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Preface

Es gibt nichts Praktischeres als eine gute Theorie.
Immanuel Kant

In modern probability theory diffusion processes with reflection arise in various manners. As
an example let us consider the reflected Brownian motion, that is a Brownian motion on the
positive real line with reflection in zero. There are several possibilities to construct this process,
the simplest and most intuitive one is certainly the following: Given a standard Brownian motion
B, starting in some x ≥ 0, a reflected Brownian motion is obtained by taking the absolute value
|B|. By the Itô-Tanaka formula we have

|Bt| = x+

∫ t

0
sign(Bs) dBs + Lt,

where (Lt)t≥0 is the local time of B in zero, i.e. it is continuous, nondecreasing and supp(dL) ⊆
{t ≥ 0 : Bt = 0}. Note that βt :=

∫ t
0 sign(Xs) dBs is again a Brownian motion by Lévy’s

characterization theorem.
Another possibility to construct a reflected Brownian motion is to apply the Skorohod re-

flection principle. Given a standard Brownian motion W there exists a unique pair (X,L) such
that

Xt = x+Wt + Lt, x ≥ 0, t ≥ 0, (0.1)

whereXt ≥ 0 for all t, L starts in zero and is continuous, monotone nondecreasing and supp(dL) ⊆
{t ≥ 0 : Xt = 0}, i.e. it increases only at those times, when X is zero. Moreover, the local time
L is given by Lt = [−x− infs≤tWs]

+. Here the reflected Brownian motion (Xt) is constructed by
adding the local time L. Equation (0.1) is a simple example for a so called Skorohod-SDE. Since
β defined above is a Brownian motion, one can easily check that

X
d
= |B| .

A much more abstract and analytic method to introduce the reflected Brownian motion is to
define it via its Dirichlet form. The reflected Brownian motion is the diffusion associated with
the Dirichlet form

E(f, g) =
1

2

∫ ∞

0
f ′(x) g′(x) dx, f, g ∈W 1,2([0,∞)).

iii
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Another meaningful class of stochastic processes involving some kind of reflection are Bessel
processes. The Bessel process ρδ with Bessel dimension δ > 0 is again a diffusion process taking
nonnegative values, which is associated with the Dirichlet form

Eδ(f, g) = Cδ

∫ ∞

0
f ′(x) g′(x)xδ−1 dx, f, g ∈W 1,2([0,∞), xδ−1dx),

Cδ denoting a positive constant. Usually Bessel processes are introduced by defining the square
of a Bessel process (see e.g. Chapter XI in [56]). For integer dimensions, i.e. for δ ∈ [1,∞)∩N, ρδ

can be obtained by taking the Euclidian norm of a δ-dimensional Brownian motion. In particular,
the one-dimensional Bessel process ρ1 is just the reflected Brownian motion discussed above. For
δ > 1, the Bessel process ρδ starting in some x ≥ 0 can be described as the unique solution of the
SDE

ρδ
t = x+

δ − 1

2

∫ t

0

1

ρδ
s

ds+Bt. (0.2)

The drift term appearing in this equation effects a repulsion, which is strong enough to force the
process to stay nonnegative, so that no further reflection term is needed. Finally, for 0 < δ < 1 the
situation is much more complicated, because the drift term is now attracting and not repulsive.
As a consequence, a representation of ρδ in terms of an SDE like (0.1) or (0.2) is not possible in
this case, because ρδ is known not to be a semi-martingale if δ < 1 (see e.g. Section 6 in [57]).
Nevertheless, ρδ admits a Fukushima decomposition

ρδ
t = Bt + (δ − 1)Ht, t ≥ 0,

as the sum of a Brownian motion and a zero energy process (δ − 1)H, which also produces the
reflection in this case, see [13] for details.

In this thesis, diffusion processes will appear in nearly every fashion mentioned so far. The
thesis consists of two parts. The first part contains some pathwise differentiability results for
Skorohod SDEs. In the second part a particle approximation of the Wasserstein diffusion is
established, where the approximating process can be intepreted as a system of interacting Bessel
process with small Bessel dimension. The second part is a joint work with Max von Renesse, TU
Berlin.

Pathwise Differentiability for SDEs with Reflection

Consider some closed bounded connected domain G in Rd, d ≥ 2, and for any starting point
x ∈ G the following SDE of the Skorohod type:

Xt(x) = x+

∫ t

0
b(Xr(x)) dr + wt +

∫ t

0
γ(Xr(x)) dlr(x), t ≥ 0,

Xt(x) ∈ G, dlt(x) ≥ 0,

∫ ∞

0
1lG\∂G(Xt(x)) dlt(x) = 0, t ≥ 0,

where w is a d-dimensional Brownian motion and b is a continuously differentiable drift. Fur-
thermore, for every x ∈ ∂G, γ(x) denotes the direction of reflection at x, for instance in the case
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of normal reflection γ(x) is the inner normal field on ∂G. Finally, l(x) the local time of X(x) in
∂G, i.e. it increases only at those times, when X(x) is at ∂G.

In the first part of this thesis we investigate the question whether the mapping x 7→ Xt(x),
t > 0, is differentiable almost surely and whether one can characterize the derivatives in order to
derive a Bismut formula. Deuschel and Zambotti have solved this problem in [26] for the domain
G = [0,∞)d and several related questions have already been considered in [6].

In Chaper 1 (cf. [8]), we consider the case where G is a convex polyhedron and where the
directions of reflection along each face are constant but possibly oblique. The differentiability is
obtained for every time t up to the first time when the process X hits two of the faces simul-
taneously. Similarly to the results in [26], the derivatives evolve according to a linear ordinary
differential equation, when the process X is in the interior of the domain, and they are projected
to the tangent space, when it hits the boundary. In particular, when X reaches the end of an
excursion interval, the derivative process jumps in the direction of the corresponding direction of
reflection. This evolution becomes rather non-trival due to the complicated structure of the set of
times, when the process is at the boundary, which is known to a.s. a closed set of zero Lebesgue
measure without isolated points.

Chapter 2 (cf. [7]) deals with the case where G is a bounded smooth domain with normal
reflection at the boundary. The additional difficulties appearing here are caused on one hand
by the presence of curvature and on the other hand by the fact that one cannot apply anymore
the technical lemma, on which the proofs in [26] and [8] are based, dealing with the time a
Brownian path attains its minimum. As a result we obtain an analogous time evolution for
the derivatives as described above. In contrast to the results in [26], this evolution gives not a
complete characterization of the derivatives in this case. Therefore, a further SDE-like equation
is established, characterizing the derivatives in the coordinates w.r.t. a moving frame.

Particle Approximation of the Wasserstein Diffusion

The Wasserstein diffusion, recently constructed in [66] by using abstract Dirichlet form methods,
is roughly speaking a reversible Markov process, taking values in the set P of probability measures
on the unit interval, whose intrinsic metric is given by the L2-Wasserstein distance. In order to
improve the intuitive and mathematical understanding of that process, we establish a reversible
particle system consisting of N diffusing particles on the unit interval, whose associated empirical
measure process converges weakly to the Wasserstein diffusion in the high-density limit, while we
have to assume Markov uniqueness for the Dirichlet form, which induces the Wasserstein diffusion
(cf. [9]).

This approximating particle system can be interpreted as a system of coupled, two-sided
Bessel processes with small Bessel dimension. In particular, for large N the drift term, which
appears in the SDE describing formally the particle system, is attracting and not repulsive. In
analogy to the Bessel process it is not contained in the class of Euclidian semi-martingales.

A detailed analysis of the approximating system, in particular Feller properties, will be subject
of Chapter 3 (cf. [10]) based on harmonic analysis on weighted Sobolev spaces. A crucial step here
is to verify the Muckenhoupt condition for the reversible measure, which will imply the doubling
property and a uniform local Poincaré inequality. From this one can derive the Feller property
using an abstract result by Sturm [59].
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To obtain the convergence result one has to prove tightness and in a second step one has
to identify the limit. While tightness easily follows by some well-established tightness-criteria,
the identification of the limit is more difficult. The proof uses the parametrization of P in
terms of right-continuous quantile functions. Then, the convergence of the empirical measure
process is equivalent to the convergence of the process of the corresponding quantile functions.
This convergence is then obtained by proving that the associated Dirichlet forms converge in
the Mosco sense to the limiting Dirichlet form, where we use the generalized version of Mosco
convergence with varying base spaces established by Kuwai and Shioya (cf. [50]). The verification
of the Mosco conditions is based on an integration by parts formula for the invariant measure
of the limiting process (Prop. 7.3 in [66]) and on the fact that the logarithmic derivatives of
the equilibrium distributions converge in an appropiate L2-sense. Moreover, the assumption of
Markov uniqueness is a crucial ingredient in the proof of the Mosco convergence.
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Zusammenfassung

Im ersten Teil der vorliegenden Dissertation werden Lösungen von stochastischen Differentialglei-
chungen mit Reflektion auf pfadweise Differenzierbarkeit nach dem deterministischen Anfangswert
untersucht. Für ein abgeschlossenes, beschränktes, zusammenhängendes Gebiet G in Rd, d ≥ 2,
und für einen deterministischen Startpunkt x ∈ G, betrachtet man die folgende stochastische
Differentialgleichung vom Skorohod-Typ:

Xt(x) = x+

∫ t

0
b(Xr(x)) dr + wt +

∫ t

0
γ(Xr(x)) dlr(x), t ≥ 0,

wobei w eine d-dimensionale Brownsche Bewegung sei und b eine stetig differenzierbare Drift-
funktion. Weiterhin bezeichnet γ(x), x ∈ ∂G, die Reflektionsrichtung am Punkt x und l(x) die
Lokalzeit von X(x) in ∂G, d.h. l(x) wächst nur an den Zeitpunkten, an denen X(x) am Rand
ist. Es wird nun die Frage untersucht, ob die Abbildung x 7→ Xt(x), t > 0, fast sicher differen-
zierbar ist und wie man die Ableitungen charakterisieren kann, um daraus eine Bismut-Formel
herzuleiten.

In Kapitel 1 wird der Fall betrachtet, dass G ein konvexes Polyeder ist, wobei die Reflek-
tionsrichtungen entlang der Randflächen zwar konstant sind, aber durchaus schief sein dürfen.
Kapitel 2 behandelt dann den Fall, wo G ein glatt-berandetes Gebiet ist mit Reflektion am Rand
in Normalenrichtung.

Im zweiten Teil der Arbeit wird eine Partikelapproximation für die Wasserstein Diffusion
bewiesen. Bei der Wasserstein Diffusion handelt es sich um einen reversiblen Markov Prozess
mit Werten in der Menge von Wahrscheinlichkeitsmaßen auf dem Einheitsintervall. Das Ziel ist
es, ein Partikelsystem zu definieren, bestehend aus N auf dem Einheitsintervall diffundierenden
Partikeln, so dass der zugehörige Prozess von empirischen Maßen schwach gegen die Wasserstein
Diffusion konvergiert für N → ∞.

Das approximierende Partikelsystem kann interpretiert werden als ein System von interagie-
renden Bessel-Prozessen mit kleiner Bessel-Dimension. Insbesondere hat für große N der Drift-
term, welcher in einer formalen SDE-Beschreibung des Systems auftritt, den Effekt, dass die
Partikel sich gegenseitig anziehen. Eine Konsequenz hiervon ist, dass analog zu Bessel Prozessen
mit Dimension kleiner als eins das System kein Semimartingal ist. Eine detaillierte Untersuchung
des Partikelsystems, insbesondere Feller Eigenschaften, ist in Kapitel 3 enthalten.

Die schwache Konvergenz des Partikelsystems gegen die Wasserstein Diffusion wird in Kapi-
tel 4 bewiesen. Dabei wird zunächst Straffheit gezeigt und in einem zweiten Schritt der Limes iden-
tifiziert. Während Straffheit leicht aus etablierten Kriterien folgt, ist die Identifikation des Limes
schwieriger. Hier besteht der wesentliche Beweisschritt darin, Mosco-Konvergenz der zugehörigen
Dirichlet Formen nachzuweisen, wobei die verallgemeinerte Form von Mosco-Konvergenz von Ku-
wae und Shioya verwendet wird. Bei diesem Beweisschritt muss vorausgesetzt werden, dass die
Dirichlet Form, die die Wasserstein Diffusion erzeugt, Markov eindeutig ist.

Dieser zweite Teil ist ein gemeinsames Projekt mit Max von Renesse, TU Berlin.
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Chapter 1

SDEs in a convex Polyhedron with

oblique Reflection

1.1 Introduction

We consider a Markov process with continuous sample paths, characterized as the strong solution
of a stochastic differential equation (SDE) of the Skorohod type, where the domain G is a convex
polyhedron in Rd, i.e. G is the intersection of a finite number of half spaces. The process is
driven by a d-dimensional standard Brownian motion and a drift term, whose coefficient function
is supposed to be continuously differentiable and Lipschitz continuous. At the boundary of the
polyhedron it reflects instantaneously, the possibly oblique direction of reflection being constant
along each face.

Let G =
⋂N

i=1Gi, where each Gi is a closed half space with inward normal ni. The direction
of reflection on the faces ∂Gi will be denoted by constant vectors vi. As an example one might
think of the process of a Brownian motion in an infinite two-dimensional wedge, established by
Varadhan and Williams in [64] (see Figure 1.1). Existence and uniqueness for solutions of SDEs
with oblique reflecting boundary conditions on polyhedral domains are ensured by a result of
Dupuis and Ishii in [29]. The study of such SDEs is motivated by several applications: For
instance, these processes arise as diffusion approximations of storage systems or of single-server
queues in heavy traffic (see e.g. Section 8.4 in [20] for details).

In this chapter we show that the solution of the Skorohod SDE is pathwise differentiable with
respect to the deterministic initial value and to characterize the pathwise derivatives up to time
τ , when at least two faces of G are hit simultaneously for the first time. This is an addition
to the results of [26], where Deuschel and Zambotti considered such a differentiability problem
for SDEs on the domain G = [0,∞)d with normal reflection at the boundary. Our proceeding
will be quite similar to that in [26], in particular we shall use the same technical lemma dealing
with the minimum of a Brownian path (see Lemma 1 in [26]). The resulting derivatives are
described in terms of an ODE-like equation. When the process is away from the boundary, they
evolve according to a simple linear ordinary differential equation, and when it hits the boundary,
they have a discontinuity; more precisely, they are projected to the tangent space and jump in
direction of the corresponding reflection vector (cf. Section 1.3 below). In addition, we provide

3
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Figure 1.1: Two-dimensional Wegde with oblique Reflection

a Bismut-Elworthy formula for the gradient of the transition semigroup of the process which is
stopped in τ (see Corollary 1.5 below).

A crucial step in the proof of the differentiability result is to show that the solution of the
Skorohod SDE depends Lipschitz continuously on the initial value. To do this we shall apply a
criterion given in [28]. In particular, we have to ensure that a certain static geometric property
holds (cf. Assumption 2.1 in [28]), so that an additional restriction to the directions of reflection
is needed.

Our result is similar to a system, which has been introduced by Airault in [1] in order to
develop probabilistic representations for the solutions of linear PDE systems with mixed Dirichlet-
Neumann conditions on a regular domain in Rn. However, in contrast to [1] we study pathwise
differentiability properties of a process with reflection following [26], but with possibly oblique
reflection.

The material presented in this chapter is contained in [8]. The chapter is organized as follows:
In Section 1.2 we state the main result and in Section 1.4 we prove it. In Section 1.3 we investigate
the results in detail, while we establish a martingale problem connected with the derivatives and
we check the Neumann condition.

1.2 Model and Main Result

In this chapter we denote by ‖.‖ the Euclidian norm, by 〈., .〉 the canonical scalar product and by
e = (e1, . . . , ed) the standard basis in Rd, d ≥ 2. We consider processes on the domain G, which is
a convex polyhedron, i.e. G ⊆ Rd takes the form G =

⋂N
i=1Gi, where each Gi := {x : 〈x, ni〉 ≥ ci}

is a closed half space with inward normal ni and intercept ci. The boundary of the polyhedron
consists of the sides ∂Gi = {x : 〈x, ni〉 = ci} and with each side ∂Gi we associate a constant,
possibly oblique direction of reflection vi, pointing into the interior of the polyhedron. We always
adopt the convention that the directions vi are normalized such that 〈vi, ni〉 = 1. For every
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i ∈ {1, . . . , N}, let v⊥i , n
⊥
i ∈ span{ni, vi} be such that

〈vi, v
⊥
i 〉 = 〈ni, n

⊥
i 〉 = 0, 〈n⊥i , v⊥i 〉 = 〈ni, vi〉 = 1, 〈ni, v

⊥
i 〉 > 0, (1.1)

which implies 〈vi, n
⊥
i 〉 = −〈v⊥i , ni〉 (cf. Figure 1.2). Furthermore, for every i let n1

i := ni, n
2
i = n⊥i

and (nk
i )k=3,...,d be such that {n1

i , . . . , n
d
i } is an orthonormal basis of Rd.

To ensure Lipschitz continuity (see Lemma 1.11 below) and pathwise existence and uniqueness,
a further assumption on the directions of reflection is needed, namely that either

ni = vi or ai 〈ni, vi〉 >
∑

j 6=i

aj |〈ni, vj〉| (1.2)

for some positive constants ai and for all i (cf. Theorem 2.1 in [28]).
The set of continuous real-valued functions on G is denoted by C(G), and Cb(G) denotes the

set of those functions in C(G) that are bounded on G. For each k ∈ N, Ck(G) denotes the set
of real-valued functions that are k-times continuously differentiable in some domain containing
G, and Ck

b (G) denotes the set of those functions in Ck(G) that are bounded and have bounded
partial derivatives up to order k. Furthermore, for f ∈ C1(G) we denote by ∇f the gradient of
f and in the case where f is Rd-valued by Df the Jacobi matrix. Finally, ∆ denotes the Laplace
differential operator on C2(G) and Dv := 〈v,∇〉 the directional derivative operator associated
with the direction v ∈ G.

For any starting point x ∈ G, we consider the following stochastic differential equation of the
Skorohod type:

Xt(x) = x+

∫ t

0
b(Xr(x)) dr + wt +

∑

i

vi l
i
t(x), t ≥ 0,

Xt(x) ∈ G, dlit(x) ≥ 0,

∫ ∞

0
1lG\∂Gi

(Xt(x)) dl
i
t(x) = 0, t ≥ 0, i ∈ {1, . . . , N},

(1.3)
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where w is a d-dimensional Brownian motion on a complete probability space (Ω,F ,P). For every
i, li(x) denotes the local time of X(x) in ∂Gi, i.e. it increases only at those times, when X(x) is
at the boundary ∂Gi. The components bi : G→ R of b are supposed to be in C1(G) and Lipschitz
continuous. Then, existence and uniqueness of strong solutions of (1.3) are guaranteed in the case
of normal reflection by the results of [60], since G is convex, and in the case of oblique reflection
by [29], since by condition (1.2) the assumptions of Case 2 in [29] are fulfilled (cf. Remark 3.1 in
[29]).

Notice that there is one degree of freedom in defining the local times in the Skorohod SDE
(1.3): Setting l̃i(x) = hi l

i(x) for any real constants hi > 0, l̃i(x) satisfies the conditions in (1.3)
as well. Thus, it is possible to replace vi l

i(x) by h−1
i vi l̃

i(x) in the Skorohod SDE. Consequently,
the norm of the reflection vectors vi does not affect the Skorohod equation, so that the vectors
can be thought to be normalized. However, we shall use the normalization 〈vi, ni〉 = 1 chosen
above, to simplify the computations in the sequel.

Furthermore, by the Girsanov Theorem there exists a probability measure P̃(x), which is
equivalent to P, such that the process

W i
t (x) :=

∫ t

0
bi(Xr(x)) dr + wi

t, t ≥ 0, i ∈ {1, . . . , d}, (1.4)

is a d-dimensional Brownian motion under P̃(x). Next we define the stopping time τ by

τ := inf{t ≥ 0 : Xt(x) ∈ ∂Gi ∩ ∂Gj , i 6= j}, x ∈ G, (1.5)

to be the first time, when the process hits at least two of the faces simultaneously. The following
simple example shows that even under the assumption in (1.2) τ can a.s. be infinite and finite as
well.

Example 1.1. Let G = R2
+, i.e. G is a two-dimensional wedge with angle π

2 and inward normals
ni = ei, i ∈ {1, 2} (cf. Figure 1.1). We choose v1 = n1 and v2 = (− tan θ, 1), where θ ∈ (−π

4 ,
π
4 )

denotes the angle between n2 and v2, such that the vector v2 points towards the corner if θ is
positive. Then, the assumption in (1.2) holds with a1 = a2 = 1. From Theorem 2.2 in [64] we
know that

P[τ <∞] =

{

0 if θ ≤ 0,

1 if θ > 0,

for any starting point x ∈ G\{0}. Nevertheless, τ has infinite expectation for every θ ∈ (−π
2 ,

π
2 )

(see Corollary 2.3 in [64]).

We set

Ci := {s ≥ 0 : Xs(x) ∈ ∂Gi}, ri(t) := sup(Ci ∩ [0, t]), i ∈ {1, . . . , N},

with the convention sup ∅ := 0, and furthermore C :=
⋃N

i=1C
i and r(t) := max{i=1,...,N} ri(t).

Then, for every i, Ci ∩ [0, τ) is known to be a.s. a closed set of zero Lebesgue measure without
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isolated points (closed relative to [0, τ)) and t 7→ ri(t) is locally constant and right-continuous.
For t ∈ [0, τ) we define

s(t) :=

{

0 if t < inf C,

i if r(t) = ri(t),

i.e. s(t) = i if the last hit of the boundary before time t was in ∂Gi, and s(t) = 0 if up to time t
the process has not hit the boundary yet. Let (An)n be the family of connected components of
[0, τ)\C. An is open, so that there exists qn ∈ An ∩ Q, n ∈ N. Let an := inf An be the starting
points and bn := supAn be the endpoints of the excursion intervals. Finally, let τ0 := 0 and
τ0 < τ1 < τ2 < . . . < τ be the jump times of t 7→ s(t) on [0, τ), i.e. at every time τℓ, ℓ > 0, the
process X has crossed the polyhedron from one face to another one. The following theorem gives
a representation of the derivatives of X in terms of an ODE-like equation:

Theorem 1.2. For all t ∈ [0, τ) and x ∈ G a.s. the mapping y 7→ Xt(y) is differentiable at x and,
setting ηt := DvXt(x) = limε→0(Xt(x + εv) − Xt(x))/ε, v ∈ Rd, there exists a right-continuous
modification of η such that a.s.

ηt = v +

∫ t

0
Db(Xr(x)) · ηr dr, if s(t) = 0,

ηt = 〈ηr(t)−, v
⊥
i 〉n⊥i +

d
∑

k=3

〈ηr(t)−, n
k
i 〉nk

i +

∫ t

r(t)
Db(Xr(x)) · ηr dr, if s(t) = i.

(1.6)

The proof of Theorem 1.2 is postponed to Section 1.4. If we consider the case G = Rd
+ and

normal reflection at the boundary, i.e. vi = ni = ei, the result corresponds to that of Theorem 1
in [26]. In the special case where N = d and the normals ni form an orthonormal basis of Rd, it is
also possible to provide a random walk representation for the derivatives, which is very similar to
that in [26], by using essentially the same arguments as in the proof of Theorem 1 and Proposition
1 in [26].

Remark 1.3. If x ∈ ∂Gi for any i, t = 0 is a.s. an accumulation point of C and we have r(t) > 0
a.s. for every t > 0. Therefore, in that case η0 = v and η0+ = 〈v, v⊥i 〉n⊥i +

∑d
k=3〈v, nk

i 〉nk
i , i.e.

there is discontinuity at t = 0.

Remark 1.4. The equation (1.6) does not characterize the derivatives, since it does not admit
a unique solution. Indeed, if the process (ηt) solves (1.6), then the process (1 + lt(x))ηt, t ≥ 0,
also does. A characterizing equation for the derivatives is given Theorem 1.6 below.

As soon as pathwise differentiability is established, we can immediately provide a Bismut-
Elworthy formula: Define Xτ

t (x) := Xt(x)1l{t<τ} and for all f ∈ Cb(G) the associated transition

semigroup Ptf(x) := E[f(Xτ
t (x))], x ∈ G, t > 0. Setting ηij

t := ∂X i
t(x)/∂x

j for t ∈ [0, τ) and
ηij := 0 on [τ,∞), i, j ∈ {1, . . . , d}, we get

Corollary 1.5. For all f ∈ Cb(G), t > 0 and x ∈ G:

∂

∂xi
Ptf(x) =

1

t
E

[

f(Xτ
t (x))

∫ t

0

d
∑

k=1

ηki
r dwk

r

]

, i ∈ {1, . . . , d}, (1.7)
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and if f ∈ C1
b (G):

∂

∂xi
Ptf(x) =

d
∑

k=1

E

[

∂f

∂xk
(Xτ

t (x)) ηki
t

]

, i ∈ {1, . . . , d}. (1.8)

Proof. Formula (1.8) is straightforward from the differentiability statement in Theorem 1.2 and
the chain rule. For formula (1.7) see the proof of Theorem 2 in [26].

Finally, we give another equation, which characterizes η locally. For that purpose, we set

yk
t :=

{

〈ηt, e
k〉 if s(t) = 0,

〈ηt, n
k
i 〉 if s(t) = i,

and ct(k, l) :=

{

〈ek, Db(Xt(x)) · el〉 if s(t) = 0,

〈nk
i , Db(Xt(x)) · nl

i〉 if s(t) = i.

Theorem 1.6. There exists a right-continuous modification of η and y, respectively, such that y
is characterized as the unique solution of

yk
t = 〈v, ek〉 +

∫ t

0

d
∑

l=1

cr(k, l) y
l
r dr, k ∈ {1, . . . , d}, if t < inf C (1.9a)

and

y1
t =

∫ t

ri(t)

d
∑

l=1

cr(1, l) y
l
r dr,

y2
t = 〈v⊥i , ni〉 y1

τℓ− + y2
τℓ− +

∫ t

τℓ

d
∑

l=1

cr(2, l) y
l
r dr + 〈v⊥i , ni〉

∫ ri(t)

τℓ

d
∑

l=1

cr(2, l) y
l
r dr,

yk
t = yk

τℓ− +

∫ t

τℓ

d
∑

l=1

cr(k, l) y
l
r dr, k ∈ {3, . . . , d},

(1.9b)

if t ≥ inf C, ℓ such that t ∈ [τℓ, τℓ+1) and with s(t) = i. If x ∈ ∂Gi for some i, i.e. inf C = 0, we
also need to specify yk

0− = yk
τ0− := 〈v, nk

i 〉, k = 1, . . . , d.

Again the proof is postponed to Section 1.4.

1.3 Martingale Problem and Neumann Condition

In this section we investigate the derivatives of X, established in Theorem 1.2, in detail. Let
v be arbitrary but fixed. From the representation of the derivatives in (1.6) it is obvious that
(ηt)0≤t<τ evolves according to a linear differential equation, when the process X is in the interior
of the polyhedron, and that it is projected to the tangent space, when X is at the boundary.
Furthermore, if X hits the boundary ∂Gi at some time ti and we have r(ti−) 6= r(ti), i.e. ti is
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the endpoint bn of an excursion interval An for some n ∈ N, then also η has a discontinuity at ti
and jumps as follows:

ηti = 〈ηti−, v
⊥
i 〉n⊥i +

d
∑

k=3

〈ηti−, n
k
i 〉nk

i .

Recall that {nk
i ; k = 1, . . . , d} is an orthonormal basis of Rd, so that ηti− =

∑d
k=1〈ηti−, n

k
i 〉nk

i

and

ηti − ηti− = 〈ηti−, v
⊥
i − n⊥i 〉n⊥i − 〈ηti−, ni〉ni = −〈ηti−, ni〉vi, (1.10)

where the last equality follows from Lemma 1.7 below. Consequently, we observe that at each
time, when X reaches the boundary ∂Gi, η is projected to the tangent space, since 〈ηti , ni〉 = 0,
and jumps in direction of vi or −vi, respectively. Finally, if Xti(x) ∈ ∂Gi and t 7→ r(t) is
continuous in t = ti, there is also a projection of η, but since in this case ηti− is in the tangent
space, the projection has no effect and η is continuous at time ti.

Lemma 1.7. For all i ∈ {1, . . . , N} and η ∈ Rd:

〈η, v⊥i − n⊥i 〉n⊥i − 〈η, ni〉ni = −〈η, ni〉vi.

Proof. By the choice of v⊥i and n⊥i in (1.1) we have vi = ni+〈vi, n
⊥
i 〉n⊥i and v⊥i = 〈v⊥i , ni〉ni+n

⊥
i ,

which is equivalent to

〈vi, n
⊥
i 〉n⊥i = vi − ni, v⊥i − n⊥i = −〈vi, n

⊥
i 〉ni.

Hence,

〈η, v⊥i − n⊥i 〉n⊥i − 〈η, ni〉ni = −〈η, ni〉 〈vi, n
⊥
i 〉n⊥i − 〈η, ni〉ni = −〈η, ni〉(vi − ni) − 〈η, ni〉ni

= −〈η, ni〉vi.

From the observations above it becomes clear that the process (Xt(x), ηt)0≤t<τ is Markovian
with state space G × Rd. Next we want to provide the infinitesimal generator for this Markov
process. For that purpose we define the operator L as follows: Let the domain D(L) be that set
of continuous bounded functions F on G× Rd satisfying the following conditions:

i) For every η ∈ Rd, F (., η) ∈ C2
b (G) and the Neumann boundary condition holds:

Dvi
F (., η)(x) = 0 for x ∈ ∂Gi, i ∈ {1, . . . , N}. (1.11)

ii) For every x ∈ G, we have F (x, .) ∈ C1
b (Rd), i.e. bounded and continuously differentiable

with bounded partial derivatives, satisfying the following boundary conditions: If x ∈ ∂Gi

for all η ∈ Rd:

F (x, η) = F (x, η − 〈η, ni〉vi), Dvi
F (x, .)(η) = 0. (1.12)
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Note that by the jump behaviour of η, provided in (1.10), and by the boundary condition (1.12)
we have for every F ∈ D(L) and t < τ :

F (Xt, ηt) = F (Xt, ηt−). (1.13)

Finally, the operator L is defined by:

LF (x, η) := L1F (., η)(x) + L2F (x, .)(η), F ∈ D(L),

where

L1F (., η)(x) :=
1

2
∆F (., η)(x) +

d
∑

i=1

bi(x)
∂F

∂xi
(., η)(x),

L2F (x, .)(η) :=
d
∑

i=1

(

d
∑

k=1

∂bi

∂xk
(x) ηk

)

∂F

∂ηi
(x, .)(η).

Proposition 1.8. For F ∈ D(L),

F (Xt(x), ηt) − F (x, η0) −
∫ t

0
LF (Xs, ηs) ds, t < τ,

is a martingale.

Proof. Since (Xt(x), ηt)t<τ is a semimartingale (see Proposition 1.9 below), we may apply Itô’s
formula for right-continuous semimartingales (see e.g. Section II.7 in [55]) to obtain

F (Xt(x), ηt) − F (x, η0)

=

∫ t

0
∇xF (Xs(x), ηs) dXs(x) +

∫ t

0
∇ηF (Xs(x), ηs) dηs +

1

2

∫ t

0
∆F (., ηs)(Xs(x)) ds

+
∑

0<s≤t

{F (Xs(x), ηs) − F (Xs(x), ηs−) −∇ηF (Xs(x), ηs−) · (ηs − ηs−)}

=mt +

∫ t

0
LF (Xs(x), ηs) ds+

N
∑

i=1

∫ t

0
Dvi

F (Xs(x), ηs) dl
i
s(x)

+
∑

0<s≤t

F (Xs(x), ηs) − F (Xs(x), ηs−) −
∑

0<s≤t

∇ηF (Xs(x), ηs−) · (ηs − ηs−),

where (mt) is a martingale. Clearly, the third and the fourth term vanish by the boundary
conditions (1.11) and (1.13). Using (1.10) the last term can be rewritten as

−
∑

0<s≤t

N
∑

m=1

∇ηF (Xs(x), ηs−) · (ηs − ηs−) 1l{Xs(x)∈∂Gm}

=
∑

0<s≤t

N
∑

m=1

〈ηs−, nm〉
d
∑

i=1

DvmF (Xs(x), .)(ηs−) 1l{Xs(x)∈∂Gm},

which is equal to zero by (1.12).
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Since (Xt(x), ηt)t<τ is Markovian, we can conclude from Proposition 1.8 that the restriction
of its generator to D(L) coincides with L. Note that Proposition 1.8 does possibly not give a
complete description of the law of the process (X, η) because it only states existence and not
uniqueness for solutions of the associated martingale problem.

Proposition 1.9. (ηt)0≤t<τ is a process of bounded variation.

Proof. It suffices to show that the sizes of the jumps of η on [0, t] are summable for every t < τ .
On one hand, η has a jump at time τℓ for each ℓ. Since the number of crossing through the
polyhedron from one face to another one up to time t is finite a.s., it is enough to show that

∑

r∈(τℓ,τℓ+1∧t)

‖ηr − ηr−‖ <∞, for every τℓ ≤ t.

Let τℓ ≤ t and i be such that s(r) = i for all r ∈ (τℓ, τℓ+1). Setting Aℓ := {n ∈ N : An ⊂
(τℓ, τℓ+1 ∧ t)}, we use (1.10) and (1.6) to obtain

∑

r∈(τℓ,τℓ+1)

‖ηr − ηr−‖ =
∑

n∈Aℓ

‖ηbn
− ηbn−‖ =

∑

n∈Aℓ

‖〈ηbn−, ni〉vi‖

≤ ‖vi‖
∑

n∈Aℓ

∫ bn

an

|〈ni, Db(Xr(x)) · ηr〉| dr

≤ c
∑

n∈Aℓ

(bn − an) ≤ c(t− τℓ),

for some positive constant c. The uniform boundedness of ηr in r, which is used here, will follow
from Lemma 1.11 below.

Finally, the following induction argument gives another confirmation of our results, namely
they imply that the Neumann condition holds for X.

Corollary 1.10. Let again Xτ
t (x) := Xt(x)1l{t<τ}. Then, for all f ∈ Cb(G) and t > 0, the

transition semigroup Ptf(x) := E[f(Xτ
t (x))], x ∈ G, satisfies the Neumann condition at ∂G:

x ∈ ∂Gi =⇒ Dvi
Ptf(x) = 0.

Proof. Let x ∈ ∂Gi. By a density argument it is sufficient to consider bounded functions f , which
are continuously differentiable and have bounded derivatives. Then, for each t > 0 we obtain by
dominated convergence and the chain rule:

Dvi
Ptf(x) =E

[

∇f(Xt(x))Dvi
Xt(x) 1l{t∈[0,τ)}

]

.

Thus, it suffices to show

Dvi
Xt(x) = 0, ∀0 < t < τ.

For this purpose it is enough to show that yt = 0 for all t ∈ [τℓ, τℓ+1) for every ℓ with v = vi. We
shall use induction on ℓ. Recall that inf C = 0. Since v = vi, using Theorem 1.6 we obtain that

y2
0 = 〈v⊥i , ni〉 〈vi, ni〉 + 〈vi, n

⊥
i 〉 = 0 and yk

0 = 〈vi, n
k
i 〉 = 0, k = 3, . . . , d.
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Thus, for every t ∈ [0, τ1),

y1
t =

∫ t

ri(t)

d
∑

l=1

cr(1, l) y
l
r dr,

y2
t =

∫ t

0

d
∑

l=1

cr(2, l) y
l
r dr + 〈v⊥i , ni〉

∫ ri(t)

0

d
∑

l=1

cr(2, l) y
l
r dr,

yk
t =

∫ t

0

d
∑

l=1

cr(k, l) y
l
r dr, k ∈ {3, . . . , d},

and by Gronwall’s Lemma it follows that y = 0 on [τ0, τ1). In order to prove y = 0 on [τℓ, τℓ+1)
for some ℓ > 0, note that we have yτℓ− = 0 by the induction assumption, so the claim follows
again by Theorem 1.6 and Gronwall’s Lemma.

1.4 Proof of the Main Result

1.4.1 Continuity w.r.t. the Initial Condition

The first step to prove Theorem 1.2 is to show the Lipschitz continuity of x 7→ (Xt(x))t w.r.t. the
sup-norm topology on a finite time interval:

Lemma 1.11. For an arbitrary but fixed T > 0, let (Xt(x)) and (Xt(y)), 0 ≤ t ≤ T , be solutions
of (1.3) for some x, y ∈ G. Then, there exists a positive constant K, only depending on T , such
that a.s.

i) sup
t∈[0,T ]

‖Xt(x) −Xt(y)‖ ≤ K‖x− y‖, ii) sup
t∈[0,T ]

|lit(x) − lit(y)| ≤ K‖x− y‖ for all i.

Proof. By the assumption in (1.2), Theorem 2.1 in [28] ensures that Assumption 2.1 in [28] holds.
Thus, we can apply Theorem 2.2 in [28] to obtain

sup
t∈[0,T ]

‖Xt(x) −Xt(y)‖ ≤ K1‖x− y‖ +K1 sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0
[b(Xr(x)) − b(Xr(y))] dr

∥

∥

∥

∥

,

and by the Lipschitz continuity of b we get

sup
t∈[0,T ]

‖Xt(x) −Xt(y)‖ ≤ K1‖x− y‖ +K2

∫ T

0
sup
r≤s

‖Xr(x) −Xr(y)‖ ds,

for some positive constants K1 and K2, and i) follows by the Gronwall Lemma. Using again
Theorem 2.2 in [28], the Lipschitz property of b and i) we obtain ii).
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1.4.2 Computation of the Local Times

Recall the definition of the P̃(x) Brownian motion W (x) in (1.4); the Skorohod SDE in (1.3) can
be rewritten as follows:

Xt(x) = x+Wt(x) +
∑

i

vi l
i
t(x), t ≥ 0, (1.14)

so that

〈Xt(x), ni〉 = 〈x, ni〉 + 〈Wt(x), ni〉 + L̂i
t(x) + lit(x), t ≥ 0,

since < vi, ni >= 1, where

L̂i
t(x) :=

∑

j 6=i

〈vj , ni〉 ljt (x), t ≥ 0.

Note that 〈W (x), ni〉 is again a Brownian motion under P̃(x) by Levy’s characterization theorem,
since ni is a unit vector. The local time li(x) is carried by the set of times t, when 〈Xt(x), ni〉−ci =
0, so that it can be computed directly by Skorohod’s Lemma (see e.g. Lemma VI.2.1 in [56]).
This yields

lit(x) =

[

−〈x, ni〉 + ci − inf
s≤t

(

〈Ws(x), ni〉 + L̂i
s(x)

)

]+

, t ≥ 0.

Fix any qn. Since 〈Xri(qn)(x), ni〉 − ci = 0 and t 7→ lit(x) is increasing, we have for all s ≤ ri(qn):

〈Wri(qn)(x), ni〉 + L̂i
ri(qn)(x) = −〈x, ni〉 + ci − liri(qn)(x) ≤ −〈x, ni〉 + ci − lis(x)

= −〈Xs(x), ni〉 + ci + 〈Ws(x), ni〉 + L̂i
s(x) (1.15)

≤ 〈Ws(x), ni〉 + L̂i
s(x).

Therefore, for all t ∈ An:

lit(x) = liri(qn)(x) =
[

−〈x, ni〉 + ci − 〈Wri(t)(x), ni〉 − L̂i
ri(t)

(x)
]+
. (1.16)

Next we compute the local times of the process with perturbed starting point. Set xε :=
x+ ε v, ε ∈ R, v ∈ Rd, where |ε| is always supposed to be sufficiently small, such that xε lies in
G\⋃i,j: i6=j(∂Gi ∩ ∂Gj). We start with a preparing lemma:

Lemma 1.12. Let i ∈ {1, . . . , N} and 0 ≤ s < t be arbitrary and let ϑ : Ω → [s, t] be the random
variable such that a.s. 〈Wϑ(x), ni〉 < 〈Wr(x), ni〉 for all r ∈ [s, t]\{ϑ}. Then, there exists a random
∆ > 0 such that a.s. ϑ is the only time, when 〈W (xε), ni〉 = 〈W (x), ni〉 + 〈W (xε) −W (x), ni〉
attains its minimum over [s, t] for all |ε| < ∆.

Proof. Since 〈W (x), ni〉 is a Brownian motion under P̃(x), by Lemma 1 in [26] there exists a
random variable γ such that every γ-Lipschitz perturbation of 〈W (x), ni〉 attains its minimum
only at ϑ. Using Lemma 1.11 and the Lipschitz continuity of b we find a ∆ > 0 such that
supr∈[s,t] |〈b(Xr(xε)) − b(Xr(x)), ni〉| ≤ γ for all |ε| < ∆. This implies that h(r) := 〈Wr(xε) −
Wr(x), ni〉 = h(s) +

∫ r
s 〈b(Xu(xε))− b(Xu(x)), ni〉 du is a γ-Lipschitz perturbation for such ε, and

the claim follows.



14 SDEs in a convex Polyhedron with oblique Reflection

Lemma 1.13. For all i and qn, n ∈ N, there exists a random ∆i
n > 0 such that for all |ε| < ∆i

n

a.s.:

liqn
(xε) =

[

−〈xε, ni〉 + ci − 〈Wri(qn)(xε), ni〉 − L̂i
ri(qn)(xε)

]+
. (1.17)

Proof. We need only to consider the case s(qn) = i. Indeed, if qn < inf Ci we can use Lemma 1.11
to find a ∆i

n > 0, such that Xt(xε) 6∈ ∂Gi for all t ∈ [0, qn] and for all |ε| < ∆i
n, which implies

liqn
(xε) = liqn

(x) = 0. If qn > inf Ci and s(t) 6= i, we set q̃n := sup{qk : qk < qn, s(qk) = i} and
again by Lemma 1.11 there exists a ∆i

n > 0, such that Xt(xε) 6∈ ∂Gi for all t ∈ [q̃n, qn] and for
all |ε| < ∆i

n, which implies liqn
(xε) = liq̃n

(xε).
Let now qn be such that s(qn) = i. Using again Skorohod’s Lemma, we obtain for all ε:

liqn
(xε) =

[

−〈xε, ni〉 + ci − inf
s≤qn

(

〈Ws(xε), ni〉 + L̂i
s(xε)

)

]+

=

[

−〈xε, ni〉 + ci − inf
s≤qn

(fε(s) + gε(s))

]+

,

where fε(s) := 〈Ws(xε), ni〉 + L̂i
s(x) and gε(s) := L̂i

s(xε) − L̂i
s(x). From the calculation in (1.15)

above we know that 〈W (x), ni〉 + L̂i
s(x) attains its minimum over [0, qn] at ri(qn), and we have

to show that for sufficiently small |ε|:
inf

s≤qn

(fε(s) + gε(s)) = fε(ri(qn)) + gε(ri(qn)). (1.18)

Recall that qn < τ , i.e. the process X hits the faces of the polyhedron G only successively,
and recall that Ci is the support of li(x). Thus, there exists a time q−n < qn such that 2d :=
liqn

(x)− li
q−n

(x) > 0 and Xs(x) 6∈
⋃

j 6=i ∂Gj for all s ∈ [q−n , qn] (note that we might have q−n = 0 in

the case where x ∈ ∂Gi and qn < inf
⋃

j 6=iC
j). We apply Lemma 1.11 and find a ∆′

n > 0 such

that also Xs(xε) 6∈ ⋃j 6=i ∂Gj for all s ∈ [q−n , qn] and |ε| < ∆′
n. Hence, for such ε it follows that

L̂i(x), L̂i(xε) and gε are constant on [q−n , qn], so that fε + gε attains its minimum over [q−n , qn] at
the same time as 〈W (xε), ni〉. By Lemma 1.12, possibly after choosing a smaller ∆′

n, we know
that this time is ri(qn), so that

inf
s∈[q−n ,qn]

(fε(s) + gε(s)) = fε(ri(qn)) + gε(ri(qn)), ∀|ε| < ∆′
n. (1.19)

Proceeding as in (1.15), we get for all s ≤ q−n :

〈Wri(qn)(x), ni〉 + L̂i
ri(qn)(x) = −〈x, ni〉 + ci − liri(qn)(x) = −〈x, ni〉 + ci − liqn

(x)

= −〈x, ni〉 + ci − li
q−n

(x) − 2d ≤ −〈x, ni〉 + ci − lis(x) − 2d

= −〈Xs(x), ni〉 + ci + 〈Ws(x), ni〉 + L̂i
s(x) − 2d

≤ 〈Ws(x), ni〉 + L̂i
s(x) − 2d.

(1.20)

Using the Lipschitz continuity of b and Lemma 1.11, we find a ∆′′
n > 0 such that

sup
s≤qn

|〈Ws(xε) −Ws(x), ni〉| = sup
s≤qn

∣

∣

∣

∣

∫ s

0
〈b(Xr(xε)) − b(Xr(x)), ni〉 dr

∣

∣

∣

∣

≤ d

2
, ∀|ε| < ∆′′

n,
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i.e. for such ε (1.20) implies

inf
s≤q−n

fε(s) − fε(ri(qn)) = inf
s≤q−n

(

〈Ws(xε), ni〉 + L̂i
s(x)

)

− 〈Wri(qn)(xε), ni〉 − L̂i
ri(qn)(x)

≥ inf
s≤q−n

(

〈Ws(x), ni〉 + L̂i
s(x)

)

− sup
s≤q−n

|〈Ws(xε) −Ws(x), ni〉|

− 〈Wri(qn)(xε), ni〉 − L̂i
ri(qn)(x)

≥3
2d− 〈Wri(qn)(xε) −Wri(qn)(x), ni〉 ≥ d.

(1.21)

By Lemma 1.11 ii) there exists a random ∆′′′
n > 0 such that a.s.

sup
s≤qn

|gε(s)| <
d

2
, ∀|ε| < ∆′′

n. (1.22)

Now using (1.21) and (1.22) we obtain for |ε| < min(∆′′
n,∆

′′′
n ):

inf
s≤q−n

(fε(s) + gε(s)) ≥ inf
s≤q−n

fε(s) − sup
s≤q−n

|gε(s)| > d+ fε(ri(qn)) − d

2

= fε(ri(qn)) +
d

2
> fε(ri(qn)) + gε(ri(qn)), (1.23)

so that (1.18) follows from (1.19) and (1.23) for all |ε| < ∆i
n := min(∆′

n,∆
′′
n,∆

′′′
n ).

1.4.3 Computation of the Difference Quotients

Next we compute the difference quotients of X. For fixed v ∈ Rd we set xε = x+ εv, ε 6= 0 and

ηt(ε) :=
1

ε
(Xt(xε) −Xt(x)) , t ≥ 0.

Let now t ∈ [0, τ) and n and ℓ be such that t ∈ An and t ∈ [τℓ, τℓ+1). We choose ∆n > 0 such
that a.s. for all |ε| < ∆n we have for all i that liqn

(x) = liqn
(xε) = 0 if qn < inf Ci, and both of

them are strictly positive if qn > inf Ci, and finally that formula (1.17) holds.

From (1.3) we deduce directly

Xt(xε) −Xt(x) = xε − x+Wt(xε) −Wt(x) +
N
∑

j=1

vj

(

ljt (xε) − ljt (x)
)

. (1.24)

If s(t) = 0 we get immediately

ηt(ε) = v +
1

ε

∫ t

0
(b(Xr(xε)) − b(Xr(x))) dr. (1.25)

Let us now consider the case s(t) = i, i ∈ {1, . . . , N}. Then, possibly after choosing a smaller
∆n, we may suppose that lj(xε) is constant on [τℓ, qn ∨ t] for every j 6= i since t < τ . In (1.24)
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we use (1.16) and (1.17) to obtain

Xt(xε) −Xt(x)

=xε − x+Wt(xε) −Wt(x) +
∑

j 6=i

vj

(

ljri(qn)(xε) − ljri(qn)(x)
)

+ vi

(

−〈xε − x, ni〉 − 〈Wri(qn)(xε) −Wri(qn)(x), ni〉 −
(

L̂i
ri(qn)(xε) − L̂i

ri(qn)(x)
))

.

Hence,

〈Xt(xε) −Xt(x), ni〉
=〈xε − x, ni〉 + 〈Wt(xε) −Wt(x), ni〉 + L̂i

ri(qn)(xε) − L̂i
ri(qn)(x)

− 〈xε − x, ni〉 − 〈Wri(qn)(xε) −Wri(qn)(x), ni〉 −
(

L̂i
ri(qn)(xε) − L̂i

ri(qn)(x)
)

=

∫ t

ri(qn)
〈b(Xr(xε)) − b(Xr(x)), ni〉 dr

and we get

〈ηt(ε), ni〉 =
1

ε

∫ t

ri(qn)
〈b(Xr(xε)) − b(Xr(x)), ni〉 dr. (1.26)

Recall the definition of v⊥i and n⊥i in (1.1). Since 〈vi, n
⊥
i 〉 = −〈v⊥i , ni〉, we have

〈

Xt(xε) −Xt(x), n
⊥
i

〉

=〈xε − x, n⊥i 〉 + 〈Wt(xε) −Wt(x), n
⊥
i 〉 +

∑

j 6=i

〈vj , n
⊥
i 〉
(

ljri(qn)(xε) − ljri(qn)(x)
)

+ 〈v⊥i , ni〉
(

〈xε − x, ni〉 + 〈Wri(qn)(xε) −Wri(qn)(x), ni〉 + L̂i
ri(qn)(xε) − L̂i

ri(qn)(x)
)

=〈xε − x, n⊥i 〉 + 〈Wri(qn)(xε) −Wri(qn)(x), n
⊥
i 〉 +

∑

j 6=i

〈vj , n
⊥
i 〉
(

ljri(qn)(xε) − ljri(qn)(x)
)

+
〈

xε − x, 〈v⊥i , ni〉ni

〉

+
〈

Wri(qn)(xε) −Wri(qn)(x), 〈v⊥i , ni〉ni

〉

+
∑

j 6=i

〈

vj , 〈v⊥i , ni〉ni

〉(

ljri(qn)(xε) − ljri(qn)(x)
)

+

∫ t

ri(qn)

〈

b(Xr(xε)) − b(Xr(x)), n
⊥
i

〉

dr.

By the choice of v⊥i and n⊥i , clearly v⊥i = 〈v⊥i , ni〉ni + n⊥i , so that
〈

Xt(xε) −Xt(x), n
⊥
i

〉

=

〈

xε − x+Wri(qn)(xε) −Wri(qn)(x) +
∑

j 6=i

vj

(

ljri(qn)(xε) − ljri(qn)(x)
)

, v⊥i

〉

+

∫ t

ri(qn)

〈

b(Xr(xε)) − b(Xr(x)), n
⊥
i

〉

dr.
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Since W (xε) −W (x) is continuous, 〈vi, v
⊥
i 〉 = 0 and lj(xε) and lj(x) are constant on [τℓ, ri(qn)]

for all j 6= i by the choice of ∆n, we obtain

〈

ηt(ε), n
⊥
i

〉

=
〈

ηri(qn)−(ε), v⊥i
〉

+
1

ε

∫ t

ri(qn)

〈

b(Xr(xε)) − b(Xr(x)), n
⊥
i

〉

dr. (1.27)

and on the other hand we use again v⊥i = 〈v⊥i , ni〉ni + n⊥i to obtain

〈

ηt(ε), n
⊥
i

〉

=
〈

ητℓ−(ε), v⊥i
〉

+
1

ε

∫ t

τℓ

〈

b(Xr(xε)) − b(Xr(x)), n
⊥
i

〉

dr

+ 〈v⊥i , ni〉
1

ε

∫ ri(qn)

τℓ

〈b(Xr(xε)) − b(Xr(x)), ni〉 dr. (1.28)

Finally, for every k ∈ {3, . . . , d}, we have 〈vi, n
k
i 〉 = 0, so that

〈

Xt(xε) −Xt(x), n
k
i

〉

=

〈

xε − x+Wt(xε) −Wt(x) +
∑

j 6=i

vj

(

ljri(qn)(xε) − ljri(qn)(x)
)

, nk
i

〉

.

Thus,

〈

ηt(ε), n
k
i

〉

=
〈

ηri(qn)−(ε), nk
i

〉

+
1

ε

∫ t

ri(qn)

〈

b(Xr(xε)) − b(Xr(x)), n
k
i

〉

dr (1.29)

and

〈

ηt(ε), n
k
i

〉

=
〈

ητℓ−(ε), nk
i

〉

+
1

ε

∫ t

τℓ

〈

b(Xr(xε)) − b(Xr(x)), n
k
i

〉

dr. (1.30)

Since {nk
i ; k = 1, . . . , d} is an orthonormal basis of Rd we obtain by (1.26), (1.27) and (1.29),

ηt(ε) = 〈ηt(ε), ni〉ni +
〈

ηt(ε), n
⊥
i

〉

n⊥i +
d
∑

k=3

〈

ηt(ε), n
k
i

〉

nk
i

= 〈ηri(t)−(ε), v⊥i 〉n⊥i +

d
∑

k=3

〈ηri(t)−(ε), nk
i 〉nk

i +
1

ε

∫ t

ri(t)
(b(Xr(xε)) − b(Xr(x))) dr. (1.31)

Then, from (1.25) and (1.31) we get

ηt(ε) = ηan(ε) +
1

ε

∫ t

an

[b(Xr(xε)) − b(Xr(x))] dr

= ηan(ε) +

∫ t

an

d
∑

k=1

[∫ 1

0

∂b

∂xk
(Xα,ε

r ) dα

]

ηkj
r (ε) dr

= ηan(ε) +

∫ t

an

∫ 1

0
Db(Xα,ε

r ) · ηr(ε) dα dr, t ∈ An,

where Xα,ε
r := αXr(xε) + (1 − α)Xr(x), α ∈ [0, 1].
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1.4.4 Proof of the Differentiability

Now we argue similar to Step 5 in the proof of Theorem 1 in [26]. Recall that sups∈[0,t] ‖ηs(ε)‖ ≤ c1
for some positive constant c1 and ε 6= 0 by Lemma 1.11. Let (εν)ν be any sequence converging
to zero. By a diagonal procedure, we can extract a subsequence (νl)l such that ηr(qn)(ενl

) has a

limit η̂r(qn) ∈ Rd as l → ∞ for all n ∈ N. Let now η̂ : [0, τ)\C → Rd be the unique solution of

η̂t := η̂r(qn) +

∫ t

r(qn)
Db(Xr(x)) · η̂r dr, t ∈ An.

Then, we get for |ε| ∈ (0,∆n) and t ∈ An,

‖ηt(ε) − η̂t‖ ≤‖ηr(qn)(ε) − η̂r(qn)‖ + c1 sup
r∈An

‖Db(Xα,ε
r ) −Db(Xr(x))‖

+ c2

∫ t

0
‖ηr(ε) − η̂r‖ dr,

c2 > 0 denoting the Lipschitz constant of b. Since ηr(qn)(ενl
) → η̂r(qn), X

α,ενl → Xr(x) uniformly
in r ∈ [0, t] and the derivatives of b are continuous, we obtain by Gronwall’s Lemma that ηt(ενl

)
converges to η̂t uniformly in t ∈ An for every n. Thus, since C has zero Lebesgue measure, ηt(ενl

)
converges to η̂t for all t ∈ [0, τ)\C as l → ∞ and by the dominated convergence theorem we get

η̂t = v +

∫ t

0
Db(Xr(x)) · η̂r dr, t ∈ [0, inf C),

η̂t = η̂r(t) +

∫ t

r(t)
Db(Xr(x)) · η̂r dr, t ∈ [inf C, τ),

where we have extended η̂ on C such that it is right-continuous. Since C has zero Lebesgue
measure this does not affect the value of η̂t, t ∈ [0, τ)\C. The proof of Theorem 1.2 is now
complete once we have shown that η̂ does not depend on the chosen subsequence. To that aim
we define yε

t = (y1,ε
t , . . . , yd,ε

t ), t ≥ 0, by

yk,ε
t :=

{

〈ηt(ε), e
k〉 if s(t) = 0,

〈ηt(ε), n
k
i 〉 if s(t) = i.

Furthermore, we set

cεt (k, l) :=

{

∫ 1
0 〈ek, Db(Xα,ε

t ) · el〉 dα if s(t) = 0,
∫ 1
0 〈nk

i , Db(X
α,ε
t ) · nl

i〉 dα if s(t) = i.

Then, since

1

ε
[b(Xt(xε)) − b(Xt(x))] =

d
∑

l=1

[∫ 1

0
Dnl

i
b(Xα,ε

t ) dα

]

〈ηt(ε), n
l
i〉,

we obtain on one hand from (1.25) that for t < inf C and ε small enough,

yk,ε
t = 〈v, ek〉 +

∫ t

0

d
∑

l=1

cεr(k, l) y
l,ε
r dr, k ∈ {1, . . . , d}.
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On the other hand from (1.26), (1.28) and (1.30) we get for sufficiently small ε that yε satisfies
for t ∈ [τℓ, τℓ+1) and i such that s(t) = i:

y1,ε
t =

∫ t

ri(t)

d
∑

l=1

cεr(1, l) y
l,ε
r dr,

y2,ε
t = 〈v⊥i , ni〉 y1,ε

τℓ− + y2,ε
τℓ− +

∫ t

τℓ

d
∑

l=1

cεr(2, l) y
l,ε
r dr + 〈v⊥i , ni〉

∫ ri(t)

τℓ

d
∑

l=1

cεr(2, l) y
l,ε
r dr,

yk,ε
t = yk,ε

τℓ− +

∫ t

τℓ

d
∑

l=1

cεr(k, l) y
l,ε
r dr, k ∈ {3, . . . , d}.

We set

yk
t :=

{

〈η̂t, e
k〉 if s(t) = 0,

〈η̂t, n
k
i 〉 if s(t) = i,

and ct(k, l) :=

{

〈ek, Db(Xt(x)) · el〉 if s(t) = 0,

〈nk
i , Db(Xt(x)) · nl

i〉 if s(t) = i.

Since ηt(ε) converges along the chosen subsequence to η̂t uniformly in t ∈ An for every n, we
obtain by the dominated convergence theorem that yt satisfies the system (1.9). In order to
complete the proof of Theorem 1.2 we shall now prove that η̂ is characterized by the system (1.9).

Lemma 1.14. The system (1.9) admits a unique solution.

Proof. We shall prove uniqueness of the solution on every interval [τℓ, τℓ+1) by induction over
ℓ. If inf C > 0, on [τ0, τ1) = [0, inf C) existence and uniqueness is clear. Otherwise, the initial
condition is specified as in Theorem 1.9 and we get existence and uniqueness on [τ0, τ1) by the
same argument as for general ℓ. For t ∈ [τℓ, τℓ+1), ℓ ≥ 0, the system is given by

y1
t = y1

τℓ
+

∫ t

ri(t)

d
∑

l=1

cr(1, l) y
l
r dr,

y2
t = y2

τℓ
+

∫ t

τℓ

d
∑

l=1

cr(2, l) y
l
r dr + 〈v⊥i , ni〉

∫ ri(t)

τℓ

d
∑

l=1

cr(2, l) y
l
r dr,

yk
t = yk

τℓ
+

∫ t

τℓ

d
∑

l=1

cr(k, l) y
l
r dr, k ∈ {3, . . . , d},

where the initial condition is uniquely specified by the induction assumption:

y1
τℓ

= 0, yk
τℓ

= 〈v⊥i , ni〉 y1
τℓ− + y2

τℓ−, yk
τℓ

= yk
τℓ−.

For any fixed T > 0, let H be the totality of Rd-valued adapted processes (ϕt), t ∈ [0, T ], whose
paths are a.s. càdlàg and which satisfy supt∈[0,T ] E[‖ϕt‖2] <∞. On H we introduce the norm

‖ϕ‖H = sup
t∈[0,T ]

E
[

‖ϕt‖2
]1/2

,
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and for any ϕ ∈ H we define the process I(ϕ) by

I(ϕ)1t = 1l{t∈[τℓ,τℓ+1)}

(

y1
τℓ

+

∫ t

ri(t)

d
∑

l=1

cr(1, l)ϕ
l
r dr

)

,

I(ϕ)2t = 1l{t∈[τℓ,τℓ+1)}

(

y2
τℓ

+

∫ t

τℓ

d
∑

l=1

cr(2, l)ϕ
l
r dr + 〈v⊥i , ni〉

∫ ri(t)

τℓ

d
∑

l=1

cr(2, l)ϕ
l
r dr

)

,

I(ϕ)k
t = 1l{t∈[τℓ,τℓ+1)}

(

yk
τℓ

+

∫ t

τℓ

d
∑

l=1

cr(k, l)ϕ
l
r dr

)

, k ∈ {3, . . . , d},

for t ∈ [0, T ]. Since the system is linear in y with uniformly bounded coefficients, one can easily
verify that I(ϕ) ∈ H for every ϕ ∈ H and that for any ϕ, ψ ∈ H

‖I(ϕ) − I(ψ)‖H ≤ c‖ϕ− ψ‖H ,

for some constant c not depending on ϕ and ψ. Hence, we obtain uniqueness on [τℓ, τℓ+1 ∧ T ) by
standard arguments via Picard-iteration. Since T is arbitrary, we get uniqueness on [τℓ, τℓ+1).



Chapter 2

SDEs in a Smooth Domain with

normal Reflection

2.1 Introduction

This chapter deals with the pathwise differentiability for the solution (Xt(x))t≥0 of a stochastic
differential equation (SDE) of the Skorohod type in a smooth bounded domain G ⊂ Rd, d ≥ 2,
with normal reflection at the boundary. Again, the process (Xt(x)) is driven by a d-dimensional
standard Brownian motion and by a drift term, whose coefficients are supposed to be continuously
differentiable and Lipschitz continuous, i.e. existence and uniqueness of the solution are ensured
by the results of Lions and Sznitman in [51].

We prove that for every t > 0 the solution Xt(x) is differentiable w.r.t. the deterministic
initial value x and we give a representation of the derivatives in terms of an ordinary differential
equation. As an easy side result, we provide a Bismut-Elworthy formula for the gradient of the
transition semigroup.

The resulting derivatives evolve according to a simple linear ordinary differential equation,
when the process is away from the boundary, and they have a discontinuity and are projected to
the tangent space, when the process hits the boundary. This evolution becomes rather complicated
because of the structure of the set of times, when the process hits the boundary, which is known
to be a.s. a closed set with zero Lebesgue measure without isolated points. The system is similar
to the one introduced by Airault in [1] in order to develop probabilistic representations for the
solutions of linear PDE systems with mixed Dirichlet-Neumann conditions in a smooth domain in
Rd. A further similar system appears in Section V.6 in [42], which deals with the heat equation
for diffusion processes on manifolds with boundary conditions. In a sense, our result can be
considered as a pathwise version of the results in [1, 42].

Again we shall use some of the techniques established in [26], where Deuschel and Zambotti
proved such a pathwise differentiability result with respect to the initial data for diffusion processes
in the domain G = [0,∞)d. The proof of the main result in [26] is based on the fact that a
Brownian path, which is perturbed by adding a Lipschitz path with a sufficiently small Lipschitz
constant, attains its minimum at the same time as the original path (see Lemma 1 in [26]). This
is due to the fact that a Brownian path leaves its minimum faster than linearly. In [26] as well

21



22 SDEs in a Smooth Domain with normal Reflection

as in the previous chapter this is used in order to provide an exact computation of the reflection
term in the difference quotient via Skorohod’s lemma.

In this chapter, the approach is quite similar: Using localization techniques introduced by
Anderson and Orey (cf. [5]) we transform the SDE locally into an SDE on a halfspace (cf. Sec-
tion 2.2.4 below). Then, in order to compute the local time we need to deal with the pathwise
minimum of a continuous martingale in place of the standard Brownian motion. Since the pertur-
bations are now no longer Lipschitz continuous, i.e. Lemma 1 of [26] does not apply, and because
of the asymptotics of a Brownian path around its minimum (cf. Lemma 2.12 below) one cannot
necessarily expect that an analogous statement to Lemma 1 in [26] holds true in this case. Never-
theless, one can show that the minimum times converge sufficiently fast to obtain differentiability
(see Proposition 2.13).

Another crucial ingredient in the proof is the Lipschitz continuity of the solution with respect
to the initial data. This was proven by Burdzy, Chen and Jones in Lemma 3.8 in [16] for the
reflected Brownian motion without drift in planar domains, but the arguments can easily be
transferred into our setting (see Proposition 2.8). This will give pathwise convergence of the
difference quotients along a subsequence. In order to show that the limit does not depend on
the chosen subsequence, we shall characterize the limit in coordinates with respect to a moving
frame as the solution of an SDE-like equation (cf. Section 4 in [1]).

A pathwise differentiability result w.r.t. the initial position of a reflected Brownian motion in
smooth domains has also been proven by Burdzy in [14] using excursion theory. The resulting
derivative is characterized as a linear map represented by a multiplicative functional for reflected
Brownian motion, which has been introduced in Theorem 3.2 of [17]. In constrast to our main
results, the SDE considered in [14] does not contain a drift term and the differentiability is shown
for the trace process, while we consider the process on the original time-scale. However, we can
recover the term, which is mainly characterizing the derivative in [14], describing the influence of
curvature of ∂G (cf. Remark 2.6 below).

In another recent article [54] Pilipenko studies flow properties for SDEs with reflection and
receives Sobolev differentiability in the initial value. In general, reflected Brownian motions
have been investigated in several articles, where the question of coalescence or noncoalescence of
synchronous couplings is of particular interest. For planar convex domains this has been studied
by Cranston and Le Jan in [22] and [23], for some classes of non-smooth domains by Burdzy and
Chen in [15], and for two-dimensional smooth domains by Burdzy, Chen and Jones in [16], while
the case of a multi-dimensional smooth domain is still an open problem.

The material presented in this chapter is contained in [7]. The chapter is organized as follows:
In Section 2.2 we give the precise setup and some further preliminaries and we present the main
results. Section 2.3 is devoted to the proof of the main results.

2.2 Main Results and Preliminaries

2.2.1 General Notation

As in the last chapter we denote by ‖.‖ the Euclidian norm, by 〈., .〉 the canonical scalar product
and by e = (e1, . . . , ed) the standard basis in Rd, d ≥ 2. Let G ⊂ Rd be a connected closed
bounded domain with C3-smooth boundary and G0 its interior and let n(x), x ∈ ∂G, denote the
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inner normal field. For any x ∈ ∂G, let

πx(z) := z − 〈z, n(x)〉n(x), z ∈ Rd,

denote the orthogonal projection onto the tangent space. The closed ball in Rd with center x and
radius r will be denoted by Br(x). The transposition of a vector v ∈ Rd and of a matrix A ∈ Rd×d

will be denoted by v∗ and A∗, respectively. The set of continuous real-valued functions on G is
denoted by C(G), and Cb(G) denotes the set of those functions in C(G) that are bounded on
G. For each k ∈ N, Ck(G) denotes the set of real-valued functions that are k-times continuously
differentiable in G, and Ck

b (G) denotes the set of those functions in Ck(G) that are bounded and
have bounded partial derivatives up to order k. Furthermore, for f ∈ C1(G) we denote by ∇ the
gradient of f and in the case where f is Rd-valued by Df the Jacobi matrix. Finally, ∆ denotes
the Laplace differential operator on C2(G) and Dv := 〈v,∇〉 the directional derivative operator
associated with the direction v ∈ Rd. The symbols c and ci, i ∈ N, will denote constants, whose
value may only depend on some quantities specified in the particular context.

2.2.2 Skorohod SDE

For any starting point x ∈ G, we consider the following stochastic differential equation of the
Skorohod type:

Xt(x) = x+

∫ t

0
b(Xr(x)) dr + wt +

∫ t

0
n(Xr(x)) dlr(x), t ≥ 0,

Xt(x) ∈ G, dlt(x) ≥ 0,

∫ ∞

0
1lG0(Xt(x)) dlt(x) = 0, t ≥ 0,

(2.1)

where w is a d-dimensional Brownian motion on a complete probability space (Ω,F ,P) and l(x)
denotes the local time of X(x) in ∂G, i.e. it increases only at those times, when X(x) is at the
boundary of G. The components bi : G → R of b are supposed to be in C1(G) and Lipschitz
continuous. Then, existence and uniqueness of strong solutions of (2.1) are guaranteed by the
results in [60] in the case, where G is a convex set, and for arbitrary smooth G by the results in
[51]. The local time l is carried by the set

C := {s ≥ 0 : Xs(x) ∈ ∂G}.

We define

r(t) := sup(C ∩ [0, t])

with the convention sup ∅ := 0. Then, C is known to be a.s. a closed set of zero Lebesgue
measure without isolated points and t 7→ r(t) is locally constant and right-continuous. Let (An)n

be the family of connected components of the complement of C. An is open, so that there exists
qn ∈ An ∩ Q, n ∈ N. Note that for each t > inf C we have Xr(t)(x) ∈ ∂G.

For later use we introduce now a moving frame. Let x 7→ O(x) be a mapping on G taking
values in the space of orthogonal matrices, which is twice continuoulsly differentiable, such that
for x ∈ ∂G the first row of O(x) coincides with n(x). Such a mapping, which exists locally, can
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be constructed on the whole domain G by using the partition of unity. Writing Os = O(Xs(x))
we get by Itô’s formula

dOs =
d
∑

k=1

αk(Xs(x)) dw
k
s + β(Xs(x)) ds+ γ(Xs(x)) dls(x), (2.2)

for some coefficient functions αk, β and γ.

2.2.3 Main Results

Theorem 2.1. For all t > 0 and x ∈ G a.s. the mapping y 7→ Xt(y) is differentiable at x and,
setting ηt := DvXt(x) = limε→0(Xt(x + εv) − Xt(x))/ε, v ∈ Rd, there exists a right-continuous
modification of η such that a.s. for all t > 0:

ηt = v +

∫ t

0
Db(Xr(x)) · ηr dr, if t < inf C,

ηt = πXr(t)(x)(ηr(t)−) +

∫ t

r(t)
Db(Xr(x)) · ηr dr, if t ≥ inf C.

(2.3)

Remark 2.2. If x ∈ ∂G, t = 0 is a.s. an accumulation point of C and we have r(t) > 0 a.s. for
every t > 0. Therefore, in that case η0 = v and η0+ = πx(v), i.e. there is discontinuity at t = 0.

Remark 2.3. The equation (2.3) does not characterize the derivatives, since it does not admit
a unique solution. Indeed, if the process (ηt) solves (2.3), then the process (1 + lt(x))ηt, t ≥ 0,
also does. A characterizing equation for the derivatives is given Theorem 2.5 below.

Note that this result corresponds to that for the domain G = [0,∞)d in Theorem 1 in [26].
The proof of Theorem 2.1 as well as the proofs of Theorem 2.5 and Corollary 2.7 below are
postponed to Section 2.3. As soon as pathwise differentiability is established, we can immediately
provide a Bismut-Elworthy formula: Define for all f ∈ Cb(G) the transition semigroup Ptf(x) :=
E[f(Xt(x))], x ∈ G, t > 0, associated with X.

Corollary 2.4. Setting ηij
t := ∂X i

t(x)/∂x
j, we have for all f ∈ Cb(G), t > 0 and x ∈ G:

∂

∂xi
Ptf(x) =

1

t
E

[

f(Xt(x))

∫ t

0

d
∑

k=1

ηki
r dwk

r

]

, i ∈ {1, . . . , d}, (2.4)

and if f ∈ C1
b (G):

∂

∂xi
Ptf(x) =

d
∑

k=1

E

[

∂f

∂xk
(Xt(x)) η

ki
t

]

, i ∈ {1, . . . , d}. (2.5)

Proof. Formula (2.5) is straightforward from the differentiability statement in Theorem 2.1 and
the chain rule. For formula (2.4) see the proof of Theorem 2 in [26].
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From the representation of the derivatives in (2.3) it is obvious that (ηt)t evolves according to
a linear differential equation, when the process X is in the interior of G, and that it is projected
to the tangent space, when X hits the boundary. Furthermore, if X is at the boundary at some
time t0 and we have r(t0−) 6= r(t0), i.e. t0 is the endpoint of an excursion interval, then also η
has a discontinuity at t0 and jumps as follows:

ηt0 = πXt0(x)(ηt0−). (2.6)

Consequently, we observe that at each time t0 as above, η is projected to the tangent space and
jumps in direction of n(Xt0(x)) or −n(Xt0(x)), respectively. Finally, if Xt0(x) ∈ ∂G and t 7→ r(t)
is continuous in t = t0, there is also a projection of η, but since in this case ηt0− is in the tangent
space, the projection has no effect and η is continuous at time t0.

Set Yt := Ot · ηt, t ≥ 0, where Ot denotes the moving frame introduced in Section 2.2.2. Let
P = diag(e1) and Q = Id−P and

Y 1
t = P · Yt and Y 2

t = Q · Yt

to decompose the space Rd into the direct sum ImP ⊕KerP . We define the coefficient functions
c(t) and d(t) to be such that

d
∑

k=1

(

c1k(t) c2k(t)
c3k(t) c4k(t)

)

dwk
t +

(

d1(t) d2(t)
d3(t) d4(t)

)

dt

=
d
∑

k=1

αk(Xt(x)) ·O−1
t dwk

t +
[

Ot ·Db(Xt(x)) ·O−1
t + β(Xt(x)) ·O−1

t

]

dt.

Furthermore, we set γ2(t) := γ(Xt(x)) ·O−1
t ·Q.

Theorem 2.5. There exists a right-continuous modification of η and Y , respectively, such that
Y is characterized as the unique solution of

Y 1
t =1l{t<inf C}

(

Y 1
0 +

d
∑

k=1

∫ t

0

(

c1k(s)Y
1
s + c2k(s)Y

2
s

)

dwk
s +

∫ t

0

(

d1(s)Y 1
s + d2(s)Y 2

s

)

ds

)

+ 1l{t≥inf C}

(

d
∑

k=1

∫ t

r(t)

(

c1k(s)Y
1
s + c2k(s)Y

2
s

)

dwk
s +

∫ t

r(t)

(

d1(s)Y 1
s + d2(s)Y 2

s

)

ds

)

Y 2
t =Y 2

0 +
d
∑

k=1

∫ t

0

(

c3k(s)Y
1
s + c4k(s)Y

2
s

)

dwk
s +

∫ t

0

(

d3(s)Y 1
s + d4(s)Y 2

s

)

ds

+

∫ t

0

(

Φ2
s + γ2(s)

)

Y 2
s dls(x),

where
Φ2

t := Q ·Ot ·Dn(Xt(x)) ·O−1
t ·Q, t ∈ C = supp dl(x),

with the initial condition Y 1
0 = P ·O(x) · v and Y 2

0 = Q ·O(x) · v.
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Remark 2.6. Note that for all t ∈ C = supp dl(x),

Φ2
t := Q ·Ot ·Dn(Xt(x)) ·O−1

t ·Q = −Q ·Ot · S(Xt(x)) ·O−1
t ·Q,

where for every x ∈ ∂G, S(x) denotes the symmetric linear endomorphism acting on the tangent
space at x, which is known as the shape operator or the Weingarten map, characterized by the
relation S(x)v = −Dvn(x) for all v in the tangent space at x. The eigenvalues of S(x) are the
principal curvatures of ∂G at x, and its determinant is the Gaussian curvature. Hence, the linear
term in the equation for the derivatives in [14] can be recovered in our results.

Finally, we give another confirmation of the results, namely they will imply that the Neumann
condition holds for X.

Corollary 2.7. For all f ∈ Cb(G) and t > 0, the transition semigroup Ptf(x) := E[f(Xt(x))],
x ∈ G, satisfies the Neumann condition at ∂G:

x ∈ ∂G =⇒ Dn(x)Ptf(x) = 0.

2.2.4 Localization

In order to prove Theorem 2.1 we shall use the localization technique introduced in [5]. Let
{U0, U1, . . .} be a countable or finite family of relatively open subsets of G covering G0. Every
Um is attached with a coordinate system, i.e. with a mapping um : Um → Rd, giving each point
x ∈ Um the coordinates um(x) = (u1

m(x), . . . , ud
m(x)) such that:

i) U0 ⊆ G0 and the corresponding coordinates are the original Euclidian coordinates. If m > 0
the mapping um is one to one and twice continuously differentiable and we have

Um ∩ ∂G = {x ∈ Um : u1
m(x) = 0}, Um ∩G0 = {x ∈ Um : u1

m(x) > 0}.

ii) There is a positive constant d0 such that for every x ∈ G there exists an index m(x) ∈ N

such that Bd0(x) ⊆ Um(x).

iii) For every m > 0, 〈∇ui
m(x), n(x)〉 = δ1i for all x ∈ Um ∩ ∂G.

iv) For every m ≥ 0 and i ∈ {1, . . . , d}, the functions

bim : Um → R x 7→ 〈∇ui
m(x), b(x)〉 + 1

2∆ui
m(x),

σi
m : Um → Rd x 7→ ∇ui

m(x),

satisfy

sup
m

sup
x∈Um

(

|bim(x)| + ‖σi
m(x)‖

)

<∞,

and there exists a constant c, not depending on m and i, such that

|bim(x) − bim(y)| + ‖σi
m(x) − σi

m(y)‖ ≤ c ‖x− y‖, ∀x, y ∈ Um.
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Note that these conditions imply n(x) = ∇u1
m(x) for all x ∈ Um ∩ ∂G. Since ∂G is supposed to

be C3, the function bim and σi
m are continuously differentiable. Fix any δ0 ∈ (0, d0). We define a

sequence of stopping times (τℓ)ℓ by

τ0 := 0, τℓ+1 := {t > τℓ : dist(Xt(x), ∂Umℓ
) < δ0}, ℓ ≥ 0,

where, for every ℓ ≥ 0, mℓ := m(Xτℓ
(x)) ∈ N such that Bd0(Xτℓ

(x)) ⊆ Umℓ
. The dependence

of τℓ on x will be suppressed in the notation. Note that by construction Xt(x) ∈ Umℓ
for all

t ∈ [τℓ, τℓ+1] and mℓ 6= mℓ+1 for every ℓ since δ0 < d0.

Using Itô’s formula we get for t ∈ [τℓ, τℓ+1]:

umℓ
(Xt(x)) =umℓ

(Xτℓ
(x)) +

∫ t

τℓ

[

〈∇umℓ
(Xr(x)), b(Xr(x))〉 + 1

2∆umℓ
(Xr(x))

]

dr

+

∫ t

τℓ

∇umℓ
(Xr(x)) dwr + e1 (lt(x) − lτℓ

(x))

=umℓ
(Xτℓ

(x)) +

∫ t

τℓ

bmℓ
(Xr(x)) dr +

∫ t

τℓ

σmℓ
(Xr(x)) dwr + e1 (lt(x) − lτℓ

(x)) .

(2.7)

For every ℓ we define a continuous semimartingale (M ℓ
t (x))t by

M ℓ
t (x) :=











0 if t ∈ [0, τℓ],
∫ t
τℓ
b1mℓ

(Xr(x)) dr +
∫ t
τℓ
σ1

mℓ
(Xr(x)) dwr if t ∈ [τℓ, τℓ+1],

M ℓ
τℓ

(x) if t ≥ τℓ+1.

(2.8)

Furthermore, we set Lt(x) := lt(x) − lτℓ
(x) if t ∈ [τℓ, τℓ+1], ℓ ≥ 0, so that

u1
mℓ

(Xt(x)) =u1
mℓ

(Xτℓ
(x)) +M ℓ

t (x) + Lt(x), t ∈ [τℓ, τℓ+1]. (2.9)

By the Girsanov Theorem there exists a probability measure P̃ℓ(x), which is equivalent to P and
under which M ℓ(x) is a continuous martingale. The quadratic variation process is given by

[M ℓ(x)]t =

∫ t

τℓ

‖σ1
mℓ

(Xr(x))‖2 dr, t ∈ [τℓ, τℓ+1],

which is strictly increasing in t on [τℓ, τℓ+1] . We set ρℓ
t := inf{s : [M ℓ(x)]s > t}. We can apply

the Dambis-Dubins-Schwarz Theorem, in particular its extension in Theorem V.1.7 in [56], since
in our case the limit limt→∞[M ℓ(x)]t = [M ℓ(x)]τℓ+1

<∞ is existing, to conclude that the process

Bℓ
t (x) := M ℓ

ρt
(x) for t < [M ℓ(x)]τℓ+1

, Bℓ
t (x) := M ℓ

τℓ+1
(x) for t ≥ [M ℓ(x)]τℓ+1

, (2.10)

is a P̃ℓ(x)-Brownian motion w.r.t. the time-changed filtration stopped at time [M ℓ(x)]τℓ+1
and we

have M ℓ
t (x) = Bℓ

[Mℓ(x)]t
for all t ∈ [τℓ, τℓ+1]. In particular, on [τℓ, τℓ+1] the path of M ℓ(x) attains

a.s. its minimum at a unique time.
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2.2.5 Example: Processes in the Unit Ball

We end this section by considering the example of the unit ball to illustrate our results. Let the
domain G = B1(0) be the closed unit ball in Rd. Then, for x ∈ ∂G, the inner normal field is
given by n(x) = −x and the orthogonal projection onto the tangent space by πx(z) = z−〈z, x〉x,
z ∈ Rd. The Skorohod equation can be written as

Xt(x) = x+

∫ t

0
b(Xr(x)) dr + wt −

∫ t

0
Xr(x) dlr(x), t ≥ 0,

Xt(x) ∈ G, dlt(x) ≥ 0,

∫ ∞

0
1l{‖Xt(x)‖<1} dlt(x) = 0, t ≥ 0,

and the system describing the derivatives becomes

ηt = v +

∫ t

0
Db(Xr(x)) · ηr dr, if t < inf C,

ηt = ηr(t)− − 〈ηr(t)−, Xr(t)(x)〉Xr(t)(x) +

∫ t

r(t)
Db(Xr(x)) · ηr dr, if t ≥ inf C.

In this example the nonnegative function u(x) := 1
2(1−‖x‖2), defined globally on G, can be chosen

as the first component u1
m of the coordinate mappings um for all m. Thus, for the analogue to

(2.9) we get

u(Xt(x)) =u(x) −
∫ t

0
〈Xr(x), b(Xr(x))〉 dr −

∫ t

0
Xr(x) dwr −

d

2
t+ lt(x)

=:u(x) +Mt(x) + lt(x).

Finally, the quadratic variation process of the semimartingale M ℓ is given by

[M(x)]t =

∫ t

0
‖Xr(x)‖2 dr, t ≥ 0.

2.3 Proof of the Main Result

2.3.1 Lipschitz Continuity w.r.t. the Initial Datum

The first step in order to prove the differentiability results is to show the Lipschitz continuity of
x 7→ (Xt(x))t w.r.t. the sup-norm topology on a finite time interval.

Proposition 2.8. Let T be an arbitrary positive finite stopping time and let (Xt(x)) and (Xt(y)),
t ≥ 0, be two solutions of (2.1) for some x, y ∈ G. Then, there exists a positive constant c only
depending on T such that a.s.

sup
t∈[0,T ]

‖Xt(x) −Xt(y)‖ ≤ ‖x− y‖ exp(c(T + lT (x) + lT (y))).
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Proof. The case x = y is clear and it suffices to consider the case T < inf{t : Xt(x) = Xt(y)}.
We shall proceed similarly to Lemma 3.8 in [16]. Since ∂G is C2-smooth, there exists a positive
constant c1 <∞ such that for all x ∈ ∂G and all y ∈ G,

〈x− y, n(x)〉 ≤ c1 ‖x− y‖2. (2.11)

Let T0 := 0 and for k ≥ 1,

Tk := inf
{

t ≥ Tk−1 : ‖Xt(x) −Xt(y)‖ 6∈
(

1
2‖XTk−1

(x) −XTk−1
(y)‖, 2‖XTk−1

(x) −XTk−1
(y)‖

)}

∧ T.

Then, by Itô’s formula we obtain for any k ≥ 1 and t ∈ (Tk−1, Tk],

‖Xt(x) −Xt(y)‖ − ‖XTk−1
(x) −XTk−1

(y)‖

=

∫ t

Tk−1

〈Xr(x) −Xr(y), b(Xr(x)) − b(Xr(y))〉
‖Xr(x) −Xr(y)‖

dr

+

∫ t

Tk−1

〈Xr(x) −Xr(y), n(Xr(x))〉
‖Xr(x) −Xr(y)‖

dlr(x) +

∫ t

Tk−1

〈Xr(y) −Xr(x), n(Xr(y))〉
‖Xr(x) −Xr(y)‖

dlr(y)

≤c2
∫ t

Tk−1

‖Xr(x) −Xr(y)‖ dr + c1

∫ t

Tk−1

‖Xr(x) −Xr(y)‖ (dlr(x) + dlr(y))

≤c3 ‖XTk−1
(x) −XTk−1

(y)‖
∫ Tk

Tk−1

(dr + dlr(x) + dlr(y)),

where we have used (2.11) and the Lipschitz continuity of b. Hence, for any t ∈ (Tk−1, Tk],

‖Xt(x) −Xt(y)‖
‖XTk−1

(x) −XTk−1
(y)‖ ≤ 1 + c3

(

Tk − Tk−1 + lTk
(x) − lTk−1

(x) + lTk
(y) − lTk−1

(y)
)

≤ exp
(

c3
(

Tk − Tk−1 + lTk
(x) − lTk−1

(x) + lTk
(y) − lTk−1

(y)
))

,

and

‖Xt(x) −Xt(y)‖
‖x− y‖ =

‖Xt(x) −Xt(y)‖
‖XTk−1

(x) −XTk−1
(y)‖

k−1
∏

j=1

‖XTj
(x) −XTj

(y)‖
‖XTj−1(x) −XTj−1(y)‖

≤
k
∏

j=1

exp
(

c3
(

Tj − Tj−1 + lTj
(x) − lTj−1(x) + lTj

(y) − lTj−1(y)
))

≤ exp (c3 (Tk + lTk
(x) + lTk

(y)))

≤ exp (c3 (T + lT (x) + lT (y))) ,

which proves the proposition.

Remark 2.9. For an arbitrary positive finite stopping time T and every ℓ ≥ 0 we define the
stopping time

τ̂ℓ(y) := inf{t > τℓ : ‖Xt(x) −Xt(y)‖ ≥ δ0
2 } ∧ τℓ+1 ∧ T, y ∈ G,
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with δ0 as in Section 2.2.4. Then, by the definition of τℓ we have that Xt(y) ∈ Uml
for all

t ∈ [τℓ, τ̂ℓ(y)]. Thus, the process (M ℓ
t (y))0≤t≤T , y ∈ G, can be defined similarly to M ℓ(x) by

M ℓ
t (y) :=











0 if t ∈ [0, τℓ],
∫ t
τℓ
b1mℓ

(Xr(y)) dr +
∫ t
τℓ
σ1

mℓ
(Xr(y)) dwr if t ∈ [τℓ, τ̂ℓ(y)],

M ℓ
τ̂ℓ(y)(y) if t ≥ τ̂ℓ(y).

By Proposition 2.8 there exists for every finite stopping time T > 0 a random ∆T > 0 such that

sup
t∈[0,T ]

‖Xt(x) −Xt(y)‖ <
δ0
2
, ∀y ∈ B∆T

(x) ∩G,

i.e. for such y we have τ̂ℓ(y) = τℓ+1 ∧ T .

In the next lemma we collect some immediate consequences of Proposition 2.8.

Lemma 2.10. Fix some arbitrary real T > 0 and let ∆T and τ̂ℓ(y) be as in Remark 2.9. Then,
for every ℓ ≥ 0 we have:

i) For all x, y ∈ G and p > 1,

E

[

sup
t∈[0,T ]

∣

∣

∣M ℓ
t (x) −M ℓ

t (y)
∣

∣

∣

p
1l{‖x−y‖<∆T }

]

≤ c ‖x− y‖p

for some positive constant c = c(p, T ). There exists a modification of x 7→ (M ℓ
t (x))t∈[0,T ]

which is continuous w.r.t. the sup-norm topology.

ii) For all x ∈ G and s, t ∈ [0, T ] and p > 1,

E

[∣

∣

∣M ℓ
t (x) −M ℓ

s(x)
∣

∣

∣

p]

≤ c |t− s|p/2,

for some positive constant c = c(p, T ) not depending on x. There exists a modification of
(M ℓ

t (x))t∈[0,T ] which is Hölder continuous of order α for every α ∈ (0, 1
2) such that

sup
x∈G

E

[

sup
s6=t

( |M ℓ
t (x) −M ℓ

s(x)|
|t− s|α

)p
]

<∞.

iii) We set for abbreviation M̃ ℓ
t (x, y) := (M ℓ

t∧τ̂ℓ(y)(y) −M ℓ
t∧τ̂ℓ(y)(x)), t ∈ [0, T ], x, y ∈ G. Let

x ∈ G and (xi)i∈I ⊂ G be a family of points in G such that xi 6= x for all i ∈ I. Then, for
all s, t ∈ [0, T ] and p > 1 we have

sup
i∈I

1

‖xi − x‖p
E

[∣

∣

∣M̃ ℓ
t (x, xi) − M̃ ℓ

s(x, xi)
∣

∣

∣

p]

≤ c |t− s|p/2,

for some positive constant c = c(p, T ). Moreover, for every i ∈ I there exists a modification
of (M̃ ℓ

t (x, xi))t∈[0,T ] which is Hölder continuous of order α for every α ∈ (0, 1
2) such that

E

[

sup
s6=t

(

|M̃ ℓ
t (x, xi) − M̃ ℓ

s(x, xi)|
|t− s|α

)p]

≤ c ‖xi − x‖p

with some positive constant c not depending on xi.
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Proof. i) It follows directly from Proposition 2.8, the uniform Lipschitz continuity of b1m and σ1
m

and the Burkholder inequality that

E

[

sup
t∈[0,τ̂ℓ(y)]

∣

∣

∣M ℓ
t (x) −M ℓ

t (y)
∣

∣

∣

p
]

≤ c1 ‖x− y‖p

for some positive constant c1. Note that the random constant exp(c(T+lT (x)+lT (y))), appearing
in Proposition 2.8, has finite expectation. Since by the definition of ∆T ,

sup
t∈[0,T ]

∣

∣

∣M ℓ
t (x) −M ℓ

t (y)
∣

∣

∣

p
1l{‖x−y‖<∆T } ≤ sup

t∈[0,τ̂ℓ(y)]

∣

∣

∣M ℓ
t (x) −M ℓ

t (y)
∣

∣

∣

p
,

this implies the estimate in i). To prove now the existence of a continuous modification one only
needs to modify slightly the proof of Kolmogorov’s continuity theorem (cf. e.g. Theorem I.2.1 in
[56]).

ii) The estimate is clear again by Burkholder’s inequality. Note that the functions b1m and σ1
m

are uniformly bounded so that the constant does not depend on x. Furthermore, again by the
proof of Kolmogorov’s continuity theorem it follows that in this case the Lp norm of the Hölder
norm of the modification does also not depend on x.

iii) In the following the symbol c denotes a constant whose value may change from one oc-
curence to the other one. Let 0 ≤ s ≤ t ≤ T and set ŝi := s ∧ τ̂ℓ(xi) and t̂i := t ∧ τ̂ℓ(xi). Then,
|t̂i − ŝi| ≤ |t− s| for all i. By the definition of M ℓ and M̃ ℓ we have

sup
i∈I

1

‖xi − x‖p
E

[∣

∣

∣M̃ ℓ
t (x, xi) − M̃ ℓ

s(x, xi)
∣

∣

∣

p]

≤c sup
i∈I

1

‖xi − x‖p
E

[∣

∣

∣

∣

∣

∫ t̂i

ŝi

(b1mℓ
(Xr(xi)) − b1mℓ

(Xr(x)))) dr

∣

∣

∣

∣

∣

p]

+ c sup
i∈I

1

‖xi − x‖p
E

[∣

∣

∣

∣

∣

∫ t̂i

ŝi

(σ1
mℓ

(Xr(xi)) − σ1
mℓ

(Xr(x))) dwr

∣

∣

∣

∣

∣

p]

.

Using the uniform Lipschitz continuity of bm and Proposition 2.8 the first term can be estimated
by

c sup
i∈I

( |t− s|
‖xi − x‖

)p

E

[

sup
r∈[ŝi,t̂i]

‖Xr(xi) −Xr(x)‖p

]

≤ c |t− s|p.

For the second term we get the following estimate by Burkholder’s inequality, the uniform Lip-



32 SDEs in a Smooth Domain with normal Reflection

schitz continuity of σm and again by Proposition 2.8:

c sup
i∈I

1

‖xi − x‖p
E

[

sup
r∈[ŝi,t̂i]

∣

∣

∣

∣

∫ r

ŝi

(

σ1
mℓ

(Xr(xi)) − σ1
mℓ

(Xr(x))
)

dwr

∣

∣

∣

∣

p
]

≤c sup
i∈I

1

‖xi − x‖p
E





(

∫ t̂i

ŝi

‖Xr(xi) −Xr(x)‖2dr

)p/2




≤c sup
i∈I

|t− s|p/2

‖xi − x‖p
E

[

sup
r∈[ŝi,t̂i]

‖Xr(xi) −Xr(x)‖p

]

≤c |t− s|p/2

and we obtain the desired estimate. The existence of a Hölder continuous modification and the
uniform Lp-bound of its Hölder norm follow again from the Kolmogorov criterion.

2.3.2 Convergence of the Local Time Processes

We fix from now on an arbitrary T > 0. In the following let (An) be the family of connected
components of [0, T ]\C and qn be as above. Furthermore, let (τℓ)ℓ be the sequence of stopping
times defined as before by

τ0 := 0, τℓ+1 := {t > τℓ : dist(Xt(x), ∂Umℓ
) < δ0} ∧ T, ℓ ≥ 0.

We may suppose that the qn are chosen in such a way that for every n we have [r(qn), qn] ⊂
[τℓ, τℓ+1] if r(qn) ∈ [τℓ, τℓ+1] for some ℓ.

In order to compute the local time l(x), recall that on every interval [τℓ, τℓ+1], ℓ ≥ 0, l(x) is
carried by the set of times t, when u1

mℓ
(Xt(x)) = 0. Therefore, we can apply Skorohod’s Lemma

(see e.g. Lemma VI.2.1 in [56]) to equation (2.9) to obtain

Lt(x) =

[

−u1
mℓ

(Xτℓ
(x)) − inf

τℓ≤s≤t
M ℓ

s(x)

]+

, t ∈ [τℓ, τℓ+1].

Fix any qn > inf C and ℓ such that qn ∈ [τℓ, τℓ+1] . Since u1
mℓ

(Xr(qn)(x)) = 0 and t 7→ Lt(x) is
non-decreasing, we have for all τℓ ≤ s ≤ r(qn):

M ℓ
r(qn)(x) = −u1

mℓ
(Xτℓ

(x)) − Lr(qn)(x) ≤ −u1
mℓ

(Xτℓ
(x)) − Ls(x)

= −u1
mℓ

(Xs(x)) +M ℓ
s (x) ≤M ℓ

s (x).

Moreover, L(x) is constant on [r(qn), t] for all t ∈ An ∩ [τℓ, τℓ+1], so that

Lt(x) = Lr(qn)(x) =
[

−u1
mℓ

(Xτℓ
(x)) −M ℓ

r(qn)(x)
]+
, t ∈ An ∩ [τℓ, τℓ+1]. (2.12)

Note that r(qn) is the unique time in [τℓ, qn], when M ℓ(x) attains its minimum. Analogously we
compute the local time of the process with perturbed starting point. For fixed v ∈ Rd we set
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xε := x + εv, ε ∈ R, where |ε| is always supposed to be sufficiently small, such that xε lies in
G. Furthermore, there exists a random ∆n > 0 such that Xτℓ

(xε) ∈ Umℓ
and τ̂ℓ(xε) > qn for all

ε ∈ (−∆n,∆n) (cf. Remark 2.9). As above we obtain for such ε:

Lqn(xε) = Lrε(qn)(xε) =
[

−u1
mℓ

(Xτℓ
(xε)) −M ℓ

rε(qn)(xε)
]+
, (2.13)

where rε(qn), defined similarly as r(qn), is the unique time in [τℓ, qn], when M ℓ(xε) attains its
minimum.

Lemma 2.11. For all qn we have rε(qn) → r(qn) a.s. for ε→ 0.

Proof. We fix some qn and ℓ such that qn ∈ [τℓ, τℓ+1]. For every sequence (εk)k converging to zero
we can extract a subsequence of (rεk

(qn)), still denoted by (rεk
(qn)), converging to some r̂(qn).

By construction we have a.s.

M ℓ
rεk

(qn)(xεk
) ≤M ℓ

r(qn)(xεk
)

for every k. Note that on one hand the right hand side converges to M ℓ
r(qn)(x) as k → ∞ by

Lemma 2.10 i). On the other hand the left hand side converges to M ℓ
r̂(qn)(x), since

∣

∣

∣M ℓ
rεk

(qn)(xεk
) −M ℓ

r̂(qn)(x)
∣

∣

∣ ≤
∣

∣

∣M ℓ
rεk

(qn)(xεk
) −M ℓ

rεk
(qn)(x)

∣

∣

∣+
∣

∣

∣M ℓ
rεk

(qn)(x) −M ℓ
r̂(qn)(x)

∣

∣

∣

≤ sup
t∈[0,T ]

∣

∣

∣M ℓ
t (xεk

) −M ℓ
t (x)

∣

∣

∣+
∣

∣

∣M ℓ
rεk

(qn)(x) −M ℓ
r̂(qn)(x)

∣

∣

∣ ,

which tends to zero for k → ∞ by Lemma 2.10 i) and ii). Thus, M ℓ
r̂(qn)(x) ≤ M ℓ

r(qn)(x). Since

r(qn) is unique time in [τℓ, qn], when M ℓ(x) attains its minimum, this implies r̂(qn) = r(qn).

Lemma 2.12. Let (Wt)t≥0 be a Brownian motion on (Ω,F ,P). For all T > 0, let ϑ : Ω → [0, T ]
be the random variable such that a.s.

Wϑ < Ws. ∀s ∈ [0, T ]\{ϑ}.

Then,

lim inf
s→ϑ

Ws −Wϑ
√

|s− ϑ|h(|s− ϑ|)
≥ 1 a.s.,

for every function h on [0,∞) satisfying 0 < h(t) ↓ 0 as t ↓ 0 and
∫ r0

0 h(t)dt
t < ∞ for some

r0 > 0.

Proof. It suffices to consider the case T = 1. We recall the following path decomposition of a
Brownian motion, proven in [25]. Denoting by (M, M̂) two independent copies of the standard
Brownian meander (see [56]), we set for all r ∈ (0, 1),

Vr(t) :=

{

−√
rM(1) +

√
rM( r−t

r ), t ∈ [0, r]

−√
rM(1) +

√
1 − rM̂( t−r

1−r ), t ∈ (r, 1]
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Let now (τ,M, M̂) be an independent triple, such that τ has the arcsine law. Then, Vτ
d
= W .

This formula has the following meaning: τ is the unique time in [0, 1], when the path attains
minimum −√

τM(1). The path starts in zero at time t = 0 and runs backward the path of M
on [0, τ ] and then it runs the path of M̂ . Moreover, it was proved in [43] that the law of the
Brownian meander is absolutely continuous w.r.t. the law of the three-dimensional Bessel process
(Rt)t≥0 on the time interval [0, 1] starting in zero. We recall that a.s.

lim inf
t→0

Rt√
t h(t)

≥ 1

for every function h satisfying the conditions in the statement (see [44], p. 164). Since the same
asymptotics hold for the Brownian meander at zero, the claim follows.

Proposition 2.13. Let δ > 0 be arbitrary. Then, for all qn there exists a random ∆n > 0 such
that

E

[( |rε(qn) − r(qn)|δ
|ε|

)p

1l{0<|ε|<∆n}

]

≤ c <∞ (2.14)

for every p > 1 and a constant c = c(δ, p) not depending on ε. In particular, we have for every
δ > 0 and p > 1

|rε(qn) − r(qn)|δ
ε

−→ 0 in Lp as ε→ 0.

Proof. To prove (2.14) it is enough to consider the case δ < 1. By construction we have for every
qn and ℓ such that qn ∈ [τℓ, τℓ+1],

M ℓ
rε(qn)(xε) ≤M ℓ

r(qn)(xε).

Since for ε small enough qn < τ̂ℓ(xε) (see Remark 2.9) we have M ℓ
t (xε) = M ℓ

t (x) + M̃ ℓ
t (x, xε) for

every t ∈ [τℓ, qn] with M̃ ℓ(x, xε) defined as in Lemma 2.10 iii), this is equivalent to

M ℓ
rε(qn)(x) −M ℓ

r(qn)(x) ≤ M̃ ℓ
r(qn)(x, xε) − M̃ ℓ

rε(qn)(x, xε),

which implies

M ℓ
rε(qn)(x) −M ℓ

r(qn)(x)

|rε(qn) − r(qn)|(1−δ)/2
1l{rε(qn) 6=r(qn)} ≤

∣

∣

∣M̃ ℓ
r(qn)(x, xε) − M̃ ℓ

rε(qn)(x, xε)
∣

∣

∣

|rε(qn) − r(qn)|(1−δ)/2
1l{rε(qn) 6=r(qn)}. (2.15)

Recall that M ℓ
· (x) = Bℓ

[Mℓ(x)].
, where Bℓ is a P̃ℓ(x)-Brownian motion (see (2.10)) and Bℓ attains

its minimum over
[

[M ℓ(x)]τℓ
, [M ℓ(x)]qn

]

at time [M ℓ(x)]r(qn). Hence, applying Lemma 2.12 with

h(t) = tδ/2 it follows that

M ℓ
rε(qn)(x) −M ℓ

r(qn)(x) = Bℓ
[Mℓ(x)]rε(qn)

−Bℓ
[Mℓ(x)]r(qn)

≥ 1
2

∣

∣

∣[M ℓ(x)]rε(qn) − [M ℓ(x)]r(qn)

∣

∣

∣

(1+δ)/2

= 1
2

∣

∣

∣

∣

∣

∫ rε(qn)

r(qn)
‖σ1

mℓ
(Xr(x))‖2 dr

∣

∣

∣

∣

∣

(1+δ)/2
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for all ε ∈ (−∆n,∆n) for some positive ∆n. Since

‖σ1
mℓ

(Xr(qn)(x))‖2 = ‖∇u1
ml

(Xr(qn)(x))‖2 = ‖n(Xr(qn)(x))‖2 = 1,

we have by Lemma 2.11, possibly after choosing a smaller ∆n, that ‖σ1
mℓ

(Xr(x))‖2 is bounded
away from zero uniformly in r between r(qn) and rε(qn). Thus,

M ℓ
rε(qn)(x) −M ℓ

r(qn)(x) ≥ c1 |rε(qn) − r(qn)|(1+δ)/2

and we derive from (2.15) that

c1 |rε(qn) − r(qn)|δ ≤ sup
s,t∈[0,T ]

s6=t

∣

∣

∣
M̃ ℓ

t (x, xε) − M̃ ℓ
s (x, xε)

∣

∣

∣

|t− s|(1−δ)/2
.

Finally, we get for every p > 1 using Lemma 2.10 iii)

E

[

|rε(qn) − r(qn)|δp 1l{0<|ε|<∆n}
]

≤ c2 E



sup
s6=t





∣

∣

∣M̃ ℓ
t (x, xε) − M̃ ℓ

s(x, xε)
∣

∣

∣

|t− s|(1−δ)/2





p

 ≤ c3 |ε|p,

and we obtain (2.14). Since δ is arbitrary, the Lp-convergence follows immediately from (2.14)
by Hölder’s inequality and Lemma 2.11.

Corollary 2.14. For every qn and ℓ such that qn ∈ [τℓ, τℓ+1] we have

i) 1
ε

∣

∣

∣M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)
∣

∣

∣ −→ 0 a.s. as ε→ 0,

ii) 1
ε

∣

∣lr(qn)(xε) − lrε(qn)(xε)
∣

∣ −→ 0 a.s. as ε→ 0.

Proof. ii) follows from i). Indeed, by Proposition 2.8 and Lemma 2.11 we can choose ε so small
that lr(qn)(xε) = lrε(qn)(xε) = 0 if qn < inf C and lr(qn)(xε), lrε(qn)(xε) > 0 if qn > inf C. In the
first case ii) is trivial and the latter case we have by (2.13)

∣

∣lr(qn)(xε) − lrε(qn)(xε)
∣

∣ =
∣

∣Lr(qn)(xε) − Lrε(qn)(xε)
∣

∣ = M ℓ
rε(r(qn))(xε) −M ℓ

rε(qn)(xε)

≤M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε), (2.16)

where we have used the fact that M ℓ(xε) attains its minimum over [τℓ, qn] at time rε(qn) and its
minimum over [τℓ, r(qn)] at time rε(r(qn)), respectively. Therefore it suffices to prove i). In a first
step we show that for an arbitrary δ > 0 and for every p > 1

∣

∣

∣
M ℓ

r(qn)(xε) −M ℓ
rε(qn)(xε)

∣

∣

∣

δ

ε
−→ 0 in Lp. (2.17)
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It is enough to consider p such that δp > 1. Then, for any α ∈ (0, 1
2),

E

[

1

εp

∣

∣

∣M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)
∣

∣

∣

δp
]

=E







|rε(qn) − r(qn)|αδp

εp





∣

∣

∣M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)
∣

∣

∣

|rε(qn) − r(qn)|α





δp

1l{rε(qn) 6=r(qn)}







≤E

[

|rε(qn) − r(qn)|2αδp

ε2p

]1/2

E



sup
s6=t

(
∣

∣M ℓ
t (xε) −M ℓ

s(xε)
∣

∣

|t− s|α

)2δp




1/2

.

The first term tends to zero by Proposition 2.13, while the second term is uniformly bounded by

Lemma 2.10 ii), and we obtain (2.17). We prove now i). Assume 1
ε

∣

∣

∣M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)
∣

∣

∣ 6→ 0

with positive probability. Since rε(qn) → r(qn) a.s. by Lemma 2.11 and M ℓ is continuous in t and

x, it follows that a.s.
∣

∣

∣M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)
∣

∣

∣ → 0. Thus, 1
ε

∣

∣

∣M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)
∣

∣

∣

δ
→ ∞

with positive probability for any δ < 1, which contradicts (2.17).

2.3.3 Proof of the Differentiability

Conververgence along subsequences

We shall proceed similarly to Step 5 in the proof of Theorem 1 in [26]. Denote by ηt(ε) :=
1
ε (Xt(xε)−Xt(x)) the difference quotient, xε = x+ εv for any fixed v ∈ Rd. Let now t ∈ [0, T ]\C
and let n be such that t ∈ An. Using Proposition 2.8 there exists ∆n > 0 such that a.s.
lqn(x) = lqn(xε) = 0 if qn < inf C and both of them are strictly positive if qn > inf C for all
|ε| ∈ (0,∆n). Then,

ηt(ε) =ηr(qn)(ε) +
1

ε

∫ t

r(qn)
(b(Xr(xε)) − b(Xr(x))) dr +

1

ε

∫ rε(qn)

0
n(Xr(xε)) dlr(xε)

− 1

ε

∫ r(qn)

0
n(Xr(xε)) dlr(xε)

=ηr(qn)(ε) +
d
∑

k=1

∫ t

r(qn)

[∫ 1

0

∂b

∂xk
(Xα,ε

r ) dα

]

ηk
r (ε) dr +Rqn(xε), (2.18)

where Xα,ε
r := αXr(xε) + (1 − α)Xr(x), α ∈ [0, 1], and

Rqn(xε) :=
1

ε

∫ rε(qn)

r(qn)
n(Xr(xε)) dlr(xε). (2.19)

Note that if qn < inf C we have r(qn) = 0, ηr(qn)(ε) = v and Rqn(xε) = 0. In any case,

‖Rqn(xε)‖ ≤ 1

ε

∣

∣

∣

∣

∣

∫ rε(qn)

r(qn)
‖n(Xr(xε))‖ dls(xε)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

lrε(qn)(xε) − lr(qn)(xε)

ε

∣

∣

∣

∣

−→ 0 as ε→ 0, (2.20)
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by Corollary 2.14. Recall that ‖ηt(ε)‖ ≤ exp(c1(T + lT (x) + lT (y))) for all t ∈ [0, T ] and ε 6= 0 by
Proposition 2.8. Let (εν)ν be any sequence converging to zero. By a diagonal procedure, we can
extract a subsequence (νl)l such that ηr(qn)(ενl

) has a limit η̂r(qn) ∈ Rd and ητℓ
(ενl

) has a limit

η̂τℓ
∈ Rd as l → ∞ for all n ∈ N and for all ℓ ≥ 0.
Let now η̂ : [0, T ]\C → Rd be the unique solution of

η̂t := η̂r(qn) +

∫ t

r(qn)
Db(Xr(x)) · η̂r dr, t ∈ An.

By (2.18) and Proposition 2.8, we get for |ε| ∈ (0,∆n) and t ∈ An,

‖ηt(ε) − η̂t‖ ≤‖ηr(qn)(ε) − η̂r(qn)‖ + ‖Rqn(xε)‖
+ sup

r∈An

‖Db(Xα,ε
r ) −Db(Xr(x))‖ exp(c1(T + lT (x) + lT (y))

+ c2

∫ t

0
‖ηr(ε) − η̂r‖ dr.

Since ηr(qn)(ενl
) → η̂r(qn), ‖Rqn(xε)‖ → 0 , X

α,ενl
r → Xr(x) uniformly in r ∈ [0, t] and since

the derivatives of b are continuous, we obtain by Gronwall’s Lemma that ηt(ενl
) converges to η̂t

uniformly in t ∈ An for every n. Thus, since C has zero Lebesgue measure, ηt(ενl
) converges to

η̂t for all t ∈ [0, T ]\C as l → ∞ and by the dominated convergence theorem we get

η̂t = v +

∫ t

0
Db(Xr(x)) · η̂k

r dr, t ∈ [0, inf C),

η̂t = η̂r(t) +

∫ t

r(t)
Db(Xr(x)) · η̂k

r dr, t ∈ [inf C, T ]\C.

Lemma 2.15. For every qn > inf C,

i) 〈ηr(qn)(ε), n(Xr(qn)(x))〉 → 0 a.s. and in Lp, p > 1, as ε→ 0,

ii) 〈ηrε(qn)(ε), n(Xrε(qn)(xε))〉 → 0 a.s. and in Lp, p > 1, as ε→ 0.

Proof. By dominated convergence it suffices to prove convergence almost surely. Let ℓ be such that
qn ∈ [τℓ, τℓ+1]. Then, clearly Xr(qn)(x) ∈ Umℓ

∩ ∂G. Recall that n(Xr(qn)(x)) = ∇u1
mℓ

(Xr(qn)(x)),
and by Taylor’s formula we get

〈ηr(qn)(ε), n(Xr(qn)(x))〉 =
1

ε

(

u1
mℓ

(Xr(qn)(xε)) − u1
mℓ

(Xr(qn)(x))
)

+O(ε).

Note that the term of second order in the Taylor expansion is in O(ε) by Proposition 2.8. Recall
that u1

mℓ
(Xr(qn)(x)) = 0, and combining formula (2.9) and (2.13), we get

u1
mℓ

(Xr(qn)(xε)) = u1
mℓ

(Xτℓ
(xε)) +M ℓ

r(qn)(xε) + Lr(qn)(xε) = M ℓ
r(qn)(xε) −M ℓ

rε(r(qn))(xε)

for all ε ∈ (−∆n,∆n) for some positive ∆n. Arguing similarly as in (2.16) we obtain from
Corollary 2.14 i) that

∣

∣

∣

∣

∣

u1
mℓ

(Xr(qn)(xε)) − u1
mℓ

(Xr(qn)(x))

ε

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

M ℓ
r(qn)(xε) −M ℓ

rε(qn)(xε)

ε

∣

∣

∣

∣

∣

−→ 0 as ε→ 0,
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and i) follows. The proof of ii) is rather analogous. For an appropriate ∆n > 0 we have rε(qn) ∈
[τℓ, τℓ+1] and lrε(qn)(x) > 0 for all |ε| ∈ (0,∆n). Then, for such ε we get again by using Taylor’s
formula and the fact that u1

mℓ
(Xrε(qn)(xε)) = 0,

〈ηrε(qn)(ε), n(Xrε(qn)(xε))〉 =〈ηrε(qn)(ε),∇u1
mℓ

(Xrε(qn)(xε))〉

= − 1

ε

(

u1
mℓ

(Xrε(qn)(xε)) − u1
mℓ

(Xrε(qn)(x))
)

+O(ε)

=
1

ε

(

M ℓ
rε(qn)(x) −M ℓ

r(rε(qn))(x)
)

+O(ε).

Since M ℓ(x) attains its minimum over [τℓ, qn] at time r(qn) and its minimum over [τℓ, rε(qn)] at
time r(rε(qn)), respectively, we finally get

|〈ηrε(qn)(ε), n(Xrε(qn)(xε))〉| ≤
1

|ε|
(

M ℓ
rε(qn)(x) −M ℓ

r(qn)(x) +M ℓ
r(rε(qn))(x) −M ℓ

r(qn)(x)
)

+O(ε)

≤ 2

|ε|
(

M ℓ
rε(qn)(x) −M ℓ

r(qn)(x)
)

+O(ε),

which tends to zero again by Corollary 2.14 i).

Since for every m ≥ 0 the coordinate mapping um is one to one, the set {∇ui
m(x), i = 2, . . . , d}

is linear independent for all x ∈ Um and by construction it is also a basis of the tangent space at x if
x ∈ ∂G∩Um. Let {n̄m

2 (x), . . . , n̄m
d (x)} be the Gram-Schmidt orthonormalization of {∇ui

m(x), i =
2, . . . , d} for every x ∈ Um and for every m. Then, n̄m(x) := {n(x), n̄m

2 (x), . . . , n̄m
d (x)} is an ONB

of Rd for all x ∈ Um ∩∂G. We shall now extend η̂ to a right-continuous process by defining η̂t for
t ∈ C ∩ [τℓ, τℓ+1) in the coordinates w.r.t. the basis n̄mℓ(Xt(x)) on Umℓ

∩ ∂G. For that purpose
it suffices to define

〈η̂t,∇u1
mℓ

(Xt(x))〉 =〈η̂t, n(Xt(x))〉 := 0,

and for i = 2, . . . , d,

〈η̂t,∇ui
mℓ

(Xt(x))〉 :=∇ui
mℓ

(Xτℓ
(x)) · η̂τℓ

+

∫

[τℓ,t)\C
∇bimℓ

(Xr(x)) · η̂r dr

+
d
∑

k=1

∫

[τℓ,t)\C
∇σik

mℓ
(Xr(x)) · η̂r dw

k
r .

Remark 2.16. This definition leads in fact to a right-continuous extension of η̂. On one hand
we have 〈η̂r(qn), n(Xr(qn)(x))〉 = 0 for every n by Lemma 2.15 i), and on the other hand we have
for all t ∈ [τℓ, τℓ+1) and i = 2, . . . , d

〈η̂t,∇ui
mℓ

(Xt(x))〉 =∇ui
mℓ

(Xτℓ
(x)) · η̂τℓ

+

∫ t

τℓ

∇bimℓ
(Xr(x)) · η̂r dr

+

d
∑

k=1

∫ t

τℓ

∇σik
mℓ

(Xr(x)) · η̂r dw
k
r .

(2.21)
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Indeed, for t ∈ C this is just the definition and for t ∈ [τℓ, τℓ+1)\C we have by Taylor’s formula
and (2.7) that

〈η̂t,∇ui
mℓ

(Xt(x))〉 = lim
l→∞

1

ενl

(

ui
mℓ

(Xt(xενl
)) − ui

mℓ
(Xt(x))

)

= lim
l→∞

1

ενl

(

ui
mℓ

(Xτℓ
(xενl

)) − ui
mℓ

(Xτℓ
(x)) +

∫ t

τℓ

(

bimℓ
(Xτℓ

(xενl
)) − bimℓ

(Xτℓ
(x))

)

dr

+
d
∑

k=1

∫ t

τℓ

(

σik
mℓ

(Xτℓ
(xενl

)) − σik
mℓ

(Xτℓ
(x))

)

dwk
r

)

,

and this converges to the right hand side of (2.21) by a similar argument as in the proof of Lemma
2.17 below. In particular, this argument does not depend on the value of η̂t for t ∈ C since C has
zero Lebesgue measure.

Let for all x ∈ Um, m ≥ 0 and η ∈ Rd

Π̃m
x (η) :=

d
∑

k=2

〈η, n̄m
k (x)〉 n̄m

k (x), (2.22)

so that obviously
Π̃m

x (η) = πx(η), ∀x ∈ ∂G ∩ Um, ∀η ∈ Rd.

For later use we prove now uniform convergence of Π̃mℓ

Xt(xε)
(ηt(ε)) to Π̃mℓ

Xt(x)(η̂t) along the chosen
subsequence. The proof is based on the fact that there are no local time terms appearing in
equation (2.7) for ui

mℓ
, i = 2, . . . , d. In particular, note that Π̃mℓ

Xt(x)(η̂t) is not the same as

Q · Ot · η̂t. Later we will identify that process with Y 2
t appearing in Theorem 2.5, which does

depend on the local time. Both processes do only coincide for t ∈ [τℓ, τℓ+1) ∩ C.

Lemma 2.17. For every ℓ ≥ 0 let ∆τℓ+1
> 0 be as in Remark 2.9 such that Π̃mℓ

Xs(xε)
(ηs(ε)) is well

defined for all s ∈ [τℓ, τℓ+1] and all 0 < |ε| < ∆τℓ+1
. Then,

sup
s∈[τℓ,τℓ+1]

∣

∣

∣Π̃
mℓ

Xs(xενl
)(ηs(ενl

)) − Π̃mℓ

Xs(x)(η̂s)
∣

∣

∣ 1l{0<|ε|<∆τℓ+1
} → 0 in Lp, p > 1 as l → ∞,

in particular for every qn > inf C contained in [τℓ, τℓ+1],
∣

∣

∣Π̃
mℓ

Xr(qn)(xενl
)(ηr(qn)(ενl

)) − Π̃mℓ

Xr(qn)(x)(η̂r(qn))
∣

∣

∣ 1l{0<|ε|<∆τℓ+1
} → 0 in Lp, p > 1 as l → ∞.

Proof. Since every function n̄m
k is continuous on Um, it suffices by Proposition 2.8 to show that

sup
s∈[τℓ,τℓ+1]

∣

∣

∣Π̃
mℓ

Xs(x)(ηs(ενl
)) − Π̃mℓ

Xs(x)(η̂s)
∣

∣

∣ 1l{0<|ε|<∆τℓ+1
} → 0 in Lp, p > 2, as l → ∞,

and for this it is enough to prove that for every i ∈ {2, . . . , d},

sup
s∈[τℓ,τℓ+1]

∣

∣〈ηs(ενl
),∇ui

mℓ
(Xs(x))〉 − 〈η̂s,∇ui

mℓ
(Xs(x))〉

∣

∣ 1l{0<|ε|<∆τℓ+1
} → 0 in Lp as l → ∞.
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As before we use Taylor’s formula and (2.7) to obtain

〈ηs(ε),∇ui
mℓ

(Xs(x))〉 =
1

ε

(

ui
mℓ

(Xs(xε)) − ui
mℓ

(Xs(x))
)

+O(ε)

=
1

ε

(

ui
mℓ

(Xτℓ
(xε)) − ui

mℓ
(Xτℓ

(x)) +

∫ s

τℓ

(

bimℓ
(Xr(xε)) − bimℓ

(Xr(x))
)

dr

+
d
∑

k=1

∫ s

τℓ

(

σik
mℓ

(Xr(xε)) − σik
mℓ

(Xr(x))
)

dwk
r

)

+O(ε)

=∇ui
mℓ

(Xτℓ
(x)) · ητℓ

(ε) +

∫ s

τℓ

∫ 1

0
∇bimℓ

(Xα,ε
r ) · ηr(ε) dαdr

+
d
∑

k=1

∫ s

τℓ

∫ 1

0
∇σik

mℓ
(Xα,ε

r ) · ηr(ε) dαdw
k
r +O(ε), (2.23)

where as before Xα,ε
r := αXr(xε) + (1 − α)Xr(x), α ∈ [0, 1]. Recall the definition of τ̂ℓ(xε) in

Remark 2.9. Comparing (2.21) and (2.23) leads to

E

[

sup
s∈[τℓ,τℓ+1]

∣

∣〈ηs(ε),∇ui
mℓ

(Xs(x))〉 − 〈η̂s,∇ui
mℓ

(Xs(x))〉
∣

∣

p
1l{0<|ε|<∆τℓ+1

}

]

≤c1 E
[

‖∇ui
mℓ

(Xτℓ
(x))‖p ‖ητℓ

(ε) − η̂τℓ
‖p
]

+ c1 E

[∫ τℓ+1

τℓ

∣

∣

∣

∣

∫ 1

0
∇bimℓ

(Xα,ε
r ) dα · ηr(ε) −∇bimℓ

(Xr(x)) · η̂r

∣

∣

∣

∣

p

dr 1l{0<|ε|<∆τℓ+1
}

]

+ c1

d
∑

k=1

E

[

sup
s∈[τℓ,τ̂ℓ(xε)]

∣

∣

∣

∣

∫ s

τℓ

(∫ 1

0
∇σik

mℓ
(Xα,ε

r ) dα · ηr(ε) −∇σik
mℓ

(Xr(x)) · η̂r

)

dwk
r

∣

∣

∣

∣

p
]

+O(ε).

Using Burkholder’s inequality the third term can be estimated by

c2

d
∑

k=1

E

[

∫ τ̂ℓ(xε)

τℓ

∣

∣

∣

∣

∫ 1

0
∇σik

mℓ
(Xα,ε

r ) dα · ηr(ε) −∇σik
mℓ

(Xr(x)) · η̂r

∣

∣

∣

∣

p

dr

]

.

Finally, we obtain by Proposition 2.8,

E

[

sup
s∈[τℓ,τℓ+1]

∣

∣〈ηs(ε),∇ui
mℓ

(Xs(x))〉 − 〈η̂s,∇ui
mℓ

(Xs(x))〉
∣

∣

p
1l{0<|ε|<∆τℓ+1

}

]

≤c3 E
[

‖∇ui
mℓ

(Xτℓ
(x))‖p ‖ητℓ

(ε) − η̂τℓ
‖p
]

+ c3 E

[∫ τℓ+1

τℓ

∣

∣

∣

∣

∫ 1

0
∇bimℓ

(Xα,ε
r ) dα−∇bimℓ

(Xr(x))

∣

∣

∣

∣

p

dr 1l{0<|ε|<∆τℓ+1
} e

c4(T+lT (x)+lT (xε)

]

+ c3

d
∑

k=1

E

[

∫ τ̂ℓ(xε)

τℓ

∣

∣

∣

∣

∫ 1

0
∇σik

mℓ
(Xα,ε

r ) dα−∇σik
mℓ

(Xr(x))

∣

∣

∣

∣

p

dr · ec4(T+lT (x)+lT (xε))

]

+ c3 E

[∫ τℓ+1

τℓ

‖ηr(ε) − η̂r‖pdr

]

+O(ε),
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which converges to zero along (ενl
) by dominated convergence, since ητℓ

(ενl
) → η̂τℓ

, X
α,ενl
r →

Xr(x) uniformly in r ∈ [0, T ], ∇bimℓ
and ∇σik

mℓ
are continuous and ηr(ενl

) converges to η̂r uniformly
in r ∈ An for every n.

A Characterizing Equation for the Derivatives

We have proven so far that ηt(ε) converges along a subsequence to η̂t a.s. for every t. In order
to show differentiability we still need to show that η̂ does not depend on the chosen subsequence
(ενl

)l. To that aim we shall establish a system of SDE-like equations, which admits a unique
solution and which is solved by Yt := Ot · η̂t, t ∈ [0, T ], Ot denoting the moving frame defined in
Section 2.2.2. We shall proceed similarly to Section 4 in [1] (see also Section V.6 in [42]).

At first we shall derive an equation for Yt(ε) := Ot · ηt(ε), t ∈ [0, T ]. Let the rows of Ot be
denoted by nk

t = nk(Xt(x)), k = 1, . . . d. Then, we obtain by the chain rule that for every t

1

ε
[b(Xt(xε)) − b(Xt(x))] =

d
∑

k=1

∫ 1

0
Dnk

t
b(Xα,ε

t ) · 〈ηt(ε), n
k
t 〉 dα =

∫ 1

0
Db(Xα,ε

t ) dα ·O−1
t · Yt(ε).

By Itô’s integration by parts formula we have

dYt(ε) =Ot · dηt(ε) + dOt · ηt(ε)

=Ot ·
1

ε
[b(Xt(xε)) − b(Xt(x))] dt+Ot ·

1

ε
[n(Xt(xε))dlt(xε) − n(Xt(x)dlt(x)] + dOt · ηt

=

[

Ot ·
∫ 1

0
Db(Xα,ε

t ) dα ·O−1
t + β(Xt(x)) ·O−1

t

]

· Yt(ε) dt

+

d
∑

k=1

αk(Xt(x)) ·O−1
t · Yt(ε) dw

k
t + γ(Xt(x)) ·O−1

t · Yt(ε) dlt(x)

+Ot ·
1

ε
[n(Xt(xε))dlt(xε) − n(Xt(x)dlt(x)] ,

with coefficient functions αk and β and γ as in (2.2). Let P = diag(e1) and Q = Id−P and set

Y 1,ε
t = P · Yt(ε) and Y 2,ε

t = Q · Yt(ε)

to decompose the space Rd into the direct sum ImP ⊕KerP . We define the coefficients c and dε

to be such that

d
∑

k=1

(

c1k(t) c2k(t)
c3k(t) c4k(t)

)

dwk
t +

(

d1
ε(t) d2

ε(t)
d3

ε(t) d4
ε(t)

)

dt

=
d
∑

k=1

αk(Xt(x)) ·O−1
t dwk

t +

[

Ot ·
∫ 1

0
Db(Xα,ε

t ) dα ·O−1
t + β(Xt(x)) ·O−1

t

]

dt.

As before let t ∈ [0, T ]\C and let n be such that t ∈ An. Then there exists ∆n > 0 such that
a.s. lqn(x) = lqn(xε) = 0 if qn < inf C and both of them are strictly positive if qn > inf C for all
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0 < |ε| < ∆n. For such ε we get

Y 1,ε
t = Y 1,ε

0 +
d
∑

k=1

∫ t

0

(

c1k(s)Y
1,ε
s + c2k(s)Y

2,ε
s

)

dwk
s +

∫ t

0

(

d1
ε(s)Y

1,ε
s + d2

ε(s)Y
2,ε
s

)

ds, (2.24)

if t < inf C and

Y 1,ε
t = Y 1,ε

r(t) +
d
∑

k=1

∫ t

r(t)

(

c1k(s)Y
1,ε
s + c2k(s)Y

2,ε
s

)

dwk
s +

∫ t

r(t)

(

d1
ε(s)Y

1,ε
s + d2

ε(s)Y
2,ε
s

)

ds+Rt(ε),

(2.25)

if t ≥ inf C, where Rt(ε) := P ·Ot ·Rqn(xε) with Rqn(xε) as in (2.19).
In order to compute the corresponding equation for Y 2,ε, we use again Taylor’s formula to

obtain for every k ∈ {2, . . . , d}

nk(Xt(x)) · 1
ε [n(Xt(xε)) dlt(xε) − n(Xt(x) dlt(x)]

=1
ε

[

(nk(Xt(x)) − nk(Xt(xε))) · n(Xt(xε)) dlt(xε)
]

= − ηt(ε)
∗ ·Dnk(Xt(xε))

∗ · n(Xt(xε)) dlt(xε) +O(ε)

=ηt(ε)
∗ ·Dn(Xt(xε))

∗ · nk(Xt(xε))
∗ dlt(xε) +O(ε)

=nk(Xt(xε)) ·Dn(Xt(xε)) · ηt(ε) dlt(xε) +O(ε)

=nk(Xt(xε)) ·Dn(Xt(xε)) ·O−1
t · Yt(ε) dlt(xε) +O(ε).

Hence,

Q ·Ot · 1
ε [n(Xt(xε))dlt(xε) − n(Xt(x)dlt(x)] = Φε(t) · Yt(ε) dlt(xε) +O(ε)

=
[

Φ1
ε(t) · Y 1,ε

t + Φ2
ε(t) · Y 2,ε

t

]

+O(ε),

where

Φε(t) := Q ·O(Xt(xε)) ·Dn(Xt(xε)) ·O−1
t and Φ1

ε(t) := Φε(t) · P, Φ2
ε(t) := Φε(t) ·Q.

Finally, we obtain the following equation for Y 2,ε:

Y 2,ε
t =Y 2,ε

0 +
d
∑

k=1

∫ t

0

(

c3k(s)Y
1,ε
s + c4k(s)Y

2,ε
s

)

dwk
s +

∫ t

0

(

d3
ε(s)Y

1,ε
s + d4

ε(s)Y
2,ε
s

)

ds

+

∫ t

0

(

Φ1
ε(s)Y

1,ε
s + Φ2

ε(s)Y
2,ε
s

)

dls(xε) +

∫ t

0

(

γ1(s)Y 1,ε
s + γ2(s)Y 2,ε

s

)

dls(x) +O(ε),

(2.26)

with γ1(t) := γ(Xt(x)) ·O−1
t · P and γ2(t) := γ(Xt(x)) ·O−1

t ·Q.
Setting Yt = Ot · η̂t and Y 1

t = P · Yt, Y
2
t = Q · Yt, t ∈ [0, T ], the next step is to prove the

following
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Proposition 2.18. For every t ∈ [0, T ], Yt satisfies the equations in Theorem 2.5.

Obviously, from the second equation in Theorem 2.5 it follows that Y 2
t is a continuous semi-

martingale in t, which in particular implies that the mapping t 7→ πXr(qn)(x)(η̂t) is continuous at

time t = r(qn) for every n. Thus, the proof of Theorem 2.1 is complete once we have shown
Proposition 2.18 and that system in Theorem 2.5 admits a unique solution. First, we prove two
preparing lemmas.

Lemma 2.19. For every t > 0,

i)
∫ t
0 Φ1

ε(s)Y
1,ε
s dls(xε) → 0 in L2 as ε→ 0,

ii)
∫ t
0 γ

1(s)Y 1,ε
s dls(x) → 0 in L2 as ε→ 0.

Proof. Since Φ1
ε is uniformly bounded, we get

∥

∥

∥

∥

∫ t

0
Φ1

ε(s)Y
1,ε
s dls(xε)

∥

∥

∥

∥

≤ c1

∫ t

0
|〈ηs(ε), n(Xs(x))〉| dls(xε)

≤c1
∫ t

0
|〈ηs(ε), n(Xs(xε))〉| dls(xε) + c1

∫ t

0
|〈ηs(ε), n(Xs(xε)) − n(Xs(x))〉| dls(xε), (2.27)

where the second term tends to zero by Proposition 2.8. Let now σε
s := inf{r : lr(xε) ≥ s} be

the left-continuous inverse of l(xε), i.e. for every s, σε
s is the left endpoint of an excursion interval

of X(xε). In particular, for every fixed s, σε
s = rε(qn) for some qn depending on s if ε is small.

Thus, for every positive M we obtain by Lemma 2.15 ii)

E

[∫ M

0

∣

∣〈ησε
s
(ε), n(Xσε

s
(xε))〉

∣

∣

2
ds

]

=

∫ M

0
E

[

∣

∣〈ηrε(qn)(ε), n(Xrε(qn)(xε))〉
∣

∣

2
]

ds→ 0, as ε→ 0.

(2.28)

We show now that also the first term in (2.27) tends to zero. On one hand, we have by the change
of variables formula for an arbitrary M > 0

∫ t

0
|〈ηs(ε), n(Xs(xε))〉| dls(xε) 1l{lt(xε)≤M} =

∫ lt(xε)

0

∣

∣〈ησε
s
(ε), n(Xσε

s
(xε))〉

∣

∣ ds 1l{lt(xε)≤M}

≤
∫ M

0

∣

∣〈ησε
s
(ε), n(Xσε

s
(xε))〉

∣

∣ ds,

which converges to zero in L2 by (2.28). On the other hand, using the Cauchy-Schwarz inequality
and Proposition 2.8 we get

E

[

(∫ t

0
|〈ηs(ε), n(Xs(xε))〉| dls(xε)

)2

1l{lt(xε)>M}

]

≤E
[

exp(c2(t+ lt(x) + lt(xε))) lt(xε)
4
]1/2

× P[lt(xε) > M ]1/2.
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Hence,

lim sup
ε→0

E

[

(∫ t

0
|〈ηs(ε), n(Xs(xε))〉| dls(xε)

)2
]

≤ E[exp(c4(lt(x) + t))lt(x)
4]1/2 P[lt(x) > M ]1/2.

We letM tend to infinity and obtain that i) holds. ii) follows by an analogous, simpler proceeding.

Lemma 2.20. For every t > 0,

i)
∫ t
0 Φ2

ενl
(s)Y

2,ενl
s dls(xενl

) →
∫ t
0 Φ2(s)Y 2

s dls(x) in L2 as l → ∞,

ii)
∫ t
0 γ

2(s)Y
2,ενl
s dls(x) →

∫ t
0 γ

2(s)Y 2
s dls(x) in L2 as l → ∞.

Proof. Again we only prove i). Since

∫ t

0
Φ2

ε(s)Y
2,ε
s dls(xε) − Φ2(s)Y 2

s dls(x) =
∑

ℓ:τℓ<t

∫ τℓ+1∧t

τℓ

Φ2
ε(s)Y

2,ε
s dls(xε) − Φ2(s)Y 2

s dls(x),

and the total number of summands on the right hand side is finite a.s., it suffices to show that
for every ℓ,

∫ τℓ+1

τℓ

Φ2
ε(s)Y

2,ε
s dls(xε) − Φ2(s)Y 2

s dls(x) → 0 in L2 along ενl
.

Recall the definition of Π̃m
x in (2.22). By construction we have for s ∈ [τℓ, τℓ+1],

Φ2(s)Y 2
s dls(x) = Φ2(s) ·Q ·Os · η̂s dls(x) = Φ2(s) ·Q ·Os · πXs(x)(η̂s) dls(x)

= Φ2(s) ·Q ·Os · Π̃mℓ

Xs(x)(η̂s) dls(x),

and analogously, for sufficiently small ε,

Φ2
ε(s)Y

2,ε
s dls(xε)

=
{

Φ2
ε(s) ·Q ·O(Xs(xε)) · ηs(ε) + Φ2

ε(s) ·Q · [O(Xs(x)) −O(Xs(xε))] · ηs(ε)
}

dls(xε)

=
{

Φ2
ε(s) ·Q ·O(Xs(xε)) · Π̃mℓ

Xs(xε)
(ηs(ε)) + Φ2

ε(s) ·Q · [O(Xs(x)) −O(Xs(xε))] · ηs(ε)
}

dls(xε).

Hence,
∫ τℓ+1

τℓ

Φ2
ε(s)Y

2,ε
s dls(xε) − Φ2(s)Y 2

s dls(x)

=

∫ τℓ+1

τℓ

[

Φ2
ε(s) ·Q ·O(Xs(xε)) · Π̃mℓ

Xs(xε)
(ηs(ε)) − Φ2(s) ·Q ·Os · Π̃mℓ

Xs(x)(η̂s)
]

dls(xε)

+

∫ τℓ+1

τℓ

Φ2
ε(s) ·Q · [O(Xs(x)) −O(Xs(xε))] · ηs(ε) dls(xε)

+

∫ τℓ+1

τℓ

Φ2(s) ·Q ·Os · Π̃mℓ

Xs(x)(η̂s) (dls(xε) − dls(x)).
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The first term converges to zero in L2 along ενl
by Lemma 2.17 and Proposition 2.8. The second

term converges also to zero in L2 again by Proposition 2.8. Finally, the third term tends to zero
by the weak convergence of l(xε) to l(x) on [τℓ, τℓ+1]. Note that Π̃mℓ

Xs(x)(η̂s) is continuous in s on

[τℓ, τℓ+1].

Proof of Proposition 2.18. For every t ∈ [0, T ] we have convergence of Y 1,ε
t and Y 2,ε

t to Y 1
t and

Y 2
t , respectively, a.s. and in L2 along the subsequence ενl

. Thus, it is enough to prove that the
right hand sides in (2.24), (2.25) and (2.26) converge along ενl

in L2 to the corresponding terms
in the equation describing Y 1 and Y 2. Lemma 2.15 gives convergence of Y 1,ε

r(t) to zero, Rt(ε) tends

to zero arguing as in (2.20) and in Corollary 2.14. The convergence of the terms involving the
local times follows from Lemma 2.19 and Lemma 2.20. The convergence of the remaining integral
terms is clear.

It remains to show uniqueness, which is carried out in the next lemma.

Proposition 2.21. The system in Theorem (2.5) admits a unique solution.

Proof. Let (Ut)t≥0 be the unique solution of the matrix-valued equation

Ut = Id−
∫ t

0
Us · (Φ2(s) + γ2(s)) dls(x), t ≥ 0.

Then, introducing the stopping times TN := inf{s ≥ 0 : max(‖U−1
s ‖, ‖Us‖) ≥ N}, N ∈ N, we

have TN ↑ ∞ a.s. as N tends to infinity. Using integration by parts we get

d(Ut · Y 2
t ) =

d
∑

k=1

Ut

(

c3k(t)Y
1
t + c4k(t)Y

2
t

)

dwk
t + Ut

(

d3(t)Y 1
t + d4(t)Y 2

t

)

dt

+ Ut (Φ2(t) + γ2(t))Y 2
t dlt(x) − Ut (Φ2(t) + γ2(t))Y 2

t dlt(x).

The last two terms cancel, so we can rewrite the system in Theorem 2.5 as

Y 1
t =1l{t<inf C}

(

Y 1
0 +

d
∑

k=1

∫ t

0

(

c1k(s)Y
1
s + c2k(s)Y

2
s

)

dwk
s +

∫ t

0

(

d1(s)Y 1
s + d2(s)Y 2

s

)

ds

)

+ 1l{t≥inf C}

(

d
∑

k=1

∫ t

r(t)

(

c1k(s)Y
1
s + c2k(s)Y

2
s

)

dwk
s +

∫ t

r(t)

(

d1(s)Y 1
s + d2(s)Y 2

s

)

ds

)

Y 2
t =U−1

t · Y 2
0 + U−1

t ·
d
∑

k=1

∫ t

0
Us ·

(

c3k(s)Y
1
s + c4k(s)Y

2
s

)

dwk
s

+ U−1
t ·

∫ t

0
Us ·

(

d3(s)Y 1
s + d4(s)Y 2

s

)

ds,

with the initial condition Y 1
0 = P ·O(x) ·v and Y 2

0 = Q ·O(x) ·v. In order to prove the proposition,
it suffices to to show existence and uniqueness of the stopped process Y N

t := Yt∧TN
, t ∈ [0, T ],

since Y N
t → Yt a.s. for as N → ∞ for every t.



46 SDEs in a Smooth Domain with normal Reflection

We proceed as in Lemma 4.3 in [1]. Let H be the totality of Rd-valued adapted processes
(ϕt), t ∈ [0, T ], whose paths are a.s. càdlàg and which satisfy supt∈[0,T ] E[‖ϕt‖2] < ∞. On H we
introduce the norm

‖ϕ‖H = sup
t∈[0,T ]

E
[

‖ϕt‖2
]1/2

.

For any ϕ ∈ H we define the process I(ϕ) by

I(ϕ)1t =1l{t<inf C}

(

Y 1
0 +

d
∑

k=1

∫ t

0

(

c1k(s)ϕ
1
s + c2k(s)ϕ

2
s

)

dwk
s +

∫ t

0

(

d1(s)ϕ1
s + d2(s)ϕ2

s

)

ds

)

+ 1l{t≥inf C}

(

d
∑

k=1

∫ t

r(t)

(

c1k(s)ϕ
1
s + c2k(s)ϕ

2
s

)

dwk
s +

∫ t

r(t)

(

d1(s)ϕ1
s + d2(s)ϕ2

s

)

ds

)

I(ϕ)2t =U−1
t · Y 2

0 + U−1
t ·

d
∑

k=1

∫ t

0
Us ·

(

c3k(s)ϕ
1
s + c4k(s)ϕ

2
s

)

dwk
s

+ U−1
t ·

∫ t

0
Us ·

(

d3(s) · ϕ1
s + d4(s)ϕ2

s

)

ds,

if t ≤ TN ∧T , and I(ϕ)t = I(ϕ)TN
if t ∈ [TN , T ]. By definition of TN , we have for fixed N that all

the coefficient functions are uniformly bounded in t ∈ [0, TN ]. Hence, one can easily verify that

E
[

‖I(ϕ)t‖2
]

≤ c1

{

1 +

∫ t

0
E
[

‖ϕr‖2
]

dr

}

≤ c2

{

1 + sup
t∈[0,T ]

E
[

‖ϕt‖2
]

}

,

where the constants only depend on N and T and not on ϕ and t. This proves that I(ϕ) ∈ H for
every ϕ ∈ H. Similarly, one can show that for any ϕ, ψ ∈ H,

E
[

‖I(ϕ)t − I(ψ)t‖2
]

≤ c3

∫ t

0
E
[

‖ϕs − ψs‖2
]

ds ≤ c4 sup
t∈[0,T ]

E[‖ϕt − ψt‖2],

and hence,
‖I(ϕ) − I(ψ)‖H ≤ c‖ϕ− ψ‖H .

For every N , existence and uniqueness of Y N follow now by standard arguments via Picard-
iteration, the details are omitted.

Since T > 0 is arbitrary, Theorem 2.1 and Theorem 2.5 follow.

2.3.4 The Neumann Condition

In this final section we prove the Neumann condition stated in Corollary 2.7. Let x ∈ ∂G.
By a density argument it is sufficient to consider bounded functions f , which are continuously
differentiable and have bounded derivatives. Then, for each t > 0 we obtain by dominated
convergence and the chain rule:

Dn(x)Ptf(x) =E
[

∇f(Xt(x))Dn(x)Xt(x)
]

.
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Thus, it suffices to show Dn(x)Xt(x) = 0 for all t ≥ 0, which is equivalent to Yt = 0 for all t ≥ 0,
where Yt = Ot · ηt with v = n(x). Fix some arbitray T > 0. Using the same notations as in
Lemma 2.21, Yt satisfies

Y 1
t =

d
∑

k=1

∫ t

r(t)

(

c1k(s)Y
1
s + c2k(s)Y

2
s

)

dwk
s +

∫ t

r(t)

(

d1(s)Y 1
s + d2(s)Y 2

s

)

ds

Y 2
t =U−1

t ·
d
∑

k=1

∫ t

0
Us ·

(

c3k(s)Y
1
s + c4k(s)Y

2
s

)

dwk
s + U−1

t ·
∫ t

0
Us ·

(

d3(s)Y 1
s + d4(s)Y 2

s

)

ds.

Note that inf C = 0 and Y 2
0 = Q · O(x) · n(x) = 0. Setting Y 1,N

t = P · Y N
t , Y 2,N

t = Q · Y N
t and

Mt :=
∑d

k=1

∫ t
0

(

c1k(s)Y
1
s + c2k(s)Y

2
s

)

dwk
s , we obtain by Doob’s inequality for every N that

E

[

sup
t∈[0,T ]

∥

∥Y N
t

∥

∥

2

]

≤E

[

sup
t∈[0,T ]

∥

∥

∥Y
1,N
t

∥

∥

∥

2
]

+

[

sup
t∈[0,T ]

∥

∥

∥Y
2,N
t

∥

∥

∥

2
]

≤E

[

sup
t∈[0,T ]

∥

∥Mt −Mr(t)

∥

∥

2

]

+ c1

∫ T

0
E

[

sup
r∈[0,s]

∥

∥Y N
r

∥

∥

2

]

ds

≤2 E

[

sup
t∈[0,T ]

‖Mt‖2

]

+ c1

∫ T

0
E

[

sup
r∈[0,s]

∥

∥Y N
r

∥

∥

2

]

ds

≤c2
∫ T

0
E

[

sup
r∈[0,s]

∥

∥Y N
r

∥

∥

2

]

ds,

which implies by Gronwall’s Lemma that Y N
t = 0 for all t ∈ [0, T ] a.s. We let N tend to infinity

to obtain that Yt = 0 for all t ∈ [0, T ] a.s. Since T > 0 is arbitrary, the claim follows.
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Part II

Particle Approximation of the

Wasserstein Diffusion

49





Chapter 3

The Approximating Particle System

3.1 Introduction and Main Results

The construction and regularity of Brownian motion or more general diffusions in Euclidean
domains with reflecting boundary condition is a classical subject in probability theory, lying in
the intersection of regularity theory for parabolic PDE and stochastic analysis. Starting from the
early works by e.g. Fukushima [37] and Tanaka [60], the field has seen perpetual research activity,
c.f. [12, 51] (and e.g. [11] for a more comprehensive list of references). Typically the reflecting
process can be obtained in two ways. Either via solving a system of Skorohod SDE with local
time at the boundary or via Dirichlet form methods, and under suitable smoothness assumptions
on the domain and the coefficients both approaches are equivalent.

In the second part of this thesis we study a very specific singular case, in which the drift
coefficients of the operator may diverge and where the equivalence of the two approaches breaks
down but the process exhibits good regularity nevertheless. Our case corresponds to a Dirichlet
form

E(f, f) =

∫

Ω
|∇f |2q(dx)

on L2(Ω, dq) for a very specific choice of domain Ω ⊂ RN and measure q(dx) = q(x)dx (see below).
Similar but more regular variants were studied under the smoothness assumption q ∈ H1,1(Ω)
respectively ∇(log q) ∈ Lp(Ω, dq), p > N in [62] and [36], where a Skorohod decomposition for
the induced process still holds.

In the present work we are concerned with a diffusion, which is taking values in the closure of

ΣN = {x ∈ RN : 0 < x1 < x2 · · · < XN < 1},

and which is symmetric w.r.t. the measure

qN (dx) =
1

Zβ

N
∏

i=0

(xi+1 − xi)
β

N+1
−1dx1 dx2 · · · dxN , (3.1)

where Zβ = (Γ(β)/(Γ(β/(N + 1)))N+1)−1 is a normalization constant and β > 0 is some param-
eter. That is, we study the process (XN

· ) generated by the L2(ΣN , qN )-closure of the quadratic

51
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form

EN (f, f) =

∫

ΣN

|∇f |2(x) qN (dx), f ∈ C∞(ΣN ),

still denoted by EN . Its generator L extends the operator (LN , D(LN))

LNf(x) = (
β

N + 1
− 1)

N
∑

i=1

(

1

xi − xi−1
− 1

xi+1 − xi

)

∂

∂xi
f(x) + ∆f(x) for x ∈ ΣN (3.2)

with domain

D(LN) = C2
Neu = {f ∈ C2(ΣN ) | ∇f · ν = 0 on all (n− 1)-dimensional faces of ∂ΣN},

and ν denoting the outward normal field on ∂ΣN . On the level of formal Itô calculus (LN , D(LN))
corresponds to an order preserving dynamics (XN

· ) ∈ ΣN for the location of N particles in the
unit interval which solves the system of coupled Skorohod SDEs

dxi
t = (

β

N + 1
− 1)

(

1

xi
t − xi−1

t

− 1

xi+1
t − xi

t

)

dt+
√

2dwi
t + dli−1

t − dlit, i = 1, · · · , N (3.3)

with x0 = 0, xN+1 = 1 by convention, {wi} are independent real Brownian motions and {li} are
the collision local times, i.e. satisfying

dlit ≥ 0, lit =

∫ t

0
1l{xi

s=xi+1
s }dl

i
s. (3.4)

(XN
· ) may thus be considered as a system of coupled two sided real Bessel processes with uniform

Bessel dimension δ = β/(N + 1). Similar to the standard real Bessel process BES(δ) with Bessel
dimension δ < 1, the existence of XN , even with initial condition X0 = x ∈ ΣN , is not trivial,
nor are its regularity properties.

Except for mathematical curiousity our motivation for studying this process is its relation
to the Wasserstein diffusion, which is an infinite dimensional diffusion process on the space of
probability measures intimately related to the Wasserstein metric [66]. In the next chapter we
shall prove that the normalized empirical measure of the system (3.3) converges to the Wasserstein
diffusion in the high density regime for N → ∞. Hence the regularity properties of (XN

· ) may
give an indication of the regularity of the Wasserstein diffusion, although in the present work we
have not managed to obtain estimates which are uniform w.r.t. the parameter N .

Remark 3.1. For simulation the dynamics of (XN
· ) can be approximated by XN,ǫ

t = XN,ǫ
⌊t/ǫ2⌋, t ≥

0, where (XN,ǫ
n )n≥0 is the Markov chain on ΣN with transition kernel µN,ǫ(x,A) = qN (Bǫ(x)∩ΣN∩A)

qN (Bǫ(x)∩ΣN ) .

An alternative approach uses a regularized version of the formal SDE (3.3) and (3.4). For illustra-
tion we present some results by courtesy of Theresa Heeg, Bonn, for the case of N = 4 particles
with β = 10, β = 1 and β = 0.3 respectively, at large times.
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β = 10 β = 1 β = 0.3

We are now ready to state the main results of this chapter.

Theorem 3.2. For β < 2(N + 1), the Dirichlet form EN generates a Feller process (X·) on ΣN ,
i.e. the associated transition semigroup on L2(ΣN , qN ) defines a strongly continuous contraction
semigroup on the subspace C(ΣN ) equipped with the sup-norm topology.

In order to prove Theorem 3.2 we use some localization arguments to use the symmetries of
the problem. A crucial ingredient for the justification of this strategy is the following Markov
uniqueness result for the operator (LN , C2

Neu).

Proposition 3.3. For β < 2(N + 1), there is at most one symmetric strongly continuous con-
traction semigroup (Tt)t≥0 on L2(ΣN , qN ) whose generator (L,D(L)) extends (LN , C2

Neu).

Hence, together with Theorem 3.2 we can state the following existence and uniqueness result.

Corollary 3.4. The formal system of Skorohod SDEs defines via the associated martingale
problem a unique diffusion process which can be started everywhere on the (closed) simplex ΣN .

As for path regularity we obtain the following characterization.

Theorem 3.5. For any starting point x ∈ ΣN , (Xx
· ) ∈ ΣN ⊂ RN is a Euclidean semi-martingale

if and only if β/(N + 1) ≥ 1.

In particular we obtain that a Skorohod decomposition of the process XN
· is impossible if β

is small enough. This is in sharp contrast to all aforementioned previous works. Moreover, again
due to the uniqueness assertion of Proposition 3.3 the following negative result holds true.

Corollary 3.6. If β/(N + 1) < 1, the system of equations (3.3),(3.4) is ill-posed, i.e. it admits
no solution in the the sense of Itô calculus.

Note that theorems 3.2 and 3.5 generalize the corresponding classical results for the family of
standard real Bessel processes, which are proved in a completely different manner, c.f. [13, 56].

While the proof of Theorem 3.5 consists of a straightforward application of a regularity cri-
terion by Fukushima [38] for Dirichlet processes, the proof of Theorem 3.2 is more involved and
has four main steps. The first crucial observation is that the reference measure qN can locally
be extended to a measure q̂ on the full Euclidean space which lies in the Muckenhoupt class
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A2, which allows for a rich potential theory. In particular the Poincaré inequality and doubling
conditions hold which imply via heat kernel estimates the regularity of the induced process on
RN . The second step is the probabilistic piece of the localization, which corresponds to stopping
the RN -valued process at domain boundaries where the measure q̂ is ’tame’ and to show that the
stopped process is again Feller. To this end we employ a version of the Wiener test for degenerate
elliptic diffusions by Fabes, Jerison and Kenig [34]. The third step is to use the reflection symme-
try of the problem which allows to treat the Neumann boundary condition indeed via a reflection
of the extended RN -valued process. The fourth step is to establish the Markov uniqueness for
the associated martingale problem which is crucial in order to justify the identification of the
processes after localization. In the proof of the Markov uniqueness we shall again depend on the
nice potential theory available in Muckenhoupt classes.

In the present work we restrict ourselves to the case β < 2(N + 1) to ensure that the local
extension of qN is contained in the Muckenhoupt class A2. In our context this case is the more
interesting one in view of the approximation result given in the next chapter. For β ≥ 2(N+1) the
extension of qN lies only in the larger Muckenhoupt class Ap for some p > 2 suffiently large and
our method fails. Nevertheless, if β ≥ N(N + 1) we are in the setting of [36] and the arguments
there imply that the Feller property holds for (XN

· ) in our case, too.
The material presented in this chapter is contained in [10].

3.2 Dirichlet Form and Integration by Parts Formula

We start with the rigorous construction of (XN
· ), which departs from the symmetrizing measure

qN on ΣN defined above in (3.1). Note that one can identify Lp(ΣN , qN ) with Lp(ΣN , qN ), p ≥ 1.
Throughout the paper, by abuse of notation, we will also denote by qN the density w.r.t. the
Lebesgue measure, i.e. qN (A) =

∫

A qN (x) dx for all measurable A ⊆ ΣN .
For general β > 0, N ∈ N, the measure qN satisfies the ’Hamza condition’, because it has

a strictly positive density with locally integrable inverse, c.f. e.g. [2]. This implies that the
form EN (f, f) with domain f ∈ C∞(ΣN ) is closable on L2(ΣN , qN ). The L2(ΣN , qN )-closure
defines a local regular Dirichlet form, still denoted by EN . General Dirichlet form theory asserts
the existence of a Hunt diffusion (XN

· ) associated with EN which can be started in qN -almost
all x ∈ ΣN and which is understood as a generalized solution of the system (3.3),(3.4). This
identification is justified by the fact that any semi-martingale solution solves via Itô’s formula the
martingale problem for the operator (LN , D(LN)), defined in (3.2). Next we prove an integration
by parts formula for qN .

Proposition 3.7. Let u ∈ C1(ΣN ) and ξ = (ξ1, . . . , ξN ) be a vector field in C1(ΣN ,R
N )

satisfying 〈ξ, ν〉 = 0 on ∂ΣN , where ν denotes the outward normal field of ∂ΣN . Then,

∫

ΣN

〈∇u, ξ〉qN (dx) = −
∫

ΣN

u

[

div(ξ) + ( β
N+1 − 1)

N
∑

i=1

ξi

(

1

xi − xi−1
− 1

xi+1 − xi

)

]

qN (dx).

Proof. Let u and ξ be as in the statement. In a first step we shall show that
∫

ΣN

div(u ξ qN ) dx = 0. (3.5)
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For k very large (compared with N) we define

Ak :=

N
⋂

i=0

{

x ∈ ΣN : xi + 1
k ≤ xi+1

}

.

We apply the divergence theorem to obtain
∫

Ak

div(u ξ qN ) dx =

∫

∂Ak

u 〈ξ, νk〉qN dx,

νk denoting the outward normal field of ∂Ak. Since obviously Ak ր ΣN as k → ∞, it suffices to
prove that the right hand side converges to zero as k → ∞. Clearly, this term can be written as

∫

∂Ak

u 〈ξ, νk〉qN dx =
N
∑

i=0

∫

∂Ak
i

u 〈ξ, νk〉qN dx

with ∂Ak
i := Ak ∩ {x : xi + 1

k = xi+1}. Note that for every i the outward normal on ∂Ak
i is given

by the normalization of the vector ei − ei+1, (ei)i=1...N denoting the canonical basis in RN and
with e0 = eN+1 = 0. Hence, for i ∈ {1, . . . , N − 1}

−
∫

∂Ak
i

u 〈ξ, νk〉qN dx = 1√
2

∫

∂Ak
i

u(x)
(

ξi+1(x) − ξi(x)
)

( 1
k )

β
N+1

−1
∏

j 6=i

(xj+1 − xj)
β

N+1
−1 dx.

For any x = (x1, . . . , xi, xi + 1
k , x

i+2, . . . , xN ) ∈ ∂Ak
i we denote x̂ = (x1, . . . , xi, xi, xi+2, . . . , xN ) ∈

∂ΣN ∩ {xi = xi+1}. Since ξi(x̂) − ξi+1(x̂) = 0 by the boundary condition on ξ, using the mean
value theorem we get

ξi+1(x) − ξi(x) = ξi+1(x) − ξi+1(x̂) + ξi(x̂) − ξi(x) =
1

k

(

∂i+1ξ
i+1(ϑ1) − ∂i+1ξ

i(ϑ2)
)

for some ϑ1, ϑ2 ∈ [xi, xi + 1
k ]. Thus,

−
∫

∂Ak
i

u 〈ξ, νk〉 qN dx = 1√
2
( 1

k )
β

N+1

∫

∂Ak
i

u(x)
(

∂i+1ξ
i+1(ϑ1) − ∂i+1ξ

i(ϑ2)
)

∏

j 6=i

(xj+1−xj)
β

N+1
−1 dx.

For k → ∞ the right hand side converges to zero, since the integral tends to
∫

∂ΣN∩{x:xi=xi+1}
u(x)

(

∂i+1ξ
i+1(x) − ∂i+1ξ

i(x)
)

∏

j 6=i

(xj+1 − xj)
β

N+1
−1 dx <∞.

For i = 0 and i = N similar arguments apply, and (3.5) follows.
Finally, we use (3.5) to obtain

∫

ΣN

〈∇u, ξ〉qN(dx) =

∫

ΣN

div(u ξ qN ) dx−
∫

ΣN

udiv(ξ) qN (dx) −
∫

ΣN

u〈ξ,∇qN〉dx

= −
∫

ΣN

udiv(ξ) qN (dx) −
∫

ΣN

u〈ξ,∇ log qN 〉 qN (dx),

and the claim follows.
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Remark 3.8. Let u ∈ C1(ΣN ) and ξ be a vector field of the the form ξ = w~ϕ with w ∈ C1(ΣN )
and ~ϕ(x) = (ϕ(x1), . . . , ϕ(xN )), ϕ ∈ C∞([0, 1]) and 〈~ϕ, ν〉 = 0 on ∂ΣN , in particular ϕ|∂[0,1] = 0.
Then, the integration by parts formula in Proposition 3.7 reads

∫

ΣN

〈∇u, ξ〉qN (dx) = −
∫

ΣN

u
[

wV β
N,ϕ + 〈∇w, ~ϕ〉

]

qN (dx),

where

V β
N,ϕ(x1, . . . , xN ) := (

β

N + 1
− 1)

N
∑

i=0

ϕ(xi+1) − ϕ(xi)

xi+1 − xi
+

N
∑

i=1

ϕ′(xi).

Let C2
Neu = {f ∈ C2(ΣN ) : 〈∇f, ν〉 = 0 on ∂ΣN} as above with ν still denoting the outer

normal field on ∂ΣN . Then, for any f ∈ C1(ΣN ) and g ∈ C2
Neu we apply the integration by parts

formula in Proposition 3.7 for ξ = ∇g to obtain

EN (f, g) = −
∫

ΣN

f LNg qN (dx).

Moreover, arguing similarly as in the proof of Proposition 3.7 we obtain that for every g ∈ C2
Neu,

∣

∣EN (f, g)
∣

∣ ≤ C ‖f‖L2(ΣN ,qN ), ∀f ∈ D(EN ).

In particular, C2
Neu is contained in the domain of the generator L associated with EN and

LNf = Lf for all f ∈ C2
Neu. Hence, the process XN is the formal solution to the system

(3.3),(3.4).

3.3 Feller Property

This section is devoted to the proof of Theorem 3.2. Let from now on β < 2(N + 1). We define

ΩN := Ωδ
N := ΣN ∩ {x ∈ RN : xN ≤ 1 − δ},

for some positive small δ < [2(N + 2)]−1 and the weight function

q̂(x) := q̂N,δ(x) :=

{

qN (x) if x ∈ ΩN ,
1

Zβ
δ

β
N+1

−1∏N
i=1(x

i − xi−1)
β

N+1
−1 if x ∈ S1\ΩN ,

(3.6)

where
S1 := {x ∈ RN : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN}.

We want to extend the weight function q̂ to the whole RN . To do this we introduce the mapping

T : RN → S1 x 7→ (|x(1)|, . . . , |x(N)|), (3.7)

where (1). . . . , (N) denotes the permutation of 1, . . . , N such that

|x(1)| ≤ . . . ≤ |x(N)|.
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The extension of q̂ on RN is now defined via q̂(x) = q̂(Tx), x ∈ RN . Again we will also denote
by q̂ the induced measure on RN . Consider the L2(RN , q̂)-closure of

ÊN,a(f, f) =

∫

RN

〈a∇f, a∇f(x)〉 q̂(dx), f ∈ C∞
c (RN ) (3.8)

still denoted by ÊN,a, for a measurable field x 7→ a(x) ∈ RN×N on RN satisfying

1

c
· EN ≤ a(x)t · a(x) ≤ c · EN (3.9)

in the sense of non-negative definite matrices. Here EN denotes the identity matrix and at the
transposition of a. Let (Yt)t≥0 = (Y N,a

t )t≥0 be the associated symmetric Hunt process on RN ,
starting from the invariant distribution q̂. Finally, we denote by (Qt)t the transition semigroup
of Y .

3.3.1 Feller Properties of Y

In the sequel we will denote by C0(R
N ) the space of continuous functions on RN vanishing at

infinity.

Proposition 3.9. For 2(N + 1) > β and a matrix a satisfying (3.9), Y N,a is a Feller process,
i.e.

i) for every t > 0 and every f ∈ C0(R
N ) we have Qtf ∈ C0(R

N ),

ii) for every f ∈ C0(R
N ), limt↓0Qtf = f pointwise in RN .

Moreover, Qtf ∈ C(RN ) for every t > 0 and every f ∈ L2(RN , q̂).

Remark 3.10. It is well known that i) and ii) even imply that limt↓0 ‖Qtf − f‖∞ = 0 for each
f ∈ C0(R

N ). Moreover, we can derive the following version of the strong Markov property (see
Theorem 3 in Section 2.3 in [18]). Let T be a stopping time with T ≤ t0 a.s. for some t0 > 0.
Then, we have for each f ∈ L2(RN , q̂)

E [f(Yt0) |FT ] = EYT
[f(Yt0−T )] ,

with (Ft)t≥0 denoting the natural filtration of Y .

Proof of Proposition 3.9. ii) follows directly by path-continuity and dominated convergence. i) as
well as the additional statement follow from the analytic regularity theory of symmetric diffusions,
see [59], in particular Theorem 3.5, Proposition 3.1 and Corollary 4.2, provided the following two
conditions are fulfilled:

• The measure q̂ is doubling, i.e. there exists a constant C ′, such that for all Euclidian balls
BR ⊂ B2R

q̂(B2R) ≤ C ′q̂(BR).
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• Ê satisfies a uniform local Poincaré inequality, i.e. there is a constant C ′ > 0 such that

∫

BR

|f − (f)BR
|2dq̂ ≤ C ′R2

∫

BR

|∇f |2dq̂,

for all Euclidian balls BR and f ∈ D(Ê), where (f)BR
denotes the integral 1

q̂(BR)

∫

BR
fdq̂.

Both conditions are verified once we have proven that the weight function q̂ is contained in the
Muckenhoupt class A2, which will be done in Lemma 3.11 below. Indeed, the doubling property
follows immediately from the Muckenhoupt condition (see e.g. [63] or [61]) and for the proof of
the Poincaré inequality see Theorem 1.5 in [35].

Lemma 3.11. For N such that β < 2(N+1), we have q̂ ∈ A2, i.e. there exists a positive constant
C = C(N, δ) such that for every Euclidian ball BR

1

|BR|

∫

BR

q̂ dx
1

|BR|

∫

BR

q̂−1 dx ≤ C,

where |BR| denotes the Lebesgue measure of the ball BR.

It suffices to prove the Muckenhoupt condition for the weight function q̃ defined by

q̃(x) :=

N
∏

i=1

(xi − xi−1)β/(N+1)−1, x ∈ S1, (3.10)

and q̃(x) := q̃(Tx) if x ∈ RN , since there exist positive constants C1 and C2 depending on δ and
N such that

C1 q̃(x) ≤ q̂(x) ≤ C2 q̃(x), ∀x ∈ RN . (3.11)

Note that (1 − xN )
β

N+1
−1 is uniformly bounded and bounded away from zero on ΩN .

In the following we denote by PR(m) the parallelepiped in RN with basis pointm = (m1, . . . ,mN ),
which is spanned by the vectors vi =

∑N
j=i ej , i = 1, . . . , N , normalized to the length R, where

(ej)j=1,...,N is the canonical basis in RN . Then, PR(m) can also be written as

PR(m) = m+
{

x ∈ RN : x1 ∈
[

0, R√
N

]

, x2 ∈
[

x1, x1 + R√
N−1

]

, . . . , xN ∈
[

xN−1, xN−1 +R
]

}

.

In order to prove the Muckenhoupt condition for q̃ we need the following

Lemma 3.12. Let BR be an arbitrary Euclidian ball in RN . Then, there exists a positive
constant C only depending on N and a parallelepiped PlR(m) ⊂ S1 with l > 0 independent of BR

such that
∫

BR

q̃±1dx ≤ C

∫

PlR(m)
q̃±1dx.
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Proof. We denote by (Sn), n = 1, . . . , 2N ·N !, the subsets of RN taking the form

Sn = {x ∈ RN : (s1π1(x), . . . , sNπN (x)) ∈ S1},

where si ∈ {−1, 1}, i = 1, . . . , N , and π(x) = (π1(x), . . . , πN (x)) is a permutation of the com-
ponents of x. Note that RN =

⋃

n Sn and the intersections of the sets Sn have zero Lebesgue
measure.

Let now BR(M) be an arbitrary Euclidian ball with radius R centered in M ∈ RN . We first
consider the case |M | ≤ 2R. Then, obviously BR(M) ⊂ B4R(0) and B4R(0) ∩ S1 ⊂ P4R(0).
Hence,

∫

BR(M)
q̃±1dx ≤

∫

B4R(0)
q̃±1dx =

∑

n

∫

B4R(0)∩Sn

q̃±1dx.

By the definition of q̃ we have

∫

B4R(0)∩Sn

q̃±1dx =

∫

B4R(0)∩S1

q̃±1dx

for all n ∈ {1, . . . , 2N ·N !}. Thus,

∫

BR(M)
q̃±1dx ≤ 2N ·N !

∫

B4R(0)∩S1

q̃±1dx ≤ C

∫

P4R(0)
q̃±1dx.

Suppose now that |M | > 2R. Let n0 be such that M ∈ Sn0 . Then, by construction of q̃ we have

∫

BR(M)∩Sn

q̃±1dx ≤
∫

BR(M)∩Sn0

q̃±1dx

for all n = 1, . . . , 2N ·N !. Hence,

∫

BR(M)
q̃±1dx =

∑

n

∫

BR(M)∩Sn

q̃±1dx ≤ 2N ·N !

∫

BR(M)∩Sn0

q̃±1dx.

Set K := T (BR(M)∩Sn0) ⊂ S1 with T defined as above. Then, it is clear by definition of q̃ that

∫

BR(M)∩Sn0

q̃±1dx =

∫

K
q̃±1dx

and we get
∫

BR(M)
q̃±1dx ≤ C

∫

K
q̃±1dx.

Finally, we choose a parallelepiped P2R(m) such that K ⊆ P2R(m) ⊂ S1, which completes the
proof.
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Proof of Lemma 3.11. We prove the Muckenhoupt condition for q̃. Recall that we have assumed
β < 2(N + 1). In the following the symbol C denotes a positive constant depending on N and δ
with possibly changing its value from one occurence to another.

Using Lemma 3.12 we have

1

|BR|2
∫

BR

q̃ dx

∫

BR

q̃−1dx ≤CR−2N

∫

PlR(m)
q̃ dx

∫

PlR(m)
q̃−1dx

=CR−2N

∫

PlR(m)

N
∏

i=1

(xi − xi−1)β/(N+1)−1 dx

×
∫

PlR(m)

N
∏

i=1

(xi − xi−1)−(β/(N+1)−1)dx.

By the change of variables yi = xi − xi−1, i = 1, . . . , N , we obtain

1

|BR|2
∫

BR

q̃ dx

∫

BR

q̃−1dx ≤CR−2N
N
∏

i=1

∫ ñi

m̃i

y
β

N+1
−1

i dyi

∫ ñi

m̃i

y
−( β

N+1
−1)

i dyi,

where we have set m̃i := mi−mi−1 with m0 := 0 and ñi := m̃i +
lR√

N+1−i
for abbreviation. Recall

that in one dimension the weight function x 7→ |x|η on R is contained in A2 if η ∈ (−1, 1) (see p.
229 and p. 236 in [61]). Hence, we get for every i ∈ {1, . . . , N}

∫ ñi

m̃i

y
β

N+1
−1

i dyi

∫ ñi

m̃i

y
−( β

N+1
−1)

i dyi ≤ C

∣

∣

∣

∣

lR√
N + 1 − i

∣

∣

∣

∣

2

,

and the result follows.

3.3.2 Feller Properties of Y inside a Box

Let E := Eδ := {x ∈ RN : ‖x‖∞ < 1 − 2δ} be a box in RN centered in the origin and B(E) be
the Borel σ-field on E. We denote by

τE := inf{t > 0 : Yt ∈ Ec}

the first hitting time of Ec. This subsection is devoted to the proof of the Feller properties for
the stopped process Y E

t := Y N,a,E
t := Y N,a

t∧τE
, whose transition semigroup is given by

QE
t f(x) = Ex[f(Yt∧τE

)] = Ex
[

f(Yt)1l{t<τE} + f(YτE
)1l{t≥τE}

]

, t > 0, x ∈ Ē,

for every bounded f on Ē. In order to prove the Feller property we will follow essentially the
proof of Theorem 13.5 in [30] (cf. also [19]). It is shown there that the Feller properties are
preserved, if the domain is regular in the following sense.

Proposition 3.13. The domain E is regular, i.e. for every z ∈ ∂E we have P z[τE = 0] = 1.
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Remark 3.14. z ∈ ∂E is regular point in the sense of the definition given in Proposition 3.13 if
and only if for every continuous function f on ∂E

lim
E∋x→z

Ex[f(YτE
)1l{τE<∞}] = f(z).

For the Brownian case we refer to Theorem 2.12 in [45] and to Theorem 1.23 in [21]. The
arguments are robust, but it is required that under P x the probability of the event that the exit
time of a ball centered at x does not exceed t is arbitrary small uniformly in x for a suitable
chosen small t > 0. In our situation this property is ensured by [58], p. 330.

The proof of this proposition will be based on the following Wiener test established by Fabes,
Jerison and Kenig.

Theorem 3.15. Let BR0(0) be a large ball centered in zero such that E ⊂ BR0/4(0). Then, a
point z ∈ ∂E is regular if and only if

a)
∫ R0

0
s2

q̂(Bs(z))
ds
s <∞, or

b)
∫ R0

0 cap(Kρ)
ρ2

q̂(Bρ(z))
dρ
ρ = ∞,

where Kρ(z) := (BR0(0)\E) ∩ Bρ(z) and cap denotes the capacity associated with the Dirichlet
form EN,a.

Proof. See Theorem 5.1 in [34].

In the sequel we will use the following notation

d(x) :=
∣

∣

{

i ∈ {1, . . . , N} : xi = xi−1
}∣

∣ , x ∈ RN ,

again with the convention x0 := 0. In order to prove the regularity of E we start with a preparing
lemma.

Lemma 3.16. Let y ∈ RN be arbitrary.

i) There exists a positive r0 = r0(y) such that for all balls Br(y), 0 < r ≤ r0, there exists
a parallelepiped Plr(ȳ) contained in S1 with d(ȳ) = d(y), a positive constant C and l > 0,
such that

q̂(Br(y)) ≤ Cq̂(Plr(ȳ)).

ii) For all balls Br(y) there exists parallelepiped Plr(ȳ) contained in S1 with d(ȳ) = d(y), for
some l > 0 such that q̂(Plr(ȳ)) ≤ q̂(Br(y)).

iii) For all y we have C1 r
h(y) ≤ q̂(Br(y)) for all r and q̂(Br(y)) ≤ C2 r

h(y) for all r ≤ r0(y)
for some positive constants C1 and C2 depending on y, where

h(y) := N − d(y) + β
N+1 d(y).
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Proof. Obviously, due to (3.11) it suffices to prove the lemma with q̂ replaced by q̃ defined in
(3.10).

i) The case y = 0 is clear. For y 6= 0 we choose r0 such that 2r0 ≤ |y| and let n0 be such
that y ∈ Sn0 . Consider now an arbitrary ball Br(y) with r ≤ r0 and let K = T (Sn0 ∩ Br(y)) be
the subset of S1 constructed in the second part of the proof of Lemma 3.12. Then, possibly after
choosing a smaller r0 we find a parallelepiped and a positive constant l such that K ⊂ Plr(ȳ) ⊂ S1

with d(ȳ) = d(y) and we obtain i).

ii) Let K = T (Sn0 ∩ Br(y)) be defined as in i). Then, clearly q̃(Br(y)) ≥ q̃(K). Thus, we can
choose ȳ = Ty and l independent of r such that Plr(ȳ) ⊆ K and ii) follows.

iii) We proceed similar as in the proof of Lemma 3.11. For some parallelepiped Plr(ȳ) with
d(ȳ) = d(y) we use a change of variables to obtain

q̃(Plr(ȳ)) =

∫

Plr(ȳ))

N
∏

i=1

(xi − xi−1)
β

N+1
−1 dx =

N
∏

i=1

∫ ỹi+cir

ỹi

z
β

N+1
−1

i dzi,

where ỹi = ȳi − ȳi−1, ȳ0 := 0 and ci := l√
N+1−i

. Note that d(ȳ) = d(y) is the number of

components of ỹ which are equal to zero. Using the mean value theorem we obtain that

C1 r
h(y) ≤ q̂(Plr(ȳ)) ≤ C2 r

h(y)

for some positive constants C1 and C2 depending on y, so that iii) follows from i) and ii).

Proof of Proposition 3.13. Let z ∈ ∂E be fixed and R0 be as in the statement of Theorem 3.15.
Setting h′(z) := 1 − h(z) let us first consider the case h′(z) > −1. Then, using Lemma 3.16 iii)
we have that

∫ R0

0

s2

q̂(Bs(z))

ds

s
≤ C

∫ r0

0
sh′(z)ds+

1

2q̂(Br0(z))
(R2

0 − r20) <∞,

with r0 = r0(z) as above in Lemma 3.16 iii). Thus, the criterion a) in Theorem 3.15 applies and
the regularity of z follows. The case h′(z) ≤ −1 is more difficult. Combining Lemma 3.1 in [35]
and Theorem 3.3 in [35] and using Lemma 3.16 iii) we get the following estimate for the capacity
of small balls:

cap(Br(y)) ≃
(∫ R0

r

s2

q̂(Bs(y))

ds

s

)−1

≥ C

(∫ R0

r
sh′(y)ds

)−1

. (3.12)

Recall the definition of the set Kρ(z) in Theorem 3.15. Clearly, for every ρ sufficiently small there
exists a ball Bρ/2(ẑ) with ẑ depending on ρ and with d(ẑ) = d(z) such that Bρ/2(ẑ) ⊂ Kρ(z).
Let now r0 be such that Lemma 3.16 iii) and (3.12) hold for every ball Bρ(z), ρ ≤ r0. Then, we
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obtain in the case h′(z) < −1

∫ R0

0
cap(Kρ)

ρ2

q̂(Bρ(z))

dρ

ρ
≥ C

∫ r0

0
cap(Bρ/2(ẑ))ρ

h′(z) dρ ≥ C

∫ r0

0

(

∫ R0

ρ/2
sh′(ẑ)ds

)−1

ρh′(z) dρ

= C (h′(z) + 1)

∫ r0/2

0

ρh′(z)

R
h′(y)+1
0 − ρh′(y)+1

dρ

= C

∫ r0/2

0

(

− log(|Rh′(y)+1
0 − ρh′(y)+1|)

)′

dρ = ∞.

Finally, if h′(z) = −1 we get by an analogous procedure

∫ R0

0
cap(Kρ)

ρ2

q̂(Bρ(z))

dρ

ρ
≥ C

∫ r0/2

0

1

ρ(logR0 − log ρ)
dρ

= C

∫ r0/2

0
(− log(logR0 − log ρ))

′

dρ = ∞.

Hence, applying the criterion b) of Theorem 3.15 completes the proof.

Proposition 3.17. Y E is a Feller process, i.e.

i) for every t > 0 and every f ∈ C(Ē) we have QE
t f ∈ C(Ē),

ii) for every f ∈ C(Ē), limt↓0QE
t f = f pointwise in Ē.

The statement is classical and can be found e.g. in Theorem 13.5 in [30]. For illustration we
repeat the argument here. We shall need the following lemma (cf. [18], p. 73, Exercise 2).

Lemma 3.18. For any compact set K ⊂ E we have

lim
t↓0

sup
x∈K

P x[τE ≤ t] = 0.

Proof. We need to show that for any δ > 0 there exists a t0 > 0 such that

inf
x∈K

P x[τE ≥ t0] ≥ 1 − δ. (3.13)

Consider a bounded function f ∈ C0(R
N ) such that 0 ≤ f ≤ 1, f = 1 on K and f = 0 on the

complement of E. Let now t0 be such that supt≤t0 ‖Qtf − f‖∞ < δ/2 (cf. Remark 3.10). Then,

Ex[f(Yt0)] ≤ P x[τE ≥ t0] + Ex[f(Yt0) 1l{τE<t0}].

For x ∈ K the left hand side is equal to

Qt0f(x) = 1 +Qt0f(x) − f(x) ≥ 1 − sup
t≤t0

‖Qtf − f‖∞ ≥ 1 − δ

2
.
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On the other hand, using the strong Markov property (cf. again Remark 3.10) and the fact that
f(Y N

τE
) = 0 we have

Ex[f(Yt0) 1l{τE<t0}] = Ex
[

Ex[f(Yt0) |FτE
] 1l{τE<t0}

]

= Ex
[

Qt0−τE
f(YτE

) 1l{τE<t0}
]

= Ex
[

(Qt0−τE
f(YτE

) − f(YτE
)) 1l{τE<t0}

]

≤ Ex

[

sup
t≤t0

‖Qtf − f‖∞ 1l{τE<t0}

]

≤ δ

2
,

and (3.13) follows.

Proof of Proposition 3.17. Let t > 0 and f ∈ C(Ē). Then, by the semigroup property of (QE
t )

we have for 0 < s < t
QE

t f(x) = Ex [ψs(Ys∧τE
)] ,

where
ψs(x) = QE

t−sf(x) = Ex
[

f(Y(t−s)∧τE
)
]

, x ∈ Ē.

Then, ψs can be extended to a function in L2(RN , q̂) and by Proposition 3.9 we have Qsψs ∈
Cb(R

N ). Since

∣

∣QE
t f(x) −Qsψs(x)

∣

∣ = |Ex[ψs(Ys∧τE
) − ψs(Ys)]| ≤ 2 ‖ψs‖P x[τE ≤ s] ≤ 2 ‖f‖P x[τE ≤ s]

and since the right hand side converges to zero uniformly in x on every compact subset of E
by Lemma 3.18, we conclude that QE

t f ∈ Cb(E), i.e. QE
t f is continuous in the interior of E.

In order to show i) it suffices to verify continuity at the boundary. Since E is regular, we have
obviously QE

t f = f on ∂E. By Lemma 13.1 in [30] we have upper semicontinuity of the mapping
x 7→ P x[t < τE ]. Hence, we obtain for z ∈ ∂E,

lim sup
x→z

P x[t < τE ] ≤ P z[t < τE ] = 0,

where we have used the regularity of E in Proposition 3.13. Thus, for every x ∈ E

∣

∣QE
t f(x) − f(z)

∣

∣ ≤
∣

∣QE
t f(x) − Ex[f(YτE

)1l{τE<∞}]
∣

∣+
∣

∣Ex[f(YτE
)1l{τE<∞}] − f(z)

∣

∣

≤
∣

∣Ex
[

f(Yt)1l{t<τE} + f(YτE
)1l{t≥τE} − f(YτE

)1l{τE<∞}
]∣

∣

+
∣

∣Ex[f(YτE
)1l{τE<∞}] − f(z)

∣

∣

≤‖f‖∞P x[t < τE ] +
∣

∣Ex
[

f(YτE
)1l{τE<∞}

(

1l{t≥τE} − 1
)]∣

∣

≤2‖f‖∞P x[t < τE ] +
∣

∣Ex[f(YτE
)1l{τE<∞}] − f(z)

∣

∣ ,

where we have used the fact that the event {τE <∞} is included in {t ≥ τE}. Since z is a regular
point, the second term tends to zero as x→ z, x ∈ E, cf. Remark 3.14. Hence,

lim
E∋x→z

QE
t f(x) = f(z)

and property i) is proven.
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To prove ii), we extend f to a function in C0(R
N ), i.e. we may deduce from Proposition 3.9

that limt↓0Qtf(x) = f(x) for every x ∈ E. Furthermore, we have for every x ∈ E

|QE
t f(x) −Qtf(x)| ≤ P x[t ≤ τE ] ‖f‖∞,

and P x[τE = 0] = 0, since E is open and Y has continuous paths. Hence,

lim
t↓0

QE
t f(x) = lim

t↓0
Qtf(x) = f(x).

This gives pointwise convergence on E. Since QE
t f = f on ∂E by regularity, the convergence on

∂E is trivial.

3.3.3 Feller Properties of XN

In this section we will finally prove the Feller property for XN stated in Theorem 3.2. To this
end we construct a Feller process X̃ taking values in ΣN and in a second step we will identify
this process with XN .

In analogy to the definition of ΩN above we set

Ωi := Ωδ
i := {x ∈ ΣN : xi+1 − xi ≥ δ}, i = 0, . . . , N. (3.14)

and moreover
Ai := ∂Ω2δ

i \∂ΣN = {x ∈ ΣN : xi+1 − xi = 2δ}.
Notice that we can choose δ so small that ΣN =

⋃N
i=1 Ω2δ

i . Furthermore, we define the mappings
Hi, i = 0, . . . , N , by

Hi(x) :=
(

x1, . . . , xi, 1 − (xN − xi), 1 − (xN−1 − xi), . . . , 1 − (xi+1 − xi)
)

, x ∈ ΣN .

Notice that for every i, Hi maps ΩN on Ωi and vice versa. In particular, Hi ◦Hi = Id and HN is
the identity on ΩN . Let T : Ē → Ω2δ

N ⊂ ΩN be defined as in (3.7). Let Y i denote the RN -valued
Feller process induced from the form (3.8) with a = ai, where the matrix valued function ai is
defined q̂-almost everywhere by

ai(x) :=

{

DHt
i for x ∈ S̊1

DHt
i · (DT−1

|Sn
)t for x ∈ S̊n, n ∈ {2, · · · 2N ·N !}, (3.15)

such that condition (3.9) is clearly satisfied (note thatDHi = DH−1
i ). In particular, ai is constant

on every Sn. Moreover, setting ρi := Hi ◦ T , clearly ai = (Dρ−1
i )t.

Remark 3.19. Analogously to Proposition 3.7 one can establish the following integration by
parts formula associated to EN,ai . Let u ∈ C1(RN ) and ξ a continuous vector field on RN such
that supp ξ ⊆ {x ∈ RN : ‖x‖∞ < 1 − δ}, ξ is continuously differentiable in the interior of each
Sn and ξ satisfies the boundary condition 〈at

i · ai · ξ, νn〉 = 0 on ∂Sn for every n, νn denoting the
outward normal field of ∂Sn. Then,

∫

RN

〈ai∇u, aiξ〉q̂(dx) = −
∫

RN

u
[

div(at
i · ai · ξ) + 〈at

i · ai · ξ,∇ log q̂〉
]

q̂(dx).
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Thus, every smooth function g such that ξ = ∇g satisfies the above conditions is contained in
the domain of the generator Li associated to EN,ai and on RN \⋃n ∂Sn we have

Lig = div(at
i · ai · ∇g) + 〈at

i · ai · ∇g,∇ log q̂〉.

Next we define the Ω2δ
i -valued process X̃ i by

X̃ i
t = ρi(Y

i,E
t ) = Hi ◦ T (Y i,E

t ), t ≥ 0.

The semigroup of X̃ i will be denoted by (P̃ i
t )t≥0, i.e. P̃ i

t f(x) = Ex[f(X̃ i
t)].

Lemma 3.20. For every i, X̃ i is Markovian.

Proof. Since Hi is an injective mapping for every i, it suffices to show that the process T (Y i,E
· ) is

Markovian. Moreover, since T (Y i,E
t ) = T (Y i

t∧τE
) = (T (Y i

· ))t∧τE
it is enough to prove the Markov

property for the process T (Y i
· ), which is implied e.g. by the condition that for any Borel set

A ⊆ ΣN

P x[Y i
t ∈ T−1(A)] = P y[Y i

t ∈ T−1(A)] whenever T (x) = T (y). (3.16)

Now the choice of q̂ and the metric ai imply for any Borel set A ⊆ ΣN condition (3.16) is
satisfied. To see this, let {σk | k = 1, · · · , N + N(N − 1)/2} be the collection of line-reflections
in RN with respect to either one of the coordinate axes {λei, λ ∈ R} or a diagonal {λ(ej + ek)},
then for x, y ∈ RN with T (x) = T (y) there exists a finite sequence σk1 , · · ·σkl

such that τ(x) :=
σk1 ◦σk2 · · ·◦σkl

(x) = y. Now each of the reflections σi preserves the Dirichlet form (3.8) when a is

chosen as in (3.15), such that the processes τ(Y i,x
· ) and Y i,y

· are equal in distribution. Moreover,
τ(T−1(A)) = T−1(A), from which (3.16) is obtained.

Lemma 3.21. For each f ∈ C2
Neu the process t→ f(X̃ i

t)−
∫ t
0 L

Nf(X̃ i
s) ds is a martingale w.r.t.

the filtration generated by X̃ i
· .

Proof. Similar to Proposition 3.7 one checks for f ∈ C2
Neu ∩ Cc(Ωi) that the function fi on RN ,

which is defined by fi = f ◦ Hi ◦ T = f ◦ ρi on the set {x ∈ RN : ‖x‖∞ < 1 − δ} and fi = 0
on the complement this set, belongs to the domain of the generator Li of the Dirichlet form
(3.8) with a = ai as in (3.15) (cf. Remark 3.19). Hence the process fi(Y

i
· ) −

∫ ·
0 L

ifi(Y
i
s )ds is a

martingale w.r.t. to the filtration generated by Y i and thus also fi(Y
i,E
· )−

∫ ·
0 L

ifi(Y
i,E
s )ds due to

the optional sampling theorem. Obviously in the last statement the function f can be modified
outside of Ω2δ

i , i.e. it holds also for f ∈ C2
Neu. Moreover, fi(Y

i,E
· ) = f(X̃ i

· ) and Lifi = (LNf) ◦ ρi

on Ē. Indeed, since ai = (Dρ−1
i )t, ∇(f ◦ ρi) = (Dρi)

t · ∇f ◦ ρi and q̂(x) = qN (T (x)) = qN (ρi(x))
for all x ∈ Ē, we obtain

Lifi = div(at
i · ai · (Dρi)

t · ∇f ◦ ρi) + 〈at
i · ai · (Dρi)

t · ∇f ◦ ρi,∇(log qN ◦ ρi)〉
= div(Dρ−1

i · ∇f ◦ ρi) + 〈Dρ−1
i · ∇f ◦ ρi, Dρ

t
i · ∇ log qN ◦ ρi〉

= ∆f ◦ ρi + 〈∇f ◦ ρi,∇ log qN ◦ ρi〉 = (LNf) ◦ ρi.

Thus, f(X̃ i
· )−

∫ ·
0 L

Nf(X̃ i
s)ds is a martingale w.r.t. the filtration generated by Y i

· and adapted

to the filtration generated by X̃ i
· = Hi ◦ T (Y i,E

· ) which establishes the claim.
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Proposition 3.22. For every i, X̃ i is a Feller process, more precisely

i) for every t > 0 and every f ∈ C(Ω2δ
i ) we have P̃ i

t f ∈ C(Ω2δ
i ),

ii) for every f ∈ C(Ω2δ
i ), limt↓0 P̃ i

t f = f pointwise in Ω2δ
i .

Proof. Since obviously for every continuous f on Ω2δ
i

P̃ i
t f(x) = Ex[f(X̃ i

t)] = Ex[f(Hi ◦ T (Y i,E
t ))] = QE

t (f ◦Hi ◦ T )(x), t > 0,

the result follows from Proposition 3.17 and the continuity of the mappings Hi and T .

Next we define the process X̃ with state space ΣN as follows: Let qN be the initial distri-
bution of X̃, i.e. X̃0 ∼ qN . Choose i1 ∈ {0, . . . N} such that X̃0 ∈ Ω2δ

i1
and dist(X̃0, A

i1) =

maxi dist(X̃0, A
i). We set X̃t = X̃ i1

t for 0 ≤ t ≤ T1, where T1 denotes the first hitting time of
Ai1 , i.e. on [0, T1] the process behaves according to P̃ i1 . Choose now i2 ∈ {0, . . . N} such that
X̃T1 ∈ Ω2δ

i2
and dist(X̃T1 , A

i2) = maxi dist(X̃T1 , A
i). At time T1 the process starts afresh from X̃T1

according to (P̃ i2
t ) up to the first time T2 after T1, when it hits Ai2 . This procedure is repeated

forever.

Proposition 3.23. X̃ is a Feller process.

Proof. Let (P̃t) denote the semigroup associated to X̃. For f ∈ C(ΣN ), we need to show that
P̃tf ∈ C(ΣN ) for every t > 0. Let us first show that P̃Tnf ∈ C(ΣN ) for every n using an
induction argument. For an arbitrary x ∈ ΣN , choose i1 as above depending on x such that
P̃T1f(x) = P̃ i1

T1
f(x). Since P̃ i1

T1
f ∈ C(Ω2δ

i1
), we conclude that P̃T1f is continuous in x for every x.

For arbitrary n and x ∈ ΣN we have by the strong Markov property

P̃Tn+1f(x) = Ex[f(X̃Tn+1)] = Ex
[

EX̃TN [f(X̃ in
Tn+1−Tn

)]
]

= Ex
[

P̃ in
Tn+1−Tn

f(X̃TN
)
]

= P̃Tn(P in
Tn+1−Tn

f)(x)

and since P in
Tn+1−Tn

f can be extended to a continuous function on ΣN , we get P̃Tn+1f ∈ C(ΣN )
by the induction assumption.

Similarly, one can show that for every n the mapping x 7→ Ex[f(X̃t)1l{t∈(Tn,Tn+1]}] is continu-

ous. Finally, for every x ∈ ΣN

∣

∣

∣

∣

∣

P̃tf(x) −
n−1
∑

k=0

Ex
[

f(X̃t)1l{t∈(Tk,Tk+1]}
]

∣

∣

∣

∣

∣

=
∣

∣

∣Ex
[

f(X̃t)1l{t>Tn}
]∣

∣

∣ ≤ ‖f‖∞ P x[t > Tn]

and since Tn ր ∞ P x-a.s. locally uniformly in x as n tends to infinity, the claim follows.

The proof of Theorem 3.2 is complete, once we have shown that the processes X̃ and the
original process XN have the same law.

Lemma 3.24. For x ∈ ΣN the process (X̃x
· ) obtained from conditioning X̃ to start in x, solves

the martingale problem for the operator (LN , C2
Neu) as in (3.2) and starting distribution δx.
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Proof. Let {Tk} be the sequence of strictly increasing stopping times introduced in the construc-
tion of the process X̃. Then for s < t

f(X̃t) − f(X̃s) −
∫ t

s
LNf(X̃σ)dσ =

∑

k

f(X̃(Tk+1∨s)∧t) − f(X̃(Tk∨s)∧t) −
(Tk+1∨s)∧t
∫

(Tk∨s)∧t

LNf(X̃σ)dσ.

Hence

E
(

f(X̃t) −
∫ t

0
LNf(X̃σ)dσ

∣

∣Fs

)

= f(X̃s) −
∫ s

0
LNf(X̃σ)dσ

+
∑

k

E
(

f(X̃(Tk+1∨s)∧t) − f(X̃(Tk∨s)∧t) −
(Tk+1∨s)∧t
∫

(Tk∨s)∧t

LNf(X̃σ)dσ
∣

∣Fs

)

.

Using the strong Markov property of the Feller process X̃· and its pathwise decomposition into
pieces of {X̃ i}-trajectories one obtains

E
(

f(X̃(Tk+1∨s)∧t) − f(X̃(Tk∨s)∧t) −
(Tk+1∨s)∧t
∫

(Tk∨s)∧t

LNf(X̃σ)dσ
∣

∣Fs

)

= E
[

EX̃(Tk∨s)∧t

(

f(X̃ ik
τ∧(t−s)) − f(X̃ ik

0 ) −
∫ τ∧(t−s)

0
LNf(X̃ ik

σ )dσ
) ∣

∣Fs

)]

, (3.17)

where, by construction of X̃·, τ ist the hitting time of the the set Aik for which dist(Aik , X̃Tk
) =

maxi dist(Ai, X̃Tk
). Lemma 3.21 implies that the inner expectation in (3.17) is zero.

The last ingredient for our proof of Theorem 3.2 is the identification of the processes X̃· with
X·. Since both are Markovian and solve the martingale problem for the operator (LN , C2

Neu) it
suffices to show that the martingale problem admits at most one Markovian solution. Clearly,
any such solution induces a symmetric sub-Markovian semigroup on L2(ΣN , qN ) whose generator
extends (LN , C2

Neu). Hence it is enough to establish the following so-called Markov uniqueness
property of (LN , C2

Neu), cf. [31, Definition 1.2], stated in Proposition 3.3.

Proof of Proposition 3.3. Let H1,2(ΣN , qN ) (resp. ’H1,2
0 (ΣN , qN )’ in the notation of [31]) denote

the closure of C2
Neu w.r.t. to the norm ‖f‖1 = (‖f‖2

L2(ΣN ,qN ) + ‖∇f‖2
L2(ΣN ,qN ))

1/2 and let W 1,2 be

the Hilbert space of L2(ΣN , qN )-functions f whose distributional derivative Df is in L2(ΣN , qN ),
equipped with the norm ‖f‖1 = (‖f‖2

L2(ΣN ,qN ) + ‖Df‖2
L2(ΣN ,qN ))

1/2. Clearly, the quadratic form

Q(f, f) = 〈Df,Df〉L2(ΣN ,qN ), D(Q) = W 1,2(ΣN , qN ), is a Dirichlet form on L2(ΣN , qN ). Hence
we may use the basic criterion for Markov uniqueness [31, Corollary 3.2], according to which
(L,C2

Neu) is Markov unique if H1,2 = W 1,2.

To prove the latter it obviously suffices to prove that H1,2 is dense in W 1,2. Again we proceed
by localization as follows. For fixed δ > 0 let Ωδ

i = Ωi denote the subsets defined in (3.14),
then {Ω3δ

i } constitutes a relatively open covering of ΣN for δ small enough. Let {ηi}i=0,··· ,N
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and {χi}i=0,··· ,N be collections of smooth cut-off function on ΣN such that ηi = 1 on Ω3δ
i and

supp(ηi) ⊂ Ω2δ
i and χi = 1 on Ω2δ

i and supp(χi) ⊂ Ωδ
i respectively.

Step 1. In the first step we reduce the problem to functions in W 1,2, whose support is
contained in one of the sets Ω2δ

i . For arbitrary f ∈W 1,2 we have f = f ·ηN +f ·(1−ηN ) =: fN +rN .
Next we write rN = rN · ηN−1 + rN · (1 − ηN−1) =: fN−1 + rN−1. Iterating this procedure yield
the decomposition f =

∑

i fi with fi ∈ W 1,2(ΣN , qN ) and supp(fi) ⊂ Ω2δ
i . Hence, it suffices to

prove that fi ∈ H1,2(ΣN , qN ). In Step 2 we will show first that fi can be approximated w.r.t.
‖.‖1 by functions which are smooth up to boundary and in Step 3 that such functions can be
approximated in ‖.‖1 by smooth Neumann functions. We give details for the case i = N only,
the other cases can be treated almost the same way by using the maps Hi.

Step 2. Let fN ∈W 1,2(ΣN , qN ) with supp(fN ) ⊂ Ω2δ
N . Then, obviously fN = fN ·χN and the

restriction of fN to Ωδ
N belongs to the space W 1,2(Ωδ

N , qN ) = W 1,2(Ωδ
N , q̂), where q̂ denotes the

modification of qN according to (3.6). Due to Lemma 3.11 the extension q̂(x) = q̂(T (x)), x ∈ RN ,
lies in the Muckenhoupt class A2. Further note that W 1,2(Ωδ

N , q̂) ⊂W 1,2(Ωδ
N , dx) = H1,2(Ωδ

N , dx)
if β ≤ N+1, andW 1,2(Ωδ

N , q̂) ⊂W 1,1(Ωδ
N , dx) = H1,1(Ωδ

N , dx) by the Hölder inequality ifN+1 <
β < 2(N + 1), such that fN has well defined boundary values in L1(∂ΩN , dx). Hence we may
conclude that the extension f̂N (x) = fN (T (x)), x ∈ RN defines a weakly differentiable function

on RN with
∥

∥

∥
f̂N

∥

∥

∥

W 1,2(RN ,q̂)
= 2N ·N ! ‖fN‖W 1,2(ΩN ,q̂). By [46, Theorem 2.5] the mollification with

the standard mollifier yields an approximating sequence {ul}l of smooth functions ul ∈ C∞
0 (RN )

of f̂N in the weighted Sobolev spaces H1,2(RN , q̂). Hence, the restriction of the sequence ul · χN

to Ωδ
N approximates the restriction of f̂N · χN to Ωδ

N in H1,2(Ωδ
N , q̂). Recall that fN = f̂N · χN

on Ωδ
N . Since χN is zero on ΣN \Ωδ

N we obtain a sequence of C∞(ΣN )-functions {ul ·χN}l which
converges to fN in H1,2(ΣN , qN ). This finishes the second step.

Step 3. In the third step we thus may assume w.l.o.g. that fN is smooth up to the boundary
of ΣN . In particular, fN is globally Lipschitz. Since fN is integrable on ΣN we may modify fN

close to the boundary to obtain a Lipschitz function f̃N which satisfies the Neumann condition
and which is close to fN in ‖.‖1. (Take, e.g. f̃N (x) = f(π(x)), where π(x) is the projection of
x into the set Σǫ

N = {x ∈ ΣN | dist(x, ∂ΣN ) ≥ ǫ} for small ǫ > 0.) We may now proceed as in
step two to obtain an approximation of f̃N by smooth functions w.r.t. ‖.‖1, where we note that
neither extension by reflection through the map T nor the standard mollification in [46] of the
extended f̃N destroys the Neumann boundary condition.

Corollary 3.25. For quasi-every x ∈ ΣN , the the processes X̃x
· and Xx

· are equal in law. In
particular, X is a Feller process on ΣN .

3.4 Semi-Martingale Properties

In this final section we prove the semi-martingale properties of XN stated in Theorem 3.5. To
that aim we establish the semi-martingale properties for the symmetric process XN started in
equilibrium, which imply the semi-martingale properties to hold for quasi-every starting point
x ∈ ΣN and by the Feller properties proven in the last section for every starting point x ∈ ΣN .
In order to establish the semi-martingale properties of the stationary process, we shall use the
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following criterion established by Fukushima in [38]. For every open set G ⊂ ΣN we set

CG := {u ∈ D(EN ) ∩ C(ΣN ) : supp(u) ⊂ G}.
Theorem 3.26. For u ∈ D(EN ) the additive functional u(XN

t ) − u(XN
0 ) is a semi-martingale

if and only if one of the following (equivalent) conditions holds:

i) For any relatively compact open set G ⊂ ΣN , there is a positive constant CG such that

|EN (u, v)| ≤ CG ‖v‖∞, ∀v ∈ CG. (3.18)

ii) There exists a signed Radon measure ν on ΣN charging no set of zero capacity such that

EN (u, v) = −
∫

ΣN

v(x) ν(dx), ∀v ∈ C(ΣN ) ∩ D(EN ). (3.19)

Proof. See Theorem 6.3 in [38].

Theorem 3.27. Let XN be a symmetric diffusion on ΣN associated with the Dirichlet form EN ,
then XN is an RN -valued semi-martingale if and only if β/(N + 1) ≥ 1.

Proof. Since the semi-martingale property for RN -valued diffusions is defined componentwise, we
shall apply Fukushima’s criterion for u(x) = xi, i = 1, . . . , N .

Let us first consider the case where β′ := β/(N +1) > 1. Then, for a relatively compact open
set G ⊂ ΣN and v ∈ CG,

EN (u, v) =

∫

ΣN

∂

∂xi
v(x) qN (dx)

=
1

Zβ

∫ 1

0
dx1

∫ 1

x1

dx2 · · ·
∫ 1

xi−1

dxi+1

∫ 1

xi+1

dxi+2 · · ·
∫ 1

xN−1

dxN
N
∏

j=0
j 6=i−1, i

(xj+1 − xj)β′−1

×
∫ xi+1

xi−1

∂

∂xi
v(x) (xi − xi−1)β′−1 (xi+1 − xi)β′−1 dxi.

Since β′ > 1, we obtain by integration by parts
∫ xi+1

xi−1

∂

∂xi
v(x) (xi − xi−1)β′−1 (xi+1 − xi)β′−1 dxi

= − (β′ − 1)

∫ xi+1

xi−1

v(x)
[

(xi − xi−1)β′−2 (xi+1 − xi)β′−1 − (xi − xi−1)β′−1 (xi+1 − xi)β′−2
]

dxi

so that
∣

∣

∣

∣

∣

∫ xi+1

xi−1

∂

∂xi
v(x) (xi − xi−1)β′−1 (xi+1 − xi)β′−1 dxi

∣

∣

∣

∣

∣

≤(β′ − 1)‖v‖∞
(

∫ xi+1

xi−1

(xi − xi−1)β′−2 dxi +

∫ xi+1

xi−1

(xi+1 − xi)β′−2 dxi

)

≤2 (β′ − 1)‖v‖∞
∫ 1

0
rβ′−2dr ≤ C ‖v‖∞,
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and we obtain that condition (3.18) holds. If β′ = 1, i.e. the measure qN coincides with the
normalized Lebesgue measure on ΣN , condition (3.18) follows easily by a similar proceeding.

Let now β′ < 1 and let us assume that u(XN
t )−u(XN

0 ) is a semi-martingale. Then, there exists
a signed Radon measure ν on ΣN satisfying (3.19). Let ν = ν1 − ν2 be the Jordan decomposition
of ν, i.e. ν1 and ν2 are positive Radon measures. By the above calculations we have for each
relatively compact open set G ⊂ ΣN and for all v ∈ CG

EN (u, v) = − 1

Zβ
(β′ − 1)

∫

G
v(x)

N
∏

j=0
j 6=i−1, i

(xj+1 − xj)β′−1

×
[

(xi − xi−1)β′−2 (xi+1 − xi)β′−1 − (xi − xi−1)β′−1 (xi+1 − xi)β′−2
]

dx.

Hence, we obtain for the Jordan decomposition ν = ν1 − ν2 that

ν1(G) =
1

Zβ
(1 − β′)

∫

G
(xi+1 − xi)β′−2

N
∏

j=0
j 6=i

(xj+1 − xj)β′−1dx

ν2(G) =
1

Zβ
(1 − β′)

∫

G
(xi − xi−1)β′−2

N
∏

j=0
j 6=i−1

(xj+1 − xj)β′−1dx.

Set ∂Σj
N := {x ∈ ∂ΣN : xj = xj+1}, j = 0, . . . , N , and let for some x0 ∈ ∂Σi and r > 0,

A := x0 + [−r, r]N ∩ ΣN be such that dist(A, ∂Σj
N ) > 0 for all j 6= i. Furthermore, let (An)n be

a sequence of compact subsets of A such that An ↑ A and dist(An, ∂Σi
N ) > 0 for every n.

By the inner regularity of the Radon measures ν1 and ν2 we have v1(A) = limn ν1(An) and
v2(A) = limn ν2(An). Since β′ − 2 < −1, we get by the choice of A that ν1(A) = ∞, while
ν2(A) <∞, which contradicts the local finiteness of ν and ν1, respectively.
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Chapter 4

Weak Convergence to the

Wasserstein Diffusion

4.1 Introduction

The large scale behaviour of stochastic interacting particle systems is often described by linear
or nonlinear deterministic evolution equations in the hydrodynamic limit, a fact which can be
understood as a dynamic version of the law of large numbers, cf. e.g. [47]. Analogously, the
fluctuations around such a deterministic limit usually lead to linear Ornstein-Uhlenbeck type
stochastic partial differential equations (SPDE) on the diffusive time scale.

Here we add one more example to the collection of (in this case conservative) interacting
particle systems with a nonlinear stochastic evolution in the hydrodynamic limit. Again we
consider the process (XN

· ) ∈ ΣN of N moving particles on the unit interval, which has been
introduced and studied in the last chapter. Recall that (XN

t ) = (x1
t , . . . , x

N
t ) is a formal solution

of the system

dxi
t = (

β

N + 1
− 1)

(

1

xi
t − xi−1

t

− 1

xi+1
t − xi

t

)

dt+
√

2dwi
t + dli−1

t − dlit, i = 1, · · · , N, (4.1)

driven by independent real Brownian motions {wi} and local times li satisfying

dlit ≥ 0, lit =

∫ t

0
1l{xi

s=xi+1
s }dl

i
s. (4.2)

At first sight equation (4.1) resembles familiar Dyson-type models of interacting Brownian
motions with electrostatic interaction. Except from the fact that (4.1) models a nearest-neighbour
and not a mean-field interaction, the most important difference towards the Dyson model is
however, that in the present case for N ≥ β − 1 the drift is attractive and not repulsive. One
technical consequence, as we have seen in the last chapter, is that the system (4.1) and (4.2)
has to be understood properly because it may no longer be defined in the class of Euclidean
semi-martingales. The second and more dramatic consequence is a clustering of hence strongly
correlated particles such that fluctuations are seen on large hydrodynamic scales.

73
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More precisely, we show that for properly chosen initial condition the empirical probability
distribution of the particle system in the high density regime

µN
t =

1

N

N
∑

i=1

δxi
N·t

converges for N → ∞ to the Wasserstein diffusion (µt) on the space of probability measures
P([0, 1]), which was introduced in [66] as a conservative model for a diffusing fluid when its heat
flow is perturbed by a kinetically uniform random forcing. In particular (µt) is a solution in the
sense of an assocciated martingale problem to the SPDE

dµt = β∆µtdt+ Γ(µt)dt+ div(
√

2µdBt), (4.3)

where ∆ is the Neumann Laplace operator and dBt is space-time white noise over [0, 1] and, for
µ ∈ P([0, 1]), Γ(µ) ∈ D′([0, 1]) is the Schwartz distribution acting on f ∈ C∞([0, 1]) by

〈Γ(µ), f〉 =
∑

I∈gaps(µs)

[

f ′′(I−) + f ′′(I+)

2
− f ′(I+) − f ′(I−)

|I|

]

− f ′′(0) + f ′′(1)

2
,

where gaps(µ) denotes the set of components I =]I−, I+[ of maximal length with µ(I) = 0 and
|I| denotes the length of such a component.

The SPDE (4.3) has a familiar structure. For instance, the Dawson-Watanabe (’super-
Brownian motion’) process solves dµt = ∆µtdt +

√
2µtdBt whereas the empirical measure of a

countable family of independent Brownian motions satifies the equation dµt = ∆µtdt+div(
√

2µtdBt),
both again in the weak sense of the associated martingale problems, cf. e.g. [24].

The additional nonlinearity introduced through the operator Γ into (4.3) is crucial for the
construction of (µt) by Dirichlet form methods because it guarantees the existence of a reversible
measure Pβ on P([0, 1]) which plays a central role for the convergence result, too. For β > 0, Pβ

can be defined as the law of the random probability measure η ∈ P([0, 1]) defined by

〈f, η〉 =

∫ 1

0
f(Dβ

t )dt ∀f ∈ C([0, 1]),

where t → Dβ
t =

γt·β

γβ
is the real valued Dirichlet process over [0, 1] with parameter β and γ

denotes the standard Gamma subordinator.

It is argued in [66] that Pβ admits the formal Gibbsean representation

Pβ(dµ) =
1

Z
e−βEnt(µ)P0(dµ)

with the Boltzmann entropy Ent(µ) =
∫

[0,1] log(dµ/dx)dµ as Hamiltonian and a particular uniform

measure P0 on P([0, 1]), which illustrates the non-Gaussian character of Pβ . In particular, Pβ is
not log-concave. However an appropriate version of the Girsanov formula holds true for Pβ, see
also [67], which implies the L2(P([0, 1]),Pβ)-closability of the quadratic form

E(F, F ) =

∫

P([0,1])
‖∇wF‖2

µ Pβ(dµ), F ∈ Z
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on the class

Z =

{

F : P([0, 1]) → R

∣

∣

∣

∣

F (µ) = f(〈φ1, µ〉, 〈φ2, µ〉, . . . , 〈φk, µ〉)
f ∈ C∞

c (Rk), {φi}k
i=1 ⊂ C∞([0, 1]), k ∈ N

}

where

‖∇wF‖µ =
∥

∥(D|µF )′(·)
∥

∥

L2([0,1],µ)

and (D|µF )(x) = ∂t|t=0F (µ + tδx). The corresponding closure, still denoted by E , is a local
regular Dirichlet form on the compact space (P([0, 1]), τw) of probabilities equipped with the
weak topology. This allows to construct a unique Hunt diffusion process

(

(Pη)η∈P([0,1]), (µt)t≥0

)

properly associated with E , cf. [39]. Starting (µt) from equilibrium Pβ yields what shall be called
in the sequel exclusively the Wasserstein diffusion because its intrinsic metric coincides with the
L2-Wasserstein distance dW , defined by

dW (µ, ν) := inf
γ

(

∫∫

[0,1]2
|x− y|2γ(dx, dy)

)1/2

,

where the infimum is taken over all probability measures γ ∈ P([0, 1]2) having marginals µ and
ν.

Our approach for the approximation result is again based on Dirichlet form methods. We
use that the convergence of symmetric Markov semigroups is equivalent to an amplified notion
of Gamma-convergence [52] of the associated sequence quadratic forms EN . In our situation it
suffices to verify that equations (4.1) and (4.2) define a sequence of reversible finite dimensional
particle systems whose equilibrium distributions converge nice enough to Pβ . In particular we
show that also the logarithmic derivatives converge in an appropriate L2-sense which implies the
Mosco-convergence of the Dirichlet forms. (The pointwise convergence of the same sequence EN

to E has been used in a recent work by Döring and Stannat to establish the logarithmic Sobolev
inequality for E , cf. [27]). Since the approximating state spaces are finite dimensional we employ
[50] for a generalized framework of Mosco convegence of forms defined on a scale of Hilbert spaces.
In case of a fixed state space with varying reference measure the criterion of L2-convergence of the
associated logarithmic derivatives has been studied in e.g. [48]. However, in our case this result
does not directly apply because in particular the metric and hence also the divergence operation
itself is depending on the parameter N . However, only little effort is needed to see that things
match up nicely, cf. Section 4.4.4.

A much more subtle point is the assumption of Markov uniqueness of the form E which
we have to impose for the identification of the limit. By this we mean that E be a maximal
element in the class of (not necessarily regular) Dirichlet forms on L2(P([0, 1]),Pβ) which is closely
related to the Meyers-Serrin (weak = strong) property of the corresponding Sobolev space, cf.
Corollary 4.20 and [31, 49]. Variants of this assumption appear in several quite similar infinite
dimensional contexts as well [41, 48] and the verificiation depends crucially on the integration by
parts formula which in the present case of Pβ has a very peculiar structure. By general principles
Markov uniqueness of E is weaker than the essential self-adjointness of the generator of (µt)t≥0 on
ZNeu = {F ∈ Z|F (µ) = f(〈φ1, µ〉, . . . , 〈φk, µ〉), φ′i(0) = φ′i(1) = 0, i = 1, . . . , k} and stronger than
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the well-posedness, i.e. uniqueness, in the class of Hunt processes on P([0, 1]) of the martingale
problem defined by equation (4.3) on the set of test functions ZNeu, cf. [3, Theorem 3.4].

For the sake of a clearer presentation in the proofs we will work with a parametrization of
a probability measure by the generalized right continuous inverse of its distribution function,
which however is mathematically inessential. A side result of this parametrization is a diffusive
scaling limit result for a (1+1)-dimensional gradient interface model with non-convex interaction
potential (cf. [40]), see Section 4.5.

The material presented in this chapter is contained in [9].

4.2 Main Result

Let us briefly recall that the process XN
t = (x1

t , · · · , xN
t ) on the closure of ΣN := {x ∈ RN : 0 <

x1 < x2 < · · · < xN < 1} ⊂ RN , which can be seen as a generalized solution to the system (4.1)
and (4.2), is a symmetric Markov process with equilibrium distribution

qN (dx1, · · · , dxN ) =
Γ(β)

(Γ( β
N+1))N+1

N+1
∏

i=1

(xi − xi−1)
β

N+1
−1dx1 . . . dxN .

It can be rigorously constructed as the qN -symmetric Hunt diffusion ((Px)x∈ΣN
, (XN

t )t≥0) asso-

ciated to the local regular Dirichlet form EN obtained as the L2(ΣN , qN )-closure of

EN (f, g) =

∫

ΣN

∇f(x) · ∇g(x) qN(dx), f, g ∈ C∞(ΣN ).

Now we can state the main result of this chapter.

Theorem 4.1. For β > 0, assume that the Wasserstein Dirichlet form E is Markov unique. Let
(XN

t ) denote the qN -symmetric diffusion on ΣN induced from the Dirichlet form EN , starting
from equilibrium XN

0 ∼ qN , and let µN
t = 1

N

∑N
i=1 δxi

N·t
∈ P([0, 1]), then the sequence of processes

(µN
. ) converges weakly to (µ.) in CR+

(

(P([0, 1]), τw
)

) for N → ∞.

4.3 Tightness

As usual we show compactness of the laws of (µN
. ) and, in a second step the uniqueness of the

limit.

Proposition 4.2. The sequence (µN
. ) is tight in CR+((P([0, 1]), τw)).

Proof. According to Theorem 3.7.1 in [24] it is sufficient to show that the sequence (〈f, µN
. 〉)N∈N

is tight, where f is taken from a dense subset in F ⊂ C([0, 1]). Choose

F := {f ∈ C3([0, 1]) |f ′(0) = f ′(1) = 0},

then 〈f, µN
t 〉 = FN (XN

N ·t) with

FN (x) =
1

N

N
∑

i=1

f(xi).



4.3 Tightness 77

The condition f ′(0) = f ′(1) = 0 implies FN ∈ C2
Neu and

N ·LNFN (x) =
β

N + 1

N+1
∑

i=1

f ′(xi) − f ′(xi−1)

xi − xi−1
−

N+1
∑

i=1

f ′(xi) − f ′(xi−1)

xi − xi−1
+

N
∑

i=1

f ′′(xi),

which can be written as

N ·LNFN (x) =
β

N + 1

N+1
∑

i=1

f ′(xi) − f ′(xi−1)

xi − xi−1

+
N
∑

i=1

(

f ′′(xi) − f ′(xi) − f ′(xi−1)

xi − xi−1

)

+
f ′(xN+1) − f ′(xN )

xN+1 − xN
.

Finally, this can be estimated as follows:

|N · LNFN (x)| ≤
∥

∥f ′′
∥

∥

∞ (β + 1) +
∥

∥f ′′′
∥

∥

∞ =: C(β, ‖f‖C3([0,1])). (4.4)

This implies a uniform in N Lipschitz bound for the BV part in the Doob-Meyer decomposition of
FN (XN

N.). The process XN has continuous sample paths with square field operator ΓN (F, F ) =
LN (F 2) − 2F · LNF = |∇F |2. Hence the quadratic variation of the martingale part of FN (XN

N ·)
satisfies

[FN (XN
N ·)]t − [FN (XN

N ·)]s = N ·
∫ t

s
|∇FN |2(XN

s ) ds =
1

N

∫ t

s

N
∑

i=1

(f ′)2(xi
r) dr ≤ (t− s)

∥

∥f ′
∥

∥

2

∞ .

(4.5)

Since

FN (XN
0 ) =

1

N

N
∑

i=1

f(Dβ
i/(N+1)) −→

∫ 1

0
f(Dβ

s ) ds Qβ-a.s.,

the law of FN (XN
0 ) is convergent and by stationarity we conclude that also the law of FN (XN

N ·t)
is convergent for every t. Using now Aldous’ tightness criterion the assertion follows once we have
shown that

E

[∣

∣

∣
FN (XN

N ·(τN+δN )) − FN (XN
N ·τN

)
∣

∣

∣

]

−→ 0 as N → ∞, (4.6)

for any given δN ↓ 0 and any given sequence of bounded stopping times (τN ). Now, the Doob-
Meyer decomposition reads as

FN (XN
N ·(τN+δN )) − FN (XN

N ·τN
) = MN

τN+δN
−MN

τN
+

∫ τN+δN

τN

N · LNF (XN
N ·s) ds,

where MN is a martingale with quadratic variation [MN ]t = [FN (XN
N ·)]t. Using (4.4) and (4.5)
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we get

E

[∣

∣

∣
FN (XN

N ·(τN+δN )) − FN (XN
N ·τN

)
∣

∣

∣

]

≤ E
[∣

∣MN
τN+δN

−MN
τN

∣

∣

]

+ C1 δN

≤ E

[

∣

∣MN
τN+δN

−MN
τN

∣

∣

2
]1/2

+ C1 δN

= C2 E
[

[MN ]τN+δN
− [MN ]τN

]1/2
+ C1 δN

≤ C3

(

δ
1/2
N + δN

)

,

for some positive constants Ci, which implies (4.6).

The argument above shows the balance of first and second order parts of N · LN as N tends
to infinity. Alternatively one could use the symmetry of (XN

· ) and apply the Lyons-Zheng de-
composition for the same result. We provide here some details.

For some fixed time T > 0 we use the Lyons-Zheng decomposition (see e.g. Theorem 5.7.1 in
[39]) to obtain

FN (XN
N ·t) − F (XN

0 ) =
1

2

(

Mt − (M̂T − M̂T−t)
)

,

where M is a martingale w.r.t. the filtration Ft = σ(XN
N ·s; 0 ≤ s ≤ t) and M̂ is a martingale

w.r.t. the filtration F̂t = σ(XN
N ·(T−s); 0 ≤ s ≤ t), 0 ≤ t ≤ T . Moreover, the quadratic variation of

M is given by

[M ]t =

∫ t

0
ΓN (FN , FN )(XN

N ·s) ds = N ·
∫ t

0
|∇FN |2(XN

s ) ds

and by symmetry we have [M̂ ]t = [M ]t, 0 ≤ t ≤ T . Hence, we obtain using again (4.5)

E
[∣

∣FN (XN
N ·t) − FN (XN

N ·s)
∣

∣

]

=
1

2
E [|Mt −Ms|] +

1

2
E

[∣

∣

∣M̂T−t − M̂T−s

∣

∣

∣

]

≤ 1

2
E

[

|Mt −Ms|2
]1/2

+
1

2
E

[

∣

∣

∣M̂T−t − M̂T−s

∣

∣

∣

2
]1/2

≤ 1

2
E [|[M ]t − [M ]s|]1/2 +

1

2
E

[∣

∣

∣
[M̂ ]T−t − [M̂ ]T−s

∣

∣

∣

]1/2

≤ C|t− s|1/2,

for some positive constant C. Tightness follows now e.g. by Theorem 7.2 in Chapter 3 of [33].

4.4 Identification of the Limit

4.4.1 The G-Parameterization

In order to identify the limit of the sequence (µN
. ) we parameterize the space P([0, 1]) in terms

of right continuous quantile functions, cf. e.g. [65, 66]. The set

G = {g : [0, 1) → [0, 1] | g càdlàg nondecreasing},
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equipped with the L2([0, 1], dx) distance dL2 is a compact subspace of L2([0, 1], dx). It is homeo-
morphic to (P([0, 1]), τw) by means of the map

ρ : G → P([0, 1]), g → g∗(dx),

which takes a function g ∈ G to the image measure of dx under g. The inverse map κ = ρ−1 :
P([0, 1]) → G is realized by taking the right continuous quantile function, i.e.

gµ(t) := inf{s ∈ [0, 1] : µ[0, s] > t}.

For technical reasons we introduce the following modification of (µN
. ) which is better behaved in

terms of the map κ.

Lemma 4.3. For N ∈ N define the Markov process

νN
t :=

N

N + 1
µN

t +
1

N + 1
δ0 ∈ P([0, 1]),

then (νN
. ) is convergent on CR+((P([0, 1]), τw)) if and only if (µN

. ) is. In this case both limits
coincide.

Proof. Due to Theorem 3.7.1 in [24] it suffices to consider the sequences of real valued process
〈f, µN

. 〉 and 〈f, νN
. 〉 for N → ∞, where f ∈ C([0, 1]) is arbitrary. From

sup
t≥0

∣

∣〈f, µN
t 〉 − 〈f, νN

t 〉
∣

∣ = sup
t≥0

1

N + 1

∣

∣〈f, µN
t 〉 − 〈f, δ0〉

∣

∣ ≤ 2

N + 1
‖f‖∞ ,

it follows that dC(〈f, µN
. 〉, 〈f, νN

. 〉) → 0 almost surely, where dC is any metric on C([0,∞),R)
inducing the topology of locally uniform convergence. Hence for a bounded and uniformly dC-
continuous functional F : C([0,∞),R) → R

E(F (〈f, µN
. 〉) − E(F (〈f, νN

. 〉)) → 0 for N → ∞.

Since weak convergence on metric spaces is characterized by expectations of uniformly continuous,
bounded functions (cf. e.g. [53, Theorem 6.1]) this proves the claim.

Let (gN
· ) := (κ(νN

· )) be the process (νN
· ) in the G-parameterization. It can also be obtained

by

gN
t = ι(XN

N ·t)

with the imbedding ι = ιN

ι : ΣN → G, ι(x) =
N
∑

i=0

xi · 1l[ti,ti+1),

with ti := i/(N + 1), i = 0, . . . , N + 1. Similarly, let (g·) = (κ(µ.)) be the G-image of the
Wasserstein diffusion under the map κ with invariant initial distribution Qβ. In [66, Theorem 7.5]
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it is shown that (g·) is generated by the Dirichlet form, again denoted by E , which is obtained as
the L2(G,Qβ)-closure of

E(u, v) =

∫

G
〈∇u|g(·),∇v|g(·)〉L2([0,1]) Qβ(dg), u, v ∈ C

1(G).

on the class

C
1(G) = {u : G → R |u(g) = U(〈f1, g〉L2, . . . , 〈fm, g〉L2), U ∈ C1

c (Rm), {fi}m
i=1 ⊂ L2([0, 1]),m ∈ N},

where ∇u|g is the L2([0, 1], dx)-gradient of u at g, defined via

∂s | s=0u(g + s · ξ) = 〈(∇|gu)(·), ξ(·)〉L2([0,1],dx) ∀ξ ∈ L2([0, 1], dx).

The convergence of (µN
· ) to (µ·) in CR+(P([0, 1]), τw) is thus equivalent to the convergence

of (gN
· ) to (g·) in CR+(G, dL2). By Proposition 4.2 and Lemma 4.3 (gN

· )N is a tight sequence of
processes on G. The following statement identifies (g·) as the unique weak limit.

Proposition 4.4. Let E be Markov-unique. Then for any f ∈ C(Gl) and 0 ≤ t1 < . . . < tl,

E(f(gN
t1 , · · · , gN

tl
))

N→∞−→ E(f(gt1, · · · , gtl)).

4.4.2 Finite Dimensional Approximation of Dirichlet Forms in Mosco Sense

Proposition 4.4 is proved by showing that the sequence of generating Dirichlet forms N · EN of
(gN

· ) on L2(ΣN , qN ) converges to E on L2(G,Q) in the generalized Mosco sense of Kuwae and
Shioya, allowing for varying base L2-spaces. We recall the framework developed in [50].

Definition 4.5 (Convergence of Hilbert spaces). A sequence of Hilbert spaces HN converges to
a Hilbert space H if there exists a family of linear maps {ΦN : H → HN}N such that

lim
N

∥

∥ΦNu
∥

∥

HN = ‖u‖H , for all u ∈ H.

A sequence (uN )N with uN ∈ HN converges strongly to a vector u ∈ H if there exists a sequence
(ũN )N ⊂ H tending to u in H such that

lim
N

lim sup
M

∥

∥ΦM ũN − uM

∥

∥

HM = 0,

and (uN ) converges weakly to u if

lim
N

〈uN , vN 〉HN = 〈u, v〉H ,

for any sequence (vN )N with vN ∈ HN tending strongly to v ∈ H. Moreover, a sequence (BN )N of
bounded operators on HN converges strongly (resp. weakly) to an operator B on H if BNuN → Bu
strongly (resp. weakly) for any sequence (uN ) tending to u strongly (resp. weakly).

Definition 4.6 (Mosco Convergence). A sequence (EN )N of quadratic forms EN on HN con-
verges to a quadratic form E on H in the Mosco sense if the following two conditions hold:
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Mosco I: If a sequence (uN )N with uN ∈ HN weakly converges to a u ∈ H, then

E(u, u) ≤ lim inf
N

EN (uN , uN ).

Mosco II: For any u ∈ H there exists a sequence (uN )N with uN ∈ HN which converges strongly
to u such that

E(u, u) = lim
N
EN (uN , uN ).

Extending [52] it is shown in [50] that Mosco convergence of a sequence of Dirichlet forms is
equivalent to the strong convergence of the associated resolvents and semigroups. We will apply
this result when HN = L2(ΣN , qN ), H = L2(G,Qβ) and ΦN is defined to be the conditional
expectation operator

ΦN : H → HN ; (ΦNu)(x) := E(u|gi/(N+1) = xi, i = 1, . . . , N).

However, we shall prove that the sequence N · EN converges to E in the Mosco sense in a slightly
modified fashion, namely the condition (Mosco II) will be replaced by

Mosco II’: There is a core K ⊂ D(E) such that for any u ∈ K there exists a sequence (uN )N

with uN ∈ D(EN ) which converges strongly to u such that E(u, u) = limN EN (uN , uN ).

Theorem 4.7. Under the assumption that HN → H the conditions (Mosco I) and (Mosco II’)
are equivalent to the strong convergence of the associated resolvents.

Proof. We proceed as in the proof of Theorem 2.4.1 in [52]. By Theorem 2.4 of [50] strong
convergence of resolvents implies Mosco-convergence in the original stronger sense. Hence we need
to show only that our weakened notion of Mosco-convergence also implies strong convergence of
resolvents.

Let {RN
λ , λ > 0} and {Rλ, λ > 0} be the resolvent operators associated with EN and E,

respectively. Then, for each λ > 0 we have to prove that for every z ∈ H and every sequence (zN )
tending strongly to z the sequence (uN ) defined by uN := RN

λ zN ∈ HN converges strongly to
u := Rλz as N → ∞. The vector u is characterized as the unique minimizer of E(v, v)+λ〈v, v〉H−
2〈z, v〉H over H and a similar characterization holds for each uN . Since for each N the norm of
RN

λ as an operator on HN is bounded by λ−1, by Lemma 2.2 in [50] there exists a subsequence
of (uN ), still denoted by (uN ), that converges weakly to some ũ ∈ H. By (Mosco II’) we find for
every v ∈ K a sequence (vN ) tending strongly to v such that limN EN (vN , vN ) = E(v, v). Since
for every N

EN (uN , uN ) + λ〈uN , uN 〉HN − 2〈zN , uN 〉HN ≤ EN (vN , vN ) + λ〈vN , vN 〉HN − 2〈zN , vN 〉HN ,

using the condition (Mosco I) we obtain in the limit N → ∞:

E(ũ, ũ) + λ〈ũ, ũ〉H − 2〈z, ũ〉H ≤ E(v, v) + λ〈v, v〉H − 2〈z, v〉H ,

which by the definition of the resolvent together with the density of K ⊂ D(E) implies that
ũ = Rλz = u. This establishes the weak convergence of resolvents. It remains to show strong
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convergence. Let uN = RN
λ zN converge weakly to u = Rλz and choose v ∈ K with the respective

strong approximations vN ∈ HN such that EN (vN , vN ) → E(v, v), then the resolvent inequality
for RN

λ yields

EN (uN , uN ) + λ ‖uN − zN/λ‖2
HN ≤ EN (vN , vN ) + λ ‖vN − zN/λ‖2

HN .

Taking the limit for N → ∞, one obtains

lim sup
N

λ ‖uN − zN/λ‖2
HN ≤ E(v, v) −E(u, u) + λ ‖v − z/λ‖2

H .

Since K is a dense subset we may now let v → u ∈ D(E), which yields

lim sup
N

‖uN − zN/λ‖2
HN ≤ ‖u− z/λ‖2

H .

Due to the weak lower semicontinuity of the norm this yields limN ‖uN − zN/λ‖HN = ‖u− z/λ‖H .
Since strong convergence in H is equivalent to weak convergence together with the convergence
of the associated norms the claim follows (cf. Lemma 2.3 in [50]).

Proposition 4.4 will now essentially be implied by the following statement, which will be
proven in the next two subsections.

Theorem 4.8. Assume that E is Markov-unique on L2(G,Q). Then (N · EN , HN ) converges to
(E , H) along ΦN in Mosco sense.

Proposition 4.9. HN converges to H along ΦN , for N → ∞.

Proof. We have to show that
∥

∥ΦNu
∥

∥

HN → ‖u‖H for each u ∈ H. Let FN be the σ-algebra on
G generated by the projection maps {g → g(i/(N + 1)) | i = 1, . . . , N}. By abuse of notation we
identify ΦNu ∈ HN with E(u|FN ) of u, considered as an element of L2(Qβ,FN ) ⊂ H. Since the
measure qN coincides with the respective finite dimensional distributions of Qβ on ΣN we have
∥

∥ΦNu
∥

∥

HN =
∥

∥ΦNu
∥

∥

H
. Hence the claim will follow once we show that ΦNu → u in H. For the

latter we use the following abstract result, whose proof can be found, e.g. in [4, Lemma 1.3].

Lemma 4.10. Let (Ω,D, µ) be a measure space and (Fn)n∈N a sequence of σ-subalgebras of D.
Then E(f |Fn) → f for all f ∈ Lp, p ∈ [1,∞) if and only if for all A ∈ D there is a sequence
An ∈ Fn such that µ(An∆A) → 0 for n→ ∞.

In order to apply this lemma to the given case (G,B(G),Qβ), where B(G) denotes the Borel
σ-algebra on G, let FQβ ⊂ B(G) denote the collection of all Borel sets F ⊂ G which can be
approximated by elements FN ∈ FN with respect to Qβ in the sense above. Note that FQβ

is again a σ-algebra, cf. the appendix in [4]. Let M denote the system of finitely based open
cylinder sets in G of the form M = {g ∈ G|gti ∈ Oi, i = 1, . . . , L} where ti ∈ [0, 1] and Oi ⊂ [0, 1]
open. From the almost sure right continuity of g and the fact that g. is continuous at t1, . . . , tL
for Qβ-almost all g it follows that MN := {g ∈ G|g(⌈ti·(N+1)⌉/(N+1)) ∈ Oi, i = 1, . . . , L} ∈ FN is
an approximation of M in the sense above. Since M generates B(G) we obtain B(G) ⊂ FQβ such
that the assertion holds, due to Lemma 4.10.
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Remark 4.11. It is much simpler to prove Proposition 4.9 for a dyadic subsequence N ′ = 2m−1,

m ∈ N when the sequence
∥

∥

∥ΦN ′

u
∥

∥

∥

HN′
is nondecreasing and bounded, because ΦN ′

is a projection

operator in H with increasing range im(ΦN ′

) as N ′ grows. Hence,
∥

∥

∥ΦN ′

u
∥

∥

∥

HN′
is Cauchy and

thus
∥

∥

∥ΦN ′

u− ΦM ′

u
∥

∥

∥

2

H
=
∥

∥

∥ΦN ′

u
∥

∥

∥

2

H
−
∥

∥

∥ΦM ′

u
∥

∥

∥

2

H
→ 0 forM ′, N ′ → ∞,

i.e. the sequence ΦN ′

u converges to some v ∈ H. Since obviously ΦNu→ u weakly in H it follows

that u = v such that the claim is obtained from |
∥

∥

∥ΦN ′

u
∥

∥

∥

H
− ‖u‖H | ≤

∥

∥

∥ΦN ′

u− u
∥

∥

∥

H
.

4.4.3 Condition Mosco II’

To simplify notation for f ∈ L2([0, 1], dx) denote the functional g → 〈f, g〉L2([0,1]) on G by lf . We
introduce the set K of polynomials defined by

K =

{

u ∈ C(G) |u(g) =
n
∏

i=1

lki

fi
(g), ki ∈ N, fi ∈ C([0, 1])

}

.

Lemma 4.12. The linear span of K is a core of E.

Proof. Recall that by [66, Theorem 7.5] the set

C
1(G) = {u : G → R |u(g) = U(〈f1, g〉L2, . . . , 〈fm, g〉L2), U ∈ C1

c (Rm), {fi}m
i=1 ⊂ L2([0, 1]),m ∈ N},

is a core for the Dirichlet form E in the G-parametrization. The boundedness of G ⊂ L2([0, 1], dx)
implies that U is evaluated on a compact subset of Rm only, where U can be approximated
by polynomials in the C1-norm. From this, the chain rule for the L2-gradient operator ∇ and
Lebesgue’s dominated convergence theorem in L2(G,Qβ) it follows that the linear span of poly-
nomials of the form u(g) =

∏n
i=1 l

ki

fi
(g) with ki ∈ N, fi ∈ C([0, 1]), ki ∈ N, is also a core of

E .

Lemma 4.13. For a polynomial u ∈ K with u(g) =
∏n

i=1 l
ki

fi
(g) let uN :=

∏n
i=1

(

ΦN (lfi
)
)ki ∈

HN , then uN → u strongly.

Proof. Let ũN :=
∏n

i=1

(

ΦN (lfi
)
)ki ∈ H be the respective product of conditional expectations,

where as above ΦN also denotes the projection operator on H = L2(G,Qβ). Note that by Jensen’s
inequality for any measurable functional u : G → R, |ΦN (u)|(g) ≤ ΦN (|u|)(g) for Qβ-almost all
g ∈ G, such that in particular

∥

∥ΦN (lfi
)
∥

∥

L∞(G,Qβ)
≤ ‖lfi

‖L∞(G,Qβ) ≤ ‖fi‖C([0,1]). Hence each of

the factors ΦN (lfi
) ∈ H is uniformly bounded and converges strongly to lfi

in L2(G,Qβ), such
that the convergence also holds true in any Lp(G,Qβ) with p > 0. This implies ũN → u in H.
Furthermore,

lim
N

lim
M

∥

∥ΦM ũN − uM

∥

∥

HM = lim
N

lim
M

∥

∥

∥

∥

∥

ΦM

(

n
∏

i=1

(

ΦN (lfi
)
)ki

)

−
n
∏

i=1

(

ΦM (lfi
)
)ki

∥

∥

∥

∥

∥

H

= lim
N

∥

∥

∥

∥

∥

n
∏

i=1

(

ΦN (lfi
)
)ki −

n
∏

i=1

lki

fi

∥

∥

∥

∥

∥

H

= 0. (4.7)
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For the proof of Mosco II’ we will also need that the conditional expectation of the random
variable g w.r.t. to Qβ given finitely many intermediate points {g(ti) = xi} yields the linear
interpolation.

Lemma 4.14. For X ∈ ΣN define gX ∈ G by

gX(t) = xi + ((N + 1) · t− i)(xi+1 − xi) if t ∈ [
i

N + 1
,
i+ 1

N + 1
), i = 0, . . . , N,

then

E(g|FN)(X) = gX .

Proof. This quite classical claim follows essentially from the bridge representation of the Dirichlet
process, i.e. Qβ is the law of (γ(β · t)t∈[0,1] ∈ G) on G conditioned on γ(β) = 1 where γ is
the standard Gamma subordinator, cf. e.g. [66]. Together with the elementary property that
EQβ (g(t)) = t for t ∈ [0, 1] the claim follows from the homogeneity of γ together with simple
scaling and iterated use of the Markov property. See Appendix A for more details.

Proposition 4.15. For all u ∈ K there is a sequence uN ∈ D(EN ) converging strongly to u in
H and N · EN (uN , uN ) → E(u, u). In particular, condition Mosco II’ is satisfied.

Proof. For u ∈ K let uN :=
∏n

i=1

(

ΦN (lfi
)
)ki ∈ HN as above then the strong convergence of

uN to u is assured by Lemma 4.13. From Lemma 4.14 we obtain that ΦN (lf )(X) = 〈f, gX〉. In
particular

(

∇ΦN (lf )(X)
)i

=
1

N + 1
·
(

ηN ∗ f
)

(ti), (4.8)

where ti := i/(N + 1), i = 1, . . . , N + 1 and ηN denotes the convolution kernel t → ηN (t) =
(N + 1) · (1−min(1, |(N + 1) · t|)) , which can be easily seen as follows: Setting tj := j/(N + 1),
j ∈ {0, . . . , N + 1}, we have on one hand

ΦN (lf )(X) =

∫ 1

0
f(t)gX(t) dt

=
N
∑

j=0

∫ tj+1

tj

f(t)
(

xj + ((N + 1)t− j)(xj+1 − xj)
)

dt

=
N
∑

j=0

∫ tj+1

tj

f(t) (1 − ((N + 1)t− j))xj dt+
N
∑

j=0

∫ tj+1

tj

f(t) ((N + 1)t− j)xj+1 dt,

so that

(

∇ΦN (lf )(X)
)i

=

∫ ti+1

ti

f(t) (1 − ((N + 1)t− i)) dt+

∫ ti

ti−1

f(t) ((N + 1)t− (i− 1)) dt
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for all i ∈ {1, . . . , N}. On the other hand

1

N + 1
·
(

ηN ∗ f
)

(ti) =
1

N + 1

∫

R

f(t) ηN(ti − t) dt =

∫

R

f(t) (1 − min(1, |i− (N + 1)t|)) dt.

Since

1 − min(1, |i− (N + 1)t|) =











0 if t ≤ ti−1 or t ≥ ti+1,

1 − (i− (N + 1)t) if ti−1 ≤ t ≤ ti,

1 + (i− (N + 1)t) if ti ≤ t ≤ ti+1,

we obtain (4.8).
For the convergence of N · EN (uN , uN ) to E(u, u) let f ∈ C([0, 1]) be arbitrary, in particular

f is uniformly continuous. Since
∫

R
ηN (t) dt = 1 and ηN = 0 on [− 1

N+1 ,
1

N+1 ]c we have

min
s∈

h

t− 1
N+1 ,t+

1
N+1

i

f(s) ≤
∫

R

f(t− s) ηN (s) ds ≤ max
s∈

h

t− 1
N+1 ,t+

1
N+1

i

f(s),

and from the uniform continuity of f we can conclude that f ∗ ηN → f in C([0, 1]) as N → ∞.
Hence, using (4.8) we also get

N · |∇ΦN (lf )(X)|2 =
N

(N + 1)2

N
∑

i=1

(ηN ∗ f)2(ti)

=
N

(N + 1)2

N
∑

i=1

[

(ηN ∗ f)2(ti) − f2(ti)
]

+
N

(N + 1)2

N
∑

i=1

f2(ti)

−→ 〈f, f〉L2([0,1]).

as N → ∞. Since the gradient does not depend on the value of the vector X and ∇L2lf = f , this
implies the claim in the case when u = lf . Similarly, for arbitrary f1, f2 ∈ C([0, 1])

N ·
〈

∇ΦN (lf1),∇ΦN (lf2)
〉

RN −→ 〈f1, f2〉L2([0,1]). (4.9)

Consider now u ∈ K with u(g) =
∏n

i=1 l
ki

fi
(g). The chain rule for the L2-gradient operator

∇ = ∇L2
yields

∇u(g) =
n
∑

j=1





∏

i6=j

lki

fi
(g)



 kj l
kj−1
fj

(g) fj.

Thus,

〈∇u,∇u〉L2(0,1) =

n
∑

j,s=1





∏

i6=j

lki

fi









∏

r 6=s

lkr

fr



 kj ks l
kj−1
fj

lks−1
fs

〈fj , fs〉L2(0,1).

and analogously for uN =
∏n

i=1

(

ΦN (lfi
)
)ki with ∇ = ∇RN

∇uN =

n
∑

j=1





∏

i6=j

(

ΦN (lfi
)
)ki



 kj

(

ΦN (lfj
)
)kj−1 ∇ΦN (lfj

)
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and

〈∇uN ,∇uN〉RN =
n
∑

j,s=1





∏

i6=j

(

ΦN (lfi
)
)ki









∏

r 6=s

(

ΦN (lfr
)
)kr





× kj ks

(

ΦN (lfj
)
)kj−1 (

ΦN (lfs
)
)ks−1 〈∇ΦN (lfj

),∇ΦN (lfs
)
〉

RN .

Since

N · EN (uN , uN ) = N ·
∫

ΣN

〈∇uN ,∇uN 〉RNdqN

= N ·
∫

G
〈∇uN ,∇uN 〉(g(t1), . . . , g(tN)) Qβ(dg)

and for Qβ-a.e. g
ΦN (lf )(g(t1), . . . , g(tN)) −→ lf (g) as N → ∞,

if f ∈ C([0, 1]) the first assertion of the proposition holds by (4.9) and dominated convergence.
The second assertion follows now from linearity and polarisation together with Lemma 4.12.

For later use we make an observation which follows easily from the proof of the last proposition.

Lemma 4.16. For u and uN as in the proof of Proposition 4.15 and for Qβ-a.e. g we have
∥

∥(N + 1)ιN (∇uN (g(t1), . . . , g(tN))) −∇u|g
∥

∥

L2(0,1)
−→ 0 as N → ∞,

with ιN : RN → D([0, 1),R) defined as above and tl := l/(N + 1), l = 0, . . . , N + 1.

Proof. By the definitions we have for every x ∈ ΣN

(N + 1)ιN (∇uN (x)) =

n
∑

j=1





∏

i6=j

(

ΦN (lfi
)(x)

)ki



 kj

(

ΦN (lfj
)(x)

)kj−1

× (N + 1)
N
∑

l=1

∇(ΦN (lfj
)(x))l1l[tl,tl+1]

=
n
∑

j=1





∏

i6=j

(

ΦN (lfi
)(x)

)ki



 kj

(

ΦN (lfj
)(x)

)kj−1
N
∑

l=1

(ηN ∗ fj)(tl)1l[tl,tl+1],

where we have used again (4.8). Furthermore, for every j,

∫ 1

0

(

N
∑

l=1

(ηN ∗ fj)(tl)1l[tl,tl+1](t) − fj(t)

)2

dt

=
N
∑

l=1

∫ tl+1

tl

(

(ηN ∗ fj)(tl) − fj(t)
)2
dt

≤2

N
∑

l=1

∫ tl+1

tl

(

(ηN ∗ fj)(tl) − fj(tl)
)2
dt+ 2

N
∑

l=1

∫ tl+1

tl

(fj(tl) − fj(t))
2 dt,
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where the first term tends to zero as N → ∞ since ηN ∗ fj → fj in the sup-norm and the second
term tends to zero by the uniform continuity of fj . From this we can directly deduce the claim
because ΦN (lf )(g(t1), . . . , g(tN)) → lf (g) as N → ∞ for Qβ-a.e. g.

4.4.4 Condition Mosco I

For the verification of Mosco I we exploit that the respective integration by parts formulas of EN

and E converge. In case of a fixed state space a similar approach is discussed abstractly in [48].
However, here also the state spaces of the processes change which requires some extra care for
the varying metric structures in the Dirichlet forms.

Let TN := {f : ΣN → RN} be equipped with the norm

‖f‖2
T N :=

1

N

∫

ΣN

‖f(x)‖2
RN qN (dx),

then the corresponding integration by parts formula for qN on ΣN , established in Proposition 3.7,
reads

〈∇u, ξ〉T N = − 1

N
〈u, divqN

ξ〉HN . (4.10)

To state the corresponding formula for E we introduce the Hilbert space of vector fields on G
by

T = L2(G × [0, 1],Qβ ⊗ dx),

and the subset Θ ⊂ T

Θ = span{ζ ∈ T | ζ(g, t) = w(g) · ϕ(g(t)), w ∈ K,ϕ ∈ C∞([0, 1]) : ϕ(0) = ϕ(1) = 0}.

Lemma 4.17. Θ is dense in T .

Proof. Let us first remove the condition φ(0) = φ(1), i.e let us show that the T -closure of Θ
coincides with that of Θ̄ = span{ζ ∈ T | ζ(g, t) = w(g) · ϕ(g(t)), w ∈ K,ϕ ∈ C∞([0, 1]). Since
supg∈G w(g) <∞ for any w ∈ K, it suffices to show that any ζ ∈ Θ̄ of the form ζ(g, t) = ϕ(g(t))
can be approximated in T by functions ζk(g, t) = ϕk(g(t)) with ϕk ∈ C∞([0, 1]) and ϕk(0) =
ϕk(1) = 0. Choose a sequence of functions ϕk ∈ C∞

0 ([0, 1]) such that such that supk ‖ϕk‖C([0,1]) <

∞ and ϕk(s) → ϕ(s) for all s ∈]0, 1[. Now for Qβ-almost all g it holds that {s ∈ [0, 1] | g(s) =
0} = {0} and {s ∈ [0, 1] | g(s) = 1} = {1}, such that φk(g(s)) → φ(g(s)) for Qβ ⊗ dx -almost all
(g, s). The uniform boundedness of the sequence of functions ζk : G × [0, 1] → R together with
dominated convergence w.r.t. the measure Qβ ⊗ dx the convergence is established. In order to
complete the proof of the lemma note that Qβ-amost every g ∈ G is a strictly increasing funcion
on [0, 1]. This implies that the set Θ̄ is separating the points of a full measure subset of G× [0, 1].
Hence the assertion follows from the following abstract lemma.

Lemma 4.18. Let µ be a probability measure on a Polish space (X, d) and let A be a subalgebra
of C(X) containing the constants. Assume that A is µ-almost everywhere separating on X, i.e.
there exists a measurable subset X̃ with µ(X̃) = 1 and for all x, y ∈ X̃ there is an a ∈ A such
that a(x) 6= a(y). Then A is dense in any Lp(X,µ) for p ∈ [1,∞).
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Proof. We may assume w.l.o.g. that A is stable w.r.t. the operation of taking the pointwise inf
and sup. Let u ∈ Lp(X), then we may also assume w.l.o.g. that u is continuous and bounded on
X. By the regularity of µ we can approximate X̃ from inside by compact subsets Km such that
µ(Km) ≥ 1 − 1

m . On each Km the theorem of Stone-Weierstrass tells that there is some am ∈ A
such that

∥

∥u|Km
− am|Km

∥

∥

C(Km)
≤ 1

m , and by truncation ‖am‖C(X) ≤ ‖u‖C(X). In particular,

for ǫ > 0, µ(|am − u| > ǫ) ≤ µ(X \ Km) ≤ 1
m , if m ≥ 1/ǫ, i.e. am converges to u on X in

µ-probability. Hence some subsequence am′ converges to u pointwise µ-a.s. on X, and hence the
claim follows from the uniform boundedness of the am by dominated convergence.

The L2-derivative operator ∇ defines a map

∇ : C
1(G) → T

which by [66, Proposition 7.3], cf. [67], satisfies the following integration by parts formula.

〈∇u, ζ〉T = −〈u, divQβ ζ〉H , u ∈ C
1(G), ζ ∈ Θ, (4.11)

where, for ζ(g, t) = w(g) · ϕ(g(t)),

divQβ ζ(g) = w(g) · V β
ϕ (g) + 〈∇w(g)(.), ϕ(g(.))〉L2(dx)

with

V β
ϕ (g) := V 0

ϕ (g) + β

∫ 1

0
ϕ′(g(x))dx− ϕ′(0) + ϕ′(1)

2

and

V 0
ϕ (g) :=

∑

a∈Jg

[

ϕ′(g(a+)) + ϕ′(g(a−))

2
− δ(ϕ ◦ g)

δg
(a)

]

.

Here Jg ⊂ [0, 1] denotes the set of jump locations of g and

δ(ϕ ◦ g)
δg

(a) :=
ϕ (g(a+)) − ϕ (g(a−))

g(a+) − g(a−)
.

By formula (4.11) one can extend ∇ to a closed operator on D(E) such that E(u, u) = ‖∇u‖2
T .

The Markov uniqueness of E now implies the converse which is a characterization of D(E) via
(4.11). For this we need the following technical lemma.

Lemma 4.19. The functional

Ẽ(u, u) = sup
ζ∈Θ

−〈u, divQβ ζ〉2H
‖ζ‖2

T

on D(Ẽ) = {u ∈ L2(G,Qβ) | Ẽ(u) <∞} (4.12)

is a Dirichlet form on L2(G,Qβ) extending E, i.e. D(E) ⊂ D(Ẽ) and Ẽ(u) = E(u) for u ∈ D(E).
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Proof. First note that it makes no difference to (4.12) if Θ is replaced by the larger set Θ̃ =
{ξ | ξ(g, s) = w(g)ϕ(g(s)), w ∈ C

1(G), ϕ ∈ C∞([0, 1]), φ(0) = φ(1) = 0}. Obviously, Ẽ is lower
semicontinuous in L2(G,Qβ) and therefore closed. Moreover, Ẽ is an extension of E , due to
(4.11). It remains to show that Ẽ is Markovian. We use the stronger quasi-invariance of Qβ

under certain transformations of G, cf. [66, Theorem 4.3]. Let h ∈ G be a C2-diffeomorphisms of
[0, 1] and let τh : G → G, τh(g) = h ◦ g, then

d(τh−1)∗Qβ

dQβ
(g) = Xβ

h (g)Y 0
h (g). (4.13)

where

Xh : G → R; Xh(g) = exp(

∫ 1

0
log h′(g(s))ds)

and

Y 0
h (g) :=

∏

a∈Jg

√

h′(g(a+)) · h′(g(a−))
δ(h◦g)

δg (a)

1
√

h′(g(0)) · h′(g(1−))
.

Given ζ = w(·)φ(·) ∈ Θ we may apply formula (4.13) in the case when h = hφ
t , where R ×

[0, 1] → [0, 1], (t, x) → ht(x) is the flow of smooth diffeomorphisms of [0, 1] induced from the ODE
ḣt(x) = φ(ht(x)) with initial condition h0(x) = x. In particular, h0 is the identity and h−1

t = h−t

for all t ∈ R by the flow property. Then, arguing as in Section 5 in [66], we have
∫

G

u(ht(g)) − u(g)

t
· w(g)Qβ(dg) =

1

t

∫

G

[

u(g)w(h−1
t (g))Xβ

h−1
t

Y 0
h−1

t

− u(g)w(g)
]

Qβ(dg)

=
1

t

∫

G
u(g) [w(h−t(g)) − w(g)] Qβ(dg)

+
1

t

∫

G
u(g)w(g)

[

Xβ
h−t

Y 0
h−t

− 1
]

Qβ(dg)

+
1

t

∫

G
u(g)w(g) [w(h−t(g)) − w(g)]

[

Xβ
h−t

Y 0
h−t

− 1
]

Qβ(dg).

We recall that by Lemma 5.7 in [66]

lim
t→0

1

t

[

Xβ
ht

(g)Y 0
ht

(g) − 1
]

=
∂

∂t

[

Xβ
ht
Y 0

ht

]

∣

∣

∣

∣

t=0

= V β
ϕ (g).

Together with the fact that the approximations of the logarithmic derivative of Xβ
ht
Y 0

ht
w.r.t. the

variable t stay uniformly bounded, more precisely | log[Xβ
ht
Y 0

ht
]| ≤ C |t| for |t| ≤ 1 (cf. [66, Section

5]), this yields by the dominated convergence theorem

lim
t→0

∫

G

u(ht(g)) − u(g)

t
· w(g) Qβ(dg) = −

∫

G
udivQβ ζ(g) Qβ(dg).

for any u ∈ D(Ẽ). More precisely, u ∈ L2(G,Qβ) belongs to D(Ẽ) if and only if

Dφu(g) := w-lim
t→0

u(ht(g)) − u(g)

t
exists in L2(G,Qβ)
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for all φ ∈ C∞([0, 1]) with φ(0) = φ(1) = 0 and by Riesz’s representation theorem

∃Du ∈ T s.th. 〈Du, ζ〉T = −〈u, divQβ ζ〉L2(G,Qβ) = 〈Dφu,w〉L2(G,Qβ) ∀ ζ = w(·)φ(·) ∈ Θ̃.

Moreover, Ẽ(u, u) = ‖Du‖2
T . Now for u ∈ D(Ẽ) and κ ∈ C1(R) by Taylor’s formula κ(u(ht(g)))−

κ(u(g)) = κ′(θ) · (u(gt) − u(g)) for some θ → u(g) for t→ 0 such that in case of ‖κ′‖∞ ≤ 1

Dφκ ◦ u(g) = w-lim
t→0

κ ◦ u(ht(g)) − κ ◦ u(g)
t

= κ′ ◦ u(g) ·Dφu(g) in L2(G,Qβ).

Choose some sequence uk ∈ C
1(G) such that uk(g) → u(g) for Qβ-almost all g ∈ G. Then

ζ̃k = κ′ ◦ uk(·) · w(·)φ(·) ∈ Θ. Since Dφu and w both belong to L2(G,Qβ), by dominated
convergence

〈κ′ ◦ u ·Dφu,w〉L2(G,Qβ) = lim
k
〈κ′ ◦ uk ·Dφu,w〉L2(G,Qβ)

= lim
k
〈Du, ζ̃k〉T ≤ Ẽ1/2(u, u) lim

k
‖ζ̃k‖T

≤ Ẽ1/2(u, u) ‖ζ‖T .

Hence κ ◦ u in D(Ẽ) and Ẽ(κ ◦ u) ≤ Ẽ(u). Applied to a uniformly bounded family κǫ : R → R

which converges pointwise to κ(s) = min(max(s, 0), 1) the lower semicontinuity of Ẽ yields the
claim.

Corollary 4.20 (Meyers-Serrin property). Assume Markov-uniqueness holds for E, then

(E(u, u))1/2 = sup
ζ∈Θ

−〈u, divQβ ζ〉H
‖ζ‖T

. (4.14)

Proof. The assumption means that E has no proper extension in the class of Dirichlet forms on
L2(G,Qβ). By the previous lemma we obtain Ẽ = E which is the claim.

The convergence of (4.10) to (4.11) is established by the following lemma whose proof is given
below.

Lemma 4.21. For ζ ∈ Θ there exists a sequence of vector fields ζN : ΣN → RN such that
divqN

ζN ∈ HN converges strongly to divQβ ζ in H and such that ‖ζN‖T N → ‖ζ‖T for N → ∞.

Proposition 4.22 (Mosco I). Let E be Markov-unique and let uN ∈ D(EN ) converge weakly to
u ∈ H, then

E(u, u) ≤ lim inf
N→∞

N · EN (uN , uN ).

Proof. Let u ∈ H and uN ∈ HN converge weakly to u. Let ζ ∈ Θ and ζN be as in Lemma 4.21,
then

−〈u, divQβ ζ〉H = − lim〈uN , divqN
ζN 〉HN = limN · 〈∇uN , ζN 〉T N

≤ lim infN · ‖∇uN‖T N · ‖ζN‖TN
= lim inf

(

N · EN (uN , uN )
)1/2 · ‖ζ‖T ,
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such that, using (4.14),

(E(u, u))1/2 = sup
ζ∈Θ

−〈u, divQβ ζ〉H
‖ζ‖T

≤ lim inf
(

N · EN (uN , uN )
)1/2

. (4.15)

Proof of Lemma 4.21. By linearity it suffices to consider the case ζ(g, t) = w(g) · ϕ(g(t)) with
w(g) =

∏n
i=1 l

ki

fi
(g). Choose

(ζN (x1, · · · , xN ))i := wN (x1, . . . , xN ) · ϕ(xi)

with wN :=
∏n

i=1(Φ
N (lfi

))ki . Then, by Remark 3.8

divqN
ζN = wN · V β

N,ϕ + 〈∇wN , ~ϕ〉RN ,

with
~ϕ(x1, . . . , xN ) := (ϕ(x1), . . . , ϕ(xN ))

and

V β
N,ϕ(x1, . . . , xN ) := (

β

N + 1
− 1)

N
∑

i=0

ϕ(xi+1) − ϕ(xi)

xi+1 − xi
+

N
∑

i=1

ϕ′(xi).

We recall that for all bounded measurable u : [0, 1]N → R

∫

ΣN

u(x1, . . . , xN ) qN (dx) =

∫

G
u(g(t1), . . . , g(tN)) Qβ(dg),

with ti = i/(N + 1), i = 0, . . . , N + 1. Using this we get immediately

‖ζN‖2
T N =

1

N

∫

ΣN

N
∑

i=1

w2
N (x)ϕ(xi)2 qN (dx) =

∫

G
w2

N (g(t1), . . . , g(tN))
1

N

N
∑

i=1

ϕ(g(ti))
2 Qβ(dg)

→
∫

G
w2(g)

∫ 1

0
ϕ(g(s))2 dsQβ(dg) = ‖ζ‖2

T .

To prove strong convergence of divqN
ζN to divQβ ζ, by definition we have to show that there

exists a sequence (dNζ)N ⊂ H tending to divQβ ζ in H such that

lim
N

lim sup
M

∥

∥ΦM (dNζ) − divqM
ζM
∥

∥

2

HM = 0.

The choice

dNζ(g) := divqN
ζN (g(t1), . . . , g(tN))

makes this convergence trivial, once we have proven that in fact (dNζ)N converges to divQβ ζ in
H. This is carried out in the following two lemmas.
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Lemma 4.23. For Qβ-a.s. g we have

V β
N,ϕ(g(t1), . . . , g(tN)) → V β

ϕ (g), as N → ∞,

and we have also convergence in Lp(G,Qβ), p > 1.

Proof. We rewrite V β
N,ϕ(g(t1), . . . , g(tN)) as

V β
N,ϕ(g(t1), . . . , g(tN)) =β

N
∑

i=0

ϕ(g(ti+1)) − ϕ(g(ti))

g(ti+1) − g(ti)
(ti+1 − ti)

− ϕ(g(t1)) − ϕ(g(t0))

g(t1) − g(t0)
+

N−1
∑

i=1

(

ϕ′(g(ti)) −
ϕ(g(ti+1)) − ϕ(g(ti))

g(ti+1) − g(ti)

)

(4.16)

+ ϕ′(g(tN)) − ϕ(g(tN+1)) − ϕ(g(tN))

g(tN+1) − g(tN)
.

Note that all terms are uniformly bounded in g with a bound depending on the supremum norm
of ϕ′ and ϕ′′, respectively. Since the same holds for V β

ϕ (g) (cf. Section 5 in [66]), it is sufficient
to show convergence Qβ-a.s. By the support properties of Qβ g is continuous at tN+1 = 1, so
that the last line in (4.16) tends to zero. Using Taylor’s formula we obtain that the first term in
(4.16) is equal to

β
N
∑

i=0

ϕ′(g(ti))(ti+1 − ti) +
1

2

N
∑

i=0

ϕ′′(γi) (g(ti+1) − g(ti)) (ti+1 − ti),

for some γi ∈ [g(ti), g(ti+1)]. Obviously, the first term tends to β
∫ 1
0 ϕ

′(g(s)) ds and the second
one to zero as N → ∞. Thus, it remains to show that the second line in (4.16) converges to

∑

a∈Jg

[

ϕ′(g(a+)) + ϕ′(g(a−))

2
− δ(ϕ ◦ g)

δg
(a)

]

− ϕ′(0) + ϕ′(1)

2
. (4.17)

Note that by the right-continuity of g the first term in the second line in (4.16) tends to −ϕ′(0).
Let now a2, . . . , al−1 denote the l − 2 largest jumps of g on ]0, 1[. For N very large (compared
with l) we may assume that a2, . . . , al−2 ∈] 2

N+1 , 1 − 2
N+1 [. Put a1 := 1

N+1 , al := 1 − 1
N+1 . For

j = 1, . . . , l let kj denote the index i ∈ {1, . . . , N}, for which aj ∈ [ti, ti+1[. In particular, k1 = 1
and kl = N . Then

∑

i∈{k2,...,kl−1}
ϕ′(g(ti)) −

ϕ(g(ti+1)) − ϕ(g(ti))

g(ti+1) − g(ti)
−−−−→
N→∞

l−1
∑

j=2

ϕ′(g(aj−)) − δ(ϕ ◦ g)
δg

(aj)

−−−→
l→∞

∑

a∈Jg

ϕ′(g(a−)) − δ(ϕ ◦ g)
δg

(a). (4.18)



4.4 Identification of the Limit 93

Provided l and N are chosen so large that

|g(ti+1) − g(ti)| ≤
C

l

for all i ∈ {0, . . . , N}\{k1, . . . , kl}, where C = sups |ϕ′′′(s)|/6, again by Taylor’s formula we get
for every j ∈ {1, . . . , l − 1}

kj+1−1
∑

i=kj+1

ϕ′(g(ti)) −
ϕ(g(ti+1)) − ϕ(g(ti))

g(ti+1) − g(ti)

= −
kj+1−1
∑

i=kj+1

1

2
ϕ′′(g(ti)) (g(ti+1) − g(ti)) +

1

6
ϕ′′′(γi) (g(ti+1) − g(ti))

2

−−−−→
N→∞

− 1

2

∫ aj+1−

aj+
ϕ′′(g(s)) dg(s) +O(l−2) = −1

2

∫ g(aj+1−)

g(aj+)
ϕ′′(s) ds+O(l−2).

Summation over j leads to

l−1
∑

j=1

kj+1−1
∑

i=kj+1

ϕ′(g(ti)) −
ϕ(g(ti+1)) − ϕ(g(ti))

g(ti+1) − g(ti)

−−−−→
N→∞

− 1

2

l−1
∑

j=1

∫ g(aj+1−)

g(aj+)
ϕ′′(s) ds+O(l−1) = −1

2

∫ 1

0
ϕ′′(s) ds+

1

2

l−1
∑

j=2

∫ g(aj+)

g(aj−)
ϕ′′(s) ds+O(l−1)

−−−→
l→∞

− 1

2
(ϕ′(1) − ϕ′(0)) +

1

2

∑

a∈Jg

ϕ′(g(a+)) − ϕ′(g(a−)).

Combining this with (4.18) yields that the second line of (4.16) converges in fact to (4.17), which
completes the proof.

Since wN (g(t1), . . . , g(tN)) converges to w in Lp(G,Qβ), p > 0 (cf. proof of Lemma 4.13 above),
the last lemma ensures that the first term of dNζ converges to the first term of divQβ ζ in H,
while the following lemma deals with the second term.

Lemma 4.24. For Qβ-a.s. g we have

〈∇wN (g(t1), . . . , g(tN)), ~ϕ(g(t1), . . . , g(tN))〉RN → 〈∇w|g, ϕ(g(.))〉L2(0,1), as N → ∞,

and we have also convergence in H.

Proof. As in the proof of the last lemma it is enough to prove convergence Qβ-a.s. Note that

〈∇wN(~g), ~ϕ(~g)〉RN = (N + 1)〈ιN (∇wN (~g)), ιN (~ϕ(~g))〉L2(0,1),
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writing ~g := (g(t1), . . . , g(tN)) and using the extension of ιN on RN . By triangle and Cauchy-
Schwarz inequality we obtain

|〈(N + 1)ιN (∇wN(~g)), ιN (~ϕ(~g))〉L2(0,1) − 〈∇w|g, ϕ(g(.))〉L2(0,1)|
≤|〈(N + 1)ιN (∇wN(~g)) −∇w|g, ι

N (~ϕ(~g))〉L2(0,1)| + 〈∇w|g, ι
N (~ϕ(~g)) − ϕ(g(.))〉L2(0,1)|

≤
∥

∥(N + 1)ιN (∇wN (~g)) −∇w|g
∥

∥

L2(0,1)

∥

∥ιN (~ϕ(~g))
∥

∥

L2(0,1)

+
∥

∥∇w|g
∥

∥

L2(0,1)

∥

∥ιN (~ϕ(~g)) − ϕ(g(.))
∥

∥

L2(0,1)
,

which tends to zero by Lemma 4.16 and by the definition of ιN .

4.4.5 Proof of Proposition 4.4

Lemma 4.25. For u ∈ C(G) let uN ∈ HN be defined by uN (x) := u(ιx), then uN → u strongly.
Moreover, for any sequence fN ∈ HN with fN → f ∈ H strongly, uN · fN → u · f strongly.

Proof. Let ũN ∈ H be defined by ũN (g) := u(gN ), where gN :=
∑N

i=1 g(ti)1l[ti,ti+1), ti := i/(N+1),
then ũN → u in H strongly. Moreover,

lim
N

lim
M

∥

∥ΦM ũN − uM

∥

∥

HM = lim
N

lim
M

∥

∥ΦM ũN − ũM

∥

∥

H
= lim

N
‖ũN − u‖H = 0,

where as above we have identified ΦM with the corresponding projection operator in L2(G,Qβ).
For the proof of the second statement, let H ∋ f̃N → f in H such that

lim
N

lim sup
M

∥

∥

∥ΦM f̃N − fM

∥

∥

∥

HM
= 0.

From the uniform boundedness of ũN it follows that also ũN · f̃N → u · f in H. In order to show
HM ∋ uM · fM → u · f write

∥

∥

∥ΦM (ũN · f̃N ) − uM · fM

∥

∥

∥

HM

≤
∥

∥

∥ΦM (ũN · f̃N ) − uM · ΦM (f̃M )
∥

∥

∥

HM
+
∥

∥

∥uM · fM − uM · ΦM (f̃M )
∥

∥

∥

HM
.

Identifying the map ΦM with the associated conditional expectation operator, considered as an
orthogonal projection in H, the claim follows from

∥

∥

∥ΦM (ũN · f̃N ) − uM · ΦM (f̃M )
∥

∥

∥

HM
=
∥

∥

∥ΦM (ũN · f̃N ) − ũM · ΦM (f̃M )
∥

∥

∥

H

=
∥

∥

∥ΦM (ũN · f̃N ) − ΦM (ũM · f̃M )
∥

∥

∥

H

≤
∥

∥

∥ũN · f̃N − ũM · f̃M

∥

∥

∥

H
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and

∥

∥

∥uM · fM − uM · ΦM (f̃M )
∥

∥

∥

HM
≤ ‖u‖∞

∥

∥

∥fM − ΦM (f̃N )
∥

∥

∥

HM

+ ‖u‖∞
∥

∥

∥ΦM (f̃N ) − ΦM (f̃M )
∥

∥

∥

HM

= ‖u‖∞
∥

∥

∥fM − ΦM (f̃N )
∥

∥

∥

HM

+ ‖u‖∞
∥

∥

∥ΦM (f̃N ) − ΦM (f̃M )
∥

∥

∥

H

≤ ‖u‖∞
∥

∥

∥fM − ΦM (f̃N )
∥

∥

∥

HM

+ ‖u‖∞
∥

∥

∥f̃N − f̃M

∥

∥

∥

H

such that in fact limN lim supM

∥

∥

∥ΦM (ũN · f̃N ) − uM · fM

∥

∥

∥

HM
= 0.

Proof of Proposition 4.4. It suffices to prove the claim for functions f ∈ C(Gl) of the form
f(g1, . . . , gl) = f1(g1) · f2(g2) · · · · fl(gl) with fi ∈ C(G). Let PN

t : HN → HN be the semi-
group on HN induced by (XN

N ·t)t via Eg·qN
[f(XN

N ·t)] = 〈PN
t f, g〉HN . From Theorem 4.8 and

the abstract results in [50] it follows that PN
t converges to Pt strongly, i.e. for any sequence

uN ∈ HN converging to some u ∈ H strongly, the sequence PN
t uN also strongly converges to Ptu.

Let fN
i := fi ◦ ιN , then inductive application of Lemma 4.25 yields

PN
tl−tl−1

(fN
l · PN

tl−1−tl−2
(fN

l−1 · PN
tl−2−tl−3

. . . fN
2 · PN

t1 f
N
1 ) · · · )

N→∞−→ Ptl−tl−1
(fl · Ptl−1−tl−2

(fl−1 · Ptl−2−tl−3
. . . f2 · Pt1f1) · · · ) strongly,

which in particular implies the convergence of inner products. Hence, using the Markov property
of gN and g we may conclude that

lim
N

E
(

f1(g
N
t1 ) . . . fl(g

N
tl

)
)

= lim
N

E
(

fN
1 (XN

N ·t1) . . . f
N
l (XN

N ·tl)
)

= lim
N

〈1, PN
tl−tl−1

(fN
l · PN

tl−1−tl−2
(fN

l−1 · PN
tl−2−tl−3

. . . fN
2 · PN

t1 f
N
1 ) · · · )〉HN

= 〈1, Ptl−tl−1
(fl · Ptl−1−tl−2

(fl−1 · Ptl−2−tl−3
. . . f2 · Pt1f1) · · · )〉H

= E
(

f1(gt1) . . . fl(gtl)
)

. (4.19)

4.5 A non-convex (1 + 1)-dimensional ∇φ-interface model

We conclude with a remark on a link to stochastic interface models, cf. [40]. Consider an interface
on the one-dimensional lattice ΓN := {1, . . . , N}, whose location at time t is represented by the
height variables φt = {φt(x), x ∈ ΓN} ∈

√
N · ΣN with dynamics determined by the generator
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L̃N defined below and with the boundary conditions φt(0) = 0 and φ(N + 1) =
√
N at ∂ΓN :=

{0, N + 1}.

L̃Nf(φ) := (
β

N + 1
− 1)

∑

x∈ΓN

(

1

φ(x) − φ(x− 1)
− 1

φ(x+ 1) − φ(x)

)

∂

∂φ(x)
f(φ) + ∆f(φ)

for φ ∈
√
N · ΣN and with φ(0) := 0 and φ(N + 1) :=

√
N . L̃N corresponds to LN as an

operator on C2(
√
N ·ΣN ) with Neumann boundary conditions. Note that this system involves a

non-convex interaction potential function V on (0,∞) given by V (r) = (1 − β
N+1) log(r) and the

Hamiltonian

HN (φ) :=
N
∑

x=0

V (φ(x+ 1) − φ(x)), φ(0) := 0, φ(N + 1) :=
√
N.

Then, the natural stationary distribution of the interface is the Gibbs measure µN conditioned
on

√
N · ΣN :

µN (dφ) :=
1

ZN
exp(−HN (φ))1l{(φ(1),...,φ(N))∈

√
N ·ΣN}

∏

x∈ΓN

dφ(x),

where ZN is a normalization constant. Note that µN is the corresponding measure of qN on the
state space

√
N ·ΣN . Suppose now that (φt)t≥0 is the stationary process generated by L̃N . Then

the space-time scaled process

Φ̃N
t (x) :=

1√
N
φN2t(x), x = 0, . . . , N + 1,

taking values in ΣN , is associated with the Dirichlet form N · EN . Introducing the G-valued
fluctuation field

ΦN
t (ϑ) := ιN (Φ̃N

t )(ϑ) =
∑

x∈ΓN

Φ̃N
t (x) 1l[x/(N+1),(x+1)/(N+1))(ϑ), ϑ ∈ [0, 1),

by our main result we have weak convergence for the law of the equilibrium fluctuation field ΦN

to the law of the nonlinear diffusion process κ(µ.) on G, which is the G-parametrization of the
Wasserstein diffusion.



Appendix A

Conditional Expectation of the

Dirichlet Process

This section is devoted to the proof of Lemma 4.14. First we recall some basic facts about the
link between Gamma and Dirichlet processes. For α > 0 we denote by G(α) the dx-absolutely
continuous probability measure on R+ with density 1

Γ(α)x
α−1e−x.

Definition A.1. A real valued Markov process (γ(t))t≥0 starting in zero is called standard
Gamma process if its increments are independent and distributed according to γ(t)−γ(s) ∼ G(t−s)
for 0 ≤ s < t.

As every Lévy process the Gamma process admits a càdlàg modification, i.e. for almost all
realizations of γ the function t 7→ γ(t) is càdlàg and nondecreasing. Fix some T > 0 and

β > 0. Then, the process ( γ(β·t)
γ(β·T ))t∈[0,T ] is called Dirichlet process on [0, T ] with parameter β.

Its law will be denoted by Qβ,T and is obviously concentrated on the set GT := {g : [0, T ) →
[0, 1] | g càdlàg nondecreasing}. The finite dimensional distributions are given by

Qβ,T (g(t1) ∈ dx1, . . . , g(tN) ∈ dxN )

=
Γ(βT )

∏N
i=0 Γ(β(ti+1 − ti))

N
∏

i=0

(xi+1 − xi)β(ti+1−ti)−1dx1 . . . dxN ,

for every N ∈ N and every partition 0 = t0 < t1 < t2 < . . . < tN < tN+1 = T . The precise
meaning is that for all bounded measurable u : [0, 1]N → R,

∫

GT

u(g(t1), . . . , g(tN)) dQβ,T

=
Γ(βT )

∏N
i=0 Γ(β(ti+1 − ti))

∫

ΣN

u(x1, . . . , xN )
N
∏

i=0

(xi+1 − xi)β(ti+1−ti)−1dx1 . . . dxN ,

where ΣN is defined as before. Moreover, it is well known that the Gamma process (γβ·t)t∈[0,T ] and

its total charge γ(β ·T ) are independent (cf. e.g. [32]). In particular, alternatively the law Qβ,T of
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the Dirichlet process can be obtained by conditioning the law of the Gamma process (γβ·t)t∈[0,T ]

on the event γ(β · T ) = 1. In other words, the Dirichlet process on [0, T ] can interpreted as some
kind of Gamma bridge between zero and T . Finally, we recall that the Dirichlet process is a pure
jump process. More precisely, the typical paths are strictly increasing but increase only by jumps
and the jump locations are dense in [0, T ] (see Section 3 in [66] for more details).

Lemma A.2. For arbitrary T > 0

EQβ,T [g] =
Id|[0,T ]

T
.

Proof. We need to show that for every partition 0 = t0 < t1 < t2 < . . . < tN < tN+1 = T ,
EQβ,T [(g(t1), . . . , g(tN))] = (t1, . . . , tN )/T , i.e. EQβ,T [g(ti)] = ti/T for every i ∈ {1, . . . , N}. Note
that by the formula for the the finite dimensional distributions we have that

EQβ,T [g(ti)] =
Γ(βT )

∏N
j=0 Γ(β(tj+1 − tj))

∫

ΣN

xi
N
∏

j=0

(xj+1 − xj)β(tj+1−tj)−1dx1 . . . dxN

=
Γ(βT )

∏N
j=0 Γ(β(tj+1 − tj))

∫ 1

0
xiA(xi)B(xi) dxi

with

A(xi) :=

∫ xi

0

∫ xi−1

0
· · ·
∫ x2

0

i−1
∏

j=0

(xj+1 − xj)β(tj+1−tj)−1dx1 · · · dxi−1,

B(xi) :=

∫ 1

xi

∫ 1

xi+1

· · ·
∫ 1

xN−1

N
∏

j=i

(xj+1 − xj)β(tj+1−tj)−1dxN · · · dxi+1.

We will use the well known fact
∫ b

a
(z − a)u(b− z)v dz =

Γ(1 + u)Γ(1 + v)

Γ(2 + u+ v)
(b− a)1+u+v,

for arbitrary 0 ≤ a < b and u, v > −1 to compute A(xi):

A(xi)

=

∫ xi

0
· · ·
∫ x3

0

i−1
∏

j=2

(xj+1 − xj)β(tj+1−tj)−1

∫ x2

0
(x1)βt1−1(x2 − x1)β(t2−t1)−1dx1 dx2 · · · dxi−1

=Γ(βt1) Γ(β(t2 − t1))

∫ xi

0
· · ·
∫ x4

0

i−1
∏

j=2

(xj+1 − xj)β(tj+1−tj)−1

× 1

Γ(βt2)

∫ x3

0
(x2)βt2−1(x3 − x2)β(t3−t2)−1dx2 dx3 · · · dxi−1

=Γ(βt1) Γ(β(t2 − t1))

∫ xi

0
· · ·
∫ x4

0

i−1
∏

j=2

(xj+1 − xj)β(tj+1−tj)−1 Γ(β(t3 − t2))

Γ(βt3)
(x3)βt3−1dx3 · · · dxi−1.
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Iterating this procedure yields

A(xi) =

∏i−1
j=0 Γ(β(tj+1 − tj))

Γ(βti)
(xi)βti−1.

Analogously, we obtain

B(xi) =

∏N
j=i Γ(β(tj+1 − tj))

Γ(β(T − ti))
(1 − xi)β(T−ti)−1.

Thus,

EQβ,T [g(ti)] =
Γ(βT )

Γ(βti)Γ(β(T − ti))

∫ 1

0
(xi)βti(1 − xi)β(T−ti)−1dxi

=
Γ(βT )

Γ(βti)Γ(β(T − ti))
· Γ(βti + 1)Γ(β(T − ti))

Γ(βT + 1)
,

and using xΓ(x) = Γ(x+ 1), x > 0 we finally obtain

EQβ,T [g(ti)] =
ti
T
.

Lemma A.3. Let (γ(t))t≥0 denote the Gamma process and let s > 0 be arbitrary but fixed.
Then, for every a > 0 and every measurable F : Gs → R

E
[

F (γ|[0,s))
∣

∣ γ(s) = a
]

= E
[

F (a · γ|[0,s))
∣

∣ γ(s) = 1
]

.

Proof. We set γ̄ := γ
a . In particular note that γ̄

γ̄(s) = γ
γ(s) is the Dirichlet process over [0, s] (with

parameter β = 1). Hence,

E
[

F (γ|[0,s))
∣

∣ γ(s) = a
]

= E
[

F (aγ̄|[0,s))
∣

∣ γ̄(s) = 1
]

= E

[

F

(

a
γ̄|[0,s)

γ̄(s)

)∣

∣

∣

∣

γ̄(s) = 1

]

= E

[

F

(

a
γ̄|[0,s)

γ̄(s)

)]

= E

[

F

(

a
γ|[0,s)

γ(s)

)]

= E
[

F (a · γ|[0,s))
∣

∣ γ(s) = 1
]

.

Proof of Lemma 4.14 Setting ti = i/(N + 1), i = 0, . . . , N + 1, we have

EQβ [g|FN ] (X) = EQβ

[

N
∑

i=0

g1l[ti,ti+1)

∣

∣

∣

∣

∣

g(t1) = x1, . . . , g(tN) = xN

]

=
N
∑

i=0

1l[ti,ti+1)EQβ

[

g|[ti,ti+1)

∣

∣ g(ti) = xi, g(ti+1) = xi+1
]
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Using the stationarity of the Gamma process and Lemma A.3 we obtain for every i

EQβ

[

g|[ti,ti+1)

∣

∣ g(ti) = xi, g(ti+1) = xi+1
]

=xi + E
[

γ(β·)|[ti,ti+1)

∣

∣ γ(βti) = 0, γ(βti+1) = xi+1 − xi
]

=xi + E
[

γ(β(· − ti))|[ti,ti+1)

∣

∣ γ(0) = 0, γ(β(ti+1 − ti)) = xi+1 − xi
]

=xi + (xi+1 − xi) E
[

γ(β(· − ti))|[ti,ti+1)

∣

∣ γ(0) = 0, γ(β(ti+1 − ti)) = 1
]

=xi + (xi+1 − xi) E
Q

β,ti+1−ti

[

g(· − ti)|[ti,ti+1)

]

.

Finally, by Lemma A.2

EQβ [g|FN ] (X) =
N
∑

i=0

1l[ti,ti+1)

(

xi + (xi+1 − xi)
· − ti

ti+1 − ti

)

= gX .
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