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Abstract

In this thesis, methods are developed and studied for radar and laser altimetry to measure radial
tidal deformations of planets and satellites. The thesis investigates further how the tidal mea-
surement allows constraining the interior structure and rheologic properties of the bodies. A
semi-analytical performance model for laser altimetry has been developed to predict probability
of false detection and ranging accuracy. At cross-over locations of the ground tracks, which can
be derived from the spacecraft trajectory, the tidal deformation can be retrieved by a differential
height measurement. With a known tidal potential at the time of the passes and a sufficient
number of cross-over points, it is possible to solve for the tidal Love number h2.
On this basis, the geodetic inversion of h2 is simulated for Mercury and the BepiColombo mis-
sion, with its BepiColombo Laser Altimeter (BELA). The measurement is affected by the high
eccentricity of the spacecraft orbit and BELA’s limited shot frequency (10 Hz), which leads to a
large spot-to-spot distance and associated interpolation errors at the cross-over locations. The
measurement of h2 is further complicated by only small variations of the tidal potential and by
Mercury’s slow rotation rate. The accuracy of h2 is predicted to be 0.14 (1-sigma) after two
years in orbit.
A comparable simulation has been performed for Ganymede, where significant higher radial
amplitudes are expected. For the Ganymede Laser Altimeter (GALA), on board the Jupiter Icy
Moons Explorer (JUICE), the predicted absolute accuracy for Ganymede’s tidal Love number
h2 is around 0.03 (1-sigma) after 132 days in a polar 500 km orbit. This result can be explained
by higher tidal amplitudes, GALA’s higher shot frequency (30 Hz), and by a more favorable
distribution pattern of the measurable cross-over points.
For radar, an equivalent method has been developed, analyzed, and applied to the Radar for
Europa Assessment and Sounding: Ocean to Near-surface (REASON) on board the Europa
Clipper mission. The measurement accuracy of the radar is estimated to be between 3 and
15 m. The main drivers are the signal-to-noise ratio, which is heavily dependent on Europa’s
surface roughness, and Europa’s dynamic ionosphere. As the Europa mission only involves a
set of fast flybys limiting the orbit determination, a method has been conceived to solve for the
spacecraft trajectory simultaneously with the tidal deformation. The expected h2 accuracy is
between 0.04 and 0.17 (1-sigma).
Further, it has been investigated how the h2 measurement allows constraining the interior struc-
ture of the bodies, eventually together with the tidal Love number k2. For Mercury, it has
been shown that the h2/k2 ratio may set an upper bound on the inner core size. The ratio
of both Love numbers allows for a stronger constraint on Mercury’s core than other geodetic
measurements, e.g., the libration amplitude. For Ganymede and Europa, the h2 measurement
can confirm the existence of a global, subsurface ocean beneath the ice shell. Combined with
k2, a constraint on the ice shell thickness to around ± 20 km can be provided via the linear
combination 1 + k2 − h2. The largest ambiguity in this measurement is the rheology of the ice.

11



12



Zusammenfassung

Die vorgelegte Dissertation entwickelt und untersucht Methoden der Radar- und Laseraltime-
trie für die Messung radialer Gezeitendeformationen von Planeten und Monden. Sie untersucht
außerdem, inwieweit die Gezeitenmessungen dazu beitragen, den inneren Aufbau und die rheo-
logischen Eigenschaften der Körper zu bestimmen.
Für die Laser Altimeter wurde ein semi-analytisches Modell entwickelt, welches für gegebene
Kenngrößen des Instruments, die Detektionswahrscheinlichkeit und Messgenauigkeit von
Einzelschüssen ermittelt. Unter Berücksichtigung der Bahn der Raumsonde im Orbit lassen sich
Kreuzungspunkte errechnen, an denen, durch Interpolation zwischen den Einzelschüssen, eine
differenzielle Höhenmessung erfolgen kann. Mit dem bekannten Gezeitenpotential zu den jeweil-
igen Zeitpunkten einer Vielzahl von Messungen, lässt sich so die Lovesche Zahl h2 bestimmen.
Auf dieser Grundlage wurde die geodätische Bestimmung von h2 für den Merkur und die Mis-
sion BepiColombo mit dem BepiColombo Laser Altimeter (BELA) simuliert. Zu berücksichtigen
sind die hohe Bahn-Exzentrizität der Raumsonde und die begrenzte Schussfrequenz von BELA
(10 Hz), wodurch die Abstände zwischen den Einzelschüssen und Interpolationsfehler an den
Kreuzungspunkten groß werden. Messungen von h2 auf dem Merkur werden zudem erschwert
durch die nur geringen Schwankungen der Gezeitenverformung im erzeugenden Potential, sowie
die langsame Rotation des Planeten. Die erwartete Genauigkeit der h2 Messung mit BELA,
nach einer zweijährigen Mission, ist mit 0.14 (1-sigma) abgeschätzt.
Zum Vergleich wurde eine ähnliche Simulation für Ganymed erstellt, für den eine deutlich höhere
Gezeitenamplitude erwartet wird. Für das Ganymede Laser Altimeter (GALA), auf der Mis-
sion Jupiter Icy Moons Explorer (JUICE), liegt die erwartete Genauigkeit für h2 bei ca. 0.03
(1-sigma) nach 132 Tagen in einem polaren 500 km Orbit. Dieser Wert gründet zum einen auf
den höheren Gezeitenamplituden, zum anderen aber auch auf der höheren Schussfrequenz von
GALA (30 Hz) und der vorteilhafteren Verteilung der messbaren Kreuzungspunkte.
Für das Radaraltimeter wurde ebenfalls ein Modell für die Abschätzung der Messgenauigkeit
und ein Verfahren zur Gezeitenmessung entwickelt, speziell zugeschnitten auf das ”Radar for
Europa Assessment and Sounding: Ocean to Near-surface” (REASON) auf der Europa Clipper
Mission. Der Messfehler des Radars wird auf 3 bis 15 m (1-sigma) bestimmt, in Abhängigkeit
von Signalstärke und Rauschen, wobei beide Terme stark von der Rauhigkeit der Oberflächen
abhängen. Ein limitierender Faktor der Messungen ist weiterhin der Einfluss von Europas dy-
namischer Ionosphäre. Da sich die Mission auf schnelle Vorbeiflüge am Jupitermond beschränkt
und nach jetziger Planung Bahninfromationen nur mit relativ großen Ungenauigkeiten vorliegen
werden, wurde ein Verfahren entwickelt, bei dem – gleichzeitig zu den Gezeitendeformationen
– Bahnmodelle unter Zuhilfenahme von Kreuzungspunkten der Bodenspuren des Radars bes-
timmt wurden. Die zu erwartende, absolute Genauigkeit für h2 liegt zwischen 0.04 und 0.17
(1-sigma). Außerdem wurde untersucht, inwieweit die h2 Bestimmung, ggf. zusammen mit der
Messung der Gezitenpotential Love-Zahl k2, zu Modellen des inneren Aufbaus der Körper beitra-
gen kann. Für Merkur wurde gezeigt, dass das Verhältnis h2/k2 Auskunft über den Radius des
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festen, inneren Kerns geben kann. Das Verhältnis beider Lovescher Zahlen stellt eine stärkere
Randbedingung für den Aufbau des Merkurkerns dar als andere geodätische Messungen, wie
zum Beispiel die Messung der Librationsamplitude.
Für Ganymed und Europa kann die h2 Messung einen Beweis für die Existenz eines globalen
Ozeans unter der äußeren Eisdecke liefern. Zusammen mit der k2 Messung kann mittels der
Linearkombination 1 + k2− h2 die Mächtigkeit der Eisdecke auf ca. ± 20 km bestimmt werden.
Die größte Unsicherheit in der Eisdickenbestimmung ist auf die Eisrheologie zurück zu führen.
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Chapter 1

Introduction

Tidal interaction and resulting deformation of planets and satellites are key to understand the
dynamics of our Solar System. They are relevant for understanding the rotational state of bodies
(e.g., Goldreich (1965); Peale and Gold (1965)), their orbital evolution (e.g., Goldreich (1963);
Goldreich and Peale (1966); Kaula (1964)), thermal state (e.g., Peale and Cassen (1978); Peale
et al. (1979); Yoder and Peale (1981)) and to assess the habitability of icy satellites in the outer
Solar System. The discovery of magnetic signatures by the Galileo mission, indicating subsurface
oceans underneath the icy crusts of Europa, Ganymede and Callisto (Kivelson et al., 1999, 2000,
2002; Khurana et al., 1998), promoted the idea of tides as an alternative energy source sustaining
putative habitable zones. Since then our understanding of the icy moons orbiting Jupiter but
also Saturn significantly changed. Consequently, follow up missions are already confirmed and
in preparation. The JUpiter ICy moons Explorer (JUICE) selected in 2012, as the first L-class
mission in the Cosmic Vision program of the European Space Agency (ESA), is scheduled for
launch in 2022 to explore the Jovian system with a special emphasis on Ganymede (Grasset
et al., 2013). In parallel its neighbor Europa is the selected target for a dedicated multiple-
flyby-mission scheduled by the National Aeronautics and Space Administration (NASA) for
the same launch window (Pappalardo and Phillips, 2014). The voyage of both missions to the
Galilean moons aims at an exploration of a very dynamic and complex system of which current
knowledge is - literally - very superficial. The interior structure of the satellites, in particular
the ice shell thicknesses and depths of the putative oceans remain unknown. The measurement
of tides can hereby give invaluable insights into the deepest working principles of these bodies.
By observing the response of the body to the external forcing by Jupiter, physical properties
like shell-thickness and rheology can be inferred (e.g., Wu et al. (2001); Wahr et al. (2006)). But
also constraints on the tidal dissipation rate and therefore ultimately on the thermal structure
as well as on the evolution of the bodies can be set (e.g., Hussmann et al. (2002); Spohn and
Schubert (2003)).
Not only for icy satellites, but also for bodies with rocky shells, studying tides can enhance our
understanding of the interior. Especially when a global liquid layer, e.g., a sub-surface magma
ocean, as in case of Io (Khurana et al., 2011), or alternatively a molten core, is present. For
Mercury with its at least partially liquid core (e.g., Margot et al. (2012); Hauck et al. (2013);
Padovan et al. (2014)), a new opportunity for such an endeavor arises with ESA’s BepiColombo
mission scheduled for launch in October 2018 (Benkhoff et al., 2010).
However, measurements of tidal deformations are challenging in practice, in particular the radial
deformation as a response to the tidal force. Consequently, up to now, no such measurement
could be performed outside the Earth-Moon system. Usually the amplitudes are in the order of
meters and several effects have to be considered, leading to extremely tight error budgets. For
this reason every attempt for a determination of radial tides needs careful preparation.
This thesis explores the capabilities of the future missions JUICE, Europa Clipper and Bepi-
Colombo for their potential to measure radial tidal deformations at Ganymede, Europa and
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Mercury, respectively. It investigates the performance of the respective altimetric instruments,
it proposes and analyzes appropriate measurement concepts and it investigates the attainable
scientific results from a geophysical perspective. The interdisciplinary character of the thesis
therefore allows to understand the measurement process from end-to-end to support efficient
instrument designs and operation planning on these upcoming missions.

1.1 Structure of the Dissertation

The following introduction will, while limiting itself to the literature relevant for this thesis, give
an overview on the bodies in question, namely the planet Mercury as well as the Jovian moons
Europa and Ganymede. It will discuss the fundamentals of the tidal theory and the applications
of it to bodies in our Solar System, following up by a brief introduction of the missions and
altimetric instruments which are motivating this thesis. The core of the dissertation is then
structured around four research papers listed in Table 1.1.

Reference Status

Paper I The performance of the BepiColombo Laser Altimeter (BELA) Accepted on
prior launch and prospects for Mercury orbit operations April 21, 2018
G. Steinbrügge, A. Stark, H. Hussmann, K. Wickhusen, J. Oberst
Planetary and Space Science, in press
https://doi.org/10.1016/j.pss.2018.04.017

Paper II Viscoelastic Tides of Mercury Under review
and the Determination of its Inner Core Size. Submitted on
G. Steinbrügge, S. Padovan, H. Hussmann, T. Steinke, February 6, 2018
A. Stark, J. Oberst
Under review in JGR-Planets

Paper III Measuring Tidal Deformations by Laser Altimetry. Published
A Performance Model for the Ganymede
Laser Altimeter.
G. Steinbrügge, A. Stark, H. Hussmann, F. Sohl, J. Oberst
Planetary and Space Science, Volume 117, Pages 184–191,
November 2015
https://doi.org/10.1016/j.pss.2015.06.013

Paper IV Assessing the Potential for Measuring Europa’s Published
Tidal Love Number h2 Using Radar Sounder and
Topographic Imager Data.
G. Steinbrügge, D. M. Schroeder, M. S. Haynes, H. Hussmann,
C. Grima, D. D. Blankenship
Earth and Planetary Science Letters Volume 482,
Pages 334–341, January 2018
https://doi.org/10.1016/j.epsl.2017.11.028

Table 1.1: Publications constituting this thesis. The papers are not ordered chronologically
but rather thematically to avoid impairing the reading flow when the thesis is considered in its
entirety.
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Paper I presents a performance model for digital laser altimeters validated on the BepiColombo
Laser Altimeter (BELA) (Thomas et al., 2007) flight model. Based on this model the question
about the in-orbit performance of the instrument is discussed and an estimate of the measure-
ment accuracy of Mercury’s tidal Love number h2 is given.
Paper II investigates the interior structure of Mercury based on the MErcury Space, Surface
ENvironment, GEochemisty, and Ranging (MESSENGER) mission (Solomon et al., 2011) re-
sults and how the tidal Love number h2 could be used as an additional constraint for interior
modeling. A special focus is set on the currently unknown size of Mercury’s inner core and it is
shown that the tidal measurement can indeed provide an upper bound on the inner core size.
In Paper III, the instrument performance of the Ganymede Laser Altimeter (GALA) (Huss-
mann et al., 2014, 2017) is investigated, the accuracy of the h2 measurement is estimated, and
implications for Ganymede’s ice shell thickness are given.
Since no laser altimeter is aboard the Europa Clipper mission, new altimetric techniques were
developed for enabling the mission to perform a tidal measurement. This is done in Paper IV
which investigates the possibility to solve for h2 using a combination of radar altimetry and dig-
ital terrain models derived from camera images. A further challenge arises here because of the
nature of a flyby trajectory and limited orbit determination accuracy. Therefore, the inversion
part needs to solve simultaneously for the orbit of the spacecraft as well as for h2 of Europa.
At the end of the paper, further implications for the determination of the ice shell thickness are
given.

1.1.1 Icy Satellites

Europa

Tidal energy as an additional heat source to radiogenic heating is particularly important in
the context of the outer Solar System. Tidal energy can become the dominant heat source
(Hussmann et al., 2002), in the case of icy satellites potentially even sustaining a habitable zone
(Reynolds et al., 1983). An archetype of an icy satellite is Europa, which constitutes together
with Io, Ganymede, and Callisto the Galilean moons of Jupiter. The surface is predominantly
covered by water ice and only shows few impact craters, which indicates a relatively young age
on geological time scales (Prockter et al., 2010). The most common landforms which can be
inferred from image data obtained from the Voyager and Galileo missions are ridges (Figueredo
and Greeley, 2000) and bands (Tufts et al., 2000). These features are indicating an active geologic
environment. The explanation of the formation of many features on Europa’s surface involves
the presence of very low viscosity ice or liquid water underneath the icy crust (Pappalardo
et al., 1999). Evidence that a global, electrically conductive layer on Europa is still present
today, putatively in the form of a global, subsurface ocean are based on induced magnetic field
measurements (Kivelson et al., 2000) and thermal considerations. In order to maintain such an
ocean, tidal energy plays an important role to avoid freezing on a body with a distance 5 AU
away from the Sun. Aside from the magnetic field measurements, constraints on the interior of
Europa are based on the measurement of the total mass and the mean moment of inertia (MoI)
(Anderson et al., 1998). These measurements suggest that Europa is differentiated into an iron
core and a silicate mantle, which is overlain by the H2O layer(s) (Schubert et al., 2004).
However, from the total mass and MoI no information about ocean depth or ice shell thickness
can be obtained due to the small density contrast between liquid water and ice. Therefore,
this important parameter remains unknown but two extreme cases, one being a thin, only few
kilometers thick conductive ice layer (Greenberg et al., 1999), and the other case being a thicker,
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at least 15–20 km deep, convective one (Pappalardo et al., 1998) can be distinguished. While the
thin ice model is considered less likely today due to mainly geophysical reasons (e.g., McKinnon
(1999); Hussmann et al. (2002)), at least the presence of local near-surface water reservoirs
cannot be ruled out (Schmidt et al., 2011).
Additional information on the interior can come from measuring geodetic parameters like the
obliquity, librations, or tides. The obliquity of Europa is expected to be small, slightly depending
on the presence of a global liquid layer. Therefore, an accuracy of one arcsecond, corresponding
to 100 m at the surface (on the spin pole location) would be needed to confirm the presence of
an internal ocean (Baland et al., 2012). However, the libration amplitude strongly reduced in
case of a subsurface ocean due to the tides. As a consequence the amplitude is expected to be
at the same level as without subsurface ocean (Van Hoolst et al., 2013). A confirmation of a
subsurface ocean or a constraint on the ice shell thickness from the libration measurement alone
is therefore not possible. However, it has been pointed out by numerous authors that a definitive
evidence for the presence of a subsurface ocean can be provided by the determination of the
tidal Love numbers (e.g., Edwards et al. (1997); Moore and Schubert (2000); Wu et al. (2001);
Wahr et al. (2006)). Wu et al. (2001) showed in a covariance analysis that a future orbiter
could measure k2 with an accuracy of 4×10−4 allowing to constrain the ice shell thickness when
combined with a measurement of the physical librations. Wahr et al. (2006) demonstrated that
the measurement could be even improved when measuring the diminishing factor 1 + k2 − h2.
This linear combination of h2 and k2 has the advantage that it depends less on the rigidity of the
outer ice shell and therefore provides a less ambiguous estimate of the ice shell thickness. The
authors estimated that an orbiter with a 30-day mission lifetime equipped with a laser altimeter
and 1 m measurement accuracy could measure the tidal Love number h2 with an accuracy of
< 1%. It is pointed out in Paper I and Paper III though, that the accuracy of the laser is usually
not dominating the error budget and that such estimates are fairly optimistic. In Paper IV it
is shown that in the frame of the Europa Clipper mission the h2 accuracy by radar altimetry
is in the order of 5 - 20 %, also due to the nature of the flyby mission, nonetheless allowing to
confirm a putatively global ocean on Europa.
The recent discovery of plumes on Europa with Hubble Space Telescope (HST) observations (e.g.,
Roth et al. (2014); Sparks et al. (2017); Sparks et al. (2018)) further emphasizes the activity
of the moon. While the presence of liquid water is not a sufficient criteria of habitability, the
likelihood would be further increased by active sea-floor volcanism and the related exchange of
minerals with the silicate layer. Tides can help to test for an active silicate layer by observing
the tidal phase-lag which is directly related to the tidal dissipation. Hussmann et al. (2016)
pointed out that the tidal difference between the k2 and h2 phase-lags is a strong indicator for
putative sea-floor volcanism. Further, a lander could directly measure linear combinations of
k2, h2 and l2 on the surface of Europa by observing the surface acceleration, star motion and
surface tilt (Hussmann et al., 2011).
Therefore, also beyond the exploration by the Europa Clipper, tidal deformations can and will
be used for revealing Europa’s interior structure and to characterize the moon as a potential
habitable environment.
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Ganymede

Due to the larger distance to Jupiter as well as due to the lower eccentricity of its orbit,
Ganymede is subjected to less significant tidal forces as compared to Europa and Io and con-
sequently to a lower heat production. This is well reflected by its surface morphology. About
one third of the surface is covered by heavily cratered dark terrain, characterized by a low
albedo. However, it is generally assumed that the surface is still younger as of the neighboring
Callisto (Schoemaker and Wolfe, 1982; Neukum, 2001) being close to be saturated with craters
(Zahnle et al., 1998). The predominant feature of this terrain are furrows, large-scale fracture
systems being remnants of multiringed structures (Smith et al., 1979; Prockter et al., 2010).
The remaining two thirds of Ganymede’s surface are bright, or grooved terrain forming swaths
that cross-cut dark terrains and possibly formed by intense tectonism during a phase of global
expansion (Bland et al., 2009). The light terrain is less cratered and contains grooves which
are interpreted to be the result of tectonic resurfacing like seen on Europa (Head et al., 2002).
Further, its surface also contains features which have been interpreted previously to be of cry-
ovolcanic origin (Head et al., 1998). However, in contrast to Europa, no direct evidence for
present or past cryovolcanic activity currently exists.
Ganymede, as the largest satellite in the Solar System, is characterized by a unique interior
structure. An iron core with an ongoing dynamo (Bland et al., 2008; Rückriemen et al., 2015),
supporting an intrinsic magnetic dipole field (Kivelson et al., 2002), is overlain by a silicate
mantle and a H2O layer (Schubert et al., 2004). The latter is possibly subdivided into at least
three layers of different ice phases. Due to the high pressure, the outermost ice I layer transitions
in the deep interior into high-pressure ice of the form III, V or VI (Sotin et al., 1998). It has
been shown on theoretical grounds, that a liquid layer would be thermally stable, sandwiched
between the two ice layers (Spohn and Schubert, 2003). The presence of this subsurface ocean is
in agreement with the induced magnetic field measurements from the Galileo mission (Kivelson
et al., 2002). However, also models with multiple alternating layers of liquid water and different
forms of high pressure ice have been suggested (Vance et al., 2014). The presence of a subsurface
ocean is also in agreement with more recent HST observations (Saur et al., 2015), monitoring the
oscillations of Ganymede’s auroral oval which amplitudes depend on the presence of an ocean.
For the future exploration of Ganymede, the same geodetic measurements as in the case of Eu-
ropa could further reveal the interior structure. However, in the case of Ganymede, resonant
amplifications from some long periodic forcing terms lead to a stronger sensitivity of the obliq-
uity to the interior structure (Baland et al., 2012). An ocean could thereby easily be detected
if the obliquity is significantly different from the solid case state at the time of observation.
The libration amplitude suffers from the same constraints as in the case of Europa, leading to a
decreased amplitude due to tides (Van Hoolst et al., 2013).
The missing interface between the ocean and the silicate layer goes at the expense of the habit-
ability due to the deprivation of a direct exchange of minerals between the two layers. Nonethe-
less, it has been suggested that such an exchange could take place on longer timescales by
convection through the high-pressure ice (Choblet et al., 2017; Kalousova et al., 2018). As
in the case of Europa, a measurement of Ganymede’s tidal Love numbers can provide strong
evidence on the presence for a subsurface ocean and allow for constraining its thickness and
rheology even if the amplitudes are expected to be considerably lower (e.g., Moore and Schubert
(2003); Paper III; Kamata et al. (2016)). However, with a well designed laser altimeter aboard
of an orbiter mission, a better accuracy in h2 is achievable than in case of Europa (Paper III,
Paper IV). The better accuracy potentially also allows for the determination of the tidal phase-
lag, allowing to test for dissipation in the high-pressure ice phase (Hussmann et al., 2016) and
obtain additional information on the ice I rheology (Paper III).
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1.1.2 Mercury

From 2011 to 2015 Mercury was investigated by the MErcury Space, Surface ENvironment,
GEochemisty, and Ranging (MESSENGER) orbiter which was the first spacecraft inserted into
Mercury orbit (Solomon et al., 2011). Equipped with eight instruments, it provided numerous
new findings about the planet which had the reputation to be the least understood of the Solar
System beforehand. The innermost planet has an orbital period of 88 days and a rotation period
of 59 days and is locked in a stable 2:3 spin-orbit resonance (Colombo and Shapiro, 1966). It
is the only known body of our Solar System trapped in such a rotational state. Further, due
to the proximity to the Sun, the orbit of Mercury is affected by an advance of the longitude of
pericenter related to effects of general relativity. The gravitational torques of the Sun also force
Mercury into a Cassini state with a 300,000-year period precession of the orbital plane at a fixed
rate around the Laplace plane (Peale, 1969). It is most commonly assumed that the origin of
this resonance is rather old and related to Mercury’s high eccentricity (Noyelles et al., 2014).
However, also an origin from a retrograde spin-state has been suggested (Wieczorek et al., 2012).
Although, with a radius of 2439.6 km (Perry et al., 2015) Mercury is the smallest planet of the
Solar System, it sustains a weak magnetic dipole field already observed by the Mariner 10 mission
(Ness et al., 1975). Further mapping by the MESSENGER mission revealed a north-south
asymmetry (Anderson et al., 2011). The origin of the magnetic field is related to a large iron
core. The gravitational parameter GM of the planet has been inferred from MESSENGER radio
science experiments to (2.203209 ± 0.000091)×1013 m/s2 (Verma and Margot, 2016) leading
to a mean density of 5427.75 kg/m3. Together with Mercury’s radius, the density indicates
that a significant fraction of Mercury’s composition is iron. The measurement of the polar
moment of inertia by Earth based radar observations (Margot et al., 2012), later using updated
MESSENGER radio science observations (Mazarico et al., 2014b), as well as from a measurement
of the physical librations at the 88 days orbital period using laser altimetry and stereo imaging
data (Stark et al., 2015b) gave values between 0.343 and 0.349. A value below 0.4 indicates that
Mercury is a differentiated planet. Based on these geodetic constraints, the core size has been
inferred to be around 2000 km in radius (Hauck et al., 2013). The physical state of the core can
be further revealed by measuring the physical librations in combination with the asymmetry of
the gravity field (Peale, 1976a, 1988; Peale et al., 2002). Indeed, the observed libration amplitude
of around 39 arcsec (Margot et al., 2012; Stark et al., 2015b) confirms that the core is at least
partially molten. Based on thermal evolution models (e.g. Stevenson et al. (1983); Spohn et al.
(2001); Grott et al. (2011); Tosi et al. (2013)), this implies that the core also contains some
amount of sulfur to avoid freezing. Further constraints are derived from the measurement of
Mercury’s tidal Love number k2, determined to be 0.451 ± 0.014 by Mazarico et al. (2014b)
and 0.464 ± 0.023 by Verma and Margot (2016). Based on the k2 determination of Mazarico
et al. (2014a), Padovan et al. (2014) examined multiple interior models in agreement with the
measurement. The authors showed that in presence of a liquid core with known size, k2 is
informative with regard to the mantle properties. They inferred a cold and/or rigid mantle and
further concluded that the presence of a previously suggested solid FeS layer (Malavergne et al.,
2010; Smith et al., 2012) is only consistent with the measurements when the temperature at the
core mantle boundary (CMB) is < 1600 K.
Mercury’s surface is dominated by very rough and heavily cratered terrain (Kreslavsky et al.,
2014) but shows also smoother areas, mainly in the northern hemisphere originating from more
recent flood volcanism (Head et al., 2011). Prominent geologic features on the surface are lobate
scarps and wrinkle ridges which have been interpreted to be related to a contraction of Mercury’s
crust that lead to a shrinking of the planets radius of about 7 km (Byrne et al., 2014). The
contraction is due to the cooling process of the planet, started about 2.5 Gyr ago, proceeding
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at a constant rate, and ongoing today (Tosi et al., 2013).
Despite the plentiful new discoveries made by the MESSENGER mission a set of open questions
remain. Some of these are linked to the surface, where only the northern hemisphere has been
mapped with high resolution images and laser altimetry. Some others are linked to the interior
like the question whether an inner solid core exists. Paper II proposes a concept to test for
the presence of an inner core based on the measurement of radial tidal deformations by the
BepiColombo Laser Altimeter (BELA) (compare to Section 1.4.3) and Paper I shows that such
a measurement is feasible within an extended mission of BepiColombo.

1.2 Theory of Tides

All major moons in the Solar System are tidally locked to their parent body meaning that
they rotate synchronously with their orbital revolution. In cases when the orbital eccentricity
is high and the tidal interaction is weak then the body might also become trapped in a higher
spin-orbit resonance, e.g., 2:1 or as in case of Mercury 3:2 (Makarov, 2012). In many cases the
spin-orbit resonance is complemented by orbital resonances between different bodies. Well known
examples are the Neptune–Pluto 3:2, the Enceladus–Dione 2:1, or Titan–Hyperion 4:3 orbital
resonances. Io, Europa, and Ganymede constitute a special case, being trapped in a 1:2:4 three
body resonance known as the Laplace resonance (e.g., Peale (1976b); Yoder (1979)). Resonances
have the important property to force an increased orbital eccentricity of their members which is
a necessary criteria for sustaining tides over long periods of time in a tidally locked body. The
amount of tidal energy dissipated depends on the interior structure and on the intensity of the
tidal potential raised by the central body. The latter increases linearly with the mass of the
central body and decreases with the third power of the distance (see Section 1.2.1). Therefore,
bodies in vicinity to their parent body can be subjected to immense tidal forces. The most
prominent example is Io where tidal heating is the predominant heat source (e.g., Yoder and
Peale (1981); Ross and Schubert (1985); Segatz et al. (1988)) leading to a partially molten
interior as predicted by Peale et al. (1979).

1.2.1 Tidal Potentials

A tidal potential is generated whenever an extended body is exposed to a gravitational force of
a second body. While the tidal force is exerted reciprocally, for simplicity, I focus throughout
this section on the orbiting body in the tidal potential of its central body. The general form of
the tidal potential can be expressed as an expansion in spherical harmonics. Let a body be at
a distance R of its tide generating central body, then the gravitational potential V at any point
can be expressed as

V =
GM

R

∞∑
l=2

( r
R

)l
P 0
l (cos(φ)), (1.1)

where r is the distance to the center of mass of the satellite, G is the gravitational constant, M
is the mass of the tide generating body, P 0

l (cos(φ)) are the associated Legendre polynomials of
degree l and order 0 and φ is the angle between the center of mass of the central body and the
computation point.
With known ephemerides and a known rotational state of the body in question, the expression
given in Equation (1.1) can directly be evaluated numerically. However, it should be noted that
the tidal potential in the given form contains two components. A static and a periodic one.

21



While the static component is usually accounted for in the equilibrium shape, expressed by the
spherical harmonic shape coefficients C20 and C22, only the periodic term describes the dynamic
body tides. To avoid confusion, in the following V will denote the total tidal potential, while Φ
will be used when only the periodic part is considered. For many applications, it is favorable
to have a more convenient analytical expression describing the latter part Φ. The derivation
formulates Equation (1.1) in terms of averaged orbital elements semi-major axis a, eccentricity
e, inclination i, longitude of ascending node Ω, argument of pericenter ω and mean anomaly
M . The resulting expression can be formulated for a point expressed in a body-fixed coordinate
system in terms of co-latitude θ and longitude λ according to Kaula (1964) as

V =
GM

R

∞∑
l=2

( r
R

)l l∑
m=0

(m− l)!
(m+ l)!

(2− δ0m)Pml (cos θ) (1.2)

·
l∑

p=0

Flmp(i)
∞∑

q=−∞
Glpq(e)Slmpq(ω,M,Ω,Θ) (1.3)

with δ0m being the Dirac delta function defined by

δ0m =

{
0 m 6= 0

1 m = 0
(1.4)

and Slmpq capturing the constraints arising from the spin-orbit resonance,

Slmpq =

[
Clm
−Slm

]l−m even

l−m odd

cos [(1− 2p)ω + (1− 2p+ q)M +m(Ω−Θ)]

+

[
Slm
Clm

]l−m even

l−m odd

sin [(1− 2p)ω + (1− 2p+ q)M +m(Ω−Θ)] . (1.5)

The coefficiencts Slm and Clm are given by

Clm = cos(mλ) and Slm = sin(mλ). (1.6)

Flmp(i) and Glmp(e) are functions dependent on the inclination and eccentricity, respectively.
They are tabulated in Kaula (1964). For a body trapped in a 1:1 resonance and with a mean
motion n, the resulting expression up to second degree, first order eccentricity and 0-th order
inclination can be described as (e.g., Segatz et al. (1988); Moore and Schubert (2000); Hussmann
et al. (2011))

Φ2(r, θ, φ, t) = r2n2e

[
−3

2
P 0
2 (cos θ) cosM +

1

4
P 2
2 (cos θ)(3 cosM cos 2φ+ 4 sinM sin 2φ)

]
.

(1.7)

Using Φ indicates, that the static part of the potential has been dropped and the index 2,
that the potential has been developed up to second degree, i.e. l = 2. For bodies with small
eccentricity and low inclination, Equation (1.7) is a good approximation to Equation (1.1). It
should nonetheless be noted, that Equation (1.7) assumes a Keplerian orbit and a perfectly
resonant rotation, which in the case of the Galilean satellites only applies if the orbital elements
are averaged over long time scales. It is obvious from the expression that the tidal potential for
a tidally locked body vanishes when the eccentricity is zero.
For the case of Mercury in the 3:2 resonance, an analytical formula for the second degree tidal
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potential in first order eccentricity and 0-th order inclination has been given by Balogh and
Giampieri (2002)

Φ2 =
GMr2

8a3
[
12e cos(M)P 0

2 (cos(θ)) (e cos(2M + 2λ)− 2 cos(M + 2λ))P 2
2 (cos(θ))

]
. (1.8)

However, due to the large eccentricity of Mercury (e = 0.205) the approximation yields in this
case errors up to 20%. In order to obtain an adequate expression one has to expand the tidal
potential at least up to degree 2 in eccentricity. The resulting expression is then

Φ2 =
GMr2

8a3
{2
[
2 + 3e2 + 6e cos(M) + 9e2 cos(2M)

]
P 0
2 (cos(θ)) + [− 17e2 cos(M − 2λ)

− 7e cos(2λ) + e cos(2M + 2λ)− 2 cos(M + 2λ) + 5e2 cos(M + 2λ)]P 2
2 (cos(θ))}. (1.9)

The derivation of Equation (1.9) can be found in Annex A. Further, a Mathematica notebook
to compute analytical expressions for tidal potentials up to arbitrary order in eccentricity and
inclination for any mean motion resonance can be found in the supplementary material of this
thesis. To achieve an accuracy below 1%, an expansion up to 4-th order in eccentricity is
necessary. Better results are barely possible because of the assumption of a resonant rotation,
but the analytical version saves much computational time compared to the numerical approach.
However, due to the inaccuracy of the analytical approximation, I will use only Equation (1.1)
when evaluating the tidal potential of Mercury in Paper I.

1.2.2 Response of Planetary Bodies to Tidal Forces

Studying the interior of planetary bodies is important. Not only because many surface features
are telltale signs of interior processes, but also because the properties of the interior dictate
the thermal evolution (and vice-versa) and thereby constrain the planetary formation history.
However, information on the interior properties of planetary bodies have to be mostly inferred
from orbit. Common methods are radio science experiments, studying the mass distribution
and the use of magnetometers since the magnetic field can give valuable information about the
interior. The total mass of a body, together with the radius, provides information about the
mean density which already constrains the bulk composition. In case of Mercury a mean density
of > 5400 kg/km3(e.g., Mazarico et al. (2014a); Verma and Margot (2016)) implies a significant
amount of iron. Contrariwise, Ganymede’s mean density of ≈ 1940 kg/m3 (e.g., Schubert et al.
(2004)) suggests a large amount of volatiles in the composition of the satellite. Since the bodies
can be described also as a tri-axial ellipsoid, the moment of inertia (MoI) can be determined. It is
mostly expressed for a body of mass m and radius R as a dimensionless entity MoI= C/(mR2)
based on the polar moment of inertia C. The MoI quantifies how well a planet or moon is
differentiated. A homogenous sphere has an MoI of exactly 0.4, for differentiated bodies the
value is lower. However, if the density contrast between the different layers is low, e.g., like
between liquid water and solid ice, the MoI cannot reveal these distinct layers.
The response of a body to tidal forces can be expressed by the Love numbers h and k (Love,
1909) as well as by the Shida number l (Shida and Matsuyama, 1912). These dimensionless,
complex numbers are characterized by an amplitude and a phase. Love’s number h describes
the radial deformation of the surface ur as a consequence of an external potential Φext with
respect to the shifted equipotential surface, i.e. the static equilibrium tide Φext/g, where g is
the gravitational acceleration at the surface.

ur = h
Φext

g
. (1.10)
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The tidal forcing further leads to a redistribution of mass in the interior, generating a secondary
gravitational potential Φint. The Love number k is the ratio between this induced gravity
potential and the external tidal potential

Φint = kΦext. (1.11)

And finally, Shida’s number l characterizes the lateral displacement ut

ut = l
∇Φext

g
. (1.12)

The Love-Shida numbers are a measure of the elastic properties of the body but further depend
on the density structure. For a completely rigid body h = k = l = 0. As the tidal potential
is usually expanded in spherical harmonics, the Love-Shida numbers can also be expressed as a
function of degree n. Usually the expansion is truncated at degree 2, such that the tidal Love
number h2, k2 and l2 express the response of the body to the external potential Φ2.
For a homogenous, incompressible body the tidal Love-Shida numbers can be calculated analyti-
cally (Munk and MacDonald, 1960)

k2 =
kf2

1 + µ̃
h2 =

5

3
k2 l2 =

k2
2
. (1.13)

Thereby the fluid Love number kf2 is 3/2 for a homogenous body and µ̃ is the effective shear
modulus

µ̃ =
19µ

2ρgr
, (1.14)

depending on the density ρ and the complex rigidity µ. In case of more complex bodies with
multiple layers, the Love numbers can be calculated numerically using e.g., a matrix propagation
method (Wieczerkowski, 1999). If the deformation of the body is at least partially inelastic, the
reaction of the body is not instantaneous leading to tidal friction which generates heat. Tidal
forcing is therefore an energy source for planetary bodies in addition to radiogenic heating. The
inelasticity is described by the quality factor Q (Zschau, 1978) defined by

Q−1 =
1

2πE∗

∮
∂E

∂t
dt, (1.15)

where the integral over the dissipation rate ∂E/∂t is the dissipated energy over a complete tidal
cycle and E∗ the peak energy stored in the system. By introducing Q as a free parameter, Munk
and MacDonald (1960) as well as Kaula (1964) gave an analytic expression for the dissipation
rate. Zschau (1978) expressed the tidal dissipation rate as a function of the imaginary part of
k2. For a body in synchronous rotation the dissipation rate then becomes

∂E

∂t
=

21

2

r5n5e2

G
Im(k2). (1.16)

Equation (1.16) is only valid if the inclination of the body’s equator with respect to the orbital
plane of the central body is set to zero and only terms up to second degree in eccentricity are
accounted for.
For a body in 3:2 resonance and zero-th order inclination as well as fourth order in eccentricity
the mean tidal dissipation rate has been given by Makarov and Efroimsky (2014) as

∂E

∂t
=
GM2r5n

a6

(
3

4
− 39

16
e2 +

2043

32
e4
)

Im(k2). (1.17)
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A particularity of the 3:2 resonance is that the tidal dissipation only weakly depends on the
eccentricity. This leads to small dissipation rates, even for high eccentricities like in the case of
Mercury. Indeed, it will be shown in Paper II that when respecting the geodetic constraints as
determined by the MESSENGER mission the maximum surface heat flux due to tides is only
0.16 W/m2.

1.3 Measuring Tidal Deformations

1.3.1 Measurement Concepts

In order to measure the radial tidal deformations the tidal signal has to be separated from other
effects requiring a good coverage of observables in space and time. The most straight forward
approach is the cross-over technique. When ground tracks of an altimeter cross at a certain
location, the tidal amplitude can be retrieved by a differential measurement. This requires how-
ever, that the two measurements take place at different tidal phases and that the trajectory at
both passes is accurately known. The advantage of the method is that the topography cancels
out. The technique has been successfully applied for correcting ground track profiles of the
Mars Orbiter Laser Altimeter (MOLA) instrument aboard Mars Global Surveyor (Neumann
et al., 2001), in application to the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar
Reconnaissance Orbiter (Mazarico et al., 2012), and for the Mercury Laser Altimeter (MLA)
(Mazarico et al., 2014a). It can be used to improve the orbit solution (e.g., Smith et al. (2000),
Mazarico et al. (2012)) and enhance the determination of the gravity field (e.g Lemoine et al.
(2001), Genova et al. (2013)). With LOLA, a detection of radial tidal deformations was achieved
for the first time with a space probe from orbit (Mazarico et al., 2014b).
An alternative method has been conceived by Koch et al. (2008, 2010), proposing to derive the
tidal signal from spherical harmonics. The technique has the advantage of using the full data
set. However, it needs to simultaneously solve for the topography with an accuracy in the same
order of the tidal signal, which makes it very sensitive to orbit errors and high order topography.
In both cases the spacecraft needs an altimetric instrument, usually a laser altimeter, but also
radar instruments might be used. However, whatever altimetric instrument is used, the ob-
servable is the range from the spacecraft to the surface. In order to derive data products, like
topography, librations or tides from that observable, additional information on the position of
the spacecraft, the pointing, the reference frame, and the ephemeris data of the body in question
are required.

1.3.2 Laser Altimetry

The first global topographic model from laser altimetry in planetary exploration was derived from
the lidar on board the Clementine mission (Nozette et al., 1994; Zuber et al., 1994; Smith et al.,
1997). The along track spacing was only between 20 – 100 km due to the low pulse repetition
rate of 0.6 Hz. However, the high accuracy of the lidar emphasized the utility of the instrument
such that laser altimeters became common payloads on planetary exploration missions. In 1996
the Mars Orbiter Laser Altimeter (MOLA) was launched on the Mars Global Surveyor (MGS)
orbiter (Zuber et al., 1992) and successfully mapped Mars (Smith et al., 1999). In the following,
a novelty was the Lunar Laser Altimeter, or LOLA (Smith et al., 2010), aboard the Lunar
Reconnaissance Orbiter (LRO) (Chin et al., 2007) with five laser beams generating a pattern on
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the surface, allowing the measurement of two dimensional roughness profiles (Kreslavsky et al.,
2013). After seven years in orbit the instrument provided a full topographic map of the Moon
with horizontal resolutions from 5 to 400 m (Smith et al., 2017) and albedo at 1064 nm (Lucey
et al., 2014). Also the instrument allowed for laser ranging investigations (Zuber et al., 2010).
Laser ranging can help to calibrate the instrument alignment (Sun et al., 2014), increase the
quality of the orbit determination (Löcher and Kusche, 2014), and even allow for a calibration
of the on-board clock (Bauer et al., 2017).
Also aboard the MESSENGER mission (Solomon et al., 2011) a laser altimeter was among the
payload with the Mercury Laser Altimeter (MLA) (Cavanaugh et al., 2007). Due to the highly
eccentric orbit of the spacecraft, only the northern hemisphere was mapped during the four years
of operation (Zuber et al., 2012). Topographic maps were derived (Kreslavsky et al., 2014) and
permanently shadowed craters investigated (Deutsch et al., 2016; Deutsch et al., 2018). Further,
for the first time, a laser link over an interplanetary distance of 0.2 AU was established (Smith
et al., 2006).
Full coverage of Mercury including also the Southern hemisphere is expected with the upcoming
BepiColombo mission (Benkhoff et al., 2010). Part of the scientific payload of the mission is
the BepiColombo Laser Altimeter, or BELA (Thomas et al., 2007). The BELA instrument will
thereby be the first European laser altimeter for planetary exploration.
Having good performance models for laser altimeters for planetary exploration is necessary to
reliably plan out missions and to responsibly allocate resources like mass, power, and data rate.
Finding the right balance is not a trivial problem. The lidar on Clementine had a too limited
laser link budget which lead to performance issues and many false detections on rough terrain
(Smith et al., 1997). On Mars, MOLA had a very good link budget but under clear conditions
over most surfaces, laser pulse returns exceeded the digital range of the MOLA detector leading
to a pulse saturation (Neumann et al., 2003).
Most of the recently flown laser altimeters, like MOLA, MLA, or LOLA have an analog signal
chain (e.g., Abshire et al. (2000); Cavanaugh et al. (2007)), implying that the return pulse is
detected by an avalanche photo diode (APD) and the resulting photo current is compared to a
threshold value. Usually the signal is filtered beforehand to avoid that single spikes in the noise
profile lead to a false detection. Performance models for this concept have been developed by
Gardner (1982, 1992) and are still the baseline for any link-budget calculation. The European
instruments BELA and GALA will operate slightly different since no threshold detection is
applied anymore. Instead the pulse will be digitized and detected with a matched filter algorithm
(Thomas et al., 2007). Such a method requires efficient algorithms and hardware in order to
keep up with the shot frequency of up to 50 Hz in case of GALA. A first attempt to work out
a respective model to this concept on theoretical grounds has been made by Gunderson et al.
(2006) in application to BELA. The model has been refined in some points in Gunderson and
Thomas (2010). With the availability of test data (e.g., Gouman et al. (2014a,b); Althaus et al.
(2014)) the models had to be revised leading to the current version of the BELA performance
model which is presented in Paper I.

1.3.3 Radar Altimetry

On Earth radar altimeters are most commonly used to monitor sea levels and measure land
heights. Examples for such systems are the radar altimeter RA2 aboard ESA’s Envisat mission
(Benveniste et al., 2002) or SIRAL aboard CryoSat-2 (Wingham, 2005). In planetary science
radars are used either as imaging radars or as sounders. The first application was the sounder
used aboard Apollo 17 with the Apollo Lunar Sounder Experiment (Phillips et al., 1973) (not
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counting the avionics radars used e.g., for docking also on previous Apollo missions). However
later on, only imaging radars were used, e.g., with the Soviet Venera missions and on board
the Magellan mission to penetrate Venus cloud layers. With the Mars Advanced Radar for
Subsurface and Ionosphere Sounding (MARSIS) (Jordan et al., 2009) a sounder has been used
for the first time again since the Apollo era. Aboard ESA’s MarsExpress (Chicarro and Science
Team, 2003) it detected e.g., buried basins underneath the surface (Watters et al., 2006). Since
2006 it is complemented by the SHAllow RADar sounder (SHARAD) (Seu et al., 2004) aboard
NASA’s Mars Reconnaissance Orbiter (Zurek and Smrekar, 2007). On the Cassini mission, the
radar (Elachi et al., 2004) proved to be a very versatile instrument. It has been used as an
imaging radar (e.g., Elachi et al. (2006), Paganelli et al. (2007), Lopes et al. (2007)) and as well
as an altimeter (e.g., Zebker et al. (2009); Mastrogiuseppe et al. (2014)). While the high center
frequency (Ku-band) did not allow for using it as a sounder for ice, it was nonetheless possible
to measure the depth of some shallow hydrocarbon lakes on Titan (Mastrogiuseppe et al., 2014;
Mastrogiuseppe et al., 2018).
The future exploration of icy satellites in the outer Solar System will rely to an important part
on radar sounders with higher wavelengths to penetrate the icy shells and search for sub-surface
water reservoirs. The technique is well established for ice sheets and glaciers on Earth (Fretwell
et al., 2013) and allows to characterize the form, flow and thickness (e.g., Dowdeswell and Evans
(2004); Gogineni et al. (2014); MacGregor et al. (2015)) and to draw conclusions on their physical
states (Schroeder et al., 2014; Greenbaum et al., 2015). Also for the polar ice sheets of Mars the
technique has been successfully applied in the past (Seu et al., 2004; Plaut et al., 2007). It is
therefore not surprising that two radar sounders have been selected to fly aboard the upcoming
icy moon missions to the Jovian system with the Radar for Icy Moon Exploration (RIME)
(Bruzzone et al., 2013) aboard JUICE and the Radar for Europa Assessment and Sounding:
Ocean to Near-surface (REASON) (Blankenship et al., 2009; Moussessian et al., 2015) on the
Europa Clipper mission. The latter is a dual frequency radar with a HF (high frequency, i.e.
3–30 MHz) and a VHF (very high frequency, i.e. 30–300 MHz) antenna. While the purpose of
the HF band antenna is primarily to directly detect a subsurface ocean or local water reservoirs,
the VHF antenna can also be used as an altimetric instrument. The main difference to laser
altimetry is the lower inherent resolution of the radar and most importantly the fact that the
radar is pulse limited while the laser is beam limited. That means that the footprint of the
laser altimeter is limited by the laser beam width, i.e. the beam divergence. The footprint of
the radar however is limited by the respective pulse limited zones, i.e. zones where the returns
contribute to the same range bin. On a flat surface the first return would come from nadir while
on rougher surfaces the origin of the return can become more confusing. But the radar profits
from having Doppler information available in addition to the time of flight data. The altimetric
capabilities of a radar can therefore be enhanced using the delay/Doppler technique proposed
by Raney (1998, 2012). A concept will be presented in Paper IV combining radar delay/Doppler
data with stereo images. It will be shown that the technique can thereby be further improved
to a point where a tidal signal from Europa can be retrieved.

1.4 Missions and Instruments

1.4.1 REASON and the Europa Clipper Mission

The Europa Clipper (Pappalardo and Phillips, 2014) was approved in 2015 as a NASA flagship
mission and is since 2016 part of the Ocean Worlds Exploration Program. It is intended as a
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flyby mission with currently 46 planned Europa flybys (as of 17F12v2 trajectory). The spacecraft
is equipped with nine instruments powered by solar panels. The launch is scheduled for 2022.
The baseline launch vehicle is the Space Launch System (SLS) which would allow for a direct
trajectory to Jupiter with a cruise time of less than three years.
One of the instruments aboard is the Radar for Europa Assessment and Sounding: Ocean
to Near-surface (REASON) (Blankenship et al., 2009; Moussessian et al., 2015). REASON is
a dual-band radar sounder composed of a VHF band operating at 60 MHz with a 10 MHz
bandwidth and an HF band operating at 9 MHz with a 1 MHz bandwidth. The instrument
is nadir looking and the chirp length is adjustable between 30 and 100 µs. The radar’s main
purpose is to characterize the surface and subsurface of Europa’s ice shell by means of sounding
(Aglyamov et al., 2017), reflectometry (Grima et al., 2015b), and altimetry (Paper IV). The
estimated sounding depth is around 30 km but depends on the dielectric properties and thermal
state of the ice shell. Due to the high radio noise emissions from Jupiter between 1–10 MHz
(Cecconi et al., 2012), the HF antenna cannot be used for sub-Jovian sounding. Therefore,
also passive sounding concepts have been investigated (Schroeder et al., 2016). Further, Galileo
revealed a dynamic ionosphere in the vicinity of Europa (Kliore et al., 2002). The resulting
effects on the radar signal propagation have been investigated by Grima et al. (2015a). Paper
IV will describe the performance of REASON with respect to altimetry and emphasize that the
ionosphere also imposes a significant challenge on the tides measurement.

1.4.2 GALA and the JUICE Mission

The JUICE mission (JUpiter ICy moons Explorer) (Grasset et al., 2013) was selected in 2012
as the first large class mission in ESA’s Cosmic Vision program. Scheduled for the same launch
window as the Clipper in 2022, it will be launched with an Ariane 5 and reach the Jovian system
in 2029 after 7.6 years of cruise. The Jovian tour includes two Europa flybys as well as multiple
Callisto and Ganymede flybys before entering orbit around Ganymede in 2033 and thereby
being the first spacecraft entering an orbit around a moon of another planet. The spacecraft
carries ten instruments, one being the Ganymede Laser Altimeter (GALA) (Hussmann et al.,
2014, 2017). The most important phase of the mission will begin for GALA when the initially
high altitude orbit is lowered to 500 km, which will be maintained for 132 days. In this short
phase, compared to the complete mission duration, GALA aims at completing its two main
scientific goals: 1) obtaining a global topographic coverage of Ganymede and 2) detect its radial
tidal deformations (Hussmann et al., 2017). Secondary objectives are (a) the determination
of the rotational state of Ganymede including rotation rate, librations, and obliquity. (b) the
measurement of the surface roughness on different scales, i.e. from spot to spot but also within
the laser footprint by analyzing the pulse width. And (c) to measure the geometric albedo at
the laser wavelength. GALA therefore has a geological, geodetic and geophysical purpose. The
instrument is a pulsed laser altimeter operating with two (cold-)redundant 17 mJ Nd:YAG lasers
at 1064 nm. The nominal shot frequency is 30 Hz but adjustable up to 50 Hz. The ranging
performance of the instrument in terms of signal-to-noise ratio and probability of false detection
is described in Paper III. The capability to measure the rotational state by laser altimetry has
been investigated by Steinke et al. (2015) and the estimated accuracy for the tidal measurement
is described in Paper III.
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1.4.3 BELA and the BepiColombo Mission

BepiColombo is a missions composed of two spacecraft, the Mercury Planetary Orbiter (MPO)
under responsibility of ESA and the Mercury Magnetospheric Orbiter built and managed by
the Japan Aerospace Exploration Agency (JAXA). After its launch in October 2018 and seven
years of cruise the MPO will enter in a polar 400×1500 km orbit and investigate Mercury for a
nominal mission lifetime of one year with the possibility of a second year of mission extension.
The BELA instrument (Thomas et al., 2007) aboard is the first European laser altimeter built
for a planetary science mission. Due to the eccentric orbit of the MPO the instrument was
equipped with two redundant 50 mJ laser operating at a shot frequency of 10 Hz. A main
challenge of the mission as well as for the instrument design is the harsh thermal environment
at Mercury which lead to the implementation of special reflective Stavroudis Baffles to protect
the instrument from the infrared flux (Beck et al., 2011). A novelty of the design compared
to previous instruments is also the range detection mechanism which finds the pulse by digital
filter matching instead of an analog threshold detection (Beck, 2012).
BELA’s main scientific purpose is to provide a global topography map of Mercury (Paper I).
Further goals are the determination of the rotational state, surface roughness, albedo at 1064
nm and to determine the radial tidal deformations of Mercury. The instrument might also allow
a better orbit determination (Hosseiniarani et al., 2017).
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Abstract

We explore the perspectives of the BepiColombo Laser Altimeter (BELA) onboard ESA/JAXA’s Mercury
mission BepiColombo and present an updated semi-analytical instrument performance model, in which
we estimate signal-to-noise ratio, single shot probability of false detection, range errors and the accuracy
of pulse width reconstruction. The model is generally applicable for other laser altimeters using matched
filter algorithms for pulse detection and has been validated against the recently tested BELA flight
model after integration on the BepiColombo spacecraft. Further, we perform numerical simulations of
the instrument performance expected in orbit about Mercury. In particular, we study the measurement
accuracy of topography, slopes and surface roughness, which will allow us to estimate local and global
topographic coverage based on the current trajectory design. We may also assess the potential for
measuring the tidal Love number h2 using cross-over points, which we estimate to be constrained with an
absolute accuracy of 0.14 corresponding to a relative accuracy of about 18% after two years in Mercury
orbit.
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2.1. Introduction

After three flybys by the Mariner 10 probe in 1974
and 1975 the MErcury Space, Surface ENviron-
ment, GEochemisty, and Ranging (MESSENGER)
was the first spacecraft inserted into Mercury orbit
in 2011 (Solomon et al., 2011). The high density
of Mercury and the presence of an intrinsic mag-
netic field already observed by Mariner 10 have been
linked to an extended liquid core, underneath a rel-
atively thin mantle. By measurements of Mercury’s
88-days libration amplitude and obliquity (Margot
et al., 2007; Stark et al., 2015b) and determination
of the gravity field including the tidal Love num-
ber k2 (Mazarico et al., 2014b; Verma and Margot,
2016) the size and state of the core could be fur-
ther constrained. However, due to the eccentric or-
bit of MESSENGER, the Mercury Laser Altimeter
(MLA) (Cavanaugh et al., 2007) could not cover the
Southern Hemisphere and the tidal Love number h2
of Mercury remains unknown.
The BepiColombo joint mission by the European
Space Agency (ESA) and the Japan Aerospace Ex-
ploration Agency (JAXA) consists of two space-
craft, the Mercury Planetary Orbiter (MPO)
and the Mercury Magnetospheric Orbiter (MMO),
which will complement and extend the data col-
lected by MESSENGER. The two spacecraft will
be launched in 2018 and conduct a one year nom-
inal mission in Mercury orbit, with the possibility
of an extension by one additional year (Benkhoff
et al., 2010). One of the instruments aboard the
MPO is the BepiColombo Laser Altimeter (BELA)
(Thomas et al., 2007). While previous laser al-
timeters, e.g. the Mars Orbiter Laser Altimeter
(MOLA) (Zuber et al., 1992) used matched fil-
ters followed by an analog leading edge detection,
BELA uses digital matched filters, implemented in
a field programmable gate array (FPGA) (Thomas
et al., 2007). The resulting instrument performance
has been modeled on theoretical grounds by Gun-
derson et al. (2006) and Gunderson and Thomas
(2010). Following tests with the BELA qualification
model the instrument parameters were reassessed
and performance models were updated, which in-
cluded models for alignment and pointing stability
(Gouman et al., 2014b).
In the following, we present an improved perfor-
mance model (Section 2.2) based on data from end-
to-end tests carried out on the BELA flight model.
The updated model allows us to analyze the ex-
pected scientific performance in terms of coverage
(Section 2.3) and measurements of Mercury’s ra-
dial tidal deformations (Section 2.4). Our perfor-

mance models may also be generally applicable to
other laser altimeters if using the same digital filter
matching approaches as BELA.

2.2. Instrument Performance
Modeling

The fundamental principal of laser altimetry is to
send out short laser pulses from the transmitter to-
wards the surface. The light is scattered by the area
illuminated by the laser, referred to as footprint.
Only a small fraction of the emitted photons return
back to the receiver. The two-way travel time ∆t
of the photons measured by a high-accuracy clock
can be translated into a range z by using the speed
of light c and

z =
c∆t

2
. (2.1)

To assess the instrument performance we base
our calculations upon models originally developed
by Gunderson et al. (2006) and Gunderson and
Thomas (2010), consisting of two steps. In the
first step the link budget is calculated, involving
knowledge of the spacecraft altitude and the
optical path of the laser pulse. It determines
the energy of the return pulse received by the
detector based on the instrument characteristics
(e.g. laser energy and telescope radius) and further
depends on the surface properties. The second
part assesses the influence of optical and electronic
noise, which interfere with the returned signal.
To detect the signal, filters are needed to increase
the signal-to-noise ratio (SNR) and to reduce the
probability of false detection (PFD).
With ongoing instrument development and recent
availability of test data we report on updates of
earlier models, especially in the description of the
critical instrument characteristics SNR and PFD.
For reference, we keep the same notations as in
the original publications while commenting on the
changes we introduced.

2.2.1. Link Budget

The number of photons emitted by the transmitter
laser at wavelength λT is given by

n0 =
ETλT
hc

. (2.2)

The constants h and c are the Planck constant and
the speed of light, respectively. The laser pulse en-
ergy ET is generally specified as the energy emitted
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by the instrument i.e., neglecting internal energy
losses such as by the collimator efficiency. The laser
pulse travels from the transmitter to the surface,
which may have a slope angle of θR and a normal
albedo of αN . Thereby, the slope is considered as
the angle between the surface normal and the nadir
direction. In case of a nadir looking laser altimeter,
the bidirectional reflectance at zero phase-angle is
(Hapke, 1981; Gunderson et al., 2006)

ρ(θR, θR, 0) = ρ0 = αN/π. (2.3)

The pulse is then scattered from the surface and
emitted into the complete hemisphere. A small frac-
tion of the reflected laser light is captured by the
receiver telescope. Since the full laser footprint falls
within the receiver field of view, the amount of re-
turning photons is proportional to the solid angle
ΩR covered by the telescope. The integration is
therefore performed over the telescope aperture as
seen from the center of the laser pulse footprint and

ΩR = 4π sin2

(
θAP

2

)
≈ πθ2AP [sr], (2.4)

with θAP being the half-cone angle of the aperture
as seen from ground, which can be computed from
the spacecraft altitude H and the radius of the re-
ceiver telescope rR as

θAP = tan−1(rR/H) [rad]. (2.5)

Due to surface slope and roughness the pulse is
broadened in time. We assume that the laser beam
has a Gaussian cross section and that the pulse has
a Gaussian shape with a width of σ0 in the time do-
main. Under these given presupmtions, the widths
can be quadratically added and the return pulse
captured by the telescope will have a Gaussian pro-
file as well, with a temporal width of

σt =
√
σ2
0 + (2δz/c)2 [s2]. (2.6)

Thereby, we express the roughness δz within the
footprint as

δz =
H

2
tan(θT ) tan(θR) [m]. (2.7)

Note, that the factor 1
2 is a further deviation from

the original work of Gunderson et al. (2006), but
consistent with the common approach taken in the
literature (e.g. Gardner (1992); Neumann et al.
(2003); Abshire et al. (2000)). The deviation arises
from a different perception of the slope angle. E.g.
Abshire et al. (2000) uses the slope as the angle
between the surface normal and the nadir direc-
tion, while Gunderson et al. (2006) uses a roughness

angle computed based on the rms height deviation
from the mean elevation within the footprint. Even
if both approaches are self-consistent we will con-
tinue with the more common definition used e.g. in
Abshire et al. (2000). By exchanging the 1/e2 defi-
nition of the beam divergence with an 1/

√
e and by

inserting Equation (2.7) into Equation (2.6), we get

σ2
t = σ2

0 + (4H2/c2) tan2(θT ) tan2(θR) [s]. (2.8)

This expression corresponds to Equation (4) from
Abshire et al. (2000). Since the receiver field of view
is larger than the laser beam divergence angle, the
total energy of the return pulse ER is given by

ER = ET ρ0ΩRεoεt [J], (2.9)

where the efficiency of the system consists of the
optical efficiency of the telescope εo and the trans-
mission efficiency of the optical bandpass filter εt.
Likewise, we can also compute the total amount of
returning photons as

nR = n0ρ0ΩRεoεt. (2.10)

The optical power of the focused return pulse illu-
minating the avalanche photodiode (APD) can then
be described as a Gaussian pulse of the form

P (t) =
ER√
2πσt

exp

(
− t2

2σ2
t

)
[W], (2.11)

which is translated into a photocurrent

I(t) =
qnRεqe√

2πσt
exp

(
− t2

2σ2
t

)
[A], (2.12)

where q and εqe are the elementary charge and the
quantum efficiency of the APD, respectively.

2.2.2. Signal-to-Noise Ratio

Due to the limited bandwidth B0 of the receiver
system, the analog signal experiences an additional
broadening (Gunderson and Thomas, 2010), which
can be quantified by

σp = 1/(2
√

2πB0) [s], (2.13)

leading to a total temporal width of the Gauss func-
tion of

σ =
√
σ2
t + σ2

p [s]. (2.14)

or full width half maximum of

FWHM = 2
√

2 ln 2σ [s]. (2.15)
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The response of the APD to the incoming power is
usually expressed by the responsivity at unity gain
R0 which can be directly measured or derived from
the quantum efficiency εqe as

R0 =
qλ

hc
εqe [A/W]. (2.16)

With the signal peak power after the analog band-
pass

Ppeak = 2

√
ln 2

π

ER
FWHM

=
ER√
2πσ

[W], (2.17)

and a given APD gain M the analog signal becomes

Sanalog = R2
0M

2P 2
peakR

2
i [V2]. (2.18)

For better comparability with the test results we
express the signal in terms of voltage using the re-
sistance of the feedback resistor within the tran-
simpedance amplifier (TIA) Ri. The noise consists
of four components. Solar noise, dark current, shot
noise, and the electronic noise floor which in case of
BELA is dominated by electric and magnetic distur-
bances (EMC noise) of the laser diode while firing
(see Kallenbach et al. (2016) for further details).
The first contribution, the solar noise, is the sun-
light reflected from the surface of the planet within
the field of view of the receiver.
The solar flux F at a distance dSun from the Sun
at the laser wavelength of 1064 nm is according to
Wehrli (1985)

F0 = 0.643 ·
(
dEarth

dSun

)2

[W m−2nm−1]. (2.19)

Here, dEarth is the distance to the Sun from Earth,
i.e. 1 AU. The receiver captures all solar noise inside
the field of view θFoV of the telescope which, on the
surface is an area of1

AFOV = πH2 tan2(θFoV ) [m2]. (2.20)

We express the reflected sunlight by a cosine law as-
suming a Lambertian surface and a solar incidence
angle of i and, contrary to the original work by Gun-
derson et al. (2006), we do not use a Hapke model
(Hapke, 1981) to calculate the surface reflectance.
The simplification is justified by the low influence of
the solar noise on the measurement accuracy, even
at Mercury. The resulting photocurrent is depen-
dent on the width of the optical filter σRF around
the central wavelength λ and can be expressed as

Is = qεtεoεqeρ0 cos(i)AFoV ΩR
Fλ

hc
σrf [A]. (2.21)

1We assume that Equation (14) in Gunderson et al.
(2006) has a typo which is corrected here.

The second contribution is the APD dark current,
where surface Ids and bulk Idb dark current of the
APD are usually distinguished. Surface dark cur-
rent does not trigger avalanche events within the
substrate itself and is therefore independent of the
APD gain. Bulk dark current, however, describes
the electrical current within the pn-junction of the
APD and therefore undergoes a multiplication pro-
cess.

Id = Ids +MIdb [A]. (2.22)

When illuminated, the APD experiences additional
noise due to the statistical nature of the multiplica-
tion process. This contribution is called shot noise
and depends on the incident optical power Popt.

Isn = PoptR0 [A] (2.23)

The dominant term, when the laser is operating,
however, is EMC noise which we express here as a
noise floor nf . A more detailed description of the
EMC noise characteristics of the instrument can be
found in Kallenbach et al. (2016). Since the receiver
measures a differential signal, the instrument is not
sensitive to a constant noise level, but only to noise
fluctuation. Presuming that all these current fluctu-
ations are distributed as white uncorrelated Gaus-
sian noise, the total noise can be expressed as sum
of the constituent variances, i.e. var(Ii) = 2qBIi.
For consistency with the signal we express the noise
in terms of voltage.

N = 2qB0R
2
i

·
[
Ids + (Is + Idb + Isn)M2+x + n2f

]
[V2],

(2.24)

with x being the excess noise exponent. This leads
to the following expression for the analog SNR.

SNRanalog =
Sanalog

N
(2.25)

=
R2

0M
2P 2

peak

2q
[
Ids + (Is + Idb + Isn)M2+x + n2f

]
· R2

i

B0R2
i

[
V2

V2

]
(2.26)

In contrast to classical laser altimeter approaches
used in space applications where the pulse is iden-
tified via a threshold detection, the analog SNR is
not a good figure of merit for instruments using a
digital filter matching approach since single noise
spikes will not lead to a false detection even in case
their amplitude exceeds the peak power of the laser
pulse. This allows the instrument to operate at ana-
log SNR values < 1. The basic concept of the fil-
ter matching has been outlined in Gunderson et al.
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(2006) and Gunderson and Thomas (2010), how-
ever does not fully capture the maximum potential
of the instrument performance. We therefore de-
scribe the signal by calculating the overlap of the
incoming pulse with itself.

S = R2
0M

2

·
∫ ∞

−∞

[
ER√
2πσ

exp

(
− t2

2σ2

)
exp

(
−1

2

τadc
σ

)]2
dt

=
R2

0M
2E2

R

4πσ2
exp

(
−τadc

σ

)
[A2] (2.27)

The additional exponential factor accounts for the
dependence of the digital signal from the finite sam-
pling frequency τadc of the analog-digital converter
(ADC). This leads to a significantly decreased effec-
tive signal for very short pulses and must therefore
be accounted for.
However, the actually implemented algorithm is
performing a more complex correlation between the
pulse candidate and the possible template functions
and since the filter matching algorithm is a numer-
ical process it is not possible to derive its perfor-
mance analytically and it would be impractical to
reproduce this numerical process for each shot in
the following simulations. Therefore, the relation
used in this work has been found empirically by
testing the actually implemented algorithm for a
statistical set of laser pulses under different SNR
conditions. The noise floor used for this simulation
has been measured onboard the spacecraft during
laser operation and therefore within a representa-
tive EMC environment. However, the ground test
setup did not allow for using optical laser pulses to
assess the ranging performance. Therefore, we syn-
thesized Gaussian pulses with energies represent-
ing different altitudes and surface slopes and intro-
duced them artificially on the noise samples. We
computed pulses with a width corresponding to a
surface slope of 0◦, 10◦, 20◦, and 40◦. For each al-
titude between 400 and 2500 km a synthetic laser
pulse has been generated and inserted in a random
location within the range window. We then con-
sider a false detection when the wrong sample in
the return window has been identified as the loca-
tion of the return pulse. We find that the empirical
relation between SNR and PFD is best fit by a com-
plementary Gauss error function of the form

PFD =
erfc(0.69 · SNR− 1.64)

1.98
. (2.28)

The error of the approximation compared to the
algorithm result is < 0.06. The instrument pa-
rameters used in the evaluation of the model are
listed in Table 3.1. Figure 2.1 shows the PFD as

a function of altitude for return pulses for the re-
spective surface slopes. While the dots mark the
PFD based on the measured noise floor and the
numerical analysis of the onboard algorithm, the
solid lines show the performance as predicted by the
semi-analytical model. However, to make both data
sets comparable, we had to remove the shot noise
from the model since the APD was not illuminated
during the ground test. The remaining discrepan-
cies mainly reflect the idealistic model assumptions.
It is assumed in the semi-analytical model that the
noise is composed of fully white noise, while the real
measured noise spectrum is not entirely flat. Fur-
ther, there is a second order dependency of the PFD
from the return pulse width, which is not accounted
for in this model. The performance, as expected in
orbit, including the shot noise is displayed with the
dashed lines.

Figure 2.1: Single shot probability of false de-
tection as a function of altitude for the albedo
value 0.19. The PFD is given for four dif-
ferent slope angles, 0◦ (light gray), 10◦ (sil-
ver), 20◦ (dark gray) and 40◦ (black). The
predicted PFD from the semi-analytical per-
formance model (dashed lines) is compared
against the PFD numerically derived from test
data (bullets). To make the model compara-
ble to the test results, the shot noise has to be
removed (solid lines).

Using the same data set of noise measurements with
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Parameter Symbol Value Unit

Pulse energy Et 50 mJ
Wavelength λT 1064 nm
Shot frequency f 10 Hz
Pulse width (1-σ) σ0 2.2 ns
1/e2 beam divergence (half cone) θT 25 µrad
Telescope radius rR 10 cm
Field of view (half cone) θR 247.5 µrad
Optical efficiency εo 0.84
Optical filter efficiency εt 0.8
Optical filter bandpass σrf 2 nm
Quantum efficiency εqe 0.30
APD dark current (bulk) Idb 100 pA
APD dark current (surface) Ids 100 nA

Noise floor nf 20 pA/
√

Hz
Nominal (maximum) gain M 56 (113)
Analog (TIA) bandwidth B0 20 MHz
TIA Resistance Ri 51 kΩ
Sample resolution τadc 12.5 ns

Table 2.1: BELA instrument parameters.

synthesized laser pulses as for the PFD, the range
error of the instrument can be derived by a similar
fit, giving

dzi = 2 · exp
(
−SNR0.28

)
+ 0.1 [m]. (2.29)

For the range error evaluation of the return pulses
only errors below the PFD threshold of 12.5 ns (dig-
itization resolution) have been taken into account.
Figure 2.2 visualizes the corresponding range er-
ror for the same set of surface slopes as a func-
tion of altitude. It should be noted that compared
to the Cramer-Rao limit used in Gunderson et al.
(2006) this leads to significantly different results.
The Cramer-Rao ratio gives an upper limit to the
range error measurement but underestimates the
real performance of the filter matching algorithm.
Instead it can be observed that the performance of
the instrument is mainly PFD-driven, i.e. if the
correct pulse is identified, then the range can usu-
ally be determined with an accuracy better than 2
m. At infinite SNR the range error converges to-
wards the inherent range resolution of the instru-
ment, which is 10 cm. Similarly, the relation be-
tween pulse width measurement accuracy and SNR
can be approximated as

δσ = 88.7 exp
(
−SNR0.18

)
+ 11.78 [ns]. (2.30)

Since the detector of the laser altimeter integrates
all returns over the footprint area, it is not possi-
ble to distinguish between surface slope and surface

roughness within the laser footprint from one return
pulse alone. Therefore, they are treated together
and parametrized as a single value.
Gouman et al. (2015) used Mercury Laser Altime-
ter (MLA) data to statistically analyze the albedo
distribution of Mercury at the laser wavelength and
found that about 50% of the measured albedo val-
ues are exceeding 0.2 and that around 70% exceed
0.1. Inside dark craters the reflectance can further
drop to around 0.05. The assumed average albedo
in the following analysis is 0.19. The MPO space-
craft will be in an elliptical 400 × 1500 km orbit
where the apoapsis is usually located on the illu-
minated side of Mercury due to thermal reasons.
BELA is intended to operate up to at least 1050
km to assure global coverage. The coverage of the
higher altitudes depends on the surface slope and
albedo such that the effective limit is in a range
between 800 km for very rough surfaces and an
albedo around 0.2 and the apoapsis height for rea-
sonably flat surfaces or higher albedo values. How-
ever, aside from the range error, a further significant
error source is the limited knowledge of lateral po-
sition of the range measurement. It arises from the
misalignment of the transmitter with respect to the
inertial reference frame of the spacecraft and the
resulting unknown pointing of the instrument. To
verify the instrument alignment in orbit for the dif-
ferent thermal conditions during the mission, cali-
bration campaigns will be carried out. Concepts for
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Figure 2.2: Range error as a function of alti-
tude using the semi-analytical model for sur-
face slopes of 0◦ (light gray), 10◦ (silver), 20◦

(dark gray) and 40◦ (black).

these have been studied in the frame of the BELA
project and suggest alignment residuals of around
4 arcseconds (Stark et al., 2017a). The pointing
knowledge of the spacecraft is assumed to be within
20 arcsec. On the surface the resulting total point-
ing error dφ translates to a topography measure-
ment error dzp = H tan(θR) tan(dφ), with H being
the spacecraft altitude. Other error sources, not ex-
plicitly considered in this study, are errors related
to electronics and clock drifts. Since both signals,
the transmitter as well as the receiver signal un-
dergo the same electronic signal chain, we assume
any electronic delays to cancel out. Further, clock
drifts will be calibrated using an on board pulse
per second signal and the calibration residual can
be neglected for the purpose of this study.

2.3. Expected Science
Performance

2.3.1. Topographic Coverage

The main science goal of BELA is to provide a
global topographic elevation model of Mercury. The
coverage and horizontal resolution on a global scale
is mainly constrained by the spacecraft trajectory

and the instrument performance in terms of PFD.
For the projected resolution of a global elevation
model we took all potential spots from two years of
operation where the performance model returns a
PFD < 20% (a value which is on the steep raising
edge of the PFD curve). In this context we defined
the horizontal resolution as the largest empty grid
cell one can position on the surface. Thereby the
grid is defined over a map in a sinusoidal projection
of Mercury’s surface but is visualized in equidistant
projection with a resolution of 1◦ × 1◦ (Figure 2.3).
The horizontal resolution then varies from about
3 km at the equator down to less than 250 m at
latitudes above 80◦ and below −80◦. It is com-
mon to express the global resolution in terms of
degree and order of a spherical harmonics expan-
sion. This is achieved by subdividing the surface
into single grid elements of the worst resolution,
here 3×3 km in size. We then obtain n ≈ 2500
grid elements. Expressed in a spherical harmonics
expansion this corresponds to a maximum degree of
lmax = (n−2)/2 ≈ 1100 but it should be noted that
the assumed operation scenario is a best case sce-
nario implying that BELA operates whenever per-
formance permitting.
Due to the high number of laser profiles and SNR
ratio at high- and mid-latitudes features such as lo-
bate scarps or wrinkle ridges in these regions (e.g.
Watters et al. (2015)) are expected to be mapped in
good resolution. Further, many geologically inter-
esting features like hollows are concentrated on the
equatorial and mid latitudes which have only been
mapped by laser altimetry in low horizontal reso-
lution so far. Accurate profiles, however can help
to calculate e.g. the associated volumes and out-
gassing rates. More accurate shape models of the
planet allow better constraints on Mercury’s crustal
structure and the origin of the 3:2 resonance es-
pecially when studied in combination with gravity
data. The regional topography in the northern high
latitudes is dominated by smooth volcanic plains
being less heavily cratered than the surroundings
and containing a large number of buried craters
(Head et al., 2011). So laser altimetry offers fur-
ther the unique possibility to quantitatively study
Mercury’s morphology.

2.3.2. Slope and Roughness

As any planetary surface, the surface of Mercury is
subject to modifications related to geological pro-
cesses (impacts and internal processes) as well as
erosion and degradation due to radiation and so-
lar wind particles, which modify the surface on dif-
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Figure 2.3: Top panel: Color-shaded relief of Mercury based on stereo images of the
MESSENGER Mercury Dual Imaging System (Becker et al., 2016). Bottom panel: Topographic
coverage after two years of BELA operation. The colors visualize the attainable local horizontal
resolution.

ferent length scales. Data on surface roughness
and its scale-dependence is an important clue for
understanding surface processes in different (some-
times competing) regimes and their relative ages.
The analysis of reflected laser pulses in combina-
tion with high along-track resolution of laser spots
is an important method to characterize surface
roughness on different length scales and to relate
these measurements to specific geologic features and
units. This has been successfully achieved with

laser altimeter data in the case of Mars (Neumann
et al., 2003), the Moon (Rosenburg et al., 2011;
Kreslavsky et al., 2013) and Mercury (Yang et al.,
2013; Kreslavsky et al., 2014). While global cov-
erage could be achieved for the Moon and Mars,
complete data-sets are still lacking for Mercury.
Yang et al. (2013) have analyzed MLA data in
the northern hemisphere noticing that the increased
cross-track spacing towards lower latitudes (due to
MESSENGER’s elliptic polar orbit) may lead to bi-
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Figure 2.4: Accuracy of the return-pulse width
measurement as a function of altitude. Shown
is the estimated error of the reconstructed pulse
compared to the return pulse sampled by the
ADC (i.e. already broadened by the bandpass
filter). The different colors represent different
surface slopes of 0◦ (light gray), 10◦ (silver),
20◦ (dark gray) and 40◦ (black).

ased slopes and roughness, because the high reso-
lution, with which along-track slopes can be deter-
mined, might not reflect the trends in longitudinal
direction. Therefore, Kreslavsky et al. (2014) fo-
cused on the high-resolution data around Mercury’s
North-pole (between 65◦ and 84◦ N) only, cover-
ing 4.4% of Mercury’s surface. The main results of
these studies indicate basically a good correlation of
surface roughness with geologic units. Topographic
depressions turn out to be rather smooth, whereas
highlands are heavily cratered and rougher at all
baselines (Yang et al., 2013). An exception is an
area of cratered low-lands at high northern latitude,
which is significantly rougher than its surroundings.
The northern smooth plains, a lowland region near
the pole is smoother than its surrounding terrain
and generally interpreted as a volcanic flow (Head
et al., 2011).
By sampling and analyzing the digitized return

pulse BELA will have the capability for determin-
ing the pulse shape including pulse broadening that
is indicative of slope and roughness at the footprint
scale of around 50 m. The accuracy of the roughness

at footprint-scale can be estimated with Equation
(2.30). By its filtering algorithms BELA is not lim-
ited to pure Gaussian shaped return pulses but can
be adjusted by tele-commands to various families
of filter functions, of which the best-fit parameters
can be transmitted to the ground. The ability is
limited however by the 20 MHz bandwidth. As ex-
pressed in Equation (2.14), the return pulse is not
only broadened by the surface roughness but also
by the analog bandpass filter. Therefore, the mini-
mum width of any return pulse is σp, independently
of the surface slope. The 20 MHz analog band-
width is related to σp by Equation (2.13), leading
to a respective σp of around 10 ns. Using Equation
(2.14) this relates to an elevation difference of δz ≈
1.5 m. The broadening of the return pulse due to
the surface slope further depends on the altitude.
From higher altitudes, the footprint on the surface
is larger, thus leading to a larger height difference
within the footprint, when there is a slope. There-
fore, the sensitivity to slopes increases with altitude.
The MPO’s periapsis is at 400 km. At this altitude
the footprint is 20 m in diameter. Using Equation
(2.7) we find that from 400 km altitude a δz of 1.5
m corresponds to a minimum slope angle of 10◦.
Slopes below this value will be difficult to distin-
guish. At the poles the altitude is 1050 km and the
minimum measurable slope decreases to 4◦. The
minimum slope angle is best at apoapsis, i.e. 1500
km would correspond to 2.8◦. However, at high alti-
tudes the instrument capabilities to measure slopes
are limited by the SNR, setting an upper maximum
to slopes of around 15-20◦. This value increases
with decreasing altitude to 40◦ at ≈ 700 km (Fig-
ure 2.4). However, for larger slopes and reasonable
SNR’s the pulse width can be determined with an
accuracy better than 5 ns corresponding to a slope
(or equivalent rms roughness) of around 2◦ (Figure
2.4). The performance drops rapidly with decreas-
ing SNR limiting reliable roughness measurements
to low altitudes. On larger scales the high along-
track resolution of 170 - 300 m will allow for correc-
tion of slopes at the various length-scales of interest.
This capability is mainly PFD driven and therefore
applicable also at higher altitudes. Furthermore,
BELA will not be limited in coverage to the north-
ern regions, which will yield invaluable data-sets for
surface roughness globally, but also regionally and
locally to be interpreted in combination with geo-
logic units and surface evolution. As indicated by
the examples above this will yield a deeper under-
standing of Mercury’s surface evolution and the rel-
ative ages of events that have shaped the surface,
both on regional and global scales.

39
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2.4. Tidal Deformation

Due to its proximity to the Sun and its rather ec-
centric orbit, Mercury is exposed to significant tidal
forces. The general form of the resulting degree 2
tidal potential is given as

V =
GM2

�r
2

d3
P 0
2 (cosφ), (2.31)

with r being the distance from Mercury’s center of
mass and d the distance from the Sun which has
the gravitational parameter GM�. P 0

2 is the asso-
ciated Legendre polynomial of degree 2 and order 0.
Assuming that Mercury is on a Keplerian orbit, its
trajectory can be described by the elements semi-
major axis a, eccentricity e, inclination i, mean
anomaly M , argument of periapsis ω, and longitude
of ascending node Ω. Expressing the angle of the
sub-Solar point φ in latitude θ and longitude λ the
potential is often given as a series expansion in first
order eccentricity. The resulting expression can be
formulated as (Balogh and Giampieri, 2002):

V =
GMr2

8a3
[12e cos(M)P 0

2 (sin(θ))

+ (e cos(2M + 2λ)

− 2 cos(M + 2λ))P 2
2 (sin(θ))]. (2.32)

However, it should be noted that due to the high
orbit eccentricity (≈ 0.205) the expansion up to
first order is rather rough and yields residuals of
around 15% even for a perfectly Keplerian orbit
of Mercury. For the computation of the tidal
potential it is therefore preferable to evaluate
Equation (2.31) for each point in time. Note that
static tides are usually removed when solving
for the body-response but also cancel out in the
cross-over approach used here (see below). The
amplitudes of the response further depend on the
material properties of the interior and are rather
small for terrestrial planets. While MESSENGER
determine Mercury’s gravitational field up to order
50 and constrained the tidal Love number k2
to 0.45 ± 0.02 (Mazarico et al., 2014b), as well
as libration amplitude (Stark et al., 2015b), the
radial response h2 remains unknown at the time
of this publication. Measuring Mercury’s tidal
amplitude would help interpret Mercury’s surface
geology, further constrain Mercury’s core radius
as well as the mantle rheology beyond the current
constraints posed by k2 and the observed librations.

2.4.1. Covariance Analysis

The MPO will be inserted into a polar orbit around
Mercury and the ground tracks will intersect over
time. These cross-over points can be used to ex-
tract the time dependent signal by a differential
range measurement. Assuming a set of cross-over
measurements we can obtain an estimate on h2 us-
ing a least-squares inversion. The accuracy of the
measurement of h2 can be derived from a covari-
ance analysis and is therefore dependent on two
main components: the cross-over distribution and
the mean measurement error. While the former is
defined by the MPO orbit, the latter is driven by
the instrument and spacecraft performance. The
model used in this study to assess the performance
of BELA is based on the performance model de-
scribed in section 2.2. The number and distribution
(in space and time) of cross-over points available for
evaluation is driven by the mission lifetime and the
operation scenario for the instrument. Simulations
of the orbit determination using the radio science
experiment MORE reports vertical error estimates
of 1.80 m using a multifrequency link of X and Ka
band (Marabucci, 2016) without including altime-
try data. The combined along and cross track errors
are estimated to be in the order of 5 m. The lat-
ter must be combined with the interpolation error
dzi, being a function of the spot to spot distance d
and the surface slope (dzi = d tan θR). At a shot
frequency of 10 Hz and a typical slope on the scale
of the spot to spot distance (see next section) the
interpolation error is about 7-8 m. Therefore, the
limited shot frequency and the resulting gaps be-
tween the footprints contribute the largest part of
the total budget reported in table 2.2. The formal
error in the h2 estimation can then be assessed by
a covariance analysis. In the here presented simple
case the error can be computed directly as the sum
over all cross-over points N . For the nominal mis-
sion lifetime N is in the order of 16 Mio, for the
extended mission in the order of 60 Mio cross-over
points.

∆h2 =

√√√√2

N∑
i

Vi,1(r, θ, λ, ti,1)− Vi,2(r, θ, λ, ti,2)

g
·dz

(2.33)
After the nominal operation time of one year this
value is 7.0 × 10−3 and decreases to 3.2 × 10−3 at
the end of the extended mission after two years as-
suming that all error distributions are Gaussian.
However, due to the very high number of cross-over
points we expect that non-Gaussian errors will dom-
inate the measurement uncertainty. To identify the
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critical sources we performed a numerical simula-
tion of the measurement described in the following
section.

2.4.2. Numerical Simulation

Most of the error sources affect the cross-over ob-
servable by causing an offset of the actual lateral
position of the laser footprint with respect to the
assumed location. As a consequence the uncer-
tainty of the cross-over observable is driven by the
roughness of the surface. To get a consolidated es-
timate for the accuracy of the tidal amplitude mea-
surement it is therefore required to use an accu-
rate roughness statistic. The scales of interest are
the footprint size (around 50 m) and the spot to
spot distance which is typically a couple of hun-
dred meters. To compute the roughness at these
baselines we used a digital terrain model (DTM)
of the H6 (Kuiper) quadrangle derived from Mer-
cury Dual Imaging System data (Preusker et al.,
2017). To retrieve the respective roughness value
at the baseline of interest we calculated the struc-
ture function (SF) which represents the mean height
difference expected over a certain spatial distance τ
(Shepard et al., 2001). It can be calculated for any
given topography profile z(x) as

S(τ) = lim
L→∞

1

L

∫ L

0

|z(x)− z(x+ τ)| dx, (2.34)

where L is the length of the profile and x is the dis-
tance from the starting point. The SF appears to
follow a power law (Figure 2.5). Since no roughness
information at the footprint size can be directly in-
ferred from the data we extrapolated the SF to the
relevant baselines. This results in a mean height
difference of 12.1 m at the 200 m baseline and 6.4
m at the 50 m baseline.

A random RMS roughness value is chosen for each
cross-over assuming a one-sided Gaussian distribu-
tion with a mean value of µ and corresponding to
the extrapolated statistic at the respective baseline.
The RMS height on a certain baseline is then given
by δ =

√
π
2µ. This value is used for the pointing

and alignment error, interpolation error and cross-
track orbit errors. Further, we consider errors in the
assumed rotational state of Mercury, which will re-
sult in an equivalent effect, causing differential hor-
izontal offsets of the laser profiles. The reference
rotation parameters used to simulate the ground
truth are taken from Stark et al. (2015b). The er-
rors for the spin axis, rotation rate and librations
are generated using a covariance matrix are based

Figure 2.5: Structure Function of Mercury’s
surface as derived from stereo DTM data. The
data points are derived from the quadrangle
H6 (Preusker et al., 2017). The fit parameters
of the line log(y)=a·log(x)+b are a=0.454 and
b=0.371.

on Stark et al. (2015a). Following Mazarico et al.
(2014a) or Steinbrügge et al. (2015), errors for each
orbit n are modeled with random amplitude A and
phase φ generated as

drn(t) = An sin(ωnt+ φn) + Cn (2.35)

= Un sin(ωnt) + Vn cos(ωnt) + Cn, (2.36)

where Un = An cos(φn) and Vn = An sin(φn). For
keeping internal consistency, we further require that
the orbit corrections of consecutive orbits are con-
tinuous at the connecting points

drn(2π/ωn) = drn+1(0). (2.37)

The total error due to the lack of knowledge on
the rotational state is around 2 m i.e., smaller than
the interpolation error, but introduces systematic
errors, which in combination with the systematic
nature of the orbit errors lead to a non-Gaussian
error distribution. As a consequence the numerical
error of the h2 inversion increases despite of the fact
that the linear nature of the problem is preserved.
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Error source Value [m]

Instrument 0.2
Pointing & alignment 9.5
Radial orbit errors 1.8
Rotational state 2.0
Interpolation errors 7.7

Sum 21.2
Quadratic sum 12.5

Table 2.2: Cross-over observable error budget
calculated for a rms roughness of 12.1 m at
200 m baseline, 6.4 m at 50 m baseline and
an albedo of 0.19.

The analysis suggests that h2 cannot be reliably de-
termined during the nominal mission lifetime given
the small tidal amplitude (≈ 20 cm for an h2 ≈ 1)
in the polar regions combined with a high surface
roughness. Also, with a shot frequency of 10 Hz,
we obtain to severe errors in estimates of the cross-
over location. Due to the slow rotation of Mercury,
only very few cross-over points are available in the
equatorial region where higher tidal amplitudes of
around 2 m are expected. Fortunately, in the ex-
tended mission the total amount of available cross-
over points increases from about 16 Mio to ca. 60
Mio and more low latitude points are available. The
statistical result after 20 runs leads to in an error
estimate for h2 of 0.14 after 2 years, significantly
higher than the initial covariance error. The stan-
dard deviation of the simulation results was 0.02.

2.5. Discussion

The updated performance model is a step towards
a realistic description of digital laser altimeters
using filter matching approaches instead of a
classical threshold detection. In the description
by Gunderson et al. (2006) and Gunderson and
Thomas (2010) the calculation of the PFD as a
function of SNR were limited by the assumption of
a filter matching with a single template function.
In effect the actual pulse fitting algorithm shows
a much better performance than expected by a
classical filter matching convolution. Nonetheless,
this effect is counteracted to some extent by an
increased noise level not expected from previous
studies. However, the final instrument performance
has been shown to be still well within the specifi-
cation.
For the application of the instrument performance
into orbital conditions around Mercury it should

be noted that we assume the operation of BELA
independently of any specific operation scenario.
Currently, the baseline scenario foresees to limit
operations to a maximum altitude of 1050 km.
Respecting this restriction would lead to slightly
worse coverage of the Hermean surface and there-
fore to slightly reduced horizontal resolution.
An important result of the simulated h2 inversion
is that the cross-over observable error budget
is dominated by systematic errors while white
noise is negligible due to the very high number
of available cross-over points. The covariance
analysis, which uses a too simplified model may
be misleading. Any parallel solving for other
parameters, like orbit, gravity field or rotational
state of Mercury would increase this covariance
error, but probably not change the error estimate
of the numerical simulation since the error budget
is heavily dominated by interpolation errors which
come along with the 10 Hz shot frequency and the
resulting spacing between the footprints.
The main difficulty in measuring Mercury’s radial
tidal deformation is the unequal distribution of
cross-over points heavily biased towards the poles.
Even if this is a natural consequence of a polar
orbit, the slow rotation rate of Mercury leads to
a very low number of cross-over points at lower
latitudes and since the tidal amplitudes at the
poles are very small, measuring tides can be a
significant challenge.
An alternative method to circumvent this situation
might be to infer h2 by separating the static and
dynamic topography from a spherical harmonics
expansion (Koch et al., 2008, 2010). However, this
method requires a very good surface coverage to
detect such small changes in the topography and is
very sensitive to any systematic errors. Nonethe-
less, the expected accuracy of 0.14 is a valuable
geodetic constraint which might in combination
with the already available observations put better
constraints on Mercury’s interior structure. The
determination of h2 allows for better constraints on
the core size and the density as well as the rheology
of the mantle. Further, other improvements might
lead to a better h2 determination, e.g. a better
performance or reconstruction of the pointing
including which currently contributes the highest
value on the errors.
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2.6. Conclusion

This study proposes a modified performance model
for BepiColombo’s BELA instrument, based on
BELA flight model tests. The performance model
may be generalized and used for performance assess-
ment of other digital laser altimeter experiments as
well. It has been shown that the PFD effects are
not treated propperly in previous work but can be
well fitted by an empirical relation and that the
instrument performance is much better than orig-
inally estimated at a given SNR. In orbit, BELA
will achieve a global coverage of Mercury with max-
imum gaps of 3 km between the ground tracks after
two years of operations. However, when measur-
ing Mercury’s tidal amplitude there are three ma-
jor challenges to overcome: First, due to the slow
rotation of Mercury, only cross-over points at the
polar regions will be available for measurements of
tidal effects. Second, the shot frequency of 10 Hz
leads to interpolation errors in rough terrain, higher
than the expected tidal amplitude requiring direct
studies on predominantly flat areas. And last, since
measurements are concentrated at the poles during
the nominal mission lifetime, an extended mission
will be necessary to reliably determine h2. In that
case, the quadratic growth of the number of cross-
over points over time leads to significantly improved
statistics on one hand and allows for more cross-over
points at lower latitudes on the other hand. After
two years of operation we estimate that h2 can be
measured with an absolute accuracy of 0.14.
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Steinbrügge et al. - Planetary and Space Science (In Press)

2011;59(15):1827 – 1828. doi:10.1016/j.pss.
2011.08.004.

Stark, A., Hussmann, H., Steinbrügge, G., Gläser,
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Abstract

We computed interior structure models of Mercury and analyzed their viscoelastic tidal response.
The models are consistent with MErcury Surface, Space Environment, GEochemistry and Ranging
(MESSENGER) mission inferences of mean density, mean moment of inertia, moment of inertia of man-
tle and crust, and tidal Love number k2. Based on these constraints we estimate the tidal Love number
h2 to be in the range from 0.77 to 0.93. The tidal phase-lag is estimated to be 4◦ at maximum. The
corresponding tidal dissipation in Mercury’s silicate mantle induces a surface heat flux smaller than 0.16
mW/m2. We show that for inner cores above 700 km in radius, the size can be constrained by using the
ratio of the tidal Love numbers k2 derived by past and upcoming radio science measurements and h2 to
be derived from future BepiColombo laser altimeter measurements. The h2/k2 ratio provides a better
constraint on the maximum inner core size with respect to other geodetic parameters (e.g. librations or
a single Love number). The measurement of the tidal phase-lag with an accuracy better than ≈ 0.5◦

would further allow constraining the temperature at the core-mantle boundary and therefore improve our
understanding of the physical structure of Mercury’s core.
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3.1. Introduction

From 2011 to 2015, NASA’s MErcury Surface,
Space Environment, GEochemistry and Ranging
(MESSENGER) spacecraft (Solomon et al., 2011)
orbited Mercury and was able to provide, in com-
bination with Earth-based radar measurements, a
set of geodetic constraints on the interior structure
of the planet. Mercury’s mean radius of (2439.36
± 0.02) km (Perry et al., 2015) in combination
with the gravitational parameter GM of (2.203209
± 0.000091)×1013 m/s2 (Verma and Margot, 2016)
leads to a mean density of 5427.75 kg/m3. This high
value in combination with Mercury’s size indicates
a significant fraction of iron in Mercury’s composi-
tion. The mean moment of inertia has been first
determined by ground-based radar observations of
Mercury’s spin state to a value of C/MR2 = 0.346
± 0.014 (Margot et al., 2007). With updated val-
ues for the gravity field inferred from MESSENGER
radio science observations, a value of 0.349 ± 0.014
was found (Mazarico et al., 2014b). The measure-
ment of the physical librations at the 88 days orbital
period using laser altimetry and stereo imaging data
gave a value of 0.343 ± 0.014 (Stark et al., 2015b;
Baland et al., 2017). A value smaller than 0.4 in-
dicates a concentration of mass towards the center
of the planet, thus indicating the abundant iron is
likely concentrated in a large core. In the Cassini
state, a combination of libration amplitudes, grav-
itational field, and obliquity provides an estimate
of the moment of inertia of the mantle and crust
(Peale, 1976b; Peale et al., 2002). The determined
values range between 0.431 ± 0.025 (Margot et al.,
2012) and 0.421 ± 0.021 (Stark et al., 2015b), re-
vealing an at least partially molten core (Margot
et al., 2007; Margot et al., 2012; Stark et al., 2015b;
Hauck et al., 2013). Further constraints come from
the measurement of Mercury’s tidal Love number
k2. The value indicates the intensity of the gener-
ated gravitational potential due to an internal re-
distribution of mass. This redistribution is a conse-
quence of the tidal forcing that is exerted by the Sun
during Mercury’s orbit. k2 has been determined to
be 0.451 ± 0.014 by Mazarico et al. (2014b) and
0.464 ± 0.023 by Verma and Margot (2016). Based
on the k2 determination of Mazarico et al. (2014a),
Padovan et al. (2014) examined multiple interior
models in agreement with the measurement. The
authors showed that in presence of a liquid core
with known size, k2 is informative with regard to
the mantle properties. They inferred a cold and
/ or rigid mantle and further concluded that the
presence of a previously suggested solid FeS layer

(Malavergne et al., 2010; Smith et al., 2012) is only
consistent with the measurements when the temper-
ature at the core mantle boundary (CMB) is < 1600
K.
The core generates a weak magnetic field with
an unusually large quadropole moment (Anderson
et al., 2012). Possible origins are the classical dy-
namo model (Manglik et al., 2010; Cao et al., 2014)
but also alternative models involving snow forma-
tion dynamics have been proposed (Dumberry and
Rivoldini, 2015). Independent of the model as-
sumed, a key factor of the magnetic field generation
models is the presence and, if it exists, the size of the
inner solid inner core. This work studies the tidal
deformation of Mercury based on the geodetic con-
straints from the MESSENGER mission and shows
that a future determination of the tidal Love num-
ber h2 can yield important constraints on the inner
core size, when combined with the available (or fu-
ture) measurements of k2. We further study the po-
tential range of tidal phase-lags and resulting tidal
heat dissipation in Mercury’s mantle. All the geode-
tic parameters discussed in this paper are expected
to be measured by the upcoming BepiColombo mis-
sion (Benkhoff et al., 2010) scheduled for launch
in October 2018 and operated by the European
Space Agency (ESA) and the Japan Aerospace Ex-
ploration Agency (JAXA).

3.2. Methods

The constructed interior structure models consist
of three chemically separated layers: a core sur-
rounded by a mantle and a crust. While the crust
is kept as one single layer, mantle and core are fur-
ther subdivided into 5 and 20 layers, respectively.
Each sublayer is characterized by its thickness, den-
sity, temperature, pressure, viscosity and rigidity.
It should be noted that unlike previous work (e.g.
Hauck et al. (2013); Knibbe and van Westrenen
(2015)) this work does not aim at randomly generat-
ing the models to create a probabilistic distribution.
Instead we sweep through the parameter space (de-
fined below) in an equally spaced grid without giv-
ing preference to any of the models as long as they
are in agreement with the geodetic constraints. The
parameter space is spanned by the 3-σ error interval
of the measured geodetic constraints, the amount
of light iron-alloying components in the core, where
we account for sulfur and silicon, the CMB temper-
ature, as well as by the crustal thickness and den-
sity. The remaining parameters, i.e. the outer core
radius and reference density as well as the mantle
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density are solved-for.
The construction of the models follows a two-step
approach. In a first step each model is initialized
by a given set of values from the structural and
compositional parameters listed above, i.e. crustal
thickness and density, sulfur and silicon content in
the core, and the CMB temperature. The initial
crust parameters are varied between thicknesses of
10 and 40 km with a step size of 2 km and den-
sities between 2600 and 4000 kg/m3. The density
step size is 10 kg/m3. The sulfur content of the
core is assumed to be between 0 and 14%, varied
with a step size of 1%. The silicon content of the
core is varied between 0 and 26% in a step size of
2%. The temperature at the core mantle boundary
is initially assumed to be between 1400 K for a cold
mantle and 2000 K representing a very hot mantle.
The step size is 10 K.
These values are then combined with a set of the
three geodetic constraints, namely the mean den-
sity (ρ), the mean moment of inertia (MoI) and the
fractional part of the moment of inertia of the man-
tle (Cm/C) to solve for the radius of the outer core
Rc, the reference liquid core density ρ0 as well as
for the mantle density ρm.
For the geodetic constraints we consider values
within the 3-σ error bar. The nominal value used
for k2 is 0.464 ± 0.023 (Verma and Margot, 2016)
but the 3-σ error bar includes the value determined
by Mazarico et al. (2014b). The used mean mo-
ment of inertia is 0.346± 0.014 and has been taken
from Margot et al. (2012) but is consistent with the
value derived by Stark et al. (2015b). The assumed
Cm/C value is 0.421 ± 0.025 and taken from Stark
et al. (2015b). However, within the used error in-
tervals the Cm/C is also consistent with the value
0.431± 0.021 determined by Margot et al. (2012).
A solution is only considered valid if the resulting
model is hydrostatic and if the solved core reference
density is consistent with laboratory measurements
as listed in Table 3.1.
In the second step each solution for the structural
model is provided with a set of different mantle rhe-
ologies, parameterized by the unrelaxed rigidity and
the grain size. For the unrelaxed mantle rheology
we use values between 59 GPa and 71 GPa and a
stepsize of 2 GPa. The grain size is varied between
1 mm and 1.2 cm with a step size of 2 mm. Based
on these, the tidal Love number k2 is calculated and
compared against the measurement. Models which
are not consistent with the measurement inside its
3-σ error bar are discarded.
The two steps - structural and rheological model -
are then repeated with different values for the ini-
tial conditions as well as for different geodetic con-

straints consistent within the respective measure-
ment error bars.

3.2.1. Structural Models

For each set of parameters, the models are built
from outside to inside and generally follow the
recipe from previous studies (e.g. Hauck et al.
(2007, 2013); Knibbe and van Westrenen (2015)).
Assuming the densities in the mantle and crust to
be constant, we compute the pressure and gravi-
tational acceleration at the CMB. From there on,
pressure and temperature of the core are propa-
gated inwards satisfying Equations (3.1) - (3.5).
Equation (3.1) is a third-order Birch-Murnaghan
equation of state giving the pressure P at radius
r as a function of density ρ and temperature T

P (r) =
3K0

2

[(
ρ

ρ0

)7/3

−
(
ρ

ρ0

)5/3
]

·

[
1 +

3

4
(K ′0 − 4)

((
ρ

ρ0

)2/3

− 1

)]
+α0K0(T (r)− T0). (3.1)

T0, ρ0, K0, K ′0 and α0 are the local reference tem-
perature, density, isothermal bulk modulus as well
its pressure derivative and the reference volumetric
coefficient of thermal expansion, respectively. A list
of all parameters used to calculate the properties of
the core in this study can be found in Table 3.1.
The pressure can be calculated from the overlaying

layers by integrating from the outer radius R down
to the current radius r.

P (r) =

∫ r

R

ρ(x)g(x)dx (3.2)

The function g denotes the gravitational accelera-
tion of each layer and can be calculated by

g(r) =
4πG

r2

∫ r

0

ρ(x)g(x)x2dx. (3.3)

The adiabatic temperature profile in the core is ob-
tained by integration of the adiabatic relation

dT

dP
=

αT

ρCp
, (3.4)

where Cp is the thermal heat capacity and α the
thermal expansion coefficient which can be obtained
from

α0K0 = αρ
dP

dρ
. (3.5)

In this work we use a thermal heat capacity for the
core of 825 J/(kgK) (Beutl et al., 1994; Knibbe and
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Steinbrügge et al. - Submitted for publication in JGR-Planets.

Solid Core
Parameter Value Unit Source
T0,Fe 298 K Komabayashi and Fei (2010)
ρ0,Fe 8170 kg m−3 Komabayashi and Fei (2010)
K0,Fe 165.3 GPa Komabayashi and Fei (2010)
K′0,Fe 5.5 - Komabayashi and Fei (2010)

α0,Fe 6.4× 10−5 K−1 Komabayashi and Fei (2010)
T0,Fe3S 293 K Fei et al. (2000)
ρ0,Fe3S 7033 kg m−3 Fei et al. (2000)
K0,Fe3S 150 GPa Fei et al. (2000)
K′0,Fe3S 4 - Fei et al. (2000)

α0,Fe3S 6.4× 10−5 K−1 Fei et al. (2000)
T0,Fe−Si(17wt%) 300 K Lin et al. (2003)
ρ0,Fe−Si(17wt%) 7147 kg m−3 Lin et al. (2003)
K0,Fe−Si(17wt%) 141 GPa Lin et al. (2003)
K′

0,Fe−Si(17wt%)
5.7 - Lin et al. (2003)

α0,Fe−Si(17wt%) 5.5× 10−5 K−1 Uchida et al. (2001), Lin et al. (2003)

Liquid Core
Parameter Value Unit Reference
T0,Fe−Si(17wt%) 1650 K Sanloup et al. (2004)
ρ0,Fe−Si(17wt%) 6300 kg m−3 Sanloup et al. (2004)
K0,Fe−Si(17wt%) 79 GPa Sanloup et al. (2004)
K′

0,Fe−Si(17wt%)
4 - Sanloup et al. (2004)

α0,Fe−Si(17wt%) 9.2× 10−5 K−1 Sanloup et al. (2004)

T0,FeS 1770 K Knibbe and van Westrenen (2015),Sanloup et al. (2000)
ρ0,FeS,a 31524 kg m−3 Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)
ρ0,FeS,b -20012 kg m−3 Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)
ρ0,FeS,c 7019 kg m−3 Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)
K0,FeS,a 780.8 GPa Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)
K0,FeS,b -462.4 GPa Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)
K0,FeS,c 86.6 GPa Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)
K′0,FeS 5.1 - Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)

α0,Fe3S 9.2× 10−5 K−1 Knibbe and van Westrenen (2015),Sanloup et al. (2000),Jing et al. (2014)

Table 3.1: Parameters derived from laboratory measurements used for the computation of the
interior structure of Mercury’s liquid and solid core.

van Westrenen, 2015). By performing the inwards
propagation the problem reduces to solving Equa-
tions (3.1), (3.4) and (3.5). These are solved simul-
taneously for the density ρ at the given depth, the
temperature T , and the coefficient of thermal ex-
pansion α using a Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963) to allow for
self-consistent core models. For models with mixed
Fe-FeS-FeSi composition, the parameters in Equa-
tion (3.1) - (3.5) are linearly interpolated from the
values given in Table 3.1. The bulk modulus of sul-
fur is quadratically interpolated as

K0,FeS = K0,FeS,a·χ2
S+K0,FeS,b·χS+K2

0,FeS,c. (3.6)

At each sublayer the liquidus for the respective sul-
fur and silicon content is checked and if the tem-
perature is lower than the melting temperature at
the corresponding pressure, the state of the core is
switched from liquid to solid. The parametrization
for the liquidus of a sulfur-enriched Fe core is taken
from Dumberry and Rivoldini (2015) and modified
according to Knibbe and van Westrenen (2015) to
account for the further decrease of the melting tem-

perature due to the Si content. The melting tem-
perature of the Fe-S-Si system is then described as
a function of pressure P , sulfur content χS, and sil-
icon content χSi as:

Tm(P, χS, χSi) = Tm,Fe(P )

− Tm,Fe(P )− TeS(P )

χeS
χS

− Tm,Fe(P )− TeSi(P )

χeSi
χSi.

(3.7)

Tm,Fe is the melting temperature of pure iron which
is parameterized as a function of pressure by

Tm,Fe(P ) = a1(P0 + P )a2 , (3.8)

with a1 = 495.5 K GPa−a2, a2=0.42 and P0 = 22.2
GPa (Dumberry and Rivoldini, 2015). In Equation
(3.7), TeS and TeSi are the eutectic temperatures
of the Fe-S sytem with sulfur content χeS and the
Fe-Si system with the silicon content χeSi , respec-
tively. While the Fe-S system is parameterized as a
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function of pressure,

TeS (P ) =



1265K− 11.15(P − 3GPa)K/GPa

for 3 GPa ≤ P < 14 GPa

1143K− 29(P − 14GPa)K/GPa

for 14 GPa ≤ P < 21 GPa

1346K− 13(P − 21GPa)K/GPa

for 21 GPa ≤ P < 60 GPa

(3.9)
and

χeS = 0.11 + 0.187 exp

(
−0.065P

GPa

)
, (3.10)

no information about the eutectic temperature as a
function of pressure is available from experimental
data. We therefore follow the approach of Knibbe
and van Westrenen (2015) and use Tm,Fe(P )− TeSi
= 400 K at 0.26 wt.% Si based on the lab measure-
ments from Kuwayama and Hirose (2004).
The inner core is assumed isothermal and to have

an Fe-Si alloy composition with a silica content be-
ing the same as in the liquid phase. For sulfur con-
tents up to 15 wt.%, sulfur would not precipitate,
for higher contents an additional FeS layer would
form on top of the inner core. In the presence of
silicon it has also been suggested that the liquid
core would partition into a lower Si-rich part and
an upper S-rich part leading to an accretion of solid
FeS in the mantle layer. However, previous stud-
ies (Hauck et al., 2013; Knibbe and van Westrenen,
2015; Padovan et al., 2014) could not confirm the
presence of such a layer and therefore this particu-
lar case is not further treated in this study.
An example model is given in Figure 3.1. The pres-
sure for this model is around 5 GPa at the CMB
and 30-40 GPa in the center, in agreement with
previous studies (Hauck et al., 2013; Dumberry and
Rivoldini, 2015).

3.2.2. Rheological Models

In a second step the rheological model is com-
puted. For this step we follow the same approach
as Padovan et al. (2014) using a Maxwell model for
the core and crust and a pseudo-period Andrade
model for the mantle (Jackson and Faul, 2010). The
tidal Love numbers are then computed using a ma-
trix propagation method (e.g. Segatz et al. (1988))
taking as input the radial profile of density and
complex shear modulus µ, which in the case of a

Maxwell model is given by

µ =
iωµU
iω + µU

η

. (3.11)

In Equation (3.11) ω is the tidal frequency 2π/t
with t being the tidal period, i.e. ≈ 88 days for
Mercury (Van Hoolst and Jacobs, 2003). µU is the
unrelaxed rigidity of the corresponding layer and
η its viscosity. The ratio η/µU corresponds to the
Maxwell time τM of the material. In the case where
τM � 2π/ω the medium reacts fully elastically to
external forces, while in the case τM � 2π/ω the
material is in the fluid regime. We use the Maxwell
rheology for the solid inner core and the crust since
both are assumed to respond elastically and the liq-
uid core is in the fluid regime. However, the mantle
is expected to show a viscoelastic response to the
external tidal potential (τM ≈ 2π/ω) and it has
been shown previously that in this case a Maxwell
description is inadequate (Efroimsky and Lainey,
2007; Nimmo et al., 2012; Padovan et al., 2014).
Therefore, for the mantle we employ the Andrade
pseudo-prediod model introduced by Jackson and
Faul (2010). The complex shear modulus is ex-
pressed as

µ =
1

JR + iJI
, (3.12)

where JR and JI are the real and imaginary parts
of the complex compliance given as

JR =
1

µU
[1

+β∗Γ(1 + α)ω−αp cos
(απ

2

)
], (3.13)

JI =
1

µU
[β∗Γ(1 + α)ω−αp sin

(απ
2

)
+

1

ωpτM
]. (3.14)

In the equations above, µU denotes the unrelaxed
rigidity, α and β∗ are the Andrade creep coefficient
and parameter, respectively, and Γ is the Gamma-
function. The tidal frequency is replaced here by
the pseudo-frequency ωp = 2π/Xb, where Xb is the
pseudo-period master variable (Jackson and Faul,
2010; Padovan et al., 2014). It is temperature- and
pressure-dependent and can be computed by

Xb =T0

(
d

dR

)−m
exp

[(
−EB
R

)(
1

T
− 1

TR

)]
· exp

[(
−V
R

)(
P

T
− PR
TR

)]
. (3.15)

The exponent m characterizes the dependence
on the grain size d. EB is the activation energy
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(a)

(c)

(b)

(d)

Figure 3.1: Example of a structural model consistent with the geodetic constraints. The core
radius is about 2000 km. Figure (a) shows the density profile assumed constant in the mantle
and gradually increasing within the core due to increasing pressure. The phase transition from a
liquid to solid core occurs at a radius of around 500 km. (b) shows the gravitational acceleration
and Figure (c) and (d) the temperature and pressure profiles. The pressure is around 5 GPa at
the core-mantle boundary and between 30 and 40 GPa in the center.

and V the activation volume. R is the ideal gas
constant and PR and TR the reference temperature
and pressure. The unrelaxed rigidity can be
calculated from the temperature and pressure
of the respective layer. We calculate them for
a reference temperature of TR = 1173 K and a
reference pressure of PR = 0.2 GPa (Jackson and
Faul, 2010) as

µU (TR, PR) = µ0 + (T − TR)
dµ

dT

+ (P − PR)
dµ

dP
. (3.16)

For the composite rigidity µ0 we assumed values
between 59 and 71 GPa representing the possi-
ble end members of Mercury’s mantle composition
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(Padovan et al., 2014). dµ/dT is set to 13.6× 10−3

GPa/K and dµ/dP to 1.8 (Jackson and Faul, 2010).
All further parameters used to compute the rheo-
logy in this study are summarized in Table 3.2.
The pressure inside each layer is given by the respec-
tive structural model and the temperature is con-
trolled by the CMB temperature as well as by the
surface temperature, which is set to 440 K (Padovan
et al., 2014). The temperature profile is obtained
by solving the static heat conduction equation

k
1

r2
d

dr

(
r2
dT

dr

)
+ ρH = 0. (3.17)

In our case the assumption of a conductive profile
is justified by the chosen temperature range. On
the upper bound a higher temperature would re-
sult in partial melting of the mantle, and on the
lower bound the mantle would be too cold to con-
vect. For the temperatures in between a convective
profile might be generally possible leading to modi-
fied temperatues. However, these would still fall in
the assumed temperature range and therefore not
significantly modify our results. The heat produc-
tion rate H is set for the crust to Hc = 2.2× 10−11

W·kg−1 (Peplowski et al., 2011). For the mantle we
used Hm = Hc/2.5 (Padovan et al., 2014) in agree-
ment with the enrichment factor derived by (Tosi
et al., 2013). The value of the thermal conductivity
k is set to 3.3 Wm−1K−1. For a given temperature
profile the rigidity and viscosity of each layer can
then be derived from the complex compliance by

µ =
√
J2
R + J2

I (3.18)

η = 1/
√
JIωp. (3.19)

3.3. Results

The resulting models of Mercury’s interior are in
agreement with the currently available literature
constraints. We find models with liquid cores be-
tween 1950 and 2100 km in agreement with Hauck
et al. (2013); Rivoldini and Van Hoolst (2013); Mar-
got et al. (2017). Mantle densities are between 2800
and 4000 kg/m3, a range that covers all cover all
possible composition models for Mercury’s mantle
(e.g. Rivoldini et al. (2009) and Padovan et al.
(2014)).

3.3.1. Tidal Love Numbers

The measured k2 value is on the lower quarter of
all possible interior models. Typical k2 values range
between 0.45 and 0.52 implying that the measured
value argues for a high mantle rigidity, large grain-
sizes and / or a lower temperature at the core-
mantle boundary in agreement with Padovan et al.
(2014). In the considered range of models the tidal
Love number h2 ranges between 0.77 and 0.93. The
corresponding tidal amplitudes are between 1.93 to
2.33 m at the equator and 0.24 to 0.29 m at the
poles. For the tidal Love number l2 we find values
between 0.17 and 0.20. The main parameters con-
trolling h2 are the size of the liquid core and the
unrelaxed rigidity of the mantle, while the sensitiv-
ity to the mantle density is small. Another control
parameter is the temperature at the CMB because
it strongly influences the mantle viscosity.

3.3.2. Inner Core Radius

The size of Mercury’s inner core is a key param-
eter to understand the workings of the planetary
dynamo. Further, Peale et al. (2016) showed that a
solid inner core would raise an additional torque on
the silicate shell due to its non-spherical shape. As
a consequence the resulting C/MR2 would change
it’s value based on the size and density of the solid
core. Based on the MESSENGER results, the ra-
dius of the inner core is assumed to be smaller than
≈ 1300 km (Dumberry and Rivoldini, 2015; Knibbe
and van Westrenen, 2015) with smaller core sizes
being favored. However, no direct measurements
are currently available and it is not evident that an
improved measurement accuracy will lead to a di-
rect detection (Margot et al., 2017). Therefore, an
uncertainty in Mercury’s moment of inertia persists.
The measurement of h2 is listed among the objec-
tives of the BepiColombo Laser Altimeter (BELA)
aboard the BepiColombo mission (Thomas et al.,
2007). An important advantage of having both tidal
Love numbers is that certain trade-offs among the
parameters can be suppressed by combining them.
The main parameter controlling the magnitude of
k2 and h2 in case of Mercury is the existence of a
liquid core. Further, the amplitude of the tidal de-
formation is controlled by the mantle rheology. For
the given geodetic constraints, and for each Love
number individually, the magnitude is mainly con-
trolled by the thickness and rheological properties
of the mantle while the presence of an inner core
has only a minor influence (Figure 3.2a). However,
a linear combination as well as the ratio h2/k2 can-
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Parameter Symbol Value Unit Reference
Crust rigidity µU 55 GPa Padovan et al. (2014)
Crust viscosity η 1023 Pa s Padovan et al. (2014)
Liquid core rigidity µU 0 GPa -
Liquid core viscosity η 0 GPa -
Solid core rigidity µU 100 GPa Padovan et al. (2014)
Solid core viscosity η 1020 Pa s Padovan et al. (2014)
Andrade creep coefficient α 0.33 - Jackson and Faul (2010)
Andrade creep parameter β 0.02 - Jackson and Faul (2010)
Reference temperature TR 1173 K Jackson and Faul (2010)
Reference pressure PR 0.2 GPa Jackson and Faul (2010)
Reference grain size dR 3.1 µm Jackson and Faul (2010)
Grain size exponent m 1.31 - Jackson and Faul (2010)
Activation volume V 10−5 m3 mol−1 Jackson and Faul (2010)
Activation energy EB 303 MJ mol−1 Jackson and Faul (2010)

Table 3.2: Rheologic parameters used in the computation of the tidal Love numbers.

cels out the ambiguity to a certain extent. In pres-
ence of a density contrast between a solid core and
a liquid core, the size of an inner core is noticeable
when combining both Love numbers. It should be
noted that the density contrast alone is not suffi-
cient to observe the effect, the inner core must be
in a predominantly elastic regime, i.e. τM > 2π/ω.
The effect is further not limited to the given range of
k2 but also noticeable when assuming much higher
values. The linear combination 1+k2−h2 is known
as the diminishing factor, which has been proposed
previously to better constrain the ice thickness of
Jupiter’s moon Europa (Wahr et al., 2006) and of
other icy satellites as Ganymede (Steinbrügge et al.,
2015). For small solid cores however, the effect is
barely noticeable, and a measurement of the respec-
tive ratio or linear combination would allow the de-
termination of an upper bound for the size of the
inner core but the determination of the actual ra-
dius would have a significant uncertainty due to the
remaining ambiguity. The ratio h2/k2 is affected by
a similar behavior, however is less ambiguous for
larger cores. Therefore, for inner cores > 700 km in
radius and with a 1%-level accuracy in the determi-
nation of h2, the inner core size can potentially be
inferred to roughly ± 100 km.

3.3.3. Phase-lags

Since the tidal Love numbers are complex numbers
they are not only characterized by their amplitude
but also have a phase which is a function of the rhe-
ological parameters. The tidal phase-lag is defined
as

arctan(ϕk2) =
Im(k2)

Re(k2)
. (3.20)

Re(k2) and Im(k2) are the real and imaginary part
of the complex number k2, respectively. In the elas-
tic and fluid limit of the rheology, the Maxwell-time
is either significantly larger or lower than the forc-
ing period, in which case the body reacts instantly
to the tidal forcing. Such a case implies further that
no heat is dissipated. The more the forcing period
approaches the Maxwell-time, the more the body
reacts visco-elastically and the more heat is dissi-
pated. The tidal dissipation can be derived from a
multipole expansion in eccentricity and inclination.
To zero-th order inclination and fourth order in ec-
centricity the mean tidal dissipation rate can then
be derived from Makarov and Efroimsky (2014) as

Ė =
GM2

SunR
5n

a6
Im(k2)

(
3

4
− 39

16
e2 +

2043

32
e4
)
.

(3.21)

A particularity of the 3:2 resonance is that the
tidal dissipation barely depends on the eccentricity.
Therefore, a body with a low Im(k) but a significant
eccentricity like Mercury does not dissipate much
tidal energy. The main source of tidal dissipation
on Mercury is the mantle, however the maximum
values for Im(k2) consistent with the geodetic con-
straints range between 0.02 and 0.03 corresponding
to a phase-lag of less than 4◦ (Figure 3.3). This re-
sult is consistent with the maximum value derived
by Baland et al. (2017) estimated from the spin ori-
entation. The maximum tidal dissipation expected
from Equation (3.21) is then equivalent to a sur-
face heat flux < 0.16 mW/m2. Since the viscosity
is mainly controlled by the temperature and grain
size, a measurement of a tidal phase-lag with an ac-
curacy better than 0.5◦ would however help to fur-
ther constrain the temperature at the core-mantle
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(a)

(c)

(b)

(d)

Figure 3.2: (a) Full range of tidal Love number k2 as a function of inner core size. No direct
dependence can be inferred within the measured k2 range (dashed lines). (b) The tidal Love
number h2 for the subset of models in agreement with the k2 error interval from Figure (a).
The result is ambiguous, the observable trend is given by the strong correlation with k2. (c)
Using the ratio h2/k2 is less ambiguous and therefore allows setting an upper limit on the core
size. (d) The same effect can be principally observed using the linear combination 1 + k2 − h2,
however provides a less strict constraint.

boundary and therefore also further constrain the
physical state of the core. The caveat at this point
is that even small amounts of iron have an influence
on the mantle viscosity and can lead to lower val-
ues (Zhao et al., 2009). A low grain size can have
a similar effect (Figure 3.3). This might also lead
to a lower Maxwell time and therefore to a bigger
phase-lag.

The h2 and k2 phase-lags of Mercury are expected
to be almost identical. This is in contrast to the
case of icy satellites, where the phase-lag difference
can be indicative for dissipation in the deep interior
(Hussmann et al., 2016). The maximum difference
is expected to be 0.2◦ but due to the small radial
amplitudes the phase-lag of k2 is more likely to be
measured than the h2-lag (see section 3.4).
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(a) (b)

Figure 3.3: Phase-lag of (a) k2 and (b) h2 as a function of the temperature at the core-mantle
boundary. The difference between both phase-lags is < 0.2 at maximum and therefore barely
noticeable.

3.4. Discussion and Conclusion

We constructed a broad range of Mercury inte-
rior models compliant with MESSENGER mea-
surements of mean density, moment of inertia and
Cm/C within their 3-σ range. Our approach to
sample the parameter space in a regular grid is cho-
sen to assure that all possible models in agreement
with the measurement constraints are represented
in our analysis. If our current understanding of the
interior structure of Mercury is correct, then a mea-
surement of the tidal Love number h2 should fall
within the range of 0.77 to 0.93. The corresponding
tidal deformations from peak-to-peak are between
1.93 and 2.33 m at the equator and between 0.24
and 0.29 m at the poles. Refined measurements of
the moment of inertia, Cm/C and k2 are expected
to further constrain the range. The remaining un-
certainties should mainly be captured inside the pa-
rameters used for the interior modeling. While for
the most part these values rely on laboratory mea-
surements, an uncertainty linked to the composi-
tion of the core remains and a measured h2 number
outside the predicted range could point out inaccu-
rate assumptions of present-day interior models. In
the case of a compliant measurement the remaining
range of possible values is particularly valuable to
obtain additional constraints on the inner core size.
The current literature assumption is that the inner
core is small, i.e. < 1000 km in radius (Margot

et al., 2017). This assumption could be confirmed
or rejected with the proposed h2/k2 measurement.
In case of a small core however, the inner core size
is unlikely to be constrained any further due to the
remaining ambiguity in the interior models and the
little sensitivity of h2/k2 to a small inner core (Fig-
ure 3.2c). In case of an inner core with a radius
above 1000 km, its size could be constrained due to
the rapid growth of the h2 over k2 ratio. Therefore,
it would also allow for reassessing the moment of in-
ertia and providing constraints for models address-
ing Mercury’s core dynamics and related magnetic
field generation. However, it requires that the tidal
Love number h2 can be measured with the suffi-
cient accuracy since the measurement of k2 alone is
not informative, unlike previous authors suggested
(Spohn et al., 2001). Assuming that the h2 deter-
mination dominates the h2/k2 error at the upcom-
ing BepiColombo mission, an absolute accuracy of
< 0.05 in h2 would be needed to discriminate be-
tween a large and a small core. For an h2 value
of 0.8 this corresponds to a measurement error of
6%. This is close to the estimated 7% by Koch
et al. (2010) for the BepiColombo Laser Altimeter
(BELA) (Thomas et al., 2007). The authors sug-
gest inferring h2 from the time dependency of the
spherical harmonics expansion of Mercury’s topog-
raphy. However, their estimation assumes a mis-
sion life time of four years and does not treat a
wide range of systematic errors (e.g. instrument
alignment or rotational state). Indeed, due to the
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low tidal amplitudes and the 10 Hz shot frequency
of BELA an accurate-enough determination will be
very challenging. Alternative methods, like cross-
over measurements suffer from the low-rotation rate
of Mercury and a consequently low amount of cross-
over points at lower latitudes during the nominal
mission. While being in the range of what is tech-
nically feasible, the success of the measurement will
depend on the final instrument performance in or-
bit, the mission lifetime, the accuracy of the align-
ment calibration as well as on the quality of the
orbit reconstruction.
The tidal phase-lag is inferred to be lower than 4◦.
The tidal dissipation would then correspond to a
surface heat flux of < 0.16 mW/m2. A measure-
ment of the tidal phase-lag can allow for constrain-
ing the temperature at the core-mantle boundary
under the condition that the profile is conductive,
which seems to be the case based on thermal evo-
lution models (Tosi et al., 2013; Padovan et al.,
2017), and thereby further constrain the physical
state of Mercury’s core. The accuracy on the real
and imaginary part of k2 has been estimated for the
Mercury Orbiter Radio Experiment (MORE) (Iess
et al., 2009) on board of the upcoming BepiColombo
mission to be 2.6× 10−4 (Imperi et al., 2018). This
allows for a phase-lag measurement with an accur-
cay of < 0.1◦ and therefore provides the needed
precision. An estimate for the h2 phase-lag is cur-
rently not available, however due to the small ex-
pected radial amplitudes unlikely to be measured.
We expect it to be very similar to the k2-lag and
below 4◦. Therefore, refined measurements of Mer-
cury’s gravity field and librations together with a
simultaneous determination of h2 as well as both,
the real and imaginary part of k2 by the upcom-
ing mission can constrain the interior structure of
Mercury, including the inner core size and the tem-
perature profile, to an unprecedented level.
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Abstract

Invaluable information about the interior of icy satellites orbiting close to the giant planets can be gained
by monitoring the response of the satellite’s surfaces to external tidal forces. Due to its geodetic accuracy,
laser altimetry is the method of choice to measure time-dependent radial surface displacements from orbit.
We present an instrument performance model with special focus on the capabilities to determine the
corresponding tidal Love number h2 and apply the model to the Ganymede Laser Altimeter (GALA) on
board of the Jupiter Icy Moons Explorer (JUICE). Based on the instrument and spacecraft performance,
we derive the range error and the measurement capabilities of the GALA instrument to determine the
amplitude of the tide induced radial displacement of Ganymede’s surface using the cross-over technique.
We find that h2 of Ganymede can be determined with an accuracy of better than 2 % by using data
acquired during the nominal mission. Furthermore, we show that this accuracy is sufficient to confirm
the presence of a putative subsurface water ocean and, additionally, to constrain the thickness of the
overlaying ice shell to ± 20 km.
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4.1. Introduction

The interior structure of Ganymede as we under-
stand it today, mainly from the results of the Galileo
mission (Anderson et al., 1998), can be subdivided
into five structural layers: An iron core, composed
of Fe-FeS sustaining the intrinsic magnetic field
by dynamo action (Schubert et al., 1996), is sur-
rounded by a silicate rock mantle and overlain by an
ice shell, which can be further divided into an inner
high-pressure ice layer (ice III / ice V / ice VI) and
an outer ice I layer (Sohl et al., 2002; Vance et al.,
2014). Measurements of induced magnetic fields
(Kivelson et al., 2002) and recent Hubble Space
Telescope observations (Saur et al., 2015) suggest
that between the two ice zones a globe-encircling,
briny subsurface water ocean may be located. Also,
alternating layers between high pressure ices and
salty liquid water were conceived by Vance et al.
(2014).

However, interior structure models consistent with
Ganymede’s mean moment of inertia and total mass
can constrain neither the ice thickness nor the ocean
depth. In order to reduce the ambiguity of the
structural models, it has been proposed to measure
the dynamic response of Ganymede’s ice shell to
tidal forces exerted by Jupiter and characterized by
the body tide Love numbers h2 and k2 (Moore and
Schubert, 2003). Similar strategies have been inves-
tigated in application to Europa (Moore and Schu-
bert, 2000; Wu et al., 2001; Wahr et al., 2006; Huss-
mann et al., 2011). While k2 describes the tidal sec-
ondary potential induced by the mass redistribution
as a consequence of the external forcing, the Love
number h2 expresses the corresponding radial am-
plitude ur of the tidal deformation. It depends on
the tidal forcing frequency, the internal structure,
and the rheology but in particular on the presence
of intervening fluid layers below the surface and the
thickness and rigidity of an overlaying ice shell.
In section 4.2, a numerical model designed to esti-
mate the range measurement error and a covariance
analysis aiming at the accuracy of the h2 measure-
ment will be presented. This model will then be
applied to the Ganymede Laser Altimeter (GALA)
in section 4.3. Toward the end of this section, the
derived error will be used further to assess the level
of accuracy at which the ice-I thickness can be de-
termined. The obtained results and the limitations
of the presented model will then be discussed in sec-
tion 4.4, and finally some conclusions are drawn in
section 4.5.

4.2. Method and Model
Description

4.2.1. Ganymede Tides

The radial surface displacement ur can be measured
by laser altimetry as time-dependent variation of
the degree-2 shape

ur =
h2Φ(r, θ, φ, t)

g
, (4.1)

where Φ(r, θ, φ, t) is the time-dependent tidal po-
tential as a function of the spherical coordinates.
Here r denotes the radial distance, θ and φ are re-
spectively the co-latitude and longitude of a point
on Ganymede’s surface, and g is the gravitational
acceleration g = GMp/R

2, with Mp and R be-
ing Ganymede’s total mass and radius. The tidal
potential Φ(r, θ, φ, t) on a satellite in synchronous
rotation with Jupiter has been described by e.g.,
Segatz et al. (1988), Moore and Schubert (2000)
and Hussmann et al. (2011) and can be expressed
up to second degree as

Φ(r, θ, φ, t) = r2ω2e[−3

2
P 0
2 (cos θ) cosM

+
1

4
P 2
2 (cos θ)(3 cosM cos 2φ+ 4 sinM sin 2φ)],

(4.2)

where e and ω are respectively the eccentricity
and main tidal frequency and M denotes the mean
anomaly of Ganymede with respect to Jupiter.
P 0
2 (cos θ) and P 2

2 (cos θ) are the associated Legen-
dre polynomials

P 0
2 (cos θ) =

3 cos2(θ)− 1

2
(4.3)

P 2
2 (cos θ) = 3(1− cos2 θ). (4.4)

The potential has a maximum amplitude ΦMax at
the surface of 3.2 × r2ω2e. The double amplitude
(peak-to-peak) of the tidal deformation, assuming
a typical h2 value of 1.3, is shown in Fig. 4.1 (left)
and can reach up to 7 m in the case that a subsur-
face ocean is present.
Thus, since the tidal potential of the body is pre-
cisely known, measurements of the radial displace-
ment ur leads to the determination of h2, which in
turn directly depends on the interior structure, es-
pecially the thickness of the outer ice shell and the
corresponding rheological parameters. The tidal
potential can be extended by an additional term
yielding the obliquity of the body (e.g. Kaula
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Parameter Symbol Unit Value
Radius R km 2631.2± 1.7
Mean density ρ kg m−3 1942.0± 4.8
Moment-of-inertia factor MoI kg m2 0.3115± 0.0028
Gravitational parameter GMp km3 s−2 9887.83± 0.003
Eccentricity e - 0.0015
Main tidal period 2π/ω d 7.155

Table 4.1: Ganymede equilibrium and gravity parameters. All values are taken from Schubert
et al. (2004).

(1964); Wahr et al. (2009)). This work neglects this
term since we assume the obliquity to be known af-
ter the spacecraft arrives in Ganymede’s orbit and,
therefore, should not have significant impact on the
h2 measurement from a technical point of view.

4.2.2. Instrument and Mission Setup

The measurement of Ganymede’s tide-induced
radial surface displacement amplitudes will be
one of the main scientific goals of the Ganymede
Laser Altimeter (GALA), which is one of the
instruments selected for the Jupiter Icy Moons
Explorer (JUICE) of the European Space Agency
(ESA) (Grasset et al., 2013). The launch of
the spacecraft is scheduled for 2022 and, after a
cruise time of eight years, it will start its Jovian
tour with several flybys at Europa and Callisto
before entering into Ganymede orbit. GALA is
built on the heritage of the BepiColombo laser
altimeter BELA (Thomas et al., 2007) under the
responsibility of the German Aerospace Center
(DLR). The technical key parameters of GALA in
comparison to the BELA instrument are summa-
rized in Table 4.2. The determination of the tidal
Love number h2 requires altitude measurements
temporally distributed over the tidal cycle of the
body under investigation. The JUICE spacecraft
will be first inserted into an elliptical 200 × 10,000
km orbit. However, the main operational phase for
the GALA instrument will be after a period of five
month when the JUICE spacecraft is transferred
in a polar circular orbit with 500 km altitude.
The nominal operational time in this orbit is
132 days. During this time the laser altimeter
ground tracks will intersect at certain locations
known as cross-over points, which can be derived
from the spacecraft trajectory containing the
current mission profile by using a dedicated search
algorithm (the SPICE kernel used in this study
is referenced as JUP A5D 140A LAU FIN BET 500).
Since the number of cross-over points increases

quadratically with the number of orbits, this leads
to a total of 1,068,126 cross-over points, mostly
concentrated in the polar regions. The change
in tidal distortion can then be inferred from a
differential height measurement using two passes
above one cross-over point. Fig. 4.1 (right) shows
the maximal measurable amplitudes in a grid
with a resolution of 1◦ × 1◦ in comparison to the
expected tidal pattern. It has been considered
that JUICE will not conduct science operations
continuously due to eight hours per day reserved
for downlink communication. The remaining 16
hours operational time will lead to a reduction of
cross-over points to N = 480, 220. Nonetheless,
the pattern of the tidal potential can be clearly
recognized. Note that the figure also contains
cross-over points provided by the Ganymede flybys,
which appear on the chart as equatorial stripes in
the eastern hemisphere. The similar looking stripes
in the northern hemisphere belong to the high
elliptical insertion phase. While in the white areas
no data is available from cross-over measurements,
the black pattern is formed by areas where the two
height measurements are performed at the same
tidal phase. These black spots do not contribute
to the tidal measurement but have the potential to
help with the calibration of the instrument and to
provide additional constraints on the orbit errors
for those tracks.

4.2.3. General Model Description

Since at a cross-over point with the surface coordi-
nates (θ, φ) the static topography cancels out, the
difference of the range measurements du at each
cross-over point can be expressed as

du =
h2
g

(Φ1(r, θ, φ, t1)−Φ2(r, θ, φ, t2))+drn1−drn2.

(4.5)
The two measurements originate from two passes
over this point at the times t1 and t2. It has been
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Parameter Symbol Unit BELA GALA
Energy Et mJ 50 17
Wavelength λt nm 1064 1064
Frequency fq Hz 10 30
Pulsewidth σ0 ns 3.4 2.9
Divergence (full cone) ΘT µrad 50 100
Telescope radius rR cm 10 12.5
Field of view (full cone) ΘFOV µ rad 495 450
Optical efficiency εRO 0.84 0.85
Optical filter efficiency εRF 0.8 0.8
Optical filter bandpass σRF nm 2 2
Quantum efficiency εQE 0.36 0.36
APD dark current (bulk) IDB pA 50 50
APD dark current (surface) IDS nA 20 20
Maximum gain M 150 150
TIA bandwidth B0 MHz 20 100
Digital filter width σf ns 5-60 5-60

Table 4.2: Comparison between the BELA and assumed GALA instrument parameters.

shown useful in practice to add a large number
of parameters representing vertical orbit errors at
the orbital frequency of the spacecraft (compare to
Mazarico et al. (2014a)). Here, the orbit errors are
modeled by a sine function and a constant term.
The error drn of the n-th spacecraft orbit is there-
fore given by

drn(t) = An sin(ωnt+ φn) + Cn (4.6)

= Un sin(ωnt) + Vn cos(ωnt) + Cn, (4.7)

with Un = An cos(φn) and Vn = An sin(φn). While
the sine term represents a periodic orbit error at
the orbital period, the constant Cn also accounts
for distortions at longer periods which can, how-
ever, be assumed as constant on the time scale of
one spacecraft orbit (≈ 3 to 4 hours). For the sake
of internal consistency, we require that the orbit
corrections of neighboring orbits are continuous at
the connecting points

drn(2π/ωn) = drn+1(0). (4.8)

Inserting eq. 4.7 in eq. 4.8 results into the con-
straint

Vn − Vn+1 + Cn − Cn+1 = 0. (4.9)

Eq. 4.5 together with the constraints of eq. 4.9
formulates a linear model which can be solved by
a least-squares adjustment. The unknown parame-
ters forming the parameter vector x are h2 and one
set of Un, Vn and Cn for each orbit. While the de-
sign matrix A is composed of the derivatives of eq.
4.5 with respect to the parameters, B contains the

constraints given by eq. 4.9. The solution of the
problem is given by(
x
-k

)
=

(
ATA BT

B 0

)−1(
ATO
0

)
= N−1

(
ATO
0

)
.

(4.10)

Here O contains the observations on each cross over
point and k are the Lagrange multipliers solving the
system. However, in this particular case we are not
aiming at solving for the parameter vector x since
no observations are available yet. Instead we are
foremost interested to determine how sensitive to
h2 the measurement is. Such a covariance analy-
sis is justified here since the model is linear in h2
while, by introducing several degrees of freedom,
still having the necessary degree of complexity in
order not to underestimate the error. The sensitiv-
ity we define as Γ = 1/

√(
N−1

)
h2

, where
(
N−1

)
h2

denotes the matrix element of N−1 associated with
the h2 parameter. Assuming that the mean alti-
tude measurement error is σz and since one tidal
measurement consists of two altitude measurements
the error estimate of h2 is then:

∆h2 =

√
2 · σz
Γ

=
√

2
(
N−1

)
h2
· σz. (4.11)

The accuracy of the measurement of the h2 value is
therefore dependent on two main components:

• The number and distribution (in space and
time) of cross-over points available for evalu-
ation after the mission lifetime. This point is
driven by the orbit, the mission lifetime and
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Figure 4.1: Expected tidal double amplitudes on Ganymede in the presence of a global ocean
(left) and maximal measurable amplitudes by the cross-over technique based on the JUICE
trajectory and projected on Ganymede’s surface (right).

the operation scenario for the instrument and
can be expressed by the sensitivity factor Γ.

• The accuracy of one tidal measurement which
is dependent on the error budget driven by
the instrument and spacecraft performance
and expressed by the mean measurement er-
ror σz.

The mean measurement error must be assessed by
analyzing the single error sources, where the first
one is the instrument itself and can be quantified
by an instrument performance model.

4.2.4. Instrument Performance Model

The BELA and GALA instrument are both de-
signed for harsh, though very different environ-
ments. While BELA must be expected to face hot
temperatures in the proximity of the Sun, GALA
will investigate Jupiter’s icy moons in a cold, irra-
diated environment, additionally restricted by low
power and downlink budgets. However, besides the
thermal and mechanical design which is adapted to
the respective environment, the working principle
of both instruments follows the same baseline de-
sign. While a general performance model for laser
altimetry has been provided by Gardner (1992), the
model used in this study is based on the perfor-
mance model developed for BELA in order to ac-
count for the specific instrument design and the spe-

cial needs of modeling the signal of a digital laser
altimeter. The complete model is described in detail
in Gunderson et al. (2006) and in Gunderson and
Thomas (2010). It is a predominantly analytical
model taking into account a wide set of instrument
parameters as well as the surface roughness, albedo,
illumination conditions and spacecraft position. It
allows computing the signal to noise ratio (SNR) as
well as the single shot probability of false detection
(PFD). From the SNR an estimate for the ranging
accuracy can be obtained which will provide the in-
strument error for the present analysis.

4.2.5. Spacecraft Pointing Error

In addition to the instrumental error, a significant
contribution to the overall error budget comes from
the pointing accuracy. Here we distinguish three
different pointing errors. First the absolute point-
ing error ∆Φ which is the difference between the
intended pointing angle and the measured pointing
angle. This error has no contribution to the error
budget since it can be measured by the star tracker
of the spacecraft and is therefore known. The sec-
ond pointing angle is the inertial spacecraft point-
ing knowledge ∆φi, which is the difference between
the measured pointing angle and the actual point-
ing angle. We assume that this error is < 10 arcsec.
The third angle is the guidance pointing angle ∆φg
which is the result of the uncertainty in the tra-
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jectory of the spacecraft in cross- and along-track
direction. A value of 20 arcsec has been taken here,
which corresponds to an orbit knowledge along and
cross-track on the order of 20 m. Further, it has to
be considered that the line of sight of the instru-
ment will not be perfectly co-aligned to the nadir
axis of the spacecraft inertial frame. This misalign-
ment, even if measured on ground, is subject to
change due to vibrations at launch and therefore
needs to be calibrated in cruise. The possible op-
tions to realise this are by laser ranging to Earth
or by cross-calibration with a camera system (e.g.
the navigation camera or the JANUS instrument).
The residual of the calibration ∆φa by laser rang-
ing is limited by the inertial pointing error of the
spacecraft and the beam divergence of GALA. The
resulting error due to misalignment is therefore esti-
mated to be 14 arcsec. All pointing and alignment
errors can be assumed to be uncorrelated so that
the total pointing error is

∆φ =
√

∆φ2i + ∆φ2g + ∆φ2a. (4.12)

The error in the range measurement due to the
pointing knowledge can now be expressed as a func-
tion of the spacecraft altitude H and the surface
slope α as

δzpoint = H tan(∆φ) tan(α). (4.13)

This expression is consistent with that of Gardner
(1992) and will present one of the major contribu-
tions to the range measurement error.

4.2.6. Other Error Sources

Further contributions to the error budget come from
the finite shot frequency fq (30 Hz in the nominal
operation mode). The laser footprints are not nec-
essarily situated directly on the cross-over point but
in order to get the corresponding height the adja-
cent footprints must be used for interpolation. This
results in an interpolation error also dependent on
the surface slope α and the spacecraft ground ve-
locity v with a maximum value of

δzinterp =
v

2fq
tanα. (4.14)

4.2.7. Numerical Simulation

To assess the mean measurement error σz of the
cross-over measurements over the mission lifetime,
we first determine all cross-over points including

their altitude, coordinates on the surface, phase
angle to the Sun and the spacecraft velocity over
ground. However, for the quantitative determina-
tion of the error contributions described in section
4.2.4 to 4.2.6 also the surface slope is required.
Since this information is not available on footprint
scale (≈ 50m) we use global slope distributions de-
rived from Voyager and Galileo data (Berquin et al.,
2013). The slope is then assigned statistically but
following Ganymede-specific slope statistics. Dur-
ing the mission lifetime we will have on the order of
105 cross over points, thereby justifying the use of
a Monte Carlo simulation in which errors are ran-
domised, assuming an error-specific distribution for
the contributions given in sections 4.2.4 to 4.2.6.
The pointing error is assumed to jitter around the
intended pointing angle leading to a Gaussian dis-
tribution. The interpolation error depends on the
distance between the cross-over point and the clos-
est laser footprint of a given track. We assume that
this distance is equally distributed between zero
and the half of the maximum distance betweeen
two laser spots making a linear distribution of the
interpolation errors plausible. An overview of all
included errors with their assigned distribution is
given in table 4.3.

4.3. Application and Results for
the GALA Experiment

4.3.1. Measurement Error

For the numerical model we derive the altitude and
illumination conditions from the JUICE trajectory
and assign a slope according to the given statistics
to all the cross-over points. The instrument error
can then be estimated by calculating the SNR ac-
cording to equation (26) in Gunderson and Thomas
(2010). The main environmental factors influencing
the instrument accuracy are the spacecraft altitude,
the surface roughness on footprint scale and the so-
lar infrared noise. However, the latter can be seen
as the smallest influence in the case for the GALA
instrument due to the large distance from the Sun.
The rangefinder module of GALA is able to detect
a signal within a SNR of 1 in order of magnitude.
Assuming an albedo of 0.44 and the instrument
characteristics in Tab. 4.2 the detection limit is at
about 1600 km altitude for a surface with moder-
ate slope while decreasing with rising surface rough-
ness as shown in Fig. 5.3.1. For the circular orbits
around Ganymede at almost constant altitude we
considered the PFD for different albedo values A
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Error source Symbol Slope dependent Distribution
Instrument error σinstr yes Gaussian
Pointing error σpoint yes Gaussian
Other errors σmisc no Constant
Interpolation error σinterp yes Linear

Table 4.3: Overview on the error contributions and applied statistics

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60

S
p

a
ce

cr
a

ft
 a

lt
it

u
d

e
 [

k
m

]

Surface roughness [deg]

3

2

1

0

-1

-2

Figure 4.2: Contours of decadic logarithm of
the SNR as a function of spacecraft altitude
and surface roughness.

from 0.2 to 0.6. Due to albedo variations it is re-
quired that the instrument is able to operate for
the defined worst case condition of A = 0.2. If we
translate the SNR into a PFD according to equa-
tion (43)-(49) in Gunderson et al. (2006) for the
500 km orbit, the PFD is < 0.1 for areas with 30◦

surface roughness (Fig. 4.3), which is considered to
be the detection limit for operation in this study.
For higher albedo values, even pulses returned from
terrain with roughness up to 53◦ can be detected.
The numerical analysis has been performed using
100 simulation runs, a number which led to suffi-
ciently stable results. The numerical results of the
error budget are reported in table 4.4.

The sensitivity Γ of the h2 determination to the cal-
culated measurement error can be assessed numeri-
cally according to section 4.2.3. Note that since the
model is linear in h2 the sensitivity factor is inde-
pendent of the actual h2 value but depends on the
number and distribution of cross-overs available for
the analysis and is therefore dependent on the mis-
sion and operational scenario. We consider a sce-
nario where GALA is operating continuously except
8h per day, which are reserved for downlink commu-
nication. Starting from this orbit scenario one can
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Figure 4.3: Single shot probability of false de-
tection (PFD) in dependence of the surface
roughness. Shown are three different cases for
albedo values ranging from 0.2 corresponding
to dark terrain on Ganymede’s surface to 0.6
for fresh icy terrain.

assess the respective number of cross-overs available
for the post-processing and derive the sensitivity of
the h2 value with respect to the range measurement
errors. In this specific case, we obtain:

Γ = 342.70.

Inserting Γ and the calculated mean measurement
error from table 4.4 in equation 4.11, we get an
estimate for the error in the h2 determination of

∆h2 = 0.026

for the assumed operational scenario.

4.3.2. Implication on the Ice Thickness

The numerical model of the GALA experiment pro-
vides an estimate of the accuracy of the h2 mea-
surement based on a combination of the predicted
instrument performance and the amount and dis-
tribution of cross-over points on Ganymede’s sur-
face. The measurement error of a single cross-over
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Steinbrügge et al. - Planetary and Space Science (2015) - vol. 117 pp. 184-191

Error source Symbol Mean value [m] Standard deviation [m]
Instrument σinstr 1.45 <0.01
Pointing & alignment σpoint 5.72 0.02
Interpolation σinterp 1.80 <0.01
Others σmisc 1.6 -
Total mean error σz 6.38 0.03

Table 4.4: Total error budget for GALA. The single error contributions are assumed to be
uncorrelated so the total mean error has been calculated by the square sum.

point is on average 6.4 m. Assuming a continuous
operation (interrupted by 8h downlink per day) in
orbit around Ganymede, this leads to a total error
of 2.0% in h2 (assuming h2=1.3). This accuracy is
sufficient to unambiguously confirm or disprove the
existence of an ocean underneath Ganymede’s outer
ice shell. Furthermore it can be used to constrain
the thickness of the ice shell in the presence of an
ocean.
Table 4.5 shows a plausible structural model for
Ganymede’s interior consistent with the total mass
and mean moment of inertia (MoI) as measured by
the Galileo mission (Anderson et al., 1998). Com-

Layer Radius [km] Density [kg/m3]
Core 800 5900
Mantle 1881 3080
HP-ice 2331 1310
Ocean & ice-I 2631.2 1000

Table 4.5: Reference model of Ganymede’s in-
terior structure.

puting the Love number h2 for this model using a
fully elastic rheology with varying ocean thickness,
the error of h2 can be directly translated in an error
of the outer ice shell thickness. For the computa-
tion of h2 a numerical integration of the linearized
field equations has been used (Segatz et al., 1988;
Wieczerkowski, 1999; Hussmann et al., 2011). Fig.
4.4 shows the dependence of the ice thickness for the
model of table 4.5. An accuracy of ±2.0% leads to
a constraint on the ice-I thickness down to less than
± 20 km. In the first instance this result must be
regarded with caution due to specific assumptions
in the numerical model. In particular the impact of
the operation scenario, structural model, viscosity,
and rigidity will be discussed in the next section.

Figure 4.4: Dependence between the thickness
of Ganymede’s outer ice shell and radial dis-
placement tidal Love number h2.

4.4. Discussion

4.4.1. Operation Scenario

The sensitivity of the measurements on h2 is highly
dependent on the operational time. Since every or-
bit track intersects most of the other orbit tracks,
the number of cross-over points increases signif-
icantly with each additional orbit leading to a
quadratic growth of the available data. Thus, at
the beginning of the 500 km orbit phase the error
on the h2 measurement decreases rapidly. Fig. 4.5
shows how the accuracy of the measurement would
evolve over time in the case of a mission extension.
Even if the curve asymptotically approaches zero,
it would be necessary to double the mission time in
order to halve the error of h2. On the other side,
a reduction of the operational time due to resource
constraints, e.g. power, data or due to technical fail-
ures on instrument or spacecraft level would have a
severe impact on the h2 determination. Nonetheless
the significant amplitude of the radial tides allows
the determination of h2 within a remarkable short
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period of time considering the short mission time in
Ganymede’s orbit.
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Figure 4.5: Error in the h2 measurement as-
suming a value of h2=1.3 in dependence of the
mission time. The thick line shows the anal-
ysis result for the nominal mission lifetime of
132 days, while the dotted line represents an
extrapolation for the 500 km orbit.

4.4.2. Dependence on the Slope Distribu-
tion

Little information about the slope distribution on
Ganymede is known at footprint scale. This work
assumes the distribution for bright terrain (Berquin
et al. (2013), Fig. 3), covering the largest area in the
available data, to be globally representative. How-
ever, locally, as for the Arbela or Harpagia Sulcus
vicinity, also larger slopes are reported. In order
to test the effect of different slope distributions on
the performance model, we repeated the analysis
increasing the slope by 20 % and 50 %. Also a sce-
nario with 20 % lower slopes has been tested.
The distribution only affects the instrument error

Distribution Range Error [m] h2 Error
Slope - 20% 5.22 1.7%
Nominal 6.38 2.0%
Slope + 20% 7.55 2.4%
Slope + 50% 9.38 3.0%

Table 4.6: Slope dependence of the error bud-
get

budget, so the range measurement, and not the sen-

sitivity of the measurement since the latter is only
dependent on the operation scenario. The relation
can be approximated as linear resulting in a 50 %
higher error in h2 if the slope distribution is globally
50 % higher.

4.4.3. Ambiguity in the Structural Model

The model described in the previous section gives
an overview on the capabilities of the GALA instru-
ment to infer the ice-I thickness assuming a spe-
cific structure and a fully elastic rheological model.
However, we did not yet account for a set of factors
that influence the interpretation of a measured h2
value.

The knowledge of the satellite’s total mass and
mean moment of inertia still leaves a substantial
degeneracy of structural models usually compen-
sated by further (i.e. physical or cosmochemical)
assumptions. In order to test how the possible di-
versity of structural models would affect the rela-
tion between the h2 and the ice-I thickness, we cal-
culated 700 structural models all consistent with
Ganymede’s mass and mean moment of inertia. We
therefore assumed a wide parameter range for the
thicknesses and densities of each layer. We in-
tentionally avoided implementing additional con-
straints, like cosmochemical arguments. Only the
requirement that Ganymede’s water ice/liquid con-
tent should be greater than 40 % has been added
to discard possible solutions that would not repre-
sent an icy moon anymore. The assumed parameter
range is shown in table 4.7. As a result, the linear
behaviour of the h2 vs. ice thickness is now over-
layed by a jitter making the constraint on the ice-I
thickness less tight, i.e. from ±20 km to ±30 km,
when using h2 only.

4.4.4. Linear Combination of h2 and k2

One alternative solution to constrain the ice thick-
ness with the same accuracy consists in combining
the GALA data with data from the radio science
experiment 3GM. Wahr et al. (2006) showed that
the ice thickness can be further constrained when
using a linear combination of h2 and the tidal po-
tential Love number k2 which can be inferred from
radio science observations. Fig. 4.7 shows the lin-
ear combination 1 + k2 − h2 as a function of the
ice-I thickness for the same models shown in Fig
4.6. Assuming that k2 will be known with an accu-
racy of 10−3 (Parisi et al., 2014), the ice-I thickness
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Layer Thickness [km] Density [kg/m3] Comment
Core 200 - R/2 5000-8000 FeS-Fe composition
Mantle - 2400 - 3500 hydr. Si to ”Io-rock”
HP-ice depth>120∗ 1100-1300
Ocean - 1000-1050 dep. on salinity
Ice-I depth<120∗ 900-1000 dep. on e.g. dust content

Table 4.7: Constraints for the structural models. The mantle and ocean thicknesses are only
constrained by the total mass and the mean moment of inertia. *(Spohn and Schubert, 2003)
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Figure 4.6: Love number h2 in dependence
of the outer ice shell thickness. Each point
represents an interior model consisent with
Ganymede’s mass and MoI.

can be constrained to ± 20 km without additional
constraints on the structural models.

4.4.5. The Elastic Case vs. the Visco-
elastic Case

In addition to the thickness of the outer ice shell, h2
will depend on the rigidity µ and viscosity η of the
outer ice-I shell. While we can assume the rigidity
of ice-I to be fairly well constrained (Sotin et al.
(1998) gives a value between 3.3 and 3.6 GPa) the
viscosity must be considered as an unknown param-
eter mainly due to its strong dependence on tem-
perature. Assuming a Maxwell-rheology as a basic
model, the visco-elastic part of the deformation can
be calculated using the formalism developed for the
purely elastic response, if the rigidity µ is replaced
by the complex shear modulus µ̃ given by Zschau
(1978)

µ̃ =
inµ

in+ 1/τ
. (4.15)
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Figure 4.7: Linear combination of k2 and h2 in
dependence of the outer ice thickness.

n is the frequency of the tidal forcing, i.e.
Ganymede’s mean motion, i =

√
−1, and τ = η/µ

the characteristic Maxwell-time. We can distin-
guish three different regimes: (1) the elastic regime
in with τ → ∞, implying η → ∞ and µ̃ → µ, (2)
the visco-elastic regime with τ ≈ n and (3) the fluid
regime with τ → 0, implying η → 0 and µ̃→ 0. Ap-
plied to the case of Ganymede with a mean motion
of n = 1.0164 × 10−5s−1 and a rigidity of 3.3 GPa
the viscosity η would have to be on the order of
1014 Pa s for the response to be visco-elastic. For
η � 1014 Pa s the ice would respond elastically
and for η � 1014 Pa s the material would be in
the fluid regime. For the latter case, however, it is
questionable that the Maxwell model chosen here is
applicable. The needed viscosities of � 1014 Pa s
would imply relatively high temperatures inside the
outer ice shell which seems inconsistent with geo-
logic evidences (Pappalardo et al., 2004). Further-
more, Spohn and Schubert (2003) investigated heat
conduction and thermal convection mechanisms for
Jupiters icy satellites. For the case of low viscosi-
ties, it was shown for Ganymede that, in contrast
to the Europa case, thermal equilibrium can only
be reached for thin ice layers. Instead, equilibrium
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temperatures at Ganymede’s surface are of the or-
der of 126 K (Moore and Schubert, 2003), implying
viscosities many orders of magnitude greater than
1014 Pa s. We therefore may expect that the outer
ice shell responds elastically to the external tidal
forcing. Its response is controlled by the elastic
rigidity only and is independent from the viscos-
ity value. Though, at the lower boundary of the
ice shell (top of the ocean) where the ice is close
to the melting point we can expect viscosities on
the order of 1013 Pa s (or 1014 Pa s at most) which
are in the fluid regime for the given forcing. How-
ever, unless there is a layer of substantial thickness
with viscosities around 1014 Pa s, the response will
be dominated by the elastic contribution, justifying
our previous assumption to neglect the visco-elastic
contributions. Only in case of a substantial layer
with a viscosity around 1014 Pa s the response of the
ice shell would be dominated by visco-elasticity and
the outer elastic part would follow the visco-elastic
deformation inside the ice shell. We will investi-
gate this very special case in further studies. In the
visco-elastic case, the response would show a signif-
icant phase-lag on the order of 1◦ which could be
measurable by GALA under certain circumstances.
We will investigate the sensitivity of the GALA in-
strument to lateral displacements (e.g. phase lags)
of the tidal pattern and the possible constraints that
could be put on the viscosity in a separate study.

4.5. Conclusion

A key measurement of GALA will be to measure the
radial deformation of Ganymede’s outer ice shell.
The range measurement error of the instrument
will be < 2 m, on average, while showing good
signal to noise ratios even on rough or dark sur-
faces. When measuring tidal deformations using the
cross-over approach, other errors have to be consid-
ered, thereby leading to a total mean error of 6 to
7 m. The highest uncertainty arises from pointing
and alignment errors even if presuming that the in-
strument will be calibrated in cruise. An improve-
ment of this aspect would appreciably improve the
tidal measurements. Further improvement could be
achieved by a mission extension in a lower (e.g. 200
km) orbit leading to more orbits and therefore to
more cross-over points per time. The sensitivity of
the measurement to the tidal Love number h2 is
given by the number and distribution of cross-over
points available for the evaluation. While the dis-
tribution is settled by the polar orbit, resulting in a
dense concentration of cross-over points in the po-

lar regions, the number is dependent on the final
operation time. Assuming the nominal 132 days in
a circular 500 km orbit, we end up with a measure-
ment error of h2 of 2.0 % in the case an sub-surface
ocean is present. By measuring h2 the thickness of
Ganymede’s outer ice shell can be constrained. As-
suming an elastic Maxwell model we can constrain
the ice thickness to ±20 km for a given structural
model. Considering the uncertainty in Ganymede’s
interior structure the constraint is less tight (± 20–
30 km), but can be recovered using a linear com-
bination of h2 with the tidal potential Love num-
ber k2 in order to compensate for this uncertainty.
Further investigations will focus on possibilities to
use GALA for better constraining the ice-I thick-
ness even in the visco-elastic case simultaneously
with the ice viscosity. For viscosities below 1015 Pa
s phase, lags would be sufficiently large and proba-
bly detectable by GALA. Finally it should be noted
that GALA will form an integral part of a larger
geodesy and geophysics instrument package, incor-
porating radio science, stereo imaging, sub-surface
radar and a magnetometer. This synergy between
different instruments will allow to further constrain
the ice thickness.
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Abstract

The tidal Love number h2 is a key geophysical measurement for the characterization of Europa’s interior,
especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to
assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding
and stereo imaging data. The measurement principle exploits both delay and Doppler information in the
radar surface return in combination with topography from a digital terrain model (DTM). The resulting
radar range measurements at cross-over locations can be used in combination with radio science Doppler
data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results
suggest that the accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and
Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be
in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget
and DTM quality, both dependent on the surface properties of Europa. We estimate that this would
unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-
science based measurement of the tidal Love number k2, constrain the thickness of Europa’s outer ice
shell to up to ±15 km.
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5.1. Introduction

The potential habitability of a subsurface ocean
of Europa makes the second moon of Jupiter a
high-priority target for planetary exploration. The
National Aeronautics and Space Administration
(NASA) plans to observe the icy satellite with a
dedicated flyby tour over a period of several years.
One of the top priorities of the Europa Clipper is
the characterization of the structure of the icy shell
(Pappalardo et al., 2015). It is a key measurement
for future exploration and provides insights into the
thermal state and interior dynamics of the moon.
However, in order to effectively constrain the
interior structure a combined analysis of multiple
measurements will be necessary. Previous publica-
tions have already pointed out the importance of
measuring both tidal Love numbers h2 and k2 to
constrain the ice thickness, e.g. Wahr et al. (2006)
and Wu et al. (2001). The tidal Love number
k2 describes the secondary potential induced by
the mass redistribution as a consequence of the
external forcing by Jupiter and the tidal Love
number h2 expresses the corresponding radial
amplitude of the tidal deformation. While k2 can
be measured by radio science experiments, the
assessment of h2 requires altimetric measurements.
One of the instruments onboard the Europa
Clipper is the Radar for Europa Assessment and
Sounding: Ocean to Near-surface (REASON).
While its primary focus will be the direct detection
of subsurface water reservoirs, we will show that
it also has the potential to deliver altimetric
measurements which can be used for the detection
of solid body tides and therefore make an enhanced
contribution to the characterization of Europa’s
outer ice shell. Further, with magnetometer,
imaging and radio science data it constitutes a
broader geophysics packet for revealing Europa’s
interior structure.
In the following section we will give an overview
of the instrument and describe the proposed
concept for altimetry measurements by combined
stereo graphic camera and radar observations.
This concept will be quantified by an analytic
performance model and a variety of influences on
the range measurement accuracy will be discussed
in section 3. The resulting predictions for the
ranging errors will then be incorporated in a
numerical simulation of the flyby tour in section 4.
Finally, the results and their potential contribution
to the reconnaissance of Europa’s interior will be
discussed in section 5.

5.2. Instrument Description and
Measurement Principle

REASON is a dual-band, nadir-pointed, interfero-
metric radar sounder. It has a VHF band operating
at 60 MHz with a 10 MHz bandwidth and an HF
band operating at 9 MHz with a 1 MHz bandwidth.
The chirp (radar pulse) length is adjustable between
30 and 100 µs. The radar is designed to character-
ize the surface and subsurface of Europa’s ice shell
by means of sounding, reflectometry, and altimetry
(Blankenship et al., 2009; Moussessian et al., 2015).
The instrument is composed of a two elements HF
antenna mainly dedicated to penetrate the surface
up to a depth of 30 km and four VHF antennas
which allow to examine the upper ice layers and
to perform altimetric measurements. The radius of
the first pulse-limited footprint of the VHF is about
2.2 km from an altitude of 1000 km.
Over the Earth’s oceans, radar instruments rou-
tinely achieve resolutions one magnitude better
than their inherent range resolution (Garcia et al.,
2014). However, the ocean is a generally flat surface
which is well understood and therefore allows pre-
cise retracking of the altimeter waveforms. In ap-
plication to planetary surfaces the topography can
include much more complex structures making it
difficult to discriminate the nadir return from sur-
face clutter. However, this effect can be mitigated
by utilizing additional knowledge of the topography
at the footprint scale, e.g. from a stereo imagery de-
rived digital terrain model (DTM) and by exploit-
ing both the delay and Doppler information, in the
surface return signal (Raney, 1998). In delay space,
the principle uses the fact that on a flat surface a
return from the n-th pulse-limited footprint will ar-
rive before the return of the (n+1)-th pulse-limited
footprint allowing them to be distinguished in the
return signal. In the Doppler dimension footprints
in along track direction can be separated according
to their azimuth Doppler bin (figure. 5.1a,b). The
size of such a delay/ Doppler cell is typically in the
order of several hundreds of meters to a few kilo-
meters.

Utilizing this information to map returns in de-
lay/Doppler space to a known surface geometry or
DTM simultaneously reduces any directional am-
biguity in the rough-surface return and increases
the number of usable ”looks” or statistically inde-
pendent observations of the surface (Raney, 2012).
This allows the topography in each delay/Doppler
cell to be seen as an individual range measurement
(figure 5.1c). The accuracy of the range measure-
ment on one delay/Doppler cell can then estimated
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a) Along-Track: c) Plan View: b) Cross-Track: 
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Figure 5.1: a) In along-track direction the pulse can be discriminated by the Doppler phase.
b) Each pulse-limited footprint is delimited by the range resolution (one range-bin) and can
be distinguished in the return signal by the respective time delay. c) Top view on the cross-
over plate composed of multiple delay/Doppler cells. Each cell contributes as a statistically
independent range measurement to the differential average height of the plate between the two
flybys.

as

σz =

√( c

2B

)2

+ σ2
r + σ2

c , (5.1)

where σr and σc are the root mean square (rms)
roughness within a delay/Doppler cell and the ver-
tical resolution of the camera-derived, digital ter-
rain model (DTM) respectively, c is the speed of
light and B is the analog bandwidth of the radar.
Because nadir-looking radar altimeters are nearly
always limited by multiplicative (e.g. speckle, side-
lobes, clutter) rather than additive noise, for the
purposes of range estimate precision, the range er-
ror is rather constrained by the number of looks
than by the signal to noise ratio (SNR) as long as
the latter is above 1 (Raney, 2012). However, in
case of a very rough surface the SNR can possibly
drop with 1/R4 (see section 5.3.1) leading to a max-
imum useful altitude R of about 200 km. In con-
trast, on a flat surface the SNR can be very strong
but only nadir returns are observed, eliminating az-
imuth processing and therefore multi-looking per-
formance gains. Since precise information about the
surface properties at the wavelength scale is lacking,
both cases will be treated as separate possible end

members bounding the likely performance over a re-
alistic surface.
Here, we are mainly interested in retrieving a tidal
signal of specific surface elements by measuring the
differential ranges to a single area on the surface
between two distinct points in time. A cross-over
surface element is then defined by the geometry
given by two spacecraft flybys over the same area.
In order to measure tidal deformations cross-over
based techniques are the method of choice since
they cancel out any large scale topography effects
(e.g. Mazarico et al. (2014a); Steinbrügge et al.
(2015)). In the case of a radar sounder altimeter the
cross-over surface element is a cross-over plate con-
taining multiple delay/Doppler cells, rather than a
point (as it is the case in laser-altimeter based cross-
over approaches). Since the two passes can occur at
different altitudes the contributing radar footprints
and DTMs may be significantly different in size.
However, using forward simulated radar data from
a DTM allows our technique to fit the specific sub-
set of the returns to selected cross-over areas within
the DTM and therefore compare the same area on
the surface even though observations are made from
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different altitudes (Garcia et al., 2014). Each de-
lay/Doppler cell inside the selected area will then be
considered as one look (i.e. as a statistically inde-
pendent observation). Having N uncorrelated looks
on the surface, the total range measurement error
of the cross-over plate would be σz/

√
N (Raney,

2012).
To estimate the impact of stereo DTM resolution
and extent on REASON altimetry for the Clipper
we assume that wide angle camera (WAC) DTMs
are available from altitudes lower than 1000 km and
narrow angle camera (NAC) DTMs from altitudes
up to 2600 km. Both cameras are part of the Europa
Imaging System (EIS) (Turtle et al., 2016). In order
to identify which DTM to use to simulate radar data
for both flyby altitudes, we can select between up to
four possible DTMs (NAC lower flyby, WAC lower
flyby, NAC higher flyby, WAC higher flyby) which
are constrained by the following requirements:

1. The altitude of the spacecraft at the cross-
over location must be below the limit stated
above for the respective camera;

2. The cross-over location must be illuminated
by the Sun;

3. The vertical resolution of the DTM must be
sufficient to ensure that the consecutive re-
turns of the radar are not moved into other
range bins than the ones predicted by the
DTM;

4. The horizontal resolution of the DTM must
be higher than the size of the outermost
pulse-limited footprint within the cross-over
plate portion of the DTM;

5. The size of the cross-over plate must not ex-
ceed the size of the DTM.

When applying these constraints to the cross-over
locations of the trajectory the first three require-
ments reduce the amount of usable cross-overs. The
latter two determine the shape and area of the cross-
over plate and therefore the resulting ranging error
for the remaining cross-overs. In general, it is de-
sirable to have a cross-over plate as large as pos-
sible in order to benefit from the maximum num-
ber of looks. However, since the pulse-limited foot-
prints become smaller with increasing distance from
the center, the maximum usable size and there-
fore the minimal achievable range error will be lim-
ited by one of the requirements above. Although
higher altitudes generally allow for larger cross-over
plate areas, this effect is counteracted by increas-
ing surface roughness within corresponding larger

delay/Doppler cells. The balance of these compet-
ing effects depends on the character of the surface
roughness. Further effects taken into account are
possible systematic errors inside the DTMs as well
as the illumination conditions and resulting shad-
owed areas. The latter is calculated for each cross-
over plate as a function of surface roughness and
solar incidence angle (section 5.3.2).

5.3. Radar Altimetric
Performance

5.3.1. Signal to Noise Ratio

At the time this article is written the exact values of
the radar system parameters and operational modes
for REASON continue to evolve. For this reason
we limit this section to a discussion of the link bud-
get for nominal radar system parameters and the
limits it places on usable, high-SNR cross-over al-
titudes. For example a radar transmitter emitting
10 W at a central frequency of 60 MHz is about
140 dB above the environmental background noise
(Cecconi et al., 2012), an antenna array with 5 dB
of gain will experience 10 dB round-trip gain, and a
100-microsecond pulse with 10 MHz of bandwidth
will experience 30 dB of pulse compression gain.
The exact realized azimuth gain will depend on the
details of surface roughness at each cross-over. For
rough surfaces, a nominal pulse repetition rate of 1
kHz on a spacecraft moving with 5 km/s across a
1 km Fresnel zone will experience an additional un-
focused SAR azimuth gain of around 20 dB. For a
very smooth (mirror-like) surface, the very narrow
scattering function will prevent this azimuth gain.
An ice surface will have a reflection coefficient of
around -10 dB (Peters et al., 2005), but the ex-
act geometric loss will depend on the distance R to
the surface as well as the character of local surface
roughness. If the surface is very flat and the space-
craft is close enough for the curvature of the moon
to be neglected (<400 km) the geometric losses re-
late with 1/R2. Even for very smooth surfaces,
at higher altitudes the losses approach asymptot-
ically 1/R4 at about 10,000 km leading to a maxi-
mum useful altitude induced by the curvature of the
moon. For rough surfaces, the maximum altitude is
limited by rough-surface backscatter and geometric
spreading losses. For typical Europa roughness pa-
rameters H ≈ 0.75 and σ0 ≈ 0.2 (Compare to Sec-
tion 5.3.2, Table 5.1), based on limited Galileo ob-
servations (Nimmo and Schenk, 2008), this altitude
is about 200 km. Therefore, depending on the exact
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roughness character of Europa’s surface, cross-over
altitudes available for geodetic inversion will range
from 200 km (very rough surface and 1/R4 losses)
to 5000 km (perfectly smooth surface, limited by
the moon-curvature). Campbell et al. (2018) inves-
tigated MARSIS data and report an increased ratio
of off-nadir returns also from very rough surfaces.
Thus, for our nominal case we expect the real sur-
face characteristics to lay in between these two end
members and not to scale with 1/R4.

5.3.2. Geometric Performance Model

The roughness of a fractal surface can be described
by the Hurst exponent H, where the rms height σz
on a profile of length x is given by

σz = σ0

(
x

x0

)H
, (5.2)

with the rms height σ0 at unity scale x0 = 1 m.
The performance model used in the simulation is
executed in three steps. The first step is to identify
the DTM which gives the best range performance
for the radar. Since there are two flybys over one
spot and from each flyby we can choose potentially
between a DTM from the WAC or NAC this re-
sults in four possible DTMs. However, if during
one of the flybys the cross-over plate is not illumi-
nated or the altitude is higher than specified, the
DTM option is rejected. In step two we calculate
the maximum area of the cross-over plate that is
allowed by the DTM without violating one of the
resolution requirements. The horizontal resolution
is required to be higher than the width of the outer-
most pulse-limited footprint. The radius rn of the
n-th pulse-limited footprint of the radar is given by

rn =

√
nhc

B
+
( nc

2B

)2
, (5.3)

when the spacecraft is at altitude h. The width wn
of the n-th pulse-limited footprint is then

wn = rn − rn−1. (5.4)

The other cell dimension is given by the size of a
Doppler bin

d =
√

0.5λh, (5.5)

with λ being the signal wavelength, i.e. 5 m. The
area of a delay/Doppler cell inside the n-th pulse-
limited footprint is then A = wn × d. Since d is
usually not the limiting factor, we have to choose
n such that wn remains larger than the horizontal

resolution of the DTM. It should be noted that this
is not a limit on whether a DTM can be used, but
rather on how much of the DTM can be used for
the cross-over plate. Further, we require that the
vertical resolution of the DTM exceeds twice the in-
herent range resolution of the radar which is given
as c/(2B), so that the ranging error introduced by
the DTM at the mid-point of a delay/Doppler cell
is less than or equal to that from the range resolu-
tion of a single radar pulse. The maximum area is
then limited either by one of the two requirements
above or by the maximum size of the DTM.
Concerning the surface roughness, the altimetric
performance is mainly dependent on the large scale
roughness expressed by the Hurst exponent (H)
rather than by the small scale roughness expressed
by the roughness at unity scale (σ0). Therefore,
Europa being rough at small scales (order of me-
ters), but rather flat at larger scales (order of kilo-
meters) turns out to be an advantage for a radar al-
timeter. This surface morphology is also expressed
by the results of Nimmo and Schenk (2008) (Ta-
ble 5.1) showing big differences in the roughness
distribution at 1 m level (between 0.2 and 1.5), but
showing a quite uniform distribution at larger scales
(0.5 < H < 0.8).
The roughness further dictates together with the
solar incidence angle i the shadowed fraction of
the surface. Shepard and Campbell (1998) studied
the shadowing behavior of fractal surfaces. Their
parametrization for the non-shadowed fraction of
the surface S is given by

S(i, σ0, H) =1− 1

2

∞∑
n=1

1

2.3n−1

× erfc

(
n1−H√

2 tan(i) tan(σ0)

)
. (5.6)

For each cross-over point, we evaluated equation
5.6 up to n = 6 as recommended by Shepard and
Campbell (1998). We assume that a delay/Doppler
cell is removed if less than 50% of the respective
area in the DTM is illuminated. We therefore mul-
tiply the shadowed area by a factor of 2, accounting
for the fact that more area has to be removed than
actually shadowed. The amount of delay/Doppler
cells is then decreased by the respective fraction.
In the limiting case of an extremely rough surface,
for which geometric spreading losses are propor-
tional to 1/R4, the maximum number of usable cells
is also SNR dependent for altitudes below 200 km.
To account for this we use the radar equation for a
scattering surface computing the received power as

Pr =
PtG

2λ2σlA cos4(φ)

(4π)3R4
. (5.7)
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Data set RMS dev. 100 m RMS dev. 1 m Hurst exponent

e86-32 Z 7.7 0.21 0.78
ediss Z 8.5 0.27 0.75
eplains Z 7.1 0.22 0.75
erhad Z 5.6 0.2 0.72
etyre-3 Z 15.9 1.5 0.51
manan-80 Z 14.9 1.2 0.55

Table 5.1: RMS deviations for different data sets at different scale lengths as derived from
Nimmo and Schenk (2008). The last column has been added to express the results in terms of
Hurst exponents.

In Equation 5.7 Pt is the transmitted power of 10
W, G is the one-way gain, λ is the radar wavelength
and σl are the backscatter losses due to the sur-
face roughness at normal incidence. The latter is
assumed to be -15 dB. Further, R is the distance
from the spacecraft to the respective cell, A is the
area of that cell and φ expresses the off-nadir an-
gle to the cell such that the cos4 φ term accounts
for the backscatter falloff from the nadir value. We
only consider cells where the area is large enough
to reach the SNR threshold of 1.

5.3.3. Point Target Simulator

For a more in-depth analysis of the proposed con-
cept and the validation of the model described
above a point target simulator is used to simulate
raw radar echoes from a surface DTM. The DTM
we used for this purpose is the Ediss region from
Nimmo and Schenk (2008) (compare to Table 5.1).
The DTM is tiled to create a larger DTM long
enough, for the radar track. The DTM is faceted
and evenly sampled in latitude and longitude at half
the range resolution of the radar. Each facet is given
a random scattering phase that is constant for all
sensor positions. The radar equation is then used
to sum up the range compressed point target re-
sponse of each facet for each sensor position. To
evaluate the altimetric precision, we first simulate
a truth echo set from the DTM. This represents the
’measured’ data. We then simulate echoes from a
DTM with different sets of systematic errors. Each
DTM is given a new set of random phases for the
point targets, and Gaussian noise is added with a
signal to noise ratio of 24 dB, which corresponds
to REASON assuming 1/R4 geometric spreading,
-10 dB surface backscatter cross section, 100 km al-
titude, and 30 dB range compression gain. Using
an azimuth window with the size of the number of
looks, we find the peak of the range correlation be-

tween the ’measured’ echoes and the error DTM to
determine the altimetric range. The window is then
stepped and we gather 7000 estimates of the range
from which the precision is determined from the
standard deviation of the altimetric estimates for a
given number of looks. The point-target simulator
did not take advantage of the Doppler information
in the signal and is therefore a conservative lower
bound. The results are shown in figure 5.2 together
with the range measurement errors as estimated
by the geometric performance model described in
section 5.3.2. The result is shown as a function
of looks and evaluated for all cross-over points in
the 17F12 v2 trajectory developed by the Europa
mission project. While the point target simulator
does not make any assumptions about the altitude
nor viewing conditions, the geometric performance
model is sensitive to these parameters and there-
fore may give different results for the same amount
of looks. Further, we investigated the results as-
suming different systematic errors inside the DTM.
We applied cross track shifts, rotations and tilts
with different values. These errors are generic and
might account for different sources by covering the
degrees of freedom that can affect a DTM in its en-
tirety. Rotation is about a surface normal vector at
the midpoint of the track. A tilt is a cross track
rotation about the ground track. From figure 5.2
we can infer that a rotation is the least critical dis-
tortion since it only slightly shifts the beam pattern
gain without a significant net change in the range
determination. However, significant error contribu-
tions are expected if the DTM is tilted in the order
of 1◦ or higher or if a systematic cross track bias
is present. To successfully measure the range with
high accuracy it is therefore crucial to have high
quality DTMs making them an important driver for
the range accuracy.
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Figure 5.2: Estimated range errors as a func-
tion of looks. The coloured symbols represent
the results from the point target raw simulator.
In comparison the results from the geometric
performance model at all cross-over locations
covered by the WAC are shown. The ”jitter”
is a consequence of cross-overs with two dif-
ferent altitudes, which can contribute to one
range measurement while still having a similar
amount of looks.

5.3.4. Influence of the Ionosphere

Europa possesses a complex plasma environment.
The ionosphere is fed by multiple sources (Kivel-
son et al., 2009) but dominated by two main pro-
cesses: photo- and particle-impact ionization (Mc-
Grath et al., 2009). The first effect is strongest
at the solar illuminated hemisphere, while parti-
cle impacts are correlated to the rotation of the
Jupiter magnetosphere and focused on the trail-
ing hemisphere of the moon. The variability of
Jupiter’s magnetosphere can further lead to a time
dependence of the ionospheric conditions. Since the
propagation of radio waves through an electrically
charged medium can disturb the signal, the effect
must be discussed for the here proposed measure-
ment. The radar signal propagation through the
ionosphere of Europa has been studied previously
by Grima et al. (2015b). The authors examined
two frequency dependent effects as a function of
altitude. The first one being an alteration of the
inherent range resolution due to a pulse spread-
ing around the center frequency and the second
one an induced time delay. The inherent resolu-
tion degrades from the original 15 m to down to
25 m when ranging at altitudes > 1000 km (Grima
et al. (2015b), figure 5). The two-way time delay

at the central frequency of 60 MHz is expected to
range between 10−8 seconds at low altitudes and
up to 3× 10−7 seconds at 1000 km and higher cor-
responding to an one-way range error of 1.5 to 45
m if remaining unconsidered. While the authors
conclude that the ionosphere does not significantly
impact the sounding aspect it does matter for the
altimetry. However, there are possible strategies to
mitigate this effect. The vertical time resolution of a
radar sounder is theoretically the best uncertainty a
correction technique could achieve for inverting the
ionospheric delay. This value is explicitly stated for
the correction of the REASON HF signal (Grima
et al., 2015b) and implicitly assumed for MARSIS’s
(Mouginot et al., 2008). However, both do not use
autofocused techniques, but rather rely on a third-
party signal undisturbed by the ionosphere to esti-
mate what the traveling time of the signal should
be. The effect of the ionosphere leads to a relative
difference of delay ∆T between the higher and the
lower frequencies in the bandwidth B around the
center frequency f . This chirp broadening is di-
rectly related to the global signal delay δt and has
been expressed by Grima et al. (2015b) as

∆T = |δt(f −B/2)− δt(f +B/2)| . (5.8)

The parentheses in the formula should be read as
δt where the frequency is (f-B/2) and (f+B/2). To
restore the pulse one can make use of the gen-
eral compressed SNR loss that occurs due to the
pulse spreading. However, the SNR loss can be
regained by adapting the matched filter using the
same broadening. By maximizing the compressed
SNR the pulse spread and therefore also the pulse
delay can be restored. In reality this pulse re-
construction is a function of (uncompressed) SNR.
To further investigate this issue we performed nu-
merical simulations using a 30 µs radar chirp at
f = 60MHz and an artificially induced delay of
δt = 100 ns. For uncompressed SNR’s between 1
and 20 we then swept through different filters with
broadening and found that for any SNR > 1 the
delay can be constrained better than 10 ns.
Sanchez-Cano et al. (2015) compared the per-
formance of both approaches, autofocused and
reference-based corrections. Although some biases
were found under thick-ionosphere conditions, no
difference in the time delay estimation was reported
for a weak ionosphere distortion as expected at Eu-
ropa at VHF frequencies. For the following anal-
ysis we assume that the ionospheric delay can be
corrected, but that a residual of 20% of the initial
delay difference between the two flyby altitudes will
remain.
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5.4. Tidal Inversion

In regard of the uncertainties treated in the section
above, the strategy for the tidal inversion is to in-
vestigate five possible cases. Scenario 1 is the best
case scenario for SNR and uses cross-over points
up to 4000 km altitude with the full delay/Doppler
information. Scenario 2 considers the nominal op-
eration scenario up to 1000 km altitude. Scenario
3 studies the case of severe biases in the DTM used
for the cross correlation. Scenario 4 assumes a flat
surface and therefore no available azimuth informa-
tion limiting the range accuracy to 15 m. Finally,
Scenario 5 assumes a very rough surface where the
SNR limits the maximum altitude to 200 km.
In our a priori cross-over search we considered all

Figure 5.3: Cross-over locations of the 17F12v2
trajectory up to an altitude of 1000 km. The
color indicates the measurable tidal amplitude
at the respective cross over point assuming a
tidal Love number h2 of 1.2.

points below a spacecraft altitude of 4000 km end-
ing up with a total of 303 cross-over points. Sce-
nario 1 only appears feasible however, in case of
favorable surface roughness conditions and is there-
fore considered as the most optimistic case. Given
the observational evidence from the surfaces of Eu-
ropa it can nonetheless not be ruled out that such
surfaces exit. In this scenario the vertical range
resolution of the WAC limits the use to a maxi-
mum altitude of around 1000 km, while the vertical
resolution of the NAC is sufficient in order to be
used up to a maximum altitude of around 2000 km.
The nominal operation scenario for REASON in-
cludes continuous operation at altitudes below 1000
km, an altitude that would be compliant with WAC
coverage only. Therefore, Scenario 2 will define our
nominal case including 124 cross-over points (fig-
ure 5.3). In this scenario we assume that the SNR

budget is dominated by 1/R2 losses; that the iono-
spheric delay can be corrected to better than 20%;
and that the additional range error, due to system-
atic DTM errors is less than 2 m. For most cross-
over plates this implies tilts and rotations to be lim-
ited to 0.5◦ and a correct cross-track georeferencing
with around 100 m accuracy. In case of more bi-
ased DTMs we consider Scenario 3, which differs
from the latter one by having 10 m of systematic
errors from the DTMs included. Such errors can
occur if the cross-track location is known with less
than 1 km accuracy or if the DTM is tilted or ro-
tated by more than 3◦.

We further consider two pessimistic Scenarios, 4
and 5. In Scenario 4 an unexpectedly low roughness
limits the delay/Doppler approach to ”one look”
and therefore to the inherent range resolution of
15 m. In Scenario 5 the SNR is limited by 1/R4

losses due to surface roughness limiting the maxi-
mum altitude down to 200 km and further reducing
the amount of delay/Doppler cells at the remaining
cross-over points.
Besides of the instrument error the determination of
the tidal Love number h2 will depend on the knowl-
edge of the orbit. We assumed that the position
of the spacecraft is known at the beginning of the
flyby with an accuracy of 1 km and 1 mm/s in each
axis at a radial distance of 10,000 km from Europa.
Using two pairs of observables, the range between
spacecraft and surface at the cross-over points and
synthetic Doppler velocity data sampled every 60
s with an accuracy of 0.1 mm/s, we solve for the
initial position of the spacecraft at each flyby as
well as for h2 using an iterative least squares algo-
rithm. The parameter vector therefore consists of
277 unknowns, 46 initial state vectors each consist-
ing of 6 parameters and h2 (6× 46 + 1). The range
measurement errors of the radar are applied to each
cross-over point according to the described perfor-
mance model assuming a surface roughness given by
σ0 = 0.6 and H = 0.6. If this analytical range error
exceeds the inherent range resolution the cross-over
is removed from the inversion. Otherwise the ana-
lytical error is used to generate a random error using
a Gaussian generator with the analytical value as 1-
sigma input. For each scenario the simulation has
been repeated 20 times. The results for the different
scenarios are given in table 5.2. In case of opera-
tion up to 4000 km altitude we find that h2 can
be constrained with an absolute accuracy of 0.04.
Due to the high operational altitude the ionosphere
delays between the different passes can dominate
the range error. However this effect is counteracted
by the high amount of cross-over points leading to
the best accuracy of all studied cases. The nominal
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Scenario Comment Max. altitude ∆r Nb. of usable/total h2
[km] [m] cross-over points error

1 High SNR 4000 6.7 229/303 0.04
2 Nominal case 1000 5.3 103/124 0.06
3 Biased DTMs 1000 11.2 101/124 0.17
4 No azimuth gain 1000 15 124/124 0.11
5 SNR with 1/R4 losses 200 3.8 39/44 0.13

Table 5.2: Results of the inversion for the different scenarios studied. The h2 error estimates
and range error values ∆r have been averaged over 20 runs.

case with operation up to 1000 km leads to an es-
timated h2 accuracy of 0.06 with an average range
error of around 6 m. This accuracy is significantly
degraded in case of the DTMs being affected by
large systematic errors. The lower range measure-
ment accuracy of about 11 m does not only directly
affect the h2 measurement but further degrades the
orbit determination which has a feedback on the
tidal measurement. The resulting h2 estimate in
this case is assessed to be 0.17. The last two cases
are studying the two end members of possible SNR
behavior. In case of a flat (mirror-like) surface the
range error would be limited to the inherent range
resolution of 15 m. However, in this case DTM
constraints no longer apply, therefore more cross-
over points are available for the geodetic inversion.
Thus, while having even higher range errors as in
case 3, the overall h2 accuracy would still be slightly
better with an absolute value of 0.11. In the other
case of a very rough surface and a maximum oper-
ational altitude for altimetry of about 200 km the
high amount of delay/Doppler cells in combination
with the low ionospheric distortions lead to the best
range error of less than 4 m. However, only 44 cross-
over points remain for the evaluation. This leads to
an estimated h2 error of 0.13.

5.5. Implications for Europa’s
Interior

In order to deduce the resulting ice thickness we
must consider that the tidal Love numbers k2 and
h2 further depend on the deep interior of Europa
as well as on the rheology of the outer ice layer.
We assumed a general structural model for Europa
with four layers which are an iron core, a silicate
mantle, an ocean and an ice-I layer. Then we cal-
culated a wide number of possible interior structure
models all in agreement with Europa’s total mass
and mean moment of inertia as measured by the

Galileo mission (Anderson et al., 1998). The pa-
rameter ranges and step sizes for the radii as well
as densities of the respective layers are given in ta-
ble 5.3. The models have been solved for the core
radius and the mantle density while the other pa-
rameters have been dynamically varied. For the
resulting structural models the tidal Love numbers
h2 and k2 have been computed using a numerical
integration of the linearized field equations (Segatz
et al., 1988) for the simplified assumptions of a fully
elastic outer ice shell and an ice-I rigidity of 3.3 GPa
(Sotin et al., 1998). The relation between ice thick-
ness and h2 are plotted in figure 5.4. Typical values
for h2 are around 1.2 in the presence of an ocean
and drop below 0.1 if no ocean is present. Using the
estimated error bounds for h2 alone this would allow
to unambiguously confirm or reject the hypothesis
of a global ocean also in a reasonably unfavorable
scenario with high orbit errors, low SNR and less
accurate DTMs. But no further conclusion on the
ice thickness could be drawn. The most promising
approach to constrain the ice thickness, is to use the
linear combination ∆ = 1 + k2 − h2 (Wahr et al.,
2006). This reduces the ambiguity significantly, es-
pecially for thin ice shells as shown in figure 5.4. As
for h2 the exact error of k2 will depend on the final
scenario, but usually the k2 error is equal or be-
low the h2 error (Mazarico et al., 2015; Steinbrügge
et al., 2015; Parisi et al., 2014). Assuming an error
in k2 in the same order of magnitude and 4% in
h2 according to the optimistic case of the analysis
presented above, we infer that the ice thickness can
be constrained with an accuracy of about ±15 km,
when assuming the rheology to be known.

5.6. Discussion

The proposed method using the radar returns in
combination with stereo DTMs from a camera sys-
tem can be compared to surface clutter removal
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Figure 5.4: Left: Tidal Love number h2 as a function of ice thickness. Right: Linear combination
1+k2-h2. Each point represents a structural model in agreement with the total mass and mean
moment of inertia.

Layer dmin dmax ∆d ρmin ρmax ∆ρ
Core 200 500 - 4000 7000 500
Mantle 500 1200 100 2400 3800 -
Ocean 10 200 10 1000 1200 50
Ice 1 100 10 900 1100 20

Table 5.3: Boundaries and step sizes for the
used parameters of Europa. The thickness d
[km] and density ρ [kg/m3] of each individual
layer has been varied between a min and a max
value with a stepsize ∆. The models have been
solved assuming a gravitational parameter of
GM = 3202.72 × 109 km3/s2 and a mean mo-
ment of inertia of 0.346 (Schubert et al., 2004).

techniques successfully applied to the Mars polar
caps with ShaRad and MOLA DTMs (Ferro and
Bruzzone, 2013). This application was able to get
similar results for the co-registration of both data
sets vertically as well as in azimuth. The authors
report comparable numbers of (5 ± 2)m in range
and (4±3)m in azimuth. However, certain assump-
tions have been made in our study one needs to
be aware of. We do not account for subsurface re-
turns since we assume that any volume scattering
return will be undetectable compared to the dom-
inant return from the ice/void interface in nearly
every case (Aglyamov et al., 2017) and that the
cross-correlation method will not be significantly
affected also in presence of echoes from coherently
reflecting near-nadir subsurface interfaces. Also, we
do not account for different surface materials or di-
electric properties since the even in the presence of
heterogeneous surface material, the ice/void inter-
face will produce the dominant return. The rang-

ing errors calculated by the point target simula-
tor can be nonetheless considered as conservative
since they do not fully exploit the delay/Doppler
information. And not all capabilities of REASON
have been explored in the frame of this work. Ad-
ditional improvements in performance could come
from combining data of the HF and VHF bands or
exploiting the cross-track interferometric capability
of the VHF band. For the tidal inversion we do not
consider uncertainties in the rotational state of the
body. This approach is considered to be justified by
the idea that the location of the DTM in a body-
fixed coordinate system is not needed to be known
with high accuracy when inverting for the response
to a degree two potential. Finally, we assume that
all cross-over points are known a priori. Changes in
the planned trajectory, which imply changes of the
cross-over locations might need to be recovered by
taking additional stereo images in a later phase of
the mission.
An estimated accuracy of 0.04 and the resulting ice
shell constraint of ±15 km would generally be mean-
ingful for larger ice thicknesses (>20 km), however
it would clearly loose its significance for thin shells.
Therefore, the altimetry capabilities can be seen
as complementary to the direct sounding approach
where in case of a thin ice shell (< 15 km) the
radar would be able to detect the ice-ocean bound-
ary directly. A higher accuracy is unlikely to be
achieved by altimetric radar measurements alone
without mission extension or changes in the instru-
ment bandwidth. However, such ranging accuracy
could be achieved by laser altimetry.
The highest ambiguity in the ice shell thickness
comes from the unknown rigidity and viscosity of
the ice. In order to find a unique solution, a combi-
nation of complementary instrument data products
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(magnetometer, camera, radar, radio science) will
be needed. A potential strategy to constrain the
viscosity could in principle also consist in the deter-
mination of a tidal phase-lag or by measuring the
horizontal displacement expressed by the tidal Love
number l2 since also a horizontal co-registration of
the radar returns with the DTM is feasible (Ferro
and Bruzzone, 2013). Assessing the potential for
these measurements will be part of future work.

5.7. Conclusion

The potential for the REASON instrument to per-
form altimetric measurements during NASA’s Eu-
ropa Clipper mission has been assessed and a sim-
ulation using the planned trajectory has been per-
formed. In order to measure the tidal Love num-
ber h2 detailed DTMs from Europa’s surface are
required. The performance of these measurements
has been evaluated and several possible influences
on the h2 measurement accuracy have been dis-
cussed. Exploiting the delay and Doppler informa-
tion we found that ranging accuracies of 3-8 m on
average across all cross-over points are achievable.
Possible additional error sources might be system-
atic errors in the DTM leading to range errors of up
to 11 m. However, the dominating error source are
orbit errors in case no full radio coverage is avail-
able. The entirety of these constraints lead to an
estimated error in h2 between 0.04 and 0.17. All
cases would allow us to confirm the presence of a
subsurface ocean, the optimistic case could con-
strain the thickness of Europa’s outer ice shell to
± 15 km independently of the deep interior struc-
ture. The biggest uncertainty under these condi-
tions would result from the unknown ice rheology.
Possible strategies to further reduce this ambiguity
could come from additional altimetry observations
like planetary phase lags or by a combination of
data from complementary instruments onboard the
Europa Clipper.
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Chapter 6

Discussion

This thesis has been written in the context of the three projects BELA, GALA and REASON, and in
interaction with the engineering and science teams involved in the instrument development and mission
design. The availability of reliable performance models allows to assess the impact of various design
choices and to search for trade-offs. The models further allow to specify and to verify requirements
from top-level science requirements down to technical requirements on instrument level. Therefore, they
are a valuable tool assuring the consistency and traceability of the requirement flow. The models also
contribute to the instrument operation planning and provide a possibility to quantitatively analyze new
tour designs.
The application of the models to the different missions further allows a comparative view and therefore
to use synergies on the one hand and to recognize commonalities on the other hand, providing a deeper
understanding of the driving factors of the tidal measurement. The key characteristics of all three
studied cases are summarized in Table 6.1. It has been outlined in Paper I, Paper III, and Paper IV that

Mercury Ganymede Europa
(BELA) (GALA) (REASON)

Max. tidal double-amplitude 2 m 7 m 60 m
Operation time for tidal measurement 1 – 2 years orbit 132 days orbit 46 flybys
Cross-over points 60 million 1 million 126
Cross-over range error budget 12.5 m 6.4 m 3 – 15 m

Estimated h2 accuracy 0.14 0.026 0.05 – 0.17

Table 6.1: Comparison of the estimated measurement results of the three instruments studied
in this thesis.

the success of a tidal measurement always depends on three main components. Namely, the spacecraft
trajectory and mission duration, the instrument performance, and the strength of the tidal signal.
In view of the three studied cases, Europa, Ganymede, and Mercury, it is therefore plausible why the
prediction given in Paper I for the determination of h2 by BELA during the nominal mission lifetime
are so modest. With very small tidal deformations, Mercury is already a challenging target for the h2
measurement. In combination with Mercury’s high surface roughness at the relevant baselines this leads
to significant interpolation and pointing errors when using the cross-over approach at a shot frequency
of 10 Hz. It also shows that for GALA, the 30 Hz pulse repetition frequency is a very important design
choice, since also for Ganymede rough terrain can be expected. The second aspect is the orbit of the
MPO which has an inclination close to 90◦. Together with the slow rotation rate of Mercury, the orbit
leads to few cross-over points at equatorial latitudes lower than 60◦ N or above -60◦ S. The combination
of low expected amplitudes, Mercury’s slow rotation rate, and high cross-over error budget makes the h2
measurement very challenging.
For BELA however, it should be noted that the h2 measurement is not among the primary science goals,
other than in the case of GALA. Based on the results of Paper II, I nonetheless suggest to reconsider
the available options to eventually achieve the measurement with a better accuracy than predicted by
Paper I. The determination of the inner core size of Mercury would be a valuable science goal beyond
the achievements of the MESSENGER mission. Therefore, the accuracy would have to be in the order
of few percent instead of the currently estimated 18%, which would not allow for any constraints on
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the inner core radius. A possible option would be - naturally - a mission extension since this leads to
more cross-over points at lower latitudes. An improvement in shorter time could also be achieved with a
slightly lower orbit inclination (e.g., 80-85◦) of the Mercury Planetary Orbiter, coming at the cost of a
small gap at the poles. But also alternative methods for the tidal inversion might be successful. Due to
the unfavorable distribution of cross-over points another option would be e.g., the method suggested by
Koch et al. (2008, 2010) inferring the time variations of the topography expressed in spherical harmonics.
The method has the advantage to exploit the complete data set and is currently investigated by Thor
et al. (2017). But also the co-registration of laser tracks with themselves might be suitable (Stark et al.,
2017b). However, other than cross-over measurements, these techniques are less established and will
require further work.

For GALA, the presented performance model is currently the reference model used to validate all changes
of the design parameters and intended to incorporate all upcoming test results. It should be noted
however, that Paper III appeared before Paper I and therefore does not rely on the updated model
but on the original version published by Gunderson et al. (2006); Gunderson and Thomas (2010). The
results for the instrument performance in Paper III can therefore be considered as conservative from
the modeling point of view since the Gunderson model uses a Cramer-Rao limit for the estimation of
the range error, representing an upper boundary. The actually observed range errors during the end-
to-end test campaign of BELA are well below the errors predicted by the Gunderson model. This is
also because the filter matching algorithm of the range finding module (RFM) is not well represented by
the analytical formulation in Gunderson and Thomas (2010). Test results show indeed that the RFM
algorithm is more efficient than has been previously predicted. This finding is consistent with previous
tests of BELA’s RFM (Beck, 2012). Another element why the results of Paper III can be considered to
be conservative is that the mean eccentricity of Ganymede (0.0015) has been taken to calculate the tidal
potential. However, Ganymede’s eccentricity is highly time-variant and changes from values close to zero
up to eccentricities of ≈ 0.003 within 50 years (Figure 6.1). Fortunately, if the JUICE mission follows
the current schedule, at the arrival time at Ganymede, the eccentricity will be close to its maximum.
This leads to significantly higher amplitudes than estimated in Paper III, i.e. up to 14 m instead of 7
m double amplitudes. Also, during the mission lifetime the eccentricity cannot be considered constant
when inverting for h2. This is an effect which has been neglected in Paper III. A more precise description
can be obtained by replacing the mean eccentricity e by a time dependent eccentricity function e(t) when
calculating the tidal potential. With consideration of the time varying eccentricity of Ganymede the h2
measurement accuracy by GALA is below 0.02. The heavily time dependent eccentricity offers further
interesting perspectives for the far future. Since these changes in eccentricity are periodic it is in principle
possible to measure the reaction of Ganymede to tidal forcing at different frequencies. These second order
effects should be in the order of centimeters and are therefore extremely difficult to measure. If done so
however, they would provide a frequency spectra of the ice shell reaction, allowing a far better constraint
on the rheological properties of the ice.

Previous studies emphasized that h2 is not only a function of the ice-shell thickness but also of the
rheological properties, i.e. of the rigidity and viscosity of the ice I layer (e.g., Wahr et al. (2006)).
Therefore, the determination of the ice-shell thickness is still ambiguous. To reduce this ambiguity a
determination of the tidal phase-lag would be very useful since it helps to constrain the Maxwell time.
The dependency between the ice-shell thickness and h2 can be subdivided into three major branches. In
case 1, a very low viscosity of the ice shell would lead to a fluid regime, which is very unlikely in case
of Ganymede. Case 2 is the viscoelastic case with viscosities between 1015 − 1017 Pa s. In this case a
tidal phase-lag should be observable and therefore constrain the viscosity of the ice shell to the respective
range. And in case 3, a mostly high viscosity ice shell, the layer would react elastically. Even if in the
fully elastic case the tidal deformation still depends on the rigidity, this latter dependence can be greatly
reduced by using the linear combination 1 + k2−h2 known as the diminishing factor (Wahr et al., 2006).
Work published after Paper III did a broader investigation of possible Ganymede interior models and
their dependency on tidal Love numbers. In a recent study, Kamata et al. (2016) concluded that the
determination of h2 alone is not sufficient to confirm the presence of a global subsurface ocean since
models without ocean and h2 values over 1.3 exists. Unfortunately, the authors do not provide details
about the set of parameters that are required to achieve such a case. My own modeling efforts suggests

88



Figure 6.1: Orbital eccentricity of Ganymede averaged over one orbital period. The red dashed
lines delineate the time frame of JUICE being in orbit around Ganymede. Left: Long term
variations, shown here from 1900 to 2050, range between almost zero eccentricity and 0.003.
Right: During the orbital phase around Ganymede, the eccentricity almost doubles from 0.0015
to 0.003.

that a very low viscosity high pressure ice layer (< 1013 Pa s) is needed in order to get the corresponding
radial tides. The high-pressure ice layer then acts as a quasi-ocean being close to the fluid regime. While
such a case cannot be excluded, I consider it rather unlikely to have an extended low viscosity, high
pressure ice layer in combination with a cold ice I layer and no ocean in between. An option to test this
case would be the previously mentioned observation of the tidal phase-lags of k2 and h2. The difference
in phase-lags is a proxy for the dissipation in the HP ice layer as has been shown in Hussmann et al.
(2016).

In the case of Europa, a high tidal Love number h2 (>1) is an ultimate evidence for a global subsurface
ocean. The advantage in this case is the high tidal amplitude. The peak-to-peak height deviation is in
case of a global liquid layer in the order of 60 m at the equator. This sets the requirement on the mea-
surement accuracy and amount of cross-over points to a lower value than for Ganymede or even Mercury.
Even if the flyby trajectory does not provide as many cross-over points as would be available with an
orbiter, it does contain about 20 very valuable profile crossings with significant amplitudes. Therefore,
the measurement of a tidal signal of Europa can be expected. However, in absence of a laser altimeter
and given that the mission is conceived as a flyby missions, other challenges arise. Aside from the actual
measurement principle discussed in Paper IV, the main issue is the contribution of orbit determination
errors. Any altimetric instrument only measures the range from spacecraft to the surface. This infor-
mation is worthless for the tidal deformation measurement without information about the spacecraft
location. While BepiColombo and JUICE are equipped with very powerful radio science experiments
(MORE and 3GM, e.g., Iess and Boscagli (2001); Iess (2013); Imperi et al. (2018)), the Clipper mission
has only limited radio tracking abilities. This means that only one 20 W X-band radio transmitter is
available in combination with three fan beam antennas. Verma and Margot (2018) investigated the radio
science capabilities of the Europa Clipper. They considered different NASA Deep Space Network (DSN)
configurations starting with one 34 m antenna to 3×34 m antennas complemented by a 70 m antenna
for selected flybys. They came to the conclusion that tracking of all flybys might be possible when
incorporating the 70 m antenna. This case would lead to orbit covariance errors favorable for the h2

determination. If only e.g., a 2×34 m antenna configuration is available, not all flybys would be tracked
and the amount of cross-over points available for the inversion could be reduced from 126 to 68. Orbit
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Figure 6.2: Left: Synthetic global shape model of Europa provided by Francis Nimmo (per-
sonal communication). Right: Inferred shape model based on synthetic REASON radar tracks
modeled based on the methods presented in Paper IV.

uncertainties are therefore in the case of the Europa Clipper the dominant error source.
Aside from the tidal measurement the proposed technique for altimetric radar measurements has also
the potential to perform other geodetic measurements like the global shape of Europa. This is usually
difficult to provide from stereo images and therefore benefits from an altimeter. I performed additional
analysis using the full ground tracks for shape reconstruction. The result with the synthetic shape of
Europa compared to the inferred shape are depicted in Figure 6.2. The analysis suggests that Europa’s
global shape can be inferred up to degree and order six in spherical harmonics. The accuracy of the C20

and C22 shape coefficients are between 2 and 3%. Another aspect of Europa with its thin ice shell and
dynamic geologic environment is that the assumption of a spherical ice shell might be oversimplified. For
instance, ocean-driven heating of Europa’s icy shell at low latitudes (Soderlund et al., 2014) can have
an impact on the shell thickness and therefore also on the tidal deformation pattern. Therefore, future
work should address the possibility of non-spherical ice shells and assess the impact on different models
on tides. Other geodetic measurements, like librations and obliquity, have to be further investigated as
well.

However, like all models also the ones presented in this dissertation are only valid under the given
assumptions and constitute in many aspects a simplification. These will be discussed in this section in a
broader context. For a detailed discussion of the methods applied, I refer to the discussion section of the
respective publication.
An important step towards a reliable instrument performance model was the first availability of BELA
test data which indeed indicated that the analytical description by Gunderson et al. (2006); Gunderson
and Thomas (2010) was not well representing the actual instrument performance. This lead to the
development of the refined model presented in Paper I. The test data which has been acquired with the
BELA flight model integrated on the BepiColombo spacecraft can be considered as the most representative
data for model validation in terms of hardware. Nonetheless, under these environmental conditions no
optical return pulse could be detected, therefore the pulse had to be simulated, including the associated
shot noise. Previous measurements with optical return pulses have also been performed at the University
of Berne (Gouman et al., 2014b). But since these measurements took place before the integration of the
pi-filter (Kallenbach et al., 2016), the noise environment was not representative. Further, not all effects
are testable under the given constraints. A significant uncertainty is the evolution of the detector and laser
performance over the mission lifetime, also considering the seven years cruise phase. Further, the multiple
mitigation strategies might lead to different behaviors of the avalanche photo diode (APD) (Barnes et al.,
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2005), leaving some aspects of the performance unpredictable. Since most of the radiation effects lead to
a degradation of the link budget its main consequence is a higher probability of false detection (PFD) and
lower maximum altitude. Paper I showed that the performance of the instrument is almost uniquely PFD
driven and that the ranging accuracy is secondary against pointing and interpolation errors. Therefore, as
long as the total laser link budget stays in the specified range, the implications on the science performance
should not be affected. Possible ways to re-increase the link budget are e.g., changing the high-voltage
at the APD, which nominally only operates at half power.
Further, the thermal environment can lead to additional disturbances which are difficult to model. Paper
I assumes that the post-launch alignment calibration strategy for BELA (Stark et al., 2017a) will be
successful in order to minimize thermal effects in Mercury orbit. While the thesis aimed at identifying
and modeling the dominant error sources that dictate the accuracy of the tidal measurements, there are
a number of influences that have not been represented, e.g., thermal distortions or clock drifts. Further,
it should be emphasized that a mission in orbit has to deal with numerous unpredictable challenges
leading to modified operation or off-nadir pointing times. The studied Europa case is the most sensitive
to this kind of events. For instance, the presence of active plumes in high latitude regions could change
the mission profile between two flybys and therefore also the location of cross-over points. The nominal
amount of 126 cross-over points is already a very low number compared to the 105 – 106 cross-over points
of the orbiter missions. Therefore, the sensitivity to spacecraft trajectory changes is very high.
To a lower extent this is also true for BELA and GALA. In the case of GALA there are nominal operation
gaps every 8 hours which have been accounted for in Paper III. But for BELA the situation is more
complicated. During periherm, the spacecraft enters a hot phase, requiring to change the orientation of
the solar panels in order to avoid overheating. This procedure might lead to a power shortage not allowing
for full science operation. However, large, measurable tidal amplitudes require the two passes at the cross-
over points to occur at distinct phases in the tidal cycle. Therefore, the periherm is, together with the
apoherm, the most important operation time for the tidal measurement. Under the given constraints, a
successful tidal inversion without periherm measurements is unlikely to be successful.
The geodetic models are an important corner stone in the presented analysis. They are the transfer
function from the instrument performance and given trajectories towards the geodetic parameters, which
are then used to assess the scientific value. The algorithms for orbit determination Paper IV are based on
cross-over points and radio science measurements and rely on numerical orbit integration. They provide
a part of the functionality of software used for spacecraft navigation, for instance the well established
MONTE software developed by JPL (e.g., Evans et al. (2016)). Comparison to similar analysis using
MONTE done in the same framework also shows a good agreement.
The interior structure models computed for Mercury are also consistent with previous studies (Hauck
et al., 2013; Knibbe and van Westrenen, 2015; Dumberry and Rivoldini, 2015) but the method used in
Paper II relies on a slightly different approach. Instead of randomizing structural models and comparing
the result to the given geodetic constraints, the algorithm conceived here uses the geodetic constraints
to calculate the structural models such that they are consistent. This is done in an iterative process and
allows to reduce the dimensions of the parameter space by the amount of given geodetic constraints. For
Mercury, the method allows to generate valid structural models with less computational effort than to
build them randomly by trial and error.
The Love number calculation is based on well established code (Wieczerkowski, 1999) as well. However,
adaptions had to be made in order to allow for an arbitrary amount of layers. Previous versions of the
code tended to numerical instability when the interior was subdivided into too many distinct layers. Also
the possibility to use an Andrade rheology has been added. The code now gives results in excellent
agreement with the code used in (Padovan et al., 2014).
The method proposed in Paper IV is in the first place a concept study since no comparable attempts to
use a radar sounder for extended altimetric campaigns currently exist. However, important aspects of
the study have been tested against well established simulation methods, mainly a point target simulator
used at JPL and show good agreement. Since the proposed method has not been applied to actual
measurements, future work should concentrate on evolving the suggested methods. For instance, data
from the Shallow Radar (SHARAD) will be analyzed for Mars in combination with digital terrain models
from the High Resolution Stereo Camera (HRSC) to obtain altimetric measurements. This application
will on the one hand allow to refine the method suggested in Paper IV and on the other hand complement
the MOLA data.
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Chapter 7

Synthesis

This thesis aimed at the analysis of the radial tidal deformation measurements on Europa, Ganymede,
and Mercury. In Paper I, a semi-analytical performance model for laser altimetry has been presented.
Model and test results of the BELA flight model on board the BepiColombo spacecraft are in good
agreement and therefore a significant improvement to previous work. The availability of an accurate
performance model assures the compliance of the instrument with the scientific objectives of the mission.
It has been further shown in Paper I that the measurement of Mercury’s tidal Love number h2 based
on cross-over points will be very challenging for BELA during the nominal mission lifetime but possible
with an 18% error after a one year mission extension. The importance of the measurement, however, has
been emphasized in Paper II, by demonstrating that the h2 measurement is key to set an upper bound
on Mercury’s inner core size via the h2/k2 ratio. The ratio gives a stronger constraint than previously
inferred geodetic parameters. With the help of the models presented in Paper I other techniques possibly
leading to a more accurate tidal measurement like from spherical harmonics expansion or co-registration
can also be studied. This is currently work in progress.
For Ganymede, it has been shown in Paper III that GALA has bright perspectives to infer the tidal
Love number h2 from cross-over measurements. This is due to the significantly higher tidal amplitudes
in presence of a subsurface ocean but also to the different design choices of the instrument. During the
nominal mission lifetime, the absolute h2 measurement accuracy is expected to be 0.026. In absence of
a large phase-lag, and together with a nominal determination of Ganymede’s tidal Love number k2 by
radio science, this allows to constrain the ice-shell thickness to ±20 km.
The Europa Clipper has to rely on radar measurements for altimetry. A new method has been proposed
and analysed in Paper IV. A very decisive impact for the h2 measurement will however be the radio
science configuration. Paper IV showed that in case of continuous radio science tracking, a determination
of Europa’s tidal Love number h2 is possible with an accuracy below 0.17. This will allow for an ultimate
evidence for a subsurface ocean and eventually also to set constraints on the ice shell thickness.
The thesis investigated the tidal measurement of three major upcoming missions. It presented models
for the altimetric instruments, suggested methods for the geodetic inversion and provided estimates on
the h2 measurement accuracies. It further discussed how the tidal measurement can provide constraints
on the interiors of Mercury, Ganymede, and Europa. But it also pointed out the challenges which have
still to be overcome in the future.
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Appendix A

Tidal Potential of Mercury

A.1. Second Order Eccentricity

The general form of the tidal potential is given as

V =
GM

a

∞∑
l=2

( r
a

)l
P 0
l (cos(φ)). (A.1)

Assuming that Mercury is on a Keplerian trajectory that can be described by the osculating elements
(a, e, i,M, ω,Ω) and expressing the angle of the subsolar point φ in latitude θ and longitude λ the potential
becomes the form

V =
GM

a
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( r
a

)l l∑
m=0
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·
l∑

p=0

Flmp(i)

∞∑
q=−∞

Glpq(e)Slmpq(ω,M,Ω,Θ), (A.3)
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(A.4)

and

Slmpq =
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l−m odd

cos [(1− 2p)ω + (1− 2p+ q)M +m(Ω−Θ)] (A.5)
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l−m odd

sin [(1− 2p)ω + (1− 2p+ q)M +m(Ω−Θ)] , (A.6)

as well as
Clm = cos(mλ) and Slm = sin(mλ) (A.7)

Expanding the potential up to degree and order two, we get

V2 =
GMr2

a3
[P 0

2 (sin θ)

2∑
p=0

F20p(i)

∞∑
q=−∞

G2pq(e)S20pq(ω,M,Ω,Θ) (A.8)

+
1

3
P 1
2 (sin θ)

2∑
p=0

F21p(i)

∞∑
q=−∞

G2pq(e)S21pq(ω,M,Ω,Θ) (A.9)

+
1

12
P 2
2 (sin θ)

2∑
p=0

F22p(i)

∞∑
q=−∞

G2pq(e)S22pq(ω,M,Ω,Θ)]. (A.10)

95



The coefficients Flmp and Glmp can be calculated with the recipes given in Kaula (1964). For small
inclinations the only non-zero inclination functions are F201 = − 1

2 and F220 = 3. This simplifies the
expression to

V2 =
GMr2

a3
[−1

2
P 0
2 (sin θ)

∞∑
q=−∞

G21q(e)S201q(ω,M,Ω,Θ)

+
3

12
P 2
2 (sin θ)

∞∑
q=−∞

G20q(e)S220q(ω,M,Ω,Θ)]. (A.11)

For second order in eccentricity, the coefficients G2mq are shown in Table A.1.
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Table A.1: G2mq coefficients according to Kaula (1964).

Inserting the coefficients from Table A.1 into Equation (A.11) leads to the expression

V2 =− GMr2

8a3
[P 0

2 (sin θ)
(
4S2010 + 6eS201−1 + S2011 + e2(S201−2 + 6S2010 + 9S2012)

)
+ P 2

2 (sin θ)
(
−2S2200 + eS220−1 − 7S2201 + e2(5S2200 − 17S2202)

)
]. (A.12)

For a body in a m:n mean motion resonance ω+
(
n
m

)
M+Ω−Θ = 0. Using this relation we can calculate

the coefficients Slmpq:

S201−2 = cos(2M) S220−2 = cos(3M + 2λ)

S201−1 = cos(M) S220−1 = cos(2M + 2λ)

S2010 = 1 S2200 = cos(M + 2λ)

S2011 = cos(M) S2201 = cos(M + λ)

S2012 = cos(2M) S2202 = cos(M − λ).

The coefficient S2010 generates a constant term and therefore generates no force on the planet. Inserting
the remaining coefficients we obtain the final potential

V2 = Φ2 =
GMr2

8a3
{2
[
2 + 3e2 + 6e cos(M) + 9e2 cos(2M)

]
P 0
2 + [− 17e2 cos(M − 2λ)

− 7e cos(2λ) + e cos(2M + 2λ)− 2 cos(M + 2λ) + 5e2 cos(M + 2λ)]P 2
2}. (A.13)
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A.2. Mathematica Notebook

In[1]:= Input parameters

Out[1]= Input parameters

In[2]:= oi = 0;H* Order inclination *L
oe = 4; H* Order eccentricity *L
lmax = 2; H* Order in l *L
res =

3

2
; H* Resonance *L

In[59]:= Coefficients F, G & S

In[4]:= FAl_, m_, p_E := NormalBSeriesB â
t=0

Min @p,IntegerPart @Hl- mL�2DDI2 l - 2 tM!

SinAiEl- m-2 t � It! Il - tM! Il - m - 2 tM! 22 l-2 tM â
s=0

m

Binomial@m, sD CosAiEs

â
c=0

30

BinomialAl - m - 2 t + s, cE Binomial@m - s, p - t - cD I-1Mc-IntegerPart @Hl- mL�2D, 9i, 0, oi=FF
SAl_, m_, p_, q_E := CosAm ΛE CosAIl - 2 pM Ω + Il - 2 p + qM M + m HW - QLE +

SinAm ΛE SinAIl - 2 pM Ω + Il - 2 p + qM M + m HW - QLE
Q:= Ω + res M + W

Β@e_D := e

1 + I1 - e2M1�2

q2Al_, p_, q_E := IfBp £ l
2
, q, -qF

hAl_, p_, q_, k_E := IfAq2Al, p, qE > 0, k + q2Al, p, qE, kE
h2Al_, p_, q_, k_E := IfAq2Al, p, qE > 0, k, k - q2Al, p, qEE
p2Al_, p_, q_E := IfBp £ l

2
, p, l - pF

PAl_, p_, q_, k_, e_E :=

â
r=0

hAl, p,q, kE
BinomialA2 p2Al, p, qE - 2 l, hAl, p, q, kE - rE I-1M

r

r!

e Il - 2 p2Al, p, qE + q2Al, p, qEM
2 Β@eD

r

QAl_, p_, q_, k_, e_E :=

â
r=0

h2Al, p,q, kE
BinomialA-2 p2Al, p, qE, h2Al, p, q, kE - rE 1

r!

e Il - 2 p2Al, p, qE + q2Al, p, qEM
2 Β@eD

r

GeAl_, p_, q_, e_E := I-1MAbs @qD I1 + Β@eD2Ml Β@eDAbs @qDâ
k=0

2

PAl, p, q, k, eE QAl, p, q, k, eE Β@eD2 k

GAl_, p_, q_E := IfBl�2 && p�1 && q�0, NormalBSeriesBI1 - e2M -32 , 9e, 0, oe=FF,
IfAl - 2 p + q == 0, 0, NormalASeriesAGeAl, p, q, eE, 9e, 0, oe=EEEF

In[16]:= Tidal potential with static components

Out[16]= components potential static Tidal with

In[17]:= V = SimplifyBgm
R
â
l=2

lmax r

R

l

â
m=0

l Il - mM!
Il + mM! I2 - IKroneckerDeltaA0, mEMM Pl, m â

p=0

l

FAl, m, pE â
q=-30

30

GAl, p, qE SAl, m, p, qEF
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Out[17]= -
1

192 R3
gm r2

I12 I8 + 12 e2 + 15 e4 + 3 e I8 + 9 e2M Cos@MD + 4 e2 I9 + 7 e2M Cos@2 MD + 53 e3 Cos@3 MD + 77 e4 Cos@4 MDM
P2,0 - I-8 e2 I-51 + 115 e2M Cos@M - 2 ΛD + 1599 e4 Cos@3 M - 2 ΛD + 845 e3 Cos@2 HM - ΛLD +

168 e Cos@2 ΛD - 369 e3 Cos@2 ΛD - 24 e Cos@2 HM + ΛLD + 3 e3 Cos@2 HM + ΛLD + e3 Cos@2 H2 M + ΛLD +
48 Cos@M + 2 ΛD - 120 e2 Cos@M + 2 ΛD + 39 e4 Cos@M + 2 ΛD + 2 e4 Cos@5 M + 2 ΛDMP2,2M

In[18]:= Tidal potential with periodic components only

Out[18]= components only periodic potential Tidal with

In[19]:= Vd = FullSimplifyAV - IntegrateAV, 9M, 0, 2 Π=E� I2 ΠME
H* Tidal potential without static components*L

Out[19]=
1

192 R3
gm r2 I-12 e I3 I8 + 9 e2M Cos@MD + e I4 I9 + 7 e2M Cos@2 MD + 53 e Cos@3 MD + 77 e2 Cos@4 MDMMP2,0 +

I48 Cos@M + 2 ΛD + e I-24 Cos@2 HM + ΛLD +
e II408 - 920 e2M Cos@M - 2 ΛD - 120 Cos@M + 2 ΛD + e H845 Cos@2 HM - ΛLD + 3 Cos@2 HM + ΛLD + Cos@

2 H2 M + ΛLD + 39 e H41 Cos@3 M - 2 ΛD + Cos@M + 2 ΛDL + 2 e Cos@5 M + 2 ΛDLMMMP2,2M

2   Tidal Potentials.nb
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Altimeter performance tests. European Planetary Science Congress 2014b;9:EPSC2014–64.

Grasset, O., Dougherty, M., Coustenis, A., Bunce, E., Erd, C., Titove, D., Blanc, M., Coates,
A., Drossart, P., Fletcher, L., Hussmann, H., Jaumann, R., Krupp, N., Lebreton, J.P., Prieto-
Ballesteros, O., Tortora, P., Tosi, F., Van Hoolst, T.. JUpiter ICy moons Explorer (JUICE): An
ESA mission to orbit Ganymede and to characterise the Jupiter system. Planeary and Space Science
2013;78. doi:10.1016/j.pss.2012.12.002.

Greenbaum, J.S., Blankenship, D.D., Young, D.A., Richter, T.G., Roberts, J.L., Aitken, A.R.A.,
Legresy, B., Schroeder, D.M., Warner, R.C., van Ommen, T.D., Siegert, M.J.. Ocean access to a
cavity beneath Totten Glacier in East Antarctica. Nature Geoscience 2015;8:294–298. doi:10.1038/
ngeo2388.

Greenberg, R., Hoppa, G.V., Tufts, B., Geissler, P., Riley, J., Kadel, S.. Chaos on europa. Icarus
1999;141(2):263 – 286. doi:10.1006/icar.1999.6187.

Grima, C., Blankenship, D.D., Schroeder, D.M.. Radar signal propagation through the ionosphere of
Europa. Planetary and Space Science 2015a;117:421–428. doi:10.1016/j.pss.2015.08.017.

Grima, C., Blankenship, D.D., Schroeder, D.M., Moussessian, A., Soderlund, K.M., Gim, Y., Plaut,
J.J., Greenbaum, J.S., Lopez Garcia, E., Campbell, B.A., Putzig, N.E., Patterson, G.. Surface
Reflectometry and Ionosphere Sounding from the Radar for Europa Assessment and Sounding: Ocean
to Near-surface (REASON). AGU Fall Meeting Abstracts 2015b;:P11C–2110.

Grott, M., Breuer, D., Laneuville, M.. Thermo-chemical evolution and global contraction of Mercury.
Earth and Planetary Science Letters 2011;307(1):135 – 146. doi:10.1016/j.epsl.2011.04.040.

Gunderson, K., Thomas, N.. BELA receiver performance modeling over the BepiColombo mission
lifetime. Planetary and Space Science 2010;58:309–318.

Gunderson, K., Thomas, N., Rohner, M.. A laser altimeter performance model and its application to
BELA. ”IEEE Transactions on Geoscience and Remote Sensing” 2006;44 No 11:3308–3319.

Hauck, S.A., Margot, J.L., Solomon, S.C., Phillips, R.J., Johnson, C.L., Lemoine, F.G., Mazarico,
E., McCoy, T.J., Padovan, S., Peale, S.J., Perry, M.E., Smith, D.E., Zuber, M.T.. The curious
case of mercury’s internal structure. Journal of Geophysical Research: Planets 2013;118(6):1204–1220.
doi:10.1002/jgre.20091.

Hauck, S.A., Solomon, S.C., Smith, D.A.. Predicted recovery of Mercury’s internal structure by
MESSENGER. Geophysical Research Letters 2007;34(18):L18201. URL: 10.1029/2007GL030793.
doi:10.1029/2007GL030793.

Head, J., Pappalardo, R., Collins, G., Belton, M.J.S., Giese, B., Wagner, R., Breneman, H., Spaun,
N., Nixon, B., Neukum, G., Moore, J.. Evidence for Europa-like tectonic resurfacing styles on
Ganymede. Geophysical Research Letters 2002;29(24):4–1–4–4. doi:10.1029/2002GL015961; 2151.

Head, J., Pappalardo, R., Kay, J., Collins, G., Prockter, L., Greeley, R., Chapman, C., Carr, M.,
Belton, M., Galileo Imaging Team, . Cryovolcanism on Ganymede: Evidence in Bright Terrain from
Galileo Solid State Imaging Data. In: Lunar and Planetary Science Conference. volume 29; 1998. .

Head, J.W., Chapman, C.R., Strom, R.G., Fassett, C.I., Denevi, B.W., Blewett, D.T., Ernst,
C.M., Watters, T.R., Solomon, S.C., Murchie, S.L., Prockter, L.M., Chabot, N.L., Gillis-Davis,
J.J., Whitten, J.L., Goudge, T.A., Baker, D.M.H., Hurwitz, D.M., Ostrach, L.R., Xiao, Z.,
Merline, W.J., Kerber, L., Dickson, J.L., Oberst, J., Byrne, P.K., Klimczak, C., Nittler, L..
Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER. Science
2011;333(6051):1853–1856. doi:10.1126/science.1211997.
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Lichopoj, A., Schroedter, R., Michaelis, H., Seiferlin, K., Thomas, N., Castro, J.M., Herranz,
M., Lara, L.. Electromagnetic compatibility of transmitter, receiver, and communication port of a
space-qualified laser altimeter. 2016 ESA Workshop on Aerospace EMC (Aerospace EMC) 2016;:1–7.

Kalousova, K., Sotin, C., Choblet, G., Tobie, G., Grasset, O.. ”two-phase convection in ganymede’s
high-pressure ice layer - implications for its geological evolution”. Icarus 2018;299:133 – 147. doi:10.
1016/j.icarus.2017.07.018.

Kamata, S., Kimura, J., Matsumoto, K., Nimmo, F., Kuramoto, K., Namiki, N.. Tidal deformation
of Ganymede: Sensitivity of Love numbers on the interior structure. Journal of Geophysical Research
(Planets) 2016;121:1362–1375. doi:10.1002/2016JE005071.

Kaula, W.. Tidal dissipation by solid friction and the resulting orbital evolution. Reviews of Geophysics
1964;2:661–685. doi:10.1029/RG002i004p00661.

Khurana, K.K., Jia, X., Kivelson, M.G., Nimmo, F., Schubert, G., Russell, C.T.. Evidence of a
Global Magma Ocean in Io’s Interior. Science 2011;332:1186. doi:10.1126/science.1201425.

Khurana, K.K., Kivelson, M.G., Stevenson, D.J., Schubert, G., Russell, C.T., Walker, R.J.,
Polanskey, C.. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto.
Nature 1998;395:777–780. doi:10.1038/27394.

Kivelson, M., Khurana, K., Volwerk, M.. The permanent and inductive magnetic moments of Ganymede.
Icarus 2002;157:507–522. doi:10.1006/icar.2002.6834.

103

http://dx.doi.org/10.1007/s10569-016-9721-0
http://dx.doi.org/10.1016/j.asr.2010.06.001
http://dx.doi.org/10.1006/icar.2001.6776
http://dx.doi.org/10.1016/S0032-0633(01)00096-4
http://dx.doi.org/10.1016/j.icarus.2017.09.008
http://dx.doi.org/10.1016/j.pss.2009.09.016
http://dx.doi.org/10.1016/j.icarus.2017.07.018
http://dx.doi.org/10.1016/j.icarus.2017.07.018
http://dx.doi.org/10.1002/2016JE005071
http://dx.doi.org/10.1029/RG002i004p00661
http://dx.doi.org/10.1126/science.1201425
http://dx.doi.org/10.1038/27394
http://dx.doi.org/10.1006/icar.2002.6834


Kivelson, M.G., Khurana, K.K., Russell, C.T., Volwerk, M., Walker, R.J., Zimmer, C.. Galileo magne-
tometer measurements: A stronger case for a subsurface ocean at europa. Science 2000;289(5483):1340–
1343. doi:10.1126/science.289.5483.1340.

Kivelson, M.G., Khurana, K.K., Stevenson, D.J., Bennett, L., Joy, S., Russell, C.T., Walker,
R.J., Zimmer, C., Polanskey, C.. Europa and Callisto: Induced or intrinsic fields in a periodically
varying plasma environment. Journal of Geophysical Research 1999;104:4609–4626. doi:10.1029/
1998JA900095.

Kliore, A.J., Anabtawi, A., Herrera, R.G., Asmar, S.W., Nagy, A.F., Hinson, D.P., Flasar, F.M..
Ionosphere of callisto from galileo radio occultation observations. Journal of Geophysical Research:
Space Physics 2002;107(A11):SIA 19–1–SIA 19–7. doi:10.1029/2002JA009365.

Knibbe, J.S., van Westrenen, W.. The interior configuration of planet mercury constrained by moment of
inertia and planetary contraction. Journal of Geophysical Research: Planets 2015;120(11):1904–1923.
doi:10.1002/2015JE004908; 2015JE004908.

Koch, C., Christensen, U., Kallenbach, R.. Simultaneous determination of global topography, tidal
Love number and libration amplitude of Mercury by laser altimetry. Planetary and Space Science
2008;56(9):1226 – 1237. doi:10.1016/j.pss.2008.04.002.

Koch, C., Kallenbach, R., Christensen, U.. Mercury’s global topography and tidal signal from laser
altimetry by using a rectangular grid. Planetary and Space Science 2010;58(14):2022 – 2030. doi:10.
1016/j.pss.2010.10.002.

Kreslavsky, M.A., Head, J.W., Neumann, G.A., Rosenburg, M.A., Aharonson, O., Smith, D.E.,
Zuber, M.T.. Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data:
Scale dependence and correlation with geologic features and units. Icarus 2013;226:52–66. doi:10.
1016/j.icarus.2013.04.027.

Kreslavsky, M.A., Head, J.W., Neumann, G.A., Zuber, M.T., Smith, D.E.. ”kilometer-scale topo-
graphic roughness of mercury: Correlation with geologic features and units”. Geophysical Research
Letters 2014;41(23):8245–8251. doi:10.1002/2014GL062162.

Lemoine, F., Smith, D., Rowlands, D., Zuber, M., Neumann, G., Chinn, D., Pavlis, D.. An improved
solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophysical
Research 2001;106:23359–23376. doi:10.1029/2000JE001426.
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Steinke, T., Stark, A., Steinbrügge, G., Hussmann, H., Oberst, J.. Estimation of Ganymede’s Topogra-
phy, Rotation and Tidal Deformation - a Study of Synthetic Ganymede Laser Altimeter Observations.
European Planetary Science Congress 2015;10:EPSC2015–514.

Stevenson, D.J., Spohn, T., Schubert, G.. Magnetism and thermal evolution of the terrestrial planets.
Icarus 1983;54:466–489. doi:10.1016/0019-1035(83)90241-5.

Sun, X., Barker, M.K., Mao, D., Marzarico, E., Neumann, G.A., Skillman, D.R., Zagwodzki, T.W.,
Torrence, M.H., Mcgarry, J., Smith, D.E., Zuber, M.T.. In-orbit Calibration of the Lunar Orbiter
Laser Altimeter Via Two-Way Laser Ranging with an Earth Station. AGU Fall Meeting Abstracts
2014;:P13B–3814.

Thomas, N., Spohn, T., Barriot, J.P., Benz, W., Beutler, G., Christensen, U., Dehant, V., Fallnich,
C., Giardini, D., Groussin, O., Gunderson, K., Hauber, E., Hilchenbach, M., Iess, L., Lamy, P.,
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