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Abstract

In video coding, there are inter-frame dependencies due to motion-compensated pre-

diction. The achievable rate distortion performance of an inter-coded frame depends

on the coding decisions made during the encoding of its reference frames. Typically,

in the encoding of a reference frame, these dependencies are either not considered at

all or only via some rough heuristic.

In this thesis, a multi-frame transform coefficient optimization method for H.265/

HEVC is developed and studied. The inter-frame dependencies are described using a

linear signal model. Based on this model, the optimization problem is cast in the form

of an `1-regularized least squares problem. For solving this problem, an optimization

algorithm is developed, which is applicable to H.265/HEVC without imposing ex-

cessive demands in terms of computational complexity and memory requirements. A

simple functional relationship between the regularization parameter and the quantiza-

tion paramter is empirically found. The accuracy of the linear signal model is studied,

the bit rate savings due to the proposed method are evaluated, and its complexity is

assessed. Finally, an extension of the method for spatially scalable video coding using

SVC, the scalable extension of H.264/AVC, is presented.
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Zusammenfassung

Bei der Codierung von Videosignalen ergeben sich aufgrund der bewegungskompen-

sierten Prädiktion Abhängigkeiten zwischen den einzelnen Frames. Die erzielbare

Rate-Distortion-Performance eines inter-codierten Frames hängt dadurch von den Co-

dierentscheidungen ab, die bei der Codierung seiner Referenzbilder getroffen wurden.

Typischerweise werden diese Abhängigkeiten bei der Codierung eines Referenzbildes

entweder gar nicht beachtet oder aber nur mittels einer groben Heuristik.

In dieser Arbeit wird ein Verfahren zur Optimierung der Transformationskoeffizien-

ten unter Berücksichtigung der Abhängigkeiten zwischen den einzelnen Frames für

H.265/HEVC entwickelt und untersucht. Die Abhängigkeiten werden durch ein li-

neares Signalmodell beschrieben. Mit Hilfe dieses Modells wird das Optimierungs-

problem in der Form eines `1-regularisierten Least-Squares-Problem formuliert. Zum

Lösen dieses Problems wird ein Optimierungsalgorithmus entwickelt, der sich ohne

übermäßige Anforderungen hinsichtlich Komplexität und Speicherbedarf auf H.265/

HEVC anwenden läßt. Ein einfacher funktionaler Zusammenhang zwischen dem Re-

gularisierungsparameter und dem Quantisierungsparameter wird empirisch hergelei-

tet. Die Genauigkeit des linearen Signalmodells wird untersucht, die sich ergebenden

Bitraten-Einsparungen werden ausgewertet, und die Komplexität des Verfahrens wird

bewertet. Ferner wird eine Erweiterung des Verfahrens für örtlich skalierbare Video-

codierung mit SVC, der skalierbaren Erweiterung von H.264/AVC, vorgestellt.
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1 Introduction

At the time of the writing of this thesis, a revolution is taking place in the area

of video technology. According to a recent study by Cisco [Cis14], video services

will amount to 79 % of all consumer Internet traffic in 2018, up from 66 % in 2013

(peer-to-peer sharing of video files not even counted in), and the amount of video

on demand (VoD) traffic will double by 2018, corresponding to the equivalent of

6 billion DVDs per month. So-called 4K or Ultra High Definition (UHD) television

sets, offering four times the resolution of High Definition Television (HDTV), are

becoming available for end-consumers. Video streaming services like YouTube, Netflix

etc. are competing with traditional linear TV broadcasting. Key enabler for all of these

developments is availability of efficient methods for video compression. In particular,

the international video coding standard H.264/AVC has been a major driver of HDTV

deployment as well as video streaming to mobile devices. Meanwhile, in early 2013,

the first version of its successor H.265/HEVC has been finalized and formally ratified

as an international standard. Recent studies have shown that H.265/HEVC is able to

provide the same subjective quality of the video signal at half the bit rate as H.264/

AVC on average, with even higher bit rate savings of approximately 64 % for sequences

at UHD resolution [OSS+12, TMBR14]. The video coding standards, however, only

specify the bitstream format and the decoding process, leaving a lot of freedom to the

designer of a video encoder. This thesis is concerned with rate distortion optimization

of the video encoder under consideration of inter-frame dependencies, within the given

constraints of the video coding standard. Results are shown for H.265/HEVC as well

as H.264/AVC-based Scalable Video Coding (SVC).

1



1 Introduction

1.1 Problem statement

In video coding, there are inter-frame dependencies due to motion-compensated pre-

diction. The achievable rate distortion performance of an inter-coded frame depends

on the coding decisions made during the encoding of its reference frames. Typically,

in the encoding of the reference frames, the impact on their referring frames is either

not considered at all or only via some rough heuristic (e.g., by using some fixed QP

cascading rule in hierarchical prediction structures). It is the aim of this thesis to

improve the overall coding performance by applying modern numerical optimization

methods in order to exploit part of these dependencies.

1.2 Main contributions

The subject of this thesis goes back to initial work done by Schumitsch [SSW04,

SSW05]. Schumitsch’s objective is to optimize the transform coefficient level1 selection

by considering inter-picture dependencies. For this purpose, he proposes to use matrix

formulation in order to obtain an approximation of the video reconstruction process

(i.e., inverse transform and motion-compensated prediction) based on the transform

coefficients. A key part of his work is to assume that, firstly, the reconstructed samples

of a transform block can be obtained as a linear combination of the corresponding

transform coefficient levels, and secondly, the reconstructed samples of an inter-coded

block can be represented as a linear combination of previously decoded samples. He

then uses a Quadratic Program2 formulation in order to solve for the optimal transform

coefficient levels in consideration of the inter-frame dependencies within a set of video

frames. In [SSW05], he presents results for two sequences at QCIF resolution (176×
144 luma samples), encoded using H.264/AVC Main Profile (4 × 4 transform block

size). As will be explained in more detail later, direct application of his method to high

1Within this thesis, the terms transform coefficient and transform coefficient level are used as
defined in H.264/AVC and H.265/HEVC, i.e. the transform coefficient level refers to the value
that is actually transmitted in the bitstream and whose interpretation depends on the chosen
quantization step size, whereas the transform coefficient refers to the intermediate value in the
reconstruction process after inverse scaling of the corresponding transform coefficient level. Since,
given the quantization step size, the one can be derived from the other, a differentiation is made
only when necessary.

2A Quadratic Program is a numerical optimization problem with quadratic objective function and
linear constraints.

2



1.2 Main contributions

resolution video sequences, to complicated prediction structures, and to video coding

schemes using large transform block sizes is not feasible due to practical constraints.

For example, when only a transform block size of 4×4 is used as in H.264/AVC Main

Profile, each residual sample depends only on 16 transform coefficients. When allowing

32 × 32 transform blocks, however, as in the H.265/HEVC video coding standard,

one residual sample may depend on 1024 transform coefficients, which significantly

increases both memory and computational requirements.

The main contributions of this thesis are as follows:

• The resulting rate distortion performance of applying the optimization method

to the encoding of a first-order Gauss-Markov source using differential pulse

code modulation (DPCM) is studied. It is shown that, for lower to medium

entropy rates, significant improvements over scalar quantization with an optimal

adaptation of the rounding control parameter are achieved. Furthermore, the

impact of the optimization on the power spectral density of the residual signal is

studied and it is found that for lower bit rates, the energy of the residual signal

decreases and its spectrum becomes more and more low-pass.

• A significantly more efficient approach to the joint optimization problem that

does not rely on the Quadratic Program formulation, but instead uses a variant

of the iterative shrinkage/thresholding algorithm (ISTA) [DDDM04] is presented.

A comparison with different state of the art solution algorithms to this mathe-

matical problem class is given and the decision for using ISTA in the context of

multi-frame optimization is justified. This method allows usage of larger sized

transform blocks with negligible impact on memory requirements and moderate

impact on computational complexity.

• In the optimization problem, the trade-off between distortion and approximated

bit rate is controlled by a regularization parameter. A rule for selecting this reg-

ularization parameter based on the Quantization Parameter (QP) is empirically

derived. The impact of using this fixed rule compared to determining the opti-

mal parameter in rate distortion sense for each sequence and QP individually is

shown.

• In state of the art video coding standards, like H.264/AVC or H.265/HEVC,

there are highly efficient coding modes for signaling all-zero transform blocks.

3



1 Introduction

This aspect is not captured in the optimization problem where the impact of each

transform coefficient to the overall bit rate is treated individually. Therefore, a

method that determines for each block the impact of the all-zero coding mode

on the overall distortion of the subsequent frames and considers the result in

the rate distortion optimization of the encoding process is proposed.

• A spatial sliding window process is proposed, that allows application of Schu-

mitsch’s method to higher resolution video sequences and/or prediction struc-

tures requiring joint consideration of a larger number of frames. By this method,

the original optimization problem, which is too big in order to be solved directly,

is split into a series of smaller sized sub-problems which are solved successively.

• The resulting rate distortion behaviour for a set of different non-convex regular-

ization functions is studied under the ISTA framework and experimental results

are presented, providing a comparison with the well-known `1-norm regularizer.

• An extension for inter-layer dependencies in spatial scalable video coding using

SVC is developed. In SVC, the base layer residual and texture signals may be

used in order to facilitate encoding of the enhancement layer. It is shown, that

by considering these inter-dependencies during encoding of the base layer, sig-

nificant coding gains for the enhancement layer can be achieved with no impact

on the coding performance of the base layer.
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2 State of the art

In this chapter, the state of the art of video coding standards and prior approaches

to rate distortion optimization in video coding are reviewed. First, an overview over

the hybrid video coding paradigma, which is the basis for all relevant video coding

standards, is given. Then, the unique features of the new H.265/HEVC video coding

standard are described. Further, the common Lagrangian approach to the rate distor-

tion optimization problem in the operational control of a video encoder is elucidated.

Finally, prior approaches to the bit allocation problem, in particular such approaches

which take the inter-frame dependencies into account, are discussed.

2.1 Hybrid video coding

All relevant video coding standards (i.e., H.261, MPEG-1, MPEG-2/H.262, H.263,

H.264/AVC, H.265/HEVC) are based on the so-called hybrid approach. The term

“hybrid” stems from the fact that along different dimensions of the input video signal

different decorrelating coding techniques are applied [Eri85]. In particular, along the

temporal dimension, a motion-compensated prediction is used, in order to exploit tem-

poral dependencies. The spatial dependencies within one video frame, which remain

after the temporal prediction, are reduced by applying a separable block transform to

the prediction residual. Typically, the discrete cosine transform (DCT) [ANR74] or

an approximation thereof is used for this purpose.
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Figure 2.1: Basic architecture of a hybrid video encoder.
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2.1.1 General structure

The basic architecture of a hybrid video encoder is depicted in Fig. 2.1. The solid lines

represent the signal flow of the signal samples, whereas the so-called side information

or control data (e.g., prediction modes, motion vectors, block sizes) are shown using

dashed lines. The input signal is first split into individual coding blocks. For each

block, a prediction signal is generated, which may be obtained either by intra predic-

tion from already encoded blocks of the current frame (or by using some fixed value

for the first block) or by motion-compensated prediction using past encoded frames.

This prediction signal is subtracted from the original input signal and the resulting

residual signal is then transformed and quantized, leading to quantized transform coef-

ficient levels which are fed to the entropy coding stage. The entropy encoder typically

uses either variable-length coding (VLC) (e.g, using Huffman codes [Huf52]) or arith-

metic coding [RL79, WNC87] (e.g, context-based adaptive binary arithmetic coding

(CABAC) [MSW03]). After reconstruction (i.e., inverse scaling/transform and adding

of the prediction signal), a forward-adaptive loop filter is applied in the exemplary

encoder of Fig. 2.1. The loop filtered reconstructed frames are stored in the decoded

picture buffer, where they are available as reference frames for motion-compensated

prediction. The motion-compensated prediction signal is determined by the motion

vector and the corresponding reference frame. Typically, a motion vector accuracy

finer than one sample (or pel, for picture element) is used. The state of the art video

coding standards H.264/AVC and H.265/HEVC use a motion vector accuracy of one

quarter-pel for the luminance component. Therefore, a sub-pel interpolation filter

has to be applied to the reconstructed frame, in order to obtain the sample values at

sub-pel positions.

2.1.2 The video coding standard H.265/HEVC

H.265/HEVC is the latest video coding standard which has been jointly developed by

the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture

Experts Group (MPEG), the two most relevant standardization organizations in the

area of video compression. The video coding standard which precedes H.265/HEVC

is H.264/AVC, which is in wide use today in different application areas such as digital

television, BluRay, internet video streaming, and video conferencing. Therefore, in the

following the major enhancements of H.265/HEVC relative to H.264/AVC are sum-
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Figure 2.2: Possible partitionings of a Coding Unit (CU) into Prediction Units (PUs).

Figure 2.3: Illustration of the Z scan (depth first) traversal of a quadtree.

marized. A more detailed description of H.265/HEVC can be found in [SOHW12].

Prediction block partitioning

Whereas in H.264/AVC each frame is split into macroblocks of 16× 16 luma samples,

the basic structure in H.265/HEVC is the Coding Tree Unit (CTU). The block size of

a CTU is variable, but fixed within a sequence. The following CTU sizes are possible:

16 × 16, 32 × 32, or 64 × 64 luma samples. Typically, a larger CTU size leads to

better coding efficiency, especially at higher resolutions [SOHW12]. Each CTU can

be further split by the use of a quadtree decomposition into Coding Units (CUs). For

each CU, it is specified which type of prediction (intra or inter) is used. A CU can be

further split into two or four Prediction Units (PUs). The prediction parameters (i.e.,

motion vectors, reference frames, intra prediction directions etc.) are transmitted for

8



2.1 Hybrid video coding

each PU. H.265/HEVC allows PU sizes ranging from 4× 4 to 64× 64 samples1. The

possible partitionings are shown in Fig. 2.2. The rectangular partitionings are only

supported for inter-predicted CUs. The CTUs within a frame are processed in raster

scan order (row by row, left to right), whereas the CUs within a CTU are traversed in

so called Z scan order as illustrated in Fig. 2.3. The Z scan order is used because thus

for each CU, the top and left neighboring CUs will processed afore, and therefore the

coding decision made for these will be available and can be used for context-modeling

in the entropy coding stage. More information about the block partitioning in H.265/

HEVC can be found in [KML+12].

Motion-compensated prediction

Just like H.264/AVC, H.265/HEVC uses a motion vector accuracy of one quarter-

pel. The interpolation filter that is used in order to obtain the sample values at

sub-pel positions of the luma component is an 8-tap FIR filter. For the chroma in-

terpolation process, a 4-tap FIR filter is used. Like H.264/AVC, H.265/HEVC allows

bi-prediction, i.e. a superposition of two prediction signals, and weighted prediction,

i.e. a scaling of the prediction signal. In addition to prior video coding standards, a

so-called merge mode is supported, where the motion parameters (i.e., motion vec-

tors and reference frames) can be inherited from a set of candidates, which include

neighboring blocks as well as a temporally collocated merge candidate. This allows

efficient representation of contiguous regions, where the motion parameters are shared

across different CUs. Furthermore, a so-called CU SKIP mode is supported, where

it is very efficiently signaled, that the merge mode is used without transmitting a

residual signal.

Transform domain representation of the residual signal

Each CU is split into one or more Transform Units (TUs) by the usage of secondary

quadtree structure, called Residual Quadtree (RQT). H.265/HEVC supports trans-

form sizes of 4 × 4, 8 × 8, 16 × 16, and 32 × 32 samples. The basis functions are

integer approximations of the corresponding DCT [ANR74] basis functions. For intra-

predicted luma blocks of 4× 4 samples, an integer approximation of the discrete sine

14× 4 PUs are only supported for intra-predicted CUs.
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transform (DST) [WH85] is used instead. Furthermore, for 4 × 4 transform blocks,

a transform skip mode is supported, where the transform of the residual signal from

spatial to frequency domain is omitted, which is especially beneficial to screen and

computer graphics content [LXSW12, PLXS12].

In the bitstream, for each TU, so-called transform coefficient levels are transmitted.

From each transform coefficient level, the actual transform coefficient is derived by

multiplication by a scaling factor, which depends on the Quantization Parameter (QP)

value. A smaller QP value corresponds to a smaller scaling factor, which results in a

finer accuracy of the transform coefficients. For 8 bit video sequences, there are 52

different scaling factors supported, corresponding to a QP range of 0–51. The same

uniform-reconstruction quantizer (URQ) [Sul96] as in H.264/AVC is used for H.265/

HEVC.

In inter-predicted CUs, a transform block may overlap several prediction blocks. E.g.,

if the PART Nx2N partitioning according to Fig. 2.2 is used for a 32× 32 CU, there

will be two 16 × 32 PUs. In this case, it is possible to encode the residual signal

using one 32 × 32 TU, which overlaps the two PUs. For intra-predicted CUs (with

PART NxN partitioning), this is not possible, since otherwise the prediction signal of

the second PU in coding order, which may depend on the reconstructed signal of the

first PU in coding order, would depend on the residual signal of the whole CU, causing

a causality problem in the encoder, since in order to determine the residual signal,

the prediction signal has to be known, which is not the case, if the prediction signal

itself (partly) depends on the residual signal. The TUs within a CU are processed

in Z scan order (see Fig. 2.3). The transform coding in H.265/HEVC is described in

detail in [SJN+12, NHW+13].

Residual coding

Whereas H.264/AVC supports two methods of entropy coding, namely context-based

adaptive variable length coding (CAVLC) [BL02] and context-based adaptive binary

arithmetic coding (CABAC) [MSW03], in H.265/HEVC only the latter (CABAC) is

supported. The encoding of the transform coefficient levels using CABAC follows the

same three steps as in H.264/AVC:
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Figure 2.4: Number of bins resulting from the five different binarizations of the syntax
element coeff abs level remaining.

• binarization

• context modeling

• binary arithmetic coding (BAC)

The last step, where the binary symbols are encoded using the BAC engine also

known as M coder, is directly taken without any modification from H.264/AVC. The

binarization and context modeling are modified in order to improve both throughput

and coding efficiency. Each transform block (TB) is split into so-called sub-blocks

(SB), where a sub-block is a 4 × 4 array of 16 transform coefficient levels. First,

the locations of the non-zero transform coefficients are transmitted. Using one single

syntax element, a flag called rqt root cbf, it can very efficiently be signaled that all

the transform coefficients of the whole CU are zero. If this is not the case, then for

each TB of the CU, a coded block flag (cbf) for the luma component is transmitted

(cbf luma) which indicates whether all the luma transform coefficients within this TB

are zero1. If again this is not the case, the location of the last non-zero coefficient in

1The coded block flags cbf cb and cbf cr for the chroma components are interleaved with the
signaling of the RQT structure.
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scanning order within a TB is transmitted. The positions of the non-zero coefficients

within a SB are indicated using the so-called significance map. For that purpose, for all

but the last coefficient in scanning order (which must be non-zero per definitionem), a

significance flag (sig coeff flag) is transmitted. Furthermore, for each following SB,

by the usage of the coded sub block flag, it can again very efficiently signaled, that

all its coefficients are zero.

After the locations of the non-zero coefficients have been signaled, the actual values

have to be transmitted. At this point, it is already clear that the value must be at least

one, because otherwise it would not be a non-zero coefficient. The absolute value mi-

nus one of the non-zero transform coefficient values is encoded using three syntax ele-

ments, namely coeff abs level greater1 flag, coeff abs level greater2 flag, and

coeff abs level remaining. The first two of the three are encoded using context-

modeling and binary arithmetic coding, whereas the last one is encoded in so-called

bypass mode, i.e. without context modeling and each binary symbol (bin) results

in one additional output bit. The binarization of coeff abs level remaining, i.e.

the decomposition of the corresponding value into a sequence of binary symbols, is

based on Golomb-Rice codes [Gol66] and Exp-Golomb codes [Teu78]. Five differ-

ent binarizations are supported, where the actual binarization is chosen backward-

adaptively. The resulting numbers of bins are shown in Fig. 2.4. Generally, it can

be seen, that the number of bins grows slowly (i.e., logarithmically) with the value of

coeff abs level remaining.

For the encoding of the sign of the non-zero transform coefficients, H.265/HEVC

supports a new coding tool called sign data hiding (SDH). With SDH enabled, for

each sub-block which fulfills the condition that the distance between the first and last

non-zero coefficient in scan order is larger than 3, the sign information of the last

coefficient in coding order is not explicitly signaled, but instead it is derived from

the parity of the sum of the transform coefficient levels. Obviously, from an encoder

perspective, this imposes a constraint such that only those combinations of transform

coefficient levels can be transmitted which fulfill the parity condition. Therefore, if

the “real” transform coefficient levels result in a violation of the parity condition, an

adaptation of one level by +1 or −1 has to be made. In the H.265/HEVC reference

encoder HM, this adaptation can be made such that the impact on either the rate

distortion cost1 or solely on the induced distortion is minimized, where the former

is used in conjunction with so-called rate distortion optimized quantization (RDOQ)

1a weighted sum D + λR of the resulting distortion D and the required bit rate R, see Sec. 2.2
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[KYC08, KCYJ09], and the latter in conjunction with ordinary scalar quantization.

More details about the residual coding in H.265/HEVC can be found in [SJN+12,

NHW+13].

In-loop filtering

In addition to the deblocking filter, which is similar to the one of H.264/AVC, in

H.265/HEVC a secondary in-loop filter, which is called sample adaptive offset (SAO),

is supported. The SAO targets at a better reconstruction of the original sample

amplitude. Each sample is classified into one out of several predefined categories. A

look-up table is transmitted in the bitstream which contains an offset value for each

category. Consequently, the SAO is a non-linear forward-adaptive filter. A detailed

description of the SAO can be found in [FAA+12].

2.2 Rate Distortion Optimization

By a video coding standard, only the bitstream format and the decoding process are

prescribed, the question how to do the actual video compression, i.e. how to obtain

the coded bitstream from the sample values of the original input video sequence, is

intentionally left open. This leaves much freedom to the designer of a video encoder.

The performance of an actual video encoder can be judged based on a variety of

different criteria, e.g.

• latency,

• computational complexity (i.e., in the simplest form, run time),

• memory requirements, or

• reconstruction quality of the decoded video signal at a given bit rate.
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Typically, in order to improve the performance for one of the criteria, one has to accept

losses for the others. In this thesis, the focus is on the last criterion, i.e. improving

the rate distortion performance, whithout imposing excessive demands in terms of the

other criteria, such that practical implementability is maintained. Generally, the rate

distortion optimization problem can be stated as minimizing the distortion D under

a given constraint on the bit rate R, i.e.

minD subject to R ≤ Rmax. (2.1)

As has been shown in [Eve63], problems of this kind can be recast into an uncon-

strained optimization problem by the usage of a discrete version of the Lagrangian

multiplier method. This results in the following formulation

min J with J = D + λR, (2.2)

where the solution of Eq. 2.2 for a given value of the Lagrangian multiplier λ is iden-

tical to a solution of Eq. 2.1 with a corresponding bit rate constraint Rmax. Both D

and R depend on all the choices made during the encoding of the video sequence, i.e.

prediction modes, block sizes, motion vectors, quantization step size etc. If the La-

grangian multiplier λ is fixed, the resulting rate distortion cost J can be computed for

a set of coding options and the one resulting in the lowest J is chosen. In the reference

encoder implementations for H.264/AVC and H.265/HEVC, this optimization is done

block-by-block. In [WG01], for the video coding standard H.263+, it is proposed to

select λ depending on the quantization step size according to

λ = 0.85 ·Q2, (2.3)

where Q is the QUANT parameter of H.263+, which is half the distance of two

neighboring non-zero quantizer reconstruction values1. In [WSJ+03], the following

rule has been empirically derived for H.264/AVC

λ = 0.85 · 2(QP−12)/3, (2.4)

1Non-zero is important here, because in H.263 (as in its predecessors H.261 and H.262) the distance
between the zero reconstruction value and the first non-zero reconstruction value is 1.5 times the
distance between the non-zero reconstruction values, which is referred to as central dead-zone.
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where QP is the quantization parameter. Since the quantization step size ∆ doubles,

if QP is incremented by six, the following relations hold:

∆ ∝ 2QP/6 (2.5)

∆2 ∝ 2QP/3 (2.6)

λ ∝ ∆2 (2.7)

This shows that in both Eq. 2.3 and Eq. 2.4 the Lagrangian multiplier is proportional

to the square of the quantization step size. A similar rule for chosing λ is also used

in the H.265/HEVC reference encoder software.

2.3 Previous approaches

Subject of this thesis is rate distortion optimization of transform coefficients under

consideration of inter-frame dependencies. This can broadly be viewed as a specific

case of a bit allocation problem: Given a total budget Rbudget, how to distribute

the available bit rate among the individual transform coefficients without exceeding

Rbudget? In this section, previous work on the bit allocation problem is reviewed and

their differences to the work within this thesis are elaborated.

Huang and Schultheiss were the first to address the bit allocation problem within the

context of source coding in their seminal work [HS63]. They considered block coding

of Gaussian variables using a decorrelating linear transform, whose output is fed to

a set of Lloyd-Max [Max60, Llo82] scalar quantizers. For fixed-length coding of the

quantizer outputs, they give a formular which approximates the number of bits to be

assigned to each scalar quantizer in order to minimize the distortion under a constraint

on the total number of bits available. In their solution, fractional or even negative

bit assignments may occur. Furthermore, they only considered coding of Gaussian

sources. In [Seg76], a solution to the bit allocation problem under consideration

of the non-negativity constraint and application of entropy coding to the quantizer

outputs is presented.

In [SG88], Shoham and Gersho propose an algorithm for bit allocation to an arbitrary

set of quantizers which relies on a discrete version of the Lagrangian multiplier method

[Eve63]. The algorithm in this paper also does not rely on model assumptions about
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the rate distortion performance of a quantizer, but instead can be applied on-line

to the actual costs of any coding scheme (similar to the rate distortion optimization

(RDO) in typical current video encoders). It does not, however, cover the case of

inter-dependencies between the individual quantizers.

Operational dependent bit allocation

The bit allocation problem in a scenario where there are inter-dependencies in the

sense, that the input to one quantizer depends on the output of another quantizer, is

first treated in the work by Ramchandran et al. [ROV93, ROV94], which also does not

rely on model-based rate distortion functions. In this work, the inter-dependencies

are modeled using a trellis, and the optimal solution to the bit allocation problem is

then found by searching for the minimal-cost path through the trellis. Note that only

in very simple constellations the Viterbi algorithm (VA) [For73] can be used for this

purpose, because the VA relies on the Markov property. In the context of multi-frame

optimization in video coding, the Markov property would mean that the rate distortion

cost of the next frame (in coding order) only depends on the coding decisions made

for the current frame. This is true for a I-B-I coding scenario, since the independent

I frames decouple the B frame from one another [ROV93, Sec. 2.1]. But in a more

general setup, the coding decisions made for all previous frames also impact the next

frame. In order to ease the burden of having to explore the whole exponentially

growing dependency tree, a monotonicity property is assumed in [ROV93, ROV94].

This monotonicity property basically means that a better predictor will lead to more

efficient coding of the residue. Furthermore, a suboptimal heuristic is proposed, such

that in each stage of the trellis, except for the first one which corresponds to the

initial I frame, only the lowest cost branch is retained. Still, applicability of the

joint-optimization algorithm is limited to setups with manageable search space (e.g.,

deciding between three different frame-wise quantizers for a group of five frames, as

shown in [ROV93, ROV94]), because the search space grows exponentially with the

number of frames under consideration.

Model-based dependent bit allocation

In [USC93], the theoretical optimal bit allocation in the presence of quantizer feedback

under the model assumption of an exponential distortion-rate function is derived, i.e.

for the first frame, which does not depend on other frames, the relation between bit
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rate R1 and quantization error variance E1 is modeled as

E1 = e−αR1X1, (2.8)

where α and X1 are free parameters which have to be estimated for each specific

encoder and sequence by encoding at different bit rates and regression of the empirical

rate distortion curve. Under the assumption that frame m is temporally predicted

from frame m− 1, the inter-frame dependencies are modeled as follows in [USC93]

Em = e−αRm(Xm + ρmEm−1), (2.9)

where 0 ≤ ρm ≤ 1 is the coefficient of quantizer feedback. Even though the actual

bit allocation, which is derived from these model assumptions, is rather academical,

the authors of [USC93] conclude that, by considering inter-frame dependencies in the

rate distortion optimization, “in the case of quantizer feedback, frames that are either

easily predicted, or good predictors are encoded to higher quality since propagating

quantization errors contribute to the total error in predicted frames.”

A very similar rate distortion model for the inter-frame dependencies is assumed in

[CLK97], where the distortion Di of the frame i is obtained from its bit rate Ri and

the distortion of its reference frame Di−1 as well as the coding efficiency parameter βi

and the frame dependency parameter αi as:

Di = 2−βiRi(σ2
i + αiDi−1) (2.10)

The main difference between Eq. 2.9 and Eq. 2.10 is, that in Eq. 2.10 the exponential

decay parameter βi is frame-specific, whereas α in Eq. 2.9 is fixed for the whole

sequence. Based on the model of Eq. 2.10, the optimal bit-allocation among the

individual frames for a wavelet video coder is derived in [CLK97].

Inter-frame optimization by quantization step size variation

Note that all previously described approaches on inter-frame bit allocation only con-

sider the problem of how to temporally distribute the available bit-budget among the

individual frames of the sequence, but not how to distribute it spatially within the

frames. This is addressed in [KK98], which aims at determining the optimal quanti-

zation step size for each macroblock. It is assessed there that “There are too many
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possible branches in the trellis construction to apply dynamic programming1 because

of the inter-dependency among macroblocks caused by the motion compensation.”

Therefore, a two step approach is proposed, where in the first step, using the inter-

frame dependency model of [CLK97], the optimal bit rate distribution among the

individual frames is determined. Then, in a second step, given a fixed bit rate budget

for each frame, the quantization step sizes for each macroblock are determined by

the method of [ROV94] (i.e., constructing the trellis for all possible quantization step

sizes and determining the path with the lowest Lagrangian rate distortion cost). Note,

however, that the second step is a local optimization where the inter-frame dependen-

cies and consequently the impact on referring frames is not considered. Consequently,

regions of a reference frame which are referred more often by motion-compensated

prediction (e.g., uncovered background) will not be favored in terms of bit allocation

over regions which are referred less often (e.g., background which is about to be cov-

ered), even though it might be advisable with respect to the overall rate distortion

performance.

In [RCL00], a heuristic for the bit allocation considering inter-frame dependencies is

proposed, where the bit rate spent for the encoding of reference frames is increased

at the cost of the bit rate of the non-reference frames. This is a backward-adaptive

method which does not require pre-analysis of the actual inter-frame dependencies.

In [BWO02], an inter-frame optimization method is proposed, where those blocks

of a reference frame which are simply copied (i.e., used as reference for motion-

compensated prediction without coded residual signal) in subsequent referring frames

are encoded using a finer quantization step size. The reduced quantization step size

is the smaller the more subsequent frames are copying from a particular block of a

reference frame.

In [RO06], based on a linear signal model of the decoding process, an algorithm is

developed which determines the optimal quantization step sizes for each macroblock

in SNR scalable video coding using hierarchical B frames, such that the error accu-

mulation within the B frame hierarchy is taken into account.

1e.g. [SG88] or [ROV94]
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Transform coefficient thresholding and soft decision quantization

All previously described methods rely on a modulation of the quantization step size.

The question of which values to actually encode for a certain block of transform

coefficients, given a fixed quantization step size, is also an important aspect in terms

of the resulting rate distortion performance. In [RV94], a rate distortion optimal

thresholding algorithm is described. For each transform coefficient, it is decided on a

rate distortion criterion, whether to keep or to drop (i.e., set to zero) this particular

coefficient. This is again a local optimization approach, which does not consider

inter-frame dependencies.

In [WLV00], this idea is extended such that several possible values for each transform

coefficient are checked. The quantization of a transform block is modeled using a

trellis, where each stage of the trellis corresponds to one transform coefficient. The

states within each stage represent the possible values to which this coefficient can

be quantized. Each path through the trellis therefore corresponds to one particular

vector of quantized transform coefficients. The idea is to search the path which has

the lowest rate distortion cost. The design of the trellis is specifically matched to the

entropy coding of the H.263+ video coding standard.

In [YY07], this concept is adapted to the context-based adaptive variable length

(CAVLC) entropy coding method of the H.264/AVC standard. Furthermore, the

terms hard decision quantization (HDQ) and soft decision quantization (SDQ) are

coined. HDQ refers to the conventional method of quantization, where the quantized

transform coefficient level c is obtained from the unquantized transform coefficient x

as

c = sgn(x)

⌊
|x|
∆

+ f

⌋
, (2.11)

where ∆ is the quantization step size, f is a rounding control parameter which is

typically chosen to be 1/3 for I slices and 1/6 for P slices, and bxc denotes rounding to

the nearest integer that is less than or equal to x. In SDQ, the transform coefficients

cSDQ are chosen such that the resulting rate distortion cost is minimized:

cSDQ = arg min
c
D(c) + λ ·R(c) (2.12)

Here, D(c) and R(c) represent the distortion and bit rate when using the transform

coefficient vector c, and λ is the Lagrangian multiplier which controls the trade-off
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between reconstruction quality and required bit rate. Note that cSDQ represents the

vector of all the transform coefficients for a given transform block, since the resulting

bit rate cannot be derived for a single transform coefficient on its own, but instead the

other coefficients have to be considered as well. This is caused by the entropy coding

which takes dependencies among coefficients of the same block into account. The

SDQ is done block-by-block, neglecting any inter-block and inter-frame dependencies,

whereas the inter-coefficient dependencies within one block are captured by a trellis

(or, more broadly, graph). The rate distortion optimal coefficient vector cSDQ is,

again, found as the shortest (i.e. lowest rate distortion cost) path through the graph.

In [YY09], the concept is further developed in order to adapt it to the context-based

adaptive binary arithmetic coding (CABAC) [MSW03] entropy coding method.

In [SW07], a trellis-based algorithm for determining rate distortion optimal transform

coefficients for scalable video coding (SVC) is presented, which is applicable to both

spatial and fidelity scalability. In scalable video coding, the so-called base layer can be

decoded independently, whereas the decoding of the enhancement layer may depend

on coding decisions which are transmitted for the base layer. Using this method, these

inter-layer dependencies are taken into account, where the trade-off between base and

enhancement layer coding efficiency can be controlled by a weighting factor.

Rate Distortion Optimized Quantization (RDOQ)

In [KYC08, KCYJ09], a simplification of SDQ is presented, which aims at reducing the

computational complexity. Instead of checking all (or very large number of) possible

values for each transform coefficient level, at most three candidates are tested. With

the following definitions

cfloat =
|x|
∆
, (2.13)

cfloor = bcfloatc , (2.14)

cceil = dcfloate = cfloor + 1, (2.15)

only 0, cfloor, and cceil are possible outcomes (neglecting the sign), given the unquan-

tized transform coefficient is equal to x. If cfloat is closer to cfloor than to cceil, only

0 and cfloor are considered. Consequently, if cfloat ≤ 0.5, the coefficient is set to zero

without any further testing. By limiting the number of candidates, the computational

complexity is largely reduced relative to [YY07, YY09]. Under the name rate dis-
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tortion optimized quantization (RDOQ), this method has become part of both the

H.264/AVC and the H.265/HEVC reference encoder, and therefore can be considered

as state of the art.

An acceleration of RDOQ has recently been proposed in [HSK+11, HKC13]. In the

computation of the rate distortion cost for each transform coefficient, the actual bit

rate is replaced by a rate model. In [HSK+11], a linear rate model is used, i.e. the bit

rate is assumed to be proportional to the `1-norm of the transform coefficient vector

(i.e., for a single coefficient, proportional to its absolute value). Then, the quantized

transform coefficient level c is obtained from the unquantized transform coefficient x

as follows:

c =

0 if |x|
∆
≤ T

sgn(x)
⌊
|x|
∆
− T + 1

2

⌋
otherwise

(2.16)

Here, ∆ is again the quantization step size and T is a threshold value which arises

from the linear bit rate model. It can be seen that each coefficient, whose quantized

level would be (in absolute value) smaller than T , is clipped to zero, whereas the

remaining coefficients are shrinked by an amount of T towards zero. This operation

has also become known under the name soft thresholding (as introduced in [DJ94])

and will be considered in more detail in Sec. 3.4.1. In [HKC13], the rate model is

extended to

R(c) = α|c|+ β‖c‖0, (2.17)

i.e. a linear combination of the absolute value (`1-norm) and the `0-pseudo-norm,

which is zero for c = 0 and one otherwise.

Low-pass prefiltering for low bit rate DPCM encoding

In [GO01], DPCM encoding of Gaussian autoregressive (AR) sequences at low bit rates

is studied. It is shown that using DPCM, the process innovation of the AR sequence

plus a feedback quantization error term is encoded. Furthermore, it is shown that, due

to the transfer function of the DPCM decoder1, distortion of the transmitted quantized

residual signal at lower frequencies contributes stronger to the overall reconstruction

1If the predicted and the reconstructed sample values at time n are denoted as x̂n and x̃n, respec-
tively, and a first order predictor with predictor coefficient a is assumed, it holds that x̂n = ax̃n−1.
Since the reconstructed sample x̃n is obtained as the sum of the prediction signal x̂n and the trans-
mitted residual signal un, is follows that x̃n = x̂n + un = ax̃n−1 + un. Accordingly, the DPCM
decoder is an infinite impulse response (IIR) filter with transfer function H(z) = 1/(1 − az−1),
whose gain is larger for lower frequencies if a > 0.
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distortion. Consequently, in order to improve the rate distortion performance at

lower bit rates, a low-pass prefiltering of the innovation signal at the encoder side is

proposed.

In [KR07], this idea is further extended by inclusion of a downsampling stage after the

low-pass filtering, which results in a reduced number of samples being transmitted.

Using this set-up, the rate distortion performance can be even further improved. Other

than the previously discussed method described in [GO01], this inevitably comes along

with modifications at the decoder side, because the downsampling has again to be

inversed by upsampling and low-pass filtering.

Linear model based multi-frame optimization

In [SSW04, SSW05], Schumitsch proposes a method for optimization of transform co-

efficients under consideration of inter-frame dependencies. He also uses a linear rate

model based on the `1-norm of the vector of transform coefficients. Then, an opti-

mization method based on quadratic programming is employed in order to obtain the

optimized transform coefficients. Due to memory and computational requirements,

this approach is problematic for either high resolution video sequences or for com-

plicated prediction structures, where a large number of frames has to be considered

jointly, e.g. hierarchical B frames. In this thesis, based on Schumitsch’s approach, a

method is proposed that is also applicable in these cases.
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3 Multi-frame transform coefficient

optimization

In this chapter, the multi-frame transform coefficient optimization problem is formally

stated in the form of a regularized least squares problem. For that purpose, first the

linear system model of multi-frame video decoding as proposed by Schumitsch in

[SSW04, SSW05] is introduced. Then, his optimization method which is based on a

Quadratic Program formulation is revisited. After that, several alternative approaches

to this problem class are discussed. Finally, the decision to pursue an approach based

on the Iterative Shrinkage/Thresholding Algorithm (ISTA) is justified.

3.1 Linear system modeling of multi-frame video

decoding

A linear signal model of the reconstruction process (including scaling/inverse trans-

form and motion-compensated prediction) for a series of consecutive frames is pro-

posed by Schumitsch in [SSW04, SSW05]. Since this work uses Schumitsch’s model, in

the following sections the individual parts of the model are described in detail. Note

that although to simplify matters only the luma samples are considered, the concepts

could easily be extended to also include the chroma samples.

Under the assumption of a group of N > 1 frames under consideration, each having a

width of W and a height of H luma samples, there are K = N ·W ·H luma samples

total. The following K × 1 column vectors are introduced:

• s, the vector of reconstructed samples,
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3 Multi-frame transform coefficient optimization

• ŝ, the vector of prediction signal samples, and

• r, the vector of residual signal samples.

Note that the samples from the individual frames are stacked into column vectors

according to some mapping rule, e.g. Z-scan or raster scan order. Even though the

used mapping, as long as one-to-one and onto, is in principle arbitrary, in the following

frame-by-frame Z-scan mapping in coding order is assumed, because this particular

mapping has the following nice properties:

• All samples belonging to the same transform block receive consecutive indices.

• A sample with index i can, due to prediction, only depend on other samples

with an index smaller than i.

Using the above notation, and neglecting any filtering operation on the reconstructed

signal samples, the reconstructed signal can be written as follows:

s = ŝ + r (3.1)

3.1.1 Matrix notation of inverse transform

The residual signal is obtained from the transform coefficient levels by a scaling oper-

ation, which depends on the quantization step size, followed by inverse transform. In

matrix notation, this can be written by usage of a K ×K scaling/inverse transform

matrix T = [t1 t2 . . . tK ] and the K × 1 column vector c of the transform coefficient

levels as follows:

r = T c (3.2)

Each column ti of T contains the scaled basis function (basis image) corresponding

to transform coefficient ci. Note that if the used transform is non-overlapping, as

in all current video coding standards, T has block-diagonal form, since the influence

of each transform coefficient is limited to within its block. Also note that if the

maximum transform block size is limited to k = ltrafo,max · ltrafo,max luma samples,

then by definition each column of T can have at most k non-zero entries, since each

transform coefficient has only impact on at most k residual samples. Furthermore,
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3.1 Linear system modeling of multi-frame video decoding

each row of T can also have at most k non-zero entries, since each residual sample

is obtained as a linear combination of the corresponding samples of at most k basis

images. Consequently, the fraction of the non-zero entries of T is limited to be not

greater than k
K

. Since typically k � K, T is a sparse matrix. But still, since the

number of non-zero entries of T can be up to k ·K, and as for the current state of the

art video coding standard H.265/HEVC k = 32 ·32 = 1024, the memory requirements

for storing T, even when making use of the sparsity, can be significant.

3.1.2 Matrix notation of motion-compensated prediction

The prediction signal can be split into two parts,

• the variable part that depends on reconstructed samples of the N frames under

consideration, and

• the fixed part which either depends on reconstructed samples of other (“pre-

vious” in coding order) frames, that are outside the set of N frames under

consideration, or which is generated by some static prediction method (e.g., DC

intra prediction mode).

If the fixed part is denoted as p, the prediction signal can be written in matrix notation

by usage of a K ×K prediction matrix M as follows:

ŝ = p + M s (3.3)

Unless stated otherwise, it is assumed in the following that the matrix M represents

only the motion-compensated prediction signal, whereas the intra prediction signal is

included in the fixed prediction signal p. Each entry mi,j of the matrix M gives the

value by how much the reconstructed signal sample sj contributes to the prediction

signal sample ŝi. Note that the matrix M is strictly lower triangular, since each

prediction sample can only depend on previous reconstructed samples, and therefore

∀i∀j(i ≤ j ⇒ mi,j = 0).

In order to illustrate the prediction matrix M, assume for a moment that only motion-

compensated prediction with full-pel motion vector accuracy and one single hypothesis

is used (i.e., no intra prediction, no sub-pel interpolation, no biprediction, no weighted
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3 Multi-frame transform coefficient optimization

prediction). In this case, there would be only two possible values for each mi,j, namely

0 and 1. Furthermore, for each motion-compensated prediction sample ŝi, there would

be exactly one non-zero entry mi,j in row i of the matrix M, corresponding to its ref-

erence sample sj, such that ŝi = sj. In each column j of the matrix M, however,

there could be more than one non-zero entry, since several motion-compensated pre-

diction blocks could possibly refer to the same area of the same reference frame, such

that one particular reconstructed sample gets referenced by more than one prediction

sample.

If single hypothesis motion-compensated prediction with sub-pel accuracy using a

separable h tap FIR interpolation filter is used, there could be up to h · h non-zero

entries in each row. In case of biprediction, the maximum number of non-zero entries

per row is correspondingly 2 · h · h. Thus, the fraction of the non-zero entries of M is

limited to be not greater than 2·h·h
K

. Since typically 2 ·h ·h� K, M like T is a sparse

matrix. As in H.265/HEVC h = 8, the total number of non-zero entries of M cannot

be greater than 128 ·K, which is still big, but almost an order of magnitude smaller

than the maximum number of non-zero entries of T.

3.1.3 Matrix notation of the whole reconstruction process

By using equations 3.2 and 3.3, the reconstructed signal s can be rewritten as follows,

which is a key part of Schumitsch’s approach:

s = ŝ + r (3.1 revisited)

= p + M s + T c (3.4)

Note that s appears on both sides of the equation sign, which can easily be resolved:

0 = p + (M− I) s + T c (3.5)

In Schumitsch’s method, Eq. 3.5 is a linear equality constraint of the Quadratic Pro-

gram formulation.

For the approach pursued in this thesis, an explicit expression for s is required, which

is obtained as:

s = (I−M)−1 (p + T c) (3.6)
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Note that since M is a very large matrix, direct computation of the inverse of (I−M)

is not practical. However since

(I−M)
∞∑
ν=0

Mν = I + M + M2 + . . .−M−M2 −M3 − . . . = I (3.7)

it follows that

(I−M)−1 =
∞∑
ν=0

Mν . (3.8)

The series on the right hand side of the equation sign converges, if and only if for each

eigenvalue λi of the matrix M, |λi| < 1. Since M is a strictly lower triangular matrix,

all its eigenvalues λi are equal to zero. Furthermore, any matrix that has zero as its

only eigenvalue is nilpotent, such that Mν = 0 for every ν larger than some νmax. It

is assumed that νmax is the smallest such value, i.e. Mνmax 6= 0 if M 6= 0. The value

of νmax can be interpreted as the length of the longest prediction chain represented

by the matrix M. More formally, from the matrix M one can obtain a directed graph

with K vertices, where there is a directed edge from vertex j to vertex i iff mi,j 6= 0.

The value of νmax is equal to the length of the longest path within this graph. Since

M is strictly lower triangular, the graph will be acyclic. (It is also intuitively obvious

that the graph will be acyclic, since a reconstructed sample cannot depend on itself.)

For directed acyclic graphs, the longest path can be determined in linear time. Note

that if the matrix M represents only motion-compensated prediction, νmax < N , since

for a group of N frames, the longest possible prediction chain has a length of N − 1

and occurs, for example, if each frame references its direct preceding frame.

Thus, the reconstructed signal s can be written as:

s =
νmax∑
ν=0

Mν (p + T c) (3.9)

3.2 Problem statement

The operational optimization of a video encoder is typically based on a Lagrangian

approach, meaning that a weighted sum of the distortion of the reconstructed video

samples and the corresponding bit rate is minimized [SW98]. In the reference encoder

implementations (JM for H.264/AVC, HM for H.265/HEVC), this rate distortion opti-
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3 Multi-frame transform coefficient optimization

mization (RDO) is done block-by-block. This chapter is based on the idea originating

from Schumitsch [SSW04, SSW05], that, assuming known and fixed prediction pa-

rameters (i.e., prediction modes, motion vectors, and reference indices), the transform

coefficients of a reference frame can be chosen in such a way that the impact on

the referring frames is taken into account and consequently the overall rate distor-

tion performance is improved. For that purpose, a group of N consecutive frames

in coding order is jointly optimized. There is an interdependency between prediction

parameters and transform coefficients which is resolved in the following way. In a first

step, the prediction parameters and transform coefficients for the individual frames

are determined using the ordinary encoding method as in the reference encoder imple-

mentation. Then, in a second step, the transform coefficients for this group of frames

are redetermined, utilizing the now known inter-frame dependencies. Since these new

transform coefficients would presumably again lead to different prediction parameters,

an iterative method that iterates between these two steps could be applied. In the

following, the second step, in which the transform coefficients are optimized under

consideration of inter-frame dependencies, is described in more detail.

Formally, a numerical optimization problem is stated where the optimization variables

are the transform coefficients c of the N frames. As in the usual Lagrangian approach,

a weighted sum of the distortion term D(c) and an approximation of the bit rate R(c)

is minimized, where the trade-off between the two is controlled by a regularization

parameter µ:

copt = arg min
c
D(c) + µR(c) = arg min

c
J(c) (3.10)

The function J(c) is the (approximated) rate distortion cost of the coefficient vector

c.

3.2.1 Definition of the distortion function D(c)

In video coding, the squared error between original and reconstruction (or a derived

quantity thereof) is typically used as the objective distortion measure. Therefore, the

sum of squared differences between original and reconstructed sample values (squared

`2-norm of the difference signal) is used here as the distortion metric.

In addition to the nomenclature of the previous chapter, the K×1 column vector y of

the original samples is introduced. The distortion function D(c) can then be defined
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as follows:

D(c) = ‖y − s‖2
2 (3.11)

=

∥∥∥∥∥y −
νmax∑
ν=0

Mν (p + T c)

∥∥∥∥∥
2

2

(3.12)

=

∥∥∥∥∥∥∥∥∥∥
y −

νmax∑
ν=0

Mν p︸ ︷︷ ︸
ỹ

−
νmax∑
ν=0

Mν T︸ ︷︷ ︸
A

c

∥∥∥∥∥∥∥∥∥∥

2

2

(3.13)

= ‖ỹ −A c‖2
2 (3.14)

The new vector ỹ is equal to the original sample values, subtracted by the motion-

compensated fixed prediction signal. The matrix A is the reconstruction operator,

i.e. inverse transform followed by motion-compensated prediction.

3.2.2 Definition of the rate function R(c)

The actual bit rate that results from encoding the transform coefficient vector c is a

very intricate function due to sophisticated entropy coding methods that are employed

in state of the art video coding standards. In particular, the bit rate for encoding

a transform coefficient ci depends on the previously encoded transform coefficients.

Therefore the actual bit rate is not additive in the sense, that the bit rate for each

ci can be determined independently, and the total bit rate corresponds to the sum of

the individual bit rates. Since the actual bit rate cannot be stated in analytical form,

a simple surrogate is used. As a first simplification, an additive rate function R(c) is

assumed, such that

R(c) =
K−1∑
i=0

Ri(ci) (3.15)

Furthermore, it is assumed, that the individual Ri(·) are all the same, such that

R(c) =
K−1∑
i=0

R0(ci). (3.16)

The functionR0(ci) should be defined in such a way that a smaller transform coefficient

(in absolute value) results in a smaller value of R0(ci), since a smaller transform
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coefficient (in absolute value) results in smaller number of encoded binary symbols

(bins) and, thus, typically in a smaller bit rate for state of the art video coding

standards such as H.264/AVC (see [MSW03]) and H.265/HEVC (see [SJN+12]). As

the simplest function with this property, R0(ci) is defined as the absolute value of ci,

i.e. R0(ci) = |ci|.

The resulting surrogate rate function R(c) is consequently obtained as the `1-norm of

the transform coefficient vector c:

R(c) =
K−1∑
i=0

|ci| = ‖c‖1 (3.17)

3.2.3 Regularized least squares problem

With the above definitions of D(c) and R(c), the multi-frame transform coefficient

optimization problem (Eq. 3.10) is obtained in the following standard form:

copt = arg min
c
‖ỹ −A c‖2

2 + µ ‖c‖1 (3.18)

Numerical optimization problems of this type are called `1-regularized least squares

problems. They have attracted much interest in recent years. An introductory

overview with focus on signal processing can be found in [ZE10]. An appealing prop-

erty of this kind of optimization problem is that it leads to a sparse solution vector,

i.e. a vector which has many components equal to zero. The sparsity, i.e. the fraction

of zero components, is controlled by the regularization parameter µ. A larger value

of µ corresponds to a larger sparsity, since the impact of the regularization term is

increased. The question how to choose the value of µ in the context of multi-frame

transform coefficient optimization is addressed in a later chapter.

3.2.4 Obtaining an integer solution

Since transform coefficient levels can only assume integer values, in multi-frame trans-

form coefficient optimization, one is interested in finding the integer-valued solution
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of 3.18:

copt,int = arg min
c∈ZK

‖ỹ −A c‖2
2 + µ ‖c‖1 (3.19)

As has been shown in [Eve63], the solution of the regularized problem 3.19 is equal to

the solution of the following constrained problem, with an appropriate value of τ :

copt,int = arg min
c∈ZK

‖ỹ −A c‖2
2 subject to ‖c‖1 ≤ τ (3.20)

This can be rewritten in the following form:

copt,int = arg min
c∈D⊂ZK

‖ỹ −A c‖2
2

with D := {x | x ∈ ZK ∧ ‖x‖1 ≤ τ}
(3.21)

Integer least squares optimization is studied in [HV05, VH05]. Equation 3.21 is prob-

lem (2) of [HV05] with a particular definition of D. It is reported there that, for a

general A, this problem is NP hard, both in a worst-case sense as well as in an average

sense. First, three heuristic methods are proposed in [HV05]:

1. Solve the unconstrained (i.e., real-valued) problem 3.18 and round component-

wise to the nearest integer. The integer solution obtained in this way is also

called the Babai estimate [Bab86].

2. Nulling and cancelling. Here, the Babai estimate is kept fixed for one component

(e.g., c0) and its effect is cancelled out from the original ỹ. Then, the process

is repeated for the remaining K − 1 unknowns etc. until the values of all the

components are fixed.

3. Nulling and cancelling with optimal ordering. This is similar to the previous

method, with the difference that an ordering from the “strongest” to the “weak-

est” component is used.

Then, an exact method using the sphere decoding algorithm of [Poh81, FP85] is

presented. In the second part of the paper [VH05, Fig. 1], the expected complexity

of the exact algorithm is plotted as a function of the dimension of the problem for

various settings. It has to be noted that the maximum dimension considered there

is 40, which is several orders of magnitude smaller than for typical scenarios of the

multi-frame transform coefficient optimization problem, where for a group of N = 3

frames having CIF resolution of 352 × 288, the resulting dimension will already be
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c0
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Figure 3.1: Illustration of the reconstruction process for the example with two
coefficients.

in the order of K ≈ 105. Therefore, application of the sphere decoding algorithm is

computationally intractable even for a small number of video frames at low resolution.

From the three suggested heuristics, methods 2 and 3 are also problematic, because

they require solving a series of K sub-problems, where the problem size is reduced by

one after each step. This is also impractical, since, as stated above, the number of

such sub-problems will typically be larger than 105, which would require solving way

too many sub-problems. Therefore, unless stated otherwise, in the following usage

of method 1 is assumed, i.e. the real-valued optimization problem 3.18 is solved and

the individual components of the solution vector are rounded to their closest integer

value.

In [SSW05, p. 330, Sec. 3.3], Schumitsch proposes an iterative rounding method, which

is similar in spirit to the heuristic methods 2 and 3 of [HV05]. The difference is, that

using his method in each step several components of the solution vector are fixed,

namely all components which fall (in absolute value) within a given interval. The size

of this interval is increased in each step. This method is further studied in Sec. 4.1.9.

3.3 Motivation

3.3.1 Illustrating example with two coefficients

In this section, a very simple toy example is used in order to illustrate the optimization

problem of Eq. 3.18. In particular, it is shown how the solution vector copt changes with

varying µ. The mapping µ 7→ copt is called the regularization path of the optimization

problem. In the example used throughout this section, multi-frame optimization of

two frames having one sample each is assumed (i.e., W = H = 1, N = 2, and thus

K = 2). Consequently, copt has two components. The signal flow of the reconstruction

process in this example is shown in Fig. 3.1. The transform coefficient c0 of the first
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Figure 3.2: Regularization path for the example with two coefficients and ỹ =
[ 10 20 ]T .

frame directly maps to the reconstructed sample s0. The reconstructed sample s1 is

obtained as the sum of c0, which here plays the role of the prediction signal, and the

residual signal c1. This corresponds to the following matrix definitions:

T =

[
1 0

0 1

]
, M =

[
0 0

1 0

]
, A =

[
1 0

1 1

]
(3.22)

The regularization path for ỹ = [ 10 20 ]T is shown in Fig. 3.2. Obviously, for µ = 0,

there is no regularization term, and thus copt = A−1 ỹ = [ 10 10 ]T . For µ ≥ 60,

the impact of the regularization term is so strong against the distortion term, that

copt = 0. For 0 < µ < 60, copt makes a transition from the least squares solution to

the all-zero solution. In the first part of this region, for 0 < µ ≤ 20, copt,1 linearly

decreases to zero, whereas copt,0 stays at its initial value of 10. For 20 < µ ≤ 60, copt,0

linearly shrinks to zero (with half the slope as copt,1 before) and copt,1 stays at its final

value of zero.

A visualization that may be helpful to get an intuitive understanding of this behaviour

is shown in Fig. 3.3. First note that, according to the well-known method of Lagrange

multipliers [Eve63], the optimization problem 3.18 can also be stated in the following

form:

copt = arg min
c
‖ỹ −A c‖2

2 subject to ‖c‖1 ≤ τ (3.23)

This is to be understood in the sense that for each optimization problem in the form
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of Eq. 3.18 with a given value of µ, there is a corresponding optimization problem in

the form of Eq. 3.23 with an appropriate value of τ , such that both have the same

solution copt. There is, however, no direct mapping from µ to τ . The visualization

in Fig. 3.3 is based on the `1-constrained formulation of Eq. 3.23. The ellipse-shaped

contour lines show the distortion term ‖ỹ − A c‖2
2. All points along each contour

line share the same distortion value. The least squares solution, which is obtained

at c = [ 10 10 ]T , corresponds to a distortion value of zero and is shown by a filled

circle. Each of the four diagrams in Fig. 3.3 corresponds to a different value of τ (and

therefore, in the formulation of Eq. 3.18, to a different regularization parameter µ).

The feasible region, i.e. the area for which ‖c‖1 ≤ τ , is shown shaded in gray. The

solution copt of the `1-constrained problem 3.23 is that point of the feasible region

for which the distortion term has the smallest value. It is marked by a hollow circle.

The top left diagram, for example, shows the constellation for τ = 15. The smallest

distortion with ‖c‖1 ≤ 15 is achieved at c = [ 10 5 ]T . As can be seen from Fig. 3.2,

this corresponds to µ = 10. In the top right diagram, the case for τ = 10 is shown,

leading to c = [ 10 0 ]T , which corresponds to µ = 20. The regularization path, i.e. the

path from the least squares solution to the all-zero solution, is shown by a black arrow

line. Each point along this path corresponds to a copt that is obtained for a different

value of τ (or µ, respectively). It can be seen that c1 is decreased until copt hits

the right corner of the shrinking feasible region. Then, copt stays at the right corner

of the feasible region and is “towed away” towards the origin. This explains why

regularization using the `1-norm favors solutions having components exactly equal to

zero. The contour lines are more likely to hit one of the corners of the feasible region,

which are aligned with the coordinate axes, where the corresponding component of

the solution vector is equal to zero [Tib94].

In the context of multi-frame transform coefficient optimization under a rate con-

straint, the regularization path of Fig. 3.2 can be interpreted as follows. The case

that the available bit rate budget is sufficient to encode both coefficients at their cor-

rect value corresponds to µ = 0, leading to the least squares solution. The case that

neither of the coefficients can be encoded, because the available bit rate budget is effec-

tively zero, corresponds to µ ≥ 60, such that copt = 0. For 0 < µ < 60, there is some

bit rate budget available which is not sufficient to encode both coefficients at their

correct value, and which therefore has to be distributed among c0 and c1. The only

parameters here, which control the resulting bit rate, are the values that are encoded

for c0 and c1, where a smaller absolute value leads to a smaller bit rate. Obviously, c0

has a larger impact on the overall distortion of the reconstruction, since spending less
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Figure 3.3: Visualization of the distortion term (ellipse-shaped contour lines), the least
squares solution (filled circle), the `1-regularized solution copt (hollow cir-
cle), the regularization path (arrow line), and the feasible region (gray-
shaded area) for µ = 10 (top left), µ = 20 (top right), µ = 40 (bottom
left), and µ = 60 (bottom right).
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3 Multi-frame transform coefficient optimization

bit rate for encoding c0
1 would harm both s0 and s1, whereas doing so for c1 would

only impact s1. Consequently, c0 is not impaired at first (for µ ≤ 20), meaning that it

still receives the same share of the original bit rate budget as for µ = 0, whereas the

amount spent for the encoding of c1 is successively decreased. As the bit rate spent

for c1 hits zero, the bit rate for c0 is also successively decreased until no information

is encoded at all. Hence, it can be stated that the optimization problem 3.18, with an

appropriate choice of the regularization parameter µ, leads to a solution vector copt

where the available bit rate is distributed among the individual coefficients in such

a way that the impact on the overall reconstruction distortion is taken into account,

i.e. coefficients with larger impact on the overall reconstruction distortion are encoded

with a smaller error, whereas for coefficients having little impact, a larger coding error

can be tolerated.

Another exemplary regularization path is shown in Fig. 3.4. As before, the prediction

structure as shown in Fig. 3.1 is used, but applied to a different original signal, namely

ỹ = [ 6 0 ]T . It can be seen that in this case, for 0 < µ < 4, both c0 and c1 are shrinked

towards zero. This can be attributed to the fact that in this scenario, by shrinking

c0, the prediction for s1 is actually improved. Therefore, from a coding perspective,

by shrinking c0 right from the beginning, bit rate is saved in two ways, firstly the bit

rate spent for encoding c0 is reduced, secondly the required bit rate for encoding c1 is

also reduced, since its prediction is improved.

In Fig. 3.5 the regularization path for ỹ = [ 10 −10 ]T is shown, again using the

same prediction structure as before. In this case, not only both c0 and c1 are shrinked

towards zero right from the beginning, like in the previous example, but c0 even hits

zero before c1. This might be unexpected, since one might assume that as c0 affects

both s0 and s1, whereas c1 only affects s1, c0 should generally be considered more

important than c1 and therefore, in terms of rate allocation, always be favored over

c1. However, it has to be noted, that Fig. 3.5 shows a pathological example, since in

this case s0 is an unsuitable predictor for s1, because — in terms of the `1-norm as a

simplified rate function — coding s1 directly would require less bits than coding the

prediction residual s1 − s0.
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Figure 3.4: Regularization path for the example with two coefficients and ỹ = [ 6 0 ]T .
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Figure 3.6: Illustration of the reconstruction process for the example with three
coefficients.

3.3.2 Illustrating example with three coefficients

In this section, the toy example of the previous section is extended to three frames,

as shown in Fig. 3.6. The relationship between c0, c1, s0, and s1 is the same as

before. The additional reconstructed sample s2 is, just like s1, predicted from s0.

This corresponds to the following matrix definitions:

T =

1 0 0

0 1 0

0 0 1

 , M =

0 0 0

1 0 0

1 0 0

 , A =

1 0 0

1 1 0

1 0 1

 (3.24)

In Fig. 3.7, the regularization path for ỹ = [ 10 20 20 ]T is shown. Note that the

scenario of Fig. 3.2 can be viewed as a subset of this setting, where c2 and s2 are

not considered. Even though the settings of Fig. 3.2 and Fig. 3.7 are similar, the

behaviour for c0 is very different. Here, when µ is increased starting from zero, c0

is not retained at its original value, but instead it is raised from 10 to 15. This is

because in this setting, there are two reconstruction samples, s1 and s2, that benefit

from an increased prediction signal c0. So, even though more bit rate is spent for

coding c0 and the reconstruction error of s0 is increased, there is an overall gain, since

the prediction error for s1 and s2 is reduced, and therefore less bit rate has to be spent

for c1 and c2.

This example illustrates:

• The optimization problem 3.18 with µ > 0 does not in every case lead to coeffi-

cients with smaller or the same absolute value as the least squares solution.

• Solving the optimization problem for only a subset of the frames may lead to

1Which effectively means encoding a smaller value for c0.
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Figure 3.7: Regularization path for the example with three coefficients and ỹ =
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3 Multi-frame transform coefficient optimization

completely different results (compare c0 in Fig. 3.2 and Fig. 3.7).

Fig. 3.8 shows the resulting regularization path, if the prediction structure of Fig. 3.6

is used and ỹ = [ 15 −25 −25 ]T . This again is a rather pathological example, since

s0 is a bad predictor for s1 and s2. Two distinctive features can be observed for c0:

• After c0 has reached zero for µ = 10, it becomes again non-zero for 30 < µ < 70.

• For 30 < µ < 70, c0 has the opposite sign as the least squares solution.

From the discussed examples it can be reasoned, that generally it is difficult to predict

how the solution of 3.18 will look like. As has been shown, the individual components

of copt can be larger or smaller in absolute value than the least squares solution,

and even the sign may change. In any case, if the `1-norm is accepted as a simple

surrogate for the actual bit rate, 3.18 will lead to a transform coefficient vector whose

components are chosen such that the overall reconstruction distortion is minimized

under the given bit rate constraint.

3.3.3 Optimization of DPCM for Gauss-Markov sources

In this section, the rate distortion behaviour of the multi-frame optimization method

is studied in a simple setting. For that purpose, it is applied to the encoding of first-

order Gauss-Markov sources using differential pulse code modulation (DPCM). The

general architecture of DPCM is depicted in Fig. 3.9. Following the notation of [JN84],

the input signal is denoted as x(n), the prediction signal as x̂(n), the unquantized

prediction error as d(n), the quantized prediction error as u(n), the reconstructed

signal as x̃(n), and the decoder output signal as y(n). Additionally, the sequence of

quantization indices (or levels, following the terminology of video coding standards)

is denoted here as s(n). Note that all the s(n) are integer-valued, i.e. s(n) ∈ Z.

In the following, the simple predictor x̂(n) = x̃(n − 1) is assumed, i.e. the previous

reconstructed sample is used as the predictor for the current sample. Furthermore,

a uniform reconstruction with unity ratio quantizer (URURQ) [Sul96] is assumed,
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Figure 3.9: Basic architecture of a DPCM encoder (top) and decoder (bottom).

leading to the following relations:

s(n) = sgn( d(n) )

⌊
|d(n)|

∆
+ f

⌋
(3.25)

u(n) = ∆ · s(n) (3.26)

The parameter ∆ is the quantization step size, f is a rounding control parameter,

and bxc denotes rounding to the nearest integer that is less than or equal to x (see

Eq. 2.11).

A first-order Gauss-Markov process X(n) (for n = 0, 1, . . .) with correlation coefficient

ρ can be generated as follows from a memoryless standard (i.e., zero mean and unit

variance) Gaussian distributed innovation sequence Z(n) ∼ N (0, 1):

X(n) =

Z(n) if n = 0

ρX(n− 1) +
√

1− ρ2Z(n) if n > 0
(3.27)

Note that the innovation signal is scaled by a factor of
√

1− ρ2 in the recursive part of

the definition, in order to make the X(n) for n > 0 also standard Gaussian distributed

(i.e., X(n) ∼ N (0, 1)).
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Figure 3.10: Empirical rate distortion curves for a first-order Gauss-Markov source
with ρ = 0.99 (top: variation of the rounding offset f ; bottom: variation
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3 Multi-frame transform coefficient optimization

This can easily be verified, since per definitionem X(0) ∼ N (0, 1), it follows that

ρX(0) ∼ N (0, ρ2), and analogously
√

1− ρ2Z(1) ∼ N (0, 1− ρ2). Furthermore, since

ρX(0) and
√

1− ρ2Z(1) are independent Gaussian random variables, it follows that

X(1) = ρX(0) +
√

1− ρ2Z(1) ∼ N (0, ρ2 + 1− ρ2) = N (0, 1).

Now, since it has been shown that X(1) ∼ N (0, 1), the same argument holds for all

n > 0, and consequently it follows that all X(n) ∼ N (0, 1).

For the following investigation, an input signal x(n) of length 11 (i.e., n = 0, 1, . . . , 10)

is used. Note that the first sample x(0) plays a special role here, as there is no

prediction signal available (it is assumed that x̂(0) = 0, because x(0) is of zero mean).

Speaking in the terms of video coding, this first sample could be interpreted as the

counterpart of an I frame, whereas the subsequent, predicted samples act like P frames.

Consequently, for ρ > 0 and under a high bit rate assumption, the variance of the

quantizer input signal d(n) will be larger for n = 0 than for the remaining n > 0.

Accordingly, this would have to be considered in the selection of the quantization step

sizes for n = 0 and n > 0. In order to simplify matters, in the following only the

predicted samples (corresponding to n > 0) are considered and it is assumed that

x̂(1) = x(0), i.e. the prediction signal x̂(1) for the first predicted sample is the original

(unquantized) input sample x(0). This simplification is based on the assumption that

the initial “intra” sample has been encoded at high reconstruction quality and can

therefore serve as a good predictor for x(1).

For the following experiments, 10 000 realizations of the first 11 outcomes of a first-

order Gauss-Markov source with a very high correlation of ρ = 0.99 have been gener-

ated. For notational convenience, the number of realizations is denoted as M = 10 000

and the number of predicted samples as L = 10. The evaluation is based on the em-

pirical per-sample entropy rate R and signal-to-noise ratio (SNR) Q, which will be

defined as follows. The notation as used in Fig. 3.9 and introduced above is slightly

extended by a subscript i which refers to the actual realization of the random process

(i ∈ {0, 1, . . . ,M − 1}). For example, xi(n) refers to the nth sample of the ith real-

ization of the input signal. First, the mean squared error for a given sample position

n is defined as the average squared difference between original and reconstruction:

MSE(n) =
1

M

M−1∑
i=0

(xi(n)− x̃i(n))2 (3.28)
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Then, mean value and variance of the original signal are defined as:

mean(n) =
1

M

M−1∑
i=0

xi(n) (3.29)

var(n) =
1

M

M−1∑
i=0

(xi(n)−mean(n))2 (3.30)

Based on this, the SNR for a sample position n is defined as:

SNR(n) = 10 · log10

var(n)

MSE(n)
(3.31)

Now, the empirical per-sample signal-to-noise ratio Q is defined as:

Q =
1

L

L∑
n=1

SNR(n) (3.32)

For the definition of the empirical entropy, first the empirical probability (or relative

frequency) p̂n(x) of the nth quantization index s(n) taking the value x is defined with

the help of the cardinality of a set:

p̂n(x) =
1

M
|{i|si(n) = x}| (3.33)

Based on this, the empirical entropy H(n) of the nth sample is defined as follows

(with 0 · log 0 = 0):

H(n) = −
∑
x∈Z

p̂n(x) · log2 p̂n(x) (3.34)

Then, the empirical per-sample entropy rate R is defined as:

R =
1

L

L∑
n=1

H(n) (3.35)

In a first simulation experiment, no `1-regularization based optimization is employed,

but instead the impact of the rounding control parameter f (Eq. 3.25) on the rate

distortion performance is studied. The results are shown in Fig. 3.10 (top). The

individual curves have been obtained by a variation of the quantization step size ∆.

It can be seen that in particular at lower entropy rates, rounding to the nearest integer

(which corresponds to using f = 1/2) is clearly outperformed by choosing f = 1/6 or
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3 Multi-frame transform coefficient optimization

f = 1/3. This is a well-established fact [Sul96, SS05], and consequently, in the H.264/

AVC and H.265/HEVC reference encoders, f = 1/6 and f = 1/3 are used for inter- and

intra-predicted blocks, respectively. Because the input signal has a high correlation

of ρ = 0.99 and because only the 10 predicted samples x(1), . . . , x(10) are considered,

excluding the initial “intra” sample x(0), the SNR for R = 0 is larger than zero

here, which manifests in an y-intercept of about 10.5 dB. This is the reconstruction

quality which the predicted samples gain solely by continued prediction from x(0), i.e.

x̃(n) = x̂(n) = x(0) is used in this case for n > 0. The curve denoted as “convex hull”

shows the optimal rate distortion performance of scalar quantization, if f is varied

within [0; 0.5].

In the next simulation experiment, this envelope of sweeping the rounding control

parameter f serves as the reference for comparison with `1-regularized optimization.

The optimization is done such that in the selection of the quantization index s(n), the

impact not only on the current reconstructed sample x̃(n), but also on the subsequent

sample x̃(n + 1) is taken into account. For that purpose, the quantization indices

s(n) and s(n+ 1) are sought after, which minimize the following weighted sum of the

squared error distortion and the `1-norm of the quantization indices for a given value

of the regularization parameter µ:∣∣∣∣∣
∣∣∣∣∣
[

x(n)

x(n+ 1)

]
−

[
x̃(n)

x̃(n+ 1)

]∣∣∣∣∣
∣∣∣∣∣
2

2

+ µ

∣∣∣∣∣
∣∣∣∣∣
[

s(n)

s(n+ 1)

]∣∣∣∣∣
∣∣∣∣∣
1

(3.36)

Since the quantization indices are constrained to be integer-valued, this problem is

difficult to solve (see Sec. 3.2.4). Therefore, the integrality requirement is relaxed in a

first step, but instead an intermediate, real-valued r(n) is determined, from which the

corresponding integer-valued s(n) is derived by rounding to its closest integer. Then,

the optimal ropt(n), ropt(n+ 1) are derived as

[
ropt(n)

ropt(n+ 1)

]
= arg min

[r(n) r(n+1)]T


∣∣∣∣∣
∣∣∣∣∣
[

x(n)− x̃(n)

x(n+ 1)− x̃(n+ 1)

]∣∣∣∣∣
∣∣∣∣∣
2

2

+ µ

∣∣∣∣∣
∣∣∣∣∣
[

r(n)

r(n+ 1)

]∣∣∣∣∣
∣∣∣∣∣
1


(3.37)
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The relationship between the r(n), r(n+ 1) and the x̃(n), x̃(n+ 1) is as follows:

x̃(n) = x̂(n) + u(n) (3.38)

= x̂(n) + ∆ · r(n) (3.39)

x̃(n+ 1) = x̂(n+ 1) + u(n+ 1) (3.40)

= x̃(n) + u(n+ 1) (3.41)

= x̂(n) + ∆ · r(n) + ∆ · r(n+ 1) (3.42)

Based on ropt(n), the integer-valued s(n) is obtained as:

s(n) = sgn( ropt(n) )

⌊
|ropt(n)|

∆
+

1

2

⌋
(3.43)

The optimization operates using a sliding window approach, i.e. in the first step, the

optimal real-valued ropt(1) and ropt(2) are determined according to Eq. 3.37, and the

integer-valued quantization index s(1) is obtained according to Eq. 3.43. Then, the

sliding window proceeds by one step, and in the next round ropt(2) and ropt(3) are

determined, leading to the integer-valued s(2) and so on. Using a sliding window is

advantageous over optimizing several quantization indices at once as there would be no

feedback of the quantization error introduced in Eq. 3.43 otherwise. The simulation

results are shown in Fig. 3.10 (bottom). The curve denoted as “N=2, ∆=0.5” is

obtained by varying the regularization parameter µ and using a fixed quantization

step size ∆ = 0.5. Similar curves have been generated for ∆ = 0.33 and ∆ =

0.22. It can be seen that, on each of these three curves, for a certain range of the

regularization parameter µ, the resulting SNR is higher than that of the convex hull

curve of Fig. 3.10 (top) for the same entropy rate. The envelope of the individual

curves which are obtained by sweeping the regularization parameter µ for a fixed

value of the quantization step size ∆ is shown in gray and denoted as “convex hull

(N=2).” In Fig. 3.11 (top), the corresponding envelopes are shown for the cases when

two, three, and five samples are considered jointly in the optimization, denoted as

N = 2, N = 3, and N = 5. At lower to medium bit rates, a significant improvement

over scalar quantization with optimal adaptation of the rounding control parameter

f is observed, with higher gains for a larger value of N . For Fig. 3.11 (bottom), the

simulations have been repeated using a correlation coefficient of ρ = 0.8. Besides

the lower SNR for R = 0, which is even negative in this case and which is caused

by the smaller correlation, making x(0) a worse predictor, the general behaviour is

qualitatively very similar.
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Spectral analysis of `1-regularization

In this section, the impact of the `1-regularization on the power spectral density (psd)

of the residual signal is studied. For that purpose, two modifications to the DPCM

system as described above are made:

• The quantization is omitted, meaning that the `1-regularization is the only

source of distortion.

• MSE-optimal first order linear prediction is used, i.e. x̂(n) = ρ · x̃(n− 1).

Also, a slightly different definition of an autoregressive input signal x(n) is used here:

x(n) =

0 if n < 0

ρ · x(n− 1) + z(n) if n ≥ 0
(3.44)

The z(n) are assumed to be independent, standard Gaussian distributed, i.e. z(n) ∼
N (0, 1), which is different to the previously used autoregressive process, where the

X(n) where assumed to be of unit variance.

The reconstruction is still derived as x̃(n) = u(n) + x̂(n). The residual signal u(n)

is obtained by solving Eq. 3.37 and taking u(n) = ropt(n). Again, a sliding window

approach is taken, i.e. a number N of consecutive samples n, . . . , n+N−1 is considered

jointly1, then the optimization result for the first sample n is kept fixed and the

sliding window proceeds by one step, such that in the next iteration the samples

n+ 1, . . . , n+N are optimized jointly and so on.

Note that for regularization parameter µ = 0, it follows that u(n) = d(n) = x(n)−x̂(n)

and therefore x̃(n) = u(n) + x̂(n) = x(n)− x̂(n) + x̂(n) = x(n), i.e. the reconstruction

is identical to the original. This is consistent with the claim that the `1-regularization

shall be the only source of distortion for this investigation. Consequently, in this case,

it holds that

u(n) = x(n)− x̂(n) (3.45)

= x(n)− ρ · x̃(n− 1) (3.46)

= x(n)− ρ · x(n− 1) (3.47)

1Eq. 3.37 represents the case for N = 2
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Figure 3.12: Power spectral density of the residual signal.
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Furthermore, since an autoregressive input signal x(n) is assumed, according to Eq. 3.44,

it follows that:

u(n) = (ρ · x(n− 1) + z(n))− ρ · x(n− 1) (3.48)

= z(n) (3.49)

Therefore, for µ = 0, the residual signal u(n) will be Gaussian white noise (i.e., having

flat spectrum) of unit variance.

For µ > 0, u(n) 6≡ d(n) and, accordingly, u(n) 6≡ z(n). In order to determine the

power spectral density (psd) of u(n) for µ > 0, an input sequence x(n) of 106 samples

has been generated. The residual signal samples u(n) have been derived as described

above, using consecutive application of the `1-regularized least squares minimization

for different values of µ, ranging from 0.01 to 10. In order to study the steady state

behaviour, the first 1000 samples as well as the last 10 samples of u(n) have been

omitted for the following explorations. For notational convenience, the sub-sequence

u′(n) is defined as u′(n) = u(n + 1000), and the number of samples is defined as

M = 106− 1000− 10. Then, the autocovariance sequence of u′(n) is estimated as:

Ru′u′(k) =
1

M − |k|

M−|k|−1∑
n=0

u′(n)u′(n+ |k|) (3.50)

According to the Wiener–Khintchine theorem, the psd of u′(n) is then determined

as the discrete-time Fourier transform of the autocovariance sequence Ru′u′(k) [JN84,

Sec. 2.3.6, pp. 55]:

Su′u′(e
jω) =

∞∑
k=−∞

Ru′u′(k)e−jkω (3.51)

The resulting psd plots are shown in Fig. 3.12 for ρ = 0.8 (top) and ρ = 0.99 (bottom).

For both experiments a group of N = 5 consecutive samples has been considered

jointly in the optimization. It can be seen that for small values of µ, the spectrum

is almost flat, which is as expected, since for µ = 0 the spectrum will be constant,

corresponding to white noise. For increasing values of µ, the spectrum becomes more

and more low-pass, and the energy of the signal decreases. The latter observation

is also as expected, because for a large value of µ, all the u(n) will be equal to

zero. The low-pass characteristic of the residual signal for intermediate values of

µ is consistent with the ideas presented by Guleryuz and Orchard in [GO01] for

rate distortion optimized DPCM encoding of autoregressive sources at low bit rates.
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Their method, which has been briefly discussed in Sec. 2.3, p. 21, basically relies

on a low-pass prefiltering of the innovation signal at the encoder side. According

to the findings of this section, it can be argued that by usage of `1-regularized least

squares minimization, a similar effect is achieved. The `1-based method, however,

is easier applicable to block-based hybrid coding as used in state-of-the-art video

coding standards, because the impact of each transform coefficient on its affected

reconstructed signal samples is directly captured by the linear signal model, whereas

by a simple temporal low-pass filtering in the spatial domain, the impact of the block

transform would be neglected.

3.4 Comparison of different solution algorithms

In this section, the question of how to solve the optimization problem 3.18 is tackled.

First it is shown, that for the case of orthogonal A, 3.18 reduces to simple soft thresh-

olding. Then, for a general A, several numerical solution algorithms are discussed.

Finally, the decision to use the iterative shrinkage/thresholding algorithm (ISTA) in

the context of multi-frame transform coefficient optimization is justified.

3.4.1 Orthogonal case: Soft thresholding solution

For the non-trivial case µ 6= 0, an explicit expression for copt in Eq. 3.18 can only

be given if AT A is a diagonal matrix [Mal08, p. 668]. Otherwise, for a general A,

the solution copt can only be determined numerically. In the context of multi-frame

transform coefficient optimization, AT A will be diagonal only for the corner case

of N = 1, i.e. if there is only one single frame under consideration, because in this

case M = 0 and consequently A = T, which is (up to a QP-dependent scaling) an

orthogonal matrix if an orthogonal transform is used.

If the objective function to be minimized in Eq. 3.18 is denoted as J(c) and AT A is
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the diagonal matrix diag(α0, . . . , αK−1), the following is obtained:

J(c) = ‖ỹ −A c‖2
2 + µ ‖c‖1 (3.52)

= (ỹ −A c)T (ỹ −A c) + µ ‖c‖1 (3.53)

= cT AT A c + ỹT ỹ − 2 (AT ỹ)T c + µ ‖c‖1 (3.54)

=
K−1∑
ν=0

(
αν c

2
ν + y2

ν − 2 (AT ỹ)ν cν + µ |cν |
)

(3.55)

From Eq. 3.55, it can be seen that this is a separable optimization problem, since in

each term of the sum, there occurs only one element cν of the solution vector c (or,

in other words, there are no cross-terms consisting of different ci, cj). Note that J(c)

is nondifferentiable for every c with ∃ici = 0 because of the absolute value operator.

Thus, in order to minimize J(c), the set-valued subdifferential has to be used instead

[UL01, p. 163]. The subdifferential ∂f(x) of the convex function f : RK → R at the

point x is defined as [UL01, p. 165, Definition 1.1.4]:

∂f(x) :=

{
s ∈ RK : 〈s,d〉 ≤ inf

t>0

{
f(x + td)− f(x)

t

}
for all d ∈ RK

}
(3.56)

The vector copt is a global minimum of the convex function J(c) iff 0 ∈ ∂J(copt) [UL01,

p. 177, Theorem 2.2.1]. The ith component of the subdifferential ∂J(c) is:

(∂J(c))i = 2αi ci − 2 (AT ỹ)i + µ ∂|ci| (3.57)

The subdifferential ∂|ci| of the absolute value function |ci| is:

∂|ci| =


{−1} if ci < 0

[−1, 1] if ci = 0

{1} if ci > 0

(3.58)

For copt to be a global minimum of J(c), the following has to be fulfilled for every

i ∈ {0, . . . , K − 1}:

0 ∈ (∂J(copt))i (3.59)

⇔ 0 ∈ 2αi copt,i − 2 (AT ỹ)i + µ ∂|copt,i| (3.60)

According to Eq. 3.58, three cases have to be distinguished.
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Case 1: copt,i > 0

0 = 2αi copt,i − 2 (AT ỹ)i + µ (3.61)

copt,i =
(AT ỹ)i − µ

2

αi
(3.62)

subject to (AT ỹ)i >
µ

2
(since αi > 0) (3.63)

Case 2: copt,i < 0

0 = 2αi copt,i − 2 (AT ỹ)i − µ (3.64)

copt,i =
(AT ỹ)i + µ

2

αi
(3.65)

subject to (AT ỹ)i < −
µ

2
(since αi > 0) (3.66)

Case 3: copt,i = 0

0 = −2 (AT ỹ)i + µβ with β ∈ [−1, 1] (3.67)

β =
2 (AT ỹ)i

µ
(3.68)

−1 ≤ 2 (AT ỹ)i
µ

≤ 1 (3.69)

−µ
2
≤ (AT ỹ)i ≤

µ

2
(3.70)

Putting it all together, the following is obtained for copt,i:

copt,i =


(AT ỹ)i−µ2

αi
if (AT ỹ)i >

µ
2

(AT ỹ)i+
µ
2

αi
if (AT ỹ)i < −µ

2

0 if − µ
2
≤ (AT ỹ)i ≤ µ

2

(3.71)

=
sgn((AT ỹ)i) max

{∣∣(AT ỹ)i
∣∣− µ

2
, 0
}

αi
(3.72)

=
Sµ

2
((AT ỹ)i)

αi
(3.73)

Here, Sµ
2

is the soft thresholding operator as introduced by Donoho and Johnstone in
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3 Multi-frame transform coefficient optimization

[DJ94] and defined by

Sµ
2
(x) =


x− µ

2
if x > µ

2

0 if − µ
2
≤ x ≤ µ

2

x+ µ
2

if x < −µ
2
.

(3.74)

Note that if A is an orthogonal matrix, then AT = A−1 and αi = 1. Since A is

the reconstruction operator that generates the reconstructed samples from the trans-

form coefficients, A−1 can be interpreted as a kind of analysis or forward transform

operator, that generates transform coefficients c̃ from the desired (modified) original

signal samples ỹ, with c̃ := A−1 ỹ. In this case, the ith component of the transform

coefficient vector copt would simply be

copt,i = Sµ
2
(c̃i), (3.75)

which is the original transform coefficient (as obtained by forward transform), shrinked

by an amount of µ
2

towards zero if its absolute value is larger than µ
2
, and clipped to

zero otherwise.

Noteworthy, without explicit reference to the soft thresholding operator, this has

recently been proposed in [HSK+11, HKC13] as a simple, yet effective alternative to

the rate distortion optimized quantization (RDOQ) method [KYC08, KCYJ09] which

is implemented in the H.264/AVC reference encoder. The rate distortion gains are

reportedly smaller than those of RDOQ (5.65 % bit rate reduction compared to 7.80 %,

for H.264/AVC using CAVLC entropy coding), but the computational complexity,

measured as an average increase of encoder runtime, is also lower (0.09 % for soft

thresholding compared to 6.75 % for RDOQ).
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 0  0.25  0.5  0.75  1

f(0.25)

f(0)

f(1)

Figure 3.13: Example of a one-dimensional convex function where rounding does not
lead to the optimal integer solution.

3.4.2 Orthogonal case: Optimal integer solution by rounding

In this section, it will be shown that in the separable setting of the previous section

(i.e., diagonal AT A), rounding of the optimal real-valued solution leads to the optimal

integer-valued solution. Note that this is not a general property of a one-dimensional

convex function, as illustrated in Fig. 3.13. In this example, the optimal real-valued

solution is obtained at x = 0.25, which would be rounded to x = 0. But, since

f(1) < f(0), the optimal integer-valued solution is found at x = 1. It is true, however,

that for one-dimensional convex functions with real-valued optimum at x, the optimal

integer-valued solution must be either bxc or dxe [HS11].

In order to simplify matters, the following one-dimensional optimization problem is

assumed:

copt,int = arg min
c∈Z

J(c) = (y − c)2 + µ |c| (3.76)

The following inequality shows the condition for zero to be a better solution than

one:

J(0) < J(1) (3.77)

y2 < y2 + 1− 2y + µ (3.78)

y <
1

2
+
µ

2
(3.79)
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Note that for y = 1/2 + µ/2, there is a tie, i.e. both zero and one lead to the same value

of J . More generally, k ≥ 0 is a better solution than k + 1, if

J(k) < J(k + 1) (3.80)

y2 + k2 − 2yk + µk < y2 + (k + 1)2 − 2y(k + 1) + µk + µ (3.81)

y <
1

2
+ k +

µ

2
(3.82)

For k ≤ 0, the condition for k to be better than k − 1 is

J(k) < J(k − 1) (3.83)

y2 + k2 − 2yk − µk < y2 + (k − 1)2 − 2y(k − 1)− µk + µ (3.84)

y > −1

2
+ k − µ

2
(3.85)

Consequently, the optimal integer-valued solution is obtained as follows (with n ∈
N+ = {1, 2, . . .}):

copt,int ∈



{−n,−n− 1} if y = −1
2
− n− µ

2

{−n} if − 1
2
− n− µ

2
< y < −1

2
− (n− 1)− µ

2
...

{0} if − 1
2
− µ

2
< y < 1

2
+ µ

2

{0, 1} if y = 1
2

+ µ
2

{1} if 1
2

+ µ
2
< y < 1

2
+ 1 + µ

2

{1, 2} if y = 1
2

+ 1 + µ
2

{2} if 1
2

+ 1 + µ
2
< y < 1

2
+ 2 + µ

2
...

{n} if 1
2

+ (n− 1) + µ
2
< y < 1

2
+ n+ µ

2

{n, n+ 1} if y = 1
2

+ n+ µ
2

(3.86)

This can be written as:

copt,int ∈


{0} if |y| < 1

2
+ µ

2

{sgn(y)n} if 1
2

+ (n− 1) + µ
2
< |y| < 1

2
+ n+ µ

2

{sgn(y)n, sgn(y)(n+ 1)} if |y| = 1
2

+ n+ µ
2

(3.87)
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The tie can be broken as follows:

copt,int =

0 if |y| < 1
2

+ µ
2

sgn(y)n if 1
2

+ (n− 1) + µ
2
≤ |y| < 1

2
+ n+ µ

2

(3.88)

For n ∈ N+ = {1, 2, . . .} holds

1

2
+ (n− 1) +

µ

2
≤ |y| <

1

2
+ n+

µ

2
(3.89)

n ≤ |y| − µ

2
+

1

2
< n+ 1 (3.90)

n =

⌊
|y| − µ

2
+

1

2

⌋
(3.91)

Consequently Eq. 3.88 can be written as (using the soft thresholding operator of

Eq. 3.74):

copt,int = sgn(y) max

{⌊
|y| − µ

2
+

1

2

⌋
, 0

}
(3.92)

= round(Sµ
2
(y)) (3.93)

with round(x) = sgn(x)

⌊
|x|+ 1

2

⌋
(3.94)

3.4.3 Quadratic Program approach

Schumitsch proposes to cast 3.18 in the form of a Quadratic Program (QP), which

can then be solved by usage of a general-purpose numerical optimization toolbox (e.g.,

MOSEK). A QP is an optimization problem with a quadratic objective function and

linear inequality and/or equality constraints. The generic form of a QP is as follows:

min
x

1

2
xT H x + fT x

subject to B x ≤ u

E x = d

(3.95)

With the two helper variables s, which is the vector of reconstructed sample values,

and k, where ki = |ci|, Schumitsch states the optimization problem in the following
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form (1 represents the K×1 column vector consisting only of ones) [SSW04, SSW05]:

min
s,c,k

1

2
‖y − s‖2

2 + µ1T k

subject to s = p + M s + T c

k ≥ c

k ≥ −c

k ≥ 0

(3.96)

Schumitsch gives the following mapping, with the help of which 3.96 can be trans-

formed into the standard form 3.95. (I is the K ×K identity matrix):

x :=

s

c

k

 , H :=

I 0 0

0 0 0

0 0 0

 , f :=

−2 y

0

µ1



B :=

0 I −I

0 −I −I

0 0 −I

 , u :=

0

0

0


E :=

[
I−M −T 0

]
, d := y

(3.97)

While this approach is guaranteed to find the solution of 3.18, there are two issues,

making it inapplicable especially to high resolution video sequences. First, the matrix

E, which mainly consists of the two matrices −T and I−M, has to be stored explicitly

in the random access memory, because it specifies the equality constraints of the

QP. As stated in Sections 3.1.1 and 3.1.2, T and M are sparse matrices, where the

maximum number of non-zero entries is limited. For the state of the art video coding

standard H.265/HEVC, T can have up to 1024 ·K non-zero entries, where K is the

number of luma samples under consideration of the current optimization. General-

purpose numerical solver toolboxes typically operate using floating-point arithmetic

of double precision [IEE08], which is a binary format where each variable occupies

64 bits. Thus, storing only the values of the non-zero entries of T for N = 3 frames at

SDTV resolution of 720× 576 luma samples could require up to 3 · 720 · 576 · 1024 · 8
byte, which is more than 10 gigabyte. Similarly, storing the values of the non-zero

entries of M could require up to 3 · 720 · 576 · 128 · 8 byte, which is 1.3 gigabyte.
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Note that the position of the non-zero entries has to be stored as well which further

increases the memory requirements.

Furthermore, it is reported in the pertinent literature [BJMO12, pp. 38–40] that

casting the optimization problem of Eq. 3.18 in the shape of a QP and applying a

general-purpose optimization toolbox is generally inefficient, because “these toolboxes

are generic and blind to problem structure and tend to be too slow, or cannot even

run because of memory problems” [BJMO12, p. 40]. So, it is resumed that “these

toolboxes are only adapted to small-scale problems and usually lead to solution with

very high precision (low duality gap), while simpler iterative methods can be applied

to large-scale problems but only leads to solution with low or medium precision, which

is sufficient in most applications to machine learning” [BJMO12, p. 38]. Note that

in the context of multi-frame transform coefficient optimization, high precision of the

solution is not required as well. This is because finally sought are the integer-valued

transform coefficients, which have to be derived (e.g. by rounding) from the real-valued

solution of the optimization problem, and consequently a larger number of decimal

places brings no benefit.

3.4.4 Interior-point method

In [KKL+07] an algorithm based on the interior-point method for solving the opti-

mization problem of Eq. 3.18 is proposed. This algorithm has also become known

under the name l1 ls. Interior-point methods can be used to solve convex optimiza-

tion problems having inequality constraints by solving a series of equality constrained

problems instead. Details on interior-point methods can be found in [BV04, Ch. 11].

l1 ls is reportedly faster than usual interior-point methods [BBC11, p. 21 Sec. 5.1.4],

but still every iteration step of the algorithm requires (approximate) solution of the

linear equation system H ∆x = −g, where H is the Hessian and g is the gradient at

the current iterate and the unknown ∆x gives the search direction. Since computing

the exact solution of this linear equation system would be impractical for large-scale

optimization problems, only an approximate solution is computed, using only matrix-

vector multiplications involving A and AT . Still, it is reported in [BBC11] that

application of l1 ls is “problematic for large-scale problems” due to a large number of

such multiplications. Like the Quadratic Program formulation, l1 ls delivers a high

precision solution, which is not necessary in the context of this thesis.
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3.4.5 Active Set/Homotopy method

Active set (or homotopy) methods rely on the piece-wise linearity of the regularization

path. The algorithm starts at a known solution of the optimization problem (typically

the zero vector), and then moves along the regularization path until the next break-

point (also called kink) where either a previously zero coefficient becomes non-zero

or vice versa. The value of the regularization parameter µ corresponding to the next

kink can be derived in closed form. So, basically this type of algorithm starts from

the trivial all-zero solution and then jumps from kink to kink along the regularization

path, corresponding to a decreasing of the regularization parameter µ. The name ac-

tive set method stems from the fact that at each stage of the algorithm there is a set

of active (i.e., non-zero) variables. In the context of `1-regularized least squares opti-

mization, active set algorithms have been proposed in [OPT00a, OPT00b, EHJT04].

These methods are particularly useful if one is interested in determining the whole

regularization path or if the number of non-zero components of the desired solution

vector copt is small. Since, within the scope of this thesis, one is only interested in

the solution vector copt for one specific value of µ, this method is also not suitable

for multi-frame transform coefficient optimization, because the number of kinks which

would have to be considered in order to follow the regularization path from the zero

vector to the solution vector for the desired value of µ would typically be too large.

3.4.6 Iterative Shrinkage/Thresholding Algorithm (ISTA)

An iterative shrinkage/thresholding algorithm (ISTA) for solving the optimization

problem of Eq. 3.18 is proposed in [DDDM04]. A generalization of this method

is proximal forward-backward splitting [CW05]. Sparse Reconstruction by Separa-

ble Approximation (SpaRSA) [WNF09] provides an algorithmic framework based on

proximal forward-backward splitting. It deals with the minimization of a composite

function as follows

xopt = arg min
x
f(x) + µ g(x), (3.98)

where f : Rn → R is a smooth and convex function, and g : Rn → R is a regularization

function that may be non-smooth. The forward-backward splitting algorithm gener-

ates a sequence (xn)n≥0 which converges to xopt. The update step from the current

iterate xn to the next iterate xn+1 can easily be derived from the second order Taylor

60



3.4 Comparison of different solution algorithms

approximation of f around xn [YSGM10]:

f(x) ≈ f(xn) +∇f(xn)T (x− xn) +
1

2
(x− xn)T∇2f(xn)(x− xn) (3.99)

xopt = arg min
x
f(x) + µ g(x) (3.100)

≈ arg min
x
∇f(xn)T (x− xn) +

1

2
(x− xn)T∇2f(xn)(x− xn) + µ g(x) (3.101)

≈ arg min
x
∇f(xn)T (x− xn) +

αn
2
‖x− xn‖2

2 + µ g(x) =: xn+1 (3.102)

xn+1 = arg min
x

1

αn
∇f(xn)T (x− xn) +

1

2
‖x− xn‖2

2 +
µ

αn
g(x) (3.103)

= arg min
x

1

2
‖x− un‖2

2 +
µ

αn
g(x) (3.104)

with

un := xn −
1

αn
∇f(xn) (3.105)

Remarks: From Eq. 3.101 to Eq. 3.102, the Hessian ∇2f(xn) has been approximated

by the diagonal matrix αn I. In [BB88], it is proposed to choose αn such that the

approximation error of αn(xn − xn−1) ≈ ∇f(xn) −∇f(xn−1) is minimized. This so-

called Barzilai-Borwein step size rule has become a common feature of optimization

algorithms based on ISTA, e.g. [WNF09, HYZ10]. Therefore, αn is derived as:

αn = arg min
α
‖α(xn − xn−1)− (∇f(xn)−∇f(xn−1))‖2

2 (3.106)

=
(xn − xn−1)T (∇f(xn)−∇f(xn−1))

(xn − xn−1)T (xn − xn−1)
(3.107)

Note, that for the first value α0 some initialization, e.g. α0 = 1, is needed. The step

from Eq. 3.103 to Eq. 3.104 can easily be verified by plugging the definition of un

from Eq. 3.105 into Eq. 3.104.

In [Mor62], the proximity operator proxf : Rn → Rn is introduced as follows:

proxf x = arg min
y

1

2
‖x− y‖2

2 + f(y) (3.108)

It can be viewed as a generalization of the Euclidean projection operator. With the
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help of the proximity operator, Eq. 3.104 can be written as:

xn+1 = prox µ
αn

g un (3.109)

= prox µ
αn

g︸ ︷︷ ︸
backward step

xn −
1

αn
∇f(xn)︸ ︷︷ ︸

forward step

 (3.110)

According to Eq. 3.18, x = c, f(c) = ‖ỹ −A c‖2
2, and g(c) = ‖c‖1. In Section 3.4.1,

it has implicitly already been shown, that the proximity operator of the `1-norm is

the elementwise soft thresholding operator:

proxµ‖·‖1 x = Sµ (x) (3.111)

This can easily be verified if A = I is assumed in Eq. 3.52.

The gradient ∇f(c) for f(c) = ‖ỹ −A c‖2
2 is

∇f(c) = 2AT (Ac− ỹ). (3.112)

Consequently, the iteration for solving 3.18 is (as shown in [DDDM04, p. 1429,

Eq. 2.11])

cn+1 = S µ
αn

(
cn −

2

αn
AT (Acn − ỹ)

)
. (3.113)

Convergence of (cn)n≥0 to copt can be shown [CW05] for αn > ‖AT A‖2, where ‖ · ‖2

is the spectral norm of the matrix. When using a fixed value of αn satisfying this con-

dition, the objective function J(cn) is guaranteed to decrease in each iteration. Using

the Barzilai-Borwein step size from Eq. 3.107 leads to a non-monotone behaviour,

where the objective function is allowed to increase after an iteration. This generally

accelerates convergence. But, in order to guarantee convergence of the iterative algo-

rithm, a line search has to be employed [WNF09]. Starting from the current iterate

cn and αn, the next candidate cn+1 is computed according to Eq. 3.113. Then, it

is checked whether cn+1 fulfills a given acceptance criterion. If this is not the case,

αn is increased by a factor of two (and the resulting gradient step size consequently

halved), and a new candidate cn+1 is tested. This process is repeated until cn+1 fulfills

the acceptance criterion. In this thesis, the non-monotone acceptance criterion from
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[WNF09, p. 2483, Eq. 22] is used with M = 5, i.e. cn+1 is accepted if the resulting

value of the objective function is slightly smaller than the largest value over the past

six iterations. More specifically, cn+1 is accepted if

J(cn+1) ≤ max
i=max(n−M,0),...,n

J(ci)−
σ

2
αn‖cn+1 − cn‖2

2 (3.114)

with J(c) as defined in Eq. 3.10 and σ = 0.01 (as proposed in [WNF09]).

A very important aspect for the effective performance of an iterative optimization

algorithm is the choice of a proper termination criterion which decides at which iter-

ation n to terminate and to assume that cn ≈ copt. In [HYZ10, p. 181, Sec. 4.2.1], a

combination of two termination criteria is proposed. The first criterion checks whether

the relative size of the last step is smaller than some tolerance xtol:

‖cn − cn−1‖2

‖cn−1‖2

≤ xtol (3.115)

The second criterion is based on the following necessary and sufficient condition for c

to be optimal, which is obtained in [KKL+07, Sec. III-A]:

(AT (ỹ −Ac))i ∈


{−µ} if ci < 0

[−µ, µ] if ci = 0

{µ} if ci > 0

(3.116)

This condition implies that:

‖AT (ỹ −Ac−)‖∞ ≤ µ (3.117)

The second termination criterion proposed in [HYZ10, p. 181, Sec. 4.2.1] checks if

Eq. 3.117 is fulfilled up to a given tolerance gtol:

‖AT (ỹ −Ac)‖∞
µ

− 1 ≤ gtol (3.118)

Unless explicitly stated otherwise, in this thesis it is assumed that the iterative process

is stopped when either both criteria 3.115 and 3.118 are simultaneously fulfilled or

when a maximum number of iterations nmax is reached. The resulting number of

iterations highly depends on the choice of the parameters xtol, gtol, and nmax. In

[WNF09, p. 2484] it is claimed that “it is usually (and perhaps inevitably) left to
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3 Multi-frame transform coefficient optimization

the user to tune the stopping criteria in their codes to the needs of their application”

and that “the choice of stopping criteria can dramatically affect the performance of

many optimization algorithms in practice.” Therefore, the actual values for these

three parameters will be empirically determined from the outcome of several coding

experiments. This is investigated in a later chapter of this thesis.

Similarly as the termination criterion, the choice of the starting point, i.e. how to

choose c0, has large impact on the practical performance. Since the iteration 3.113

will converge to copt for any c0, in the simplest case c0 = 0 could be used. A good

starting point c0, however, will reduce the number of required iteration steps. In

the literature [HYZ08, WNF09], a so-called continuation strategy is described, where

instead of solving 3.18 directly for a given value of µ, a series of sub-problems is

solved. Each sub-problem is of the same type as Eq. 3.18, but uses a different value

of µ. The first sub-problem starts with a large value of µ and a simple initialization

such as c0 = 0. This will quickly converge, because, due to the large value of µ,

many components of the solution vector will remain zero. In the next step, the value

of µ is reduced and the previous solution is used as the new starting point c0 (the

subsequent step “continues” where the previous step stopped). This is repeated until

the final value of µ is reached. Note, that this is similar in spirit to the homotopy

method (Sec. 3.4.5), where starting from the all-zero solution the regularization path

is explored. In the context of multi-frame transform coefficient optimization, however,

using this continuation strategy is inadvisable due to two aspects. First of all, the

transform coefficients that are obtained by ordinary forward transform followed by

scalar quantization can already serve as a good warm start initialization. Secondly

would this warm start initialization be harmed by the continuation strategy, because

the large initial value of µ will force many components of the vector to zero, which

then would have to be recovered again in subsequent steps of the continuation method.

Consequently, no continuation strategy is employed, and the optimization problem

Eq. 3.18 is directly solved using the desired value of µ, with the transform coefficient

levels as obtained by ordinary forward transform/scalar quantization as a warm start

initialization for c0.

The iteration rule 3.113 has several properties making it particularly suited to the

multi-frame transform coefficient optimization problem. It is mainly composed of very

simple operations which can be performed with little demands in terms of memory re-

quirements and computational complexity. As stated in Sec. 3.2.1, the matrix A is the

reconstruction operator, i.e. inverse transform followed by motion-compensated pre-
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3.4 Comparison of different solution algorithms

diction, which has been written in the shape of one single matrix comprising both op-

erations in order to state the optimization problem in standard form. With rn = T cn,

the matrix-vector product A cn can be written as:

s̃n = A cn (3.119)

=
νmax∑
ν=0

Mν T cn (3.120)

=
νmax∑
ν=0

Mν rn (3.121)

= rn + M rn + M2 rn + . . .+ Mνmax rn (3.122)

Furthermore, the matrix-vector products T cn and Mν rn can be performed in separa-

ble form, since both inverse transform as well as interpolation filtering for motion-

compensated prediction are separable operations in state of the art video coding

standards. This further reduces the number of elementary multiplication/addition

operations. For example, for a 32 × 32 transform block, if separability is not con-

sidered, each transform coefficient has to be multiplied by all 1024 samples of its

corresponding basis image. If separability is exploited, there are 32 multiplications

horizontally and vertically each, summing up to 64 multiplications total. Thus, the

number of multiplications has been reduced by a factor of 16. More than that, the

matrix T, whose memory requirements can become very huge as has been argued in

Sec. 3.4.3, does not need to be directly stored in the random access memory. Instead,

since the basis functions of the transform are fixed for a video coding standard, it

can implicitly be derived on the fly. For this purpose, only the transform size (which

selects the number and set of basis functions) and the quantization parameter (which

selects the scaling factor) have to be stored for each transform block, which leads to

very modest memory requirements. For the example of Sec. 3.4.3 with N = 3 frames

at SDTV resolution of 720 × 576, storing the transform size and the quantization

parameter using one byte each for every 4× 4 block, would require 3 · 720·576
4·4 · 2 byte,

which is 156 kilobyte1 (whereas, as shown, storing T directly could take more than

10 gigabyte, even if its sparsity is exploited).

The matrix-vector products M rn, M (M rn), etc. can also be computed in separa-

ble form, because all state of the art video coding standards use separable sub-pel

1Note that for H.265/HEVC, there are four different transform sizes and the quantization parameter
may range from 0 to 51, such that both values might even be stored together in one byte, resulting
in 78 kilobyte total.

65



3 Multi-frame transform coefficient optimization

Frame0 =
A B
C D

Frame1 =
E F
G H

MV =
(1/2, 1/2) (−1, 0)
(1/2, 0) (−1, 0)

Figure 3.14: Illustrating example using two 2× 2 frames and half-pel interpolation

interpolation filters.

Using the vector s̃n, the term A cn − ỹ of Eq. 3.113 can be stated as dn := s̃n − ỹ.

It represents the reconstruction error (difference signal between reconstruction and

original) in spatial domain for the current iterate cn. The direction of the gradient

step is then gn := AT dn. Like for the reconstruction A cn, it can be written as:

gn = AT dn (3.123)

= TT

νmax∑
ν=0

(MT )ν dn (3.124)

= TT (dn + MT dn + (MT )2 dn + . . .+ (MT )νmax dn︸ ︷︷ ︸
zn

) (3.125)

= TT zn (3.126)

The matrix-vector product TT zn can again be computed in separable form. This

is possible, because T is a block-diagonal matrix, and the transpose TT is obtained

as the transpose of the individual constituent sub-matrices. For the matrix-vector

products MT dn, MT (MT dn), etc., however, this is not possible, as will be shown

with the help of a very simple example. In this example, a group of N = 2 frames is

assumed, each having a size of 2× 2 samples. The individual samples of these frames

are designated with the letters A,. . . ,H, as shown in Fig. 3.14. Further it is assumed,

that Frame1 is predicted from Frame0 using bilinear sub-pel interpolation filtering

with the motion vector field MV of Fig. 3.14. Then, the prediction samples Ê,. . . ,Ĥ

are obtained as follows:

Ê =
A+B + C +D

4
(3.127)

F̂ = A (3.128)

Ĝ =
C +D

2
(3.129)

Ĥ = C (3.130)
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This leads to the following matrix M:

M =



A B C D E F G H

A 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0

E 1/4 1/4 1/4 1/4 0 0 0 0

F 1 0 0 0 0 0 0 0

G 0 0 1/2 1/2 0 0 0 0

H 0 0 1 0 0 0 0 0


(3.131)

It can easily be verified that a matrix-vector product M x using this definition of M

can be computed in separable form. For that purpose, the 2D interpolation filter

masks for the prediction samples Ê,. . . ,Ĥ are derived as follows:

PE =

[
mE,A mE,B

mE,C mE,D

]
=

[
1/4 1/4

1/4 1/4

]
=

[
1/2

1/2

] [
1/2 1/2

]
(3.132)

PF =

[
mF,A mF,B

mF,C mF,D

]
=

[
1 0

0 0

]
=

[
1

0

] [
1 0

]
(3.133)

PG =

[
mG,A mG,B

mG,C mG,D

]
=

[
0 0

1/2 1/2

]
=

[
0

1

] [
1/2 1/2

]
(3.134)

PH =

[
mH,A mH,B

mH,C mH,D

]
=

[
0 0

1 0

]
=

[
0

1

] [
1 0

]
(3.135)

Note that only the entries of the lower-left quadrant of M are considered here, as all

the other entries are zero by definition, which is because a predicted frame can neither

depend on itself nor on future frames. It is shown that all those 2D filter masks can

be written as the outer product of two vectors. This allows separable computation of

the interpolation results.

In the following, the transposed matrix MT is considered. Here, the 2D filter mask

corresponding to row C of the matrix MT (which is column C of the matrix M) is:

RC =

[
mE,C mF,C

mG,C mH,C

]
=

[
1/4 0

1/2 1

]
(3.136)

Note that since RC has rank two, it is impossible to write RC as the outer product of
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two vectors. Consequently, for the matrix-vector product MT x, the component C of

the resulting vector cannot be computed in separable form. So, even when a separable

sub-pel interpolation filter is used (like in all state of the art video coding standards)

and the matrix-vector product M x therefore can efficiently be computed in separable

fashion, this is not possible for the transpose MT .

More than that, the non-separability of MT is not caused by the sub-pel interpolation

filter, as can be seen if only full-pel motion-compensation is assumed as in the following

example:

Ê = A, F̂ = A, Ĝ = B, Ĥ = A (3.137)

Which leads to the following matrix M:

M =



A B C D E F G H

A 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0

E 1 0 0 0 0 0 0 0

F 1 0 0 0 0 0 0 0

G 0 1 0 0 0 0 0 0

H 1 0 0 0 0 0 0 0


(3.138)

Here, the 2D filter mask corresponding to row A of the matrix MT (which is column

A of M) is:

RA =

[
mE,A mF,A

mG,A mH,A

]
=

[
1 1

0 1

]
(3.139)

Again, this matrix has rank two, such that the matrix-vector product MT x cannot

be computed in separable form, even if no sub-pel interpolation filtering is used at

all.

The iteration rule 3.113 will now be analyzed according to its complexity:

cn+1 = S µ
αn

(
cn −

2

αn
AT (Acn − ỹ)

)
(3.113 revisited)

The matrix-vector product A cn equals to reconstructing the current N video frames

using the transform coefficient vector cn. It can be computed in separable fashion

and its complexity is lower than that of decoding the current N frames, since none
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of entropy decoding, motion vector prediction/decoding, loop filtering has to be per-

formed. The matrix multiplication by the transpose AT can be split into two parts,

as shown in Eq. 3.124. The first part, the multiplication by the transposed motion

matrix MT , as has been argued, cannot be split into two separable steps and therefore

is the crux of the whole iterative process. However, since M is a sparse matrix and the

number of non-zero entries is limited to be not greater than 128 ·K for H.265/HEVC

(see Sec. 3.1.2), the complexity of the non-separable matrix-vector multiplication by

MT is still of order O(K), i.e. the number of additions and multiplications grows

linearly with the number of samples K. It can be reasoned that the multiplication

by MT is also the key part of the whole multi-frame transform coefficient optimiza-

tion, since it is in this step where the inter-frame dependencies are actually taken into

account. The matrix-vector product
∑νmax

ν=0 (MT )ν dn can be interpreted such that

from the current difference signal dn a new vector is derived, which gives the inverse

of the direction (in spatial domain) into which to move from the current iterate cn

such that the distortion of the reconstruction is reduced. Since this direction is given

in spatial domain, it has to be multiplied by TT in order to obtain the differential

update for the current iterate cn in transform domain. This multiplication again can

be computed separably and therefore allows fast implementation. The elementwise

soft thresholding operator S µ
αn

, finally, is a very cheap and simple operation, which

could even be executed in parallel on all the components, and therefore contributes

little to the overall complexity of the iteration.

It can be concluded, that for multi-frame transform coefficient optimization, an itera-

tive shrinkage/thresholding algorithm based on the Sparse Reconstruction by Separa-

ble Approximation (SpaRSA) framework [WNF09] has the following advantages over

the methods described in the previous sections:

• The iteration 3.113 consists of relatively simple operations, which can to a large

extent even be performed separably in horizontal and vertical direction. This

enables application to large-scale optimization problems with a problem size

(dimension) of 106 and beyond.

• The sparse matrices M and T do not need to be directly stored in the random

access memory, but instead they may be derived on the fly. This markedly

reduces memory requirements compared to the Quadratic Program approach

(Sec. 3.4.3).
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3 Multi-frame transform coefficient optimization

• Warm start initialization is possible using the transform coefficient vector ob-

tained by ordinary forward transform and scalar quantization.

• The forward-backward splitting approach inherently allows to exchange the `1-

norm by some other regularizer, if its proximity operator is known. This is

studied in a later chapter, where the performance of different regularization

functions is compared by the resulting rate distortion performance.
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method to H.265/HEVC

In this chapter, the previously described multi-frame transform coefficient optimiza-

tion algorithm is applied to the recent H.265/HEVC video coding standard. Some

HEVC-specific issues are discussed, the influence of various optimization parameters

is analyzed, and the resulting rate distortion performance is presented.

Unless explicitly otherwise stated, the test sequences and encoder settings as used by

the ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) for the

development of the H.265/HEVC video coding standard are used, both for determining

optimal model parameters and for evaluating the performance of the method. Since

this is somewhat problematic from a scientific point of view, as training set and test set

are identical, the coding results are also presented using different test sequences with

all model parameters fixed as empirically derived based on the JCT-VC test sequences,

such that training set and test set are disjunct. The complete description of the JCT-

VC encoder settings and test sequences, the so-called “common test conditions,” can

be found in [JCT13]. In the following, a short overview over the different encoder

configurations as defined in the common test conditions is given. There are four basic

configurations:

• Intra

• Random access

• Low delay using B frames

• Low delay using P frames
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4 Application of the optimization method to H.265/HEVC

Each of these four configurations exists in an 8 bit variant (“main”) and a 10 bit variant

(“high efficiency”). The first configuration, which uses intra only, is out of scope for

this thesis, since there is no inter-frame prediction and, consequently, no inter-frame

dependencies. The last two configurations are also inappropriate for this work, because

the computational burden required to perform the multi-frame optimization as well as

the structural delay caused by the multi-frame look-ahead exclude low delay coding

scenarios (such as video conferencing or screen sharing).

So, from a use case perspective, the focus will be on the random access coding sce-

nario. Still, in the following, the optimization method is first studied using a simple

IPPP. . . prediction structure using one reference frame, i.e. each P frame references

its directly preceding frame, and infinite intra period, i.e. only the first frame is coded

as an I frame, all following frames as P frames. All frames are encoded using the

same quantization parameter (QP) value. The other encoder settings are kept as in

the random access configuration defined in the common test conditions. This con-

figuration is studied for the following reasons. First of all, since this is the most

simple prediction structure, it can easily be studied whether and under which con-

ditions the multi-frame optimization shows coding gains at all before proceeding to

more complicated prediction structures. Furthermore, in this prediction structure,

there is no structural difference between the individual frames like in the “GOP8”

prediction structure used for the random access configuration, where there is a dis-

tinction between reference and non-reference frames, and some reference frames have

direct impact on a larger number referring frames than others. According to the com-

mon test conditions, this hierarchy of frames within the GOP8 prediction structure is

captured by a modulation of both quantization parameter and Lagrangian multiplier

used for the rate distortion optimized operational encoder control. In the multi-frame

transform coefficient optimization problem, two parameters have to be appropriately

chosen, namely the number of frames to consider in the joint optimization N and the

regularization parameter µ. In a prediction structure like GOP8, it can be expected

that N and µ should by varied based on the frame hierarchy in order to achieve op-

timal performance. This makes the problem of determining the right values for N

and µ a complicated task. Thus, the multi-frame transform coefficient optimization

problem is first studied in a simple setup where there is no such distinction between

the individual frames, and the optimal values for N and µ therefore can be determined

globally for the whole sequence. Based on the insights derived from the analysis of this

simple IPPP. . . prediction structure, the behaviour of the multi-frame optimization

for the GOP8 prediction structure is studied.
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4.1 Investigation of the optimization algorithm parameters

4.1 Investigation of the optimization algorithm

parameters

4.1.1 Description of the algorithm

The general structure of the algorithm follows closely the one proposed by Schumitsch

in [SSW05, Sec. 4.2]. The idea is to optimize the transform coefficients of the inter-

predicted blocks such that their impact on future frames is taken into account. The

intra-predicted blocks are excluded from the optimization for the following reasons:

• As shown in Sec. 3.1.3 (Eq. 3.9, p. 27) as well as Sec. 3.4.6 (Eqs. 3.119–3.122,

p. 65, and Eqs. 3.123–3.125, p. 66) the computational complexity of the iterate

shrinkage/thresholding algorithm (ISTA) is to a large degree governed by the

length of the longest prediction chain νmax. If a group of N frames is jointly

optimized and only inter-predicted blocks are considered, νmax is limited to be no

larger than N−1. If intra-predicted blocks are also included in the optimization,

νmax can become much larger due to dependencies from one block to another

within one frame which are caused by intra-prediction. This will increase the

complexity of each iteration of ISTA.

• The accuracy of the linear signal model in Eq. 3.9 decreases with a larger num-

ber of frames, because the impact of the non-linear effects (rounding, clipping,

filtering), which are neglected in this model, accumulates over time. The same,

but more severely, can be expected if intra-prediction is also considered, since a

longer prediction chain, caused by block-to-block intra-frame dependencies, will

lead to an even larger model inaccuracy.

The algorithm operates in a sliding window manner, i.e. a group of N frames is consid-

ered jointly, the transform coefficients for the first frame of this group are optimized,

and then the optimization windows moves one step ahead, such that the next N

frames are jointly optimized. Since the inter-frame dependencies are assumed to be

known for the group of N frames, a look-ahead encoding has to be performed in or-

der to determine the corresponding motion vectors. So, for the group of N frames,

initially a pre-encoding is performed, such that the motion vectors are fixed. Then,

the `1-regularized optimization problem 3.18 is solved and the transform coefficients

73



4 Application of the optimization method to H.265/HEVC

of the first frame are updated by the solution of the optimization problem.

Given a regularization parameter µ and a number of frames to optimize jointly N ,

the optimization algorithm for HEVC proceeds as follows.

1. Since I slices are not included in the optimization, the first frame 0 is ordinarily

encoded using HM and a variable M is set equal to 1.

2. The frames M , M + 1, . . . , M + N − 1 are ordinarily encoded using HM such

that their block partitioning, prediction modes, motion vectors etc. are known.

3. The multi-frame transform coefficient problem 3.18 is solved for these frames

using the iterative shrinkage/thresholding algorithm (ISTA), given the inter-

frame dependencies from the previous step, represented in the matrix A, and

the regularization parameter µ. The iteration is initialized using the transform

coefficients obtained from the HM encoder as a warm start.

4. An integer approximation for the real-valued elements of the solution vector

copt has to be found. Note that simple rounding may not be a feasible option

here, since in the common test conditions a coding tool named sign data hiding

(SDH) [WYH+12] is used, where for a group of 16 transform coefficients, the

sign of one of these coefficients is coded using the parity of the sum of the

absolute values of all the 16 coefficients. Obviously, this limits the freedom to

choose an arbitrary combination of transform coefficients, and therefore has to

be considered. If the sum parity of the coefficients obtained by simple rounding

does not match the one required for SDH, the value of one coefficient has to

be modified. For this purpose, the coefficient is chosen, where this modification

leads to the smallest deviation from the real-valued coefficient as obtained from

the solution algorithm.

5. The integer-valued coefficients obtained in the previous step are used for the

inter-coded blocks of frame M , the coefficients of the intra-coded blocks are re-

estimated, since they depend on the reconstructed samples of neighboring blocks

which might have changed.

6. M := M + 1 and execution continues at step 2.
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The motivation why a temporal sliding window approach is taken can be seen from

Fig. 4.1. In this diagram, the luma peak signal to noise ratio (Y-PSNR) is shown for

the first 14 frames of the BlowingBubbles sequences at 416×240 resolution, which has

been encoded using the simple IPPP. . . prediction structure with a fixed quantization

parameter (QP) setting of QP = 30. The first frame numbered as zero is encoded

as an I frame, all others as P frames. In this diagram, two curves are shown. For

both curves, the transform coefficients of frames 1–10 have been derived using the

above described sliding window method, where N = 4 frames have been considered

jointly. For the frames 11–13, the red curve denoted as “sliding window stopped at

frame 10” shows the Y-PSNR which results from optimizing the four frames 10–13

jointly in one step, where the green curve shows the performance when all the frames

are consecutively optimized in a temporal sliding window operation. It can be seen

from the red curve that there is a significant PSNR drop from frame 10 to frame 13.

This occurs, because improving the reconstruction quality of frame 10 also benefits the

subsequent frames 11–13, since they are affected by frame 10 via motion-compensated

prediction, whereas improving the PSNR of frame 13 will only benefit this frame itself.

Similarly, improving the quality of frame 11 still additionally also benefits frames

12–13. Consequently, the multi-frame optimization problem will lead to a solution,

where there are more non-zero coefficients in the first frame under consideration than

in the last frame, shifting more bit rate to the beginning of the group of frames

under consideration, which results in the unbalanced reconstruction quality. Since this

behaviour is obviously unwanted, a temporal sliding window approach is employed,

such that each frame will be encoded at approximately the same quality, where the

small fluctuations of the PSNR are only caused by the characteristics of the individual

sequence.

4.1.2 Exploration of the regularization path

In order to evaluate the multi-frame optimization approach, coding experiments using

the eight test sequences at 416×240 (“Class D”) and 832×480 (“Class C”) resolution

have been conducted. As prescribed in the HEVC common test conditions, quantiza-

tion parameter (QP) values of 22, 27, 32, 37 have been used. For every sequence and

QP value, the multi-frame optimization problem has been solved for each N ∈ {2, 3, 4}
and the regularization parameter µ has been swept in 26 logarithmic steps from 0.05

to 30 000, such that the regularization path, as introduced in Sec. 3.3.1, is explored in
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Figure 4.1: PSNR fluctuation of the first 14 frames of the BlowingBubbles sequence
at 416×240 resolution, encoded using IPPP. . . prediction structure with
QP = 30.

the rate distortion domain. The optimization is performed using the iterative shrink-

age/thresholding algorithm (ISTA) (see Sec. 3.4.6) with a maximum number of 500

iterations, xtol = 10−3 (see Eq. 3.115), and gtol = 0.9 (see Eq. 3.118). This results

in an earlier termination of the algorithm than using the values of maximum 1000

iterations, xtol = 10−4, and gtol = 0.2, which are proposed in [HYZ10]. However,

no impact on the coding efficiency has been observed. The influence of limiting the

maximum number of iterations is studied in Sec. 4.1.4. So for every sequence and

QP value, 3 × 26 = 78 rate distortion points have been generated using the multi-

frame optimization approach. The corresponding rate distortion plots are shown in

Figs. 4.2–4.5, Fig. 4.6 shows the detailed view for two exemplary cases. Since the

coding of the chroma color planes has not been modified, only the peak signal to noise

ratio (PSNR) for the luma component (Y) is presented. Note that, as proposed by

Bjøntegaard in [Bjø01], a logarithmic scale has been used for the bit rate on the x-

axis. Although this presentation format is not in widespread use, it has the following

advantages:

• The behaviour at lower bit rates can easier be read. With a linear scale for the

bit rate, the curves in the lower bit rate region are kind of squeezed together,

whereas the higher bit rate region takes a lot more space.
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• In video compression, one is typically more interested in the relative reduction

of the bit rate (i.e., method A reduces the bitstream size at the same quality

by X %) than in the absolute reduction of the bit rate (i.e., method A reduces

the bitstream size at the same quality by X kbit/s). Using a logarithmic axis

for the bit rate makes it easier to read the relative bit rate reduction. Note that

stepping one tick left on the x-axis of Figs. 4.2–4.5 corresponds to a bit rate

reduction by 1− 2−1/5 ≈ 13 %, whereas stepping one tick right corresponds to a

bit rate increase by 21/5 − 1 ≈ 15 %.

The operating points of the HM 10.0 reference encoder at the QP values of 22, 27,

32, 37 are marked by a “+” symbol in the diagrams. For each QP value, there are

three curves showing the performance of the multi-frame optimization approach, one

for each N ∈ {2, 3, 4}. The points along each of these three curves are obtained by

sweeping the regularization parameter µ in 26 logarithmic steps from 0.05 to 30 000,

where the lower endpoint (low bit rate, low PSNR) corresponds to µ = 30 000 and the

higher endpoint (high bit rate, high PSNR) corresponds to µ = 0.05. Finally, there is

one curve for N = 4, where the regularization parameter has been chosen according

to the QP-dependent rule µ = 0.03 · 20.42·QP and the maximum number of iterations

is limited to 50 (instead of 500). The method how this rule has been derived, as well

as the meaning of the three operating points on each of the curves for N ∈ {2, 3, 4}
which are marked by hollow circles, will be explained in the Sec. 4.1.3.

A few things can be observed from these diagrams. Firstly, in most cases, there

is a range of µ values, such that the resulting operating points of the multi-frame

optimization method lie above the HM anchor curve, or in other words, there is a

coding gain. Values of the regularization parameter µ outside this range lead to

operating points below the HM anchor curve, indicating a coding loss. Furthermore,

within the region where there is a coding gain, a higher value ofN (i.e., a larger number

of frames considered jointly in the optimization step) results in a higher coding gain.

Finally, the starting and end points of the curves are independent of the value of N ,

i.e. they are the same for all the three curves. The last observation can be explained

by the fact that for large µ, the optimization problem 3.18 will lead to copt = 0. In the

opposite case, for µ = 0, the solution will be the same as the one obtained by ordinary

forward transform, i.e. copt = A−1 ỹ. In both cases, the resulting transform coefficient

vector copt is independent of the number of frames N . The observation that the end

point for µ = 0.05 ≈ 0, which leads to the ordinary forward transform solution, lies

significantly below the HM anchor curve, even though HM employs ordinary forward
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transform in order to obtain the transform coefficients as well, can be accounted to

sophisticated rate distortion optimization techniques in HM, namely rate distortion

optimized quantization (RDOQ, see Sec. 2.3 and [KYC08, KCYJ09]), where for each

transform coefficient a number of candidate values are tested and the one resulting

in the smallest RD cost is chosen, and zero transform block checking, where for each

transform block it is checked whether setting the whole block to zero leads to a reduced

RD cost.

In Fig. 4.7, the regularization path which results from setting N = 1 is shown for

two exemplary sequences. In this scenario, no inter-frame dependencies are consid-

ered in the optimization, but instead each frame is optimized individually, using the

`1-regularized least squares problem of Eq. 3.18. Since there is only one frame in

this optimization, the prediction matrix M will be the zero matrix in this case. Con-

sequently, the reconstruction matrix A is identical to the inverse transform matrix

T. The top diagram of Fig. 4.7 shows the results for the BasketballDrill sequence

at 832×480 resolution, which is the best performing of all the Class C and Class D

sequences for N = 1. The outcome for the BlowingBubbles sequence at 416×240 reso-

lution, which is shown in the bottom diagram, is typical for the remaining sequences.

There is a significant coding efficiency loss corresponding to a bit rate increase of

about 4 % compared to the HM anchor configuration. The variant with N = 1 is

also outperformed by a modified HM anchor configuration, where RDOQ has been

disabled. Therefore, there are two antagonistic effects associated with the `1-based

multi-frame optimization. The modelling of the resulting bit rate by the `1-norm is

less accurate than the exact bit rate estimation of RDOQ, leading to a coding effi-

ciency loss in a single frame setting. In a multi-frame setting, corresponding to N > 1,

however, the inter-frame dependencies are considered in the distortion term, which

more than compensates the loss caused by the rough rate estimate, and results in an

overall coding efficiency improvement.

4.1.3 Determination of the optimal regularization parameter

In this section, the question of how to choose an appropriate value of the regularization

parameter µ is addressed. Since having to sweep µ over a large range in order to find

the best operating point for a given QP is very inconvenient, a simple rule similar

to the one typically used for the computation of the Lagrangian multiplier λ in the

78



4.1 Investigation of the optimization algorithm parameters

 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44

 128  256  512  1024  2048  4096

Y
−

P
S

N
R

 [
d
B

]

bit rate [kbit/s]

BasketballPass_416x240

HM 10.0 anchor
N=2
N=3
N=4
N=4, µ=0.03*2

0.42*QP

QP=22

QP=27

QP=32

QP=37

 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

 128  256  512  1024  2048  4096  8192

Y
−

P
S

N
R

 [
d
B

]

bit rate [kbit/s]

BlowingBubbles_416x240

HM 10.0 anchor
N=2
N=3
N=4
N=4, µ=0.03*2

0.42*QP

QP=22

QP=27

QP=32

QP=37

Figure 4.2: Rate Distortion results using IPPP. . . prediction for sequences Basket-
ballPass (top) and BlowingBubbles (bottom) at 416×240 resolution.
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Figure 4.3: Rate Distortion results using IPPP. . . for sequences BQSquare (top) and
RaceHorses (bottom) at 416×240 resolution.

80



4.1 Investigation of the optimization algorithm parameters

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 512  1024  2048  4096  8192  16384

Y
−

P
S

N
R

 [
d
B

]

bit rate [kbit/s]

BasketballDrill_832x480

HM 10.0 anchor
N=2
N=3
N=4
N=4, µ=0.03*2

0.42*QP

QP=22

QP=27

QP=32

QP=37

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 256  512  1024  2048  4096  8192  16384  32768

Y
−

P
S

N
R

 [
d
B

]

bit rate [kbit/s]

BQMall_832x480

HM 10.0 anchor
N=2
N=3
N=4
N=4, µ=0.03*2

0.42*QP

QP=22

QP=27

QP=32

QP=37

Figure 4.4: Rate Distortion results using IPPP. . . for sequences BasketballDrill (top)
and BQMall (bottom) at 832×480 resolution.
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Figure 4.5: Rate Distortion results using IPPP. . . for sequences PartyScene (top) and
RaceHorses (bottom) at 832×480 resolution.
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Figure 4.7: Rate Distortion results when setting N = 1.
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rate distortion optimization of a video encoder is sought after. A similar approach has

been taken in [KGFS11] in order to determine the optimal Lagrangian multiplier which

controls the trade-off between foreground and background quantization step size when

using automatic Sprite coding. In a first step, for each of the curves corresponding

to a sweep of the regularization parameter µ in Figs. 4.2–4.5, the optimal operating

point is determined. Based on this, a range of acceptable points is defined. The set

of all the values of the regularization parameter µ which lead to acceptable operating

points is the set of acceptable µ values for a given sequence and a given QP value.

If there is an intersection of the acceptable µ values for all the sequences given a

specific QP value, any value within this intersection would be an appropriate µ value

for this specific QP value. If there is no such intersection, a µ value is selected instead

which is as close as possible to an acceptable µ value for all the sequences. So far,

for each QP value, a (possibly singleton) set of appropriate µ values has been defined.

Finally, a closed-form expression for µ given the QP value can be found by the usage

of regression analysis.

In the following, the individual steps are described in more detail. For the definition of

the optimal operating point, two cases have to be distinguished. If there are operating

points lying above the HM anchor curve (i.e., corresponding to a coding gain), then the

optimal operating point is defined as the point above the anchor curve whose minimal

distance to the HM anchor curve is maximal, or, simpler stated, the outermost point,

maximizing the distance from the anchor curve in top-left direction. If there are no

such points, then the optimal operating point is defined as the point whose minimal

distance to the HM anchor curve is minimal, such that the distance from the HM

anchor curve (which corresponds to the coding loss) is minimized. On each of the

curves for N = 2, N = 3, and N = 4 in Figs. 4.2–4.5, there are three points marked

by hollow circles. The central point shows the optimal operating point as defined. The

outer two points mark the region of acceptable operating points. Introducing such a

region is beneficial, because even though there is only one uniquely defined optimal

operating point for each sequence and QP value, a range of neighboring operating

points typically shows very similar coding performance. Since a QP-dependent rule

for the regularization parameter µ which fits all the sequences is sought after, it is

helpful to relax the requirement to hit the optimal operating point, and offer instead a

range of operating points which are considered to be as equally as good as the optimal

point. The range of acceptable points has been defined based on the slope of the rate

distortion curve in the optimal point. Using the range of points whose slope is within

±30% of the slope in the optimal point has empirically been found to be expedient.
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Choosing the tolerance too small will only include operating points with similar coding

performance as the optimal point, however, there might be no overlap among the

acceptable ranges for the individual sequences at a given QP value, complicating the

issue to obtain a rule which performs well for all the sequences. Choosing the tolerance

too large, on the contrary, will result in operating points being considered as acceptable

which are significantly inferior in their coding performance compared to the optimal

point. Note that in a flat region, where the curvature of the rate distortion curve

is low, this slope-based criterion will lead to a larger range of acceptable operating

points, whereas in regions with a higher curvature, the range of acceptable operating

points will be smaller.

Using the distance from the anchor curve for defining the set of acceptable points, i.e.

using those operating points which are within X % of the distance from the optimal

operating point to the anchor curve, might be intuitively more appealing, because

the distance to the anchor curve corresponds to the coding gain, and consequently

this criterion would result in operating points with similar coding performance, which

might not always be the case with the criterion based on the slopes. However, the

problem with this criterion is that the range of acceptable µ values will be the smaller

the closer the optimal operating point is to the anchor curve. The corner case where

the µ curve touches the anchor curve is illustrated in Fig. 4.8. In this case, using

the distance from the anchor curve as the defining criterion, the set of acceptable

operating points would only consist of one single point, namely the optimal operating

point where the µ curve touches the anchor curve.

The coding experiments in the previous section have been repeated using all the

even QP values in the range 20–40, and the range of acceptable µ values has been

determined for each combination of sequence and QP value as described above. The

resulting intervals are shown in Fig. 4.9 for QP ∈ {22, 26, 30, 34, 38}. The horizontal

lines represent the value which is obtained as the average of the maximum lower

bound and the minimum upper bound of all the µ intervals for a given QP across

the sequences. It can be seen, that in this diagram with the exception of QP 34,

sequences 2 and 5, this representative value is always within the set of acceptable

µ values, and even in these two exceptional cases, it is very close to the interval.

Furthermore, it has to be emphasized, that the size of the intervals is driven by the

criterion that the slope of the rate distortion curve in the acceptable operating points

should be similar to the slope in the optimal point. For this, a deviation of ±30% from

the slope in the optimal point has been admitted, based on empirical observations.
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By allowing a larger deviation, it is possible to increase the interval sizes, at the cost

of including inferior operating points into the acceptable set. The maximum lower

and minimum upper interval boundaries for each QP value across all the sequences,

together with their arithmetic mean, are presented in Tab. 4.1. If the maximum lower

value is larger than the minimum upper value, there is no overlap of the acceptable

µ ranges for all the sequences. This occurs for QPs 20, 34, and 36.

In Fig. 4.10, the µ values which are represented by a horizontal line for each QP in

Fig. 4.9, are plotted over the QP. Note that a semi-logarithmic presentation using a

linear x-axis and a logarithmic y-axis (so called “log-linear” plot) is used. It can be

seen, that the connection of all the data points very closely resembles a straight line.

A straight line in the log-linear domain corresponds to the following function in the

linear domain:

µ(QP ) = a · 2b·QP (4.1)

The selection of base 2 is arbitrary, since any other base k could be achieved by

multiplication of the exponent by log2 k. The values of a and b can be determined using

log-linear regression [Hei68]. For N = 3, a = 0.0385 ≈ 0.04 and b = 0.4036 ≈ 0.40

have been obtained. For N = 4, the resulting values are a ≈ 0.03 and b ≈ 0.42, which

is also not too far off the data points for N = 3 (see Fig. 4.10), such that in the

following this rule has been used in order to determine the regularization parameter

µ based on the quantization parameter QP:

µ(QP ) = 0.03 · 20.42·QP (4.2)

The resulting rate distortion curve when using this rule is also shown in Figs. 4.2–4.5

for N = 4. Additionally, in Tab. 4.2 the coding efficiency of using the rate distortion

optimal operating point, which corresponds to using a sequence and QP specific value

of µ, is compared with the case of using the rule from Eq. 4.2 across-the-board. For

the comparison, the Bjøntegaard delta bit rate (BD bit rate) as proposed in [Bjø01]

is used. Note that a negative value corresponds to a gain in coding efficiency. It can

be seen that using the empirically derived QP dependent rule for the regularization

parameter µ leads to an average loss of 0.5 % bit rate, with a maximum loss of 1.7 %

for the BlowingBubbles sequences at 416×240 resolution.
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Figure 4.8: Example illustrating the case where the µ curve touches the anchor curve.

µ = a · 2b·QP
Acceptable µ range for N = 3 a = 0.04 a = 0.03

QP max. lower value min. upper value midpoint b = 0.40 b = 0.42
20 10.74 9.01 9.88 10.24 10.13
22 18.33 18.76 18.55 17.83 18.14
24 30.73 35.06 32.89 31.04 32.47
26 53.35 63.79 58.57 54.05 58.13
28 93.53 103.35 98.44 94.10 104.05
30 155.47 179.29 167.38 163.84 186.25
32 283.30 307.56 295.43 285.26 333.40
34 484.44 456.62 470.53 496.67 596.80
36 893.87 879.52 886.69 864.75 1068.30
38 1472.78 1751.19 1611.99 1505.62 1912.32
40 2476.40 3471.97 2974.19 2621.44 3423.14

Table 4.1: Maximum lower and minimum upper µ range value (across all the se-
quences), the midpoint of the two, and the value derived according to the
empirical rule of Eq. 4.1 for N = 3 (left) and N = 4 (right).
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BD bit rate [%]
Optimal Loss due to

Sequence operating point µ = 0.03 · 20.42·QP the µ rule
BasketballDrill −15.3 −15.3 0.0

Class C BQMall −10.2 −9.5 0.7
(832×480) PartyScene −12.1 −11.6 0.5

RaceHorses −6.5 −6.4 0.1
BasketballPass −8.0 −7.9 0.1

Class D BlowingBubbles −11.3 −9.6 1.7
(416×240) BQSquare −10.9 −10.3 0.6

RaceHorses −7.9 −7.9 0.0
AVERAGE −10.3 −9.8 0.5

Table 4.2: BD bit rate results for N = 4 comparing the performance using the optimal
operating point and the QP-dependent µ rule of Eq. 4.2.

4.1.4 Analysis of limiting the maximum number of iterations

In Fig. 4.11, the impact of limiting the maximum number of ISTA iterations is shown

on the basis of two exemplary sequences, BlowingBubbles at 416×240 resolution and

BasketballDrill at 832×480 resolution. The curve for a maximum of 500 iterations is

the same as the curve for N = 4 in Figs. 4.2–4.5. It can be seen that limiting the

maximum number of iterations generally moves the higher end point of the regulariza-

tion path (corresponding to a small µ) closer to the HM anchor operating point. This

can be explained by the fact that, because the original HM transform coefficients are

used as a warm start in the iterative optimization algorithm, for higher rate points,

corresponding to a smaller µ, coefficients which are zero in the warm start initializa-

tion have to be recovered, which requires a larger number of iterations than forcing

coefficients to zero, which happens for a larger value of µ. For a maximum of two

iterations, the coding performance is clearly derogated over the whole µ range. For a

maximum of ten, there is some impact on the region corresponding to smaller values

of µ, making the range of acceptable µ values smaller. Using a maximum number of

50 ISTA iterations shows no coding performance losses compared to using a maxi-

mum of 500. Consequently, unless otherwise stated, in the following a maximum of

50 iterations is used.
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Figure 4.11: Rate Distortion results showing the impact of limiting the maximum
number of iterations for two exemplary sequences.
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BD bit rate [%] Gain of
Zero block checking multi frame

Sequence off single frame multi frame zero checking
BasketballDrill −15.3 −11.8 −16.0 −0.7

Class C BQMall −9.5 −6.1 −10.5 −1.0
(832×480) PartyScene −11.6 −6.1 −12.5 −0.9

RaceHorses −6.4 −3.9 −7.0 −0.6
BasketballPass −7.9 −3.9 −8.8 −0.9

Class D BlowingBubbles −9.6 −5.0 −11.2 −1.6
(416×240) BQSquare −10.3 −5.0 −11.4 −1.1

RaceHorses −7.9 −3.1 −8.8 −0.9
AVERAGE −9.8 −5.6 −10.8 −1.0

Table 4.3: BD bit rate results for N = 4 comparing no special treatment of all-zero
blocks (“off”) as well as a single and multi frame variant.

4.1.5 Special consideration of all-zero blocks

The video coding standard H.265/HEVC supports very efficient signaling of coding

units (CUs) using motion-compensated prediction where all the transform coefficients

are equal to zero. This is done by the usage of one of the two syntax elements

cu skip flag or rqt root cbf. Both are flags, i.e. they can only take the value zero

or one. The first syntax element, cu skip flag, equal to one specifies that the CU

is encoded in SKIP mode, i.e. neither motion vectors nor residual signal transform

coefficients are transmitted. The motion parameters are derived from so-called block

merging, which means that the motion data of a selected merge candidate are reused

for the current CU. The list of merge candidates consists of prediction parameters

from spatially neighboring or temporally co-located blocks which have been previously

transmitted in the bitstream. The other syntax element, rqt root cbf, is only present

when the SKIP mode is not used. If it is encoded as equal to zero, it specifies that

all the transform coefficients for the current CU are zero. With the help of these two

syntax elements, it is possible to set up to 6144 transform coefficients (4096 luma

plus two times 1024 chroma), in the case of a 64×64 CU, to zero at the cost of very

little bit rate, since only a single flag has to be transmitted. This is not captured in

the multi-frame transform coefficient optimization problem 3.18, where it is assumed

that each transform coefficient contributes individually to the resulting total bit rate.

Due to the described highly efficient all-zero handling, changing one single transform

coefficient from zero to one in a previously all-zero CU will lead to a higher bit rate

increase than incrementing an already non-zero coefficient by one in absolute value.
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The increase of the `1-norm, which serves as an approximation of the bit rate in

Eq. 3.18, however, will be the same in both cases.

In this section, it is shown how the efficient treatment of all-zero blocks in H.265/

HEVC can also be taken into account for the multi-frame transform coefficient op-

timization. Three variants are compared for the Class C (832×480) and Class D

(416×240) sequences in Tab. 4.3 using the Bjøntegaard delta bit rate (BD bit rate) as

proposed in [Bjø01], where a negative value shows a gain in coding performance. For

the multi-frame optimization, N = 4 frames are considered jointly. The first variant,

denoted in the table as “off,” refers to the case where no special handling is performed

and the transform coefficients as obtained from the optimization are directly used for

the HEVC bitstream. Note that this is the same as the column showing the perfor-

mance of applying the QP-dependent µ rule in Tab. 4.2. Its coding performance can

be viewed as a kind of reference configuration in the following. In the second variant,

denoted as “single frame,” two rate distortion (RD) costs are determined for each CU,

namely the costs resulting from

• using the transform coefficients from the optimization, and

• setting all the transform coefficients of the CU to zero.

For x ∈ {opt, zero}, corresponding to encoding the optimized transform coefficients or

an all-zero CU, the RD cost Jx,single can be derived from the Lagrangian multiplier λ,

the number of bits Rx and the distortion in the current frame DcurrentCU,x as follows:

Jopt,single = λ ·Ropt +DcurrentCU,opt (4.3)

Jzero,single = λ ·Rzero +DcurrentCU,zero (4.4)

If Jzero,single < Jopt,single, the CU is encoded as all-zero. Note that here, as in the rate

distortion optimization of the HM encoder, the actual bit rate and distortion are used,

not the approximations from Eq. 3.18. Further note that only the distortion of the

current CU is considered, and therefore the impact on subsequent frames is neglected.

While there is still an average gain of 5.6 % BD bit rate over the HM anchor configu-

ration, compared to the “off” configuration, there is a significant loss. Since the only

difference to the “off” configuration is that in the “single frame” configuration some

CUs are set to zero, it can be concluded that by this means transform coefficients

which would otherwise benefit subsequent frames are dropped, because the “invest-
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ment” to encode those coefficients does not pay off from the perspective of a single

frame.

As a consequence, the impact on subsequent frames has also to be considered in the

computation of the RD cost for deciding whether a CU is to be set equal to zero. This

is done by including an additional distortion term which reflects the distortion that

occurs in the subsequent N − 1 frames under consideration. Similarly as above, for

x ∈ {opt, zero}, corresponding to encoding the optimized transform coefficients or an

all-zero CU, the RD cost Jx,multi can be derived from the Lagrangian multiplier λ, the

number of bits Rx, the distortion in the current frame DcurrentCU,x, and the distortion

in the subsequent frames DsubsequentFrames,x:

Jopt,multi = λ ·Ropt +DcurrentCU,opt +DsubsequentFrames,opt (4.5)

Jzero,multi = λ ·Rzero +DcurrentCU,zero +DsubsequentFrames,zero (4.6)

Based on this, two related RD costs can be derived as

Ĵopt,multi = λ ·Ropt +DcurrentCU,opt (4.7)

Ĵzero,single = λ ·Rzero +DcurrentCU,zero +DsubsequentFrames,zero −DsubsequentFrames,opt︸ ︷︷ ︸
∆DsubsequentFrames,zero

(4.8)

where it holds that

Jopt,multi < Jzero,multi ⇔ Ĵopt,multi < Ĵzero,multi. (4.9)

Here, Ĵopt,multi in Eq. 4.7 is equal to the RD cost for the single frame case Jopt,single, i.e.

without consideration of subsequent frame dependencies, and ∆DsubsequentFrames,zero

is a distortion difference which gives the amount by which the distortion in the subse-

quent frames is increased by encoding the current CU as all-zero instead of using the

optimized transform coefficients.

Ĵopt,multi = Jopt,single (4.10)

Ĵzero,single = Jzero,single + ∆DsubsequentFrames,zero (4.11)

Putting it all together, if the distortion difference ∆DsubsequentFrames,zero is added to

the single frame RD cost Jzero,single, the impact on subsequent frames is considered in
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4.1 Investigation of the optimization algorithm parameters

BD bit rate [%]
Sequence Fixed prediction params. Sliding window based
BasketballDrill −4.9 −9.2

Class C BQMall −0.8 −3.4
(832×480) PartyScene −4.4 −6.9

RaceHorses −1.7 −5.3
BasketballPass 0.4 −2.9

Class D BlowingBubbles −2.3 −5.9
(416×240) BQSquare −3.9 −6.2

RaceHorses −2.2 −6.8
AVERAGE −2.5 −5.8

Table 4.4: BD bit rate results for N = 3 comparing the performance using fixed and
sliding window based prediction parameters.

the decision between using the optimized coefficients or encoding an all-zero CU.

Note that ∆DsubsequentFrames,zero is a value which has to be individually computed

for each CU. For that purpose, it is assumed that all other CUs are encoded using

the optimized transform coefficients (ceteris paribus assumption), and the resulting

distortion for the subsequent frames is determined, once using the optimized coeffi-

cients and once using an all-zero block for the current CU. The difference between

the latter and the former gives the value of ∆DsubsequentFrames,zero. The results for us-

ing this modified RD costs, which incorporate the impact on subsequent frames, are

shown in the column denoted as “multi frame” in Tab. 4.3. The last column shows

the difference between the “multi frame” and the “off” variant. It can be seen that

this leads to a moderate, but consistent gain of about 1 % BD bit rate over directly

using the transform coefficients which result from solving the optimization problem

in Eq. 3.18.

4.1.6 Impact of using fixed prediction parameters

In the algorithm as described in Sec. 4.1.1, the prediction parameters for all but the

first two frames (i.e., the initial I frame and the first P frame) are determined multiple

times. In particular, the prediction parameters for the first P frame are determined

one time, for the second P frame two times etc., and starting from the Nth P frame,

for all subsequent P frames N times. Note that this includes all steps of motion

estimation as well as determining the block partitioning for prediction and residual
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coding. Consequently, neglecting the initial N frames, the runtime spent therefor is

increased by a factor of N . In this section, the impact of determining the prediction

parameters for all the frames at once in advance is compared to the sliding window

based approach. The results for the first 50 frames of the Class C and Class D

sequences with N = 3 are shown in Tab. 4.4. Note that in both cases the transform

coefficients are determined using a sliding operation, but for the results in the second

column (headed as “Sliding window based”), after the transform coefficients of one

frame have been optimized, the prediction parameters for the subsequent N frames

have been redetermined, whereas for the results in the first column (headed as “Fixed

prediction params.”), the prediction parameters are fixed. While the computational

complexity is smaller using fixed prediction parameters, also are the coding gains. As

shown in Tab. 4.4, employing sliding window based prediction parameter estimation

improves average bit rate savings by more than 3 percentage points.

4.1.7 Comparison of different regularizers

In the multi-frame transform coefficient optimization problem in Eq. 3.18, the `1-

norm term ‖c‖1 can be viewed on the one hand as a replacement for the actual bit

rate, for which there is no closed-form expression. On the other hand, it serves as a

regularization term, such that, depending on the regularization parameter µ, a certain

portion of the transform coefficients is set equal to zero. The `1-norm has the following

advantages:

• It is a convex function, making the whole optimization problem in Eq. 3.18

convex, such that each local optimum is guaranteed to be a global optimum.

• It is sparsity inducing, resulting in a solution vector copt with a large number of

components exactly equal to zero.

• It leads to a very simple operation in the iterative shrinkage/thresholding al-

gorithm (ISTA), namely the so-called soft thresholding operator, where all vec-

tor components which are larger in absolute value than a given threshold are

shrinked by this threshold, and all other components are set to zero.
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However, it also has some disadvantages:

• For larger transform coefficients, the actual bit rate required to encode the co-

efficient in the bitstream, grows logarithmically with the absolute value of the

coefficient, i.e. significantly slower than the `1-norm (see Fig. 2.4, p. 11).

• The `1-norm introduces a bias on the non-zero transform coefficients. This can

easily be exemplified in the scalar case with y, c ∈ R:

copt = arg min
c

(y − c)2 + µ|c| (4.12)

With the soft thresholding operator Sµ
2

as introduced in Sec. 3.4.1, the solution

copt is obtained as:

copt = Sµ
2
(y) =


y − µ

2
if y > µ

2

0 if − µ
2
≤ y ≤ µ

2

y + µ
2

if y < −µ
2

(4.13)

From Eq. 4.13, it can be seen, that for non-zero copt, there is a bias of µ
2

compared

to the least-squares solution copt = y.

Recently, iterative thresholding algorithms for other, possibly non-convex regulariza-

tion functions have been proposed [XCXZ12, GZL+13, VC13, ZMZ+13]. In this sec-

tion, the rate distortion behaviour of the following regularization functions is studied

in comparison to the `1-norm:

• capped `1-norm [Zha08, GZL+13]: This regularization function is defined as

follows, with a model parameter θ > 0:

Rcapped,θ(c) =
K−1∑
i=0

|min{ci, θ}| (4.14)

The difference to the `1-norm is that the impact of all transform coefficients

which are larger than θ in absolute value will be clipped at θ. This leads to a
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Figure 4.12: Illustration of the regularization functions `1-norm, capped `1-norm (with
θ = 0.5), logarithmic sum penalty (with θ = 1), and `2-norm.

reduction of the bias which is imposed on the larger transform coefficients.

• logarithmic sum penalty (LSP) [CWB08, GZL+13]: This regularization function

also has a model parameter θ > 0:

Rlsp,θ(c) =
K−1∑
i=0

log

(
1 +
|ci|
θ

)
(4.15)

For ci ≈ 0, it behaves very similar to the `1-norm, thus also promoting sparsity

in the solution vector. For |ci| � 0, however, it grows much slower, and therefore

also reduces the bias on larger transform coefficients.

• `2-norm: This regularizer is also known in literature under the names Tikhonov

regularization [Tik63] or ridge regression [Hoe62]. It is simply defined as the

sum of the squares of the vector components:

R`2(c) =
K−1∑
i=0

c2
i (4.16)

Using this regularization function for R(c) in Eq. 3.10 corresponds to minimizing

the energy of both the reconstruction error and the transform coefficients.
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An illustration of these three regularization functions together with the `1-norm can

be found in Fig.4.12.

In order to use these regularizers in conjunction with the iterative thresholding algo-

rithm, the corresponding thresholding functions, which are the counterpart to the soft

thresholding operator for the `1-norm case, have to be known. Basically, the solution

to the proximal operator problem in Eq. 3.104, as repeated below, has to be found for

g(x) ∈ {Rcapped,θ(x), Rlsp,θ(x), R`2(x)}.

xn+1 = arg min
x

1

2
‖x− un‖2

2 +
µ

αn
g(x) (3.104 revisited)

Since the regularization functions are separable, the following scalar problem is tackled

instead of Eq. 3.104, with x, xn+1, un ∈ R.

xn+1 = arg min
x

1

2
(x− un)2 +

µ

αn
g(x)︸ ︷︷ ︸

h(x)

(4.17)

According to [GZL+13], for g(x) = Rcapped,θ(x) = min(θ, |x|), the solution to Eq. 4.17

is

xn+1,capped =

wcapped,1 if h(wcapped,1) ≤ h(wcapped,2)

wcapped,2 otherwise
(4.18)

with

wcapped,1 = sgn(un) max(θ, |un|) (4.19)

wcapped,2 = sgn(un) min(θ,max(0, |un| −
µ

αn
)), (4.20)

which is obtained from splitting Eq. 4.17 with g(x) = min(θ, |x|) into the two prob-

lems:

wcapped,1 = arg min
x

1

2
(x− un)2 +

µ

αn
θ s.t. |x| ≥ θ (4.21)

wcapped,2 = arg min
x

1

2
(x− un)2 +

µ

αn
|w| s.t. |x| ≤ θ. (4.22)

99



4 Application of the optimization method to H.265/HEVC

For g(x) = Rlsp,θ(x) = log (1 + |x|/θ), the following solution is presented in [GZL+13]:

xn+1,lsp = sgn(un)wlsp (4.23)

with

wlsp = arg min
x

1

2
(x− |un|)2 +

µ

αn
log
(

1 +
x

θ

)
s.t. x ≥ 0. (4.24)

It is stated in [GZL+13], “that the objective function above [Eq. 4.24] is differentiable

in the interval [0,+∞) and the minimum of the above problem is either a stationary

point (the first derivative is zero) or an endpoint of the feasible region,” leading to

wlsp = arg min
x∈C

1

2
(x− |un|)2 +

µ

αn
log
(

1 +
x

θ

)
, (4.25)

where C is a set composed of at most three elements.

If d := α2
n(|un| − θ)2 − 4αn(µ− αn|un|θ) ≥ 0,

C =

{
0,

(
αn(|un| − θ) +

√
d

2αn

)
+

,

(
αn(|un| − θ)−

√
d

2αn

)
+

}
, (4.26)

where (x)+ = max(x, 0), otherwise

C = {0} . (4.27)

Consequently, for the LSP regularizer, Eq. 4.17 has to be evaluated for up to three

candidates, and the one resulting in the smallest value is chosen.

Note that both the capped `1-norm and the LSP are non-convex regularization func-

tions. But, as shown in [GZL+13], they can each be written as the difference of two

convex functions:

Rcapped,θ(x) = min(θ, |x|) = |x| −max(|x| − θ, 0) (4.28)

Rlsp,θ(x) = log (1 + |x|/θ) = |x| − (|x| − log (1 + |x|/θ)) (4.29)

Convergence analysis is also given in [GZL+13].

For the `2-norm, or Tikhonov regularization, the solution to the optimization problem

copt,`2 = arg min
c
‖ỹ −A c‖2

2 + µ ‖c‖2
2 (4.30)
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can be explicitly obtained as follows (see [DDDM04, p. 1415, Eq. 1.1]):

copt,`2 = (ATA + µI)−1AT ỹ. (4.31)

This is different to the other regularization functions discussed so far, where the

optimal solution can only be obtained numerically. The problem with Eq. 4.31 in the

context of multi-frame transform coefficient optimization is, however, that it requires

the computation of the inverse of a very large matrix, which may be infeasible in

practice. Therefore, also for the `2-norm an iterative method is employed.

For g(x) = R`2(x) = x2 in Eq. 4.17, the following solution can easily be derived (see

[DDDM04, p. 1426, Eq. 2.3]):

xn+1,`2 =
un

1 + 2 µ
αn

(4.32)

In the following, the three mentioned regularization functions are evaluated using

the sequences BlowingBubbles at 416×240 resolution and BasketballDrill at 832×480

resolution, where N = 4 consecutive frames have been considered jointly in the op-

timization step. The multi-frame all-zero block checking as described in Sec. 4.1.5 is

not used. For the capped `1-norm, θ = 0.5 has been used, such that all transform

coefficients which will not be rounded to zero, contribute equally to the regularization

term. For the logarithmic sum penalty (LSP), θ = 1 has been used, such that the

slope in the origin is the same as for the `1-norm. The rate distortion plots show-

ing the regularization paths are depicted in Fig. 4.13. The curves corresponding to

a regularization using `1-norm, capped `1-norm, LSP, and `2-norm are denoted as

“l1,” “capped l1,” “log,” and “l2” in the diagrams. The curve denoted as “l1 debias”

shows the behaviour where the ordinary `1-norm regularizer is used, but in addition

a so-called debiasing step [WNF09, pp. 2484] is performed on the resulting transform

coefficients. By debiasing it is meant, that those coefficients which will be rounded to

zero (i.e., those ci with |ci| < 0.5), are fixed at zero, whereas for the remaining coeffi-

cients, the optimization problem is solved again without the regularization term. This

results in a coefficient vector having the same support as the `1-regularized solution,

but without the bias on the non-zero coefficients.

Again, from Fig. 4.13 it can be seen that, except for the debiasing case, the regu-

larization paths share common starting and end points, corresponding to the all-zero
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Figure 4.13: Rate Distortion results showing the regularization path for different reg-
ularization functions.
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solution and the (unregularized) least squares solution. Furthermore, the variant using

`2-norm regularization is significantly inferior to the other regularizers over the whole

µ range. The remaining variants (`1, capped `1, debiased `1, and LSP) behave very

similar in the region where the regularization path curve lies above the anchor curve.

In this region, the ordinary `1-regularization is always among the two best performing

variants, with the logarithmic regularization marginally ahead in some cases. In the

lower end region of the regularization path, corresponding to higher µ values, all of

capped `1, debiased `1, and LSP clearly outperform the `1-regularization. However,

this is practically irrelevant, since it only occurs in a region where there is, even for the

best performing variant, a significant loss compared to the HM anchor curve, which

is caused by a mismatch of µ and QP value.

Summarizing, it has empirically been shown that in the practically relevant region,

where a coding gain over HM can be observed, the ordinary `1-regularization method is

always among the best performing variants. With the soft thresholding operator, the

`1-regularization also leads to a very simple solution of the proximal operator problem

Eq. 3.104. Consequently, there is no evidence, that using one of the other discussed

regularization methods will show any benefit in a practical coding scenario, where the

regularization parameter µ is matched to the quantization parameter (QP).

4.1.8 Analysis of the accuracy of the linear system model

In this section, the accuracy of the linear system model in Eq. 3.9 is studied. In

particular, it is evaluated how well the distortion as obtained from the linear model

corresponds to the actual distortion. The actual distortion is the distortion which

results from generating a H.265/HEVC bitstream using the optimized transform co-

efficient vector copt and decoding that bitstream. In order to be able to compare the

model distortion with the actual distortion using the same coefficient vector copt, for

all the experiments conducted in this section, both the sign data hiding [WYH+12]

coding tool of H.265/HEVC and the all-zero block checking as introduced in Sec. 4.1.5

are disabled. The Class C (832×480) and Class D (416×240) sequences are encoded

using HM for the reference and using the multi-frame optimization with a group of

N = 4 frames. In Figs. 4.14 and 4.15, the estimated and the actual distortion for two

exemplary groups of four frames are shown. The curve denoted as “actual PSNR”

shows the distortion of the decoded video. As discussed in Sec. 4.1.1 and shown in
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Figure 4.14: Estimated distortion from the linear signal model compared to the actual
distortion from the decoded video.
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Figure 4.15: Estimated distortion from the linear signal model compared to the actual
distortion from the decoded video.
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Fig. 4.1, the PSNR steadily decreases from the first to last of the four frames. The

red curve denoted as “estimated PSNR (fractional coeffs)” shows the distortion which

results from using the real-valued transform coefficient vector copt, as obtained from

solving the optimization problem in Eq. 3.18, and reconstructing using the linear sig-

nal model. It can be seen that by using the real-valued transform coefficients, the

actual PSNR is overestimated by 2–3 dB. Moreover, the fluctuation of the PSNR over

the four frames is also wrongly assessed. In both examples, a PSNR increase for the

second and the third frame under consideration is assumed, followed by a drop to

about the same PSNR level as the first frame.

In the following, it is discovered, what leads to this huge deviation of the estimated

distortion (based on the real-valued coefficients) from the actual distortion (based

on integer-valued coefficients). For that investigation, five PSNR curves are derived

from the real-valued transform coefficient vector copt, where all coefficients which are

smaller in absolute value than a threshold value 0.1, . . . , 0.5 have been set to zero. It

can be seen that the curve where all vector components copt,i with |copt,i| < 0.5 have

been set to zero comes very close to the actual PSNR curve. Using a threshold of 0.4,

there is still a significant gap. Note that the other vector components, which have

not been set to zero, are still real-valued for these five curves. Therefore, it can be

concluded, that particularly those real-valued coefficients which are smaller in absolute

value than 0.5 contribute to the huge overestimation of the distortion, whereas the

fractional part of the larger coefficients does not cause much harm. Finally, the curve

denoted as “estimated PSNR (integer coeffs)” shows the distortion which results from

using the transform coefficients where each vector component copt,i has been rounded

to its nearest integer (which includes setting all copt,i with |copt,i| < 0.5 to zero). These

coefficients are the same as used for the H.265/HEVC bitstreams, and therefore for

the “actual PSNR” curve. It can be seen that the difference between the PSNR

which is estimated using the linear signal model based on integer-valued coefficients

and the actual PSNR is very small. This shows, that the linear model itself proves

to be accurate, despite the negligence of non-linear effects (such as loop filtering,

clipping and rounding of the reconstructed signal samples). The misassesment of

the resulting PSNR is solely caused by the relaxation of the optimization problem

to real-valued solutions. Since fractional coefficients which are greater than or equal

to 0.5 in absolute value do not contribute much to this misassesment, it would be

desirable to restrict the solution of the optimization problem Eq. 3.18, such that

copt,i ∈ R \ {x ∈ R | 0 < |x| < 0.5}. Introducing such a constraint, however, is

not a trivial task, since this would basically imply imposing an integrality constraint
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for a certain range of transform coefficient values. Furthermore, as shown by the

experimental results presented so far (e.g., Figs. 4.2–4.5), an optimization based on

the rough distortion measure calculated from the fractional coefficients still achieves

coding gains for the actual distortion based on integer-valued coefficients.

4.1.9 Determination of an integer-valued solution

As has been shown in the previous section, the transform coefficient vector copt with

real-valued components will lead to an overestimation of the resulting PSNR, which is

caused by those coefficients copt,i with |copt,i| < 0.5. In [SSW05], Schumitsch proposes

an iterative method for obtaining an integer-valued solution. In this section, this

method is studied in the context of H.265/HEVC multi-frame optimization.

The basic idea behind Schumitsch’s method is to split the rounding of the transform

coefficient vector copt into several iterations, and to round in each iteration only a

subset of the transform coefficients to its closest integer value. Then, a new original

signal for the next iteration is computed, such that the effect of the just rounded coef-

ficients is considered. The optimization problem is then solved again for the remaining

transform coefficients. This continues iteratively, until all transform coefficients have

been rounded. Note, that this is similar in spirit to the nulling and cancelling method

proposed in [HV05] for the solution of integer least-squares problems.

More precisely, Schumitsch proposes to round in the first iteration those coefficients

copt,i with |copt,i| < 0.5, in the second iteration those copt,i with |copt,i| < 1.5, and so on.

Generally, in iteration n with n ∈ {0, 1, 2 . . .}, those coefficients copt,i with |copt,i| <
n+ 0.5 will be rounded to their closest integer. Furthermore, the regularization term

is also modified such that transform coefficients which are smaller in absolute value

than n do not contribute, i.e.:

R(c) =
K−1∑
i=0

max(0, |ci| − n) (4.33)

Finally, the regularization parameter µ is also modified after the first iteration, i.e.

the regularization parameter µ1 which is used from iteration n = 1 on, is chosen as

µ1 = µ0
4

, where µ0 is the regularization parameter of the first iteration (n = 0).
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Figure 4.16: Rate Distortion results showing the regularization path using the iterative
rounding method.
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This method has also been implemented using the iterative shrinkage/thresholding

algorithm (ISTA) framework. For that purpose, the thresholding function which cor-

responds to the regularization function from Eq. 4.33 has to be derived. More for-

mally, the solution to the following proximal operator problem has to be found for

g(x) = max(0, |x| − n):

xn+1 = arg min
x

1

2
(x− un)2 +

µ

αn
g(x)︸ ︷︷ ︸

h(x)

(4.17 revisited)

= arg min
x

1

2
(x− un)2 +

µ

αn
max(0, |x| − n) (4.34)

Note that this problem is similar to the proximal operator problem for the capped

`1-norm regularization (Eqs. 4.18–4.22). Accordingly, the solution can be found as

xn+1 =

w1 if h(w1) ≤ h(w2)

w2 otherwise
(4.35)

with

w1 = sgn(un) min(n, |un|) (4.36)

w2 = sgn(un) max(n, |un| −
µ

αn
), (4.37)

which is obtained from splitting Eq. 4.34 into the two problems:

w1 = arg min
x

1

2
(x− un)2 s.t. |x| ≤ n (4.38)

w2 = arg min
x

1

2
(x− un)2 +

µ

αn
(|x| − n) s.t. |x| ≥ n. (4.39)

In Fig. 4.16, the regularization path of the iterative rounding method as proposed by

Schumitsch is compared to the variant, where each real-valued transform coefficient

is directly rounded to its closest integer value. Again, N = 4 frames have been jointly

considered in the multi-frame optimization. It can be seen that while the iterative

rounding method (which includes using the modified regularization term and the µ

parameter variation), achieves some gains at the lower end of each regularization path

(correcting too large values of µ), in the relevant region, where there is a gain over

the HM anchor, the coding performance of the two methods is very similar. Note that

for this experiment, again the sign data hiding (SDH) coding tool of H.265/HEVC
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4 Application of the optimization method to H.265/HEVC

has been disabled in all the three variants (HM anchor, direct rounding, and iterative

rounding), because otherwise the integer-valued solution as obtained from the iterative

rounding method might not be feasible due to a violation of the parity rule which is

imposed when SDH is enabled. According to these results, which are representative

for the whole test set, there is no benefit of using the iterative rounding method. More

than that, in conjunction with SDH, a real-valued solution is actually helpful, since

by the fractional part it can be decided which transform coefficient is to be modified,

if the rounded solution does not match the parity rule.

4.1.10 Sign Data Hiding and multi-frame optimization

In this section, the effect of using the sign data hiding (SDH) tool of H.265/HEVC

in conjunction with multi-frame transform coefficient optimization is studied. The

corresponding results are shown in Tab. 4.5. In the column denoted as “A,” the coding

gain of the multi-frame transform coefficient optimization is shown, when SDH is

enabled for the HM reference configuration, but switched off for multi-frame optimized

variant. A group of N = 4 frames is considered jointly in the optimization, and the

µ rule according to Eq. 4.2 is used. The column denoted as “B” shows the gain, when

SDH is used in both the anchor and the optimized variant. The column labeled as

“C” shows the difference in terms of BD bit rate between the multi-frame optimized

variant without and with SDH. Note that this is not necessarily the same as the

difference between the corresponding values for “A” and “B.” The column denoted

as “D,” finally, shows the coding gain for using SDH with the anchor (i.e., the BD bit

rate between an anchor configuration without and with SDH enabled). The average

gain of using SDH is 1.0 % BD bit rate for the anchor (using an IPPP. . . prediction

structure). In conjunction with multi-frame transform coefficient optimization, this

drops to 0.4 %. This is the case because for the anchor and for the multi-frame

optimization scenario, the adaptation of the coefficients in order to fulfill the SDH

parity rule is done in different ways. In the anchor configuration, this adaptation is

done by means of RDOQ, i.e. for each coefficient the effect on the actual bit rate and

distortion are determined, and the coefficient with the smallest RD cost increment

is modified. In the multi-frame optimization scenario, the adaptation is based on

the fractional part, such that the deviation from the real-valued optimized transform

coefficients is minimized. This results in a less accurate RD decision. But still, the

best overall coding performance is achieved when SDH and multi-frame optimization
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4.1 Investigation of the optimization algorithm parameters

BD bit rate [%]
Sequence A B C D

Class C
(832×480)

BasketballDrill −15.7 −16.0 −0.5 −1.0
BQMall −10.4 −10.5 −0.1 −0.8
PartyScene −12.0 −12.5 −0.5 −1.3
RaceHorses −6.6 −7.0 −0.4 −1.0

Class D
(416×240)

BasketballPass −8.3 −8.8 −0.5 −1.1
BlowingBubbles −10.9 −11.2 −0.4 −1.1
BQSquare −11.0 −11.4 −0.4 −1.2
RaceHorses −8.5 −8.8 −0.3 −0.8
AVERAGE −10.4 −10.8 −0.4 −1.0

Table 4.5: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) for
sign data hiding (SDH), where A: gain of multi-frame optimization without
SDH; B: gain of multi-frame optimization with SDH; C: BD bit rate
between A and B; D: gain of SDH for the anchor configuration

BD bit rate [%]
Sequence 64×64+0 64×64+64 960×576+0 960×576+64 no window
BasketballDrive −2.97 −5.40 −5.37 −5.45 −5.43
BQTerrace −12.51 −12.84 −12.79 −12.89 −12.85
Cactus −4.12 −4.56 −4.70 −4.59 −4.60
Kimono −2.13 −3.45 −3.51 −3.63 −3.84
ParkScene −7.53 −8.01 −8.04 −8.06 −8.02
AVERAGE −5.85 −6.85 −6.88 −6.92 −6.95

Table 4.6: Rate Distortion comparison of various optimization window sizes. In the
headings, n × n + k means a (n + 2k) × (n + 2k) window with an overlap
of k samples.

are employed jointly.

4.1.11 Sliding window method for problem size reduction

For high resolution video sequences, the memory requirements for storing the mo-

tion matrix M can be too high for practical implementation. For example, for Full-

HD video at 1920×1080 resolution with N = 4 frames in the optimization, there

will be 1920 · 1080 · 4 ≈ 8.3 · 106 transform coefficients. Since each inter-predicted

sample may directly depend on up to 128 reference samples1, there can be up to

1920 × 1080 × 3 × 128 ≈ 8 × 108 non-zero entries in M. Note that for N = 4 only

18× 8 = 64 because of the separable 8 tap FIR filter, 2× 64 = 128 because of bi-prediction
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4 Application of the optimization method to H.265/HEVC

Figure 4.17: Sliding window method with optimization window (surrounded by thick
lines), blocks under current optimization (light gray area) and already
optimized blocks (dark gray area).

three frames have to be considered here, because the prediction signal of the first

frame under consideration is assumed to be fixed and therefore not captured by the

matrix M.

In this section, a simple approach is proposed that enables application of the multi-

frame transform coefficient optimization method to higher resolution video sequences

and/or scenarios involving a large number N of frames considered in the optimiza-

tion step (as published in [WSMW07]). For that purpose, the original optimization

problem, which is too large to be solved directly, is split into a series of smaller sized

sub-problems which are solved successively. This is done by usage of a spatial sliding

window approach, such that each sub-problem covers a certain region of the frames

to be optimized. The regions of the individual sub-problems are overlapping, as il-

lustrated in Fig. 4.17. This is done in order to consider during the optimization of a

certain region the impact of the neighboring transform coefficients. In Fig. 4.17, the

first six steps of the sliding window method are shown. Each square block corresponds

to a coding tree block (CTB) in H.265/HEVC. The region which is surrounded by

thick lines corresponds to the optimization window. The blocks which will actually be

optimized in the current step are shown in light gray, whereas the already optimized

blocks of the previous steps are shown in dark gray. The transform coefficient levels of
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4.2 Multi-frame optimization in an IPPP. . . prediction structure

the dark gray blocks within the optimization window will also be free variables of the

optimization problem in order to consider the influence of neighboring blocks. The

values which are obtained for these coefficients will, however, be discarded, as they

have already been determined and fixed in a previous sliding window step.

In Tab. 4.6, the BD bit rate results for the first 50 frames of the Class B (1920×1080)

sequences and N = 3 are shown for four different optimization window sizes as well as

the case where no windowing is used. The headings are denoted in the form n×n+k,

which corresponds to a (n + 2k) × (n + 2k) window with an overlap of k samples.

With a CTB size of 64×64 luma samples, the example of Fig. 4.17 would accordingly

be denoted as 128×128+64. The largest average coding gain is observed for the case

with no optimization window. Using a 64×64 optimization window without overlap-

ping results in a diminished coding gain, in particular for the high-motion sequence

BasketballDrive. The behaviour for the remaining cases comes very close to the case

without windowing. In the following, the variant “960×576+64” has been used for the

high resolution sequences, i.e. Class A (2560×1600) and Class B (1920×1080). This

variant has been chosen, because choosing the optimization window too small will

result in a large number of sub-problems to be solved individually, which on the one

hand reduces memory requirements, but on the other hand increases computational

complexity, as the total number of ISTA iterations is higher. Therefore, a trade-off

has to be made, such that the optimization window is chosen neither too small nor

too large.

4.2 Multi-frame optimization in an IPPP. . . prediction

structure

4.2.1 Analysis of the bit rate savings over the number of frames

In this section, the bit rate savings resulting from the multi-frame transform coefficient

optimization are studied in more detail. For the measurement of the bit rate savings,

the Bjøntegaard delta bit rate (BD bit rate) as proposed in [Bjø01] is used. The

regularization parameter µ is chosen according to Eq. 4.2, the multi-frame all-zero

block checking as described in Sec. 4.1.5 is employed. The number N of frames which
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4 Application of the optimization method to H.265/HEVC

are optimized jointly is varied in the range 2,. . . ,6. In Figs. 4.18–4.20, the bit rate

savings over the number of P frames are plotted for the first 300 frames of the Class C

(832×480) and Class D (416×240) sequences. Only the first 300 frames are shown,

because the shortest sequence, RaceHorses, has a duration of 300 frames at both

resolutions. The BD bit rate for a given numbers of P frames n has been obtained

by considering the partial sub-bitstreams consisting of the first n+ 1 frames, for both

the optimized version and the HM anchor. Since the encoding of the first frame is

not changed by the optimization method, all the curves start at zero BD bit rate for

n = 0, indicating identical coding performance. For the next 2–3 frames, there is a

peak, indicating a coding loss corresponding to about 10 % bit rate increase. After

that, the BD bit rate curve is constantly decreasing, showing a recovery from the

initial coding loss. After the first 10–20 frames, the zero line is crossed and, thus, the

break even point is reached. Since the BD bit rate curve is still decreasing, the coding

gain is actually increasing with the number of frames, until about frame 200, after

which there is only very small additional BD bit rate improvement.

In Fig. 4.20 (bottom), the average of the BD bit rates over all the sequences is shown

for N = 2, . . . , 6. It can be seen that a larger value of N leads to both higher bit rate

savings in the end as well as a higher initial coding loss. The number of frames needed

to break even is very little affected by the value of N . The relative improvement in

coding performance that comes with considering one more additional frame in the

multi-frame optimization decreases with the value of N . The step from N = 2 to

N = 3 results in the biggest increase in bit rate savings of about 2.5 percentage points

(pp). A further increment to N = 4 achieves one additional pp. Increasing again to

N = 5 still brings about 0.5 pp, whereas the step from N = 5 to N = 6 shows very

little performance improvement.

While the initial coding loss, which can be observed in all cases, might at first in-

tuitively appear as a failure or undesirable behaviour of the algorithm, it is actually

a condicio sine qua non for a functional multi-frame optimization method. If there

was a consistent gain in terms of BD bit rate already from the first P frame on, then

it would have been possible to achieve this gain also without consideration of the

subsequent N − 1 frames, since the impact on these frames is not included in the BD

bit rate for the first P frame. Consequently, in this case, the observed gain would,

at least partially, result from correcting decisions which are suboptimal even from a

single frame perspective. The initial coding loss therefore can be interpreted as an

investment, which pays off after about 10–20 frames on average.
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4.2 Multi-frame optimization in an IPPP. . . prediction structure

The coding experiments have been repeated for the Class B sequences (1920×1080

resolution) and N = 2, 3, 4. In order to reduce the memory requirements, a spatial

sliding window of 960×576 samples with an overlap of 64 samples has been used.

Only the first 240 frames are shown, because the two shortest sequences, Kimono and

ParkScene, only have a duration of 240 frames. The resulting curves are shown in

Figs. 4.21–4.22. It can be seen that the general behaviour is very similar to that of the

Class C and Class D sequences. Note that the Kimono sequence has a scene change

at frame 140, which explains the kink in this curve.

The corresponding curves for the Class A sequences (2560×1600 resolution) andN = 4

are shown in Fig. 4.23. The same optimization window parameters as for the Class B

sequences have been used. For the NebutaFestival sequence, there is a coding efficiency

loss of about 3 %, whereas the maximum coding gain of 18-20 % can be observed for

the SteamLocomotiveTrain sequence. The poor performance for the NebutaFestival

sequence can be explained from Tab. 4.7 (p. 122), where the percentage of the samples

which are intra-predicted is shown for the individual sequences and QP values. The

numbers are derived from the optimized bitstreams for N = 4 and refer only to the

P frames, the initial I frame is not counted. The rightmost column denoted as “AVG”

shows the average number for each sequence, across the four QP values. It can be

seen that the NebutaFestival sequence has by far the largest portion of intra-predicted

samples within the P frames, with more than half of the samples for QP = 22. A

large portion of intra-predicted samples is problematic for the multi-frame transform

coefficient optimization method as proposed in this thesis for two reasons:

• First, since the intra-predicted blocks are not considered in the optimization,

as explained in Sec. 4.1.1, the optimization will only affect a smaller number of

transform coefficients.

• Second, since the intra-predicted blocks break the temporal prediction chain,

there is also less to be gained for those coefficients which are included in the

optimization, because there will be a smaller number of samples referring to

these.
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Figure 4.18: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D (top: N = 2, bottom: N = 3).
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Figure 4.19: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D (top: N = 4, bottom: N = 5).
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Figure 4.20: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D (top: N = 6, bottom: average
savings for N = 2, . . . , 6).
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Figure 4.21: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class B (top: N = 2, bottom: N = 3).
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Figure 4.22: Class B bit rate savings in terms of Bjøntegaard delta bit rate (BD bit
rate) over the number of frames for Class B (top: N = 4, bottom: average
savings for N = 2, 3, 4).

120



4.2 Multi-frame optimization in an IPPP. . . prediction structure

-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12

 0  50  100  150

B
D

 b
it
 r

a
te

 [
%

]

# of P frames

N=4

NebutaFestival_2560x1600
PeopleOnStreet_2560x1600
SteamLocomotiveTrain_2560x1600
Traffic_2560x1600
AVERAGE

Figure 4.23: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class A (N = 4).
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Ratio of intra-predicted samples in P frames [%]
Sequence QP=22 QP=27 QP=32 QP=37 AVG

Class A
(2560×1600)

NebutaFestival 50.91 41.04 25.69 4.57 30.55
PeopleOnStreet 14.28 9.09 6.53 4.76 8.66
SteamLoco. . . 34.71 15.97 12.90 9.65 18.31
Traffic 0.82 0.52 0.36 0.26 0.49

Class B
(1920×1080)

BasketballDrive 13.10 8.12 6.87 6.00 8.52
BQTerrace 23.53 0.49 0.27 0.17 6.12
Cactus 7.21 3.57 3.31 3.25 4.33
Kimono 4.79 3.04 2.42 2.06 3.08
ParkScene 2.24 1.72 1.32 1.03 1.58

Class C
(832×480)

BasketballDrill 7.39 6.22 5.12 4.19 5.73
BQMall 2.61 2.11 1.78 1.50 2.00
PartyScene 4.91 4.22 3.40 2.63 3.79
RaceHorses 16.55 12.24 10.05 8.07 11.73

Class D
(416×240)

BasketballPass 10.03 8.59 7.03 5.52 7.79
BlowingBubbles 1.95 1.78 1.58 1.34 1.66
BQSquare 0.05 0.03 0.03 0.04 0.04
RaceHorses 9.78 8.14 6.42 4.53 7.22
AVERAGE 12.05 7.46 5.59 3.50 7.15

Table 4.7: Ratio of intra-predicted samples (excluding the initial I frame).

4.2.2 Overall bit rate savings

The overall bit rate savings in terms of the Bjøntegaard delta bit rate (BD bit rate)

are shown in Tab. 4.8. The results for the Class C and D sequences and N = 4 are the

same as presented in the “multi frame” column in Tab. 4.3 and “B” column in Tab. 4.5.

Note that the results refer to the full-length sequences, therefore the values might differ

from the bit rate savings shown in Figs. 4.18–4.23, which show the behaviour for the

initial frames of the sequences. From the Class C and D results, it can be seen that

there is only modest gain, if the number of frames which are considered jointly in the

optimization is increased from N = 4 to N = 5 or N = 6. Therefore, these results

are omitted for the Class A and B sequences. For these high resolution sequences,

a spatial sliding window of 960×576 samples with an overlap region of 64 samples

has been used. The only case where a coding loss is observed, is the NebutaFestival

sequence, which can be attributed to the large fraction of intra-predicted blocks, as

discussed in the previous section. The coding results for the VCEG test set are shown

in Tab. 4.9.
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4 Application of the optimization method to H.265/HEVC

BD bit rate [%]
Sequence N = 1 N = 2 N = 3 N = 4

VCEG
1920×1080

Crowdrun 6.0 −6.2 −8.9 −9.9
Parkjoy 6.8 −7.1 −9.9 −10.8
Sunflower 0.1 −13.8 −17.9 −20.2
ToysAndCalendar 2.6 −9.5 −13.0 −14.6
AVERAGE 3.9 −9.2 −12.4 −13.9

VCEG
832×480

Flower4 4.7 −5.0 −8.5 −9.9
Keiba3 5.9 −1.7 −3.7 −4.2
Nuts5 8.1 2.6 0.7 −0.6
AVERAGE 6.2 −1.4 −3.8 −4.9

VCEG
352×288

foreman 4.0 −4.8 −7.8 −9.1
MobileAndCalendar 1.7 −13.3 −17.4 −18.8
Paris 1.2 −5.0 −6.6 −7.9
Tempete 3.4 −8.8 −11.8 −12.9
AVERAGE 2.6 −8.0 −10.9 −12.2

Table 4.9: Bit rate savings in terms of BD bit rate for the VCEG test set when using
an IPPP. . . prediction structure.

4.2.3 Complexity evaluation

In order to assess the resulting overall complexity of the described multi-frame opti-

mization method, a series of runtime measurements have been performed. For that

purpose, the first 50 frames of the Class C and Class D test sequences have been

encoded using the HM reference encoder as well as using the described optimization

method with N ∈ {2, 3, 4}. The simulations have been performed on a workstation

computer with 4 GB RAM, CPU type Intel R© Xeon R© X5482, running Ubuntu Linux

version 11.04. For the reference configuration, HM version 10.0 has been used, the

software for the multi-frame optimization is based on that version, with appropri-

ate modifications. The individual simulations have been run successively, with no

other computationally intensive jobs running in parallel. The results are shown in

Tab. 4.10. The values in each row have been obtained as the averages over all the

sequences within the stated class, for a given N and QP . All the values in columns

denoted as “Time” are given in terms of microseconds (µs) per luma sample. In order

to derive these values, the respective runtimes, which have been measured over all the

50 frames, have been divided by the total number of luma samples, i.e. 50×832×480

or 50 × 416 × 240, respectively. With this normalization, runtimes for different res-

olutions can more easily be compared. The values in columns denoted as “Factor”

show the runtime as a fraction of the corresponding reference HM encoding time, e.g.
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4 Application of the optimization method to H.265/HEVC

a factor of two would mean twice the runtime as HM1.

In the first data column, denoted as “Reference HM Encoding Time,” the runtime of

the HM encoder is shown. Note that, since these numbers are independent of N , as

no multi-frame optimization is employed in this case, the same values are shown for

each N ∈ {2, 3, 4}. It can be seen that the runtime per sample is independent of the

total number of samples, or, differently stated, the runtime grows linearly with the

number of samples. The runtime is higher for a smaller QP value, corresponding to a

higher bit rate and a lower distortion. This may be explained by the rate distortion

optimization (RDO) method employed in the operational control of the HM encoder.

The RDO is based on a Lagrangian approach (see Sec. 2.2) and will therefore, for small

QP , generally favor smaller block sizes, which typically require more bits to encode,

but result in a smaller distortion. For QP large, however, larger block sizes will be

chosen, which results in less bits being spent at the cost of a degraded reconstruction

quality. Since motion estimation has to be performed for each block, and HM employs

a fast encoding method using an early termination criterion, such that smaller block

sizes are not considered if no further gain is expected, the resulting runtime is larger

if a smaller QP value is used.

The next two columns, headed as “HM Encoding,” show the runtime spent for HM in

the multi-frame optimization. The significant time increase is caused by the temporal

sliding window approach (as described in Sec. 4.1.1). For a total of F frames, the

following holds:

• the initial I frame will be estimated2 one time,

• the first N − 1 P frames will be estimated 1, 2, . . . , N − 1 times, respectively,

and

• the remaining F −N P frames will be estimated N times.

Consequently, on average, each frame will be estimated 1+1+...+(N−1)+(F−N)·N
F

times.

1Note that the values for the “Factor” columns have also been derived as averages of the individual
HM runtime factors for each sequence, and therefore may not necessarily be equal to the corre-

sponding “Time” value divided by the reference HM encoding time, since
1
N

∑
ai

1
N

∑
bi
6≡ 1

N

∑ ai

bi
, i.e.

the ratio of two averages is not identical to the average of the individual ratios.
2here, estimation referes to encoding using HM in order to determine block partitioning, prediction

parameters etc.
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4.2 Multi-frame optimization in an IPPP. . . prediction structure

For F = 50, the corresponding numbers are 1.96 for N = 2, 2.9 for N = 3, and

3.82 for N = 4. This matches the experimentally obtained values as shown in the

column “HM Encoding Factor.” Note that a speed-up could be expected if for the

frames which are estimated multiple times, a warm start is used, such that the block

partitioning, motion vectors etc. as obtained in the initial estimation stage are only

refined in later stages.

The columns denoted as “Optimization (ISTA)” show the runtime spent for solving

the multi-frame transform coefficient optimization problem Eq. 3.18, p. 30, using

the iterative shrinkage/thresholding algorithm (ISTA). The two columns “Time” and

“Factor” again show the absolute time in µs per luma sample as well as relatively to

the reference HM runtime. The column “Iters” shows the average number of ISTA

iterations until the termination criterion was fulfilled. The column “Time/Iter” shows

the duration of each iteration in µs, again normalized per number of luma samples.

Since the values in this column are almost identical for corresponding cases of the

Class C and Class D sequences, it is found that the duration of each ISTA iteration

grows linearly with the number of samples. Furthermore, the duration is higher for

higher QP values, which is opposed to the behaviour of HM. This is caused by two

effects:

• As stated above, for higher QP values typically larger (transform) block sizes

will be used. Since for simplicity of the implementation, the inverse transform

and its transpose are calculated in matrix form during the optimization, not

exploiting any regular structure using butterfly computation steps etc., the total

number of multiplications and additions is significantly increased for higher QP .

• The portion of intra-predicted blocks, which are not considered in the optimiza-

tion, will also be lower for higher QP values, such that more blocks have to be

processed.

The average runtime per iteration grows with N , which is as expected, since for a

larger number of frames under consideration, both the inverse transform matrix T

and the prediction matrix M (see Sec. 3.1.1 and 3.1.2) will be of larger dimension,

leading to a higher number of multiplications per iteration.

The number of ISTA iterations required for convergence is approximately 10–20 %

larger for the higher resolution Class C sequences, which have four times the number
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4 Application of the optimization method to H.265/HEVC

of samples as the Class D sequences. The number of samples therefore only has modest

impact on the number of iterations. To a greater extent, the number of iterations is

affected by the number N of frames considered jointly in the multi-frame optimization,

indicating that the distance of the optimal transform coefficient vector copt to the warm

start initialization vector, which are the transform coefficients as obtained from HM,

is larger for a greater value of N . This is consistent with the previous observation

that a larger N generally leads to improved rate distortion performance.

In the columns denoted as “MF Zero Check,” the runtime spent for the computation of

the multi-frame distortion differences ∆DsubsequentFrames,zero, as introduced in Eq. 4.8,

p. 94, is shown. The runtime per luma sample grows by a factor of 3.5–4.5 if the num-

ber of samples is increased by a factor of 4, comparing the Class C and Class D results.

In absolute terms, this corresponds to a growth by the square of the total number of

samples. In the computation of the distortion difference, for each Coding Unit (CU),

the impact on the subsequent frames of setting this CU to zero has to be determined.

This requires, for each CU, performing a motion-compensation for all the samples of

the CU as well as for all, directly or indirectly, referring samples in the subsequent

frames. Therefore, if the number of luma samples per frame is increased, not only a

larger number of calculations has to be made, corresponding to a larger number of

CUs, but also each individual computation requires more multiplications, because the

motion-compensated signal is obtained by multiplication by the prediction matrix M.

For large QP values, the runtime spent for this computations is significantly lower,

because in this case, a large portion of CUs will have all-zero transform coefficients

in the solution vector copt, and therefore nothing has to be computed at all, because

the difference of the resulting distortions for two identical transform coefficient vec-

tors is obviously equal to zero. Note that, if time is scarce, the computation of these

distortion differences could also be omitted, resulting in a reduced coding efficiency

by about one percentage point BD bit rate, relative to the HM reference. according

to Tab. 4.3.

In the last two columns, the total runtime in µs per luma sample as well as the relative

time increase with respect to the reference HM encoding runtime is shown. It can

be seen, that for a typical setting of N = 4, with multi-frame zero block checking

enabled, the total runtime is increased by a factor of about 20 relative to HM. If the

multi-frame zero block checking is disabled, the relative runtime increase will be in

the order of 10.
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4.3 Multi-frame optimization in a random access prediction structure

Frame in POC relative no. of
coding (display reference relative referring QP
order order) frames referring frames frames offset

0 0 1, 2, 3, 4, 5, 7, 9 7 0
1 8 -1 1, 2, 4, 5, 6, 7, 8,

9, 10, 11, 12, 14, 16 13 1
2 4 -1, -2 1, 2, 3, 4, 5, 6, 7 7 2
3 2 -1, -2, -3 1, 2, 3 3 3
4 1 -1, -2, -4 0 4
5 3 -2, -3, -4, -5 0 4
6 6 -3, -4, -5 1, 2, 3, 4, 5 5 3
7 5 -1, -5, -6, -7 0 4
8 7 -2, -6, -7 0 4
...

...
...

...
...

...
8n + 1 8n + 8 -3, -7, -8, -16 1, 2, 4, 5, 6, 7, 8,

9, 10, 11, 12, 14, 16 13 1
8n + 2 8n + 4 -1, -4, -9 1, 2, 3, 4, 5, 6, 7 7 2
8n + 3 8n + 2 -1, -2, -5, -10 1, 2, 3 3 3
8n + 4 8n + 1 -1, -2, -11 0 4
8n + 5 8n + 3 -2, -3, -4, -12 0 4
8n + 6 8n + 6 -3, -4, -5 1, 2, 3, 4, 5 5 3
8n + 7 8n + 5 -1, -5, -6, -14 0 4
8n + 8 8n + 7 -2, -6, -7 0 4

Table 4.11: Prediction structure used for the random access scenario.

4.3 Multi-frame optimization in a random access

prediction structure

In this section, the multi-frame optimization method is studied for the random access

(RA) configuration as defined in the common test conditions [JCT13]. For this config-

uration, a rather complicated prediction structure with a group of pictures (GOP) con-

sisting of 8 frames is prescribed. The inter-frame dependencies are shown in Tab. 4.11.

The first column shows the frame number in coding order. The second column shows

the picture order count (POC), which is the frame number in display order. The

third column shows the reference frames which can be used by the respective frame

for motion-compensated prediction. Note that these values are given as offsets in

coding order. Consequently, there are only negative values, since a frame cannot refer

to a future frame in coding order. The fourth column shows those frames which can

refer to the respective frame by motion-compensated prediction. Again, the values are
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4 Application of the optimization method to H.265/HEVC

given as offsets in coding order. Since a frame can only be referred by future frames

in coding order, these values are all positive. The fifth column shows the number of

frames which may directly predict from the given frame. The last column shows the

offset that is applied to the quantizer parameter (QP) for the encoding of this partic-

ular frame. The individual GOPs are separated by horizontal bars. The differences

between the rows in generic format (e.g., frame number 8n+ 1) and those of the first

GOP (e.g., frame number 1) are due to the irregularity which is caused by the initial

I frame, where two frames whose POC numbers are integer multiples of 8 are encoded

consecutively, which only occurs at the beginning of the sequence.

It can be seen, that every second frame in display order (i.e., those frames having

an odd POC number), is a non-reference frame, i.e. they are not used as prediction

reference by other frames. Those frames whose POC numbers are an integer multiple

of 8 can be directly referenced by the largest number of frames. This is reflected by

a modulation of the QP, where those frames which can be referenced by more frames

will be encoded with a smaller QP value. This variation of the QP within a GOP,

which is prescribed in the common test conditions, can be interpreted as a simple

bit allocation method, where the frames at the top of the prediction hierarchy (i.e.,

those frames which are referenced most often) receive a larger share of the total bit-

budget than those at the bottom, which are the non-reference frames, with a smooth

transition for the frames in between these two extreme cases.

In order to allow for random access, an I frame is encoded at a regular interval

for a frame with POC = 8n (where n ∈ {1, 2, . . .}). According to the common

test conditions [JCT13], the length of the interval depends on the frame rate of the

sequence and is chosen such that the temporal distance between two I frames is about

one second. The intra period for a sequence with 24 frames per second (fps) is 24

frames, for 30fps it is 32 frames, for 50fps it is 48 frames, and for 60fps it is 64 frames.

For the I frames, always a QP offset of zero is used. The I frames are encoded as

random access points, which means that no inter-predicted frame which follows the

I frame in display order uses other frames which are transmitted before the I frame

as prediction reference.
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4.3 Multi-frame optimization in a random access prediction structure

4.3.1 Optimization of the frames with POC = 8n

In this section, the multi-frame transform coefficient optimization is applied only to

the frames with POC = 8n. The transform coefficients for all the other frames are de-

termined using the HM reference encoder with rate distortion optimized quantization

(RDOQ) enabled. Again, a temporal sliding window approach is pursued, i.e. after

optimization of the frames with POC = 8n, the coding decisions for the subsequent

frames are redetermined, based on the optimized transform coefficients for the “key

frame” having POC = 8n. Obviously, there is no point in applying the multi-frame

optimization to the frames with POC = 2n+ 1, since these are non-reference frames,

and therefore there are no inter-frame dependencies which could be exploited. Since

the other three reference frames within the GOP8 prediction structure (i.e., those

frames with POC = 8n+ 4, POC = 8n+ 2, and POC = 8n+ 6) differ a lot from the

frames with POC = 8n according to their position in the prediction hierarchy, their

number of referring frames, and their QP offset, the behaviour of the latter is studied

isolated here. For the experiments conducted in this section, the first 129 frames (cor-

responding to 16 complete GOPs) of the Class C and D sequences of JCT-VC test

set are used. Note that, in order to evaluate the performance of the multi-frame opti-

mization over a large number of frames, only the first frame is encoded as an I frame,

and the remaining 128 frames are encoded as B frames. The regularization parameter

µ is chosen according to Eq. 4.2, where the actual QP value of the individual frame

to be optimized is used (i.e., considering the QP offset as shown in Tab. 4.11). In

Figs. 4.24–4.25, the rate distortion plots for two exemplary sequences are presented.

The regularization path as obtained by sweeping the regularization parameter µ as

well as the operating points resulting from applying the µ rule of Eq. 4.2 are shown

together with the HM anchor curve. It can be seen that the µ rule, which has been

derived in an IPPP. . . coding scenario, is also appropriate for the GOP8 case.

In a first experiment, the impact only on the reference frames within the same GOP

is taken into account for the multi-frame optimization, i.e. four frames are considered

jointly: For the optimization of the frame with POC = 8n+8, the impact on the frames

with POC = 8n+4, POC = 8n+2, and POC = 8n+6 is considered. This experiment

is denoted as “1 GOP” in the following, and the fluctuation of the BD bit rate over the

frames is shown in Fig. 4.26 (top). Note that x-axis of the diagrams in Figs. 4.26–4.28

refers to frames in coding order. Again, similar to the results from Sec. 4.2.1, there

is an initial coding loss at the beginning of the sequence. After 16 GOPs (or 129
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Figure 4.24: Rate Distortion curves showing the operation points according to the µ
rule as well as the regularization path for QP 32 and 37.
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frames), there is an average bit rate saving of 0.5 % BD bit rate, with a maximum

of 2.8 % for the BasketballDrill sequence. The worst behaviour is observed for the

RaceHorses sequence at 416×240, where there is a coding loss (bit rate increase) of

1.2 %. Other than in Sec. 4.2.1 (Figs. 4.18–4.23), there is not a steady decrease of the

BD bit rate, corresponding to increasing bit rate savings over the number of frames.

Here, the curves are somewhat “jagged,” with peaks at the frame positions 8n+ 1 in

coding order (which corresponds to POC = 8n+ 8 in display order). This shows that

the multi-frame optimization of these frames leads to transform coefficients which are

sub-optimal from a single frame perspective, but the remaining frames within each

GOP benefit from this “investment,” and the BD bit rate decreases.

In a second experiment, the impact on the non-reference frames is also taken into

account, which means that all the eight frames with POC = 8n + 1, . . . , 8n + 8 are

considered jointly for the optimization of the transform coefficients for the frame with

POC = 8n+ 8. This experiment is denoted as “1 GOP (with non-refs),” and the BD

bit rate results are shown in Fig. 4.26 (bottom). By inclusion of the non-reference

frames into the joint optimization, the average bit rate savings after 129 frames have

been increased from 0.5 % to 1.2 % BD bit rate. The maximum coding gain, which

again occurs for the BasketballDrill sequence, is now 4.1 % (instead of 2.8 % as before).

This improvement in coding performance comes at the cost of increased complexity,

since the number of frames under consideration has been doubled.

In the next experiment, denoted as “2 GOP,” again eight frames are considered jointly

in the multi-frame optimization. But differing from the previous experiment, the

non-reference frames again have been excluded and instead the impact on the three

reference frames of the current and the four reference frames of the subsequent GOP

is taken into account. The results are shown in Fig. 4.27 (top). It can be seen that

the coding performance has been further improved to an average bit rate reduction

of 2.5 % after 129 frames. In comparison with the “1 GOP (with non-refs)” exper-

iment, it can be concluded, that if the total number of frames under consideration

is limited to be not greater than eight, it is favorable to consider the impact on the

reference frames of the subsequent GOP, rather than the non-reference frames of the

current GOP. There are two aspects contributing to this behaviour. First, the non-

reference frames are “dead ends” in the prediction chain, such that spending effort to

improve their reconstruction quality will only affect these frames themselves, whereas

an improved reconstruction quality of a reference frame benefits all their (direct and

indirect) referring frames. Second, consideration of the following GOP provides a
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4.3 Multi-frame optimization in a random access prediction structure

larger look-ahead, which enables to incorporate the impact on a larger number of

referring frames into the optimization problem.

In a variant of the last experiment, denoted as “2 GOP (with non-refs),” the behaviour

is studied if the eight frames of the current GOP and the four reference frames of the

subsequent GOP are considered jointly. Therefore, the optimization problem consists

of totally 12 frames in this case. Note that in terms of computational complexity

this cannot be directly compared to a setting with N = 12 in the IPPP. . . scenario

of Sec. 4.2, since, due to the four non-reference frames, the longest prediction chain

here has a length of 7, whereas for N = 12 and IPPP. . . , it would be 11. As has

been discussed in Sec. 4.1.1 and shown in Sec. 3.4.6, the length of the longest predic-

tion chain has great impact on the overall computational complexity of the iterative

shrinkage/threshold algorithm (ISTA). The results for “2 GOP (with non-refs)” are

shown in Fig. 4.27 (bottom). The average coding performance is only slightly im-

proved compared to the previous experiment (“2 GOP”). From the results shown in

Fig. 4.26 and Fig. 4.27 it can be concluded that, while in a scenario where only a sin-

gle GOP is considered, the overall coding performance can be improved by inclusion

of the non-reference frames into the multi-frame optimization, in a scenario where

the current and the subsequent GOPs are consider, the impact on the non-reference

frames can be neglected.

Finally, in an experiment is denoted as “3 GOP,” see Fig. 4.28 (top), all the reference

frames of the current and the two subsequent GOPs are considered jointly, leading

to a multi-frame optimization problem of 12 frames total, with a longest prediction

chain of 11 frames. Again, the coding performance has been further improved to an

average bit rate reduction of 2.9 % after 129 frames, with a maximum of 5.8 % for

the BasketballDrill sequence and a minimum of 0.0 % for the RaceHorses sequence at

416×240 resolution.

A comparison of the sequence-wise average BD bit rates for all the five discussed

experiments is shown in Fig. 4.28 (bottom). Similar as in Sec. 4.2.1, a larger initial

bit rate increase coincides with a larger overall bit rate reduction at the end. The

experiments denoted as “1 GOP,” “2 GOP,” and “3 GOP” have been repeated for the

Class B (1920×1080) sequences. The corresponding results are shown in Figs. 4.29–

4.30. Qualitatively, the general behaviour is very similar to the one observed for

the Class C and D sequences. Quantitatively, the average values benefit from the

good performance for the BQTerrace sequence, where a bit rate reduction of 8.7 % is
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4 Application of the optimization method to H.265/HEVC

measured after 129 frames for the “3 GOP” case.
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Figure 4.26: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D.
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Figure 4.27: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D.
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Figure 4.28: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D.
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Figure 4.29: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class B.
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Figure 4.30: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class B.
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4.3.2 Optimization of the frames with POC = 8n + 4

The experiments conducted for this section are based on the variant “3 GOP” of the

previous section, but additionally the frames with POC = 8n + 4 are also included

into the multi-frame optimization. The experimental results are shown as average

values over the sequences in Fig. 4.31. Three different configurations are compared

with “3 GOP.”

In “3 GOP + local,” for the optimization of the frames with POC = 8n+4, the impact

on all the remaining (reference and non-reference) frames within the current GOP is

considered, leading to a total of 7 frames. In “3 GOP + local (same µ),” the same

frames have been considered in the optimization, but the regularization parameter µ

as used for the frames with POC = 8n has also been used for the optimization of the

frames with POC = 8n+4, whereas in all the other cases discussed in this section, the

value of µ is chosen based on the individual frame QP. As can be seen, selecting µ based

on the individual frame QP leads to better coding results. In “3 GOP + 2 GOP,” the

impact on the reference frames of the current and the direct subsequent GOP, and in

“3 GOP + 3 GOP,” the impact on the reference frames of the current and the two

subsequent GOPs is considered, leading to a total of 7 and 11 frames, respectively.

In all cases, the coding performance is inferior to the “3 GOP” configuration of the

previous section. As discussed before, the multi-frame optimization generally causes

an initial overhead in terms of coding efficiency, which pays off after a certain number

of frames. For the frames with POC = 8n + 4, the number of referring frames is

apparently too small in order to compensate for this initial loss.

4.3.3 Discussion of the results

In the GOP8 coding scenario, the observed coding gains are significantly smaller than

using an IPPP. . . prediction structure. This can be attributed to a coincidence

of several factors. First of all, optimization of one single frame out of a group of

eight frames (namely those with POC = 8n) gave the best coding results. Since the

encoding of seven out of eight frames is not modified, a significantly smaller number

of transform coefficients is directly affected by the multi-frame optimization method.

More than that, especially the frames having POC = 8n exhibit a very large share of

intra-predicted samples (see Tabs. 4.12–4.14, which show the respective ratios for the
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Figure 4.31: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) over
the number of frames for Class C and D.

first 129 frames using the “3 GOP” configuration). As has been stated in Sec. 4.2.1,

a large portion of intra-predicted samples is problematic because, on the one hand

intra-predicted blocks break the prediction chain, where a longer prediction chain

would be advantageous for the multi-frame optimization, and on the other hand, as

intra-predicted are not included in the optimization for complexity reasons, an even

smaller number of coefficients is considered in the optimization stage.

Besides that, in the IPPP. . . setting, the optimization of the residual signal is in

some sense simpler, as the reconstructed signal has to accomplish only two objectives:

To provide an appropriate reconstruction quality of the current frame and to serve

as a suitable reference frame for the direct subsequent frame. In the GOP8 configu-

ration, however, the prediction paths are more complicated. As shown in Tab. 4.11,

the frames with POC = 8n can be directly referred by up to 13 different subsequent

frames. Besides providing an appropriate reconstruction quality for the frame itself,

the corresponding residual signal therefore has to fulfill the possibly diverse require-

ments of the individual referring frames.

Finally, in the GOP8 configuration, bi-prediction (i.e., superposition of two prediction

hypotheses) is used, unlike uni-prediction for the IPPP. . . setting. With bi-prediction,

the prediction signal is typically of better quality, resulting in a smaller variance of
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4 Application of the optimization method to H.265/HEVC

Ratio of intra-predicted samples [%]
Sequence QP=22 QP=27 QP=32 QP=37 AVG

Class B
(1920×1080)

BasketballDrive 58.1 48.9 44.9 42.9 48.7
BQTerrace 20.8 11.2 7.1 4.6 10.9
Cactus 29.9 22.3 19.8 18.2 22.6
Kimono 60.0 47.6 41.6 37.2 46.6
ParkScene 16.4 12.6 10.6 9.1 12.2

Class C
(832×480)

BasketballDrill 23.9 23.3 23.8 24.0 23.8
BQMall 35.0 31.1 28.5 26.6 30.3
PartyScene 21.4 20.7 19.3 17.6 19.8
RaceHorses 69.7 61.8 55.5 51.0 59.5

Class D
(416×240)

BasketballPass 30.4 28.9 27.1 24.4 27.7
BlowingBubbles 18.1 15.4 13.3 10.8 14.4
BQSquare 2.4 2.1 2.2 1.9 2.1
RaceHorses 57.5 53.0 47.6 41.7 50.0
AVERAGE 34.1 29.1 26.3 23.8 28.4

Table 4.12: Ratio of intra-predicted samples for the frames having POC = 8n (ex-
cluding the initial I frame).

the residual signal. Therefore, the resulting reconstruction quality is too a larger

degree governed by the prediction signal, and the impact of the residual part is cor-

respondingly smaller. Since in the multi-frame optimization approach, the selection

of the encoded residual signal is addressed, using bi-prediction will result in a smaller

coding gain compared to uni-prediction.

4.3.4 Overall performance for different intra periods

In this section, the coding performance of the multi-frame optimization in a random

access scenario is studied based on the “3 GOP” variant of Sec. 4.3.1. The results are

shown in Tab. 4.15. The column denoted as ×k means that k times the intra period as

prescribed in the common test conditions [JCT13] has been used, which corresponds

to a random access period of approximately k seconds, with k ∈ {1, 2, . . . , 5}. A

random access period of 1–5 seconds represents a typical range, e.g. in [ETS14] it is

stated:

“The encoder shall place HEVC DVB RAPs1 in the video elementary

stream at least once every 5 s. It is recommended that HEVC DVB RAPs

1DVB RAP = Digital Video Broadcasting Random Access Point
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4.3 Multi-frame optimization in a random access prediction structure

Ratio of intra-predicted samples [%]
Sequence QP=22 QP=27 QP=32 QP=37 AVG

Class B
(1920×1080)

BasketballDrive 25.7 19.7 16.9 14.7 19.2
BQTerrace 7.6 0.7 0.2 0.0 2.1
Cactus 11.1 5.8 4.9 4.3 6.5
Kimono 13.9 8.3 5.7 4.0 8.0
ParkScene 3.2 2.0 1.4 1.0 1.9

Class C
(832×480)

BasketballDrill 13.9 11.8 9.4 7.7 10.7
BQMall 9.0 6.5 4.4 3.0 5.7
PartyScene 13.3 11.5 9.2 6.4 10.1
RaceHorses 36.3 24.5 18.4 11.9 22.8

Class D
(416×240)

BasketballPass 12.2 9.4 7.3 4.5 8.4
BlowingBubbles 4.7 3.8 3.1 2.9 3.6
BQSquare 0.2 0.2 0.1 0.1 0.1
RaceHorses 24.8 19.1 11.7 6.6 15.6
AVERAGE 13.5 9.5 7.1 5.2 8.8

Table 4.13: Ratio of intra-predicted samples for the frames having POC = 8n+ 4.

Ratio of intra-predicted samples [%]
Sequence QP=22 QP=27 QP=32 QP=37 AVG

Class B
(1920×1080)

BasketballDrive 8.6 4.8 3.5 2.5 4.8
BQTerrace 0.6 0.1 0.0 0.0 0.2
Cactus 2.0 1.2 1.0 0.9 1.3
Kimono 1.3 0.7 0.4 0.2 0.7
ParkScene 0.6 0.3 0.2 0.1 0.3

Class C
(832×480)

BasketballDrill 2.9 1.9 1.1 0.6 1.6
BQMall 1.3 0.8 0.4 0.3 0.7
PartyScene 3.9 2.7 1.6 0.9 2.3
RaceHorses 7.0 4.0 2.1 1.2 3.6

Class D
(416×240)

BasketballPass 1.8 1.2 0.6 0.4 1.0
BlowingBubbles 1.7 1.5 1.1 0.9 1.3
BQSquare 0.0 0.0 0.0 0.0 0.0
RaceHorses 3.8 2.3 1.1 0.5 1.9
AVERAGE 2.7 1.7 1.0 0.7 1.5

Table 4.14: Ratio of intra-predicted samples for the remaining frames (having neither
POC = 8n nor POC = 8n+ 4).
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occur in the video elementary stream on average at least every 2 s. Where

rapid channel change times are important or for applications such as PVR

it may be appropriate for HEVC DVB RAPs to occur more frequently,

such as every 1 second.”

Average bit rate savings of about 3 % BD bit rate can be observed, with a maximum

of 10 % for the BQTerrace sequence at 1920×1080 resolution. In the random access

scenario, the multi-frame optimization fails for the RaceHorses sequence, both at

832×480 and 416×240 resolution, but even in the worst test case, this results only in

an overall bit rate increase of 0.3 %.

Typically, a longer intra period leads to higher bit rate savings. This is consistent with

the diagrams showing the BD bit rate over the number of frames (such as Figs. 4.26–

4.30). As after each intra frame the multi-frame optimization is started anew, a shorter

distance between these restarts will lead to smaller bit rate savings, since the BD bit

rate decreases with the number of frames.

It is reemphasized, that the encoding of only one out of eight frames (namely, those

frames with POC = 8n) is modified in order to incorporate inter-frame dependencies,

whereas for the reported bit rate savings all the frames are subsumed. Therefore,

the coding decisions made for those “key frames” can largely affect the overall coding

performance.

146



4.3 Multi-frame optimization in a random access prediction structure

BD bit rate [%]
Sequence ×1 ×2 ×3 ×4 ×5

Class A
(2560×1600)

NebutaFestival −4.0 −4.8 −5.1 −5.2 −5.6
PeopleOnStreet 0.0 −0.3 −0.5 −0.6 −0.7
SteamLoco. . . −2.0 −2.4 −2.3 −2.4 −2.4
Traffic −1.9 −3.7 −4.8 −5.4 −6.7
AVERAGE −2.0 −2.8 −3.2 −3.4 −3.8

Class B
(1920×1080)

BasketballDrive −0.1 −0.5 −0.9 −0.7 −1.0
BQTerrace −6.2 −8.3 −8.9 −9.4 −10.1
Cactus −1.3 −2.4 −2.9 −3.2 −3.4
Kimono −0.5 −1.8 −1.9 −1.8 −3.0
ParkScene −0.7 −2.7 −3.5 −4.3 −5.1
AVERAGE −1.8 −3.1 −3.6 −3.9 −4.5

Class C
(832×480)

BasketballDrill −2.5 −4.4 −5.4 −6.0 −6.5
BQMall −0.9 −1.7 −2.0 −2.2 −2.2
PartyScene −2.2 −4.0 −4.9 −5.5 −5.9
RaceHorses 0.1 −0.1 0.0 −0.1 −0.2
AVERAGE −1.4 −2.6 −3.1 −3.4 −3.7

Class D
(416×240)

BasketballPass −0.3 −1.0 −1.2 −1.5 −1.4
BlowingBubbles −2.3 −3.8 −4.4 −4.9 −5.3
BQSquare −3.1 −4.6 −5.1 −5.4 −5.7
RaceHorses 0.3 −0.0 −0.2 −0.1 −0.3
AVERAGE −1.3 −2.3 −2.7 −3.0 −3.2

Table 4.15: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) for the
random access scenario with different intra periods, JCT-VC test set (×k
means k times the intra period according to the common test conditions,
i.e. approx. k seconds).

BD bit rate [%]
Sequence ×1 ×2 ×3 ×4 ×5

VCEG
(832×480)

Flower4 −1.8 −3.6 −4.3 −4.8 −4.9
Keiba3 1.2 1.2 0.1 1.0 1.1
Nuts5 0.3 0.1 0.4 0.2 0.2
AVERAGE −0.1 −0.8 −1.3 −1.2 −1.2

VCEG
(352×288)

Foreman 0.2 −0.7 −1.6 −1.1 −2.8
MobileAndCalendar −2.3 −3.9 −4.7 −4.9 −6.1
Paris −0.4 −2.1 −3.1 −3.7 −4.2
Tempete −1.9 −3.0 −3.3 −3.7 −3.9
AVERAGE −1.1 −2.4 −3.2 −3.3 −4.2

Table 4.16: Bit rate savings in terms of Bjøntegaard delta bit rate (BD bit rate) for the
random access scenario with different intra periods, VCEG test set (×k
means k times the intra period according to the common test conditions,
i.e. approx. k seconds).
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scalable video coding

In this chapter, the optimization method is extended for scalable video coding. In

scalable video coding, the video signal is encoded using a layered representation,

where each layer represents the signal at a given quality. Typically, three dimensions

of scalability are distinguished:

• temporal scalability,

• spatial scalability, and

• fidelity or SNR scalability

In temporal scalability, each layer represents the video sequence at a given frame rate.

In spatial scalability, each layer corresponds to a fixed spatial resolution of the video

signal. Fidelity or SNR scalability refers to a layered coding approach, where the

frame rate and the spatial resolution are identical for all the layers, but the fidelity or

reconstruction quality is enhanced with each layer, which is achieved by a reduction

of the quantization step size from one layer to the next.

In all variants, the lowest layer, which is also called base layer, can be decoded in-

dependently of all the other layers and represents the video signal at a base quality.

The additional layers, which are also called enhancement layers, are in their decod-

ing dependent on the base layer as well as all further subordinate layers which they

refer to via inter-layer prediction. By the usage of inter-layer prediction, data which

have already been transmitted for a lower layer, can be re-used in order to facilitate

encoding of the higher layers. This makes scalable coding more efficient than simul-

cast, where the different quality representations of the video signal are transmitted
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independently of each other.

Scalable video coding techniques are supported as an extension of the H.262/MPEG-2

[SS95, Sik97] and H.264/AVC video coding standards, the latter also being referred

to as SVC [SMW07]. Furthermore, under the name SHVC, there is currently stan-

dardization activity underway, which targets at extending H.265/HEVC to support

scalability. In addition to the “classical” three dimensions of scalability as mentioned

above, this will also include tools supporting color format and bit-depth scalability.

For the remaining part of this chapter, the focus is on spatial scalability within the

scalable extension of H.264/AVC, SVC. The key insights and concepts as well as the

experimental results have already been presented in [WSW08].

5.1 Spatial scalability in SVC

Spatial scalability within SVC follows a layered coding approach. Each layer contains

a representation of the video sequence at a different spatial resolution, similar to an

image pyramid [BA83]. Motion-compensated prediction (MCP) and intra prediction

are employed at each layer as in single layer H.264/AVC coding. As a distinguished

feature of SVC, for the decoding of a higher resolution layer, it is not required to fully

decode the corresponding lower resolution layers. Especially, MCP only has to be

performed for the highest layer during the decoding process. This property is referred

to as “single-loop decoding” or “constrained interlayer prediction” [SHMW05]. In

order to exploit the dependencies between the different layers, SVC allows inter-layer

prediction of texture (decoded samples), motion parameters, and residual samples. For

the inter-layer texture prediction, the decoded image samples of the lower resolution

layer are upsampled by a separable four-tap interpolation filter. Instead of using

MCP or intra prediction, the resulting upsampled signal is used as a prediction for

encoding of the higher resolution input signal. Note, that due to the single-loop

decoding constraint of SVC, inter-layer texture prediction can only be applied to

intra-coded subordinate layer macroblocks, since otherwise MCP would also have

to be performed for the lower resolution layers in order to be able to provide the

corresponding decoded image samples. For inter-coded subordinate layer macroblocks,

however, SVC allows inter-layer prediction of the residual signal. For that purpose, the

inverse transformed residual samples of the lower resolution layer are upsampled by
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a bilinear interpolation filter. During the decoding process, the resulting upsampled

residual signal is added to the higher resolution residual and prediction signals in

order to obtain the corresponding decoded image samples. A detailed description of

the inter-layer prediction process for spatial scalability within SVC can be found in

[SS07]. An overview of SVC is given in [SMW07].

5.2 Matrix notation of the SVC reconstruction process

Similar to Sec. 3.1.3, the reconstruction process for spatial scalability can also be

written in matrix form. In order to simplify matters, a two layer scenario is assumed,

where the base layer pictures are of width W0 and height H0, and the enhancement

layer pictures are of width W1 and height H1. Again, a number N of frames is

considered jointly for the optimization task, leading to totally K0 = N ·W0 ·H0 base

layer samples and K1 = N ·W1 ·H1 enhancement layer samples. Analogous to Eq. 3.4,

p. 26, the reconstruction of the base layer signal s0 and the enhancement layer signal

s1 can be written as:

s0 = p0 + M0 s0 + T0 c0 (5.1)

s1 = p1 + M1 s1 + T1 c1 + B s0 + R T0 c0 (5.2)

Here, the suffixes 0 and 1 indicate base layer and enhancement layer. The recon-

struction of the base layer signal is identical to the non-scalable, single layer case of

Eq. 3.4. For the enhancement layer, two new K1 ×K0 matrices B and R have been

introduced. The matrix B represents the inter-layer texture prediction, such that the

matrix product B s0 gives the corresponding prediction signal, whereas the matrix R

represents the inter-layer residual prediction, with R T0 c0 being the resulting residual

prediction signal. Hence, the components of B and R contain the upsampling filter

coefficients at the sample positions of those macroblocks, which use the respective

inter-layer prediction mechanism, and are zero for the macroblocks without usage of

inter-layer prediction.
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5 Extension of the method for scalable video coding

In explicit form, s0 and s1 can be obtained as follows (corresponding to Eq. 3.9):

s0 =

ν0,max∑
ν=0

Mν
0 (p0 + T0 c0) (5.3)

s1 =

ν1,max∑
ν=0

Mν
1 (p1 + T1 c1 + B s0 + R T0 c0) (5.4)

The values of ν0,max and ν1,max are the length of the longest prediction chain (critical

path) of the matrices M0 and M1, respectively.

With

s̃i = si −
νi,max∑
ν=0

Mν
i pi for i ∈ {0, 1} (5.5)

and

A0 =

ν0,max∑
ν=0

Mν
0 T0 (5.6)

A1 =

[
ν1,max∑
ν=0

Mν
1 (B A0 + R T0)

ν1,max∑
ν=0

Mν
1 T1

]
(5.7)

the following matrix products are obtained:

s̃0 = A0 c0 (5.8)

s̃1 = A1 [c0 c1]T (5.9)

With the original base layer signal y0 and the original enhancement layer signal y1, the

corresponding distortion functions D0(c0) and D1(c0, c1) can be defined as follows:

D0(c0) = ‖y0 − s0‖2
2 (5.10)

=

∥∥∥∥∥∥∥∥∥∥
y0 −

ν0,max∑
ν=0

Mν
0 p0︸ ︷︷ ︸

ỹ0

−s̃0

∥∥∥∥∥∥∥∥∥∥

2

2

(5.11)

= ‖ỹ0 −A0 c0‖2
2 (5.12)
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5.2 Matrix notation of the SVC reconstruction process

D1(c0, c1) = ‖y1 − s1‖2
2 (5.13)

=

∥∥∥∥∥∥∥∥∥∥
y1 −

ν1,max∑
ν=0

Mν
1 p1︸ ︷︷ ︸

ỹ1

−s̃1

∥∥∥∥∥∥∥∥∥∥

2

2

(5.14)

=
∥∥∥ỹ1 −A1 [c0 c1]T

∥∥∥2

2
(5.15)

For the rate function R(c), as in Eq. 3.17, p. 30, again the `1-norm of the transform

coefficient vector c is used, i.e. R(c) = ||c||1.

Consequently, the optimization problem in a two layer spatial scalable setting can be

stated as follows:[
c0,opt

c1,opt

]
= arg min

[c0 c1]T

[
D0(c0) + µ0R(c0)

D1(c0, c1) + µ1 (R(c0) +R(c1))

]
(5.16)

Here, µ0 and µ1 are the regularization parameters for the base and enhancement

layer, respectively. Note that Eq. 5.16 is a multi-objective (or vector) optimization

problem.

An unconstrained multi-objective optimization problem can be formulated as

min [f1(x), f2(x), . . . , fn(x)] , (5.17)

where f1, f2, . . . , fn are real-valued functions. In multi-objective optimization, the

scalar concept of optimality is extended to Pareto optimality. A vector x∗ is called

strictly Pareto optimal, if there is no vector x having

fi(x) ≤ fi(x
∗) for all i ∈ {1, 2, . . . , n}, and (5.18)

fk(x) < fk(x
∗) for at least one k ∈ {1, 2, . . . , n}. (5.19)

The set of all strictly Pareto optimal vectors is called Pareto front. A multi-objective

optimization problem can be converted into a scalar optimization problem by introduc-

ing weighting factors wi, which control the trade-off between the individual objective

functions. This technique is known in literature as scalarization [BV04, Sec. 4.7.4]
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5 Extension of the method for scalable video coding

and leads to the following optimization problem:

min
n∑
i=1

wi · fi(x)

n∑
i=1

wi = 1

wi > 0 for all i ∈ {1, 2, . . . , n}

(5.20)

The minimizer of Eq. 5.20 for a given weighting vector w = [w1, w2, . . . , wn]T is an

element of the Pareto front of Eq. 5.17 [HM79].

In the case of two layer spatial scalable coding, this leads to the following aggregate

objective function (with α = (W1 ·H1)/(W0 ·H0)):[
c0,opt

c1,opt

]
= arg min

[c0 c1]T

{
(1− w) · α · (D0(c0) + µ0R(c0)) +

w · (D1(c0, c1) + µ1 (R(c0) +R(c1)))

}
(5.21)

Here, the scalarization factor w ∈ [0; 1] selects the trade-off between base and en-

hancement layer coding efficiency. For the special case w = 0, the impact of the

inter-layer dependencies on the enhancement layer coding efficiency is not considered

when determining the base layer transform coefficients. For the other special case

w = 1, however, the base layer coding efficiency is not considered in the optimization.

The scaling factor α accounts for the fact that base and enhancement layer have a dif-

ferent number of samples, and thus ensures that for w = 0.5 the equilibrium between

base and enhancement layer coding efficiency is achieved.

For solving the scalar optimization problem Eq. 5.21, standard methods as discussed

in Sec. 3.4 can be applied.

5.3 Description of the algorithm

The algorithm for the multi-layer multi-frame transform coefficient optimization is

based on the single-layer multi-frame optimization algorithm described in Sec. 4.1.1.

A group of N frames is considered jointly, such that the impact of both inter-frame

and inter-layer prediction are considered in the determination of reference transform
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coefficients. The optimization is performed in the following steps:

1. Since I slices are not included in the optimization, the first frame 0 is ordinarily

encoded using the SVC reference encoder software Joint Scalable Video Model

(JSVM) and a variable M is set equal to 1.

2. The frames M , M + 1, . . . , M +N − 1 are ordinarily encoded using JSVM such

that their block partitioning, prediction modes, motion vectors etc. are known.

3. The multi-frame transform coefficient problem 5.21 is solved for these frames,

given the inter-frame and inter-layer dependencies as obtained from the previous

step.

4. An integer approximation for the real-valued elements of the base layer solution

vector c0,opt is obtained by simple rounding. Note that since H.264/AVC does

not support the sign data hiding (SDH) of H.265/HEVC, no constraints on the

parity of resulting vector have to be considered here.

5. The inter-layer prediction usage of the current frameM is optionally re-estimated,

based on the optimized base layer transform coefficients as derived in the pre-

vious step.

6. The multi-frame transform coefficient problem 5.21 is solved again, but this time

only for the enhancement layer transform coefficient vector c1,opt, whereas for

the base layer vector c0,opt the integer coefficients as obtained in step 4 are used.

7. Analogous to step 4, an integer approximation for c1,opt is obtained by simple

rounding.

8. M := M + 1 and execution continues at step 2.

5.4 Experimental results

The experiments were conducted using a modified version of the SVC reference encoder

software Joint Scalable Video Model (JSVM), based on version JSVM 9 9. A simple
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Figure 5.1: Rate distortion plots for the BUS test sequence (top: enhancement layer,
bottom: base layer).
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Figure 5.2: Rate distortion plots for the MOBILE test sequence (top: enhancement
layer, bottom: base layer).
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BD bit rate [%]
without IL opt. with IL opt.

Sequence fixed IL pred. upd. IL pred.
BUS (Base layer) −10.7 −10.2 −10.2
BUS (Enhancement layer) −7.1 −12.4 −16.0
MOBILE (Base layer) −10.4 −9.9 −9.8
MOBILE (Enhancement layer) −10.6 −15.0 −17.9

Table 5.1: BD bit rate results for the two exemplary SVC test sequences.

IPPP coding structure with one reference frame, two spatial layers at QCIF (176×144)

and CIF (352× 288) resolution was used.

For the entropy coding, CABAC was employed for both layers. Note that since this

JSVM version does not support rate distortion optimized quantization (RDOQ), the

anchor uses ordinary scalar quantization. The difference between enhancement layer

and base layer quantization parameter (QP) was set equal to 3. For the base layer,

the following values have been used: QP ∈ {26, 28, 30, 34}. For the optimization

algorithm, a group of N = 3 consecutive pictures was considered. A spatial sliding

window size of 5×5 and 10×10 macroblocks for base and enhancement layer, respec-

tively, has been used. The regularization parameter µi (for i ∈ {0, 1}) was empirically

chosen as µi = 4.5 · λMODE, with λMODE as given in [WSJ+03, Eq. 12].

The resulting rate distortion plots are shown in Figs. 5.1 and 5.2 for the first 33 frames

of two representative sequences of the test set used for SVC standardization. The

corresponding BD bit rate values are shown in Tab. 5.1. In the first scenario (“without

IL opt.”), only the inter-frame dependencies are exploited by the optimization method

for both base and enhancement layer. In a second scenario (“with IL opt., fixed IL

pred.”), the inter-layer (IL) dependencies have also been considered such that the

impact of the base layer residual signal on the reconstruction of the enhancement layer

is also taken into account. In a third scenario (“with IL opt., updated IL pred.”), the

inter-layer prediction usage is re-estimated after the base layer transform coefficients

have been determined.

It can be seen that by inclusion of the IL dependencies into the optimization problem,

the coding efficiency of the enhancement layer can be significantly improved, leading

to additional bit rate savings of approximately 5 percentage points (pp). The negative

impact on the base layer coding efficiency is very moderate, as the corresponding bit

rate savings are reduced by 0.5 pp compared to multi-frame optimization without
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consideration of IL dependencies. By updating the inter-layer prediction usage after

the optimized base layer transform coefficients have been determined, the bit rate

savings for the enhancement layer are again further increased by about 3 pp, with no

significant impact on the base layer coding efficiency.
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In this thesis, a multi-frame transform coefficient optimization method for H.265/

HEVC is developed and studied. The inter-frame dependencies, which are caused by

motion-compensated prediction, are considered in the encoding of the reference frames

by an appropriate choice of the residual signal. The dependencies are described using

a linear signal model, initially proposed by Schumitsch in [SSW04, SSW05] for H.264/

AVC optimization. Based on this model, the optimization problem is cast in the form

of an `1-regularized least squares problem. For solving this problem, an optimiza-

tion algorithm is developed, which is applicable to H.265/HEVC without imposing

excessive demands in terms of computational complexity and memory requirements.

For that purpose, a variant of the iterative shrinkage/thresholding algorithm (ISTA)

[DDDM04, WNF09] is employed at the core of the optimization method.

The behaviour of the multi-frame optimization method is first studied in a simple

IPPP. . . prediction structure. A simple functional relationship between the regu-

larization parameter µ and the quantization parameter (QP ) is empirically found,

which is similar to the widely used rule for determining the Lagrangian multiplier λ

in the operational rate distortion optimization (RDO) of a typical video encoder, as

originally described in [WG01]. The performance of the multi-frame optimization

method is evaluated and HEVC-specific issues, like sign data hiding (SDH) and ef-

ficient handling of all-zero blocks, are addressed. Different regularization functions

are compared, and it is shown, that using the `1-norm causes no loss, if the regu-

larization parameter µ is matched to the QP value, which is beneficial, because the

`1-norm corresponds to a simple elementwise soft thresholding operation in each ISTA

iteration.

The accuracy of the linear signal model is studied, and it is found, that the largest

discrepancies are caused by the relaxation of the originally integer optimization prob-

lem into a real-valued one. This relaxation, however, is unavoidable from a practical
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point of view, as the integer optimization problem would be NP hard [HV05, VH05],

and therefore practically impossible to solve. The non-linear filtering operations in

H.265/HEVC, deblocking and sample adaptive offset (SAO), which are not captured

by the linear signal model, have only small impact on the model accuracy.

The bit rate savings due to the proposed method are evaluated over the number of

frames using the Bjøntegaard Delta bit rate (BD bit rate) metric. It is observed,

that the multi-frame optimization causes an initial coding efficiency loss, which is

amortized after about 10–20 frames, and after that turns into a coding gain of about

10 % BD bit rate in an IPPP. . . setting.

The complexity of the proposed method is assessed based on experimentally measured

run-times for the individual components of the algorithm. An overall run-time increase

by a factor of 10–20 relative the HM reference encoder is reported for the Class C (832×
480) and Class D (416×240) sequences of the JCT-VC test set. For larger resolutions,

a further run-time increase can be limited by the usage of a spatial sliding window,

such that the frame is split into a series of smaller sized “optimization windows,”

which are processed sequentially.

The multi-frame optimization method is then applied to the random access coding

scenario, as described in the JCT-VC common test conditions [JCT13]. By the out-

comes of the conducted experiments, it is found that optimization of only the so-called

“key frames,” which is the first frame of each group of pictures (GOP) in coding order,

results in the largest coding gains. The behaviour of the multi-frame optimization is

evaluated for different random access (intra) periods, ranging from 1 s to 5 s. The bit

rate savings are higher for a longer intra period, which matches the previous observa-

tion that it takes a certain number of frames in order to amortize the initial coding

loss. In the random access scenario, bit rate savings in the order of 3 % BD bit rate

are observed.

Finally, an extension of the method for spatially scalable video coding using SVC, the

scalable extension of H.264/AVC, is presented. Here, in addition to the inter-frame

dependencies, also the inter-layer dependencies are taken into account for the encoding

of the base layer. It is shown, that the coding performance of the enhancement layer

can be significantly improved by about 5 percentage points (pp) BD bit rate, with

only moderate impact on the base layer performance of about 0.5 pp BD bit rate.
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Within the area of this thesis, there is opportunity for further research. In the follow-

ing, a few interesting directions are pointed out:

• For this thesis, no emphasis has been put on the efficiency of the implementa-

tion. Each ISTA iteration consists of a series of matrix-vector multiplications

for inverse transform and motion-compensation, which are performed in floating-

point arithmetic. The run-time increase relative to HM could be reduced, if the

regular structure of the matrices is exploited (e.g., using butterfly operations for

the transform), and floating-point calculations are avoided.

• In this thesis, only the inter-predicted blocks are considered in the multi-frame

optimization. Further gains could be expected, if also the intra-predicted blocks

are included. Since this would lead to very long prediction chains, which are

caused by the block-to-block prediction within each frame, a significantly higher

computational complexity can be expected. In order to avoid this additional

burden, each intra-predicted block could be optimized on its own, considering

only the impact on the subsequent frames and neglecting the impact within its

frame.

• Similar to the extension for spatial scalability based on H.264/AVC as described

in Chapter 5, the described method could be adapted to the scalable extension of

H.265/HEVC, called SHVC. In SHVC, the inter-layer prediction is generalized

by using reconstructed and upsampled base layer frames as reference frames for

the enhancement layer. This is possible because SHVC, in contrast to H.264/

AVC-based SVC, follows a multi-loop decoding paradigm.

• The optimization method developed in this thesis relies on the commonly used

squared error distortion measure. It is a well-known fact, that this metric only

roughly corresponds to the subjective visual quality (e.g., [Gir93]). It could be

countered, however, that hybrid video encoders introduce only special types of

artifacts (e.g., there is typically no rotation, scaling, brightness change etc.), and

that for the kind of artifact which is introduced, the squared error measure serves

its purpose apparently quite well. Still, there has been considerable work on the

topic of perceptual visual quality metrics, see [LK11]. In particular, perceptual
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distortion measures based on the total variation (TV) [ROF92] have been pro-

posed recently [PSGF11, WZD14]. The TV is notably suited for describing the

structural characteristic of an image. Consequently, by incorporating the TV

as an additional regularization term into the optimization problem, it could be

expected, that the edges as in the original images are better preserved, whereas

introduction of annoying blocking artifacts is avoided. As has been shown in

[CW05], the well established algorithm for solving TV-regularized least squares

problems by Chambolle [Cha04] can be interpreted as a special case of a more

generic class called proximal forward-backward splitting, out of which ISTA is

another particular example. Since ISTA has been used for the work within this

thesis, it should be possible to integrate TV-regularization into the multi-frame

transform coefficient optimization approach.
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Symbols

∆ quantization step size

λ Lagrangian multiplier

µ regularization parameter

νmax critical path length (longest prediction chain)

D distortion

H frame height (number of luma samples in vertical direction)

J Lagrangian rate distortion cost

K total number of luma samples under consideration

N number of frames in joint optimization

R bit rate

W frame width (number of luma samples in horizontal direction)

A reconstruction matrix

I identity matrix

M prediction matrix

T inverse transform matrix

c vector of transform coefficient levels

copt vector of optimal transform coefficient levels

p vector of fixed prediction signal samples

r vector of (quantized) residual signal samples

s vector of reconstructed samples

ŝ vector of prediction signal samples

y vector of original signal samples
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ỹ vector of modified original signal samples

(without the motion-compensated fixed prediction signal)

Abbreviations

AVC Advanced Video Coding (aka H.264)

BAC Binary Arithmetic Coding

BD bit rate Bjøntegaard Delta bit rate

CABAC Context-based Adaptive Binary Arithmetic Coding

CAVLC Context-based Adaptive Variable Length Coding

cbf coded block flag

CIF Common Intermediate Format (352× 288 luma samples)

CPU Central Processing Unit

CTB Coding Tree Block

CTU Coding Tree Unit

CU Coding Unit

dB Decibel

DC literally: Direct Current; here: the mean value of a waveform

DCT Discrete Cosine Transform

DPCM Differential Pulse Code Modulation

DST Discrete Sine Transform

DVB Digital Video Broadcasting

DVD Digital Versatile Disc

ETSI European Telecommunications Standards Institute

FIR Finite Impulse Response

fps Frames per Second

GOP Group of Pictures

HDQ Hard Decision Quantization

HDTV High Definition Television

HEVC High Efficiency Video Coding (aka H.265)

HM HEVC Test Model

IEC International Electrotechnical Commission

IIR Infinite Impulse Response

IL Inter-Layer

ISO International Organization for Standardization

ISTA Iterative Shrinkage/Thresholding Algorithm
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ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

JCT-VC Joint Collaborative Team on Video Coding

JSVM Joint Scalable Video Model

LSP Logarithmic Sum Penalty

MCP Motion-Compensated Prediction

MF Multi Frame

MPEG Moving Picture Experts Group

MV Motion Vector

POC Picture Order Count

pp percentage point

PSD Power Spectral Density

PSNR Peak Signal to Noise Ratio

PU Prediction Unit

PVR Personal Video Recorder

QCIF Quarter CIF

QP Quantization Parameter; Quadratic Program

RAP Random Access Point

RD Rate Distortion

RDO Rate Distortion Optimization

RDOQ Rate Distortion Optimized Quantization

RQT Residual Quadtree

SAO Sample Adaptive Offset

SB Sub-block

SDH Sign Data Hiding

SDQ Soft Decision Quantization

SDTV Standard Definition Television

SHVC Scalable HEVC

SNR Signal to Noise Ratio

SVC Scalable Video Coding

TB Transform Block

TU Transform Unit

TV Total Variation; Television

UHD Ultra High Definition

URQ Uniform Reconstruction Quantizer

VA Viterbi Algorithm

VCEG Video Coding Experts Group
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VLC Variable Length Coding

VoD Video on Demand
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