: scRNA-Seq and transfer learning. A Recent scientific and biotechnological developments have enabled
scRNA-Seq, the accurate measurement of the transcriptional output of individual cells. Once a tissue sample (e.g.
brain tissue) is extracted from an organism, single cells (e.g. neurons) are isolated and sequenced. For each gene, the
number of times a corresponding transcript is found in each individual cell is counted. These gene expression profiles
of single cells are then used to identify tissue-specific cell types or states through an unsupervised clustering
algorithm (e.g. SC3), which can eventually be visualized (through e.g. t-SNE or PCA plots). B When clustering
smaller disease or tissue-specific sScRNA-Seq datasets, it is often desirable to utilize large labeled reference datasets.
The current work proposes to apply the ML concept of transfer learning to modify the unlabeled target dataset via
NMF in a way that reflects specific properties of a large labeled source dataset and improves the results of
downstream clustering algorithms (in our case, SC3). Please note that even though this graph shows a complete
overlap in cell types, both source and target datasets might include cell types that do not appear in the other set.

Graphs were created using Servier Medical Art (brain, neuron and syringe) according to a Creative Commons Attribution 3.0 Unported License
guidelines 3.0 (https://creativecommons.org/licenses/by/3.0/). Color changes were made to the original neuron cartoons.
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, microfluidics and
data analysis” have led to our ability to accurately measure the transcriptional output of

In recent years, a series of advances in molecular biology

large numbers of individual cells through scRNA-Seq (Figure 25 A). The application of
this technology has already led to insights into cellular development'®?”’, dynamics®’™®
and heterogeneity?”>** and the pathogenesis of human disease’®'. The advent of major
global initiatives focusing on scRNA-Seq such as the Human Cell Atlas® means that
the importance and impact of this technology are likely to grow, as are the associated
data analysis challenges.

Most scRNA-Seq experiments are concerned with the identification and cataloging of
cell types or states within a tissue or biofluid®**** (Figure 25 A). Historically this has
been done through measurement, often qualitatively, of small numbers of “marker”
genes whose expression has been observed to correlate with cellular function.
scRNA-Seq complements these approaches by being high-throughput, quantitative and
cost-effective in generating high-dimensional data suitable for cell-type classification.
Neuronal cell types, for instance, have been deeply studied by scRNA-Seq®®, leading to
new, unbiased, data-driven classifications of neurons and other cell types within the
mammalian peripheral and central nervous systems®*#*¢2°!. Unique disease-associated
cell states such as microglial subtypes associated with Alzheimer’s Disease®™' have also
been identified by scRNA-Seq.

In Chapter 2.2.2, we describe the traditional challenges and methods for the analysis of
scRNA-Seq data. Specifically, we present unsupervised clustering of cells into groups
according to their transcriptional state as the fundamental analysis in scRNA-Seq
experiments and name a number of approaches to address this problem via hierarchical
and iterative clustering®®®!, PCA based approaches®®, ensemble clustering®*,

graph-based approaches®*’, ML-based”™”' and deep learning-based”*** techniques.

Challenges remain in the field, especially when the number of cells profiled in a given
experiment is relatively small and as such rare cell subtypes are poorly represented®.
Our hypothesis is that large reference scRNA-Seq datasets are a hitherto untapped
resource for the clustering of other datasets that may be smaller in size but examine a
specific tissue or disease context. Here, we propose that the concept of transfer learning
(i.e. the ML technique of applying knowledge gained from one context to another
distinct but related context) can be effectively implemented to improve clustering of
scRNA-Seq data when a suitable reference dataset is available (Figure 25 B). Transfer
learning covers multiple problems'”, e.g. multitask learning, domain adaptation and
covariate shift'”’. Specifically, it refers to a setting where the solution of one or multiple
source tasks is applied to a related target task. In multitask learning'*’, multiple related
tasks are learned in a parallel fashion using a shared representation instead of learning a
sequence of related tasks. In the analysis of scRNA-Seq data, this translates to a
situation where we are interested in simultaneously clustering a number of different
datasets stemming from different studies, laboratories or points in time. These kinds of
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datasets most likely contain batch effects, which need to be corrected for when
combining the datasets for meta-analyses. In scRNA-Seq analysis, clustering and batch
effect removal are typically addressed through separate steps, i.e. only after removing
batch effects and combining multiple datasets into one is clustering analysis performed.
These kinds of batch effect correction approaches can be graph-based'*®*>2%,
dimensionality-reduction based and variance-driven®**”*” or incorporate deep-learning
procedures***"!, Different approaches to grouping cells of multiple datasets by cell type
rather than dataset-specific conditions put emphasis on performing batch effect removal
jointly with the clustering analysis**>*. More general approaches compare subtypes of
cells across different samples®®” and identify clusters with high similarity across
datasets®®?7, All of the aforementioned methods presume that the multiple datasets
under investigation are related in some way and are subsequently clustered
simultaneously. In this dissertation, we focus on a more specific problem setting, where
the user is interested mostly in the clustering of a target dataset, making use of the
knowledge from a well-known and well-understood source dataset. A number of tools
are available for annotating cells of a target dataset to a predefined reference set of cell
types’®>!! but they are limited to target datasets that only include cells of the same

types in source data and hence, cannot identify new cell types.

To enable knowledge transfer without having to combine the two datasets and at the
same time guarantee a target clustering to be independent of the cell types of the source
data, this dissertation focuses on the specific concept of transfer learning to use
information from one scRNA-Seq dataset to annotate another without limiting the cell
types that may be found in either. The aim is to adjust the target dataset with
information from the source data and feed this new target dataset into a downstream
clustering algorithm. In this specific setting, the method that is the most closely related
to our work is SAVER-X?"2, SAVER-X trains a deep autoencoder on a target set with an
initialization of the weights obtained from training on the source target dataset coupled
to a Bayesian model to leverage existing data in the denoising of a new scRNA-Seq
dataset. SAVER-X is a deep learning-based approach and is thus limited to datasets of
very large sample size. This dissertation focuses on improving the clustering of small
datasets and does not require large sample sizes. Unlike deep learning-based
approaches, our method is convex and always returns the globally optimal solution
independent of its initialization. Additionally, instead of focusing on denoising target
datasets like SAVER-X, we are trying to insert additional knowledge (i.e. to induce
certain specific properties of the source dataset that the researcher wants to put special
emphasis on) into the target dataset. This is achieved by making use of specific source
datasets and, in particular, by including cell type annotations from the source into the
analysis. Large reference datasets are often very well studied and come with
high-quality annotation of the cell types present within them. Our algorithm is not
attempting to re-cluster this already well-clustered data, but it is making use of those
pre-existing source labels (Figure 25 B).
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Another relevant work focussing on transformations of scRNA-seq data for improved
cell type clustering®” is also deep learning-based and consists of three subsequent steps.
Firstly, a supervised NN is trained to predict the cell types of a given source dataset.
Secondly, the target dataset of cell types not used in training is plugged into the network
and the values of the hidden layer are used as a new representation of the target dataset.
Lastly, the newly constructed target dataset is clustered with unsupervised k-means
clustering enabling cell types in source and target data not to be identical. Please note
that the focus of the present work lies on transferring knowledge between source and
target datasets that have a significant overlap in their cell types. The method proposed

by Lin et al.’" is explicitly restricted to non-overlapping settings.

To summarize, the current approach is not directly comparable to the methods presented
here because it tackles a very specific problem that - to the best of our knowledge - no
other method has addressed. Implementations of the method are available as a Python
framework at https://github.com/nicococo/scRNA.
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4.2 Methods

We propose a method to apply transfer learning (as described in Chapter 2.3.6) to
scRNA-Seq data that enables us to transfer knowledge from a relatively well-annotated
and large source dataset to a smaller unannotated target dataset. A graphical
representation of the method can be found in Figure 25 B. The method is based on a
transfer learning step that modifies the target dataset to incorporate knowledge gained
from the well-annotated source dataset. The newly constructed target dataset can then
be analyzed with a clustering algorithm to obtain an improved clustering compared to
applying that same method to the target without any transfer learning procedure or a
simple concatenation of source and target.

The following sections describe the method in more detail and specify the experimental
setup of performance assessments on generated synthetic data, controlled real data and a
real-world application of two independent datasets.

4.2.1 Problem setting

There exists a well-known source dataset Xy.. € & with scRNA-Seq data from
ng. cells and g genes for which we have in-depth knowledge about the clustering

structure (i.e. ground-truth labels »*¢ € R™*) and a target dataset X, irg € REMre of

Nypg cells and g genes, which we want to enhance given the information in X, and

3¢ before clustering into k groups of cells, i.e. predicting 7% .

4.2.2 Proposed workflow

The basic underlying idea of the proposed method is to factorize the source dataset into
a data size-independent part (of size g x k) and a gene-independent part (of size
k % ng.) and to use the former — which is often called a dictionary since it does not
depend on the number of cells n.. and can thus be used to translate between datasets —
to modify the target dataset accordingly.

More specifically, the novel approach, based on NMF (as described in Chapter 2.3.5),
can be described in the following steps:

1. We use NMF*? of our source data X,.€ R®" to learn a dictionary

Hge € RE* and a data matrix W € R¥ while regularizing the denseness
of the results with an elastic net'**:

. 2
Hoyes Wore = argminyy, yy (3 1re = HW Iz, + Oy doyae (11vee BDI + [1vee ()11) + 244 (1= Dy,) (I, + 11V117, ) )

Here, Ay, 1s the mixing parameter controlling the L1 and L2 regularization
and oy, 1s the penalty multiplier.
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As an initial starting point, W5, for W, we provide a one-hot-encoding of the
given cluster labels »*“, where a non-zero entry in the j -th row of column i in
W, indicates that cell i is a member of cluster ;.

Given the learned dictionary H,. € R® “* from step (1) and assuming the genes
in source and target data correspond, we now transfer knowledge from the
source to the target dataset through the dictionary by learning a target data
matrix W, € R

)

Fro

trg
To enable domain adaptation for different levels of cell type overlap between the

two datasets, we now construct a new target dataset X ;Z,W based on a convex

Wtrg = argminy, (2l ||X,rg -H, W

’

combination of a reconstructed target dataset Hyc W,

Xipg :

and its original version

’

trg

Xyg = OHy W, +(1-0)X,, with 0<6<1

0 is a mixture parameter indicating how strongly knowledge from the source
dataset should be transferred into the newly constructed target dataset. High
values of 0 indicate a strong influence of the source dataset on the modified
dataset and low values cause the new dataset to be more similar to its original
version.

trg
with ones at the positions of all column-wise maxima and zeros

The target reconstruction or clustering matrix W, € {0, l}kxn”‘g is a simplified

version of W,

elsewhere, i.e.

W =1 vi,l.
( trg)li [(argmaxleu,....k}(Wtrg)zi):l] l

Using W;rg
matrix to potential cluster memberships of the target cells, which is appropriate
considering the task at hand. To this end, a number of different approaches were
implemented (e.g. leaving W,., as it is or optimizing it in an additional training

instead of W, corresponds to reducing the information in this

trg
step), but it was found that taking the simplified version as described above

performed best and most consistently for all scenarios under investigation.

The newly derived dataset X" can be used as input for a clustering method.

To predict y"® , we use single-cell consensus clustering (SC3)* as an exemplary
clustering method that is commonly used to solve scRNA-Seq clustering
problems. See Chapter 2.2.2 for a detailed description of SC3.
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Please note that the proposed method does not inherently depend on the number of
samples in each dataset and can technically (even though not studied in this dissertation)
be used to transfer knowledge from datasets of any size, not just from a source that is
larger than the target.

The mixture parameter 6 dictates how much the newly constructed target dataset
should be changed by the information in the source dataset. 0 is automatically chosen
via an unsupervised assessment of the clustering quality through Kernel Target
Alignment (KTA) scores®'*, which measure the similarity of kernels. The whole transfer
learning and clustering procedure (steps 1 - 4) is computed with a number of values for
6 within a prespecified range and the KTA score between the linear kernel of the mixed

dataset X;5" over the cells and the linear kernel of the cell type labels predicted by

subsequent SC3 clustering is calculated. The parameter value yielding the optimal KTA
score is chosen for the final result and can give an indication of the transferability
between source and target data. An investigation of the mixture parameter of the
transfer learning approach and its automatic selection process based on KTA scores is
given in Figure 32 of Chapter 4.3.1, where the relationship of the unsupervised KTA
scores and their supervised counterpart, the ARIs, are examined.

If no reliable cluster labels are available for the source dataset X € RS | one can

2725 and proceed as if they were the

choose to generate those labels via NMF clustering
real labels y*“. This basically consists of learning a dictionary Hy,. € R¢* and a data
matrix W € R

memberships based on the column-wise maxima  of Wege, e
~STC __
Yi

kxng.

as described above in step 1 and selecting the cluster

ceey

Instead of learning the source labels through NMF clustering, one could also avoid
providing any initial starting point Ws,. for W. when learning the dictionary Hg.
and the data matrix Wy, .

4.2.3 Datasets and corresponding validation strategies

We analyze a number of different datasets during the current study in order to validate
the effectiveness of the proposed method. First, we generate synthetic sScRNA-Seq data,
where the true underlying cluster structures are known and the method’s performance
can be investigated in a controlled environment. Afterwards, we generate target and
source datasets by subsampling a real scRNA-Seq dataset (Tasic et al. (2016)*") and
hence guarantee an overlap in clustering structures and ensure transferability between
the two datasets. Lastly, we investigate two independent datasets and cluster a real
target dataset (Hockley et al. (2019)*¢) by transferring prior knowledge from a
well-known source dataset (Usoskin et al. (2015)*?). The different datasets and
corresponding validation strategies are presented in the following sections.
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Validation on generated source and target datasets

To test the applicability of our method, we first use it on simulated count level
scRNA-Seq data from a defined hierarchical set of clusters that represent the different
cell types present in a tissue or biofluid. Figure 26 shows a graphical representation of
the hierarchical clustering structure used to generate the simulated data. Each generated
dataset consisted of eight clusters of cells (1-8) deriving from five top-level clusters (V -
Z) that share a common background distribution of gene expression levels and some
proportion of genes differentially expressed between them.

Figure 26: Clustering structure of scRNA-Seq simulation data. Count level scRNA-Seq data is simulated
according to a predefined hierarchical clustering structure with eight cell clusters (1-8) that are derived from five
top-level clusters (V - Z). Generated datasets are individually split up by randomly assigning the top node clusters V -
Z to source or target. Three different settings are considered: 1. Both source and target data contain cells from all top
node clusters V - Z (Complete overlap), 2. Three randomly selected top node clusters V - Z are chosen as common to
both source and target, the other two are assigned to either one of source and target (Incomplete overlap) or 3. Cells
from two of the top-node clusters form the target dataset and cells from the other three top-node clusters form the
source (No overlap).

An outline of the data generation procedure is given here. The full code is provided in
https://github.com/nicococo/scRNA/blob/master/scRNA/simulation.py.

First, we generate the number of cells in each sub-cluster using a Dirichlet distribution
with a concentration parameter of 10. Then we define a common background
distribution of gene expression levels sampled from a gamma distribution with shape 2
and rate 0.1. For each cluster, we randomly select 10-40 % of genes to be differentially
expressed relative to the background. The difference in expression for each such gene,
expressed as a log, fold change, is sampled from a normal distribution with a mean of 1
and a standard deviation of 0.5. For clusters that are not themselves top-level clusters
(clusters 4-8), this process continues recursively with further expression differences
generated for each sub-cluster using the parent cluster as the new background until the
final clusters are reached. Finally, we generate count level data by applying a small
amount of random normally distributed noise to the expression levels of each cell and
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then sampling the per gene counts from a negative binomial distribution with dispersion
0.1. The resulting datasets contain cells with a median count of 215,500 reads per cell.
Please see Chapter 4.2.4 and, in particular, Figure 27 for details.

Once count level data is generated for the entire dataset, we split it into target and
source datasets with different sets of cells according to the cluster structure and the
relationship between the target and source. Here, we consider three such relationships
that reflect three possible experimental scenarios:

e Cells in the target and source are randomly sampled from the same underlying
tissue or biofluid and hence contain cells from all top node clusters V - Z.

e Certain clusters are specified to be only present in the source and some to be
only present in the target; the remaining clusters are present in both target and
source. Three randomly selected top node clusters V - Z are chosen as common
to both source and target; the other two are assigned to either one of source and
target.

e The cells in the target and source are drawn from completely non-overlapping
clusters. In this scenario, transfer learning is not expected to be successful. Cells
from two of the top node clusters form the target dataset and cells from the other
three form the source.

The genes measured in source and target are always the same and the top nodes are
randomly assigned to either source or target for each repetition of the data generation
process. We generate 100 sets of simulated data for each of the three settings simulating
the expression levels of 10,000 genes in 1,800 cells. We assign 1,000 cells to the source
dataset and the set of 800 target cells is downsampled (i.e. 10, 50, 100, 200, 400, 600,
800 target cells) to investigate the performance of the transfer learning approach and its
corresponding baseline methods when applied to datasets of varying sizes.

The results of the proposed method applied to the generated source and target datasets

and evaluated based on the known underlying clustering structures are presented in
Chapter 4.3.1.

Validation on subsampled source and target datasets

Following the analysis of simulated data, we subsequently examine a real scRNA-Seq
dataset. By subsampling both source and target datasets from the same single original
dataset, we create an environment where the potential benefit of transfer learning can be
determined on real-world gene expression data. For this, we utilize gene expression data
provided as RPKM derived from over 1,600 cells of the primary visual cortex of the
adult mouse brain®'.
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We run 100 repetitions splitting the data into a source dataset of 1,000 cells and a target
dataset of 650 cells each time, which is subsampled even further (to 25, 50, 100, 200,
400, 650 target cells) to assess performance for different sample sizes. To investigate the
influence of complete and incomplete overlap between the clusters of source and target
datasets, transcriptomic cell types assigned to either dataset are controlled. Complete
overlap means randomly assigning cells into source and target. Incomplete overlap is
achieved by assigning the two largest clusters of the dataset (Glutamatergic L4 cells and
GABAergic Pvalb cells) to be either an exclusive source cluster or an exclusive target
cluster, respectively. All other clusters are shared amongst both source and target in this
setting.

The transfer learning approach and its baseline methods are now investigated under two
different conditions. Firstly, we assume that no ground-truth labels are available and
generate labels for 18 cell clusters via NMF clustering”2* on the whole dataset. We
interpret this clustering, based as it is on the totality of the data, as a ground-truth
clustering and apply our method and the baseline algorithms to a subset of the dataset to
see how each method performs relative to this definition of the ground truth when not
all of the data is available. Secondly, we use the data-driven clustering labels provided
in the original paper and take those as the ground-truth labels. Specifically, we use a
cut-off in the provided clustering hierarchy that results in 18 clusters. Given those
alternative ground-truth labels, we once again run the proposed transfer learning method
and its competitors as described in Chapter 4.2.5.

The validation results using the subsampled source and target datasets are presented in
Chapter 4.3.2.

Validation on independent source and target datasets

As a real-world application of the transfer learning approach, we analyze two entirely
independent but biologically related datasets. To improve the clustering results of a
relatively small target dataset from Hockley et al. 201973, we transfer knowledge from
a larger source dataset from Usoskin et al. 2015%, both derived from the rodent
somatosensory system. The somatosensory system is responsible for detecting
mechanical, thermal and chemical stimuli to which an organism can choose to elicit a
behavioral response. Primary sensory neurons innervate the vast majority of internal
hollow organs, joints, muscles and the skin evoking conscious sensation in the event of
these stimuli. This is most clearly exemplified by pain in the case of potentially harmful
or noxious stimuli, such as burning or cutting the skin. In Usoskin et al., transcriptomic
analysis of 622 primary sensory cell bodies, which reside within the dorsal root ganglia
(DRG), reveals significant diversity in cell type (11 types) and sensitivity to a diverse
range of stimuli modalities (e.g. thermosensitive, itch sensitive, nociceptive) to which
an organism is exposed. However, previous retrograde tracing experiments show that
only 5-10 % of DRG neurons project to internal (visceral) targets, such as the
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gastrointestinal tract, and as such are likely only represented by ~ 30-60 cells in the
Usoskin ef al. dataset. Such small cell numbers limit subtype assignment of cells in this
organ. In order to overcome this limitation, scCRNA-Seq has been performed on
retrograde-labeled DRG neurons known to selectively innervate the gastrointestinal
tract (colonic DRG neurons), providing transcriptomic analysis of 314 cells from this
specific organ that cluster into seven distinct subtypes®®. However, it is unclear whether
de novo clustering of colonic DRG neurons identifies established clusters previously
identified in larger datasets such as Usoskin et al. (hereafter designated ‘Usoskin’) or
whether novel cell types exist within this dataset (hereafter designated ‘Hockley”).

In initial experiments, the original source and target data are used; however, in later
experiments, a batch effect removal approach is applied to control for the integration of
single-cell transcriptomic data across different conditions and technologies. Here, we
apply Seurat batch effect removal®®’ to combine the Hockley and the Usoskin data and
separate the result back into the original datasets, which are then provided to the
proposed transfer learning method and its competitors as described in Chapter 4.2.5.

As an additional preprocessing step, we investigate the effect of imputation on the
clustering results. MAGIC?", a widely used method for imputing missing values to
overcome zero-inflation in scRNA-Seq data, is applied to both datasets and the
preprocessed datasets are then provided to the three methods under investigation.

Using either the original datasets or the preprocessed, batch effect removed or imputed
datasets, the results of the proposed transfer learning method and its competitors as
described in Chapter 4.2.5 are assessed in terms of performance via comparison to the
clustering of the original paper’®®, evaluation of t-SNE plots” and examination of
differentially expressed genes to determine putative cellular functions of neuronal
subtypes. Since SC3 is a non-convex method, it yields different results for each run. In
order to provide quantification of the stability of the three methods, we apply each
method 1,000 times and count the number of times three key clusters of interest are
successfully identified. These clusters are selected based on their biological relevance as
described in the original paper, further details can be found in the results section.

Once again, experiments are run under two conditions. Firstly, we assume that reliable
source data labels are not available and we generate cell labels for the Usoskin dataset
via NMF clustering. Secondly, we use labels from Usoskin et al. (generated via an
iterative PCA approach). Usoskin et al. provide labels at three different levels of the
hierarchy producing 4, 8 or 11 clusters. We investigate results based on all of those,
calling them level 1, 2 and 3 labels, respectively. We also investigate a scenario where
we generate the labels via NMF clustering instead of using the labels presented in
Usoskin et al. In the main text, however, we only present results based on using level 3
labels from the original publication. Please see Appendix Chapter III. for the
clustering results using NMF, level 1 and level 2 labels for the source datasets.
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To assess the performance of our method, we are unable to compute ARI scores in this
setting. In contrast to the simulations described above, the true underlying clustering
architecture of the cells under study is largely unknown. Hence, we assess clustering
performance based on differential gene expression and biological relevance to known
somatosensory pathways. The validation results using the independent source and target
datasets are presented in Chapter 4.3.3.

4.2.4 Preprocessing and parameter selection
Three steps for preprocessing sScCRNA-Seq data are applied:

e Cell filter: Remove all cells containing fewer than Xgees genes with

exXpression > Xy, ession -

e Gene filter: Remove ubiquitous genes that are expressed in almost all cells (i.e.

with expression > x in at least x_,;,% of cells) and rare genes that are

expression cells

not expressed in almost all cells (i.e. with expression <x in at least

expression

X 01570 Of cells).

o Log-transformation: Log-transform the expression matrix after adding a
pseudo-count of 1.

Preprocessing is performed once for all datasets (source and target separately) before
the different clustering methods (i.e. transfer learning or baseline methods) are applied
and are repeated, for example, after the concatenation of two datasets. All free
preprocessing parameters should be selected by future users based on an inspection of
the data, i.e. expression histograms of both source and target dataset.

The mixture parameter 0 is automatically chosen via an unsupervised assessment of the
clustering quality through KTA scores as described in Chapter 4.2.2. See Chapter
4.3.1 for an investigation of the performance changes induced by varying 6 on the
generated datasets.

Other free parameters, e.g. the elastic net parameters Ay,,» and oy, , are selected
based on results from the simulated data. The generated datasets are used to determine
performance changes induced by varying the free parameters of the method and identify
optimal settings, which are assumed to be good choices for the application of the
proposed method to real datasets.

The specific values of the free parameters of the preprocessing steps and the
TransferCluster method selected for the datasets in this dissertation and the
corresponding expression histograms are presented in the following sections.
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Preprocessing and parameter selection for generated source and
target datasets

After generating 100 datasets with 1,800 cells and 10,000 genes, the median overall
number of reads for each cell is 215,500 reads. The corresponding histogram is shown
in Figure 27.

1750 A

1500 A

1250

1000

Number of cells

750 A

500 A

250 A

t T
200000 400000 600000 800000
Overall number of reads per cell

Figure 27: Histogram of cell counts in generated scRNA-Seq datasets. 100 datasets with 1,800 cells and 10,000
genes are generated and a histogram of the overall number of reads is shown.
The preprocessing steps are not applied to the generated datasets because the generation
process does not produce any unfavorable genes or cells.

For each overlap setting (described in Chapter 4.2.3 on generated datasets), this
process is repeated and the 100 datasets are separated into 1,000 source cells and 800
target cells. All three competitor methods are applied to down-sampled target datasets
where for each repetition, 10, 25, 50, 100, 200, 400, 600 and 800 cells are randomly
selected from the complete target dataset.

There are a number of parameters in the NMF step of the proposed method that need
specification. In the controlled environment of the generated datasets, the elastic net
parameters are set to oy, = 10.0 and Ay, =0.75 and the maximum number of
iterations until convergence up to a relative error of 0.001 is set to 4,000. The range of
mixture parameters 0 to be put into the KTA score selection process is [0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. The number of clusters to find is selected in agreement
with the true underlying cluster structure.
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Preprocessing and parameter selection for subsampled source and
target datasets

Please see Figure 28 for the histogram of the expression levels in the Tasic dataset®’,

which is investigated to choose the parameter values for preprocessing. Before
preprocessing, the original Tasic dataset contains 1,679 cells and 24,057 genes. The
parameters of the preprocessing filters as described above are set to
Xgenes = 2000, x
histogram in Figure 28. After removing 21 cells containing fewer than 2,000 genes with
expression > 2 and 14,510 genes with expression <2 or > 2 in at least 94% of cells, the
dataset contains expression levels of 9,547 genes in 1,658 cells. The expression matrix

=2 and x_,,, =94 following the inspection of the expression

expression cells

is log-transformed after adding a pseudo-count of 1.

We deem this dataset to be of sufficient complexity in terms of taxonomic diversity (it
contains 23 GABAergic neuronal, 19 glutamatergic neuronal and 7 non-neuronal cell
types) and in terms of total cell count to enable cluster-restricted subsampling and thus
the application of transfer learning approaches.
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Figure 28: Histogram of expression values in Tasic dataset™'. For 24,056 genes and 1,679 cells, there are a total of
40,390,024 gene expression values. 27,596,688 of those equal zero. x- and y-axes are cropped. The location of the
frequency minimum after the zero-inflation at 0.5 implies choosing 2 as the cut-off expression value for
preprocessing.

The free parameters in the NMF step of the method are chosen according to the best
results in the controlled environment of the generated datasets, i.e. oy, = 10.0 and
Avyr = 0.75 and the maximum number of iterations until convergence up to a relative
error of 0.001 is set to 4,000. The range of mixture parameters 0 to be put in the KTA

score selection process is [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

A number of adjustments have to be made when the data-driven clustering labels of the
original publication are used for the source data and not the generated NMF labels.
After careful investigation of the Tasic data with the labels from the original
publication, it is best to avoid having very high mixture parameters. Consequently, the
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Frequency in thousands

range of mixture parameters 0 to be put in the KTA score selection process is [0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7]. The parameters of NMF are set to oy, = 1.0 and Ay, = 1.0
in this case, indicating that a stronger L1 regularization is favorable here. The number
of clusters to find is selected in agreement with the true underlying cluster structure.

Preprocessing and parameter selection for independent source and
target datasets

Please see Figure 29 for the histogram of the expression levels in the Hockley™ and
Usoskin® datasets, which are investigated here to choose the parameter values for
preprocessing. Before preprocessing, the original Hockley dataset contains 314 cells
and 45,513 genes. The parameters of the preprocessing filters described above are set to
Xgenes = 2000, x
in Figure 29 A. No cells contain fewer than 2,000 genes with expression > 1 and 35,862
genes with expression < 1 or > 1 in at least 94% of cells are removed. The dataset now
contains expression levels provided as TPM of 9,651 genes in 314 cells. The expression

=1 and x_,,;, =94 after inspection of the expression histogram

expression cells

matrix is log-transformed after adding a pseudo-count of 1.

Before preprocessing, the original Usoskin dataset contains 622 cells and 2,0191 genes
and provides gene counts as CPM. The parameters of the preprocessing filters are set to
Xgenes = 2000’ xexpression

histogram in Figure 29 B. After removing 121 cells that contain fewer than 2,000 genes

=1 and x_,,, =94 following the inspection of the expression

cells

with expression > 1 and 10,911 genes with expression < 1 or > 1 in at least 94% of cells,
the dataset now contains expression levels of 9,280 genes in 501 cells. The expression
matrix is log-transformed after adding a pseudo-count of 1.
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Figure 29: Histogram of expression values in the Hockley**® and the Usoskin® dataset: A Histogram of all
expression values in the Hockley dataset. For 45,513 genes and 314 cells, there are a total of 14,291,082 gene
expression values. 10,181,090 of those equal zero. x- and y-axes are cropped. The location of the frequency minimum
after the zero-inflation at 0.25 implies choosing 1 as the cut-off expression value for preprocessing. B Histogram of
all expression values in the Usoskin dataset. For 20,191 genes and 622 cells, there are a total of 12,558,802 gene
expression values. 10,368,845 of those equal zero. x- and y-axes are cropped. The location of the frequency minimum
after the zero-inflation at 0.25 implies choosing 1 as the cut-off expression value for preprocessing.
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The proposed transfer learning method, as well as its competitor method of
concatenating the source and the target dataset (as described in Chapter 4.2.5), can only
be applied when the set of genes in the source and the target dataset are identical. Using
only the subset of 4,402 genes that appear in both sets, the Hockley dataset now
contains 4,402 genes and 314 cells and the Usoskin dataset contains 4,402 genes and
501 cells. The free parameters in the NMF step of the method are selected according to
the best results in the controlled environment of the generated datasets, i.e.
ayyr =100 and Ay, =075 and the maximum number of iterations until
convergence up to a relative error of 0.001 is set to 4,000. In order to assess whether
rare cell types are present in the Hockley dataset, the number of clusters to group the
cells of the target dataset in is chosen to be £ = 7, which is the number of cell types
identified in the original Hockley publication. The mixture parameter 0 is, again,
selected automatically (see Chapter 4.2.2).

4.2.5 Baseline methods

For assessing the quality of our unsupervised transfer learning solution, we are
interested in investigating the clustering accuracy of our method on a target dataset
compared to two competitor methods. As baseline methods, we implement the original
SC3 clustering method on the target dataset alone (TargetCluster) and on the
concatenated dataset of source and target (ConcatenateCluster). For a visualization of
the baseline methods, see Figure 30.
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Figure 30: Visualization of the three competitor methods for analyzing scRNA-Seq data. A TargetCluster.
Clustering is applied to the target dataset alone. B ConcatenateCluster. Source dataset and target dataset are combined
into one large dataset via simple concatenation before clustering the new dataset as a whole. Performance measures
(i.e. accuracies) are calculated on the target dataset only since it is the main focus of interest for clustering. C
TransferCluster. The proposed method of knowledge transfer is applied to the target dataset learning from a large
labeled source dataset. The resulting, modified target dataset is then provided to the clustering procedure.

4.2.6 Performance metrics

As a supervised performance metric, we use the adjusted Rand index (ARI)*', which
measures the similarity between two data clusterings adjusted for the chance of
randomly grouping datapoints together in one cluster. In order to evaluate the clustering
result of an algorithm, it can be used to compare the given clustering to the true
underlying class labels. Here, we compare the transfer learning results (TransferCluster)
and the baseline results (TargetCluster and ConcatenateCluster) with the known
clustering labels. These are known perfectly in the case of the simulated data and
retrieved from the original publication in the case of the real data. ARI scores are
computed only on the target data, even in the case of ConcatenateCluster, where labels
are computed for both source and target cells.
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4.3 Results

In the following sections, we present the results of the proposed transfer learning
method evaluated on generated, subsampled and independent target and source datasets.
When the underlying truth is known or can be estimated, performance is investigated in
terms of similarity (ARI scores) to the true clusterings. A functional analysis of the
corresponding transcripts and their translational outcomes is performed where the
underlying clustering structures are unknown. In both settings, performance is examined
in comparison to a number of baseline methods, which are presented in full detail in
Chapter 4.2.5.

4.3.1 Results on generated datasets

To assess the performance of the proposed method in comparison to the two baseline
methods in a controlled environment, we conduct a number of simulation experiments
with generated data, where the ground truth of the clustering structure is controlled and
known. This allows us to compute supervised performance metrics for each method and
make objective statements about which method performs best. Figures 31 B-D show the
ARI curves of all three methods on the simulated scRNA-Seq datasets generated
according to the clustering structure in Figure 31 A (from Figure 26) for the three
different settings of overlap between the source and the target, as described in Chapter
4.2.3 (“Validation on generated source and target datasets™).

For complete overlap in the clustering structures of the two datasets, i.e. identically
sampled data, our method, TransferCluster, outperforms the baseline methods for all
sample sizes of the target dataset (Figure 31 B). It exceeds not only the clustering on
the target dataset alone (TargetCluster) but also performs better than concatenating and
clustering source and target data simultaneously (ConcatenateCluster). The latter can
improve the clustering of the target dataset but fails to achieve the same levels of
performance as TransferCluster. The main reason for this is that instead of predicting
the labels of the source dataset - like ConcatenateCluster - TransferCluster uses the true
source labels and incorporates that knowledge into the clustering of the target dataset.
This effect is very strong here since the true source labels are completely known for the
generated datasets.

The ARI curves on simulated data with both overlapping and non-overlapping clusters
in source and target data show that, in this case, transferring knowledge can still help
the analysis of the target dataset and that TransferCluster outperforms both baseline
methods, however not by the same amount as when a complete overlap is present
(Figure 31 C). Concatenating the two datasets (ConcatenateCluster) can lead to
decreased performance for larger target sample sizes, where clustering the target data
alone (TargetCluster) is more successful. Only incorporating the source knowledge via
our transfer learning procedure (TransferCluster) can consistently improve the
clustering results for all sample sizes.
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Figure 31: Performance curves of the three competitor methods on generated datasets for different levels of
overlap. A Count level scRNA-Seq data is simulated according to a predefined hierarchical clustering structure with
eight cell clusters (1-8) that are derived from five top-level clusters (V - Z). Generated datasets are individually split

up by randomly assigning the top node clusters V - Z to source or target. Three different settings are considered: 1.

both source and target data contain cells from all top node clusters V - Z (Complete overlap), 2. three randomly
selected top node clusters V - Z are chosen as common to both source and target, the other two are assigned to either
one of source and target (Incomplete overlap) or 3. cells from two of the top node clusters form the target dataset and
cells from the other three form the source (No overlap). B Clustering performances of the baseline methods,

TargetCluster (clustering on the target dataset alone) and ConcatenateCluster (concatenating and clustering source

and target data simultaneously) and the transfer learning approach (TransferCluster) when the clustering structures of
source and target data are identical (Complete overlap). C Clustering performances of the baseline methods,

TargetCluster and ConcatenateCluster and the transfer learning approach (TransferCluster) for an incomplete overlap

between the cell clusters in source and target data (Incomplete overlap). D Clustering performances of the baseline
methods, TargetCluster and ConcatenateCluster and the transfer learning approach (TransferCluster) for a setting with

two exclusive target top nodes and three exclusive source top nodes and no cell types that appear in both sets (No

overlap). Please note that due to the sampling procedures described above, the number of top-level nodes in the target

datasets decreases from 5 in B to 4 in C and 2 in D and hence the performance of TargetCluster improves from B to
D. 95% confidence intervals are shown.

Specifically, one should note that the performance, as measured by ARI, of
ConcatenateCluster decreases when there is a non-perfect overlap (in comparison to a
complete overlap) and is greatly impaired when there are no overlapping clusters in

source and target data. Combining two sets into one is not to be preferred in those cases.
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The ARI curves on disparate, non-overlapping clusters show that, as expected,
transferring information from a source dataset that is unconnected to the target dataset
cannot improve clustering significantly (i.e. confidence intervals of TargetCluster and
TransferCluster overlap) and using SC3 on the target dataset alone (TargetCluster) is to
be preferred (Figure 31 D). For two exclusive target top nodes and three exclusive
source top nodes and no cell types that appear in both sets (No overlap), concatenating
source and target into one dataset (ConcatenateCluster) has a negative effect on the
clustering of the target cells and should be avoided. Importantly and in contrast to the
ConcatenateCluster, the use of TransferCluster does not significantly reduce clustering
performance compared to de novo clustering of the target data alone and can keep the
levels of performance as high as not taking the source data into account at all, as the
method can choose a low mixture parameter when there is no overlap. To conclude, the
transfer learning approach outperforms both baseline methods and works as expected
for simulated scRNA-Seq data.

We now investigate the effect of the mixture parameter 6, which dictates how much the
newly constructed target dataset should be influenced by the information of the source
dataset. See Chapter 4.2.2 for a detailed description of the parameter selection
procedure of 6. It is automatically selected via an unsupervised assessment of the
clustering quality through KTA scores®'*, which measure the similarity of kernels. The
whole transfer learning and clustering procedure is applied with a number of values for
0 within a prespecified range and the KTA scores between the linear kernel of the mixed
dataset (not its original version) over the cells and the linear kernel of the predicted
labels are calculated. The scores give an indication of how well the predicted labels are
represented in the mixed dataset and thus show how well the clustering procedure
performs for the corresponding parameter value. The parameter value yielding the
optimal KTA score is chosen as the parameter for the final clustering computation and
can give an indication of the transferability between source and target data. Low values
mean source and target do not match very well (i.e. low transferability) and high values
hint at high similarities (i.e. high transferability).

The simulation study on generated scRNA-Seq data is used to investigate the
performance of this parameter selection procedure. Figure 32 gives insight into the
procedure within TransferCluster that automatically selects the mixture parameter 6
based on KTA scores. The first row of performance plots shows the original results on
the generated datasets, which can also be found in Figure 31. The second row presents
the results of TransferCluster for a number of fixed mixture parameter values 6. The
investigation of the mixture parameter 6 of the proposed method for various levels of
overlapping cluster structures in source and target data shows that it has to be chosen
carefully. Zero mixture corresponds to not modifying the target dataset at all, i.e. not
transferring any knowledge from the source dataset (equals TargetCluster). Depending
on the overlap in the clustering structures of source and target data, increasing the
mixture parameter might improve the performance up to a certain point and then
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decrease when there is an incomplete overlap. A high overlap makes the use of high
mixture values necessary. If there is low or no overlap, one needs to use low values or

avoid using the method.
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Figure 32: Performance curves of the three competitor methods on generated datasets and investigation of the
mixture parameter selection process of the transfer learning method for different levels of overlap. A Main
results of the three competitor methods (as seen in Figure 31) for three different settings of overlap in the cluster
structures of source and target data: Complete, incomplete and no overlap. B Results of the baseline methods and

TransferCluster for a number of fixed mixture parameter values 0. The complete range of 0 values is [0.0, 0.1, 0.2,
0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0]. Not all are shown for greater clarity. C Influence of the mixture parameter 6 on
both the supervised performance measure ARI and its unsupervised counterpart, the KTA score for an exemplary
target sample size of 100 cells (other sample sizes show similar results).
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The third row in Figure 32 shows how the mixture parameter 6 influences both the
supervised performance measure ARI and its unsupervised counterpart, the KTA score,
for an exemplary target sample size of 100 cells (other sample sizes show similar
results). For each overlap setting, we investigate how changing the mixture parameter
influences performance measured via supervised (ARI) and unsupervised accuracy
measures (linear KTA). It can be seen that the curves of the two metrics have very
similar shapes for all three overlap settings and, most importantly, have maxima at the
same or at least very close parameter values of 0. This supports the theory that KTA
scores are a good choice for selecting the mixture parameter 6 based on the arguments
of the maxima of KTA scores.

4.3.2 Results on subsampled source and target datasets

Now we present the results of subsampling both source and target from the same real
scRNA-Seq dataset”' and comparing the performance of our method to that of the
baseline methods. In order to validate our approach for a scenario where no reliable
ground-truth labels exist, we first generate synthetic labels of 18 clusters via NMF
clustering”2* on the whole dataset, which we then consider to be the ground truth for
this experiment. Figures 33 A and B show the corresponding ARI curves for complete
and incomplete overlap between source and target dataset. For both scenarios,
transferring knowledge into the target dataset improves its clustering in subsequent SC3
clustering and outperforms both baseline methods. When source and target datasets
share the complete clustering structure (panel A), concatenating the two datasets
(ConcatenateCluster) improves the clustering results of the target data (TargetCluster)
but transferring knowledge via the proposed method (TransferCluster) is seen to
improve it even more. While for a complete overlap, ConcatenateCluster can improve
target clustering by a large margin, especially when the target dataset is relatively small
in comparison to the source dataset (for example, 1/10th of source), the method fails to
find additional gains over de novo clustering of larger target datasets when the
clustering structure in source and target are similar but not identical (Incomplete
overlap, panel B). In this setting, which is the more realistic one in most cases,
ConcatenateCluster does not always perform well and only the knowledge transfer via
the proposed method can consistently improve the target clustering results. Hence, it
should be the preferred option to incorporate source information into a target clustering.

Now, instead of generating labels of the complete dataset via NMF clustering, we use
the data-driven clustering labels provided in the original paper®' as ground-truth labels
and apply the same subsampling procedure as above. Figures 33 C and D show the
corresponding results for complete and incomplete overlap. Again, for both settings, the
transfer learning approach improves TargetCluster clustering on target data alone.
Knowledge is successfully transferred from the source to the target dataset no matter
how big the overlap in the clustering structure of the two sets is.
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Figure 33: Performance curves of the three competitor methods on subsampled source and target data from

mouse visual cortex cells®'

for different levels of overlap. A Clustering performances of all three methods using
NMF clustering labels of 18 clusters generated on the whole dataset as ground-truth labels. Source and target datasets

share the complete clustering structure, i.e. all cell types appear in both source and target data (Complete overlap). B
Clustering performances of all three methods using NMF clustering labels of 18 clusters generated on the whole
dataset as ground-truth labels. The overlap is not complete, i.e. the two biggest clusters of the dataset are assigned to
be either exclusive source or target clusters (Incomplete overlap). C Clustering performances of all three methods
using the data-driven clustering results from the original paper”' as ground-truth labels. Source and target datasets
share the complete clustering structure, i.e. all cell types appear in both source and target data (Complete overlap). D
Clustering performances of all three methods using the data-driven clustering results from the original paper’ as
ground-truth labels. The overlap is not complete, i.e. the two biggest clusters of the dataset are assigned to be either
exclusive source or target clusters (Incomplete overlap). 95% confidence intervals are shown.
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The comparison to the second baseline method of concatenating both sets into one
shows for complete overlap of the clusters in both datasets that transfer learning helps
but cannot outperform ConcatenateCluster. However, in the more realistic setting of an
incomplete overlap in the clustering structures, concatenating the two datasets has a
negative effect on the target clustering, especially for large sample sizes.
ConcatenateCluster collapses and it performs even worse than not using the source data
at all (TargetCluster) for some larger target sample sizes. Transfer learning is able to
avoid this effect and succeeds in incorporating valuable information from the source
data into the target data improving its clustering results consistently for all target sample
sizes. Transfer learning is clearly to be preferred in this setting.

4.3.3 Results on independent source and target datasets

Leaving the controlled environment where source and target data are sampled from the
same distribution, we lastly investigate a real-world application where source and target
are completely independent but biologically related datasets collected at different times
and places. To assess the performance of our method and the baseline methods, we
investigate differential gene expression and biological relevance to known
somatosensory pathways. In Figure 34, we show t-SNE plots for the Hockley data
overlaid with cluster memberships corresponding to the results of methods following
the use of the Usoskin data as source. These results correspond to applying the transfer
learning approach with the level 3 labels from the original Usoskin® publication as a
priori knowledge about the source dataset. See Appendix Chapter III. for a detailed
analysis using source labels that are generated via NMF clustering and using level 1 and
2 labels of the original publication.

As predicted, using TargetCluster (i.e. the method utilizing SC3 clustering of the
Hockley data alone), we identify a similar cluster structure to that observed by the
authors in their original study®*®. Specifically, we identify six well-defined clusters (and
a 7th poorly defined cluster) that can be separated based on gene expression and also an
important anatomical difference related to the spinal region from which the neuron was
collected (i.e. in Figure 34 A, clusters 2 and 4 are both predominantly populated by
lumbosacral sensory neurons as indicated by the use of circles, whilst the neurons
within the other clusters are mainly thoracolumbar in origin as shown by triangles). In
contrast to the original study, TargetCluster does, however, fail to robustly segregate
two biologically distinct groups of cells, which, using the author’s original
nomenclature, are named mNP and mNFa, respectively. In our hands, they correspond
to cluster 1 in Figure 34 A. The first mNP cluster comprises 15 neurons and expresses
Mas-related G-protein coupled receptor D (Mrgprd; Figure 34 B) and Lysophosphatidic
acid receptor 3 (Lpar3); genes previously associated with non-peptidergic nociceptive
pruriceptors®’’. The second mNFa group of 16 neurons expresses P2Y purinergic
receptor 1 (P2ryl; Figure 34 C) and BAIl-associated protein 2-like 1 (Baiap2l1) and is
indicative of mechanosensitive nociceptors®'®,
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Figure 34: Clustering results of independent source (Usoskin et al.*’) and target (Hockley et al.”*’) datasets.
t-SNE plots of the mouse colonic sensory neurons from the Hockley dataset are shown. A TargetCluster, using only
data from Hockley et al. to assign clusters. D ConcatenateCluster, using a concatenation of data from Hockley et al.

and Usoskin et al. (mouse sensory neurons) to assign clusters. G TransferCluster, using the novel transfer learning
approach with Usoskin ef al. as source and Hockley et al. as target. Colors in A, D and G refer to the clusters derived

from the three approaches. In G, clusters 1 and 7 (black dashed boxes), cluster 2 (blue dashed box) and cluster 4

(green dashed box) represent biologically distinct groups of cells with differing sensory functions. This is exemplified
by the cluster-specific expression of specific genes by cluster 7 (B, Mrgprd), 1 (C, P2ryl), 2 (E, Ntm) and 4 (F,
Spp1). Colors in B, C, E and F represent expression levels of these genes [log(TPM)]. Shapes refer to the spinal

segment from which the neuron was isolated (triangle, TL (thoracolumbar); circle, LS (lumbosacral)).
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Whilst SC3 was used by the authors to cluster in their original study, the corresponding
algorithm is not deterministic and produces different results when solving the same
clustering problem multiple times. Indeed, when we count the number of times the mNP
and mNFa clusters are separated when repeating the procedure, TargetCluster is only
correct 224 times out of 1,000. See Table 10 for the corresponding stability analysis.

Table 10: Stability analysis of the three competitor methods on independent source (Usoskin et al.*’) and target
(Hockley et al.”®’) datasets. For each method, we present the number of times a specific cell type is identified
correctly out of 1,000 replications. In each field of the table, the first number corresponds to applying the method to
the original datasets with no additional preprocessing, the second number is the result of applying Seurat batch effect
removal®”’ before the analysis and the third number represents results on datasets that have been imputed with

MAGIC*”,
TargetCluster ConcatenateCluster TransferCluster
mNP / mNFa cluster separation counts 2241230479 5061998 | 902 3521605919
PPEP cluster separation counts 984 11,000 921 4133|431 887 1,000 | 944
pPNF cluster separation counts 999 11,000 | 801 4811962579 1,000 | 1,000 | 831

The use of ConcatenateCluster on both the Hockley and Usoskin datasets improves the
stability of clustering these two groups as separate clusters (506/1,000, e.g. in Figure 34
D, clusters 1 and 7); however, this comes at the expense of clustering accuracy within
the remaining neurons. For example, in Figure 34 D, ConcatenateCluster identifies a
more simplistic cluster structure with 4 clusters and no longer distinguishes separations
between spinal segmental regions (e.g. thoracolumbar and lumbosacral) from which
neuronal subtypes have been collected. As such, the concatenation of target and source,
in this instance at least, may miss biologically relevant clusters. Specifically, what the
original authors suggest as a putative novel peptidergic subtype (pPEP) unique to the
lumbosacral DRG with high expression of neurotrimin (Ntm; Figure 34 E), tyrosine
hydroxylase (7h) and calcitonin polypeptide alpha (Calca) and a second group of
lumbosacral neurons, the pNF subtype, which is thought to represent a low-threshold
mechanoreceptor group within the colorectum with selective expression of secreted
phosphoprotein 1 (Sppl; Figure 34 F) and the mechanotransducer Piezo2, is missed
using ConcatenateCluster.

When knowledge from the larger Usoskin dataset is instead transferred using
TransferCluster, not only is the clustering accuracy of the overall data retained
(identifying seven well-defined clusters), but the probability of separating the clusters
mNP and mNFa is partially increased (for TransferCluster with level 3 labels,
352/1,000; Figure 34 G). Unlike ConcatenateCluster, TransferCluster correctly
identifies not only mNP and mNFa clusters (as highlighted by the black dashed boxes
around clusters 1 and 7 in Figure 34 G) but also spinal region dependent clusters pPEP
(green dashed box, cluster 4, Figure 34 G) and pNF (blue dashed box, cluster 2, Figure
34 G). In order to quantify these effects, we measure how frequently TransferCluster
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separated cluster 2 (e.g. pNF) from cluster 6 (1,000/1,000) compared to
ConcatenateCluster (481/1,000) and likewise, how frequently cluster 4 is separated
from cluster 3 (887/1,000) compared to ConcatenateCluster (4/1,000).

See Appendix Chapter III. for a detailed stability analysis using different source labels
(i.e. generated via NMF clustering or using level 1 and 2 labels of the original
publication) as a priori knowledge in TransferCluster.

In additional experiments, we apply an established batch effect removal preprocessing
step®®’ to combine the Usoskin and Hockley datasets, which are then separated and our
three clustering methods applied as described above. Batch effect removal improves the
performances of both ConcatenateCluster and TransferCluster; however, transfer
learning still outperforms simultaneous clustering on the combined dataset. For
example, ConcatenateCluster fails to reliably identify pPEP cells (33/1,000), whilst
TransferCluster following batch effect preprocessing finds all three cell types of interest
in the majority of cases (mNP/mNFa split: 605, pPEP: 1,000 and pNF: 1,000, Table
10).

Table 10 also shows the results of applying a widely used imputation method*' to the
original datasets before applying the three clustering methods. It can be seen that
imputation improves the performances of all methods on (almost) all clusters, but
transfer learning still outperforms clustering on the target dataset alone and
simultaneous clustering on the combined dataset in some areas. Specifically, for
identifying mNP and mNFa clusters, transfer learning improves the results and yields
almost twice as many correct results as TargetCluster (919/1,000 vs. 479/1,000).
TransferCluster is still the only method that identifies all three clusters in the majority of
cases (919/1,000, 944/1,000 and 831/1,000 for the three clusters of interest). In
comparison, TargetCluster does not perform as well when looking at the mNP/mNFa
clusters (479/1,000) and ConcatenateCluster does not do as well considering the pPEP
and the pNF clusters (431/1,000 and 579/1,000). Please note that imputation through
MAGIC®" greatly increases the overlap in genes between the two datasets after gene
filtering from 4.402 to 20.125 common genes. The larger common feature space
provides an explanation for the positive effect of MAGIC on the performance of
clustering after concatenation or transfer learning. However, ConcatenateCluster -
which also profits from the increased number of common genes - does not perform as
well as TransferCluster (looking at the pPEP/pNF clusters). Hence, knowledge transfer
is necessary and improves clustering regardless of whether MAGIC is used or not.

As an additional analysis, we now present an investigation of the internal procedure for
choosing a mixture parameter 0 for the knowledge transfer from the Hockley to the
Usoskin dataset. As described in Chapter 4.2.2, it is selected based on KTA scores,
which are calculated for assessing the similarity between the linear kernel of the mixed
dataset and the linear kernel of the cell type labels predicted by subsequent SC3
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clustering. Since this similarity score can be interpreted as a measure for the quality of
the clustering result, we select the value of 0 that results in the highest KTA score. In
Figure 35, we present the KTA scores of the Hockley dataset with transfer from
Usoskin for a range of the mixture parameter 6 between 0 (meaning no mixture, i.e. no
transfer learning) and 1 (meaning full mixture) and note that high values of 6 are to be
avoided in this case and lower values of 0 should be preferred. The maximal KTA score
is obtained for 8 = 0.7, which is the value that is consequently selected by the automatic
procedure. These findings indicate that the proposed transfer learning method is able to
identify relatedness but also differences in the two datasets by automatically choosing a
mixture parameter that lies in the middle of the range of possible values of 6. This is in
accordance with the fact that the source and target datasets are completely independent
but biologically related, datasets collected at different times and places, which are
expected to share some cell types but not all.

1.0

0.8

0.6

KTA score

0.2

0.0 T T T T T T T T .
00 01 02 03 04 05 06 07 08 09 1.0

Mixture parameter 8

Figure 35: Investigation of the mixture parameter selection process of the transfer learning method for
independent source (Usoskin ef al.*’) and target (Hockley et al.”*’) datasets. Influence of the mixture parameter 0
on the unsupervised performance measure - the KTA score - for the Hockley target dataset and the Usoskin source
dataset. The automatic selection process chooses the argument of the maximum of this curve, which is 0.7, as the
mixture parameter to use for the final clustering analysis.

To summarize, we show that TransferCluster is able to consistently improve the
reliability of clustering small datasets through the transfer of knowledge from larger,
biologically relevant, yet independent datasets. The proposed method automatically
estimates the level of similarity or transferability between two datasets and adjusts the
corresponding mixture parameter accordingly. The method is improved by and
amenable to existing preprocessing approaches.
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4.4 Summary and discussion

To address challenges in the field of clustering scRNA-Seq datasets, a number of
methods have been presented in the literature to make use of datasets from different
studies, laboratories or points in time. These approaches can be classified into two
groups:

1. Multitask learning approaches that solve clustering problems of multiple

292,293,295-304

datasets simultaneously while correcting for batch effects and

2. Transfer learning approaches that use large reference datasets to improve

the clustering of target datasets that are often smaller in sample size**>",

The main point of interest of this dissertation laid in transferring knowledge without
having to combine datasets and thus, our focus was on methods that fall into the second
category. Rather than limiting a clustering method to a reference set of cell types®®=",
we aimed to enable the annotation of new target clusters. This left us with only one
method, called SAVER-X?'? that is most closely related to the present research in
aiming to adjust a target dataset with information from a source dataset. By training a
deep autoencoder on the target dataset and initializing it with weights obtained from
training on the source dataset SAVER-X achieves denoising of the target dataset.
Denoising, however, was not the only goal of our method, which can additionally be
used to induce certain specific properties of the source dataset into the target dataset by
making use of pre-existing source labels. In contrast to our method, SAVER-X depends
on large sample sizes and is also not convex. Another relevant deep learning-based
approach®” focuses on improving the clustering of a target dataset with the help of a
source dataset that does not share any cell types with the target dataset. The method is
not comparable to our transfer learning approach because we concentrated on problems
where source and target data share a significant number of cell types.

For the aforementioned reasons and to our knowledge, this work presented a novel
approach to a unique problem setting that had so far not been addressed in previous
literature.

To summarize, we proposed a novel and powerful method for transferring knowledge
from a well-annotated source dataset to a target dataset of a smaller sample size for
which new cluster annotations are desired. Source clustering labels can be incorporated
as part of this knowledge when available but are not required. The knowledge transfer
procedure is based on the application of an NMF step on the source dataset before
transferring the learned knowledge to the target dataset by reconstruction of a new
target dataset. Finally, this modified target dataset can potentially be provided to any
clustering algorithm. We have shown here that it can be successfully applied to SC3
clustering and improved the results of SC3 consistently for a range of different settings.
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Specifically, transferring knowledge from a large well-annotated source dataset to a
smaller target dataset was not only more successful than applying SC3 to the original
target set alone but also to a simple concatenation of the source and target. This was
found to be true in both simulated and real-world environments where source and target
were either sampled from identical distributions of cells or only shared a subset of cell
clusters. In real-world applications, the method is thus especially helpful when the
overlap between source and target data is not perfect and concatenation of the two
datasets is not a good option. The method was shown to perform well regardless of
whether reliable clustering labels of the source data are available or not. The
performance of the proposed method was further improved by applying appropriate
preprocessing batch effect removal or imputation before clustering.

In regards to the thesis investigated in this dissertation, the proposed method represents
a combinatorial approach of a widely used clustering algorithm - SC3 - and a novel
transfer learning technique - based on NMF - for the analysis of sScRNA-Seq datasets. In
accordance with the proposed thesis, it was successfully applied to better understand the
translation of genetic code into phenotypes and biological function in the context of cell
types and was shown to increase the clustering accuracy of existing techniques. In
addition, it was shown that only the combination of the individual components of the
approach can achieve the desired increase in clustering accuracy and that - in this
context too - “the whole is greater than the sum of its parts™* (derived from Aristotle,
4th century BC).

The proposed approach can be extended to explore a number of different research
directions since it is relatively easy to apply, modify and adjust. Other downstream
analysis methods instead of the SC3 clustering methods or even instead of clustering, in
general, could be used. As mentioned before, it is also possible to use the proposed
method to transfer knowledge from small to large datasets. Additionally, the transfer
learning approach can be applied to other areas of scientific research in biological and
medical fields.

Potential future research directions making adjustments to the method itself might
include the incorporation of different source and target feature spaces. If Xy and X,

only share a small set of transcripts, a loss of (probably) vital information is inevitable
since only the set of genes present in both datasets can be used. Most of the multitask
learning methods listed above only use the intersection of genes of all datasets when
combining the datasets. Future work should thus focus on making adjustments to the
method that allow the inclusion of different sets of source and target genes. One
important technical point here is that scRNA-Seq experiments often make a trade-off
between high cell numbers and high gene numbers. While technologies like 10X *°
enable high cell numbers but low gene coverage, other tools like SMARTSeq2 *"° use
low cell numbers but generate high gene coverage. Ideally, one would like to use a 10X
dataset (or similar) to aid the clustering of a SMARTSeq2 dataset (or similar) but
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somehow retain the detailed gene information. In this kind of setting, where the target
dataset has substantially more genes than the source dataset, a simple modification of
our method is straightforward: While the transfer learning procedure can be applied
without changes to the genes in both source and target, all other genes in the target
dataset can be left constant. A more sophisticated way to modify the method
accordingly would be to make use of a learned covariance matrix over the target genes
to adjust those genes that are in the target but not in the source. The same procedure can
be applied in a setting where there are source genes that are not part of the target
dataset.

Finally, we would like to address the limiting factors of the proposed transfer learning
method. As we have discussed in Chapter 3.4, ML approaches always depend on the
amount and quality of the available training data. Here, the performance of the proposed
transfer learning technique specifically relies on a high-quality source dataset. As we
have shown earlier, our approach can be combined with quality-improving techniques
(such as imputation or batch effect removal), but future adoptions of the method could
potentially focus on the robustness of the method and consider low-quality cell
readings. In this respect, another potential limitation of the transfer learning approach
lies in the fact that it depends on the existence of meaningful information in the source
dataset that is transferable to the target dataset. To minimize the effect of analyzing
mismatched datasets with our method, we introduced the procedure that automatically
adjusts the level of transfer via the mixture parameter. However, this cannot guarantee
that the method is misused in exceptional cases.

Regarding the usefulness of our method for future scRNA-Seq studies, we need to
mention the increasing dataset sizes caused by the fast-moving technological advances
in the field. As our approach addresses situations where the target dataset is small, one
might think it could become obsolete once more powerful and cost-effective
technologies are available. However, some rare tissues and cell types will always be
hard to collect from living organisms (especially humans) or even inaccessible. Transfer
learning approaches will be helpful for the analysis of such datasets and can also
improve the performance on large datasets. Then and when applying the transfer
learning method in scenarios other than scRNA-Seq, scalability might become an issue,
but several approaches to factorizing large-scale datasets have been presented in the
literature®**?2, Methods for updating NMFs online when new data is available without
recalculating from scratch have also been proposed®®. In this dissertation, we focussed
on situations where learning a target task is the main point of interest, but in other
scenarios, the goal might be learning two or more related tasks simultaneously. Our

approach could be adopted to jointly factorizing multiple interrelated datasets 4%,

Considering the stability of our method, it is important to note that its non-deterministic
characteristics are caused by the SC3 clustering algorithm and the algorithmic search
for global minima of the factorizations. In several stability experiments, we have shown
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that the findings of our method are consistent when reapplied to the datasets under
investigation. However, they still heavily depend on the hyperparameters and the
initializations of the learning variables. Throughout our studies we have noticed a high
sensitivity to these factors, which is another reason why an automatic selection of the
mixture parameter was developed.

Finally, considering the explainability of our transfer learning approach, it is crucial to
note that the NMF acts as a black box. So far, it is not intuitively possible to understand
what information was transferred from the source to the target dataset and why. The
concepts of XAI, as described in Chapter 2, should be utilized to increase
interpretability and build trust by showing that the knowledge transfer of our method is
actually meaningful.
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5 Conclusion

The aim of this dissertation was to validate the proposed thesis that combinatorial
approaches of traditional methods and novel ML ideas for the analysis of large-scale
biological datasets can be developed and successfully put into practice to better
understand the translation of genetic code into phenotypes and biological function
increasing the statistical power and accuracy of existing techniques.

In this context, the first contribution consisted in proposing to employ the full potential
of Al methods to improve and expand on the traditional analysis of GWAS, which is
commonly based on multiple testing methods and fails to explain large fractions of
heredity for complex phenotypes. To overcome the major drawbacks of these
conventional testing procedures, the idea was to combine them with ML algorithms that
- in contrast to RPVT - base their prediction not only on the information at a specific
SNP but take the entire dataset of all SNPs, including correlation structures, into
account. The positions in the genome that had the largest effect on the classifier’s
decision were then assumed to be good candidates for RPVT. Hence, the first proposed
method - called COMBI - trains an SVM'"" for phenotype prediction and selects -
based on the learned weights of the SVM - a set of candidate SNPs for multiple
hypothesis testing. It was shown that COMBI outperforms the traditional RPVT
statistical testing approach on generated data as well as on seven real-world GWAS
datasets for which validation was achieved via replicability in external studies. It was
also found that the individual components of the proposed combinatorial approach
cannot achieve comparable performance when applied separately. Neither the SVM
weights nor the raw p-values as direct test statistics can achieve the same accuracy as
the COMBI p-values, not even when they are processed through the moving average
filter that is a crucial part of the COMBI method. In agreement with the proposed thesis
of this dissertation, this proved that only the combination of these components of the
algorithm could successfully improve the identification of SNPs that are associated with
the phenotype under investigation. Several additional competitor methods were
investigated and COMBI was shown to outperform the statistical power and accuracy of
existing techniques. Traditional approaches for the analysis of GWAS either concentrate
on phenotype prediction”™ or aim at the identification of genotype-phenotype
associations® %, Typically, these methods are of purely statistical nature***, but
recently ML has also emerged as an important tool for investigating genomic data. The
most important ML publications in the context of the proposed COMBI method focus
on the ML-based identification of phenotype-associated SNPg0#63:66:213.243-246 = The
COMBI method was shown to outperform a set of representative competitor
approaches, including other combinatorial ML approaches (Roshan et al%,
Meinshausen et al.?’’ and Wasserman and Roeder*'’) and two purely statistical analysis
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tools (Lippert et al.’%*?). While Wasserman and Roeder’!® lose a great amount of
statistical power by splitting the datasets into two parts for separate SNP preselection
and statistical testing, the LMMs proposed by Lippert et al.!5!%

locations and pairs thereof individually instead of simultaneously.

still test genetic

To further elaborate on the proposed thesis of this dissertation and reacting to the
development of high-performing DNNs in many fields of data science, we proposed a
deep learning-based extension of COMBI, called DeepCOMBI. Deep learning and XAI
for the analysis of large-scale biological datasets can improve our understanding of
genetic code and biological function by exploring the genetic architectures of
phenotypes in GWAS. The novel algorithm replaces the rather simple prediction tool of
the COMBI method (i.e. the linear SVM) with a more sophisticated deep learning
method by training a DNN to classify subjects into their respective phenotypes.
Subsequently, it makes use of the concept of explainability to uncover the
decision-making process of DNNs. It explains the classifier’s decisions by applying
LRP'*"™, The method eventually utilizes the LRP relevance scores to determine the
subset of most relevant features identifying the positions in the genome that are
statistically associated with the trait under investigation. The statistical testing step is
adopted unchanged from the original COMBI method. We found that the proposed deep
learning techniques and explanation methods improved the performance of the
combinatorial approach even further. DeepCOMBI was shown to perform better than
the original COMBI method on both generated controlled datasets as well as on real
GWAS datasets. The new method was also compared favorably to the baseline methods
of RPVT and raw LRP relevance scores. In agreement with the proposed thesis of the
dissertation, it was once again shown that the combination, not the individual
components of the method, showed the highest performance increase. As a similar deep
learning-based approach, we discussed the method proposed by Romagnoni et al.’®,
who were the first to use XAl in the context of GWAS and apply PFI as an explanation
method on a GWAS dataset. However, the corresponding NN could not outperform
traditional ML-based tools in terms of prediction accuracy. The model-agnostic
approach of PFI that left space for improved performances of more sophisticated
explanation methods - like LRP - specifically tailored to NNs.

After having validated the proposed thesis of this dissertation in the field of GWAS and
making two methodological contributions to the identification of important positions in
the genome, the goal was now to elaborate on the thesis in another field of biological
research. Beyond the identification of associations between phenotypes and genotypes,
we aimed to contribute to a better understanding of how genetic information is
translated into physical structures and cell function. When investigating the
transformation of genetic information from DNA to mRNA to proteins, the genome is
often interpreted in the context of cell types by examining which genes are active in
certain cells. To this end, the technique of quantifying all mRNA molecules in single
cells, called scRNA-Seq, has given rise to many important insights by clustering cells
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according to their transcriptome. Challenges remain when high experimental efforts
lead to small but high-dimensional datasets and both multitask learning approaches®?>%
and transfer learning approaches®®"* have been proposed in this context. To overcome
the issues of small datasets and in accordance with the thesis of this dissertation, we
proposed to combine the ML concept of transfer learning with a widely used algorithm
for clustering scRNA-Seq data. The novel method allows to utilize a priori knowledge
from large, well-annotated reference datasets, including the corresponding clustering
labels when available. Through the use of NMF*%° of the source dataset to reconstruct
a modified version of the target dataset, the clustering result of a traditional downstream
clustering algorithm was improved. We showed that we can achieve higher performance
rates when clustering the modified dataset instead of the original target dataset or the
concatenation of source and target dataset. This was investigated in a number of
different settings, including simulated and real-world environments. Once again, it was
shown that a combinatorial approach of existing tools and novel ML ideas improved the
analysis of large-scale biological datasets. Most competitor transfer learning methods
limit a clustering method to a reference set of cell types*®!! and only a few allow the
annotation of new target clusters. While one deep learning-based method, called
SAVER-X?'?| focuses on denoising the target dataset, another approach® aims to
improve the clustering of a target dataset with the help of a source dataset that does not
share any cell types with the target dataset. These methodological goals might be
closely related but are not equal to the goal of the method proposed here, which aims to
induce specific properties of the source dataset into the target dataset, which share a
significant number of cell types.

To summarize and conclude, this dissertation contributes to one of the most important
challenges in biology - understanding the genome and the processes around its
translation into biological structures and functions. By proposing three combinatorial
approaches for the analysis of large-scale biological datasets, each consisting of
traditional methods on the one hand and state-of-the-art ML algorithms on the other, we
showed that, in this context too, “the whole is greater than the sum of its parts”*
(derived from Aristotle, 4th century BC). The two GWAS-related methods can
determine locations on a genetic sequence which affect the probability of having a
specific disease or trait and the scRN-Seq-related method enhances the grouping of cells
into specific classes based on their transcriptomes. Hence, in the course of this
dissertation and in full support of the proposed thesis, it was shown that combinatorial
approaches of traditional methods and novel ML ideas for the analysis of large-scale
biological datasets can be developed and successfully put into practice to better
understand the translation of genetic code into phenotypes and biological function
increasing the statistical power and accuracy of existing techniques. In future
applications, the three proposed methods could be used consecutively to first identify
SNPs that are associated with a phenotype and then to determine in what cells types the
corresponding gene is activated to cause the phenotype to develop. Great potential lies
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in the possibility of utilizing the findings of the proposed methods in practical
applications, e.g. for predictive personal prognosis, data-driven diagnosis, the design of
optimal treatment plans or the identification of potential drug targets.

To round off this dissertation, we want to mention the many possible future research
options. The proposed approaches can be extended to explore numerous different
directions by substituting one of the general alogrithm’s substeps with other suitable
procedures. Specific suggestions for future work regarding the proposed methods are
described in the discussion sections of the corresponding chapters. Most of these ideas
consider applying either other ML methods or different traditional data analysis
methods that need performance boosting. Since deep learning and XAl have gained
huge attention from the scientific community, the proposed methods could benefit from
recently published approaches in this field. Besides classification, which forms the core
of ML, and clustering, which is the traditional analysis in scRNA-Seq, it would be
interesting to adjust and study the proposed methodologies for other learning tasks such
as regression or detection. Future research could also focus on exploring combinatorial
approaches in semi-supervised learning or online learning. Furthermore, the proposed
combinatorial approaches can be applied to other areas of scientific research in
biological and medical fields, e.g. clinical decision support in cancer diagnosis. Finally,
future work could also aim at exploring applications in other fields where widely used
traditional methods need improvement through the introduction of novel ML-based
approaches.
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Appendix

[.  Parameter investigation on the conservativeness of the
COMBI method on generated datasets

In this chapter, we discuss reasons for the conservativeness of the COMBI method when
the permutation-based thresholding procedure (see Algorithm 2 in Chapter 3.2.2 in the
main text) is applied. We investigate this phenomenon on the generated datasets from
Mieth et al. 2016'°. Please note that during this initial phase of the dissertation, a
slightly different experimental setup for the generated datasets was employed and
DeepCOMBI was not introduced yet. For example, 10,000 datasets were generated here
instead of 1,000 in the DeepCOMBI publication's, which - without loss of generality -
causes the performance curves here and in the main text not to be identical. As a starting
point, we present the ROC performance curves and the corresponding
permutation-based thresholding result of the COMBI method and its competitor, RPVT,
on the 10,000 datasets from 2016 in Figure A.1.

0.45

0.35

RPYT
RPYT with I* from resampling method
G OMEB| method
S GOMER il St it i M S

(Family-wise) True-positive rate

.25 1 i -
1] 0.02 n.n4 006 0.ng 0.1

Familiy-wise error rate

Figure A.1: Main results of both COMBI and RPVT methods applied to the semi-real generated datasets with
controlled phenotypes: TPR averaged over 10,000 generated datasets as a function of the FWER. The dots mark
measurements of the permutation-based calibration, where the corresponding thresholds are calibrated to guarantee a

FWER of a.<0.05.
It can be seen that in the controlled environment of generated datasets, the
permutation-based threshold calibration yields a rather conservative error rate. The
COMBI method does not exploit the full significance level but makes fewer errors than
anticipated. Instead of the desired error rate of a < 0.05, a FWER of only around 1% is
achieved. Even though it is desirable to increase power by simultaneously making more
mistakes, i.e. as many as anticipated, it is important to note that the COMBI method has
lower error rates and higher power than the RPVT method in combination with the
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same permutation-based calibration principle. Reasons for the conservativeness of the
COMBI method are now to be investigated further.

An effect that makes the COMBI method conservative is the different number of
uninformative (or noise) SNPs the threshold calibration is based on and eventually
applied to. To illustrate this, assume that £ = 30, indicating that the 30 SNPs with the
highest SVM weights are selected for each replication in the permutation test and
p-values are computed. The significance threshold is then determined based on these
p-values only. As the threshold is calibrated on random labels, it is based on the
p-values of 30 uninformative SNPs. However, when we train on real labels when
applying the threshold, it is very likely that 20 informative SNPs are selected as part of
the 30 highest ranked SNPs. There are thus only 10 spots left for the noise SNPs, which
are rejected only if they exceed the threshold. Having 10 instead of 30 noise SNPs
makes an erroneous rejection much more unlikely. Thus, the COMBI method makes
fewer mistakes than anticipated and is rather conservative. To validate this hypothesis,
we perform a number of experiments where different parameter values are altered to
achieve the correct FWER of 5%. In the first experiment, & is increased in a way that the
number of noise SNPs remains constant. Instead of only selecting & SNPs (noise or
informative), we select the informative SNPs that are amongst the k£ best SVM weights;
in addition to that, the best k noise SNPs, i.e. k} = k+ Nrpis where Nrp, is the number

of true positives among the k best SNPs in the i-th replication of the experiment. This
should eliminate the described effect and hence yield a FWER closer to that set prior to
the permutation test. Applying this slightly modified COMBI method to the 10,000
generated semi-real datasets leads to a FWER of around 5% and thus supports this
hypothesis. Note that these modifications can only be applied to datasets where the
ground truth and thus nyp;, is known. To investigate this effect in more detail, we now

perform an experiment where we increase the number of selected SNPs in order to
check whether this also yields a less conservative error rate. Figure A.2 shows that
increasing & to a maximum of 1,000 yields a FWER of 5%. This is reasonable, as
increasing k means increasing the fraction of noise SNPs in the set of SNPs that are
picked via the permutation-based calibration procedure. For £ = 1000, enough SNPs
are selected and we yield a non-conservative FWER of 5%. The fewer SNPs we select,
the better the curve we achieve and the more conservative the permutation-based
calibration. The optimal curve but also the most conservative threshold calibration is
reached for k& = 30, which is the parameter chosen for all other applications of the
COMBI method. Even though it does not exploit the full level of error, it yields the
highest power using the permutation-based calibration. The higher £, the less optimal
are the resulting performance curves, but also the closer is the corresponding ENFR to
the anticipated 5%. For k£ <30, the ROC curve of the COMBI method suffers a severe

loss in power.

152



True-positive Rate

A ' T |
I
|
|
|
I
I
04t | 1
)
: Fam—
| ——
I
|
|
I
I
I
)
|
03 !
|
|
I
|
|
I
I
|
|
|
|
I
)
|
02 1 R
I
I
|
|
I
I
|
i == COMBI method with & = 10
i COMBI method with k = 30
: “ COMBI method with k = 50
1 == COMBI method with k = 100
- : ; i = COMBI method with k = 500
0 0.02 0.04 0.08 0.08
ENFR

ENFR

noar

003

002}

oo

1 ! L 1
10 20 30 50 100 200 500
k

Figure A.2: Performance curves and ENFR of COMBI for different values of &k on generated datasets from
Mieth et al. (2016)"°. A ROC curves and B ENFR of the COMBI method averaged over the 10,000 generated
datasets are shown, both for increasing £, i.e. the number of SNPs to select in the screening step, from 10 to 500. The
points in A represent the results of the COMBI method after applying the permutation-based significance threshold,
which is calibrated to guarantee a FWER of a < 0.05. Mean and standard deviation of ENFR are shown in B for

different values of k.
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The next parameter to be investigated is the effect size parameter y, which is involved
in the data generation process. We expect that for high levels of noise, i.e. when there is
a small effect size and basically a complete lack of real association, the FWER of the
COMBI method approaches the expected 5% because the 30 selected SNPs selected are
all noise SNPs. Thus, the threshold is not only based on noise SNPs but also only
applied to noise SNPs. Observe from Figure A.3 that for a predefined o < 0.05, the
correct FWER is actually achieved for a minimal effect size of y =0.25, which is
almost equivalent to having a maximum level of noise and therefore no informative
SNPs associated with the disease. The curve is optimal for minimum noise / high effect
size, where the identification of true associations is much easier, which supports the
hypothesis from above.
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Figure A.3: Performance curves and ENFR of COMBI for different values of the effect size parameter y on
generated datasets from Mieth et al. (2016)'"°. A ROC curves and B ENFR of the COMBI method averaged over
the 10,000 generated datasets are shown, both for increasing vy, i.e. the effect size parameter, from 0.25 to 1,000,
where high values correspond to low noise and low values to high noise in the process of simulating the datasets. The
points in A represent the results of the COMBI method after applying the permutation-based significance threshold,
which is calibrated to guarantee a FIWER of a < 0.05. Mean and standard deviation of ENFR are shown in B for
different values of vy .
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Observe from Figure A.4 that we achieve the error rate expected after setting a < 0.05

in the permutation test only for a filter length 7, of 1, which corresponds to applying
no filter. The error rate decreases and power increases with increasing the filter length
up to 35, where the curve is optimal. The method yields higher error rates and less
power for greater filter lengths. This finding is in agreement with what Alexander and
found. We, therefore, decide to use a filter length of 35, which yields optimal

231

Lange
but conservative results.

We learn from these experiments that the proposed method may achieve lower error

rates and higher 7PR than anticipated.
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Figure A.4: Performance curves and ENFR of COMBI for different values of the filter window size / filter
generated datasets from Mieth ez al. (2016)'°. A ROC curves and B ENFR of the COMBI method averaged over

the 10,000 generated datasets are shown, both for increasing lﬁher , i.e. the filter window size, from 1 to 501, where

the former corresponds to applying no filter at all and the latter to an extremely strong flattening filter. The points in
A represent the results of the COMBI method after applying the permutation-based significance threshold, which is
calibrated to guarantee a FWER of 0. < 0.05. Mean and standard deviation of ENFR are shown in B for different

values of lﬂlmr .
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II.  Stability analysis of the COMBI method on WTCCC data

In order to establish an internal validation criterion of the COMBI method on WTCCC
data, we analyze the stability of the reported associations, which indicates how well the
results can be reproduced on another independent sample. Stability is a desirable
property of any SNP-selection method: if a method is not stable, it could either indicate
that too many locations are selected, meaning that the result contains a random subset of
non-significant SNPs, or that not enough locations are selected so that the result
contains only a random subset of the significant SNPs. To investigate stability, we
proceed as follows: the original data is randomly split into two equally sized subsets (of
individuals), 4 and B, ten times. The method under scrutiny, i.e. either the COMBI
method or standard RPVT, is applied separately to the data from sets 4 and B, leading to
sets S(4) and S(B) of reported SNPs, respectively. Using the Tanimoto Index**

S(ANS(B
T(S(4), S(B) =L35

the used method is measured. Here |S| denotes the cardinality of the set S. In this

the similarity of these two sets and thus the stability of

manner, the stability of the COMBI method can be compared to the stability of standard
RPVT. Simulation results considering the internal stability of the two methods when
applied to the WTCCC Crohn’s Disease dataset are shown in Figure A.S.

0.75

RPVT
= COMBI method

05+

025+

!

0 2‘5 SI[I TIS 100
Mean number of reported associations
Figure A.5: Stability analysis of RPVT and COMBI on Crohn’s Disease WTCCC dataset from Mieth ef al.
(2016)"°. The averaged Tanimoto stability indices between the reported associations in two randomly selected subsets
of the Crohn’s disease dataset are shown for varying numbers of reported associations. Higher Tanimoto indices
indicate higher stability of the method.

Tanimoto stability index

COMBI produces more stable results than RPVT. The Tanimoto stability index is
w . When we

repeatedly split the data into two parts and investigate how similar the results of the two
methods are in the two subsets, we find that the results of the COMBI method are more
similar and thus more stable than RPVT independently of the mean number of reported
associations (varied via the significance threshold) for all levels of ENFR. This result
holds true for all seven diseases and is robust with respect to the parameter & (number of
SNPs selected in the screening step) (see Figure A.6).

plotted against the mean number of reported associations, i.e.
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Figure A.6: Stability analysis of RPVT and COMBI for different values of £ on six WTCCC datasets from
Mieth et al. (2016)'". The averaged Tanimoto stability indices between the reported associations in two randomly
selected subsets of the Crohn’s disease dataset are shown for varying numbers of reported associations. Higher

Tanimoto indices indicate higher stability of the method.
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III. Extended clustering analysis on independent source and
target datasets using various source data labels as a priori
knowledge

In Chapter 4.3.3 of the main text of this dissertation we investigate the performance of
the proposed transfer learning method using level 3 labels from the original Usoskin et
al. publication® as a priori knowledge about the source dataset. Here, we present
additional analyses using different source cluster labels. As with the Tasic dataset”', we

t*% pretending no reliable source labels for the Usoskin

first analyze the Hockley datase
dataset are available and generate them via NMF clustering. We assume a complete
overlap between the cell types in source and target data and choose the number of
clusters to be k£ = 7 for the source label generation. Afterwards, we use the source labels
from the data-driven clustering of the original Usoskin et al. publication®’. They
provided labels in the form of a hierarchical clustering, which was cut off at three
different levels resulting in three different sets of source labels with different numbers
of clusters (4,8 and 11 cell types). Here, in addition to the results in the main text on

level 3 labels, we present the results for NMF labels, level 1 and level 2 labels.

Figure A.7 shows the clustering results of all competitor methods on the Hockley
dataset. TargetCluster uses only data from Hockley to assign clusters and
ConcatenateCluster uses a concatenation of data from Hockley and Usoskin to assign
clusters. TransferCluster uses the novel transfer learning approach with Hockley as
target and Usoskin as source with four different sets of corresponding labels.
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Figure A.7: Clustering results of independent source (Usoskin ef al.*’) and target (Hockley et al.’*’) datasets
using different clustering memberships of the source dataset. t-SNE plots of the mouse colonic sensory neurons
from the Hockley dataset are shown. A TargetCluster, using only data from Hockley et al. to assign clusters. B
ConcatenateCluster, using a concatenation of data from Hockley ef al. and Usoskin ef al. (mouse sensory neurons) to
assign clusters. C TransferCluster, using the novel transfer learning approach with Usoskin et al. as source and
Hockley et al. as target with NMF labels for the source dataset. D TransferCluster with level 1 labels for the source
dataset, E TransferCluster with level 2 labels for the source dataset. F TransferCluster with level 3 labels for the
source dataset. Colors refer to the clusters derived from the different approaches. Shapes refer to the spinal segment
from which the neuron was isolated (triangle, TL (thoracolumbar); circle, LS (lumbosacral)).

Since SC3 - the clustering method used for all approaches investigated in this
dissertation (TargetCluster, ConcatenateCluster and TransferCluster) - is not
deterministic and produces different results when solving the same clustering problem
multiple times. We count the number of times some specific clusters of interest are
separated correctly from each other by the three methods when repeating the procedure
1,000 times. Three pairs of clusters are identified to be of interest and Table A.1 shows
the number of times each of these pairs of cell types is separated correctly. Two
biologically distinct groups of cells, named mNP and mNFa cells (Main Figure 32 G
Cluster 1 and 7), are only separated 224 times when applying SC3 on the target dataset

alone. Taking source information via the proposed transfer learning method

159


https://paperpile.com/c/QS9fGm/BEXl
https://paperpile.com/c/QS9fGm/swBQ

TransferCluster with NMF or level 1, 2 and 3 labels into account consistently increases
this number (to 469, 300, 313 and 352, respectively). Concatenating source and target
datasets and applying SC3 to the complete dataset (ConcatenateCluster) increases the
number of times mNP and mNFa cells are correctly separated even further to 506.
However, this comes with a loss of performance when looking at the other two pairs of
cell types that are only poorly separated with ConcatenateCluster. pNF cells (Main
Figure 32 G Cluster 2 vs. 6) are only separated 481 times and the pPEP cells (Main
Figure 32 G Cluster 4 vs. 3) only 4 times. In contrast, TransferCluster is able to almost
perfectly separate pNF clusters independent of what labels are used for the source
dataset (999; 1,000; 1,000; 1,000 for NMF, level 1, 2 and 3 labels, respectively) and also
has very high separation rates for the pPEP cell types (984, 703, 706 and 887 for NMF,
level 1, 2 and 3 labels, respectively).

Table A1: Stability analysis of the three competitor methods on independent source (Usoskin et al.*’) and target
(Hockley et al.”*’) datasets using different clustering memberships of the source dataset. For each method, we
present the number of times a specific cell type is identified correctly out of 1,000 replications. In addition to the
numbers of TargetCluster and ConcatenateCluster, the numbers for TransferCluster with NMF labels for the source
dataset, with level 1 labels for the source dataset, with level 2 labels for the source dataset and with level 3 labels for
the source dataset are shown.

mNP/mNFa pNF cluster pPEP cluster
cluster separation separation separation
counts counts counts
TargetCluster 224 999 984
ConcatenateCluster 506 481 4
TransferCluster with NMF labels 469 999 984
TransferCluster with level 1 labels 300 1,000 703
TransferCluster with level 2 labels 313 1,000 706
TransferCluster with level 3 labels 352 1,000 887
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