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Abstract
Ultracold atoms offer a unique opportunity to study many-body physics in a clean and
well-controlled environment. However, the isolated nature of quantum gases makes it difficult to
study transport properties of the system, which are among the key observables in condensed matter
physics. In this work, we employ Markovian feedback control to synthesize two effective thermal
baths that couple to the boundaries of a one-dimensional Bose–Hubbard chain. This allows for the
realization of a heat-current-carrying state. We investigate the steady-state heat current, including
its scaling with system size and its response to disorder. In order to study large systems, we use
semi-classical Monte-Carlo simulation and kinetic theory. The numerical results from both
approaches show, as expected, that for non- and weakly interacting systems with and without
disorder one finds the same scaling of the heat current with respect to the system size as it is found
for systems coupled to thermal baths. Finally, we propose and test a scheme for measuring the
energy flow. Thus, we provide a route for the quantum simulation of heat-current-carrying steady
states of matter in atomic quantum gases.

1. Introduction

Ultracold atoms are well isolated from their environment and free of impurities or disorder, unless these
properties are engineered on purpose in a controlled fashion. Moreover, they are highly tunable and can be
manipulated and probed on their (large) intrinsic time and length scales. These properties make quantum
gases a unique platform for quantum simulation of condensed matter models [1]. The measurement of
transport constitutes a key element in the toolbox. Transport plays a crucial role in understanding states of
matter in and out of equilibrium [2, 3]. The study of transport properties in real materials is always
influenced by the effect of impurities, lattice defects and phonons. Ultracold atoms, in turn, offer to study
transport under extremely clean and flexible conditions. However, the isolated nature of quantum gases
prevents a direct connection of the system, e.g. to leads or extended thermal baths of different temperature.

In order to investigate the transport properties of quantum gases, a variety of approaches have been
exploited. For instance, particle transport has been investigated by observing the response of the system to
variations of the external potential via measuring the density distribution [4, 5], the quasimomentum
distribution [6, 7], monitoring the center of mass motion [8–11], and expansion dynamics [12–22], or by
studying mass flow through optically structured mesoscopic devices [23–26]. Spin transport was studied by
introducing spin inhomogeneities followed by monitoring the spin evolution [27–30] or investigating the
decoherence of spin texture [31–36]. And heat transport was investigated by locally heating the system, after
which the equilibration is studied by monitoring the temperature bias [37] or particle imbalance [38, 39].
However, in all these experiments, transport occurs as a transient phenomenon only.

In this work, we employ Markovian feedback control [40] to engineer two effective thermal baths that are
coupled to a one-dimensional Bose–Hubbard chain. This allows for the realization of a heat-current-carrying
steady state. As a measurement-based approach, Markovian feedback control continuously adds a
signal-proportional feedback term to the system Hamiltonian. The dynamics of the system is then described
by a feedback-modified Lindblad master equation (ME) [40]. By properly choosing the measurement and
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feedback operators, the system dynamics can be steered towards a desired target state. The Markovian
feedback method has been applied to various control problems, including the stabilization of arbitrary
one-qubit quantum states [41, 42], the manipulation of quantum entanglement between two qubits [43–46]
as well as optical and spin squeezing [47–49]. In our previous works, we have shown that Markovian
feedback control can be used to cool a bosonic quantum gas in an optical lattice [50] and to engineer a
thermal bath [51]. Here, we will generalize such a feedback scheme to engineer two thermal baths at the
boundaries of an optical lattice and study the heat transport through the chain induced by it. Different from
our previous works [50, 51], this requires to work out a scheme for engineering artificial thermal baths by
employing local measurements and feedback on a few lattice sites only.

The focus of this work is quantum engineering of heat-current-carrying state. To benchmark our scheme,
we study the scaling behavior of heat current. But the transport behavior itself is not our focus. We study the
scaling behavior for noninteracting cases and also interacting cases with fixed particles. The exponentially
increasing Hilbert space dimension with system size does not allow us to study the scaling behavior for
interacting cases with fixed filling factor. While our scheme opens the opportunity to investigate this
question experimentally in a quantum simulation, where heat-current-carrying states also of larger
interacting systems are prepared using feedback control.

The paper is organized as follows: in section 2, we introduce our model and some basics of Markovian
feedback control. This is followed by the description of a two-site feedback scheme in section 3, which can be
used to engineer a finite-temperature bath. In section 4, we present a scheme which allows for the realization
of a heat-current-carrying state. We study the steady-state heat current of the system, including its scaling
behavior with system size (see section 4.3) and its response to disorder (see section 4.4), and compare the
results to those when the system is coupled to real thermal baths. The experimental implementation of our
scheme is discussed in section 5, including the measurement of heat current by measuring single-particle
density matrix. A summary of the main results is presented in section 6 to conclude.

2. Model andMarkovian feedback scheme

The system under consideration is a one-dimensional optical lattice with N interacting bosonic atoms, which
can be described by the Bose–Hubbard model,

H=−J
M−1∑
l=1

(a†l al+1 + a†l+1al)+
U

2

M∑
l=1

nl(nl − 1)+
M∑
l=1

Vlnl, (1)

where al annihilates a particle on site l and nl = a†l al counts the particle number on site l, with
∑

l nl = N.
The first term in (1) describes tunneling between neighboring sites with rate J, the second term denotes
on-site interactions with strength U and the last term describes an on-site potential. In the following
discussion, Vl = 0 unless stated otherwise.

Let us consider a homodyne measurement of an operator c. The dynamical evolution of the system is
then described by the stochastic ME (SME) [52] (ℏ= 1 hereafter),

dρc =−i[H,ρc]dt+D[c]ρcdt+H[c]ρcdW,

withH[c]ρ := cρ+ ρc† −Tr[(c+ c†)ρ]ρ andD[c]ρ := cρc† − 1
2 (c

†cρ+ ρc†c). Here ρc denotes the density
matrix of the system conditioned on the measurement result,

Ihom = Tr[(c+ c†)ρc] + ξ(t) = ⟨c+ c†⟩c + ξ(t).

The first term in Ihom denotes the mean value of the instantaneous quadrature of the output field from the
homodyne measurement, and the second term describes Gaussian white noise with ξ(t) = dW/dt and dW
being the standard Wiener increment with mean zero and variance dt. The quantum backaction of a weak
measurement can be used for tailoring the system’s dynamics and to prepare target states. While the state
generated in this way is conditional due to the nondeterministic nature of measurement, the introduction of
feedback using the information acquired from the measurements allows to steer the system’s dynamics into a
desired state.

Here we consider a direct feedback strategy, where a signal-dependent, i.e. conditional, feedback term
IhomF is added to the Hamiltonian. The effect of feedback is then described by

[ρ̇c(t)]f b =−iIhom[F,ρc]≡ IhomKρc.
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By expanding the feedback superoperator exp [KIhomdt] to second order, we obtain

ρc(t+ dt) = {1+K(⟨c+ c†⟩cdt+ dW)+K2dt/2}{1+H[−iH]dt+D[c]dt+H[c]dW}ρc(t),

where we have used dW2 = dt. Keeping terms up to first order in dt, we arrive at the feedback-modified
SME [40, 52]

dρc =−i[H+Hf b,ρc]dt+D[A]ρcdt+H[A]ρcdW,

with operators

A= c− iF, Hf b =
1

2
(c†F+ Fc). (2)

By taking the ensemble average of the possible measurement outcomes, we arrive at the feedback-modified
ME [40]

ρ̇=−i[H+Hf b,ρ] +D[A]ρ. (3)

The effect induced by the feedback loop is seen to replace the collapse operator c by A and to add an extra
term Hf b to the Hamiltonian. The latter is proportional to measurement strength and thus can be safely
neglected for weak measurements.

3. Two-site feedback scheme

Before approaching the scenario relevant for heat transport, where the feedback is mimicking two thermal
baths of different temperature at both ends of the system, let us first investigate how the local coupling to a
single bath can be realized. Previously, we considered already the engineering of a thermal bath using
measurement and feedback operators acting globally on all sites of a lattice [51]. In contrast, we now
consider the following two-site measurement and feedback operator

cl =
√
γ(xlnl − x−1

l nl+1), λFl =−iλ
√
γ(a†l al+1 − a†l+1al), (4)

where γ is the measurement strength, λ is a free parameter to be determined, xl = gl+1/gl and g l are the
coefficients of the single-particle ground state, i.e. |g⟩=

∑
l gl|l⟩. The feedback-modified collapse operator

then reads

Al = cl − iλFl. (5)

Note that the sites l and l+ 1 where to perform the measurement and feedback can be any neighboring two
sites on the lattice.

For N non-interacting particles, with λ= 1, one can show that Al|g⟩⊗N = 0, where |g⟩⊗N denotes the
ground state of the system, with all particles occupying the single-particle ground state, |g⟩. It is easy to check
it for the single-particle problem, where the collapse operator reduces to

Al =
gl+1

gl
|l⟩⟨l| − gl

gl+1
|l+ 1⟩⟨l+ 1| − (|l⟩⟨l+ 1| − |l+ 1⟩⟨l|).

Applying it to the ground state |g⟩, one gets

Al|g⟩= gl+1|l⟩− gl|l+ 1⟩− gl+1|l⟩+ gl|l+ 1⟩= 0.

When there are no interactions between the particles, the multi-particle problem is equivalent to the
single-particle problem. Namely, the ground state of the system is a dark state of the collapse operator Al.
Assuming weak measurements with strength γ ≪ J, where the impact of the additional term in the
Hamiltonian Hbf ∝ γ is negligible, the dissipative dynamics will then drive the system towards the ground
state (if it is the unique dark state of the collapse operator).

In figure 1, we show the fidelity between the steady state of the ME (3) for our two-site feedback
scheme (4), ρss, and the ground state of the system (1), |G⟩, i.e.

f=
√
⟨G|ρss|G⟩, (6)

as a function of the measurement strength γ for two different lattice sizes with N = 2 non-interacting
particles: (a)M= 7 and (b)M= 8. Different colored curves correspond to schemes performing at different
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Figure 1. The fidelity (6) between the steady state of the ME (3) for our two-site feedback scheme (4) and the ground state of the
system (1) as a function of the measurement strength γ for two different lattice sizes with N= 2 non-interacting particles:
(a)M= 7 and (b)M= 8. Different colored curves correspond to schemes performing at different sites as indicated by the sketch
at the upper right corner with the corresponding colors. As expected, for weak measurements γ ≪ J, the fidelity approaches 1.
The only case where the feedback-controlled system does not settle down to the ground state (see the red curve in (b)) for weak
measurements is due to the fact that the ground state is not the unique dark state of the collapse operator. From the inset, which
shows the first three eigenstates of the system, one can see that the first excited state forM= 8 in (b) as denoted by the dashed line
has the same wavefunction values as the ground state (see solid line) at the feedback-controlled sites (site 4 and site 5), and thus is
also a dark state of the collapse operator.

sites as indicated by the sketch at the upper right corner with the corresponding colors. As expected, for weak
measurements γ ≪ J, the fidelity approaches 1. The only case where the feedback-controlled system does not
settle down to the ground state (see the red curve in (b)) for weak measurements is due to the fact that the
ground state is not the unique dark state of the collapse operator. Namely, from the inset, which shows the
first three eigenstates of the system, one can see that the first excited state forM= 8 in (b) as denoted by the
dashed line has the same wavefunction values as the ground state (see solid line) at the feedback-controlled
sites (site 4 and site 5), and thus is also a dark state of the collapse operator.

For 0< λ < 1, the proposed scheme can be used to engineer a finite-temperature bath. In figure 2, we
show the effective temperature of the feedback-synthesized bath as a function of the feedback strength λ for
(a) non-interacting and (c) interacting systems. The effective temperature is fixed by fitting the distribution
of the steady state in the eigenbasis to a thermal distribution with temperature being the fitting parameter.
The inset shows the fidelity between the steady state and the corresponding effective thermal state, which is
close to 1 over the whole parameter regime. As a second measure, we compare the probability distribution
in the eigenstate basis for the steady states at various λ (solid lines) marked in figures 2(a), (c) to the
corresponding thermal states (dashed lines) in figures 2(b), (d). They are found to agree with each other very
well.

4. Heat transport

4.1. Model
We use the two-site feedback scheme to heat up the system on one side and cool it down on the other side,
see the sketch in figure 3. Note that for the following discussion, we stick to the scenario that the left lead is
located on site one and two, while the right lead is located on siteM− 2 andM− 1. The asymmetric
arrangement on feedback-controlled sites for the two baths is to avoid the otherwise result that the system
will be effectively coupled to one thermal bath at the average temperature of the two synthesized baths [53].
The two measurement operations are assumed to be independent of each other (see section 5 for the
experimental implementation), giving rise to uncorrelated signals. The dynamics of the system is described
by the feedback ME,

ρ̇= Lρ=−i[H,ρ] +LLρ+LRρ, (7)

where

Lµρ=−i[Hµ
f b,ρ] +D[Aµ](ρ), (µ= L,R) (8)

4
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Figure 2. Engineering a finite-temperature bath using two-site feedback scheme (4). (a), (c) The effective temperature of the
feedback-synthesized bath as a function of the feedback strength λ. The effective temperature is fixed by fitting the distribution of
the steady state in the eigenbasis to a thermal distribution with temperature being the fitting parameter. The inset shows the
fidelity between the steady state and the corresponding effective thermal state. (b), (d) The distribution of the steady state on the
eigenbasis for various λmarked in (a), (c). k is the label of the kth eigenstate, with energy in ascending order. Dashed lines are the
corresponding thermal distributions. Parameters are Vl = 0, γ = 0.01J.

Figure 3. A sketch of our feedback scheme for realizing a heat-current-carrying state. A one-dimensional optical lattice is cooled
and heated at both ends via feedback control, as shown in the upper panel in blue background. This mimics the effect of coupling
the system locally to a hot bath and a cold bath (see lower panel in yellow background), and thus allows us to study the heat
transport property of the system.
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describes the impact of the feedback control on the µ side of the chain with HL
f b ≡H(1)

f b , HR
f b ≡H(M−2)

f b ,

H(l)
f b = (clFl + Flcl)/2 and

AL ≡ A1 = c1 − iλLF1, AR ≡ AM−2 = cM−2 − iλRFM−2. (9)

Cooling is realized by setting λ= 1, corresponding to a zero-temperature bath, and heating by setting
0< λ < 1, corresponding to finite positive temperatures.

4.2. Heat current
The feedback control induces quantum jumps between the eigenstates of the system, and thus changes the
energy of the system. Take feedback cooling (to the ground state) as an example, starting from an arbitrary
initial state (and thus an arbitrary initial energy), the feedback control will drive the system towards the
ground state, which possesses the lowest energy. The energy of the system thus changes with time until the
system relaxes to the steady state. By feedback heating the system up on one end, and cooling it down on the
other end, one can then induce an energy transfer across the chain, realizing a heat-current-carrying steady
state.

The heat current J is calculated from the continuity equation for energy,

d⟨H⟩
dt

= JL +JR. (10)

It follows from the ME (7) that

d⟨H⟩
dt

= Tr{HLLρ}+Tr{HLRρ} .

So we have

JL = Tr{HLLρ} , JR = Tr{HLRρ} . (11)

In the steady state, d⟨H⟩/dt= 0. Thus, the steady-state heat current is

Jss = JL =−JR = Tr{HLLρss}=−Tr{HLRρss} . (12)

Note that there is no particle current in the system. The feedback control conserves particle number. Also in
the thermal bath case, the coupling to thermal baths only induces quantum jumps between the eigenstates of
the system, and does not change the particle number in the system.

Figure 4 shows the steady-state heat current of a system with N = 1 particle in a lattice withM= 10 sites
as a function of the feedback strength λL (see (a) and (b)) and the effective temperature TL (see (c) and (d))
of the left bath 1. For the right bath, in (a, c) λR = 1, which corresponds to a zero-temperature bath (TR = 0);
in (b, d) λR = 0, which corresponds to an infinite-temperature bath (TR =∞). As expected, the heat current
in both cases increases with the temperature imbalance between the two baths. Similar behavior is observed
when the system is coupled to real thermal baths 2, as shown in figures 4(e), (f). It is not expected that an
exact mapping of heat current exists between our feedback scheme and the real thermal bath case. For the
latter, heat current depends not only on the temperature of the baths, but also on the bath correlation
function (e.g., spectral density), which has no correspondence in our scheme. In the following discussion, we
will focus on the case with λR = 1 for our scheme.

4.3. System-size scaling
We are interested in the scaling of the steady-state heat current with system size. To study this property, we
have to deal with large systems, which are not accessible by exact diagonalization (ED). For a system with N
particles andM sites, the dimension of the Hilbert space is D= (N+M− 1)!/N!/(M− 1)!, which means the
Liouvillian superoperator L is a D2 by D2 matrix. For instance, forM= 4 and N = 8, D= 330, the Liouvillian
superoperator will be a 108900 by 108900 matrix. This simple example shows that it is hard to treat large
systems by using the ED approach. In order to circumvent this problem, we resort to two different
approaches: kinetic theory and semi-classical Monte Carlo (MC) simulation, as described in the following.

1 The single-particle problem can be solved analytically, see appendix A.
2 See appendix B for the calculation of heat transport when the system is coupled to thermal baths.
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Figure 4. The panels in blue background (a)–(d) are the results for our scheme. The steady-state heat current is shown as a
function of (a), (b) the feedback strength λL and (c), (d) the effective temperature TL of the left bath. For the right bath,
(a), (c) λR = 1, which corresponds to a zero-temperature bath; (b), (d) λR = 0, which corresponds to an infinite-temperature
bath. In both cases, the heat current increases with the temperature imbalance between the two baths. Similar behavior is
observed when the system is coupled to real thermal bath, as shown in the panels (e), (f) in yellow background. Parameters are
N= 1,M= 10, Vl = 0, γ = 0.01J.

For the non-interacting case, the system Hamiltonian reads

H=
∑
k

ϵknk,

with single-particle eigenenergy ϵk =−2Jcos kπ
M+1 in the absence of on-site potential. Here nk = c†kck counts

the number of particles in the single-particle eigenstate |k⟩, with c†k =
∑

l⟨l|k⟩a
†
l being the corresponding

creation operator. The continuity equation for energy then reads

d⟨H⟩
dt

=
∑

k
ϵk⟨ṅk⟩. (13)

7
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It depends on the time evolution of the mean occupations ⟨nk⟩, which is governed by

⟨ṅk⟩=
∑

q

[
Rkq⟨nq(1+ nk)⟩−Rqk⟨nk(1+ nq)⟩

]
, (14)

with Rkq = RL
kq +RR

kq = |⟨k|AL|q⟩|2 + |⟨k|AR|q⟩|2 being the single-particle transfer rate from single-particle
eigenstate q to k. The steady-state heat current is given by

Jss = JL =
∑

k
ϵk⟨ṅk⟩L =−JR =−

∑
k
ϵk⟨ṅk⟩R (15)

with

⟨ṅk⟩µ =
∑

q

[
Rµ
kq⟨nq(1+ nk)⟩ss −Rµ

qk⟨nk(1+ nq)⟩ss
]
, (µ= L,R). (16)

Here the subscript ‘ss’ of the expectation values denotes the steady-state expectation values, which satisfy∑
q

[
Rkq⟨nq(1+ nk)⟩ss −Rqk⟨nk(1+ nq)⟩ss

]
= 0. (17)

From the above expression, one can see that even for noninteracting particles, finding the steady state is a
true many-body problem due to the interaction of the system with environment. In the following, we
describe two approaches to calculate the steady-state expectation values approximately.

4.3.1. Semi-classical MC simulation
In the semi-classical MC simulation [53], the density matrix is approximated by a mixed superposition of
Fock states with respect to single-particle eigenstates ρ=

∑
n pn|n⟩⟨n|, with n= (n1,n2, . . . ,nM), i.e. the

off-diagonal elements which decouple with the diagonal elements and decay with time are neglected for weak
system-bath coupling [54]. The equations of motion for the Fock-space occupation probabilities pn are then
mapped to a random walk in the classical space spanned by the Fock states |n⟩ (but not their superpositions).
We perform these simulations by using the Gillespie-type algorithm described in [53]. By averaging
over the long-time dynamics of many trajectories, we can then compute steady-state expectation values,
⟨nk⟩ss,⟨nknq⟩ss, etc. The steady-state heat current is then calculated by using equation (15). This approach
gives accurate results after sufficient statistical sampling. For a given accuracy, the sampling size increases
with increasing system sizes.

4.3.2. Kinetic theory
We use kinetic theory to treat large systems where the semi-classical MC simulation is computationally
expensive. The set of equation (14) is not closed as the single-particle correlations depend on two-particle
correlations, which in turn depend on three-particle correlations, and so on. To get a closed set of equations,
we employ the mean-field approximation ⟨nknq⟩ ≈ ⟨nk⟩⟨nq⟩, which then leads to

⟨ṅk⟩ ≈
∑

q

{
Rkq⟨nq⟩[1+ ⟨nk⟩]−Rqk⟨nk⟩[1+ ⟨nq⟩]

}
.

The steady-state heat current is calculated approximately by using equation (15) with

⟨ṅk⟩L ≈
∑
q

{
RL
kq⟨nq⟩ss[1+ ⟨nk⟩ss]−RL

qk⟨nk⟩ss[1+ ⟨nq⟩ss]
}
, (18)

where the steady-state expectation values are obtained by solving ⟨ṅk⟩= 0, i.e.∑
q

{
Rkq⟨nq⟩ss[1+ ⟨nk⟩ss]−Rqk⟨nk⟩ss[1+ ⟨nq⟩ss]

}
= 0. (19)

4.3.3. Results
Figure 5 shows the system-size dependence of the steady-state heat current. Let us first focus on the
non-interacting case, as shown by the blue data. For a fixed particle number N = 2 (see figure 5(a)),
the results from the three approaches, i.e. ED (squares), MC simulation (bullets), and mean-field
approximation (solid lines), agree with each other. The steady-state heat current is found to decrease with the
lattice sizeM asM−1. For a fixed filling factor at N/M= 1/5 (see figure 5(b)), a slight deviation is found
between the mean-field results and the MC results. Nevertheless, the results from both approaches show that
in this case the current first decreases with system size, but then saturates to a finite value, independent of the

8
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Figure 5. System-size scaling of the steady-state heat current for (a), (c) a fixed particle number N= 2 and (b), (d) a fixed
filling factor n= N/M= 1/5. The panels in blue background (a), (b) are the results for our scheme. The panels in yellow
background (c), (d) are the results when the system is coupled to thermal baths. The blue (orange) data denote the results for the
non-interacting (interacting) case. The squares denote the results from exact diagonalization (ED). The diamonds denote the
results from quantum jump Monte-Carlo simulations (QMCs). The bullets denote the results from semi-classical Monte
Carlo (MC) simulation. The solid lines are the results from kinetic theory with mean-field (MF) approximation. For the MC
simulation, the results are obtained by averaging over the long-time (up to γt= 105 for (a) and γt= 106 for (b)) dynamics of 100
trajectories. The error bar denotes one standard deviation. Parameters are Vl = 0, γ = 0.01J, λL = 0.2, λR = 1, TL = 10J,
TR = 0.01J.

lattice sizeM, corresponding to ballistic transport [3]. These results are consistent with that when the system
is coupled to two thermal baths on its ends, as shown in figures 5(c) and (d).

One can understand these scaling behaviors from the expression for the heat current (15) and (16). The
single-particle transition rate Rµ

kq [see equation (A.2) in appendix A] scales with system sizeM asM−2, and

the number of transitions scales asM2 since the eigenstates (which are coupled by the bath) are delocalized
and thus all (M) of them (constitutingM2 pairs) participate in the transition. The scaling of these two factors
cancel each other, and thus the scaling of the current is determined by the density-related term ⟨nq(1+ nk)⟩.
For a fixed particle number, ⟨nq(1+ nk)⟩ is dominated by the first-order term (density), which scales with
the system size asM−1. Hence, the heat current decays with system size asM−1. For a fixed filling factor,
⟨nq(1+ nk)⟩ does not change with system size, and thus the heat current exhibits ballistic behavior, i.e. does
not depend on system size.

Now let us turn on interactions. For a fixed particle number, which can be calculated by using ED (the
orange squares in figure 5(a)), the interactions are found to have some impact on the steady-state heat
current for small systems. While this effect becomes weaker with increasing system sizes, and thus does not
change the scaling of the current with system size. For a fixed filling factor, the numerical simulation is
challenging. We resort to quantum jumpMCmethod [55, 56], which offers an efficient stochastic simulation
of the ME by means of quantum trajectories. We are able to calculate the heat current of the interacting
system for up to 20 lattice sites (see orange diamonds in figure 5(b)). We can clearly observe that it is reduced
with respect to the heat current for the non-interacting system. Moreover, we can see that it drops withM.
The accessible system sizes of 20 do, however, not allow to reach the regime, where the ballistic transport of
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Figure 6. (a), (c) The steady-state heat current Jss as a function of the disorder strength for one particle onM= 10 sites. The
results are obtained from exact diagonalization. (b), (d) The system-size scaling of Jss at Vd = 0.2J for N=M/5. The results are
obtained from kinetic theory with mean-field approximation. The panels in blue background (a), (b) are the results for our
scheme. The panels in yellow background (c), (d) are the results when the system is coupled to thermal baths. All the results are
averaged over 100 trajectories with different disorder configurations. Parameters are U= 0, γ = 0.01J, λL = 0.1, λR = 1,
TL = 10J, and TR = 0.01J.

the non-interacting system becomes apparent from the saturation of the heat current. While it would have
been interesting to study numerically, whether/how ballistic transport breaks down with increasing
interactions, we would like to point out that our scheme opens the opportunity to investigate this question
experimentally in a quantum simulation, where heat-current-carrying states also of larger interacting
systems are prepared using feedback control.

4.4. Influence of disorder
Here we investigate the influence of disorder on the steady-state heat current. For this purpose, we add a
random on-site potential, with V l being a random number uniformly distributed in the range [−Vd,Vd] . The
results are shown in figure 6, which are averaged over 100 trajectories with different disorder configurations.
From figure 6(a) one can see that the current decreases exponentially with the disorder strength Vd. Such a
behavior is expected as a result of Anderson localization [57], which describes the suppression of
transport (i.e. wave propagation) in a system with disordered potential due to dephasing upon scattering
events from randomly-distributed impurities. Figure 6(b) shows the current as a function of the lattice site
numberM at Vd = 0.2J and fixed filling N/M= 1/5. The decay of the current with increasing system size is
approximately exponential, as indicated by the close-to-linear form of the current in the log-y plot. Similar
behaviors are observed when the system is coupled to real thermal baths, as shown in figures 6(c) and (d).

5. Experimental implementation

Now we discuss the experimental implementation of our scheme. For the engineering of the local baths, one
needs to perform measurements of the on-site population, and add the corresponding feedback control. The
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former can be implemented via homodyne detection of the off-resonant scattering of structured probe light
from the atoms [58–60]. To engineer two independent baths, one can for instance use two probe beams with
different frequencies. The feedback control of tunneling with complex rate can be realized by modulating the
on-site energy of the relevant sites (see appendix C).

For the heat current, we propose to make use of the measurement of single-particle density matrices
⟨a†i aj⟩, which is experimentally accessible [61]. It can be shown that the heat current is given by

JL

γ
=

J

2
[(x+ x−1)2 + 4λ2

L]⟨a
†
1a2 + a†2a1⟩+

J

2
(λ2

L + x−2)⟨a†2a3 + a†3a2⟩

+ JλL(x+ x−1)⟨(a†1a2 − a†2a1)
2⟩− 2JλL⟨(n1 − n2)(xn1 − x−1n2)⟩

− JλL

2
⟨(a†1a3 + a†3a1)(xn1 − x−1n2)+ h.c.⟩

− JλL

2x
⟨(a†1a2 − a†2a1)(a

†
2a3 − a†3a2)+ h.c.⟩

− UλL

4
⟨(xn1 − x−1n2)(n1 − n2)(a

†
1a2 + a†2a1)+ h.c.⟩

− UλL

4
⟨(n1 − n2)(a

†
1a2 + a†2a1)(xn1 − x−1n2)+ h.c.⟩

−Uλ2
L(⟨(n1 − n2)

2⟩− ⟨(a†1a2 + a†2a1)
2⟩),

(20)

with $x=x_1=g_2/g_1$. By using Wick’s theorem, corresponding to the mean-field approximation used
already for the kinetic theory,

⟨a†kaqa
†
pal⟩ ≈ ⟨a†kaq⟩⟨a

†
pal⟩+ ⟨a†kal⟩⟨aqa

†
p⟩,

we have

⟨(a†1a2 − a†2a1)
2⟩ ≈ ⟨a†1a2 − a†2a1⟩2 + ⟨a†1a2⟩2 + ⟨a†2a1⟩2 − 2⟨n1⟩⟨n2⟩− ⟨n1⟩− ⟨n2⟩, (21)

⟨(n1 − n2)(xn1 − x−1n2)⟩ ≈ x⟨n1⟩(2⟨n1⟩− ⟨n2⟩+ 1)+ x−1⟨n2⟩(2⟨n2⟩− ⟨n1⟩+ 1)− (x+ x−1)|⟨a†1a2⟩|2, (22)

⟨(a†1a3 + a†3a1)(xn1 − x−1n2)+ h.c.⟩ ≈ ⟨a†1a3 + a†3a1⟩(4x⟨n1⟩− 2x−1⟨n2⟩+ x)

− 4x−1Re(⟨a†1a2⟩⟨a
†
2a3⟩),

(23)

⟨(a†1a2 − a†2a1)(a
†
2a3 − a†3a2)+ h.c.⟩

≈ 2⟨a†1a2 − a†2a1⟩⟨a
†
2a3 − a†3a2⟩+ ⟨a†1a3 + a†3a1⟩(2⟨n2⟩+ 1)− 4Re(⟨a†1a2⟩⟨a

†
3a2⟩),

(24)

⟨(n1 − n2)
2⟩− ⟨(a†1a2 + a†2a1)

2⟩ ≈ 2⟨n1 − n2⟩2 − 4Re(⟨a†1a2⟩2)− 4|⟨a†1a2⟩|2, (25)

⟨(xn1 − x−1n2)(n1 − n2)(a
†
1a2 + a†2a1)+ (n1 − n2)(a

†
1a2 + a†2a1)(xn1 − x−1n2)+ h.c.⟩

≈ 4⟨a†1a2 + a†2a1⟩
{
x
[
6⟨n1⟩2 + 4⟨n1⟩

]
+ x−1

[
6⟨n2⟩2 + 4⟨n2⟩

]
−(x+ x−1)[4⟨n1⟩⟨n2⟩+ ⟨n1⟩+ ⟨n2⟩+ 2|⟨a†1a2⟩|2]

}
.

(26)

A comparison between the exact results of the individual terms and the mean-field approximation is
presented in appendix D. In figure 7, we compare the exact results of the steady-state heat current and the
approximated ones by using equations (21)–(24). Note that for the latter, we neglect the interaction terms
proportional to U in equation (20) since they are small and cannot be expected to be captured within
mean-field theory (see appendix D for details). For the non-interacting case (see the blue data in figure 7(a)),
the approximation is found to be very good, especially for λL close to 0 or 1. For the interacting case (see the
orange data in figure 7(a) and the results in figure 7(b)), the approximated results still capture the behavior
very well. These results confirm the feasibility to measure the heat current for our scheme in experiments.
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Figure 7. The steady-state heat current Jss as a function of (a) the feedback strength λL for two different interaction strengths U,
and (b) the interaction strength U for two different feedback strength λL. Parameters are N= 2,M= 10, Vl = 0, γ = 0.01J, and
λR = 1. The solid lines are exact results. The dashed lines are the approximated results by using Wick’s decomposition,
equations (21)–(24).

6. Conclusion

In conclusion, we have proposed a scheme for the realization of heat-current-carrying states of ultracold
atoms in an optical lattice using Markovian feedback control. Measurements and feedback control are
implemented at the boundaries of the lattice to mimic the effect of coupling the system locally to two thermal
baths with different temperature. We studied the scaling of the steady-state heat current with system size by
using two approaches: semi-classical MC simulation and kinetic theory. For the non-interacting case, both
approaches show good agreement with the results from ED (accessible for small systems). When the particle
number is fixed, the current decays with the lattice size asM−1. For a fixed filling factor, the current is found
to decay at first, but rapidly saturate at a finite value, independent of the system size. Namely, the system
exhibits ballistic transport. For the interacting systems with a fixed filling factor, our simulations are
restricted to rather small system sizes, so that it is hard to investigate, how ballistic transport is modified or
destroyed as a result of interactions. However, our scheme opens a door towards the experimental
investigation of this problem in a quantum simulator of ultracold atoms. In the presence of disorder, the
current for a system with a fixed filling factor is found to decay exponentially with the system size. These
results confirm that the heat current generated by the feedback-engineered baths shows the same scaling
behavior as those resulting from actual thermal baths. We also discussed the experimental implementation of
our scheme and, in particular, described how the heat current can be measured in the laboratory. Our
findings can be tested by available experimental techniques. Our approach opens a new path for the
experimental investigation of heat-current-carrying states of large interacting systems for which a theoretical
prediction is challenging. Thus it offers a new route for the quantum simulation of transport phenomena
with ultracold atoms.
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Appendix A

Here we analyze the heat current in our feedback scheme for a single-particle problem. In this case, the mean
occupations in the eigenstates for the steady state satisfy∑

q

[
Rkq⟨nq⟩ss −Rqk⟨nk⟩ss

]
= 0, (A.1)
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Figure A1. The steady-state heat current Jss as a function of the feedback strength λL. Parameters are N= 1,M= 5, Vl = 0,
γ = 0.01J, and λR = 1. The solid line is the exact result given by equation (A.4). The dashed line is the approximated result
equation (A.5) for λL ≃ 0. The dotted line is the approximated result equation (A.6) for λL ≃ 1.

where the single-particle transfer rate Rkq = RL
kq +RR

kq with

RL
kq = γ

(
2

M+ 1

)2 [ sin(α)

sin(2α)
sin(kα) sin(qα)− sin(2α)

sin(α)
sin(2kα) sin(2qα)

−λL sin(kα) sin(2qα)+λL sin(2kα) sin(qα)]
2
,

RR
kq = γ

(
2

M+ 1

)2 [ sin(2α)
sin(3α)

sin(3kα) sin(3qα)− sin(3α)

sin(2α)
sin(2kα) sin(2qα)

−λR sin(3kα) sin(2qα)+λR sin(2kα) sin(3qα)]
2
,

(A.2)

with α= π/(M+ 1). By solving equation (A.1), one gets the steady-state mean occupation ⟨nk⟩ss. The
steady-state heat current is then given by

Jss =−
∑
k

ϵk
∑
q

[
RL
kq⟨nq⟩ss −RL

qk⟨nk⟩ss
]
. (A.3)

Here we show an example to demonstrate the dependence of heat current on the control parameter λL

with λR = 1. ForM= 5, the heat current reads

Jss/γ =
2940λ8

L − 6400λ7
L + 16904λ6

L − 35856λ5
L + 64852λ4

L − 111104λ3
L + 183000λ2

L − 192960λL + 78624√
3(1050λ8

L + 10195λ6
L − 7680

√
3λ5

L + 41178λ4
L − 34032λ3

L + 94923λ2
L − 56160λL + 106110)

.

(A.4)
For λL ≃ 0, it can be approximated by

Jss/γ ≃ 155225108λ2
L

505820475
√
3
− 1101472λL

772245
√
3
+

1456

1965
√
3
. (A.5)

For λL ≃ 1, equation (A.4) can be approximated by

Jss/γ ≃ 3405
√
3(1−λL)

2

19448
. (A.6)

Figure A1 compares these results.

Appendix B

Here we describe the calculation of heat transport when the system is coupled to thermal baths.
The coupling of the system to thermal baths induces quantum jumps between the eigenstates of the

system [56]. When the system is coupled at its boundaries to two thermal baths with different
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temperatures (see the sketch in figure 3 of the main text), the dynamics of the system is described by the
following ME,

ρ̇=−i [H,ρ] +LLρ+LRρ, (B.1)

with

Lµρ=
∑
k,q

(
L(µ)kq ρL(µ)†kq − 1

2

{
L(µ)†kq L(µ)kq ,ρ

})
, µ= L,R. (B.2)

Here the jump operators

L(µ)kq =
√
Rµ
kq|k⟩⟨q| (B.3)

describe the quantum jump from eigenstate |q⟩ to |k⟩ with the jump rates

Rµ
kq = 2πγvµkqgµ(Ek − Eq), (B.4)

where the coupling matrix element is given by

vLkq = |⟨k|n1|q⟩|2 + |⟨k|n2|q⟩|2,
vRkq = |⟨k|nM−2|q⟩|2 + |⟨k|nM−1|q⟩|2, (B.5)

and bath correlation function

gµ(E) =
E

eE/(kBTµ) − 1
. (B.6)

The steady state is calculated by solving ρ̇= 0, and the heat current is then obtained by calculating
equation (12) in the main text. For the kinetic theory, similar calculations are performed as for the feedback
scheme, just with the rates Rµ

kq replaced by equation (B.4) for the thermal baths.

Appendix C

Here we discuss the implementation of the feedback control terms. By including the feedback terms to the
Hamiltonian, we arrive at

H ′(t) =−(JL(t)a
†
1a2 + JR(t)a

†
M−2aM−1 + J

∑
l̸=1,M−2

a†l al+1 + h.c.)+HU +HV, (C.1)

where HU and HV denote the original interaction and on-site potential terms in (1) and

Jµ(t) = J+ i
√
γλµIhom(t) =

√
J2 + γλ2

µI
2
home

iθµ(t), µ= L,R, (C.2)

with tanθµ =
√
γλµIhom/J. Our goal is to implement such a Hamiltonian.

We can achieve it by modulating the on-site energy of the relevant sites so that the system Hamiltonian
reads

Hd(t) =−
M−1∑
l=1

(Jla
†
l al+1 + h.c.)+HU +HV +∆L(t)n1 −∆R(t)(nM−1 + nM). (C.3)

In the rotating frame with transformation U(t) = exp{i
´
[∆L(t1)n1 −∆R(t1)(nM−1 + nM)]dt1}, the

Hamiltonian is given by

H̃d(t) = UHU† + iU̇U†

=−(J1e
iθL(t)a†1a2 + JM−2e

iθR(t)a†M−2aM−1 +
∑

l̸=1,M−2

Jla
†
l al+1 + h.c.)+HU +HV,

(C.4)

with θµ(t) =
´
∆µ(t1)dt1. By comparing equations (C.1) and (C.4), one can read off

J1 =
√
J2 + γλ2

LI
2
hom, JM−2 =

√
J2 + γλ2

RI
2
hom,

ˆ
∆µ(t1)dt1 = arctan(

√
γλµIhom/J), (C.5)

and Jl = J for l ̸= 1,M− 2.
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Figure D1. Checking equations (21)–(26) in the main text. The solid (dashed) lines denote the results of the left (right) hand side
of these equations. The parameters are N= 2,M= 10, U= 2J, Vl = 0, γ = 0.01J, and λR = 1.

Appendix D

Here we check the validity of equations (21)–(26) in the main text. Figure D1 compares the left (solid lines)
and right (dashed lines) hand side of these terms. One can see that for the terms relevant for tunneling
effects, i.e. (a)–(d), the approximations are good. They become worse when it comes to the terms relevant to
interactions, i.e. (e)–(f). The worse performance of the approximation in (f) is attributed to the involved
higher order correlations compared with other terms. Due to the bad performance of the approximation in
the two interaction-relevant terms, we neglect them in the calculation of the approximated heat current.
Note that the term in (e) has very small value, and thus its influence is small. For the term in (f), from the
expression of the heat current, equation (20) in the main text, one can see that it is proportional to λ2

L, and
thus its effect is weak for small λL. This observation is in consistent with the results shown in figure 7 of the
main text.
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