

Real demonstration results of BEM performance simulation using BIM-SPEED Toolset

Deliverable 4.2 – Energy Performance Report – Vitoria demo

Deliverable Report: Final version, issue date on 31.10.2022

BIM-SPEED

Harmonised Building Information Speedway for Energy-Efficient Renovation

This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Disclaimer

The contents of this report reflect only the author's view and the Agency and the Commission are not responsible for any use that may be made of the information it contains.

ENERGY REPORT - VITORIA

Deliverable 4.2 – Energy Performance Report

Issue Date31st October 2022Produced byRINA (Raggi E.), TUB (Raza B.)Version:V 01DisseminationPublic

Colophon

Copyright © 2019 by BIM-SPEED consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BIM-SPEED Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement. This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Contents

TAI	TABLE OF FIGURES 3					
TAI	BLE OF T	ABLES	4			
1.	GENERAL INFORMATION					
	1.1	Building description	5			
	1.2	GIS and environmental data	6			
2.	ENERG	Y MODELLING	7			
	2.1	BIM-to-BEM procedure and software tools used	7			
	2.2	Auditing procedures and data collection	10			
	2.3	Description of BEM's technical features	11			
		2.3.1 Envelope components and materials	11			
		2.3.2 HVAC systems	15			
		2.3.3 Occupancy, lighting, equipment and operating patterns	15			
3.	BEM C	ALIBRATION	17			
	3.1	Calibration methodology applied and results	17			
4.	BUILDI	NG ENERGY PERFORMANCE SIMULATION RESULTS	18			
	4.1	General considerations	18			
	4.2	Energy KPIs	18			
5.	BUILDI	NG RENOVATION SCENARIOS	20			
	5.1	Renovation scenarios proposed	20			
	5.2	Scenario 1: description and results	20			
	5.3	Scenario 2: description and results	23			
	5.4	Scenario 3: description and results	24			
6.	TIME R	EDUCTION EVALUATION	27			

page 2 - 28

Table of Figures

Figure 1: Aerial view of the urban context and building location	. 5
Figure 2: Main façade and back of the building	. 5
Figure 3: Vitoria's Weather file downloaded from Meeren Weather Service	. 6
Figure 4: External temperature imported into the BEM model	. 7
Figure 5: Software tools used to complete the BIM-to-BEM procedure	. 7
Figure 6: BIM SPEED_Vitoria Project on the BIMserver.center platform	. 8
Figure 7: Vitoria demo – IFC Builder	. 8
Figure 8: Vitoria demo – Open BIM Analytical Model	. 9
Figure 9: Vitoria demo – Open BIM Construction Systems	. 9
Figure 10: Digital data acquisition	10
Figure 11: Thermographic survey	10
Figure 12: Typical floor layout and 3D graphical representation of the Vitoria BEM	11
Figure 13: Heating schedule	16
Figure 14: Occupancy, lighting and equipment schedule	16

page 3 - 28

Table of tables

Table 1: General information	6
Table 2: General environmental data	6
Table 3: Materials	12
Table 4: Construction systems	12
Table 5: Construction systems	14
Table 6: HVAC systems	15
Table 7: Internal gains features	15
Table 8: Real energy consumption for space heating and DHW production	17
Table 9: Calibration results	17
Table 10: BS.OPED Operational Primary Energy Demand	18
Table 11: BS.TED Total Energy Demand	18
Table 12: BS.TEC Total Energy Consumption	19
Table 13: Overview of the Vitoria Renovation Scenarios	20
Table 14: Construction systems	20
Table 14: BS.OPED Operational Primary Energy Demand	21
Table 15: BS.TED Total Energy Demand	21
Table 16: BS.TEC Total Energy Consumption	22
Table 17: BS.TES Total Energy Savings	22
Table 18: BS.OPED Operational Primary Energy Demand	23
Table 19: BS.TED Total Energy Demand	23
Table 20: BS.TEC Total Energy Consumption	23
Table 21: BS.TES Total Energy Savings	24
Table 22: BS.OPED Operational Primary Energy Demand	25
Table 23: BS.TED Total Energy Demand	25
Table 24: BS.TEC Total Energy Consumption	25
Table 25: BS.TES Total Energy Savings	26
Table 26: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process	27

1. General information

1.1 Building description

Vitoria democase is a multi-story residential building located in Vitoria-Gasteiz (Spain), in Aldabe Kalea, 26 in a densely urbanized context. The building is characterized by an U-shaped plant with a semi-court in the back of the building. Below the aerial photo of the site with an indicative view of the urban context.

Figure 1: Aerial view of the urban context and building location

The building was built in 1958 and consists of 4 floors with 8 dwellings, 2 dwellings each floor, and a ground floor with the parking lot access and a bar. The constructive characteristics of the building are consistent with the construction period and are characterized by walls with double layer of brick and an air-camera in between cavity wall, reinforced concrete and brick mixed floors and pitched roof with tiles.

Regarding the HVAC systems, the building is characterised by separated heating systems. Each apartment is equipped by a traditional gas boiler for the heating and the domestic hot water production. No cooling systems or mechanical ventilation systems are installed. Following photos shows the external view of the building.

Figure 2: Main façade and back of the building

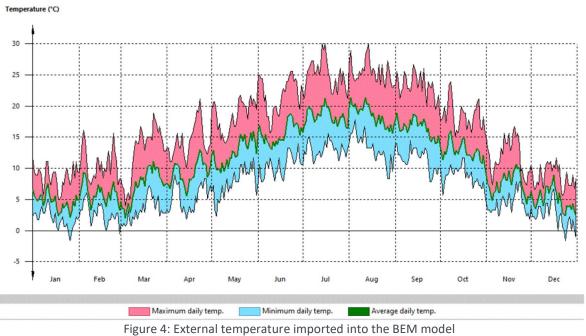
Following a brief summary of the demo general data

Table 1: General information					
General information					
Location	Vitoria-Gasteiz (Spain)				
Use category	Residential				
Building type	Multi-story building				
Construction year	1958				
Renovation year	2021				
Number of floors	5				
Number of apartments/units	8 dwellings, 1 bar				

1.2 GIS and environmental data

Vitoria climate data was downloaded directly from the BIM SPEED Platform and the Meeren Weather Service.

The following table provides a brief summary of the climate data.


Table 2: General environmental data				
General environmental data				
Location	Vitoria-Gasteiz (Spain)			
Weather file	ESP_Vitoria.080800_SWEC			

Altitude [m]	525	
Latitude [degrees]	42°052′0″ N	
Longitude [degrees]	2°41′0″ W	

The external temperatures imported into the BEM model are showed in the following graph.

2. Energy modelling

2.1 BIM-to-BEM procedure and software tools used

To complete the BIM-to-BEM process of Vitoria demo case, the CYPETHERM-based procedure has been applied and the following tools have been used:

Figure 5: Software tools used to complete the BIM-to-BEM procedure

Builder

BIM Analytical Model

Stp 3_Open BIM Constructio n Systems

CYPETHER M EPlus

The BIM model has been developed with Revit software. To integrate the Vitoria BIM into the Open BIM workflow using the IFC standard, a dedicated add-in "Open BIM-Revit" has been used and the Vitoria.ifc file linked to the "BIM SPEED_Vitoria" project on the BIMserver.center platform.

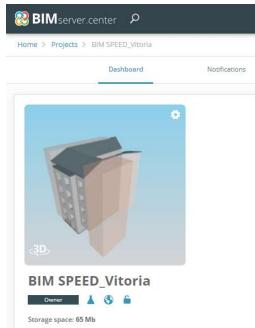


Figure 6: BIM SPEED_Vitoria Project on the BIMserver.center platform

As a result of the Open BIM integration, models of the BIM-to-BEM procedure can be stored and synchronised in the cloud via the BIMserver.center. Starting from the IFC Builder tool, the Vitoria.ifc file has been checked and the internal spaces added.

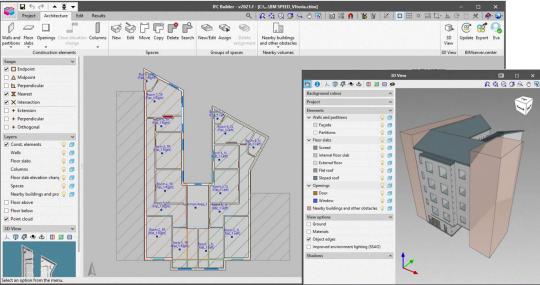


Figure 7: Vitoria demo – IFC Builder

The model has then been exported and synchronized in BIMserver.center and open with the Open BIM Analytical model tool in order to create the analytical model of the building with the definition of all the

geometric parameters and the generation of all the spaces needed for the creation of a BEM. A few simplifications and corrections are automatically made and 11 different thermal zones have been defined and associated to the relevant spaces defined previously with IFC Builder:

- Z01: Commercial Area (ground floor)
- Z01 to Z09: Flats
- Z10: not-heated common stairwell
- Z11: not-heated attic

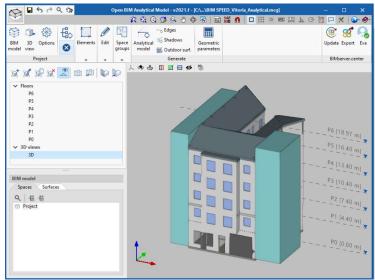
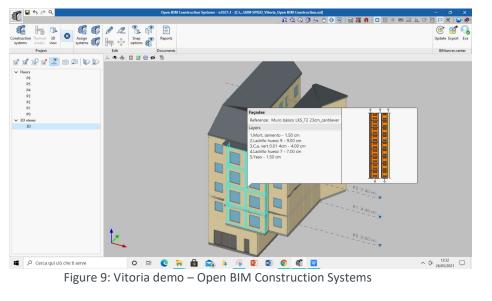



Figure 8: Vitoria demo – Open BIM Analytical Model

The analytical model, once generated, has been exported once again in BIMserver.center and the project has been synchronized to be open within the Open BIM Construction Systems for the characterization of the building elements under the thermal point of view. With the Open BIM Construction Systems tool all the building typologies (external walls, party walls, internal partitions, external and internal floors, roofs, etc.) have been defined layer by layer and associated to proper elements.

As previously done, the model has been exported to the BIMserver.center ready to move to last step with the completion of the BEM model with the CYPETHERM EPlus tool for the definition of the systems, the identification of internal gains (equipment, lighting and people) and the usage profiles as described within 2.3 paragraph.

2.2 Auditing procedures and data collection

Specific data have been collected both to develop a complete BIM model and suitable BEM. Site surveys on the demo have been carried out by VISESA and specific documents have been investigated to retrieve all the required data to characterise the thermal behaviour of the building. The following images document the digital data acquisition and the results of the activity.

Figure 10: Digital data acquisition

Particularly useful to evaluate the thermal performances of the external walls, it has been the analysis of a thermographic survey conducted in 2019.

Figure 11: Thermographic survey

2.3 Description of BEM's technical features

Vitoria BEM consists of 8 dwellings, 1 commercial unit (bar), common not-heated stairwell, a not-heated attic and a sloped roof. Figure 11 shows the layout of a typical floor while Figure 12 provides the 3D graphical representation of the Vitoria BEM as completed in Cypetherm Eplus.

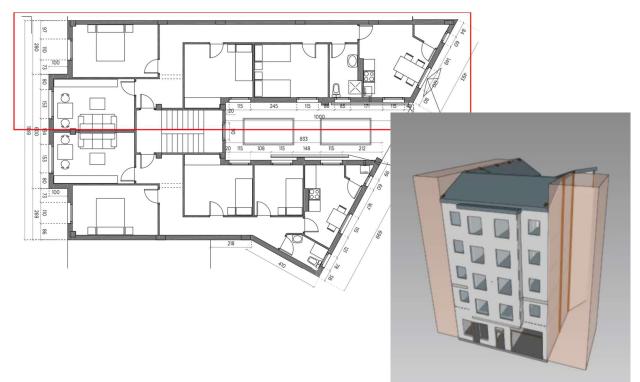


Figure 12: Typical floor layout and 3D graphical representation of the Vitoria BEM

2.3.1 Envelope components and materials

This paragraph summarises the construction systems implemented within the Vitoria BEM to characterise the thermal behaviour of the building. The elements, as well as the single material, have been created and stored in structured libraries. Table 3 summarises all the materials implemented within the BEM.

Table 3: Materials

		Layers			
Material	e	ρ	λ	RT	Ср
Mort, cemento	2.00	1800.00	0.900	0.02	1000.00
Ladrillo hueco 9	8.00	800.00	0.170	0.47	840.00
Ladrillo hueco 7	8.00	800.00	0.170	0.47	840.00
Yeso	2.00	1200.00	0.350	0.06	1000.00
Plaqueta ceramica	3.00	1000.00	1.300	0.02	1000.00
Mort, cemento	1.50	1000.00	1.400	0.01	1000.00
Ladrillo hueco 9	9.00	1000.00	0.500	0.18	1000.00
Ladrillo hueco 7	7.00	1000.00	0.500	0.14	1000.00
Yeso	1.50	1000.00	0.300	0.05	1000.00
Ladrillo preforado	12.00	1000.00	0.750	0.16	1000.00
Plaquet vitrificada	0.80	1000.00	1.050	0.01	1000.00
Ladrillo hueco 11	11.00	1000.00	0.770	0.14	1000.00
Teja Ceramica	1.00	35.00	1.000	0.01	1000.00
Mort. cemento 5	5.00	2000.00	1.250	0.04	1000.00
Ladrillo hueco 12	12,00	100.00	0.500	0.24	1000.00
Frondosas	1.50	1000.00	0.210	0.07	1000.00
Mort. cemento 5	5.00	1000.00	1.400	0.04	1000.00
Forjado Horme	25.00	1000.00	1.316	0.19	1000.00
Mort, cemento	1.20	1000.00	1.400	0.01	1000.00
Carton-yeso	1.50	1000.00	0.180	0.08	1000.00
Mort cemento	1.20	1000.00	1.200	0.01	1000.00
Frondosas	1.50	2300.00	1.000	0.02	840.00
Mort. cemento 5	5.00	2000.00	1.060	0.05	1000.00
Forjado Horme	25.00	1800.00	1.830	0.14	1000.00
Ground floor - generic	30.00	1000.00	1.429	0.21	1000.00
		Used abbreviati	ons		
Thickness cm		RT 77	ermal resistance (n	12.K)/W	
Density kg/m³					

Within Table 4 all the construction systems created for the Vitoria BEM using the Open BIM Construction Systems tool and stored within a dedicated library linked to the workflow on BIMserver.center have been reported.

Table 4:	Construction	systems

	0	9 9	Layer list:	
			1 - Plaqueta ceramica	3.00 cm
		00	2 - Mort. cemento	1.50 cm
NA		00	3 - Ladrillo hueco 9	9.00 cm
Muro basico	- 00	00 III	4 - C.a. vert 0.01	7.00 cm
LKS_T1 29 cm			5 - Ladrillo hueco 7	7,00 cm
		00	6 - Yeso	1.50 cm
			Thermal transmittance, U: 0.62 W/(m ² ·K)	
			Total thickness 29.00 cm	

	Laver list:	
		2.00 cm
		8.00 cm
Muro basico		4.00 cm
LKS T2 23		8.00 cm
 cm_cantilever		2.00 cm
cin_cantilever		
	Properties Thermal transmittance, U: 0.73 W/(m ² ·K)	
	Total thickness 24.00 cm	
	0 0 0	
	φ φ Layer list:	
		0.00.000
	an an 1 - Mort, cemento	2.00 cm
	2 - Ladrillo hueco 9	8.00 cm
Muro basico	3 - C.a. vert 0.01 4cm	4.00 cm
	1 - Mort. cemento 2 - Ladrillo hueco 9 3 - C.a. vert 0.01 4cm 4 - Ladrillo hueco 7 5 - Yeso	8.00 cm
LKS_T3 23 cm	5 - Yeso	2.00 cm
	Properties Thermal transmittance, U: 0.73 W/(m²·K)	
	Total thickness 24.00 cm	
	000	
	00	
	Layer list:	
	1 - Mort. cemento	1.50 cm
	2 - Ladrillo preforado	12,00 cm
Muro basico	3 - Mort, cemento	1.50 cm
LKS T4B 15.8	4 - Plaquet vitrificada	0.80 cm
_	1 and 1 Fraquet vicinicada	0.00 Cill
cm		
	Properties Thermal transmittance, U: 2.79 W/(m ² ·K)	
	- Total thickness 15.80 cm	
	 φ	
	Layer list:	
	1 - Mort. cemento	1.50 cm
	2 - Ladrillo hueco 9	9.00 cm
	2 - Ladrillo hueco 9 3 - C.a. vert 0.01 4cm	4.00 cm
Muro basico	3 - C.a. vert 0.01 4cm	7.00 cm
LKS T8 23 cm	4 - Ladrillo hueco 7	
	1 - Mort. cemento 2 - Ladrillo hueco 9 3 - C.a. vert 0.01 4cm 4 - Ladrillo hueco 7 5 - Yeso	1.50 cm
	Properties Thermal transmittance, U: 0.87 W/(m ² ·K)	
	Total thickness 23.00 cm	
1.2 Internal vert	ical partitioning	
	P 9	
	Layer list:	
	1 - Yeso	1.50 cm
	2 - Ladrillo hueco 11	1.50 cm 11.00 cm
	2 - Ladrillo hueco 11	
Muro basico	2 - Ladrillo hueco 11 3 - Yeso	11.00 cm
	2 - Ladrillo hueco 11 000 3 - Yeso 000 000	11.00 cm
Muro basico LKS_T8 14 cm	2 - Ladrillo hueco 11 000 3 - Yeso 000 000 000	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso 000 000 000 000 000 000 000 0	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso 400 400 400 400 400 400 400 40	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso 400 400 400 400 400 400 400 40	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list:	11.00 cm
	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list:	11.00 cm 1.50 cm
	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7	11.00 cm 1.50 cm 1.50 cm
	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso	11.00 cm 1.50 cm 1.50 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m ² ·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso Properties Thermal transmittance, U: 2.00 W/(m ² ·K)	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso Properties Thermal transmittance, U: 2.00 W/(m²·K)	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m ² ·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso Properties Thermal transmittance, U: 2.00 W/(m ² ·K)	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso Properties Thermal transmittance, U: 2.00 W/(m²·K)	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico LKS_T9 10 cm	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso Properties Thermal transmittance, U: 2.00 W/(m²·K)	11.00 cm 1.50 cm 1.50 cm 7.00 cm
LKS_T8 14 cm Muro basico	2 - Ladrillo hueco 11 3 - Yeso Properties Thermal transmittance, U: 1.99 W/(m²·K) Total thickness 14.00 cm Layer list: 1 - Yeso 2 - Ladrillo hueco 7 3 - Yeso Properties Thermal transmittance, U: 2.00 W/(m²·K)	11.00 cm 1.50 cm 1.50 cm 7.00 cm

Hollow brick slab with ceramic roof tiles	Properties	Layer list: 	1.00 cm 2.00 cm 5.00 cm 12.00 cm
2.2 Internal hori	zontal partitioning	Total thickness 20.00 cm	
Suelo LKS_T6 32.7cm		Layer list: 	1.50 cm 5.00 cm 25.00 cm 1.20 cm
	Properties	Thermal transmittance, U: 1.97 W/(m²·K) Total thickness 32.70 cm	
Suelo LKS_T7 44.2cm	0	Layer list: 	1.50 cm 5.00 cm 25.00 cm 1.20 cm 10.00 cm 1.50 cm
Suelo LKS_T10 33cm	0 888888888888888888888888888888888888	Layer list: 	1.50 cm 5.00 cm 25.00 cm 2.00 cm

The following table 5 summarises all the façade openings and windows.

Table 5: Construction systems

3.1 Façade openings			
Interior door	Heat transfer coefficient (U)	3.00 W/(m ² ·K)	
Main entrance	Absorptance	0.6	
3.2 Windows			
AL single glass Thermal transmittance, U: 5.72 W/(m²·K) Solar factor, g: 0.950 Opaque fraction, Ff: 0.200			
AL double glass	Thermal transmittance, U: 4.12 W/(m²·K) Solar factor, g: 0.970 Opaque fraction, Ff: 0.200		
PVC double glass	Thermal transmittance, U: 2.98 W/(m²·K) Solar factor, g: 0.700 Opaque fraction, Ff: 0.200		
Wood single glass Thermal transmittance, U: 5.14 W/(m²·K) Solar factor, g: 0.700 Opaque fraction, Ff: 0.200			

2.3.2 HVAC systems

Regarding the HVAC systems, the building is characterised by separated heating systems. Each apartment is equipped by a traditional boiler for the heating and the domestic hot water production and radiators as terminals. No cooling systems or mechanical ventilation systems are installed. Following table 6 summarises the main parameters of the HVAC systems.

Table	e 6: HVAC systems
HVAC Systems	Dwelling
Reference name	Traditional Boiler
Year of installation	n.a.
Location of the generator	Internal heated space
Rated capacity [kW]	24
Rated efficiency	60%-80%
Energy fuel	Natural gas
Supply/return [°C]	80/60
Terminal units	Radiators

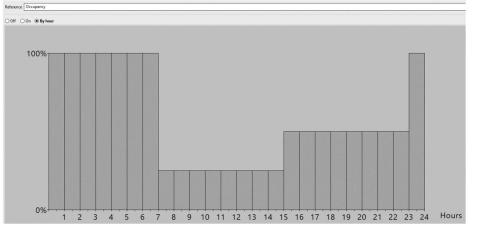
2.3.3 Occupancy, lighting, equipment and operating patterns

Vitoria BEM has been characterised also under the point of view of the internal gains as summarised in following table 7.

Table 7: Internal gains features

OCCUPIED Space	Ventilation rates	LIGHTING Installed power	EQUIPMENT Installed power	PEOPLE	ACTIVITY level
All Flats	0,5 ACH	5.5 W/mq	5,4 W/mq	30 mq/person	120 W/person

Relevant operating schedules and occupational patterns have been assumed based on standard residential uses and on a few information collected from the users. Following figures show a few of the patterns set for the Vitoria BEM.



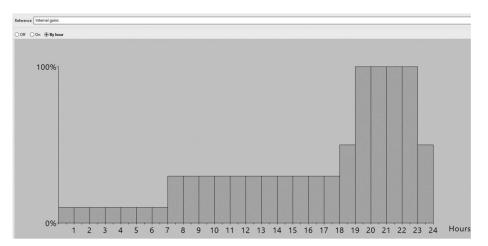


Figure 13: Heating schedule

		and the second sec				- I HENDARD		
Reference	Heating so	hedule or	n-off					
Conside		as being a	rking day / W working day r month	leekend () All we	ek Pro	ofiles 📝	
		,	Working days			Weel	kend	
Months	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
January	Heating sc	eating schedule on Heating schedule on						
February	Heating sc	hedule on				Heating scl	hedule on	
March	Heating sc	Heating schedule on Heating schedule on						
April	Heating sc	hedule on				Heating scl	hedule on	
May	Heating sc	hedule of	f			Heating scl	hedule off	
June	Heating sc	hedule of	f			Heating scl	hedule off	
July	Heating sc	hedule of	F			Heating scl	hedule off	
August	Heating sc	hedule of	f.			Heating scl	hedule off	
September	Heating sc	hedule of	f			Heating scl	hedule off	
October	Heating sc	hedule of	F			Heating scl	hedule off	
	Heating sc	hedule on				Heating scl	hedule on	
November		leating schedule on Heating sch leating schedule on Heating sch						

3. BEM calibration

3.1 Calibration methodology applied and results

The automated calibration procedure developed by UNIVMP in Task 3.4 has been applied to the Vitoria BEM in order to check the reliability of the model and the related energy results. The energy consumption used to complete the procedure are those related to 3 energy bills covering a period from 21.11.2019 to 30.06.2020 and documented in the following figure.

Reporting period	Energy consumption for space heating and DHW (kWh)	Energy consumption for space heating (kWh)
from 21/11/2020 to 13/03/2020	6907	6604
from 14/03/2020 to 20/05/2020	1863	1475
from 21/05/2020 to 30/06/2020	263	-

Table 8: Real energy consumption for space heating and DHW production

To simplify and speed up the process, the calibration has been focused on a single apartment (Flat 3R) following 3 main steps:

- 1. Sensitivity analysis: carried out to identify the most important parameters and discard uninfluential ones from the calibration process;
- 2. Calibration Phase 1: carried out in terms of indoor air temperatures when the target flat (3R) operated in free-floating conditions (considering the first week of May);
- 3. Calibration Phase 2: carried out in terms of energy consumption to find the CoP value that provides the best fit for the energy consumption for space heating obtained from bills.

Following table provides the calibration results. Additional details are documented within Deliverable D3.4 "A set of calibrated BEMs for real demonstration cases and proposed standardisation".

Reporting period and CV(RMSE)	Experimental	Original BEM	Phase 1 Calibration	Phase 2 Calibration
from 21/11/2019 to 13/03/2020	6604 kWh	8256 kWh	5531 kWh	6482 kWh
from 14/03/2020 to 20/05/2020	1475 kWh	2855 kWh	1724 kWh	2020 kWh
CV(RMSE)	-	37.7%	19.3%	9.8%

Table 9: Calibration results

The calibrated model has been adopted as the reference BEM model for the actual state and has been then used to develop the interventions.

4. Building energy performance simulation results

4.1 General considerations

The high energy consumption of the building is mainly due to the poor thermal insulation properties of the building envelope both for what concern opaque elements, walls and slabs are not insulated with thermal transmittance varying between 1.23 - 1.73 W/mqK, and windows characterised by thermal transmittance varying between 2.98 - 5.72 W/mqK. Additionally, also the traditional boilers of each flat are not efficient and could be improved.

4.2 Energy KPIs

The following Energy KPI have been calculated according to D4.1 descriptions.

BS.OPED: Operational Primary Energy Demand

The primary energy demand has been calculated from the final energy consumption at consumption point and multiplied by the conversion factor (specific for Spain) for final energy to primary energy. The table below summarises the primary energy demand related to natural gas and network electricity.

BS.OPED: O	perational	Primary Ene	ergy De	mand	
Ep [kWh/m ²]	272	.66		
Energy vector	(kWh/year)	C _{ef} (kWh/m²·year)	fcep	(kWh/year)	C _{ep} (kWh/m²∙year
Natural gas	110677.54	188.01	1.195	132259.65	224.67
Electricity obtained from the network	11929.03	20.26	2.368	28247.93	47.99

C_{ef}: Energy consumption at consumption point (final energy), kWh/m²·year.

f_{cep}: Conversion factor for final energy to primary energy.

Cep: Primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

The energy demand of the building is the total amount of energy the technical systems of the building (heating and cooling) have to provide to maintain its indoor environment in comfortable conditions. The table below summarises the results obtained from the calculation of the heating energy demand (there is no cooling for the Vitoria demo)

				Tab	le 11: I	BS.TED	Total	Energ	y Dem	and		_			
			BS.T	ED: To	tal Ene	rgy De	mand								
			QHEA	ting [kV	۷h/m²y	/ear]		85.7							
			QDH	v [kWh	/m²yea	ar]		43.5				1			
			QTOT	[kWh	/m²yea	ar]		129.3	3]			
		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)		/ear
BUILDING (S ₄ =	588.68 m²;	- 70 - N	10	(kana)	(KINII)	(Kinij	(kani)	(kini)	(kmii)	(kuni)	(kini)	(kuni)	(KIIII)	(kWh/year)	(kWh/m²•year)
	Heating	12789.9	5930.4	6785.3	4563.3	38.9					72.9	9548.8	10744.1	50473.6	85.7
Energy demand	DHW TOTAL	2177.1 14967.0	1966.4 7896.8	2177.1 8962.4	2106.9 6670.2	2177.1 2216.0	2106.9 2106.9	2177.1 2177.1	2177.1 2177.1	2106.9 2106.9	2177.1 2250.0	2106.9 11655.7	2177.1 12921.3	25633.8 76107.4	

BS.TEC: Total Energy Consumption

Total Energy Consumption has been calculated directly using the simulation engine of CYPETHERM EPlus. Following table summarises Primary energy consumption for heating and domestic hot water production.

Table 12: BS.TEC Total Energy Consumption

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		ear
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh/year)	(kWh/m²·year
BUILDING $(S_u = S_u)$	588.68 m²;	V = 1572,3	5 m³)												
	Heating	12789.9	5930.4	6785.3	4563.3	38.9					72.9	9548.8	10744.1	50473.6	85.
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.
	TOTAL	14967.0	7896.8	8962.4	6670.2	2216.0	2106.9	2177.1	2177.1	2106.9	2250.0	11655.7	12921.3	76107.4	129.3
	EFheat	16347.5	7467.1	8546.1	5726.4	64.8					121.4	12120.9	13676.3	64070.6	108,
	EPheat	19535.2	8923.2	10212.6	6843.0	77.5					145.1	14484.4	16343.2	76564.4	130.
	EP _{nr,huat}	19437.6	8878.6	10161.6	6808.8	77.1			222	222	144.4	14412.0	16261.4	76181.5	129.4
	EFcool	1075	ः तत्र	077		(77)			ंतर		1075	875 5	77 5		
Natural gas (f _{ee} = 1.189)	EPcool	1044	: 44						194		-		-	-	
	EP _{nr,cool}		244	2 <u>44</u> 71			122				() 				
	EFchw	3958.4	3575.3	3958.4	3830.7	3958.4	3830.7	3958.4	3958.4	3830.7	3958.4	3830.7	3958.4	46606.9	79.
	EPehw	4730.3	4272.5	4730.3	4577.7	4730.3	4577.7	4730.3	4730.3	4577.7	4730.3	4577.7	4730.3	55695.3	94.
	EP _{nr,dhw}	4706.6	4251.2	4706.6	4554.8	4706.6	4554.8	4706.6	4706.6	4554.8	4706.6	4554.8	4706.6	55416.8	94.
	EFheat	22		122	122		22	122	1.1.1	100	22	220	220	1	
	EPhaet		1.77	1000		100						225			
	EP _{nr,heat}		1.000	(##)(-	-					
	EFcool		222	100	- 22			122	122				12	22	
	EPcost	555	855	377	1.55			1777		175		(77)	570	52	
Electricity	EP _{nr,cool}		1.000	3 -7 7.)	200		375		355	575	:				
(f _{osp} = 1.954)	EFdhw		1.44	1.44					1.00						ī.
	EP	1.22	122	22	- 22			122	122				(11)		
	EP _{nr,dhw}														
	EFight	1013.2	915.1	1013.2	980.5	1013.2	980.5	1013.2	1013.2	980.5	1013.2	980.5	1013.2	11929.0	20.
	EPight	2399.1	2167.0	2399.1	2321.7	2399.1	2321.7	2399.1	2399.1	2321.7	2399.1	2321.7	2399.1	28247.9	48.
	EP _{nr,light}	1979.8	1788.2	1979.8	1915.9	1979.8	1915.9	1979.8	1979.8	1915.9	1979.8	1915.9	1979.8	23310.2	39.6
Auto-consumed	EF		855	1000		(77)			100	100	100	(875)			
electricity	EP							1							
(f _{op} = 1.954)	EP _{nr}		122						-			22	- 22		
	C _{ef,total}	21319.0	11957.6	13517.7	10537.6	5036.4	4811.2	4971.5	4971.5	4811.2	5093.0	16932.0	18647.8	122606.6	208.
	C.p	26664.7	15362.7	17342.1	13742.5	7206.9	6899.4	7129.4	7129.4	6899.4	7274.6	21383.9	23472.6	160507.6	272.
	Caping	26124.0	14917.9	16848.0	13279.5	6763.5	6470.7	6686.4	6686.4	6470.7	6830.8	20882.7	22947.8	154908.6	263.

where:

 S_u : Residential area of the building, m^2 .

V: Net residential area of the building, m³.

f_{cep}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh.

EP: Primary energy consumption, kWh.

EP_{nr}: Non-renewable primary energy consumption, kWh.

 $C_{et,total}$: Energy consumption at consumption point (final energy), kWh/m²·year.

 C_{ep} : Total primary energy consumption, kWh/m²·year.

C_{ep,n}: Non-renewable primary energy consumption, kWh/m²·year.

BS.TEC: Total En	ergy Consumption
$EP_{heat}[kWh/m^2]$	130.1
EP _{cool} [kWh/m ²]	Cooling not present
EP _{light} [kWh/m ²]	48.0
EP _{dhw} [kWh/m ²]	94.6
EP _{TOT} [kWh/m ²]	272.7

5. Building renovation scenarios

To perform and assess multiple energy simulations for building renovation scenarios, the CYPETHERM EPlus has been used taking the Calibrated BEM baseline as a reference. The interventions have been modelled changing the relevant parameters within the Calibrated Model.

5.1 Renovation scenarios proposed

For the Vitoria democase, the following building renovation scenarios have been assessed according to Task 7.1 premises. The following table summarises the configuration of each scenario.

	External Wall insulation	Roof insulation	Windows replacement	Heating System	Floor insulation	Additional Energy Source
			-	replacement		
Scenario 01	ETICS	+Styrodur	A 70 Hindged	District Heating	-	-
Scenario 02	ETICS	+Styrodur	-	District Heating	-	-
Scenario 03	-	+Styrodur	A 70 Hindged	-	+Rockwool	Photovoltaic

Table 13: Overview of the Vitoria Renovation Scenarios

5.2 Scenario 1: description and results

In scenario 1, the following interventions has been analysed:

- 1. An insulation layer made up of EPS 032 (thickness 0.14m and thermal conductivity 0.032 W/mK) was added on the external side of the external walls.
- 2. An insulation layer made up of XPS Styrodur (thickness 0.14m and thermal conductivity 0.029 W/mk) was added on the external side of the roof.
- 3. All the existing windows were replaced with new pvc windows (A 70 Hinged PVC) with a glazing heat transfer coefficient Uw of $0.9 \text{ W/m}^2\text{K}$.
- 4. The heating system of the model is also upgraded from a boiler system to district heating (both for heating and for the DHW production).

The following table summarises the new construction systems.

Muro basico LKS_T3 23 cm + external insulation	Layer list: 1 - Mort. cemento 2 - EPS 032 3 - Ladrillo hueco 9 4 - C.a. vert 0.01 4cm 5 - Ladrillo hueco 7 6 - Yeso Properties Thermal transmittance, U: 0.73 W/(m ² ·K) Total thickness 24.00 cm	2.00 cm 14.00 cm 8.00 cm 4.00 cm 8.00 cm 2.00 cm
2.1 Roof		
Hollow brick slab with ceramic roof tiles + external insulation	Image: Constraint of the system Layer list: Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constred the system Image:	1.00 cm 14.00 cm 5.00 cm 12.00 cm
3.1 Windows		
New windows	Uw=0.9 W/m ² K	

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

BS.OPED: Operational Primar	
Table 15: BS.OPED Operational	Primary Energy Demand

Ep [kWh/m ²]		1	.46.24			
Energy vector	(kWh/year)	C _{er} (kWh/m²∙yea	r) f _{cep}	(kWh/year) (kWh/m²·y		
Coal	53353.74	90.63	1.084	57835.45	98.25	
Electricity obtained from the network	11929.03	20.26	2.368	28247.93	47.99	

where:

Cef: Energy consumption at consumption point (final energy), kWh/m²·year.

Conversion factor for final energy to primary energy.

f_{cep}: C_{ep}: Primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

Table 16: BS.TED Total Energy Demand										
BS.TED: Total Energy Demand										
QHEATING [kWh/m ² year]	47.1									
Q _{DHw} [kWh/m ² year]	43.5									
QTOT [kWh/m ² year] 90.6										

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	•	fear	
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh/year)	(kWh/m²·year)	
BUILDING (S. = 5	588.68 m ² ;	V = 1572.3	85 m³)													
	Heating	7351.9	3049.6	3791.1	2336.7	0.0					0.2	5191.2	5999.1	27719.9	47.1	
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5	
	TOTAL	9529.1	5016.0	5968.2	4443.6	2177.1	2106.9	2177.1	2177.1	2106.9	2177.3	7298.1	8176.2	53353.7	90.6	

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 17: BS.TEC Total	Energy Consumption
------------------------	--------------------

BS.TEC: Total En	BS.TEC: Total Energy Consumption									
$EP_{heat}[kWh/m^2]$	51.0									
EP _{cool} [kWh/m ²]	Cooling not present									
EP _{light} [kWh/m ²]	48.0									
EP _{dhw} [kWh/m ²]	47.2									
EPTOT[kWh/m ²]	146.2									

		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kwh)	May (kwh)	Jun (kWh)	Jul (kWh)	Aug (kwh)	Sep (kwh)	Oct (kWh)	Nov (kWh)	Dec (kWh)		(kWh/m²-year)
BUILDING (S. = !	588.68 m ² ;	V = 1572.3	15 m³)												
	Heating	7351.9	3049.6	3791.1	2336.7	0.0					0.2	5191.2	5999.1	27719.9	47.1
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
	TOTAL	9529.1	5016.0	5968.2	4443.6	2177.1	2106.9	2177.1	2177.1	2106.9	2177.3	7298.1	8176.2	53353.7	90.6
	EF	7351.9	3049.6	3791.1	2336.7	0.0					0.2	5191.2	5999.1	27719.9	47.1
	EPhan	7969.5	3305.8	4109.5	2533.0	0.0					0.2	5627.3	6503.0	30048.4	51.0
	EP	7954.4	3299.5	4101.7	2528.2	0.0					0.2	5616.6	6490.7	29991.3	50.9
	EF									**	**	**	**	**	
Coal (f = 1.082)	EP														
(EP-														
	EFee	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
	EP	2360.0	2131.6	2360.0	2283.9	2360.0	2283.9	2360.0	2360.0	2283.9	2360.0	2283.9	2360.0	27787.1	47.2
	EP	2355.5	2127.6	2355.5	2279.5	2355.5	2279.5	2355.5	2355.5	2279.5	2355.5	2279.5	2355.5	27734.3	47.1
	EFinat			**						**					
	EPhan										**				
	EP														
	EF														
	EP.mai														
Electricity	EP														
(f., = 1.954)	EF		**	**	**		**	**		**	**		**	**	
	EP												**	**	
	EP.														
	EFige	1013.2	915.1	1013.2	980.5	1013.2	980.5	1013.2	1013.2	980.5	1013.2	980.5	1013.2	11929.0	20.3
	EPage	2399.1	2167.0	2399.1	2321.7	2399.1	2321.7	2399.1	2399.1	2321.7	2399.1	2321.7	2399.1	28247.9	48.0
	EP	1979.8	1788.2	1979.8	1915.9	1979.8	1915.9	1979.8	1979.8	1915.9	1979.8	1915.9	1979.8	23310.2	39.6
Auto-consumed	EF														
electricity	EP									**				**	
(fee = 1.954)	EP.,				**		**	**							
	Care	10542.2	5931.2	6981.4	5424.1	3190.3	3087.4	3190.3	3190.3	3087.4	3190.5	8278.6	9189.4	65282.8	110.9
	C.,	12728.6	7604.4	8868.7	7138.6	4759.2	4605.6	4759.1	4759.1	4605.6	4759.3	10232.9	11262.2	86083.4	146.2
	C	12289.6	7215.2	8437.0	6723.7	4335.3	4195.4	4335.3	4335.3	4195.4	4335.5	9812.0	10825.9	81035.8	137.7

where:

S_{*}: Residential area of the building, m².

V: Net residential area of the building, m³. f_{op}: Conversion factor for final energy to prin

f_{up}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh.

EP: Primary energy consumption, kWh.

EP_w: Non-renewable primary energy consumption, kWh.

C_{staus}: Energy consumption at consumption point (final energy), kWh/m²-year.

C.,: Total primary energy consumption, kWh/m²-year.

C_{mm}: Non-renewable primary energy consumption, kWh/m²·year.

BS.TES: Total Energy savings

Table 18: BS.TES Total Energy Savings

BS.TES: Total En	ergy Savings										
	Baseline	Scenario 01	SAVING								
$EP_{heat}[kWh/m^2]$	130.1	51.0	79.1								
EP _{cool} [kWh/m ²]		Cooling not present									
EP _{light} [kWh/m ²]	48.0	48.0	0								
EP _{dhw} [kWh/m ²]	94.6	47.2	47.4								
EP _{τοτ} [kWh/m ²]	272.7	146.2	126.5								

5.3 Scenario 2: description and results

Scenario 2 is similar to scenario 1 with the external insulation of the external walls and roof and the replacement of the heating system. Only difference is that the windows are kept as the pre-existing ones. The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

BS.OPED: Operation	onal Primary Energy Demand									
Ep [kWh/m ²]										
Energy vector	(kWh/year)	C _{ef} (kWh/m²·year)	fcap	(kWh/year)	C _{ep} (kWh/m²·year)					
Coal	61456.06	104.40	1.084	66618.37	113.17					
Electricity obtained from the network	11929.03	20.26	2.368	28247.93	47.99					

C_{er}: Energy consumption at consumption point (final energy), kWh/m²·year.

f_{cop}: Conversion factor for final energy to primary energy.

C_{ep}: Primary energy consumption, kWh/m²·year.

BS.TED: Total Energy Demand

Table 20: BS.TED Total Energy Demand											
BS.TED: Total Energy Demand											
Q _{HEATING} [kWh/m ² year]	60.9										
Q _{DHW} [kWh/m ² year]	43.5										
QTOT [kWh/m ² year]											

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	ear
		(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh/year)	(kWh/m²·year)
BUILDING (S. = 588.68 m ² ; V = 1572.35 m ³)															
	Heating	9588.1	4025.6	4605.0	2788.8	4.7					1.9	6895.8	7912.4	35822.2	60.9
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
	TOTAL	11765.2	5992.0	6782.1	4895.7	2181.8	2106.9	2177.1	2177.1	2106.9	2179.0	9002.7	10089.5	61456.1	104.4

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 21: BS.TEC Total Energy Consumption										
BS.TEC: Total En	ergy Consumption									
$EP_{heat}[kWh/m^2]$	66.0									
EP _{cool} [kWh/m ²]	Cooling not present									
EP _{light} [kWh/m ²]	48.0									
EP _{dhw} [kWh/m ²]	47.2									
EP _{TOT} [kWh/m ²]	161.2									

		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)		'ear (kWh/m²·year)
BUILDING (S. = S	588.68 m²;	V = 1572.3	85 m³)												
	Heating	9588.1	4025.6	4605.0	2788.8	4.7					1.9	6895.8	7912.4	35822.2	60.9
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
-	TOTAL	11765.2	5992.0	6782.1	4895.7	2181.8	2106.9	2177.1	2177.1	2106.9	2179.0	9002.7	10089.5	61456.1	104.4
	EFheat	9588.1	4025.6	4605.0	2788.8	4.7					1.9	6895.8	7912.4	35822.2	60.9
	EPheat	10393.5	4363.8	4991.8	3023.1	5.0					2.0	7475.1	8577.0	38831.3	66.0
	EP _{nr,beat}	10373.8	4355.5	4982.3	3017.3	5.0					2.0	7460.9	8560.7	38757.5	65.8
	EFcool														
Coal (f _{rec} = 1.082)	EPcool														
	EP ar,cool														
	EFdhw	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
	EPdhw	2360.0	2131.6	2360.0	2283.9	2360.0	2283.9	2360.0	2360.0	2283.9	2360.0	2283.9	2360.0	27787.1	47.2
	EP _{nr,dhw}	2355.5	2127.6	2355.5	2279.5	2355.5	2279.5	2355.5	2355.5	2279.5	2355.5	2279.5	2355.5	27734.3	47.1
	EFheat														
	EPhant														
	EP _{nr,heat}														
	EFcool														
	EPcool														
Electricity	EP nr,cool														
$(f_{cap} = 1.954)$	EFdhw														
	EPdhw														
	EP _{nr,dhw}														
	EFlight	1013.2	915.1	1013.2	980.5	1013.2	980.5	1013.2	1013.2	980.5	1013.2	980.5	1013.2	11929.0	20.3
	EPilight	2399.1	2167.0	2399.1	2321.7	2399.1	2321.7	2399.1	2399.1	2321.7	2399.1	2321.7	2399.1	28247.9	48.0
	EP _{nr,light}	1979.8	1788.2	1979.8	1915.9	1979.8	1915.9	1979.8	1979.8	1915.9	1979.8	1915.9	1979.8	23310.2	39.6
Auto-consumed	EF														
electricity	EP														
$(f_{cop} = 1.954)$	EPm														
	Cef, total	12778.4	6907.1	7795.2	5876.2	3194.9	3087.4	3190.3	3190.3	3087.4	3192.1	9983.2	11102.7	73385.1	124.7
	Cap	15152.7	8662.3	9750.9	7628.7	4764.2	4605.6	4759.1	4759.1	4605.6	4761.2	12080.7	13336.2	94866.3	161.2
	Cep,nr	14709.1	8271.2	9317.6	7212.8	4340.3	4195.4	4335.3	4335.3	4195.4	4337.3	11656.3	12896.0	89802.0	152.5

where:

S_u: Residential area of the building, m².

V: Net residential area of the building, m³.

f_{cop}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh.

EP: Primary energy consumption, kWh.

EP_n: Non-renewable primary energy consumption, kWh.

 $C_{at,total}$: Energy consumption at consumption point (final energy), kWh/m²·year.

Cep: Total primary energy consumption, kWh/m²·year.

C_{ep,n}: Non-renewable primary energy consumption, kWh/m²·year.

BS.TES: Total Energy savings

Table 22: BS.TES Total Energy Savings

BS.TES: Total Energy Savings									
	Baseline	Scenario 02	SAVING						
$EP_{heat}[kWh/m^2]$	130.1	66.0	64.1						
EP _{cool} [kWh/m ²]		Cooling not present							
$EP_{light}[kWh/m^2]$	48.0	48.0	0						
EP _{dhw} [kWh/m ²]	94.6 47.2 47.4								
EP _{TOT} [kWh/m ²]	272.7	161.2	111.5						

5.4 Scenario 3: description and results

In scenario 3, the following interventions has been analysed:

- 1. An insulation layer made up of XPS Styrodur (thickness 0.14m and thermal conductivity 0.029 W/mk) was added on the external side of the roof (same as scenario 1 and 2).
- 2. All the existing windows were replaced with new windows with A70 Hinged PVC) with a glazing heat transfer coefficient of 0.9 W/m^2K (same as scenario 1).

- 3. An insulation layer made up of rockwool (thickness 0.08m and thermal conductivity 0.034 W/mk) was added on the lower side of the external floor of the first floor.
- 4. Photovoltaic Solar panels were added with a total power installed of 4.5 kWp. They have a potential of producing 5540.1 kWh/year.

No insulation of the external walls has been analysed as well as the replacement of the heating and DHW systems. The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

BS.OPED: Operat	ional Prir	mary Energ	y Den	nand		
Ep [kWh/m ²]		13.9				
Energy vector	(kWh/year)	C _{ef} (kWh/m²·year)	f _{cep}	С _{ер} (kWh/year) (kWh/m²-уе		
Natural gas	93169.65	158.27	1.195	111337.73	189.13	
Electricity obtained from the network	-43561.07	-74.00	2.368	-103152.62	-175.23	
Electricity produced on site (renewable)	55490.10	94.26	1.000	55490.10	94.26	

 $C_{\rm ef} = Energy \ consumption \ at \ consumption \ point \ (final \ energy), \ kWh/m^2 \cdot year.$

*f*_{cep}: Conversion factor for final energy to primary energy.

 C_{*p} : Primary energy consumption, $kWh/m^2 \cdot year$.

('Natural gas' and 'Electricity obtained from the network' have to be considered – 'Electricity produced on site' is already included in the results of the 'Electricity obtained from the network')

BS.TED: Total Energy Demand

				Tabl	e 24: BS	5.TED T	otal E	nergy D	Deman	d					
			BS.T	ED: Tot	al Ener	gy Den	nand								
			QHEA	ring [kW	′h/m²y∈	ear]		60.4							
			QDHW	/[kWh/	m²year]		43.5							
			QTOT	[kWh/	m²year]		104							
		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	Y (kWh/year)	'ear (kWh/m²∙year)
BUILDING (S. = 5	88.68 m ² ;	V = 1572.35	5 m³)												
	Heating	9114.6	4036.3	4907.1	3213.9	22.6	()				44.6	6681.7	7544.4	35565.4	60.4
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9		2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
	TOTAL	11291.8	6002.7	7084.2	5320.8	2199.7	2106.9	2177.1	2177.1	2106.9	2221.7	8788.6	9721.6	61199.2	104.0

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 25: BS.TEC Total Energy Consumption							
BS.TEC: Total En	BS.TEC: Total Energy Consumption						
EP _{heat} [kWh/m ²] 94.5							
EP _{cool} [kWh/m ²] Cooling not present							
$EP_{light}[kWh/m^2]$	48.0						
$EP_{dhw}[kWh/m^2]$	94.6						
EP _{solar} [kWh/m ²] -223.2							
EP _{TOT} [kWh/m ²]	13.9						

		Jan (kWh)	Feb (kWh)	Mar (kWh)	Apr (kWh)	May (kWh)	Jun (kWh)	Jul (kWh)	Aug (kWh)	Sep (kWh)	Oct (kWh)	Nov (kWh)	Dec (kWh)	(kWh/year)	ear (kWh/m²·year)
BUILDING (S. =	588.68 m²;	V = 1572.3	5 m³)											((
	Heating	9114.6	4036.3	4907.1	3213.9	22.6					44.6	6681.7	7544.4	35565.4	60.4
Energy demand	DHW	2177.1	1966.4	2177.1	2106.9	2177.1	2106.9	2177.1	2177.1	2106.9	2177.1	2106.9	2177.1	25633.8	43.5
	TOTAL	11291.8	6002.7	7084.2	5320.8	2199.7	2106.9	2177.1	2177.1	2106.9	2221.7	8788.6	9721.6	61199.2	104.0
	EFheat	11978.1	5259.5	6408.8	4172.3	28.5					56.3	8759.6	9899.5	46562.7	79.1
	EPhant	14313.9	6285.2	7658.5	4985.9	34.1					67.3	10467.7	11829.9	55642.4	94.5
	EP _{sr,beat}	14242.3	6253.7	7620.2	4961.0	33.9					66.9	10415.4	11770.7	55364.2	94.0
	EFcool														
Natural gas (f _m = 1.189)	EPcool														
(100) - 11100)	EP _{ar,cool}														
	EFdaw	3958.4	3575.3	3958.4	3830.7	3958.4	3830.7	3958.4	3958.4	3830.7	3958.4	3830.7	3958.4	46606.9	79.2
	EPaw	4730.3	4272.5	4730.3	4577.7	4730.3	4577.7	4730.3	4730.3	4577.7	4730.3	4577.7	4730.3	55695.3	94.6
	EP _{ar,dhw}	4706.6	4251.2	4706.6	4554.8	4706.6	4554.8	4706.6	4706.6	4554.8	4706.6	4554.8	4706.6	55416.8	94.1
	EFheat														
	EPheat														
	EP _{ar,beat}														
	EFcool														
	EPcool														
Electricity	EP _{ar,cool}														
$(f_{op} = 1.954)$	EFdaw														
	EPaw														
	EP _{ar,dhw}														
	EFight	1013.2	915.1	1013.2	980.5	1013.2	980.5	1013.2	1013.2	980.5	1013.2	980.5	1013.2	11929.0	20.3
	EPight	2399.1	2167.0	2399.1	2321.7	2399.1	2321.7	2399.1	2399.1	2321.7	2399.1	2321.7	2399.1	28247.9	48.0
	EP _{ar,light}	1979.8	1788.2	1979.8	1915.9	1979.8	1915.9	1979.8	1979.8	1915.9	1979.8	1915.9	1979.8	23310.2	39.6
Auto-consumed	EF													-55490.1	-94.3
electricity	EP													-131400.6	-223.2
$(f_{osp} = 1.954)$	EPar													-108431.7	-184.2
	Cattotal	16949.7	9750.0	11380.4	8983.5	5000.1	4811.2	4971.5	4971.5	4811.2	5027.8	13570.8	14871.0	49608.6	84.3
	C.,.	21443.3	12724.6	14788.0	11885.3	7163.5	6899.4	7129.4	7129.4	6899.4	7196.7	17367.2	18959.3	8185.1	13.9
	Capar	20928.7	12293.1	14306.6	11431.7	6720.3	6470.7	6686.4	6686.4	6470.7	6753.3	16886.1	18457.1	25659.5	43.6

where:

S_u: Residential area of the building, m².

V: Net residential area of the building, m³.

f_{co}: Conversion factor for final energy to primary energy obtained from non-renewable sources.

EF: Final energy consumed by the system at consumption point, kWh.

EP: Primary energy consumption, kWh.

EP_{nr}: Non-renewable primary energy consumption, kWh.

 $C_{a,total}$: Energy consumption at consumption point (final energy), kWh/m²·year.

C_{ep}: Total primary energy consumption, kWh/m²·year.

 $C_{\scriptscriptstyle ep,n}: \quad \textit{Non-renewable primary energy consumption, kWh/m^2 \cdot year.}$

BS.TES: Total Energy savings

Table 26: BS.TES Total Energy Savings

BS.TES: Total Energy Savings									
	Baseline	Scenario 03	SAVING						
$EP_{heat}[kWh/m^2]$	130.1	94.5	35.6						
EP _{cool} [kWh/m ²]	Cooling not present								
EP _{light} [kWh/m ²]	48.0	48.0	0						
EP _{dhw} [kWh/m ²]	94.6	94.6	0						
EP _{solar} [kWh/m ²]	0	-223.2	223.2						
EPTOT[kWh/m ²]	272.7	13.9	258.8						

6. Time reduction evaluation

Following table shows the results of the time reduction for the Vitoria democase. The BIM SPEED process completed as previously described has been compared to the creation of a BEM using a traditional process, based on the expertise of RINA C on similar buildings.

Table 27: Time reduction analysis for the BIM-to-BEM process compared to traditional BEM creation process

		Traditio	nal process	BIM SPEED PROCESS		
	Workflow required for the BEM creation	activity description	time required (working days)	activity description	time required (working days)	
1	BUILDING DATA COLLECTION (site inspection, document/drawing analysis,), specific data for the thermal characterization are needed					
	a) direct geometrical measurements (needed if detailed and reliable technical drawings are not available)		3	Information extracted directly from BIM	0	
	 b) collection and detection of the thermal characteristics of building components (mapping of windows type, wall type) 		1	Information extracted/partially extracted from BIM	1	
	c) collection and identification of relevant HVAC characteristics (installed power, type of terminals,)		0,5	Not included in BIM (same for traditional process)	1	
	d) data on building operational uses		0,5	Not included in BIM (same for traditional process)	0,5	
2	Building geometry creation					
	a) 2D floorplans reconstruction from on site measurements (needed if detailed and reliable technical drawings are not available)		2	Not needed - geometrical information extracted directly from BIM	0	
	b) creation of the 3D geometry of the building directly with specific Building Energy Simulation tools		3	creation of the Analytical model using BIM (just minor adjustments may be needed)	1.5	
3	Building thermal characterisation					
	a) creation of the building components and related libraries (e.g. materials, stratigraphies)		1	the same as traditional process	1	
	b) definition of the thermal zones (uses, internal gains - occupancy, lighting, equipment schedules - temperatures)		1	the same as traditional process	1	
4	HVAC characterisation					
	a) creation of the HVAC components (and related libraries)		1	the same as traditional process	1	
	b) definition of the systems		2	the same as traditional process	2	
	TOTAL TIME REQUIRED		15.5		9	

