
Martin Beckmann, Vanessa N. Michalke, Andreas Vogelsang, Aaron Schlutter

Removal of redundant elements within UML
activity diagrams

Postprint
This version is available at https://doi.org/10.14279/depositonce-6736.

Suggested Citation
Beckmann, Martin; Michalke, Vanessa N.; Vogelsang, Andreas; Schlutter, Aaron: Removal of redundant
elements within UML activity diagrams. - In: 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS). - New York: IEEE, 2017. ISBN:
978-1-5386-3492-9. - S. 334-343. - DOI: 10.1109/MODELS.2017.7. (Postprint version is cited, page
numbers may differ.)

Terms of Use
© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Removal of Redundant Elements

within UML Activity Diagrams

Martin Beckmann, Vanessa N. Michalke, Andreas Vogelsang, Aaron Schlutter

Technische Universität Berlin, Germany

{martin.beckmann, vanessa.michalke, andreas.vogelsang, aaron.schlutter}@tu-berlin.de

Abstract—As the complexity of systems continues to rise,
the use of model-driven development approaches becomes more
widely applied. Still, many created models are mainly used
for documentation. As such, they are not designed to be used
in following stages of development, but merely as a means of
improved overview and communication. In an effort to use
existing UML2 activity diagrams of an industry partner (Daimler
AG) as a source for automatic generation of software artifacts,
we discovered, that the diagrams often contain multiple instances
of the same element. These redundant instances might improve
the readability of a diagram. However, they complicate further
approaches such as automated model analysis or traceability
to other artifacts because mostly redundant instances must be
handled as one distinctive element. In this paper, we present an
approach to automatically remove redundant ExecutableNodes

within activity diagrams as they are used by our industry partner.
The removal is implemented by merging the redundant instances
to a single element and adding additional elements to maintain
the original behavior of the activity. We use reachability graphs
to argue that our approach preserves the behavior of the activity.
Additionally, we applied the approach to a real system described
by 36 activity diagrams. As a result 25 redundant instances were
removed from 15 affected diagrams.

I. INTRODUCTION

Due to its many advantages [1], model-driven engineering

has become a widely applied approach in the development

of systems [2]. One of our industry partners (Daimler AG)

uses UML2 activity diagrams [3] to specify the functions

of systems. Activity diagrams are behavioral diagrams used

to create graphical models of stepwise workflows. They are

among the types of models, which are regarded beneficial in

requirements engineering [4]. A widely applied use of activity

diagrams and graphical models in general is to utilize them

for communication purposes [5], [6]. Hence, the diagrams

are created with a focus on readability and understandability.

This is achieved by prioritizing layout aspects of the diagram,

since a proper layout is an important factor for understanding

the diagrams [7]. As a result, the created diagrams are not

catered to be processed by automatic approaches in following

stages of development. One of the phenomenons that impede

automation are multiple instances of the same element within

the activity diagrams. Some of these redundant elements

are created intentionally [8] to improve certain aspects of

a diagram such as the structure and hence the readability.

Other redundant elements arise unintentionally since multiple

persons are involved in creating the diagrams. Nonetheless,

existing redundant elements complicate possible approaches

of automation. For instance, in requirements engineering ac-

tivities need to be accompanied by textual representations [9].

As a result, a well-structured requirements document should

reflect, which executions are possible and necessary in an

activity. This relies on the propositional assertions modeled

in the activity. To apply simplifications on propositional logic

relations (e.g., extract a propositional logic normal form),

it is necessary to know, which elements are actually the

same. This is guaranteed by a redundancy-free version. Also,

for an effective derivation of test cases from activities, path

coverage has to be considered. If there are redundant elements,

there may be unnecessary paths and hence more test cases

are required [10]. In general, checking for path coverage is

easier without redundant elements since only unique paths are

considered. Other than that, redundancy makes traceability and

keeping derived artifacts consistent more difficult.

This paper presents a transformation to remove redundant

ExecutableNode elements contained within an activity. The

removal is achieved by merging all instances of a redundant

element into a single instance. In order to preserve the original

behavior, new ControlNodes are added in the activity. These

new ControlNodes are connected to the merged element as

well as its predecessors and successors. We show that these

model transformations preserve the behavior of the original ac-

tivity by comparing their reachability graphs. We furthermore

report on the application of this approach to a set of activity

diagrams used to specify a real system from our industry

partner. This evaluation shows that redundant elements are

common in real activity diagrams and that our approach is

able to remove them without blowing up the complexity of

the diagrams.

The paper’s structure is given in the following. The next

section provides details on the situation we encountered at

our industry partner. The third section discusses related work

on the subject of behavior preserving transformations and of

dealing with redundancy in graphical models. In the fourth

section, we present the behavior-preserving transformation that

removes redundant elements. Section V shows why the trans-

formation preserves the behavior of the activity. Section VI

introduces special situations, where less ControlNodes are

needed for the transformation. In Section VII we analyze

activities supplied by our industry partner and present results

on applying the transformation on them. Section VIII presents

the limits of the approach. The last section concludes this work

and gives an outlook on future work.

Fig. 1: Exemplar activity diagram containing redundant elements

II. BACKGROUND

In this section we use an activity diagram provided by our

industry partner to show how their diagrams are used and

interpreted. In addition, we present our notion of redundancy

in activity diagrams.

A. Activity Diagrams Syntax

Our industry partner uses UML activity diagrams as a first

step of specifying a new function of a system. An exemplar

activity diagram1 is displayed in Fig. 1. It describes the

function’s activation and deactivation.

As such, the activity diagram contains a combination of

triggers and checks for conditions that must be fulfilled to

activate the function. This type of description is similar to

Firesmith’s proposal for formulating textual natural language

requirements [11]. For triggers, the AcceptEventAction element

is used. Checks are modeled as Action elements. If the condi-

tion of a check is not fulfilled, the flow ends (FlowFinal). The

triggers and checks are connected by ControlNodes such as

JoinNodes and MergeNodes. JoinNodes act as synchronization

points and can be interpreted as AND operators in terms

of propositional logic. MergeNodes represent OR operators.

Once the actual functionality of the function is executed,

ActivityFinal elements designate the end of an activity.

B. Activity Diagram Semantics

We interpret the semantics of activities as Petri net like

graphs as suggested by the original UML specification version

2.5 [3, p. 283]. As such, we assume that each ExecutableNode

executes as soon as a token is placed on that node (by

transition or by occurrences of events). Also, we assume that

the execution time of the nodes is infinitely fast. This interpre-

tation is related to requirements-level semantics for the activity

diagram defined by Eshuis and Wieringa [12] and is also used

by our industry partner. Furthermore, ControlNodes forward

1The displayed activity diagram was slightly modified to incorporate more
sophisticated situations.

tokens instantly if possible. Hence, tokens can be forwarded

by multiple ControlNodes in one step. Events that execute

AcceptEventActions of the activity, produce new tokens within

the executing activity (i.e., the property isSingleExecution is

true). Also, we assume that two tokens at an ExecutableNode

cause two concurrent executions of the ExecutableNode within

the same step (i.e., the property isLocallyReentrant is true).

C. Redundant Elements in Activity Diagrams

In this paper, we are only interested in redundant elements

within one diagram and not across different diagrams. The

activity diagram, shown in Fig. 1, contains four redundant

elements, each having two instances in the diagram. The

triggers State of connector “plugged” and State of connector

”unknown” both appear two times. Similar, the two checks

V < 5 km/h and Ignition Off also appear twice in the diagram.

Elements are considered as redundant elements if they have the

same name and the same type (e.g. AcceptEventAction). Thus,

the considered elements are exact copies of each other apart

from their placement within the diagram and their connection

to other elements, which makes these elements Type A Clones

according to Störrle’s classification [13].

While this duplication of the same element increases the

number of elements in the diagram, it may also increase the

comprehensibility of the diagram. For instance, the duplicated

elements in Fig. 1 allow the visual separation of three distinct

possibilities, that lead to the function’s activation.

In a previous work, we defined and analyzed different types

of quality issues that arise when activity diagrams are used in

requirements documents for the specification of functions [14].

One of the quality issues, we identified, are redundant ele-

ments. In that study, we found redundant elements in more

than 40% of the examined diagrams, which shows that this is

a common phenomenon. On the other hand, developers rated

the appearance of redundant elements as one of the least severe

quality issues. However, this work solely focuses on enabling

the use of the diagrams for automation rather than creating an

alternative view for existing diagrams.

III. RELATED WORK

Since our approach transforms models in a behavior pre-

serving way, it is related to refactoring [15]. In contrast to

classical refactoring, our aim is not to improve the design but

to facilitate the processing by automated techniques.

Refactoring of UML models has been covered by a number

of publications [16]. Focal point of their research is the UML

class diagram as it is the most used UML diagram [17].

Among others, examples for refactorings of class diagrams

are presented in [18], [19], [20], [21]. Another type of di-

agram that has received attention in relation to refactoring

are statecharts [18], [21]. For activity diagrams, two refac-

toring operations are described in [21], namely Make Actions

Concurrent and Sequentialize Concurrent Actions. As these

names of the operations indicate, they are not suitable to

deal with redundant elements. A more extensive review on

refactoring UML models can be found in [22]. An approach

of detecting semantically equivalent modeling concepts for

structurally different models is described in [23].

Besides the transformation of models, redundancy in UML

models has also been a topic in research, although the focus

is mainly placed on the detection of redundancy (see [24] for

a list of approaches). For Petri nets, as a basis for activity dia-

grams, the elimination of redundant control places while keep-

ing a Petri net live is described by Uzam et al. [25]. In addition

to presenting an approach to detect clones in models, Störrle

gives an example of a transformation that removes recurring

fragments of activities by factoring them into independent

activities [13]. The main rationale behind these refactoring

proposals is to increase the maintainability of models and

reduce the risk of inconsistent changes. Our work, in contrast,

deals with the removal of redundant elements within a single

activity for the purpose of facilitating their processing by

automatic approaches. This also includes elements that UML

defines as “integral parts of a diagram” (such as DataFlow-

Nodes), which Störrle calls loophole clones and for which his

refactoring approach does not work. It is also mentioned, that

there are tools distinguishing between internal representation

(the activity itself) and an external visual representation (the

activity diagram). Most contemporary tools enforce a one-to-

one correspondence between these two representation types.

This simplifies, the handling of copy/paste operations [13]. As

a consequence, using an element of the internal representation

multiple times in the external representation is not possible. A

tool, that does not enforce one-to-one correspondence would

allow for proper readability while still allowing for automatic

approaches. Nonetheless, even if such a tool is used, the

modeler must still be aware of this capability and is required

to consider this fact during model creation. Hence, a tool-

independent approach is needed, that takes into account the

modeling-process and its challenges.

Activities can be the source for a number of possible

applications. Among others they are used to automatically

generate textual specification documents [26], source code [27]

and test cases [28].

IV. ELIMINATION OF REDUNDANT ELEMENTS

A. Transformation

To remove redundant ExecutableNode elements from an

activity, we propose a transformation that consists of three

steps. All steps have to be performed for every redundant

element in an activity. The first step adds a new element, that

represents all instances of the redundant element. The second

step adds ControlNodes to the activity. The predecessors

and successors of the instances and the added element are

connected with the ControlNodes by ControlFlows. Lastly, all

instances of the considered redundant element are removed

from the activity. As a result the element added in the first

step remains as a single instance of the redundant element.

The necessary ControlNodes are ForkNodes, JoinNodes,

MergeNodes and DecisionNodes. A single MergeNode is

added as a predecessor to the remaining element. A sin-

gle DecisionNode is added as a successor to the remaining

element. For each instance of the redundant element one

ForkNode and one JoinNode is added. The ForkNodes are

predecessors to the added MergeNode. The predecessor of

each ForkNode are the predecessors of the original instances.

The JoinNodes are successors of the added DecisionNode. The

successors of each JoinNode are the successors of the original

instances. Each of the added ForkNodes has an outgoing

edge to an added JoinNode. Thereby, the ForkNode, which

is added as the predecessor to one instance is connected to

the JoinNode, which is added as the successor to the same

instance. Since there are no guards on the outgoing edges

of the DecisionNode, an incoming token is forwarded to a

JoinNode with a token present [3, p. 373, p. 387].

(a) Original activity (b) Transformed activity

Fig. 2: Example of the transformation

Fig. 2 shows an activity diagram fragment before (Fig. 2a)

and after (Fig. 2b) the transformation. The depicted activity

has the redundant element A3 with the two redundant instances

A31 and A32. The instances are denoted with indices for

distinction. The Actions A1, A2, A4 and A5 can be any Ex-

ecutableNode (e.g. Actions, AcceptEventActions) or multiple

ExecutableNodes or ControlNodes. In case A1 executes, an

execution of A3 follows. Because of the execution of A1,

there is a token present at the JoinNode before A4. The token

produced by A3 is forwarded to this JoinNode. Thus A4
executes. In case both A1 and A2 are executed, A3 is executed

two times and hence produces two tokens, which lead to the

execution of A4 and A5. In both cases, it is the same behavior

as before.

B. Normal Form

The transformation is applicable if all instances of the

redundant elements have a single predecessor and a single

successor. For this purpose, we denote an activity with re-

dundant elements, where each of its instances has exactly one

predecessor and one successor, to be in a normal form. If this

is not the case, further ControlNodes are added to make sure

this requisite is fulfilled.

An activity is not in the normal form if one of its instances

is missing a predecessor or a successor. If the predecessor is

missing, an InitialNode is added as a predecessor [3, p. 376]. If

the successor is missing, a FlowFinal is added as a successor

since the flow of tokens ends after the ExecutableNode. In

Fig. 3a a situation is displayed, where one element does

not have a predecessor and one element does not have a

successor. Fig. 4a shows the corresponding situation with an

added InitialNode and FlowFinal.

(a) No predeces-
sor / successor

(b) Multiple predecessors /
successors (c) Cycle

Fig. 3: Situations without normal form

(a) No predeces-
sor / successor

(b) Multiple predecessors /
successors (c) Cycle

Fig. 4: Situations of Fig. 3 in normal form

In addition to missing predecessors or successors, there

might be instances with more than one predecessor or suc-

cessor. If there are multiple predecessors, a JoinNode is added

to make the implicit Join to an explicit Join [3, p. 401]. After

the transformation, this results in a JoinNode with an outgoing

edge to the respectively added ForkNode before the remaining

element. If there are multiple successors, a ForkNode is added

to make the implicit Fork to an explicit Fork [3, p. 401]. After

the transformation, this results in a ForkNode with an incoming

edge from the respectively added JoinNode after the remaining

element. An example of the described situation is displayed in

Fig. 3b. The corresponding, for Action A1 resolved situation

is shown in Fig. 4b.

An instance of a redundant element can also be a part of a

cycle. In case the instance is its own predecessor and succes-

sor, it is necessary to add ControlNodes as new predecessors

and successors. As a predecessor a ForkNode is added and as

a successor a JoinNode is added. In Fig. 3c such a situation

is displayed. Fig. 4c shows the corresponding situation with

an added JoinNode and ForkNode. It is also possible to add a

DecisionNode and a MergeNode or any other combination of

ControlNodes, as these ControlNodes only have one incoming

and one outgoing edge. However a ForkNode and a JoinNode

can be merged, with the respective JoinNode and ForkNode,

that are added by the transformation.

By using ControlNodes with one incoming and outgoing

edge, ultimately every combination of predecessors and suc-

cessors of the redundant elements can be converted to the

normal form.

C. Number of additional elements

The number of necessary additional ControlNodes and Con-

trolFlow edges depends on the number of redundant elements

and on how many instances are part of each redundant element.

There is a new ForkNode and a new JoinNode for each

instance. Also, there is one additional MergeNode and one

additional DecisionNode for each redundant element. Besides,

there might be ControlNodes necessary to ensure, that each

instance has a single predecessor and successor. Thus, the

number of new ControlNodes in an activity results in:

#NewControlNodes =

m
∑

i=1

(2 ∗ ni + 2) + c (1)

The variable m denotes the number of redundant elements,

ni denotes the number of instances in each redundant element

and c denotes the number of ControlNodes needed for the

normal form. Since, there is a maximum of two ControlNodes

needed for every instance to create the normal form, there is

a linear relation between the number of redundant elements

and the additionally needed ControlNodes.

Using the same notation and, additionally, the variable d as

the number of needed edges, the number of new ControlFlow

edges in an activity results in:

#NewControlF lowEdges =

m
∑

i=1

(3 ∗ ni + 2) + d (2)

For every instance of a redundant element, there need

to be three additional edges (two outgoing edges of the

added ForkNode, one incoming edge of the added JoinNode).

For every redundant element two edges are needed as the

outgoing edge of the MergeNode and the incoming edge of the

DecisionNode. Additionally, there is a maximum of two edges

needed for each instance of an redundant element, to create

the normal form. Hence, there is also a linear relation between

the number of redundant elements and the additionally needed

ControlFlow edges. The linear relations for the number of

nodes and edges are important, since an automated processing

might be impaired otherwise.

D. Resulting Structure

The usage of a single predecessor and a single successor

results in a single-entry single-exit structure for the trans-

formed part. As a consequence everything before and after

the remaining element stays unchanged. The principle of

compositionality applies. This means, that the behavior of

the activity remains the same, if the behavior of the changed

part remains the same. Hence, to show the preservation of

the behavior, it is sufficient to show, that the behavior of the

transformed part stays the same.

V. PRESERVATION OF BEHAVIOR

To show that the transformation preserves the behavior

expressed in an activity diagram, we compare the flow of

tokens in the underlying semantic model (see Section II).

Reachability graphs (RG) [29] represent this flow of tokens

in a network depending on the executed actions. Hence, we

use reachability graphs as a means to show, that the behavior

of the activity, before and after applying the transformation, is

still the same. In this chapter, we briefly introduce reachability

graphs. Additionally, we argue why the comparison of the RGs

of the activities is suitable to show the preservation of the

behavior. Subsequently, we propose a way to derive RG from

activities. In the subsection after that, we show how to compare

two activities by using RGs.

A. Reachability Graphs

We construct the reachability graph RG for an activity A

as:

RG(A) = (M(V), E) (3)

V is the set of ActivityNodes contained in the activity A.

M(V) is the set of distributions of tokens to the ActivityNodes.

Thus, every node m ∈ M(V) in the RG represents a

distribution of tokens within the activity A. Every element of

M(V) is a |V |-tuple, where each entry represents the number

of tokens at every ActivityNode after a sequence of executions.

E is the set of directed edges of the RG. The edges represent

the execution of an ExecutableNode, which leads to a new

distribution of tokens.

The initial distribution m0 ∈ M(V) represents the dis-

tribution of tokens at the beginning of execution. Its node

in the RG has no incoming edges. The initial distribution

depends on the events that might occur at the beginning

and on existing InitialNodes. There may be multiple different

initial distributions, which each result in different RGs. The

final distribution mn ∈ M(V) represents the distribution of

tokens in the activity, where no more nodes are left to be

executed. This is also the case as soon as one token reaches

an ActivityFinal. Its node in the RG has no outgoing edges.

Each RG has only one final distribution.

A sequence of executions is a sequence of edges (e1, ..., en)
in the reachability graph RG, which starts at the initial distri-

bution and ends at the final distribution. Hence, a sequence of

executions represents a possible order of executed Actions in

the activity that lead from the initial distribution to the final

distribution.

Fig. 5a shows the RG of the activity presented in Fig. 2a.

The RG of the transformed activity from Fig. 2b is displayed

in Fig. 5b. In both cases, it is assumed that the initial

distribution results from the events executing A1 and A2
simultaneously. Also, the distributions in both figures only

incorporate ExecutableNodes.

(1,1,0,0,0,0)

(0,0,1,1,0,0)

(0,0,0,0,1,1)

(0,1,1,0,0,0) (1,0,0,1,0,0)

(0,0,0,1,1,0) (0,0,1,0,0,1)

A1 A2

A2 A1

(0,1,0,0,1,0)

A31

A2

A32

A31
(1,0,0,0,0,1)

A32

A1

A31

A32

(a) RG (A1, A2, A31, A32, A4, A5) for the original activity

(1,1,0,0,0)

(0,0,2,0,0)

(0,0,0,1,1)

(0,1,1,0,0) (1,0,1,0,0)

(0,0,1,1,0) (0,0,1,0,1)

A1 A2

A2 A1

(0,1,0,1,0)

A3

A2

A3

(1,0,0,0,1)

A3

A1

A3

A3 A3

(b) RG (A1, A2, A3, A4, A5) for the transformed activity

Fig. 5: RGs for the activities in Fig. 2

While the distribution of tokens in Fig. 5a is represented by

a 6-tuple, the distribution in Fig. 5b is represented by a 5-tuple.

This results from the different number of ExecutableNodes in

the two activities, since the two redundant Actions A31 and

A32 were replaced by A3.

An RG contains all possible sequences of executions of an

activity for a given initial distribution. As a consequence,

we conclude that if the same sequences lead to the same

distribution of tokens in an activity, then the behaviors of the

activities are same. As a result, the comparison of two RGs of

the respective activities shows the preservation of the behavior

for a given initial distribution.

B. Generating Reachability Graphs from Activity Diagrams

RGs are generated for a chosen initial distribution. Hence,

the first step is to decide how many tokens are initially placed

on each ActivityNode. The resulting distribution of tokens is

the first node (the initial distribution) of the RG.

From the initial distribution, the RG is constructed step

by step. The underlying algorithm is basically the same as

for a Petri net. For every entry in the current distribution,

which has at least one token, the token is transferred from

the corresponding ActivityNode to its successor in the activity.

This results in a new distribution in the RG, which is connected

by an incoming edge to the previous distribution in the RG.

Although the ControlNodes do not hold tokens, they are

included as entries in the distributions. This is necessary, since

they may change the number of tokens. As a result the number

of tokens of a new distribution depends on the type of the

executed ActivityNode. If the current ActivityNode is an Exe-

cutableNode, every token is forwarded to the successor after

the ExecutableNode is executed (assuming that there are no

implicit ControlNodes). The different types of ControlNodes

on the other hand all show a different behavior towards the

number of tokens in the activity. Hence, every ControlNode

needs to be considered differently. In the following, t(v)
denotes the number of tokens at a certain ActivityNode v ∈ V .

MergeNode. MergeNodes forward tokens from multiple

incoming ActivityEdges. As such, they act as OR-connections

between the predecessors. As a consequence, for a given distri-

bution (..., t(v), ..., t(v′), ...), where v ∈ V is the MergeNode

and v′ ∈ V is a successor, the distribution (..., t(v) −
1, ..., t(v′) + 1, ...) is added as a node in the RG.

ForkNode. ForkNodes pass a single token to each outgoing

ActivityEdge for each token on the incoming ActivityEdge.

For a given distribution (..., t(v), ..., t(v1), ..., t(vn), ...), where

v ∈ V is the ForkNode and v1, ..., vn ∈ V are the following

nodes on the outgoing ActivityEdge of the ForkNode, results

the distribution (..., t(v)− 1, ..., t(v1) + 1, ..., t(vn) + 1, ...).
JoinNode. JoinNodes act as AND-connections as they only

forward a single token on their outgoing ActivityEdge, if there

is one token present at each incoming ActivityEdge. For a given

distribution (..., t(v), ..., t(v′),), where v ∈ V is the Join-

Node and v′ ∈ V is the successor, if there are n ∈ N incoming

ActivityEdges, where each incoming ActivityEdge has a single

token present, the distribution (..., t(v)−n, ..., t(v′)+1, ...) is

created.

DecisionNode. DecisionNodes forward a single token to

an applicable outgoing ActivityEdge if there is a token on

the incoming ActivityEdge. If there is more than one Ac-

tivityEdge applicable, the token only traverses one of the

ActivityEdges [3, p. 388]. Since there are different RGs de-

pending on the decisions, there has to be a new RG for every

possible decision and not just a new distribution. For a given

distribution (..., t(v), ..., t(v1), ..., t(vi), ..., t(vn),), where

v ∈ V is the DecisionNode, v1, ..., vn ∈ V are successors

of the DecisionNode and vi is the node, that accepts the token

offered by the DecisionNode, follows the new distribution

(..., t(v)− 1, ..., t(v1), ..., t(vi) + 1, ..., t(vn), ...).

C. Comparison of Activity Diagrams

For a complete comparison of the behavior of two activities,

one would need to compare all possible RGs of both activ-

ities. Different RGs arise from different initial distributions

and non-deterministic DecisionNodes [3, p. 387]. Due to the

unlimited number of tokens that may be placed in the initial

distribution, there is an infinite number of possible RGs.

Therefore, in general, it is not possible to compare all RGs.

We argue that it is sufficient to compare just the RGs with

all possible combinations of initial distributions, where each

suitable ActivityNode has either no token at all or just one

token. The reason is that all combinations of zero or one

token represent all possible flows in the activity. This rationale

ignores the fact that there might be structures in an activity that

require a certain number of tokens. Suitable ActivityNodes are

those that might have a token at the start of the execution of an

activity (InitialNodes and AcceptEvenActions). For n suitable

ActivityNodes, this results in 2n−1 different RGs for different

initial distributions. The distribution of no tokens at all does

not yield any information regarding the behavior.

These RGs are needed for the comparison of the behavior

of two activities. The actual comparison of two RGs is done

with two RGs representing the same situation, i.e., the same

initial distribution and the same decisions made. One criterion

for two RGs to be equivalent is that their sequences of

execution are equivalent. This means, that every sequence of

execution in the RG of the original activity has an equivalent

sequence of execution in the RG of the transformed activity.

As the ControlNodes do not hold tokens and do not execute

operations other than manipulating the flow of tokens, they

must not be considered during the comparison of two RGs.

Note that there are redundant sequences of executed Actions

in the RGs because of the redundant elements.

Besides the sequences of execution, the equality of the

individual distributions is the second criterion that must be

fulfilled. Otherwise, the behavior is not the same if the

same sequences lead to different distributions. The trans-

formed activity contains less entries in the distributions of

the RG than the original activity (see subsection V-A) be-

cause of the removed redundant elements. Thus, the sum

of tokens of the redundant elements equals the number

of tokens of the remaining elements. For the distribution

(yi, ..., ym−(n−i)) of the transformed activity an equivalent

distribution (x1, ..., xi, ..., xn, ..., xm) of the original activity,

given redundant instances xi to xn, can be identified by:

yk =















xk if k = [1, i− 1]
n
∑

l=i

xl if k = i

xk+(n−i) if k = [i+ 1,m− (n− i)]

(4)

Because of the single-entry single-exit structure of the

transformation (see subsection IV-A), it is only necessary to

compare the changed part of the activity before and after the

transformation. Since the transformation introduces pairs of

ForkNodes and JoinNodes for the respective predecessors and

successors of the original instances, the forwarding of tokens

by the introduced DecisionNodes are deterministic and hence

do not require additional RGs. The deterministic behavior

results from the fact that it is always clear to which JoinNode

a token is forwarded in each step. In the example Fig. 2a, there

are two suitable ActivityNodes for the initial distribution. Thus,

three pairs of RGs need to be compared.

The sequences of executions of the RG in Fig. 5a are the

following:

1) A1, A31, A2, A32
2) A1, A2, A31, A32
3) A1, A2, A32, A31

4) A2, A1, A31, A32
5) A2, A1, A32, A31
6) A2, A32, A1, A31

The sequences of executions of the RG in Fig. 5b are:

1) A1, A3, A2, A3
2) A1, A2, A3, A3
3) A1, A2, A3, A3

4) A2, A1, A3, A3
5) A2, A1, A3, A3
6) A2, A3, A1, A3

Since Action A31 and A32 in the original activity in Fig. 2a

are redundant instances of the same redundant element, the

sequences of executions 2) and 3) as well as 4) and 5) are

the same. By removing the redundant sequences of executions

and comparing the remaining ones, it follows that both RGs

contain the same sequences of executions.

Considering the criteria defined in Equation 4 for the

equality of the distributions, the distributions are equal as

well. As a result, the RGs in Fig. 5 are isomorphic. The same

holds for the RGs generated by using the other two initial

distributions. Hence, for the assumed semantics, the transfor-

mation preserves the behavior if it is applied to an activity

containing one redundant element consisting of two instances.

The transformation can also be applied to activities with more

than one redundant element and with more than two instances.

This is based on the fact that the transformation can be applied

in any order. From this follows that the removal of multiple

instances can be conducted by applying the transformation

to only two instances each time until there is one instance

left. Additional ControlNodes resulting from the consecutive

application of the transformation can be merged.

(a) Initial Situation
(b) Applied Trans-
formation

(c) Merged Con-
trolNodes

Fig. 6: Transformation of a redundant element with three

instances

The consecutive application of the transformation is shown

in Fig. 6. In the initial situation in Fig. 6a, there is a redundant

element with two instances. The structure of the instance

on the right hand side, results from a previous application

of the transformation on two instances. If the transformation

is applied in this situation the ExecutableNode A6 and the

added MergeNode are used as the predecessors and the Ex-

ecutableNode A7 and the added DecisionNode are used as

successors. This results in the activity displayed in Fig. 6b.

This structure can be simplified to the structure displayed in

Fig. 6c without changing the flow of tokens. Since the added

MergeNode and DecisionNode are now the new predecessor

and successor, this procedure can be repeated if there are

further instances.

VI. SPECIAL SITUATIONS

Besides the presented transformation, there are special situ-

ations where the removal of the redundant elements is possible

using less additional ControlNodes. Three examples are shown

in Fig. 7.

(a) Situation 1 (b) Situation 2 (c) Situation 3

Fig. 7: Three special situations with redundant elements

The activity in Fig. 7a contains two redundant elements.

Both elements do not have a predecessor. The activity in

Fig. 7b contains two redundant elements, which have a

common predecessor and distinct successors. The activity in

Fig. 7c contains two redundant elements, which have distinct

predecessors and a common successor.

Their respective activities without redundant elements are

depicted in Fig. 8.

(a) Situation 1 (b) Situation 2 (c) Situation 3

Fig. 8: Three special situations without redundant elements

In all of these situations there is only one of the two redun-

dant instances left. Compared with the generic transformation

introduced in subsection IV-A, less additional ControlNodes

and ControlFlow edges are needed. Hence, the resulting num-

ber of ControlNodes and of ControlFlow edges in Equation 1

and in Equation 2 respectively are upper limits.

The preservation of behavior for these activities results from

the fact that the missing predecessors and successors lead

to structures that do not change the flow of the tokens. For

instance, there are ControlNodes without incoming edges or

ControlNodes with a single incoming and a single outgoing

edge. We additionally verified the preservation of behavior by

constructing the RGs for these activities. The resulting RGs

are equivalent for the necessary distributions.

A. Introductory Example Revisited

If the presented approach is applied to the introductory

example in Fig. 1, this results in the activity diagram displayed

in Fig. 9. As the activity is meant as a source for further

automated approaches, the activity diagram is displayed to

illustrate the applied transformations. To increase the read-

ability, we left out the FlowFinal elements and not all of the

implicit connections are depicted explicitly. As there are four

redundant elements with two instances each, four elements are

removed. For the redundant triggers, the transformation for sit-

uation 1, presented in Section VI is applied. For the redundant

checks the generic transformation is applied. In contrast to the

original activity, the number of ControlNodes increases and

intersecting edges appear. This results in decreased readability,

which makes the activity harder to understand. Since the aim

of the transformation is to improve applicability of automated

approaches, the decreased readability is not an issue within the

scope of this work. Hence, we propose to use the redundancy-

free activity as a parallel artifact.

VII. EVALUATION

To evaluate the applicability of our approach in activity

diagrams created in practice, we applied the approach to the

activity diagrams of a system of an industry partner. The

system’s functions were specified by a total of 36 activity

diagrams (containing between 9 to 28 ExecutableNodes). Each

activity describes a function of a system, which is responsible

for charging the high-voltage batteries of Plug-in Hybrid

Electric Vehicles and Battery Electric Vehicles. As such the

system contains functions that are relevant for safety as well

as for usability. The aim of the evaluation is to answer the

following questions:

• RQ1: How many redundant elements appear in activities

of a real system?

• RQ2: Is our transformation approach applicable to every

situation in the activities of a real system?

• RQ3: How many additional elements are introduced

when applying the transformations?

• RQ4: How many of the special situations occur in the

activities of a real system?

A. Implementation

The original data of our industry partner was supplied as

an Enterprise Architect project file. To apply the transforma-

tion, two steps were required to prepare the data. The first

step is to convert the project file (.eap) to a .uml file. The

conversion was done automatically by a self-written converter.

Our implementation of the transformation approach is realized

using .uml files because, in contrast to, e.g., the .eap format,

the .uml data format is aligned with the UML specification.

Hence, it is only necessary to adjust the converter if a

different data source is used in future. In the second step, the

resulting .uml file is edited manually. This is necessary if our

converter encountered situations that it could not handle. Such

situations may result from deviations between the Enterprise

Architecture data model and the .uml data model. Another

reason for the manual adjustments was to correct the use of a

number of ControlNodes originating from developer mistakes

and misunderstandings (e.g. MergeNodes and DecisionNodes

as well as JoinNodes and ForkNodes were sometimes mixed

up because they look the same). The transformation itself was

implemented to work on the resulting .uml files.

TABLE I: Extent of redundant elements in the analyzed

system.

Finding #Diagrams Ratio

Total activity diagrams 36 100%

Containing redundant elements 15 42%

Containing 1 redundant element 8 19%

Containing 2 redundant elements 5 17%

Containing 3 redundant elements 2 6%

Finding #Red. Elements Ratio

Total redundant elements 24 100%

Containing 2 instances 23 96%

Containing 3 instances 1 4%

TABLE II: Results of applying the transformation

Finding Number

Removed ExecutableNodes 25

Added ControlNodes max. 146

Added ControlNodes min. 111

Generic Transformation 18

Situation 1 4

Situation 2 0

Situation 3 3

B. Study Results

To answer the first question, we analyzed the activities

towards the number of occurrences of redundant elements. The

detailed results are displayed in Table I.

Out of the 36 diagrams, we found 15 diagrams containing

redundant elements. The 15 diagrams contain 24 elements that

appear multiple times in each activity diagram. Of these 15

diagrams, there are 2 diagrams each containing 3 redundant

elements with two instances. Another 5 diagrams contain 2

redundant elements. Out of these 5 diagrams 4 diagrams have

redundant elements with two instances each. The fifth diagram

contains a redundant element with three instances as well as

one with two instances. The remaining 8 diagrams contain

only one redundant element with two instances each.

The transformation was applicable to all provided activities.

There is no constellation, where the transformation would not

preserve the behavior. An analysis of the results of the applied

transformations is shown in Table II.

The removal of the 23 redundant elements with two in-

stances and the one redundant element with three instances

results in an overall of 25 removed ExecutableNodes. When

only applying the generic transformation, a total of 146 Con-

trolNodes were added (Added ControlNodes max.) to the ac-

tivities. However, when also using the smaller transformations

for the special situations explained in section VI, the generic

transformation only had to be applied 18 times. Situation 1

was applicable four times and situation 3 was applicable three

times. The special situation 2 did not occur. By utilizing the

Fig. 9: Introductory example without redundant elements

transformations of the special situations, only 111 additional

ControlNodes had to be added.

It has to be noted, that we only examined one system of

one single industry partner. As a result, the generalizability

of our findings is limited in regard to whether the approach

is always applicable and whether the resulting numbers are

representative.

VIII. LIMITATIONS OF THE APPROACH

The presented approach is restricted to our interpretation of

the semantics of an activity. If different semantics are used,

the transformation might no longer preserve all aspects of the

behavior. Assuming a semantic where every ExecutableNode

has its own individual execution time and events can occur

at any time, this might lead to tokens overtaking one another.

Hence, the order in which the actions are executed is no longer

the same. Still, the same Actions are executed the same number

of times. A possible sequence of executions of the activity

in Fig. 2a is shown in 1). A possible deviating sequence of

executions of the redundancy-free activity in Fig. 2b is shown

in 2).

1) A1, A2, A31, A32, A4, A5 2) A1, A2, A3, A3, A5, A4

For instance, while A1 is executing, A2 starts executing.

As soon as A1 finishes, A3 starts execution. If A2 finishes

execution while A3 is still running, then both JoinNodes

have one token present. As a result of the non-deterministic

behavior of the DecisionNode, both A4 and A5 are able to

accept the token produced by the first execution of A3. Hence,

instead of executing A4 as in the original activity, A5 might

be executed. In this case, the second execution of A3 results

in the execution of A4.

Besides, the presented approach is limited to a subset of

available elements in activities. The behavior might not be

(a) Original activity (b) Transformed activity

Fig. 10: Redundant element in an InterruptibleRegion

preserved in case other elements of activities are used (e.g.,

guards). In Fig. 10a, an activity is displayed where one

instance of the redundant element is part of an InterruptibleRe-

gion. As soon as the execution of A3 ends, the execution of

A6 (A6 is a substitution for multiple elements in the Interrupt-

ibleRegion) is also ended. If the transformation is applied and

the remaining element stays part of the InterruptibleRegion,

A6 is always terminated no matter, which predecessor was

executed before A3. If the remaining element is no longer

part of the InterruptibleRegion, A6 is no longer terminated

by the execution of A3 as a successor of A1. A possible

way to resolve this, is shown in Fig. 10b. By introducing a

dummy ExecutableNode D as a successor to A3 before A4
and putting the dummy node in the InterruptibleRegion, it

is still possible to maintain the original behavior. Since this

transformation involves an additional ExecutableNode, we do

not consider this a part of our proposed transformation. Aside

from InterruptibleRegions, there might be other constellations

of elements in activities, where the approach does not preserve

the behavior either.

IX. CONCLUSION AND FUTURE WORK

By investigating a set of UML2 activity diagrams from

an industry partner, we showed, that there are activities in

practical use, that contain a number of redundant elements. To

improve the use of these activities for automated approaches,

we proposed a transformation that removes redundant elements

while preserving their behavior. The transformation and its

property of behavior preservation are based on the assumption

of Petri net based semantics. The transformation merges the

redundant elements to a single element, adds ControlNodes,

and connects them to existing elements to assure the preser-

vation of behavior. The number of added ControlNodes is in a

linear relation to the number of redundant elements. There are

special cases that need less ControlNodes for the preservation.

In order to show the preservation of behavior after transform-

ing the activities, we presented how to derive reachability

graphs from an activity and how to compare reachability

graphs of different activities. The comparison showed that the

transformation preserves the behavior of an activity containing

multiple redundant elements with multiple instances. Since the

transformation creates a single-entry single-exit structure, we

argue that the preservation is valid in general.

Although we argue for the preservation of the behavior, a

formal proof for correctness is still needed. There are a number

of other formal semantics proposed for UML2 activities.

Whether or not all aspects of the preservation hold for these

semantics is worth investigating as well as considering all

possible constellations of elements in activities.

REFERENCES

[1] L. Apfelbaum and J. Doyle, “Model Based Testing,” in Software Quality

Week Conference, 1997.
[2] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-Driven Engineer-

ing Practices in Industry,” in 33rd International Conference on Software

Engineering (ICSE), 2011.
[3] Object Management Group (OMG), “OMG Unified Modeling Language

(OMG UML), Version 2.5,” OMG Document Number formal/2015-03-
01 (http://www.omg.org/spec/UML/2.5/), 2015.

[4] E. Sikora, B. Tenbergen, and K. Pohl, “Industry needs and research
directions in requirements engineering for embedded systems,” Require-

ments Engineering, vol. 17, no. 1, 2012.
[5] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software

Engineering in Practice,” Synthesis Lectures on Software Engineering,
2012.

[6] D. Drusinsky, “From UML activity diagrams to specification require-
ments,” in IEEE International Conference on System of Systems Engi-

neering (SoSE), 2008.
[7] H. Störrle, “On the Impact of Layout Quality to Understanding

UML Diagrams,” in Visual Languages and Human-Centric Computing

(VL/HCC), 2011 IEEE Symposium on. IEEE, 2011.
[8] W. Liu, S. Easterbrook, and J. Mylopoulos, “Rule-Based Detection of

Inconsistency in UML Models,” in Workshop on Consistency Problems

in UML-Based Software Development, vol. 5, 2002.
[11] D. Firesmith, “Generating Complete, Unambiguous, and Verifiable Re-

quirements from Stories, Scenarios, and Use Cases.” Journal of Object

Technology, vol. 3, no. 10, 2004.

[9] M. Beckmann and A. Vogelsang, “What is a Good Textual Representa-
tion of Activity Diagrams in Requirements Documents?” in 7th Inter-

national Model-Driven Requirements Engineering Workshop (MoDRE),
2017.

[10] H. Kim, S. Kang, J. Baik, and I. Ko, “Test Cases Generation from
UML Activity Diagrams,” in 8th ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking, and Paral-

lel/Distributed Computing (SNPD), vol. 3, 2007.
[12] R. Eshuis and R. Wieringa, “Tool Support for Verifying UML Activity

Diagrams,” IEEE Transactions on Software Engineering, vol. 30, no. 7,
2004.

[13] H. Störrle, “Towards clone detection in UML domain models,” Software

& Systems Modeling, vol. 12, no. 2, 2013.

[14] M. Beckmann, A. Vogelsang, and C. Reuter, “A Case Study on a Specifi-
cation Approach using Activity Diagrams in Requirements Documents,”
in 25th IEEE International Requirements Engineering Conference, 2017.

[15] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional, 1999.

[16] T. Mens, “On the Use of Graph Transformations for Model Refactoring,”
in Generative and transformational techniques in software engineering.
Springer, 2006.

[17] T. Mens, G. Taentzer, and D. Müller, “Model-Driven Software Refactor-
ing,” Model-Driven Software Development: Integrating Quality Assur-

ance, 2008.

[18] G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel, “Refactoring
UML Models,” in International Conference on the Unified Modeling

Language. Springer, 2001.

[19] A. Correa and C. Werner, “Applying Refactoring Techniques to
UML/OCL Models,” in International Conference on the Unified Mod-

eling Language. Springer, 2004.

[20] M. Van Kempen, M. Chaudron, D. Kourie, and A. Boake, “Towards
Proving Preservation of Behaviour of Refactoring of UML Models,” in
Research conference of the South African institute of computer scientists

and information technologists on IT research in developing countries.
South African Institute for Computer Scientists and Information Tech-
nologists, 2005.

[21] M. Boger, T. Sturm, and P. Fragemann, “Refactoring Browser for
UML,” in International Conference on Object-Oriented and Internet-

Based Technologies, Concepts, and Applications for a Networked World.
Springer, 2002.

[22] M. Misbhauddin and M. Alshayeb, “UML model refactoring: a system-
atic literature review,” Empirical Software Engineering, vol. 20, no. 1,
2015.

[23] K. Altmanninger, “Models in Conflict–Towards a Semantically En-
hanced Version Control System for Models,” in International Conference

on Model Driven Engineering Languages and Systems. Springer, 2007.

[24] B. Kaur and E. H. Kaur, “Clone Detection in UML Sequence Diagrams
Using Token Based Approach,” International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 5, no. 5,
2015.

[25] M. Uzam, Z. Li, and M. Zhou, “Identification and elimination of
redundant control places in Petri net based liveness enforcing super-
visors of FMS,” The International Journal of Advanced Manufacturing

Technology, vol. 35, no. 1, 2007.

[26] J. Nicolás and A. Toval, “On the Generation of Requirements Speci-
fications from Software Engineering Models: A Systematic Literature
Review,” Information and Software Technology, vol. 51, no. 9, 2009.

[27] M. Usman and A. Nadeem, “Automatic Generation of Java Code from
UML Diagrams using UJECTOR,” International Journal of Software

Engineering and Its Applications, vol. 3, no. 2, 2009.

[28] D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases
from UML Activity Diagrams.” Journal of Object Technology, vol. 8,
no. 3, 2009.

[29] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-

ings of the IEEE, vol. 77, no. 4, 1989.

