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Participating in electricity markets through demand response causes new requirements for optimizing process control of

chemical plants. The last ten years have brought great advances in the formulation and solution of economic nonlinear

model predictive control and state estimation to support operation of processes under dynamic constraints. However, gaps

remain regarding the availabilities of suitable plant models capable of describing processes active in demand response as

well as of robust schemes for state estimation and economic nonlinear model predictive control in commercial tools.
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1 Motivation and Introduction

There is a worldwide push for increasing electricity genera-
tion from renewable energy sources to reduce greenhouse
gas emissions and limit the extent of climate change. As
detailed by Kätelhön et al. [1], this is a major factor for the
chemical industry. As predicted, the usage of electricity by
the chemical industry will increase heavily. With its in-
creased share and growing amount of renewable electricity
generation, the chemical industry will need to adjust its pro-
duction processes to the electricity market. In Germany,
parts of the chemical industry, which rely on electrical sup-
ply, such as cryogenic air separation or chlor-alkali electrol-
ysis, are challenged by increasing costs for electricity and
fluctuation of power generation.

1.1 Demand Response – Fluctuation of Steady-
State Processes, Reaction to Electricity Market

In 2019, the share of renewable sources in Germany’s elec-
tricity generation was at 54.3 %1) consisting of wind power
(74 %), biomass (16 %), and solar (10 %). Prices varied
between –25 and +75 € MWh–1 in February and –50 and
+125 € MWh–1 in July of 20192). At the same time, monthly
prices for intraday auctions were between 30 and
70 € MWh–1 in 2019. These fluctuations endanger energy-
intensive industries, however, also offer possibilities for new
business models [2].

Traditionally, industrial consumers have long-term con-
tracts to ensure low prices. Also, regulations, such as
network fees (German: Netzentgelte), incentivize minimiza-
tion of peak load3). Apart from participating in the spot
market, there are several further options for industry to
profit from varying prices. The most talked-about is de-
mand side management (DSM), which describes means to
influence electricity consumption to complement fluctuat-
ing energy production, to stabilize electric grids, and realize
cost reductions for consumers [3].

Commission Regulations (EU) 2017/2195 [4] and
2017/1485 [5] describe future schemes for control reserves
and DR for the European Union. The schemes contain
three types of reserves, which can be marketed: frequency
containment reserves (FCR), automatic frequency resto-
ration reserves (aFRR), and manual frequency restoration
reserves (mFRR). For FCR a load change needs to be estab-
lished within 30 s, for aFRR within 5 min, and for mFRR
15 min.

Given that this is a market worth billions of euros (see
Fig. 1), industry and academia have started investigations
into flexibilization of electricity-heavy processes. An initial
emphasis is on air separation. They show a clear emphasis
on scheduling [6–14], discuss operational and control
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aspects [15–17], investigate model reduction [18, 12],
and elaborate design towards flexibility [19–21]. Increas-
ingly, electrochemical processes, e.g., chlor-alkali process
[2, 22–31] and water electrolysis [32–42], come into focus.

1.2 Consequences for Process Operation

In research cited above, several pressing issues are detailed,
which need to be investigated or for which solution ap-
proaches were proposed and need to be pursued further.
These can be categorized into:
– planning and scheduling for DR,
– process operations and control,
– plant/process equipment.

Regarding planning and scheduling, new production
management is required. This is a multidimensional prob-
lem: A process may have an overcapacity (see Fig. 2) avail-
able for DR. Storage is needed to fulfill demand in case of
reduced production or to temporarily store overproduction.
Process efficiency varies with load of processes, which also
needs to be included in scheduling. Finally, the planning
procedure always looks at a finite, moving horizon, on
which the price of electricity and realizable profits from DR
offers are uncertain.

Regarding process operation, control needs to ensure that
fluctuations of process load do not degrade product quality

or violate process safety. In addition,
process control can aide in speedily real-
izing setpoints or trajectories or ensure
economic efficiency of the dynamic oper-
ation.

Scheduling and control are bounded
by technical feasibility, i.e., minimum
and maximum loads of plant/process
equipment, the realizable speed of load
changes, and the lifetime reduction of
equipment subject to frequent load
changes. On top of that, overcapacity
and storage might need to be established,
additional sensors and actuators to allow
for switches between operation modes
(continuous feed, no feed, plant shut-
down).

Here, focus will be on process control. We will look at
methods for advanced process control, highlight recent
work, and subsequently draw conclusions on requirements
for further algorithmic and methodological advances.

2 Methods for Optimal Dynamic Process
Operation

Engell and Harjunkoski [43] discussed the interactions
between scheduling and control and possible integrations.
Here, we will focus on advanced process control separated
from scheduling. The options of relevance here are summa-
rized in Fig. 3. The focus in the following will be on the dark
boxes, each of which is typically joined by a data treatment/
reconciliation and state estimation block as in Fig. 4. We will
briefly discuss state estimation, before going into greater
depth on optimization and tracking control as well as
required models to describe plant behavior accurately and
with low computational cost.

2.1 Data Reconciliation and State Estimation

Data reconciliation and state estimation involve filtering of
noise from data, detection of gross error and sensor failure,
reconciliation of data to fulfill mass balances, and estima-

Chem. Ing. Tech. 2020, 92, No. 12, 1898–1909 ª 2020 The Authors. Published by Wiley-VCH GmbH www.cit-journal.com

Figure 1. Total costs of grid system stability in Germany for 2018 and 2019 in million
EUR per month, data provided by Bundesnetzagentur, SMARD.de under CC BY 4.0.

Figure 2. Basic concepts of DR.
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tion of a future plant state based on measurement data and
planned control actions. Often, data treatment and gross
error detection are part of a state estimation solution. The
goal is a consistent set of state variables for a future point in
time, which then serves as starting point for optimization or
control. Approaches for state estimation can roughly be
defined into explicit and implicit methods [44].

Explicit methods usually employ predictor-corrector
approaches and are dominated by Kalman filter algorithms:
In a prediction a future step and its covariance are predicted
based on a simulation model. In a correction step, the pre-
dicted state is updated based on current measurement data.
The explicit formulation of these types of methods circum-
vent any necessity for an optimization step and are hence
potentially more stable. Downsides of these methods are
that, e.g., only one data set per estimation is used or process
and measurement noise need to be known quite well to en-
sure reliable estimates. Variations include extended Kalman
filter [44], unscented Kalman filter [45], particle filters [46],
or iterative unbiased finite impulse response [47].

Implicit methods employ nonlinear programming to
solve state estimation by optimization. These have a greater
potential for failure or longer computation times. They
allow for usage of data from multiple points in time, can
connect to prior data by arrival cost and can easily be com-
bined with filtering methods such as M estimators or fair
function [48, 49]. To include measurements with highly dif-
ferent sampling rates, e.g., continuous measurements and
rare GC samples, multi-rate implementations can be em-
ployed [50].

Existing methods for state estimation share two items,
which need to be of high quality to ensure reliable estima-

tion. The first is knowledge on process and measurement
noise, the second is a dynamic model of the process, which
is valid for all operation conditions the plant experiences.

2.2 Optimal Dynamic Process Operation

This contribution focusses on layers below scheduling. This
encompasses basic control, model-predictive control, and
dynamic optimization with economic objectives (Fig. 3).

2.2.1 Integration of Scheduling and Control

As detailed in [43], there is a great need and at the same
time economic potential to lift by integrating scheduling
and advanced process control. However, apart from earlier
work by Terrazas-Moreno et al. [51] and more recent con-
tributions [6, 52, 53] few practical advances have been made
towards this goal. Terrazas-Moreno et al. [51] investigated
optimal sequencing and optimal dynamic transitions of two
multigrade polymerization CSTRs. Trifkovic et al. [52]
applied a two-level formulation to integrate scheduling and
control. Similarly, Han et al. [53] scheduled solid oxide fuel
cells and applied setpoint trajectories via linear model pre-
dictive control (MPC), while Dias et al. [6] used the formu-
lation for air separation units. On the other hand, Caspari
et al. [54] choose an economic nonlinear model predictive
control (eNMPC) formulation, which includes scheduling
as well as control, but avoids any integer decisions. Their
application on air separation units is not yet real-time appli-
cable, but shows a better performance compared to the two-
level formulations. Alternatively, Rossi et al. [55] present an
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Figure 3. Various options of advanced process control in chemical processes.

Figure 4. Interaction of plant, data treatment, state estimation, and optimization/tracking control.
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integration strategy with an offline and an online phase. In
the offline phase, a conventional campaign scheduling
problem is solved, while the online phase amounts to an
eNMPC formulation, which also updates the campaign
schedule and avoids the solution of mixed-integer problems
in real time.

There are, of course, further methodological advances on
this front. Giving a detailed review of those is beyond the
scope of this contribution, which focusses on the layers
below scheduling in the automation hierarchy. A recent
review on the integration of scheduling and control can be
found in [56].

2.2.2 Advances in (Nonlinear) Model Predictive
Control

In the integrative scheduling approaches noted above, linear
MPC is the method of choice and for dynamic scheduling
formulations only low order, simplified dynamic models are
employed. These formulations are dynamic extensions to
classical RTO-MPC, wherein real-time optimization is car-
ried out on steady-state models and linear model predictive
enacts the results.

For DR, this is insufficient as the scheduling layer needs
to account for disturbances and transient behavior to ensure
the computed schedule is feasible and does not lead to
unreachable setpoints [57]. Also, handing control no infor-
mation on the economics of the process might cause track-
ing of suboptimal setpoints [58]. Hence, economic nonlin-
ear model predictive control, also known as dynamic
real-time optimization (D-RTO), is a highly interesting can-
didate for implementing DR on chemical processes.

Advances in and Extensions of Linear MPC
As noted by Darby and Nikolaou [59] linear MPC is the
method of choice for constrained multivariable applications
in the process industry as it is reliable, and stability is well
established. Recent years have seen further extensions of
linear MPC. One example is multimodel MPC, where mul-
tiple linear models of a nonlinear system are combined by a
weighting method [60–62]. Secondly, Rawlings and Risbeck
[63] extended MPC to discrete actuators, e.g., magnet
valves. To account for changes in plant behavior, Zhao et al.
[64] discuss the important topic of model updates. They in-
troduce an error prediction technique for their model iden-
tification technique and successively update the model used
for MPC. In [65] a similar technique is applied to robust
MPC with parametric uncertainty. They employ online
parameter estimation to improve MPC performance and
reduce conservatism simultaneously.

Advances in (Economic) Nonlinear MPC
NMPC both from tracking and economic optimization per-
spective has seen great advances. After initial implementa-
tions in the 2000s, e.g., [66, 67], focus has moved to reduc-
ing computational cost to ensure real-time capability,

investigation of uncertainty, proof of stability, and targeted
formulation to ensure stability.

Reformulations, Transformations, Regularizations
Full discretization of NMPC problems by orthogonal collo-
cation, also known as the direct transcription technique, as
heralded by Prof. Lorenz T. Biegler, has caused a frenzy of
publications solving optimization of DAE systems by non-
linear programming (NLP). In [68] the capabilities are
demonstrated on a low-density polyethylene reactor.

In [69], this approach is applied on D-RTO with a two-
layer architecture. The results of D-RTO are realized by fast
tracking MPC. Within the D-RTO optimization problem
the MPC is represented by its Karush-Kuhn-Tucker condi-
tions and the fully discretized D-RTO is solved as a large-
scale NLP.

Within DR, larger deviations between target trajectory
and current plant state can be expected. This situation is
addressed in [70]. NMPC tends to behave overly aggressive
under these circumstances given the often applied L2

norms. Instead, [70] suggest Huber penalties.
An essential building block of all NMPC schemes is the

time horizon it is applied upon. Several groups have worked
on various transformations of these horizons, adaptive
methods, and discretization schemes. Examples are contri-
butions of Würth and Marquardt [71] on transforming
infinite horizon as finite, Griffith et al. [72] on adaptively
updating NMPC horizon lengths online via NLP sensitivity
calculations, and Yu and Biegler [73] on nonuniform discre-
tizations.

Real-Time Capability of Nonlinear MPC
One obstacle in applying NMPC online is the large compu-
tational cost, if used without further modification. Hence,
dozens of contributions have readied NMPC for real-time
by offline computation and online updates or by convexifi-
cation.

Especially advanced step methods have gained attention.
Propagated in [49], this approach has seen numerous im-
plementations. A full NMPC problem is solved offline and
sensitivities obtained from the Karush-Kuhn-Tucker condi-
tions are used to update the optimal solution to a current
plant state. Notable contributions to further this technique
are [74] and [75].

In analogy, groups have followed the concept of neigh-
boring extremal updates, leading to a two-layer formula-
tion. Wolf et al. [76, 77] applied it to a distributed eNMPC
setup. A slow eNMPC feeds its results to a fast neighboring-
extremal controller, which carries out sensitivity-based
updates of slow eNMPC results.

An alternative way to obtain sensitivities is suggested by
Chen et al. [78], who prefer an inexact scheme in combi-
nation with a nonlinearity measure to trigger sensitivity
updates.

As a different approach, Zanelli et al. [79] formulate a
homotopy-based nonlinear interior point method, which
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exploits successively tightened problem formulations. They
show a speed-up of one order of magnitude. Apart from
that, inexact schemes have been suggested in [80] allowing
for offline computation of sensitivity. In addition to those,
numerous alternative formulations such as move blocking
[81], efficient input parametrization [82], or successive
linearization [11] have been investigated.

Stability of NMPC Schemes
A persistent issue with NMPC schemes has long been
stability, which is intimately linked to numerical complexity
of their practical application. Most contributions have been
accompanied by theoretical deliberations on stability prop-
erties, such as [83, 84] for advanced step, [73] for nonuni-
form discretization, or [80] for their inexact scheme. Fur-
thermore, contributions such as [85] ascertain certain
stability properties by design in eNMPC formulations or
establish stability for systems with cyclic steady state, like
pressure swing adsorption [86].

Consideration of Plant-Model Mismatch
Most eNMPC rely on a close relationship between physical
plant and model. As remarked by Bonvin and Srinivasan
[87]: ‘‘In the presence of significant plant-model mismatch,
the use of a fixed nominal model is typically insufficient to
drive the plant to optimality.’’

To overcome this, robust NMPC (see below) has been
suggested or adaptive methods borrowing from machine
learning (see below). Alternatively, Marchetti [88] suggested
modifier adaption for real-time optimization, which has
since been applied [88, 90]. A key issue in these schemes is
that a process can be excited to yield enough information
from noisy measurements to correctly modify cost func-
tions and constraints to drive a plant to its actual mini-
mum.

A related technique is NCO tracking, i.e., tracking of nec-
essary conditions of optimality, where a model of the opti-
mal solution of an eNMPC problem is built offline and then
used online with measurement data from a process to up-
date optimum and change controls of a process [87]. Here,
the availability of meaningful measurements and identifi-
cation of controls essential for economic success of the pro-
cess are crucial.

Consideration of Uncertainty
Connected to plant-model mismatch are concepts of robust
NMPC, where model and measurement uncertainties are
considered and their effects on violations of path or
terminal constraints. In all robust formulations of eNMPC,
a compromise is made regarding attainable objective to
avoid violations of constraints. The various approaches
differ in how conservative the back-off from constraints is.

The multistage scenario-based NMPC formulation has
been widely investigated. Here uncertainty is handled
explicitly in terms of scenarios, leading to a scenario tree, in
which scenarios branch at points in time, at which uncer-

tainty of the previous period has been realized [91]. The
formulation is made less conservative by allowing for
recourse in the later stages of the scenario tree. Many
additions to this approach have been suggested to better
account for plant-model mismatch [92] or to relief expo-
nential increase in complexity with larger numbers of
uncertainties [93].

In addition, stochastic programming using chance con-
straints is also becoming more popular, where probability
bounds are enforced to ensure constraint violations remain
at a predefined level [94]. The technique has been applied
to eNMPC problems, as in [95] and [96]. Quite similar to
multistage, this technique suffers from exponential increase
in complexity for larger numbers of uncertain parameters.
To counter these effects, recent contributions have used
data-driven surrogate models for fast online computations
[97].

Besides, several other formulations for robust NMPC are
being investigated including formulations using polynomial
chaos expansion [98].

As mentioned above, the outright integration of schedul-
ing and control is not covered by this contribution. How-
ever, there are developments in the integration under uncer-
tainty, which are of consequence here as noted in [56]. One
example is the dynamic identification of the optimal de-
scription of model uncertainty from batch to batch in [99].
They emphasize the importance of the choice of uncertain
parameters to characterize uncertainty in process models
and present a framework for rapid identification of the opti-
mal set of uncertain parameters needed for formulation of
stochastic online optimization problems using a combina-
tion of approximate statistical analysis and multipoint sen-
sitivity analysis. The integration between scheduling and
control is further discussed in [100], where the uncertainty
involved is incorporated via multiparametric model predic-
tive controllers, which take into account both the continu-
ous as well as the binary scheduling decisions.

Flexibility of Processes
In the early 1980s, Manfred Morari stressed that ‘‘flexibility,
operability, and control’’ should be included in the design of
chemical processes [101]. Here, flexibility (or static resil-
iency) is the ability of a process to operate over a range of
conditions, while satisfying the performance requirements
[102]. One quantifier for flexibility has been introduced by
Pistikopoulos and Mazzuchi [103] in the form of the flexi-
bility index, which is a measure of probability that a design
can be operated. Since the early works in the 1980s this has
also been extended to dynamic resiliency, also including the
transient states between the steady states. A recent example
has been published in [104], where a dynamic flexibility
analysis of a distillation column is carried out and the tran-
sient information is used to obtain a suitably flexible design.

While none of these indices measuring flexibility have yet
amounted to the tools level, it is of course very important to
point out how relevant flexibility is for the design of a
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process using methods of advanced process control to oper-
ate under demand response scenarios.

2.3 Models for Optimal Dynamic Process Operation

As has been repeatedly stressed so far, a suitable model is
key for success. Regarding eNMPC model adequacy has
been stated by both [87] and [105] in terms of stability sur-
rounding the process optimum.

In practice, models also need to be able to describe pro-
cesses after larger disruptions, so need to cover a larger part
of the possible operation region. Traditionally, models for
MPC are obtained either through excitation of the plant
and system identification or through first principles model-
ing and simplification. With respect to formulation of mod-
els for chemical processes active in DR, exceptionally little
focus has been given to methodologies on formulation of
adequate models usable for state estimation and eNMPC of
those processes. Requirements for these models arising
through DR are for instance the support of switches (transi-
tions) between operation modes: Plants active in DR might
switch from continuous operation to internal recycling or a
partial shutdown. Hence, a warm start-up might also need
to be carried out etc.

2.3.1 Recent Contributions on Dynamic Process
Models for DR

Shehzad et al. [106] describe a modeling approach based on
mixed integer linear constraints and nonlinear dynamic
models and apply it to combined electrolysis and hydrogen
storage. The mixed integer part describes discrete logical
states, such as filling of storage, whereas dynamic equations
describe continuous phenomena of the process, e.g., effi-
ciency degradation.

Yu et al. [107] stress the importance of model reduction
for plants directly connected to a fluctuating energy market.
Describing an adsorber for carbon capture, they achieve
reduction regarding time by applying nullspace projection
and eigenvalue analysis. This amounts to a quasi-steady
state approximation for states with fast dynamics. With
respect to space, Yu et al. [107] employ proper orthogonal
decomposition to obtain a reduced set of differential alge-
braic equations.

Orthogonal collocation is applied in [16] and [18] to
reduce the number of equations in a models of distillation
columns. Instead of a tray-based formulation, orthogonal
collocation is used along the height. On the other hand,
Hoffmann et al. [27] describe a fast, dynamic pressure-driv-
en model for a reactive distillation column subject to load
changes associated with DR. Their focus is on the smooth-
ing of discontinuities, such as the flow over a weir or
weeping and surrogate models for complex thermo-
dynamics.

2.3.2 System Identification, Reduced order Models,
and Surrogate Models

Apart from these tailored formulations, a lot of work has
gone into model reduction and surrogate models for
dynamic systems. Proper orthogonal decomposition men-
tioned above falls into this category. To give a detailed over-
view here would go too far. In any case, a lot more work has
been carried out in this field regarding steady-state repre-
sentations. Highly popular choices for surrogate models
there are Gaussian process regression models [108] and
artificial neural networks [109]. More recently, methods for
adaptive sampling and training of surrogate models have
been applied as in ALAMO [110] and the combination of
surrogate models with detailed model parts to form gray-
box or hybrid models [111].

On the dynamic side, the whole topic of surrogate model-
ing and reduced-order modeling can also be approached
through the lens of system identification. An overview can
be found in [112]. Typically, system identification is carried
out on signals or measurement data obtained from an ex-
cited process to obtain a state-space representation [113] or
a Wiener-Hammerstein model [114]. Increasingly, these
methods are also employed to obtain surrogate models from
originally complex simulation models through expensive
sampling [115–117]. Rising in popularity are methods asso-
ciated with machine learning (ML), e.g., artificial neural
networks, which can also easily be employed to mimic
dynamic systems. Recent applications include biological
wastewater treatment [118] or crystallization processes
[119].

2.4 Machine Learning Applied to Process Operation

Beyond the use of ML models, its methods are increasingly
applied in chemical engineering. Particularly interesting for
control is reinforcement learning, which attempts to find an
optimal operating policy by repeated trials. First computa-
tional studies with promising results have been achieved for
the Tennessee Eastman challenge [120]. Reinforcement
learning is a model-free perspective at control and hence an
early criticism was that safety requirements of chemical
processes could not be enforced. Recent work by Gros and
Zanon [121] has shown how eNMPC can be used as a func-
tion approximator in reinforcement learning and hence
hard constraints can be enforced.

3 Applications of Nonlinear MPC

While there are reports of industrial applications of nonlin-
ear MPC [122, 123], details on their extent and economic
success remain scarce. Apart from academic work on air
separation units, chloralkali electrolysis, and hydrogen gen-
eration, research on NMPC applications has focused on
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systems with inherent dynamics. Many contributed on
batch and semi-batch processes [82, 92, 95] with a strong
emphasis on polymerization reactors [69, 124]. Secondly,
systems with cyclic steady state [116], e.g., for CO2 separa-
tion [73], were investigated.

Beyond that there are some academic applications on dis-
tillation and fermentation processes [125], crystallization
[119], but nowhere near as numerous as the rest.

A little outside the typical scope of chemical engineering,
more recent contributions of NMPC for the operation of
systems directly connected to the electric grid can be found.
These include large-scale fuel cells and batteries
[53, 115, 126] and of course the huge field of load and
frequency control in electric grids [127].

4 Review of the Status Quo and Outlook

Looking at the status quo on optimal dynamic process oper-
ation, it is apparent that lot of attention has been given to
realizing NMPC for systems under dynamic constraints,
but there is a gap to industrial realization of these. In the
following, available methods are examined regarding their
usability for DR and requirements for future developments
are presented.

4.1 State Estimation

Regarding data treatment and state estimation, mature, per-
formant technologies are marketed, e.g., gPROMS Digital
Applications Platform by Process Systems Enterprise Ltd.4).
There are, however, limits to their application, especially
regarding DR. First of all, the models available in commer-
cial simulators are not designed for operation modes far
away from the typical steady state, which DR can infer,
more on this below (Sect. 4.3).

As noted above, there academic contributions dealt with
multi-rate data. Most considered data at somewhat similar
frequencies. Incorporation of extremely scarce quality data
remains a challenge. In [50] we suggested on a two-layer
implementation for moving horizon estimation. These
techniques need to be made usable for actual industrial
application. Especially, the interaction of these two layers
needs to be investigated further to ensure stability and
robustness.

Of course, this issue could be amended otherwise, in case
fast quality sensors for concentrations were made available.
Concentration measurements on a daily or weekly basis are
not an option for a process connected to an electricity mar-
ket operating in 15-min intervals and faster. In general,
abundant availability of cheap sensor technology for quali-

ties, flows, levels, temperatures, and pressures would be a
huge advantage. At the moment, very few sensors in indus-
trial plants have redundant counterparts, making these pro-
cesses vulnerable to sensor failure and sensor drift. Software
for anomaly detection is commercially available but needs
to find wider application and support by redundancy in
sensors.

On top, regaining state estimation after its failure is an
issue that could be caused by sensor failure or a process
moving into a region not described by the model. Some of
the adaptive techniques name in Sect. 2.2 include means of
excitation to achieve process optimality. Similar measures
need to be exploited for state.

This is closely related to aging of plants, which increases
plant model mismatch or may cause structural mismatch,
e.g., through blockage of pipes or deactivation of catalysts.
Here, state estimation will become unreliable causing sub-
optimality or even instability of the framework sketched in
Fig. 4. Methods for model adaption, e.g., through re-estima-
tion of parameters, have been investigated, but can typically
not handle structural changes. There are methods for model
discrimination and system identification, which could be
applied here. However, these rely on large quantities of
measurement data and on excitation of a process to
generate information. Further research is required on how
to safely introduce these measures into continuously
operating production plants to achieve required model
updates.

4.2 Frameworks for NMPC

Similar to state estimation, first industrial implementation
for eNMPC or D-RTO are available5). Performance of these
is still largely unknown. Missing from these implementa-
tions are methods discussed for sensitivity-based updates or
introduction of uncertainty. To this end, academic software
has been published [124], [128], and more recently as part
of Pyomo [75]. Especially the latter raises hope that aca-
demic ideas will soon be taken up by vendors.

Overall, fast and reliable convergence is a persistent issue,
which is still tackled by tuning of algorithms and tailoring
of models. More complex nonlinear models designed for
DR will exacerbate this situation. In the past, methods for
offline generation of optimal operation trajectories of
eNMPC have been investigated. More research can be ex-
pected in this area in combination with sensitivity-based
updates.

In the linear MPC domain distributed control with coor-
dinating agents is well established. For eNMPC such
schemes are not yet widely discussed. First attempts have
been made, e.g. in traffic systems or energy grids [129]. An
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application to chemical processes promises further advances
in eNMPC to larger processes, where fast computation
cannot be achieved in monolithic eNMPC architectures.
Recently, Farina et al. presented a distributed MPC imple-
mentation, which identifies its surrogate models directly
from a connection to the process simulation software
DYNSIM [130].

As in state estimation, eNMPC is challenged by growing
or structural plant-model mismatch. Some work is currently
ongoing to exploit modifier adaption to converge to the
plant’s optimum. Nevertheless, this is not directly applicable
to processes, which never or rarely achieve their steady
state. Hence, further techniques for model adaption should
be investigated (see Sect. 4.1).

4.3 Modeling

Besides models developed for batch units, models in process
simulators are not meant for the full range of operation
modes from start-up to shutdown. To move towards wide
use of NMPC or large-scale application of DR in the chemi-
cal industry, this is untenable. Model libraries aiming at
support of process operation need to be developed. Projects
such as IDAES6) promise to take steps to relief this bottle-
neck, although with a clear focus on the power industry.
Further work is needed and a stronger pull by industry can
be observed in the numerous industrial research projects on
DR.

Based on our own work on DR in air separation [12, 13]
and chloralkali electrolysis [2, 27, 31, 50], we can draw
requirements for such a new library of process operation
models:
– Models need to describe filling and emptying of all

equipments, i.e., column trays, condensers, reactors, etc.
– Given fast changes in the electricity market, these models

should account for pressure equalization, i.e., be fully
pressure-driven.

– Hence, actuators such as valves, pumps, compressors
need to be included.

– Given various operation modes involved, phenomena
need to be (de-)activated on demand, e.g., thermodynam-
ic equilibrium relaxed in case of disappearing phases.
Regarding reduced-order and surrogate modeling to

ensure computational speed, a lot has been achieved and
the huge advances in the field of ML ensure that models are
performant in optimization. A field for further research is
dynamic surrogate models for systems with multiple opera-
tion modes. Such models exist for scheduling of steady-state
systems [12] and an extension to dynamic systems could
decrease the burden on smoothening models for application
in NMPC.

4.4 Outlook

In the last ten years, DR has evolved into a large factor in
electricity markets worldwide. With increased pressure to
lower emissions and increase use of renewable energy,
the chemical industry will increasingly feel economic pres-
sure to lower cost by carrying out demand side manage-
ment.

In this contribution, we have reviewed advances in state
estimation, nonlinear model-predictive control, and model-
ing techniques with regard to application of demand re-
sponse (DR) on usually continuously operated chemical
plants. To enact these schemes on chemical processes at
large, many prerequisites still need to be established, such
as robust state estimation, widely available eNMPC, and
most importantly ready-to-use models for flexible process
operation. Beyond that, adaption techniques, e.g., for model
updates in state estimation and eNMPC, need to be devel-
oped to account for changes in plants caused by aging or
modifications. Available methods for fast online computa-
tion of MHE and eNMPC are not yet at the level at which
they can be applied to highly complex large-scale processes
and further work on offline precomputation and online
updates as well as on distributed eNMPC and coordination
is required.

Air separation processes and electrolysis for chlorine and
hydrogen are already taking first, smaller steps towards
realizing DR. For other processes with more complex
dependencies to follow, the above-mentioned challenges
will have to be resolved first.
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[76] I. J. Wolf, D. A. Muñoz, W. Marquardt, J. Process Control 2014,
24 (2), 389–398. DOI: https://doi.org/10.1016/j.jpro-
cont.2013.10.002

[77] I. J. Wolf, H. Scheu, W. Marquardt, in 2012 American Control
Conference (ACC), IEEE, Piscataway, NJ 2012, 4155–4160.
DOI: https://doi.org/10.1109/ACC.2012.6315353

[78] Y. Chen, D. Cuccato, M. Bruschetta, A. Beghi, in IEEE 56th
Annual Conference on Decision and Control (CDC), IEEE,
Piscataway, NJ 2017, 4382–4387. DOI: https://doi.org/10.1109/
CDC.2017.8264305

[79] A. Zanelli, R. Quirynen, J. Jerez, M. Diehl, IFAC-PapersOnLine
2017, 50 (1), 13188–13193. DOI: https://doi.org/10.1016/j.ifacol.
2017.08.2175

[80] A. Zanelli, R. Quirynen, M. Diehl, 2016, IFAC-PapersOnLine
2016, 49 (18), 53–58. DOI: https://doi.org/10.1016/j.ifacol.
2016.10.139

[81] Y. Chen, N. Scarabottolo, M. Bruschetta, A. Beghi, IET Control
Theory Appl. 2020, 14 (2), 343–351. DOI: https://doi.org/
10.1049/iet-cta.2019.0168

[82] E. Aydin, D. Bonvin, K. Sundmacher, Comput. Chem. Eng. 2018,
108, 47–56. DOI: https://doi.org/10.1016/j.compchemeng.
2017.08.010

[83] M. Zanon, S. Gros, M. Diehl, in 53rd IEEE Conference on Deci-
sion and Control, IEEE, Piscataway, NJ, 2014, 2746–2751.
DOI: https://doi.org/10.1109/CDC.2014.7039810
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