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Abstract

The development of novel experimental techniques to externally control manybody
systems has been extensively increased in the last years. A manybody phenomenon
of fundamental interest is a quantum phase transition (QPT). The typical descrip-
tion of nonequilibrium QPTs is based on the fact, that the external control renor-
malizes the parameters of the system, in such a way the critical points are shifted
from the equilibrium values. From this point of view, the non-stationary dynam-
ics of the system still resembles the equilibrium behavior. This thesis focuses on
the theoretical description of quantum criticality under the effect of monochromatic
driving. Our approach reveals an allowance of a unique possibility to explore novel
states of matter and effective interactions which are absent in equilibrium systems
by means of driving. We explore aspects of nonequilibrium criticality in models
in (d + 1)-dimensions, which exhibit second-order QPTs in the absence of driving.
In this work d stands for the spatial dimension and 1 corresponds to the temporal
dimension.

First, we investigate two models in spatial dimension d = 0: the Dicke model and
the Lipkin-Meshkov-Glick model. In equilibrium, a mean-field description of the
energy landscape of these models shows a transition from a monostable to a bistable
configuration at the critical point. Intriguingly, our analysis reveals the existence of
a complex multistable structure of the quasienergy landscape for the driven models.
For example, while the undriven Dicke model only undergoes a second-order QPT,
the driven model exhibits a new non-equilibrium first-order QPT.

In d = 1, we investigate the quantum Ising model in a transverse field. In addition
to the appearance of a Ising-like transition occurring at a shifted critical point, the
external field induces infinite anisotropic transitions between two different ferromag-
netically ordered phases.

Finally, in d = 2, we investigate the Wen-plaquette model. In the driven case
besides the spin polarized trivial phase and the conventional topologically ordered
phase, the system reveals the existence of a new topological phase. To describe the
topological quantum phase transition (TQPT), we introduce generalized “string-like”
cycle-averaged order parameters.






Zusammenfassung

In den letzten Jahren zeigte die Entwicklung von experimentellen Methoden, um
Vielteilchenquantensysteme zu kontrollieren, betriachtliche Fortschritte. Eines der
interessantesten Vielteilchenquantenphédnomene sind Quantenphaseniibergénge. Die
typische Beschreibung von Nichtgleichgewichtsquantenphaseniibergédngen basiert auf
der Tatsache, dass die Parameter des Systems durch die externe Kontrolle renor-
malisiert werden, sodass sich die kritischen Punkte vom Gleichgewichtspunkt ver-
schieben. Aus dieser Sicht dhnelt die nicht-stationdre Dynamik des Systems dem
Verhalten im Gleichgewicht. Die theoretische Betrachtung des kritischen Verhaltens
unter Nichtgleichgewichtsbedingungen steht im Fokus dieser Arbeit. Uberraschen-
derweise werden in einem monochromatisch getriebenen System neue Zusténde der
Materie und effektive Wechselwirkungen erzeugt, die im Gleichtgewicht abwesend
sind. Im Allgemeinen wird das kritische Verhalten von (d+ 1)-dimensionalen Quan-
tensystemen untersucht, die im Gleichtgewicht einen Quantenphaseniibergang zweiter
Ordnung zeigen. In Rahmen dieser Arbeit wird d fiir die rdumliche Dimension und
1 fiir die zeitliche Dimension stehen.

Als erstes beschéftigen wir uns mit zwei nulldimensionalen Modellen: dem Dicke-
Modell und dem Lipkin-Meshkov-Glick-Modell. Im Gleichgewicht zeigt eine “Mean-
Field”-Betrachtung der Energielandschaften, dass die Systeme am kritischen Punkt
einen Ubergang vom “mono-stabilen” zum bistabilen Bereich aufweisen. Interes-
santerweise zeigt unsere Untersuchung eine komplexe, multi-stabile Struktur von
Quasienergielandschaften fiir den getriebenen Fall. Zum Beispiel wiahrend das Dicke-
Modell im ungetriebenen Fall nur einen Phaseniibergang zweiter Ordnung zeigt,
zeigt das getriebene Modell zusétzlich einen neuen Nichtgleichgewichtsquantenphaseniiber-
gang erster Ordnung.

Fiir den Fall d = 1 untersuchen wir das Quanten-Ising-Modell in einem zeitperi-
odischen, transversalen Feld. Neben dem Ising-typischen Phaseniibergang an einem
verschobenen kritischen Punkt, induziert das dufsere Feld unendlich viele anisotropis-
che Uberginge zwischen unterschiedlichen ferromagnetisch geordneten Phasen.

Schlussendlich, fiir d = 2, betrachten wir das Wen-Plaquetten-Model. Wir werden
sehen, dass im getriebenen Fall — neben der trivialen Spin-polarisierten Phase und
der gewohnlichen topologisch geordneten Phase — das System neuartige topologis-
che Phasen zeigt. Um diese topologischen Quantenphaseniibergénge zu beschreiben,
fiihren wir verallgemeinerte “String-éhnliche”, {iber eine Periode gemittelte Ord-
nungsparameter ein.
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1. Introduction

1.1. Quantum criticality in equilibrium

Symmetry breaking is a paradigm of condensed matter physics in which the states of
matter are characterized as symmetry broken phases [I}, 2], i.e., a solid corresponds
to a broken translational symmetry, and a superconductor to a broken U(1) abelian-
Gauge symmetry.

Nature admits transitions between different states of matter driven by thermal
fluctuations, which are referred to as classical phase transitions [2]. These phase
transitions are characterized by the emergence of long-range spatial and temporal
correlations when the system approaches the critical point. A beautiful aspect of the
theory of critical phenomena is that universal power laws characterize the scaling of
some physical quantities as they approach the critical point [2].

However, one question arises: what are the characteristics of a phase transition
in the limit when the temperature goes to zero? In this limit, as is expected, the
thermal fluctuations do not play any role, however, the quantum fluctuations can
entirely drive a change of phase in the system, which corresponds to a quantum
phase transition (QPT). In contrast to classical phase transitions, a QPT is char-
acterized by a dramatic change of the ground state properties 3], and similarly to
classical phase transitions, as the system approaches the critical point, the spatial
and temporal characteristic length scales are divergent. In the case of second-order
QPTs, the characteristic energy scale corresponds to the energy of the lowest exci-
tation above the ground state [3|. For finite sizes, the spectrum of a typical system
exhibits an anticrossing between the ground state and the first excited state at the
critical point.

In contrast to second-order (continuous ) QPTs, first-order QPTs are characterized
by an exact crossing between the ground state and the first excited state in the finite
size limit that still remains in the thermodynamic limit [4]. At the critical point, the
ground state of the system is characterized by three-fold degenerate vacua. While
the low energy behavior of a second-order phase transition is described by a \¢*
Landau functional of the order parameter ¢, the description of a first-order QPT
requires a A@® expansion [2, 4.

Rather recently, novel states of matter have been found which cannot be classi-
fied inside the paradigm of Landau symmetry breaking [5, [6]. These novel states of
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1. Introduction
1.2. Quantum criticality in nonequilibrium

matter are characterized by an intrinsic robustness against the effects of an environ-
ment as a consequence of the topological properties of the ground state. Examples
of topological states of matter include the integer and fractional quantum Hall effect
[7, [8], topological insulators and superconductors [9, [10] [11].

This novel manifestation of criticality in nature is characterized by transitions
between different topological quantum numbers and corresponds to a topological
quantum phase transition (TQPT). In the integer quantum Hall effect, the different
topological phases correspond to the Hall Plateaus. A transition between states
with different Hall conductance can occur without symmetry breaking. Therefore
the transition is described by a change in the Chern numbers, which characterize
the topology of the system [10, [11].

1.2. Quantum criticality in nonequilibrium

In spite of the well known behavior of QPT in equilibrium systems, relatively little
is known about the critical behavior under nonequilibrium conditions. In fact, one
of the most intriguing issues here is the precise definition of a nonequilibrium QPT
and the question of whether or not concepts such as nonanalyticities of the ground
state, phase diagrams, critical exponents, scaling behavior etc. still hold then.

In general, the dynamics of nonequilibrium QPT has been addressed from slightly
different conceptual points of view, depending on the way in which the nonequilib-
rium conditions are induced. Previous works have explored the evolution of systems
that are slowly driven through the critical point. At this point, there is a diverging
relaxation time and correlation length, therefore the dynamics cannot be adiabatic
in the thermodynamic limit. This kind of effect is enclosed in the Kibble-Zurek
mechanism [12], 13}, [14]. Such nonadiabatic effects can be also discussed even when
the temporal evolution follows a sudden change of the coupling constants of the
system Hamiltonian [I5]. Even if one prepares the system initially in a ground state
of the undriven model, the situation becomes highly nontrivial under the effect of
an external control, since the system will experience transitions to excited states.

Our particular interest in this thesis is focused on periodically-driven manybody
systems. There is a surge in interest in ac-driven QPTs, among researchers of diverse
communities [16], 17, 18], 19, 20]. The investigation of criticality under the effect of
driving is interesting and relevant, not only from a fundamental point of view, but
for future technological applications as a consequence of the current feasibilities of
the experimental methods to control and simulate quantum many-body systems.

16



1. Introduction
1.3. Experimental feasibilities

1.3. Experimental feasibilities

The current experimental setups allow for a high degree of control of the parameters
of the system. Particularly, the possibility to experimentally explore the nonequi-
librium dynamics of the system under the effect of an external driving is interesting.
In quantum optics, the superradiant QPT [21],
22, 23] has been realized experimentally in a sim-
ulation of the Dicke model with a Bose-Einstein
condensate in an optical cavity [24]. Such an
experimental realization consists in a nonequi-
librium setup that allows one to explore di-
verse aspects of criticality in the Dicke model;
such as roton-type mode softening in a Bose-
Einstein condensate with cavity-mediated long-
range interactions [25], and spontaneous symme- e =
try breaking by adiabatically crossing the critical
point [26].

In the experiment, the normal phase corre-
sponds to the condensate phase of the atomic 1 1 5 =
ensemble. By varying the intensity of an external - T
pump laser, a macroscopic occupation of higher
motional energy levels can be reached, which cor- Figure 1.1.: Experimental observation of
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) : . . scopic occupation of the k =

Recently, experimental realizations of one- 0 mode, and (d) the macro-

scopic occupation of higher

dimensional spin chains have been suggested :
’ motional energy levels

where a quantum simulation of the system close

to the phase transition is possible, and a wide range of control of the parameters is
accessible [27, 28, 29 B0, 31, B2]. Furthermore, the transition from a superfluid to
a Mott insulator induced by means of monochromatic external driving predicted in
Ref. [I6] has been experimentally tested with Bose-Einstein condensates in optical
lattices [33].

A realization of quantum magnets in a system of cold atoms placed in an optical
lattice has been suggested [34], 35, [36], which allows the implementation of the spin-
1/2 Kitaev model on a hexagonal lattice. This opens a new possibility to investigate
spin systems with topological order [6]. These systems have a huge potential for
applications in quantum information technologies as topologically-protected qubits.
By controlling the tunneling and the self-interaction strength of the ensemble of
cold atoms, it is possible to simulate anisotropic Heisenberg-like interactions of the
effective spin system on a honeycomb lattice [34].

17



1. Introduction
1.4. Structure

The description of nonequilibrium QPTs under the effect of monochromatic driv-
ing is addressed in this thesis. We assume that in equilibrium the system exhibits
a second-order QPT, and we consider an external driving that preserves the sym-
metries of the undriven model. We investigate the effect that quantum resonances
and symmetries have on the critical behavior. In particular, if the driving frequency
is on resonance with collective excitations of the manybody system, we show that
the system exhibits a behavior with no analogue in equilibrium. In previous works,
the driving renormalizes the energy scales of the system such that the transition
can be reached for parameters largely deviated from the undriven critical points. In
contrast we show that the driving plays an essential role in the conventional and
topological QPTs under study, because it induces novel quantum phases that exist
as a consequence of dynamical stabilization [45], 66, 92].

1.4. Structure

The thesis is divided into six chapters. The introduction in this chapter [I| contains
the motivation and the outline of the thesis. The driven version of the Dicke model
is discussed in chapter 2] The Dicke model is a paradigmatic model of criticality
in quantum optics. However, a “no-go theorem” forbids the occurrence of the su-
perradiant QPT in cavity QED. To circumvent such a constraint on criticality, a
study of the weak driving regime is necessary. The recent experimental realization
of the superradiant QPT in a Bose Einstein condensate in an optical cavity moti-
vates the discussion of the strong driving limit. In chapter 3] the periodically driven
Lipkin-Meshkov-Glick (LMG) model is investigated, which is closely related to the
Dicke model, but more tractable numerically. To understand the character of mul-
tistability for a finite size of the system, the quantum evolution of a wave packet
initially localized at a minimum of the quasienergy landscape is studied. Further-
more, both the continuous and the stroboscopic quantum evolution are discussed.
After the description of the intriguing aspects of systems with spatial dimension
d = 0, nonequilibrium criticality in the one-dimensional Ising model is explored in
chapter [l In contrast to the zero-dimensional models, the Ising model is character-
ized by a set of infinite collective excitations, and destructive interference in time
plays an important role. Additionally, the cycle-averaged magnetization and total
energy are calculated, which lead to a discussion about the order of the nonequi-
librium QPT in terms of nonanalyticities of the derivatives of the cycle-averaged
energy. After the investigation of conventional ac-driven QPTs, the nonequilibrium
TQPT in the driven Wen-plaquette model is described in chapter 5] A set of highly
nonlocal spin-duality transformations allows a description of the Wen model in terms
of the Ising model physics. The topological character of the Wen model requires a
description of the QPT in terms of nonlocal order parameters, which correspond to

18



1. Introduction
1.4. Structure

long-range correlation functions for a driven Ising model in the dual picture. Fur-
thermore, the Floquet-Chern numbers which characterize the different topological
phases are calculated. In chapter [6] a conclusion and outlook is given.

19






2. AC-driven Quantum Phase
Transitions in the Dicke model

The Dicke model (DM) is a paradigm of collective behavior in quantum mechanics
[21] and describes the interaction of N two-level atoms with a single-mode bosonic
field. The DM undergoes a quantum phase transition (QPT) at a critical atom-
field coupling, the same order of magnitude as the atomic level splitting [22] 23].
Whereas in cavity QED it is forbidden by a “no-go theorem” [37, [38], the superradiant
QPT has recently been realized experimentally in a simulation of the DM with a
Bose-Einstein condensate in an optical cavity [24], with a subsequent observation of
spontaneous symmetry breaking by adiabatically crossing the critical point [26].

In this chapter we study a driven version of the DM in which we assume a time-
dependent atom-field coupling. In comparison to previous works which consider
non-adiabatic modulation of a single two-level system [39] [40, 41, 42] or an N-
atom system under adiabatic change of the parameters [14] [I7], here we address the
fundamental issue of the influence of non-adiabatic modulation on QPTs.

In the limit of weak driving strength we show that our driven DM exhibits a set of
new nonequilibrium normal-superradiant QPTs (QPT sidebands) when the driving
is near resonance with the excitation energies of the undriven system. The QPTs
are of second order and similar in kind to the original Hepp-Lieb transition [22].
We show that these nonequilibrium QPTs are not forbidden by the no-go theorem,
thus bringing the otherwise-forbidden Dicke-type QPT in the realm of observability
in cavity and circuit QED setups. Our analysis also allows us to go beyond this
perturbative regime and investigate the limit of strong driving. In this regime we
show that, in comparison with previous proposals for driven QPTs [I8], 19, 20],
the nature of criticality changes dramatically. We find a rich nonequilibrium phase
diagram replete with a host of macroscopically-distinct meta-stable phases and a
nonequilibrium first-order QPT with no analogues in the static case [43].

2.1. The driven Dicke model

Following Dicke [21], we describe an ensemble of IV identical, distinguishable two-
level atoms (level splitting wy) by means of collective operators J, = %Zf\il of,

where of are the Pauli matrices with o € {x,y,z}. These operators satisfy the

21
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2.1. The driven Dicke model

Figure 2.1.: Ensemble of two-level atoms interacting collectively with a single-mode
cavity field. The ground state of the atom is denoted by |g) and the
excited state by |e).

SU (2) algebra [ja, j]@i| = i6a57j7- The atomic ensemble interacts with a bosonic
mode of frequency w via a dipole interaction. With the atom-field coupling strength
time-dependent, we obtain the driven DM:
Ht) = wala+wyd +&(df+&) (J++j ) (2.1)
z \/N Y
and in the following we shall consider a monochromatic modulation with a static
contribution: A(t) = Ao+ A1 cos Q. In this chapter we consider Dicke states i.e., the
whole analysis is reduced to the Hilbert subspace characterized by a maximal total
angular momentum j = N/2 [23].
Even under the effect of driving, the Hamiltonian Eq. ({2.1)) has a conserved parity

Il = exp(in(ata + J. + j1)), (2.2)

such that [f[ (t),ﬂ] = 0 . Figure depicts a typical cavity QED setup, where
a cloud of two-level systems interacts with a single-mode cavity field via dipole

Interaction.

2.1.1. The superradiant QPT in the undriven Dicke model

The Dicke model was originally conceived to describe light-matter interactions in
equilibrium. In the absence of driving, i.e., when \; = 0, the Dicke model exhibits
a second-order QPT at the critical coupling A\§ = /wwy/2 from the normal phase
(Ao < A§)—which is characterized by microscopic excitations of the system, to a su-
perradiant phase (A\g > A§) characterized by macroscopic occupations of the bosonic
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mode as well as the atomic ensemble. In the case of a set of N incoherent atomic
emitters, the intensity of the emitted light is expected to be proportional to N, in
contrast, when the system enters into the superradiant phase, the intensity of the
emitted light scales as N2, which is a signature of collective coherent motion of the
light-matter system [22] 23].

In the thermodynamic limit N — oo the system is characterized by atom-field
collective excitations commonly referred to as the bosonic and the atomic branches
with energies 4 and e_ respectively [23]. When the system approaches the critical
coupling Ao — A{ there is a softening of the atomic branch, i.e., e — 0. Addition-
ally, both the scaled mean photon number as well as the mean energy per atom in
the ground state exhibit nonanalyticities in the second derivative after the atom-field
coupling Ay, which is a hallmark of a second-order QPT.

Despite the appealing nature of the Dicke model to describe light-matter interac-
tions and criticality in quantum optics, there is an assumption that is only justified
in the weak coupling limit. To derive the Dicke model, one usually neglects the
diamagnetic term of the light-matter interaction. This term is directly proportional
to the square of the atom-field coupling and inversely proportional to the atomic
level splitting wy. Rather recently, it has been proven a “no-go theorem” that forbids
the superradiant QPT to occur in cavity QED [37, B38]. Essentially, the argument
is based on the fact that the diamagnetic term prevents the existence of gapless
excitations above the ground state. Therefore, in the thermodynamic limit the sin-
gularities in the observables are avoided, as there is not crossing between the first
excited state and the ground state [3]. In contrast to the weak atom-field coupling
regime—where the system is in the unexcited phase, when the system is close to the
critical coupling, the diamagnetic term cannot be safely neglected.

Our approach is this chapter is to overcome the “no-go theorem” by considering
the effect of a nonadiabatic external control on the dynamics of the system. In this
case, however, the system is characterized by non-stationary states and the notion of
quantum phases that one has in equilibrium should be extended to nonequilibrium
conditions.

2.1.2. Effective bosonized Hamiltonian for the symmetric
phase

One can think about the superradiant QPT in terms of stability, i.e., when the
normal phase is unstable, the system exhibits a transition into a bistable configu-
ration, which corresponds to the superradiant phase. Such a description becomes
clearer in a mean-field description, from this perspective, the energy landscape has
a single minimum in the normal phase, and, at the critical coupling Aj, the sys-
tem experiences a bifurcation [23]. Motivated by the last discussion, let us begin
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our analysis by investigating the stability of the normal phase under driving. To
this end, we construct a normal-phase effective Hamiltonian in the same way as in
Ref. [23] for the undriven case: we make a Holstein-Primakoff representation of the
angular momentum algebra [44] in terms of bosonic operators b, bt

J. =blb— L (2.3)
J. =b" /N — bt
J_=+/N—=0bb b,

and take the thermodynamic limit, assuming that l;/ N — 0. The result is the driven
normal-phase Hamiltonian

. ~n A ~ Nwan ~
Hs(t) = wa'a + web'd + A(t)(a + a) (b’ + b) — TOL (2.4)
which describes fluctuations about the vacuum cavity state and an unexcited atomic
ensemble, i.e., the symmetric phase. Let us now introduce the quadrature operators
al+a . . jw

_ A
, D =14/ =(a" —a), 2.5

T =

and

bt + b Wt g
j = by, =14/ = (b' — b 2.6
1= =20 -, 26)

where (,p,) are quadratures of the cavity field, and (y,p,) the corresponding
quadratures of the atomic ensemble. In terms of the abstract coordinate repre-

sentation Eqs. (2.5)) and (2.6)), the Hamiltonian Eq. (2.4]) can be written as

1 1 .
Hg(t) = 5@3 + w3 + P+ Wiy’ + 2y/wwoedy — 3 (w+wo+ Nwy) 1.  (2.7)

In the Heisenberg picture, the equations of motion for the normal coordinate oper-
ators of this model, ¢+ (t) = (2(t) £ §(t))/V/2, read [45]

G- (1) + {gi + 2w cos Qt} G+(t) =0, (2.8)

with 4+ = vw? & 2w, the excitation energies of the undriven normal phase and
where we have set wy = w for simplicity. Equation (2.8) represents two uncoupled
Mathieu equations [46]. In classical dynamics, the Mathieu equation exhibits the
phenomenon of parametric resonance and has stable and unstable solutions whose
location is given by the Arnold tongues [46]. The manifestation of parametric reso-
nance in the quantum regime has also been studied in Ref. [47].
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2.1.3. Resonance conditions

Now let us discuss the stability of the normal phase based on the concept of para-
metric resonance. In our case, when both normal modes ¢, are stable, Hamilto-
nian I:Is(t) permits bound solutions, localized around unoccupied field and atomic
modes. Either scaled field occupation, 2(afa)/N, or scaled atomic occupation,
2(b'b) /N = 2(J.)/N + 1, may be taken as the order parameter for this system,
and here they are both zero (N — o0). When unstable, I:_fs(t) possesses only un-
bounded solutions and ceases to be a valid approximation to the full Hamiltonian
(admitting the possibility that the order-parameter becomes finite).

Figure depicts these stable zones as a function of the static parameters Ay and
w — the colored zones correspond to stability, white zones, instability. Without
driving, A\; = 0, the stability-instability transition corresponds to the standard DM
QPT along the line A\g = w/2 (on resonance). Increasing the driving strength A; has
two effects: it leads to a shift of this critical line—as a consequence of parametric
stabilization [46]—and more importantly, it opens up new zones of instability in
the normal phase. The precise locations of these zones can be obtained from the
known behavior of the Arnold tongues [46]. When they first appear, these zones are
located around the resonance between driving frequency and the undriven excitation
energies: 2e. = mf) with integer m > 0. A similar instability for m = 1 was briefly
discussed in the dispersive limit w > wy in Ref. [49]. For sufficiently small driving,
the width of the mth unstable zone scales like (2/)*™~1(\; w)™ [46, 48]. For large
A1 the new instability zones dominate the parameter space [Fig. [2.2(b)]. Just as the
change in stability of the undriven normal-phase effective Hamiltonian indicates the
occurrence of a QPT, we interpret the change in the stability of f{s(t) as ushering
the occurrence of a nonequilibrium QPT.

2.2. The rotating wave approximation and the
effective Hamiltonian approach

To obtain more information about the nonequilibrium QPTs and the unstable zones
of Fig. , we employ Floquet theory [50] and make use of the rotating wave approx-
imation (RWA), similar to that found in Refs. [51], 52]. Motivated by the fact that
for small static coupling Ao, the mth instability zone arises close to wy = w ~ m€)/2,
we perform a canonical transformation of Eq. (2.I), into the rotating frame

A~ A

Un(t) = exp | —iT(t)(a" + a)Jx} exp [—i&m(t)(&T& e (2.9)

where 6,,(t) = ™ and T(t) = \/%(%) sin Qt. In the rotating frame the dynamics

is governed by the Hamiltonian H,,(t) = Ul (£)HU,,(t), where H = H(t) — i2 is

25



2. AC-driven Quantum Phase Transitions in the Dicke model
2.2. The rotating wave approximation and the effective Hamiltonian approach

Figure 2.2.: Stability diagram of the nonequilibrium normal phase on resonance
w = wp for (a) weak driving, A\;/2 = 0.15, and (b) strong driving,
A1/ = 0.4. The colored zones correspond to stability, white zones,
instability. In the undriven case, the stable and unstable zones are
separated by the line A = w/2 on resonance (dotted red line). For
weak driving instability zones open up around the resonance conditions
26, = mf) for m = 1,2, 3 (dotted black lines), which grow and begin to
dominate for large driving.
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the Floquet Hamiltonian [50]. The explicit form of the Hamiltonian in the rotating
frame is

H,@#) = 6™a'a+ {wycos [T (¢) (afe®® 4 de_ie’"(t))} —mQ/2} J.

n Ao (dT Gom® 4 efiem(t)) ( Joelm® 4 j efiem(t)>

VN

_%T(t) (alein( — gemifm(®) ( Joeom® 4 j_e—wm@))
A . o . 2
+% [T(t) <J+elem(t) + J_e—lem@)ﬂ

—i% sin [T(2) (ale?® + e 0m1)] (Lei@m(t) - j_e—i"m(ﬂ) (2.10)

where 6™ = w—mf)/2. We then rewrite this equation using the operator identities

A

0[O (1) sin Q] = To[On(1)] + 2 i Ton[Om ()] cos(2n02t),
sin[O,, (1) sin Q] = 2 i Tons1[Om(t)] sin[(2n + 1)Q1], (2.11)

where J,,[z] denotes the Bessel function of integer order m [48], and the time-
dependent operator argument is given by O,,(t) = \/iﬁ (&) (afelf) + ge=10m®).
Considering the power series expansion of the Bessel functions, it is possible to

write the Hamiltonian Eq. (2.10)) in the general form

H,(t)= > himen, (2.12)

n=—oo

In the rotating frame we are able to explicitly describe multiphoton processes
that arise as a consequence of the interplay between the quantum cavity field and
the classical external driving [50]. To perform the RWA [42], 51|, 52], we neglect the
contributions due to virtual processes that occur faster than the characteristic time
scales of the system (see Appendix. Therefore, we consider only the zero frequency
component H,,(t) ~ fzém) of the Hamiltonian Eq. (2.12)). For example, in the case
of the m = 0 resonance, a general condition of RWA validity in the strong driving
regime should be satisfied for all [n| > 0: Ao, wollT[Om(0)]|l, w||Tn[Om(0)]]| < €,
where ||| is an operator norm. In contrast, in the weak driving regime \;/Q < 1, we
require \g, w, wp <K 2. The norm of the Bessel function is always bounded, therefore
we can summarize the conditions for weak and strong driving as A\g, w, wy < €.
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2.2.1. Sidebands QPT

We focus here on the weak driving regime, and obtain the effective Hamiltonian
around a quantum resonance for m = 0,1, 2.

In the weak driving regime, the approximation to Hamiltonian fzéo) up to second
order in A\ /Q is

. DY L
p x 6Oata o+ Sl +a) (1 + )

VN

2 2 72

—% <%> (@t + @)% ], + 2w <%> % (2.13)
Therefore we obtain a model similar to the undriven DM, that can be analyzed in
the same way [23]. This analysis reveals a second-order QPT along the critical line
Ao = w/2+w(A\/N)? (w = wy), which gives the first contribution to the shift of the
DM phase boundary observed in Fig[2.2] For the higher resonances, m > 0, exact
expressions for ﬁ[()m) are difficult to obtain. However, it is possible to write down
explicit expansions up to any finite order in A\;/Q2. To second order, the m = 1
effective Hamiltonian reads

Y = sWata+ M,

M\ i A1

The region of validity of this Hamiltonian is w ~ wy and §(), 5[()1), Ao, (M/Q)? <
w,wy. The first two lines of this Hamiltonian represent a model similar to the
original Dicke model in which energy conserving and nonconserving parts of the
interaction have independent coupling parameters (Ao and \; /2, respectively) similar
to [53]. At second order in A;/Q, new effective interactions arise: the terms on
the third line of Eq. can be interpreted as an effective dispersive atom-field
interaction and a dipole-dipole interaction between the atoms. Analytically, this
Hamiltonian may again be treated in the same way as the undriven DM, from which
we observe a second-order superradiant transition occurring at the critical lines
Ao = —A1/2 4 [6M 4+ w(A/Q)?|, and similarly for the m = 2 case

. - A - 5
MO §@ata 5@ 4 20 (aTJ, vy )
0 0 /N +
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A similar analysis for the m = 2 case yields a further second-order QPT along the
lines at Ag = 6 4+ £(X\;/Q)? and Ay = —0@ — 22()\;/Q)%. This analysis can be
repeated for the all values of m.

To study the quantum criticality described by the effective Hamiltonian fL(()m) we
consider the Holstein-Primakoff representation of the angular momentum algebra
Eq. . In this representation, the driven Dicke Hamiltonian is written in terms
of two bosonic modes @ and b. We introduce macroscopic dlsplacements XN
Y'\/N/2 of order v/N for the bosonic & and for the atomic b modes, respec‘mvely
These macroscopic displacements are defined by

N . N N .
i=exX\/[51,  b=d¥Yy/L (2.16)

In order to describe the QPT, we derive effective quadratic bosonic Hamiltonians
for both the normal phase and the superradiant phase [23]. In the thermodynamic

limit N — oo, we perform a series expansion of the Hamiltonian iz(()m) in powers of
N/2

A ~ A A N - ~ A~ N ~
BV =BGV d L d 4[5 e d e d + 5 BV OGYL (247)

where lAz(Qm) is the desired effective quadratic bosonic Hamiltonian (depending on the

7 (m)

choice of the macroscopic displacements Eq. (2.16)), h; ~ contains linear bosonic

terms, and E(Gm) (X,Y) is the lowest quasienergy (LQE). In this thesis, we consider
an alternative way to describe the quantum phases of the system based on the de-
scription of the stable energy configurations of the LQE landscape F, (m)( Y). Such
a geometrlcal description contains all the important information, because the linear
term h ) of Hamiltonian expansion Eq. ([2.17) vanishes for macroscopic displace-
ments located at a critical point of the LQE, as the coefficients of the expansion are
proportional to the first derivatives of E(Gm) (X,Y) after the displacements X and
Y. Correspondingly, the quadratic term ﬁgn) contains the geometric information of
the principal curvatures in the neighborhood of a minimum as it contains second
derivatives of Egn)(X ,Y') after the macroscopic displacements. Interestingly, such
principal curvatures are nothing but the energies of collective light-matter excita-
tions characterizing the QPT. Therefore, when a stable configuration of the LQE
landscape exhibits a transition into a saddle point, there is a softening of a collec-
tive excitation, that is related—from the geometrical point of view, to an infinite
curvature radius in the neighborhood of the critical point.

For small driving, thus, Fig. shows that the original DM QPT is joined by a
set of new nonequilibrium QPT sidebands, the visible number of which (i.e. have
significant width) increases with increasing driving strength. Each of these nonequi-
librium QPTs is similar to the original transition in many respects; the transitions
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are of the second-order, mean-field type, with the same critical exponents as in
undriven DM [23].

2.2.2. Circumvention of the “no-go theorem” via side-bands
QPT

One of the main consequences of the sidebands QPT consists in the fact, that a
modulation of the coupling strength allows to effectively realize the Dicke QPT
in a non-equilibrium setting, which is not forbidden by the no-go theorem. An
important difference from superradiance in equilibrium setups is that, whereas the
original DM QPT occurs for a static coupling Ay ~ w/2, the sideband QPTs occur for
a coupling \g ~ 0™ < w, wy with the driving strength also of the same magnitude.
In contrast to the static case, since the detuning 6™ can be made arbitrarily small,
the diamagnetic term Hyg [’\( e (a' + a)? arising from the square of the vector
potential can be neglected even for a > 1. Therefore, the sideband QPTs are
not prohibited by the no-go theorem [37, [38] and should thus be observable in e.g.
cavity- and circuit- QED experiments. We remark that this is different from previous
proposals, e.g. [54, 55], where the no-go theorem is overcome by considering effective
degrees of freedom not bound by the Thomas-Reiche-Kuhn sum rule [37, 3§].

2.3. The effective Hamiltonian for the m = 0 case

We focus here on a particular case that admits a complete analytical description
both in the weak coupling as well as in the strong coupling hmlt Therefore in this
section we address the expansion of the effective Hamiltonian h

The full fundamental m = 0 effective Hamiltonian derived Wlth this approach
reads:

“ 2\ A
hY = 5(0)€ﬂd+(5(0)j< L (at+ A)JZ
0 0 Jo| qum @+

)\0 a ~ 2 3 )\1 2‘]3

In the thermodynamic limit, N — 0o, we obtain a quadratic effective Hamiltonian
with leading term 1 NES(X,Y) with

AN X
EV(X)Y) = wX2+w0(Y2—1)j0< L )

V20

fj\_OXY\/Q—Y2+w(?2)Y2(2—Y2). (2.19)
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0.00 0.05 0.10 0.15 0.20
2h0/Q

Figure 2.3.: Phase diagram as a function of static coupling (A¢) and driving am-

plitude (\;) of effective Hamiltonian iz(()o), which describes the driven
DM near the m = 0 resonance. The labels indicate the number of local
minima of the ground-state energy landscape E(GO ) in the correspond-
ing zone. The normal phase is the region where there is just a single
minimum ( X = Y = 0). The superradiant phase is a region with
two global minima (nonzero order parameter). The boundary between
these two regions marks a second-order QPT (dotted red curve). Out-
side these regions, the energy surface has an odd number > 3 of total
minima, sometimes with a single global minima, sometimes with two.
The boundary between these possibilities is a first-order QPT (solid
blue line). The parameters are w/ = wy/Q = 0.05.
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Figure 2.4.: Contours of the ground-state energy landscape Eg) ) (X,Y) for a fixed
value of the static coupling (2)\g/Q2 = 0.195) and increasing driving
amplitudes (A;) represented by dashed straight lines in Fig. [2.3, The
four panels show (a) the superradiant phase with two global minima
(A1 = 1.0), (b) the emergence of a local minimum at the origin (A, =
2.5), (c) multiple minima, but still two global minima (A\; = 4.6), and
(d) a single global minima at the origin plus many further local minima
(A1 = 5.6). Panels (c) and (d) are separated by the first-order phase
transition. The parameters are w/{2 = wy /2 = 0.05.
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Figure 2.5.: Sections of the ground-state energy landscape Eg) )(X ,Y) for a fixed
value of the static coupling (2X¢/€2 = 0.195) and increasing driving am-
plitudes (A1) represented by dashed straight lines in Fig. m This sec-
tions correspond to the function Eg) J(X[Y],Y), where X[Y] is a line in
the order-parameter space crossing all the critical points of the ground-
state energy. The four panels show (a) the superradiant phase with two
global minima, (b) the emergence of a local minimum at the origin, (c)
multiple minima, but still two global minima, and (d) a single global
minima at the origin plus many further local minima. Panels (c¢) and
(d) are separated by the first-order phase transition. The parameters
are w/ = wy/ = 0.05.
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The global minima of Eg] ) (X,Y) give the ground-state energy of iz(()o) and either X
or Y may be taken as order-parameter. In the undriven case, the energy surface
Eg) ) (X,Y) exhibits a bifurcation from single to double minima at the QPT. In
the driven case, while retaining this bifurcation, Eg] ) (X,Y) also develops multiple
additional minima, with the general trend that the number of minima increases
with driving strength (see Fig. . Figure shows a sequence of contours of
the energy surface for increasing driving strength with static coupling Ay > A, and
Fig. the corresponding sequence of cuts through the energy surface. As is clear
from this sequence, at a certain value of A\;, the potential switches from having two
global minima to just a single one at the origin. At the boundary between these
behaviors, the potential exhibits three global minima where normal-phase-like (with
X =Y = 0) and superradiant-like (with | X, |Y| > 0) solutions coexist. The system
is therefore seen to exhibit a first-order QPT [4] as a function of driving strength, the
locatlon of which is shown in Fig. 2.3 Furthermore we interpret the local minima

of E (X Y') as metastable phases of h . These metastable states are related to
the phenomenon of parametric stablhzatlon [46]. Since these are separated from
the global minima by macroscopic displacements, we expect transitions between
different metastable states to be suppressed, such that the corresponding values of
the order-parameters are observable. This possibility is reinforced when one recalls
that Eq. actually describes the lowest quasienergy, which does not have the
same thermodynamic significance as the lowest actual energy.

In summary, then, we have discussed a driven Dicke model through the use of a
series of effective Hamiltonians obtained under the RWA. For weak driving the sys-
tem exhibits a set of QPT side-bands for which the no-go theorem is circumvented.
At strong driving the long-time dynamics of the system in the m = 0 resonance case
is governed by the effective Hamiltonian il(()o), which exhibits rich structure with a
first-order quantum phase transition and metastable states. We anticipate that the
higher resonances show similar behavior. Our methodology should be generalizable
to investigate similar regimes for other phase transitions.

2.4. Experimental realization

In this section we discuss feasible experimental realizations of our model. In the
context of cavity QED, it has been shown experimentally that it is possible to pro-
duce a nonadiabatic optically-induced modulation of the atom-field coupling, while
maintaining the atomic level splitting and the cavity mode frequency constant. This
modulation of the light-matter coupling was obtained by means of a quantum well
waveguide structure. Such a setup allows to switch on the light-matter interaction
within less than one cycle of light [56]. Essentially, the two-level system corresponds
to two subbands of the conduction band in the quantum well. In this scenario, the
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strength of the atom-field coupling is proportional to the electron density in the
lowest subband, therefore a modulation of the coupling is possible by varying the
density in time. For low electron densities, the ratio between the coupling Ay and the
atomic excitation energy wy has order A\g/wy =~ 1079 in this system, which is far too
small to observe the undriven Dicke QPT. Furthermore, the no-go theorem should
apply to this setup and, even if the coupling strength could be increased sufficiently,
no QPT would be observed. This therefore promises to be a good candidate system
where driving can induce our proposed QPT sidebands with critical behavior for
weak coupling and weak driving A\g, Ay < w, wp, €.

Another possible experimental realization of our model where circumvention of the
no-go theorem might be critical is circuit QED. The implementation may consist of
several Cooper pair quantum boxes embedded in a microwave resonator [39] 57].

Whilst circumvention of the no-go theorem is an important consequence of the
QPT sidebands, they are interesting in their own right. Note that although the
sideband Hamiltonians are similar to the original DM, there are differences (e.g.
effective dipole-dipole interaction in Egs. (2.13), and (2.15)) and an experi-
mental investigation of these effects would be interesting. In this context, it should
be possible to realize these sidebands in a Bose-Einstein condensate coupled to an
optical cavity setup as in the Esslinger experiment [24], 25, 26]. In this setup, the
effective atom-field coupling could be controlled externally by varying the intensity
of the pump laser as a function of time about a static value. The sideband QPTs
should then be observable in the limit weak pump laser intensities and nonadiabatic
modulation.
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3. AC-driven Quantum Phase
Transitions in the
Lipkin-Meshkov-Glick Model

The Lipkin-Meshkov-Glick (LMG) model is nowdays a classic model of quantum
criticality. Originally, the LMG model was proposed in 1965 in the context of
nuclear physics to describe the dynamics of N interacting fermions distributed in
two N-fold degenerate levels [58]. Despite of the original motivation of the Lipkin-
Meshkov-Glick (LMG) model as a toy model to test approximation methods in
manybody physics, currently it constitutes an active field of research and a natural
scenario to study the relation between QPTs and spin squeezing [59] and quantum
Fisher information as a resource for high-precision quantum estimation [60].

In this chapter we study the LMG model under monochromatic modulation of the
interparticle interaction. Previous works have considered dynamical properties of
the LMG model under an adiabatic change of parameters of the system across the
quantum critical point [61], the effect of fast and slow quenches of the transverse
field [62], and a driven uniaxial LMG model [63], 64, [65]. Here, we address the
fundamental issue of driving-induced QPTs in the LMG model.

By using an external driving, we show how one can dramatically change the orig-
inal monostable-bistable transition in the undriven system to obtain a rich zoology
of novel quantum phases that are absent in equilibrium. We show that for weak
driving, the quasienergy landscape still resembles the original transition. Interest-
ingly, however, when the driving amplitude increases, an enormous number of stable
configurations appear, which correspond to local minima of the quasienergy land-
scape [66]. This gives rise to a novel route of experimental studies exploring the
characteristics of criticality under nonequilibrium conditions.

3.1. The driven LMG model

The driven LMG model describes N interacting two-level systems in a transverse
local field. The model Hamiltonian reads

H(t) = —hJ, — — (7“(75)]2 + yyj;) , (3.1)
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where J, = %Zfil o denote collective angular momentum operators and of* are
the Pauli matrices with o € {x,y,z}. These operators satisfy the SU (2) algebra

[ja, jg] = ieagvjﬁ,. In the following we shall consider h < 0, and a monochromatic

modulation of the interparticle interaction with a static contribution: v*(t) = & +
v{ cos Q.

In this chapter we consider Dicke states i.e., the whole analysis is reduced to the
Hilbert subspace characterized by a maximal total angular momentum j = N/2 [23].
Associated with the Hamiltonian Eq. is a conserved parity

~ A ~

II = exp(in(J, + j1)), (3.2)

such that [H(t),1I] = 0.

3.1.1. The QPT in the undriven LMG model

In the case of the undriven LMG model (7§ = 0), an analytic study of the ground-
state energy surface in the thermodynamic limit N — oo leads to a phase diagram
in the (7§, ~Y)-plane, which is divided into four regions depending on the geometry
of the surface. As a consequence of the parity symmetry Eq. of the LMG
Hamiltonian, it is sufficient to consider the region with |vJ| < ~¥. This analysis
shows that in the region |7J| < ¥ < —h the ground-state energy landscape has a
single global minimum, whereas in the regions with |y§| < —h < 4¥ the surface has
two global minima. By crossing the critical line v¥ = —h, the single global minimum
splits into two global minima and the system exhibits a continuous transition from
a symmetric state to a symmetry-broken state, i.e., a second-order QPT. Figure
depicts the phase diagram of the undriven LMG model.

A typical energy surface in zone I displays one minimum and one maximum,
which signal the lower and upper edges of the spectrum. In zone II the energy
surface has two absolute minima (corresponding to the broken-phase degenerate
ground states), a saddle point, and one maximum (the upper spectrum edge). In
zone III the energy surface has two absolute minima, two saddle points, and two
absolute maxima corresponding to a degenerate upper state. Finally, in zone IV the
surface contains two minima, two saddle points, a local maximum and an absolute
maximum signaling the upper bound of the spectrum [67].

In the context of nuclear physics, the undriven version of the LMG model allows to
describe a transition of the nucleus from a spherically symmetric to a non-spherically
symmetric shape [58]. This transition can be understood as a continuous bifurcation
in the ground-state energy per nucleon, where a single minimum (corresponding
to the symmetric configuration) splits into two degenerate minima of the energy
(corresponding to the nonsymmetric phase).
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Figure 3.1.: Phase diagram of QPT in the undriven Lipkin-Meshkov-Glick model
We consider h/|h| = —1. In zone I the energy surface has a maximum
and a minimum, in zone II it has two minima, one saddle point and a
maximum. Correspondingly, the surface has two maxima, two minima
and two saddle points in zones III and IV.
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3.1.2. Effective bosonized Hamiltonian for the symmetric
phase

We begin our analysis by investigating the stability of the symmetric phase under
the effect of an external driving. To this end, we construct a symmetric phase
effective Hamiltonian in the same way as in Ref. [23]. We make a Holstein-Primakoff
representation of the angular momentum algebra [44] in terms of bosonic operators
I;, b' as in Eq. , and take the thermodynamic limit N — oo, assuming ZS/N — 0.
The result is a bosonized Hamiltonian for the symmetric phase which reads

X US| A s Nh .
Hs(t) = —h b'b — ZWﬂ‘(zﬁ)(bT +0)% —4Y(b" — b)%] + 7]1, (3.3)

which resemble the bosonized Hamiltonian for the undriven LMG model [68] [69], in
this case, however, the Hamiltonian is characterized by a time dependent squeezing
parameter [59]. By introducing the coordinate operators

- \/—i (hfvy)(iﬁ +), (3.4)

ﬁ:i\/—g (1+%y>(13*—z3), (3.5)

we obtain the Hamiltonian of a parametrically-driven harmonic oscillator [46], [70),
71, 72, [73]

~ 21 Y Nh -
Hs(t) = % 5 (62 + hny <1 + %) cos Qt) G + - L (3.6)

- —h\/(l + %y) (1 + %0) (3.7)

is the characteristic energy scale of the system in the absence of driving (7§ = 0).
The undriven system exhibits a critical behavior which is related to softening of
the collective excitation spectrum, i.e., when the system is close to the critical point
(7¥ — —h), the system exhibits a gapless excitation above the ground state (e — 0).
Therefore, in the region |[y§| < —h < 7% the symmetric phase becomes unstable.
Interestingly, in the driven system the situation can be highly nontrivial as a con-
sequence of mechanisms such as parametric resonance and parametric stabilization,
which are characteristic of the parametrically-driven harmonic oscillator [43], 46]. As
a consequence, one can tune up conveniently the parameters close to resonance in
order to manipulate the stability of the system, i.e., to produce a change of phase
for parameters which are far away from the critical point of the undriven system.

where
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3.1.3. Resonance conditions

In the thermodynamic limit, the undriven LMG model is characterized by a single
collective excitation with energy e. Under the effect of an external driving, the
possibility of multiphotonic resonances arises [42} [50]. In the semiclassical theory of
light-matter interaction, we can interpret a Floquet state as a light-matter quantum
state containing a definite, though very large, number of photons [50]. Multiple
transitions between quantum states of the system that are not directly coupled by
the interaction can occur by means of intermediate states with a different number
of photons [50] 52]. In particular, m-photon transitions occur when the condition

2e = mf), (3.8)

with integer m is satisfied. For a parametric oscillator with fundamental frequency e,
Eq. is the usual resonance condition [46]. In Floquet theory, Eq. implies
the existence of a crossing between the energy levels when the energy spectrum of
the undriven system is folded into the first Brillouin zone (FBZ) in quasienergy
space [50]. We focus on the parameter regime 6™ 2 4% < Q, where the detuning
s = —p — mTQ describes how far the system is from resonance, and the resonance
condition Eq. reads

_ mf)
N
Such a resonance condition will be used in the next section to perform a description
of the system based on an effective time-independent Hamiltonian which is valid for
parameters close to a multiphotonic resonance.

—h (3.9)

3.2. The rotating wave approximation and the
effective Hamiltonian approach

As we are interested in the asymptotic quantum dynamics and the description of
critical signatures, it is convenient to describe the dynamics of the system in a rotat-
ing frame. In the limit 6™, 4% 4% < Q, it is possible to neglect the fast oscillations
in the rotating frame, and a treatment of the system based on the description for
time-independent systems is possible via an approximate effective Hamiltonian. Mo-
tivated by the m-photon resonance condition Eq. , we perform a study of the
system based on the RWA [43], 52}, [73]. Let us perform an unitary transformation of
Hamiltonian Eq. into a convenient rotating frame via the unitary operator

N

U (t) = exp [—1@@)@3} exp [—i@m(t)jz} : (3.10)
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where O() = 10 and ¢,,(t) = ™2 In the rotating frame the dynamics is

governed by the Hamiltonian H,,(t) = Ul (£)HU,,(t), where H = H(t) — i9 is the
Floquet Hamiltonian [50]. The explicit form of this operator is given by

Ha(t) = —g {[jz AT (H]O™ () + h.c} - mTsz
+% {[J; FAT()2Om(t) + h.c}
—o {2 AP ) - AT (3.11)

We consider here the notation

or = 3 a1 Lehsto + ] 312)
l=—00

Op() = 3 i | s+ 1) 313)
l=—00

where J;(z) is the Ith-order Bessel function [48], and

AT(t) = =, €08 Oy (t) — T sin O, (1), (3.14)
ADN(t) = J, cos O, () — J,y sin O,y (1). (3.15)

The Hamiltonian Eq. (3.11)) can be written in the form

H,(t)= Y hWen, (3.16)

n=—0oo

In analogy with the standard RWA of quantum optics, we obtain an approximate
Hamiltonian to describe the mth resonance by neglecting all the terms in H,,(t
with oscillatory time-dependence: Hm(t) ~ Bém), as we describe in Appendix
The effective Hamiltonian iAz(()m) governs the dynamics in the rotating frame.

Next we perform a bosonization procedure of fL[()m) via the Holstein-Primakoff
representation Eq. . In the bosonized version, the effective Hamiltonian is
written in terms of the bosonic mode b. To investigate the criticality in the system
we introduce a complex macroscopic displacement of order v/N for the bosonic
operator as follows

b=¢+aVNI, (3.17)

where o = (Q 4+ iP) (Q and P are dimensionless parameters) and ¢ is a bosonic
operator describing quantum fluctuations in the system. In the thermodynamic
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Figure 3.2.: Phase diagram of the nonequilibrium QPT in the Lipkin-Meshkov-
Glick model. The number of local minima of the quasienergy surface
Eg) )(Q, P) in the colored zones is indicated by the labels. (a) Depicts
the phase diagram as a function of 4¥ and the driving amplitude ~{ for
Y5 /Ih] = 0.5, and (b) as a function of ~§ and 7 for 4¥/|h| = 2. The
dashed red line in (a) resembles the second-order QPT in the undriven
LMG model that occurs at v¥/|h| = 1, in the driven case, however, this
line separates regions with even and odd number of minima. The dashed
black lines in (a) and (b) depict the transition of the symmetric phase
(Q, P) = (0,0) from a saddle point to a local maximum, and correspond
to the contour Ay = 0. We consider the parameters ©/|h| = 40 and
h/lh| = —1.

limit N — oo, we perform a series expansion of the effective Hamiltonian in powers
of V' N leading to

S = B (e, ¢y + VN M (e et + NESY(Q, P, (3.18)

where ﬁggm)(é, ¢') is a quadratic bosonic Hamiltonian (depending on the choice of the

macroscopic displacements Eq. (3.17))), iL(Lm) (¢,¢") contains linear bosonic terms,
and ESV(Q, P) is the LQE,
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3.3. The effective Hamiltonian for the m = 0 case

Instead of performing an abstract general theory for the effective Hamiltonian related
to general m-photon resonances, we focus here on an particular case that contains
the more relevant information, i.e., we consider the case m = 0. In this case, the
effective Hamiltonian reads

. h, o~ - W oo 0k : 4ry
RO — I — L (9 1 L (J. - 1 1 h.
0 (Jz iJ,)Jo {NQ( Jy + )} +4N(J 1J) Jo {NQ(J + )} + c}
29 29 Y 32
2N<J + I =S (3.19)

In this section, we focus on the thermodynamic limit N — oo, where we expand the
Holstein-Primakoff representation Eq.(2.3]) with respect to the complex macroscopic
displacement Eq. (3.17). We next consider the scaled angular momentum operators

N

Xi=5=Qy1- a)?, (3.20)
X, = Ny = P\/1—|af, (3.21)
N S 1

Xy=1 = (|a|2 — 5) : (3.22)

that satisfy [XZ,X ;] = 0 in the thermodynamic limit. Therefore, in this limit, the
scaled angular momentum operators become c-number variables. Egs. ,
and describe a mapping from the coordinates (@, P) onto the Bloch sphere,
because the norm of the vector R = (X, Xs, X3) has constant length ||R| = 1/2.
From Egs. and it follows that |a|*> < 1. Furthermore, one can see
from these relatlons that all points (@, P) with |a|* = 1 correspond to X3 = 1/2.
Therefore, all points of the boundary |a| = 1 are mapped into the north pole of the
Bloch sphere. For the interior points |a|® < 1, the transformation is bijective, e.g.,
the origin (@, P) = (0,0) is mapped into the south pole X3 = —1/2.

By replacing Egs. ,, and into the effective Hamiltonian Eq.
(3.19) we obtain the LQE for the m = 0 case

ES(Q P)=h (| t-3) % [PHay- }
g (W—%) - (1= 1al) | 7 [ @yt ol

“3 | (laf = 3) + -ty P - -l @ a2
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In the undriven case, a classification of the quantum phases of the LMG Hamilto-
nian is usually performed by studying the global minima of the energy landscape
[67]. However, in this work we interpret the local minima of the LQE as metastable
phases of the driven system. These metastable states are related to the phenomenon
of parametric stabilization [46]. Since these are separated from the global minima
by macroscopic displacements, we expect transitions to be suppressed, such that the
corresponding values of the order parameters are observable.  This possibility is
reinforced when one recalls that Eg) )(Q, P) does not have the same thermodynamic
significance as the lowest actual energy. Therefore, in this work we consider the num-
ber of minima of the LQE landscape as a criterion to establish a new phase diagram.
A related work perform a quasienergy description of the Jaynes-Cummings model,
where states localized at the bottom of the quasienergy landscape are squeezed [74].
Furthermore, in a driven Duffing oscillator, the multiphoton Rabi transitions and
the relaxational transitions can be interpreted by means of quasienergy landscape
[75].

Fig[3.2] depicts the phase diagram as a function of 7¥,~¢ and ~{. In these phase
diagrams, we see many regions corresponding to different number of minima of the
LQE landscape. Additionally, the phase diagrams show the appearance of many
novel metastable phases, which are separated from each other by boundary lines,
whose crossings correspond to nonequilibrium multicritical points. By crossing the
line v¥ = —h in Figl3.2] (a), the single global minimum at (@, P) = (0, 0) splits into
two macroscopically separated global minima thus resembling the second order QPT
known from the time-independent model. Interestingly, regions with even and odd
number of minima are characterized by the existence of two and one global minima
respectively. We can study the stability of the global minimum at (@, P) = (0,0)
analytically by computing the Jacobian-matrix at the origin of the LQE landscape
and its eigenvalues

A =—2(h+4Y), (3.24)

N 2
Ao = —2h — 292 — (h + ") (%) . (3.25)

Both eigenvalues are positive in the region v, < —h (the contours A\; = 0 and
Ay = 0 are depicted as red and black dashed lines respectively in Figl3.2)). In the

2h+27%

region v, > —h and 7§ < Q (7h77y

> (region between the dashed curves in Fig{3.2

(a)), A is negative and A, is positive. Furthermore \; and A\, are negative for

V> (2_}?_2::5 ), and therefore, by crossing the curve Ay = 0, the saddle point

at the origin becomes a local maximum. Consequently, in the region 7, > —h the
single central minimum splits up in two global minima. The phase diagram depicted
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Figure 3.3.: Lowest quasienergy landscape for the parameters ﬁ(h,’yg,'yf,fyy) =

(—1,—1,210,2). In the undriven system, these parameters correspond
to the symmetry-broken phase. The quantum evolution for N = 100
particles within one period is calculated when the system is initialized
in a spin coherent state. The green line on the surface depicts the evo-
lution of an initial wave packet centered at minima B and the red line
shows the corresponding evolution for a wave packet initially centered
at A. We consider the parameters §2/|h| = 40 and h/|h| = —1.
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Figure 3.4.: Quantum evolution of the observables for finite size N = 100 and pa-

rameters ‘}l—‘(h,fyg,”yf,’yy) = (—1,-1,210,2). The expectation values

(J.)/4,(J,) /7 and (J.)/j are depicted by the orange, cyan and ma-
genta curves respectively. (a) Depicts the quantum evolution within
one period and (b) depicts the stroboscopic dynamics when the system
is initialized in a wave packet centered at the minimum A depicted in
Fig. [3.3] Correspondingly, (c¢) and (d) depict the inter-period and stro-
boscopic evolution, respectively, when the system is initialized in a wave
packet centered at the minimum B depicted in Fig. We consider
the parameters Q/|h| = 40, h/|h| = —1.
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in Fig (b) is characterized by A\; < 0, and therefore, the dashed line corresponds
to the boundary between the regions below and above the level curve Ay = 0, where
the origin is a saddle point and a maximum respectively.

An example for the LQE is given in Fig. [3.3] where the parameters are chosen in
such a way that the undriven system (y{ = 0) is in the symmetry-broken phase. As
the LQE corresponds to the ground state energy in the undriven case, it exhibits
two global minima corresponding to macroscopically separated states degenerate in
energy. In the driven system, apart from the two global minima characteristic of
the undriven system (in Fig. denoted with A), new characteristics of the LQE
landscape appear, e.g. two local minima (denoted with B). These new local minima
are strongly related to the quantum evolution of the system, as we describe in the
next section.

3.4. Quantum evolution

In this section we investigate the quantum evolution when the system is initially
prepared in a spin coherent state centered at a local minimum of the LQE surface.
The spin coherent states are characterized by a minimum uncertainty and are the
closest quantum states to a classical angular momentum state [76]. To describe
geometrically the quantum evolution, we parametrize the Bloch sphere using spher-
ical coordinates and express the angular momentum components in terms of the
azimuthal (¢) and polar (0) angles as follows:

1
X, = 551119008 o, (3.26)
1
Xy = ) sin 6 sin ¢, (3.27)
1
X3 = 35 cos 6. (3.28)

By replacing this set of equations into Eqgs. (3.20)-(3.22) we find a relation between
the (6, ¢) and (@, P) coordinate systems

= — arccos [2 (Q* + P?) — 1], (3.29)
Sii%) JI—o =P (3.30)

With the angular coordinates ¢ and 6, we can represent the spin coherent state |¢, 0)
by using

¢ = arccos

[6.0) = (L+|7*) 7 explrJi] 17, =) (3.31)
with 7 = e7 tan g. This procedure describes a mapping from a point of the LQE
surface onto the set of spin coherent states.
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To study the quantum evolution we consider a system consisting of N = 100
particles. For a finite size N, the numerical problem consists in the solution of
2N +1 coupled ordinary differential equations. After the numerical integration of the
Schrédinger equation, we construct the evolution operator U (t,0), which allows us to
calculate the state of the system at any time ¢ > 0: |¥,t) = U(t,0) |¢, 0), providing
that we prepare initially the system in a spin coherent state |¥,0) = |¢, ). We now
proceed to calculate the normalized expectation values of the spin components in
the state |V, ¢). Fig. |3.4] (a) depicts the continuous time evolution within one period
of the driving T' = 27/ of an initial wave packet centered at the minimum A in
Fig. . Similarly, Fig. [3.4] (¢) shows the inter-period dynamics when the initial
wave packet is centered at the minimum B in Fig. [3.3]

To obtain a better geometrical picture of the quantum evolution we represent the
mean values of the angular momentum components by means of the coordinates
() and P. Therefore, we project the expectation values onto the Bloch sphere by
calculating the angles ¢ and 6 and then solving Eqgs. (3.29) and (3.30)) for @ and P.
The result is shown in Fig. for N = 100 particles, where the time evolution for
initial wave packets centered in minima A and B is depicted by the red and green
curves, respectively. The trajectory initialized in A is strongly trapped within the
minimum, whereas the other trajectory exhibits higher oscillations around the initial
state. For finite size N > 1 the trajectories take place approximately over the surface
of the LQE landscape, i.e., the mean value of the spin evolves in average along points
with equal values of Eg) ). This behavior is connected to the fact that the eigenvalues
of the effective Hamiltonian—from which the LQE is derived, correspond to the
quasienergies of the system and the average value of the quasienergy is conserved
in a time-periodic system. The state in the laboratory frame |V, ) and the state in
the rotating frame |¥,,,t) — in which the LQE is derived, are connected via

|\Ijvt> = Um(t)|\ym7t> (332)
~ U, (t)e =), 0), (3.33)

where U,q(t,0) & &¢=ih™t denote the propagator in the rotating frame and |¥,,,0) =
|W,0) as a consequence of Eq. . Furthermore, the propagators in the labora-
tory and rotating frame are related by U(t,0) ~ Um(t)e*if‘ém)t. Additionally, there
is a very interesting relation between the stroboscopic quantum evolution and the
parity operator Eq. that can be established using the relation

R . N\17%
Un(t,) = [H exp (1%)} ) (3.34)
2rm

for t, = =5 with integer 7. As a consequence of this, for m = 0 we have ﬁm(tr) = fl,
which implies that the states in the laboratory frame and in the rotating frame are
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identical for these times. Thus, the stroboscopic time evolution is governed entirely
by ﬁ(()o) (see Appendix . The stroboscopic long-time evolution of the observables
is displayed in Fig. (b) Here, the quantum evolution is strongly trapped in
the neighborhood of the minimum A in Fig. [3.3] A similar situation occurs in
Fig. [3.4(d) for a wave packet initially centered at the minimum B in Fig. [3.3
By calculating the quantum evolution with different system sizes, one finds that
the quantum fluctuations of the trajectories decrease with number of particles, and
therefore, in the thermodynamic limit, the time evolution has to be constrained to
the LQE landscape. Because the time evolution is connected with the geometrical
features of the LQE landscape, it is justified to use it as a background to define the
existence of new metastable phases.

3.5. Experimental realization

Recently, the uniaxial LMG model has been realized experimentally by using a spinor
Bose-FEinstein condensate, where the inter-particle interaction can be controlled by
means of Fechbach resonances [77]. Rather recently, appealing experimental real-
izations of the LMG model in optical cavity QED [78, [79] and circuit QED [80]
have been suggested, which allow for a high degree of control of the system. An-
other possibilities are the optical realization of the uniaxial driven LMG in photonic
lattices [81] and by using superconducting charge qubits connected in parallel to a
common superconductor inductance [82]. Furthermore, a recent proposal allows for
a realization of large-spin systems in molecular-magnets under the effect of periodic
transverse fields [65].

The kicked top has been realized experimentally in an ensemble of laser-cooled
Cs atoms [83], such a model is closely related to our model, the difference is that,
whereas we consider a monochromatic driving, the experimental setup allows for a
realization of multicolor driving, characteristic of a periodic train of delta kicks. Fur-
thermore, a realization of two-axis-twisting Hamiltonian by using a two-component
atomic Bose-Einstein condensate was recently suggested [84], the basic idea is that
by using a repeated Rabi pulses control scheme on a one-axis-twisting Hamiltonian,
which corresponds essentially to a driven version of the LMG model, it is possible
to simulate stroboscopically an effective two-axis Hamiltonian.
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The two preceding chapters described nonequilibrium aspects of criticality in 0 + 1
dimensions, where 0 stand for the spatial dimension and 1 for the temporal dimen-
sion. In this chapter we study the one-dimensional AC-driven quantum Ising model.
In the absence of driving, the Ising model is a paradigmatic model for quantum crit-
icality in equilibrium and is exactly solvable even for a finite spin chain. In the
thermodynamic limit, the Ising model exhibits a second-order QPT [3].

The dynamics of one-dimensional spin chains has been addressed extensively when
the system is driven slowly through the critical point [12], 85 86], where there is
a diverging relaxation time and correlation length, and the dynamics cannot be
adiabatic in the thermodynamic limit. As a consequence of this, the final state of
the system consists of ordered domains whose finite size depend upon the velocity of
the parameter variation [13]. A nontrivial oscillation of the magnetization [87] and
the connection between symmetry and coherent destruction of tunneling (CDT) [8§]
has been investigated in a finite size periodically-driven Ising model. Furthermore,
under the effect of a nonadiabatic external control of the transverse field, the Ising
chain exhibits dynamical freezing of the response [89, 90|, and synchronization with
the external driving in the asymptotic dynamics as a consequence of destructive
interference in time [91].

Our aim in this chapter is to describe the nonequilibrium behavior of a one-
dimensional Ising model under the effect of a nonadiabatic monochromatic trans-
verse field from the perspective of quantum criticality. In particular, we describe the
dynamics by means of an effective Hamiltonian which simulates an undriven system.
We show that in the asymptotic dynamics the nonequilibrium quantum phases cor-
respond to states of the system which are synchronized with the driving. In contrast
to previous works [89], 90, OT], however, we describe the role of manybody CDT in
the critical behavior by investigating signatures of criticality both in the laboratory
frame as well as in the rotating frame [92].
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4.1. The driven Ising model

The periodically-driven transverse Ising model describes the dynamics of N inter-
acting two-level systems in a time-dependent transverse local field [89] 90, 91|

N N
H(t)=—g(t) ) of —=J ) oiois, (4.1)
i=1 i=1

where of are Pauli matrices at the ith site and we assume periodic boundary con-
ditions o = of,, for a € {z,y,2}. In the following we shall consider J > 0,
and a monochromatic modulation of the transverse field with a static contribution
g(t) = 9o + g1 cos Qt.A Associated with the Hamiltonian Eq. is a conserved

A~

parity II, such that [H(t), 1] = 0, which is given by
N
n=@Q)or. (4.2)
i=1

4.1.1. The ferromagnetic QPT in the undriven Ising model

In the thermodynamic limit N — oo, the undriven Ising model (¢g; = 0) exhibits
a second-order QPT at g5 = J from a symmetric paramagnetic phase (go > J)
to a symmetry-broken ferromagnetic phase (go < J) [3]. In the weak exchange
interaction limit gy > J, the ground state is a paramagnet [¢)gp = @1, | —);
with all the spins polarized up along the z axis. In the weak static transverse field
limit gy < J, the system exhibits two degenerate ferromagnetic ground states with
all the spins either pointing up |¢)gr+ = ®z]i1 | T)i or down [Y)gr— = ®f\i1 | )i
along the z axis.

In the thermodynamic limit, the Ising model is characterized by an infinite set of
collective excitations with fermionic character. Following closely the classic book of
Sachdev [3] and Ref. [12], the Hamiltonian Eq. in the undriven case g; = 0
can be written as a Hamiltonian of free spin-less fermions

~ 1 At A At AT A ~ ~ -
H =3 D el =) = D e + 4L 3-% — 1e), (4.3)
k k>0

where 1, is the identity operator acting in the Nambu subspace {|1_g, 1%}, [0_x, 0x)}
consisting of doubly occupied |1_g, 1) and unoccupied |0_, O) states of £k fermions
[85], 86, [93]. The energy dispersion of the spin-less fermions is given by

€ = 2\/(90 — Jcosk)? + (Jsink)®. (4.4)
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Figure 4.1.: Behavior of the energy dispersion ¢, at the critical points gy = £J.

To obtain Eq. (4.3) we have used the property 4 = —’AyT_k of the quasiparticle
operator [12]. As a consequence of the parity Eq. (4.2)), there is a doubling of the

quasiparticle spectrum. Therefore, there are two branches of energy, i.e., e,(j) = €

for the “particles” and e,(c_) = —¢; for the “holes”. This picture is very helpful

because the energy dispersion of the “particles” resembles the conduction band, and
the energy dispersion of the “holes” the valence band, respectively. Correspondingly,
the band gap is given by AFE, = e,(:r) ) = 2€}.

Similarly to the discussion made in the previous chapters, the QPT in the Ising
model is characterized by a softening of a pair of k-modes, i.e., with momentum +k
and —Fk respectively. In particular, for positive static transverse field gy > 0, the
gap closes at the center £ = 0 of the FBZ in quasimomentum space. In contrast, if
one allows for a negative transverse field gy < 0, the gap closes at the boundaries
k = +7 of FBZ. Figure depicts the energy dispersion at the critical points.

The second derivative with respect to gy of the ground-state energy per particle

) _ o L Tk 2 T 4907
Ee = J\}I—I&N;Gk— o F T T g0+ J°E (go+ J)?|’ (45)

0 0

where E|z] is the complete elliptic integral of the second kind [48], is not analytic,
which is a signature of a second-order QPT [3].

4.2. The dynamic Bogoliubov-de Gennes equations

We consider the restriction of the Hamiltonian Eq. (4.1]) to the subspace with even
(4) number of fermionic quasiparticles (see Appendix . After a Jordan-Wigner
transformation, the Hamiltonian Eq. (4.1) can be written in terms of fermionic
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operators. A discrete Fourier transform allows us to write the Hamiltonian Eq.
(4.1) in quasimomentum space as follows

~ ~

OB {2 [g(t) — Jcosk] (¢héx + &l é_y) — 2g(t)]lk}

k>0
+ Y 2 sink(efel, + eir) = Y Hi(t), (4.6)
k>0 k>0

where ¢ and ¢, are fermionic operators [3]. For finite size N of the spin chain, the
quasimomentum is restricted to k € {7, j:%, c j:(N;)”}. In the following, we
focus on the thermodynamic limit N — oo, where we have —7 < k < 7.

Even if we prepare the system initially in a ground state of the undriven model,
under the effect of nonadiabatic external driving, the system will experience tran-
sitions to excited states. Rather recently, a formalism has been developed to deal
with this kind of dynamical situations [12} 85, 86, [94]. The idea is based on the fact
that Hamiltonian Eq. conserves momentum and parity. As a consequence, we

can use the BCS ansatz for the evolution of the quantum state of the system

[, 1) = @) [k (1)1, 1) + vk(£)[0_, k)], (4.7)

k>0

which implies that for a given quasimomentum k, the quantum evolution is restricted
to the Nambu subspace.
The matrix representation of the operator Hy(t) in the Nambu subspace is given

by
Hy(t) = , 48
o= (OB (49
where Hy(t) is the Bogoliubov-de Gennes (BdG) Hamiltonian, wy, = 2.J cosk, Ay =
2Jsink, and u(t) = 2g(t). By defining the spinor Wl (¢) = (uf(t), vi(t)), and consid-
ering the BCS ansatz Eq (4.7)), it is possible to show that the coefficients uy(t) and
vk(t) should satisfy the differential equation

L) = Hil)Ua), (4.9)
which constitutes the dynamical version of the Bogoliubov-de Gennes equation [12].
At this point we have translated the manybody problem into the solution of the time-
dependent Schrodinger equation for an effective two-level system. In Appendix [B|
we discuss the more relevant aspects of the periodically-driven two-level system.

Under periodic driving, the Floquet theorem states that the solution of Eq.
can be written as

U(t) = Ay 100 (1) + A_e o 1) (1), (4.10)
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where q);i) (t) denote the Floquet modes corresponding to the quasienergies —2/2 <

5,(?) < Q/2. Furthermore, in the extended Hilbert space 7 = #Z ® 7, where Z is
the Hilbert space of square integrable functions and .7 is the space of time-periodic
functions (see Appendix , the Floquet states satisfy the eigenvalue problem

H, 0N (1) = Mo (1), (4.11)

where A € {+, =}, Hy, = Hy(t)—il 2 is the Floquet-Bogoliubov-de Gennes (FBAG)
Hamiltonian, 5,(;\) are the quasienergies, and the Floquet modes (D,(;\) (t+T) = CI),(C)‘) (1)

have the same period T' = 27 /() as the external driving [50] 52, 95].

4.2.1. Resonance conditions

As we have previously discussed in section 4.1}, in the thermodynamic limit, the Ising
model is characterized by an infinite set of collective excitations. Under the effect of
an external driving, the possibility of multiphotonic resonances arises [50} 05]. To
study such quantum resonances, let us consider the system in the absence of driving
g1 = 0. In this case, the Floquet modes and the quasienergies become the stationary
states gbki and the excitation spectrum e,(f) = —wy, £ € of the undriven system (see
Eq. (£.4)), respectively [95]. Therefore, the solution of Eq. can be written in
the form of Eq. as follows

- (+) - (=) _
U(t) = ape ol Ha_eT gl (4.12)

The condition for m-photon transitions is satisfied when the gap is an integer mul-
tiple of the driving
2¢, = mi. (4.13)

For a parametric oscillator with fundamental frequency ¢, Eq. is the usual
resonance condition [46]. In Floquet theory, Eq. implies the existence of
a crossing between the single-particle energy levels ¢, and —e, when the energy
spectrum is folded into the FBZ in quasienergy space [50]. Such a crossing occurs

at the wave vector
2 2 m\2
+ J°— (2=
ko = + arccos (go Srw) > : (4.14)

290J

where the resonance condition is fulfilled, as depicted in Fig. 4.2 (a). Fig. (a)
depicts the energy dispersion relation of the undriven system and the continuous
lines in Fig. |4.2| (b) the corresponding folding of the energy spectrum into the FBZ
in quasienergy space —(2/2 < ¢, < /2. In this thesis we focus on the weak spin-
spin coupling limit gg, €2 > J. In this limit the multiphoton resonance condition

reads
ms)

— (4.15)

do =

95



4. AC-driven Quantum Phase Transitions in the Ising Model
4.3. Physics in the rotating frame

Such resonance condition will be used in the next section to perform a description
of the system based on an effective time-independent Hamiltonian which is valid for
parameters close to a multiphotonic resonance.

4.3. Physics in the rotating frame

The dynamical BAG equations allow us to investigate the full quantum evolution
of the driven system. As we are interested in the asymptotic quantum dynamics
and the description of critical signatures, it is convenient to describe the dynamics
of the system in a rotating frame. In the weak spin-spin interaction limit, it is
possible to neglect the fast oscillations in the rotating frame, and a description of
the system based on the description for time-independent systems is possible via an
approximate effective Hamiltonian.

4.3.1. The rotating wave approximation and the effective
Hamiltonian approach

Motivated by the m-photon resonance condition in the weak spin-spin coupling limit

Eq. (4.15), we perform a description of the system based on the RWA [52]. Let us

perform a unitary transformation of the Hamiltonian Eq. (4.1) into a convenient
rotating frame via the unitary operator

Un(t) = exp (iam(t) Zaf> = [[Uem(®) (4.16)

i=1

—Jexr [—ziam(t)(a;ék et e -1,

where a,,(t) = m(Q/4)t + & sinQt. In the Nambu subspace, the operator Uk (1)
has the matrix representation

672iam(t) 0
Uk,m(t) = ( 0 621am(t) : (417)

In the rotating frame, the dynamics is governed by the Hamiltonian F[m(t) =
Ul (t)HU,u(t), where

H=H(t)— i% => Hi=>) lﬁk(t) - iﬂk%} (4.18)

k>0 k>0

56



4. AC-driven Quantum Phase Transitions in the Ising Model
4.3. Physics in the rotating frame

b)

Ck,m 0.00 |

Figure 4.2.:

e

0.5¢F
0.0 |
05F ]
1.0
-1.5¢ ]
200 ]
0.03 ==

0.025 '\
0.01©

M
o
S
%
H.

m-photons
<

m-phptons
<

A}

R,
[

) -0.01 ¢

-0.02 |
-0.03 &

|
=)
1
&
o |
&
=

k

(a) Typical gapped energy spectrum =e; of the undriven system cor-
responding to the paramagnetic phase gy > J. In this case, the energy
dispersion is slightly curved because the curvature is proportional to the
spin-spin interaction strength J. (b) The continuous lines depict the
spectrum +¢;, when it is folded into the FBZ in quasienergy space, the
crossing at k = +kq is related to a two-photon resonance. The dashed
lines represent the quasienergy spectrum =ey,,, for a driving amplitude
91/ = 1. The parameters are m = 2, .J/Q = 0.01, and go/€2 = 0.505.
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is the Floquet Hamiltonian. The explicit form of the Hamiltonian in the rotating
frame is given by

ol +oloiy)

Mz

H ZU +—Sm4am

=1

——{1—|—Cos4am ZO’Z l+1——{1—cos404m Zazalﬂ, (4.19)

where the detuning 6™ = gy — m(€2/4) describes how far the system is detuned
from resonance, and m is an integer that denotes the order of the multiphotonic
resonance [50]. By using the identity

exp(iz sin Qt) Z Ji(z 1th (4.20)

l=—00

where J)(z) is the lth-order Bessel function [48], the Hamiltonian Eq. (4.19) can be
written in the form

o
= > hlment, (4.21)
As we describe in Appendix (A]), we obtain an approximate Hamiltonian to de-
scribe the mth resonance by neglecting all the terms in H,,(t) with oscillatory time-
dependence: ]:Im(t) R~ h(()m). This approximation is valid as long as the conditions

4
MWL%(§><Q (4.22)
holds [52].

Finally, we obtain the time-independent effective Hamiltonian

m — m)Zg Z m) z ZZ+1+J(m Uzo_g+1)7 (423)

=1

where the parameters J\™ = 214 (—1)"Tm(32)] and Jz,(,m) = Z[1— (1) Tn (L))
denote effective anisotropies in the rotating frame. Interestingly, the effective Hamil-
tonian Eq. corresponds to an exactly solvable model, i.e., it is unitarily equiv-
alent to the XY anisotropic spin chain in a transverse field [96, 97, 98|. However, in
our case, the anisotropies depend both the order m of the resonance as well as the
driving amplitude g;. Therefore, the driving amplitude of the local field now plays
the role of a new parameter that influences the criticality of the system.
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4.3.2. Signatures of criticality in the rotating frame

Under the RWA, the Hamiltonian iz(()m) and the Floquet Hamiltonian H = H (t) —
i% are isospectral operators, which implies that the eigenvalues of the effective
Hamiltonian correspond to the quasienergies.

As we show in Appendix D} similarly to the Ising model [3]—after a Jordan-
Wigner transformation, and a discrete Fourier transform, the Hamiltonian Eq.

(4.23) can be written as follows

TRy [(25“”) —wp)(dlen + et o) — 25<m>ﬂk}

k>0
4 At A ~ A 7 (m
+) (1) AT (%) (ehely + cowin) = DAY (4.24)
k>0 k>0

The matrix representation of lAzé"Z) in the Nambu subspace is given by

o _ (200 = 2w (1) AT ()
ho, —<<—1)’”Akjm(%) _osm ) (4.25)

The Hamiltonian Eq. (4.24) can be diagonalized via a Bogoliubov transformation

B =3 e (3 + 4040 — 1) (4.26)
k>0
where
4 2
rm = 21/ (607 — Jcos k) + [ij (%) sin /{;} . (4.27)
Furthermore, the quasienergies are defined (modulus ) by the equation
Q
e,gi% = —wp tEpm+ mT, (4.28)

as defined in Eq. . The quasienergy gap in the fermion picture is given by
AEg;, = 5,(:% — 55;21 = 2¢k,. Therefore, when the gap closes (modulus ), the
effective Hamiltonian exhibits a behavior which resembles the dynamics of a critical
quantum system. The dashed lines in Fig. (b) depict the quasienergy dispersion
relation for g; # 0. We observe that the driving lifts the degeneracy giving rise
to an anticrossing. Based on the well-known results for the time-independent XY
model that we summarize in Appendix [D] we find that the system described by the
effective Hamiltonian Eq. exhibits an effective nonequilibrium Ising-like QPT
along the critical lines [§(™| = J, and a nonequilibrium anisotropic QPT along the
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Figure 4.3.: Nonequilibrium QPT in the driven Ising chain in a time-dependent
transverse field g(t) = go + g1 cosQt. (a) Depicts the quasienergy dis-
persion relations ey, ,,, for parameters in the ferromagnetic phases FMZ
and FMY'| and along a critical line. (b) Depicts the phase diagram of
the nonequilibrium phase transition around the m = 2 resonance as a
function of the driving amplitude ¢g; and the static local field go. The
white zones represent the paramagnetic phase. Correspondingly, the
blue zones represent the ferromagnetic phase FMZ and the green zones
the ferromagnetic phase FMY. (¢) Depicts the effective asymmetries
in the z direction J™ (blue curve) and y direction Jém) (green curve)
as a function of the driving amplitude g;. For this plot, we consider
J/Q = 0.01.
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lines where 7, (ﬂ) = 0, as long as the condition |§™| < J holds. The anisotropic

transition is characterized by two ferromagnetic phases, i.e., for Jém) > J;m) the
system is in a ferromagnetically-ordered phase along z direction FMZ, while it is
the other way around in the FMY phase.

In a periodically-driven sytem, it can be defined a generalized parity symmetry
in the extended Hilbert space # = £ ® 7 (see Appendices [A] and [B]), where
Z is the Hilbert space of square integrable functions and .7 is the space of time-
periodic functions [95]. The gapless quasienergy excitation spectrum for parameters
along the critical lines is a direct consequence of coherent destruction of tunneling
(CDT). This effect arises when there is a crossing of two energy levels as a conse-
quence of the external driving. Therefore, by varying the parameters of the external
control, the degeneracy can be created or lifted [99, T00]. Figure (a) depicts
the character of the quasienergy excitation spectrum ey ,,, for parameters in the
ferromagnetic phase FMY',| along the critical line, and in the ferromagnetic phase
FMZ, respectively. Figure (b) depicts the phase diagram for the nonequilibrium
QPT in the neighborhood of the two-photon resonance. The white zones in the
phase diagram correspond to the effective paramagnetic phase and are defined by
the inequality J < |[§(™)] < |5max| for m = 2, where 8im denotes the maximum de-
tuning for which the RWA is still valid. In the particular case 6™ = 0, the effective
Hamiltonian Eq. is unitarily equivalent to the XY model in the absence of
transverse field. Therefore, in this special case the system only exhibits the con-
ventional anisotropic tran81t10ns between the ferromagnetically ordered FMZ and
FMY phases. In Fig. 4 ) we plot the the effective asymmetries J™ and Jy (m) a
a function of the dr1v1ng amplitude g1 in the case of a two-photon resonance.

4.4. Physics in the laboratory frame

As we previously mentioned, the eigenvalues of the effective Hamiltonian Eq.
correspond to the quasienergies Eq. of the system. However, the correspond-
ing eigenstates do not necessarily correspond to Floquet modes. In order to obtain
the Floquet modes, one should apply a unitary transformation back into the labo-
ratory frame as we descrlbe in Appendix [A] Therefore, the Floquet k-eigenmodes
]CID,(fm, t) = Ut )]Xk m) can be written in terms of the states

|X§;,;2L> = €08 Qpm |1 ks 1) — SIN g |0k, Op),
|XI(€TW)7,> = sin ¢k,m’17k, 1k> =+ Cos ¢k,m|07ka Ok>, (429)

satisfying h(()m) |Xl(€in)l> = tepm |X/(gi7zl>7 where we have used the basis of doubly occupied
|1_x, 1) and unoccupied |0_g, Ox) states of £k fermions, and the Bogoliubov angle

61



4. AC-driven Quantum Phase Transitions in the Ising Model
4.4. Physics in the laboratory frame

®k.m 1s determined by the relation

A ()

tan(20k,m) = 250 —

(4.30)

In the Nambu subspace the positive-quasienergy Floquet mode around the m-photon
resonance is given by the spinor

() () = (e cos(bum) Y _ [ 7 OO cos(grm)
(I)kjrm(t) —¢ ( )Uk’m(t) ( — sin(q@km) > o ( _61(2am(t)+mﬂt) sin(gbl;z,m) ’
(4.31)

and, correspondingly, the negative-quasienergy Floquet mode is given by
_ . —i(200m (£)— 2t sin(dpm)
o) (1) = () ) [ Oem) ) (€ N k) ) (4.32
km( ) kan (1) cos(Pr.m) ol (20m () +782 )cos(qﬁk’m) ( )

4.4.1. Quantum evolution of an initial paramagnetic state

Now, let us investigate the quantum evolution in the laboratory frame around the
m-photon resonance when the system is initialized in a paramagnetic state of the
undriven model with all the spin ensemble polarized along the x axis

|%m, 0) ® | =) ® 10—, Ox), (4.33)

k>0

such that II|t,, 0) = [¢hn,0), where II is the parity operator Eq. ([£.2). Restricted
to the Nambu subspace for a given 0 < k£ < 7, such an initial state corresponds to
the spinor \I/Lm(O) = (U (0),v5,,(0)) = (0,1), whose quantum evolution is given

by
Ui (t) = Uk (£) exp(—ih ) Wpo (0) = — $in(@p ) UL (2) + co8(drm) i (E),
(4.34)
where \Ilggi%(t) — ek )tCID(i)( t) denote the Floquet states restricted to the Nambu
subspace.

In general, one can write the Floquet states as follows

- (£)
2.6 = QWi 1) = Qe =m0 1) = exp(—INES) Q)[04 1),

k>0 k>0 k>0

(4.35)
where ESY = £ f " dk 5-Ekm is the total quasienergy and ey ,, is the quasienergy dis-
persion defined in Eq -
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4.4.2. The dynamics of the transverse magnetization

By using the exact quantum evolution of the initial paramagnetic state, we are
able to calculate the dynamics of physical observables in the laboratory frame. The
transverse magnetization density M, () gives us information about the occurrence
of a macroscopic polarization of the spins along the x axis. Let us consider the
expectation value M, (t) = + (¥, t| SN 0|1, t) close to the m-th resonance,

Jm@:—A(MW()%M%Mﬂ:Lﬂluﬁm%wﬁmﬂwmy
(4.36)

oamzlﬁﬁ:(é_g), (4.37)

where

2 9go

and My, is the FBAG Hamiltonian Eq. (4.11). Fig. depicts the dynamics of
the magnetization density in the thermodynamic limit calculated using RWA (black
curve). In particular, Fig. - ) shows the dynamics for parameters in the nonequi-
librium paramagnetic phase, Fig. . at the Ising-like critical line 6™ = J, and
Fig. - ) for the ferromagnetic phase FMZ . We observe that in the paramagnetic
phase the system exhibits a stationary state which corresponds to a polarized state
along the local field direction. In contrast, for parameters corresponding to the crit-
ical line and the ferromagnetic phase FMZ, the state is not totally polarized along
this direction. Furthermore, at the Ising-like critical line, the magnetization density
does not exhibit oscillations. The green curve in Fig. depicts the result of exact
numerical calculation (see Appendix |Ef) of the magnetization density for a finite size
system N = 100.

In this dynamical scenario the connection with criticality is not obvious. Rather,
signatures of quantum criticality in the laboratory frame may appear in the asymp-
totic dynamics. Let us consider now the time evolution of the expectation value of
a general observable

Ot) = (. O], 1) / (DO m(D). (4.38)

In general, following the argument established in [91], it is possible to show that
O(t) = OP(t) + O™ (t), where

o (i Z/ | e, (oo, (1) (4.39)

re{+,-}

is the periodic contribution to the expectation value, which correspond to syn-
chronization with the external driving. Here we consider Ay = —sin[¢y,,] and
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Figure 4.4.: Time evolution of the dimensionless magnetization density M, (¢) in the
thermodynamic limit (black curve) and exact numerical result for a fi-
nite system consisting of N = 100 spins (green curve) for 0 < ¢ < 2007,
where T' = 27 /Q) is the period of the external driving. Time evolution for
parameters corresponding to (a) the nonequilibrium paramagnetic phase
(6(m) > J), for m = 2, where (91/9,g0/Q) = (1,0.515), (b) the Ising-
like critical line (6™ = .J), for m = 2, where (¢1/%, go/) = (1,0.510),
and (c) time evolution for parameters corresponding to the nonequi-
librium ferromagnetic phase (FMZ) (6™ < J), for m = 2, where
(91/82,90/Q) = (1,0.505). The insets show the detail of the magne-
tization curves. For this plot, we consider J/Q = 0.01.
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A_ = cos[¢km)| . Correspondingly,
dk
O"(t)= | —RJALA e Hermt @ '0,® . 4.40
(t)/o { OO0 ] (4.40)

denotes the transient component, which decays to zero in the long-time limit as a
consequence of destructive interference in time [91]. Therefore, the system tends to
synchronize with the external control in the long-time limit. The particular case
§(m) = 0 for m = 0 has been discussed in Ref. [89] in the context of freezing of the
response in a manybody system. In this case, the system only exhibits the conven-
tional anisotropic transition, which is reflected in the behavior of the magnetization
dynamics. Furthermore, the anisotropic critical lines Jy5(4¢1/€2) = 0 are related
to the effect of maximal freezing discussed in Ref. [89]. We conclude that in the
asymptotic dynamics, the Floquet modes determine the quantum critical behavior,
as we discuss in the next section.

4.4.3. Cycle-averaged expectation values in Floquet
eigenstates

We now define cycle-averaged expectation values of physical observables. In the
case of a time-dependent Hamiltonian H (t), the energy is not conserved. Therefore,
to describe signatures of the quantum phase transition in the laboratory frame we
define the averaged energy A5 in the Floquet state Eq. - as

] dt
wﬁz— <iHV{ Mﬂt /‘ / W ()] Hy () 0E) (1)

By using the analytic expressions for the Floquet modes Egs. and (4.32)) we
obtain the expression

_ dk ms?
mﬁ:i/ — cos(2 4.42
m 0 27'(' €k ,m + 2 COS( ¢k m) ) ( >

where ¢y, is the Bogoliubov angle defined in Eq. (4.30)). On resonance 5™ = 0,
we get an analytical expression for the cycle averaged energy

[ ()]

where E|[z] is the complete elliptic integral of the second kind (see Appendix [D).
This result confirms our prediction based on the description of the system in the

2J

HS = +72 — : (4.43)
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Figure 4.5.. Cycle-averaged energy A7) as a function of the driving amplitude ¢;.
(a) For parameters in nonequilibrium paramagnetic phase (6™ > .J),
for m = 2, where ¢go/Q2 = 0.515. (b) For parameters inside the ladder
of ferromagnetic phases (6™ < J), for m = 2, where go/Q = 0.505.
The insets depict the second derivative of the cycle-average energy as a
function of the driving amplitude g;. For this plot, we consider J/Q2 =
0.01.
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Figure 4.6.: Cycle-averaged dimensionless magnetization M ) as a function of the
driving amplitude g;. (a) For parameters in the nonequilibrium para-
magnetic phase (6™ > J), for m = 2, where go/Q = 0.515. (b) For
parameters inside the ladder of ferromagnetic phases (6™ < .J), for
m = 2, where go/€2 = 0.505. The insets depict the second derivative of
the cycle-average magnetization as a function of the driving amplitude

g1. For this plot we consider J/2 = 0.01.
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rotating frame (see Fig. [.3). The cycle-averaged energy exhibits singularities at

the zeros of the Bessel function, i.e., J,, (%) = 0. This is a clear signature of a

critical nonequilibrium behavior. Finally, we calculate the cycle-averaged transverse
magnetization in the Floquet state Eq. (4.35). By considering the extension of
the Hellmann-Feynman theorem for Floquet theory [95], we can compute the cycle-

averaged magnetization ]\7[39[) in terms of derivatives of the quasienergies as follows
_ 1 (Tt al
M<i>5_/ Lo ]S 07| v
xT N 0 T m — O-’L m
T s
dt dk () OHy, (£)
— — — O [ == ) o (¢
|7 [ Swsor () v

”dk&?ﬁl T dk
B A W os(265.). 4.44
| e =% ) e A

Figures [4.5 and show the cycle-averaged expectation values of observables.
Similarly to the undriven case, the system exhibits nonanalyticities in the second
derivative of observables as can be seen in the corresponding insets, thus resembling
a continuous phase transition. Such nonanalyticities arise as a consequence of CDT
[99, [100], and therefore, from the gapless quasienergy spectrum.

4.5. Experimental realization

Recently, experimental realizations of one-dimensional spin chains have been sug-
gested, where a quantum simulation of the system close to the phase transition
is possible, and a wide freedom on the control of the parameters is achieved [27],
28, 29, B30}, 31}, B2]. A possible experimental implementation of our model could be
achieved based on a configuration of superconductor quantum bits with program-
able spin-spin interaction [27], such a setup allows for a high degree of control of
the system parameters. We anticipate that under an adiabatic change of the static
local field g and the driving amplitude ¢g; our model could be interesting in the
context of quantum annealing, as the effective Hamiltonian Eq. corresponds
to the XY model. Another experimental setups can be realized by means of cold
atoms |28, 29 [32], and in fully C-labelled sodium butyrate using liquid state nuclear
magnetic resonance [101, 102].
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States of matter are commonly characterized within the Landau paradigm as symmetry-
broken phases, i.e., a solid corresponds to a translation-symmetry broken phase,

a magnet to rotational-broken symmetry, and a superconductor to a U(1)-broken
phase. However, rather recently, novel states of matter have been discovered, which
cannot be characterized within the Landau criteria. Examples of such a states of
matter include integer and fractional quantum Hall effect [7, §], topological insu-
lators and superconductors [B, 6, ©]. In contrast to the usual QPTs, a topological
quantum phase transition (TQPT) is a change of phase in which the symmetry of
the ground state does not change, the low energy effective theory describing this
novel phases corresponds to a topological quantum field theory (TQFT).

In the case of conventional QPT, our experience with the Dicke, LMG and Ising
models shows that under the effect of an external driving, the system exhibits effec-
tive interactions, which give rise to novel “synthetic” quantum phases. Such states
correspond to metastable states and their description involves higher order terms
of the order parameter in the low-energy effective theory. In these examples, even
under the effect of driving, the quantum states of matter correspond to symmetry
broken phases in the thermodynamic limit, i.e., the superradiant state does not
conserve the parity Eq. (2.2). Our aim in this chapter is to study the behavior
of the topological quantum phase transition in the Wen-plaquette model (WPM)
under external driving. The WPM has intriguing relations to other models studied
in the literature. For example, it has been shown that the WPM can be exactly
mapped to the toric code of Kitaev [103, [104]. Furthermore, the toric code in a
paralell magnetic field has low energy properties that resemble the two dimensional
transverse Ising model, which allows to study the influence of an external field in
the TQPT [105]. The effect of a transverse perturbation on the topological protec-
tion in the toric code has been explored by using a mapping onto the Xu-Moore
model, which subsequently can be mapped onto the Compass model [106]. We show
that under the effect of a nonadiabatic driving the system exhibits a novel topo-
logical phase. We define generalized “string™-like topological order parameters by
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considering cycle-averaged expectation values of string operators in a Floquet state
[107].

5.1. The driven transverse Wen-plaquette model

In this section we focus on the driven Wen-plaquette model in a transverse field on
a N x N square lattice

H(t) ZXU—JZ o (5.1)

where

F X Y+1 JX1+1,J+1Y,J+1 (5'2)

is the plaquette operator, X, J,YZ j» Zi,j are the Pauli operators acting on the (i, j)-th
site, and we consider a time-dependent transverse field g(t) = go + g1 cos Q.

Fig. (a) depicts the geometry of the plaquette operator. A plaquette is even
(odd) if the relation (—1) =1 ((=1)"" = —1) is satisfied [108], as depicted in
Fig. (b). In the topological order, the undriven Wen plaquette model hosts three
types of quasiparticles: Z, charges, Z, vortices, and fermions, and three types of
string operators T}, Ty, T3 are defined, respectively [108]. The T} string operator for

a Zo charge is given by
RV, 53)
c

W, is the product of spin operators along a path C' connecting even plaquettes of
neighboring links (see Fig. (c) ). Correspondingly, the T5 string operator for a

Zy vortex is given by
0) =) X (5.4)
c

In this case, /WV is the product of spin operators along a path C' connecting odd
plaquettes of neighboring links (see Fig. (c)). Finally, the T5 string operators
are defined as bounded states of 77 and 75 strings, they are charge-vortex composite
objects, and their definition is given in Refs. [T08] [109].

5.1.1. String-net states and string-net operators

Now, let us discuss briefly the quantum states of the theory. In the last section
we have defined string excitation operators W, (C) and W, (C), the effect of these
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operators is to create nonlocal excitations above the ground state of the system.
Therefore, a generic string state has the form

(Cy Cy--) = W(CHW(Ch) - [0), (5.5)
where C, Cy, . . . are strings with no overlapping ends. Such a state is called a string-
net state and the operator W(Cnet) =W (C)W(Cy) -+ is a string-net operator.

5.1.2. The duality transformation

In this section we show that the Wen-plaquette model can be mapped into a set of
decoupled one-dimensional Ising chains via a duality transformation [104], 108, 109].
Therefore, in the thermodynamic limit N — oo, using this duality, the TQPT can
be understood in terms of the Ising quantum phases. To obtain the mapping, we
observe that the operators ﬁfj and XZJ satisfy the following commutation relations

[Fa by XC d] - 2F ch d(5a+1 b+ 5@ b+1)5c ds
[ ;,ba c,d] =0,
[Xa,b7Xc,d] =0. (56)

Now, let us define a representation of this algebra by means of Pauli matrices

{7F T ”, ”} on the dual lattice

ne x
Fijo = Tis o,

Xi*,j* —> Tiz*’j* iz*,j*-i-l' (57)

We parametrize the sites of the dual lattice by means of (i*,7*) = (i — 7 + 1,7).
Under this duality transformation the Hamiltonian Eq. can be written in
terms of N decoupled 1-dimensional Ising chains [104] 108, 109]. In this work ¢*
denotes the chain index and j* the sites along the corresponding Ising chain. Under
this representation we are able to write the Wen-plaquette Hamiltonian Eq.
as follows

H ZT TR e JZ ]*—ZHT (5.8)

*,g* i*, 0% *=1

where
N N
HT = ZTZTlZH — JZ T, (5.9)
=1 =1

and N is the length of the spin chain. For the ¢*-th Ising chain, we have introduced
the identification 7% = 7%, for a € {z,y, 2} in order to avoid the use of the vector
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Yi,j+1 Xi+1,j+1
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Figure 5.1.: The Wen-plaquette model. In (a) we represent the geometry of plaque-
tte operator at the site (i,7). Figure (b) depicts the real space lattice
and the corresponding even (+) and odd plaquettes (—). (c) Shows the
T7 string operators along the path C, and 75 string operator along C.
Figure (d) shows the dual lattice and represent the N decoupled Ising
chains, the colors represent the lattice points belonging to the same
Ising chain. To describe the boundary conditions, we depict white and
black dots to identity the equivalent lattice points.
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indices introduced previously. The geometry of the decoupled Ising chains in shown
in Fig. (d) and in Fig. (d). Therefore, to understand the novel behavior
of the Wen model under the effect of driving we must understand the quantum
criticality in the driven Ising model Eq. . However, one can take advantage of
the Kramers-Wannier self duality [110] 11T

T 070,
2= ot (5.10)

r<s

and obtain a dual spin Hamiltonian

N N
HI(t) = —g)3 of =T oioi, (5.11)
=1 =1

which corresponds exactly to the Hamiltonian Eq. discussed in Sec. of
Chap. 4] We have previously investigated this model and has a well-known phase
diagram [92]. In the next section we discuss the general aspects of the TQPT in the
undriven Wen-plaquette model.

5.1.3. The TQPT in the undriven transverse Wen-plaquette
model

Now, we are able to understand the TQPT in terms of the well-known phases of

the Ising chain. Let us consider first the case of the undriven Wen-plaquette model

g1 = 0. It is a well-known fact that in the thermodynamic limit N — oo, the

quantum Ising model exhibits a second order QPT from a paramagnetic phase into

a ferromagnetic ordered phase at gy = J. However, to describe the TQPT in the

Wen-plaquette model we should define global order parameters [108, 109 112] as
expectation values of nonlocal operators in the ground state of the system

R R
®, = lim ®X1 ) = lim ®TZTZ = lim (775
R—o0 bl J R—o0 br+ R—>oo< 1 R+1>’
Jr=

=1
R R

D, :Rhggo<@zF§j*> = lim <(lg1)ff> = lim (oi05,1). (5.12)
Jr= =

In the topologically-ordered phase, gy < J, the correlation function of o} exhibits

1
long-range order. As a consequence ®; = 0, and &5 ~ (1 — (970)2)4 # 0. This
implies that the 77 and 7, closed strings are condensed in contrast to the open
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Figure 5.2.: Caricature of the spin textures in the Wen-plaquette model. (a) Depicts
the topologically trivial spin texture on the torus (go > J) in the ab-
sence of driving, (b) depicts the topological state in the case (go < J),
and (c) shows the novel driving-induced topological state (in the spin
texture on the torus, the dots represent spins pointing to the positive
z-direction). Finally, (d) depict the dual spin configuration depicted in

@),
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Ty and T5 strings. In the spin polarized phase, go > J, a long-range order of the
correlation function of 77 indicates the condensation of open strings close to the

1
2\ 4
TQPT, i.c., By ~ <1 — (5) ) £ 0 and By = 0.

Interestingly, using the duality between the Ising QPT and the Wen model we
conclude that for gy < J the paramagnetic phase of the 7-spin model (ferromagnetic
phase of the o-spin model) corresponds to the topologically-ordered (closed-string
condensation) phase. Correspondingly, for go > J the ferromagnetic phase of the
7-spin model (paramagnetic phase of the o-spin model) is dual to the spin-polarized
phase of the Wen plaquette model (open string condensation) [108, 109, 112]. Figure
(a) depicts the spin-polarized phase of the Wen plaquette model on the torus
and figure (b) the topological phase. From this discussion we conclude that the
global order parameters ®; and ®, are dual [I08], [109], and therefore, to characterize
the topological phase transition one of them is necessary. As a consequence of this,
we consider generalized order parameters to characterize the topological phases, and
we will not discuss about the order parameter characterizing the trivial phase.

5.2. The rotating wave approximation and the
effective Hamiltonian approach

We perform here an alternative description of the system in the real lattice based
on the RWA [52]. Let us perform a unitary transformation of Hamiltonian Eq. (5.1])
into a convenient rotating frame via the unitary operator

U, (t) = exp (iam(t) Z XJ> , (5.13)

where v, (t) = m(Q/4)t + & sin Q. In the rotating frame the dynamics is governed
by the Hamiltonian H,,(t) = [Up,(t)] 17U (t), where H = H(t) — i is the Floquet
Hamiltonian [50]. The explicit form of this operator is given by

. J A . .
Hm(t) = _5(m) Z Xi,j -+ 5 s1n[4am(t)] Z Xi,jYi+1,in+1,j+1Zi,j+1

0] Y]

J
+§ sin 4am Z ZH—l 2J Z+1,]+1Y7J+1

J . .
—3 {1 + cos[dan,(t)]} Z XijYit1jXiv15+1Yi 541

.3

J N .
—5 11— cosldan ()]} Y XiiZi i XivZiga, (5.14)

1,
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where the detuning 6™ = gy — m(£2/4) describes how far the system is from
resonance, and m is an integer that denotes the order of the multiphotonic resonance
[50]. By using the identity Eq. (4.20), the Hamiltonian Eq. (5.14) can be written

in the form .

H,(t)= > B exp (inQt). (5.15)
In analogy with the standard RWA of quantum optics, we obtain an approximate
Hamiltonian to describe the mth resonance by neglecting all the terms in H,,(t)

with oscillatory time-dependence: ]:Im(t) ~ izém). This approximation is valid as
long as the condition Eq. (4.22)) holds [52].

Finally, we obtain the time-independent effective Hamiltonian

ilém) = -5t ZX” - Jz(m) ZX@J'YHLJ'XHL]'HYLJH

i i
- Jg(,m) Z XijZiv1 X101 i1
X
= =0 Y Xy = MY B = J Y FY, (5.16)
— — —

where the parameters are the same that appear in Hamiltonian Eq. (4.23)), F’Zyj was
defined in Eq. (5.2) and

nya - Xi7j2i+1,in+1,j+1Zi,j+1 (5.17)

corresponds to a driving-induced effective interaction which is absent in equilibrium
[43]. This intuitive idea is reinforced when we remind that the topological phases
of the undriven Wen plaquette model are closely related to the quantum phases of
the Ising model. In the driven case, however, the Ising model Eq. studied
in Chapter 4| exhibits a novel phase [02]. We conclude therefore that the nonequi-
librium QPT diagram depicted in Fig. corresponds to the phase diagram of
the TQPT in the driven Wen plaquette model. After the last discussion, a natural
question arise: Does the effective Hamiltonian allow for novel topological phases,
or the driving-induced phase is topologically trivial? To answer this question one
should perform a description of the system based on the laboratory frame and cycle-
averaged topological order parameters [107].

5.3. Floquet topological quantum phase transition

In the precedent chapters we have discussed extensively the intriguing aspects of
criticality in conventional QPTs under the effect of monochromatic driving. In con-
ventional QPT, i.e., within the Landau symmetry-breaking paradigm, the external
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control induces effective interactions that lead to the existence of new quantum
phases. In driven many-body systems, the periodicity in time induces the possibil-
ity to close the gap artificially in a controlled way, by tuning the parameters of the
system around quantum resonances [43, [66], 92].

Rather recently, the topological charge of the Floquet Majorana fermions was
defined in terms of the Floquet operator [I14]. The influence of the external control
on the topology of the system via geometric phases has also been explored [115] 116].
Additionally, by using intense circularly polarized light, a gap can be open in the
Dirac cone, leading to a photoinduced dc Hall current in graphene [117]. Similarly,
by using one-photon resonances, a trivial insulator can be driven into the topological
phase, originating a Floquet topological insulator [19, 117].

We show in this section the external control induces a new topological phase,
which is absent in the undriven WPM. To explore the topological nature of the
quantum phases, we the calculate the Floquet-Chern numbers to characterize topo-
logical charges [118], [119].

In this section we focus on the calculation of global cycle-averaged expecta-
tion values i 111 the ne%atlve quasaener%y Floquet state of the Wen-Plaquette model
|\1!§,;2n, t) = iy ¥ where |\I/m ,t) is negative-quasienergy Floquet state of
one of the decoupled Ismg chams, given by Eq. . We use this particular choice
motivated by the fact that in the absence of driving, such a state corresponds to a
topologically trivial spin texture (see Fig. (a)) in the limit go > J, and, in the
dual picture of the o-spins, corresponds to a tensor product of stationary param-
agnetic states of the Hamiltonian Eq. (in the case g; = 0) with all the spin
polarized along the x axis

“IJWWN t) = exp(—iN?Eg, ®®’0 USE (5.18)

*=1 k>0

where Eé_) is the ground-state energy of the undriven Ising model given by Eq.

ED).

5.3.1. Floquet topological order from long-range magnetic
order in the dual Ising model

We focus here on the calculation of cycle-averaged global order parameters defined
along the diagonal string of the dual lattice (i*,j*) = (1,1), where [ is a positive
integer number running from 1 to R, in the limit when R — oco. Our definition
of ®, is a generalization to driven quantum systems of the global order parameters
defined in equilibrium [108, 109]. However, the existence of ®3 has no analogue in
equilibrium and a nonvanishing value of it would give rise to a topological configura-
tion induced entirely by the external control and with a different topological charge.
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By using the spin dualities Eq. (5.7) and Eq. (5.10)) we define

_ 1 [T/ B 1 (T
b= Jin 7 [ (@, ) di= Jim 7 / (ofotsn) dt,

=1
_ 1 [T/ B

Interestingly, the cycle-averaged order parameters correspond to cycle-averaged cor-
relation functions of the dual one-dimensional driven Ising model Eq. (4.1). Such
correlation functions characterize the long-range magnetic order under the effect of
external driving. One can calculate the cycle-averaged nonequilibrium spin correla-
tion functions in terms of the well-known results for the XY model [96, 97, 113]. We
can write explicitly (as we show in Appendix the topological order parameters

as follows:
_ 2
By = 5 lim [J0pe(R) + Iy pyy (R)],
_ 2
g = = Lim [Ty (R) + I po(R)], (5.20)

where ng), J™ are the effective anisotropies in the rotating frame defined in Sec.

of chapter . Furthermore, for a € {y, 2z} we define poo(R) = <X7({) sy ng)>
to be spin correlation functions calculated in the rotating frame (see Appendix ,

where
X5 = Q) i, (5.21)
k>0

and | ng_rb is given by Eq. (4.29).
We have that ®;, = ®3 = 0 in the topologically trivial phase |§(™| > J and for

60| < J
1/4
2y (4 (5w (m)

lim p,.(R) = 1+ M) (1 ( J ) ) >0 )
R—o0 (m)

0 <0

0 M >0
lim pyy(R) = oaomy/2 a2\ , (5.22)
R % 1_<T> 7™ <0

where 4™ = (=1)"7,, (%) is the anisotropy parameter. As a limiting case, our
description recovers the physics of the undriven model (g; = 0) in the particular case
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0 1 2 3 4
8:/Q

Figure 5.3.: Cycle-averaged order parameters. (a) Depicts the cycle-averaged topo-
logical order parameters based on long-range magnetic order. The blue
curve (continuous line) represents the order parameter ®,, and the red
curve (dotted line) the novel order parameter ®3. (b) Shows the cycle-
averaged topological order parameters based on short-range magnetic
order. The blue curve (continuous line) represents the order parameter
@, and the red curve (dotted line) the novel order parameter ®3. At the
anisotropic transition lines of the dual model (see Fig. [4.3)), the short-
range correlations coincide. We consider the plot on exact resonance
§(m) = 0 for m = 2 and we consider .J/Q = 0.01
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m = 0, where §© = gy, v =1, J = J, and Jy = 0. Therefore, we obtain that
the nonlocal order parameters satlsfy ®, = Oy and $3 = 0. We plot the dependence
of the order parameters along the ladder of topological phases (ferromagnetic phases
FMZ and FMY from the dual Ising model) in Fig. (a)

5.3.2. Floquet topological order from short-range magnetic
order in the dual Ising model

An alternative way to define global order parameters for the Wen plaquete model is
to redefine the limit in Eq. by considering R = N — 1, where N is the length
of the dual Ising chains. In contrast to the previous procedure used to calculate the
cycle-averaged order parameters, this special case gives rise to a different definition
based on the short-range magnetic order. In particular, by using this procedure we

obtain
N—1

T
P ]\}grloo—/ <®Ffj>dt —/ (0503)
N-1

B T 1 T
cb;;:}vlgr;o—/ ®F1y] dt = ?/0 (a¥al), (5.23)

where we have used translational invariance and the periodic boundary conditions.
In Appendix [F] we show that the order parameters can be written as follows

* 2 m) x m) ok
(1)2: [J( )pzz+JgS )pyy]7

J
T * 2 m) ok m *
where
. dk 1 2J™ [T dksin?k
Prz = - ’
o T €km J o T Ekm
. dk 1 2 [T dksink
Py = — . (5.25)
0o T €km J Jo T Eim

In the last equations ¢y, is the quasienergy dispersion defined in Eq. (4.27). On
exact resonance, i.e., when 8™ = 0, we obtain

4 [1 + (’y(m))Z}

ne (1= (y0m?] Bl=6]
= e 520

80



5. AC-driven Quantum Phase Transitions in the Wen-plaquette Model
5.3. Floquet topological quantum phase transition

and A
T * m 2
¥ =—F[1- ()], (5.27)

where K|[z] and E|z] are the complete elliptic integrals of the first and second kind
[48], respectively. We plot the dependence of the order parameters along the ladder
of topological phases (ferromagnetic phases FMZ and FMY from the dual Ising
model) in Fig. (b).

5.3.3. The Floquet-Chern Number

In this section we calculate explicitly the Chern numbers that characterize the differ-
ent topological phases of Ac-driven Wen plaquette model Hamiltonian Eq. . To
carry out this calculation we focus on the dynamics in the rotating frame and per-
form the rotating wave approximation, this implies that in the rotating frame, the
dynamics is governed by Hamiltonian Eq. . Under the duality transformations

Egs. (5.7) and (5.10)) is possible to write

N
He (1) = hi™ = Z o) =y b, (5.28)

Ek>0

where iz om) is the effective Hamiltonian Eq. l} in the dual picture of the o-
spins, hl* 0 is the effective Hamiltonian Eq. , and h o™ the corresponding
effective Hamiltonian in the reciprocal lattice Eq dlscussed in Sec. of
Chap. . The matrix representation of hl; . ™ in the Nambu subspace is given by

)

(om) 25 — 90, (=D)AL T (22)
= (e ) 29

where w, = 2Jcosk, and Ay = 2Jsink. In terms of the effective Anderson pseu-
dospin vector dg'z) = ((—1)™ArTn(£),0,260™ — wy), the Bogoliubov Hamiltonian

Eq. (5.29) can be alternatively written as h;”km) = —wilj, + dgjz)~ ;. ;» Where 17
is the identity operator and o, = (agk,ag Yy k) is a vector of Pauli operators

acting on the Nambu subspace. )
Now let us define the Gauss map d™ : T? — S? from the two-dimensional torus
T? = S' x S into the sphere S5 similarly to Refs. [19, 118, 119]

(m)
q(m) k,k

e = T = (sin 6 cos ¢y, sin 0 sin ¢y, cos 8), (5.30)
7 ||d];,7k ||
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T? S?

( - (D

Figure 5.4.: Mapping from two “leaves” of the foliation on the torus on two circles
over the sphere

where we have used spherical coordinates and the Bogoliubov angle ¢y, ,, is defined
in Eq. (4.30). Figure [p.4] depicts the Gauss map and two FBZ of the Ising chains
being mapped onto circles on the sphere. Following a similar method to Ref. [19],
we define the Floquet-Chern number as

1 1 [7
Cp=— [ sin6 do doy, = —/ Aok m, (5.31)
4 ’ 2m Jo ’

™ J712

The Floquet-Chern number C counts the number of times that the Gauss map d™
wraps the unit sphere as (/:;,k:) wraps around the entire FBZ in quasimomentum
space—which in this case is topologically equivalent to 72. Based on Eq.
we find that the Chern number can be Cr = 0, Cr = 1 and Cr = —1 for the
paramagnetic phase, the ferromagnetic phase FMZ, and the ferromagnetic phase
FMY respectively. Interestingly, in the absence of driving, Cr = 0 characterizes
the trivial phase, and Cr = 1 the topological phase. Therefore, we conclude that
the driving induces a topologically-nontrivial configuration, i.e., with Chern number
Cr = —1 which cannot be generated from continuous deformations of the undriven
phases. Geometrically, the Chern number formula given in Eq. corresponds
to the winding number of the Anderson pseudospin vector restricted to a “leave” of
the foliation of the torus, such a “leave” corresponds to the FBZ in quasimomentum
space (topologically equivalent to a circle S') of a particular Ising chain as can be
seen in Figs. (d) and [5.2| (d). Figure [5.5| depicts the geometry of the pseudospin
Anderson vector and the intepretation of the Chern-Floquet number in terms of the
direction of rotation.
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a)

Figure 5.5.: Winding of the pseudospin Anderson vector restricted to a “leave” of
the foliation on the torus.

5.4. Experimental realization

Recently, a realization of quantum magnets in a system of cold atoms placed in an
optical lattice has been suggested [34, 35, 36], to allow the implementation of the
spin-1/2 Kitaev model on a hexagonal lattice. Importantly, further investigation in
spin systems with topological order [6] will have a huge potential for applications
in quantum information as topologically-protected qubits. By controlling the tun-
neling and the self-interaction strength of the ensemble of cold atoms, simulation of
anisotropic Heisenberg-like interactions of the effective spin system on a honeycomb
lattice is possible [34]. A promising experimental realization of the driven Wen-
plaquette model could be achievable by using a Rydberg atom quantum simulator
[36]. To simulate it is necessary to construct a quantum circuit consisting of nonlocal
gates that encode the interactions of the effective system.
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6. Conclusion and outlook

This thesis focuses on the description of quantum criticality under the effect of
monochromatic driving in (d + 1)-dimensional systems ranging from the Dicke and
LMG models in d = 0, the transverse Ising model in d = 1, and the Wen-plaquette
model in d = 2. We have developed a method to describe QPTs in these models
based on effective Hamiltonians, which allow us to study driving-induced effective
interactions. Our methodology is potentially interesting in the context of quantum
simulation with cold atoms. We have investigated systems which exhibit second-
order QPTs in the absence of driving. When the external control is close to reso-
nance with the excitation energies of the undriven system, novel quantum phases
are generated as a result of the effective interactions.

In the study of the Dicke and LMG models, we have defined a quasienergy land-
scape to characterize the stable configurations, the number of which increases with
the amplitude of the external driving. As the stable configurations are macroscop-
ically separated, tunneling between minima is suppressed in the thermodynamic
limit. For the driven Dicke model, we show how the “no-go theorem” is circum-
vented in cavity QED. Further studies may reveal the relation between Berry phase
and driving-induced multistability.

We have shown the existence of anisotropic transitions in the driven Ising model
which are absent in equilibrium. We have discussed how the quantum phases corre-
spond to states which are synchronized with the driving. Based on this fact, we have
defined cycle-averaged quantities to describe critical signatures in nonequilibrium.
In particular, at the critical lines—similarly to the usual undriven second-order
QPTs—the cycle-averaged energy exhibits nonanalyticities in the second derivative.
A next step in further investigations is the detailed study of the multicritical points
and critical exponents.

In the context of TQPT, we have studied the driven version of the Wen-Plaquette
model. We have shown the existence of a new nontrivial topological phase and
introduced a nonlocal cycle-averaged order parameter to describe it. It will be
interesting to understand the braiding of anyonic excitations under the effect of
driving and investigate the driven versions of paradigmatic models such as the toric
code and Kitaev honeycomb lattice.
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Abbreviations

DM Dicke Model

QPT Quantum Phase Transition

QED Quantum Electrodynamic

RWA Rotating wave approximation
LMG Lipkin-Meshkov-Glick

LQE Lowest quasienergy

FBZ First Brillouin zone

BdG Bogoliubov-de Gennes

FBAG Floquet-Bogoliubov-de Gennes
CDT Coherent destruction of tunneling
TQPT Topological quantum phase transition
TQFT Topological quantum field theory
WPM Wen Plaquette Model

87






Appendix

A. Background to Floquet Theory

In this appendix we concisely summarize the more important aspects of Floquet
theory for time-periodic Hamiltonians [50]. Based on this analysis we describe the
physical interpretation of the effective Hamiltonian approach that we use in this
thesis to describe AC-driven QPTs by means of the RWA [52]. Finally, we discuss
the relation between RWA and Floquet theory.

A.1. The Floquet Hamiltonian

In this thesis we are interested in the analysis of periodically driven systems, which
are described by a time-periodic Hamiltonian

~ A

Ht+T)=H(t) (A.1)

where T' = 27 /Q) is the period, and (2 is the angular frequency of the external driving.
In this case, the symmetry of the Hamiltonian under discrete time translations
enables us to write the solution of the Schrodinger equation as

W () = Zaalwa(t» = Zaae_iaat|®a(t)> : (A2)

The states |V, (t)) = e f|®,(t)) are the so-called Floquet states, |®,(t + T)) =
|®,(t)) are the Floquet modes, and ¢, are the quasienergies, which are unique up
to integer multiples of €2. The Floquet modes satisfy the eigenvalue equation

H| o (1)) = £a|Pa(t)) | (A.3)
where 5
H=H(t)— io (A.4)

is the Floquet Hamiltonian. We immediately notice that the modified Floquet modes

|Pan(t)) = emm‘@a(t» ) (A.5)
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with n being an integer number denoting the Fourier index, are eigenvalues of the
Floquet Hamiltonian Eq. (A.4)), but with the shifted quasienergy €n, = €4 +n. As
a consequence, the set of eigenvalues {e,}acr (I" is a set of indices that labels the
quasienergies) can be mapped into a first Brillouin zone (FBZ) in the quasienergy
space, obeying —Q/2 < ¢, < Q/2.

It is convenient to introduce the extended Hilbert space 7 = Z ® .7, where % is
the Hilbert space of the square integrable functions on configuration space, and .7
is the set of time-periodic functions with period T' = 27 /€. In the extended Hilbert
space, the quantum state of the system can be expanded as follows

t) =) conlB) ®n), (A.6)

where |3) is a complete basis for # and the Fourier states |n) constitute a basis
for .7 such that (t|n) = ™. Formally, in the extended Hilbert space JZ, one can
define the conjugate variables ¢ and E =id/dt, such that [E, ] =i, as in reference
[95]. The operator E is diagonal in the basis of Fourier states |n> = —nJn), and
t is diagonal in the continuous basis t|t> = t|t). By using this formalism, one can
define the Fourier translation operator Ko = % : .7 — 7, such that

Koln) = |n+1),
Kolt) = é™|t). (A.7)

Therefore, the action of Kq allows us to couple sectors with different Fourier indices

n in the extended Hilbert space .77, such a interpretation is very useful in the context
of RWA.

A.2. Floquet operator

For periodically driven systems it is useful, from the numerical point of view, to
use an alternative method to calculate the Floquet states and quasienergies. The
method is based on the fact that the Floquet states are eigenstates of the Floquet
operator

~

F=U(T,0)=Texp [—i/OT H(t) dt} 7 (A.8)

where T is the time-ordering operator, and U (T,0) is the evolution operator in
one period of the driving, which can be obtained by numerical integration of the
Schrodinger equation. The Floquet operator is a unitary operator, i.e., the eigen-
values must be unimodular complex numbers

F1a(0)) = e7T]24(0)) (A.9)
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where the phases ¢, are exactly the set of Floquet quasienergies introduced above,
and the eigenvectors correspond to the Floquet states evaluated at the initial time.
The Floquet operator description gives us the possibility to perform a stroboscopic
observation of the system at times nT', where n is a natural number. In one period,
the evolution of the initial quantum state |¥(0)) is given by

FIU(0)) = [¥(T)) , (A.10)
which can be generalized to

FU(0)) = |¥(nT)) . (A.11)

A.3. Floquet theory and RWA

In this section we establish the relation between Floquet theory and RWA. The
principal ingredient of this analysis relies on the transformation into a convenient
rotating frame via a unitary transformation Um(t) In the rotating frame, the dy-
namics is governed by the Hamiltonian

H,,(t) = Ul (tYHU,, (1), (A.12)

where H is the Floquet Hamiltonian Eq. (A.4). In the extended Hilbert space .52,
the Hamiltonian Eq. (A.12)) can be decomposed as a formal Fourier series

= f: KR = i him) it (A.13)

n=—oo n=—oo

where iL(m) is an operator acting on #. For parameters close to a m-photon reso-
nance, we can perform the RWA by neglecting all the terms that couple different
Fourier states in the expansion, i.e., by considering H,,(t) ~ h . In this thesis, we
consider ho as our effective Hamiltonian, because it resembles the behavior of a
time-independent Hamiltonian, however, with effective interactions which are absent
in equilibrium. Interestingly, under RWA, iL(()m) and the Floquet Hamiltonian Eq.
are isospectral operators, and their eigenvalues correspond to the quasiener-
gies. Let us assume the eigenvalue problem fz(()m)]ggmw = €a7m|q~5a,m). To obtain the
eigenvectors of the Floquet Hamiltonian for parameters close to a m-photon
resonance, one should apply a unitary transformation back into the laboratory frame

|&)a,m<t>> = Um<t)|¢;a,m>- (A14)

In the next appendix we discuss the relation between RWA and Floquet theory in a
very instructive particular example.
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B. The periodically-driven two-level system

Our aim in this section is to apply the formalism discussed in the last section to one
particular example. Therefore, we focus here on the periodically driven two-level
system [95]

H(t) = —&(t)o. — Aoy, (B.1)
where e(t) = ¢ + ;1 cos 2t corresponds to a time-periodic asymmetry, and A is the
tunneling amplitude. In the laboratory frame, for a given n, the monochromatic
driving induces transitions between Fourier states |n) and |n £+ 1) in J#, as can be
seen from the identity 2 cos Ot = (t|Kq + KL|t).

In the absence of driving, the system is exactly solvable, and is characterized
by the eigenenergies E*) = £,/2 + A2. Under the effect of driving, multiphoton
transitions can occur when the relation ) — E(-) = mQ is satisfied, where m
is an integer labeling the number of photons involved in the transition. Such a
condition implies a crossing of the energy spectrum of the two-level system, when
the energies E*) are folded into the FBZ in energy space, because m$) = 0 modulus
Q. In the case of weak tunneling amplitude A < €2, the resonance condition reads
g0 =~ mf)/2. In the next section, we perform the RWA for parameters close to a
multiphoton resonance.

B.1. The RWA and the effective Hamiltonian

Now, let us consider a transformation into the rotating frame via the unitary oper-

ator R
Un(t) = exp(iam(t)o), (B.2)
where «a,,(t) = mTQt + o sinQt. In the rotating frame the, quantum evolution is
governed by the Hamiltonian
H(t) = =0"™a, — A {0, cos 20, (t) + 0, sin 204, (1)} (B.3)

where 6™ = g5 — m/2 is the detuning from resonance. By using the identity

Eq. (4.20), the Hamiltonian Eq. (B.3)) can be written in the form of Eq. (A.13]).

In analogy with the standard RWA of quantum optics, we obtain an approximate
Hamiltonian to describe the mth resonance by neglecting all the terms in f[m(t)
with oscillatory time-dependence: ﬁm(t) ~ iz(()m). This approximation is valid as
long as the condition

5™ AT (%) <Q (B.4)
holds [52]. The effective Hamiltonian reads
. 2
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where we have use the property J_;(z) = (—1)'7(2) of the Bessel functions [48].
The quasienergies of the system are given by

o=y [, (2] B9

It is tempting to define the Floquet modes as |®r,(t)) = Up(t)|prm). Un-

der this definition, however, we have the relation [P (T)) = Up(T)|¢sm) =

exp(imno,)|¢+ m), which implies that for even m, the eigenvectors of the Floquet

Hamiltonian Eq. are periodic, whereas for odd m they are antiperiodic. A so-
imQt

lution to this problem is to define the Floquet modes as |®4 ,,(t)) = e 2 U, (t)|dLm)
with the corresponding shifted quasienergies

- :I:\/ 52 4+ {Ajm (%ﬂ L 2 (B.7)

B.2. Coherent destruction of tunneling in a nutshell

In this section we discuss briefly the concept of coherent destruction of tunneling
(CDT) [99,100]. At the beginning of this appendix we discussed the condition under
which a multiphoton resonance can occur in the absence of driving. When the exter-
nal control is switched on, however, the degeneracy is lifted in general, and there are
Rabi oscillations between the two quasienergy eigenstates |®4 ,,,(¢)) with frequency
Wm = €4m — €—m. A seminal result of the theory of externally-driven quantum
systems is that, as a consequence of a generalized parity in the extended Hilbert
space s, under the effect of periodic driving the tunneling between quasienergy
eigenstates can be slowed down or totally suppressed in a perfect coherent way,
a phenomenon commonly referred to as coherent destruction of tunneling (CDT)
[99, 100]. In particular, starting from the analytical results obtain from RWA, we
can observe that on resonance, i.e., when 6™ = 0, the Rabi frequency w,, vanishes
when the system parameters are tuned up such that the condition 7, (25—1) =0
is satisfied [95], which implies a suppression of the Rabi oscillations related to a
crossing of the quasienergies ¢ ,, and ¢_ ,,,. Therefore, there is a dynamical freezing
in the two-level system dynamics as a consequence of the external control.

C. Description of the driven Ising model for finite
size

In this appendix we introduce the fundamental tools used in the solution of the Ising
model following the methods and the notation of reference [12].
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Let us consider the Hamiltonian Eq. (4.1 in the case of even number of lattice
sites V. For convenience, we use the Jordan-Wigner representation of the Pauli
matrices

T _ 1 __oxta.
o; =1—2¢¢,

j—1
of = —i(eh — ;) [ J(1 —2¢fen),
=1
j—1
o7 = (el +¢) [J1 - 2¢fe). (C.1)

=1

Under this representation of the angular momentum algebra, the parity operator
Eq. (4.2) acquires the form

N N
1= (g)agc =[] - 2¢ley). (C.2)

Using this parity operator we are able to define projectors onto the subspaces with
even (+) and odd (—) number of fermionic quasiparticles as follows

Py = =(1£10). (C.3)

The projectors Py satisty the usual properties of orthogonal projection operators
such as P, +P_ =1, P,P_ =P_P_ =0, and (P.)? = P.. Using these properties
and the algebra of fermlomc operators, it is possible to show that the Hamiltonian
Eq. can be decomposed as follows

H(t) =P HO )P, + P_HOt)P_, (C.4)
where
. N N
&) g(t) Y (1 —2¢le;) — T (el —a(elyy + én). (C.5)

i=1 i=1
To perform the splitting we have defined antiperiodic boundary conditions in the
even (+4) subspace ¢yi1; = —¢ and periodic boundary conditions in the odd (—)
subspace ¢y41 = ¢1. In this thesis we focus on the projection H™) in the even
subspace. Translational invariance suggest to use the discrete Fourier transform

A e*iw/4 o e

Cp = W ; cre \/_ g (ékeik“ + é_ke_ik") , (C.6)

—in/4

94



Appendix
D. The QPT in the anisotropic XY spin chain in a transverse field

which is compatible with the antiperiodic boundary conditions when

T 37 (N —1)m

The discrete Fourier transform maps H*) into Hamiltonian Eq. (4.6).

D. The QPT in the anisotropic XY spin chain in a
transverse field

Here we consider the critical behavior in a model described by the Hamiltonian

N

N
H = —hZJf — Z(Jzofafﬂ + Jyolol,,), (D.1)
i=1

i=1

which is unitarily equivalent to the Hamiltonian of an anisotropic XY spin chain in
a transverse field [96], 97, O8].

Similarly to the Ising model, after Jordan-Wigner transformation , and a
discrete Fourier transform (C.6]), the Hamiltonian Eq. in the even subspace
(the subspace with a even number of fermionic quasiparticles) acquires the form

b = Z {2 [h— (J. + J,) cos k] (éLék + 5T_,€(/ik) - Qh}

k>0

+> 2. — J,) sink(efel, + c_pér). (D.2)

k>0

The diagonalization of this Hamiltonian is completed after a Bogoliubov transfor-

mation,
) L1

where

E, = 2\/(h — (J. + J,) cosk)® + [(J. — J,) sink]”. (D.4)

The system exhibits an Ising-like QPT along the lines |h| = J,+J, and an anisotropic
QPT along the line J, = J,, providing that |h| < J,+J,. The anisotropic transition
is characterized by two ferromagnetic phases, i.e., for J, > J, the system is in a ferro-
magnetically ordered phase along z direction FMZ, while it is the other way around
in the FMY phase. Similarly to reference [96], we consider a reparametrization of
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the asymmetries

J, = %(1 +7),
Jy = %(1 — ), (D.5)

where 7 is dimensionless parameter characterizing the degree of anisotropy in the

zy-plane. Under this reparametrization, the Ising-like critical lines correspond to

|h| = J, and the anisotropic transition occurs at v = 0, as long as |h| < J.
Interestingly, in the absence of a transverse field, i.e., for h = 0, the scaled ground-

state energy can be written in the thermodynamic limit as

1 Ek

oy == fim 305

k
" dk
- _ b — (1 — ~2) sin?
= J/—WQW\/l (1 —~2)sin*k
2J

= —7E[1 —72]’ (D6)

where Elz] is the complete elliptic integral of the second kind [48]. The scaled
ground state energy exhibits a nonanalyticity of the second derivative at the critical

line of the anisotropic transition v = 0 [96], which is a generic characteristic of a
second-order QPT [3].

E. Numerical calculation of the expectation values

By using the BCS ansatz Eq. we can solve the Schrodinger equation for the
Ising model in terms of the solution of the Schrédinger equation for an effective two-
level system described by the BAG Hamiltonian Eq. , which is parametrized
by the quasimomentum k € {+%,£3% ..., i%}

In the numerical calculation we assume that the system is prepared initially in

the unoccupied state [0_x, 0;), which implies that ¥} (0) = (uf(0),v:(0)) = (0,1).
After numerical integration of the dynamical BdG Eq. (4.9), we find the spinor
U, (t). To calculate the scaled expectation value of the transverse magnetization

M, (t) = % <Zf\i1 Jf> for a given system size N we use the formula

ML () = - ST (0)] o ()W) (B1)

k>0

In the last expression we have used the definition of o*(k) given in Eq. (4.37)).
For example, to calculate the dynamics of the system for N = 4, we perform the
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numerical integration of Eq. (4.9) for k € {%,2}. Based on the solution of this
equation we find the solution of the Schrédinger equation for Hamiltonian Eq. | .
using the BCS ansatz

|1, 8) = [thr1,8) @ [Vh3r/4, 1), (E.2)
where
[Wrjast) = [tr/a(E) |1 ras L) + Vrpa(t)]0-r/a, Onpa)] (E.3)
and
3ra,t) = [tsr/a(t)|1-3r/a; 13n/a) + V3r/a(t)[0—3r /4, O3r/a)] - (E4)

F. Cycle-averaged correlation functions

In this section we perform a description of the calculation of the spin correlation
functions in nonequilibrium of the ¢*-th Ising chain described by Hamiltonian Eq.
(4.1). In particular, we are interested in the spin spatial correlations

Naa(R, 1) = (25, (¢) |00t 5| €57 (1)) (F.1)
for o € {y, 2}, where
[@5)(1)) = exp(—iNES )T () Q) X4 )
k>0
= exp(—iNEﬁrj)t)Um(t)\ng)) (F.2)
is the negative-quasienergy Floquet eigenstate, where Ey, )= — f . 5k .m 1s the total

quasienergy—<y, », is the quasienergy dispersion defined in Eq . Without loss
of generality, let us perform here the explicit calculation for the particular case
o=z

n(Ryt) = (14 cosfanm(t)]) (x5 [ofotsn| i)
+(1 = cos[danm (1)) (x5 [otot ] X32)
Fsinfdan (O] (O |oiotpl i) + O |00t ] X)) (F-3)

After averaging over a cycle we get

P = [re g (5] 66 il )
+ 1= comgn ()] 66 botetal ) ()
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