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Abstract

We study the moduli space of metric graphs that arise from tropical plane curves. There
are far fewer such graphs than tropicalizations of classical plane curves. For fixed genus
g, our moduli space is a stacky fan whose cones are indexed by regular unimodular
triangulations of Newton polygons with g interior lattice points. It has dimension
2g + 1 unless g ≤ 3 or g = 7. We compute these spaces explicitly for g ≤ 5.

Introduction
Tropical plane curves C are dual to regular subdivisions of their Newton polygon P. The
tropical curve C is smooth if that subdivision is a unimodular triangulation �, i.e. it con-
sists of triangles whose only lattice points are its three vertices. The genus g = g(C) is the
number of interior lattice points of P. Each bounded edge of C has a well-defined lattice
length. The curve C contains a subdivision of a metric graph of genus g with vertices of
valency ≥ 3 as in [5], and this subdivision is unique for g ≥ 2. The underlying graph G is
planar and has g distinguished cycles, one for each interior lattice point of P. We call G
the skeleton of C. It is the smallest subspace of C to which C admits a deformation retract.
While the metric on G depends on C, the graph is determined by �. For an illustration,

see Figure 1. The triangulation � on the left defines a family of smooth tropical plane
curves of degree four. Such a curve has genus g = 3. Its skeleton G is shown on the right.
For basics on tropical geometry and further references, the reader is referred to [19,26].

Let Mg denote the moduli space of metric graphs of genus g. The moduli space Mg is
obtained by gluing together finitelymany orthantsRm≥0,m ≤ 3g−3, one for each combina-
torial type of graph, modulo the identifications corresponding to graph automorphisms.
These automorphisms endow the moduli spaceMg with the structure of a stacky fan. We
refer to [7,11] for the definition ofMg , combinatorial details, and applications in algebraic
geometry. The maximal cones of Mg correspond to trivalent graphs of genus g. These
have 2g − 2 vertices and 3g − 3 edges, soMg is pure of dimension 3g − 3. The number of
trivalent graphs for g = 2, 3, . . . , 10 is 2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172; see
[6] and [11, Prop. 2.1].
Fix a (convex) lattice polygon P with g = #(int(P) ∩ Z

2). Let MP be the closure in Mg
of the set of metric graphs that are realized by smooth tropical plane curves with Newton
polygon P. For a fixed regular unimodular triangulation � of P, let M� be the closure of
the cone of metric graphs from tropical curves dual to �. These curves all have the same
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Figure 1 Unimodular triangulation, tropical quartic, and skeleton.

skeleton G, and M� is a convex polyhedral cone in the orthant R3g−3
≥0 of metrics on G.

Working modulo automorphisms of G, we identify M� with its image in the stacky fan
Mg .
Now, fix the skeleton G but vary the triangulation. The resulting subset of R3g−3

≥0 is
a finite union of closed convex polyhedral cones, so it can be given the structure of a
polyhedral fan. Moreover, by appropriate subdivisions, we can choose a fan structure that
is invariant under the symmetries of G, and hence the image in the moduli space Mg is a
stacky fan:

MP,G :=
⋃

� triangulation of P
with skeleton G

M�. (1)

We note thatMP is represented insideMg by finite unions of convex polyhedral cones:

MP =
⋃

G trivalent graph
of genus g

MP,G =
⋃

� regular unimodular
triangulation of P

M�. (2)

The moduli space of tropical plane curves of genus g is the following stacky fan inside
Mg :

M
planar
g :=

⋃
P

MP . (3)

Here, P runs over isomorphism classes of lattice polygons with g interior lattice points.
The number of such classes is finite by Proposition 2.3.
This paper presents a computational study of the moduli spaces M

planar
g . We con-

struct the decompositions in Equations 2 and 3, explicitly. Our first result reveals the
dimensions:

Theorem 1.1. For all g ≥ 2, there exists a lattice polygon P with g interior lattice points
such thatMP has the dimension expected from classical algebraic geometry, namely,

dim
(
M

planar
g

)
= dim(MP) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 if g = 2,
6 if g = 3,
16 if g = 7,
2g + 1 otherwise.

(4)

In each case, the cone M� of honeycomb curves supported on P attains this dimension.

Honeycomb curves are introduced in Section ‘Honeycombs’. That section furnishes
the proof of Theorem 1.1. The connection between tropical and classical curves will be
explained in Section ‘Algebraic geometry’. The number 2g + 1 in Equation 4 is the dimen-
sion of the classical moduli space of trigonal curves of genus g, whose tropicalization
is related to our stacky fan M

planar
g . Our primary source for the relevant material from
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algebraic geometry is the article [10] by Castryck and Voight. Our paper can be seen as a
refined combinatorial extension of theirs. For related recent work that incorporates also
immersions of tropical curves, see Cartwright et al. [8].
We begin in Section ‘Combinatorics and computations’ with an introduction to the

relevant background from geometric combinatorics. The objects in Equations 1 to 3 are
carefully defined, and we explain our algorithms for computing these explicitly, using the
software packages TOPCOM [28] and polymake [2,16].
Our main results in this paper are Theorems 5.1, 6.3, 7.1, and 8.5. These concern g =

3, 4, 5, and they are presented in Sections ‘Genus three’ through ‘Genus five and beyond’.
The proofs of these theorems rely on the computer calculations that are described in
Section ‘Combina- torics and computations’. In Section ‘Genus three’, we study plane
quartics as in Figure 1. Their Newton polygon is the size four triangle T4. This models
non-hyperelliptic genus 3 curves in their canonical embedding. We compute the space
MT4 . Four of the five trivalent graphs of genus 3 are realized by smooth tropical plane
curves.
In Section ‘Hyperelliptic curves’, we show that all metric graphs arising from hyperellip-

tic polygons of given genus arise from a single polygon, namely, the hyperelliptic triangle.
We determine the space Mplanar

3,hyp , which together with MT4 gives M
planar
3 . Section ‘Genus

four’ deals with curves of genus g = 4. Here, Equation 3 is a union over four polygons,
and precisely 13 of the 17 trivalent graphs G are realized in Equation 2. The dimensions
of the cones MP,G range between 4 and 9. In Section ‘Genus five and beyond’, we study
curves of genus g = 5. Here, 38 of the 71 trivalent graphs are realizable. Some others are
ruled out by the sprawling condition in Proposition 8.3. We end with a brief discussion of
g ≥ 6 and some open questions.

Combinatorics and computations
The methodology of this paper is computations in geometric combinatorics. In this
section, we fix notation, supply definitions, present algorithms, and give some core
results. For additional background, the reader is referred to the book by De Loera,
Rambau, and Santos [13].
Let P be a lattice polygon, and let A = P ∩ Z

2 be the set of lattice points in P. Any
function h : A → R is identified with a tropical polynomial with Newton polygon P,
namely,

H(x, y) =
⊕

(i,j)∈A
h(i, j) � xi � yj.

The tropical curve C defined by this min-plus polynomial consists of all points (x, y) ∈
R
2 for which the minimum among the quantities i · x + j · y + h(i, j) is attained at least

twice as (i, j) runs over A. The curve C is dual to the regular subdivision � of A defined
by h. To construct �, we lift each lattice point a ∈ A to the height h(a) then take the
lower convex hull of the lifted points in R

3. Finally, we project back to R
2 by omitting

the height. Themaximal cells are the images of the facets of the lower convex hull under
the projection. The set of all height functions h which induce the same subdivision � is
a relatively open polyhedral cone in R

A. This is called the secondary cone and is denoted
�(�). The collection of all secondary cones �(�) is a complete polyhedral fan in R

A, the
secondary fan of A.
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A subdivision � is a triangulation if all maximal cells are triangles. The maximal cones
in the secondary fan �(�) correspond to the regular triangulations � of A. Such a cone
is the product of a pointed cone of dimension #A − 3 and a 3-dimensional subspace of
R
A.
We are interested in regular triangulations � of P that are unimodular. This means that

each triangle in � has area 1/2, or, equivalently, that every point in A = P ∩Z
2 is a vertex

of �. We derive an inequality representation for the secondary cone �(�) as follows.
Consider any four points a = (a1, a2), b = (b1, b2), c = (c1, c2) and d = (d1, d2) in A
such that the triples (c, b, a) and (b, c, d) are clockwise-oriented triangles of �. Then, we
require

det

⎛
⎜⎜⎜⎝

1 1 1 1
a1 b1 c1 d1
a2 b2 c2 d2
h(a) h(b) h(c) h(d)

⎞
⎟⎟⎟⎠ ≥ 0. (5)

This is a linear inequality for h ∈ R
A. It can be viewed as a ‘flip condition’, determining

which of the two diagonals of a quadrilateral are in the subdivision. We have one such
inequality for each interior edge bc of �. The set of solutions to these linear inequalities
is the secondary cone �(�). From this, it follows that the lineality space �(�) ∩ −�(�)

of the secondary cone is 3-dimensional. It is the space Lin(A) of functions h ∈ R
A that are

restrictions of affine-linear functions on R
2. We usually identify �(A) with its image in

R
A/Lin(A), which is a pointed cone of dimension #A − 3. That pointed cone has finitely

many rays, and we represent these by vectors in R
A.

Suppose that� has E interior edges and g interior vertices.We consider two linearmaps

R
A λ−→ R

E κ−→ R
3g−3. (6)

The map λ takes h and outputs the vector whose bc coordinate equals Equation 5. This
determinant is nonnegative: it is precisely the length of the edge of the tropical curve
C that is dual to bc. Hence, λ(h) is the vector whose coordinates are the lengths of the
bounded edges of C, and κ(λ(h)) is the vector whose 3g − 3 coordinates are the lengths
of the edges of the skeleton G.

Remark 2.1. The (lattice) length of an edge of C with slope p/q, where p, q are rel-
atively prime integers, is the Euclidean length of the edge divided by

√
p2 + q2. This

lets one quickly read off the lengths from a picture of C without having to compute the
determinant (Equation 5).

Each edge e of the skeleton G is a concatenation of edges of C. The second map κ adds
up the corresponding lengths. Thus, the composition (Equation 6) is the linear map with
eth coordinate

(κ ◦ λ)(h)e =
∑

bc : the dual of bc
contributes to e

λ(h)bc for all edges e of G.

By definition, the secondary cone is mapped into the nonnegative orthant under λ.
Hence,

�(�)
λ−→ R

E≥0
κ−→ R

3g−3
≥0 . (7)
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Our discussion implies the following result on the cone of metric graphs arising from�:

Proposition 2.2. The cone M� is the image of the secondary cone �(�) under κ ◦ λ.

Given any lattice polygon P, we seek to compute the moduli space MP via the decom-
positions in Equation 2. Our line of attack towards that goal can now be summarized as
follows:

1. compute all regular unimodular triangulations of A = P ∩ Z
2 up to symmetry;

2. sort the triangulations into buckets, one for each trivalent graph G of genus g;
3. for each triangulation � with skeleton G, compute its secondary cone �(�) ⊂ R

A;
4. for each secondary cone �(�), compute its imageM� in the moduli spaceMg via

Equation 7;
5. merge the results to get the fansMP,G ⊂ R

3g−3 in (1) and the moduli spaceMP in
Equation 2.

Step 1 is based on computing the secondary fan ofA. There are two different approaches
to doing this. The first, more direct, method is implemented in Gfan [20]. It starts out
with one regular triangulation of �, e.g. a placing triangulation arising from a fixed order-
ing of A. This comes with an inequality description for �(�), as in Equation 5. From
this, Gfan computes the rays and the facets of �(�). Then, Gfan proceeds to an adja-
cent secondary cone �(�′) by producing a new height function from traversing a facet
of �(�). Iterating this process results in a breadth-first search through the edge graph of
the secondary polytope of A.
The second method starts out the same. But it passes from � to a neighboring triangu-

lation�′ that need not be regular. It simply performs a purely combinatorial restructuring
known as a bistellar flip. The resulting breadth-first search is implemented in TOPCOM

[28]. Note that a bistellar flip corresponds to inverting the sign in one of the inequalities
in Equation 5.
Neither algorithm is generally superior to the other, and sometimes it is difficult to pre-

dict which one will perform better. The flip algorithm may suffer from wasting time by
also computing non-regular triangulations, while the polyhedral algorithm is genuinely
costly since it employs exact rational arithmetic. The flip algorithm also uses exact coor-
dinates but only in a preprocessing step which encodes the point configuration as an
oriented matroid. Both algorithms can be modified to enumerate all regular unimodu-
lar triangulations up to symmetry only. For our particular planar instances, we found
TOPCOM to be more powerful.
We start Step 2 by computing the dual graph of a given �. The nodes are the triangles

and the edges record incidence. Hence, each node has degree 1, 2, or 3. We then recur-
sively delete the nodes of degree 1. Next, we recursively contract edges which are incident
with a node of degree 2. The resulting trivalent graph G is the skeleton of �. It often has
loops and multiple edges. In this process, we keep track of the history of all deletions and
contractions.
Steps 3 and 4 are carried out using polymake [16]. Here, the buckets or even the indi-

vidual triangulations can be treated in parallel. The secondary cone �(�) is defined in
R
A by the linear inequalities λ(h) ≥ 0 in Equation 5. From this, we compute the facets

and rays of �(�). This is essentially a convex hull computation. In order to get unique
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rays modulo Lin(A), we fix h = 0 on the three vertices of one particular triangle. Since
the cones are rather small, the choice of the convex hull algorithm does not matter much.
For details on state-of-the-art convex hull computations and an up-to-date description of
the polymake system, see [2].
For Step 4, we apply the linear map κ ◦ λ to all rays of the secondary cone �(�). Their

images are vectors inR
3g−3 that span the moduli coneM� = (κ ◦λ)(�(�)). Via a convex

hull computation as above, we compute all the rays and facets ofM�.
The cones M� are generally not full-dimensional in R

3g−3. The points in the rela-
tive interior are images of interior points of �(�). Only these represent smooth tropical
curves. However, it can happen that another cone M�′ is a face of M�. In that case, the
metric graphs in the relative interior of that face are also realizable by smooth tropical
curves.
Step 5 has not been fully automatized yet, but we carry it out in a case-by-case manner.

This will be described in detail for curves of genus g = 3 in Sections ‘Genus three’ and
‘Hyperelliptic curves’.
We now come to the question of what lattice polygons P should be the input for

Step 1. Our point of departure towards answering that question is the following finiteness
result.

Proposition 2.3. For every fixed genus g ≥ 1, there are only finitely many lattice
polygons P with g interior lattice points, up to integer affine isomorphisms in Z

2.

Proof and Discussion. Scott [29] proved that #
(
∂P ∩ Z

2) ≤ 2g + 7, and this bound
is sharp. This means that the number of interior lattice points yields a bound on the
total number of lattice points in P. This result was generalized to arbitrary dimen-
sions by Hensley [18]. Lagarias and Ziegler [24] improved Hensley’s bound and further
observed that there are only finitely many lattice polytopes with a given total number
of lattice points, up to unimodular equivalence [24, Theorem 2]. Castryck [9] gave an
algorithm for finding all lattice polygons of a given genus, along with the number of
lattice polygons for each genus up to 30. We remark that the assumption g ≥ 1 is essen-
tial, as there are lattice triangles of arbitrarily large area and without any interior lattice
point.

Proposition 2.3 ensures that the union in Equation 3 is finite. However, from the full
list of polygons P with g interior lattice points, only very few will be needed to construct
M

planar
g . To show this, and to illustrate the concepts seen so far, we now discuss our spaces

for g ≤ 2.

Example 2.4. For g = 1, only one polygon P is needed in Equation 3, and only one
triangulation� is needed in Equation 2.We take P = conv{(0, 0), (0, 3), (3, 0)}, since every
smooth genus 1 curve is a plane cubic, and we let� be the honeycomb triangulation from
Section ‘Honeycombs’. The skeleton G is a cycle whose length is the tropical j-invariant
[5, §7.1]. We can summarize this as follows:

M� = MP,G = MP = M
planar
1 = M1 = R≥0. (8)

All inclusions in Equation 12 are equalities for this particular choice of (P,�).
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Example 2.5. In classical algebraic geometry, all smooth curves of genus g = 2
are hyperelliptic, and they can be realized with the Newton polygon P = conv{(0, 0),
(0, 2), (6, 0)}. There are two trivalent graphs of genus 2, namely, the theta graph G1 =

and the dumbbell graph G2 = . The moduli space M2 consists of two
quotients of the orthant R3≥0, one for each graph, glued together. For nice drawings, see
Figures three and four in [11]. Figure 2 shows three unimodular triangulations �1, �′

1,
and �2 of P such that almost all metric graphs in M2 are realized by a smooth tropical
curve C dual to �1, �′

1, or �2. We say ‘almost all’ because here, the three edges of G1
cannot have all the same length [8, Proposition 4.7]. The triangulations �1 and �′

1 both
give G1 as a skeleton. If a ≥ b ≥ c denote the edge lengths on G1, then the curves dual to
�1 realize all metrics with a ≥ b > c, and the curves dual to �′

1 realize all metrics with
a > b = c. The triangulation �2 gives G2 as a skeleton, and the curves dual to it achieve
all possible metrics. Since our 3-dimensional cones are closed by definition,

(
M�1∪ M�′

1

)
∪ M�2 = MP,G1 ∪ MP,G2 = MP = M

planar
2 = M2. (9)

In Section ‘Hyperelliptic curves’, we extend this analysis to hyperelliptic curves of genus
g ≥ 3. See Figure three in [11]. The graphs G1 and G2 represent the chains for g = 2. For
information on hyperelliptic skeletons, see [12].

With g = 1, 2 out of the way, we now assume g ≥ 3.We follow the approach of Castryck
and Voight [10] in constructing polygons P that suffice for the union (Equation 3). We
write Pint for the convex hull of the g interior lattice points of P. This is the interior hull
of P. The relationship between the polygons P and Pint is studied in polyhedral adjunction
theory [14].

Lemma 2.6. Let P ⊆ Q be lattice polygons with Pint = Qint. Then MP is contained in
MQ.

Proof. By [13], Lemma 4.3.5, a triangulation � of any point set S can be extended to
a triangulation �′ of any superset S′ ⊃ S. If � is regular, then so is �′. Applying this
result to a regular triangulation of P which uses all lattice points in P yields a regular
triangulation ofQwhich uses all lattice points inQ. The triangulations of a lattice polygon
which use all lattice points are precisely the unimodular ones (This is a special property
of planar triangulations.). We conclude that every tropical curve C dual to � is contained
in a curve C′ dual to �′, except for unbounded edges of C. The skeleton and its possible
metrics remain unchanged, since Pint = Qint. We therefore have the equality of moduli
conesM� = M�′ . The unions for P and Q in Equation 2 show thatMP ⊆ MQ.

This lemma shows that we only need to consider maximal polygons, i.e. those P that
are maximal with respect to inclusion for fixed Pint. If Pint is 2-dimensional, then this
determines P uniquely. Namely, suppose that Pint = {(x, y) ∈ R

2 : aix + biy ≤ ci for i =

Figure 2 The triangulations �1,�′
1, and�2.
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1, 2, . . . , s}, where gcd(ai, bi, ci) = 1 for all i. Then, P is the polygon {(x, y) ∈ R
2 : aix +

biy ≤ ci+1 for i = 1, 2, . . . , s}. If P is a lattice polygon, then it is a maximal lattice polygon.
However, it can happen that P has non-integral vertices. In that case, the given Pint is not
the interior of any lattice polygon.
The maximal polygon P is not uniquely determined by Pint when Pint is a line seg-

ment. For each g ≥ 2, there are g + 2 distinct hyperelliptic trapezoids to be considered.
We shall see in Theorem 6.1 that for our purposes, it suffices to use the triangle
conv{(0, 0), (0, 2), (2g + 2, 0)}.
Here is the list of all maximal polygons we use as input for the pipeline described above.

Proposition 2.7. Up to isomorphism, there are precisely 12 maximal polygons P such
that Pint is 2-dimensional and 3 ≤ g = #(Pint ∩ Z

2) ≤ 6. For g = 3, there is a unique type,
namely, T4 = conv{(0, 0), (0, 4), (4, 0)}. For g = 4, there are three types:

Q(4)
1 = R3,3 = conv{(0, 0), (0, 3), (3, 0), (3, 3)}, Q(4)

2 = conv{(0, 0), (0, 3), (6, 0)},
Q(4)
3 = conv{(0, 2), (2, 4), (4, 0)}.

For g = 5, there are four types of maximal polygons:

Q(5)
1 = conv{(0, 0), (0, 4), (4, 2)}, Q(5)

2 = conv{(2, 0), (5, 0), (0, 5), (0, 2)},
Q(5)
3 = conv{(2, 0), (4, 2), (2, 4), (0, 2)}, Q(5)

4 = conv{(0, 0), (0, 2), (2, 0), (4, 4)}.
For g = 6, there are four types of maximal polygons:

Q(6)
1 = T5 = conv{(0, 0), (0, 5), (5, 0)}, Q(6)

2 = conv{(0, 0), (0, 7), (3, 0), (3, 1)},
Q(6)
3 = R3,4 = conv{(0, 0), (0, 4), (3, 0), (3, 4)}, Q(6)

4 = conv{(0, 0), (0, 4), (2, 0), (4, 2)}.

The notation we use for polygons is as follows. We write Q(g)
i for maximal poly-

gons of genus g, but we also use a systematic notation for families of polygons,
including the triangles Td = conv{(0, 0), (0, d), (d, 0)} and the rectangles Rd,e =
conv{(0, 0), (d, 0), (0, e), (d, e)}.
Proposition 2.7 is found by exhaustive search, using Castryck’s method in [9]. We

started by classifying all types of lattice polygons with precisely g lattice points. These are
our candidates for Pint. For instance, for g = 5, there are six such polygons. Four of them
are the interior hulls of the polygonsQ(5)

i with i = 1, 2, 3, 4. The other two are the triangles

conv{(1, 1), (1, 4), (2, 1)} and conv{(1, 1), (2, 4), (3, 2)}.
However, neither of these two triangles arises as Pint for any lattice polygon P. For each

genus g, we construct the stacky fans Mplanar
g by computing each of the spaces MQ(g)

i
and

then subdividing their union appropriately. This is then augmented in Section ‘Hyper-
elliptic curves’ by the spaces MP where Pint is not 2-dimensional, but is instead a line
segment.

Algebraic geometry
In this section, we discuss the context from algebraic geometry that lies behind our
computations and combinatorial analyses. Let K be an algebraically closed field that is
complete with respect to a surjective non-archimedean valuation val : K∗ → R. Every
smooth complete curve C over K defines a metric graph G. This is the Berkovich skeleton
of the analytification of C as in [5]. By our hypotheses, every metric graph G of genus g
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arises from some curve C over K . This defines a surjective tropicalization map from (the
K-valued points in) the moduli space of smooth curves of genus g to the moduli space of
metric graphs of genus g:

trop : Mg → Mg . (10)

Both spaces have dimension 3g − 3 for g ≥ 2. The map (Equation 10) is referred
to as ‘naive set-theoretic tropicalization’ by Abramovich, Caporaso, and Payne [1]. We
point to that article and its bibliography for the proper moduli-theoretic settings for our
combinatorial objects.
Consider plane curves defined by a Laurent polynomial f = ∑

(i,j)∈Z2 cijxiyj ∈
K

[
x±, y±]

with Newton polygon P. For τ a face of P, we let f |τ = ∑
(i,j)∈τ cijxiyj and

say that f is non-degenerate if f |τ has no singularities in (K∗)2 for any face τ of P. Non-
degenerate polynomials are useful for studying many subjects in algebraic geometry,
including singularity theory [23], the theory of sparse resultants [17], and topology of real
algebraic curves [27].
Let P be any lattice polygon in R

2 with g interior lattice points. We write MP for
the Zariski closure (inside the non-compact moduli space Mg) of the set of curves that
appear as non-degenerate plane curves over K with Newton polygon P. This space was
introduced by Koelman [22]. In analogy to Equation 3, we consider the union over all
relevant polygons:

Mplanar
g :=

⋃
P

MP . (11)

This moduli space was introduced and studied by Castryck and Voight in [10]. That
article was a primary source of inspiration for our study. In particular, [10], Theorem 2.1
determined the dimensions of the spaces Mplanar

g for all g. Whenever we speak about
the ‘dimension expected from classical algebraic geometry’, as we do in Theorem 1.1, this
refers to the formulas for dim(MP) and dim

(
Mplanar

g
)
that were derived by Castryck and

Voight.
By the Structure Theorem for Tropical Varieties [26, §3.3], these dimensions are

preserved under the tropicalization map (Equation 10). The images trop(MP) and
trop

(
Mplanar

g
)
are stacky fans that live inside Mg = trop(Mg) and have the expected

dimension. Furthermore, all maximal cones in trop(MP) have the same dimension since
MP is irreducible (in fact, unirational).
We summarize the objects discussed so far in a diagram of surjections and inclusions:

MP ⊆ Mplanar
g ⊆ Mg

↓ ↓ ↓
trop(MP) ⊆ trop

(
Mplanar

g
)

⊆ trop(Mg)

⊆ ⊆ =

M� ⊆ MP,G ⊆ MP ⊆ M
planar
g ⊆ Mg

(12)

For g ≥ 3, the inclusions between the second row and the third row are strict, by a
wide margin. This is the distinction between tropicalizations of plane curves and tropical
plane curves. One main objective of this paper is to understand how the latter sit inside
the former.
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For example, consider g = 3 and T4 = conv{(0, 0), (0, 4), (4, 0)}. Disregarding the
hyperelliptic locus, equality holds in the second row:

trop(MT4) = trop
(
Mplanar

3

)
= trop(M3) = M3. (13)

This is the stacky fan in [11], Figure one. The space MT4 = M
planar
3,nonhyp of tropical plane

quartics is also 6-dimensional, but it is smaller. It fills up less than 30% of the curves in
M3; see Corollary 5.2. Most metric graphs of genus 3 do not come from plane quartics.
For g = 4, the canonical curve is a complete intersection of a quadric surface with a

cubic surface. If the quadric is smooth, then we get a curve of bidegree (3, 3) in P
1 × P

1.
This leads to the Newton polygon R3,3 = conv{(0, 0), (3, 0), (0, 3), (3, 3)}. Singular sur-
faces lead to families of genus 4 curves of codimensions 1 and 2 that are supported
on two other polygons [10, §6]. As we shall see in Theorem 7.1, MP has the expected
dimension for each of the three polygons P. Furthermore, Mplanar

4 is strictly contained in
trop

(
Mplanar

4

)
. Detailed computations that reveal our spaces for g = 3, 4, 5 are presented

in Sections ‘Genus three’, ‘Hyperelliptic curves’, ‘Genus four’, and ‘Genus five and beyond’.
We close this section by returning once more to classical algebraic geometry. Let Tg

denote the trigonal locus in the moduli spaceMg . It is well known that Tg is an irreducible
subvariety of dimension 2g+1 when g ≥ 5. For a proof, see [15, Proposition 2.3]. A recent
theorem of Ma [25] states that Tg is a rational variety for all g.
We note that Ma’s work, as well as the classical approaches to trigonal curves, are based

on the fact that canonical trigonal curves of genus g are realized by a certain special poly-
gon P. This is either the rectangle in Equation 17 or the trapezoid in Equation 18. These
polygons appear in [10], Section 12, where they are used to argue that Tg defines one of the
irreducible components ofMplanar

g , namely,MP. The same P appear in the next section,
where they serve to prove one inequality on the dimension in Theorem 1.1. The combi-
natorial moduli space MP is full-dimensional in the tropicalization of the trigonal locus.
The latter space, denoted trop(Tg), is contained in the space of trigonal metric graphs, by
Baker’s Specialization Lemma [3, §2].
In general, Mplanar

g has many irreducible components other than the trigonal locus Tg .
As a consequence, there are many skeleta in M

planar
g that are not trigonal in the sense of

metric graph theory. This is seen clearly in the top dimension for g = 7, where dim(T7) =
15 but dim

(
Mplanar

7

)
= 16. The number 16 comes from the family of trinodal sextics in

[10, §12].

Honeycombs
We now prove Theorem 1.1. This will be done using the special family of honeycomb
curves. The material in this section is purely combinatorial. No algebraic geometry will be
required.
We begin by defining the polygons that admit a honeycomb triangulation. These

polygons depend on four integer parameters a, b, c, and d that satisfy the constraints

0 ≤ c ≤ a, b ≤ d ≤ a + b. (14)

To such a quadruple (a, b, c, d), we associate the polygon

Ha,b,c,d = {
(x, y) ∈ R

2 : 0 ≤ x ≤ a and 0 ≤ y ≤ b and c ≤ x + y ≤ d
}
.
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If all six inequalities in Equation 14 are non-redundant, then Ha,b,c,d is a hexagon. Oth-
erwise, it can be a pentagon, quadrangle, triangle, segment, or just a point. The number
of lattice points is

#
(
Ha,b,c,d ∩ Z

2) = ad + bd − 1
2

(
a2 + b2 + c2 + d2

) + 1
2
(a + b − c + d) + 1,

and, by Pick’s Theorem, the number of interior lattice points is

g = #
(
(Ha,b,c,d)int ∩ Z

2) = ad+bd− 1
2

(
a2 + b2 + c2 + d2

)− 1
2
(a+b−c+d)+1.

The honeycomb triangulation� subdividesHa,b,c,d into 2ad+2bd−(
a2 + b2 + c2 + d2

)
unit triangles.
It is obtained by slicing Ha,b,c,d with the vertical lines {x = i} for 0 < i < a, the hori-

zontal lines {y = j} for 0 < j < b, and the diagonal lines {x + y = k} for c < k < d. The
tropical curves C dual to � look like honeycombs, as seen in the middle of Figure 3. The
corresponding skeleta G are called honeycomb graphs.
If P = Ha,b,c,d, then its interior Pint is a honeycomb polygon as well. Indeed, a translate

of Pint can be obtained from P by decreasing the values of a, b, c, d by an appropriate
amount.

Example 4.1. Let P = H5,4,2,5. Note that Pint = H3,3,1,2 + (1, 1). The honeycomb tri-
angulation � of P is illustrated in Figure 3, together with a dual tropical curve and its
skeleton. The bounded edge lengths in the tropical curve are labelled a through w. These
lengths induce the edge lengths on the skeleton, via the formulas α = a + b + c + d,
β = e+ f , γ = g+h+i+ j, δ = k+ l+m, and ε = n+o+p. This is the map κ : R23 → R

12

in Equation 6.
The cone λ(�(�)) ⊂ R

23≥0 has dimension 13 and is defined by the ten linear equations

a + b = d + r e + f = t + v g + h = j + u k + l = t + w n + o = q + v
b + c = r + q f + s = v + r h + i = u + s l + m = t + u o + p = v + w

(15)

It has 31 extreme rays. Among their images under κ , only 17 are extreme rays of the
moduli cone M�. We find that M� = κ(λ(�(�))) has codimension one in R

12. It is

Figure 3 The honeycomb triangulation of H5,4,2,5, the tropical curve, and its skeleton.
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defined by the non-negativity of the 12 edge lengths, by the equality β = t+ v, and by the
inequalities

q + r ≤ α, s + u ≤ γ , max{t + w, t + u} ≤ δ ≤ 2t + u + w,
max{q + v, v + w} ≤ ε ≤ q + 2v + w, r ≤ s + t, s ≤ r + v.

The number dim(M�) = 11 is explained by the following lemma.

Lemma 4.2. Let � be the honeycomb triangulation of P = Ha,b,c,d. Then,

dim(M�) = #
(
Pint ∩ Z

2) + #
(
∂Pint ∩ Z

2) + # vertices (Pint) − 3.

Proof. The honeycomb graph G consists of g = #
(
Pint ∩ Z

2) hexagons. The hexagons
associated with lattice points on the boundary of Pint have vertices that are 2-valent in
G. Such 2-valent vertices get removed, so these boundary hexagons become cycles with
fewer than six edges. In the orthant R3g−3

≥0 of all metrics on G, we consider the subcone
of metricsM� that arise from �. This is the image under κ of the transformed secondary
cone λ(�(�)).
The cone λ(�(�)) is defined in R

E≥0 by 2g linearly independent linear equations,
namely, two per hexagon. These state that the sum of the lengths of any two adjacent edges
equals that of the opposite sum. For instance, in Example 4.1, each of the five hexagons
contributes two linear equations, listed in the columns of Equation 15. These equations
can be chosen to have distinct leading terms, underlined in Equation 15. In particular,
they are linearly independent.
Now, under the elimination process that represents the projection κ , we retain

(i) two linear equations for each lattice point in the interior of Pint;
(ii) one linear equation for each lattice point in the relative interior of an edge of Pint;
(iii) no linear inequality from the vertices of Pint.

That these equations are independent follows from the triangular structure, as in
Equation 15. Inside the linear space defined by these equations, the moduli cone M� is
defined by various linear inequalities all of which, are strict when the graphG comes from
a tropical curve C in the interior of �(�).
This implies that the codimension ofM� inside the orthant R3g−3

≥0 equals

codim(M�) = (
#

(
∂Pint ∩ Z

2) − # vertices(Pint)
) + 2 · # (

int(Pint) ∩ Z
2) . (16)

This expression can be rewritten as

g + #
(
int(Pint) ∩ Z

2) − # vertices(Pint) = 2g − #
(
∂Pint ∩ Z

2) − # vertices(Pint).

Subtracting this codimension from 3g − 3, we obtain the desired formula.

Proof of Theorem 1.1. For the classical moduli spaceMplanar
g , the formula in Equation 4

was proved in [10]. That dimension is preserved under tropicalization. The inclusion of
M

planar
g in trop

(
Mplanar

g
)
, in Equation 12, implies that the right-hand side in Equation 4

is an upper bound on dim
(
M

planar
g

)
.
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To prove the lower bound, we choose P to be a specific honeycomb polygon with hon-
eycomb triangulation �. Our choice depends on the parity of the genus g. If g = 2h is
even, then we take the rectangle

R3,h+1 = H3,h+1,0,h+4 = conv{(0, 0), (0, h + 1), (3, 0), (3, h + 1)}. (17)

The interior hull of R3,h+1 is the rectangle

(R3,h+1)int = conv{(1, 1), (1, h), (2, 1), (2, h)} ∼= R1,h−1.

All g = 2h lattice points of this polygon lie on the boundary. From Lemma 4.2, we see
that dim(M�) = g + g + 4 − 3 = 2g + 1. If g = 2h + 1 is odd, then we take the trapezoid

H3,h+3,0,h+3 = conv{(0, 0), (0, h + 3), (3, 0), (3, h)}. (18)

The convex hull of the interior lattice points in H3,h+3,0,h+3 is the trapezoid

(H3,h+3,0,h+3)int = conv{(1, 1), (1, h + 1), (2, 1), (2, h)}.
All g = 2h + 1 lattice points of this polygon lie on its boundary, and again dim(M�) =

2g + 1.
For all g ≥ 4 with g �= 7, this matches the upper bound obtained from [10].We conclude

that dim(MP) = dim(Mg) = 2g + 1 holds in all of these cases. For g = 7, we take
P = H4,4,2,6. Then, Pint is a hexagon with g = 7 lattice points. From Lemma 4.2, we find
dim(M�) = 7+6+6−3 = 16, so this matches the upper bound. Finally, for g = 3, we will
see dim(MT4) = 6 in Section ‘Genus three’. The case g = 2 follows from the discussion in
Example 2.5.

There are two special families of honeycomb curves: those arising from the triangles Td
for d ≥ 4 and rectangles Rd,e for d, e ≥ 3. The triangle Td corresponds to curves of degree
d in the projective plane P2. Their genus is g = (d − 1)(d − 2)/2. The case d = 4, g = 3
will be our topic in Section ‘Genus three’. The rectangle Rd,e corresponds to curves of
bidegree (d, e) in P

1 × P
1. Their genus is g = (d − 1)(e − 1). The case d = e = 3, g = 4

appears in Section ‘Genus four’.

Proposition 4.3. Let P be the triangle Td with d ≥ 4 or the rectangle Rd,e with d, e ≥ 3.
The moduli space MP of tropical plane curves has the expected dimension inside Mg ,
namely,

dim(MTd ) = 1
2
d2 + 3

2
d − 8 and codim(MTd ) = (d − 2)(d − 4), whereas

dim(MRd,e) = de + d + e − 6 and codim(MRd,e) = 2(de − 2d − 2e + 3).

In particular, the honeycomb triangulation defines a cone M� of this maximal
dimension.

Proof. For our standard triangles and rectangles, the formula (Equation 16) implies

codim(MTd ) = 3(d − 3) − 3 + 2 · 1
2 (d − 4)(d − 5),

codim(MRd,e) = 2((d − 2) + (e − 2)) − 4 + 2 · (d − 3)(e − 3).

Subtracting from 3g − 3 = dim(Mg), we get the desired formulas for dim(MP).
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The above dimensions are those expected from algebraic geometry. Plane curves with
Newton polygon Td form a projective space of dimension 1

2 (d + 2)(d + 1) − 1 on which
the 8-dimensional group PGL(3) acts effectively, while those with Rd,e form a space of
dimension (d+1)(e+1)−1 on which the 6-dimensional group PGL(2)2 acts effectively. In
each case, dim(MP) equals the dimension of the family of all curves minus the dimension
of the group.

Genus three
In classical algebraic geometry, all non-hyperelliptic smooth curves of genus 3 are plane
quartics. Their Newton polygon T4 = conv{(0, 0), (0, 4), (4, 0)} is the unique maximal
polygon with g = 3 in Proposition 2.7. In this section, we compute the moduli spaceMT4 ,
and we characterize the dense subset of metric graphs that are realized by smooth tropical
quartics. In the next section, we study the hyperelliptic locus Mplanar

g,hyp for arbitrary g, and
we compute it explicitly for g = 3. The full moduli space is then obtained as

M
planar
3 = MT4 ∪ M

planar
3,hyp . (19)

Just like in classical algebraic geometry, dim
(
MT4

) = 6 and dim
(
M

planar
3,hyp

)
= 5.

The stacky fan M3 of all metric graphs has five maximal cones, as shown in [11],
Figure four. These correspond to the five (leafless) trivalent graphs of genus 3, pictured
in Figure 4. Each graph is labeled by the triple (
bc), where 
 is the number of loops, b is
the number of bi-edges, and c is the number of cut edges. Here, 
, b, and c are single digit
numbers, so there is no ambiguity to this notation. Our labeling and ordering is largely
consistent with [6].
Although MT4 has dimension 6, it is not pure due to the realizable metrics on (111).

It also misses one of the five cones in M3: the graph (303) cannot be realized in R
2 by

Proposition 8.3. The restriction ofMT4 to each of the other cones is given by a finite union
of convex polyhedral subcones, characterized by the following piecewise-linear formulas:

Theorem 5.1. A graph in M3 arises from a smooth tropical quartic if and only if it is
one of the first four graphs in Figure 4, with edge lengths satisfying the following, up to
symmetry:

� (000) is realizable if and only ifmax{x, y}≤u,max{x, z}≤v andmax{y, z}≤w, where

� at most two of the inequalities can be equalities, and
� if two are equalities, then either x, y, z are distinct and the edge (among u, v,w)

that connects the shortest two of x, y, z attains equality, ormax{x, y, z} is
attained exactly twice, and the edge connecting those two longest does not
attain equality.

Figure 4 The five trivalent graphs of genus 3, with letters labeling each graph’s six edges.
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� (020) is realizable if and only if v ≤ u, y ≤ z, and w + max{v, y} ≤ x, and if the last
inequality is an equality, then: v = u implies v < y < z, and y = z implies y < v < u.

� (111) is realizable if and only if w < x and

( v + w = x and v < u ) or ( v + w < x ≤ v + 3w and v ≤ u ) or
( v + 3w < x ≤ v + 4w and v ≤ u ≤ 3v/2 ) or

( v + 3w < x ≤ v + 4w and 2v = u ) or ( v + 4w < x ≤ v + 5w and v = u ).
(20)

� (212) is realizable if and only if w < x ≤ 2w.

To understand the qualifier ‘up to symmetry’ in Theorem 5.1, it is worthwhile to read
off the automorphisms from the graphs in Figure 4. The graph (000) is the complete graph
on four nodes. Its automorphism group is the symmetric group of order 24. The automor-
phism group of the graph (020) is generated by the three transpositions (u v), (y z), (w x)
and the double transposition (u y)(v z). Its order is 16. The automorphism group of the
graph (111) has order 4, and it is generated by (u v) and (w x). The automorphism group
of the graph (212) is generated by (u z)(v y) and (w x) and has order 4. The automor-
phism group of the graph (303) is the symmetric group of order 6. Each of the five graphs
contributes an orthant R6≥0 modulo the action of that symmetry group to the stacky fan
M3.

Proof of Theorem 5.1. This is based on explicit computations as in Section ‘Combina-
torics and computations’. The symmetric group S3 acts on the triangle T4.We enumerated
all unimodular triangulations of T4 up to that symmetry. There are 1,279 (classes of ) such
triangulations, and of these precisely 1,278 are regular. The unique non-regular triangu-
lation is a refinement of [26], Figure 2.3.9. For each regular triangulation, we computed
the graph G and the polyhedral cone M�. Each M� is the image of the 12-dimensional
secondary cone of �. We found that M� has dimension 3, 4, 5, or 6, depending on the
structure of the triangulation �. A census is given by Table 1. For instance, 450 of the
1,278 triangulations � have the skeleton G = (020). Among these 450, we found that 59
have dim(M�) = 4, 216 have dim(M�) = 5, and 175 have dim(M�) = 6.
For each of the 1,278 regular triangulations �, we checked that the inequalities stated

in Theorem 5.1 are valid on the cone M� = (κ ◦ λ)(�(�)). This proves that the dense
realizable part ofMT4 is contained in the polyhedral space described by our constraints.
For the converse direction, we need to go through the four cases and construct a planar

tropical realization of each metric graph that satisfies our constraints. We shall now do
this.
All realizable graphs of type (000), except for lower dimensional families, arise from a

single triangulation�, shown in Figure 5 with its skeleton. The coneM� is 6-dimensional.

Table 1 Dimensions of the 1,278moduli conesM� withinMT4

G\dim 3 4 5 6 #�’s

(000) 18 142 269 144 573

(020) 59 216 175 450

(111) 10 120 95 225

(212) 15 15 30

Total 18 211 620 429 1,278
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Figure 5 A triangulation that realizes almost all realizable graphs of type (000).

Its interior is defined by x < min{u, v}, y < min{u,w}, and z < min{v,w}. Indeed, the
parallel segments in the outer edges can be arbitrarily long, and each outer edge be as
close as desired to the maximum of the two adjacent inner edges. This is accomplished
by putting as much length as possible into a particular edge and pulling extraneous parts
back.
There are several lower dimensional collections of graphs that we must show are

achievable:

(i) y < x = u,max{x, z} < v,max{y, z} < w; (dim = 5)
(ii) y = x = u,max{x, z} < v,max{y, z} < w; (dim = 4)
(iii) z < y < x < v, u = x, w = y; (dim = 4)
(iv) z < y < x < u, v = x, w = y; (dim = 4)
(v) z < y = x = v = w < u. (dim = 3)

In Figure 6, we show triangulations realizing these five special families. Dual edges are
labeled

(1, 1)
x− (1, 2)

y− (2, 1)
z− (1, 1).

Next, we consider type (020). Again, except for some lower dimensional cases, all graphs
arise from single triangulation, pictured in Figure 7. The interior ofM� is given by v < u,
y < z and w + max{v, y} < x. There are several remaining boundary cases, all of whose
graphs are realized by the triangulations in Figure 8:

(i) v < u, y < z, w + max{v, y} = x; (dim = 5)
(ii) u = v, y < z, w + max{v, y} < x; (dim = 5)
(iii) u = v, y = z, w + max{v, y} < x; (dim = 4)
(iv) u = v, v < y < z, w + max{v, y} = x. (dim = 4)

Figure 6 Triangulations giving all metrics in the cases (i) through (v) for the graph (000).
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Figure 7 A triangulation that realizes almost all realizable graphs of type (020).

Type (111) is the most complicated. We begin by realizing the metric graphs that
lie in int(MT4,(111)). These arise from the second and third cases in the disjunction
(Equation 20).
We assume w < x. The triangulation to the left in Figure 9 realizes all metrics on (111)

satisfying v + w < x < v + 3w and v < u. The dilation freedom of u, y, and z is clear. To
see that the edge x can have length arbitrarily close to v + 3w, simply dilate the double-
arrowed segment to be as long as possible, with some very small length given to the next
two segments counterclockwise. Shrinking the double-arrowed segment as well as the
vertical segment of x brings the length close to v + w. The triangulation to the right in
Figure 9 realizes all metrics satisfying v+ 3w < x < v+ 4w and v < u < 3v/2. Dilation of
x is more free due to the double-arrowed segment of slope 1/2, while dilation of u is more
restricted.
Many triangulations are needed in order to deal with low-dimensional cases. In

Figure 10, we show triangulations that realize each of the following families of type (111)
graphs:

(i) v + w < x < v + 5w, v = u; (dim = 5)
(ii) v + w < x < v + 4w, 2v = u; (dim = 5)
(iii) v + w = x, v < u; (dim = 5)
(iv) x = v + 3w, v < u; (dim = 5)
(v) x = v + 4w, v < u ≤ 3v/2; (dim = 5)
(vi) x = v + 5w, v = u; (dim = 4)
(vii) x = v + 4w, 2v = u. (dim = 4)

All graphs of type (212) can be achieved with the two triangulations in Figure 11. The
left gives all possibilities with w < x < 2w, and the right realizes x = 2w. The edges u, v,
y, z are completely free to dilate. This completes the proof of Theorem 5.1.

The space MT4 is not pure dimensional because of the graphs (111) with u = v
and v + 4w < x < v + 5w. These appear in the 5-dimensional M� where � is the

Figure 8 Triangulations giving all metrics in the cases (i) through (iv) for the graph (020).
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Figure 9 Triangulations of type (111) realizing v + w < x < v + 2x and v < u (on the left) and
v + 3w < x < v + 4w and v < u < 3v/2 (on the right).

leftmost triangulation in Figure 10, but M� is not contained in the boundary of any
6-dimensionalM�′ .
We close this section by suggesting an answer to the following question: What is the

probability that a random metric graph of genus 3 can be realized by a tropical plane
quartic?
To examine this question, we need to endow the moduli space M3 with a probability

measure. Here, we fix this measure as follows. We assume that the five trivalent graphs
G are equally likely, and all non-trivalent graphs have probability 0. The lengths on each
trivalent graph G specify an orthant R6≥0. We fix a probability measure on R

6≥0 by nor-
malizing so that u + v + w + x + y + z = 1, and we take the uniform distribution on the
resulting 5-simplex. With this probability measure on the moduli spaceM3, we are asking
for the ratio of volumes

vol
(
M

planar
3

)
/ vol(M3). (21)

This ratio is a rational number, which we computed from our data in Theorem 5.1.

Corollary 5.2. The rational number in (21) is 31/105. This means that, in the mea-
sure specified above, about 29.5% of all metric graphs of genus 3 come from tropical plane
quartics.

Proof and Explanation. The graph (303) is not realizable, since none of the 1,278 regular
unimodular triangulations of the triangle T4 has this type. So, its probability is zero. For
the other four trivalent graphs in Figure 4, we compute the volume of the realizable edge
lengths, using the inequalities in Theorem 5.1. The result of our computations is the table

Graph (000) (020) (111) (212) (303)
Probability 4/15 8/15 12/35 1/3 0

A non-trivial point in verifying these numbers is that Theorem 5.1 gives the constraints
only up to symmetry. We must apply the automorphism group of each graph in order
to obtain the realizable region in its 5-simplex {(u, v,w, x, y, z) ∈ R

6≥0 : u + v + w +

Figure 10 Triangulations of type (111) that realize the boundary cases (i) through (vii).
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Figure 11 Triangulations giving graphs of type (212) givingw < x < 2w and x = 2w.

x + y + z = 1}. Since we are measuring volumes, we are here allowed to replace the
regions described in Theorem 5.1 by their closures. For instance, consider type (020).
After taking the closure, and after applying the automorphism group of order 16, the
realizability condition becomes

max
(
min(u, v), min(y, z)

) ≤ |x − w|. (22)

The probability that a uniformly sampled random point in the 5-simplex satisfies
equation 22 is equal to 8/15. The desired probability (Equation 21) is the average of the
five numbers in the table.

Notice that asking for those probabilities only makes sense since the dimension of the
moduli space agrees with the number of skeleton edges. In view of Equation 4, this occurs
for the three genera g = 2, 3, 4. For g ≥ 5, the number of skeleton edges exceeds the
dimension of the moduli space. Hence, in this case, the probability that a random metric
graph can be realized by a tropical plane curve vanishes a priori. For g = 2, that proba-
bility is one; see Example 2.5. For g = 4, that probability is less than 0.5% by Corollary 7.2
below.

Hyperelliptic curves
A polygon P of genus g is hyperelliptic if Pint is a line segment of length g − 1. We define
the moduli space of hyperelliptic tropical plane curves of genus g to be

M
planar
g,hyp :=

⋃
P

MP,

where the union is over all hyperelliptic polygons P of genus g. Unlike when the inte-
rior hull Pint is 2-dimensional, there does not exist a unique maximal hyperelliptic
polygon P with given Pint. However, there are only finitely many such polygons up to
isomorphism. These are

E(g)
k := conv{(0, 0), (0, 2), (g + k, 0), (g + 2 − k, 2)} for 1 ≤ k ≤ g + 2.

These hyperelliptic polygons interpolate between the rectangle E(g)
1 = Rg+1,2 and the

triangle E(g)
g+2. The five maximal hyperelliptic polygons for genus g = 3 are pictured in

Figure 12.
This finiteness property makes a computation ofMplanar

g,hyp feasible: computeME(g)
k

for all
k, and take the union. By [21, Proposition 3.4], all triangulations of hyperelliptic polygons
are regular, so we need not worry about non-regular triangulations arising in the TOPCOM
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Figure 12 The five maximal hyperelliptic polygons of genus 3.

computations described in Section ‘Combinatorics and computations’. We next show that
it suffices to consider the triangle:

Theorem 6.1. For each genus g ≥ 2, the hyperelliptic triangle E(g)
g+2 satisfies

ME(g)
g+2

= M
planar
g,hyp ⊆ M

chain
g ∩ M

planar
g . (23)

The equality holds even before taking closures of the spaces of realizable graphs. The
spaces on the left-hand side and right-hand side of the inclusion in Equation 23 both have
dimension 2g − 1.

Before proving our theorem, we define M
chain
g . This space contains all metric graphs

that arise from triangulating hyperelliptic polygons. Start with a line segment on g − 1
nodes where the g − 2 edges have arbitrary non-negative lengths. Double each edge so
that the resulting parallel edges have the same length and attach two loops of arbitrary
lengths at the endpoints. Now, each of the g − 1 nodes is 4-valent. There are two possible
ways to split each node into two nodes connected by an edge of arbitrary length. Any
metric graph arising from this procedure is called a chain of genus g. Although there are
2g−1 possible choices in this procedure, some give isomorphic graphs. There are 2g−2 +
2�(g−2)/2� combinatorial types of chains of genus g. In genus 3, the chains are (020), (111),
and (212) in Figure 4; and in genus 4, they are (020), (021), (111), (122), (202), and (223)
in Section ‘Genus four’.
By construction, there are 2g − 1 degrees of freedom for the edge lengths in a chain

of genus g, so each such chain defines an orthant R2g−1
≥0 . We write Mchain

g for the stacky
subfan of Mg consisting of all chains. Note that Mchain

g is strictly contained in the space
M

hyp
g of all hyperelliptic metric graphs, seen in [12]. Hyperelliptic graphs arise by the same

construction from any tree with g − 1 nodes, whereas for chains that tree must be a line
segment.
The main claim in Theorem 6.1 is that any metric graph arising from a maximal hyper-

elliptic polygon E(g)
k also arises from the hyperelliptic triangle E(g)

g+2. Given a triangulation
� of E(g)

k , our proof constructs a triangulation �′ of E(g)
g+2 that gives rise to the same col-

lection of metric graphs, so that M� = M�′ , with equality holding even before taking
closures. Before our proof, we illustrate this construction with the following example.

Example 6.2. Let � be the triangulation of R4,2 pictured on the left in Figure 13 along
with a metric graph � arising from it. The possible metrics on � are determined by the
slopes of the edges emanating from the vertical edges. For instance, consider the con-
straints on v and y imposed by the width w (which equals x). If most of the w and x edges
are made up of the segments emanating from v, we find y close to v + 2w. If instead most
of the w and x edges are made up of the segments emanating from y, we find y close to
v − 2w. Interpolating gives graphs achieving v − 2w < y < v + 2w. This only depends
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Figure 13 Triangulations of R4,2 and E(3)
5 , giving rise to skeletons with the samemetrics.

on the difference of the slopes emanating either left or right from the edges v and y: the
same constraints would be imposed if the slopes emanating from v to the right were 2 and
0 rather than 1 and −1. Boundary behavior determines constraints on u and z, namely
v < u and y < z.
Also pictured in Figure 13 is a triangulation �′ of E(3)

5 . The skeleton �′ arising from �′

has the same combinatorial type as �, and the slopes emanating from the vertical edges
have the same differences as in �. Combined with similar boundary behavior, this shows
that � and �′ have the exact same achievable metrics. In other words, M� = M�′ , with
equality even before taking closures of the realizable graphs.
We now explain how to construct �′ from �, an algorithm spelled out explicitly for

general g in the proof of Theorem 6.1. We start by adding edges from (0, 2) to the interior
lattice points (since any unimodular triangulation of E(3)

5 must include these edges) and
then add additional edges based on the combinatorial type of �, as pictured in Figure 14.
Next, we add edges connecting the interior lattice points to the lower edge of the trian-

gle.Wewill ensure that the outgoing slopes from the vertical edges in the �′ have the same
difference as in �. For i = 1, 2, 3, we connect (i, 1) to all points between (2i + ai, 0) and
(2i+ bi, 0) where ai is the difference between the reciprocals of the slopes of the leftmost
edges from (i, 1) to the upper and lower edges of R4,2 in �, and bi is defined similarly but
with the rightmost edges. Here, we take the reciprocal of ∞ to be 0. In the dual tropical
curve, this translates to slopes emanating from vertical edges in the tropical curve having
the same difference as from �.
We compute a1 = 1

−1 − 1
1 = −2 and b1 = 1

∞ − 1
∞ = 0. Since 2 · 1 + a1 = 0 and

2 · 1 + b1 = 2, we add edges from (1, 1) to (0, 0), to (0, 2), and to all points in between, in
this case just (0, 1). We do similarly for the other two interior lattice points, as pictured in
the first three triangles in Figure 15. The fourth triangle includes the edges (0, 1) − (1, 1)
and (3, 1) − (4, 1), which ensures the same constraints as from � on the first and third
loops of the corresponding metric graph.

Proof of Theorem 6.1. The inclusionM
planar
g,hyp ⊆ M

chain
g holds because every unimodular

triangulation of a hyperelliptic polygon is dual to a chain graph. Such a chain has 2g − 1

Figure 14 The start of�′.
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Figure 15 Several steps leading up to�′, on the right.

edges, and hence dim
(
M

chain
g

)
= 2g − 1. We also have dim

(
M

planar
g,hyp

)
≥ 2g − 1 because

Lemma 4.2 implies dim
(
MRg+1,2

) = 2g − 1. Hence, the inclusion implies the dimension
statement.
It remains to prove the equalityME(g)

g+2
= M

planar
g,hyp . Given any triangulation � of a hyper-

elliptic polygon E(g)
k , we shall construct a triangulation �′ of E(g)

g+2 such that M� = M�′ .
Our construction will show that the equality even holds at the level of smooth tropical
curves.
We start constructing �′ by drawing g edges from (0, 2) to the interior lattice points.

The next g − 1 edges of �′ are those that give it the same skeleton as �. This means
that �′ has the edge (i, 1) − (i + 1, 1) whenever that edge is in �, and �′ has the edge
(0, 2) − (2i + 1, 0) whenever (i, 1) − (i + 1, 1) is not an edge in �. Here, i = 1, . . . , g − 1.
Next, we will include edges in �′ that give the same constraints on vertical edge lengths

as �. This is accomplished by connecting the point (i, 1) to (2i+ ai, 0), to (2i+ bi, 0), and
to all points in between, where ai and bi are defined as follows. Let ai be the difference
between the reciprocals of the slopes of the leftmost edges from (i, 1) to the upper and
lower edges of E(g)

k in �. Here, we take the reciprocal of ∞ to be 0. Let bi be defined simi-
larly but with the rightmost edges. These new edges in �′ do not cross due to constraints
on the slopes in �. Loop widths and differences in extremal slopes determine upper and
lower bounds on the lengths of vertical edges. These constraints on the g−2 interior loops
mostly guaranteeM� = M�′ . To take care of the 1st and gth loops, we must complete the
definition of �′. Let (n, 0) be the leftmost point of the bottom edge of E(g)

g+2 connected to
(1, 1) so far in �′.

(i) If n = 0, then �′ includes the edge (0, 1) − (1, 1).
(ii) If n ≥ 2, then �′ includes (0, 1) − (1, 1) and all edges (0, 1) − (0,m) with 0 ≤ m ≤ n.
(iii) If n=1 and (0, 1) − (1, 1) is an edge of �, then �′ includes (0, 1) − (1, 1) and

(0, 1) − (1, 0).
(iv) If n=1 and (0, 1) − (1, 1) is not an edge �, then �′ includes (0, 2) − (1, 0) and

(0, 1) − (1, 0).

Perform a symmetric construction around (g, 1). These edge choices will give the same
constraints on the 1st and gth loops as those imposed by �. This completes the proof.

We now return to genus g = 3, our topic in Section ‘Genus three’, and we complete the
computation ofMplanar

3 .
By Equation 19 and Theorem 6.1, it suffices to compute the 5-dimensional space

ME(g)
g+2

. An explicit computation as in Section ‘Combinatorics and computations’ reveals

that the rectangle E(3)
1 = R4,2 realizes precisely the same metric graphs as the triangle

E(3)
5 . With this, Theorem 6.1 implies Mplanar

3,hyp = MR4,2 . To complete the computation in
Section ‘Genus three’, it thus suffices to analyze the rectangle R4,2.
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It was proved in [4] that MR4,2 and MT4 have disjoint interiors. Moreover, MR4,2 is not
contained in MT4 . This highlights a crucial difference between Equations 13 and 19. The
former concerns the tropicalization of classical moduli spaces, so the hyperelliptic locus
lies in the closure of the non-hyperelliptic locus. The analogous statement is false for trop-
ical plane curves. To see that MT4 does not contain MR4,2 , consider the (020) graph with
all edge lengths equal to 1. By Theorems 5.1 and 6.3, this metric graph is inMR4,2 but not
inMT4 . What follows is the hyperelliptic analogue to the non-hyperelliptic Theorem 5.1.

Theorem 6.3. A graph in M3 arises from R4,2 if and only if it is one of the graphs (020),
(111), or (212) in Figure 4, with edge lengths satisfying the following, up to symmetry:

� (020) is realizable if and only if w = x, v ≤ u, v ≤ y ≤ z, and

(y < v + 2w ) or (y = v + 2w and y < z )

or (y < v + 3w and u ≤ 2v ) or (y = v + 3w and u ≤ 2v and y < z )

or (y < v + 4w and u = v ) or ( y = v + 4w and u = v and y < z ).
(24)

� (111) is realizable if and only if w = x andmin{u, v} ≤ w.
� (212) is realizable if and only if w = x.

Proof. This is based on an explicit computation as described in Section ‘Combinatorics
and computations’. The hyperelliptic rectangle R4,2 has 3,105 unimodular triangulations
up to symmetry. All triangulations are regular. For each such triangulation, we computed
the graph G and the polyhedral coneM�. EachM� has dimension 3, 4, or 5, with census
given on the left in Table 2. For each cone M�, we then checked that the inequalities
stated in Theorem 6.3 are satisfied. This proves that the dense realizable part of MR4,2 is
contained in the polyhedral space described by our constraints.
For the converse direction, we construct a planar tropical realization of each metric

graph that satisfies our constraints. For the graph (020), we consider 11 cases:

(i) y < v + 2w, u �= v, y �= z; (dim = 5)
(ii) y = v + 2w, u �= v, y �= z; (dim = 5)
(iii) ( y < v + 3w, v < u < 2v, y �= z ) or ( y < v + 2w, u �= v, y < z < 2y ); (dim = 5)
(iv) ( y < v + 3w, u = 2v, y �= z ) or ( y < v + 2w, u �= v, z = 2y ); (dim = 4)
(v) ( y < v + 3w, v < u < 2v, y = z ) or ( y < v + 4w, u = v, y < z < 2z ); (dim = 4)
(vi) ( y < v + 3w, u = 2v, y = z ) or ( y < v + 4w, u = v, z = 2y ); (dim = 3)
(vii) y = v + 3w, v < u < 2v, y �= z; (dim = 4)
(viii) y = v + 3w, u = 2v, y �= z; (dim = 3)
(ix) ( y < v + 4w, u = v, y �= z ) or ( y < v + 2w, y = z, u �= v ); (dim = 3)
(x) y < v + 4w, u = v, y = z; (dim = 3)
(xi) y = v + 4w, u = v, y �= z. (dim = 3)

Table 2 Dimensions of themoduli conesM� for R4,2 and E(3)
5

R4,2 E(3)
5

G\dim 3 4 5 #�’s 3 4 5 #�’s

(020) 42 734 1,296 2,072 42 352 369 763

(111) 211 695 906 90 170 260

(212) 127 127 25 25

Total 42 945 2,118 3,105 42 442 564 1,048
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Figure 16 Triangulations giving all realizable hyperelliptic metrics for the graph (020).

The disjunction of (i),(ii),. . . ,(xi) is equivalent to Equation 24. Triangulations giving all
metric graphs satisfying each case are pictured in Figure 16. Next to the first triangulation
is a metric graph arising from it.
Next, we deal with graph (111). Here, we need two triangulations, one for u �= v and one

for u = v. They are pictured in Figure 17. The left gives u �= v, and the middle gives u = v.
Finally, for the graph (212), the single triangulation on the right in Figure 17 suffices.

Genus four
In this section, we compute the moduli space of tropical plane curves of genus 4. This is

M
planar
4 = MQ(4)

1
∪ MQ(4)

2
∪ MQ(4)

3
∪ M

planar
4,hyp ,

whereQ(4)
i are the three genus 4 polygons in Proposition 2.7. They are shown in Figure 18.

There are 17 trivalent genus 4 graphs, of which 16 are planar. These were first enumer-
ated in [6] and are shown in Figure 19. All have six vertices and nine edges. The labels
(
bc) are as in Section ‘Genus three’: 
 is the number of loops, b the number of bi-edges,
and c the number of cut edges. This information is enough to uniquely determine the
graph with the exception of (000), where ‘A’ indicates the honeycomb graph and ‘B’ the
complete bipartite graph K3,3.
Up to their respective symmetries, the square Q(4)

1 = R3,3 has 5,941 unimodular tri-
angulations, the triangle Q(4)

2 has 1, 278 unimodular triangulations, and the triangle Q(4)
3

has 20 unimodular triangulations. We computed the cone M� for each triangulation �,
and we ran the pipeline of Section ‘Combinatorics and computations’. We summarize our
findings as the main result of this section:

Theorem 7.1. Of the 17 trivalent graphs, precisely 13 are realizable by tropical plane
curves. The moduli space M

planar
4 is 9-dimensional, but it is not pure: the left decom-

position in Equation 2 has components (Equation 1) of dimensions 7, 8 and 9. That
decomposition is explained in Table 3.

The four non-realizable graphs are (000)B, (213), (314), and (405). This is obvious for
(000)B, because K3,3 is not planar. The other three are similar to the genus 3 graph (303)
and are ruled out by Proposition 8.3 below. The 13 realizable graphs G appear in the rows

Figure 17 Triangulations realizing hyperelliptic metrics for the graphs (111) and (212).



Brodsky et al. Research in theMathematical Sciences  (2015) 2:4 Page 25 of 31

Figure 18 The three non-hyperelliptic genus 4 polygons and a triangulation.

in Table 3. The first three columns correspond to the polygons Q(4)
1 , Q(4)

2 , and Q(4)
3 . Each

entry is the number of regular unimodular triangulations � of Q(4)
i with skeleton G. The

entry is blank if no such triangulation exists. Six of the graphs are realized by all three
polygons, five are realized by two polygons, and two are realized by only one polygon. For
instance, the graph (303) comes from a unique triangulation of the triangle Q(4)

3 , shown
on the right in Figure 18. Neither Q(4)

1 nor Q(4)
2 can realize this graph.

Our moduli spaceMplanar
4 has dimension 9. We know this already from Proposition 4.3,

where the squareQ(4)
1 appeared as R3,3. In classical algebraic geometry, that square serves

as the Newton polygon for canonical curves of genus 4 lying on a smooth quadric surface.
In Table 3, we see that all realizable graphs except for (303) arise from triangulations of
R3,3. However, only five graphs allow for the maximal degree of freedom. Corresponding
triangulations are depicted in Figure 20.
The last three columns in Table 3 list the dimensions of the moduli spaceMQ(4)

i ,G, which

is the maximal dimension of any cone M� where � triangulates Q(4)
i and has skeleton

G. More detailed information is furnished in Table 4. The three subtables (one each for
i = 1, 2, 3) explain the decomposition (Equation 1) of each stacky fan MQ(4)

i ,G. The row
sums in Table 4 are the first three columns in Table 3. For instance, the graph (030) arises
in precisely 23 of the 1,278 triangulations� of the triangleQ(4)

2 . Among the corresponding
conesM�, three have dimension 6, twelve have dimension 7, and eight have dimension 8.

Figure 19 The 17 trivalent graphs of genus 4. All are planar except for (000)B.
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Table 3 The number of triangulations for the graphs of genus 4 and their moduli
dimensions

G #�Q(4)
1 ,G #�Q(4)

2 ,G #�Q(4)
3 ,G dim

(
MQ(4)

1 ,G

)
dim

(
MQ(4)

2 ,G

)
dim

(
MQ(4)

3 ,G

)

(000)A 1,823 127 12 9 8 7

(010) 2,192 329 2 9 8 7

(020) 351 194 9 8

(021) 351 3 9 7

(030) 334 23 1 9 8 7

(101) 440 299 2 8 8 7

(111) 130 221 8 8

(121) 130 40 1 8 8 7

(122) 130 11 8 7

(202) 15 25 7 7

(212) 30 6 1 7 7 7

(223) 15 7

(303) 1 7

Total 5,941 1,278 20

Equipped with these data, we can now extend the probabilistic analysis of Corollary 5.2
from genus 3 to genus 4. As before, we assume that all 17 trivalent graphs are equally
likely and we fix the uniform distribution on each 8-simplex that corresponds to one of
the 17 maximal cones in the 9-dimensional moduli space M4. The five graphs that occur
with positive probability are those with dim

(
MQ(4)

1 ,G

)
= 9. Full-dimensional realizations

were seen in Figure 20. The result of our volume computations is the following table:

Graph (000)A (010) (020) (021) (030)
Probability 0.0101 0.0129 0.0084 0.0164 0.0336

In contrast to the exact computation in Corollary 5.2, our probability computations for
genus 4 rely on a Monte Carlo simulation, with 1 million random samples for each graph.

Corollary 7.2. Less than 0.5% of all metric graphs of genus 4 come from plane tropical
curves. More precisely, the fraction is approximately vol

(
M

planar
4

)
/ vol(M4) = 0.004788.

By Theorem 6.1, M
planar
4,hyp = ME(g)

g+2
. This space is 7-dimensional, with six maxi-

mal cones corresponding to the chains (020), (021), (111), (122), (202), and (223). The
graphs (213), (314), and (405) are hyperelliptic if given the right metric, but beyond not

Figure 20 Triangulations� of Q(4)
1 with dim(M�) = 9.
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Table 4 All conesM� from triangulations� of the three genus 4 polygons in Figure 18

Q(4)
1 Q(4)

2 Q(4)
3

G\dim 5 6 7 8 9 5 6 7 8 4 5 6 7

(000) 103 480 764 400 76 5 52 60 10 1 6 3 2

(010) 38 423 951 652 128 7 113 155 54 1 1

(020) 3 32 152 128 36 53 100 41

(021) 3 32 152 128 36 1 2

(030) 45 131 122 36 3 12 8 1

(101) 15 155 210 60 19 122 128 30 1 1

(111) 10 80 40 52 126 43

(121) 35 65 30 8 20 12 1

(122) 10 80 40 1

(202) 15 25

(212) 15 15 4 2 1

(223) 15

(303) 1

being chain graphs, these are not realizable in the plane even as combinatorial types by
Proposition 8.3.

Genus five and beyond
The combinatorial complexity of trivalent graphs and of regular triangulations increases
dramatically with g, and one has to be judicious in deciding what questions to ask and
what computations to attempt. One way to start is to rule out families of trivalent graphs
G that cannot possibly contribute to M

planar
g . Clearly, non-planar graphs G are ruled out.

We begin this section by identifying another excluded class. Afterwards, we examine our
moduli space for g = 5, and we check which graphs arise from the polygons Q(5)

i in
Proposition 2.7.

Definition 8.1. A connected, trivalent, leafless graph G is called sprawling if there exists
a vertex s of G such that G\{s} consists of three distinct components.

Remark 8.2. Each component of G\{s} must have genus at least one; otherwise, G
would not have been leafless. The vertex s need not be unique. The genus 3 graph (303)
in Figure 4 is sprawling, as are the genus 4 graphs (213), (314), and (405) in Figure 19.

Proposition 8.3. Sprawling graphs are never the skeletons of smooth tropical plane
curves.

This was originally proven in [8], Prop. 4.1.We present our own proof for completeness.

Proof. Suppose the skeleton of a smooth tropical plane curve C is a sprawling graph G
with separating vertex s. After a change of coordinates, we may assume that the directions
emanating from s are (1, 1), (0,−1), and (−1, 0). The curve C is dual to a unimodular
triangulation � of a polygon P ⊂ R

2. Let T ∈ � be the triangle dual to s. We may take
T = conv{(0, 0), (0, 1), (1, 0)} after an appropriate translation of P. Let P1,P2,P3 be the
subpolygons of P corresponding to the components of G\{s}. After relabeling, we have
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P1 ∩ P2 = {(0, 1)}, P1 ∩ P3 = {(0, 0)}, and P2 ∩ P3 = {(1, 0)}. Each Pi has at least one
interior lattice point, since each component of G\{s} must have genus at least 1.
Let α,β , γ , δ be the angles between the triangle T and the boundary edges of P emanat-

ing from the vertices of T , as pictured in Figure 21. Since P is convex, we know α + β ≤
3π/4, γ < π/2, and δ < 3π/4. As P1 contains at least one interior lattice point, and
γ < π/2, we must also have that α > π/2; otherwise, P1 ⊂ (∞, 0]×[0, 1], which has no
interior lattice points. Similarly, as P2 has at least one interior lattice point and δ < 3π/4,
wemust have β > π/4. But we now have that α+β > π/2+π/4 = 3π/4, a contradiction.
Thus, the skeleton of C cannot be a sprawling graph, as originally assumed.

Remark 8.4. IfG is sprawling, thenMplanar
g ∩MG �= ∅ because edge lengths can become

zero on the boundary. However, it is only in taking closures of spaces of realizable graphs
that this intersection becomes nonempty.

We will now consider the moduli space of tropical plane curves of genus 5. That space is

M
planar
5 = MQ(5)

1
∪ MQ(5)

2
∪ MQ(5)

3
∪ MQ(5)

4
∪ M

planar
5,hyp ,

where Q(5)
1 , Q(5)

2 , Q(5)
3 , Q(5)

4 are the four genus 5 polygons in Proposition 2.7. They are
shown in Figure 22. Modulo their respective symmetries, the numbers of unimodular
triangulations of these polygons are: 508 for Q(5)

1 ; 147,908 for Q(5)
2 ; 162 for Q(5)

3 ; and 968
for Q(5)

4 .
We applied the pipeline described in Section ‘Combinatorics and computations’ to all

these triangulations. The outcome of our computations is the following result which is
the genus 5 analogue to Theorem 7.1.

Figure 21 The triangle T with angles formed between it and the boundary edges of P.
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Figure 22 The genus 5 polygons Q(5)
1 , Q(5)

2 , Q(5)
3 andQ(5)

4 .

Theorem 8.5. Of the 71 trivalent graphs of genus 5, precisely 38 are realizable by
smooth tropical plane curves. The four polygons satisfy dim

(
MQ(5)

i

)
= 9, 11, 10, 10 for

i = 1, 2, 3, 4.

All but one of the 38 realizable graphs arise from Q(5)
1 or Q(5)

2 . The remaining graph,
realized only by a single triangulation of Q(5)

4 , is illustrated in Figure 23. This is rem-
iniscent of the genus 4 graph (303), which was realized only by the triangulation of
Q(4)
3 in Figure 18. The other 37 graphs are realized by at least two of the polygons

Q(5)
1 , . . . ,Q(5)

4 ,E(5)
7 .

Among the 71 trivalent graphs of genus 5, there are four non-planar graphs and 15
sprawling graphs, with none both non-planar and sprawling. This left us with 52 possible
candidates for realizable graphs. We ruled out the remaining 14 by the explicit compu-
tations described in Section ‘Combinatorics and computations’. Three of these 14 graphs
are shown in Figure 24. At present, we do not know any general rule that discriminates
between realizable and non-realizable graphs.
The process we have carried out for genus g = 3, 4, and 5 can be continued for g ≥ 6.

As the genus increases so does computing time, so it may be prudent to limit the compu-
tations to special cases of interest. For g = 6, we might focus on the triangle Q(6)

1 = T5.
This is of particular interest as it is the Newton polygon of a smooth plane quintic curve.
This triangle has 561,885 regular unimodular triangulations up to symmetry.
Although T5 is interesting as the Newton polygon of plane quintics, it has the downside

thatMT5 is not full-dimensional insideMplanar
6 . Proposition 4.3 implies that dim

(
MT5

) =
12, while dim

(
M

planar
6

)
= 13, and this dimension is attained by the rectangle R3,4 as in

Equation 17.
This might lead us to focus on full-dimensional polygons of genus g. By this, we mean

polygons P whosemoduli spaceMP has the dimension in Equation 4. For each genus from
3 to 5, our results show that there is a unique full-dimensional polygon, namely, T4, R3,3,
and Q(5)

2 . The proof of Theorem 1.1 furnishes an explicit example for each genus g ≥ 6:

Figure 23 A genus 5 graph, and the unique triangulation that realizes it.
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Figure 24 Some non-realizable graphs of genus 5.

take the rectangle in Equation 17 or the trapezoid in Equation 18 if g �= 7; or the hexagon
H4,4,2,6 if g = 7. Calculations show that there are exactly two full-dimensional maximal
polygons for g = 6, namely, Q(6)

3 = R3,4 and Q(6)
4 from Proposition 2.7.

We conclude with several open questions.

Question 8.6. Let P be a maximal lattice polygon with at least two interior lattice
points.

(1) What is the relationship betweenMP andMP? In particular, does the equality
dim(MP) = dim(MP) hold for all P?

(2) How many P with g interior lattice points give a full-dimensionalMP insideMplanar
g ?

(3) Is there a more efficient way of determining if a combinatorial graph of genus g
appears inM

planar
g than running the pipeline in Section ‘Combinatorics and

computations’?
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