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Abstract

The testing of service-based applications is an important but challenging
activity. Especially the integration testing is a difficult task that needs to
cope with the message-based communication in the service-oriented world.
In this thesis, a model-based approach to service integration and integration
testing is proposed. The necessary research work to realize its phases is the
main contribution of the dissertation.

First, MCM, a domain-specific language for service choreography model-
ing, is introduced together with a precise semantics that makes it suitable
for integration testing. Then, a framework for generating service integration
tests is presented, incorporating three different model-based test generation
techniques that can be chosen according to the test context. Further, it is
explained how the generated test cases are transformed into concrete test
scripts, thus enabling their execution on an enterprise service-based appli-
cation. Finally, the conducted case study of the MCM-based approach in
an industrial setting is described.
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Chapter 1

Introduction

1.1 Topic

Software development is able to generate powerful means for solving diverse
problems. The demand for software that is not only providing an answer
for a specific question, but a comprehensive system guiding through various
scenarios however has lead to complexity issues in software development.
Decomposition of software systems architecture on various levels (e.g. li-
braries, objects, sub-components) has been the answer so far. Also the
latest trend of providing loosely coupled components, which can be com-
posed dynamically to form powerful solutions for complex problems heads
in this direction.

The fundamentals of Service Oriented Architectures (SOA) - decompo-
sition of systems into services - have been provided by already established
concepts like the Common Object Request Broker Architecture (CORBA)
and the Distributed Component Object Model (DCOM). The application of
Web-Service-like interaction SOA however adds the advantage of intercon-
nection in an object-model-independent way and hence makes interaction
between services much easier.

SOA provides methods and frameworks to compose single services in or-
der to realize complex business scenarios. Modeling and implementation of
such services based on technical specifications like XML, SOAP, and WSDL
is well-understood. The challenging part of the SOA-based development is
the integration of different services according to the defined business pro-
cesses. At the lower end, a single service is described as a set of operations
and message types, its functioning relying on a simple request-response pat-
tern. At the service integration level, more complicated specifications are
needed to capture not only the message exchange and the underlying mes-
sage types, but also the dependencies between these exchanged messages,
i.e., both control-flow and data-flow dependencies. Choreography languages
like WS-CDL [W3C04b], BPMN [OMG08a], or Let’s Dance [ZBDtH06] were

11



12 CHAPTER 1. INTRODUCTION

introduced to describe the interaction protocols between a set of loosely cou-
pled components communicating over message channels from the perspective
of a global observer.

From an industrial perspective, SOA is gaining pace towards becoming
mainstream. Forrester studies and surveys [For08, Hef09] of more than 2200
IT decision makers across North-America and Europe show that 2/3 of the
companies expect to be using SOA by the end of 2009 while 60% of those
already using it are expanding their usage. Leading firms now use SOA on
more than 50% of their solution delivery projects.

Such a widespread SOA adoption implies that the quality assurance of
the service-based systems becomes an activity of paramount importance,
with a special focus on SOA testing. While service unit testing is usu-
ally well researched [BBMP08, TCP+05, OX04, BD07] and consistently de-
ployed in practice, the field of service integration testing poses several new
challenges [CP09, BHB+07]. The difficulties to be overcome are due to
the heterogeneity, high distributivity, dynamicity, and loose coupling of the
service-based systems. These complexity properties are taking their toll on
the testing process.

In general, new architectural and programming paradigms, also create
a demand for innovation in the program verification and validation ap-
proaches. In the past, for example the concept of model-driven software
development (e.g. OMG’s MDA strategy) has promoted the use of models
in testing, too. The term ’Model-based Testing’ (MBT) emerged, standing
for any test generation method based on models. In general MBT approaches
use abstract behavioral and structural system information to generate a set
of test cases. The test cases can be seen as execution traces defining the
navigation through the system states. Test generators aim to cover model
features (e.g. every state or all transitions in a state chart) by deriving sets
of test cases from models.

A model-driven approach to SOA service integration helps to address the
mentioned complexity challenges, as it allows for a general solution, applying
state of the art tools and techniques for formal reasoning about service mod-
els [BD07] and model-based testing [UL07, BDG+08]. Furthermore it has
the prospect to capitalize on the research and experience made in protocol
conformance testing (e.g. [DSU90, Lai02]). However, the enabling prereq-
uisite for the adaptation of such techniques is a modeling language that on
the one hand captures the essential properties of the service integration at
a suitable level of granularity and on the other hand is precise enough to
allow formal analysis and productive test generation.
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1.2 Goal

As of today, various service choreography languages are emerging, each with
a different scope and granularity. They provide means for describing in-
tended service compositions, which are a prerequisite for a successful de-
sign and development of SOA applications. Further, having a language for
formal specification with the right level of abstraction, enables to utilize
mature quality controlling techniques, such as formal verification or model-
based testing, in the context of SOA. Unfortunately, none of the current
choreography languages is suitable for such an intended, quality-driven SOA
development process.

Aim of the thesis is to contribute a development approach for SOA that
especially supports and drives the testing of service compositions. This
includes to provide a modeling method, which allows to specify service com-
positions simultaneously from a global and from local component’s view.
The envisioned models should supply consistent, formal and deterministic
descriptions in order to drive a model-based service integration. Further, the
thesis should give evidence of the practicability of the envisioned approach.
Therefore, means for the design and quality control of service compositions
should not only be developed in theory, but implemented and evaluated in
an industrial environment.

The work is conducted in collaboration with SAP, a leading provider of
business software with a core competence in Enterprise Resource Planning
(ERP) software, which supports business processes for whole companies and
integrates organizational parts and functions into one logical software sys-
tem. Besides delivering SOA-enabled software, SAP further provides SOA
methodology guidelines and professional services [WM06]. At SAP service
integration testing is associated with huge efforts even though the test execu-
tion has already been automated to limit the resource consumption in terms
of manpower. Model-based testing techniques are believed to additionally
realize a high degree of automation in the test development phase.

1.3 Thesis Structure

As explained, the thesis goal is to contributes to a development approach
for SOA, which focuses on the design and testing of service compositions.
Apart from the introduction and conclusion, the thesis is divided into four
main parts, as depicted in Figure 1.1. In the following, their content and
relation is shortly discussed.

• Analysis. Chapter 2 gives an overview of related research fields that
have been identified in Sections 1.1 and 1.2. Based on this review,
the problem statement for the dissertation is derived in Chapter 3. It
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Figure 1.1: High-level structure of the thesis

suites as a motivation for the research activities that are described in
the succeeding chapters.

• Vision. Chapter 4 describes an idealized development approach for
SOA that illustrates, how the existing challenges from Chapter 3 can
be overcome in general and which of the available state of the art,
described in Chapter 2 can be utilized.

• Realization. Chapter 5 and Chapter 6 are explaining concrete solutions
for the modeling and testing phase of the envisioned SOA development
process of Chapter 4. Chapter 5 introduces the choreography language
MCM, including syntax and semantics, and describes the available
tool support. Chapter 6 explains, how MCM instances are used to
derive test cases and presents a test framework that implements the
testing by integrating complementary test generators. As described in
Section 1.4, these chapters encapsulate the core scientific contributions
of this thesis.

• Application. Chapter 7 finally explains the utilization of the conducted
work in an industrial setting. It portrays a case study of the developed
tools, describes the derived information and interprets the outcome.



1.4. SCIENTIFIC CONTRIBUTIONS 15

1.4 Scientific Contributions

In this section, the relevance of the dissertation is explained. Based on the
publications, listed and described below, the contributions to the state of
the art are shown in the second part. The section is concluded by naming
related activities.

Publication Description. The dissertation is based on various scientific
publications, describe below:

[1] discusses modeling, generation and provision of test data for model-
based testing of ERP software and identify several challenges in this
area.

[2] clarifies the four main challenges regarding the provision of test data
for automatic testing of ERP software: system test data supply, system
test data stability, input test data constraints and test data correlation,
and discusses several possible solutions.

[3] examines test objectives and test coverage criteria driving the model-
based test generation in the context of integration testing for service-
oriented architectures.

[4] analyses the SOA testing stack and the different objectives of its lay-
ers. It further explains why traditional and currently discussed testing
techniques alone are not sufficient to cover all relevant testing layers.

[5] suggests a holistic design and development method combining test-
driven and model-driven development for SOA architectures, where
test-driven development is used on component level and model-based
testing on integration and system level.

[6] identifies general requirements for choreography languages that can
be used for automatic verification and validation activities. It further
motivates a discussion about applicable techniques for service chore-
ography modeling and whether existing choreography languages cover
the identified needs.

[7] shapes various interpretations of service choreographies, which were
left unspecified in state of the art choreography approaches and intro-
duces the message choreography modeling (MCM) environment incor-
porating these contributions, including a detailed description of the
syntax and semantics of MCM.

[8] present an overview of the developed model-based integration testing
(MBIT) approach based on MCM and explains how it fits into the
SAP testing methodology for SOA.
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[9] introduces a model-checking based test generation for service chore-
ographies based on MCMs. These are translated into EventB and
processed by the model checker ProB.

[10] describes a four-step approach for service integration testing and a
heuristics based test generation for service choreographies based on
MCMs. These are translated into executable UML models using Java
as action language and used for test generation and model debugging
by a model execution engine.

Contributions. Like the thesis structure, also the scientific contributions
of the dissertation can be divided into the four parts, illustrated in Fig-
ure 1.1. In the following, for each part the innovative core is described.

• Analysis. In this first part of the thesis, service integration has been
identified as an untackled challenge of SOA [4]. Further requirements
have been described that enable quality aware choreography modeling
to answer this challenge in the SOA life cycle [6]. Also the test data
types for enterprise SOA has been classified [1] and the associated test
data provision challenges have been identified [2].

• Vision. The thesis incorporates a vision of a holistic SOA develop-
ment [5] and shapes a proposal of a concrete development process [8].

• Realization. This part of the thesis describes a domain-specific service
choreography language called MCM, which is suitable for a model-
driven development of SOA, including a dedicated viewpoint semantics
and consistency definition [7]. Further, the utilization of choreography
models for SOA integration testing has been enabled by defining con-
crete objectives [3] and proposing a general testing process [10] and
frameworkthat integrates mature test generation approaches. Further
a model checking-based test generation algorithm is introduced that
is compatible to MCM’s viewpoint semantics [9].

• Application. The final part of the thesis shows the integration of the
realized modeling and MBIT concepts in an industrial environment [8].
It further gives concrete evidence of their applicability in practice.

Related Activities. The PhD candidate served as an editor for the 2nd

workshop on Model-based Testing in Practice (MoTiP’09 [11]) and con-
tributed to the research projects MODELPLEX1 and DEPLOY2. MOD-
ELPLEX is an EU FP6 project that has the objective to develop an open

1Full titel: MODELing solutions for comPLEX systems, online at: http://www.

modelplex.org
2Full titel: industrial DEPLOYment of system engineering methods providing high

dependability and productivity, online at: http://www.deploy-project.eu

http://www.modelplex.org
http://www.modelplex.org
http://www.deploy-project.eu
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solution for complex systems engineering, improve quality and productivity,
lead its industrialization and ensure its successful adoption by the industry.
DEPLOY is an EU FP7 project that aims to make major advances in engi-
neering methods for dependable systems through the deployment of formal
engineering methods.
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Chapter 2

Related Work

In this chapter an overview of the research fields and activities that are
encapsulating the dissertation is given. It starts with an introduction to
software testing in general. Afterwards, the challenges and activities re-
garding the development of SOA are explained. Finally, the related work on
SOA testing is discussed more detailed.

2.1 Testing

Testing is an important way to realize software quality. In the following,
a high-level classification of testing is given in the overview section. Af-
terwards, test coverage criteria are introduced as measures to determine
the significance of tests. Finally, a summary of automated test generation
techniques is presented.

2.1.1 Overview

From an organizational standpoint, the aim of testing is to lift a software
up to a certain level of quality and raise the customers confidence in its
functioning [PVDBJvV04]. Considering the testers motivation, testing is
regarded as the process of executing a program with the intent of finding
errors [MS04]. According to [Tre04] (see Figure 2.1) software testing can be
can be classified according to its characteristics, scale and accessibility.

Characteristics. Testing is always performed with a certain test objec-
tive, i.e. showing that the system is complying to some characteristics.
According to [GVV08] these can be partitioned into functional and non-
functional characteristics, each demanding unique testing approaches.

• Functional testing determines whether the envisioned functionality is
realized by the given implementation.

19
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Figure 2.1: A common classification of software testing

• Non-functional testing is considering all those quality attributes that
are not belonging to functional testing. There are various forms of non
functional testing, e.g. performance testing, load testing, stress test-
ing, usability testing, maintainability testing, reliability testing and
portability testing. The testing of security aspects as well as inter-
operability testing are usually also regarded as non-functional, even
though they are classified as functional testing in the ISO/IEC 9126
standard [ISO01].

Scale. Traditionally, three different testing layers have been advertised
to enforce functional correctness of monolithic software systems (see for
instance [Jor08]

• Unit Testing. This is carried out alongside the development of sin-
gle software units like methods, procedures or classes, which are then
tested in isolation.

• Integration Testing. This deals with the testing of aggregated func-
tionality like clusters of classes or sub-systems.

• System Testing. This comprises the fully integrated application, usu-
ally using its externally exposed interfaces.

It has been argued convincingly in [ABR+07] that everything apart from
unit testing is a form of integration testing. However it still makes sense
to distinguish between the different levels of integration testing, as long as
they demand distinct strategies and techniques (like integration testing and
system testing in the traditional approach).



2.1. TESTING 21

Accessibility. The chosen approaches and techniques for software test-
ing depend on the type of information that is available or intended to be
utilized [UL07]. In general, two options exist:

• White-Box Testing. These testing techniques are utilizing the imple-
mentation code of the system under test for the design of the tests.

• Black-Box Testing. In contrast to white-box testing, the test design
is based purely on externally available information, while the internal
structure of the system under test is unknown or ignored. Externally
available information might be the interface description, models that
are specifying the intended behavior or textual requirements.

Because the wide range of testing characteristics cannot be tackled in
this thesis, in the following the scope is limited to functional testing.

2.1.2 Test Coverage Criteria

To assess the significance of a test, coverage criteria can be used. Conse-
quently, apart from just measuring the test coverage, testing techniques have
been developed to directly guide the test generation in order to achieve a
targeted degree of coverage. In the following, the most common categories
of coverage criteria are introduced, including an indication of test generation
techniques that address them.

Requirement coverage If each software requirement has been addressed
at least by one test case, requirement coverage is achieved [Jor08]. Because
software requirements are usually not formalized, the test designer’s inter-
pretation of requirements plays a vital role for the later software quality.
Also the quality of the requirements itself (e.g. the granularity or clarity)
influences the potential of fault detection. Therefore the main objective
of requirement coverage is not fault detection but software validation that
proves some desired features for the software consumer [Bin99]. However, re-
quirements can also be annotated to code (e.g. as assert statements [BCZ05])
as well as to behavioral and static models (e.g. as properties [FHP02]). In
these cases automatic model- or code-based test generation techniques (dis-
cussed below) can be utilized to achieve a certain requirement coverage.
Otherwise manual work has to be carried out to link requirements with test
steps, cases or the test suite [BJL+05].

Data coverage To achieve a certain data coverage during test execution,
combinations of input data have to be applied for test runs. Covering all
possible combinations usually is infeasible, because if at least one variable
has an infinite domain (e.g. a real number) the input domain cannot be
covered exhaustively. But also a combination of large finite input domains
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or a high number of variables prohibit exhaustive coverage. To reduce the
input variants, equivalence classes have been introduced, partitioning the
input domain into sets of values that all produce a similar system behav-
ior [WJ91]. Different data coverage criteria can be deduced from equivalence
classes. Examples are boundary value coverage (testing the input values at
the boundary of the data set) and statistical data coverage (testing with the
most probable values of each data set) [MS04]. To reduce the amount of
tests for every input value combination further, pairwise data coverage has
been proposed [CDPP96].

Code coverage The automatic generation of tests by analyzing source
code has been studied very extensively in the past. The so called white-box
testing techniques aim at code coverage features like statements, conditions,
decisions, and predicates. The general idea is to identify execution paths
through a program and find the enabling input test data. In the industry
test data selection usually is a manual process, but research in recent years
has investigated strategies to support that extremely costly and difficult
task [McM04]. Usually code coverage is transformed to coverage criteria of
the application’s control flow graph [ZHM97].

Model Coverage Model-based testing is a collection of different tech-
niques that utilize mainly behavioral models in the testing process. Simi-
lar to code-based coverage, model-based test generation aims to cover cer-
tain entities of a model (e.g. states, transitions, predicates in conditions).
In [UPL06] a classification of MBT techniques, distinguishing between the
used model, the test generation technique and the test execution has been
described in some detail. As explained in [UL07] model-based testing can
be introduced by stepwise automating the activities of the classical manual
testing process. Intermediate stages of this automation are Capture/Replay
Testing, Script-based Testing, and Keyword-driven Testing. Analysis of the
positive effects of MBT on software quality and cost reduction can be found
in various publications, e.g. [UL07, BBJ+03, AD97].

2.1.3 Automated Test Generation Techniques

In the following, state-of-the-art test generation techniques will be intro-
duced that address the above test coverage types. Because automatic test
generation techniques depend on formal specifications (either code or mod-
els) the overlap of techniques for the described types of coverage is quite
high. Therefore, instead of classifying testing techniques according to the
targeted coverage criteria, they can be grouped according to the used input
specification: into structural and behavioral test generation techniques. In
general, achieving a certain coverage for all of the above described criteria
can be provided by either structural or behavioral techniques. However,
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data coverage is usually associated with structural techniques, while code
coverage is commonly tackled by behavioral test generation.

Structural Test Generation

Structural information about a system can be given in various forms. Most
common are interface descriptions (e.g. headers of methods and procedures
on code-level or UML class diagrams on modeling level) that are specifying
the domain of the input and output data. Data coverage can be addressed
using MBT, by automatically generating input data from the specified do-
mains as discussed above. Other approaches provide extra information
about the correlation and constraints between input data values. For exam-
ple the classification tree editor (CTE) [DDB+05] can be used to identify,
visualize and link input data values. Applying CTE, a test generator can
compute a minimal test suite to achieve pair-wise or all-feasible-combination
coverage.

Behavioral Test Generation

Like from code, control flow graphs can also be extracted from behavior
models (e.g. state machines or activity diagrams) [OLAA03]. Model-based
coverage criteria and test generation approaches are therefore closely related
to code-based techniques. Various case studies (cf. [LY96]) describe imple-
mentations of different coverage criteria for model-based test generation.
Similar to the automatic test generation on code level, not the definition of
coverage criteria and processing of execution paths through the model itself,
but the assignment of test data to actually execute them is perceived as
the key issue. Therefore some work has already been carried out to utilize
known test data generation methods on code level (e.g. symbolic execu-
tion) for MBT. In the following an overview of some of the most prominent
code-based test generation techniques is given and linked to related MBT
approaches.

Symbolic execution was investigated in the 70ties. It does not exe-
cute the whole program, but evaluates the assignment of variables for a
chosen path through the code. During this processing, the path enabling
constraints are determined for each variable. This can be done either by
forward or backward traversal, with the difference that backward traversal
does not need storage for intermediate symbolic expressions, while forward
traversal allows early detection of infeasible paths [Kin76]. The application
of symbolic execution however is limited to rather simple code because the
needed constraint solving techniques require huge computational power and
can hardly cope with dynamic structure like lists or trees [Edv99]. In the
domain of MBT, symbolic execution techniques benefit from a higher level
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of abstraction and therefore have been applied successfully in various cases
(cf. [SBLR07, FTW+06, KPV03].

Domain reduction is a way to tackle the complexity problem of sym-
bolic execution. It takes the input data constraints computed by symbolic
execution and reduces the variable domain stepwise. In parallel also the con-
straints are simplified using the domain information. If no further reduction
can be made, a random value is assigned to the input variable with the
smallest domain, in order to restart the process [DO91]. Dynamic domain
reduction is a further enhancement, reducing the input domain already dur-
ing symbolic execution [OJP99]. Constraint solvers that are using domain
reduction techniques have also been utilized for MBT (cf. [AAF+04]).

Actual execution is a dynamic algorithm that uses randomly generated
data and monitors the resulting computation. If the intended path is left,
backtracking is used to re-execute the last branch. As backtracking might
accidentally change the program flow at an earlier point and much iteration
is needed until suitable input is found, this method has not found broad
acceptance. Therefore a hybrid method combining actual with symbolic
execution has been developed [GMS98]. Also for MBT actual execution
has been adopted. E.g. [HN04] reports on a model execution engine that is
utilized for test generation.

Local search is another representative of the dynamic test generation
algorithms. It is enhancing the actual execution by evaluating the branch
predicate at the point where the execution leaves the desired path. A branch
distance is computed, describing how close the branch predicate was to the
desired value [Kor90]. Model-checkers, which are used quite frequently for
MBT [FG09], have to adopt certain search techniques as well, in order to
explore the state space in an efficient way. The application of pruning, as
described in [EKRV06], is an example for local guidance.

The chaining approach in contrast to the previous search techniques,
only aims to find any path to a specified goal in the source code. It hence
relaxes the criteria of finding input data for a specific path, given the fact
that for statement coverage of the code, it is sufficient to find any path to an
uncovered statement [FK96]. The special characteristic of this technique is
to identify a chain of nodes (branches in the code) that are vital to reach the
goal. If no input value set for the chain can be produced, additional nodes
are added. In this way, loops can be addressed more effectively [McM04]. It
can be assumed that the chaining approach is applicable to MBT as well,
even though no evidence can be given.
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Simulated annealing is used to loosen the restrictions of local search
algorithms by allowing the search for data values to be more flexible. The
values are allowed to “jump away” from the perceived goal computed by the
distance function, but decreasing the amplitude steadily during computa-
tion. The aim behind it is to decrease the possibility of being trapped in a
local minimum, as it might easily happen for search based algorithms. An
application of simulated annealing for MBT has been reported in [PLP04].

Genetic algorithms are providing another way to loosen the restrictions
of local search. They are inspired by the evolutionary biology and produce
search results in a recursive approach. From a given set of data (initial pop-
ulation) the most appropriate items are selected according to a predefined
fitness function. These items are used for the breeding of a new population
by applying the concepts of crossover (combining items) and mutation (al-
tering items). The selection and breeding is continued until the termination
condition, e.g. finding a result or reaching a time limit, is reached. The
technique has been used for code-based [PHP99] as well as for model-based
test generation [GBL07, LI07].

Testability transformations was proposed to improve the performance
of heuristics-based (dynamic) techniques like genetic algorithms that usually
suffer from structural impediments like flag variables [HHH+04]. The basic
idea is to transform the program code such that the heuristics, used to find a
specific value, are guided towards the intended goal. As advertised in [Har08]
testability transformation could also be used to improve model-based search
techniques.

2.2 SOA

As introduced in Section 1.1, SOA provides methods and frameworks to
compose single services in order to realize complex software systems. In
the following, the challenges that are associated with SOA are described.
Afterwards current development approaches are introduced. Finally the
most challenging field of service composition is discussed in more detail.

2.2.1 Challenges

While SOA is regarded as the next evolutionary step to tackle the ever grow-
ing complexity of software, it also generates unique challenges. According
to [PTDL07] these (yet open) challenges can be clustered into four different
areas:

• Service Foundations. Despite the distributed nature of SOA the com-
mon infrastructure (e.g. the middle ware) has to provide for dynamic
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reconfiguration facilities, end-to-end security, data and process inte-
gration, and service discovery.

• Service Composition. In order enable dynamicity and adaptability,
SOA propagates a loose coupling of services. This however demands
for a sophisticated composability analysis, self-configuration of ser-
vices, and QoS-awareness.

• Service Management and Monitoring. Developers and providers must
be able to assess the status of a composed system in a dynamic en-
vironment. Therefor a self-configuring and self-adapting management
is needed that continuously monitors the application in order to de-
tect malfunctioning and external threats and applies self healing if
discovering a disruption.

• Service Design and Development. In order to provide flexible software
solutions, a holistic engineering methodology, flexible gap-analysis for
business processes, service versioning and governance applicable to
SOA is needed.

The conducted work, described in the thesis, focuses on aspects of the
service design and development as well as service composition. Therefore,
efforts to address the challenges of these areas are described in the following
subsections.

2.2.2 Service Design and Development

The growing size and complexity of problems that are tackled by software
also increases the complexity of the software development process and hence
the industry seeks for well defined development models that enforce efficiency
and high quality. To identify, define, and formalize development activities
in the service oriented software engineering (SOSE), naturally the existing
work from the area of component based software engineering (CBSE) has
been adopted [Vli08]. In the following, the most prominent approaches are
introduced

The Rational Unified Process (RUP) [Kru00] is a development process
based on UML that has been introduced for CBSE. Because of the good
tool support it found wide adoption in the industry. In order to make it
applicable for SOA development, [BJLP05] adjusted the existing milestone
definitions and introduced additional guidelines to address service composi-
tion and infrastructure.

The Service Development Life Cycle (SDLC), described in [Pap07], pro-
vides another methodology for an iterative SOA development approach. It
incorporates various models, standards and best practices for the eight de-
scribed SOA development phases Planning, Analysis, Design, Construction,
Testing, Provisioning, Deployment, Execution, and Monitoring.
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The Service Oriented Modeling and Architecture (SOMA) approach
[AGA+08], in contrast to RUP for SOA and SDLC, focuses on how busi-
ness processes can be translated effectively into service-based applications
by bridging from requirements to design. Core activities are the service
identification, service specification and service realization.

All of the mentioned approaches are addressing diverse aspects of non-
adaptive SOA applications. In fact, they are perceived as state-of-the-art
if applied in combination [DND09]. Thereby SDLC provides a founda-
tional framework, while RUP offers robust industrial processes and tools,
and SOMA refines the analysis and design phase.

2.2.3 Service Composition

When designing service-based systems (SBS), the desired functionality of
the software is partitioned into units, much like in component-based sys-
tems (CBS). However SOA becomes different on the integration level. Un-
like components in a CBS, services are loosely coupled by message exchange
and hence special care has to be applied to provide for their faultless inter-
action. The fundamentals of SOA - decomposition of systems into services -
have been provided by already established concepts like the Common Object
Request Broker Architecture (CORBA) [OMG04] and the Distributed Com-
ponent Object Model (DCOM) [Mic96]. The application of web-service-like
interaction however adds the advantage of interconnection in an object-
model-independent way and hence makes interaction between services much
easier.

XML [W3C08] emerged as the standard format for information exchange
between web services, utilizing XML schema to define message types and
using communication protocols such as the Simple Object Access Protocol
(SOAP) [W3C07] for message transmission. The Web Service Description
Language (WSDL) [W3C01] is the de facto standard for describing interfaces
of web services, e.g. including the public ports, provided service operations
and associated message formats. However it does not specify any behavioral
information.

Service Composition Overview Building on top of the above described
standards, there are two concepts for describing the service composition for
SBS, service choreography and services orchestration [MM04]. Adopting
the definition of [Pel03, BDO05], both forms of composition deal with the
collaboration of multiple services that are each possibly under the control
of a different party.

However, service orchestration on the one hand refers to an executable
process composed by theses services that is under control of a single party.
Service orchestration specifications hence always represents the perspective
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of this controlling party. Service choreography on the other hand is char-
acterized by a collaboration of multiple parties without a global controller.
Instead, interaction patterns for each party are defined that result in a suc-
cessful collaboration.

To illustrate the difference between orchestration and choreography with
a real-life example, the control structures of an classical orchestra and a
ballet ensemble is used. While the musicians in an orchestra are controlled
by a conductor, the dancers in the ballet are collaborating by taking their
part in a previously agreed routine.

Because both service composition approaches depend on the collabora-
tion of multiple parties, they are demanding formal ways of specification,
such that participants can understand and agree on their role. In the follow-
ing, current approaches to specify service orchestration and service chore-
ographies are introduced.

Service Orchestration As explained above, a service orchestration model
defines the order and the conditions of service invocations by a controller.
In general orchestration models may be based on any process modeling lan-
guages, such as UML activity diagrams, Petri-nets, state charts, rule-based
orchestration, activity hierarchies and π-calculus [DS05].

In the industrial world, the idea to describe business process that are
spanning over multiple web services was picked up by Microsofts XLANG
initiative [Tha01] and IBMs Web Services Flow Language (WSFL)[Ley01]
in 2001. These two initial approaches were then combined to form the
Business Process Execution Language for Web Services (BPEL4WS) spec-
ification [CGK+02] in 2002. Later, BPEL4WS was re-factored into the
WS-BPEL [OAS07a] and submitted for standardization by a consortium
including the market leading enterprise software vendors IBM, Microsoft,
SAP and Oracle.

WS-BPEL is aiming at the definition of executable business processes
by concatenating activities that are associated with operations on web-
services. Also constructs for conditional branching, parallelism and loops
are provided. In this way multiple envisioned message exchange sequences
between multiple parties can be specified in one model. Numerous commer-
cial tools (e.g. IBM’s WebSphere Process Server, Oracle’s BPEL Process
Manager, SAP’s Exchange Infrastructure, Parasoft’s BPEL Maestro, Mi-
crosoft’s BizTalk Server) as well as various open source tools (e.g. Apache
ODE, bexee, OSWorkflow) exist that are able to execute WS-BPEL pro-
cesses [MXS09]. Roughly, all of these execution engines take the role of the
orchestration controller that receives and forwards messages between the
participants according to the specification.

In order to support the modeling, common interaction patterns between
orchestration participants have been identified [VdATHKB03]. These have
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also been used to evaluate the expressiveness of other service composition
languages and drive the enhancement of standards [VdADtH03].

As the industry already picked up and productized the classical engi-
neering techniques for WS-BPEL, current research activities are advancing
in the direction of formal verification. The common goal is, to provide
means for static analysis of WS-BPEL specifications that are able to de-
tect undesirable situations, such as the unreachability of activities, uncon-
sumable messages or multiple activities competing for the same message
(cf. [OVvdA+07, FBS04]).

Since its arrival, BPEL has been dominating the market for service or-
chestration. The biggest competing approach, the XML Process Defini-
tion Language (XPDL) [WfM08] is supplying an execution semantics for
the graphical OMG standard Business Process Modeling Notation (BPMN)
[OMG08a]. Similar to BPEL, there are various commercial and open-source
tools available to both model and execute XPDL processes (e.g. Adobe’s
LiveCycle Workflow, Software AG’s Crossvision BPM, IBM’s FileNet Busi-
ness Process Manager 4.0 ). The mentioned BPMN itself is not an orches-
tration language as it abstracts from the execution semantics. Instead, it is
used to describe business processes independent of the actual realization.

Service Choreography According to the W3C Web Service Glossary
[W3C04a] “a choreography defines the sequence and conditions under which
multiple cooperating independent agents exchange messages in order to per-
form a task to achieve a goal state”. As mentioned above, the main charac-
teristic of choreography is that no centralized control exists. Choreography
models describe the communication between a set of loosely coupled com-
ponents and in that sense defines the allowed ordering of message exchanges
between these components. The communication is observed from a global
perspective, while the local behavior of the involved components is not con-
sidered as far as it is not affecting the communication.

Several choreography modeling languages have emerged in the last few
years. Some of the more prominent languages are the Web Service - Choreog-
raphy Description Language (WS-CDL) [W3C04b], BPEL4Chor [DKLW07],
and Let’s Dance [ZBDtH06]. They vary in several regards such as abstrac-
tion level, formal grounding, target users, etc.

While WS-CDL is a choreography language that targets the implemen-
tation level and directly builds on WSDL. In contrast BPEL4Chor and Let’s
Dance focus on high-level service interaction modeling in early design phases
and target business analysts as key users. As mentioned above, the OMG’s
current version BPMN 1.2 [OMG08a] is a language to describe business
processes rather than targeting choreography modeling. However the recent
draft for BPMN 2.0 [OMG08b] will most probably include choreography
modeling that aims to be understandable by business users and technical
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developers alike.
The current approaches to choreography modeling are still quite imma-

ture compared to orchestration modeling. There is little tool support for any
mentioned language. BPEL4Chor and Let’s Dance are research initiatives
that solely provided prototypes for modeling, while WS-CDL can claim at
least two vendors (Pi4 Tech and WS-CDL+). Nevertheless, especially WS-
CDL has been subject to research recently. Especially the formal verification
of choreography properties like local enforceability [DW07], deadlocks and
unconsumable messages [KP06] has been considered, but also the confor-
mance of a participants’ behavior to a given choreography [DD04].

2.3 SOA Quality

The last section dealt with an introduction to SOA development and mod-
eling. In the following, the SOA specific quality aspects will be discussed.
First, general quality assurance approaches will be laid out. Afterwards the
focus is narrowed to testing, starting with the identification of challenges
for SOA, before the differentiating aspects of the SOA testing stack are
compared with the traditional testing layers introduced in Section 2.1.1. Fi-
nally current approaches to the most challenging SOA testing layer - service
integration testing - is explained.

2.3.1 SOA Quality Assurance

Activities that are aiming to assure software quality for service-based sys-
tems can be distinguished into three different categories [BD07]:

• Static analysis. The examination of software (and modeling) artifacts
in order to determine specific properties or to prove that certain pre-
defined properties hold [Ost96].

• Testing. The execution of software with the intent of finding errors
[MS04].

• Monitoring. The determination, whether the current execution of soft-
ware preserves specified properties [DGR04].

Recent research in the SOA community has addressed all of these ac-
tivities in numerous ways. Therefore the EU-funded project S-CUBE1 was
started with the goal to consolidate this disjunct work into a common ap-
proach. In an analysis of SOA quality assurance techniques [SC08a] it was
concluded that there is already fundamental knowledge in all these activities,
either developed particularly for SOA or adapted from traditional software

1Full title: Software Services and Systems Network, online at: http://www.

s-cube-network.eu

http://www.s-cube-network.eu
http://www.s-cube-network.eu
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engineering. Therefore the challenge they identified, is to combine the results
of these approaches and pair them with engineering principles, techniques
and methods.

This thesis is largely focused on the testing of SOA, while only touching
static analysis and monitoring. Therefore in the following, an overview of
the SOA specific aspects and research activities on testing is given. For a
more detailed discussion about testing approaches in general please refer to
Chapter 2.1.

2.3.2 Challenges of SOA Testing

When new programming paradigms, such as the ones associated with SOA,
are emerging, naturally they arise the question whether there is a need for
new testing methods or whether existing approaches can be adapted. More
concrete, it has to be determined whether approaches and techniques, de-
veloped for traditional monolithic systems, distributed systems, component-
based systems, and web applications can be adapted to service-based sys-
tems. In order to provide an answer, the particularities and challenges of
SOA testing have to be analyzed.

The authors of [CP09] identified the following key distinguishing factors
for SOA that generate unique challenges for the testing activities:

• Lack of code access. For users, services are just interfaces as they nei-
ther have knowledge about the structure of the code nor the possibility
to observe its execution. These limitations are preventing any form of
white-box testing for users.

• Dynamicity and adaptiveness. For traditional systems one is always
able to determine at least the set of possible targets for a call [MRR05].
This is not true for SOA where the work flow of abstract services
might be bound to concrete services retrieved from one or more reg-
istries during execution. Consequently, a thorough integration testing
is hindered.

• Lack of control. Services are deployed independently and might be
evolved without informing the consumers. Therefore service can un-
expectedly change their behavior or miss service level agreements. As
a result, system integrators cannot decide on a migration strategy in-
cluding regression testing of the system.

• Lack of trust. As decisions for choosing a certain service solely de-
pend on information that the provider is giving out, the risk exists
that service providers are negatively influencing users with incorrect
or inaccurate information. This limited trust in the service provider’s
information makes the test design more complex.
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• Cost of testing. As test invocation by users may cause cost or other
undesirable effects (e.g. an experience of a denial-of-service attack) on
the provider side, extensive or repeated testing might not be feasible.

A slightly different approach has been taken in [GGN09], where the
challenges of SOA testing are clustered to different items. As described
below, it can be shown however that there is a mapping between these
collected challenges and consequently no additional aspects can be derived.

• Stakeholder separation. It deals with all aspects of the challenges
arising by the separation of SOA user, service aggregator and service
provider and hence incorporates the previously mentioned challenges
lack of code access, lack of control, and lack of trust.

• Service integration. It deals with the problems of test isolation
[BAHS07] (i.e. separating testing from execution activities) and test
awareness in SOA systems and hence incorporates the previous chal-
lenges lack of code access, lack of control, and cost of testing.

• Service versioning and migration. It deals with the different aspects of
change management for services and hence corresponds to the previous
challenge lack of control.

• Service binding and reconfiguration. It deals with the aspects of run-
time binding and change management for SOA applications and hence
corresponds to the previous challenge dynamicity and adaptiveness.

Considering the challenges derived from [CP09], some general implica-
tions can be derived. It seems reasonable that the first three items - namely
lack of code access, dynamicity and adaptiveness, and lack of control - are
dealing with technical challenges while the following items - lack of trust
and cost of testing - may have to be solved on the management level.

For addressing the management group it may be necessary to provide
means of interaction between stakeholders, in order to share information and
rights. Whether these means of interaction have to provide for anonymity, as
it is presumed in [GGN09] will be seen. However, the conservatism of major
business companies and the consequent request for knowing and trusting
business partners will probably lead to different solutions [O’L00].

The technical group clearly states that black-box testing techniques will
have to be applied, as code access in a SOA environment is limited. Dynam-
icity and adaptiveness itself can only be achieved by providing detailed infor-
mation about interfaces (see Section 2.2.3). Otherwise (in-)compatibilities
cannot be detected and/or handled automatically. Therefore it can be
assumed that model-based testing will be have a much greater impact in
the testing process than in traditional industrial development setups, where
modeling is carried out rather sporadically. The lack of control over parts
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Figure 2.2: SOA testing layers

of the system implies that tests will have to be carried out not only in the
development of a service-based application, but also regularly after deploy-
ment. Therefore having automatic regression tests in place is a natural
conclusion [AKK+05].

2.3.3 The SOA testing stack

After having discussed the general challenges of SOA testing, a closer look
will be taken on the particular testing activities, in order to see which of
them is affected in what way. In [UL07], the traditional testing layers (see
Section 2.1.1) have been adjusted towards the support of CBS. As the general
idea of partitioning applications into logical units is somehow similar to
the SOA approach of encapsulating related functional units in a service,
the definition of SOA testing layers can be done analogous to the one for
CBS. Consequently four distinct testing layers (illustrated in 2.2) can be
distinguished, namely unit testing, service testing, integration testing, and
system testing. In the following each layer is introduced.

Unit Testing. Unit testing is the best understood testing layer in research
and practice. In contrast to all other testing layers, unit testing focuses on
getting confidence in the functional correctness and hence in the correct
implementation of the algorithms. As mentioned above, it deals with single
software units in isolation. During unit testing the execution context of
the software unit under test is mocked. Therefore, it can be carried out in
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SOA systems just like in any CBS implementation or any other software
architecture, using all available tools and techniques. A good overview of
such techniques can be found in [ABR+07].

Service Testing. Also service testing for SOA is analog to the testing
of components in the CBS world to some extend. The general focus of
service testing is less on the correct implementation of algorithms but on
the integration of the functional units inside the (service) component and on
the fulfillment of the contractual obligations of the component’s interfaces.
Applying the classical definition of testing layers, service testing is part of
integration testing as introduced in Section 2.1.

In the SOA world, the static aspects of service’s interfaces are defined in
WSDL and basically correspond to the UML component or class diagrams
that are used to describe the components in the CBS world. Therefore
similar testing methods as for component testing of CBSs can be used. Many
of them have been described in [GTW03]. Corresponding to Section 2.3.2 the
high degree of modeling in the SOA setup enables the application of MBT.
Most of the approaches in the service testing literature (see [CP09] for a
survey) are adding state machines (cf. [SP06, KKK+06, FTdV06]), Petri-
Nets (cf. [DYZ06, WBLH07]) or UML profiles for SOA to WSDL interface
descriptions and applying state-of-the-art MBT approaches like constraint
solving or model checking.

Integration Testing. As mentioned before, the loose coupling of service
components is one of the distinguishing factors of SOA. In contrast to the
CBS approach, integration testing cannot rely on homogeneous components
with tightly connected interfaces. Instead the adaptability and distribution
of SOA demands additional considerations for integration testing. Service
components are connected by messaging channels with individual proper-
ties. The standard approach to define the minimal required transmission
properties for a channel, which is connecting two service components, is by
using to the Web Service Reliable Messaging (WS-RM) standard [OAS07b].

WS-RM is integrated into WSDL and incorporates the following delivery
assurances, which can be associated with a channel:

• At Least Once (ALO) - each message is delivered at least once,

• At Most Once (AMO) - each message is delivered at most once,

• Exactly Once (EO) - each message is delivered exactly once,

• In Order (IO) - all messages are delivered in order (which can be
combined with any of the previous delivery assurances).

Even though all the described WS-RM delivery assurances can be used
to define channel requirements, currently only EO and EOIO are relevant,
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because ALO, ALOIO, AMO and AMOIO are not implemented by any com-
mercial SOA platform. In practice this means that any WS-RM assignment
will be realized by a stronger delivery assurance (either EO or EOIO).

Therefore, in contrast to message loss and message duplicates, the effects
of message racing and its implications have to be considered during system
development and should be tested thoroughly. Message racing in this context
refers to situations where messages are not received in the same order as they
are sent. As service integration testing is a key area of this thesis, it will be
handled in more detail in Section 2.3.4.

System Testing. In the SOA world, system testing can be defined analog
to the classical definition from Section 2.1.1. As the faultless interplay of the
services can be assured on the integration testing level, in practice system
testing is based on high-level usage scenarios and business requirements
that have been defined by business analysts or customers. UI-based testing
is therefore most appropriate to carry out the tests, as the system should
be validated as a whole and only using access points that are available to
the prospect user. Most commercial testing tools focus on UI level tests and
offer certain degrees of automation [SG08].

2.3.4 Service Integration Testing

As explained, service integration testing is the most challenging layer within
the SOA testing stack. Even though it is not thoroughly studied, some
of the mature concepts for protocol testing in the telecommunication area
can be adapted. Communication protocols are formal descriptions of the
interactions that occur between a defined set of components in general and
between a set of software components in particular.

One of the main issues of protocol testing is to check, whether an im-
plementation conforms to a given standard. Standardized procedures for
protocol testing and protocol testing processes have been developed by
ISO [Org94] and ETSI [ETS95]. A good summary is given in [Lai02].

Three different kinds of protocol tests can be distinguished:

• Unit tests are carried out during the development phase of a compo-
nent by developers. They are similar to classic software unit tests.

• Conformance tests aim to check whether an implementation conforms
to a given protocol specification. In the case of standardized protocols
the standard is used as a specification.

• Interoperability tests address the interoperability between components
and different implementation of the same protocol. The aim is hence to
guarantee the interoperability of interacting components that emanate
from different distributors and implementers.
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Comparing this classification to the SOA testing stack of the previous
section, it becomes clear that service integration testing is related to proto-
col interoperability testing approaches. Under the assumption of hard-coded
service integration, CBS approaches (cf. [RSM09, ABR+07, GOC06]) to in-
tegration testing are applicable. These are mainly using UML-like static and
behavioral models (class diagrams, state machines, collaboration and inter-
action diagrams) to generate tests. However their tests are generated and
executed separately for each partner and hence they are different from an
approach that tests the actual communication between two service compo-
nents. Also the effects of asynchronous communication and multiple chan-
nels are not considered. Instead the send and receive events of a message
are combined to an atomic unit.

In contrast, the approach of [PMBF05] utilizes global (sequence charts)
and local behavior description (state machine) for deriving integration tests
using a model-checking-based test generation. However, synchronous com-
munication is assumed for this approach, too. Unfortunately, in most SOA
systems the assumption does not hold, as service compositions are meant to
be loosely coupled.

Also integration testing approaches that rely on service orchestration
mechanisms and generate tests from BPEL (cf. [DYZ06, Lüb07]) are un-
suited, because service orchestration as such depends on the availability of
a global source of control while the envisioned SOA applications assume a
shared control as they incorporate external services and aim at enabling
business to business processes [WM06].

Service integration testing using choreography models is still a little cov-
ered subject. The recent surveys on SOA testing [CP09, SC08b] did not
identify relevant work.



Chapter 3

Problem Statement

As described in Section 2.3.2, the development of SOA applications imposes
some unique challenges to software testing. It has also been mentioned that
these challenges can be separated into technical and management challenges.
In the following, the technical challenges are further refined, in order to en-
able an assignment of concrete research activities for solving them. First,
the distribution and dynamicity of the system state is described, then the
integration of loosely coupled services is considered. The chapter is con-
cluded by a short summary section, that explains how the discussed items
are addressed in the following chapters. Beforehand a running example is
introduced. It is not only used to illustrate the discussed problems, but also
throughout the remaining thesis.

Section 3.3 is based on [1] and [2] that present challenges associated
with the SOA system state in the domain of ERP software. The findings of
Section 3.2 have been published in [6] and [4].

3.1 A simple buyer-seller example

In this section a running example from the enterprise world is introduced,
describing a simplified communication between the service components of a
buyer and a seller. An illustrating sketch of the communication is presented
in Figure 3.1. The example will be used throughout the remaining thesis.

When a buyer is interested in placing a sales order it starts a conversation
with the respective seller, by sending a Request message that provides the
details of the order. This message will be answered by the seller using an
Offer message with information about the price and terms of delivery for
the desired goods. Afterwards the buyer has the choice to either accept or
decline the offer. In the first case, it sends an Order message that successfully
concludes the communication and triggers the execution of the production
and/or delivery process at the seller side. In the other case, it sends a
Cancel message that rolls back the previous communication and releases

37
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Figure 3.1: A sketched protocol of the running example

the reserved resources at the seller. In this case the protocol allows the
buyer to restart the negotiation with a new request.

For the communication between buyer and seller a synchronous channel
for the Request and Offer messages and a reliable asynchronous channel
that does not guarantee to preserve the message order for the Cancel and
Order messages will be assumed. In Section 2.3.3 the assignment of such
channel properties has been discussed in general. The motivation for this
specific channel assignment will be explained in Section 3.2.1.

3.2 Complex Interaction Patterns

As described in Section 2.3.4, service integration testing for SOA is not well
covered by current research, while major difference between component-
based and SOA testing can be found on the level of integration testing and
consequently prevent the application of established CBS tools.

In the first part of this section more details on the particularities of
SOA service integration are given, while the second part reasons about the
inapplicability of current modeling approaches for controlling the quality of
service integration in a model-driven development approach.

3.2.1 SOA Service Integration

In a component-based implementation, the communication is in most cases
handled by synchronous calls between the components. Synchronous com-
munication means that the initiator is blocked from further computation
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until the requested component is providing the desired answer. The SOA
approach however demands a loose coupling that allows more flexibility and
better distribution of the components. Therefore asynchronous channels are
used in addition to synchronous ones.

Asynchronous channels provide different reliability degrees according to
the WS-RM standard [OAS07b], for instance that every message is received
exactly once (EO) or even exactly once in order (EOIO) (for details see
Section 2.3.3). Both types of channels have mechanisms to ensure that each
sent message is received once, thus preventing message loss and multiple
receiving of the same message. The differentiating feature is that messages
on an EOIO channel are always received in the same order they are sent,
messages on the EO channel may overtake each other.

In practice changes of the message order happen when dynamic routing
strategies are applied to the messages or when data corruption occurred,
thus forcing a message to be sent again. On EOIO channels, message racing
is usually prevented by re-sorting the messages at the receiver side. In the
following, the necessary considerations for assigning channels to a service
communication are described.

Synchronous vs. asynchronous channels. Synchronous channels are
usually used when the sender of a request message demands an immediate
response, because its consequent actions depend on it. The blocking of
the sender until the response message arrives is therefore acceptable. In
the running example of Section 3.1, if the buyer requests an offer from the
seller, the response messages is crucial for the buyer, because the consequent
decision about accepting or canceling the offer obviously depends on it.

In contrast, asynchronous channels are preferred over synchronous ones
if the sender is not dependent on an immediate response. On one hand asyn-
chronous communication does not block the sender until it finally receives
the response, on the other side it gives the receiver the freedom to delay the
computation of the incoming messages in favor of more urgent tasks that
demand low latency. In the running example, a buyer would probably not
need an immediate assurance that its Order message has been processed as
long as the seller guarantees the availability of a communicated offer. Also a
Cancel could be sent asynchronously by the buyer, as its future computation
does not depend on the response of the seller.

The discussion shows that the decision about using synchronous or asyn-
chronous communication should be (and in practice is) taken individually
on interaction level rather than unified for the whole SOA application. More
detailed discussions on the comparison and combined usage of synchronous
vs. asynchronous SOA communication can be found in [EAA+04, Sol06].
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Figure 3.2: Example scenarios of asynchronous communication

Exactly Once vs. Exactly Once in Order. In the case of asynchronous
communication, EO channels have the advantage compared to EOIO that
their protocol overhead is much smaller and hence the latency is reduced a
lot, especially in environments with bad transmission quality. However, EO
communication should only be applied if the final result of computation is
independent of the order in which the messages are received. In the running
example, the order in which Order and Cancel messages arrive and are
computed at the seller might be crucial. In the scenarios given in Figure 3.2
the buyer sends two requests during the interaction. While both depicted
scenarios are valid for an asynchronous EO channel between buyer and seller,
the scenario on the right cannot be observed in the case of an EOIO channel
because the message racing of Cancel and Order is prevented.

In the described case, an EO channel could lead to problems because the
seller might be unable to determine, which of the two previously sent offers
has been canceled. However, if the Cancel and Order messages contain
information about the corresponding offer, the seller will be able to take the
right decision even if the messages arrive in changed order. Hence an EO
channel with lower latency could be used in this case.

Message racing challenge. As argued in Section 2.3.4, the integration
testing of SOA demands special attention as the classical approaches are
not applicable “off the shelf”. Further, the particularities of SOA service
integration have been explained above. In the following, the challenges of
message racing for SOA integration testing will be discussed.

Three reasons can be identified, why it can be impossible to predict in
which order messages are received in SOA systems:
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• Usage of an EO channel. The effect of message racing on EO channels
has already been explained above. In the running example of the com-
munication between a buyer and a seller, the seller may send Cancel

and Order messages on an EO channel which may lead to the changed
receive order depicted on the right of Figure 3.2.

• Multiple channels. As discussed, synchronous communication is usu-
ally much faster than asynchronous. Therefore messages sent over dif-
ferent channels experience different latency and hence may be received
in different order. In Figure 3.2 the second synchronous Request is
sent later than the asynchronous Cancel but is received first.

• Concurrent communication. In many business scenarios, situations oc-
cur where both participants are allowed to send messages concurrently.
In the running example this would be the case, if the buyer is allowed
to send a Cancel before receiving the Offer from the seller. In this
case, the buyer and the seller could act simultaneously and hence no
prediction about the order of received messages could be made.

These three reasons for non-determinism in the SOA message delivery
imply that robustness against message racing has to be considered in the
system design and also checked during integration testing. It can even be
argued that a system design using synchronous communication to ban mes-
sage racing will only avoid the non-determinism to a certain extend as the
effects of concurrent communication cannot be addressed. However this con-
tradicts the paradigms of SOA and also affects its performance, as explained
above. An integration testing approach for SOA therefore clearly has to ad-
dress the faults related to message racing. Only then it will possible to build
confidence in the correct functioning of the system.

3.2.2 SOA Choreography Modeling

As described in the previous subsection, quality control for SOA service
integration has to examine and assure that the effects of message racing
have been addressed in the development. Because of the limited access
to code in SOA environments, integration should be handled in a model-
driven way and therefore has to be accompanied with appropriate means of
choreography modeling that has to fulfill the following objectives:

• Comprehensibility. Choreography modeling should support process in-
tegration experts, developers, and testers to get an unambiguous com-
mon picture of interaction of communicating service components. This
is a crucial goal for software development with globally distributed de-
velopment teams.
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• Verifiability. Choreography models should be suitable for applying
static verification techniques to discover inconsistencies in the design
of the communication itself and in correlation with the behavioral de-
scriptions of the involved service components. This ensures the discov-
ery of problematic design decision before the actual implementation
and hence avoids expensive corrections in later development stages.

• Suitability for automatic test generation. Choreography models should
enable the derivation of integration tests using model-based testing
techniques. After some initial effort for building test adapters, MBT
promises an optimized test generation with a controlled test coverage
and a high degree of automation.

In this respect, the presented protocol of the running example (see Fig-
ure 3.1) might be precise enough for a high-level business view of the in-
tended process, however some semantical subtleties remain unclear. For
example it has to be made explicit, whether this description specifies a sub-
set of the intended behavior, which may allow additional transitions (e.g.
observing a new Request message in the state Reserved), or a maximal al-
lowed behavior, such that conforming implementations are allowed to leave
out some functionality (e.g. the buyer might be allowed to skip sending a
Cancel message in the case of rejecting an offer). Moreover, the semantics
of message sending and receiving has to be clearly defined, based on the
specific channel assumptions. In the running example two communication
channels are used. Therefore, it might be observed that a Cancel message
is delivered to the seller only after it received the Request message of a new
negotiation process, even though these messages were sent in the opposite
order. Consequently the protocol depicted in Figure 3.1 only applies if it is
assumed that the transitions symbolize the sending of messages.

Requirements for a choreography language. Taking the initial
thoughts and the general requirements from above as motivation, in the
following specific requirements for a choreography language that supports
the targeted model-driven approach are discussed.

• Detailed message description. Determinism is a prerequisite for most
MBT approaches. In the context of SOA, the allowed communication
sequences may vary depending on certain data values in the exchanged
messages. In the running example this can be exemplified as follows.
When presuming that the Order and Cancel messages have the same
message type and can only be distinguished by the containing data
(e.g. by a flag variable), the modeling language has to provide a way
to express such constraints on the data instance level.
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• Infinite state space. If for example a buyer asynchronously sends
Request messages with the intention that each should be confirmed by
a seller eventually, using either Order and Cancel messages, the chore-
ography model has to distinguish between those communication states
where confirmations are still expected and those where each Request

has been answered. This cannot be specified by a finite automaton or
a regular language, according to a classical result in formal languages
theory. Instead unbounded variables (in the given case a counter that
adds up the Request messages and subtracts the confirmations), im-
plying an infinite state space, have to be available for choreography
modeling.

• Interaction termination. For a choreography modeling approach that
enables test generation an important prerequisite is to define those
states, in which the communication is allowed to terminate, as they
are implying states of data consistency. A termination state should not
be defined as preventing any further communication (e.g. by disallow-
ing outgoing transitions). When considering the negotiation between
the buyer and the seller the Start state is a state where (e.g. af-
ter the receiving of a Cancel the communication might terminate or
might be continued by the buyer. As discussed below, most of the
current choreography languages are using an incompatible notion of
termination, while the given example is in harmony classical notion of
accepting/final states from finite automata theory.

• Channel modeling. Choreography modeling has to reflect the heteroge-
neous and distributed nature of SOA. In the running example distinct
communication channel for the Request and Cancel message imply
that the implementation of the seller component will have to be more
robust, as it has to consider receiving a second Request message before
a (deprecated) Cancel message arrives.

• Explicit message send and receive. Describing a send event together
with its corresponding receive event as an atomic action restricts a
choreography model significantly, as it prohibits to specify “send after
receive” constraints. Considering an atomic modeling approach, for
example the following “send after receive” constraint: ‘the seller shall
not be allowed to send an Offer after receiving a Cancel message’
cannot be distinguished from the following stronger “send after send”
constraint: ‘the seller shall not be allowed to send an Offer after
the buyer sent a Cancel message’. Therefore, for an unambiguous
interpretation of the model the stronger “send after send” constraint
would have to be applied. As this constraint can only be enforced,
if both participants synchronize their communication, it contradicts
the SOA paradigm of loosely coupled services and hence an explicit
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distinction between message send and receive is necessary.

• Global and local views. In order to design, verify and test a SOA ap-
plication, next to a global model, also the envisioned local behavioral
models of the participating components have to be given, as they spec-
ify the corresponding implementations. Keeping all these perspectives
consistent is a major challenge of choreography modeling.

• Pairwise choreographies. Most interaction processes in SOA based
systems span over multiple components. It can be noticed however
that in the vast majority of cases no information is lost when project-
ing such multi-party choreography to pairwise choreographies, as the
underlying processes are utilizing the components sequentially. Mod-
eling pairwise instead of multi-party choreographies helps to reduce
the modeling complexity.

• State-based modeling. Two major directions can be followed for chore-
ography modeling: an activity-based or a state-based one. In the
activity-based approach, the interactions between the parties and their
ordering is the primary focus. In the state-based approach, the states
of the choreography are modeled as first-class entities together with
the interactions, which are then modeled as transitions between states.
Since activity-based models may become cluttered by variables for
bookkeeping of the choreography state and the message contents, a
state-based approach is advocated.

Applicability of existing languages. Having derived concrete require-
ments for choreography languages that support a model-driven development
approach including automated quality control, current choreography lan-
guages (described in Section 2.2.3) can be evaluated.

As mentioned, WS-CDL is a choreography language that targets the
implementation level and builds on WSDL. It misses the explicit notion of
termination, which is an important ingredient for test generation. Termina-
tion states in WS-CDL are denoted by the absence of outgoing transitions.
Consequently the Start state from the running example could not be mod-
eled as terminating in WS-CDL without leading to non-determinism. WS-
CDL further only describes send events globally and hence does not reflect
message racing directly.

The recent draft for BPMN 2.0 explicitly includes choreography model-
ing that should be understandable by business users and technical developers
alike. In its current state, BPMN 2.0 has a too restrictive notion of termi-
nation. Even though (unlike WS-CDL) end states are defined explicitly,
they are not allowed to contain outgoing transitions and thus lead to the
same problems described above. Further it abstracts from channel informa-
tion and treats message send and receive event as atomic unions. Moreover
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Figure 3.3: Decomposition of SOA

BPMN 2.0 has a large number of (non-trivial) modeling artifacts that make
the modeling process complex and the learning curve steep.

BPEL4Chor and Let’s Dance focus on high-level service interaction mod-
eling in early design phases and target business analysts. Although the core
of these languages is formal, guards and conditions can only be defined in
natural language, which makes them inappropriate for verification or auto-
matic testing approaches. Like WS-CDL, they do not have explicit notion
of termination. Due to the assumed send viewpoint they are not able to
reflect message racing. Additionally, Let’s Dance even does not support the
modeling of partner views.

3.3 SOA System State

The state of any software application is determined by its current processing
step and by the stored data that the system is able to access. More precisely,
the current processing step of a system describes the state in an abstract
way and thus defines possible system responses in general. In the running
example the buyer is initially only able to trigger a Request, later either a
Order or Cancel. A process description deliberately abstracts from details
like the internal data.

The internal data affects the state because it might constrain the pos-
sible system responses. In the running example, the decision to order or
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cancel might implicitly depend on the currently available funds in the buy-
ers account. As the actual processing step of a system is represented by
state variables, the state of a software application is in general determined
by its current data assignment.

To make software testing productive, the ability to observe the sys-
tems data (and hence the system state) at testing time is regarded as a
must. Without such information the reasoning about whether the system
responded correctly to a given test stimulus seems to be impossible. As
illustrated in Figure 3.3 decomposition of components, as demanded by the
SOA concept, however leads to a decomposition of data, too. Consequently
the state of a SOA application is hardly observable any more. Verifying
SOA based systems therefore forces test concepts to consider unobservable
system states, while still providing the means of reasoning about test results.

Another important paradigm in the theory of testing is the reproducibil-
ity of tests. For a stateless system or a system with a built-in method to
return to the initial state (e.g. a calculator) this requirement can be met
easily. As SOA applications are highly complex in functionality and data,
such a requirement on testing usually cannot be met. For example it is
practically impossible to bring ERP systems back into a defined initial state
because the effort is too high even in a developing phase. Further especially
enterprise software usually intentionally prevents the reset of data to meet
legal requirements. However, as each test run changes the system state, a
rerun of the same test case will most likely find the system in a different
condition.

State changes of software systems do not depend on actions alone but
are connected to input data (transactional data) and system data (master
data and state variables). When providing test data for complex systems
such as SOA applications, various challenges have to be considered. These
are illustrated in Figure 3.4.

Concerning the test input, two main categories for data constraints have
to be satisfied. First of all, the test input data has to be compatible to the
test case it is applied to (e.g. conforming to the input format of the test
steps). Secondly, the test input data often has to reference available and
appropriate system data. In Figure 3.4 these two categories are referred
to as System Data Dependent Constraints and System Data Independent
Constraints.

The other challenges depicted in Figure 3.4 deal with the provision of
the data that has to be present inside the system during test execution.
Again, these challenges challenges can be divided in two parts. The first,
namely System Data Supply, contains the issues of inserting consistent data
into the system. The second, namely System Data Stability, comprises the
challenges of keeping the system data stable despite test execution.

In the following subsections, the challenges for handling system data and
input data are described in more detail.
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Figure 3.4: Challenges related to SOA test data

3.3.1 System Data Challenges

System data is a necessary ingredient for testing since internal data is the
base of any data intensive system like ERP and will most likely be processed
during any execution. Two special subjects regarding system data for re-
gression testing have to be considered: system data supply and system data
stability. In the following, detailed descriptions for each are given.

System Data Supply. In ERP systems, providing master data as sys-
tem data for later interactions is an important user scenario. For testing,
providing an initial system data could be either part of each test relying on
system data or could be done during a general testing preparation, where
the data is either inserted directly or via the developed system.

Provision per test case. In the first case, all tests should be able to
run on empty systems, initializing and storing needed system data in the
preamble phase. Such approach is unfortunately infeasible for ERP testing.
Even the small example above is suitable to shows the practical weaknesses.
From the buyers perspective, to order some goods from a seller, contact
information as well as billing information have to be entered to the system.
The billing information itself demands other information like the business
unit to which it is assigned. This unit needs information about its manager
and the company it belongs to, among others. Further iterations lead to the
creation of a vast amount of master data even for a simple test run. Other
processes (e.g. creating a report about all sent sales orders) additionally
need saved transactional data inside the system. There are usually numerous
internal data dependencies such that most test cases would be forced to set
up a large amount of master data in the preamble phase in order to be
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executable.

Admitting that the effort of providing system data in test case preambles
is unmanageable, ERP testing demands the insertion of common test data
to the system during the testing preparation, which then can be used during
the test execution.

Direct provision. The first possible test data preparation approach is to
write the data directly into the database, but this is difficult, as it demands
to either manually or automatically enforce system data consistency during
this process. For the manual task, the complexity of data relations is too
high, whereas for the automated task, consistent data insertion would mean
to re-implement the expensive system data constraint checking and solving
mechanisms that is part of the system under test.

System-based provision. A second more realistic solution is to fill the
empty system with common test data by using the application and hence
the implemented mechanisms enforcing system data consistency. The pro-
cedure itself therefore can be seen as a set of fundamental test cases (that
can consequently be modeled and generated using MBT). Even though this
approach seems to be much more feasible, problems still arise. First, us-
ing an untested system to generate a master data stack is error prone and
hence the quality of master data will be poor due to faulty insertion by the
system itself. Furthermore, in early development stages mechanisms needed
for data insertion might not be fully implemented.

Despite the mentioned problems, providing common test data as de-
scribed in the system-based test preparation approach is the most practica-
ble solution so far.

System Data Stability. In order to enable efficient testing, the common
test data in the system has to be kept unchanged. This is not only connected
to the requirement of regression testing: ’always execute a test case on the
same system state’, but also a prerequisite for executing multiple test cases
that depend on the agreed system state. If there is a common set of system
test data which, as argued above, should be provided initially, it should
not be changed by any test. However, this is a very expensive requirement
for testing in ERP systems, because the changing of system data is part
of the common ERP functionality. System data will even be consumed by
some tests. In the given example the buyer is allocating and blocking some
budget each time a sales order is sent. Consequently, the system data will
be changed and eventually the funds are not sufficient any more for further
test activities. Other tests might alter common master data unintentionally
due to implementation faults in either the SUT or the test case itself.

As explained, altered common test data proves to be problematic for
other test cases depending on them. Investigations on whether a failed test
was caused by a faulty implementation or altered master data is hard to
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conduct as a failed test even might occur randomly e.g. depending on the
execution order of test cases. Apart from the described technical difficulties,
test cases implying a fault because of altered system data also negatively
affect the tester’s motivation.

Read-only data access. System data access rules that are preventing
the alteration of common test data may be a solution, but enforcing write
protections during test execution will also cause a difference in behavior of
the SUT compared to the delivered system. Hence positive test results are
not guaranteeing a correct computation in the delivered system any more.

Late binding. Another possibility could be to bind the concrete system
data to abstract test cases during runtime. In this case, rules (e.g. defined
in OCL) could be generated together with the test cases, allowing the test
execution system to search for compliant system data and to assign it just
before or even during test execution. To determine the current system data
state and binding suitable data to the abstract test cases is however very
complex and time intensive in practice. Furthermore, observing the whole
system state is (if ever) not possible until very late stages, thus preventing
such a testing strategy during most of the development period.

Data cloning. A third promising strategy to supply test data stability
could be the cloning of master data tables in an initial system state (prior
to test execution) to ease and speed up regular data resets, e.g. once a
week. Shorter periods are usually impracticable because the copying costs
time in which development and testing has to pause. Further, it usually still
demands additional manual work. However directly copying master data will
always result in the loss of stored transactional data, as former references
and relations will be destroyed. Also structural changes of the master data
(e.g. adding a field for the gender at the personal data), which are carried
out frequently during development phases can result in the invalidation of
the master data clone. Automatic reset and re-provision of system data as
described in the previous section then is the only way to solve the problem.
Nevertheless the practice shows that, even when it is nearly fully automated,
system data reset demands about half a week of downtime at SAP. Therefore
the usage is very limited while test data stability remains a difficult problem.

3.3.2 Input Data Challenges

Until now, only the test data inside the system has been discussed, but in
order to test applications also data from the outside has to be provided for
the test runs. For ERP systems, this input data will be mostly transactional
but in order to test master data modification both transactional and master
data might have to be added to test cases. Similar to system data, the
general feature that makes it hard to deal with input data, is the complexity
of its associated constraints.

In the context of ERP system testing, the input data relations can be
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Figure 3.5: Illustration of input data constraints in an ERP system

classified in two groups: system data independent constraints describing
the correlations of input data inside a test case, which are unrelated to
the system data and input data constraints describing the relation between
system and input data. These constraints are illustrated in Figure 3.5 and
discussed in the following.

System Data Independent Constraints. System data independent
constraints can be divided into the following categories:

• Syntactical input data constraints. Every ERP system has syntacti-
cal constraints on input data, concerning for instance data types and
ranges. In the test case in Figure 3.5 a positive system response de-
pends on the usage of the correct integer range for the quantity (i.e.
positive values). In contrast a value outside the range should result in
a system error message.

• Intra test case constraints. Not only in MBT but in every black box
testing approach, test cases describe an interaction sequence with the
SUT using only interfaces, which are accessible from the outside. The
correct reaction of the system might not only depend on syntactically
correct input values, but also on the semantical relation between the
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data used for different steps of the test sequence. In the example from
Figure 3 the system should either react with a success notification or
an error message depending on the fact whether the supplier Telemax
is able to provide IP Telephones.

• Contextual input data constraints. Also the application context might
enforce constraints on the test data. In Figure 3.5 the validity of the
used delivery data depends on the current system time. Other contex-
tual constraints are for example input data restrictions depending on
user roles or business configurations.

System Data Dependent Constraints. The more complicated con-
straints are those relating input data to system data. Depending on the
system data observability, it might even be impossible to determine in ad-
vance whether a certain input value should trigger a positive or negative
system response, and hence the satisfaction of constraints might become
nondeterministic. In the test case of Figure 3.5 for each identifier (Supplier,
Buyer, Product) a valid master data entry has to be present inside the sys-
tem data to be able to successfully process the sales order. However if it is
not possible to observe system data during test execution, an unambiguous
test oracle for the system response is impossible to provide. Also the ab-
sence of specific system data belongs to this category as master data inside
the system often has the restriction to be unique. Hence input of already
existing master data might result in different system behavior than the in-
put of unique data. This issue especially becomes prominent in regression
tests, where the provision of unique input test data can be problematic.

3.4 Summary

In this chapter two open fields of research in the domain of SOA have been
described. The first topic (explained in Section 3.2) deals with the challenges
of defining service communication protocols that allow the application of
model-based testing. The second one (described in Section 3.3) explains the
challenges connected to the provision of test data.

While both of these topics have to be addressed in order to enable a
model-driven engineering and especially a fully automated testing approach,
it has to be conceded that the necessary effort to address both would exceed
the scope of one dissertation. Further, the generation of test cases (ab-
stracting from the necessary test data) is a prerequisite for automatic test
data generation. Therefore the aim of the conducted work has been limited
to elaborate solutions for a model-driven service integration, including the
test case generation for service choreographies, but excluding the automated
provision of test data. In other words, the test data provision challenges de-
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scribed in Section 3.3 have not been addressed in general, but instead the
described current approaches have been facilitated or enhanced.



Chapter 4

General Approach

As shown in the previous chapter, currently no choreography language is
available that is fulfilling the requirements of a model-driven quality control
for SOA service composition. Consequently, there is a lacking tool support
for an unambiguous modeling as well as for the utilization of the content for
model-based testing. This current situation can only be tackled by improv-
ing the current SOA development process.

In this thesis, a development process for SOA applications is advocated
that combines model-driven and agile development. It will serve as a foun-
dational framework to which the main research results of the dissertation
are contributing.

Section 4.1 introduces the envisioned approach. Sections 4.2 and 4.3
discuss important considerations of the incorporated modeling and testing
phases. Finally, in Section 4.4 the given approach is summarized and related
to the problem statement of Section 3.2.

4.1 Overview

As in every customer oriented scenario, a SOA development process should
start with the definition of user and market requirements. For Enterprise
SOA applications especially functional requirements are described by busi-
ness processes, which have to be supported. As illustrated in Figure 4.1,
this top-down approach of software development, starting with a high level
description of requirements, can be combined easily with the concepts of
model-driven development (MDD) and MBT, where general specifications
of a system are stepwise refined by adding relevant domain specific informa-
tion. In the following, an overview of the depicted development process is
given.

Model-driven Development. By performing the design steps of MDD,
the initial requirements are gradually refined into development models. These
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Figure 4.1: Envisioned development process for SOA

comprise of structural models, identifying and connecting the service compo-
nents, and behavioral models of the business process flow. In order to avoid
ambiguity, the description of the desired service communication should be
created using a formal specification. Concrete considerations regarding a
suitable formal specification are discussed in Section 4.2.

Having an unambiguous definition of the communication protocol should
allow applying automatic model verification and validation techniques. For
example the absence of deadlocks, livelocks, unconsumable messages or local
enforceability can be proven at this early development stage. This effectively
ensures that an infeasible design decision is identified and corrected before
implementation has started and a necessary correction becomes costly.

The validation and verification activities described above, are directed
towards incrementally leading to a good and adequate model. According to
the experience gathered at SAP, modeling starts with a first sketch of the
communication behavior. By using a simulation tool, discrepancies between
the intuitive understanding and the modeled behavior can be uncovered
and hence corrected within the model. Providing systematic checks, e.g.
by utilizing a model checker or theorem prover, flaws in the model can be
detected systematically. In this case, the modeler should be guided, e.g. by
providing a trace to the situation in which the error occurred. This enables
the modeler to adjust or refine the model accordingly.
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Applying pure MDD techniques in the continuing development process
would mean that the development models are further refined, with the ul-
timate goal to automatically derive code. However, various unsolved chal-
lenges have been identified (e.g. by [TPT09, Uhl08, FR07, HT06]) for the
industrial application of MDD concepts for code generation, such as:

• Lacking tool support for model-level debugging.

• Lacking user expertise for required formalisms.

• Lacking support for versioning and merging of models.

Consequently, the industrial application of MDD concepts on low abstrac-
tion layers is usually bypassed.

Test-driven Development. Therefore, as illustrated in Figure 4.1, the
development models are instead used as input for a Model2Code Generator,
enabling automated generation of skeleton code and stubs, with the intention
that the generated code will be refined manually. Taking advantage of the
unambiguity of the development models, the programming can be carried
out in parallel by autonomous teams. In addition to the general advantage
of shortening the development process by parallelization, it further allows
companies to work with distributed development teams.

Agile development techniques like Scrum [SB01], Test-Driven Develop-
ment (TDD) [AJ02], and Extreme Programming [BA04] are more and more
regarded as key practices of software engineering for systems of extreme size
and complexity [Coc07]. While waterfall-like development process models
bear immense risks, as no subsequent process phase can correct all errors
from the phases executed before, iterative development models with close
feedback loops help to mitigate these risks. Having developers and stake-
holders to plan and review development efforts frequently creates trans-
parency and allows for correcting implementation mistakes early in the pro-
cess.

For example, SAP is using Scrum in combination with model-driven de-
velopment since 2004, while TDD was recently introduced to its technology
development area. The about 80 Scrum projects finished before end of 2007
showed significantly better results compared to those using processes in-
spired by the waterfall and V-models. Also, first pilots for TDD delivered
a much lower defect rate, more comprehensible and thus more maintainable
code.

In more detail, an agile development process will continue as follows.
After automatically generating code stubs from the structural models, de-
velopers are starting to create tests for the functions they are going to imple-
ment. In the context of SAP, these tests mainly cover the unit testing and
service component testing layers of the SOA testing stack, as introduced in
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Section 2.3.3. In this way, the developers are able to validate their own code
automatically by running these tests. Provided that the testing is success-
ful, refactoring takes place to increase code readability, followed by another
round of testing to make sure the refactoring changes did not affect the be-
havior. These process steps are repeated recursively for each bit of added
functionality.

Model-based Testing. In the envisioned process, integration testing is
carried out in parallel to the development of the software components. A
recent study [Mur09] shows that a key factor of success is to apply continuous
integration throughout the development. The core of continuous integration
is to combine and try out the developed functionality very frequently in
order to spot problems as early as possible. Especially for applications
whose components are loosely coupled, as it clearly is the case for SOA,
tests of the communication and interaction are vital and therefore should
be integrated into the TDD cycles.

As discussed in Section 2.3.4, MBT approaches are able to effectively
support automatic test generation for service integration. By applying MBT
in the integration phase, not only the effort for test case generation can be
decreased, but also test coverage and overall test effort can be controlled in
an easy and transparent way. Further, model-based integration testing pro-
vides the means of carrying out continuous integration, as the test cases can
be generated even before the first line of code is written. Hence, integration
testing can be carried out throughout the development.

As explained, the main objective of using MBT is to facilitate state-of-
the-art test generation techniques for the special purpose of overcoming the
SOA integration testing challenges described in Section 3.2. However, the
utilization of MBT to a specific domain (i.e. service integration testing)
demands some upfront considerations, like the definition of test objectives.
In Section 4.3, these considerations are described.

Test Execution. Similar to the considerations that lead to manual pro-
gramming instead of automatic code generation also apply to the test con-
cretization of the generated test cases. The missing modeling support on
lower abstraction layers hinder industrial application of fully automatic test
case generation. Additionally, especially the test data challenges discussed
in Section 3.3 have to be solved. As explained above, addressing these chal-
lenges have been excluded from the scope of the dissertation.

Therefore, it will be the responsibility of the testers to provide appro-
priate test data and hence the approach will leverage their experience. In
the context of SAP, a tool called Test Data Migration Server(TDMS) exists,
which supports this activity by deriving consistent reference data for testing
from customer systems. It is also quite common that reference test data is
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Figure 4.2: Overview of the test concretization and execution

provided by customers or internal departments, as additional information
to the requirement specification. If these data samples are available, testers
are able to choose the appropriate input for each test case from that source,
otherwise they have to create it.

A simplified illustration of the activities related to the test concretiza-
tion and execution is given in Figure 4.2. According to the nomenclature
of [UL07, ch. 8], a mixed approach is used for the test concretization. The
manual refinement of the abstract test cases follows the keyword-driven test-
ing principles. Keyword-driven testing (or action-word testing) [BJPW01]
uses action keywords in the test cases, in addition to data. Each action key-
word corresponds to a fragment of a test script (the adapter code), which
allows the test execution tool to translate a sequence of keywords and data
values into executable tests [UL07].

In the context of this dissertation, the used test language builds upon
SAP’s eCATT test script language [HLT07] and was designed to address
the requirements of integration testing at a higher level of abstraction. It
contains constructs for creating and modifying local business objects, trig-
gering the sending of messages between the business components via the
available enterprise services, and checking the values of internal component
states against the expected values, in order to decide the failure or success
of a test.

To minimize the manual effort for the test concretization, the generated
abstract test cases are transformed in a modular way. Each test step is
transformed into a separate reusable script, while for each test case a master
script is generated that calls the reusable scripts in the appropriate order.
In this way, a high reuse is enforced that results in less effort and enables
parallelization of the manual work, which is a big advantage for integration
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Figure 4.3: Service integration testing implemented using SAPs eCATT
framework

testing with different development areas concerned.

The subsequent test execution activities are well understood in practice
and thus trigger little research interest. Mature test management systems,
supporting the whole testing process starting from the test planning, test
execution until the final test reporting are available for most software do-
mains [SG08].

In the context of this thesis, the test execution environment is provided
by the SAP Test Workbench and SAP Solution Manager. The test exe-
cution is controlled by the Test Workbench, where test plans are executed
automatically and periodically in case of regression tests. The results of the
test runs are centrally reported including different coverage criteria based
on source code, model elements, or requirements. Figure 4.3 shows how
eCATT automates the integration test execution by having different test
scripts calling the involved enterprise services. The results of one script are
transferred to the next script using exporting and importing functions.

4.2 Choreography Modeling

The challenges of service integration, described in Section 3.2, are manifold.
Currently no choreography language that is suitable to support model-driven
quality control is available. Consequently, there also is a lacking tool support
for an unambiguous modeling. Chapter 5 describes the Message Choreog-
raphy Modeling (MCM) language that has been developed to address this
lack. MCM has been created based on the requirements for choreography
modeling. This section discusses some fundamental design decisions that
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ultimately guided the development of MCM.

First of all, the usage of domain-specific languages in SOA development
and especially in choreography modeling is motivated. Afterwards, possible
viewpoints of choreography models are described. Finally, the implications
of using a modeling language for both model verification and test generation
are discussed.

4.2.1 Domain-specific Modeling

The key message of Section 3.2.2 was that currently available choreography
modeling languages are not fulfilling the requirements of the described SOA
development and especially service integration testing approach based on
choreography models.

It can be argued that holistic modeling approaches like UML or Petri-
nets are able to match the introduced requirements. In case of UML the rich-
ness and partial ambiguity however limits its application. Current scientific
approaches (cf. [SGS04, KKKR05]) further do not consider asynchronous
communication between service components.

Also, Petri-nets do not support service composition modeling as such.
Therefore, their semantics have to be refined in order to be applicable.
Again, current approaches to choreography modeling (cf. [ZCCK04]) do not
consider asynchronous communication, but could be enhanced in the future.

The above mentioned shortcomings of modeling approaches, based on
general concepts like communicating state machines or Petri-nets, however
does not automatically imply the utilization of a domain-specific modeling
approach. Combined with the fact that current DSLs for choreography
modeling are also inapplicable, it shows that the gathered requirements have
not been considered as a whole so far.

In general, modeling approaches like communicating state machines are
feasible for choreography modeling. However, DSLs fundamentally raise the
level of abstraction, while at the same time narrowing down the design space
significantly to domain-specific concepts. The result of this specificity leads
to a reduction of complexity and an increase in productivity of 5− 10 times
as proven by various case studies [WL99, Saf07, KT00].

Further, domain-specific modeling is not limited to domain-specific tools.
Instead, by providing model transformations, general solutions and standard
tools can be integrated. In fact, this is the chosen approach for the disser-
tation (see Section 5.4).

4.2.2 Choreography Viewpoints

In Section 3.2.2, it has been explained that unambiguity of choreography
models depends on a clear definition of the semantics regarding message
send and receive. When specifying the communication between service com-
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ponents, it is therefore important to specify the viewpoint of the assumed
observer, describing it. Various observation viewpoints can be defined. The
choice of a suitable viewpoint for choreography modeling depends on the
intended use of the model. As described in Section 3.2.2, the definition of
a choreography viewpoint is usually neglected in the literature. Most ap-
proaches implicitly assume a global send viewpoint (i.e. the choreography
model describes all acceptable observations of message send events).

The example in Section 3.1 a protocol of the communication between
a buyer and a seller was given. By combining it with the given channel
information, Figure 4.4 depicts all possible sequences of send and receive
events of the communication that are no longer than 12 steps. Events are
defined by a string containing the name of the owning component (i.e. buyer
or seller), a symbol indicating the even type (! for send event, ? for receive
event) and the associated message name. Consequently, the initial event
Buyer!Requestcan be described by “the buyer is sending a Request mes-
sage”. Some of the events are surrounded by a double line. When these
events are observed, the communication between seller and buyer is allowed
to terminate, leaving both of them in a synchronized and consistent state,
while the choreography model is in an accepting state and no message is
pending.

For the definition of viewpoints, a non-participating observer of a ser-
vice communication with the capability to observe all message send and
receive events on all channels without delays will be assumed. In principle,
viewpoints are models representing the observed event sequences.

Global send viewpoint A choreography model with a global send view-
point contains a description of all sequences of send events that the above
defined observer is able to monitor. Consequently, Figure 3.1 could be seen
as the global send viewpoint model of the running example, by interpret-
ing the transition labels as send events. As mentioned, most choreography
languages are based on a global send viewpoint.

Global receive viewpoint The global receive viewpoint is an alternative
to the above described send viewpoint. In this case, the choreography model
describes all sequences of receive events that the above introduced observer
is able to monitor.

A receive viewpoint for the running example is depicted in Figure 4.5.
Compared to the send viewpoint, four additional transitions occur. Three
of them are labeled as receive events of deprecated Cancel messages. Dep-
recated in this context means that due to message racing, the seller already
receives another Request message before the Cancel message of the previous
request is received. In these cases the delayed cancel messages are assumed
to be deprecated. Consequently, “normal” and “deprecated” Cancel mes-
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Figure 4.4: Message event sequences for the running example
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Figure 4.5: The global receive viewpoint for the running example

sages are technically identical. Further, an additional transition now con-
nects the Reserved and the Requested state, because in cases of delayed
Cancel messages, the buyer will receive another Request instead.

For defining the receive viewpoint of the running example, it is also
necessary to add constraints and side effects to the choreography model,
because the potentially infinite number of delayed Cancel messages1 prohibit
the use of finite state machine notations. In Figure 4.5 guards are defined
inside [ ], side effects inside { } using pseudo code. Further, it is assumed
that the referenced counter variable is an unbounded integer with 0 as initial
value. The counter is used to keep track of the number of pending buyer
response messages (either Order or Cancel), and hence is increased each
time an Offer is received. Note that the usage of variables, guards and side
effects is a general requirement for choreography modeling (see Section 3.2.2)
and not restricted to receive viewpoints.

Global viewpoint discussions As explained in Section 3.2.1 an aim of
service integration testing is to check the proper handling of message racing.
The above example shows that a global send viewpoint is not reflecting
message racing as deprecated Cancel messages are not visible. In contrast,
a global receive viewpoint describes all possible sequences of receive events
and hence explicitly distinguishes sequences with preserved message order

1This might happen, if the buyer constantly cancels the offers of the seller and after-
wards sends new synchronous requests fast enough to block the seller from processing the
asynchronous cancellations.
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from those including message racing.

The introduced send and receive viewpoint models can be interpreted
as describing projections of possible message event sequences in a service
communication to sequences of either send or receive events only. Hence,
another possible global viewpoint could be defined as including the original
sequences of message send and receive events. This viewpoint also explic-
itly distinguishes event sequences including message racing. However, even
for the relatively simple running example, the model gets cluttered because
of the additional states that have to be included between send and receive
events. Apart from decreasing readability, the higher complexity also nega-
tively affects the application of MBT-tools in the envisioned service integra-
tion testing. Therefore, a global receive viewpoint will be utilized for MCM,
as described in Section 5.3.

Local viewpoints Apart from global viewpoints, service communications
can also be seen from the local perspective of the involved components.
In this case, the choreography model describes all sequences of send and
receive events that the above described observer is able to monitor for a
specific component only.

The availability of such a local viewpoint is quite important in prac-
tice. While a global viewpoint is a concise description of the interaction
protocol, local viewpoints describe a component’s communication behavior
and hence are an excellent starting point for the implementation and ver-
ification (i.e. service component testing, according to the definition from
Section 2.3.3) of the service components. Therefore, incorporating both
local and global viewpoints in one choreography modeling approach is con-
sidered an advantage and is included in choreography modeling standards
such as WS-CDL [W3C04b] or BPMN [OMG08a]. Consequently, also MCM
will incorporate local viewpoint models.

Figure 4.6 depicts a set of local viewpoint models for the buyer and seller
component of the running example. It can be noticed that the structure of
the seller model has an equal structure compared to the global viewpoint
model depicted in Figure 3.1. In fact, even the constraints on the transitions
are equal. Like the global receive viewpoint model, the model of the seller
component incorporates four extra receive events (compared to the global
send viewpoint), because it has to consider the potential message racing
between Cancel and Request messages that the buyer is sending on different
channels.

The buyer component model is a structural copy of the global receive
viewpoint, too. However, some of the transitions are erased, such that the
buyer is allowed to send Cancel messages in the state Reserved and Request

messages in the state Start only. Not deleting the mentioned send transi-
tions in the buyer would result in the same receive viewpoint model. How-
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Figure 4.6: Local viewpoint models for the running example

ever, considering the description of the running example this seems to be
reasonable.

It can be noticed that the guards and side effects of the buyer do not
constrain the behavior and so its local viewpoint model appears to be a
structural copy of the global send viewpoint. This is caused by the fact
that the seller component is only reacting synchronously, while the buyer is
initiating the conversation, but this is not a general case.

4.2.3 Consistency

As explained in the last section, a suitable choreography modeling language
has to provide the means for describing the local components and a global
receive viewpoint. Keeping the local and global perspectives consistent is
a major challenge of choreography modeling. Considering the described
development approach, also the consistency between the requirements of
the user and the choreography models, and the consistency between the
choreography and the implementation of the service components has to be
provided. As depicted in Figure 4.7, the main goal of ensuring consistency
between these abstraction layers is of course the enforcement of consistency
between the requirements and the implementation itself.

There are various ways to define the consistency relation of models, de-
scribing concurrent interactions, based on concurrency semantics (e.g. sim-
ulation [Par81] or trace semantics [Hoa78]). A good introduction, including
a classification of the different methods can be found in [vG90]. According
to this classification, defining consistency based on traces means to compare
sequences of observations (in contrast to the mapping of modeling elements,
as demanded by simulation) and thus seems to be highly suitable for the
given purpose of comparing different definitions of service communication.
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Figure 4.7: Consistency relations in Choreography Modeling

Consequently, in the following the discussion on consistency will be based
on trace semantics.

Consistency between Requirements and Implementation Require-
ments are descriptions of a systems behavior that are usually not formalized
in practice. The implementation of a system represents a concrete, exe-
cutable instance that fulfills the requirements. Judging, whether an imple-
mentation fulfills the requirements is commonly done by testing. Utilizing
the requirements in a testing process implies that all the specified behavior
is reflected in the implementation. From a theoretical perspective, all ab-
stractly defined traces of the requirements have to be realized by the system.
In terms of trace semantics, the implementation has to include all traces of
the requirements.

The envisioned development approach is further utilizing formal veri-
fication to enforce certain properties (e.g. absence of deadlocks) on the
implementation. The common approach is separated into two parts: prov-
ing the desired properties on a high level of abstraction and proving refine-
ment [vGG90] for the lower abstraction layers, including the implementation.
In terms of trace semantics, the requirements have to specify (include) all
traces of the implementation.

Jointly instrumenting formal verification and MBT techniques therefore
would imply traces equivalence between the requirements and the system
under test and hence also pairwise trace equivalence for all abstraction layers
in between [vGG90] (see Figure 4.7). In practice, this obviously has to
be restricted to the requirement specific abstraction domain, in this case
component communication. In the following an overview of the applied
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methods for ensuring consistency are given. In Section 5.5 their realization
will be described in more detail.

Consistency between Requirements and Choreography Model As
described in Section 4.1, requirements are not formalized in practice and
hence applying formal methods and MBT on this level is impossible. In-
stead, the choreography models are the envisioned artifacts to enable these
quality assuring activities. Therefore, the consistency enforcement between
choreography models and requirements is a manual task. However, indus-
trial model-based approaches map requirements to behavioral model ele-
ments (e.g. tagging states with requirement IDs) in order to automatically
analyze requirement coverage [UL07]. For MCM, a simulation tool is pro-
vided that enables to check whether the choreography model captures what
has been informally described in requirements.

Consistency between Global and Local Viewpoints For enforcing
consistency between global and local viewpoints two possible solutions ex-
ist [DW07]: a generative approach where the local views are generated from
the global ones, or a checking approach where global and local models are
created separately and then verified whether they are consistent with each
other. While the first ensures that global and local views are always consis-
tent, it makes changes to the local models considerably more difficult, since
these would be overridden by re-generation from the global model. The
latter approach allows for such “asymmetric” changes, but requires manual
effort to update the global view when changes to the local models are made.
For MCM, a mixed approach is utilized. It will be described in Section 5.5.

Consistency between Choreography Model and Implementation
For each service component, involved in the choreography, more detailed
development artifacts such as implementation code or other models may ex-
ist. In comparison to the local views of choreographies, they also take into
account behavior that is not related to the communication. Such compo-
nents are usually described with the help of models, which specify contained
attributes (and their types) and state transition diagrams, which describe
the effect of actions (such as service calls) on the internal state of compo-
nents. As described, utilizing MBT aims at ensuring trace inclusion from
choreography models to the implementation. How trace inclusion in the
opposite direction is enforced for MCM, will be described in Section 5.5.

4.3 Model-based Integration Testing

According to the general approach given in Section 4.1, after having obtained
a formal representation of a service choreography, MBT techniques can be
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deployed to derive test suites for integration testing. In the following, some
necessary decisions are described that have to be made in order to adapt
MBT to the specific requirements of service integration testing, starting with
the identification of the targeted errors, followed by a discussion on suitable
coverage criteria and the definition of industrial requirements for the test
design.

4.3.1 Error assumption

According to [Wey98], integration testing can be seen as testing of an as-
sembly of components that were already individually tested. As described in
Section 2.3.3, this includes the testing of the functional units that a service
components consists of (unit testing), as well as the testing of the interfaces
that a service component exposes (service component testing). Service in-
tegration testing further does not aim to uncover faults in the messaging
infrastructure, but assumes that the defined reliable messaging properties
are realized correctly.

As explained above, consistency between requirements and the SUT de-
mands that every trace in a component’s local viewpoint model has to be
executable by the implemented service component. Assuming the functional
correctness of the participating service components and the infrastructure,
the main error sources in the communication of service components can be
defined in relation to the protocol fault classification of [Kön03]:

• input fault : a missing or incorrect input event (a valid input message
is ignored)

• output fault : transition emits wrong message (the wrong thing happens
as a result of a transition)

• transfer fault : transition leads to wrong state or is missing

• extra state fault : number of states is larger than specified, this implies
transfer faults from and to the extra state

• missing state fault : number of states is smaller than specified, this
also implies transfer faults

• sneak path: a message is accepted when it should not be

• illegal message fault: an unexpected message causes a failure

• trap door : the implementation accepts undefined messages.
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4.3.2 Coverage

To enable effective model-based service integration testing, the targeted cov-
erage of the choreography model has to be chosen carefully. Testing each
component individually using local test coverage criteria is of course not
sufficient in determining whether two components are able to operate with
each other under the agreed circumstances. Only the application of a global
test concept can provide that.

In [3], possible coverage criteria for state-based service choreography de-
scriptions have been discussed that can be used to drive service integration
testing. Also some hints were given on how to choose them accordingly,
depending on effort and fault assumptions. For the envisioned testing ap-
proach, transition coverage has been identified as best fit, because it already
uncovers a significant amount of integration faults with relatively small ef-
forts [UL07]. For example in the approach of [ABR+07], transition coverage
of a global communication model was able to detect about 90% of integra-
tion related faults. This is also backed by the analysis in [3], showing that
apart from sneak paths, illegal message faults and trap doors2, transition
coverage is able to expose the mentioned communication related faults to a
great extent.

According to the discussion in Section 3.2.1, integration tests should
ensure that message racing has been treated correctly during software de-
velopment. By covering all transitions of a global receive viewpoint of the
choreography model, it can be secured that a message will be handled by
its receiving component in any allowed situation.

For the automatic test generation from a choreography model, the com-
posed system that incorporates information from the two local viewpoints
and the channel model (relating the send and receive events of the service
components) could be used. However, various cases studies (cf. [CSH03])
show that state space explosion, as it might be introduced through the
unbounded channel model, is a major stumbling block when applying auto-
matic test generation to industrial settings.

Transferring this knowledge to service integration testing, it becomes
clear that utilizing the composed system for the test generation might be-
come problematic. On the other hand, utilizing the global receive viewpoint
for the test generation offers a reduced complexity. However, it demands
an investigation on the relations of the global and local test coverage. The
result is that none of them implies the other, as explained below.

Global transition coverage. Not surprisingly, transition coverage of the
global receive viewpoint does not guarantee transition coverage of the local
viewpoint models. A counterexample is given in Figure 4.8 where service

2All these faults are subject to negative testing.
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Figure 4.8: Assuming an EO channel, global coverage does not imply local
coverage

A sends the messages a and b to service B in arbitrary order over a single
EO channel. The global model depicts the global receive viewpoint for the
choreography. In each model state 1 is the initial state, while all other states
are accepting states.

As illustrated, when generating a test suite that covers every transition
in the global model, the result could be a test suite consisting of the two
test cases {(a, b) , (b, a)} characterized by the differently dotted lines. In the
figure, for each test case a valid sequence of the message events of A and
B is given. However, though equivalent to the global test cases, these two
sequences are not covering every event of the local viewpoint models. Two
send events of the service A are not covered.

Local transition coverage. Less intuitive is the fact that transition cov-
erage of the local viewpoint models also does not guarantee transition cov-
erage of the global receive viewpoint. The counterexample depicted in Fig-
ure 4.9, again shows the global and local models of two services A and B. In
each model, state 1 is the initial state, while all other states are accepting
states. Each service is able to initiate a conversation by sending the message
a or b respectively. Both services are allowed to send their message, as long
as they have not received anything from their partner. A test suite that
covers every local transition, is illustrated by dotted lines. The three test
case, {(A!a,B?a) , (B!b, A?b) , (A!a,B!b, B?a,A?b)}, are covering the local
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Figure 4.9: Assuming an EO channel, local coverage does not imply global
coverage

models of service A and service B but not the global model. It has to be
added, that the given example is describing a consistent choreography, as
every local trace can be realized by a global one and, more important here,
also each global trace can be realized locally. As given in the figure, the
missing global trace (b, a) is realized by (A!a,B!b, A?b, B?a).

Although transition coverage of global model does not cover all send and
receive events of the local model, it does however cover the receive events.
This is due to the the assumed receive semantics of the global model. As
explained above, this is a main goal for service integration testing, because
it is able to reveal all cases of message racing as well as other transition
related faults. Consequently, transition coverage of the global viewpoint is
targeted for the remaining test generation approach, exploiting the positive
effect that the state space that needs to be explored is significantly lower
compared to the composed system.

4.3.3 Industrial Requirements

Important from an industrial perspective is that the test generation ap-
proach further aims to be optimal regarding the minimization of the effort
in the subsequent test phases, namely test concretization (e.g., provisioning
of test data), test execution, and test analysis. Based on practical expe-
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rience of the testing process at SAP [8], it can be concluded that the test
optimization should be driven by the following objectives sorted from highest
to lowest priority:

1. Each test case should start in the initial state and end in an accept-
ing state: Bringing a complex system in the needed state using test
preambles is complicated and time consuming. Stopping a test while
the system is not in an accepting state leads to problems with in-
consistent data that might hamper consequent test executions. Even
though such a procedure does not solve the test data stability chal-
lenge described in Section 3.3, it significantly reduces the manual effort
associated with test data corrections.

2. The length of the longest generated test case should be minimal : The
longer a test case gets3, the harder it is to maintain, e.g. because of
lower complexity, less debugging effort and better error reproducibility
and fault isolation. Therefore, especially for generated tests, a top
priority is to carefully control path lengths. Consequently, the test
suite with the stated property is chosen, even if there are other test
suites with a lower overall size4.

3. Message racing in the test suite should be minimal : As explained,
testing the effects that message racing has on the interaction is an
important part of each test suite. Consequently, each transition of the
global receive viewpoint has to be covered and therefore all possible
cases of message racing are contained. However, tests are mostly car-
ried out in rather idealistic environments where messages are received
in the same order they have been sent, independent of the chosen
channel. Therefore, during test execution, message racing has to be
emulated on the channel in a controlled way, usually leading to much
higher effort. Therefore, message racing should not be emulated more
often than necessary.

4. The number of test steps should be minimal : As the test effort generally
increases with the overall size of the test suite, it should be as low as
possible.

4.4 Summary

In this chapter, a development approach for a model-driven SOA develop-
ment has been described that also incorporates agile methods on service
component level. As explained, this approach is the contextual framework

3The length is determined by the number of transitions it executes.
4Sum of all executed transitions in the test suite.
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of the dissertation. The incorporated choreography modeling, model verifi-
cation and model-based testing activities are motivated by the requirements
that have been described in Section 3.2.

In Section 4.2 it has been explained that the requirements for a chore-
ography modeling language should be addressed by designing a custom
DSL, including a global receive viewpoint and a local viewpoint per compo-
nent. These design decisions are based on the requirements Explicit message
send and receive, Global and local views, and Pairwise choreographies. How
the other introduced requirements, i.e. Detailed message description, Infi-
nite state space, Interaction termination, Channel modeling, and State-based
modeling is addressed by the developed choreography language MCM, will
be explained in Chapter 5. Further, it has been laid out in Section 4.2.3 that
incorporating model-based testing and formal verification for ensuring soft-
ware quality demands trace equivalence between the different abstraction
layers.

In Section 4.3, the error assumptions that drives the model-based service
integration testing have been described. Further, it was deduced that tran-
sition coverage of the global choreography viewpoint would uncover most of
the related faults. A special test objective that has been underpinned by
the discussions of Section 3.2, was to check that message racing has been
considered during software development. As discussed in Section 4.3, when
applying transition coverage on the global receive viewpoint model for test
generation, the missing or wrong implementation of receive events can be
detected as transition faults.



Chapter 5

Message Choreography
Model

According to the W3C’s Web Service Glossary [W3C04a], “a choreography
defines the sequence and conditions under which multiple cooperating inde-
pendent agents exchange messages in order to perform a task to achieve a
goal state”. In this chapter, the choreography modeling language MCM is
described. The development of MCM is one of the major scientific contri-
butions of this dissertation and has been conducted with the aim to enable
and support the model-driven development process described in Chapter 4.
The underlying ideas have been published in [7].

In the following, the general concept of MCM is described using the
running example from Section 3.1 for illustration. Afterwards, the MCM
syntax and semantics are presented in detail. Finally, the tool support for
MCM is introduced that enables the modeling and realizes the consistency
enforcement for MCM, described in Section 4.2.

5.1 MCM Overview

Choreography modeling languages complement the structural information
of the communicating components (e.g. service interface descriptions and
message types) with information about the message exchange between them.
In Section 3.2 the objectives for choreography modeling and the resulting
requirements for a modeling language have been introduced. Further, it was
concluded that recent choreography languages were not conforming to the
given requirements. Based on these requirements, in Section 4.2, important
design considerations for choreography modeling have been explained, lead-
ing to the decision to design a domain-specific modeling language, which is
incorporating a global receive viewpoint and local component viewpoints.
In this section, the Message Choreography Model (MCM) language is de-
scribed that incorporates the given design decisions and addresses the afore-
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mentioned requirements. It consists of different modeling artifacts, each
defining distinctive aspects of service choreographies:

• Global Choreography Model. The global choreography model (GCM) is
an extended finite state machine (EFSM), which specifies a high-level
view of the conversation between service components. Its purpose is
to define every allowed sequence of observed message receive events.

• Local Partner Model. The local partner models (LPMs) specify the
communication-relevant behavior for exactly one participating service
component. Due to the design process of MCM, each LPM is a struc-
tural copy of the GCM. As explained in Section 4.2.2, these structural
copies can be restricted manually, by deactivating some of the local
transitions.

• Channel Model. The channel model (CM) describes the characteris-
tics of the communication channel on which messages are exchanged
between the service components. For services such characteristics are
formalized by WS-RM standard [OAS07b] in practice and describe the
channel’s reliability guaranties (see Section 2.3.3).

Figure 5.1 shows, how the example from Section 3.1 can be modeled, us-
ing the Eclipse-based MCM editor (described in Section 5.5). The GCM
at the top of Figure 5.1 represents the global receive viewpoint that has
been discussed in Section 4.2.2. The arrows labeled with an envelope depict
the interactions Request, Offer, Cancel, Order, and Cancel(deprecated)
which are ordered with the help of the states Start, Requested, Reserved,
and Ordered. The states Ordered and Start are so-called accepting states
(thus connected with the filled circle). In these states, the communication
between the partners is allowed to terminate.

Similar to the description in Section 4.2.2, interactions labeled with
Cancel(deprecated), describe the receive of Cancel messages by the seller
that happened after receiving a new Request message due to message rac-
ing. Consequently, Cancel and Cancel(deprecated) messages are physi-
cally identical. Only by considering the context in which they are received,
they can be distinguished.

To allow the distinction and hence to keep the model deterministic, a
set variable called ID SET is declared and initialized with ∅. It stores the
transaction IDs from the header of Offer messages that have not yet been
addressed by Cancel, Cancel(deprecated) or Order messages (the headers
of these messages also store the ids). Whenever a Offer interaction takes
place, an assignment

ID SET := ID SET ∪ {msg .Header.ID}

is executed, referring to the ID stored in the header of the Request mes-
sage. To distinguish between a deprecated and an actual Cancel in state
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Figure 5.1: GCM (top) of the choreography and LPMs of the buyer (left)
and the seller (right)
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Reserved, for the interaction Cancel an additional guard

ID SET\{msg .Header.ID}) = ∅ ∧msg .Header.ID ∈ ID SET

can be modeled in MCM, while for Cancel(deprecated) the guard

ID SET\{msg .Header.ID}) 6= ∅ ∧msg .Header.ID ∈ ID SET

has been added. Note, that this assignment of guards and side effects is more
sophisticated than the described assignment in Section 4.2.2. In Section 5.2
the formal syntax and the complete set of guards and assignments for the
example is described.

The LPM of the buyer of the running example is depicted in the lower
left part of Figure 5.1. It is a structural copy of the GCM, but the interaction
symbols now represent either send or receive events of the buyer. Moreover
some send events are “inhibited” by special local constraints. As described
in Section 4.2.2 it is inhibited that a Cancel(deprecated) is ever sent and
that a Request is sent in the Reserved state. Therefore, in the figure these
send-events have been erased. However, due to possible message overtaking
on an EO channel that is assumed in the running example, receiving a
deprecated Cancel is possible on the seller side. The LPM of the seller is
depicted in the lower right part of Figure 5.1.

5.2 MCM Syntax

In this section, the abstract syntax of MCM is presented. As explained in
Section 3.2, limiting the choreography modeling to pairwise communications
is reducing the overall complexity, without sacrificing valuable information
in the vast majority of cases. Therefore, in the remaining discussion MCM
is assumed to describe the choreography of exactly two participating com-
ponents.

Consequently, a message choreography model M = (G,L1, L2, C) con-
sists of a GCM G, two LPMs L1 and L2 and a CM C. G, L1, and L2 are
extended finite state machines, i.e. they incorporate unbounded variables
as well as guards and actions at their transitions, which may reference these
variables. In the following, L1, L2, and C are referred to as composed sys-
tem. For expressing guards and actions, a constraint language is needed. It
is described below, followed by the definition of the global and local models.

Constraint Language. As explained in Section 2.2 in the SOA domain,
XML documents are utilized for messaging. Consequently, messages are
characterized by some hierarchical record data type (or schema) represent-
ing the message type. An important feature of the set of terms Term of
the constraint language is to reference elements of messages that are struc-
tured this way. For example, msg .Header.ID ∈ Term points to the ID of the
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Header element of the message referenced by the msg variable. The terms
further contain the global variables (defined for the extended state machine,
see below) and constants (including e.g. 0, 1, 2, . . .,∅, etc.). Term is closed
under application of arithmetic or set-theoretic operators. Hence, in a nat-
ural way, a simple type system can be built into Term so that syntactically
illegal function applications can be excluded. For example, assuming that
ID SET is a variable, ID SET\msg .Header.ID ∈ Term.

The set Form of formulas of the constraint language is then the set of
first order formulas over Term and the predicates =, <,>,⊆,∈. This is
necessary, because often all sub-nodes within a message should satisfy a
certain condition. In the given example

(∀x : x ∈ Order.items→ x.status = Released) ∈ Form

the constraint defines that all items of an Order message should be released.

Global Choreography Model. The GCM G is an extended finite state
machine, represented by the tuple (S,E, s0, T, I) where:

1. S is a finite set of states;

2. s0 ∈ S is the initial state;

3. T ⊆ S is a set of accepting states;

4. I ⊆ P(S)×S is a finite set of interactions indicating the transitions of
the state machine;

5. V is a finite set of variables, while for each interaction i ∈ I there is a
special variable msg i ∈ V referring to the message instance, exchanged
during an interaction;

6. v0 : v → Term is the initial variable assignment (see below).

An interaction i = ({sn, ..., sm}, sx) is therefore associated with a set of
enabling states {sn, ..., sm} and a successor state sx. That means the in-
teraction i can take place when the system is in one of the enabling states
and will change the system state to the successor state. In Figure 5.1 inter-
action Request has the enabling states Start and Reserved as well as the
successor state Requested.

With each interaction i ∈ I, a function sender(i) ∈ {P1, P2} is associ-
ated that indicates which partner is responsible to send the message of this
interaction. Each interaction i is associated with a guard pre(i) ∈ Form,
which describes a condition under which the interaction can be observed
and a side-effect act(i) ∈ (V → Term), which describes assignments of vari-
ables from V to terms during the transition. Further, there is an initial
assignment of terms to variables E.
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Example 1 As explained before, the GCM for the running example includes
the set V = ID SET and the following guards and actions:

pre(Request) = msg .Header.ID 6∈ ID SET

pre(Order) = msg .Header.ID ∈ ID SET

pre(Cancel) = ID SET\msg .Header.ID) = ∅
∧msg .Header.ID ∈ ID SET

pre(Cancel(depr.)) = ID SET\msg .Header.ID 6= ∅
∧msg .Header.ID ∈ ID SET

act(Request)(ID SET) = ID SET ∪ {msg .Header.ID}
act(Order)(ID SET) = ID SET\{msg .Header.ID}

act(Cancel)(ID SET) = ∅
act(Cancel(depr.))(ID SET) = ID SET\{msg .Header.ID}

Local Partner Model. Like a GCM, a local partner model LPM Lj is an
extended finite state machine with a finite set Sj of states, an initial state

sj0 ∈ S, and a set of accepting states Tj ⊆ S. In addition, it entails two finite
disjoint sets I !j and I?j with (I !j ∪I?j ) ⊆ P(Sj)×Sj of send and (resp.) receive
events forming the transitions of the state machine. As in the GCM, there
is a finite set Vj of variables. Further, for each send/receive event e ∈ E ,
where E = I !j ∪ I?j , there is a special variable msge

j ∈ Vj , referring to the
message sent or received in e, as well as a message type MT (e). Guards and
side-effects are assigned to send and receive events as for interactions of the
GCM.

A basic strategy to ensure consistency is to demand that for every
send/receive event ! i or ? i of an LPM there is a corresponding interac-
tion i with the same message type in the GCM. If it is a send event ! i in Lj ,
then sender(MT (i)) = j, if it is a receive event ? i, then sender(MT (i)) 6= j.
Different other ways to ensure consistency among GCM and LPMs will be
discussed later in Section 5.5.

Example 2 The lower part of Figure 5.1 shows the two LPMs L1 (left)
and L2 (right) of the running example. For the interaction Request in
GCM, there is ! Request in L1 and ? Request in L2. L1 contains a set
V1 = {ID SET1} and pre and act of the LPMs are copied accordingly from
the GCM, e.g.:

pre(! Request) = msg1.Header.ID 6∈ ID SET1

act(! Request)(ID SET1) = ID SET1 ∪ {msg1.Header.ID}

However, it is not correct to transform the interactions one-by-one into
send/receive events. For instance, it should not be possible to send Request

in the state Reserved. Therefore, ! Request = {Start 7→ Requested} while
? Request = {Start 7→ Requested, Reserved 7→ Requested}.
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Channel Model. Given a set of message types MT used in the GCM , the
channel model C is a total function from a sequence of messages (of types
MT ) to a sequence of messages (of types MT ′). With MT ′ ⊆ MT and a
message sequence s, πMT ′(s) denotes the projection of s to a sequence of
messages of types MT ′. Let πMT ′(s) be canonically extended on the channel
model. The channel model C is then based on assignments of disjoint subsets
MT ′ of MT to channel reliability guarantees, which enforce that πMT ′(C)
satisfies certain properties. Reliability guarantees of the WS-RM standard
described in Section 2.3.3 can be modeled as follows: exactly once in order
(EOIO) where πMT ′(C) is the identity function on interaction sequences
and exactly once (EO) where πMT ′(C) is a permutation on an interaction
sequence (non-deterministic).

5.3 MCM Semantics

There are various ways to define an operational semantics for a GCM, LPM
and a channel model. As explained in Section 4.2.3, a trace-based semantics
will be used in this thesis. The description of this trace semantics is started
by giving the relevant trace definitions for MCM. Afterwards, the relation
of these traces is described.

5.3.1 Trace Definitions

MCM can be described as consisting of a GCM G and a composed system
CS incorporating the two LPMs L1 and L2, and the channel model C. In
the following, the trace semantics for G and CS will be given, followed by
the description of the consistency relation between G and CS, which is based
on trace equivalence according to the discussion in Section 4.2.3.

Traces of the GCM. For any GCM G, the traces of G, denoted by
Traces(G), is the set of sequences (i1, . . . , in) of interactions, for which there
exists a sequence (s0, . . . , sn) of states and a sequence of concrete variable
assignments v0, . . . , vn such that s0 and v0 are initial, and for all k = 1, . . . , n,
sk−1 is an enabling state of ik, sk is the successor state of ik, the guards of
ik are satisfied in vk−1, the value of vk equals the value of vk−1 except the
updates actk(vk), and sn is an accepting state.

Traces of the CS. For the definition of traces of CS, first the semantics
of LPM have to be fixed. By treating send and receive events similar to
interactions of GCM, LPM’s semantics is similar to the semantics of GCM.

CS consists of LPMs L1 and L2 and the channel model C. Its state space
is defined by the notion of composed state sCS

k = (sL1
k , sL2

k , sCk ), consisting of
a local state of each LPM and a state of the channel, described by a sequence
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of messages that are already sent but not yet received (that means they are
on the channel). Therefore, while G has a finite number of states, CS may
have an infinite number of states, if there are no (unnatural) restrictions on
the channel size. The traces of CS, denoted by Traces(CS), are defined
by the sequences (e1, . . . , en) of send or receive events ek (k = 1, . . . , n)
of the LPMs involved in the composed system, which satisfy the following
property. There is a sequence (s0, . . . , sn) of composed states such that for
all ek (k=1,. . . ,n), and its message type MT the following holds:

• In s0 the channel is empty and L1 and L2 are in their initial states
(i.e. composed initial state).

• The state of Lx in sk−1 is an enabling state of ek, the state of Lx in sk
is the successor state of ek, the guards of ek are satisfied in vk−1 of Lx,
the value of vk equals the value of vk−1 except the updates actk(vk),
and the state and variable assignment of Ly (x 6= y) in sk−1 equals the
state and variable assignment of Ly in sk.

• If ek is a send event, then in sk the channel sequence equals the channel
sequence of ek−1 attached with a new message msgk of type MT (ek),
where msgk satisfies the guards of ek in sender(MT (ek)).

• Let ch be the sequence of messages on the channel in sk−1, with
C(ch) = (m1, . . . ,mq). If ek is a receive event, then ch is not empty,
mq is of type MT (ek), mq (interpreted as msgk) satisfies the guards
of ek, and the channel sequence of sk equals (m1, . . . ,mq−1).

• In sn the associated states of L1 and L2 are accepting states and the
channel is empty (i.e. composed accepting state).

5.3.2 Consistency Relation of GCM and CS

As explained, using the GCM for the test derivation (see Section 4.3) requires
G to be an equivalence or under-approximation of CS, because otherwise
globally generated test suites would contain traces without local equivalents
(i.e. infeasible paths). On the other hand, allowing under-approximation
prevents the application of formal mechanisms to prove conformance of CS
to G (see [KRW09]) as it possibly omits allowed behavior. As concluded in
Chapter 4, the targeted approach is therefore implying that trace equivalence
of G and CS must be required.

Since G and CS have different alphabets, the alphabet of interactions
used by G has to be mapped to the corresponding send and receive events
in CS, in order to define a consistency relation between them. There are
various applicable consistency relations between G and CS, depending on
the viewpoint of the assumed global observer for G. A global observer in
this respect, is an idealized entity that observes the message flow between
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the components associated with L1 and L2 and relates it to the interactions
of G. In the following, the two global viewpoints, described in Section 4.2.2
are described.

Send-viewpoint. A GCM G describes a send-viewpoint of a composed
system CS, if for each trace (e1, . . . , en) of CS there exists exactly one
trace (i1, . . . , ik) of G (and vice versa), such that if (! e1, . . . , ! ek) is the
projection of (e1, . . . , en) to the send events, then (MT (i1), . . . ,MT (ik)) =
(MT (! e1), . . .MT (! ek)). In other words, G describes all sequences of send
events that can be observed in a communication between L1 and L2.

Example 3 If the traces of the composed system in Figure 5.1 are projected
to send-events the following set, written as regular expression (as defined in
[HU69]), is obtained:

{(! Request ! Offer ! Cancel)∗ (! Request ! Offer ! Order)?}

In this case a send-viewpoint is constructed by simply taking the LPM of the
buyer and transforming send/receive events into interactions.

Receive-viewpoint. G is a receive-viewpoint of CS if for each trace
(e1, . . . , en) of CS there exists exactly one trace (i1, . . . , ik) of G (and vice
versa), such that if (? e1, . . . , ? ek) is the projection of (e1, . . . , en) to the
receive events, then (MT (i1), . . . ,MT (ik)) = (MT (? e1), . . . ,MT (? ek)). In
other words, G describes all sequences of receive events that can be observed
in a communication between L1 and L2. The receive-viewpoint thus reflects
the possible loss of message order on the channel and is therefore best suited
for integration testing.

Example 4 The GCM in Figure 5.1 is a receive-viewpoint of the composed
system with an EO channel in that figure, because it covers the projection of
the traces from the LPMs to receive events.

As explained in Section 4.2.2, the receive viewpoint is best suited for the
derivation of integration tests, as it reflects message racing as experienced
by the involved components.

5.4 MCM Transformation Semantics

In the previous section the trace semantics of MCM has been given. This
trace semantics can be refined by describing a transformation of MCM ar-
tifacts to a modeling notation with a well-defined semantics. This is a com-
mon approach to define language semantics (cf. [Var02]). In this section,
the transformation of MCM to the formal language Event-B [AH07], as
published in [9], is presented.
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Event-B fits quite naturally to MCM as interactions can be expressed
seamlessly as events and the relationship between GCM and LPMs can be
formulated as Event-B refinement. Apart from defining the MCM semantics,
Event-B opens a variety of possibilities to analyze the model. These will be
described in Section 5.5. In this section, a brief overview on Event-B is given.
Afterwards, the translation of MCM artifacts to Event-B is introduced.

5.4.1 Introduction to Event-B.

Event-B [AH07] is an evolution of the B-Method [Abr96] that puts emphasis
on a lean design. In particular, the core language of Event-B is (with a few
exceptions) a subset of the language used in its predecessor. It distinguishes
between static and dynamic properties of a system. While static properties
are specified in a context, the dynamic properties are specified in a so-called
machine. A context contains definitions of carrier sets, constants as well as
a number of axioms. A machine basically consists of a finite set of variables
and events. The variables form the state of the machine and can be restricted
by invariants. The events describe transitions from one state into another
state.

An event has the form

EV ENT =̂ ANY t WHERE G(t, x) THEN S(x, t) END

It consists of a set of local variables t, a predicate G, called the guard and a
substitution S(x, t). The guard restricts possible values for t and x. If the
guard of an event is false, the event cannot occur and is called disabled. The
substitution S modifies the variables x. It can use the old values of x and
the local variables t. For example, an event that takes two natural numbers
a, b and adds the product ab to the state variable x could be written as

EV ENT =̂ ANY a, b WHERE a ∈ N ∧ b ∈ N THEN x := x+a∗b END

For events that do not require local variables, the abbreviated form

EV ENT =̂ WHEN G(x) THEN S(x) END

can be used. The primary way to structure a development in Event-B is
through incremental refinement preserving the system’s safety and termina-
tion properties.

5.4.2 Design Considerations of the Transformation.

The transformation from MCM to Event-B contains a formal representation
of both, the GCM and the CS, incorporating the two LPMs and the CM.
Therefore, the subsequently described translation generates two Event-B
machines, which use a common context. The Global Model describes the
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GCM and the Local Model describes the composition (defined as in [But09])
of the two LPMs and the CM. Both machines describe the exchange of
messages, the first in terms of observing a message, and the latter in terms
of sending and receiving messages.

As messages with the same type and content may occur more than once,
to each message a unique natural number is assigned, which is incremented
when a new message is sent. Further to each message a type is assigned
while it is possible to specify the content of the message as functions on the
message. Because we aim at the use of a model checking technique the trans-
lation result is designed to be as deterministic as possible. We experimented
with an assignment of types to messages which is non-deterministically ini-
tialized upfront; however this resulted in an indigestible state space for the
model checker.

5.4.3 Transformation Description.

By defining a translation from the global and from the local MCM models
into the two Event-B machines a precise semantics of MCM is obtained,
which is presented in the following. The transformation is implemented and
can thus be applied completely automatically.

Global Model. For each transition in the GCM exactly one event is gen-
erated. The states are represented by a global variable status with ele-
ments from a set type s1, . . . , sk, with constants s1, . . . , sk. It is initial-
ized with init ∈ S. The basic translation of an Interaction i ∈ I with
(s1, . . . , sk, I, sm) ∈⇒ is as follows:

i =̂ WHEN guard1 : status = s1 ∧ . . . ∧ status = sk

THEN act1 : status := sm END

This basic translation must be augmented with preconditions and actions,
associated with that interaction. Therefore, data types, constants, variables,
terms and formulae used in MCM have to represent in terms of Event-B. This
is done as follows. For each data type t ∈ T a set is defined in the Event-B
context, without explicit characterization of elements. These sets are named
in Event-B according to their type name name(t). For each complex data
type t = (f, t′) we define a partial function f : name(t) 9 name(t′). f is
initialized with f := ∅.

The constants and global variables are defined in a standard way. For
each constant c ∈ Ct an element is added to the set name(t). For the
interactions I = {i1, . . . , in} we additionally define a set MESSAGES =
{name(itype(i1)), . . . , name(itype(in))}.

Example 5 Consider the interaction Request with

pre(Request) = msg .Header.ID 6∈ ID SET
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and
act(Request)(ID SET) = ID SET ∪ {msg .Header.ID}

of the running example. For it, the functions Header : N 9MessageHeader
and ID : MessageHeader 9 InstanceID (MessageHeader and Instan-
ceID here are the corresponding names from name(T ))are defined, as well
as the local variables t1 and t2 in order to choose appropriate values to be
assigned in the functions. Because ID SET ∈ TSet(InstanceId) an Event-B
variable ID SET of type P(InstanceID) is defined.

Request =̂ ANY t1 t2 WHERE

grd1 : status = Reserved ∨ status = Start

grd2 : t1 ∈ MessageHeader

grd3 : t2 ∈ InstanceID

grd4 : t3 /∈ ID SET

grd5 : t1 ∈ dom(ID)⇒ ID(t1) = t2

THEN

act1 : status := Requested

act2 : Header(msg) := t1

act3 : ID(t1) := t2

act4 : type(msg) := Request

act5 : ID SET := ID SET ∪ {t3}
act6 : msg := msg + 1

END

The guard grd5 describes a consistency property: if the function is already
defined on an element, then the value must be the corresponding term.

For the accepting state ei ⊆ S a special event terminate with a guard
status = c1 ∨ . . . ∨ status = c1 (for all ci ∈ ei) and an action
acceptingstate := true is defined, where acceptingstate is a global vari-
able. In each event from the translation of GCM an additional action
acceptingstate := false is added. As a result, acceptingstate equals true,
iff the system state is an accepting state.

Local Model. In the local model, events representing sending and receiv-
ing of messages are generated. Depending on the viewpoint either the send
or the receive event can be defined to be a refinement of the corresponding
interaction in GCM.

By definition of LPMs, the variables from V and the status variable are
duplicated (one for each partner). The variable msg is translated as for the
GCM in order to keep the unique message enumeration. It is only used by
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send events, where it is set in the same way as in the GCM. In receive events,
local variables (parameters) are used in order to obtain some message from
a channel.

A channel is defined as a global variable of type P(N), denoting the set
of messages being exchanged. It is initialized with ∅. Typically, there are
two partners P1 and P2 and two sequencing contexts (EO and EOIO). In
that case, four possible channels can be obtained in the model (two for each
direction).

Example 6 Below, a translation of the interaction Request from the LPMs
for the partners buyer (B) and seller (S) of the example is shown. The dupli-
cated variables can be distinguished by the corresponding prefixes. The chan-
nel from buyer to seller having the sequencing EO is denoted by
channel BS EO.

send Request =̂ ANY t1 t2 t3 WHERE

grd1 : B status = Reserved ∨ B status = Start

grd2 : t1 ∈MessageHeader

grd3 : t2 ∈ InstanceID
grd4 : t3 /∈ B ID SET

grd5 : t1 ∈ dom(ID)⇒ ID(t1) = t2

THEN

act1 : B status := Requested

act2 : Header(msg) := t1

act3 : ID(t1) := t2

act4 : type(msg) := Request

act5 : B ID SET := B ID SET ∪ {t3}
act6 : channel BS EO := channel BS EO ∪ {msg}
act7 : msg := msg + 1

END
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receive Request =̂ m WHERE

grd1 : S status = Reserved ∨ S status = Start

grd2 : m ∈ channel BS EO

grd3 : type(m) = Request

grd4 : m ∈ dom(Header)

grd5 : Header(m) ∈ dom(ID)

grd6 : ID(Header(m)) /∈ S ID SET

THEN

act1 : S status := Requested

act2 : S ID SET := SIDSET ∪ {ID(Header(m))}
act3 : channel BS EO := channel BS EO \ {m}
END

The translation of a send event is very similar to the translation of the
corresponding event in GCM. In receive events, all function values are al-
ready set, so that the purpose is to find a suiting message m in the channel
and “receive” it (i.e. delete it from the channel). If a sequencing context
is EOIO then an additional guard, enforcing that the message m has the
smallest number in the channel, is needed.

For inhibitor conditions inhib(i) = C (with i ∈ I) a guard status /∈ C
is added to the event send i. In the example, the guard grd6 : B status /∈
{Reserved} is added to send Request. It remains future work to optimize
the translation by simplifying this and grd1 to B status = Initial.

Accepting states are treated similar to the translation of GCM, except
that it is demanded additionally that channel = ∅ for all of them, be-
cause only if all channels are empty, the system can enter into an accepting
state. For all other events of the translation from the LPM, an action
acceptingstate := false is added.

5.5 MCM Tool Support

In previous sections, the syntax and semantics of MCM has been given. This
section introduces the tooling of MCM that has been implemented to guide
the creation of MCM models and enforce its consistency.

As depicted in Figure 5.2, an Eclipse-based editor has been implemented
that is utilizing the Meta-Object Facility (MOF) standard [OMG06] for the
definition of the underlying MCM meta-model. Figure 5.1 is a collage of
screenshots of the editor, showing the three different viewpoints (i.e. GCM ,
LPM1 and LPM2) of the MCM instance for the running example.

The automatic transformation of MCM to Event-B described in Sec-
tion 5.4 is utilized to connect the MCM editor with the Rodin
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Figure 5.2: Overview of MCM modeling tools

platform [ABHV08]. It is also Eclipse-based and includes a set of formal
verification tools. Currently, the model checker ProB [LB08] and the the-
orem provers of Atelier B [Ste01] are used to ensure MCM’s consistency
obligations. In the following, for each consistency relation (as introduced in
Section 4.2.3) the tool-based realization is described.

5.5.1 Ensuring Consistency between Requirements and MCM

In order to be sure that the MCM model corresponds to what the modeler
intended to express and what has been informally described in requirements
documents, a simulation tool has been added to the editor. By using the
formal representation of MCM in Event-B, ProB is used as a model checker
backend to interactively simulate sending and receiving of messages. In
each state of the simulation the active states of the partners as well as of the
channel. Currently enabled message send and receive events are presented
to the modeler, who may select one of them manually, leading the simulation
into the next state.

Figure 5.3 illustrates this. The highlighted state depicts the current state
of the partners and the highlighted interaction can be clicked by the user to
perform send/receive actions (here: sending Offer is possible). On the left
hand side, the state of the channel and the history of events is depicted.

5.5.2 Ensuring Consistency between MCM Viewpoints

By deducing from the given definition of MCM, inconsistency of the models
can have the following reasons:
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Figure 5.3: Interactive simulation of MCM

• Syntactical Inconsistency. GCM and LPMs could syntactically not
fit to each other. For instance there could be send events in LPM
for which there are no interactions in GCM. Especially in an agile
environment such simple consistency properties are in danger to be
violated, e.g., when both levels are modified simultaneously and global
and local views therefore get out of sync.

• Semantical Inconsistency. The composed system could not realize the
behavior of GCM, i.e. CS and GCM are not receive-viewpoint trace
equivalent. A special case is that for a GCM no trace equivalent CS
exists at all. The choreography is then said to be not locally enforce-
able.

In general, for ensuring consistency between local and global views two
competing, tool supported approaches exist: a generative approach where
the LPMs are generated from the GCM, and a checking approach where
global and local models are created separately, but having a consequent
consistency check installed. While the first approach ensures that global
and local views are always consistent, it makes changes to the local models
considerably more difficult, since these would be overridden by re-generation
from the global model. The latter approach allows for such “asymmetric”
changes, but requires manual effort to update the global view when changes
to the local models are made.
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A pragmatic mix of these approaches however, seems most appropriate.
The first of the issues mentioned above, in this case is addressed by main-
taining the two LPMs as structural copies of the GCM, while allowing for
additional guards on the LPM. This is implemented in the MCM editor by
realizing the LPMs and the GCM as views on a common model instance.
Trace equivalence can however not be ensured by syntactic means. There-
fore model checking and theorem proving techniques have to be applied. In
the MCM editor they are provided by connecting it to the Rodin platform.
In the following, the implemented countermeasures to the given causes of
inconsistency are described in detail.

Enforcing Syntactical Consistency. As described, the problem of keep-
ing local and global views synchronized is solved by having a single meta-
model for both GCM and LPM, while for each choreography, GCM as well as
the two LPMs for each involved partner are views on one common instance
of that meta-model.

For each partner, an LPM view is obtained from a GCM as follows. An
interaction in the GCM is interpreted as a send or as a receive event in the
LPM of the considered partner. A state in the GCM is represented by a
corresponding state in the LPM, and constraints and effects are transferred
accordingly.

Following this approach, the addition of a send-event to an LPMs auto-
matically leads to the addition of an interaction in GCM and to the addition
of a receive-event to the other partner’s LPM. However, semantically the
GCM states and the corresponding LPM states are different. The former
denotes a globally observable state (based on the chosen message exchange
viewpoint), while the latter denotes the latest information that the compo-
nents have about the global state. These states are in general not equal
because of the latency of message transmission.

By this technique, the most general LPMs, which might realize a chore-
ography given by a GCM, are obtained. In order to allow for asymmetric
resolution strategies, the LPMs can be augmented with additional guards.
As discussed in Section 3.2, the added guards may only restrict that mes-
sages are sent and are further only visible in the particular LPM, but not
in GCM or in the LPM of the other partner. The given implementation
thus ensures syntactical consistency of GCM and LPMs during the whole
modeling life-cycle.

Enforcing Semantical Consistency. Trace equivalence of the GCM and
the CS can not be ensured by the above described syntactic means. There-
fore, the MCM editor further provides checks which prove consistency, based
on translating the choreography model to Event-B (see Section 5.4) and
checking the obtained formal model with Rodin platform tools [ABHV08]
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and Rodin based plugins. To show trace equivalence in Event-B essentially
boils down to showing the refinement of the Event-B machine generated for
the combined system towards that of the GCM and vice versa.

Another important property is the absence of unconsumable messages.
Whenever a message is being exchanged the receiver of the message must be
ready to receive it. This property can be encoded as an invariant of the gen-
erated Event-B machine for the LPMs. Since proving these properties still
requires a considerable amount of user interaction, also the model-checking
tools provided by ProB [LB08] are utilized, which are not able to completely
prove the refinement relation in general (because of the unlimited size of the
channel), but give good feedback in cases where the model still contains
errors.

A detailed description of the realized semantical consistency checks can
be found in [KRW09].

To visualize these cases of modeling errors, the simulation plugin to the
MCM editor has been enhanced such that it can represent the errors in the
model by highlighting the states of both partners in the conflict situation
and by re-playing the sequence of interactions leading to it.

5.5.3 Ensuring Consistency between MCM and Implemen-
tation

For each service component involved in the choreography (represented by
LPMs) more detailed development artifacts, such as implementation code
or other models exist. In comparison to LPMs they take into account the
messaging behavior w.r.t. more than one partner component and internal
actions that are unrelated to communication.

In the context of SAP, such components are usually described with the
help of models. These specify contained attributes (and their types) and
state transition diagrams, describing the effect of actions (such as service
calls) on the component’s state. By provision of a translation from these
models to Event-B a formal representation can be obtained, which allows to
show that they constitute a refinement of the LPM and thus preserve the
properties specified in the LPM.

However, as LPM and component models operate on a separate state
space. Therefore the modelers are required to add glue expressions to each of
the states s ∈ Sj of each LPM Lj . To guide this, the MCM editor is equipped
with an expression language over the state of the business components. It
is used to assign an expression glue(s) to s.

Example 7 In the running example, the Reserved state in the LPM of the
Buyer may correspond to the status attribute OfferReceived in the buyer’s
purchase order business component. Thus it will be specified:

glue(Reserved) = (Status : PurchaseOrder.OfferReceived = true)
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A detailed description of the formalization and transformation of devel-
opment models, as well as the realization of the refinement checks is out of
scope of this thesis. It will be available as a project deliverable [KWR10].

As described in Section 4.2.3, the targeted trace equivalence of LPMs
and the corresponding components can only be achieved by combining the
described formal checks of trace inclusion (i.e. refinement) of the imple-
mentation in MCM with trace inclusion of MCM in the implementation,
which is ensured by testing. The details of this test approach are described
separately in Chapter 6.

5.6 Summary

Chapter 4 introduced a development approach for a model-driven SOA de-
velopment and motivated the design of a choreography modeling language.
In this chapter, the choreography modeling language MCM has been de-
scribed that is needed to realize the given development approach.

Section 5.1 introduces the MCM modeling artifacts for the global and
local viewpoints (GCM and LPM), and the channel model. The formal def-
inition of MCM Syntax and Semantics has been provided in Sections 5.2
and 5.3. Section 5.4 gives an account of a transformation of MCM to
Event-B. This transformation is a prerequisite to ensure the various consis-
tency obligations of MCM that have been introduced in Section 4.2.3. The
tool-supported realization of these consistency obligations is explained in
Section 5.5.

As MCM is based on the conceptual decisions described in Section 4.2,
it already fulfills some of the requirements for choreography modeling that
have been deduced in Section 3.2. The remaining requirements Detailed
message description, Infinite state space, Interaction termination, Channel
modeling, and State-based modeling have been satisfied by supplying a con-
straint language to describe message content, defining GCM and LPM as
EFSMs with a classical notion of termination, and including a channel model
for MCM.
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Chapter 6

Test Generation

The envisioned SOA development approach given in Chapter 4, utilizes
choreography models for model-based service integration testing. In Sec-
tion 4.3, the general concepts of the intended MBT are explained. In this
chapter, the realization of the testing approach is described in detail. It
is based on the choreography language MCM that has been described in
Chapter 5.

Section 6.1 introduces the developed test generation process. The test-
ing framework that supports this process is described in Section 6.2. It inte-
grates, various test generation methods. These are discussed in Sections 6.3,
6.4, and 6.5.

6.1 Test Generation Process

The core idea of MBT is to use formal specifications for test generation. This
implies that tests can only be as precise as the modeled content they use. By
design, MCM offers the necessary information to drive the generation of test
suites, covering the specified interaction protocol. However, the generated
test suites have to be supplemented with additional information, because
even though the local behavior is modeled in the LPMs, triggers for the
local message sending events are not specified. This information cannot
be modeled easily, as it is deeply rooted in the internal behavior of the
components1.

However, using MBT for service integration promises to reduce the man-
ual effort by automatically generating suitable sets of test cases for desired
coverage of the choreography model. As explained in Section 4.3, it will be
aimed at transition coverage of the GCM. Therefore, the following four-step

1Note that MCM is not suited for the derivation of component tests because apart from
the missing triggers mentioned, the behavior modeled in the LPMs focuses on communi-
cation only, leaving out internal steps that may happen in between the communication
events.

93
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approach for test generation has been deduced.

Step 1: Global test suite. A test generator generates a set of globally
observable message sequences that covers each transition of the GCM. As
explained in Section 4.3 all generated test cases have to start in the initial
state and end in an accepting state of the GCM. The resulting test suite
might vary depending on the utilized test generator.

Example 8 Based on the GCM (global receive viewpoint) of the running
example, depicted in Figure 4.5, an assumed test generator that computes
terminating traces breadth first until full transition coverage is achieved,
would derive the following traces.

< Request, Offer, Order >,

< Request, Offer, Cancel >,

< Request, Offer, Cancel, Request, Offer, Order >,

< Request, Offer, Cancel, Request, Offer, Cancel >,

< Request, Offer, Request, Cancel, Offer, Order >,

< Request, Offer, Request, Cancel, Offer, Cancel >,

< Request, Offer, Request, Offer, Cancel, Order >,

< Request, Offer, Request, Offer, Cancel, Cancel >,

< Request, Offer, Request, Offer, Order, Cancel > .

Step 2: Local test suite. For each global test case a corresponding local
trace (i.e. a traces of the composed system) is computed. This is necessary,
because the global test cases only specify the order of receive events. There-
fore, the receive sequences have to be enhanced by their corresponding send
events, taking the LPMs and channel model into account.

Example 9 For the running example, the local test suite is given below. To
keep the traces concise, the redundant2 sender and receiver name for each
event is omitted. Note that all the enumerated traces are incorporated in
Figure 4.4.

2For each message sender and receiver can be determined unambiguously.
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< ! Request, ? Request, ! Offer, ? Offer, ! Order, ? Order >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ? Cancel >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ? Cancel,

! Request, ? Request, ! Offer, ? Offer, ! Order, ? Order >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ? Cancel,

! Request, ? Request, ! Offer, ? Offer, ! Cancel, ? Cancel >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ? Cancel, ! Offer, ? Offer, ! Order, ? Order >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ? Cancel, ! Offer, ? Offer, ! Cancel, ? Cancel >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ! Offer, ? Offer, ? Cancel, ! Order, ? Order >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ! Offer, ? Offer, ? Cancel, ! Cancel, ? Cancel >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ! Offer, ? Offer, ! Order, ? Order, ? Cancel > .

Step 3: Optimized local test suite. The produced test suite, incorpo-
rating all translated test cases, has to be optimized according to the test
objectives described in Section 4.3. As mentioned the size of the test suite
and hence the optimization effort might vary, depending on the utilized test
generator.

Example 10 An optimized test suite for the running example is given be-
low:

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ! Offer, ? Offer, ! Order, ? Order, ? Cancel >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ! Offer, ? Offer, ! Cancel, ? Cancel, ? Cancel >,

< ! Request, ? Request, ! Offer, ? Offer, ! Cancel, ! Request,

? Request, ? Cancel, ! Offer, ? Offer, ! Order, ? Order > .

Step 4: Executable test suite. The abstract test cases of the opti-
mized test suite are translated into executable test suites. This step is
semi-automatic. Test step skeletons as well as state checks using the glue
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Figure 6.1: The test generation framework

information of the local components (see Example 7) can be automatically
generated. As message triggers and concrete test data is not modeled in
MCM, this information has to be added manually to the test sequences.
Details of the test concretization and the subsequent test execution can be
found in Section 4.1.

6.2 Test Generation Framework

Taking the envisioned testing process, given in the previous section, as a
starting point, in the following, the test generation framework that imple-
ments this intended approach is described.

Various state-based MBT technologies and tools have been developed in
the research community. Each of them has its strengths and weaknesses.
The framework that has been developed for the model-based integration
testing on the basis of MCM models allows to plug in different MBT test
generators, in order to supply the most appropriate technique based on the
actual context. All the described test generators are Eclipse-based and hence
were integrated into the MCM editor similar to the Rodin tool set described
in Section 5.5.

The testing framework’s general layout is depicted in Figure 6.1. Below,
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an overview of the design and implementation of the framework is given,
by describing each depicted artifact. The different, currently supported test
generators are described in the subsequent Sections 6.3 to 6.5.

MCM. Prerequisite for the test generation process is the provision of
MCM artifacts that are conforming to the specification given in Chapter 5.

Model Transformation. In order to supply existing advanced test gen-
eration techniques to the user of MCM, model transformations from MCM
to the input format of these MBT tools are provided. In this way, the re-
development of mature MBT implementations is avoided and the concept
additionally allows future extensions. Details on the currently implemented
transformations are given in the respective subsections describing the used
test generators.

Test Generators. The test generators basically provide the execution of
Step 1 of the previous subsection. Currently three different test genera-
tion techniques are supported: Finite state machine (FSM) based, model-
checking (MC) based, and heuristics-based test generation.

While FSM-based generation is the fastest technique, it can only be
applied, if the transitions of the GCM are independent of each other, i.e., no
transition guard references data that can be altered by another transition.
Otherwise the generated test suites may contain infeasible paths, i.e., paths
violating the constraints specified in the model.

Model-checking guarantees to find an extended test suite that can be
reduced to an optimal set of test cases regarding the previously introduced
test objectives. However, faced with complex models it experiences the
well-known state explosion problem and possibly needs infinite resources to
produce a result.

To avoid unacceptably expensive computation of test suites, heuristic-
based test generation can be used. By applying it, the runtime can be
controlled very well. On the other hand, it cannot guarantee to produce an
optimal solution.

The concrete implementations of each of the three methods are discussed
in the consequent Subsections 6.3 to 6.5. The common strategy that should
be applied when choosing an appropriate MBT algorithm is to use the FSM-
approach in case the transitions of the GCM are independent of each other.
If this is not the case, the MC-based approach may be applied. However,
in cases where the MCM’s complexity is too high and the MC-based ap-
proach does not terminate, a test suite could finally be obtained by using
the heuristic-based approach. In Chapter 7, the three integrated test gener-
ators are compared, based on the given case study.



98 CHAPTER 6. TEST GENERATION

Abstract Traces. Though the output format of each test generator might
differ, the result is generally a set of traces through the given GCM.

Test Suite Transformation. The test suite transformation has two tasks.
First of all, in order to obtain a unified output in form of an abstract test
suite, the given trace sets have to be transformed into an intermediate for-
mat. Secondly, Step 2 of the overall test process given in Section 6.1 has to
be executed.

Test Suite Optimizer. The optimization of the test suite may take place
either before or after mapping the global traces to local traces during test
suite transformation. While the first option promises slightly better perfor-
mance, it may not achieve minimal occurrence of message racing, which is
one of the defined optimization criteria.

Traceability Module. In order to compute local sequences from the gen-
erated traces in the test suite transformation unit, a mechanism is needed
that provides the link between the obtained abstract traces and their asso-
ciated modeled entities.

Abstract Test Suite. The output of the test framework is an optimized
abstract test suite. In order to preserve explicit links to the input model and
make the test concretization process as easy as possible, it has a proprietary
format.

6.3 FSM-based test generation

For the FSM-based approach, a custom solution is realized that is based
on classical graph theory instead of integrating an existing test generator.
The decision was made, because the necessary algorithms are well known
and documented, and hence the implementation effort seemed to be lower
compared with the integration effort of an external tool and the transfor-
mation effort for the input and output of the test generator. Instead, the
implementation directly works on MCM instances and further generates the
abstract test suite in an internal format.

The tool is realized utilizing a variation of the Rural Chinese Postman
Tour, described in [SL96], that produces a minimal test suite by default.
Thus, only the resulting traces through the GCM have to be mapped to the
local paths only (Step 2 of previous subsection), whereas the test optimiza-
tion (Step 3) can be omitted.

The applied algorithm is divided into six steps as illustrated in Figure 6.2
and is based on the classical idea of finding an Eulerian path through a graph.
In the following a short description of each step is given.
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Figure 6.2: Steps of the test generation for finite state machines

• Step 1: Connecting the graph. Basis for the applied algorithm is a
strongly connected model (i.e., each state is reachable from any state).
As defined in Chapter 5, in a GCM each state is reachable from the
initial state and each state reaches an accepting state. Hence, connect-
ing the accepting states of the GCM with the initial state by adding
ε transitions leads to a strongly connected GCM.

• Step 2: Calculating the Eulerian weight. The prerequisite for the ex-
istence of an Eulerian path through a directed graph is a balanced
Eulerian weight for each node. The Eulerian weight for each state is
calculated by adding the number of incoming transitions and subtract-
ing the number of outgoing transitions.

• Step 3: Balancing the Eulerian weight. The balancing of the Eulerian
weights without altering the described behavior can be obtained by
duplicating existing transitions. This can be done by computing the
shortest paths from states with positive weights to negative weights.
ε transitions are neglected when calculating the length of a path.

• Step 4: Computing the Eulerian cycles. In a balanced graph, Eulerian
cycles can be obtained by traversing the model randomly starting at
any state. From this state the model is traversed randomly until the
starting state is reached and thus a cycle is computed. During this
random walk each traversed transition is marked, in order to avoid
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processing it twice. The whole procedure is repeated until all Eulerian
cycles are found (i.e. every transition in the model has been marked).

• Step 5: Computing the Eulerian path. In order to compute the Eule-
rian path, the Eulerian cycles are combined pairwise by inserting one
cycle into another (using a state that they both traverse) until all ini-
tial cycles are incorporated in one (Eulerian) cycle covering the whole
model. By splitting this cycle once in the initial state, the Eulerian
path is obtained.

• Step 6: Computing the test suite. Finally the obtained path is split into
the abstract test cases by deleting the previously added ε transitions
and collecting the resulting traces into a test suite.

As explained, the disadvantage of the FSM-based approach is that it
does not take the transition constraints into account, which may lead to the
generation of infeasible paths (i.e. test cases that are violating the transition
constraints and hence cannot be executed). Considering the example from
Section 3.1, this disadvantage becomes evident.

Example 11 Applying the FSM-based test generator to the GCM of the
running example (see Figure 4.5), one of the generated test suites3 contains
the following test cases:

< Request, Cancel, Offer, Order, Cancel >,

< Request, Offer, Cancel, Cancel > .

Both test cases are violating the annotated constraints in the GCM of the
given example. In the first test case, the with 0 initialized counter variable
is left unchanged by the first Request. In state Requested, which is reached
subsequently, the Cancel transition demands a counter value to be greater
than 0 and is therefore not reachable. In the second test case, the counter is
again 0 after the Request. The subsequent Offer sets it to 1. Consequently,
in the next state (Reserved) only the Cancel that leads to the state Start

is active. However, in Start the second Cancel cannot be triggered. Both
of the given test cases therefore are infeasible.

To tackle this problem, an MC-based approach is deployed as described
in the next section.

3Because there is more than one optimal solution, the generated test suite depends on
the order in which the transitions are explored by the algorithm.
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6.4 Model-checking based test generation

Model checking has been utilized for test generation in various approaches
[FG09]. The current version of the framework incorporates a test gener-
ator based on the model checker ProB [LB08]. ProB is a validation tool
set originally written for the B method. Its automated animation facili-
ties allow users to animate and model-check their specifications which are
valuable capabilities in the development of formal specifications. ProB has
been adapted to support a number of formalisms such as Z, CSP, and
CSP‖B [BL05].

As ProB currently uses Event-B [AH07] as input language, it was nec-
essary to provide a model transformation for MCM. For the details of this
transformation please refer to [9].

The test generation algorithm that has been developed for the integration
testing approach based on MCM is separated into three steps, which are
corresponding to the steps of the general approach from Section 6.1. In the
following for each step details about the implementation are given and the
computed results for the running example from Section 3.1 are shown.

Step 1: Generation of an Initial Global Test Suite. As explained
in Section 4.3, the test generation is to cover each transition of the global
communication model, i.e., each interaction of the GCM. To satisfy the first
and second objective given at the end of Subsection 4.3, ProB was extended
to detect when transition coverage is obtained. This is gained by exploring
the state space of the model, using a breadth-first strategy (corresponding to
the second objective), stopping when full coverage is achieved by discovered,
terminating traces(corresponding to the first objective).

The recognition of this termination has been ensured by adding a history
variable to the GCM, storing the set of executed interactions and adding a
corresponding end-interaction for every original interaction i, which can be
triggered if being in a valid end state and if i ∈ history. Afterwards all
traces that end in an accepting state are extracted from the explored state
space to form the initial test suite.

Example 12 From the example given in Section 3.1, the following initial
set of test cases is obtained:
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< Request, Offer, Order >,

< Request, Offer, Cancel >,

< Request, Offer, Cancel, Request, Offer, Order >,

< Request, Offer, Cancel, Request, Offer, Cancel >,

< Request, Offer, Request, Cancel, Offer, Order >,

< Request, Offer, Request, Cancel, Offer, Cancel >,

< Request, Offer, Request, Offer, Order >,

< Request, Offer, Request, Offer, Order, Cancel >,

< Request, Offer, Request, Offer, Cancel >,

< Request, Offer, Request, Offer, Cancel, Order >,

< Request, Offer, Request, Offer, Cancel, Cancel > .

Step 2: Mapping of Global to Local Paths. In order to obtain locally
executable test cases, the global sequence of message observations for each
path has to be mapped to the corresponding send and receive events of part-
ners. As the GCM uses the receive semantics, the global observe sequences
can be directly translated to sequences of receive events. Afterwards for
each receive event a corresponding send event is generated and added to the
path in such a way that the local behavior descriptions are not violated (see
the corresponding Step 2 of Section 6.1).

In most cases it is infeasible to exhaustively explore the full state space
(as the state space of the CS is actually even considerably bigger) to find
a suitable mapping from global to local traces. The problem could be en-
coded as an LTL formula, but this formula would be very big, with ensuing
consequences for the complexity of model checking. A better solution, is to
encode the desired LPM traces into a CSP [Hoa78] process. This process
is synchronized with the Event-B model, using the technology of [BL05],
suitably guiding the model checker.

The CSP Process is divided into two components. The first process
encodes the desired trace of receive events, followed by an event on the goal
channel, indicating to the model checker that this is a desired goal state.

Example 13 For the last trace given above, it looks as follows:

RECEIV ER = Seller? Request → Buyer? Offer → Seller? Request

→ Buyer? Offer → Seller? Cancel → Seller? Cancel

→ goal → STOP.
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The second process encodes the sender events. While the number of send
events for each event type is equal to the number of receive events, the order
of them is unknown.

SENDER(n1, n2, n3, n4) =

n1 > 0 & Buyer! Request → SENDER(n1 − 1, n2, n3, n4) [ ]

n2 > 0 & Seller! Confirm → SENDER(n1, n2 − 1, n3, n4) [ ]

n3 > 0 & Buyer! Cancel → SENDER(n1, n2, n3 − 1, n4) [ ]

n4 > 0 & Buyer! Order → SENDER(n1, n2, n3, n4 − 1).

The sender process is now interleaved with the receiver process.

MAIN = SENDER(2, 2, 2, 0) 9 RECEIV ER.

In that way, ProB will ensure that every event of the Event-B model syn-
chronizes with an event of the CSP process (MAIN), guiding it and stopping
when the CSP process can perform an event on the goal channel.

Step 3: Test Suite Reduction. Of course the resulting test suite has to
be optimized. While the first and second objectives given in Section 4.3 have
been satisfied by design, the reduction of test suite is still necessary. This
can be achieved by using a greedy search or even a brute force algorithm that
computes every possible combination of test cases and selects the optimal
one according to the given objectives.

Example 14 For the given initial test suite, an optimal test suite would
incorporate the local equivalents of the following global paths:

< Request, Offer, Request, Offer, Order, Cancel >,

< Request, Offer, Request, Offer, Cancel, Cancel >,

< Request, Offer, Request, Cancel, Offer, Order > .

6.5 Heuristics-based test generation

In cases where the FSM-based approach cannot be applied (because of in-
terdependent interactions) and also the MC-based approach is infeasible
(because of state explosion), still a possibility has to be supplied that allows
generation of feasible test cases for covering as much of the GCM model
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Figure 6.3: Integration of the IBM test generator

as possible. Therefore an engine is needed, which is able to execute ran-
domly chosen (but guided) paths in the state space and record the input
and expected outputs, according to the model.

Some experiments have been conducted with the UML model execution
and test generation engines provided by the IBM research prototype [DK07],
which is integrated into IBM Rational Software Modeler4. The prototype
tool allows the execution of UML 2.0 models that are annotated with Java
code on the transitions. In order to utilize the given tools, a transformation
from MCM to UML with Java annotations had to be realized.

Figure 6.3 depicts the tool integration of the IBM prototype, which is
part of the MODELPLEX platform5. In the middle, the MCM module
including the MCM editor and a model importer from SAP’s existing mod-
els is shown. The connection between MCM and UML is made via the
MCM2UML and the TPTP2SAP transformer modules. Roughly explained,
the transformation works as follows. The message types and service compo-
nents are transfered into UML class and component diagrams, and the GCM
is translated into a UML state machine, where the interaction constraints
and side effects are implemented using Java snippets. More details on the
transformation can be found in [10].

IBM’s heuristics-based test generator utilizes the model execution engine
by sending inputs and observing outputs. The inputs are recorded as test
sequences of stimuli applied to the SUT while the outputs are also recorded
as expected outcomes. In other words, the model is used as a test oracle

4http://www.ibm.com/software/awdtools/modeler/swmodeler
5http://www.modelplex-platform.com
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predicting the correct behavior, while the test generator heuristically tries
to cover for instance the inputs of different available services. The main
advantage of the tool is that it actually executes the model and therefore is
able to determine all enabled transitions at each state for a given context
on-the-fly. Thus the generated paths are always feasible. However, this
approach cannot guarantee complete transition coverage, since it applies
some sort of guided randomness and further does not explicitly allow to
target transitions.

Unfortunately, the heuristics that the IBM test generator is using, are
quite premature. Because focus of the prototype was to comply with the
UML standard instead of advanced heuristics, the choices of the tool are
taken randomly at the moment.

Example 15 To evaluate the prototype on the example given in Section 3.1,
the test generator is asked for a test suite that covers all transitions or
terminates after 100 steps. The following results can be obtained after 10
runs.

• 9 runs terminated, because a test suite with full transition coverage
was found, 1 run terminated with 87% transition coverage.

• The average test suite contained 47 test steps, distributed over 6 to 7
test cases.

• The average execution time to generate a test suite was 3 seconds.

• After optimization, the average test suite contained 23 test steps, dis-
tributed over 2.7 test cases.

The experiment above illustrates the main advantage of the heuristics-
based test generation. It terminates and delivers a result, even if the test
goal (here transition coverage) cannot be reached with reasonable effort.
This is especially valuable, if the model contains unreachable transitions
that would force an MC-based test generator to infinitely explore the state
space without returning any result.

The output of the tool is a test suite in the Eclipse Test & Performance
Tools Platform6 (TPTP) format. Therefore, as explained in Section 6.1,
further a transformation mechanism into SAP’s internal test suite format
had to be provided.

In general, the transformation to UML opens up the usage of other
UML-based MBT tools (see a recent evaluation of such tools in [GNRS09])
like the Test Designer from Smartesting7. However, the current translation
takes into account the special semantics of the executable UML models as

6http://www.eclipse.org/tptp
7http://www.smartesting.com

http://www.eclipse.org/tptp
http://www.smartesting.com
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supported by the IBM tool. Other tools may use different UML semantics
and also OCL as action language instead of Java, implying that adjusting
the current transformation for different UML tools might not be trivial.

6.6 Summary

Chapter 4 introduced a model-driven SOA development approach and moti-
vated the application of MBT to service integration testing based on chore-
ography models. In this chapter, the necessary test generation process and
its realization has been described.

As laid out in Chapter 3, the focus of the thesis is to derive test case for
service integration testing from choreography models, while the generation
of test data that is needed for the execution of those test cases was kept
out of scope. In Section 4.3, the necessary conceptual decisions (i.e. the
required coverage criterion and optimization parameters for the test suite)
for utilizing MBT in the service integration generation have been described.

Section 6.1 stepwise explained the envisioned test generation process that
derives an abstract test suite from the MCM modeling artifacts according
to the mentioned conceptual decisions. The concretization and execution
of test cases has been described in Section 4.3. The testing framework
that has been created to enable the previously described automatic test
generation process was introduced in Section 6.2. Its main purpose is to
provide multiple alternative state of the art test generators that can be
chosen according to the structure of the choreography model. The currently
supported MBT tools were introduced in the Sections 6.3, 6.4, and 6.4. A
comparison of these tools is provided as part of the case study, described in
Chapter 7.



Chapter 7

Case Study

This chapter describes a case study that has been conducted to evaluate the
developed modeling and model-based testing solution. It exemplifies the ap-
proach presented in earlier chapters. Chapter 4 described the SOA develop-
ment approach that defines the context for the scientific contributions of the
thesis and explained the core concepts of modeling and model-based testing
of service choreographies. Chapter 5 introduced the proprietary language
MCM that implements the given choreography modeling concepts. The test-
ing framework that realizes the model-based service integration testing has
been given in Chapter 6.

Aim of this case study was to gain evidence that the described SOA
development approach based on MCM is applicable in an industrial setting.
Further, its efficiency and effectiveness was investigated.

Section 7.1 gives information about the design and context of the case
study. The case study execution, including the modeling and test generation,
is described in Section 7.2. Section 7.3 explains the conclusions that can be
deduced from the case study execution.

7.1 Case Study Design

In this section, the context of the conducted case study is given. It starts
with a description of the context in which the case study is deployed. Af-
terwards the planned case study activities are given.

7.1.1 Setting

As described in Chapter 1, the dissertation has been carried out in the
context of SAP. Being a leader in the area of business software, SAP also
delivers SOA via its service-enabled software (e.g. SAP Business ByDesign1,

1http://www.sap.com/sme/solutions/businessmanagement/businessbydesign/

index.epx
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SAP Business Suite2) and its SOA-based, open technology platform SAP
NetWeaver [HKB+08]. In the following, the system, which is subject of the
case study, is described. Afterwards, the users that were conducting the
cases study are characterized.

System under Test The concepts that are described in this thesis have
been developed in collaboration with the SAP product group that is respon-
sible for the development of the SOA-based solution SAP Business ByDesign.
It is created on top of SAP NetWeaver, which provides a SOA technology
platform including a messaging infrastructure [KO09].

At the time the case study was conducted, Business ByDesign was quite
mature in terms of functionality and quality and already released to selected
customers. Now, Business ByDesign is freely available in the United States,
Germany, France, the United Kingdom, China, and India.

The design of SAP Business ByDesign has been captured by various
modeling artifacts, based on proprietary SAP languages [KP09]. For cus-
tomers, high level behavior descriptions of the supported business processes
exist in form of use case scenarios. For the development of the service com-
ponents, structural information has been provided. These models includes
interface descriptions for each service, component integration models spec-
ifying which service components are connected, and class descriptions for
the objects inside a service component. The implementation based on these
models was carried out by distributed development teams. The applied de-
velopment process consisted of periodic implementation phases, interleaved
with testing an documentation activities.

Case Study Participants Two groups of users have been involved in
the conducted case study. In the following, their background and relevant
qualification is given.

• Integration experts have the task to coordinate the integration of ser-
vice components during development. They have a good understand-
ing of the communication processes between service components and
are experienced with structural modeling. As behavioral modeling was
not extensively used for the development of SAP Business ByDesign,
the integration experts did not have much exposure to such concepts.

• Integration testers are deriving and executing test cases for service
component integration testing based on functional descriptions of the
system. These descriptions are provided in natural language by de-
velopers (i.e. technical documentation) and business analysts (i.e.
customer requirements). They are trained and experienced to use
proprietary testing tools, but do not have any knowledge about MBT.

2http://www.sap.com/solutions/business-suite/index.epx

http://www.sap.com/solutions/business-suite/index.epx
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7.1.2 Approach

In the initial planning of the case study, four use cases were identified that
were intended to follow the whole service integration process, as described
in Chapter 4, i.e., from producing MCM models as choreography descrip-
tions down to executing the derived test scripts. However, as the targeted
SAP product itself already entered the final testing phase, the envisioned
utilization of MCM models in the implementation phase was omitted from
the scope of the case study. Further, the availability of the above described
participants was very constrained, which made it necessary to conduct the
case study in a guided fashion.

In the following the modeling and testing activities of the case study are
described.

Modeling. The identification of the four suitable use cases (pilots) was
mainly driven by organizational considerations and hence rather random. It
was intended that for each pilot an integration expert would conduct the
choreography modeling autonomously on a stable version of the MCM editor
after having some additional modeling guidelines and initial training.

However, due to the mentioned time constraints, it was planned that the
first draft of MCM models would be sketched in guided sessions of 1 hour
per pilot, followed by a consolidation and refinement phase conducted by the
PhD candidate. Afterwards the models were planned to be validated by the
pilot users in another guided session of 1 hour.

Testing. For each of the four use cases, one test suite was generated and
concretized. Two times the FSM based and two times the model checking
based test generator have been used. The generated test suites had sizes
ranging between 4 and 8 test cases with an average length of 10 test steps.
A test step, in this case, refers to the triggering of messages.

The generated abstract test cases were used to automatically generate
and load test scripts into the test environment of the development teams.
Further, the corresponding MCM model and automatically generated UML
message sequence charts for each test case have been supplied for each pilot.
The testers were asked to concretize the generated test scripts autonomously
and to execute them on the system under test.

Analysis As described, aim of the case study was to gain evidence that the
described SOA development approach is applicable, efficient and effective in
an industrial setting. To derive the results, two sources of information are
used:

1. The supervision of the case study execution by the PhD candidate
allowed to gather some unbiased observations (e.g. execution time of
the test generation, number of uncovered faults).
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2. Participants were questioned in interviews. The semistructured ap-
proach was chosen, because this interview technique is mixing open-
ended and specific questions and should be chosen according to [Sea99],
if the responses might lead to further discussions that better captures
information of unknown structure.

7.2 Case Study Execution

In the previous section, an overview of the case study context and activities
have been provided. In this section, information about the case study exe-
cution, divided into the modeling and testing activities is given. Afterwards,
for one of the pilots, the test generation is described explicitly in order to
compare the different MBT tools that are integrated into the testing frame-
work.

7.2.1 Modeling

According to the plan described in Section 7.1, the creation of the pilot
models was conducted in 2 guided sessions that lasted about 1 hour. The
refinement and consolidation that was conducted by the PhD candidate in
between accounts for another 2 hours.

After the second session, semistructured interviews were conducted with
the pilot users. The response was very positive. The participants perceived
the possibility to formally describe the design as most beneficial, as it has the
potential to ease the communication between development teams of commu-
nicating services significantly. Further, the full integration of existing mod-
eling content (e.g. interface and component specifications) was highlighted.
The graphical modeling approach using a state-based representation was
generally perceived intuitive,

On the other hand, the GCM’s receive semantics as well as the propri-
etary constraint language usually needed some clarifications. Further, the
participants had problems in understanding whether and how their model-
ing decisions would affect the test generation, which was mainly due to the
fact that in their role as integration experts they were not deeply involved
in the actual testing process and were unfamiliar with the MBT concepts.
However, in the case study the provided guidance mitigated such issues.

7.2.2 Test Generation

As described in Section 7.1, for each pilot an abstract test suite has been
generated automatically. The participating testers were able to read, un-
derstand and enhance the generated test suites with concrete test data and
message triggers, even without having detailed knowledge of the tested in-
tegration. The concretization effort per pilot test suites was estimated to be
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between around 4 hours. The consequent test execution did not uncover any
fault in the development system3.

After successfully running the test suites, semistructured interview ses-
sions with the pilot teams were conducted. The overall response again was
positive. For all pilots, the test generation produced reasonably small test
suites. The pilot users had confidence in the quality and completeness of the
tests and perceived a design-based test generation as beneficial. In all cases,
the generated test suites covered at least the already existing integration
tests.

Although it was impossible to compare the concretization effort with
the effort of implementing the test cases by hand, all participants agreed
that the evaluated approach was time-saving, due to the automatic script
generation and the concept of enforcing a high reuse of generic scripts for the
test steps. On average, a saving of 50% was estimated by the pilot users for
the test generation and concretization tasks. Also the seamless integration
of the tool into SAP’s testing framework and the consequent usability of the
test scripts for automatic regression testing was appreciated.

7.2.3 Comparison of Test Generators

As mentioned, the identification of the four suitable pilots out of about
200 existing service component pairs was mainly driven by organizational
considerations and hence rather random. Surprisingly though, the derived
choreography models had relatively equal complexity. All MCMs incorpo-
rated some constraints on the exchanged messages, but half of them did not
contain dependent transitions (as explained in Section 6.2) and hence were
suited for FSM-based test generation. In the following, one such pilot is
used, as it allows to compare all available test generators from Chapter 6.

Figure 7.1 shows the anonymized GCM of the pilot that is chosen for the
description of the case study execution. The original choreography model
of the pilot has the same structure, but the communication is used in a
business conversation which is not related to task management, as implied
by the naming of the modeling elements. In the following, the results of
applying the different test generators from Chapter 6 are described.

FSM-based generation. Applying the FSM-based test generator (de-
scribed in Section 6.3) to the given pilot, the following test cases are derived
from the GCM. The computation is carried out in less than 1 millisecond.

< Create, Stop, Revoke, Release, Close, Restart, Block,

Unblock, Close >,

< Create, Change, Delete > .

3However, one bug in the testing framework was found.
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Figure 7.1: The GCM of an example pilot

As explained in Section 6.3, the implemented algorithm provides a test suite
that covers the model with the minimal number of transitions. Therefore, a
further optimization according to the objectives given in Section 4.3 is not
possible. Consequently, the risk of applying this FSM-based test generation
is that the generated test suite contains few but long test cases. The given
test suite indicates this possible effect. As described in Section 4.3 long
test cases are much harder to maintain and to debug in case of errors.
As described in Section 6.3, FSM-based generation may generate infeasible
test cases when applied to choreography models with dependent transitions.
Therefore its use is limited.

MC-based generation. In contrast to the FSM-based test generator, the
MC-based test generator (described in Section 6.4) provides a test suite that
is optimized according to the objectives given in Section 4.3. The resulting
test suite for the given pilot is given below and has been produced in about
0.4 seconds.

< Create, Release, Block, Unblock, Close >,

< Create, Release, Close, Restart, Close >,

< Create, Change, Stop, Revoke, Delete >,

As a consequence of the applied optimization, the test suite contains 1
more test case and traverses 3 more transitions than the FSM-based suite.
However, the longest test case of the suite contains only 5 transitions, com-
pared to 9 transitions in the FSM-based suite.
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A disadvantage of this approach is that typically the model-checking
based test generation suffers from the state space explosion problem, as
described in Section 6.4. For pilots with a higher complexity (e.g. containing
more states and integer variables), advanced tuning of the model checker was
necessary to produce a result in acceptable time.

Heuristics-based generation. When applying the heuristics-based test
generator to the given pilot and asking for a test suite that covers all tran-
sitions or terminates after 100 steps (similar to the example in Section 6.5),
the following results can be obtained after 10 runs.

• All runs terminated, because a test suite with full transition coverage
was found.

• The average test suite contained 46 test steps, distributed over 5 to 6
test cases.

• The average execution time to generate a test suite was 3 seconds.

• After optimization, the average test suite contained 21 test steps, dis-
tributed over 2 test cases.

It can be seen that this test generation approach does not produce op-
timal results. However, as stated in Section 6.5, it has the advantage to
always return a result in acceptable time. For the other pilots of the case
study, it was possible to find test suites with at least 90% transition coverage
on average with equal settings, while the computation time was constantly
3 seconds per generated test suite.

Results. As explained in Chapter 6, each test generation method has its
strengths and weaknesses in certain context. The comparison of these meth-
ods, as presented above, was further able to confirm the proposed strategy
for choosing between them: “Use the FSM-approach in case the transitions
of the GCM are independent of each other. If this is not the case, the
MC-based approach may be applied. However, in cases where the MCM’s
complexity is too high and the MC-based approach does not terminate, a
test suite could finally be obtained by using the heuristic-based approach.”
As shown, in the third case optimal results cannot be guaranteed.

7.3 Case Study Evaluation

The aim of the case study was to gain evidence for the applicability, efficiency
and effectiveness of the described MCM approach. In the following, these
three points are discussed.
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Applicability. The case study showed that it was possible to model ran-
domly chosen service communications of a SOA-based product using MCM.
These results imply that MCM is expressive enough to capture relevant ser-
vice communication. Further, these choreography models were suitable to
automatically derive test suites that could be concretized and executed. Ac-
cording to the pilot users, the test suites were covering all tests that had
been created manually in the previous testing.

Efficiency. As described in Section 7.2, there has been positive feedback
regarding the automated test generation and the utilized reuse concept of
test scripts (described in Section 4.1). The time saving potential of the reuse
concept was further demonstrated when concretizing all the generated test
suites from Section 7.2.3. After deriving the first executable test suite, the
generic reuse of concretized test steps allowed to run the other test suite
after only 10 minutes of minor adaptations. This implies that extending
previously generated test suites or applying test generators with more com-
plex coverage criteria will only increase the automatic test execution but not
the semi-automatic concretization effort.

Effectiveness. The fact that no fault could be discovered during for the
four pilots has various reasons. First of all, the targeted system was al-
ready tested rigorously and had even been shipped to pilot customers, who
heavily used them. Further, the choreography models have been created
in collaboration with the development teams that had implemented these
choreographies. Therefore, the discovery of mis-interpretations of the ini-
tial requirements were unlikely. Consequently, no clear judgment over the
effectiveness based on the case study is possible.

However, in the interviews that followed the case study, the pilot users
stated that the generated test suites were covering all manually derived
integration test cases. These statements are hard to prove, because the
manual test cases are not directly contained in the generated test suites and
have not been created in relation to a choreography model. However, these
statements indicate that the testers greatly believe in the effectiveness of
the approach.

7.4 Summary

In this chapter, a case study for the modeling and model-based testing of
service choreographies was described. It was possible to show that the MCM-
based approach for model-based service integration testing allows to formal-
ize design decisions and enables full integration into an existing industrial
test infrastructure by using the concepts of domain specific languages and
model transformations. Further, from the case study it was deduced that
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the approach saves resources, provides controlled coverage, and increases
confidence in the implementation. Nevertheless, in order to compare the
fault uncovering capabilities with the current testing strategies, additional
evaluation has to be conducted in the future. Additionally, the integrated
MBT tools of the testing framework have been compared, illustrated on one
of the use cases.
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Chapter 8

Conclusion

8.1 Summary

Applying a sound service integration strategy is a key factor for successful
SOA projects. Aim of the thesis was to provide such a strategy, which is
also concrete enough to be applicable in practice.

Therefore, in Chapter 3 the key challenges of SOA integration have been
explained. Further, requirements for an approach that is able to answer
these challenges were derived. A concrete approach that utilizes modeling of
service choreographies and consequent model-based testing was introduced
in Chapter 4.

While various mature techniques and tools exist that support model-
driven software development including model-based testing, in the area of
SOA service integration a modeling notation that allows to leverage such
techniques was missing. Consequently, in this thesis the choreography mod-
eling language MCM has been described in Chapter 5, which was developed
driven by the specific requirements of a comprehensive quality control. This
domain specific language is based on the unique concept of choreography
viewpoints and supported by an Eclipse-based editor that integrates a rich
tool set of state-of-the-art static verification techniques to ensure the cre-
ation of consistent and semantically correct models.

To enable the utilization of various existing model-based testing tech-
nologies according to their specific strengths, important considerations re-
garding the objectives and approach of service integration testing have been
discussed. Consequently, a test generation framework has been provided in
Chapter 6 that provides access to a set of complementary test generation
tools. The framework is further integrated into the testing landscape at
SAP.

In Chapter 7, a case study for the MCM-based SOA service integration
has been described. The portrayed process incorporated the modeling of
service choreographies as well as the test generation and execution in an
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industrial setting. In particular it could be shown that a SOA development
process, incorporating behavioral specifications for model-based testing can
be instrumented to guide and improve current industrial practice.

8.2 Outlook

Despite the successful derivation of test suites from service choreography
models, the provision of appropriate test data remains a major challenge
that has been solved rudimentary by leveraging the testers expert knowledge.
Consequently, to explore the potential of improvements in the area of test
data provisioning, which is with about 50% of the overall testing effort, by
far the most time consuming test concretization activity, should therefore
be the greatest target for consequent research.

As described in [2], the test data for enterprise applications is subject to
various constraints. These are ranging from dependencies between different
data inputs of a test case (e.g. during a test run an address string that has
to be given in a test step may have to be conforming to the regulations for
a previously chosen country) to dependencies between test data and system
data (e.g. the given test input data has to reference a material with special
attributes). Incorporating automatic test data generation into the described
approach will therefore require a set of additional information and techniques
like the formalization and specification of the mentioned data constraints,
the supply and specification of system data access during a test run, and
the utilization of advanced test data provisioning as well as online testing
techniques.

Apart from this fundamental test data challenge, another aim is to fur-
ther improve the current prototype. There are various missing features that
have to be provided in order to transform the developed modeling tool and
testing framework into a mature product. Such features are for example
version control and change management of MCM models and the storage of
modeled content inside a model repository. Further, the partial derivation of
MCM models from existing modeling content as well as code can be tackled
to ease the currently manual task.
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