
Massively Parallel Data Processing on
Infrastructure as a Service Platforms

vorgelegt von
Dipl.-Inf. Daniel Warneke

aus Berlin

der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Sahin Albayrak
Gutachter: Prof. Dr. Odej Kao

Prof. Dr. Volker Markl
Prof. Dr. Felix Naumann

Tag der wissenschaftlichen Aussprache: 28. September 2011

Berlin 2011
D 83

ii

Acknowledgement

I would like to take the chance of expressing my sincere gratitude to a number of people
who accompanied me in the course of my studies and helped shaping this thesis.

First and foremost I would like to thank my advisor Odej Kao. He provided me with
a great working environment in his research group and supported my work through
many helpful comments and collaboration opportunities. I also would like to express my
appreciation to Volker Markl and Felix Naumann for agreeing to review this thesis.

Much of the great work atmosphere I experienced at TU Berlin is owed to the many
people I had the opportunity to work with. First of all, I would like give credit to
the wonderful members of the CIT team (past and present), especially Dominic Battré,
Philipp Berndt, Björn Lohrmann, André Höing, Matthias Hovestadt, and Martin Raack.
They were always open to discussions (on research and non-research related matters)
and provided help on technical problems whenever possible. Moreover, I greatly appre-
ciated their company during the countless evenings we spent working late together in
the office.

I would also like to thank the many master students (and partly now colleagues) I was
lucky enough to work with, namely Natalia Frejnik, Andreas Kliem, Alexander Stanik,
and Mareike Strüwing. They all helped to develop many valuable ideas of this thesis and
contributed to the prototypic implementation. Siddhant Goel was a summer intern at
our research group in 2009 and helped building the foundation for the topology inference
research which is presented in this thesis.

Furthermore, I must not forget to express my gratitude to the DIMA research group of
TU Berlin, in particular Volker Markl, Fabian Hüske, and Stephan Ewen. Volker was
kind enough to take me with this group on several research trips and introduced me
to many interesting people of the database community. Fabian and Stephan provided
very helpful feedback on the design of the Nephele framework and were always open to
discussions on new ideas centering around large-scale data analysis systems.

Finally, I would like to thank my dear family for their love and support, especially my
father Joachim who proofread this thesis, although computer science is most certainly
not his favorite subject.

iii

iv

Abstract

In recent years, Infrastructure as a Service (IaaS) clouds have emerged as a promising
new platform for massively parallel data processing. By eliminating the need for large
upfront capital expenses, operators of IaaS clouds offer their customers the unprece-
dented possibility to acquire access to a highly scalable pool of computing resources on a
short-term basis and enable them to execute data analysis applications at a scale which
has been traditionally reserved to large Internet companies and research facilities.

However, despite the growing popularity of these kinds of distributed applications, the
current parallel data processing frameworks, which support the creation and execution
of large-scale data analysis jobs, still stem from the era of dedicated, static compute
clusters and have disregarded the particular characteristics of IaaS platforms so far.

This thesis revisits the design of a parallel data processing framework against the back-
ground of the new possibilities and challenges of IaaS clouds with the objective of im-
proving the processing efficiency on these platforms in terms of both time and cost. In
particular, the thesis analyzes how parallel data processing frameworks can take advan-
tage of the cloud’s ability for rapid resource provisioning and presents a new parallel
data processing framework called Nephele, which explicitly exploits these new cloud fea-
tures. Moreover, several approaches are presented to reduce the increased risk of I/O
bottlenecks during the job execution which results from the cloud’s use of hardware
virtualization.

In order to underline their effectiveness, all contributions of this thesis are evaluated
through various practical experiments and, whenever possible, contrasted to the state of
the art in the respective field.

v

vi

Zusammenfassung

Infrastructure as a Service (IaaS) Clouds haben sich in den vergangenen Jahren zu einer
vielversprechenden neuen Plattform für massiv-parallele Datenverarbeitung entwickelt.
Durch den Wegfall der Notwendigkeit hoher Anfangsinvestitionen bieten Betreiber von
IaaS Clouds ihre Kunden die nie dagewesene Möglichkeit, kurzzeitigen Zugriff auf einen
hoch skalierbaren Pool von Rechenressourcen zu erhalten und darauf Datenanalysepro-
gramme in einer Größenordnung auszuführen, die bislang nur großen Internetfirmen und
Forschungseinrichtungen vorbehalten war.

Trotz der steigenden Popularität dieser Form von verteilten Anwendungen, stammen
die aktuellen Datenverarbeitungsframeworks, die die Erstellung und Ausführung dieser
großangelegten Aufgaben (Jobs) zur Datenanalyse unterstützen, immernoch aus der Ära
der dedizierten, statischen Rechencluster und haben die speziellen Eigenschaften der IaaS
Plattformen bislang außer Acht gelassen.

Diese Doktorarbeit greift den Entwurf eines parallelen Datenverarbeitungsframeworks
vor dem Hintergrund der neuen Möglichkeiten und Herausforderungen einer IaaS Cloud
neu auf, und zwar mit dem Ziel, die Verarbeitungseffizienz von Jobs auf dieser Plattform
sowohl in Hinblick auf die Zeit als auch auf die Kosten zu verbessern. Dabei analysiert die
Arbeit, wie ein Framework für parallele Datenverarbeitung die Fähigkeiten einer Cloud
zur schnellen Ressourcenbereitstellung nutzen kann und präsentiert daraufhin ein neues
Verarbeitungsframework mit dem Namen Nephele, welches diese neuen Möglichkeiten
der Cloud explizit ausnutzt. Darüber hinaus werden noch mehrere Ansätze zur Re-
duzierung des erhöhten Risikos von I/O Flaschenhälsen während der Jobausführung
vorgestellt, welches in einer Cloud durch die Verwendung von Hardwarevirtualisierung
entsteht.

Um ihre Leistungsfähigkeit aufzuzeigen, werden alle Beiträge dieser Doktorarbeit durch
zahlreiche praktische Experimente evaluiert und, sofern möglich, mit dem aktuellen
Stand der Technik gegenübergestellt.

vii

viii

Contents

1. Introduction 1
1.1. Problem Definition . 3

1.2. Contribution . 5

1.3. Outline of the Thesis . 7

2. Characteristics of Infrastructure as a Service Clouds 9
2.1. Service Models of IaaS Clouds . 9

2.1.1. Compute Service Models . 10

2.1.2. Storage Service Models . 11

2.1.3. Service Level Agreements . 13

2.2. User Interface to IaaS Clouds . 13

2.3. Performance Characteristics . 15

2.3.1. CPU Performance Characteristics 16

2.3.2. I/O Performance Characteristics 19

2.4. Summary . 24

3. Exploiting Dynamic Resource Allocation 27
3.1. Design Principles . 28

3.2. The Nephele Parallel Data Processing Framework 29

3.2.1. Architecture . 29

3.2.2. Job Description . 31

3.2.3. Job Scheduling and Execution . 33

3.3. Parallelization and Scheduling Strategies 36

3.3.1. Finding Suitable Degrees of Parallelism and VM Types 36

3.3.2. Automatic VM Allocation and Deallocation 38

3.4. Evaluation . 39

3.4.1. Experiment 1: MapReduce and Hadoop 40

3.4.2. Experiment 2: MapReduce and Nephele 41

3.4.3. Experiment 3: DAG and Nephele 44

3.4.4. Results . 46

3.5. Related Work . 50

3.6. Summary . 52

ix

4. Detecting Bottlenecks in Parallel Data Flow Programs 53
4.1. Processing Model and Problem Definition 54

4.1.1. Processing Model . 55

4.1.2. Problem Definition . 56

4.2. Bottleneck Detection Algorithms . 57

4.3. Implementation in Nephele . 60

4.4. Evaluation . 62

4.4.1. Use Case . 63

4.4.2. Results . 64

4.5. Related Work . 67

4.6. Summary . 69

5. Mitigating I/O Variations with Adaptive Compression 71
5.1. Design Principles . 72

5.2. Adaptive Online Compression in IaaS Clouds 74

5.2.1. Decision Model . 74

5.2.2. Implementation in Nephele . 76

5.3. Evaluation . 79

5.3.1. Adaptivity . 79

5.3.2. Changing Data Compressibility . 82

5.4. Related Work . 83

5.5. Summary . 84

6. Topology Inference in IaaS Clouds 87
6.1. Analysis of Network Path Characteristics in Clouds 89

6.1.1. Inference based on Packet Loss . 90

6.1.2. Inference based on Packet Delay 92

6.1.3. Discussion . 94

6.2. Examining the Accuracy of Topology Inference 95

6.2.1. Obtaining Initial Similarity Values for the VMs 95

6.2.2. Accuracy of the Inferred Topologies 96

6.2.3. Transferring Binary Trees into General Trees 99

6.3. Implementation in Nephele . 100

6.4. Evaluation . 102

6.5. Related Work . 103

6.6. Summary . 105

7. Interaction with Higher Layer Components 109
7.1. The Stratosphere Software Stack . 109

7.2. The PACT Layer . 112

7.2.1. The Structure of a PACT Program 113

x

7.2.2. The PACT Input Contracts . 114
7.2.3. The PACT Output Contracts . 117
7.2.4. Running PACT Programs on Nephele 118

7.3. Optimization Opportunities through the PACT Layer 120
7.4. Summary . 122

8. Conclusion 125

A. Appendix 129

xi

1. Introduction

Contents

1.1. Problem Definition . 3

1.2. Contribution . 5

1.3. Outline of the Thesis . 7

Today a growing number of companies have to process data sets which are increasing
exponentially in complexity and size. Classic representatives of these companies are
operators of Internet search engines, like Google, Yahoo, or Microsoft, which have to
crawl the web for information and prepare it for efficient retrieval. However, besides this
traditional web search use case, new use cases have constituted a growing demand for
large-scale data analysis in both industry and academia.

Examples of these use cases are manifold: They range from large scientific simulations
in the scale of tera or even peta bytes [63], over the processing of radio-frequency iden-
tification (RFID) data in the domain of chain supply management [60] to data analysis
problems from the field of life sciences [68].

The challenge of processing these large range of data sets in a scalable and cost-efficient
manner has rendered traditional database solutions prohibitively expensive [37]. Instead,
recent price trends for commodity hardware and multicore CPUs have popularized an
architectural paradigm which favors a massively parallel data processing on a large
set of inexpensive computers over expensive servers. Problems like processing crawled
documents or regenerating a web index are split into several independent subtasks,
distributed among the available nodes, and computed in parallel.

In order to simplify the development of distributed applications on top of such highly par-
allelized architectures, many Internet companies have started to build customized data
processing frameworks. Examples are Google’s MapReduce [43], Microsoft’s Dryad [74],
or Yahoo!’s Map-Reduce-Merge [147]. They can be classified by terms like high through-
put computing (HTC) or many-task computing (MTC), depending on the amount of
data and the number of tasks involved in the computation [106]. Parts of the data pro-
cessing community also use the term data-intensive scalable computing (DISC) frame-
works to refer to them [52]. Although these systems differ in design, their programming
models share similar objectives, namely hiding the hassle of parallel programming, fault

1

1. Introduction

tolerance, and execution optimizations from the developer. Developers can typically
continue to write sequential programs. The processing framework then takes care of
distributing the program among the available nodes and executes each instance of the
program on the appropriate fragment of data.

However, despite the price decline for commodity hardware, a reasonable application of
such parallel data processing frameworks has traditionally been limited to companies
which have specialized in large-scale data analysis and therefore operate their own data
centers. For other institutions, which only have to carry out such analysis tasks occa-
sionally, the cost for acquiring and maintaining a large IT infrastructure has often been
prohibitive. Parts of the computer science community have tackled this problem with
grid computing [55]. Its overall idea is to combine servers from multiple administrative
domains to a shared resource pool which can temporarily be dedicated to specific appli-
cations. Although the developed protocols did not lead to a software environment that
grew beyond its community [20], grid computing was driven by the vision of transform-
ing compute and storage resources from something that one buys and operates oneself
to something that is operated by a third party [56] and can be consumed as a service.

A similar vision has recently gained wide-spread attention under the term cloud comput-
ing. Cloud computing refers to the idea of delivering dynamically-scalable IT resources
like computing power, storage or higher level platforms and services on demand to exter-
nal customers over the Internet [56]. The resources are rapidly provisioned and released
with minimal management effort or service provider interaction [93], allowing the cloud
customer to quickly grow or shrink the rented infrastructure according to his require-
ments without long term commitment or the need of large capital expenses.

Operators of so-called Infrastructure as a Service (IaaS) clouds, like Amazon Elastic
Compute Coud (EC2) [8] or Rackspace [105], have specialized in offering their customers
access to storage and computing resources hosted within their data centers. The size
of their data centers typically adds up to thousands or ten thousands of computers,
creating the impression of virtually unlimited resources to the customer. To facilitate
their flexible allocation, the computing resources are typically deployed in form of virtual
machines (VMs). The usage of the leased resources is charged on a short-term basis (for
example, processors by the hour and storage by the day), thereby rewarding conservation
by letting machines and storage go when they are no longer useful [20].

The prospect of using a thousand VMs for one hour at the same cost as one VM
for a thousand hours has made IaaS clouds an attractive new platform for the above-
mentioned parallel data processing frameworks. In 2007, the New York Times announced
they used 100 VMs of the Amazon EC2 cloud in parallel to convert large parts of their
article archive into publicly available PDF files in under 24 hours [61]. Projects like
Hadoop [124], a popular open source implementation of Google’s MapReduce frame-
work, have already begun to promote using their frameworks in the cloud [141]. As a

2

1.1. Problem Definition

result of the growing interest, Amazon integrated Hadoop as one of its core infrastructure
services [14] in 2009. Since then, several companies have become known as customers of
this parallel data processing platform (e.g. [16, 19]).

1.1. Problem Definition

Although the VM abstraction of IaaS clouds fits the architectural paradigm assumed
by the current data processing frameworks, it is important to recall that these data
processing frameworks have been designed with traditional, dedicated data centers in
mind. These dedicated data centers are essentially static in size and fully controlled by
that party which also runs the data processing framework. The key to an IaaS cloud’s
economic operation, however, lies in statistical multiplexing [20]. This means many
different parties dynamically share the same physical hardware for a specific period of
time, but are separated from each other through hardware virtualization.

Compared to dedicated data centers, the statistical multiplexing allows for a much more
flexible and cost-efficient access to the required computing resources for the individual
cloud customers on the one hand. On the other hand, the necessary virtualization also
results in a loss of control over the physical hardware environment. With respect to
parallel data processing this leads to new opportunities but also challenges:

The biggest opportunity for parallel data processing on IaaS platforms is probably the
rapid resource provisioning. In contrast to classic cluster setups, new VMs can be
allocated at any time through a well-defined interface and become available in a matter
of seconds. Machines which are no longer used can be terminated instantly and the cloud
customer will not be charged for them any longer. Moreover, compared to the traditional
data center setups, most IaaS clouds offer VMs with different hardware characteristics
(number of CPU cores, amount of main memory, etc.) and at different cost, providing
the possibility of heterogeneous computing resources when needed.

However, instead of embracing the dynamic resource allocation, current data processing
frameworks rather expect the cloud to imitate the static nature of the cluster environ-
ments they were originally designed for. For example, Amazon Elastic MapReduce [14],
currently a major product for cloud data processing, does not support to change the set
of allocated VMs for a processing job in the course of its execution, although the tasks
the job consists of might have completely different demands on the environment. As a
result, the rented resources may be inadequate for big parts of the processing job, which
may lower the overall processing performance and increase the cost.

In contrast to that, a data processing framework which exploits both the rapid resource
provisioning and the possible resource heterogeneity could flexibly adapt the rented

3

1. Introduction

computing resources to the demands of the processing job. That way a processing job
would no longer have to be executed on the same static set of compute nodes it was
originally started on. Instead, following the idea of a cloud, the required resources could
be allocated on demand according to the job’s current processing phase and adequate
to the hardware demands of the job’s individual tasks. After each phase, the machines
could be released and no longer contribute to the overall processing cost.

Facilitating such use cases entails several fundamental changes in the design of a data
processing framework which have not been investigated so far. For example, compute
nodes can no longer be assumed to be owned by the data processing framework. Instead,
the framework must be able to lease the required resources from the cloud with a clear
notion of monetary cost. The way to model this leasing, from the programming abstrac-
tion down to the resource scheduler, is currently an open research question. Moreover,
there exist no allocation strategies for VMs which aim at optimizing the processing cost
of individual MTC-like applications.

Besides the new opportunities, IaaS clouds also lead to new challenges which also must
be taken into account for efficient parallel data processing. As indicated above, one
major challenge pertains to the loss of control over the physical hardware compared to
classic cluster setups.

This loss of hardware control carries particular weight with respect to the available I/O
bandwidth. Since the VMs of different customers may be colocated on the same host, the
I/O workloads induced by one VM can affect the I/O performance of the other machine
negatively [71]. This can lead to unpredictable performance fluctuations which render
large parts of the rented computing resources underutilized. Moreover, current data
processing frameworks offer to take the network topology, i.e., the way the computing
resource are physically connected to each other, into account in order to exploit data
locality [43]. In an IaaS cloud, however, the physical network topology is typically not
exposed to the customer, which further increases the risk of I/O bottlenecks. If and
to what extent parallel data processing frameworks or cloud applications in general can
counteract these limitations is still an open question in the research community.

Another research question that arises from the cloud’s ability to provide large sets of
compute nodes on demand is how to assist developers in finding reasonable degrees of
parallelization for their processing jobs. Since there is no longer a predetermined limit
on the number of available resources like in a classic cluster setup, developers might be
tempted to reduce the completion times of their jobs by larger and larger scale-outs. Of
course, the vast majority of jobs cannot be parallelized indefinitely, but will experience
insuperable I/O bottlenecks at some point. However, the problem of determining this
very point in an environment with virtually unlimited computing power has not been
addressed so far.

4

1.2. Contribution

In sum, current frameworks for massively parallel data processing have disregarded both
the positive and negative implications resulting from the characteristics of IaaS clouds so
far. Neither can these frameworks exploit the cloud’s new abilities for dynamic resource
allocation, nor do they include mechanisms to cover up for the loss of control over the
hardware environment or traditional parallelization guidelines. As a result of the status
quo, the problem addressed by this thesis can be summarized as

“With regard to the characteristics of IaaS clouds, how can one improve the
efficiency of massively parallel data processing on these new platforms?”

Due to the prevalent cost models of today’s IaaS clouds, the term efficiency can be
understood in two ways. On the one hand, it may refer to the processing time, i.e.,
the period of time a cloud customer must wait for his data processing job to complete.
On the other hand, efficiency may also refer to the processing cost, i.e., the amount of
money the cloud customer has to pay to the cloud operator after the completion of his
processing job.

1.2. Contribution

The contributions of this thesis with respect to massively parallel data processing on IaaS
platforms can be found in two major areas, the exploitation of the cloud’s dynamic re-
source allocation and the mitigation of the loss of control over the hardware environment
compared to classic cluster setups.

In the first area, the thesis presents the first data processing framework to explicitly
exploit the flexible resource provisioning offered by today’s IaaS. The new framework
named Nephele offers to flexibly adjust the number of allocated VMs according to the
current processing workload. In the course of a processing job the required VMs are
automatically instantiated and terminated. Moreover, Nephele offers support for hetero-
geneous compute nodes, i.e., different tasks of a processing job can be assigned to differ-
ent types of VMs according to their individual demand for CPU power, main memory,
etc. Based on the characteristics of today’s IaaS clouds, the thesis describes Nephele’s
fundamental design principles, discusses different strategies for the allocation of VM,
and highlights the resulting performance benefits through a comparison with the popu-
lar Hadoop framework. Moreover, it presents a novel approach to detect bottlenecks in
parallel data flow programs in order to alleviate the problem of missing parallelization
guidelines for data processing in the cloud.

In the second area, this thesis introduces two new approaches to counteract the loss of
hardware control as described in the previous section. The first approach makes use of
adaptive online compression to respond to changes in the VMs’ available I/O bandwidth.

5

1. Introduction

The second approach borrows from the field of network topology inference [98]. It
uses end-to-end measurements to gain knowledge about the cloud’s physical network
topology and exploit it in order to improve the processing job’s data locality. Unlike
existing work in the respective fields, both approaches have been explicitly designed
towards the characteristics of IaaS clouds. Especially the impact of different hardware
virtualization techniques has been carefully studied and considered in the design process.
As shown through various experimental evaluations, both approaches can improve the
I/O performance of parallel data processing on IaaS platforms significantly.

Parts of this thesis have been published in the following publications:

Journals

1. Daniel Warneke, Odej Kao
Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in
the Cloud
In: IEEE Transactions on Parallel and Distributed Systems, 22(6), pp. 985-997,
2011

2. Alexander Alexandrov, Dominic Battré, Stephan Ewen, Max Heimel,
Fabian Hueske, Odej Kao, Volker Markl, Erik Nijkamp, Daniel Warneke
Massively Parallel Data Analysis with PACTs on Nephele
In: Proceedings of the VLDB Endowment, 3(1-2), pp. 1625-1628, 2010

Proceedings

3. Daniel Warneke, Odej Kao
Nephele: Efficient Parallel Data Processing in the Cloud
In: Proceedings of 2nd Workshop on Many-Task Computing on Grids and Super-
computers (MTAGS ’09), pp. 1-10, 2009

4. Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl,
Daniel Warneke
Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale
Analytical Processing
In: Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC ’10),
pp. 119-130, 2010

5. Dominic Battré, Matthias Hovestadt, Björn Lohrmann, Alexander Stanik,
Daniel Warneke
Detecting Bottlenecks in Parallel DAG-based Data Flow Programs

6

1.3. Outline of the Thesis

In: Proceedings of 3rd Workshop on Many-Task Computing on Grids and Super-
computers (MTAGS ’10), pp. 1-10, 2010

6. Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske,
Odej Kao, Volker Markl, Erik Nijkamp, Daniel Warneke
MapReduce and PACT - Comparing Data Parallel Programming Models
In: Proceedings of the 14th Conference on Database Systems for Business, Tech-
nology, and Web (BTW 2011), pp. 25-44, 2011

7. Matthias Hovestadt, Odej Kao, Andreas Kliem, Daniel Warneke
Evaluating Adaptive Compression to Mitigate the Effects of Shared I/O in Clouds
In: Proceedings of the 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum (IPDPSW ’11), pp. 1042-1051,
2011

8. Dominic Battré, Natalia Frejnik, Siddhant Goel, Odej Kao, Daniel
Warneke
Inferring Network Topologies in Infrastructure as a Service Clouds
In: Proceedings of the 11th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing (CCGRID ’11), pp. 604-605, 2011

9. Dominic Battré, Natalia Frejnik, Siddhant Goel, Odej Kao, Daniel
Warneke
Evaluation of Network Topology Inference in Opaque Compute Clouds Through
End-to-End Measurements
In: Proceedings of the 4th IEEE International Conference on Cloud Computing
(CLOUD ’11), pp. 17-24, 2011

1.3. Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Characteristics of Infrastructure as a Service Clouds

Chapter 2 highlights the currently prevalent service models of IaaS clouds,
describes the most common ways a customer can interact with these systems,
and elaborates on typical performance characteristics of these platforms.

Chapter 3: Exploiting Dynamic Resource Allocation

Chapter 3 discusses the fundamental design principles a parallel data process-
ing framework must meet in order to facilitate dynamic resource allocation.

7

1. Introduction

Based on these design principles, the chapter presents the new Nephele frame-
work and demonstrates possible efficiency gains through the integration of
the new cloud capabilities in the job processing.

Chapter 4: Detecting Bottlenecks in Parallel Data Flow Programs

Chapter 4 deals with the problem of finding reasonable scale-outs for parallel
processing jobs in IaaS environments. In this context, the chapter presents a
novel scheme for the detection of CPU and I/O bottlenecks in these setups
and demonstrates the integration in Nephele.

Chapter 5: Mitigating I/O Variations with Adaptive Compression

Chapter 5 discusses the problem of I/O variations as a result colocated VMs
in IaaS clouds and presents a novel adaptive compression scheme to mitigate
these effects.

Chapter 6: Topology Inference in IaaS Clouds

Chapter 6 addresses the lack of topology information for efficient parallel
data processing in clouds. In order to deal with this problem, the chapter
evaluates topology inference based on end-to-end measurements and presents
an improved inference approach to reconstruct likely data center network
structures with or without the assistance of internal network components.

Chapter 7: Interaction with Higher Layer Components

Chapter 7 considers the contributions of this thesis in the larger scope of the
Stratosphere research project and discusses optimization opportunities with
regard to semantically richer layers of the Stratosphere software stack.

Chapter 8: Conclusion

Chapter 8 concludes the thesis with a summary of the contributions and an
outlook on promising future research topics.

8

2. Characteristics of Infrastructure as a Service
Clouds

Contents

2.1. Service Models of IaaS Clouds 9

2.1.1. Compute Service Models . 10

2.1.2. Storage Service Models . 11

2.1.3. Service Level Agreements . 13

2.2. User Interface to IaaS Clouds 13

2.3. Performance Characteristics . 15

2.3.1. CPU Performance Characteristics 16

2.3.2. I/O Performance Characteristics 19

2.4. Summary . 24

Following the mission statement of this thesis, this chapter will introduce the anatomy
of an IaaS cloud and contrast its economic and technical properties against those of
traditional data centers from a user’s perspective. The basis for the examination will
in many parts be the Amazon EC2 cloud [8], which is widely regarded as a de-facto
standard for IaaS platforms [64].

2.1. Service Models of IaaS Clouds

The overall service model of IaaS clouds centers around the provisioning of flexible and
scalable IT infrastructures over the Internet. Customers of IaaS clouds can dynamically
adapt the size of the leased infrastructure to their demands, thereby shifting the classic
data center risks of over- or underprovisioning to the cloud operator [20].

In general, IaaS clouds distinguish between compute services, i.e., the provisioning of
VMs, and storage services. This section will exemplarily describe both service mod-
els by means of the popular IaaS platform Amazon EC2. Other IaaS providers like
Rackspace [105] or GoGrid [58] have implemented comparable service models with only
minor deviations.

9

2. Characteristics of Infrastructure as a Service Clouds

2.1.1. Compute Service Models

The Amazon Elastic Compute Coud (EC2) represents the compute service component
of Amazon’s overall cloud computing platform Amazon Web Services (AWS) [10]. Ac-
cording to its service model, customers of Amazon EC2 can rent computing power from
Amazon’s data centers on a pay-per-usage basis. Following the idea of Infrastructure as
a Service, the computing power is provided in the form of VMs which can be dynamically
created or destroyed and fully customized by the customer.

A VM, also called instance in Amazon’s terminology, is always created from a disk image
which must be specified by the customer. The disk image acts as a template for the new
VM’s initial disk content. In the most basic case, the disk image only contains the VM’s
guest operating system, however, it may also contain additional software components.
Customers of Amazon EC2 can either provide custom disk images or choose from a set
of public images which typically include free software whose license agreements permit
an unrestricted distribution, such as GNU/Linux.

Besides the disk image, a customer can also specify the type of VM to be started within
the cloud operator’s data center, the so-called instance type. The instance type describes
the hardware characteristics of the rented compute nodes. Each instance type refers to
a distinct combination of processing power, amount of main memory, and disk space.
Moreover, the instance type also influences the price of the VM. Amazon offers a fixed
set of different instances types as shown in Table 2.1.

Name Computing Power Main Memory Storage Price per Hour

Small 1 Compute Unit 1.7 GB 160 GB 0.10 $
Large 4 Compute Units 7.5 GB 850 GB 0.40 $
Extra Large 8 Compute Units 15 GB 1690 GB 0.80 $
High-CPU Medium 5 Compute Units 1.7 GB 350 GB 0.20 $
High-CPU Extra Large 20 Compute Units 7 GB 1690 GB 1.20 $

Table 2.1.: Overview of Amazon EC2’s available VM types (instance types) and prices
as of September 2009 [8].

Amazon expresses the computing power of each VM type in a custom unit, the so-called
Amazon EC2 Compute Unit. According to Amazon’s website [8], an Amazon EC2 Com-
pute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor. Amazon has chosen to introduce a custom definition to better manage
the consistency and predictability of compute capacity across different (generations of)
hardware platforms.

Besides the type, the price a customer has to pay for a VM depends on two additional
factors: The first factor is the period of time the machine has been running. Here,

10

2.1. Service Models of IaaS Clouds

Amazon has popularized the per-hour pricing model, i.e., a customer is charged for
the VM usage by the hour with partial hours being billed as full hours. After being
shutdown, the VM is destroyed and incurs no additional charges. The disk content of
destroyed VMs is typically discarded unless the customer has chosen to create a snapshot
of the VM before. In this case, the machine can be restarted from the snapshot, however
at the expense of a small fee which Amazon charges for storing the snapshot.

Recently, Amazon extended its initial per-hour pricing model by two refinements. Since
Amazon EC2 generally does not guarantee that a customer’s request for VMs can always
be fulfilled, they introduced so-called reserved instances besides the regular instances.
With reserved instances customers can make a one-time payment for each VM they want
to reserve for a particular time span, for example one year. In turn, Amazon reserves the
physical resources required to run the VM during that time span and allows a discount
on the hourly usage charge.

The latest refinement to Amazon’s per-hour price model has been introduced with the
so-called spot instances. Amazon uses spot instances to sell temporary excess capacity in
their data centers. A customer can bid a price he is willing to pay for a particular instance
type per hour. Depending on the current demand for computing resources, Amazon
launches the requested VM at the bidden price. Spot instances are often significantly
cheaper than regular instances [149]. However, in case the other customers agree to
pay a higher hourly fee, Amazon reserves the right to shut down already started spot
instances without further notice in order to regain physical resources.

The second major cost factor of a VM is the network traffic it causes. While internal
network traffic, i.e., network traffic among instances inside the same data center, is free
of charge, data transfers to other EC2 data centers or, in general, other hosts on the
Internet come at an additional fee. The concrete cost per GB of data depends on the
overall amount of data sent within a month and ranged between 0.10 and 0.17 $ per GB
as of September 2009 [8].

2.1.2. Storage Service Models

As indicated in the previous subsection, the flexible per-hour pricing model of most
IaaS clouds leads to ephemeral storage inside the VMs which is discarded after the
respective machine is shut down. In order to provide persistent storage, i.e., storage that
is preserved beyond the lifetime of a VM, many operators of IaaS clouds complement
their compute services with additional storage services. The usage of these services is
usually billed according to separate pricing model, so it can be offered independently of
the compute nodes’ lifetimes.

11

2. Characteristics of Infrastructure as a Service Clouds

In the context of IaaS, Amazon offers two noteworthy components for persistent storage
in their AWS portfolio, Amazon Elastic Block Storage (EBS) [12] and Amazon Simple
Storage Service (S3) [9].

Amazon EBS has been explicitly designed to work with the EC2 compute nodes. A
customer can create different EBS volumes of up to one TB in size and attach each
volume to a particular EC2 instance which is hosted in the same data center. To the
EC2 instance the EBS volume looks like a regular block device, which can be formatted
with a file system and then accessed through the operating system’s regular file system
primitives. Amazon charges customers for each EBS volume on a monthly basis, ending
with the month after the respective volume has been deallocated. As of September 2009,
the cost of one GB of storage on EBS was 0.10 $ per month [12]. Moreover, Amazon
demanded an additional fee of 0.10 $ for every one million I/O requests issued by an
EC2 instance to an EBS volume.

In contrast to Amazon EBS, Amazon S3 can be used independently of the compute
service. According to its website [9], Amazon S3 has been intentionally built with a
minimal feature set but with a strong focus on high scalability and reliability.

Amazon S3 considers the data to be stored as objects which are organized into one or
more so-called buckets. The size of an object can range from one byte to five GB. The
number of objects that can be stored is unlimited. Unlike Amazon EBS, S3 storage can-
not directly be attached to a compute instance as a raw block device. Instead, the access
and manipulation of the stored data takes place over HTTP with either the SOAP [65]
or REST [53] protocol. Moreover, Amazon S3 allows customers to concurrently access
the stored data from multiple locations. Concurrent modifications to the redundantly
stored objects are resolved by a protocol providing eventual consistency [85].

The usage of S3 storage is also billed on a monthly basis. The exact monthly fee is
composed of the pure storage cost, cost for incoming and outgoing data transfers as
well as cost for accessing and modifying objects. Moreover, the service prices vary
across different geographical regions. As of September 2009, Amazon charged users of
their US-based data centers a monthly fee between 0.12 and 0.14 $ per GB of storage,
between 0.10 and 0.17 $ per GB of outgoing data transfer, and 0.10 $ per GB of incoming
data transfer [9]. In addition, 1000 HTTP PUT, COPY, POST, or LIST requests were
billed with 0.01 $, as well as 10000 HTTP GET requests.

The cost for data transfer only applies when data packets are actually sent over the
Internet. Data transfer within the same geographic location is free of charge. In par-
ticular, VMs hosted on Amazon EC2 can access the storage service at no cost for data
transfer within the same data center.

For large data transfers, Amazon also offers customers to send in physical storage devices
like hard drives and therefore avoid excessive data transfer cost [11]. The content of the

12

2.2. User Interface to IaaS Clouds

device is then either copied to the S3 storage, or vice versa, a backup of the S3 data is
created on the physical storage device and then sent back to the customer. The cost of
the service was 80 $ per physical storage device as well as 2.49 $ per data-loading hour
as of 2009. Moreover, Amazon’s regular fees for HTTP requests to the S3 storage add
to the overall cost.

2.1.3. Service Level Agreements

A service level agreement (SLA) is a negotiated agreement between a customer and a
service provider. As part of a legal contract, it defines a common understanding about
the offered service, rights and duties of involved parties, as well as consequences of
violating the agreement. Many operators of IaaS clouds (e.g. [8, 105, 58]) also offer
SLAs to their customers in order to underline the reliability of their services.

However, in the context of IaaS clouds, it is important to notice that current SLAs
mostly cover the availability of the offered service and provide very few guarantees, if at
all, about its quality. For example, Amazon EC2 commits itself to an annual uptime of at
least 99.95% per year and VM [7]. In the event Amazon does not meet this commitment,
the affected customers can claim a refund on their monthly bill. Any legally binding
statements with regard to the available compute performance or I/O throughput are not
part of the SLA.

The company GoGrid [58] is one of the few IaaS providers which has included concrete
performance figures in its SLA [59]. Besides the regular availability commitment, the
document defines upper bounds on the network latency and packet loss their customers
have to tolerate. However, any guarantees about the CPU performance or network
throughput are also excluded from the agreement.

2.2. User Interface to IaaS Clouds

According to the definition of the National Institute of Standards and Technology
(NIST), cloud computing is highlighted by the customers’ ability to rapidly provision
and release computing resources with minimal management effort or service provider
interaction [93]. Following this idea, IaaS providers have implemented a variety of inter-
faces which their customers can use to manage the rented compute and storage resources.
Figure 2.1 summarizes the most common interfaces to an IaaS cloud from the perspective
of the cloud customer.

One interface that all IaaS providers have in common is a management interface which
their customers can use to allocate, release, and manage both their computing as well

13

2. Characteristics of Infrastructure as a Service Clouds

Cloud Customer

Public Network (Internet)

Persistent Storage
- RESTful API
- (Management Website)

VM 1

Public/Private Network

VPN GatewayCloud Controller
- Management Website
- API based on SOAP/REST

VM 2 VM nVM 3 . . .
Figure 2.1.: Common interfaces to an IaaS cloud from a customer’s perspective.

as storage resources. For the remaining chapters this thesis will refer to this interface as
the Cloud Controller interface. The location of this Cloud Controller interface, i.e., its
URL, must be well-known to the cloud customer. Moreover, the interface is in general
accessible from a public network such as the Internet.

Typically, the Cloud Controller interface allows the customer to issue management re-
quests in two ways. The first way is through a classic website to which the customer can
log on and overview his deployment, such as Amazon’s AWS Management Console [17].
The second way is through a remote prodecure call (RPC) API. This RPC API enables
the customer to adapt his current cloud setup from external applications. For exam-
ple, Amazon EC2 exposes all functions required to manage a deployment on their EC2
cloud through a well-defined Web-Service interface [13]. As a result, a plethora of tools
has evolved around this cloud platform in recent years, offering to simplify management
tasks and start or stop VMs on behalf of the customer. The authenticity of each RPC
call is ensured by a combination of certificates and secret keys which Amazon issues to
the respective customer upon registration.

After the customer has started a VM, either through the management website or the
RPC interface, the machine is instantiated from the selected disk image and booted on
a suitable host inside the cloud operator’s data center. According to recent evaluations,
the average startup time for VMs on Amazon EC2, i.e., the time from issuing the cre-
ation request until the machine switches to the ready state, ranges from approximately
one to three minutes [46, 92, 102]. During the boot process, the VM is assigned a net-
work address. The customer learns about the VM’s network address through the Cloud

14

2.3. Performance Characteristics

Controller interface and can then use it to establish a connection to the machine.

The nature of the assigned network address may depend on the concrete cloud provider.
For example, Amazon EC2 assigns each started VM a public IP address from their pool
of available network addresses. As a result, each cloud customer has the possibility
to access the rented machines directly over the Internet. Other cloud providers, like
Zimory [152], may also assign the launched VMs non-public IP addresses, so accessing
the VMs from the Internet may involve a virtual private network (VPN) gateway. In
either case, however, the communication among the allocated VMs of a customer within
the cloud is typically possible without any restriction if not explicitly configured.

The third most common interface besides the Cloud Controller and the possible VPN
gateway is the interface to manage the cloud’s persistent storage service. The persistent
storage service is usually accessible from both the Internet as well as any private network
which may be deployed among the customer’s VMs. Similar to the Cloud Controller in-
terface, all functions required to manage and access the stored data are typically exposed
through a public API. Many cloud providers [9, 58, 105] have established lightweight ac-
cess and transfer protocols based on the Representational State Transfer (REST) prin-
ciples [53]. By also building upon HTTP as the transport protocol, these RESTful APIs
have a similar robustness compared to classic Web-Service protocols like SOAP, but are
widely considered to have a lower processing complexity [4, 96]. In addition to the API,
many IaaS providers also offer a dedicated website to manage and access the persistent
storage (e.g. [17]).

2.3. Performance Characteristics

After having explained the economic properties of an IaaS cloud, the thesis will now
discuss typical performance characteristics of this new computing platform. The char-
acteristics have been gathered from previous performance studies and independent mi-
crobenchmarks. Since there is no standardized technology stack for building an IaaS
cloud, the thesis will again focus on the currently most popular cloud system Amazon
EC2. However, in order to provide a broader picture, this section will also investi-
gate the influence of virtualization in general on the CPU and I/O performance. These
virtualization benchmarks have been conducted on our local IaaS testbed running the
Eucalyptus [99] cloud software. A thorough description on the setup can be found in
the appendix.

15

2. Characteristics of Infrastructure as a Service Clouds

2.3.1. CPU Performance Characteristics

The CPU performance characteristics that can be observed in IaaS clouds or virtualized
environments in general depend heavily on the considered class of application.

For CPU-intensive applications, like classic high-performance computing (HPC) appli-
cations, the performance impact of virtualization has traditionally been low [23]. The
reason for this is that CPU-intensive applications predominantly run user level code
which can be executed natively on the physical processor. So-called privileged instruc-
tions, which may compromise the hypervisor’s control over the physical hardware and
therefore must be handled separately, are only called seldom in this domain [70]. More-
over, modern CPUs feature special virtualization extensions to reduce the overhead of
these calls and improve memory management across different VMs [132]. As a result,
CPU-intensive applications running inside a VM today typically achieve a comparable
performance to native systems [145].

For data-intensive applications, which represent the focus of this thesis, the situation
is different. Since every I/O operation leads to at least one privileged instruction, the
hypervisor may spend considerable amounts of time translating these calls so that they
comply with the x86 privilege level architecture.

Although the CPU overhead for virtualizing I/O operations has been addressed by sev-
eral researchers in recent years [94, 39, 144, 127], the concrete performance impact is
still hard to quantify in general. It depends on the type of virtualization layer (e.g. full
virtualization or paravirtualization), the type of I/O requests (network or disk I/O),
and their frequencies. Moreover, ongoing improvements in the implementation of the
individual virtualization layer may also influence the amount of overhead.

Further complicating matters, the CPU overhead for virtualizing I/O operations is even
hard to assess for an application inside a VM at runtime because the displayed CPU
utilization often does not reflect the overhead correctly. In order to illustrate both the
varying CPU overhead as well as the inaccurate display of the CPU utilization inside the
VMs, we conducted a series of experiments on our local IaaS testbed [69]. In the scope
of these experiments, we created set of small auxiliary programs to generate network and
disk I/O load. Then we contrasted the displayed CPU utilization inside the VM with
the actual CPU utilization as reported by the host system while the respective programs
were running. A detailed setup of the experiments can be found in the appendix.

To cover a broad range of virtualization techniques, we chose the two popular open source
hypervisors XEN [23] and KVM [83]. Traditionally, XEN is a prominent representative
of paravirtualization, which requires a modified guest operating system and privileged
instructions to be replaced by so-called hypercalls. Moreover, XEN is the primary vir-
tualization technique used by Amazon EC2 [102]. In contrast to that, KVM has a large

16

2.3. Performance Characteristics

installed base with the software component QEMU [28] being used for the actual device
emulation. Since QEMU does not require modifications to the guest operating system,
KVM can be considered a representative of full virtualization with respect to I/O opera-
tions. However, we also evaluated the CPU overhead and accuracy of the displayed CPU
utilization when running KVM with paravirtualization, using the modified virtio device
drivers [113] instead of QEMU. As a baseline, we also examined the CPU utilization as
displayed by VMs on Amazon EC2. For these experiments, however, we were unable to
observe the CPU utilization as reported by the host system.

In order to monitor the CPU utilization inside the VMs we continuously queried the
Linux system interface /proc/stat at an interval of one second. On the host system our
monitoring scheme was dependent on the virtualization layer we used for the respective
experiment. For KVM-based experiments we first determined the process ID of the
corresponding QEMU process, afterwards traced the CPU utilization for that process
using the /proc/<process ID>/stat interface, again at a sample interval of one second.
For XEN-based experiments we used the management tool xentop to observe the CPU
utilization that was accounted to the monitored domU from the perspective of the dom0.

Figure 2.2 illustrates the results of our experiments. Each of the four plots shows the
average CPU utilization during one particular type of I/O operation (network send and
receive, disk write and read) as reported by the operating system of the VM and the
host system. The average has been calculated from at least 120 individual samples and
is split into the fraction of time the CPU spent processing into user (USR) or kernel
mode (SYS), serving hardware (HIRQ) or software interrupts (SIRQ). In case of XEN-
based virtualization, STEAL denotes the amount of CPU time that the hypervisor has
allocated to tasks other than the observed VM.

During all the experiments involving network transfer we used a TCP connection and
made sure that the opposite part of the connection was an unvirtualized machine which
was at least as fast as the observed VM. Hence, any potential performance bottleneck
during these experiments was either induced by the network or the VM itself. For all
experiments including disk I/O we used raw I/O API to avoid caching effects inside the
VM as far as possible.

In sum, our experiments revealed large variations in the CPU overhead caused by I/O
operations across the different virtualization techniques. In particular, we found network
I/O under KVM (both using paravirtualization and full virtualization) to have a signif-
icant CPU overhead which is reflected by the CPU spending considerable amounts of
time handling software (SIRQ) and hardware interrupts (HIRQ). In fact, in case of full
virtualization, the achievable network throughput was limited by the CPU performance.
In addition, the display of the CPU utilization inside the VM is often significantly lower
than the actual CPU utilization reported by the host system. This discrepancy is not
specific to a particular type of I/O operation or virtualization technique. It can be found

17

2. Characteristics of Infrastructure as a Service Clouds

VM Host VM Host VM Host VM

C
P

U
 U

til
iz

at
io

n
[%

]

0
20

40
60

80
10

0
12

0

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
STEAL

KVM (Paravirtualization)

KVM (Full Virtualization)

XEN (Paravirtualization)

Amazon EC2

(a) Network I/O (send operation)

VM Host VM Host VM Host VM

C
P

U
 U

til
iz

at
io

n
[%

]

0
20

40
60

80
10

0
12

0
14

0

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
STEAL

KVM (Paravirtualization)

KVM (Full Virtualization)

XEN (Paravirtualization)

Amazon EC2

(b) Network I/O (receive operation)

VM Host VM Host VM Host VM

C
P

U
 U

til
iz

at
io

n
[%

]

0
10

20
30

40
50

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
STEAL

KVM (Paravirtualization)

KVM (Full Virtualization)

XEN (Paravirtualization)

Amazon EC2

(c) Disk I/O (write operation)

VM Host VM Host VM Host VM

C
P

U
 U

til
iz

at
io

n
[%

]

0
10

20
30

40

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
STEAL

KVM (Paravirtualization)
KVM (Full Virtualization)

XEN (Paravirtualization)

Amazon EC2

(d) Disk I/O (read operation)

Figure 2.2.: CPU overhead for executing I/O operations inside different VMs and accu-
racy of displayed CPU utilization during those operations.

18

2.3. Performance Characteristics

across all considered I/O operations and virtualization techniques. While for some I/O
operations the discrepancy in the reported CPU utilization is rather small (e.g. network
send operation using KVM (full virtualization) or XEN), for others (e.g. network send
operation using KVM (paravirtualization) or disk read operation using XEN) the gap
can grow up to a factor of 15.

Besides the general impact of virtualization on the CPU performance, the CPU per-
formance of VMs running on Amazon EC2 has recently caught the attention of several
researchers. Walker [135] as well as Ostermann et al. [102] evaluated Amazon’s platform
with regard to scientific computing. Ostermann et al. describe the overall CPU perfor-
mance on Amazon EC2 to be mixed, with excellent addition but poor multiplication
capabilities. Both publications, the one from Walker and from Ostermann et al. con-
clude that MPI-based applications can run significantly slower on Amazon EC2 machines
compared to native cluster setups with comparable hardware characteristics. However,
since MPI-based applications also depend on low-latency network interconnects, those
comparisons only provide little information about the pure CPU performance.

Wang and Ng [136] analyzed Amazon EC2’s scheduling strategies for VMs. Through a
set of microbenchmarks the authors discovered that the small, inexpensive VM types
typically only receive a 40-50% share of the physical processor. In practice, this re-
sults in frequent interruptions of such VMs in the order of tens of milliseconds. These
interruptions, in turn, also negatively affect the machines’ network performance.

Schad et al. [114] studied the CPU performance on Amazon EC2 with special respect
to performance variations. Their analysis revealed that VMs of the same type (with the
same advertised hardware characteristics) may be hosted on different generations of host
systems. This can lead to significant performance discrepancies between two different
VMs of the same type. Since the customer in general cannot influence the target host
system for his VMs, the authors conclude that performance predictability on Amazon
EC2 is currently hard to achieve.

2.3.2. I/O Performance Characteristics

The I/O performance characteristics of IaaS clouds or virtualized environments in general
can be considered on three different levels of scope. The first level of scope is limited
to a single VM. As pointed out in the previous subsection, within this scope, the
virtualization layer itself can have an impact on the I/O performance, depending on
the CPU overhead that occurs for the concrete virtualization approach. The second
level of scope involves two or more colocated VMs, i.e., VMs which are hosted on the
same physical server. Finally, the third level of scope covers large sets of VMs which are
potentially hosted on many different servers and even racks within a cloud data center.

19

2. Characteristics of Infrastructure as a Service Clouds

Since all three levels of scope are important with respect to efficient parallel data pro-
cessing on IaaS platforms, the thesis will now discuss them one after the other.

Level 1: Single VM Performance Characteristics

As already mentioned in the previous subsection, even if only a single VM is executed
on a physical server, its I/O performance may be degraded as a result of the additional
management and translation work the CPU has to perform. The exact performance
penalty thereby depends on the concrete virtualization technique and I/O operation.

In order to compare the I/O performance of various virtualization approaches to the
one of a native, unvirtualized system, we conducted several microbenchmarks on our
local IaaS clouds testbed [69]. Similar to the CPU microbenchmarks from the previous
subsection, VMs running on KVM (full virtualization and paravirtualization), XEN
(paravirtualization) as well as VMs running externally on Amazon EC2 were contrasted.
We modified our set of auxiliary programs to records timestamps after every 20 MB of
generated or consumed I/O data, respectively. With the help of these timestamps we
then calculated the I/O data rate as it appeared from within the VM. In total, each
auxiliary program either produced or consumed 50 GB of data. Like in the previous
experiments, the underlying physical host was fully dedicated to the observed VM. A
detailed description on the testbed is again included in the appendix.

Figure 2.3 illustrates the results of the microbenchmarks for network and disk I/O. In
terms of network throughput, the machines running with paravirtualization (Figure 2.3a)
on our local cloud testbed achieved an I/O performance comparable to the native system.
However, for the KVM-based VM with unmodified device drivers (KVM full virtualiza-
tion), we observed a significant drop in network throughput to about 160 MBit/s. The
degradation can be explained by the high amount of CPU overhead that occurs for this
kind of I/O virtualization. It also complies with the CPU bottleneck described for this
case in the previous subsection. The network throughput for the experiments we con-
ducted on Amazon EC2 averaged to approximately 500 MBit/s. Although this data rate
is significantly lower than the one we observed for XEN-based VMs on our local cloud
testbed, the results correspond to previous evaluations for the same type of VM [136].

Besides the mean I/O throughput, Figure 2.3 also shows the distribution of the data rates
measured within the individual VMs and on the native baseline system. For the network
I/O experiments, the throughput variances introduced by the different virtualization
layers on our local IaaS testbed are only marginal. Only the network experiments on
Amazon EC2 showed throughput fluctuations in the range of approximately 200 MBit/s.
They are likely to be caused by Amazon’s VM scheduling strategies [136]. However, when
writing data to the VM’s disk (Figure 2.3b), the distribution reveals another important

20

2.3. Performance Characteristics

●●

●●●●●●

●●●●●●●●● ●●

●

●

Native KVM (Full V.) KVM (Parav.) XEN (Parav.) Amazon EC2

0
20

0
40

0
60

0
80

0
10

00

D
at

a
R

at
e

[M
B

it/
s]

(a) I/O throughput (network)

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●
●●

●●●●●

●

●

●●●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

Native KVM (Full V.) KVM (Parav.) XEN (Parav.) Amazon EC2

0
20

0
40

0
60

0
80

0

D
at

a
R

at
e

[M
B

/s
]

(b) I/O throughput (disk write)

Figure 2.3.: I/O throughput and variance as observed within different types of VMs.

aspect of I/O performance in virtualized environments that must be carefully considered,
namely caching.

The disk I/O measurements conducted on KVM-based VMs (both full and paravirtual-
ization) as well as on Amazon EC2 showed a throughput fluctuation which is comparable
to the one of our native baseline system. However, with the XEN-based VM, which we
instantiated on our local cloud testbed, we witnessed significant caching effects. Due to
these caching effects the data rate inside the VM occasionally appeared to be exceed-
ingly high. In fact, the data was only buffered inside the host system’s main memory.
Periodically, when the host system decided to actually flush the buffered data to disk,
the data rate displayed inside the VM dropped to only a few MB/s. As a result of
these caching effects, the average data throughput for the XEN-based disk I/O experi-
ments also spuriously appears to be higher compared to the experiments on the native
or KVM-based systems in the plot. However, after the 50 GB of data had been written
to the VM’s disk, large portions of the data had not actually been transferred to the
physical hard disk, but still remained inside the host system’s main memory.

Similar caching effects have also been reported for VMs on Amazon EC2. Through a
series of microbenchmarks, Ostermann et al. determined the capacity of the memory-
based disk cache for all types of VMs to be about four to five GB [102]. However, our
own benchmarks on Amazon EC2 do not fully support these numbers. In the course of

21

2. Characteristics of Infrastructure as a Service Clouds

our experiments involving an EC2 VM of type “m1.small”, we only witnessed negligible
caching effects (cf. Figure 2.3). Possible explanations for this discrepancy might be
recent updates to Amazon’s software stack.

Finally, the performance characteristics of accessing Amazon’s storage services from
VMs hosted on Amazon EC2 were examined by Palankar et al. [103] and Shafer [116],
respectively. Palankar et al. measured the data access performance for reads from VMs
on Amazon EC2 to the S3 storage service. According to the authors’ results, the read
performance of Amazon S3 suffers from the transaction overhead for data objects less
than one MB in size. However, for larger objects, the authors reported throughput
rates of approximately 20 to 30 MB/s per object and EC2 instance, depending on the
experiment. Shafer examined the performance of Amazon EBS. In his paper, the au-
thor reports data transfer rates of roughly 43 MB/s for write and 68 MB/s for read
operations.

Level 2: Performance Characteristics of Colocated VMs

In order to run their data centers in an economical manner, operators of IaaS clouds
typically accommodate multiple VMs on one physical server. Those VMs, which share
the same physical server, are also called colocated VMs.

As a result of the colocation, the I/O performance characteristics of the VMs are no
longer independent of each other. For example, the I/O performance of one VM which
requires to read large portions of data from the underlying server’s hard disk may be
detrimentally affected by a colocated VM which causes the hard disk to do frequent
random disk accesses.

Improving the fairness of colocated VMs has been an area of vivid research in recent
years. By default, XEN used the so-called Borrowed Virtal Time (BVT) algorithm [48]
to schedule the execution of multiple VMs. The algorithm is an adaptation of a tradi-
tional operating system scheduler and aims at providing low-latency for real-time and
interactive applications, yet weighted sharing of the CPU across applications. However,
as pointed out by Kesavan et al. [82], the problem of scheduling VMs is more com-
plex, because, in contrast to an application, the guest operating system inside a VM
typically incorporates its own proprietary internal resource management. For example,
interrupting a VM without regard to its network behavior can cause considerable jitter
in the round-trip time (RTT) measurements carried out by the guest operating system’s
TCP subsystem [82]. This jitter may lead to unnecessary triggering of TCP’s congestion
avoidance mechanisms which, in turn, lowers the available network throughput.

As a remedy to this problem, several approaches to include the I/O characteristics of VMs
into the scheduling decision have been proposed for the popular XEN hypervisor [82,

22

2.3. Performance Characteristics

62, 79, 146, 67]. However, at this point in time, none of the proposed enhancements
has been officially included in the XEN source code [40]. If at all, they are available
as inofficial patches which must be applied to the XEN source code by each XEN user
individually. Since the maturity of these patches is generally unknown, it is highly
doubtful whether they will be used in a commercial setting like an IaaS cloud. As a result,
I/O sharing can currently result in significant and unpredictable levels of degradation in
VM performance [82].

These significant and unpredictable levels of performance degradation have also been
confirmed for particular types of VMs running on Amazon EC2 [136]. Although Ama-
zon EC2 does not publish any details on their data center setup, Wang et al. found
through various experiments that the processor sharing which Amazon EC2 uses for
the inexpensive, small VM types causes very unstable TCP and UDP throughput. The
authors observed large throughput variations for these types of VMs. According to their
paper, the TCP/UDP throughput experienced by applications can fluctuate between
one GB/s and zero, even at a timescale of tens of milliseconds. Moreover, the authors
describe abnormally large packet delay variations which can be hundred times larger
than the propagation delay between two end hosts [136].

The disk I/O performance on Amazon EC2 was evaluated by Schad et al. [114] and
Ostermann et al. [102]. According to the results of Ostermann et al., all types of VMs
in general offer better performance for sequential operations compared to similar, un-
virtualized commodity systems. Schad et al. also analyzed the variance of the disk
performance. They found that disk performance can vary significantly across different
instantiations of the same VM type. The authors assume different types of hard disks
inside Amazon data centers to be responsible for this effect.

Level 3: Performance Characteristics across Different Servers

As explained in the introduction, current platforms for massively parallel data processing
build upon an architectural paradigm which favors a large set of inexpensive compute
nodes over expensive servers. The communication among these compute nodes must be
carried out over the network. Consequently, the network bandwidth becomes a scarce
resource in such setups [43].

In order to unburden the network and avoid possible network bottlenecks, a variety of
parallel data processing frameworks try to exploit data locality, i.e., to restrict data trans-
fers to specific parts of the network as far as possible. For example, Apache Hadoop [124],
the open source implementation of Google’s MapReduce framework [43], attempts to
read remote data blocks from those nodes which are in close proximity to the one requir-
ing the data. The proximity between the compute nodes is thereby typically determined

23

2. Characteristics of Infrastructure as a Service Clouds

with respect to the physical network topology. It is considered to be the number of
internal network components a data packet must traverse from one node to the other.

While this type of proximity is easy to determine in a static cluster, it imposes some
serious obstacles for today’s IaaS clouds. In an IaaS cloud, the underlying network
topology, i.e., the way the individual VMs are physically interconnected with each other,
is usually not exposed to the customer. As a result, the proximity between two VMs
cannot be expressed easily. Although diagnosis tools like traceroute can potentially be
used to sketch a course-grained network topology connecting the customer’s individual
VMs, these tools rely on the cooperation of the internal network nodes [148]. Moreover,
they fail to identify link-layer network components like switches or bridges which also
play an important role for exploiting data locality.

Especially knowledge about network bridges which connect colocated VMs to the phys-
ical network can be highly valuable with regard to parallel data processing. In a small
microbenchmark using the well-known network measurement tool Iperf [128], I found
data transfers between two colocated KVM-based VMs to achieve throughput rates of
up to 1.5 GBit/s. In contrast to that, the transfer rates between two VMs which were
hosted on different physical servers summed up to at most 950 MBit/s, because, unlike
in the first case, data actually had to be sent across the real Ethernet network.

Although there exist different protocols to query link layer network topologies (such as
LLDP [72]), these protocols primarily aim at network diagnostics and can potentially
reveal security-relevant information about the cloud operator’s IT infrastructure. I am
not aware of a single cloud operator who offers support for such protocols. Moreover,
even if those services were enabled, there may be legal restrictions like Amazon’s terms
of service [15] under which such probes could be interpreted as unauthorized network
access [111].

Another important aspect of data locality in IaaS clouds is the fact that the location
of a VM can potentially change throughout its lifetime due to migration [97]. A cloud
operator may migrate a VM from one server to another for several reasons, for example
to consolidate the number of running servers or to guard against an impending hardware
outage. With regard to parallel data processing on top of IaaS clouds this means that
the transfer cost for a pair of VMs can potentially change during a processing job.

2.4. Summary

In this chapter the thesis highlighted the characteristics of IaaS clouds, ranging from
economic aspects to technical properties. With respect to the mission statement of this
thesis, the chapter helped to draw a clearer picture of the opportunities for efficient

24

2.4. Summary

parallel data processing in IaaS clouds but also of the technical challenges that must be
taken into account.

In terms of the opportunities, namely improving the efficiency of a processing job by
dynamically adapting the number and the type of worker nodes at runtime, the chapter
underlined that essentially all IaaS clouds today fulfill the necessary economical and
technical requirements to support the use cases motivated in the introduction:

First, all IaaS platforms I considered featured a clearly defined set of VM types, each
type with distinct hardware characteristics and a distinct price per hour. The offerings
of the respective cloud operators typically have a validity period of at least several
months, if not years, so that the hardware and cost properties of the individual VM types
could be fed into a parallel data processing framework and used as a basis for resource
management and scheduling decisions. For offerings which are subject to frequent price
fluctuations, such as Amazon’s spot instances, the respective cloud operators usually
provide an API to dynamically retrieve the latest pricing information.

Second, all considered IaaS clouds provide well-documented APIs to enable external
applications to manage the set of allocated computing resources on behalf of the cus-
tomer. Several measurements on Amazon EC2 have confirmed that the time span from
requesting a new VM until it becomes available to the customer is normally below three
minutes. Both aspects are important prerequisites to quickly respond to changes in the
workload of a parallel data processing job.

Finally, most IaaS clouds offer dedicated storage services with a separate pricing model
besides their compute service. For data-intensive processing jobs this means that a
customer can transfer the job’s input data to the cloud provider or store the job’s output
data without the need to run the potentially more expensive computing resources.

However, despite the good starting point for exploiting dynamic resource allocation, the
discussion on the performance characteristics of a IaaS cloud also underlined the initial
concerns for efficient parallel data processing on top of the new platform.

In particular, the chapter analyzed how the hardware virtualization, which is used to fa-
cilitate the cloud’s rapid resource provisioning, can lead to significant and unpredictable
levels of degradation in the performance of individual VMs. With respect to parallel
data processing, this can easily lead to bottlenecks in the processing chain which may
leave large parts of the allocated computing resources underutilized and outweigh the
benefits of the dynamic resource allocation. Moreover, the chapter illustrated how the
overhead of I/O virtualization or caching effects can lead to spurious displays of the sys-
tem performance inside a VM. This is especially a problem for all mechanisms that have
to trade off CPU against I/O performance, such as adaptive compression schemes.

25

2. Characteristics of Infrastructure as a Service Clouds

For the remainder of this thesis, I can therefore conclude that, besides their ability of
rapid resource provisioning, common IaaS platforms are characterized by a considerable
loss of control over the physical hardware compared to classic cluster environments.
Although there exist different approaches to improve a VM’s control over the underlying
hardware (especially new hardware features like Intel VT-d [73]), it is currently unclear to
what extent commercial cloud providers will adopt these technologies. Recently, Amazon
EC2 announced two new VM types for high performance computing which leverage these
new hardware features [18]. However, there has not been any comprehensive analysis on
the performance benefits yet.

As a result, a data processing framework designed for today’s IaaS clouds should rather
embrace the possible performance fluctuations which may arise from the loss of hardware
control and attempt to mitigate them on a software level.

26

3. Exploiting Dynamic Resource Allocation

Contents

3.1. Design Principles . 28

3.2. The Nephele Parallel Data Processing Framework 29

3.2.1. Architecture . 29

3.2.2. Job Description . 31

3.2.3. Job Scheduling and Execution 33

3.3. Parallelization and Scheduling Strategies 36

3.3.1. Finding Suitable Degrees of Parallelism and VM Types 36

3.3.2. Automatic VM Allocation and Deallocation 38

3.4. Evaluation . 39

3.4.1. Experiment 1: MapReduce and Hadoop 40

3.4.2. Experiment 2: MapReduce and Nephele 41

3.4.3. Experiment 3: DAG and Nephele 44

3.4.4. Results . 46

3.5. Related Work . 50

3.6. Summary . 52

As motivated in the introduction, the ability of IaaS clouds to provide large sets of
possibly heterogeneous compute nodes in a matter of seconds enable new use cases for
parallel data processing which have not been possible in classic cluster setups before.
Moreover, the pay-as-you-go pricing model of clouds adds a very interesting notion of
monetary cost to this field of large-scale distributed applications and directly incentivizes
customers to use the rented resources in an economical fashion.

The current state of the art of parallel data processing on top of IaaS platforms, however,
is rather an imitation of the static, homogeneous compute cluster era. For example,
the current work flow to execute a parallel data processing job with Amazon Elastic
MapReduce [14], probably the best known offering for cloud-based data processing at
the moment, requires the cloud customer to choose a fixed number of VMs of a particular
type before the start of the job’s execution. Although the processing job might be com-
posed of several invididual subjobs, the number or type of the involved VMs cannot be
changed once the main job has been launched. The main reason for this is that Hadoop,

27

3. Exploiting Dynamic Resource Allocation

the technical foundation of the service, does not support these kinds of operations. Thus,
all opportunities for improving the efficiency of parallel data processing, either in terms
of processing time or cost, by means of the cloud’s new abilities remain wasted.

Following the discussion on the characteristics of IaaS clouds, the thesis will therefore
now elaborate on design principles a framework for parallel data processing has to meet
in order to be able to exploit the cloud’s dynamic resource allocation in the course of a
processing job. Based on these design principles, I then present our new framework for
parallel data processing called Nephele [138, 139].

Nephele is the first data processing framework to explicitly exploit the dynamic resource
allocation and resource heterogeneity offered by today’s IaaS platforms for both task
scheduling and execution. Particular tasks of a processing job can be assigned to differ-
ent types of VMs which are automatically instantiated and terminated during the job
execution. This chapter will introduce Nephele’s basic architecture and programming ab-
straction. In order to illustrate the benefits of the dynamic resource allocation, we have
performed several evaluations of MapReduce-inspired processing jobs on an IaaS cloud
system and compared the results to the popular data processing framework Hadoop.

3.1. Design Principles

Although the design of frameworks for massively parallel data processing may differ
in various ways, there are three fundamental design principles such a framework has to
fulfill to be able to take advantage of the cloud’s rapid resource provisioning and resource
heterogeneity:

• First, the framework’s scheduler (or in general the respective framework’s com-
ponent which is responsible for resource management) must become aware of the
cloud environment a job should be executed in. It must know about the different
types of available VMs as well as their cost and be able to allocate or destroy them
on behalf of the cloud customer. Technically, this entails that the scheduler must
know the network address of the Cloud Controller as introduced in Section 2.2.
Moreover, the scheduler must implement the cloud provider’s API to be able to
adapt the set of allocated computing resources in the course of the job execution.

• Second, the paradigm used to describe jobs for the respective data processing
framework must be powerful enough to express dependencies between the different
tasks the job consists of. The system must be aware of which task’s output is
required as another task’s input and on what node the respective data currently
resides. Otherwise the framework’s scheduler cannot decide at what point in time
a particular VM is no longer needed and deallocate it. The MapReduce pattern

28

3.2. The Nephele Parallel Data Processing Framework

implemented by frameworks like MapReduce [43] and Hadoop [124] is a good ex-
ample of a problematic paradigm here because data dependencies beyond a single
MapReduce job cannot be expressed. As a result, it is in general not possible to
reduce the number of nodes between two consecutive jobs, since there is always
the risk that the deallocated nodes contained important intermediate results which
might have been required by the next MapReduce job.

• Finally, the scheduler of a processing framework must be able to determine which
task of a job should be executed on which type of VM and, possibly, how many
of those. This information could be either provided externally, for example as an
annotation to the job description, or deduced internally, for instance from collected
statistics, similarly to the way database systems try to optimize their execution
plan over time [120].

While the three aspects discussed above are important cornerstones towards exploiting
dynamic resource allocation in the scope of parallel data processing, they leave different
degrees of freedom in the concrete design of a processing framework. In the next section
I will therefore present a concrete data processing framework built upon these principles
and highlight in which ways they have influenced particular design decisions.

3.2. The Nephele Parallel Data Processing Framework

In this section I will now present the parallel data processing framework Nephele [138,
139] as a concrete implementation of the design principles discussed in the previous
section. The section will introduce Nephele’s basic architecture, its abstraction for de-
scribing jobs as well as the most important internal scheduling data structures.

3.2.1. Architecture

In order to describe Nephele’s basic architecture and its interaction with the underlying
IaaS platform, I will build on the components introduced in Section 2.2.

As illustrated in Figure 3.1, Nephele’s architecture follows a classic master-worker pat-
tern. Before submitting a Nephele job, a cloud customer must start a VM which runs
the so-called Job Manager (JM). The Job Manager receives jobs from the customer’s
job client, is responsible for scheduling them, and coordinates their execution. It is not
required to run it on a node inside the IaaS cloud, but for simplicity I will assume this.

Following the design principles from the previous section, the Job Manager is the com-
ponent in the data processing framework which is capable of communicating with the

29

3. Exploiting Dynamic Resource Allocation

Public Network (Internet)

Persistent Storage

TM 1

Public/Private Network

VPN GatewayCloud Controller

TM 2 TM nTM 3 . . .

Job Client

JM

Figure 3.1.: Structural overview of Nephele running in an IaaS cloud.

Cloud Controller. Hence, it knows about the different types of VMs the underlying IaaS
cloud offers as well as their respective price per hour. In addition, it implements the
cloud’s specific management API. By means of the Cloud Controller the Job Manager
can therefore allocate or deallocate VMs according to the current job execution phase.

The actual execution of tasks which a Nephele job consists of is carried out by a set
of VMs. Each VM runs a so-called Task Manager (TM). A Task Manager receives one
or more tasks from the Job Manager at a time, executes them, and after that informs
the Job Manager about their completion or possible errors. Unless a job is submitted
to the Job Manager, the set of VMs (and hence the set of Task Managers) is expected
to be empty. Upon job reception the Job Manager then decides, depending on the
job’s particular tasks, how many and what type of VMs the job should be executed
on, and when the respective VMs must be allocated/deallocated to ensure an efficient
processing. The current strategies for these decisions are highlighted in Section 3.3. The
newly allocated VMs boot up with a previously compiled machine image. The image is
configured to automatically start a Task Manager and register it with the Job Manager.
Once all the necessary Task Managers have successfully contacted the Job Manager, it
triggers the execution of the scheduled job.

Initially, the VM image used to boot up the Task Managers is blank and does not contain
any of the data the Nephele job is supposed to operate on. Therefore, the input data of
the respective job is expected to be stored on the cloud’s persistent storage service and
to be accessible to the individual VMs in similar ways as described in Section 2.1.

30

3.2. The Nephele Parallel Data Processing Framework

3.2.2. Job Description

Jobs in Nephele are expressed as a directed acyclic graph (DAG). Each vertex in the
graph represents a task of the overall processing job, the graph’s edges define the com-
munication flow between these tasks. We decided to use DAGs to describe processing
jobs for two major reasons:

The first reason is that DAGs allow tasks to have multiple input and multiple output
edges. This tremendously simplifies the implementation of classic data combining func-
tions like, for example, join operations [147]. The second reason reflects one of the
design principles highlighted in the previous section: The DAG’s edges explicitly model
the communication paths of the processing job. As long as the particular tasks only
exchange data through these designated communication edges, Nephele can always keep
track of what VM might still require data from what other VMs and which VM can
potentially be shut down and deallocated.

Defining a Nephele job comprises three mandatory steps: First, the cloud customer
must write the user code for each task of his processing job or select it from an external
library. Second, the user code must be assigned to a vertex. Finally, the vertices must
be connected by edges to define the communication paths of the job.

Tasks are expected to contain sequential code and process so-called records, the primary
data unit in Nephele. Developers can define arbitrary types of records. From a devel-
oper’s perspective records enter and leave the task program through input or output
gates. Those input and output gates can be considered endpoints of the DAG’s edges
which are defined in the following step. Regular tasks (i.e., tasks which are later assigned
to inner vertices of the DAG) must have at least one or more input and output gates.
Contrary to that, tasks which either represent the source or the sink of the data flow
must not have input or output gates, respectively.

After having specified the code for the particular tasks of the job, the cloud customer
must define the DAG to connect these tasks. This DAG is called the Job Graph. The
Job Graph maps each task to a vertex and determines the communication paths between
them. The number of a vertex’s incoming and outgoing edges must thereby comply with
the number of input and output gates defined inside the tasks. In addition to the task
to execute, input and output vertices (i.e., vertices with either no incoming or outgoing
edge) can be associated with a URL pointing to external storage services in order to read
or write input or output data, respectively. Figure 3.2 illustrates a simple Job Graph.
It only consists of one input, one task, and one output vertex.

One major design goal of Job Graphs has been simplicity: Cloud customers should be
able to describe tasks and their relationships on an abstract level. Therefore, the Job
Graph does not explicitly model task parallelization and the mapping of tasks to VMs.

31

3. Exploiting Dynamic Resource Allocation

Input 1

Task 1

Output 1

Output 1 User Code

Output: s3://user:key@storage/outputfile

Task 1 User Code

Input 1 User Code

Input: s3://user:key@storage/inputfile

Figure 3.2.: An example of a Job Graph in Nephele.

However, cloud customers who wish to influence these aspects can provide annotations
to their job description. These annotations include:

• Number of subtasks: A developer can declare his task to be suitable for par-
allelization. Cloud customers that include such tasks in their Job Graph can
specify how many parallel subtasks Nephele should split the respective task into
at runtime. Subtasks execute the same task code, however, they typically process
different fragments of the data.

• Number of subtasks per VM: By default each subtask is assigned to a separate
VM. In case several subtasks are supposed to share the same VM, the cloud
customer can provide a corresponding annotation with the respective task.

• Sharing VMs between tasks: Subtasks of different tasks are usually assigned
to different (sets of) VMs unless prevented by another scheduling restriction. If
a set of VMs should be shared between different tasks, the cloud customer can
attach a corresponding annotation to the Job Graph.

• Channel types: For each edge connecting two vertices the cloud customer can
determine a channel type. Before executing a job, Nephele requires all edges of the
original Job Graph to be replaced by at least one channel of a specific type. The
channel type dictates how records are transported from one subtask to another at
runtime. Currently, Nephele supports network, file, and in-memory channels. The
choice of the channel type can have several implications on the entire job schedule.
A more detailed discussion on this is provided in the next subsection.

32

3.2. The Nephele Parallel Data Processing Framework

• VM type: A subtask can be executed on different VM types which may be more
or less suitable for the considered program. Therefore, we have developed special
annotations task developers can use to characterize the hardware requirements of
their code. However, a cloud customer who simply utilizes these annotated tasks
can also overwrite the developer’s suggestion and explicitly specify the VM type
for a task in the Job Graph.

If the cloud customer omits to augment the Job Graph with these specifications, Nephele’s
scheduler applies default strategies which are discussed later on in Section 3.3. Once the
Job Graph is specified, the cloud customer submits it to the Job Manager, together with
the credentials he has obtained from his cloud operator. The credentials are required
since the Job Manager must allocate/deallocate VMs during the job execution on behalf
of the cloud customer.

3.2.3. Job Scheduling and Execution

After having received a valid Job Graph from the cloud customer, Nephele’s Job Manager
transforms it into a so-called Execution Graph. An Execution Graph is Nephele’s primary
data structure for scheduling and monitoring the execution of a Nephele job. Unlike the
abstract Job Graph, the Execution Graph contains all the concrete information required
to schedule and execute the received job on the IaaS platform. It explicitly models task
parallelization and the mapping of tasks to VMs. Depending on the level of annotations
the user has provided with his Job Graph, Nephele may have different degrees of freedom
in constructing the Execution Graph. Figure 3.3 shows one possible Execution Graph
constructed from the previously depicted Job Graph (Figure 3.2). Task 1 is, for example,
split into two parallel subtasks which are both connected to the task Output 1 via file
channels and are all scheduled to run on the same VM. The exact structure of the
Execution Graph is explained in the following:

In contrast to the Job Graph, an Execution Graph is no longer a pure DAG. Instead,
its structure resembles a graph with two different levels of details, an abstract and
a concrete level. While the abstract graph describes the job execution on a task level
(without parallelization) and the scheduling of VM allocation/deallocation, the concrete,
more fine-grained graph defines the mapping of subtasks to VMs and the communication
channels between them. On the abstract level, the Execution Graph equals the cloud
customer’s Job Graph. For every vertex of the original Job Graph there exists a so-called
Group Vertex in the Execution Graph. As a result, Group Vertices also represent distinct
tasks of the overall job, however, they cannot be regarded as executable units. They
are used as a management abstraction to control the set of subtasks the respective task
program is split into. The edges between Group Vertices are only modeled implicitly as

33

3. Exploiting Dynamic Resource Allocation

Stage 1

Stage 0

ID: i-40A608A3
Type: m1.large

Input 1 (1)

Task 1 (2)

Output 1 (1)

File Channel

ID: i-59BC0013
Type: m1.small

Network Channel

Execution
Stage

Group
Vertex

Execution
Instance

Execution
Vertex

Figure 3.3.: An Execution Graph created from the original Job Graph.

they do not represent any physical communication paths during the job processing. For
the sake of presentation, they are also omitted in Figure 3.3.

As discussed in Section 2.1, IaaS clouds usually do not guarantee the availability of com-
puting resources at all times. Since Nephele attempts to improve a job’s cost efficiency
by allocating the required VMs as late as possible in the course of its execution, this
situation may be problematic. For example, a job might require to allocate a VM of a
particular type in the middle of its execution. If no such VM is available at that moment,
the job is unable to proceed. Moreover, the already allocated machines cannot be shut
down because the user code which runs inside the tasks on these nodes may be in an
inconsistent state and important intermediate results would be lost.

In order to cope with this problem, Nephele separates the Execution Graph into one or
more so-called Execution Stages. An Execution Stage must contain at least one Group
Vertex. Its processing can only start when all the subtasks included in the preceding
stages have been successfully processed. Based on this, Nephele’s scheduler ensures the
following three properties for the entire job execution: First, when the processing of
a stage begins, all VMs required within the stage are allocated. Second, all subtasks
included in this stage are set up (i.e., sent to the corresponding Task Managers along
with their required libraries) and ready to receive records. Third, before the processing
of a new stage, all intermediate results of its preceding stages are stored in a persistent
manner. Hence, Execution Stages can be compared to checkpoints. In case a sufficient
number of resources cannot be allocated for the next stage, they allow a running job to be
interrupted and later on restored when enough spare resources have become available.

The concrete level of the Execution Graph refines the job schedule to include subtasks
and their communication channels. In Nephele, every task is transformed into either

34

3.2. The Nephele Parallel Data Processing Framework

exactly one, or, if the task is suitable for parallel execution, at least one subtask. In
order to complete a task successfully, each of its subtasks must be successfully processed
by a Task Manager. Subtasks are represented by so-called Execution Vertices in the
Execution Graph. They can be considered the most fine-grained executable job unit.
In order to simplify management, each Execution Vertex is always controlled by its
corresponding Group Vertex.

Nephele allows each task to be executed on its own type of VM, so the characteristics
of the requested VMs can be adapted to the demands of the current processing phase.
In order to reflect this relation in the Execution Graph, each subtask must be mapped
to a so-called Execution Instance. An Execution Instance is defined by an ID and an
instance type representing the hardware characteristics of the corresponding VM. It is
a scheduling stub that determines which subtasks have to run on what VM (type). As
described in Section 3.1, a list of available VM types together with their cost per time
unit is expected to be accessible for Nephele’s scheduler. Moreover, Nephele assumes that
an individual instance type can be referenced by a single identifier string like “m1.small”,
similar to the way Amazon EC2 deals with its different VM types.

Before processing a new Execution Stage, the scheduler collects all Execution Instances
from that stage and tries to replace them with matching VMs from the IaaS cloud. If
all required VMs could be allocated, the subtasks are distributed among them and set
up for execution.

On the concrete level, the Execution Graph inherits the edges from the abstract level,
i.e., edges between Group Vertices are translated into edges between Execution Vertices.
In case of task parallelization, when a Group Vertex contains more than one Execution
Vertex, the developer of the consuming task can implement an interface which determines
how to connect the two different groups of subtasks. The actual number of channels that
are connected to a subtask at runtime is hidden behind the task’s respective input and
output gates. However, the user code can determine the number if necessary.

Nephele requires all edges of an Execution Graph to be replaced by a communication
channel before processing can begin. The type of the channel determines how records
are transported from one subtask to another. Currently, Nephele features three different
types of channels, all of them put different constrains on the Execution Graph.

• Network channels: A network channel lets two subtasks exchange data via a
TCP connection. Network channels allow pipelined processing, so the records
emitted by the producing subtask are immediately transported to the consuming
subtask. As a result, two subtasks connected via a network channel may be exe-
cuted on different VMs. However, since they must be executed at the same time,
they are required to run in the same Execution Stage.

35

3. Exploiting Dynamic Resource Allocation

• In-memory channels: Similar to a network channel, an in-memory channel also
enables pipelined processing. However, instead of using a TCP connection, the
respective subtasks exchange data using the VM’s main memory. An in-memory
channel typically represents the fastest way to transport records in Nephele, how-
ever, it also implies most scheduling restrictions: The two connected subtasks must
be scheduled to run on the same VM and run in the same Execution Stage.

• File channels: A file channel allows two subtasks to exchange records via the
local file system. The records of the producing task are first entirely written to an
intermediate file and afterward read into the consuming subtask. Nephele requires
two such subtasks to be assigned to the same VM. Moreover, the consuming Group
Vertex must be scheduled to run in a higher Execution Stage than the producing
Group Vertex. In general, Nephele only allows subtasks to exchange records across
different stages via file channels because this channel type is the only one which
stores the intermediate records in a persistent manner.

3.3. Parallelization and Scheduling Strategies

As explained in the previous section, the Execution Graph is Nephele’s primary data
structure for scheduling and monitoring the execution of a job. Depending on the degree
of user annotations, constructing an Execution Graph from the submitted Job Graph
may leave different degrees of freedom to Nephele. Using this freedom to construct the
most efficient Execution Graph (in terms of processing time or monetary cost) entails
several research challenges. This section discusses these challenges as well as Nephele’s
current strategies to address them.

3.3.1. Finding Suitable Degrees of Parallelism and VM Types

According to the cost model of an IaaS cloud, renting a thousand CPU cores for an hour
is no longer more expensive than renting a single CPU core for a thousand hours. As a
result, it might be tempting for cloud customers to strive for shorter completion times
of their jobs by increasing their level of parallelization. Of course, the vast majority of
compute jobs cannot be parallelized indefinitely. At some level of parallelization, the
I/O subsystem of the rented cloud resources (i.e., the bandwidth of the hard disk and
the network links) will become an insuperable bottleneck.

Parallelization beyond that point will leave the rented CPU cores underutilized and
unnecessarily increase the cost for executing the processing job on the one hand. On
the other hand, too low degrees of parallelization might cause CPU bottlenecks in the

36

3.3. Parallelization and Scheduling Strategies

processing chain, which may slow down the execution of successive tasks and also leave
large parts of the rented computing resources underutilized.

Dealing with this problem is difficult because each Nephele vertex is expected to contain
sequential but arbitrary user code. As a result, Nephele initially cannot make any
assumptions about the behavior of a task, neither about its computational complexity
nor its I/O characteristics.

As a remedy, Nephele currently pursues the following strategy: Unless the user provides
any job annotation which contains more specific instructions, each task of a Nephele job
is executed with a parallelization level of one at its first run. Moreover, each task is by
default assigned to a separate VM and connected via network channels to its predecessor
and successor tasks. The default VM type to be used is the one with the lowest price
per hour available in the IaaS cloud. However, during the job’s execution, Nephele offers
to monitor the job’s individual tasks and thereby to learn about their CPU and I/O
characteristics. Based on the gathered data, Nephele is also able to compute bottlenecks
which have occurred in the course of the processing. Details on the job monitoring and
the bottleneck detection algorithms are discussed in the next chapter.

Figure 3.4 illustrates a special graphical job viewer we devised to provide a cloud cus-
tomer with immediate visual feedback on the CPU and I/O characteristics of his job and
possible processing bottlenecks. In the current version of Nephele, a cloud customer can
utilize this feedback to successively improve the scale-out and VM assignment of a job
across different runs. For example, computational bottlenecks suggest a higher degree
of parallelization for the affected tasks. In contrast to that, I/O bottlenecks provide
hints to switch to faster channel types (like in-memory channels) which might, in turn,
suggest employing larger VM types (i.e., VMs with more CPU cores).

However, since Nephele calculates a cryptographic signature for each task, it is also
conceivable to identify recurring tasks by means of this signature and to use the previ-
ously recorded feedback data as one aspect to automatically derive reasonable degrees of
parallelism for them. Technically, it would also be possible to respond to any detected
CPU or I/O bottleneck immediately within the course of a job execution. For exam-
ple, Nephele could respond to CPU bottlenecks by successively allocating new VM from
the IaaS cloud and launching new subtasks of the respective task until the bottleneck
situation is resolved. Nevertheless, it is important to recall that the user code within a
task is typically arbitrary. Hence, the behavior of a task can change during its execution
time so that newly created subtasks may soon become idle again. Moreover, general
user code cannot be expected to cope with arbitrarily creating and removing instances
of it. Special user annotations can possibly help to resolve both of these issues. Further
ideas on these annotations are discussed in Chapter 7.

37

3. Exploiting Dynamic Resource Allocation

Figure 3.4.: Nephele’s job viewer provides immediate visual feedback on task character-
istics and possible processing bottlenecks.

3.3.2. Automatic VM Allocation and Deallocation

As indicated in the previous section, the points in time when Nephele allocates new VMs
for a processing job or releases machines which are no longer needed are on principle
determined by the Execution Stages a job is separated into. However, there are several
refinements to Nephele’s allocation strategy that shall be discussed in this subsection.

In general, new VMs for a processing job are always allocated at the beginning of a new
Execution Stage. This guarantees that all intermediate results have been stored in a
persistent manner, so in case the IaaS cloud is temporarily unable to fulfill Nephele’s
resource request, the job execution can be interrupted in a consistent state and possibly

38

3.4. Evaluation

restored later on.

However, depending on the job’s scale-out as well as the concrete IaaS cloud Nephele uses
to retrieve VMs from, the risk of experiencing resource unavailability may be negligibly
small. For these situations Nephele also features a so-called lazy initialization mode. In
this lazy initialization mode, the individual subtasks of a task are not scheduled until
their preceding subtasks actually attempt to send them any records. Consequently, the
allocation of the corresponding VMs which run these subtasks can also be postponed.

The lazy initialization mode is particularly beneficial for jobs which include one or more
dams, i.e., user code which prevents the records from flowing through the graph like in
a pipeline. For example, a sort task typically represents a dam as it requires to fully
consume its fraction of the input data before it can output any records. Depending
on the number and concrete nature of these dams in a processing job, Nephele’s lazy
initialization mode may therefore lead to later allocation times for VMs of particular
tasks and further contribute to the job’s cost efficiency.

While the allocation time of VMs is ultimately determined by the latest possible start
times of the assigned subtasks, there are different possible strategies for VM deallocation.
In order to reflect the fact that most IaaS platforms charge their customers for VM usage
by the hour, Nephele integrates the possibility to reuse VMs. To do so, it keeps track
of the VMs’ allocation times. A machine of a particular type which no longer runs any
subtask is not immediately deallocated if a VM of the same type is required either later in
the same Execution Stage or an upcoming one. Instead, Nephele keeps the VM allocated
until the end of its current lease period. If the machine is again required before the end
of that period, it is reassigned to a new Execution Vertex, otherwise it is deallocated
early enough not to cause any additional cost.

3.4. Evaluation

In this section, the thesis presents first performance results of Nephele and compares
them to the data processing framework Hadoop. We have chosen Hadoop as our com-
petitor because it is an open source software and currently enjoys high popularity in
the data processing community. Although Hadoop has been designed to run on a very
large number of nodes (i.e., several thousand nodes), according to my observations, the
software is also often used with significantly fewer machines in current IaaS clouds.

The challenge for both frameworks consists of two abstract tasks: Given a set of random
integer numbers, the first task is to determine the k smallest of those numbers. The
second task subsequently is to calculate the average of these k smallest numbers. The
job is a classic representative for a variety of data analysis jobs whose particular tasks

39

3. Exploiting Dynamic Resource Allocation

vary in their complexity and hardware demands. While the first task has to sort the
entire data set and therefore can take advantage of large amounts of main memory and
parallel execution, the second aggregation task requires almost no main memory and, at
least eventually, cannot be parallelized.

We implemented the described sort/aggregate task for three different experiments. For
the first experiment, we implemented the task as a sequence of MapReduce programs
and executed it using Hadoop on a fixed set of VMs. For the second experiment, we
reused the same MapReduce programs as in the first experiment but devised a special
MapReduce wrapper to make these programs run on top of Nephele. The goal of this ex-
periment was to illustrate the benefits of dynamic resource allocation/deallocation while
still maintaining the MapReduce processing pattern. Finally, as the third experiment,
we discarded the MapReduce pattern and implemented the task based on a DAG to also
highlight the advantages of using heterogeneous VMs.

For all three experiments, we chose the data set size to be 100 GB and generated the
integer numbers according to the rules of the Jim Gray sort benchmark [101]. Conse-
quently, each integer number had the size of 100 bytes and the data set contained about
109 distinct numbers. The cut-off variable k was set to 2 × 108, so the smallest 20% of
all numbers had to be determined and aggregated. In order to make the data accessible
to Hadoop, we started an HDFS [124] data node on each of the allocated VMs prior to
the processing job and distributed the data evenly among the nodes. Since this initial
setup procedure was necessary for all three experiments (Hadoop and Nephele), I will
ignore it in the following performance discussion.

All three experiments were conducted on our local IaaS cloud. To manage the cloud and
provision VMs on request of Nephele, we set up Eucalyptus [99]. Similar to Amazon
EC2, Eucalyptus offers a predefined set of VM types a user can choose from. During our
experiments, we used two different VM types: The first VM type was “m1.small” which
corresponds to a machine with one CPU core, one GB of RAM, and a 128 GB disk.
The second VM type, “c1.xlarge”, represents a machine with eight CPU cores, 18 GB
RAM, and a 512 GB disk. Amazon EC2 has defined comparable VM types and offered
them at a price of about 0.10 $, or 0.80 $ per hour (as of September 2009), respectively.
Further details on the system configuration during the experiments can be found in the
appendix.

3.4.1. Experiment 1: MapReduce and Hadoop

In order to execute the described sort/aggregate task with Hadoop, we created three
different MapReduce programs which were executed consecutively.

40

3.4. Evaluation

The first MapReduce job reads the entire input data set, sorts the contained integer
numbers ascendingly, and writes them back to Hadoop’s HDFS file system. Since the
MapReduce engine is internally designed to sort the incoming data between the map and
the reduce phase, we did not have to provide custom map and reduce functions here.
Instead, we simply used the TeraSort code, which has recently been recognized for being
well-suited for these kinds of tasks [101]. The result of this first MapReduce job was a
set of files containing sorted integer numbers. Concatenating these files yielded the fully
sorted sequence of 109 numbers.

The second and third MapReduce jobs operated on the sorted data set and performed
the data aggregation. Thereby, the second MapReduce job selected the first output files
from the preceding sort job which, just by their file size, had to contain the smallest
2× 108 numbers of the initial data set. The map function was fed with the selected files
and emitted the first 2× 108 numbers to the reducer. In order to enable parallelization
in the reduce phase, we chose the intermediate keys for the reducer randomly from a
predefined set of keys. These keys ensured that the emitted numbers were distributed
evenly among the n reducers in the system. Each reducer then calculated the average
of the received 2×108

n integer numbers. The third MapReduce job finally read the n
intermediate average values and aggregated them to a single overall average.

Since Hadoop is not designed to deal with heterogeneous compute nodes, we allocated
six VMs of type “c1.xlarge” for the experiment. All of these VMs were assigned to
Hadoop throughout the entire duration of the experiment.

We configured Hadoop to perform best for the first, computationally most expensive,
MapReduce job: In accordance to [101] we set the number of map tasks per job to 48
(one map task per CPU core) and the number of reducers to 12. The memory heap of
each map task as well as the in-memory file system were increased to one GB and 512
MB, respectively, in order to avoid unnecessarily spilling transient data to disk.

3.4.2. Experiment 2: MapReduce and Nephele

For the second experiment, we reused the three MapReduce programs we had written
for the previously described Hadoop experiment and executed them on top of Nephele.
In order to do so, we had to develop a set of wrapper classes providing limited interface
compatibility with Hadoop and sort/merge functionality. These wrapper classes allowed
us to run the unmodified Hadoop MapReduce programs with Nephele. As a result, the
data flow was controlled by the executed MapReduce programs while Nephele was able
to govern the VM allocation/deallocation and the assignment of tasks to VMs during the
experiment. We devised this experiment in order to highlight the effects of the dynamic

41

3. Exploiting Dynamic Resource Allocation

resource allocation/deallocation while still maintaining comparability to Hadoop as well
as possible.

Stage 2

Stage 1

Stage 0

ID: i-F3481EA2
Type: c1.xlarge

ID: i-F3481EA2
Type: c1.xlarge

ID: i-DB728EF1
Type: c1.xlarge … 6 Subtasks …

ID: i-DB728EF1
Type: c1.xlarge

ID: i-DB728EF1
Type: c1.xlarge

2 Subtasks

… 8 Subtasks … … 8 Subtasks …

2 Subtasks

… 6 Subtasks …
ID: i-F3481EA2
Type: c1.xlarge

BigIntegerReader (48)
on 6 VMs

TeraSortMap (48)
on 6 VMs

TeraSortReduce (12)
on 6 VMs

DummyTask (12)
on 2 VMs

ID: i-DB728EF1
Type: c1.xlarge … 6 Subtasks …

ID: i-F3481EA2
Type: c1.xlarge… 6 Subtasks …

AggregateMap (12)
on 2 VMs

AggregateReduce (4)
on 2 VMs

ID: i-DB728EF1
Type: c1.xlarge

ID: i-F3481EA2
Type: c1.xlarge2 Subtasks 2 Subtasks

4 Subtasks

… 8 Subtasks … … 8 Subtasks …

4 Subtasks

ID: i-DB728EF1
Type: c1.xlarge

DummyTask (4)
on 1 VM

AggregateMap (4)
on 1 VM

AggregateReduce (4)
on 1 VM

BigIntegerWriter (1)
on 1 VM In-Memory Channel

Network Channel

File Channel

… …

… …

… …

Figure 3.5.: The Execution Graph for Experiment 2 (MapReduce and Nephele).

Figure 3.5 illustrates the Execution Graph, we instructed Nephele to create so that the
communication paths match the MapReduce processing pattern. For brevity, I omit a
discussion on the original Job Graph. Following our experiences with the Hadoop exper-
iment, we pursued the overall idea to also start with a homogeneous set of six “c1.xlarge”
VMs, but to reduce the number of allocated VMs in the course of the experiment ac-
cording to the previously observed workload. For this reason, the sort operation should

42

3.4. Evaluation

be carried out on all six VMs, while the first and second aggregation operation should
only be assigned to two machines and to one machine, respectively.

The experiment’s Execution Graph consisted of three Execution Stages. Each stage
contained the tasks required by the corresponding MapReduce program. As stages can
only be crossed via file channels, all intermediate data which occurred between two
succeeding MapReduce jobs was completely written to disk, just like in the previous
Hadoop experiment.

The first stage (Stage 0) included four different tasks, split into several different groups
of subtasks and assigned to different VMs. The first task, BigIntegerReader, processed
the assigned input files and emitted each integer number as a separate record. The tasks
TeraSortMap and TeraSortReduce encapsulated the TeraSort MapReduce code which
had been executed by Hadoop’s mapper and reducer threads before. In order to meet the
setup of the previous experiment, we split the TeraSortMap and TeraSortReduce tasks
into 48 and 12 subtasks, respectively, and assigned them to six VMs of type “c1.xlarge”.
Furthermore, we instructed Nephele to construct network channels between each pair of
TeraSortMap and TeraSortReduce subtasks. For the sake of legibility, only few of the
resulting channels are depicted in Figure 3.5.

Although Nephele only maintains at most one physical TCP connection between two
machines, we devised the following optimization: If two subtasks that are connected
by a network channel are scheduled to run on the same VM, their network channel is
dynamically converted into an in-memory channel. That way we were able to avoid
unnecessary data serialization and the resulting processing overhead. For the given
MapReduce communication pattern this optimization accounts for approximately 20%
less network channels.

The records emitted by the BigIntegerReader subtasks were received by the TeraSortMap
subtasks. The TeraSort partitioning function, located in the TeraSortMap task, then
determined which TeraSortReduce subtask was responsible for the received record, de-
pending on its value. Before being sent to the respective reducer, the records were
collected in buffers of approximately 44 MB size and were presorted in memory. Con-
sidering that each TeraSortMap subtask was connected to 12 TeraSortReduce subtasks,
this added up to a buffer size of 574 MB, similar to the size of the in-memory file system
we had used for the Hadoop experiment previously.

Each TeraSortReducer subtask had an in-memory buffer of about 512 MB size, too. The
buffer was used to mitigate hard drive access when storing the incoming sets of presorted
records from the mappers. Like Hadoop, we started merging the first received presorted
record sets using separate background threads while the data transfer from the mapper
tasks was still in progress. In order to improve the overall performance, the final merge

43

3. Exploiting Dynamic Resource Allocation

step, resulting in one fully sorted set of records, was directly streamed to the next task
in the processing chain.

The task DummyTask, the forth task in the first Execution Stage, simply emitted every
record it received. It was used to direct the output of a preceding task to a particular
subset of allocated VMs. Following the overall idea of this experiment, we used the
DummyTask task in the first stage to transmit the sorted output of the 12 TeraSortRe-
duce subtasks to the two instances Nephele would continue to work with in the second
Execution Stage. For the DummyTask subtasks in the first stage (Stage 0), we shuffled
the assignment of subtasks to VMs in a way that both remaining VMs received a fairly
even fraction of the 2 × 108 smallest numbers. Without the shuffle, the 2 × 108 would
all be stored on only one of the remaining VMs with high probability.

In the second and third stage (Stage 1 and 2 in Figure 3.5), we ran the two aggregation
steps corresponding to the second and third MapReduce program in the previous Hadoop
experiment. The two tasks AggregateMap and AggregateReduce thereby encapsulated
the respective Hadoop code.

The first aggregation step was distributed across 12 AggregateMap and four Aggre-
gateReduce subtasks, which were assigned to the two remaining “c1.xlarge” VMs. In
order to determine how many records each AggregateMap subtask had to process so
that in total only the 2 × 108 numbers would be emitted to the reducers, we had to
develop a small utility program. This utility program consisted of two components. The
first component ran in the DummyTask subtasks of the preceding Stage 0. It wrote the
number of records each DummyTask subtask had eventually emitted to a network file
system share which was accessible to every VM. The second component, integrated in
the AggregateMap subtasks, read those numbers and calculated what fraction of the
sorted data was assigned to the respective mapper. In the previous Hadoop experi-
ment this auxiliary program was unnecessary because Hadoop wrote the output of each
MapReduce job back to HDFS anyway.

After the first aggregation step, we again used the DummyTask task to transmit the
intermediate results to the last VM which executed the final aggregation in the third
stage. The final aggregation was carried out by four AggregateMap subtasks and one
AggregateReduce subtask. Eventually, we used one subtask of BigIntegerWriter to write
the final result record back to HDFS.

3.4.3. Experiment 3: DAG and Nephele

In this third experiment, we were no longer bound to the MapReduce processing pattern.
Instead, we implemented the sort/aggregation problem as a DAG and tried to exploit
Nephele’s ability to manage heterogeneous computing resources.

44

3.4. Evaluation

Stage 1

Stage 0

BigIntegerSorter (126)
on 6 VMs

BigIntegerMerger (6)
on 6 VMs

ID: i-DB728EF1
Type: c1.xlarge

ID: i-2E492091
Type: m1.small

BigIntegerMerger (1)
on 1 VM

BigIntegerAggregater (1)
on 1 VM

BigIntegerWriter (1)
on 1 VM In-Memory Channel

Network Channel

File Channel

ID: i-DB728EF1
Type: c1.xlarge

ID: i-F3481EA2
Type: c1.xlarge

ID: i-F3481EA2
Type: c1.xlarge

… 21 Subtasks …

… 21 Subtasks … … 21 Subtasks …

… 21 Subtasks …
BigIntegerReader (126)

on 6 VMs

BigIntegerMerger (2)
on 2 VMs

… …

… …

… …

Figure 3.6.: The Execution Graph for Experiment 3 (DAG and Nephele).

Figure 3.6 illustrates the Execution Graph we instructed Nephele to create for this
experiment. For brevity, I again leave out a discussion on the original Job Graph. Similar
to the previous experiment, we pursued the idea that several powerful but expensive VMs
are used to determine the 2× 108 smallest integer numbers in parallel, while, after that,
a single inexpensive VM is utilized for the final aggregation. The graph contained five
distinct tasks, again split into different groups of subtasks. However, in contrast to the
previous experiment, this one also involved VMs of different types.

In order to feed the initial data from HDFS into Nephele, we reused the BigIntegerReader
task. The records emitted by the BigIntegerReader subtasks were received by the second
task, BigIntegerSorter, which attempted to buffer all incoming records into main mem-
ory. Once it had received all designated records, it performed an in-memory quick sort
and subsequently continued to emit the records in an order-preserving manner. Since
the BigIntegerSorter task requires large amounts of main memory we split it into 126
subtasks and assigned these evenly to six instances of type “c1.xlarge”. The preceding
BigIntegerReader task was also split into 126 subtasks and set up to emit records via
in-memory channels.

45

3. Exploiting Dynamic Resource Allocation

The third task, BigIntegerMerger, received records from multiple input channels. Once
it has read a record from all available input channels, it sorts the records locally and
always emits the smallest number. The BigIntegerMerger tasks occurred three times in
a row in the Execution Graph. The first time it was split into six subtasks, one subtask
assigned to each of the six “c1.xlarge” VMs. The second time the BigIntegerMerger task
occurred in the Execution Graph, it was split into two subtasks. These two subtasks
were assigned to two of the previously used “c1.xlarge” VMs. The third occurrence of
the task was assigned to the new VMs of the type “m1.small”.

Since we abandoned the MapReduce processing pattern, we were able to better exploit
Nephele’s streaming pipelining characteristics in this experiment. Consequently, each
of the merge subtasks was configured to stop execution after having emitted 2 × 108

records. The stop command was propagated to all preceding subtasks of the processing
chain, which allowed the Execution Stage to be interrupted as soon as the final merge
subtask had emitted the 2× 108 smallest records.

The fourth task, BigIntegerAggregater, read the incoming records from its input channels
and summed them up. It was also assigned to the single “m1.small” VM. Since we
no longer required the six “c1.xlarge” machines to run once the final merge subtask
had determined the 2 × 108 smallest numbers, we changed the communication channel
between the final BigIntegerMerger and BigIntegerAggregater subtask to a file channel.
That way Nephele pushed the aggregation into the next Execution Stage and was able
to deallocate the expensive VMs.

Finally, the fifth task, BigIntegerWriter, eventually received the calculated average of
the 2× 108 integer numbers and wrote the value back to HDFS.

3.4.4. Results

Figure 3.7, Figure 3.8, and Figure 3.9 show the performance results of our three exper-
iment, respectively. All three plots illustrate the average VM utilization over time, i.e.,
the average utilization of all CPU cores in all VMs allocated for the job at the given
point in time. The utilization of each machine has been monitored with the Unix com-
mand top. As in the previous chapter, it is broken down into the amount of time the
CPU cores spent running the respective data processing framework (USR), the kernel
and its processes (SYS), handling hardware (HIRQ) or software interrupts (SIRQ), and
the time waiting for I/O to complete (WAIT). To illustrate the impact of network com-
munication, the plots additionally show the average amount of IP traffic flowing between
the VMs over time.

I begin with discussing Experiment 1 (MapReduce and Hadoop): For the first MapRe-
duce job, TeraSort, Figure 3.7 shows a fair resource utilization. During the map (point

46

3.4. Evaluation

0 20 40 60 80 100

Time [Minutes]

Av
er

ag
e

C
P

U
 U

til
iz

at
io

n
[%

]

(a)

(b)
(c)

(d)

(e)

(f)

(g)

(h)

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
WAIT
Network Traffic

0
20

40
60

80
10

0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Av
er

ag
e

N
et

w
or

k
Tr

af
fic

 a
m

on
g

V
M

s
[M

B
it/

s]
Figure 3.7.: Results of Experiment 1 (MapReduce and Hadoop).

(a) to (c)) and reduce phase (point (b) to (d)) the overall system utilization ranges
from 60 to 80%. This is reasonable since we configured Hadoop’s MapReduce engine
to perform best for this kind of task. For the following two MapReduce jobs, however,
the allocated VMs are oversized: The second job, whose map and reduce phases range
from point (d) to (f) and point (e) to (g), respectively, can only utilize about one third
of the available CPU capacity. The third job (running between point (g) and (h)) can
only consume about 10% of the overall resources.

The reason for Hadoop’s eventual poor VM utilization is its assumption to run on a static
compute cluster. Once the MapReduce engine has been started on a set of VMs, no
machine can be removed from that set without the risk of losing important intermediate
results. As in this case, all six expensive VMs must be allocated throughout the entire
experiment and unnecessarily contribute to the processing cost.

Figure 3.8 shows the system utilization for executing the same MapReduce programs on
top of Nephele. For the first Execution Stage, corresponding to the TeraSort map and
reduce tasks, the overall resource utilization is comparable to the one of the Hadoop
experiment. During the map phase (point (a) to (c)) and the reduce phase (point (b)
to (d)) all six “c1.xlarge” machines show an average utilization of about 80%. However,

47

3. Exploiting Dynamic Resource Allocation

0 20 40 60 80 100

Time [Minutes]

Av
er

ag
e

C
P

U
 U

til
iz

at
io

n
[%

]

(a)

(b)

(c)

(d)
(e) (f) (g) (h)

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
WAIT
Network Traffic

0
20

40
60

80
10

0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Av
er

ag
e

N
et

w
or

k
Tr

af
fic

 a
m

on
g

V
M

s
[M

B
it/

s]

Figure 3.8.: Results of Experiment 2 (MapReduce and Nephele).

after approximately 42 minutes, Nephele starts transmitting the sorted output stream of
each of the 12 TeraSortReduce subtasks to the two VMs which are scheduled to remain
allocated for the upcoming Execution Stages. At the end of Stage 0 (point (d)), Nephele
is aware that four of the six “c1.xlarge” machines are no longer required for the upcoming
computations and deallocates them.

Since the four deallocated machines do no longer contribute to the number of available
CPU cores in the second stage, the remaining VMs again match the computational
demands of the first aggregation step. During the execution of the 12 AggregateMap
subtasks (point (d) to (f)) and the four AggregateReduce subtasks (point (e) to (g)), the
utilization of the allocated VMs is about 80%. The same applies to the final aggregation
in the third Execution Stage (point (g) to (h)) which is only executed on one allocated
“c1.xlarge” machine.

Finally, I want to discuss the results of the third experiment (DAG and Nephele) as
depicted in Figure 3.9: At point (a) Nephele has successfully allocated all VMs required
to start the first Execution Stage. Initially, the BigIntegerReader subtasks begin to read
their splits of the input data set and emit the created records to the BigIntegerSorter
subtasks. At point (b) the first BigIntegerSorter subtasks switch from buffering the

48

3.4. Evaluation

0 5 10 15 20 25 30

Time [Minutes]

Av
er

ag
e

C
P

U
 U

til
iz

at
io

n
[%

]

(a)

(b) (c)

(d)

(e)

●

●

●

●

●

USR
SYS
HIRQ
SIRQ
WAIT
Network Traffic

0
20

40
60

80
10

0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Av
er

ag
e

N
et

w
or

k
Tr

af
fic

 a
m

on
g

V
M

s
[M

B
it/

s]
Figure 3.9.: Results of Experiment 3 (MapReduce and DAG).

incoming records to sorting them. Here, the advantage of Nephele’s ability to assign
specific VM types to specific kinds of tasks becomes apparent: Since the entire sorting
can be done in main memory, it only takes several seconds. Three minutes later (c), the
first BigIntegerMerger subtasks start to receive the presorted records and transmit them
along the processing chain.

Until the end of the sort phase, Nephele can fully exploit the power of the six allocated
“c1.xlarge” machines. After that period the computational power is no longer needed for
the merge phase. From a cost perspective it is now desirable to deallocate the expensive
machines as soon as possible. However, since they hold the presorted data sets, at least
20 GB of records must be transferred to the inexpensive “m1.small” VM first. Here,
we identified the network to be the bottleneck, so much computational power remains
unused during that transfer phase (from (c) to (d)). In general, this transfer penalty
must be carefully considered when switching between different VM types during job
execution. The adaptive compression algorithm, which is presented in Chapter 5 of this
thesis, might have been beneficial in this case to trade CPU against I/O load 1. However,
in order to achieve an unbiased comparison to the other two experiments, the feature is

1Although the numbers generated according to the Jim Gray sort benchmark are considered to be
random, they actually contain recurring patterns which make them suitable for compression.

49

3. Exploiting Dynamic Resource Allocation

not activated during these experiments.

At point (d), the final BigIntegerMerger subtask has emitted the 2×108 smallest integer
records to the file channel and advises all preceding subtasks in the processing chain to
stop execution. All subtasks of the first stage have now been successfully completed. As
a result, Nephele automatically deallocates the six VMs of type “c1.xlarge” and continues
the next Execution Stage with only one machine of type “m1.small” left. In that stage,
the BigIntegerAggregater subtask reads the 2×108 smallest integer records from the file
channel and calculates their average. Again, since the six expensive “c1.xlarge” nodes
no longer contribute to the number of available CPU cores in that period, the processing
power allocated from the cloud again fits the task to be completed. At point (e), after
33 minutes, Nephele has finished the entire processing job.

Considering the short processing times of the presented tasks and the fact that most
cloud providers offer to lease a VM for at least one hour, I am aware that Nephele’s
savings in time and cost might appear marginal at first glance. However, I want to point
out that these savings grow by the size of the input data set. Due to the size of our
test cloud we were forced to restrict data set size to 100 GB. For larger data sets, more
complex processing jobs become feasible, which also promises more significant savings.

3.5. Related Work

In recent years a variety of MTC or DISC frameworks have been developed. Although
these systems typically share similar goals (e.g. simplifying the deployment of jobs across
a large number of compute nodes, hiding issues of parallelism, or fault tolerance), they
aim at different fields of application.

MapReduce [43] (or the open source version Hadoop [124]) is designed to run data anal-
ysis jobs on a large amount of data, which is expected to be stored across a large set
of share-nothing commodity servers. MapReduce is highlighted by its simplicity: Once
a user has fit his program into the required map and reduce pattern, the execution
framework takes care of splitting the job into subtasks, distributing and executing them.
A single MapReduce job always consists of a distinct map and possibly a reduce pro-
gram. However, a variety of projects exists to coordinate the execution of a sequence of
MapReduce jobs [100, 126, 125].

Since the publication of the original MapReduce research paper by Dean and Ghemawat,
several alternative implementations of the programming pattern have surfaced. While
some aim at improving the performance for particular types of MapReduce jobs [45],
others extend the original framework by additional features, such as pipelining [42].
However, MapReduce and those derivatives have been clearly designed for large static

50

3.5. Related Work

clusters. Although they can deal with sporadic node failures, the available computing
resources are essentially considered to be a fixed set of homogeneous machines.

The Pegasus framework by Deelman et al. [44] has been designed for mapping com-
plex scientific workflows onto grid systems. Similar to Nepehle, Pegasus lets its users
describe their jobs as a DAG with vertices representing the tasks to be processed and
edges representing the dependencies between them. The created workflows remain ab-
stract until Pegasus creates the mapping between the given tasks and the concrete com-
puting resources available at runtime. The authors incorporate interesting aspects like
the scheduling horizon which determines at what point in time a task of the overall
processing job should apply for a computing resource. This is related to the stage con-
cept in Nephele. However, Nephele’s stage concept is designed to minimize the number
of allocated instances in the cloud and clearly focuses on reducing cost. In contrast,
Pegasus’ scheduling horizon is used to deal with unexpected changes in the execution
environment. Pegasus uses DAGMan and Condor-G [57] as its execution engine. As a
result, different tasks can only exchange data via files.

Thao et al. introduced Swift [151] to reduce the management issues which occur when a
job involving numerous tasks has to be executed on a large, possibly unstructured, set of
data. Building upon components like CoG Karajan [133], Falkon [107], and Globus [54],
the authors present a scripting language which allows to create mappings between logical
and physical data structures and to conveniently assign tasks to these.

The system our approach probably shares most similarities with is Dryad [74]. Dryad also
runs DAG-based jobs and offers to connect the involved tasks through either file, network,
or in-memory channels. However, it assumes an execution environment which consists of
a fixed set of homogeneous worker nodes. The Dryad scheduler is designed to distribute
tasks across the available compute nodes in a way that optimizes the throughput of the
overall cluster. It does not include the notion of processing cost for particular jobs.

Borkar et al. demonstrated a framework for data-intensive distributed computing called
Hyracks [33]. Similar to Nephele and Dryad, Hyracks also describes processing jobs as
DAGs. In Hyracks, the vertices of the DAG implement typical data processing operators
like, e.g., readers/writers, sorters, or joiners. The DAG’s edges represent so-called con-
nectors between these operators. Similar to Dryad, Hyracks also has a strong focus on
clusters of commodity computers and does not address dynamic resource allocation.

In terms of on-demand resource provisioning several projects have arisen recently: Dorne-
mann et al. [46] presented an approach to handle peak-load situations in BPEL work-
flows using Amazon EC2. Ramakrishnan et al. [108] discussed how to provide a uni-
form resource abstraction over grid and cloud resources for scientific workflows. Both

51

3. Exploiting Dynamic Resource Allocation

projects rather aim at batch-driven workflows than the data-intensive, pipelined work-
flows Nephele focuses on. The FOS project [140] has recently presented an operating
system for multicore and clouds which is also capable of on-demand VM allocation.

3.6. Summary

In this chapter the thesis discussed design fundamentals data processing frameworks
must meet in order to be able to exploit the dynamic resource allocation offered by
today’s IaaS platforms. Based on these design fundamentals I presented Nephele as the
first parallel data processing framework to explicitly incorporate the cloud’s ability for
rapid resource provisioning and heterogeneous computing resources.

Unlike existing frameworks for massively parallel data processing, Nephele no longer
assumes that it owns the available compute nodes and that it can freely dispose of
them. Instead, the system follows the idea that the available computing resources are
potentially only leased for a particular time span and may incur monetary cost. With
this idea in mind, the chapter outlined Nephele’s basic architecture and programming
abstraction. In particular, it described how users can compose complex processing jobs
from individual tasks and influence the job’s scheduling and execution through a set of
possible annotations.

With respect to dynamic resource allocation, this chapter discussed several strategies
for VM allocation/deallocation in the course of a processing job and pointed out exist-
ing scheduling tradeoffs between preserving intermediate results in case of temporary
resource unavailabilities and potentially shorter lease durations. Finally, Nephele’s per-
formance was evaluated by means of a MapReduce-inspired data analysis job. In the
scope of the experiments, I highlighted the benefits of both dynamic resource allocation
as well as resource heterogeneity through a comparison with the popular data processing
framework Hadoop based on resource utilization, processing time, and cost.

The chapter also identified directions for further research. In particular, generating
efficient execution plans in the absence of the user’s job annotations is currently a chal-
lenging subject. The thesis will further investigate the problem of finding reasonable
degrees of parallelization for a processing job in the next chapter. Moreover, Chap-
ter 7 will address optimization opportunities that arise from combining Nephele with
semantically richer, higher level programming abstractions.

Since Nephele’s programming abstraction is very general and allows its users to express a
broad range of large-scale data analysis problems, I will use Nephele as a representative
of a parallel data processing framework for the remaining chapters of this thesis.

52

4. Detecting Bottlenecks in Parallel Data Flow
Programs

Contents

4.1. Processing Model and Problem Definition 54

4.1.1. Processing Model . 55

4.1.2. Problem Definition . 56

4.2. Bottleneck Detection Algorithms 57

4.3. Implementation in Nephele . 60

4.4. Evaluation . 62

4.4.1. Use Case . 63

4.4.2. Results . 64

4.5. Related Work . 67

4.6. Summary . 69

Since modern IaaS clouds suggest access to a virtually unlimited pool of computing
resources, this also stresses the problem of finding a reasonable degree of parallelism
for data processing jobs executed on top of these platforms. While in a classic cluster
environment the size of the cluster (i.e., the number of CPU cores or the amount of
main memory) has traditionally provided an upper bound for possible scale-outs, the
dimensions of commercial cloud data centers together with the cloud’s cost model has
rendered this limit obsolete. Instead, researchers might be tempted to strive for shorter
completion times by increasing their jobs’ level of parallelization.

However, for the vast majority of MTC-like applications, the range of sensible scale-outs
is limited. Too large degrees of parallelism will eventually turn the cloud’s underlying
I/O infrastructure, which delivers the input data to the individual compute nodes, into a
bottleneck. As a result, large parts of the rented VMs will remain idle and unnecessarily
contribute to the processing cost. Contrary to that, too low degrees of parallelization
might cause CPU bottlenecks in the processing chain so that successive tasks might
suffer from a lack of input data. In this case, the VMs of these successive tasks will also
be underutilized and diminish the job’s cost efficiency.

53

4. Detecting Bottlenecks in Parallel Data Flow Programs

The challenge of finding sensible scale-outs carries special weight for processing jobs
which contain arbitrary user code. These kinds of processing jobs typically only al-
low very few assumptions about the job’s concrete computational characteristics in the
forefront of its execution. Moreover, many of those jobs are also executed in a producer-
consumer fashion [74, 125, 24] so that each of the job’s tasks depends on sufficient
amounts of input data from its predecessors in order to reach its optimal throughput
and a high system utilization. As a result, in these cases, the problem is not only to
detect the sweet spot in the range of possible scale-outs for the job itself but for each of
its tasks individually with respect to its predecessors and successors.

Being designed for classic cluster setups, existing data processing frameworks only offer
very little support for this problem. Current tutorials on this topic [123] mainly propose
back-of-the-envelope calculations and ignore the characteristics of the job. In particular,
these tutorials do not address the problem of adjusting the scale-out of interdependent
tasks with potentially very different computational complexities.

To mitigate this current lack of assistance, this chapter presents a scheme to detect CPU
and I/O bottlenecks in DAG-based data flow programs at runtime [27]. As explained
in the previous chapter, the detection of these bottlenecks represents an important pre-
requisite for manually or automatically scaling out these kinds of programs in order to
increase their processing performance and cost efficiency.

Although I will demonstrate the scheme based on the Nephele framework, it is in principle
applicable to any parallel data processing framework which describes jobs as DAGs and
follows a classic producer-consumer pattern. Therefore, this chapter will start with an
abstract introduction of the assumed processing model and a problem definition. Based
on this foundation, it will introduce the algorithms for bottleneck detection and the
concrete implementation in Nephele. Finally, I will illustrate the applicability of our
approach through an experimental evaluation.

4.1. Processing Model and Problem Definition

This section will explain the general processing model the bottleneck detection algorithm
later bases on. Moreover, it will explain CPU and I/O bottlenecks with respect to parallel
DAG-based data flow programs and define the concrete problem which is addressed by
the presented algorithm.

Note that with regard to the potentially false display of system characteristics within
a VM (cf. Section 2.3), we deliberately decided not to include any physical hardware
figures (such as maximum/available network throughput) into the processing model.

54

4.1. Processing Model and Problem Definition

Instead, the processing model will only rely on metrics that can be directly derived from
the producer-consumer pattern.

4.1.1. Processing Model

The bottleneck detection approach presented in this chapter can be applied to arbitrary
MTC-like processing jobs which fulfill the assumptions described in the following:

• Assumption 1: The processing job can be modeled as a DAG G = (VG, EG).
Therein, each vertex v ∈ VG of the DAG represents a separate task of the overall
processing job. The directed edges e ∈ EG between the vertices model the commu-
nication channels through which data is passed on from one task to the next. In
the context of the Nephele framework, which has been introduced in the previous
chapter, Nephele’s Job Graph would be an example of such a DAG.

• Assumption 2: The interaction between the individual tasks of the processing job
follows a producer-consumer pattern. Tasks exchange data through communication
channels in distinct units. I will comply with the Nephele terminology and also
refer to these units as records in this chapter. All communication between tasks
takes place through communication channels modeled in the DAG.

• Assumption 3: A communication channel is unidirectional and follows the ab-
straction of a FIFO queue. Moreover, it is backed by a buffer which can temporarily
store a particular number of records. The concrete size of the buffer is allowed to
change over time. This characteristic is motivated by the varying window size
of a TCP connection which can act as the physical foundation of the communi-
cation channel in practice. However, the buffer size is expected to be eventually
constrained by an arbitrary but fixed value. I will refer to the current buffer size
as the channel’s capacity. Any attempts to write records to a channel beyond its
capacity limit will cause the producing task to be blocked until the consuming
task has removed at least one record from the channel. Analogously, any attempt
to read from a channel which currently does not hold any records will cause the
consuming task to be blocked until at least one record is written to the channel.

• Assumption 4: Each task of the DAG consists of sequential and deterministic,
yet potentially unknown user code. It can be parallelized so that multiple instances
of the same task operate on different fractions of the task’s overall input data. I
will also stick to the terminology introduced in the previous chapter and refer to
such a parallel instance of a task as a subtask.

• Assumption 5: At runtime, each subtask is in one of the following states: PRO-
CESSING or WAITING. A state change is always triggered by one of its connected

55

4. Detecting Bottlenecks in Parallel Data Flow Programs

communication channels. A subtask is in state WAITING when it is either wait-
ing to write records to an outgoing channel or waiting for records to arrive from
an incoming channel; otherwise it is in state PROCESSING. Hence, if sufficient
input records are available and capacity is left to write out the result records, a
subtask will not enter the WAITING state. The current state of a subtask can be
accessed at anytime during its execution. Note that even waiting for I/O other
than communication channel I/O (such as reading or writing from/to hard disk)
is therefore considered as processing time.

• Assumption 6: At runtime, each communication channel is either in the state
SATURATED when its buffer’s capacity limit has been reached; otherwise it is in
state READY. Similar to the tasks, the current state of a channel is assumed to
be accessible at anytime throughout its lifetime.

• Assumption 7: If a specific record is processed by the same task in different job
executions, the performance characteristics (processing complexity, value and size
of produced output) remain the same. This assumption allows profiling a job and
using the gained knowledge to improve a second execution of the job.

4.1.2. Problem Definition

After having explained the general processing model, the section will continue explain-
ing our understanding of CPU and I/O bottlenecks. Intuitively, the different types of
bottlenecks can be described as follows:

• CPU bottlenecks are tasks whose throughput is limited by the CPU resources
they can utilize. CPU bottlenecks are distinguished by the fact that they have
sufficient amounts of input data to process, however, subsequent tasks in the pro-
cessing chain suffer from a lack thereof.

• I/O bottlenecks are those communication channels which are requested to trans-
port more records per time unit on an average than the underlying transport in-
frastructure (for example network interconnects) can handle.

The problem this chapter addresses is the detection of such bottlenecks only based
on the previously described task and channel states (PROCESSING/WAITING and
READY/SATURATED). Through this abstraction the approach becomes independent
of the concrete physical compute and communication resource, which may be hard to
observe in (shared) virtualized environments like IaaS clouds.

It is important to point out that our bottleneck detection approach considers a job DAG
on the task level. This means, we do not aim at detecting CPU or I/O bottlenecks

56

4.2. Bottleneck Detection Algorithms

at individual subtasks. Bottlenecks on a subtask level typically indicate load balancing
problems. They do not provide any clues about bottlenecks which stem from inappro-
priate levels of parallelization of distinct tasks, which is the primary intention of this
approach. So although a task may be executed as hundreds or thousands of parallel
subtasks, algorithmically it is treated as a single task. Section 4.3 will provide details on
how the aggregation of the necessary data actually takes place in a distributed setup.

4.2. Bottleneck Detection Algorithms

According to our definition of CPU and I/O bottlenecks, the following algorithm is ca-
pable of detecting those bottlenecks in DAG-based parallel data flow programs. The
algorithm is applicable to any parallel data processing framework whose jobs fit the
model presented in Section 4.1. The algorithm is expected to be triggered periodically
during the job execution in order to account for the fact that the behavior of the process-
ing job’s individual tasks may change over time and, hence, disclose different bottlenecks
in the course of a job’s execution.

Algorithm 1 illustrates the overall approach of our bottleneck detection algorithm. The
algorithm is passed the DAG G which represents the currently executed job. Initially,
the function ReverseTopologicalSort(G) (line 1) creates and returns a list LRTS with all
vertices of G. The order of the vertices within the list corresponds to a reverse topological
ordering, i.e., vertices with no outgoing edges appear first in the list.

Algorithm 1 DetectBottlenecks(G := (VG, EG))

1: LRTS ← ReverseTopologicalSort(G)
2: for all v in LRTS do
3: v.isCpuBottleneck ← IsCpuBottleneck(v,G)
4: end for
5: if �v ∈ LRTS : v.isCpuBottleneck then
6: for all v in LRTS do
7: Ev = {(v, w)|w ∈ VG ∧ (v, w) ∈ EG}
8: for all e ∈ Ev do
9: e.isIoBottleneck ← IsIoBottleneck(e,G)

10: end for
11: end for
12: end if

The list LRTS is then traversed from the beginning to the end. For each vertex v we check
whether v is considered a CPU bottleneck. The particular properties for a vertex to meet
the CPU bottleneck condition are checked within the function IsCpuBottleneck(v,G)

57

4. Detecting Bottlenecks in Parallel Data Flow Programs

(line 3), which is explained later in this section. The result of the check is returned and
stored in the Boolean variable v.isCpuBottleneck .

In order to detect I/O bottlenecks, we take a similar approach. Again, we traverse each
vertex v of the job DAG G according to their reverse topological order. For each outgoing
edge e = (v, w) of v we check whether e meets the conditions of an I/O bottleneck.
However, we only perform the check if no CPU bottleneck has been discovered before.
The discussion of Algorithm 3 later in this section will clarify the necessity for this
constraint.

Algorithm 2 describes how we check whether a particular vertex v ∈ VG is a CPU
bottleneck. The algorithm checks for two conditions which must be fulfilled in order to
classify v as a CPU bottleneck.

A crucial prerequisite for a CPU bottleneck is that the task represented by vertex v
spends almost the entire CPU time given to it in the state PROCESSING. We intro-
duce the function pt(v) which is defined as the arithmetic mean of the fractions of time
the subtasks (i.e., the different parallel instances of the task) spent in the state PRO-
CESSING during the last time unit of their execution. Synchronization issues may cause
individual subtasks to spend short periods of time in the state WAITING. For this rea-
son we introduce a threshold α for pt(v) which must be exceeded so that v is considered
a bottleneck. In our practical experiments we found 90% to be a reasonable value for
α.

Algorithm 2 IsCpuBottleneck(v, G)

1: if pt(v) ≤ α then
2: return FALSE
3: end if
4: if ∃s ∈ vsucc∗(v,G) : s.isCpuBottleneck then
5: return FALSE
6: end if
7: return TRUE

The second condition for a CPU bottleneck considers the set of v’s successors, vsucc∗(v,G),
i.e., the vertices which can be reached from v. Formally, a vertex s is in vsucc∗(v,G)
if there exists a path p = (v1, ..., vn) such that v1 = v, vn = s and (vi, vi+1) ∈ EG,
1 ≤ i < n. For each such successor s we check if s has been classified as a CPU bottle-
neck. The order in which we traverse the vertices in the job DAG G guarantees that the
CPU bottleneck flag s.isCpuBottleneck of all of vertex v’s successors has been updated
before the function IsCpuBottleneck is called with v itself.

The necessity for this second condition becomes apparent when recalling the definition
of a CPU bottleneck from Section 4.1. According to that definition, a CPU bottleneck

58

4.2. Bottleneck Detection Algorithms

is characterized by high CPU load and the fact that it provides successor vertices with
insufficient amounts of input data. However, if any successor s of vertex v has already
been identified as a CPU bottleneck, this would mean s does not suffer from insufficient
amounts of input data because the amount of input data s receives is sufficient to max
out its CPU time. As a result, classifying vertex v as a CPU bottleneck requires all of
its successors not to be classified as CPU bottlenecks.

Algorithm 3 IsIoBottleneck(e := (v, w), G)

1: if st(e) ≤ β then
2: return FALSE
3: end if
4: if ∃s ∈ esucc∗(v,G) : s.isIoBottleneck then
5: return FALSE
6: end if
7: return TRUE

After all CPU bottleneck flags have been updated, Algorithm 3 checks whether an edge
should be considered an I/O bottleneck. For an edge e = (v, w) ∈ EG, st(e) denotes the
arithmetic mean of the fractions of time the communication channels represented by the
edge e spent in the state SATURATED during the last time unit of v’s execution.

Similar to CPU bottlenecks, we consider two conditions for I/O bottlenecks. First, st(e)
must be above a threshold β which indicates that the communication edges represented
by the edge e spent the majority of the considered time interval in the state SATU-
RATED. In practice we found 90% to be a reasonable threshold for β, so temporary
fluctuations in the channel utilization do not lead to wrong bottleneck decisions.

The second condition again considers the successors of an edge e. By esucc∗(e,G) we
denote the set of successor edges of e. Formally, an edge s = (t, u) is in esucc∗(e,G) if
there exists a path p = ((v0, v1), ..., (vn−1, vn)) such that (vi, vi+1) ∈ EG, 0 ≤ i < n and
v0 = v, v1 = w, vn−1 = t, and vn = u. An edge e is only classified as an I/O bottleneck
if no successor edge has been classified as an I/O bottleneck before. Again, the order in
which we traverse the edges ensures the appropriate update of the bottleneck flags.

The I/O bottleneck approach bears some discussion. Generally, there exist two possible
reasons for high values of st(e). The first reason is that the maximum throughput rate
of the underlying transport infrastructure which backs the communication channel has
been reached. This corresponds to our definition of an I/O bottleneck in Section 4.1.
The second possible, however spurious, reason is an insufficient consumption rate of the
task which consumes data from e. This, in turn, can be caused by two circumstances:
First, a CPU bottleneck in the DAG could affect the consumption rate of the respective
task. However, since we only check for I/O bottlenecks if no CPU bottleneck has been

59

4. Detecting Bottlenecks in Parallel Data Flow Programs

detected before, this cause can be eliminated. Second, another I/O bottleneck could
exist in the remainder of the processing chain. Yet, this is impossible because of the
second condition (line 4) of Algorithm 3.

4.3. Implementation in Nephele

A key requirement to apply the presented bottleneck detection algorithm to the Nephele
data processing framework is the ability to derive the state information from the tasks
and their communication channels at runtime. Therefore, we have devised a special
profiling subsystem which continuously monitors each Nephele subtask during its execu-
tion and periodically calculates aggregates of the obtained data. These aggregates then
represent the foundation for implementing the utilization functions pt(v) and st(e).

The major objective of the profiling subsystem is to constantly collect data on how much
time a Nephele subtask spent in a particular processing state during the last time unit of
its execution. On an operating system level, collecting such data for individual processes
is easy. Linux, for example, offers the /proc/ interfaces to obtain detailed statistics on
the individual operating system processes and their corresponding states.

However, in order to facilitate fast memory-based communication between two tasks,
Nephele cannot always map different tasks to different operating system processes. In-
stead, the usage of in-memory channels forces Nephele to instantiate different tasks as
different threads within the same process. With respect to collecting the profiling in-
formation this means that we also have to be able to monitor the processing states of
individual threads. Since most parts of Nephele are written in Java, there are several
different options to achieve this goal.

Our first profiling approach was based on the Java Virtual Machine Tool Interface
(JVMTI). JVMTI provides access to the internal state of the Java Virtual Machine
(JVM). It allows writing so-called agents in a native language like C or C++, so unlike
Java itself the profiling extension was platform dependent. The agent is then executed
in the same process as the JVM and is notified about occurring events with the help of
callback functions.

Our second profiling approach relied on the Java Management Extension (JMX). JMX
comprises the MXBeans platform package which provides access to, among other things,
the JVM’s runtime, thread and memory subsystem. In particular, we used the class
ThreadMXBean to determine the CPU time of individual threads.

In order to evaluate the impact of both profiling approaches on the actual subtask
execution, we implemented both approaches and devised a CPU-intensive sample job.
We executed the sample job several times without the profiling component as well as with

60

4.3. Implementation in Nephele

the JVMTI or JMX-based profiling component enabled. Each version of the profiling
component queried the information on the monitored thread’s CPU time every second.
The results of the comparison are depicted in Figure 4.1.

P
ro

ce
ss

in
g

Ti
m

e
[S

ec
on

ds
]

0
10

20
30

40
50

60
70

80
90

11
0

13
0

15
0

No Profiling JVMTI−based Profiling JMX−based Profiling

Figure 4.1.: Profiling overhead using the JVMTI- and JMX-based approach.

Without profiling the mean execution time of the sample job was around 82 seconds.
The JMX-based profiling component proved to be very lightweight. It only increased the
mean execution time by less than 1%. In contrast to that, the JVMTI-based component
led to a significant drop in execution speed. On average the subtasks’ completion time
was increased by almost 74%. A closer examination revealed that the frequent calls of
the native agent code were the main reason for the performance penalty.

As a result of the first performance evaluation, we implemented the functions pt(v) and
st(e) based on the lightweight JMX approach. In order to generate the values of pt(v)
we query the JMX interface every five seconds for statistics on every subtask thread.
The statistics let us derive detailed information on the distribution of the thread’s CPU
time among the different internal states of the JVM. These internal states are:

• USR: The amount of time the monitored task thread was executed in user mode.

• SYS: The amount of time the monitored task thread was executed in system mode.

61

4. Detecting Bottlenecks in Parallel Data Flow Programs

• BLK: The amount of time the monitored task thread was blocked because of
mutual exclusion.

• WAIT: The amount of time the monitored task thread was intentionally instructed
to wait.

Since the threads of Nephele subtasks only enter the WAIT state as a result of congested
or starved communication channels, we can map this state directly to the WAITING
state of our bottleneck algorithm. The other three internal JVM states (USR, SYS,
BLK) are mapped to the PROCESSING state. This also complies with Assumption 5
of Section 4.1.

In order to determine the utilization of communication channels, we simply store a
timestamp for the respective channel whenever a subtask thread either attempts to read
from or write to the channel and the attempt leads to the subtask thread switching its
state from PROCESSING to WAITING. Moreover, we store a timestamp whenever new
incoming data from the considered channel or the completed transmission of outgoing
data allow the subtask to switch from state WAITING back to the state PROCESSING
(cf. Assumption 5). Based on these timestamps we can then calculate how much time
the channel spent in the states SATURATED and READY.

After having calculated the utilization statistics for each Nephele subtask locally at the
respective Task Managers, the profiling data is forwarded to Nephele’s central manage-
ment component, the Job Manager. The Job Manager then calculates an arithmetic
mean of the individual subtask statistics. During the experiments on our mid-size cloud
testbed, the amount of data that was generated by our profiling subsystem was negli-
gibly small and did not account for any observable load on the Job Manager. In larger
setups, when scalability might become a bigger concern, the profiling overhead can be
reduced by increasing the reporting interval.

4.4. Evaluation

This section will evaluate the effectiveness of the bottleneck detection approach with
the help of a concrete use case. The use case picks up the optimization idea presented
in Section 3.3: A developer intends to use an IaaS cloud to repeatedly run an MTC-
like processing job. The job consists of several individual tasks that interact with each
other. The developer strives to finish the processing job as fast as possible without
paying for unutilized computing resources. Therefore, he uses the feedback provided by
the bottleneck detection algorithm to gradually adjust each task’s degree of parallelism
before the begin of the job’s next run.

62

4.4. Evaluation

4.4.1. Use Case

The job we devised for our use case is inspired by the famous Hadoop job of the New
York Times, which was used to convert their four TB large article archive from TIFF
images to PDF using 100 VMs on Amazon EC2 [61].

In our case the conversion job consists of six distinct tasks. Figure 4.2 depicts the corre-
sponding Nephele Job Graph. The first task, File Reader, initially reads the individual
image files from disk and sends each image as a separate record to the second task, Op-
tical Character Recognition (OCR) Task. The OCR Task then applies a text recognition
algorithm to the received image. The result of the text recognition, a regular string, is
then processed in a twofold manner. First, the recognized text pattern of the image is
passed to the task PDF Creator. Second, each word within the text pattern is forwarded
to a task Inverted Index Task together with the name of the original image file.

File Reader

PDF Creator

PDF Writer

PDF Writer User Code

Output: file://nfs/outputdir/

PDF Creator User Code

File Reader User Code

Input: file://nfs/inputdir/

Inverted Index Task

Inverted Index Writer

Inverted Index Writer User Code

Output: file://nfs/outputdir/

Inverted Index Task User Code

OCR Task
OCR Task User Code

Figure 4.2.: The Nephele Job Graph used for the evaluation.

The task PDF Creator receives the recognized text pattern of each original image as a
separate record. The text pattern is then converted to a PDF document and emitted
to the task PDF Writer. The PDF Writer task eventually writes the received PDF
document back to disk.

The Inverted Index Task receives tuples of words from the recognized text patterns and
the names of the originating image files. As its name implies, the task uses the received

63

4. Detecting Bottlenecks in Parallel Data Flow Programs

tuples to construct an inverted index. This inverted index can later be used to facilitate
a keyword search on the created PDF file set. In our evaluation the created index has
been small enough to fit into the node’s main memory. After having received all input
tuples, the task sends out tuples of each indexed word together with a list of filenames
in which the word occurs to the task Inverted Index Writer. Inverted Index Writer then
writes the received tuples back to disk.

Conceptually, the processing job is interesting because the tasks OCR Task, PDF Cre-
ator, and Inverted Index Task suggest having different computational complexities. In
order to achieve a busy processing pipeline together with an economic job execution on
the cloud, each task’s degree of parallelization must be carefully balanced with respect
to the other task.

As described in Section 2.1, many IaaS providers offer their VMs with ephemeral storage,
i.e., it is not possible to store data inside the VM beyond its termination. Therefore, it
is assumed that the set of input images is stored on a persistent storage service similar
to Amazon EBS [12]. Right before the start of the processing job the storage service
is mounted inside one particular VM. This VM then executes the tasks File Reader,
PDF Writer, and Inverted Index Writer, so the input and output data is directly read
or written from/to the storage service. The remaining tasks are executed on other VMs
inside the cloud. Our overall goal is to find the largest possible scale-out of the job with
high resource utilization before the VM serving the input data becomes an insuperable
I/O bottleneck.

The evaluation experiments were conducted on our local Eucalyptus-based IaaS cloud
testbed. Each subtask of the tasks OCR Task, PDF Creator, and Inverted Index Task
was executed on a separate VM with one CPU core, two GB of main memory and 60
GB disk space. Amazon EC2 offered compute nodes with comparable characteristics
(except for the disk space) at a price of approximately 0.10 $ per hour (as of September
2009). More details on the experimental setup can be found in the appendix.

The input data set for the sample job consisted of 4000 bitmap files. Each bitmap file
contained a regular page of single-column text and had a size of approximately 10 MB.
As a result, the overall size of the input data set was 40 GB. The PDF documents were
created using the iText library [75]. In order to mimic the persistent storage service, we
set up a regular NFS server.

4.4.2. Results

The results of the evaluation are depicted in Figure 4.3. The figure shows selected runs
of our sample job with different degrees of parallelization. For each of those runs the
average CPU utilization of all compute nodes involved in the execution over the time is

64

4.4. Evaluation

depicted. The CPU utilization was captured by successively querying the /proc/stat

interface on each node and then sending the obtained values to Nephele’s Job Manager to
compute the global average for the respective point in time. Besides the CPU utilization
chart, the figure illustrates the respective CPU or I/O bottlenecks which have been
reported by our bottleneck detection algorithm in the course of the processing. Boxes
with shaded areas refer to CPU bottlenecks while boxes with solid areas refer to I/O
bottlenecks at the outgoing communication channels.

File Reader
OCR Task

a) OCR Task (1), PDF Creator (1), Inverted Index Task (1)

0%

20%

40%

60%

80%

A
v
g
.

C
P
U

 U
ti
l.

File Reader
OCR Task

PDF Creator
b) OCR Task (4), PDF Creator (1), Inverted Index Task (1)

0%

20%

40%

60%

80%

A
v
g
.

C
P
U

 U
ti
l.

File Reader
PDF Creator

c) OCR Task (16), PDF Creator (4), Inverted Index Task (1)

0%

20%

40%

60%

80%

A
v
g
.

C
P
U

 U
ti
l.

Time [s]

File Reader
PDF Creator

d) OCR Task (16), PDF Creator (5), Inverted Index Task (1)

0 5000 10000 15000
0%

20%

40%

60%

80%

A
v
g
.

C
P
U

 U
ti
l.

Figure 4.3.: Average CPU utilization and detected bottlenecks (shaded areas are CPU
bottlenecks, solid areas are I/O bottlenecks) for different scale-outs.

Figure 4.3 a) depicts the first of our evaluation runs. As a first approach we used a
parallelization level of one for all the six tasks of the sample job. As a result, the job
execution comprised four VMs with the File Reader, the PDF Writer and the Inverted
Index Writer running on one VM and the OCR Task, the PDF Creator and the Inverted
Index Task each running on a separate machine.

The processing time of the job was about five hours and 10 minutes. In the entire
processing period the average CPU utilization ranged between 30% and 40%. The reason
for this poor resource utilization becomes apparent when looking at the bottleneck chart
for the run. Almost the entire time the OCR Task was identified as a CPU bottleneck

65

4. Detecting Bottlenecks in Parallel Data Flow Programs

by the bottleneck detection algorithm.

As a response to the observation of the first run, we followed the strategy to first improve
the average CPU utilization by balancing the individual tasks’ degree of parallelization
according to their relative complexity. After having determined a reasonable paralleliza-
tion ratio among the tasks we began to scale out. This approach requires that the
computational characteristics of a task are independent of its level of parallelization (cf.
Assumption 7).

We continuously increased the degree of parallelization for the OCR task and reexecuted
the job. The average CPU utilization continued to improve up to the point where the
OCR task had four subtasks (see Figure 4.3 b)). Up to a level of three the OCR task
remained the permanent CPU bottleneck. However, at a parallelization level of four,
the PDF Creator task became the dominant bottleneck. In this configuration, with
seven VMs, the overall processing time decreased to one hour and 15 minutes while
the average CPU utilization climbed up to approximately 70% throughout the entire
execution time. Note that we did not have to wait for the intermediate runs to complete
in order to deduce the final parallelization ratio between the OCR and the PDF Creator
task. Since we knew the computational characteristics of both tasks would not change
during the processing time, it was sufficient to observe only several seconds of each run
and then to proceed to the next level of parallelization. For jobs consisting of several
distinct processing phases, which interrupt the processing pipeline, a longer observation
might be necessary.

After having done the initial balancing, we began to scale out both the OCR and the PDF
Creator task at a ratio of four to one. In a configuration with 16 subtasks of the OCR
Task and four subtasks of the PDF Creator task (see Figure 4.3 c)) we again encountered
a change in the bottleneck situation. We witnessed frequent changes between the PDF
Creator task as a CPU bottleneck and the communication channels of the File Reader
task as an I/O bottleneck. The changes were caused by Nephele’s internal buffer strategy
for network channels. In order to achieve a reasonable TCP throughput, data is shipped
in blocks of at least 16 KB size. The text patterns recognized by the subtasks of the OCR
Task had an average size of about four KB, so the text pattern sometimes arrived at the
subtasks of the PDF Creator task in batch and caused a temporary CPU bottleneck.

However, despite the frequent changes, the bottleneck bars in the diagram also indicate
that the communication edge between the File Reader task and the OCR Task essen-
tially became an I/O bottleneck which renders further parallelization of successive tasks
unnecessary. This is confirmed by our final run depicted in Figure 4.3 d). After having
added another subtask to the PDF Creator task we observed the communication channel
between the File Reader and OCR Task to be a permanent I/O bottleneck.

66

4.5. Related Work

Interestingly, the Inverted Index Task had no significant effect on the job execution. In
comparison to the OCR Task and the PDF Creator task its computational complexity
turned out to be too low. Moreover, the 4000 documents we used to populate the index
only accounted for a memory consumption of a few MB. The channel congestion which
may have occurred when transferring the index to the Inverted Index Writer task was
too short to be detected by our system.

In sum, I think the evaluation provides a good example of the usefulness of our bottleneck
detection approach. The initial job execution without parallelization (Figure 4.3 a)) took
over five hours on four VMs to complete. Assuming an hourly cost of 0.10 $ per machine,
this amounts to a processing cost of 2.40 $. Through the assistance of our bottleneck
detection algorithm we could follow specific indications to scale out our sample job
according to the complexity of each individual task. Although the final evaluation run
(Figure 4.3 d)) spanned 23 VMs, the job already finished after approximately 24 minutes.
This marks a comparable processing cost, however, at considerably savings in processing
time.

4.5. Related Work

The performance analysis of distributed systems has been a field of vivid research in
recent years. In general, the existing approaches can be subdivided into three different
classes, based on their level of abstraction:

Performance analysis schemes on the lowest level of abstraction typically use code in-
strumentation or message interception to learn about the characteristics of a distributed
application. Examples of those approaches are VampirTrace [84], TAU [117], or KO-
JAK [143]. While these tools generally provide very detailed information about the
performance of an application, the information is often hard to translate into helpful
insights about bottlenecks due to the sheer amounts of data produced.

On the middle level of abstraction, performance analysis tools no longer instrument the
raw program code, but build upon a particular programming paradigm, such as workflow
or a master/worker pattern. The framework for the respective programming paradigm
can then define measurement points from which metrics can be derived. These metrics
hint to specific performance issues in the user code or the degree of parallelism [88, 29].

The highest level of abstraction does not require knowledge of a specific programming
paradigm, but rather considers the parallel application as a whole with a generic per-
formance indicator. Examples of these performance indicators are the response time or
other service level objectives of an n-tier application [80, 91, 90].

67

4. Detecting Bottlenecks in Parallel Data Flow Programs

As a representative of the middle level of abstraction, Li and Malony [88] described a
performance tuning that operates in several phases. The parallel program to be tuned
is first instrumented and profiled by their TAU profiler. The recorded events are then
aligned according to an abstract master/worker communication pattern. Based on this
alignment, it becomes possible to create a performance model and various system met-
rics like the computation time or the derived efficiency of a worker. These metrics are
then passed into a rule system that infers the causes for bad performance and presents
them to the user, similar to the way our approach highlights the detected bottlenecks.
Comparable work has also been presented by Cesar et al. [36]. The goal of their ap-
proach, however, is to determine a reasonable number of workers in a master/worker
environment.

Several approaches studied performance aspects of applications following a pipelined
workflow model over the past decades. Many of those considered more restricted work-
flow topologies such as linear chains instead of DAGs (such as [121]). In contrast to our
work, the most common optimization objectives were throughput and/or latency given
a fixed set of compute nodes. In [134] Vydyanathan et al. presented a heuristic based
on estimations of processing and data transfer times. The goal of their approach was to
schedule a DAG-shaped workflow on a fixed set of homogeneous processors in a latency-
optimal manner while satisfying throughput requirements. As opposed to this work,
our approach strives to maximize the system utilization on a variable set of computing
resources.

In [29] Benoit et al. demonstrated a model for pipeline applications in grids. The pipeline
model assumes a set of stages. Each of the stages comprises a data receiving, data pro-
cessing, and data sending phase. Assuming a set of characteristics such as latencies and
computing power, the model is capable of suggesting assignments of stages to proces-
sors. The model makes several limiting assumptions which make it considerably more
restrictive than our approach, for example, each stage is required to process the same
number of tasks. Moreover, it does not discuss the core question addressed in this paper,
i.e., the detection of bottlenecks to infer reasonable degrees of parallelism.

As a representative of the highest level of abstraction, Chanda et al. discussed in [38] how
to provide end-to-end profiles of transactions in multi-tier applications. They consider
applications in which client requests are processed by a series of different stages. A
stage may be a different process, a thread, an event-handler, or a stage worker thread.
Through the algorithms and techniques introduced in their paper, the authors are able
to track client requests through each of these stages and infer the amount of time the
requests spent in them.

Apart from the field of distributed systems, bottleneck detection also plays an impor-
tant role in other practical areas of computer science. For example, Kannan et al. [81]

68

4.6. Summary

presented an approach to detect performance bottlenecks in Multi-Processor System-
on-a-Chip environments. Based on the idea of the dynamic critical path [131], their
work aims at identifying components which contribute significantly to the end-to-end
computation delay.

4.6. Summary

In this chapter I presented an approach to detect bottlenecks in parallel DAG-based
data flow programs. The algorithm introduced as part of this approach is capable of
detecting CPU as well as I/O bottlenecks and can therefore assist developers in finding
reasonable scale-outs for their jobs.

Instead of directly relying on concrete system figures such as the throughput of the
network interface, the new approach only considers these figures indirectly through a
simple processing model. That way it is able to determine the bottlenecks solely based
on the relationship among the tasks and the tasks’ state information which it gathers
within the data processing framework itself. With regard to the potentially spurious
display of those system figures in VMs (cf. Section 2.3), this increases the robustness of
our algorithms for parallel data processing on IaaS platforms.

Based on the parallel data processing framework Nephele, this chapter evaluated differ-
ent strategies to obtain the tasks’ state information which is required by our model at
runtime. A first evaluation suggests that already a small number of iterations is sufficient
to discover major performance bottlenecks and improve the levels of parallelization for
the tasks involved in a processing job.

Guided by the feedback of the bottleneck detection algorithm, we manually adjusted
the tasks’ individual level of parallelism across multiple iterations of the same job in the
scope of the presented evaluation. Technically, though, it is also conceivable to facilitate
the scale-out automatically during a single execution of the respective job. In this case,
however, the nature of the executed code must be carefully considered.

In the concrete case of the Nephele jobs, such automated scale-ins and scale-outs, i.e.,
the dynamic creation and deletion of subtasks at runtime, are not possible in general.
Since Nephele allows users to include arbitrary code in their tasks, it cannot assume
any knowledge about the tasks’ internals. As a result, sudden changes in the number
of a task’s parallel instances at runtime might be incompatible with a task’s or the
overall job’s internal logic. For example, incorporating a new subtask in a job which is
already being executed might violate certain data distribution properties assumed by the
preceding tasks in the processing chain on the one hand. On the other hand, destroying

69

4. Detecting Bottlenecks in Parallel Data Flow Programs

a subtask is inherently unsafe as the subtask’s internal state might be relevant to the
processing result.

Solving this issue for arbitrary use code is a difficult subject. However, Chapter 7 dis-
cusses the usage of Nephele in combination with a higher layer programming abstraction.
This programming abstraction features richer semantics and can provide hints which fa-
cilitate such automatic scaling strategies.

70

5. Mitigating I/O Variations with Adaptive
Compression

Contents

5.1. Design Principles . 72

5.2. Adaptive Online Compression in IaaS Clouds 74

5.2.1. Decision Model . 74

5.2.2. Implementation in Nephele . 76

5.3. Evaluation . 79

5.3.1. Adaptivity . 79

5.3.2. Changing Data Compressibility 82

5.4. Related Work . 83

5.5. Summary . 84

As discussed in Chapter 2, many IaaS cloud providers run multiple VMs on the same
physical hardware. Although this colocation of VMs is generally considered vital for
the economic operation of IaaS clouds, the resultant sharing of the physical I/O infras-
tructure also makes these platforms susceptible to significant and unpredictable levels
of performance degradation [82].

As a result of the current shortcoming in terms of VM isolation, a parallel data processing
framework running on top of an IaaS cloud is constantly at the risk of experiencing I/O
bottlenecks. Unlike the I/O bottlenecks I discussed in Chapter 4, these bottlenecks do
not stem from inappropriate degrees of parallelization. They are induced by colocated
VMs which, for example, have temporarily engaged in an I/O intensive operation.

A variety of projects is currently working towards improving the fairness of colocated
VMs with regard to I/O performance [115, 146, 82]. However, since these proposals typ-
ically require modifications to the hypervisor, users of commercial clouds cannot benefit
from those until their cloud providers consider them mature enough to be adopted.

For this reason we have devised an infrastructure agnostic approach to mitigate the
effects of shared I/O in clouds which can improve the efficiency of parallel data processing
without the assistance of the cloud providers, namely adaptive online compression.

71

5. Mitigating I/O Variations with Adaptive Compression

The idea of adaptive online compression is to improve the I/O throughput by continu-
ously choosing between different compression levels and applying them dynamically to
the outgoing data stream. The compression level is selected by a decision model which
constantly estimates the performance gain based on system metrics like the current CPU
load, available I/O bandwidth, or the compressibility of the data.

In contrast to other approaches to cope with I/O bottlenecks in the context of parallel
data processing, such as adapting the job’s degree of parallelism or switching to other VM
types, adaptive online compression is highlighted by its lightweightness. Changes to the
compression level can be made with almost no overhead and take effect instantaneously.
Moreover, compression does not have an influence on the structure of the processing
jobs, for example the number of vertices in a Nephele DAG. This is advantageous
because modifications to the structure of processing jobs at runtime generally require
time-consuming coordinations between the affected worker nodes and the master node.

Although several adaptive online compression schemes have been introduced in recent
years ([95, 77, 142, 87]), we found that these approaches are generally hard to apply
in virtualized environments like IaaS clouds. The following section elaborates on their
shortcomings and derives important design principles for adaptive online compression in
the presence of hardware virtualization. Based on these principles, this chapter presents
a novel adaptive compression approach and evaluates it through several experiments.

5.1. Design Principles

In recent years, a variety of adaptive online compression schemes has been presented
([95, 77, 142, 87]). While all these approaches have demonstrated their effectiveness
in the domains they were originally designed for, we found them hard to apply in a
virtualized setup like an IaaS cloud. Especially with regard to the characteristics of
IaaS clouds, which have been discussed in Chapter 2, the following list discusses their
deficiencies:

• Dependency on offline training phase: Several existing adaptive compres-
sion schemes (e.g. [142, 87]) require an offline training phase before they can be
used. During that training phase, the decision model of the respective compression
scheme is calibrated, so it can make reasonable compression decision when the sys-
tem is in operation. With regard to IaaS clouds, these offline training phases suffer
from two major problems: First, they must be performed in a verifiably unloaded
system. In a commercial IaaS cloud, however, a VMs may spuriously appear to
be idle, although the host system is heavily stressed by colocated VMs. Second,
given that the performance characteristics of two VMs of the same type can differ

72

5.1. Design Principles

significantly in some cloud systems [114], the training phase must potentially be
reexecuted after the instantiation of each machine. In sum, these training periods
can account for considerable amounts of processing time and, thus, also increase
the processing cost.

• Dependency on accurate display of CPU utilization: As illustrated in Sec-
tion 2.3, the system metrics displayed inside a VM may be highly inaccurate. In
particular, we discovered the display of the current CPU utilization to be signif-
icantly too low for many different virtualization techniques. However, the deci-
sion models of some adaptive compression schemes (such as [95]) rely on accurate
display of these metrics. In practice, this can lead to unreasonable compression
decisions in virtualized environments.

• Small decision granularity: Many existing adaptive compression schemes re-
consider their compression decision on a granularity of several KB (for exam-
ple [142, 87]). However, Section 2.3 highlighted caching effects which occurred
for I/O operations in VMs in the scale of several MB or even GB. Due to these
caching effects, the I/O throughput as observed in the VM temporarily appears
to be overly high, but then, when the cache is periodically flushed, drops signifi-
cantly. An adaptive compression scheme which evaluates the system throughput
only based on several KB of data is therefore likely to make unreasonable com-
pression decisions in the presence of hardware virtualization.

Based on these three shortcomings, the design principles for a new adaptive compression
scheme which complies to the particular characteristics of IaaS platforms or virtualized
environments in general can be formulated as follows:

• No training phase: The decision model of the new adaptive compression scheme
must not require any offline calibration or training phase.

• No decision based on CPU resources: As the display of available CPU re-
sources under high I/O load in VMs is likely to be skewed, the new decision model
must not rely on it.

• Embrace throughput fluctuations: Unlike existing compression schemes, which
try to adapt the compression level to the outgoing data stream on the granularity
of KB, the new decision model shall focus on a granularity level of MB to allow
for the possible throughput fluctuations this thesis highlighted in Section 2.3.

73

5. Mitigating I/O Variations with Adaptive Compression

5.2. Adaptive Online Compression in IaaS Clouds

Based on the design principles elaborated in the previous section, I now present a new
adaptive compression model which has been explicitly designed towards the particular
characteristics of IaaS clouds [69]. Unlike existing approaches, the decision model of
our adaptive compression scheme does not require a training phase. In addition, our
mechanism takes the achievable application data rate, i.e., the data rate experienced by
the application before compressing the data, as the foundation for the decision process.
Although the application data rate at a particular compression level also involves aspects
like CPU utilization, available I/O bandwidth or the compressibility of the data itself,
it is only indirectly influenced by those. Therefore, our approach does not have to rely
on the possibly inaccurate displays of those metrics inside the VM.

In the following I will explain the adaptive online compression scheme, notably its deci-
sion model, and describe the implementation in the parallel data processing framework
Nephele. Although I have chosen Nephele as the technical foundation to show the effec-
tiveness of our new scheme, its applicability is not limited to the domain of parallel data
processing. Rather than that, the compression scheme can be beneficial for any kind of
data transfer.

5.2.1. Decision Model

Similar to existing approaches our adaptive compression module is assumed to be placed
between the application and the respective I/O layer. Instead of passing the data right
to the I/O layer it is first intercepted by the adaptive compression module which, if
considered beneficial, compresses the data according to a specific compression level. As
already demonstrated by existing schemes (such as [87]), the entire adaptive compres-
sion/decompression logic can be encapsulated in a higher-level communication library
and therefore becomes completely transparent to the application.

Following the idea of previous publications (e.g. [77, 142, 87]), our adaptive compression
algorithm can choose between a fixed set of n compression levels. Each compression level
thereby refers to a specific compression algorithm which is applied at the respective level.
The individual compression levels must be ordered by their respective time/compression
ratio. Compression level 0 stands for no compression. A variety of compression algo-
rithms also offers parameters to influence their time/compression ratio. Therefore, it is
conceivable to use the same compression algorithm at multiple levels but with different
parameters.

Our adaptive compression scheme reconsiders the decision which compression level is to
be applied every t seconds. Based on the amount of application data which has been

74

5.2. Adaptive Online Compression in IaaS Clouds

received from the application, (possibly) compressed, and passed to the I/O layer during
that time span, we calculate the application data rate for these last t seconds. In case
of network I/O the application data rate also includes the decompression time at the
receiver because of the network’s flow control mechanisms. The concrete decision algo-
rithm to determine the compression level for the next t seconds is shown in Algorithm 4.
The algorithm uses a series of auxiliary variables which are explained in Table 5.1.

Variable Meaning

ccl The compression level that is currently applied to the outgoing data
stream. Initially, the variable is set to 0 (no compression).

ncl The next compression level that shall be applied to the data based on
the algorithm’s decision.

c A simple counter variable which stores how often the decision algorithm
has been called since the last change of compression level. The counter
is initialized with 0.

inc A Boolean variable which indicates if the compression level has been
increased in the scope of its last modification. Initially, the variable is
set to TRUE.

bck An array which stores the backoff values for the individual compression
levels. Initially, all fields inside the array are set to 0.

cdr The average application data rate which has been determined for the
last t seconds using the compression level ccl.

pdr The average application data rate which has been determined for the
t seconds before the last t seconds. On the first call of the decision
algorithm, pdr is set to cdr.

Table 5.1.: Explanation of the decision algorithm’s variables.

As already mentioned, our decision model adapts the compression level in response to
changes in the observed application data rate. This is also reflected in the structure of
our algorithm, which distinguishes three major cases:

In the first case (lines 4-14) the application data rate during the last t seconds cdr
(compressed with compression level ccl) does not differ from the data rate of the previous
t second time span pdr. In order to cope with fluctuations in the data rate the parameter
α is introduced. The parameter α defines in what range cdr may differ from pdr before
our algorithm actually responds to the change. Small values of α allow our algorithm to
detect the best compression level even if the performance gains between the respective
compression algorithms are rather small. However, they also make the decision algorithm
more prone to incorrect decisions because variations in the application data rate can also
result from variations in the throughput of the underlying I/O system (such as the TCP

75

5. Mitigating I/O Variations with Adaptive Compression

connection). During our experiments we found 0.2 to be a reasonable value for α.

Since our decision model cannot rely on any previous knowledge from an offline training
phase, it optimistically switches to the next higher or lower compression level occasionally
to see how the application data rate is affected. However, a fundamental aspect of
our algorithm is that these switches occur less often for compression levels which have
continuously led to improvements in the data rate. We achieve this behavior through an
exponential backoff scheme (line 6). The decision to increase or decrease the compression
level as part of such an optimistic switch depends on the variable inc. The variable inc
indicates if the last change of compression level has been an increase or a decrease. Note
that inc is usually updated outside of the displayed algorithm depending on the input
parameter ccl and the return value ncl.

The second major case our algorithm has to handle is an improvement of the application
data rate (lines 15-18). In this case our algorithm increments the backoff value of the
current compression level bck[ccl] by one. Thus, the algorithm will less often try out
other compression levels from the current compression level given that no change in the
data rate occurs.

The third and final case addresses a degradation of the application data rate (lines 19-
27). In this case the algorithm reverts the last compression level change (lines 22-26).
Moreover, it sets the backoff value for the compression level with which it has experienced
the degradation (bck[ccl]) back to 0. Hence, optimistic switches to other compression
levels again become more frequent for that compression level in the future.

Although our algorithm can make wrong decisions with respect to the chosen compres-
sion level, it can always react to degradations of the application data rate immediately
(i.e., after t seconds) and revert the wrong decision. Good decisions are rewarded with
increased backoff values. This ensures that any unnecessary probing of other compression
levels decreases exponentially over time.

5.2.2. Implementation in Nephele

For our initial prototype we have integrated our adaptive compression scheme into
Nephele’s file and network channels. As illustrated in Figure 5.1, each output channel
contains its own instance of the adaptive compression scheme. Consequently, Nephele
can adapt the compression level for each outgoing data stream of a subtask individually.
Moreover, the implementation is completely transparent to the subtasks, so there is no
modification required to the encapsulated user code.

The compression decision is made after the serialization of the records which have been
emitted from the user code. For performance reasons Nephele internally stores the

76

5.2. Adaptive Online Compression in IaaS Clouds

Algorithm 4 GetNextCompressionLevel(cdr, pdr, ccl)

1: d← (cdr − pdr)
2: c← c+ 1
3: ncl← ccl
4: if |d| ≤ α× pdr then
5: {No change in application data rate}
6: if c ≥ 2bck[ccl] then
7: {Backoff over, try another compression level}
8: if inc = TRUE then
9: ncl← ncl + 1

10: else
11: ncl← ncl − 1
12: end if
13: c← 0
14: end if
15: else if d > 0 then
16: {Application data rate has improved}
17: bck[ccl]← bck[ccl] + 1
18: c← 0
19: else
20: {Application data rate has decreased}
21: bck[ccl]← 0
22: if inc = TRUE then
23: ncl← ncl − 1
24: else
25: ncl← ncl + 1
26: end if
27: c← 0
28: end if
29: return ncl

77

5. Mitigating I/O Variations with Adaptive Compression

Nephele Subtask

User Code

Nephele I/O Layer

Nephele Subtask

User Code

O
ut

pu
t C

ha
nn

el
s

Internal Structure of a Nephele Output Channel

Byte Buffer
(Uncompressed)

Record Serialization

Adaptive Compression

Byte Buffer
(Uncompressed)

Custom Record from User Code

Decision Model

0:
 N

o
Co

m
p.

1:
Li

gh
t C

om
p.

2:
 M

ed
iu

m
 C

om
p.

3:
 H

ea
vy

 C
om

p.

Figure 5.1.: Integration of the adaptive compression scheme in Nephele’s communication
channels.

serialized records in byte buffers of at most 128 KB size before passing them on to the
I/O layer. With the new compression scheme enabled, the buffer is no longer handed
directly to the I/O layer. Instead, it is passed to the adaptive compression component
first. The compression component considers the size of the uncompressed data buffer as
well as the period of time until the arrival of the next uncompressed buffer. Based on
these two figures, the decision model is able to calculate the current application data rate.
As described in the previous subsection, the decision algorithm is called every t seconds
with this application data rate in order to assess the currently chosen compression level
and to potentially adapt it.

The current implementation features four different compression levels. As in the descrip-
tion of the decision algorithm, compression level 0 again represents no data compression.
Given the comparably high bandwidth of the available I/O interfaces, we have chosen the
compression algorithms for the remaining three levels with regard to their compression
speed. At compression level 1 (LIGHT) we use the QuickLZ compression library [110]
which is highlighted by its fast compression speed. QuickLZ is also used for compression
level 2 (MEDIUM) but with a setting which favors compression size over compression
speed. For compression level 3 (HEAVY) we use the compression library LZMA [104].
Although LZMA is known to be significantly slower than QuickLZ, it generally offers
a better compression ratio which might pay off if the available I/O bandwidth is low

78

5.3. Evaluation

enough.

The adaptive compression component writes the compressed data to a separate output
byte buffer which is finally passed on to the I/O layer. After the compression process
has been finished, the uncompressed data of the input byte buffer is discarded immedi-
ately. In order to simplify the decompression by the corresponding input channel of the
receiving subtask, each output byte buffer is a self-contained unit of data. It contains
all information required for the decompression, including meta information about the
compression algorithm and the compression dictionary.

5.3. Evaluation

After having motivated and described our new adaptive compression scheme, I now want
to present an evaluation of its performance based on a series of experiments. All of these
experiments were conducted on our local Eucalyptus-based cloud using KVM-based VMs
with paravirtualized I/O devices. The concrete setup of the VMs and the host systems
corresponds to the one described in the appendix.

As a result of the tremendous caching effects for file I/O observed in Section 2.3, I will
focus on network I/O only.

5.3.1. Adaptivity

The first series of experiments aims at demonstrating the ability of our adaptive com-
pression approach to determine a suitable compression level for a given type of data and
I/O bandwidth. We created a simple Nephele job which consists of two tasks (sender
and receiver task) connected by a TCP network channel. The sender and the receiver
task were concurrently executed on two distinct VMs. Each VM ran on a separate host
system.

In order to evaluate the impact of different compressibilities on our approach, we con-
ducted our experiments with three distinct files. The first two files were chosen from the
Canterbury Corpus [21], a well-known compression benchmark. As a file with a high
compressibility (HIGH) we chose the file ptt5 from the benchmark which common com-
pression libraries can compress down to 10-15% of its original size. As a representative
of a file with moderate compressability (MODERATE) we chose the file alice29.txt

from the corpus. Its compression ratio is about 30-50% depending on the algorithm used.
Since the Canterbury Corpus does not offer files with a notably poor compressibility, we
chose a standard JPG image of about 250 KB (refered to as image.jpg or LOW) as the
third file for our experiments. Its compression ratio ranged between 90-95%.

79

5. Mitigating I/O Variations with Adaptive Compression

No concurrent TCP connection One concurrent TCP connection

HIGH MODERATE LOW HIGH MODERATE LOW
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

NO 569 (3) 567 (7) 566 (3) 908 (6) 896 (6) 903 (6)
LIGHT 252 (3) 629 (2) 688 (3) 258 (3) 624 (7) 927 (8)
MEDIUM 347 (6) 795 (5) 1095 (8) 367 (3) 840 (5) 1241 (42)
HEAVY 1881 (23) 5760 (25) 9011 (30) 1974 (24) 5979 (34) 9326 (30)
DYNAMIC 265 (4) 635 (4) 602 (3) 273 (3) 648 (16) 920 (13)

Two concurrent TCP connections Three concurrent TCP connections

HIGH MODERATE LOW HIGH MODERATE LOW
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

NO 1393 (75) 1292 (67) 1313 (39) 1642 (70) 1584 (120) 1638 (70)
LIGHT 312 (14) 756 (23) 1440 (87) 358 (10) 1027 (65) 1555 (17)
MEDIUM 378 (10) 896 (38) 1481 (27) 397 (3) 953 (55) 1829 (100)
HEAVY 1985 (26) 6130 (31) 9597 (45) 1994 (21) 6218 (34) 9278 (49)
DYNAMIC 363 (22) 920 (18) 1452 (40) 411 (35) 1075 (37) 1865 (114)

Table 5.2.: Average completion times of the sample job using different statically chosen
compression levels (NO, LIGHT, MEDIUM, HEAVY) as well as our adap-
tive approach (DYNAMIC). The completion times are subdivided by the
compressibility of the data (HIGH, MODERATE, LOW) and the number of
concurrent TCP connections.

In some of the experiments we colocated additional VMs on the same physical hosts
in order to realistically assess the effects of shared I/O on our adaptive compression
scheme. Each colocated VM on the sender’s host system thereby established a separate
TCP connection to another VM colocated on the receiver’s host system and transmitted
data as fast as possible.

In all the experiments the sender task repeatedly wrote the respective test files (either
ptt5, alice29.txt, or image.jpg) to the network channel until a total data volume of
50 GB was generated and consumed by the receiver. During all the experiments t was
set to two seconds and α to 0.2.

Table 5.2 summarizes the results of our experiments. The table shows the average com-
pletion times of the sample job for the different data compressibilities and the number of
concurrent TCP connections which were established by the colocated VMs. The numbers
in brackets denote the standard deviation. For comparison, the table also includes the
average completion times when the compression level had been chosen statically before
the execution and was not determined by our adaptive compression scheme at runtime.
The numbers written in bold type mark the fastest execution.

80

5.3. Evaluation

As indicated in Table 5.2, the compression levels chosen by our adaptive compression
scheme (DYNAMIC) led to average completion times which were at most 22% worse
than the fastest average completion times with statically set compression levels. In
many cases the completion times achieved with our adaptive scheme were between the
first and second fastest completion times with statically set compression levels. Given
that our algorithm has to perform some initial probing to determine the best compression
levels, the results in these cases can be considered ideal.

SIRQ HIRQ SYS USR

Application Throughput Network Throughput

0 25 50 75 100 125 150 175 200 225 250
Time [Seconds]

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

til
iz

at
io

n
[%

]

0

250

500

750

1,000

1,250

1,500

1,750

2,000

Throughput [M
B

it/s]

NO

LIGHT

MEDIUM

HEAVY

C
om

pr
es

si
on

 L
ev

el

Figure 5.2.: Performance of our adaptive compression scheme with highly compressible
data (HIGH) and no background traffic.

Figure 5.2 depicts the compression decisions our adaptive scheme made in such an ideal
case, i.e., the highly compressible ptt5 file (HIGH) with no concurrent TCP connec-
tions. The figure shows the sender’s CPU utilization, application throughput, network
throughput as well as the chosen compression levels over time. Due to the large differ-
ences in the compression/time ratios of the respective compression libraries, the decision
algorithm can quickly determine the compression level LIGHT (QuickLZ, best compres-
sion speed) to result in the best overall application data rate. The figure also illustrates
how the backoff mechanism we integrated in our decision algorithm reduces optimistic
switches to other compression levels exponentially.

In case the performance differences between the respective compression levels are less
distinctive, our decision algorithm may spuriously consider changes in the application
data rate as fluctuations and continue the probing process. Figure 5.3 illustrates such

81

5. Mitigating I/O Variations with Adaptive Compression

a case for the experiment with the poorly compressible image.jpg file (LOW) and two
concurrent TCP connections. Lowering the value of α can help to counteract this be-
havior, however, it also increases the risk of wrong compression decisions due to regular
fluctuations in the available TCP throughput.

SIRQ HIRQ SYS USR

Application Throughput Network Throughput

0 250 500 750 1,000 1,250 1,500
Time [Seconds]

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

til
iz

at
io

n
[%

]

0

250

500

750

1,000

1,250

1,500

1,750

2,000

Throughput [M
B

it/s]

NO

LIGHT

MEDIUM

HEAVY

C
om

pr
es

si
on

 L
ev

el

Figure 5.3.: Performance of our adaptive compression scheme with hardly compressible
data (LOW) and two concurrent TCP connections.

5.3.2. Changing Data Compressibility

The second experiment examines how our adaptive compression scheme responds to
severe changes in the data compressibility. Therefore, we reused the sample job from
the previous adaptivity experiments and switched between the highly compressible file
ptt5 (HIGH) and the already compressed image file image.jpg (LOW) every 10 GB.
Again, 50 GB of data were generated in total for this experiment. During the experiment,
no background traffic was present.

The results of the experiment are depicted in Figure 5.4. Apart from some minor short-
comings our decision algorithm detected the changes in the data compressibility correctly
and switched the compression level accordingly. Large backoff values for compression
level 0 (no compression), which arose during the transmission of image.jpg, can lead
to relatively late optimistic switches to a higher compression level. The reason for this
behavior is the fact that without compression the application data rate is not affected

82

5.4. Related Work

by the compressibility of the data. However, the opposite case is detected immediately
by our algorithm.

SIRQ HIRQ SYS USR

Application Throughput Network Throughput

0 50 100 150 200 250 300 350 400 450
Time [Seconds]

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

til
iz

at
io

n
[%

]

0

250

500

750

1,000

1,250

1,500

1,750

2,000
Throughput [M

B
it/s]

NO

LIGHT

MEDIUM

HEAVY

C
om

pr
es

si
on

 L
ev

el

Figure 5.4.: Responsiveness to changes in data compressibility.

5.4. Related Work

In recent years, a variety of schemes for adaptive online compression has been presented.
Although they aim at different fields of application, all these approaches build upon the
same principle idea, namely dynamically selecting from a set of compression libraries to
increase the overall data rate between two communicating parties.

With their network conscious text compression system (NCTCSys) [95] Motgi and
Mukherjee focused on reducing the transmission times of HTML streams generated by
a web server, e-mail text messages or large text files transmitted by FTP. Similar to our
work, NCTCSys is capable of switching between different compression algorithms. How-
ever, the compression algorithm is chosen by directly evaluating a set of system metrics,
including network bandwidth and the current server load. As pointed out in Section 5.1,
this makes their approach prone to wrong compression decisions in virtualized environ-
ments like IaaS clouds.

Krintz and Sucu [87] presented a more general approach which is applicable to various
kinds of input data. Like in NCTCSys, their decision model also includes CPU utiliza-

83

5. Mitigating I/O Variations with Adaptive Compression

tion and network bandwidth as well as data obtained from an offline training phase. By
exploiting a linear relationship between different algorithms’ compression ratios, their
decision model can quickly compare the estimated performance of the different compres-
sion algorithms used without testing them online. This enables their approach to avoid
switching to unsuitable compression levels at runtime. However, it also makes their
scheme dependent on the accuracy of parameters gained from the offline training.

Wiseman et al. [142] also implemented an adaptive compression system for various kinds
of data. According to their approach, the compression algorithm is chosen based on each
algorithm’s compression time as well as the speed with which compressed blocks are
processed by the receiver. A downside of their decision method is the usage of several
hard-coded parameters, which need a short sampling phase with unloaded I/O and CPU
in order to fit input data different from the ones used in their evaluation.

A system which does not rely on the direct measurement of system metrics was presented
in [77] by Jeannot and Knutsson. Its main idea is to subdivide the compression and
transmission process into a compression thread, a transmission thread, and a FIFO
queue which connects both components. The decision to increase or to decrease the
compression level depends on the current length of the FIFO queue. If the queue’s
length decreases (or increases, respectively), the compression level is lowered (or raised,
respectively). A limitation of this system is the assumption that a higher compression
level will lead to higher compression ratio, which is not always true, especially when the
data is not compressible. Moreover, the system does not consider that applying stronger
compression schemes might also increase the compression time.

5.5. Summary

In this chapter I presented an adaptive online compression scheme to mitigate the neg-
ative effects of shared I/O in IaaS clouds. With the help of this compression scheme,
applications running inside the cloud can dynamically trade off CPU against I/O load in
order to respond to sudden I/O bottlenecks and thereby enhance the overall application
data rate.

Unlike existing adaptive compression approaches, the compression scheme presented in
this chapter has been carefully designed in accordance with the system characteristics
of today’s IaaS platforms as examined in Section 2.3. In particular, the decision model
of our compression approach does not depend on an offline training phase and accurate
displays of the current CPU utilization. Instead, a feedback-based mechanism is utilized
to calibrate the decision model during the actual data transfer. An exponential backoff
scheme guarantees the convergence of the initial probing phase into a stable state given

84

5.5. Summary

that no changes in the application data rate occur. That way our adaptive compression
scheme achieves a good balance between responsiveness and probing overhead.

Ultimately, the compression decision of our scheme is solely based on the data rate as
experienced by the producer of the outgoing data stream. The decision model thereby
averages the application data rate for several MB of data in order to alleviate the im-
pact of fluctuating throughput rates as observed in Section 2.3. For network-based data
transfers, when sender and receiver work simultaneously, the application data rate com-
prises all relevant factors for the compression decision, namely the compressibility of the
data, the compression time required by the sender, the time for the actual data transfer,
and the decompression time by the receiver.

For file-based data transfers, when the producer and consumer of the data are executed
consecutively, our current decision model faces three problems. First, the application
data rate experienced by the producer no longer reflects the effort for decompressing the
data. However, given that for most compression libraries the computational complexity
for data compressing is significantly higher than the one for decompression, this problem
does not carry particular weight. Second, the adaptive compression approach can only be
used to respond to I/O bottlenecks which occur while the producer is writing its data to
disk. It does not help to mitigate I/O bottlenecks which the consumer encounters while
reading the data. In fact, the compression decisions made by producer can even affect
the consumer’s performance adversely in this case. Finally, depending on the concrete
virtualization technique used, the immense caching effects which have been highlighted
for disk-based I/O in Section 2.3 may force the decision model to observe large quantity
of outgoing data in order to compute a meaningful mean application data rate. This
tremendously impacts the responsiveness of our approach and renders its applicability
limited for mid-size data volumes.

Despite these limitations for file-based data transfers, I consider the new adaptive online
compression scheme a valuable contribution to improve the efficiency of distributed ap-
plications. In extensive network experiments based on Nephele, the new adaptive scheme
yielded job completion times which were at most 22% worse than the fastest comple-
tion times with statically set compression levels and improved the overall application
throughput up to a factor of four. With respect to the mission statement of this thesis,
the compression scheme therefore represents an important building block to counteract
the current lack of performance guarantees of today’s IaaS clouds and helps to improve
the efficiency of parallal data processing on top of these platforms.

85

5. Mitigating I/O Variations with Adaptive Compression

86

6. Topology Inference in IaaS Clouds

Contents

6.1. Analysis of Network Path Characteristics in Clouds 89

6.1.1. Inference based on Packet Loss 90

6.1.2. Inference based on Packet Delay 92

6.1.3. Discussion . 94

6.2. Examining the Accuracy of Topology Inference 95

6.2.1. Obtaining Initial Similarity Values for the VMs 95

6.2.2. Accuracy of the Inferred Topologies 96

6.2.3. Transferring Binary Trees into General Trees 99

6.3. Implementation in Nephele . 100

6.4. Evaluation . 102

6.5. Related Work . 103

6.6. Summary . 105

Besides the I/O degradations their VMs may experience as a result of hardware virtu-
alization or the colocation with other VMs, parallel data processing frameworks on top
of IaaS platforms suffer from another shortcoming in contrast to their classic cluster
setups, namely the lack of network topology information.

As explained in Section 2.3, many frameworks for parallel data processing offer to exploit
knowledge about the network topology, i.e., the way the individual compute nodes are
physically interconnected, in order to exploit data locality and reduce the risk of network
bottlenecks during the execution of jobs [43]. In IaaS clouds, however, these details about
the physical network topology are typically not exposed to a customer. Instead, the cloud
customer has to rely on his VMs running “somewhere in the cloud” without knowing
how many network components like network bridges, switches, or routers a data packet
actually has to traverse in order to get from one of his VMs to another.

From a performance point of view, exploiting network topology information in the scope
of parallel data processing is tempting. Considering the large volumes of data today’s
MTC-like processing jobs operate on, I/O bottlenecks in any of the above-mentioned
network components can easily have a tremendous impact on the completion time and
therefore the cost efficiency of the job. In addition to that, the available data throughput

87

6. Topology Inference in IaaS Clouds

within certain parts of the network topology might be significantly higher than in the
rest of the topology. For example, as pointed out in Section 2.3, the communication
between two colocated VMs can be over 50% faster than communication involving the
actual physical network.

In order to make the underlying network topology of an IaaS cloud accessible to parallel
data processing frameworks and allow them to use this knowledge for topology-aware
scheduling, this chapter presents a scheme for topology inference in such setups [26, 25].
Following the general idea of network inference, the scheme’s goal is to reconstruct likely
topologies based on information about the individual network links that can be gathered
at the application layer.

Although the scheme offers to take topology information gained from diagnosis tools
like traceroute into account, it aims at also working in the presence of anonymous
routers [148] (i.e., routers which do not respond to traceroutemessages) and identifying
network components underneath the network layer in the ISO/OSI stack [122], such as
link layer switches and bridges. Therefore, this chapter puts strong emphasis on network
topology inference based on end-to-end measurements (also sometimes called network
tomography [130]).

1

2 3
Destination Destination

Source

Switch/
Router/
Bridge

Probe
Packets

(a) Physical routing tree

1

2 3
Destination Destination

Source

4 Internal Node

(b) Logical routing tree

Figure 6.1.: The logical routing tree (b) as inferred from the physical routing (a) based
on end-to-end measurements.

Figure 6.1 illustrates the overall idea. A set of network end nodes (for example VMs)
is connected through a physical routing tree (Figure 6.1a). The physical routing tree’s
structure, in particular the internal nodes (e.g. network switches, routers, or bridges),
is unknown to the end nodes. One or more source nodes from the set of end nodes

88

6.1. Analysis of Network Path Characteristics in Clouds

then send a series of probe packets to a set of destination nodes. Based on these probe
packets, the end nodes can measure characteristics (like latency or loss) of the individual
network path and correlate these to infer a likely logical routing tree (Figure 6.1b). The
logical tree will not include all the internal nodes of the physical routing tree, but those
at which the network path to two end nodes diverges.

Although there has been vivid research in the field of network topology inference recently
(e.g. [41, 118, 98]), the applicability of this work in IaaS clouds has not been studied
so far. Most previous approaches share a strong focus on large-scale networks, like the
Internet, which are characterized by a large number of nodes, limited throughput, and
considerable packet loss as well as latency. In contrast to that, the networks in today’s
cloud data centers are characterized by high throughput links and transfer latencies that
are orders of magnitude smaller than the ones in wide-area networks. Moreover, the
inference process in the presence of hardware virtualization has not yet been studied.

As a result, the chapter will start with an analysis of the different network path character-
istics and carefully examine their suitability as proximity metrics for topology inference
in virtualized environments. Based on this initial analysis, it will evaluate the accuracy
to the inferred topologies and present a novel approach to improve the inference accu-
racy for typical data center network structures. Finally, a possible implementation of
the scheme based on the Nephele framework is described and the impact of the newly
acquired topology awareness is highlighted through a simple example job.

6.1. Analysis of Network Path Characteristics in Clouds

To infer likely network topologies based on end-to-end measurements, it is important to
understand the characteristics of the paths which the probe packets travel. Bestavros et
al. [30] established the theoretical foundation for topology inference in unicast networks.
They showed that a broad class of link characteristics like throughput, packet loss rate, or
packet delay can be used as a basis for a proximity metric given that these characteristics
obey certain properties.

As a first step towards topology inference in clouds, this section will analyze the impact
of different types of hardware virtualization on link loss and delay. Unlike in case of spe-
cialized network hardware, packets routed between VMs and their respective host system
may experience unexpected delays or congestions due to high system load or schedul-
ing strategies of the host’s kernel. This initial analysis will highlight if the common
assumptions [30, 98] for end-to-end-measurements in unicast networks still hold.

Although network throughput is also occasionally used for topology inference (for ex-
ample in [98]), I deliberately skip this characteristic in the discussion for the following

89

6. Topology Inference in IaaS Clouds

reason: With respect to the fast interconnects in today’s data centers, the nodes which
are involved in the probing have to generate enormous amounts of traffic in order to
expose any network bottleneck. Of course, this generated probing traffic has a nega-
tive impact on the performance of any network bound distributed application which is
deployed on the nodes, too. In particular, I consider the high probing overhead to be
incompatible with our strategies for dynamic resource allocation in the context of par-
allel data processing (cf. Chapter 3). One key aspect of these allocation strategies has
been the integration of new VMs into a running processing job. However, in order to
incorporate newly allocated VMs into the inferred network topology, the probing and
inference process potentially has to be reexecuted several times during the job execution,
when the network is already stressed by the parallel data processing itself.

To account for these data processing scenarios, this section studies the behavior of link
loss and delay under different degrees of background traffic. All experiments presented
in the following were conducted on our cloud testbed with 64 VMs hosted on eight
physical servers. As in the previous experiments of this thesis, again the characteristics
of the network links for KVM and XEN-based VMs are compared. For KVM we also
considered VMs with unmodified device drivers (full virtualization) and modified ones
(paravirtualization). A detailed description of the testbed can be found in the appendix.
The confidence intervals, if shown in the plots, represent a confidence level of 95%. If
not shown, confidence intervals have been small and omitted to improve legibility.

6.1.1. Inference based on Packet Loss

Packet loss is often considered as a link characteristic for topology inference [50, 51].
The idea is that a source node sends probing packets to at least two receiver nodes. The
receivers measure their individual packet loss rate. From correlations in the loss rates it
is then possible to deduce common subpaths between the source and the receivers.

Ideally, loss measurements are conducted in a multicast network so that a dropped packet
affects the loss rate of all of its receivers in the same way. In unicast networks, the effect
of a multicast transmission on the loss rate can be mimicked by a series of back-to-back
unicast transmissions. However, a crucial prerequisite is that the loss rate of all unicast
packets within a probe is positively correlated on a common subpath between the source
and the receivers [98].

To verify whether this prerequisite is fulfilled in a virtualized environment, we let each
VM of our cloud setup consecutively send probes consisting of two unicast packets to
all other VMs within the same setup. The interval between two consecutive probes was
100 ms. Within one probe, the two unicast packets were sent back-to-back, i.e., with
no intentional delay between the packets. Since both unicast packets are destined for

90

6.1. Analysis of Network Path Characteristics in Clouds

the same receiver (i.e., their common subpath equals the entire path both packets travel
through the network) we expected to see either both packets of the probe arrive at the
receiver or none at all.

Figure 6.2 depicts the loss rates we observed depending on the generated background
traffic. Overall loss rate denotes the percentage of probes in which either one or both
unicast packets did not reach the destination. 1-packet loss refers to the percentage of
probes where only one of the two unicast packets arrived at the receiver. Details on the
generation of the background traffic can be found in the appendix.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 200 400 600 800

0
5

10
15

Background Traffic among VMs [in MBit/s]

R
at

e
of

 L
os

t P
ro

be
 P

ac
ke

ts
 [%

]

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Overall Loss Rate (KVM Full Virt.)
1−Packet Loss Rate (KVM Full Virt.)
Overall Loss Rate (KVM Paravirt.)
1−Packet Loss Rate (KVM Paravirt.)
Overall Loss Rate (XEN Paravirt.)
1−Packet Loss Rate (XEN Paravirt.)

Figure 6.2.: Observed loss rates against background traffic for different types of virtual-
ization.

As one fundamental obstacle we found that with full virtualization (KVM full virt.) we
were unable to create any significant packet loss. At a background traffic of approxi-
mately 200 MBit/s per VM the overhead of the I/O virtualization became so high that
the VMs fully utilized their assigned CPU core. Consequently, we hit a CPU bottleneck
before we were able to cause any network overflow or congestion which may have resulted
in packet loss.

91

6. Topology Inference in IaaS Clouds

The same experiment with paravirtualization showed different results. For both KVM
and XEN-based virtualization we were able to observe packet loss of up to 15 or 16%,
respectively. However, again it required considerable amounts of background traffic to
be generated. Concerning the experiments with KVM and paravirtualization, it is also
problematic that the correlation of packet losses within one probe is poor. Depending
on the rate of background traffic, for 25% (800 MBit/s) to 65% (400 MBit/s) of all lost
probes, one of the included unicast packets still reached its destination.

6.1.2. Inference based on Packet Delay

Topology inference based on packet delay follows a similar idea as the previous loss
approach. Within one probe a pair of unicast packets is sent back-to-back to two re-
ceivers. As long as all unicast packets travel along the same subpath, they are expected
to experience similar delays. Receiver pairs with a long shared subpath from the source
are likely to have highly correlated delays while the delay of receiver pairs with a short
common subpath is expected to diverge.

To analyze the impact of different virtualization techniques on the correlation of path
delays, we let each VM of the cloud setup consecutively send probes consisting of two
unicast packets to all other VMs. Again, the two unicast packets were sent back-to-back
to the respective receiver. Like in the loss experiment, the common subpath of both
unicast packets was identical to their overall path through the network. Hence, if packet
delay on the common subpath was correlated, the second unicast packet would have to
arrive at the receiver without any significant delay after the first one.

Figure 6.3 illustrates the average interarrival times between the first and the second uni-
cast packet of a probe measured at the receiver. We distinguish between the interarrival
times of those probes which have been exchanged between VMs on the same physical
host (intra-host interarrival time) and those between VMs on different hosts (inter-host
interarrival time). As a baseline, the plot also shows the packet interarrival time we
measured for probes between the unvirtualized hosts.

The results indicate that paravirtualization increases the average interarrival time ap-
proximately by factor 10 compared to the unvirtualized baseline case. However, even
with large amounts of background traffic the average temporal gap between the first and
the second unicast packet’s arrival is still considerably smaller than 0.1 milliseconds.

For full virtualization (KVM full virt.) the situation is different. Even at a relatively
modest background traffic of 150 MBit/s per VM, the interarrival times grow to more
than one millisecond. Given that the average packet RTT in today’s local area networks
is typically below one millisecond, it is unreasonable to assume any kind of correlation
with respect to packet delay for this kind of virtualization.

92

6.1. Analysis of Network Path Characteristics in Clouds

0 200 400 600 800

Background Traffic among Nodes [in MBit/s]

In
te

ra
rr

iv
al

 T
im

es
 [i

n
M

ill
is

ec
.]

0.
00

1
0.

01
0.

1
1

10

●

●

●

●
●

●
●

● ●
● ● ●

● ●
●

● ●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Intra−Host Interarrival Time (KVM Full Virt.)
Inter−Host Interarrival Time (KVM Full Virt.)
Intra−Host Interarrival Time (KVM Paravirt.)
Inter−Host Interarrival Time (KVM Paravirt.)
Intra−Host Interarrival Time (XEN Paravirt.)
Inter−Host Interarrival Time (XEN Paravirt.)
Inter−Host Interarrival Time (No Virtualization)

Figure 6.3.: Observed packet interarrival times against background traffic for different
types of virtualization.

After having examined the impact of virtualization on the possible correlation of packet
delay, we focused our second experiment on the effects of virtualization on the observable
packet delay itself. Due to the lack of a global clock, measuring delay on a timescale of
microseconds in a distributed system is a cumbersome task. As a remedy, we measured
the packet RTTs instead. Figure 6.4 shows the results.

The results distinguish between RTTs which were measured between VMs running on
the same physical host (intra-host RTT) and those running on different hosts (inter-host
RTT). In general, the RTTs are highly influenced by the level of background traffic.
With full virtualization (KVM full virt.), the average RTT rises up to approximately
nine milliseconds at a background traffic of 200 MBit/s per VM. More importantly, the
measured values show large variations for this type of virtualization, such that intra-host
and inter-host RTTs appear essentially the same.

In contrast to that, the variance of the RTTs from the experiments with paravirtual-
ization is much smaller. Moreover, we observed a distinct gap between the intra-host

93

6. Topology Inference in IaaS Clouds

0 200 400 600 800

Background Traffic among VMs [in MBit/s]

R
TT

 [i
n

M
ill

is
ec

.]

0
5

10
15

20
25

30

●

●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

●

Intra−Host RTT (KVM Full Virt.)
Inter−Host RTT (KVM Full Virt.)
Intra−Host RTT (KVM Paravirt.)
Inter−Host RTT (KVM Paravirt.)
Intra−Host RTT (XEN Paravirt.)
Inter−Host RTT (XEN Paravirt.)

Figure 6.4.: Average RTTs against background traffic for different types of virtualization.

and inter-host RTT for both KVM as well as XEN-based VMs which continued to grow
as the level of background traffic increased. Especially, for the KVM-based VMs the
average inter-host RTT eventually rose up to almost 30 milliseconds.

6.1.3. Discussion

As an intermediate result of the effort to infer network topologies based on end-to-end
measurements in IaaS clouds I can state that virtualization can have a significant impact
on the observable characteristics of a network link.

For topology inference based on packet loss, both the KVM and the XEN virtualization
layer destroyed the correlation of unicast packet loss on common subpaths, which is
assumed by existing inference approaches [98]. In terms of packet delay, we experienced
a similar problem for fully virtualized environments. Here the virtualization layer intro-
duced significant gaps in the packet interarrival times which also render any assumption
about correlated packet delays on common subpaths unreasonable.

94

6.2. Examining the Accuracy of Topology Inference

Among all conducted experiments, observing link latency in paravirtualized clouds ap-
pears to be the most promising way to successfully deduce topology information among
the involved VMs. Although we partly observed large increases in the RTTs under high
load with both KVM and XEN, the individual values showed only little fluctuations at
a particular level of background traffic. Moreover, we were able to measure statistically
reliable differences between intra-host and inter-host RTTs.

6.2. Examining the Accuracy of Topology Inference

Having examined the impact of virtualization on the observable link characteristics loss
and delay, the chapter will now deal with the actual topology inference process and
its accuracy. As a reaction to our findings from the previous section I will focus on
delay-based approaches and only consider paravirtualization.

Like most existing approaches (e.g. [109, 35, 50]) we attempted to reconstruct the logical
routing tree through agglomerative hierarchical clustering. Starting with each VM as
an individual cluster, this clustering technique progressively merges clusters based on a
similarity metric γ until only one cluster is left. The approach requires an initial set of
similarity values γi,j for each pair of VMs i and j.

In the following I will discuss two different delay-based measurement approaches which
can be used to construct γi,j and contrast their performance in the inference process.

6.2.1. Obtaining Initial Similarity Values for the VMs

To obtain the required pairwise similarity metric γi,j Coates et al. proposed a delay-
based measurement technique called sandwich probing [41]. Compared to classic packet
delay measurements, sandwich probing eliminates the need for synchronized clocks on
the sender and the receiver node because it only measures delay differences.

As illustrated in Figure 6.5, a sender node s sends out a sequence of so-called sandwich
probes. Each sandwich probe consists of three packets, two small packets destined for
receiver j separated by a larger packet destined for receiver i. The second small packet
is expected to queue behind the large one at every inner node of the routing tree (e.g.
bridge, switch, etc.). This induces an additional delay Δd between the small packets
on the shared links. Δd can be used as a similarity value γi,j because the larger γi,j
becomes the longer the common subpath from s to i and j must be. The longer the
common subpath from s is, the closer i and j must be in the logical routing tree. Since
all sandwich probes originate from a single sender s, all inferred logical routing trees will
have s as their root node.

95

6. Topology Inference in IaaS Clouds

s

i j
Destination Destination

Source

to i

to j

to j

d to j

to j

d + Δd

Figure 6.5.: The general idea of sandwich probing.

Another way to overcome the necessity for synchronized clocks is to measure path delay
based on the RTT between all pairs of leaf nodes i and j. As opposed to sandwich
probing the RTT measurements are not conducted from a single sender node s. Instead,
each leaf node l ∈ L (L is the set of leaf/end nodes) conducts its on measurements.
However, the overall measurement complexity (i.e., the number of messages that must
be transfered to obtain γi,j for all pairs of i, j ∈ L) is still O(|L|2). As a small RTT ri,j
between two leaf nodes i and j indicates a close proximity in the inferred logical routing
tree, the similarity value γi,j must be defined as 1

ri,j
.

6.2.2. Accuracy of the Inferred Topologies

To assess the accuracy of the inferred topologies that can be achieved based on end-
to-end latency measurements in paravirtualized environments we collected samples for
γi,j using both sandwich as well as RTT probing. For the sandwich probing, we set the
delay between the two small packets to d = 10 milliseconds. We also experimented with
other values for d, however, found this one to provide the best overall results. In total,
we collected approximately 50 probes for each pair of leaf nodes, each measurement
technique, each level of background traffic, and each virtualization technology. For the
actual clustering we used the agglomerative likelihood tree (ALT) algorithm as proposed
by Castro et al. [35].

The accuracy of the inferred network topology is expressed as the distance between the
inferred and the real topology in the Robinson-Foulds metric [112]. The Robinson-Foulds
metric is based on an unrooted tree of nodes, each node of the tree must have a set of

96

6.2. Examining the Accuracy of Topology Inference

N1

N2 N3 N4

N5

N6N7N8

N9

{a}

{b} {c,d} {e}

{f}

{g}

{h}

Ø Ø

N1

N2 N3 N4

N5

N6N10

N9

{a}

{b} {c,d} {e}

{f}

{g}

{h}

Ø

α α-1

Figure 6.6.: The application of α and α−1 according to the Robinson-Foulds metric.

labels. For nodes with a degree greater than or equal to three, the label can be the empty
set. All nodes with a smaller degree must have non-empty label sets. According to the
metric, two trees Ti and Tj are considered to be the same if Ti and Tj are isomorphic,
and the isomorphism also preserves the labeling [112].

Based on this definition, the Robinson-Foulds metric defines the elementary operation α,
the contraction operation. The α operation can be applied to two adjacent nodes Ni, Nj

of a tree. It shrinks those two nodes to a single node with the label of the new node
being the union of the labels of Ni and Nj . Accordingly, the metric defines an inverse
operation α−1 (the decontraction operation) which divides a node into two new nodes,
the new nodes being joined by an edge. In order to construct the labels for those two
new nodes, the original label set can be split arbitrarily as long the constrains mentioned
above are preserved. Figure 6.6 illustrates the application of α and α−1 by means of an
example tree.

The distance between two trees Ti and Tj is defined as
nα+nα−1

2 where nα and nα−1

are the minimum number of contraction and decontraction operations that have to be
performed to transform Ti into Tj or vice-versa. To determine these numbers in the
context of these experiments, we used the Phylogenetic Analysis Library (PAL) [47].

Figure 6.7 shows the accuracy of the inferred topologies for KVM as well as XEN-based
VMs and sandwich as well as RTT-based probing against different levels of background
traffic. Note that the inferred tree produced by the ALT algorithm is always binary [35].
Although there exist algorithms that can also infer network topologies based on general

97

6. Topology Inference in IaaS Clouds

trees, these algorithms also typically start by constructing a binary tree first and then
apply stochastic methods to transform the binary tree into a likely general one [41, 51].
Hence, the constructed binary tree can be regarded as a robust starting point for the
topology inference process. If an inference algorithm is unable to estimate a network
topology accurately based on a binary tree, it will not be able to estimate it accurately
based on a general tree either. An approach to transfer the binary tree into a general
tree will be presented in the next subsection.

0 200 400 600 800

24
26

28
30

32
34

36

Background Traffic among VMs [in MBit/s]

S
im

ila
rit

y
of

 T
re

es
 [R

ob
in

so
n−

Fo
ul

ds
 M

et
ric

]

Sandwich Probing (KVM Paravirt.)
Sandwich Probing (XEN Paravirt.)
RTT Probing (KVM Paravirt.)
RTT Probing (XEN Paravirt.)

Figure 6.7.: Accuracy of the inferred topologies against background traffic using the ALT
algorithm.

In the absence of background traffic the average distance of the inferred network topology
tree to the real one centers around 27 for both virtualization and probing techniques.
However, with increasing background traffic, the accuracy of those topologies that were
inferred based on the sandwich probes starts to diminish. This can be explained by the
increasing delay for intra-host VM communication under high background traffic.

As highlighted in Section 6.1 all packets which are passed to the physical network ex-
perience a significant additional delay even for moderate levels of background traffic.
Although we found those additional delays to be relatively stable on a timescale of milli-

98

6.2. Examining the Accuracy of Topology Inference

seconds, their variance is large enough to blur the subtle delay differences of intra-host
VM communication. As a result, the delay differences for all receiver VMs which do not
run on the sender VM’s host suffer from a large variance and therefore impede the in-
ference process in the presence of background traffic. In contrast to that, the topologies
inferred based on the RTT probes, where each VM issued its own probe packets, are
more stable towards increasing background traffic.

6.2.3. Transferring Binary Trees into General Trees

As pointed out in the previous subsection the topologies inferred by the ALT algorithm
always follow the structure of a binary tree. Binary trees provide the largest number of
degrees of freedom and thus are able to fit the measured data most closely [41]. Therefore
they are a reasonable starting point to unbiasedly contrast the impact of different probing
techniques on the inference accuracy.

However, the network topology in most data centers can be rather described by a general
tree. The inferred binary tree can be considered an “overfitted” version of the physi-
cal network tree which includes more internal nodes than actually exist and therefore
automatically decreases the inference accuracy in most network setups.

To overcome the problem of overfitting, several methods have been proposed (e.g. [41,
51]). Most of them apply computationally demanding heuristics to reconstruct likely
general trees based on the initially inferred binary tree. Since most inference approaches
were designed for large-scale networks like the Internet, which do not allow any assump-
tions about the structure of the routing tree, these heuristics are a reasonable choice.
However, in contrast to the Internet, the network structure in data centers is much more
regular. Typical network architectures of today’s data centers consist of either two- or
three-level trees of switches or routers [3]. Hosting multiple VMs on one server might
add another level of depth to the tree, but, for example, a network topology tree with a
depth of more than three in a single IP subnet is very unlikely to occur in practice.

The extension proposed in the following exploits this regularity. It is based on the
assumptions that network topology trees with a depth greater than d are unlikely to
occur. Moreover, it assumes that all leaf nodes are likely to have a similar depth in a
data center network topology tree.

Our extension is subdivided into two operations: The first operation reroot takes the
initial binary tree as input and chooses that inner node as the tree’s new root node
which minimizes the difference between the leaf nodes with the highest and the lowest
depth. The operation accounts for the fact that the root node created by the clustering
algorithm is not necessarily correct. For example, when using sandwich probing, the root
node of the inferred binary tree is always the source of probe packets s. The rerooted

99

6. Topology Inference in IaaS Clouds

tree is then passed to the second operation limitDepth(d). This operation continuously
identifies the leaf node with the highest depth, cuts it out, and appends it to its former
parent’s parent node as long as the depth of the tree is greater than d. Figure 6.8
illustrates the impact of our extension on the inference accuracy for different values of
d. Compared to the initial binary tree (Figure 6.7) our extension reduces the Robinson-
Foulds distance to the actual tree which represents our testbed’s network topology by
16 to 21 (depending on d) on an average. To improve legibility the figure only shows the
results for KVM (paravirt.) and omits confidence intervals.

0 200 400 600 800

0
5

10
15

20

Background Traffic among VMs [in MBit/s]

S
im

ila
rit

y
of

 T
re

es
 [R

ob
in

so
n−

Fo
ul

ds
 M

et
ric

]

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

Sandwich Probing (KVM Paravirt.), d = 3
Sandwich Probing (KVM Paravirt.), d = 4
Sandwich Probing (KVM Paravirt.), d = 5
RTT Probing (KVM Paravirt.), d = 3
RTT Probing (KVM Paravirt.), d = 4
RTT Probing (KVM Paravirt.), d = 5

Figure 6.8.: Accuracy of the inferred topologies using the ALT algorithm and the depth
limitation.

6.3. Implementation in Nephele

Following the previous discussion on the accuracy of topology inference based on end-
to-end measurements in virtualized environments, this section now sketches a possible
implementation of a concrete topology inference method as part of our parallel data

100

6.3. Implementation in Nephele

processing framework Nephele. Although we use Nephele as a technical foundation, the
method has been devised as a lightweight background service which is applicable to all
kinds of distributed applications in general.

Technically, our topology inference method is assumed to be deployed on a set of VMs
which are connected through a tree-like but initially unknown network structure. Once
the topology inference process has been activated, one VM from the set is elected as a
master node. To simplify matters, in the context of Nephele, the master node is usually
the VM which also runs Nephele’s JobManager. After being elected, the master node
starts sending out ICMP echo requests to all other VMs in the set. The goal of this
operation is to obtain a first coarse-grained IP-level network topology.

As illustrated in Figure 6.9, the master node uses this IP-level network topology to
subdivide the overall set of VMs into subsets of VMs which are in the same IP subnet.
If (parts of) the IP-level network topology could not be obtained, for example because
ICMP echoes are disabled by the cloud operator, a subset may also include VMs from
different IP subnets. In the worst case, ICMP echo requests cannot be used to achieve
any partitioning among the VMs, resulting in only one (sub)set containing all VMs.

RTT Probes ICMP Probes

VM X.3

VM X.2VM X.1
(Master)

VM Y.2

IP Subnet X

VM Y.1

VM Y.3

IP Subnet Y

Infrastructure as a Service Cloud

Figure 6.9.: Schematic overview of the topology inference method.

Then, in each subset, the end-to-end RTT measurements are started. The RTT probes
are exchanges between all pairs of VMs in the respective subset. In contrast to the ICMP
echo requests, the goal of these end-to-end measurements is to detect internal network
components which operate underneath the IP layer. Examples of these components
are link layer switches or bridges which connect the individual VMs to the physical
network. The master node then collects then measurement data and executes an ALT-
like clustering algorithm and the operation reroot and limitDepth(d) on the data of each
subset. Finally, the inferred network topologies of the individual subsets are integrated
into the overall IP-level network topology.

101

6. Topology Inference in IaaS Clouds

Although our topology inference method does not depend on ICMP echo requests to be
activated, the resultant partitioning of the VM set helps to reduce the overall number
of RTT messages that have to be exchanged. By default, each VM conducts the RTT
measurements every five seconds, whereas the data collection and clustering algorithm
is triggered either every minute or immediately upon the arrival of a new VM. Con-
sequently, the measurement and execution overhead is negligibly small for most cloud
setups. For large-scale cloud setups (1000 or more VMs) the probing intervals can be
increased in order to reduce the measurement overhead. Moreover, it is possible to del-
egate the execution of the clustering algorithm to a VM in each subset instead of doing
the computation centrally on the master node.

To the distributed application which is supposed to take advantage of the inferred net-
work topology, our method offers a well-defined interface. Through the interface the
application can retrieve the overall inferred network topology. Moreover, the interface
includes the possibility for callbacks to the application, so in case the inferred topology
changes, for example due to newly allocated or terminated VMs or the possible migration
of a VM, the application can be notified about that and respond to the changes.

6.4. Evaluation

We devised a sample job for Nephele in order to highlight the possible performance im-
provements that can be achieved by incorporating our new topology inference method.

The sample job consisted of eight data-parallel producer subtasks as well as eight data-
parallel consumer subtasks. Each producer subtask was connected to a separate con-
sumer subtask through one of Nephele’s network channels. Moreover, each subtask was
executed on a separate VM, so in total the experiment used 16 VMs hosted on two
physical hosts of our local cloud testbed. All 16 VMs were in the same IP subnet.

We launched the sample job exactly one minute after having started Nephele’s Task
Managers on the respective VMs. As a result, the inferred network topology Nephele
used for its scheduling was based on approximately 12 RTT samples per pair of VMs.
After the execution of the initial clustering and the reroot operation, the limitDepth(d)
operation was called with d = 4. During the execution of the sample job, each producer
subtask continuously sent data to its connected consumer subtask. In total, all producer
subtasks transmitted 200 GB of data to their respective consumers.

Figure 6.10 illustrates the possible impact of the new topology information on the job’s
performance and finishing time. When the network topology can be exploited for task
scheduling (Figure 6.10a) Nephele can make sure that the respective pairs of consumer
and producer subtasks are started on VMs which are colocated on the same physical

102

6.5. Related Work

host. In this case the average network utilization increased to about 530 MBit/s on an
average per pair of VMs and the processing job could be completed after approximately
400 seconds. Moreover, Figure 6.10a shows a high CPU utilization, which is also desirable
in a cloud setup.

In contrast to that Figure 6.10b depicts the execution performance without a topology-
aware scheduler. As in this case all available VMs appear equally suited to Nephele,
the subtasks are assigned randomly to them. As a result of the subtask placement,
about one half of consumer-producer pairs were sent to colocated VMs. The other half
were forced to share their respective host’s network interface to exchange data. This is
also reflected in the average network throughput. Instead of 530 MBit/s, it dropped to
about 210 MBit/s per pair of VMs. Thus, the job’s completion time was also extended
to approximately 16 minutes.

Finally, Figure 6.10c highlights the job performance which may result from a topology-
agnostic scheduler in the worst case. Here all producer subtasks were assigned to VMs
on one physical host, whereas the respective consumer subtasks were all scheduled to
run on VMs on the other host. Since all producer subtasks essentially shared a single
physical network device, in this case the average network throughput decreased to slightly
over 100 MBit/s. Moreover, the average system utilization dropped below 10% and the
completion time increased to over 30 minutes.

6.5. Related Work

Network topology inference has been subject to vivid research in recent years. In general,
there exist two major classes of inference approaches: those which rely on the assistance
of internal network nodes (such as routers) and those which do not.

The approaches falling into the first class (e.g. [22, 34, 78]) depend on receiving feedback
messages from the internal network nodes. Most commonly, they use diagnosis tools like
traceroute to discover the IP routers on the path to a destination host and afterwards
try to reconstruct (parts of) the network’s topology from the collected path information.
While these network-assisted approaches provide accurate topology approximations in
large, decentralized networks, they suffer from several shortcomings in data centers.

First, to the best of my knowledge, all network-assisted efforts to infer network topology
rely on layer 3 of the ISO/OSI model (network layer). As a result, they are generally
unable to detect link layer (layer 2) network components like switches or, more impor-
tant in terms of virtualization, network bridges. Although there exist protocols like
LLDP [72] to discover link layer (layer 2) components as well, these protocols mainly
serve administrative purposes and cannot be used by arbitrary network participants.

103

6. Topology Inference in IaaS Clouds

Second, all network-assisted approaches fail to work if the network administrator of the
cloud data center deactivates support for these types of diagnosis messages. This could
be motivated by security considerations. At the network level this phenomenon is also
referred to as anonymous routers [148].

The second major class of topology inference approaches, also known as network to-
mography [130], therefore solely relies on end-to-end measurements. The basic idea of
network tomography is to measure particular characteristics of a network path during
the exchange of probe packets among a set of network nodes. Typical characteristics
observed are throughput, delay, or loss rate. When a sufficiently large number of mea-
surements has been conducted, it becomes possible to calculate the correlation among
the observed metrics and to infer a likely network topology [98].

Ratnasamy and McCanne [109] observed the shared loss rate at a set of receiver nodes
in series of multicast packet transmissions from a single source. Based on the collected
data, they proposed a clustering algorithm to infer the inner structure of a binary dis-
tribution tree. N.G. Duffield et al. later provided a formal proof for the correctness
of the algorithm presented in [109] and extended it to general multicast topologies by
introducing additional loss-based algorithms [50]. In [49] they further generalized their
work to arbitrary estimable and monotonic performance metrics. Bestavros et al. [30]
proposed a similar generalization with their MINT framework.

To overcome the poor availability of multicast in real-world networks, several projects
also studied topology inference based on unicast end-to-end measurements. Coates et
al. [41] presented a method to capture path delay in unicast routing tree topologies called
sandwich probing. Instead of capturing the packet runtime at two distinct receivers,
sandwich probing allows measuring delay differences at a single receiver and is therefore
robust towards unsynchronized clocks. Based on this novel probing scheme, the authors
devised a Markov Chain Monte Carlo (MCMC) procedure to infer the most likely network
topology. In [35] Castro et al. demonstrated how to express the inference problem as a
hierarchical clustering problem and proposed their ALT algorithm. Shih and Hero later
extended their work by finite mixture models and MML model order penalties [118]. Ni
et al. addressed the complexity of the proposed clustering algorithms and incorporated
node joins and departures in the inference process [98]. Shirai et al. [119] as well as
Tsang et al. [129] considered topology inference based on RTT measurements. However,
none of the works examined the effects of hardware virtualization.

In the context of cloud computing, topology awareness has been considered by the fol-
lowing papers:

In [86] Kozuch et al. presented Tashi, a location aware cluster management system.
Tashi features a so-called resource telemetry service which is capable of reporting the
distance between a pair of VMs according to some user-defined metric. However, the

104

6.6. Summary

way the resource telemetry service obtains the location data of the VMs is not addressed
in the paper.

Gutpa et al. [66] introduced a hosting framework for VMs. Their framework is able to
deduce the traffic pattern of distributed applications running inside these VMs. Based on
the observed traffic patterns, VMs are migrated inside the cluster such that the locality
of a data transmission is improved.

Ristenpart et al. [111] discussed the location of VMs inside the Amazon EC2 cloud from
a security point of view. Based on observations like common routing paths, common
IP address prefixes, or packet RTTs, the authors examined the possibility to detect
colocated VMs and exploit the colocation for attacks.

6.6. Summary

In this chapter I presented a lightweight scheme to reconstruct likely physical network
topologies which connect a set of VMs in so-far opaque IaaS clouds. Thereby, the scheme
takes a hybrid approach: It uses ICMP control messages to obtain a first coarse-grained
IP-level network topology. Afterwards, the scheme performs end-to-end measurements
to infer internal network nodes which operate underneath the IP layer.

As part of our inference efforts based on end-to-end measurements, the chapter provided
an initial analysis of the network path characteristics loss and delay and examined the
impact of hardware virtualization using the open source hypervisors KVM and XEN.
Based on this analysis, it contrasted the accuracy of the inferred topologies for two differ-
ent latency-based measurement approaches. Finally, the chapter proposed an extension
to existing clustering-based inference algorithms. This extension allows to transform
overfitted binary trees into general trees which are likely to describe the network topol-
ogy of a cloud data center.

In sum, I can conclude that topology inference in IaaS clouds is a challenging but also
rewarding subject. Even under moderate system load hardware virtualization has a
significant effect on the measurable network path characteristics and destroys important
correlation properties which are assumed by most inference approaches. Among all
conducted experiments on our mid-size cloud testbed, RTT-based delay measurements
led to the most accurate inference results with an average Robinson-Foulds distance to
the actual topology of under six. However, we also observed large delays introduced
by the virtualization layers (especially KVM) under high background traffic. In my
opinion, the variance of these delays currently leaves little potential to reliably infer
passive network components like link layer switches.

105

6. Topology Inference in IaaS Clouds

With respect to parallel data processing on IaaS platforms, however, the new scheme
contributes to reduce the risk of I/O bottlenecks and fosters the exploitation of data
locality anyway. Besides the reconstruction of the IP-level network topology, our scheme
is able to reliably detect colocated VMs in paravirtualized setups. Since the network links
between those colocated VMs are highlighted by an increased data throughput, it makes
exploiting this kind of knowledge a favorable goal for topology-aware scheduling.

106

6.6. Summary

0 500 1000 1500

0
20

40
60

80

Time [Seconds]

Av
er

ag
e

C
P

U
 U

til
iz

at
io

n
[%

]

●

●

●

USR
SYS
IRQ
Network Traffic

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

Av
er

ag
e

N
et

w
or

k
Tr

af
fic

 a
m

on
g

Pa
ir

of
 V

M
s

[M
B

it/
s]

(a) Topology-aware scheduling

0 500 1000 1500

0
20

40
60

80

Time [Seconds]

Av
er

ag
e

C
P

U
 U

til
iz

at
io

n
[%

]

●

●

●

USR
SYS
IRQ
Network Traffic

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

Av
er

ag
e

N
et

w
or

k
Tr

af
fic

 a
m

on
g

Pa
ir

of
 V

M
s

[M
B

it/
s]

(b) Topology-agnostic scheduling (random)

0 500 1000 1500

0
20

40
60

80

Time [Seconds]

Av
er

ag
e

C
P

U
 U

til
iz

at
io

n
[%

]

●

●

●

USR
SYS
IRQ
Network Traffic

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

Av
er

ag
e

N
et

w
or

k
Tr

af
fic

 a
m

on
g

Pa
ir

of
 V

M
s

[M
B

it/
s]

(c) Topology-agnostic scheduling (worst case)

Figure 6.10.: System utilization and network throughput during the execution of the
sample job using different scheduling strategies.

107

6. Topology Inference in IaaS Clouds

108

7. Interaction with Higher Layer Components

Contents

7.1. The Stratosphere Software Stack 109

7.2. The PACT Layer . 112

7.2.1. The Structure of a PACT Program 113

7.2.2. The PACT Input Contracts . 114

7.2.3. The PACT Output Contracts 117

7.2.4. Running PACT Programs on Nephele 118

7.3. Optimization Opportunities through the PACT Layer 120

7.4. Summary . 122

The parallel data processing framework Nephele as well as the other contributions pre-
sented in the previous chapters are part of a larger software stack which is currently
developed in the scope of the Stratosphere project [24, 5]. The Stratosphere project
aims at facilitating complex and large-scale information management on top of IaaS
platforms.

This chapter will present a brief overview of the Stratosphere software stack. In particu-
lar, it will highlight those layers of the software stack which are adjacent to the Nephele
layer and discuss optimization opportunities resulting from the richer semantics of these
layers.

7.1. The Stratosphere Software Stack

As illustrated in Figure 7.1, the Stratosphere software stack builds on an existing IaaS
platform. The platform is expected to provide a large number of (typically virtualized)
shared-nothing compute nodes.

On top of the IaaS platform there runs the so-called Stratosphere query processor. The
Stratosphere query processor encompasses most of the software components developed
in the scope of the Stratosphere project. In particular, it contains five distinct compo-
nents:

109

7. Interaction with Higher Layer Components

Use Cases

Infrastructure as a Service Cloud

Stratosphere Query Processor

Scientific
Data

Life
Sciences

Linked
Data

VM 1 VM 2 VM n. . .

StratoSphere
Above the Clouds

Internal Structure of the Query Processor

Distributed Data Storage

Declarative Query Language

Nephele

Co
nt

in
uo

us
Re

op
tim

iza
tio

n
- Distributed File Systems like HDFS, …
- External Data Sources like EBS, S3, …

- Scheduling of Incoming Job Graphs
- Execution of Job Graphs
- Communication with IaaS Platform

PACT
- Extension of MR Programming Model
- Cost-based Optimization of Programs
- Nephele Job Graph Compilation

PACT Program

Nephele Job Graph

Figure 7.1.: Overview of the Stratosphere software stack.

On the lowest level of the Stratosphere query processor there is a distributed data storage
layer. The main purpose of the data storage layer is to reliably store the large volumes
of the queries’ input and output data and to provide access to the data in a distributed
fashion. Since storage does not take center stage on the Stratosphere research agenda,
the layer currently utilizes existing solutions for distributed storage. This includes the
distributed file system HDFS which is part of the Hadoop software stack [124] and
stores the data directly on each VM of the cloud setup. However, the layer also contains
bindings to external cloud storage service as described in Chapter 2.

On top of the distributed data storage layer the Nephele layer is located, the second
component. As described in Chapter 3, Nephele’s responsibility in the stack is the
scheduling of incoming processing jobs, the so-called Job Graphs, as well as their efficient
execution in the cloud environment. In particular, Nephele takes care of all resource
management matters. It determines the number of VMs (and their types) which are
necessary to run the respective Job Graph, assigns the job’s subtasks to suitable compute
nodes, and communicates with the IaaS cloud in order to allocate or release VMs.

The Nephele layer receives the incoming Job Graphs from the third component of the
Stratosphere query processor, the so-called PACT layer. The PACT layer also lets its

110

7.1. The Stratosphere Software Stack

users specify data processing jobs in the form of DAGs. However, it features a more
abstract, higher-level programming interface in comparison to Nephele’s Job Graph.
Unlike Nephele’s programming abstraction, the PACT programming model does not
require the developer to fully implement the behavior of each of the job’s tasks. Instead,
it features a set of second-order functions, the so-called PACT input contracts, which
can be considered a generalization and extension of the two well-known second-order
functions map and reduce from the MapReduce programming model [6]. A developer
simply has to attach his user code to the respective PACT input contract and can rely on
the contract’s guarantees in terms of the way data is passed to the user code at runtime.
Particularly, the developer does not have to worry about the correct distribution of the
data among different parallel instances of his user code during the job’s execution.

While PACT input contracts provide certain guarantees on the property of the data
that is passed to the user code, they do not specify how the system will achieve to
fulfill these guarantees at runtime. In fact, for several PACT input contracts, there exist
different strategies to fulfill the provided guarantees with different implications on the
required effort for data reorganization. Choosing the best strategies for a submitted
PACT program with regard to data transfer cost is therefore the main responsibility of
the so-called PACT compiler, which is also part of the PACT layer. Based on cardinality
estimates, the PACT compiler determines the cheapest execution strategies for the PACT
program’s respective input contracts. Then it adds the required functionality for the
chosen strategies to the program and translates it into a Nephele Job Graph.

Compared to the Nephele programming abstraction, the PACT programming model
is less flexible, but provides a more declarative way of writing MTC-like applications.
Due to the specific set of input contracts a developer is bound to, the PACT layer
can also make additional assumptions about the characteristics of the encapsulated user
code. Since these assumptions generally do not hold for user code on the Nephele layer,
exposing some of these characteristics to Nephele can yield some interesting opportunities
for runtime optimizations, such as automated scale-in and scale-out. For this reason, the
following sections will examine the interaction between Nephele and PACT during the job
execution in more detail and point out sensible approaches for cross-layer optimization.

The fourth component of the Stratosphere query processor is the layer for continuous
reoptimization. It is located orthogonally to the Nephele and PACT layer. The main
purpose of the continuous reoptimization layer is to monitor the execution of a Nephele
job and to take appropriate actions in case the execution exhibits an unexpected behavior
in terms of the estimated processing time, data shipping cost, or related aspects. The
continuous reoptimization layer can thereby take advantage of the different levels of
abstraction the Nephele and the PACT layer offer. On the Nephele level, for example,
the continuous reoptimization layer can build upon the bottleneck detection approach
I presented in Chapter 4. However, it can also inject code into PACT programs to

111

7. Interaction with Higher Layer Components

detect execution problems which require a more precise understanding of the program
semantics, like skewed data distributions.

The end user is envisioned to interact with the Stratosphere query processor by means
of a declarative query language, the fifth component, which shares similarities with
approaches like Jaql [31], DryadLINQ [150], or Hive [126]. In terms of its semantical
richness, the declarative query language is more powerful than the PACT layer. Thus,
queries are first translated into PACT programs to optimize their estimated physical
execution cost and then passed on to the Nephele layer for the actual parallel execution.
According to the current state of affairs, the declarative query language will provide a
basic set of initial operators, but will also be extensible through custom operators and
user-defined functions.

In its efforts to advance the state of the art in large-scale data processing on parallel,
adaptive architectures, the Stratosphere project is targeted towards three real-world
use cases: The first use case centers around the analysis of scientific data, for example
from the area of climate research. In this domain, scientific simulations often produce
data volumes in the scale of tera or even peta bytes [63] and call for massively parallel
architectures to be analyzed in an efficient manner. The second use case deals with
computational problems from the life sciences, especially information extraction and
integration of unstructured data [89]. Finally, the third use case focuses on the analysis
of linked data as it often occurs in social networks [76].

All three use cases are envisioned to make use of the declarative query language that is
provided by the query processor. However, the use cases are also expected to develop
a domain-specific set of operators and user-defined functions for the declarative query
language with a wide range of different computational complexities.

7.2. The PACT Layer

As briefly sketched in the previous section, the PACT layer is situated on top of the
Nephele layer within the Stratosphere query processor. More importantly, compared to
the Nephele layer, it has additional knowledge about the behavior of the encapsulated
user code. The combination of both aspects makes the PACT layer a favorable choice
for cross-layer optimizations.

This section will describe the basic concepts of the PACT layer and explain how the
PACT code is encapsulated in Nephele tasks at runtime.

112

7.2. The PACT Layer

7.2.1. The Structure of a PACT Program

Similar to Nephele jobs, the structure of a PACT program corresponds to a DAG. Each
vertex of the DAG represents a particular task of the PACT program, whereas the
DAG’s edges model the data flow between those tasks. A user can also execute arbitrary
sequential code as part of a PACT task, however, the way the user code of a PACT task is
invoked is different compared to the Nephele layer. While the user code in a Nephele task
is invoked exactly once during the job’s execution, the user code wrapped inside a PACT
task, or PACT for short, is typically invoked multiple times. Upon each invocation, the
PACT user code is not provided with the entire input data from its predecessors in the
DAG. Instead, the PACT layer separates the input data into disjoint subsets and calls
the encapsulated PACT user code for each of these subsets individually.

The way these subsets of input data are composed for each PACT depends on the respec-
tive PACT’s input contract. As the name implies, an input contract can be considered
an agreement between the PACT layer and the PACT user code. It provides a specific
guarantee on the properties of the input data that is passed to the PACT user code on
each invocation. For each PACT, an input contract is mandatory, i.e., the user code on
the PACT layer must be designed to fit the respective contract’s interface.

Key Value
PACT Program

Internal Structure of a PACT before Compilation
PACT

Input Contract (Mandatory)

User Code (Mandatory)

Output
Contract

(Optional)

Figure 7.2.: The basic structure of a PACT program.

Besides the concepts of input contracts, the PACT programming model also includes
so-called output contracts. Unlike input contracts, output contracts are optional. A
developer can attach these output contracts to his particular PACTs in order to indicate
that the output data of the encapsulated user code will obey certain properties. With
regard to the programming abstraction, output contracts have no direct benefit to devel-
opers. However, they provide valuable information about the user code’s behavior to the
PACT compiler. The PACT compiler in turn can exploit this information to optimize
the necessary data reorganization between the individual PACTs. In sum, the structure
of a PACT program can be illustrated as in Figure 7.2.

113

7. Interaction with Higher Layer Components

7.2.2. The PACT Input Contracts

Currently, the PACT programming model features five distinct input contracts. Each
input contract provides different guarantees on how a PACT’s input data is split into
subsets and passed on to the encapsulated user code.

In order to understand the concrete properties of these subsets, it is important to know
that the PACT layer is based on a key-value data model. This means, unlike Nephele
which does not understand the semantics of its records at all, the PACT layer can at
least split each unit of data into a separate key and a value. The key and the value
themselves again can be of a user-defined type and completely uninterpretable to the
PACT layer. However, the key type must allow for the ordering of keys.

The Map Input Contract

The Map input contract corresponds to the well-known second-order map function from
the MapReduce paradigm [43]. It can be considered to be the simplest of all currently
available input contracts. As illustrated in Figure 7.3, the Map input contract states
that the user code is invoked exactly once for each key-value pair of the input data set.

Input Data

Key Value

Independent Invocations
of User Code

Figure 7.3.: Grouping of input data according to the PACT input contract Map.

The Reduce Input Contract

According to the the PACT input contract Reduce, all key-value pairs of a PACT’s
input data with an identical key are grouped. The user code which is attached to the
Reduce contract is invoked for each of these groups independently (Figure 7.4). This also
corresponds to the behavior of the second-order reduce function from the MapReduce
paradigm.

114

7.2. The PACT Layer

Input Data

Key Value

Independent Invocations
of User Code

Figure 7.4.: Grouping of input data according to the PACT input contract Reduce.

The Cross Input Contract

Unlike the Map and Reduce input contract, the PACT layer also features so-called
multi-input contracts. The user code attached to those multi-input contracts expects to
receive data from two distinct data sources as input. Therefore, multi-input contracts
also construct the subsets for the user code based on two different input sets.

One of these multi-input contracts is the Cross input contract. As illustrated in Fig-
ure 7.5, it builds the Cartesian product of the two inputs. All pairs in the Cartesian
product are then processed independently by separate calls of the user code.

Input Data
Independent Invocations
of User Code

Key Value

Figure 7.5.: Grouping of input data according to the PACT input contract Cross.

The Match Input Contract

As illustrated in Figure 7.6, the Match input contract is another multi-input contract.
With this contract, all combinations of key-value pairs with identical keys are built over

115

7. Interaction with Higher Layer Components

the provided input data sets. Afterwards, all combinations are processed independently
by separate invocations of the attached user code. From a database researcher’s point
of view, the Match input contract resembles an equi-join on the key.

Input Data Independent Invocations
of User Code

Key Value

Figure 7.6.: Grouping of input data according to the PACT input contract Match.

The CoGroup Input Contract

Finally, the current version of the PACT programming model also features the so-called
CoGroup input contract, which is also a multi-input contract. With the CoGroup con-
tract, key-value pairs with identical keys are grouped for each input. Then, those groups
of all inputs with identical keys are processed together by the user code (Figure 7.7).

Input Data

Independent Invocations
of User Code

Key Value

Figure 7.7.: Grouping of input data according to the PACT input contract CoGroup.

116

7.2. The PACT Layer

7.2.3. The PACT Output Contracts

While a PACT input contract can be regarded as a warranty from the system to the user
code, PACT output contracts work the opposite way. By attaching an output contract
to his user code, a developer provides a guarantee to the system that the output of the
user code will obey certain properties. As mentioned previously in this section, output
contracts are an optional component of a PACT task. Omitting an output contract will
have no effect on the correctness of the computation. In the worst case, the lack of an
output contract will lead to a less efficient job processing because the PACT compiler
cannot apply certain optimizations. Spuriously adding an output contract to a piece of
user code, however, can lead to wrong processing results since the system then assumes
properties of the user code’s output which are not actually true.

Currently, the PACT programming model features three different output contracts. Fig-
ure 7.8 summarizes them.

PACT

Same-Key
Output ContractUser Code

(a) Same-Key output contract

PACT

Super-Key
Output ContractUser Code

(b) Super-Key output contract

PACT

Unique-Key
Output ContractUser Code

(c) Unique-Key output contract

Figure 7.8.: Overview of PACT output contracts.

With the Same-Key output contract (Figure 7.8a) the developer can assert that his user
code does not alter the keys of the consumed key-value pairs. As a result, each key-value
pair which is generated by the user code must have the same key as the key-value pair
it has originally been generated from. For multi-input contracts like Cross, Match, and

117

7. Interaction with Higher Layer Components

CoGroup, the Same-Key output contract must also state to which of the input data sets
the contract applies.

The Super-Key output contract (Figure 7.8b) allows a developer to express that each
key-value pair which is generated by the user code must have a superkey of the key-
value pair it has been originally created from. Similar to the Same-Key output contract,
the Super-Key contract requires an additional annotation when used with multi-input
contracts in order to clarify to which input data set the contract refers.

The Unique-Key output contract (Figure 7.8c) differs from the two previous output
contracts as it does not specify a relation between those key-value pairs which are fed
into the user code and those that come out. Instead, the Unique-Key output contract
simply states that all key-value pairs that are generated across all invocation of the user
code in the scope of the processing will have a unique key.

7.2.4. Running PACT Programs on Nephele

Once a user has finished writing his PACT program, he submits the program to the
PACT compiler. Based on the provided contracts the PACT compiler then attempts
to compile the program into a Nephele Job Graph which fulfills all of the user’s input
contracts on the one hand, but minimizes the necessary data transfer over the network
when executed on multiple VMs on the other hand. As part of this transformation step
the compiler also adds annotations concerning the concrete channel types to use between
two connected Nephele tasks. Nephele in turn can apply these annotations to enforce
the colocation of tasks on the same VM at runtime.

After being compiled, Nephele treats the PACT program like a regular Job Graph. As
explained in Section 3.2.3, the received Job Graph is spanned into an Execution Graph
and prepared for the parallel execution on the IaaS cloud. In the current implementation,
the PACT program adds an annotation in terms of the desired degree of parallelization
to the submitted job. Nephele then uses this annotation for the scale-out of each of the
job’s tasks.

At runtime, multiple parallel instances of each PACT task are executed on the IaaS
cloud in a parallel and distributed fashion. Each of these parallel instances is encapsu-
lated into a separate Nephele subtask which communicates with the respective Nephele
TaskManager.

As described in Section 7.1, the PACT compiler can often choose from several different
strategies how to fulfill a PACT input contract at runtime. Depending on the respective
input contract, the compiler therefore may have to inject additional runtime code besides
the original PACT user code into a Nephele task. The purpose of this PACT runtime

118

7.2. The PACT Layer

code is to preprocess the incoming or outgoing data according to the guarantees of the
input contract. Figure 7.9 provides an overview of the the different layers of code which
run inside a Nephele task during the job’s execution.

Key

Nephele Execution Graph

Internal Structure of a PACT inside a Nephele Task at Runtime

PACT Runtime Code

Input Contract (Mandatory)

User Code (Mandatory)

Output
Contract

(Optional)

Nephele Runtime Code

Figure 7.9.: Overview of different layers of user code which are executed inside a Nephele
task at runtime.

On the lowest level, the Nephele task contains the Nephele runtime code. The Nephele
runtime code provides the communication interfaces for the user code. Moreover, it is
responsible for the allocation and release of communication buffers, the propagation of
changes in a task’s execution state, and possibly data compression. Since this code is
part of the Nephele framework itself, Nephele is aware of its semantics. In particular,
the framework can keep track of the encapsulated user code’s communication behavior,
i.e., at what points of the user code’s execution incoming records are read from and
outgoing records are written to the Nephele channels.

Inside the Nephele runtime code the PACT runtime code is executed. Contrary to the
Nephele runtime code, the PACT runtime code is loaded dynamically by the Nephele
framework and appears as regular user code on this layer. As a result, Nephele has no
knowledge about the semantics of the PACT runtime code. Once the PACT runtime
code has been invoked, it takes over the control of the task and can only be monitored
externally by Nephele, i.e., in terms of its CPU or communication channel utilization.

Through the interface of the respective input contract, the user code which has originally
been attached to the PACT task is then executed by the PACT runtime code. Unlike
the PACT runtime code, the PACT user code is typically invoked multiple times during
the life cycle of a Nephele task. Upon each invocation, the user code is passed a specific
subset of the input data according to the respective input contract. The subsets are
prepared by the PACT runtime code after the required input data has been retrieved
with the help of the Nephele runtime code. Similar to the relation between the Nephele
and the PACT runtime code, the PACT runtime code has no knowledge about the

119

7. Interaction with Higher Layer Components

semantics of the user code, expect for the information that can be derived from the
optional output contracts.

7.3. Optimization Opportunities through the PACT Layer

After having explained the interaction between code of the Nephele and the PACT layer
at runtime, I will now extend the discussion to possible optimization opportunities that
arise from exposing PACT semantics to the Nephele layer. In particular, the discussion
will focus on requirements for facilitating automated scale-in and scale-out operations
at runtime, as described in Section 3.3.

In general, automatic scale-in and scale-out operations, i.e., dynamically adapting the
number of running parallel instances, are not possible on the Nephele layer. As described
in the previous section, Nephele invokes the user code only once at the beginning of
a task’s execution and from that point on has neither knowledge of the user code’s
internal state nor direct control over its behavior. While this design accounts for much
of Nephele’s flexibility, it renders automatic scaling difficult.

The concrete obstacles for changing the number of Nephele subtasks at runtime lie in
Nephele’s missing knowledge about the distribution of records among multiple parallel
subtasks and the user code’s internal state. Adding another parallel instance of a Nephele
task at runtime might be incompatible with the distribution strategies employed by the
preceding tasks in the DAG. Moreover, eliminating a subtask in order to reduce the
task’s overall degree of parallelism might corrupt the processing job’s result because the
subtask’s internal state might have been relevant to the further execution.

A simple remedy to this scaling problem on the Nephele layer would be an additional task
annotation which declares the encapsulated user code to be either stateful or stateless.
In contrast to their stateful counterparts, stateless tasks would not be allowed to buffer
any incoming records internally, i.e., any incoming record must be immediately emitted
by the user after being processed.

For stateless tasks, the scaling obstacles mentioned above disappear immediately. Since
a stateless task is not allowed to buffer any data, it is always safe to destroy parallel
instances of it between the processing of two records. Moreover, the data distribution
problem becomes irrelevant because a stateless task only forwards records. It never
considers records in groups which must potentially obey particular distribution proper-
ties.

While general user code would be considered stateful and not to be suitable for auto-
matic scaling, Nephele could instantaneously adapt the degree of parallelism of those
tasks which have been declared stateless before. Of course, this approach only solves the

120

7.3. Optimization Opportunities through the PACT Layer

autonomic scaling problem partially. However, it is important to point out that com-
putationally demanding operations, which are the most rewarding targets for automatic
scaling anyway, often only process one record at a time and therefore lend themselves
well to this kind of annotation. Examples of those computationally complex but stateless
operations are the OCR Task and the PDF Creator task from Chapter 4.

Considering the Nephele layer individually, a developer could attach the state annotation
to the corresponding user code before submitting the overall Job Graph to Nephele’s
JobManager. However, in the context of the Stratosphere project, where Nephele mainly
acts as a runtime system for the semantically richer PACT layer, it is also conceivable to
derive the required state information directly from the PACT program and then make
the information available to Nephele at runtime.

While all input contracts of the PACT layer generally stipulate that the encapsulated
PACT user code must not preserve any internal state between two consecutive calls, the
PACT runtime code, which invokes the user code, must typically maintain some internal
state in order to preprocess the incoming key-value pairs according to the respective
PACT’s input contract. As a result, most of the Nephele tasks which are compiled from
the respective vertices of a PACT program are stateful as well.

In general, the PACT runtime code which encapsulates a multi-input contract is always
stateful because it has to construct the individual subsets of records from the different in-
put streams, even if no further grouping of the records is required. However, PACT tasks
implementing the single-input contracts Map or Reduce can automatically be tagged to
be stateless by the PACT compiler in many cases.

The Map input contract represents the simplest case. A PACT task implementing a Map
input contract is always stateless, because the PACT runtime code can directly hand
any incoming key-value pair to the encapsulated user code. Consequently, the number
of parallel instances of the corresponding Nephele task can also in principle be scaled
arbitrarily during the job’s execution.

The Reduce input contract forces the injected PACT runtime code to group incoming
key-value pairs by their key and pass each of those groups to the encapsulated user code
separately. In order to construct these groups, the PACT runtime code must initially
buffer and sort the incoming key-value pairs before passing them on to the user code.
In general, this also makes the resultant Nephele task stateful at runtime. However, in
combination with the Unique-Key output contract, the Reduce input contract can also
be fulfilled in a stateless manner.

If a developer has attached the Unique-Key output contract to the PACT task preceding
the Reduce task in the PACT program DAG, the PACT compiler can assume that all
keys of the key-value pairs emitted by the preceding PACT task will be unique during
the job’s execution. According to this commitment, no parallel instance of the Reduce

121

7. Interaction with Higher Layer Components

task will receive two key-value pairs with identical keys in the course of its execution.
Consequently, there is no need for the PACT runtime code to buffer key-value pairs
and to construct groups of them for the Reduce user code. The resultant Nephele task
becomes stateless and therefore also be suitable for automatic scaling operations.

PACT Input Contract Properties of Compiled Nephele Task at Runtime

Map Stateless
Reduce Stateless after Unique-Key Output Contract, stateful otherwise
Cross Stateful
Match Stateful
CoGroup Stateful

Table 7.1.: State properties of Nephele tasks derived from the encapsulated PACT input
contracts.

Table 7.1 summarizes the state properties of Nephele tasks which can automatically be
derived either from the encapsulated PACT input contracts or with the help of the at-
tached PACT output contracts. It is worth noticing that the influence of the Unique-Key
output contract is not necessarily limited to the state property of a directly connected
Reduce task in the overall PACT program. Instead, it may also render successive Reduce
tasks in the processing chain stateless given that all intermediate PACT tasks provide
either a Same-Key or a Super-Key output contract.

7.4. Summary

This chapter presented the ongoing efforts to enhance massively parallel data analysis
on top of IaaS clouds in the scope of the Stratosphere project. Moreover, it explained
the relation between the Nephele framework, which has been developed as part of this
thesis, and the other components of the Stratosphere software stack, discussed the inter-
action between those components, and highlighted reasonable first steps for cross-layer
optimizations.

In particular, the chapter focused on the PACT layer which is located directly above
the Nephele layer in the Stratosphere software stack. In contrast to the Nephele layer,
the PACT layer offers a less flexible but more declarative and also semantically richer
programming model. I described how the expressiveness of the PACT programming
model can be exploited to automatically derive state properties about the compiled
Nephele task. By exposing these state properties to the runtime system, for example
through annotations to the PACT runtime code, Nephele could take advantage of the
additional knowledge and safely adapt the respective task’s degree of parallelism during
the job’s execution.

122

7.4. Summary

In a layered software setup like those of the Stratosphere project, propagating informa-
tion from the specialized, semantically richer layers down to the more general ones is a
powerful mechanism to exploit optimization potential. However, these kinds of cross-
layer optimizations also create additional dependencies between the components and
increase the overall complexity of the system. This carries particular weight for those
optimizations opportunities that cannot be derived automatically, for example through
a compiler, but must be explicitly pointed out by the developer, for example through an-
notations like the PACT output contracts, and can potentially lead to wrong processing
results.

In sum, I therefore advocate that any efforts for cross-layer optimizations must be clearly
traded off against the simplicity of the respective layers’ programming abstraction, espe-
cially when the programming abstraction of the lower layer is also expected to be used
by a developer who has to keep all possible implications of his user code in mind.

123

7. Interaction with Higher Layer Components

124

8. Conclusion

Infrastructure as a Service clouds play an increasingly important role in the field of mas-
sively parallel data processing. While the first approaches in this area were characterized
by customer-specific solutions [61], large-scale data analysis has meanwhile moved into
the focus of many IaaS platforms and is nowadays offered as a well-established product
in the portfolio of major cloud computing companies [14].

However, despite the growing popularity of large-scale data analysis on top of IaaS plat-
forms, the current data processing frameworks, which provide the technical foundation
for creating and executing the highly distributed applications, stem from the era of
cluster computing and disregard the particular characteristics of the new processing en-
vironment. This applies to the opportunities that IaaS clouds offer in terms of parallel
data processing, namely the on-demand allocation of large sets of heterogeneous comput-
ing resources, as well as the challenges, i.e., the potentially reduced and less predictable
I/O performance compared to classic cluster setups.

This thesis contributes towards improving the efficiency of massively parallel data pro-
cessing on IaaS clouds by revisiting the design of data processing frameworks for these
new platforms. In general, the contributions of the thesis can be found in two major
areas, pertaining to the opportunities and the challenges of clouds mentioned above.

The first area of contributions centers around the exploitation of dynamic resource al-
location in the context of parallel data processing. Here, for the first time, the thesis
presents a series of design principles a data processing framework must meet in order
to take advantage of the cloud’s new resource provisioning abilities. As a concrete im-
plementation of these design principles, the thesis introduces Nephele, the first data
processing framework which allows to flexibly adjust the number and type of allocated
VMs according to the current processing workload. Unlike existing frameworks, Nephele
no longer assumes that it owns the individual computing nodes. Instead, the comput-
ing nodes are rather considered to be temporarily leased from an IaaS clouds with a
clear notion of monetary cost. The thesis describes the implications of this change of
perspective on the programming abstraction and resource scheduling. Moreover, it illus-
trates different strategies for VM allocation to optimize the processing cost of MTC-like
applications.

Motivated by the cloud’s pricing model, the thesis also draws attention to the problem
of finding reasonable degrees of parallelism for large-scale data analysis applications on

125

8. Conclusion

IaaS clouds. As an assistance to the developer, the thesis introduces a novel bottleneck
detection scheme for parallel DAG-based data flow programs. The scheme provides the
developer with valuable feedback on CPU and I/O bottlenecks that occurred in the
course of the job’s execution and helps him to successively improve the scale-out of its
individual task. The thesis also discusses requirements for automatic scale-in and scale-
out operations on the Nephele layer and points out how knowledge from semantically
richer programming layers can help to fulfill these.

The second area of contributions addresses the increased risk of I/O bottlenecks a parallel
data processing framework faces as a result of the cloud’s less predictable I/O charac-
teristics. After having illustrated the potential reasons for I/O degradations, the thesis
proposes two different contributions in this area. Both contributions are applicable on
an application level and do not require the assistance of the cloud provider.

As the first contribution in this field, the thesis introduces a new adaptive online com-
pression scheme in order to mitigate the negative effects of colocated VMs. Unlike
existing adaptive compression schemes, the new approach does not rely on direct system
metrics which have been identified to be potentially flawed in virtualized environments.
Moreover, the new compression approach does not require an offline training phase, but
calibrates itself in the course of the data transmission itself, based on the application
data rate. In extensive network experiments the new adaptive compression scheme has
been able to improve the throughput of colocated VMs up to a factor of four.

As the second contribution to the cloud’s current I/O issues, the thesis proposes a hy-
brid scheme to infer network topologies which physically interconnect a set of VMs. The
scheme thereby accommodates the fact that most parallel data processing frameworks
offer to take the physical network topology into account in order to exploit data locality
and reduce the risk of I/O bottlenecks, however, this knowledge has not been available
to the cloud customer so far. The thesis studies topology inference based on end-to-end
measurements in the presence of hardware virtualization and proposes several improve-
ments to increase the inference accuracy for typical data center networks.

Although the thesis has already addressed various research aspects of massively parallel
data processing on IaaS platforms, there are several interesting directions for further
research in this area. In particular, I want to highlight the following three items:

• Task colocation and choice of appropriate VM types: As indicated in Chap-
ter 3, the construction of efficient parallel execution schedules from a submitted
Nephele job currently relies heavily on the provided user annotations, especially
with regard to the choice of suitable VM types for particular tasks and the coloca-
tion of different tasks on the same VM. It is an interesting open research question
to what extent a parallel data processing framework could make these decisions
for the developer. For example, the data processing framework’s scheduler could

126

attempt to improve the overall utilization of rented cloud resources by mapping a
compute and an I/O-intensive task to the same machine. Sensible approaches to
this research question could include both feedback learning to construct robust ini-
tial execution schedules but also reoptimization of unfavorable scheduling decisions
at runtime.

• Topology-aware scheduling: With the topology inference service presented
in Chapter 6, topology-aware scheduling also becomes a promising field for op-
timizations. So far, Nephele has been able to map tasks of the overall processing
job to arbitrary VMs of a matching type, because without topology information
the communication cost between each pair of machines has been the same. In
the presence of network topology information, however, it becomes desirable to
identify groups of heavily-communicating tasks and schedule the tasks in these
groups to run on VMs which are also close to each other in terms of the network
topology. Currently, Nephele only applies very simple strategies to detect such
groups. Technically, the problem is related to the task mapping problem [32] and
has already been discussed in several contexts, such as parallel machines [2], sensor
networks [1], or federated databases [137].

• Fault tolerance: A subject that has been only discussed marginally by this
thesis, but carries special importance in the context of massively parallel data
processing is fault tolerance. In a computing setup involving hundreds or even
thousands of VMs, individual machines are likely to fail. Current data processing
frameworks compensate the risk of resource outages with extensive materializations
of intermediate results, even when those intermediate results are easy to recompute
or the processing jobs only run for several seconds. A more adaptive approach
could help to reduce the current checkpointing overhead by only materializing
those intermediate results which are particularly valuable for the job recovery.
With regard to the cloud’s pricing model, the cost of a VMs in contrast to its
reliability represents an interesting tradeoff, for example on the basis of Amazon
EC2 spot instances. An advanced fault tolerance scheme for massively parallel
data processing could attempt to lower the overall processing cost of a job by
balancing the cost savings with those machines’ increased probability of failure.
First publications have already taken up this idea [149].

Overall, the thesis presents a set of important contributions to the still young research
field of massively parallel data processing on IaaS platforms. With the ever increasing
amount of data many companies and academic institutions have to deal with, I am
confident that cloud computing will continue to attract a growing number of customers
as a platform for data-intensive applications and more and more replace the need for
classic, dedicated cluster environments.

127

8. Conclusion

128

A. Appendix

Unless explicitly stated otherwise in the respective chapters, all experiments presented
in this thesis were conducted on our local IaaS cloud testbed. The testbed consisted of
up to 12 physical servers with the following hardware configuration:

CPU Two Intel Xeon 2.66 GHz CPUs (model E5430)
RAM 32 GB
Hard Disk Seagate Barracuda ES.2 SATA 500 GB (formatted with ext3 file system)
Network Intel Corporation 80003ES2LAN 1 GB/s Ethernet

The servers were all connected to a central HP ProCurve 1800-24G switch. The host
operating system was Gentoo Linux running the Eucalyptus [99] cloud software.

Since the individual experiments presented in this thesis were conducted over a longer
period of time, the concrete versions of the software used may have changed between the
experiments. As a result, I will describe the detailed software setup of each experiment
separately in the following. However, the cloud testbed was fully dedicated to the ex-
periments during the respective measurements and benchmarks. Thus, side effects from
other applications can be excluded in general.

Microbenchmarks in Chapter 2 and Compression Experiments in Chapter 5

For the experiments presented in Chapter 2 and those in Chapter 5 we used Eucalyptus
version 1.6. Since we conducted experiments with both KVM and XEN-based VMs, we
had to use different versions of the host operating system kernel. For the experiments
involving KVM we used the Linux kernel 2.6.32-gentoo-r7. The XEN-based VMs ran on
top of a modified XEN Linux kernel with version 2.6.34-xen-r4.

The VMs used during all these experiments had the following characteristics:

CPU 1 CPU core
RAM 2 GB
Hard Disk 60 GB, device driver scsi for KVM (full virt.), virtio blk for KVM (par-

avirt.), and xenblk for XEN, formatted with ext2 file system

129

A. Appendix

Network Bridged network, device driver e1000 for KVM (full virt.), virtio net

for KVM (paravirt.), and xennet for XEN
OS Ubuntu Linux 9.10 (Karmic Koala)
Kernel 2.6.31-22-server for XEN-based VMs, 2.6.32-gentoo-r7 otherwise
Java Java HotSpot 64-bit Server VM, version 1.6

In order to avoid any side effect during these experiments, we only ran one VM per
physical host and shut down all unnecessary background services.

To put the experimental results which we gained on our local Eucalyptus-based cloud into
perspective with a commercial cloud system, we also conducted some baseline tests on
Amazon EC2. For these tests we instantiated two VMs of type “m1.small” in Amazon’s
US East (Virginia) data center. Both VMs were created inside the same availability zone
and same security group. To reduce the probability of obtaining two VMs which are co-
located on the same physical host, we destroyed and reinstantiated the machines several
times between different runs of our experiments. For all our experiments on Amazon
EC2 we used the VM image “Basic 32-bit Amazon Linux AMI 1.0” with the identifier
“ami-08728661”. The VMs reported a Linux kernel of version 2.6.34.7-56.40.amzn1.i686.
For all experiments which involved file I/O we used the ephemeral storage partition of
the VMs with an ext2 file system.

Experiments on Dynamic Resource Provisioning in Chapter 3

In the scope of the experiments as shown in Chapter 3 we only used KVM-based VMs,
however, two different types of VMs, i.e., with different hardware characteristics. The
version of the host operating system kernel in this case was 2.6.30, Eucalyptus was
installed in version 1.5. The concrete configuration of the two VM types we used is
given in the following table:

Identifier m1.small c1.xlarge
CPU 1 CPU core 8 CPU cores
RAM 1 GB 18 GB
Hard Disk 128 GB 512 GB

Device driver virtio blk, formatted with ext2 file system
Network Bridged network, device driver virtio net

OS Ubuntu Linux 9.10 (Karmic Koala)
Kernel 2.6.28
Java Java HotSpot 64-bit Server VM, version 1.6

130

Experiments on Bottleneck Detection in Chapter 4

The experiments on bottleneck detection in parallel DAG-based data flow programs were
also conducted with KVM-based VMs only. During the experiments the host operating
system kernel was of version 2.6.32, Eucalyptus ran in version 1.6. The VM type we
used during the experiments had the following configuration:

CPU 1 CPU core
RAM 2 GB
Hard Disk 60 GB, device driver virtio blk, formatted with ext2 file system
Network Bridged network, device driver virtio net

OS Ubuntu Linux 9.10 (Karmic Koala)
Kernel 2.6.31
Java Java HotSpot 64-bit Server VM, version 1.6

In order to mimic a persistent storage service as part of our local IaaS cloud (similar to
Amazon EBS), we set up a regular NFS server during the experiments. The server was
connected with one GBit/s to the rest of the network.

Experiments on Topology Inference in Chapter 6

Finally, the experiments on topology inference in IaaS clouds again involved KVM as
well as XEN-based VMs. As a result, we again set up two different host operating
system kernels, version 2.6.34-xen-r4 for XEN-based experiments, 2.6.32-gentoo-r7 for
the experiments involving KVM. During the experiments we deployed up to 64 VMs, at
most eight VMs per host, using the Eucalyptus cloud software in version 1.6. Each of
these VMs had the following configuration:

CPU 1 CPU core
RAM 2 GB
Hard Disk 60 GB, device driver virtio blk, formatted with ext2 file system
Network Bridged network, device driver e1000 for KVM (full virt.), virtio net

for KVM (paravirt.), and xennet for XEN
OS Ubuntu Linux 9.10 (Karmic Koala)
Kernel 2.6.31-22-server for XEN, 2.6.32-gentoo-r7 otherwise
Java Java HotSpot 64-bit Server VM, version 1.6

To generate the background traffic during the experiments, we devised a small auxiliary
program which was executed on each VM during our experiments. The program was
capable of generating UDP traffic at an adjustable data rate. Each generated UDP

131

A. Appendix

packet carried eight KB of payload. To achieve a fair mixture between inter-host and
intra-host traffic, we set up four VMs on each physical host to exchange background
traffic among each other while the other four VMs transmitted data to VMs on a different
host. So, for example, at a background traffic level of 50 MBit/s, all eight VMs generated
network traffic at 50 MBit/s. However, only four VMs actually utilized the physical
network. Moreover, it is important to point out that the rate at which traffic generation
is issued by a user space program is not necessarily equal to the actual data rate observed
by the receiver. The actual data rate is determined by the flow control mechanisms
employed by the kernel and the virtualization layer.

132

Bibliography

[1] Zoe Abrams and Jie Liu. Greedy is good: On service tree placement for in-
network stream processing. In Proc. of the 26th IEEE International Conference
on Distributed Computing Systems, ICDCS ’06, pages 72–, Washington, DC, USA,
2006. IEEE Computer Society.

[2] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. Topology-aware task
mapping for reducing communication contention on large parallel machines. In
Proc. of the 20th International Conference on Parallel and Distributed Processing,
IPDPS ’06, pages 145–145, Washington, DC, USA, 2006. IEEE Computer Society.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Computer Communication
Review, 38:63–74, August 2008.

[4] Khaldoon Al-Zoubi and Gabriel Wainer. Using REST web-services architecture for
distributed simulation. In Proc. of the 23rd ACM/IEEE/SCS Workshop on Prin-
ciples of Advanced and Distributed Simulation, PADS ’09, pages 114–121, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[5] Alexander Alexandrov, Dominic Battré, Stephan Ewen, Max Heimel, Fabian
Hueske, Odej Kao, Volker Markl, Erik Nijkamp, and Daniel Warneke. Massively
parallel data analysis with PACTs on Nephele. Proc. of the VLDB Endowment,
3:1625–1628, September 2010.

[6] Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao,
Volker Markl, Erik Nijkamp, and Daniel Warneke. MapReduce and PACT - com-
paring data parallel programming models. In Proc. of the 14th Conference on
Database Systems for Business, Technology, and Web, BTW 2011, pages 25–44,
Bonn, Germany, 2011. GI.

[7] Amazon Web Services LLC. Amazon EC2 SLA. http://aws.amazon.com/ec2-

sla/, September 2009.

[8] Amazon Web Services LLC. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/, September 2009.

133

Bibliography

[9] Amazon Web Services LLC. Amazon Simple Storage Service (Amazon S3). http:
//aws.amazon.com/s3/, September 2009.

[10] Amazon Web Services LLC. Amazon Web Services. http://aws.amazon.com/,
September 2009.

[11] Amazon Web Services LLC. AWS Import/Export. http://aws.amazon.com/

importexport/, September 2009.

[12] Amazon Web Services LLC. Elastic Block Storage. http://aws.amazon.com/

ebs/, September 2009.

[13] Amazon Web Services LLC. Amazon Elastic Compute Cloud. http://docs.

amazonwebservices.com/AWSEC2/latest/APIReference/, March 2011.

[14] Amazon Web Services LLC. Amazon Elastic MapReduce. http://aws.amazon.

com/de/elasticmapreduce/, January 2011.

[15] Amazon Web Services LLC. Amazon Web Services Customer Agreement. http:
//aws-portal.amazon.com/gp/aws/developer/terms-and-conditions.html,
April 2011.

[16] Amazon Web Services LLC. Atbrox and Lingit case study: Amazon Web Services.
http://aws.amazon.com/solutions/case-studies/atbrox/, April 2011.

[17] Amazon Web Services LLC. AWS Management Console. http://aws.amazon.

com/console/, April 2011.

[18] Amazon Web Services LLC. High performance computing. http://aws.amazon.
com/ec2/hpc-applications/, April 2011.

[19] Amazon Web Services LLC. Razorfish case study: Amazon Web Services. http:
//aws.amazon.com/solutions/case-studies/razorfish/, April 2011.

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. A view of cloud computing. Communications of the ACM, 53:50–
58, April 2010.

[21] Ross Arnold and Tim Bell. A corpus for the evaluation of lossless compression
algorithms. In Proc. of the Data Compression Conference, DCC ’97, pages 201
–210, March 1997.

[22] Paul Barford, Azer Bestavros, John Byers, and Mark Crovella. On the marginal
utility of network topology measurements. In Proc. of the 1st ACM SIGCOMM
Workshop on Internet Measurement, IMW ’01, pages 5–17, New York, NY, USA,
2001. ACM.

134

Bibliography

[23] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
SIGOPS Operating Systems Review, 37:164–177, October 2003.

[24] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and
Daniel Warneke. Nephele/PACTs: A programming model and execution frame-
work for web-scale analytical processing. In Proc. of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 119–130, New York, NY, USA, 2010. ACM.

[25] Dominic Battré, Natalia Frejnik, Siddhant Goel, Odej Kao, and Daniel Warneke.
Evaluation of network topology inference in opaque compute clouds through end-
to-end measurements. In Proc. of the 4th IEEE International Conference on Cloud
Computing, CLOUD ’11, pages 17 –24, July 2011.

[26] Dominic Battré, Natalia Frejnik, Siddhant Goel, Odej Kao, and Daniel Warneke.
Inferring network topologies in Infrastructure as a Service clouds. In Proc. of the
11th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Comput-
ing, CCGRID ’11, pages 604–605, May 2011.

[27] Dominic Battré, Matthias Hovestadt, Björn Lohrmann, Alexander Stanik, and
Daniel Warneke. Detecting bottlenecks in parallel DAG-based data flow programs.
In Proc. of the 2010 IEEE Workshop on Many-Task Computing on Grids and
Supercomputers, MTAGS ’10, pages 1 –10, November 2010.

[28] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proc. of the
Annual Conference on USENIX Annual Technical Conference, ATEC ’05, pages
41–41, Berkeley, CA, USA, 2005. USENIX Association.

[29] Anne Benoit, Murray Cole, Stephen Gilmore, and Jane Hillston. Evaluating
the performance of skeleton-based high level parallel programs. In The Inter-
national Conference on Computational Science, ICCS ’04, pages 299–306, Heidel-
berg/Berlin, Germany, 2004. Springer-Verlag GmbH.

[30] Azer Bestavros, John W. Byers, and Khaled A. Harfoush. Inference and labeling of
metric-induced network topologies. IEEE Transactions on Parallel and Distributed
Systems, 16:1053–1065, November 2005.

[31] Kevin S. Beyer, Vuk Ercegovac, Jun Rao, and Eugene J. Shekita. jaql - query
language for JavaScript Object Notation (JSON). http://code.google.com/p/

jaql/, April 2011.

[32] S. H. Bokhari. On the mapping problem. IEEE Transactions on Computers,
30:207–214, March 1981.

135

Bibliography

[33] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. Hyracks: A flexible and extensible foundation for data-intensive com-
puting. In Proc. of the 27th IEEE International Conference on Data Engineering,
ICDE ’11, pages 1151–1162, Washington, DC, USA, 2011. IEEE Computer Society.

[34] Andre Broido and KC Claffy. Internet topology: Connectivity of IP graphs. In
Proc. of the SPIE International Symposium on Convergence of IT and Commu-
nication, SPIE ITCom ’01, pages 172–187, Bellingham, WA, USA, August 2001.
Society of Photo-Optical Instrumentation Engineers.

[35] Rui M. Castro, Mark J. Coates, and Robert D. Nowak. Likelihood based hierarchi-
cal clustering. IEEE Transactions on Signal Processing, 52(8):2308–2321, August
2004.

[36] Eduardo César, J.G. Mesa, Joan Sorribes, and Emilio Luque. Modeling master-
worker applications in POETRIES. In Proc. of the 9th International Workshop
on High-Level Parallel Programming Models and Supportive Environments, pages
22–30, April 2004.

[37] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Si-
mon Weaver, and Jingren Zhou. SCOPE: Easy and efficient parallel processing of
massive data sets. Proc. of the VLDB Endowment, 1:1265–1276, August 2008.

[38] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. Whodunit: Transactional
profiling for multi-tier applications. SIGOPS Operating Systems Review, 41:17–30,
March 2007.

[39] Ludmila Cherkasova and Rob Gardner. Measuring CPU overhead for I/O pro-
cessing in the Xen virtual machine monitor. In Proc. of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05, pages 24–24, Berkeley, CA,
USA, 2005. USENIX Association.

[40] Citrix Systems, Inc. Xen Scheduling. http://wiki.xensource.com/xenwiki/

Scheduling, April 2011.

[41] Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King, and
Yolanda Tsang. Maximum likelihood network topology identification from edge-
based unicast measurements. SIGMETRICS Performance Evaluation Review,
30:11–20, June 2002.

[42] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmele-
egy, and Russell Sears. MapReduce online. In Proc. of the 7th USENIX Conference
on Networked Systems Design and Implementation, NSDI ’10, pages 21–21, Berke-
ley, CA, USA, 2010. USENIX Association.

136

Bibliography

[43] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51:107–113, January 2008.

[44] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anas-
tasia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Scientific Pro-
gramming, 13:219–237, July 2005.

[45] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). Proc. of the VLDB Endowment, 3:515–529, September
2010.

[46] Tim Dornemann, Ernst Juhnke, and Bernd Freisleben. On-demand resource pro-
visioning for BPEL workflows using Amazon’s Elastic Compute Cloud. In Proc. of
the 9th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-
puting, CCGRID ’09, pages 140–147, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[47] Alexei Drummond and Korbinian Strimmer. PAL: An object-oriented program-
ming library for molecular evolution and phylogenetics. Bioinformatics, 17:662–
663, 2001.

[48] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT) schedul-
ing: Supporting latency-sensitive threads in a general-purpose scheduler. SIGOPS
Operating Systems Review, 33:261–276, December 1999.

[49] Nick G. Duffield, Joseph Horowitz, Francesco Lo Presti, and Donald Towsley. Mul-
ticast topology inference from end-to-end measurements. Advances in Performance
Analysis, 3(3):207–226, September 2000.

[50] Nick G. Duffield, Joseph Horowitz, Francesco Lo Presti, and Donald Towsley.
Multicast topology inference from measured end-to-end loss. IEEE Transactions
on Information Theory, 48(1):26 –45, January 2002.

[51] Nick G. Duffield, Francesco Lo Presti, Vern Paxson, and Donald Towsley. Net-
work loss tomography using striped unicast probes. IEEE/ACM Transactions on
Networking, 14:697–710, August 2006.

[52] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson. DiskReduce: RAID
for data-intensive scalable computing. In Proc. of the 4th Annual Workshop on
Petascale Data Storage, PDSW ’09, pages 6–10, New York, NY, USA, 2009. ACM.

137

Bibliography

[53] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, Irvine, California,
2000.

[54] Ian T. Foster and Carl Kesselman. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputer Applications, 11(2):115–128, 1997.

[55] Ian T. Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. International Journal of High Performance
Computing Applications, 15:200–222, August 2001.

[56] Ian T. Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid
computing 360-degree compared. In Proc. of the Grid Computing Environments
Workshop, GCE ’08, pages 1 –10, November 2008.

[57] James Frey, Todd Tannenbaum, Miron Livny, Ian T. Foster, and Steven Tuecke.
Condor-g: A computation management agent for multi-institutional grids. Cluster
Computing, 5:237–246, July 2002.

[58] GoGrid, LLC. Cloud Hosting, Cloud Servers, Hybrid Hosting, Cloud Infrastructure
from GoGrid, March 2011.

[59] GoGrid, LLC. Service Level Agreement (SLA): GoGird Cloud Hosting. http:

//www.gogrid.com/legal/sla.php, March 2011.

[60] Hector Gonzalez, Jiawei Han, Xiaolei Li, and Diego Klabjan. Warehousing and
analyzing massive RFID data sets. In Proc. of the 22nd International Conference
on Data Engineering, ICDE ’06, pages 83–, Washington, DC, USA, 2006. IEEE
Computer Society.

[61] Derek Gottfrid. Self-service, Prorated Super Computing Fun! http:

//open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-

computing-fun/, November 2007.

[62] Sriram Govindan, Arjun R. Nath, Amitayu Das, Bhuvan Urgaonkar, and Anand
Sivasubramaniam. Xen and co.: Communication-aware CPU scheduling for consol-
idated Xen-based hosting platforms. In Proc. of the 3rd International Conference
on Virtual Execution Environments, VEE ’07, pages 126–136, New York, NY,
USA, 2007. ACM.

[63] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt,
and Gerd Heber. Scientific data management in the coming decade. SIGMOD
Record, 34:34–41, December 2005.

[64] Robert L. Grossman. The case for cloud computing. IT Professional, 11:23–27,
March 2009.

138

Bibliography

[65] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version 1.2 part
1: Messaging framework (second edition). http://www.w3.org/TR/2007/REC-

soap12-part1-20070427/, April 2007.

[66] Ashish Gupta, Marcia Zangrilli, Ananth I. Sundararaj, Anne I. Huang, Peter A.
Dinda, and Bruce B. Lowekamp. Free network measurement for adaptive virtu-
alized distributed computing. In Proc. of the 20th International Conference on
Parallel and Distributed Processing, IPDPS ’06, pages 149–149, Washington, DC,
USA, 2006. IEEE Computer Society.

[67] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. En-
forcing performance isolation across virtual machines in Xen. In Proc. of the
ACM/IFIP/USENIX 2006 International Conference on Middleware, Middleware
’06, pages 342–362, New York, NY, USA, 2006. Springer-Verlag New York, Inc.

[68] Gary Hardiman. Ultra-high-throughput sequencing, microarray-based genomic
selection and pharmacogenomics. Pharmacogenomics, 9:5–9, January 2008.

[69] Matthias Hovestadt, Odej Kao, Andreas Kliem, and Daniel Warneke. Evaluating
adaptive compression to mitigate the effects of shared I/O in clouds. In Proc. of
the 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, IPDPSW ’11, pages 1042 –1051, May 2011.

[70] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K. Panda. A case for
high performance computing with virtual machines. In Proc. of the 20th Annual
International Conference on Supercomputing, ICS ’06, pages 125–134, New York,
NY, USA, 2006. ACM.

[71] Shadi Ibrahim, Hai Jin, Lu Lu, Li Qi, Song Wu, and Xuanhua Shi. Evalu-
ating MapReduce on virtual machines: The Hadoop case. In Martin Jaatun,
Gansen Zhao, and Chunming Rong, editors, Cloud Computing, volume 5931 of
Lecture Notes in Computer Science, pages 519–528. Springer-Verlag GmbH, Hei-
delberg/Berlin, Germany, 2009.

[72] IEEE Computer Society. Station and media access control connectivity discov-
ery. http://standards.ieee.org/getieee802/download/802.1AB-2005.pdf,
December 2010.

[73] Intel Corporation. Intel virtualization technology for directed I/O (VT-
d): Enhancing Intel platforms for efficient virtualization of I/O devices.
http://software.intel.com/en-us/articles/intel-virtualization-

technology-for-directed-io-vt-d-enhancing-intel-platforms-for-

efficient-virtualization-of-io-devices/, February 2009.

139

Bibliography

[74] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks. SIGOPS Op-
erating Systems Review, 41:59–72, March 2007.

[75] iText Software Corp. Text - Free / Open Source PDF Library for Java and C#.
http://www.itextpdf.com/, April 2011.

[76] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: Un-
derstanding microblogging usage and communities. In Proc. of the 9th WebKDD
and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis,
WebKDD/SNA-KDD ’07, pages 56–65, New York, NY, USA, 2007. ACM.

[77] Emmanuel Jeannot, Björn Knutsson, and Mats Björkman. Adaptive online data
compression. In Proc. of the 11th IEEE International Symposium on High Per-
formance Distributed Computing, HPDC ’02, pages 379–, Washington, DC, USA,
2002. IEEE Computer Society.

[78] Xing Jin, Wanqing Tu, and S. H. Gary Chan. Scalable and efficient end-to-end net-
work topology inference. IEEE Transactions on Parallel and Distributed Systens,
19:837–850, June 2008.

[79] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Ant-
farm: Tracking processes in a virtual machine environment. In Proc. of the annual
conference on USENIX ’06 Annual Technical Conference, pages 1–1, Berkeley, CA,
USA, 2006. USENIX Association.

[80] Gueyoung Jung, Galen S. Swint, Jason Parekh, Calton Pu, and Akhil Sahai. De-
tecting bottleneck in n-tier IT applications through analysis. In Proc. of the 17th
IFIP/IEEE International Workshop on Distributed Systems: Operations and Man-
agement, DSOM ’06, pages 149–160, Heidelberg/Berlin, Germany, 2006. Springer-
Verlag GmbH.

[81] Hari Kannan, Mihai Budiu, John D. Davis, and Girish Venkataramani. Tuning
SoCs using the global dynamic critical path. In Proc. of the 2009 IEEE Interna-
tional SOC Conference, SOCC ’09, pages 407 –411, September 2009.

[82] Mukil Kesavan, Ada Gavrilovska, and Karsten Schwan. Differential virtual time
(DVT): Rethinking I/O service differentiation for virtual machines. In Proc. of
the 1st ACM Symposium on Cloud computing, SoCC ’10, pages 27–38, New York,
NY, USA, 2010. ACM.

[83] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: The
Linux virtual machine monitor. In Proc. of the 2007 Ottawa Linux Symposium,
OLS ’07, pages 225–230, July 2007.

140

Bibliography

[84] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias
Lieber, Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The Vampir
performance analysis tool-set. In Michael Resch, Rainer Keller, Valentin Himm-
ler, Bettina Krammer, and Alexander Schulz, editors, Tools for High Performance
Computing, pages 139–155. Springer-Verlag GmbH, Heidelberg/Berlin, Germany,
2008.

[85] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative
architectures for transaction processing in the cloud. In Proc. of the 2010 Inter-
national Conference on Management of Data, SIGMOD ’10, pages 579–590, New
York, NY, USA, 2010. ACM.

[86] Michael A. Kozuch, Michael P. Ryan, Richard Gass, Steven W. Schlosser, David
O’Hallaron, James Cipar, Elie Krevat, Julio López, Michael Stroucken, and Gre-
gory R. Ganger. Tashi: Location-aware cluster management. In Proc. of the 1st
Workshop on Automated Control for Datacenters and Clouds, ACDC ’09, pages
43–48, New York, NY, USA, 2009. ACM.

[87] Chandra Krintz and Sezgin Sucu. Adaptive on-the-fly compression. IEEE Trans-
actions on Parallel and Distributed Systems, 17:15–24, January 2006.

[88] Li Li and Allen D. Malony. Model-based performance diagnosis of master-worker
parallel computations. In Proc. of the 12th International Euro-Par Conference,
Euro-Par ’06, pages 35–46, Heidelberg/Berlin, Germany, 2006. Springer-Verlag
GmbH.

[89] Robert L. Mack, Sougata Mukherjea, Aya C. Soffer, Naohiko Uramoto, Erik W.
Brown, Anni R. Coden, James W. Cooper, Akihiro Inokuchi, Balakrishna R. Iyer,
Yosi Mass, Hirofumi Matsuzawa, and L. Venkata Subramaniam. Text analytics
for life science using the unstructured information management architecture. IBM
Systems Journal, 43:490–515, July 2004.

[90] Simon Malkowski, Markus Hedwig, Deepal Jayasinghe, Calton Pu, and Dirk Neu-
mann. CloudXplor: A tool for configuration planning in clouds based on empirical
data. In Proc. of the 2010 ACM Symposium on Applied Computing, SAC ’10,
pages 391–398, New York, NY, USA, 2010. ACM.

[91] Simon Malkowski, Markus Hedwig, Jason Parekh, Calton Pu, and Akhil Sahai.
Bottleneck detection using statistical intervention analysis. In Proc. of the Dis-
tributed Systems: Operations and Management 18th IFIP/IEEE International
Conference on Managing Virtualization of Networks and Services, DSOM ’07,
pages 122–134, Heidelberg/Berlin, Germany, 2007. Springer-Verlag GmbH.

141

Bibliography

[92] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to
elastically extend site resources. In Proc. of the 10th IEEE/ACM International
Conference on Cluster, Cloud, and Grid Computing, CCGRID ’10, pages 43–52,
Washington, DC, USA, 2010. IEEE Computer Society.

[93] Peter Mell and Tim Grance. The NIST definition of cloud computing (v15). Tech-
nical report, National Institute of Standards and Technology, 2009.

[94] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and
Willy Zwaenepoel. Diagnosing performance overheads in the Xen virtual machine
environment. In Proc. of the 1st ACM/USENIX International Conference on Vir-
tual Execution Environments, VEE ’05, pages 13–23, New York, NY, USA, 2005.
ACM.

[95] Nitin Motgi and Amar Mukherjee. Network conscious text compression system
(NCTCSys). In Proc. of the International Conference on Information Technol-
ogy: Coding and Computing, pages 440–446, Washington, DC, USA, 2001. IEEE
Computer Society.

[96] Gavin Mulligan and Denis Gracanin. A comparison of SOAP and REST imple-
mentations of a service based interaction independence middleware framework.
In Proc. of the 2009 Winter Simulation Conference, WSC ’09, pages 1423–1432,
December 2009.

[97] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration
for virtual machines. In Proc. of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, pages 25–25, Berkeley, CA, USA, 2005. USENIX
Association.

[98] Jian Ni, Haiyong Xie, Sekhar Tatikonda, and Yang Richard Yang. Efficient and
dynamic routing topology inference from end-to-end measurements. IEEE/ACM
Transactions on Networking, 18:123–135, February 2010.

[99] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus open-source cloud-
computing system. In Proc. of the 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, CCGRID ’09, pages 124–131, Washington, DC,
USA, 2009. IEEE Computer Society.

[100] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: A not-so-foreign language for data processing. In Proc. of the
2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

142

Bibliography

[101] Owen O’Malley and Arun C. Murthy. Winning a 60 second dash with a yellow
elephant. Technical report, Yahoo!, 2009.

[102] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. A performance analysis of EC2 cloud computing
services for scientific computing. In Ozgur Akan, Paolo Bellavista, Jiannong Cao,
Falko Dressler, Domenico Ferrari, Mario Gerla, Hisashi Kobayashi, Sergio Palazzo,
Sartaj Sahni, Xuemin (Sherman) Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya,
Geoffrey Coulson, Dimiter R. Avresky, Michel Diaz, Arndt Bode, Bruno Ciciani,
and Eliezer Dekel, editors, Cloud Computing, volume 34 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications En-
gineering, pages 115–131. Springer-Verlag GmbH, Heidelberg/Berlin, Germany,
2010.

[103] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel.
Amazon S3 for science grids: A viable solution? In Proc. of the 2008 International
Workshop on Data-aware Distributed Computing, DADC ’08, pages 55–64, New
York, NY, USA, 2008. ACM.

[104] Igor Pavlow. LZMA SDK (software Development Kit). http://www.7-zip.org/
sdk.html, January 2011.

[105] Rackspace US, Inc. The Rackspace Cloud. http://www.rackspacecloud.com/,
December 2010.

[106] Ioan Raicu, Ian T. Foster, and Yong Zhao. Many-task computing for grids and
supercomputers. In Proc. of the 1st Workshop on Many-Task Computing on Grids
and Supercomputers, MTAGS ’08, pages 1 –11, November 2008.

[107] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian T. Foster, and Michael Wilde.
Falkon: A Fast and Light-weight tasK executiON framework. In Proc. of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07, pages 1 –12, November 2007.

[108] Lavanya Ramakrishnan, Charles Koelbel, Yang-Suk Kee, Rich Wolski, Daniel
Nurmi, Dennis Gannon, Graziano Obertelli, Asim YarKhan, Anirban Mandal,
T. Mark Huang, Kiran Thyagaraja, and Dmitrii Zagorodnov. VGrADS: Enabling
e-science workflows on grids and clouds with fault tolerance. In Proc. of the 2009
ACM/IEEE Conference on Supercomputing, SC ’09, pages 47:1–47:12, New York,
NY, USA, 2009. ACM.

[109] Sylvia Ratnasamy and Steven McCanne. Inference of multicast routing trees and
bottleneck bandwidths using end-to-end measurements. In Proc. of the 18th Con-
ference on Information Communications, volume 1 of INFOCOM ’99, pages 353–
360, March 1999.

143

Bibliography

[110] Lasse Mikkel Reinhold. Fast compression library for C, C# and Java. http:

//www.quicklz.com/, January 2011.

[111] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: Exploring information leakage in third-party compute clouds.
In Proc. of the 16th ACM Conference on Computer and Communications Security,
CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM.

[112] D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53(1-2):131 – 147, 1981.

[113] Rusty Russell. virtio: Towards a de-facto standard for virtual I/O devices. SIGOPS
Operating Systems Review, 42:95–103, July 2008.

[114] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements
in the cloud: Observing, analyzing, and reducing variance. Proc. of the VLDB
Endowment, 3:460–471, September 2010.

[115] Seetharami R. Seelam and Patricia J. Teller. Virtual I/O scheduler: A scheduler
of schedulers for performance virtualization. In Proc. of the 3rd International
Conference on Virtual Execution Environments, VEE ’07, pages 105–115, New
York, NY, USA, 2007. ACM.

[116] Jeffrey Shafer. I/O virtualization bottlenecks in cloud computing today. In Proc.
of the 2nd Conference on I/O Virtualization, WIOV ’10, pages 5–5, Berkeley, CA,
USA, 2010. USENIX Association.

[117] Sameer S. Shende and Allen D. Malony. The TAU parallel performance system.
International Journal of High Performance Computing Applications, 20:287–311,
May 2006.

[118] Meng-Fu Shih and Alfred O. Hero. Hierarchical inference of unicast network topolo-
gies based on end-to-end measurements. IEEE Transactions on Signal Processing,
55(5):1708–1718, May 2007.

[119] Tatsuya Shirai, Hideo Saito, and Kenjiro Taura. A fast topology inference: A
building block for network-aware parallel processing. In Proc. of the 16th Interna-
tional Symposium on High Performance Distributed Computing, HPDC ’07, pages
11–22, New York, NY, USA, 2007. ACM.

[120] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO -
DB2’s LEarning Optimizer. In Proc. of the 27th International Conference on Very
Large Data Bases, VLDB ’01, pages 19–28, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

144

Bibliography

[121] Jaspar Subhlok and Gary Vondran. Optimal latency-throughput tradeoffs for data
parallel pipelines. In Proc. of the 8th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’96, pages 62–71, New York, NY, USA, 1996.
ACM.

[122] Andrew S. Tanenbaum. Network protocols. ACM Computing Surveys, 13:453–489,
December 1981.

[123] The Apache Software Foundation. MapReduce tutorial. http://hadoop.apache.
org/mapreduce/docs/current/mapred_tutorial.html, April 2011.

[124] The Apache Software Foundation. Welcome to Apache Hadoop! http://hadoop.

apache.org/, January 2011.

[125] The Cascading Project. Cascading. http://www.cascading.org/, April 2011.

[126] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A ware-
housing solution over a map-reduce framework. Proc. of the VLDB Endowment,
2:1626–1629, August 2009.

[127] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don Newell. Modeling virtual
machine performance: Challenges and approaches. SIGMETRICS Performance
Evaluation Review, 37:55–60, January 2010.

[128] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf.
http://iperf.sourceforge.net/, April 2011.

[129] Yolanda Tsang, Mehmet Yildiz, Paul Barford, and Robert Nowak. On the per-
formance of round trip time network tomography. In Proc. of the 2006 IEEE
Internation Conference on Communications, volume 2 of ICC ’06, pages 483–488,
June 2006.

[130] Yehuda Vardi. Network tomography: Estimating source-destination traffic intensi-
ties from link data. Journal of the American Statistical Association, 91(433):365–
377, March 1996.

[131] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea, and Seth C. Goldstein.
Global critical path: A tool for system-level timing analysis. In Proc. of the 44th
ACM/IEEE Design Automation Conference, DAC ’07, pages 783–786, June 2007.

[132] VMware, Inc. Performance evaluation of Intel EPT hardware assist. http://www.
vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf, December 2009.

[133] Gregor von Laszewski, Mihael Hategan, and Depti Kodeboyina. Workflows for E-
science: Scientific Workflows for Grids, chapter Grid Workflows, pages 340–356.
Springer-Verlag GmbH, Heidelberg/Berlin, Germany, 2007.

145

Bibliography

[134] Nagavijayalakshmi Vydyanathan, Umit Catalyurek, Tahsin Kurc, Ponnuswamy
Sadayappan, and Joel Saltz. A duplication based algorithm for optimizing latency
under throughput constraints for streaming workflows. In Proc. of the 37th Inter-
national Conference on Parallel Processing, ICPP ’08, pages 254–261, Washington,
DC, USA, 2008. IEEE Computer Society.

[135] Edward Walker. Benchmarking Amazon EC2 for high-performance scientific com-
puting. USENIX; login: magazine, 33(5):18–23, October 2008.

[136] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network
performance of Amazon EC2 data center. In Proc. of the 29th Conference on
Information Communications, INFOCOM ’10, pages 1163–1171, Piscataway, NJ,
USA, 2010. IEEE Press.

[137] Xiaodan Wang, Randal C. Burns, Andreas Terzis, and Amol Deshpande. Network-
aware join processing in global-scale database federations. In Proc. of the 24nd
International Conference on Data Engineering, ICDE ’08, pages 586 –595, Wash-
ington, DC, USA, April 2008. IEEE Computer Society.

[138] Daniel Warneke and Odej Kao. Nephele: Efficient parallel data processing in the
cloud. In Proc. of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers, MTAGS ’09, pages 8:1–8:10, New York, NY, USA, 2009. ACM.

[139] Daniel Warneke and Odej Kao. Exploiting dynamic resource allocation for effi-
cient parallel data processing in the cloud. IEEE Transactions on Parallel and
Distributed Systems, 22(6):985–997, June 2011.

[140] David Wentzlaff, Charles Gruenwald, III, Nathan Beckmann, Kevin Modzelewski,
Adam Belay, Lamia Youseff, Jason Miller, and Anant Agarwal. An operating
system for multicore and clouds: Mechanisms and implementation. In Proc. of the
1st ACM Symposium on Cloud Computing, SoCC ’10, pages 3–14, New York, NY,
USA, 2010. ACM.

[141] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 1st edition, June
2009.

[142] Yair Wiseman, Karsten Schwan, and Patrick Widener. Efficient end to end data
exchange using configurable compression. SIGOPS Operating Systems Review,
39:4–23, July 2005.

[143] Felix Wolf and Bernd Mohr. KOJAK - A tool set for automatic performance analy-
sis of parallel applications. In Proc. of the 9th International Euro-Par Conference,
volume 2790 of Euro-Par ’09, pages 1301–1304, Heidelberg/Berlin, Germany, Au-
gust 2003. Springer-Verlag GmbH. Demonstrations of Parallel and Distributed
Computing.

146

Bibliography

[144] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy. Pro-
filing and modeling resource usage of virtualized applications. In Proc. of the 9th
ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08,
pages 366–387, New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[145] Xianghua Xu, Feng Zhou, Jian Wan, and Yucheng Jiang. Quantifying performance
properties of virtual machine. In Proc. of the International Symposium on Infor-
mation Science and Engineering, volume 1 of ISISE ’08, pages 24 –28, December
2008.

[146] Hiroshi Yamada and Kenji Kono. Foxytechnique: Tricking operating system poli-
cies with a virtual machine monitor. In Proc. of the 3rd international conference
on Virtual execution environments, VEE ’07, pages 55–64, New York, NY, USA,
2007. ACM.

[147] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-
merge: Simplified relational data processing on large clusters. In Proc. of the 2007
ACM SIGMOD International Conference on Management of Data, SIGMOD ’07,
pages 1029–1040, New York, NY, USA, 2007. ACM.

[148] Bin Yao, Ramesh Viswanathan, Fangzhe Chang, and Daniel Waddington. Topol-
ogy inference in the presence of anonymous routers. In Proc. of the 22th Confer-
ence on Information Communications, volume 1 of INFOCOM ’03, pages 353–363,
March 2003.

[149] Sangho Yi, Derrick Kondo, and Artur Andrzejak. Reducing costs of spot instances
via checkpointing in the Amazon Elastic Compute Cloud. In Proc. of the 3rd
IEEE International Conference on Cloud Computing, CLOUD ’10, pages 236–243,
Washington, DC, USA, July 2010. IEEE Computer Society.

[150] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level language. In Proc.
of the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI ’08, pages 1–14, Berkeley, CA, USA, 2008. USENIX Association.

[151] Yong Zhao, Mihael Hategan, Ben Clifford, Ian T. Foster, Gregor von Laszewski,
Veronika Nefedova, Ioan. Raicu, Tiberiu Stef-Praun, and Michael Wilde. Swift:
Fast, reliable, loosely coupled parallel computation. In Proc. of the 2007 IEEE
Congress on Services, pages 199 –206, July 2007.

[152] Zimory GmbH. Zimory GmbH: HOME. http://www.zimory.com/, April 2011.

147

