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Abstract

In this thesis, we discuss various aspects of integrability of birational maps, mainly in the context
of maps obtained as Kahan discretizations of systems of quadratic ordinary differential equations.
Integrability of birational maps can be characterized by the presence of geometric features such as
a sufficient number of independent integrals of motion, an invariant Poisson structure, an invari-
ant measure form, etc., and algebraic features such as vanishing algebraic entropy and confined
singularities.

This thesis consists of two parts. In the first part, we focus on algebraic and geometric aspects
of birational maps of degree two of the complex projective plane. We discuss the relation be-
tween the singularity structure of a generic quadratic Cremona transformation and the sequence
of degrees of its iterates. In particular, based on general results by Bedford & Kim, we identify
the singularity structures that result in polynomial growth of degrees. Thereafter, we discuss the
singularity structure of Kahan discretizations of a class of quadratic vector fields and of the Lotka-
Volterra system, and provide a classification of the parameter values such that the corresponding
Kahan map is integrable. Further, we elaborate on the geometric construction of birational invo-
lutions on elliptic pencils of degree four and six that are a generalization of the so-called Manin
involutions on cubic pencils. For this, we present a geometric (completely algorithmic) approach
to reduce such higher degree pencils to cubic ones by (a composition of) quadratic birational
changes of coordinates of the complex projective plane. Finally, we discuss special cubic, quartic
and sextic pencils that feature quadratic Manin maps. Lastly, we demonstrate how one can repair
non-integrable Kahan discretizations in some cases by adjusting coefficients of the Kahan scheme.

In the second part, we consider modified invariants, that is, formal integrals of motion that
are a perturbation of an integral of motion of the continuous system, for Kahan discretizations.
In this context, we present a combinatorial proof of the Celledoni-McLachlan-Owren-Quispel for-
mula for an integral of motion of Kahan discretizations of canonical Hamiltonian systems with a
cubic Hamiltonian. Further, we exemplify that one can recover an integral of motion of a Kahan
discretization from a divergent modified invariant using Padé approximation.
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Zusammenfassung

In dieser Arbeit behandeln wir verschiedene Aspekte zur Integrabilität von birationalen Abbil-
dungen, vorrangig im Kontext von Abbildungen, welche als Kahan-Diskretisierung von Syste-
men von quadratischen gewöhnlichen Differentialgleichungen gegeben sind. Integrabilität von
birationalen Abbildungen kann durch das Vorhandensein von geometrischen Eigenschaften, wie
zum Beispiel eine ausreichende Anzahl von Erhaltungsgrößen, eine invariante Poisson-Struktur,
ein invariantes Maß, etc., sowie durch algebraische Eigenschaften, wie zum Beispiel verschwin-
dende algebraische Entropie und begrenzte Singularitäten, charakterisiert werden.

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil betrachten wir algebraische und geometri-
sche Aspekte von birationalen Abbildungen vom Grad zwei der komplexen projektiven Ebene.
Wir behandeln den Zusammenhang zwischen der Singularitätsstruktur einer generischen qua-
dratischen Cremona-Abbildung und der Folge von Graden der Iterierten. Basierend auf allgemei-
nen Resultaten von Bedford & Kim identifizieren wir die Singularitätsstrukturen, welche zu po-
lynomiellem Wachstum der Grade führen. Anschließend betrachten wir die Singularitätsstruktur
von Kahan-Diskretisierungen von einer Klasse von quadratischen Vektorfeldern und vom Lotka-
Volterra-System. Auf diese Weise finden wir eine Klassifizierung der Parameterwerte, für wel-
che die zugehörige Kahan-Abbildung integrabel ist. Weiterhin beschreiben wir die geometrische
Konstruktion von birationalen Involutionen auf Büscheln von elliptischen Kurven vom Grad vier
und sechs. Dies stellt eine Verallgemeinerung der sogenannten Manin-Involutionen auf Büscheln
kubischer Kurven dar. Hierfür beschreiben wir eine geometrische (vollständig algorithmische)
Herangehensweise um solche Büschel von höherem Grad auf Büschel kubischer Kurven zurück-
zuführen. Schließlich behandeln wir spezielle Büschel von Kurven vom Grad drei, vier und sechs,
welche quadratische Manin-Abbildungen aufweisen. Zuletzt zeigen wir wie man in einigen Fäl-
len nicht-integrable Kahan-Abbildungen reparieren kann, indem man Koeffizienten im Kahan-
Schema anpasst.

Im zweiten Teil betrachten wir modifizierte Invarianten, d.h. formale Erhaltungsgrößen, die
eine Perturbation einer Erhaltungsgröße des kontinuierlichen Systems sind, für Kahan-Diskre-
tisierungen. In diesen Zusammenhang geben wir einen kombinatorischen Beweis der Celledoni-
McLachlan-Owren-Quispel-Formel für eine Erhaltungsgröße für Kahan-Diskretisierungen von
kanonischen Hamlitonischen Systemen mit kubischer Hamiltonfunktion. Darüber hinaus zeigen
wir beispielhaft, dass man eine Erhaltungsgröße für eine Kahan-Diskretisierung aus einer diver-
genten formalen Invarianten durch Padé -Approximation erhalten kann.
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Chapter 0

Integrability of birational dynamical
systems

In this thesis, we discuss various aspects of integrability of birational maps, mainly in the context
of maps obtained as Kahan discretizations of systems of quadratic ordinary differential equations.

It is a well-known problem in numerical integration that if a dynamical system has conserved
quantities, or is volume-preserving, or has some other important geometrical feature (such as be-
ing invariant under the action of a Lie group of symmetries) a generic discretization scheme of
the underlying differential equations does not share the same properties. On the contrary, the Ka-
han discretizations, which are applicable whenever the continuous vector field is quadratic, seem
to inherit several good properties of the continuous systems they are discretizing. In particular,
for the special case of completely integrable systems, ideally one would like to obtain discretiza-
tions which are themselves completely integrable. As a matter of fact, the Kahan discretization
of many known integrable quadratic systems of differential equations possesses this remarkable
integrability-preserving feature [42, 43].

What do we mean by integrability? For continuous systems, a well-established answer is inte-
grability in the sense of Arnold-Liouville: a Hamiltonian system on a 2N-dimensional symplectic
manifold (M, {·, ·}) is called completely integrable if it admits N functionally independent integrals
of motion F1, . . . , FN that are in involution w.r.t. the Poisson bracket {·, ·}. In this case, the famous
Arnold-Liouville theorem (cf. [9], Theorem 1.24) describes the motion on the common level set
of these integrals. Similarly, for discretizations of such systems one can relate integrability to the
presence of geometric features such as the existence of an invariant Poisson structure and suf-
ficiently many functionally independent integrals of motion [9], that are perturbations of their
analogs in the continuous case. In general, and even more so in higher dimension, such objects
are difficult to find (see, e.g., [42]), and the requirement of the existence of an invariant Poisson
structure can be too restrictive [13].

For birational maps of complex projective space, the algebraic entropy (the logarithm of the
dynamical degree) has become the primary integrability criterion [39]: maps with vanishing al-
gebraic entropy are integrable; maps with non-vanishing algebraic entropy are non-integrable. The
dynamical degree of a given birational map is closely related to its singularity structure. In dimen-
sion two, any birational map can be lifted to an algebraically stable map of a rational surface by a
finite number of blow-ups. In this case, the dynamical degree can be computed exactly [27,39,54].

1



CHAPTER 0. INTEGRABILITY OF BIRATIONAL DYNAMICAL SYSTEMS 2

0.1 Birational dynamical systems
In this thesis, we study integrability properties of birational maps. One can define birational maps
in affine space and also in projective space. We consider Cn as the affine part of Pn consisting of
the points [x1 : . . . : xn+1] ∈ Pn with xn+1 , 0. We identify the point (x1, . . . , xn) ∈ Cn with the
point [x1 : . . . : xn : 1] ∈ Pn.
In affine space one defines a birational map as follows:

We write x = (x1, . . . , xn). A rational map

ϕ : Cn → Cn, x ↦→
(

P1(x)
Q1(x)

, . . . ,
Pn(x)
Qn(x)

)
,

where Pi, Qi, i = 1, . . . , n, are polynomials, so that each pair Pi, Qi is coprime, is called birational
if there is a rational map ψ : Cn → Cn, such that ϕ ◦ ψ = id and ψ ◦ ϕ = id away from some
codimension 1 set. We call ψ the birational inverse of ϕ and write ψ = ϕ−1 if there is no danger of
confusion.
Given a birational map in affine space, one can obtain its projective version:

We add the variable xn+1 and set x̄ = (x1/xn+1, . . . , xn/xn+1). Let Q be the least common
multiple of the polynomials Q1, . . . , Qn. Let d be the maximal degree of the polynomials Q · Pi/Qi,
i = 1, . . . , n, and Q. Define the homogeneous polynomials

Xi(x1, . . . , xn+1) = xd
n+1Q(x̄)

Pi(x̄)
Qi(x̄)

, i = 1, . . . , n,

Xn+1(x1, . . . , xn+1) = xd
n+1Q(x̄).

Then we obtain the projective version of ϕ:

ϕ : Pn → Pn, [x1 : . . . : xn+1] ↦→ [X1 : . . . : Xn+1],

where Xi(x1, . . . , xn), i = 1, . . . , n + 1, are homogeneous polynomials of one and the same degree
d without a non-trivial common factor.

0.1.1 Example: The QRT map
The perhaps most famous example of integrable birational maps in dimension 2 is given by the
so called QRT map, that has been discovered in 1988 by Quispel, Roberts & Thompson [49, 50].
An extensive treatment of the QRT map can be found in the book by Duistermaat [3]. It can be
defined as follows:

Definition 0.1 (QRT map).

(1) Consider a nonsingular biquadratic curve C(x, y) = 0 in P1 × P1, that is, for each y, the poly-
nomial x ↦→ C(x, y) is of degree 2 and, for each x, the polynomial y ↦→ C(x, y) is of degree 2.
If

C(x, y) = a(y)x2 + b(y)x + c(y),

then the horizontal switch IC,1 : (x, y) ↦→ (x′, y), which switches the two points on the curve
C = 0 with the same y-coordinate, is given by

x′ = −x − b(y)
a(y)

.
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Similarly, we have the vertical switch IC,2 : (x, y) ↦→ (x, y′), which switches the two points on
the curve C = 0 with the same x-coordinate. The QRT map on the curve C = 0 is defined as the
composition τC = IC,2 ◦ IC,1.

(2) Consider a pencil P = {Cλ}, parametrized by λ ∈ P1, of biquadratic curves in P1 × P1, that is,

Cλ = {(x, y) ∈ P1 × P1 : F(x, y) + λG(x, y) = 0}.

Here, F, G are linearly independent biquadratic polynomials. The QRT map τP : P1 × P1 → P1 ×
P1 is a birational map defined as follows. For any p ∈ P1 × P1 which is not a base point, τP (p) =
τCλ

(p), where Cλ is the unique curve of the pencil through the point p.

Explicitly, and actually the way it has been originally defined, the QRT map can be given as
follows. Write the biquadratic polynomials F, G, defining the pencil P , as

F(x, y) = XT AY, G(x, y) = XTBY

where X = (x2, x, 1)T, Y = (y2, y, 1)T and A, B ∈ C3×3, and define the vector-valued functions f
and g by

f (y) = (AY)× (BY), g(x) = (ATX)× (BTX).

Then the involutions IP ,1 and IP ,2 are given by

IP ,1(x, y) = (ζ(x, y), y), where ζ(x, y) =
f1(y)− f2(y)x
f2(y)− f3(y)x

, (0.1)

IP ,2(x, y) = (x, η(x, y)), where η(x, y) =
g1(x)− g2(x)y
g2(x)− g3(x)y

, (0.2)

so that the QRT map reads
τP (x, y) = (ζ(x, y), η(ζ(x, y), y)). (0.3)

It admits an integral of motion

H(x, y) =
F(x, y)
G(x, y)

=
XT AY
XTBY

,

and an invariant measure form
Ω(x, y) =

dx ∧ dy
F(x, y)

.

0.1.2 Example: The Kahan map
The Kahan discretization scheme was introduced in 1993 by W. Kahan in the unpublished notes
[35]. It can be applied to any system of ordinary differential equations ẋ = f (x) in Rn with a
quadratic vector field:

f (x) = Q(x) + Bx + c, x ∈ Rn.

Here, each component of Q : Rn → Rn is a quadratic form, while B ∈ Rn×n and c ∈ Rn. Then
the Kahan discretization is given by

x̃ − x
2ε

= Q(x, x̃) +
1
2

B(x + x̃) + c, (0.4)
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where
Q(x, x̃) =

1
2
(Q(x + x̃)− Q(x)− Q(x̃))

is the symmetric bilinear form corresponding to the quadratic form Q. Equation (0.4) is linear
with respect to x̃ and therefore defines a rational map x̃ = Φε(x). Clearly, this map approximates
the time 2ε shift along the solutions of the original differential system. (We have chosen a slightly
unusual notation 2ε for the time step, in order to avoid appearance of powers of 2 in numerous
formulas; the more standard choice would lead to changing ε ↦→ ε/2 everywhere.) Since equation
(0.4) remains invariant under the interchange x ↔ x̃ with the simultaneous sign inversion ε ↦→ −ε,
one has the reversibility property

Φ−1
ε (x) = Φ−ε(x). (0.5)

In particular, the map Φε is birational. The explicit form of the map Φε defined by (0.4) is

Φε(x) = x + 2ε
(

I − ε f ′(x)
)−1 f (x), (0.6)

where f ′(x) denotes the Jacobi matrix of f (x).
Kahan applied this discretization scheme to the famous Lotka-Volterra system and showed

that in this case it possesses a very remarkable non-spiraling property. This property was ex-
plained by Sanz-Serna [51] by demonstrating that in this case the numerical method preserves
an invariant Poisson structure of the original system. Yet, as we demonstrate in Section 4.1, the
Kahan map of this system is (except for ε = ±1) non-integrable, in the sense of algebraic entropy.

Hirota & Kimura (being apparently unaware of the work by Kahan) applied this discretization
scheme to two famous integrable systems of classical mechanics: the Euler top and the Lagrange
top [31, 32]. Surprisingly, the method produced in both cases integrable maps, in the sense of
possessing a sufficient number of functionally independent integrals of motion.

Since then, geometric and integrability properties of the Kahan method (in the context of inte-
grable systems also called the “Hirota-Kimura method") were extensively studied, mainly by two
groups, in Berlin [42–45, 47, 48, 59] and in Australia and Norway [22–24, 36].

0.2 Algebraic entropy and singularity confinement as
integrability criteria

First of all, we discuss some properties of birational maps of Pn following [57]. For a treatment
of the concepts from algebraic geometry that are relevant for this thesis we refer to [5, 27, 54]. We
consider a birational map

ϕ : Pn → Pn, [x1 : . . . : xn+1] ↦→ [X1 : . . . : Xn+1],

where Xi(x1, . . . , xn+1), i = 1, . . . , n + 1, are homogeneous polynomials of one and the same de-
gree d without a non-trivial common factor. The polynomial map

ϕ̂ : Cn+1 → Cn+1, (x1, . . . , xn+1) ↦→ (X1, . . . , Xn+1)

will be called minimal lift of ϕ. It is defined up to a constant factor, and the common degree d of
its components X1, . . . , Xn+1 is called deg f .

The map ϕ possesses:

• the indeterminacy set

I(ϕ) = {[x1 : . . . : xn+1] ∈ Pn : X1 = . . . = Xn+1 = 0},
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The set of singular points I(ϕ) has codimension at least 2. In fact, if ϕ would be singular on a
codimension 1 variety defined by a polynomial equation K = 0, then K would be a common
factor of the homogeneous polynomials X1, . . . , Xn+1 that define ϕ, which is a contradiction;

• the critical set

C(ϕ) = {[x1 : . . . : xn+1] ∈ Pn : det dϕ̂(x1, . . . , xn+1) = 0}.

The map ϕ has a birational inverse ψ : Pn → Pn such that ϕ ◦ψ = id and ψ ◦ ϕ = id away from
some codimension 1 set. The composition of the minimal lifts ϕ̂ and ψ̂ appears as multiplication
of all coordinates with a common factor, that is,

ψ̂ ◦ ϕ̂ = K− · id, ϕ̂ ◦ ψ̂ = K+ · id. (0.7)

The two polynomials K− and K+, both of degree deg ϕ · deg ψ − 1, may be reducible:

K− =
p

∏
i=1

(K(i)
− )li , K+ =

q

∏
j=1

(K(j)
+ )mj . (0.8)

Each factor K(i)
± defines an algebraic variety of codimension 1.

A birational map ϕ blows down irreducible components V = {K(i)
− = 0} of the critical set

C(ϕ) = {K− = 0}, so that ϕ(V) ⊂ I(ψ), and its inverse map ψ blows down irreducible compo-
nents V = {K(j)

+ = 0} of the critical set C(ψ) = {K+ = 0}, so that ϕ(V) ⊂ I(ϕ).
Let V = {K = 0} be an irreducible variety of codimension 1. The defining polynomial of the

total pre-image of V is given the pullback of K by ϕ, that is,

ϕ∗(K) = K′(K(1)
− )n1 · · · (K(p)

− )np .

It contains the defining polynomial K′ of the (proper) pre-image V′ of V, i.e., the (proper) image
of V by ψ, and may contain additional factors (K(i)

− )ni . Those factors correspond to singular
subvarieties contained in V.

Similarly, the defining polynomial of the total image of V is given by the pullback of K by ψ.

0.2.1 Algebraic entropy
The notion of algebraic entropy as an integrability criterion for discrete systems was introduced by
Hietarinta & Viallet [30]. It is based on the growth of the degree of iterates of a given map ϕ:

Let ϕ̂k = ϕ̂ ◦ ϕ̂ ◦ · · · ◦ ϕ̂ (k times). The components of this polynomial map may contain a non-
trivial common factor: ϕ̂k = K · ϕ[k], where K is a homogeneous polynomial and the components
of ϕ[k] have no nontrivial common factor, so that ϕ[k] is a minimal lift of the rational map ϕk on
Pn. We write

ϕ[k](x1, . . . , xn+1) = (X[k]
1 (x1, . . . , xn+1), . . . , X[k]

n+1(x1, . . . , xn+1)).

Therefore, deg(ϕk) is the common degree of the homogeneous polynomials X[k]
1 , . . . , X[k]

n+1 which
equals dk − deg K < dk.

Definition 0.2. Let ϕ be a birational map of Pn.
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• The dynamical degree of ϕ is defined as

λ1(ϕ) = lim
n→∞

(deg(ϕn))1/n.

• The algebraic entropy is defined as the logarithm of the dynamical degree, that is,

ent(ϕ) = lim
n→∞

1
n

log(deg(ϕn)).

Generically, the sequence of degrees deg(ϕn) grows exponentially, so that ent(ϕ) > 0, while
integrability is associated with polynomial growth, so that ent(ϕ) = 0. This has become one of
the definitions of integrability for discrete systems: maps with vanishing algebraic entropy are
integrable; maps with non-vanishing algebraic entropy are non-integrable.

0.2.2 Singularity confinement
Singularity confinement as integrability criterion for discrete systems was proposed by Grammati-
cos, Ramani and collaborators [28,29], and has been an area of active research in the past decades
(see, e.g., [39, 40, 57]). It can be defined as follows:

Definition 0.3. Let ϕ be a birational map of Pn. A singularity confinement pattern is given by a
sequence

V −→ ϕ(V) −→ ϕ2(V) −→ · · · −→ ϕn(V) −→ ϕn+1(V), (0.9)

where V = {K(i)
− = 0} ⊂ C(ϕ) is a variety of codimension 1 (so that ϕ(V) ⊂ I(ψ)) and n ∈ N is chosen

minimal such that ϕn+1(V) = {K(j)
+ = 0} ⊂ C(ψ) recovers to a variety of codimension 1.

One says that a map is confining if all varieties {K(i)
− = 0} participate in a singularity confine-

ment pattern.
Hietarinta & Viallet [30] gave an example of a confining 2-dimensional map that is non-

integrable, in the sense that it has non-vanishing algebraic entropy and exhibits numerical chaos.
On the other hand, there are examples non-confining maps that are integrable [18, 40, 57]. For
two-dimensional systems, this can be the case for linearizable maps.

In the following, we consider the two-dimensional case. In this case, the indeterminacy set
I(ϕ) consists of finitely many points. The birational map ϕ blows down irreducible components
of the critical set C(ϕ) = {K− = 0} to the points of I(ϕ−1), and its inverse map ϕ−1 blows down
irreducible components of the critical set C(ϕ−1) = {K+ = 0} to the points of I(ϕ).

In this case, a singularity confinement pattern is given by a sequence

V −→ ϕ(V) −→ ϕ2(V) −→ · · · −→ ϕn(V) −→ ϕn+1(V),

where V ⊂ C(ϕ) is a curve (so that ϕ(V) ∈ I(ϕ−1) is a point) and n ∈ N is chosen minimal such
that ϕn+1(V) ⊂ C( f−1) recovers to a curve.

A closely related notion is that of algebraic stability (which was originally called analytic stabil-
ity). It can be defined as follows (see [27], Theorem 1.14):

Definition 0.4. Let ϕ be a birational map of a smooth projective surface X. Then ϕ is algebraically stable
(AS) if there is no curve V ⊂ X such that ϕn(V) ∈ I(ϕ) for some integer n ≥ 0.

Indeed, a singularity confinement pattern for a map ϕ : X → X involves a curve V ⊂ X such
that ϕ(V) = P is a point (so that P ∈ I(ϕ−1)) and ϕn−1(P) ∈ I(ϕ), so that ϕn(P) is a curve again
for some positive integer n ∈ N. A singularity confinement pattern can be resolved by blowing
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up the orbit of P. Essentially, upon resolving all singularity confinement patterns, one lifts ϕ to
an AS map ϕ̃ : X′ → X′. However, it may happen that a map does not have any singularity
confinement patterns in the sense of Definition 0.3 and is not algebraically stable (see Remark
3.16).

Diller & Favre showed that for any birational map ϕ : X → X of a smooth projective surface
we can construct by a finite number of successive blow-ups a surface X′ such that ϕ lifts to an
algebraically stable birational map ϕ̃ : X′ → X′ (see [27], Theorem 0.1). Then the dynamical
degree of the map ϕ is given by the largest eigenvalue of the induced pullback map ϕ̃∗ : Pic(X′) →
Pic(X′), where Pic(X′) denotes the Picard group of X′.

Diller & Favre provide the following classification for birational maps with dynamical degree
λ1 = 1:

Theorem 0.5 (Diller & Favre [27], Theorem 0.2). Let ϕ : X → X be a bimeromorphic map of a Kähler
surface with λ1 = 1. Up to bimeromorphic conjugacy, exactly one of the following holds.

(i) The sequence ∥(ϕn)∗∥ is bounded, and ϕn is an automorphism isotopic to the identity for some n.

(ii) The sequence ∥(ϕn)∗∥ grows linearly, and ϕ preserves a rational fibration. In this case, ϕ cannot be
conjugated to an automorphism.

(iii) The sequence ∥(ϕn)∗∥ grows quadratically, and ϕ is an automorphism preserving an elliptic fibra-
tion.

In the last two cases, the invariant fibrations are unique.

Remark 0.6. A fibration of a compact complex surface X is a surjective holomorphic map ρ : X →
C onto a compact connected curve C such that ρ−1(p) is connected for generic p. Note that ρ−1(p)
is smooth for generic p, and the genus of a smooth fiber is independent of p. If this genus is zero
the fibration is called rational. If this genus is one, the fibration is called elliptic [27].

One says that a bimeromorphic map ϕ of a surface X preserves a fibration if it maps fibers of
ρ to fibers of ρ. A stronger requirement, related to the notion of an integral of motion, would be
that ϕ maps each such fiber to itself.



Part I

Algebraic and geometric aspects of
quadratic Cremona transformations

8



Chapter 1

Birational quadratic maps of P2

Some of the results of the chapters 1 and 3 have been published in [59].

As shown, e.g., in [2], every quadratic birational map ϕ : P2 → P2 can be represented as
ϕ = A1 ◦ qi ◦ A2, where A1, A2 are linear projective transformations of P2 and qi is one of the
three standard quadratic involutions:

q1 : [x : y : z] → [yz : xz : xy], (1.1)

q2 : [x : y : z] → [xz : yz : x2], (1.2)

q3 : [x : y : z] → [x2 : xy : y2 + xz]. (1.3)

In these three cases, the indeterminacy set I(ϕ) consists of three, respectively two, one (dis-
tinct) singularities. The last two cases correspond to a coalescence of singularities. Therefore, the
first case is the generic one.

In the present work, we mainly consider the first case: ϕ = A1 ◦ q1 ◦ A2. In this case, I(ϕ) =
{B(1)

+ , B(2)
+ , B(3)

+ } consists of three distinct points. Let L(i)
− denote the line through B(j)

+ , B(k)
+ (we

have B(i)
+ = L(j)

− ∩ L(k)
− ). These lines are exceptional in the sense that they are blown down by

ϕ to points: ϕ(L(i)
− ) = B(i)

− . The inverse map is also quadratic with set of indeterminacy points

I(ϕ−1) = {B(1)
− , B(2)

− , B(3)
− }.

Suppose that the map admits s singularity confinement patterns (0 ≤ s ≤ 3). That means
there are positive integers n1, . . . , ns ∈ N and (σ1, . . . , σs) such that ϕni−1(B(i)

− ) = B(σi)
+ for i =

1, . . . s. We assume that the ni are taken to be minimal and, for simplicity, we also assume that
ϕk(B(i)

− ) , ϕl(B(j)
− ) for any k, l ≥ 0 and i , j. As shown by Bedford & Kim [11] one can resolve the

singularity confinement patterns by blowing up the finite sequences B(i)
− , ϕ(B(i)

− ), . . . , ϕni−1(B(i)
− ).

Those sequences are also called singular orbits. In this thesis, we mainly encounter the situation
that the orbits of different B(i)

− are disjoint. As shown in [11], one can adjust the procedure to the
more general situation. An example is given in Section 4.1.1.

On the blow-up surface X, the lifted map ϕ̃ : X → X is AS, and is an automorphism if and
only if s = 3. The s-tuples (n1, . . . , ns), (σ1, . . . , σs) are called orbit data associated to ϕ. We say that
the map ϕ realizes the orbit data (n1, . . . , ns), (σ1, . . . , σs).

Let H ∈ Pic(X) be the pullback of the divisor class of a generic line in P2. Let Ei,n ∈ Pic(X),
for i ≤ s and 0 ≤ n ≤ ni − 1, be the divisor class of the exceptional divisor associated to the

9
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blow-up of the point ϕn(B(i)
− ). Then H and Ei,n give a basis for Pic(X), i.e.,

Pic(X) = ZH
3⨁

i=1

ni−1⨁
n=0

ZEi,n,

that is orthogonal w.r.t. the intersection product, (·, ·) : Pic(X)× Pic(X) → Z, and is normalized
by (H,H) = 1 and (Ei,n, Ei,n) = −1. The rank of the Picard group is ∑ ni + 1.

The induced pullback ϕ̃∗ : Pic(X) → Pic(X) is determined by (see Bedford & Kim, [11] and
Diller, [26])

H ↦→ 2H− ∑
j≤s

Ej,nj−1,

Ei,0 ↦→ H − ∑
j≤s : σj,i

Ej,nj−1, i ≤ s,

Ei,n ↦→ Ei,n−1, i ≤ s, 1 ≤ n ≤ ni − 1.

(1.4)

The induced pushforward ϕ̃∗ : Pic(X) → Pic(X) is determined by

H ↦→ 2H− ∑
j≤s

Ej,0,

Ei,ni−1 ↦→ H − ∑
j≤s : j,σi

Ej,0, i ≤ s,

Ei,n−1 ↦→ Ei,n, i ≤ s, 1 ≤ n ≤ ni − 1.

(1.5)

The maps ϕ̃∗, ϕ̃∗ are adjoint w.r.t. the intersection product (see [27], Proposition 1.1), i.e.,
(ϕ̃∗A, B) = (A, ϕ̃∗B) for all A, B ∈ Pic(X).

Bedford & Kim have computed the characteristic polynomial χ(λ) = det(ϕ̃∗ − λid) explicitly
for any given orbit data (n1, . . . , ns), (σ1, . . . , σs) (see [11], Theorem 3.3). The dynamical degree λ1
is the largest real zero of the polynomial χ(λ). For s = 3, the characteristic polynomial is given
by (see [26]):

χ(λ) = λ1+∑ nj p(1/λ) + (−1)ord(σ)p(λ), (1.6)

where
p(λ) = 1 − 2λ + ∑

j=σj

λ1+nj + ∑
j,σj

λnj(1 − λ).

Let C(m) = (ϕ̃∗)m(H) ∈ Pic(X) be the class of the m-th iterate of a generic line. Set

d(m) = (C(m),H), (1.7)

so that d(m) is the algebraic degree of the m-th iterate of the map ϕ. Set

µi(m + j) = (C(m), Ei,j), i ≤ s, 0 ≤ j ≤ ni − 1. (1.8)

The expression on the right-hand side indeed depends on i and m + j only: using that the maps
ϕ̃∗, ϕ̃∗ are adjoint w.r.t. the intersection product and the relations (1.5), we find

(C(m), Ei,j) = (C(m), ϕ̃∗Ei,j−1) = (ϕ̃∗C(m), Ei,j−1) = (C(m + 1), Ei,j−1).

In particular, µi(m) = (C(m), Ei,0) can be interpreted as the multiplicity of B(i)
− on the m-th iterate

of a generic line.
The sequence of degrees d(m) of iterates of the map ϕ satisfies a system of linear recurrence
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relations.

Theorem 1.1 (Recurrence relations). Let ϕ be a birational map of P2 with three distinct indeterminacy
points, and with associated orbit data (n1, . . . , ns), (σ1, . . . , σs). The degree of iterates d(m) satisfies the
system of recurrence relations⎧⎪⎪⎨⎪⎪⎩

d(m + 1) = 2d(m)− ∑
j≤s

µj(m),

µi(m + ni) = d(m)− ∑
j≤s : j,σi

µj(m), i ≤ s,
(1.9)

with initial conditions d(0) = 1 and µi(m) = 0, for i ≤ s and m = 0, . . . , ni − 1.

Proof. With (1.7), (1.8) we find that

C(m) = d(m)H− ∑
i≤s

ni−1

∑
j=0

µi(m + j)Ei,j.

With relations (1.4) we compute the pullback

ϕ̃∗C(m) = d(m)

(
2H− ∑

i≤s
Ei,ni−1

)
− ∑

i≤s

⎛⎝ni−1

∑
j=1

µi(m + j)Ei,j−1 + µi(m)

⎛⎝H− ∑
j≤s : σj,i

Ej,nj−1

⎞⎠⎞⎠ .

Then we find

(ϕ̃∗C(m),H) = 2d(m)− ∑
j≤s

µj(m),

(ϕ̃∗C(m), Ei,ni−1) = d(m)− ∑
j≤s : j,σi

µj(m), i ≤ s,

(ϕ̃∗C(m), Ei,j) = µi(m + 1 + j), i ≤ s, 0 ≤ j ≤ ni − 2.

Finally, with C(m + 1) = ϕ̃∗C(m), we obtain the recurrence relations (1.9). The initial conditions
are d(0) = (H,H) = 1 and µi(j) = (H, Ei,j) = 0, for i ≤ s and 0 ≤ j ≤ ni − 1. This proves the
claim. □

Corollary 1.2 (Generating functions). Consider the generating functions d(z), µi(z) for the sequences
from Theorem 1.1. They are rational functions which can be defined as solutions of the functional equations
(1.10) with initial conditions as in Theorem 1.1.⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
z
(d(z)− 1) = 2d(z)− ∑

j≤s
µj(z),

1
zni

µi(z) = d(z)− ∑
j≤s : j,σi

µj(z), i ≤ s.
(1.10)

In the following, we classify all orbit data ν = (n1, n2, n3), σ = (σ1, σ2, σ3), that correspond to
quadratic growth of degrees d(m).

Proposition 1.3. Let ϕ be a birational map of P2 with three distinct indeterminacy points, and with
associated orbit data ν = (n1, n2, n3), σ = (σ1, σ2, σ3).

(i) If ni = 1 for some i such that i = σi, then all roots of χ lie on the unit circle, and the sequence of
degrees d(m) is bounded.
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(ii) If ni = 1, nj = 1, 2, 3 for some i, j such that {i, j} = {σi, σj}, then all roots of χ lie on the unit circle,
and the sequence of degrees d(m) is bounded.

(iii) If ni = 2, nj = 2 for some i, j such that {i, j} = {σi, σj}, then all roots of χ lie on the unit circle, and
the sequence of degrees d(m) is bounded.

Proof.

(i) Note that the claim that all roots lie on the unit circle has first been proved by Diller [26].

We may assume that i = 1.

Let ν = (1, m, n), σ = (1, 2, 3). Then with Corollary 1.2 it can be verified that

d(z) = −2zm+n+1 − zm+n − zm+1 − zn+1 + 1
∆(z)

, (1.11)

µ1(z) = − z(zm − 1)(zn − 1)
∆(z)

, µ2(z) = − (z − 1)zm(zn − 1)
∆(z)

, µ3(z) = − (z − 1)zn(zm − 1)
∆(z)

,

where ∆(z) = (z − 1)2(zm+n − 1).

After cancellation of the common factor (z − 1)2 all roots of the denominator of (1.11) lie on
the unit circle and have multiplicity 1. Therefore, the sequence d(m) is bounded.

Let ν = (1, m, n), σ = (1, 3, 2). Then with Corollary 1.2 it can be verified that

d(z) = −2zm+n+1 − zm+n + zm+1 + zn+1 − zm − zn − 1
∆(z)

, (1.12)

µ1(z) = − z(zm+n − 1)
∆(z)

, µ2(z) = − (z − 1)zm(zn + 1)
∆(z)

, µ3(z) = − (z − 1)zn(zm + 1)
∆(z)

,

where ∆(z) = (z − 1)2(zm + 1)(zn + 1).

Suppose that rm = rn = −1. Then the numerator of (1.12) vanishes at z = r, i.e., contains
a factor (z − r). After cancellation of all such common factors (z − r) and (z − 1) all roots
of the denominators of (1.12) lie on the unit circle and have multiplicity 1. Therefore, the
sequence d(m) is bounded.

(ii) We may assume that i = 1, j = 2.

Let ν = (1, m, n), m = 1, 2, 3, σ = (1, 2, 3). These cases are contained in (i).

Let ν = (1, 1, n), σ = (2, 1, 3). Then with Corollary 1.2 it can be verified that

d(z) = −2zn+1 − z − 1
∆(z)

, (1.13)

µ1(z) = µ2(z) = − z(zn − 1)
∆(z)

, µ3(z) = − (z − 1)zn

∆(z)
,

where ∆(z) = (z − 1)(zn+1 − 1).

After cancellation of the common factor (z − 1) all roots of the denominator of (1.13) lie on
the unit circle and have multiplicity 1. Therefore, the sequence d(m) is bounded.
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Let ν = (1, 2, n), σ = (2, 1, 3). Then with Corollary 1.2 it can be verified that

d(z) = −2zn+3 + zn+2 + zn+1 − z3 − z2 − z − 1
∆(z)

, (1.14)

µ1(z) = − z(z2 + 1)(zn − 1)
∆(z)

, µ2(z) = − (z + 1)z2(zn − 1)
∆(z)

, µ3(z) = − (z3 − 1)zn

∆(z)
,

where ∆(z) = (z − 1)(zn+3 − 1).

After cancellation of the common factor (z − 1) all roots of the denominator of (1.14) lie on
the unit circle and have multiplicity 1. Therefore, the sequence d(m) is bounded.

Let ν = (1, 3, n), σ = (2, 1, 3). Then with Corollary 1.2 it can be verified that

d(z) = −2zn+3 − zn+2 + zn+1 − z3 − 1
∆(z)

, (1.15)

µ1(z) = − z(z2 − z + 1)(zn − 1)
∆(z)

, µ2(z) = − z3(zn − 1)
∆(z)

, µ3(z) = − (z − 1)(z2 + 1)zn

∆(z)
,

where ∆(z) = (z − 1)2(zn+2 + 1).

After cancellation of common factor (z − 1) all roots of the denominator of (1.15) lie on the
unit circle and have multiplicity 1. Therefore, the sequence d(m) is bounded.

(iii) We may assume that i = 1, j = 2.

Let ν = (2, 2, n), σ = (1, 2, 3) or σ = (2, 1, 3). Then with Corollary 1.2 it can be verified that

d(z) = −2zn+2 − z2 − 1
∆(z)

, (1.16)

µ1(z) = µ2(z) = − z2(zn − 1)
∆(z)

, µ3(z) = − (z − 1)(z + 1)zn

∆(z)
,

where ∆(z) = (z − 1)2(zn+1 + 1).

After cancellation of the common factor (z − 1) all roots of the denominator of (1.16) lie on
the unit circle and have multiplicity 1. Therefore, the sequence d(m) is bounded.

□

Fix σ = (σ1, σ2, σ3). Then the set Pσ = {(ν, σ)} is a partially ordered set with the partial order
relation

(ν, σ) ≤ (ν′, σ) if ni ≤ n′
i, for i = 1, 2, 3. (1.17)

A result by Bedford & Kim (see [12] , Theorem 5.1) guarantees that if (ν, σ) < (ν′, σ) we have for
the corresponding dynamical degrees λ1(ν, σ) ≤ λ1(ν

′, σ). If λ1(ν, σ) > 1, then the inequality is
strict.

We call an element (ν, σ) ∈ Pσ 1-maximal if λ1(ν, σ) = 1 and λ1(ν
′, σ) > 1 for all (ν′, σ) >

(ν, σ).
Given a tuple (n1, n2, n3) and a subgroup G of the permutation group S3, we write (n1, n2, n3)G

as short notation for all elements obtained by G acting on (n1, n2, n3).

Theorem 1.4. All 1-maximal elements in the sets Pσ, σ ∈ S3, are given in Table 1.1.
Moreover, let ϕ be a birational map of P2 with three distinct indeterminacy points, and with associated

orbit data ν = (n1, n2, n3), σ = (σ1, σ2, σ3). Then the sequence of degrees d(m) grows quadratically if
and only if (ν, σ) is 1-maximal in Pσ.
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σ ν : (ν, σ) 1-maximal

(1, 2, 3) (2, 3, 6)S3 , (2, 4, 4)S3 , (3, 3, 3)

(1, 3, 2) (2, 1, 7)⟨σ⟩, (2, 2, 6), (2, 3, 5)⟨σ⟩, (2, 4, 4), (3, 1, 5)⟨σ⟩,

(3, 2, 4)⟨σ⟩, (3, 3, 3), (5, 1, 4)⟨σ⟩, (5, 2, 3)⟨σ⟩

(3, 2, 1) (1, 2, 7)⟨σ⟩, (2, 2, 6), (3, 2, 5)⟨σ⟩, (4, 2, 4), (1, 3, 5)⟨σ⟩,

(2, 3, 4)⟨σ⟩, (3, 3, 3), (1, 5, 4)⟨σ⟩, (2, 5, 3)⟨σ⟩

(2, 1, 3) (1, 7, 2)⟨σ⟩, (2, 6, 2), (3, 5, 2)⟨σ⟩, (4, 4, 2), (1, 5, 3)⟨σ⟩,

(2, 4, 3)⟨σ⟩, (3, 3, 3), (1, 4, 5)⟨σ⟩, (2, 3, 5)⟨σ⟩

(2, 3, 1), (3, 1, 2) (1, 1, 7)S3 , (1, 2, 6)S3 , (1, 3, 5)S3 , (1, 4, 4)S3 , (2, 2, 5)S3 , (2, 3, 4)S3 , (3, 3, 3)

Table 1.1: 1-maximal elements.

Proof. Recall that (ν, σ) ∈ Pσ is 1-maximal if and only if λ1(ν, σ) = 1 and λ1(ν
′
i , σ) > 1, for i =

1, 2, 3, where ν′i is obtained from ν = (n1, n2, n3) by replacing ni by ni + 1. Thus, the claims about
being a 1-maximal element follow from direct computations of the corresponding characteristic
polynomials.

Further, by distinction of cases one can show that any element (ν, σ) ∈ Pσ is comparable to a
1-maximal element or corresponds to the cases of Proposition 1.3, hence cannot be 1-maximal.

For example, if σ = (1, 2, 3), the set Pσ consists of pairs (ν, σ), where ν = (n1, n2, n3) is of one
of the following types:

(1, n2, n3)S3 , n2, n3 ≥ 1, (1.18)
(2, 2, n3)S3 , n3 ≥ 2, (1.19)
(2, n2, n3)S3 , n2, n3 ≥ 3, (1.20)
(n1, n2, n3), n1, n2, n3 ≥ 3. (1.21)

Elements of the form (1.18), (1.19) correspond to the cases (i) and (iii) of Proposition 1.3, respec-
tively. Elements of the form (1.20) are comparable to a 1-maximal element (2, 3, 6)S3 or (2, 4, 4)S3 .
Elements of the form (1.21) are comparable to the 1-maximal element (3, 3, 3).

A similar argument can be made for the other permutations σ ∈ S3. Therefore, we can con-
clude that we list indeed all 1-maximal elements.

Therorem 1.1 provides linear recurrence relations for the degree d(m) depending on the orbit
data (ν, σ). Then solving these recurrences for all 1-maximal elements and all elements that are
strictly less than any 1-maximal element in Pσ yields the proof of the second claim.

□



Chapter 2

Manin involutions on elliptic pencils

Some of the results of this chapter have been published in [46].

We elaborate on the geometric construction of birational involutions on elliptic pencils of de-
gree four and six that are a generalization of the so-called Manin involutions on cubic pencils.
For this, we present a geometric (completely algorithmic) approach to reduce such higher de-
gree pencils to cubic ones by (a composition of) quadratic birational changes of coordinates of the
complex projective plane. Finally, we discuss special cubic, quartic and sextic pencils that feature
quadratic Manin maps.

2.1 Elliptic pencils
We consider pencils of curves in P2, i.e., families of curves P = {Cλ} parametrized by λ ∈ P1,

Cλ = {[x : y : z] ∈ P2 : F(x, y, z) + λG(x, y, z) = 0}.

Here, F, G are linearly independent homogeneous polynomials of degree d. The points of the set

B = {[x : y : z] ∈ P2 : F(x, y, z) = G(x, y, z) = 0}

are called base points of the pencil P . As usual, they are counted with multiplicities. We will
assume that the multiplicities of each base point on both curves F = 0 and G = 0 (and then on all
curves of the pencil) are the same. The type of the pencil is then

(d; (n1)
1(n2)

2(n3)
3 · · · ),

where d is the degree of the curves of the pencil, n1 the number of simple base points, n2 the
number of double base points, n3 the number of triple base points and so on. The pencil itself will
be denoted by

P(d; pm1
1 , pm2

2 , . . . , pmN
N ),

which refers to the degree d and the list of base points pi with their respective multiplicities mi,
so that N = n1 + n2 + n3 + · · · . Multiplicities mi = 1 are usually omitted.

15
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Counting the intersection numbers, we get:

d2 = ∑
k

nkk2. (2.1)

Through any point [x0 : y0 : z0] ∈ P2 \ B, there passes a unique curve Cλ of the pencil, with
λ = −F(x0, y0, z0)/G(x0, y0, z0).

Our main interest is in the elliptic pencils, for which generic curves of the pencil are of genus
g = 1. According to the degree-genus formula, the genus of irreducible curves of the pencil is
given by:

g =
(d − 1)(d − 2)

2
− ∑

k
nk

k(k − 1)
2

= 1. (2.2)

We remark that by virtue of (2.1), the latter equation is equivalent to

3d = ∑
k

nkk, (2.3)

where the right-hand side is the total number of base points (counted with multiplicities).
Examples:

(1) A pencil of the type (3; 91) of cubic curves with nine simple base points.

(2) A pencil of the type (4; 8122) of curves of degree 4 with eight simple base points and two
double base points. By an automorphism of P2, we can send the double points to infinity
(say, to [0 : 1 : 0] and [1 : 0 : 0]), then in affine coordinates (x/z, y/z), we get a pencil of
biquadratic curves. Such pencils are pretty well studied and have plenty of applications in
the theory of discrete integrable systems [3, 50].

(3) A pencil of the type (6; 613223) of curves of degree 6 with six simple points, three double
points and two triple points. A special pencil of type (6; 613223) that features quadratic
Manin maps is considered in Section 3.5.

Remark 2.1. We do allow infinitely near base points, at which the curves of the pencil have to satisfy
certain tangency conditions up to certain order. In the formulations of our general results about
the geometry of Manin involutions, we silently assume that the geometry of the base points is
generic, in particular that there are no incidental collinearities.

However, all our main examples are non-generic with plenty of incidental collinearities, since
it is exactly this feature that allows for a substantial drop of degree of the resulting birational
maps. We hope this will not lead to any confusions.

2.2 Manin involutions
For cubic curves, one has a simple geometric interpretation of the addition law. Correspondingly,
there is a simple geometric construction of certain birational involutions of P2 induced by pencils
of cubic curves, cf. [56], p. 35. These were dubbed Manin involutions in [3], Section 4.2.

Definition 2.2 (Manin involutions for cubic pencils).

(1) Consider a nonsingular cubic curve C in P2, and a point p0 ∈ C. The Manin involution on C with
respect to p0 is the map IC,p0 : C → C defined as follows: for a generic p , p0, the image IC,p0(p)
is the unique third intersection point of C with the line (p0 p); for p = p0, the line (p0 p) should be
interpreted as the tangent line to C at p0.
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(2) Consider a pencil P = {Cλ} of cubic curves in P2 with at least one nonsingular member. Let p0
be a base point of the pencil. The Manin involution IP ,p0 : P2 → P2 is a birational map defined as
follows. For any p ∈ P2 which is not a base point, IP ,p0(p) = ICλ ,p0(p), where Cλ is the unique
curve of the pencil through the point p.

For elliptic pencils of degree higher than 3, a geometric construction of Manin involutions
seems to be unknown. The only exception are vertical and horizontal switches in biquadratic
pencils, of which the famous QRT maps are composed [3,50]. They can be immediately translated
to a construction of generalized Manin involutions for quartic pencils with two double base points,
with respect to the both double points [37]. The definition of the generalized Manin involution
IC,p0 for a quartic curve C and a double point p0 ∈ C, resp. of the generalized Manin involution
IP ,p0 for a quartic pencil with two double points, one of them being p0, literally coincides with
Definition 2.2. This is justified by the fact that any line through a double point p0 ∈ C still
intersects the quartic curve C at two further points.

The main goal of this work is to elaborate on the geometric definition of Manin involutions in
arbitrary elliptic pencils.

Given an elliptic pencil, one can resolve the multiple base points by means of birational trans-
formations. Often, the simplest way of doing this is by a sequence of suitable quadratic Cremona
transformations. Recall that a generic quadratic Cremona transformation ϕ : P2

1 → P2
2 has three

distinct fundamental points I(ϕ) = {p1, p2, p3} which are blown up to three lines (q2q3), (q1q3),
(q1q2), respectively. The three lines (p2 p3), (p1 p3), (p1 p2) are blown down to the points q1, q2,
q3, respectively, which build the indeterminacy set of the inverse map I(ϕ−1) = {q1, q2, q3}. A
practical way to construct such a map consists in finding homogeneous polynomials ϕ(x, y, z) of
degree 2 vanishing at the fundamental points p1, p2, p3. Geometrically, we are speaking about
the set of conics in P2

1 through p1, p2, p3. The space of solutions of this linear system is two-
dimensional: αϕ0 + βϕ1 + γϕ2, where ϕ0, ϕ1, ϕ2 are homogeneous polynomials of x, y, z of degree
2. The map

ϕ : [x : y : z] ↦→ [u : v : w] = [ϕ0(x, y, z) : ϕ1(x, y, z) : ϕ2(x, y, z)] (2.4)

is the sought after birational map P2 → P2. A different choice of a basis ϕ0, ϕ1, ϕ2 of the net
corresponds to a linear projective transformation of the target plane P2

2.
Note that the pre-image of a generic line au + bv + cw = 0 in the target plane P2

2 is the conic
aϕ0 + bϕ1 + cϕ2 = 0 (passing through p1, p2, p3) in the source plane P2

1. It follows that for an
regular point p of ϕ, the pencil of lines P(1; q) through q = ϕ(p) in P2

2 corresponds to the pencil
of conics P(2; p, p1, p2, p3) in P2

1.

2.3 A quartic pencil with two double base points

2.3.1 Geometry of the base points
Consider an elliptic pencil in P2 of type (4; 8122),

E = P(4; p1, . . . , p8, p2
9, p2

10).

Thus, E consists of quartic curves with 8 simple base points p1, . . . , p8 and two double base points
p9, p10. The position of the ten base points is not arbitrary: for a generic configuration of ten
points, there exists just one curve of degree 4 through these points, having the prescribed two of
them as double points. On the other hand, for a generic configuration of nine points, there is a one-
parameter family (a pencil) of curves of degree 4 through these points, having the prescribed two
of them as double points (nine incidence conditions plus four second order conditions, altogether
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13 linear conditions, while a generic curve of degree 4 has 14 non-homogeneous coefficients).
Counting the intersection numbers, we see that all curves of the pencil pass through a further
simple point (indeed, seven simple points and two double points contribute 7 · 1 + 2 · 4 = 15
to the intersection number 16). More information on the configuration of the ten base points is
contained in the following statement.

Proposition 2.3. In a generic pencil P(4; p1, . . . , p8, p2
9, p2

10), one of the curves is reducible and consists
of the line (p9 p10) and a cubic curve passing through all ten base points p1, . . . , p10.

Proof. Fix any point p ∈ (p9 p10) different from p9, p10, and consider the unique curve C of the
pencil through p. If the line (p9 p10) would not be a component of this curve, then the intersection
number of C with the line (p9 p10) would be at least 2 · 2 + 1 = 5, a contradiction. Thus, the curve
C is reducible and contains the line (p9 p10) as one of the components. Another component is a
cubic curve through p1, . . . , p10 (with p9, p10 being simple points on the cubic). □

Remark 2.4. If the reducible curve C happens to contain (p9 p10) as a double line, then the re-
maining component is a conic through eight base points p1, . . . , p8.

2.3.2 Birational reduction to a cubic pencil
Consider a pencil E = P(4; p1, . . . , p8, p2

9, p2
10). Let ϕ : P2

1 → P2
2 be a quadratic Cremona map

with the fundamental points p1, p9, p10. Thus, ϕ blows down the lines (p9 p10), (p1 p10), (p1 p9) to
points denoted by q1, q9, q10, respectively, and blows up the points p1, p9, p10 to the lines (q9q10),
(q1q10), (q1q9). All other base points pi, i = 2, . . . , 8 are regular points of ϕ, their images will be
denoted by qi = ϕ(pi).

Proposition 2.5. Under the map ϕ:

(1) Quartic curves of the original pencil E in P2
1 correspond to curves of a cubic pencil

P(3; q2, . . . , q8, q9, q10)

with nine base points in P2
2; the point q1 is not a base point of the latter pencil.

(2) For i = 2, . . . , 8, the pencil of lines P(1; qi) in P2
2 corresponds to the pencil of conics

P(2; pi, p1, p9, p10)

in P2
1.

(3) The pencils of lines P(1; q9), P(1; q10) in P2
2 correspond to the pencil of lines

P(1; p9), P(1; p10)

in P2
1.

Proof.

(1) The total image of a quartic curve C ∈ E is a curve of degree 8. Since C passes through p1,
its total image contains the line (q9q10). Since C passes through p9 and p10 with multiplicity
2, its total image contains the lines (q1q10) and (q1q9) with multiplicity 2. Dividing by the
linear defining polynomials of all these lines, we see that the proper image of C is a curve of
degree 8 − 5 = 3. This curve has to pass through all points qi, i = 2, . . . , 8.

The curve C of degree 4 has no other intersections with the line (p9 p10) different from the
two double points p9 and p10, therefore its proper image does not pass through q1. On the



CHAPTER 2. MANIN INVOLUTIONS ON ELLIPTIC PENCILS 19

other hand, the curve C of degree 4 has one additional intersection point with each of the
lines (p1 p9) and (p1 p10), different from the simple point p1 and the double point p9, resp.
p10. Therefore, its proper image passes through q10, resp. q9, with multiplicity 1.

(2) This follows from the fact that pi, i = 1, . . . , 8, are regular points of ϕ.

(3) Consider the total pre-image of a line through q9. It is a conic through p1, p9, p10 whose
defining polynomial vanishes on the line (p1 p10). Thus, the conic is reducible and contains
that line. Dividing by the defining polynomial of this line (of degree 1), we see that the
proper pre-image is a line which must pass through p9. Similarly, the proper pre-image of a
line through q10 is a line through p10.

□

Let X be the elliptic surface obtained from P2 by blowing up the ten base points pi, i =
1, . . . , 10. Let H be the total transform of the class of a generic line in P2, and let Ei be the
total transform of the exceptional divisors class of the i-th blow-up. The Picard group of X is
Pic(X) = H⊕ ZE1 ⊕ · · · ⊕ ZE10. The class of a generic curve of the pencil E is

4H− E1 − E2 − E3 − E4 − E5 − E6 − E7 − E8 − 2E9 − 2E10. (2.5)

The quadratic Cremona map of Proposition 2.5 corresponds to the following change of basis of
the Picard group: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

H′ = 2H− E1 − E9 − E10,
E′

1 = H− E9 − E10,
E′

9 = H− E1 − E10,
E′

10 = H− E1 − E9,

(2.6)

(and E′
i = Ei for i = 2, . . . , 8).

One can check that E′
1 is a redundant class, in the sense that the class (2.5) of a general curve

of the pencil is expressed through E′
2, . . . , E′

10 only:

4H− E1 − · · · − E8 − 2E9 − 2E10 = 3H′ − E′
2 − E′

3 − · · · − E′
10. (2.7)

This corresponds to the fact that q1 is not a base point of the ϕ-image of the pencil E . Note that
E′

1 = H− E9 − E10 is the class of (the proper transform of) the line (p9 p10) in P2. Blowing down
E′

1 on X, we obtain the surface X′ which is a minimal elliptic surface (blow-up of P2 at nine
points), whose anti-canonical divisor class coincides with (2.7). Statement (2) of Proposition 2.5
translates to relations H′ − E′

i = 2H− E1 − E9 − E10 − Ei in the Picard group (for i = 2, . . . , 8),
while statement (3) translates as H′ − E′

9 = H− E9 and H′ − E′
10 = H− E10.

2.3.3 Manin involutions
In the new coordinates, where the pencil consists of cubic curves, Manin involutions Iqi with
respect to the base point qi of the pencil are defined as in Definition 2.2: for a point q which is
not a base point, Iqi (q) is the unique third intersection of the line (qiq) with the cubic curve of the
pencil passing through q. We now pull back this construction to the original pencil in the original
coordinates.

Definition 2.6 (Manin involutions for pencils of the type (4; 8122)).
Consider a pencil E = P(4; p1, . . . , p8, p2

9, p2
10). There are two kinds of Manin involutions.
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(1) Involutions I(2)i,j , i, j ∈ {1, . . . , 8}, defined in terms of the pencil of conics

Ci,j = P(2; pi, pj, p9, p10).

Given a point p which is not a base point of E , there is a unique conic of Ci,j passing through p and

a unique quartic curve of E passing through p. We set I(2)i,j (p) = p′, where p′ is the unique further
intersection point of those two curves. This intersection is unique, since the intersection number of
the conic with the quartic is 2 · 4 = 8, while the intersections at the points pi, pj, p9, p10 and p count
as 1 + 1 + 2 + 2 + 1 = 7.

(2) Involutions I(1)9 , I(1)10 defined in terms of the pencils of lines:

P(1; p9), P(1; p10).

For instance, the involution I(1)9 is defined as follows. Given a point p which is not a base point of E ,

we set I(1)9 (p) = p′, where p′ is the unique third intersection of the line (p9 p) and the quartic curve
of E passing through p. This intersection is unique, since p9 is a double point of the curve.

Indeed:

(1) Due to point (2) of Proposition 2.5, for any i = 2, . . . , 8, the Manin involution with respect
to qi is conjugated to the map defined as above in terms of conics through p1, p9, p10, and
pi. Remarkably, while in the construction of the conjugating Cremona map the roles of the
simple base points p1 and pi are asymmetric, in the resulting map I(2)1,i the points p1 and pi

are on equal footing. More generally, I(2)i,j = I(2)j,i , where the map on the left-hand side should
be understood as conjugated of Iqj under the quadratic Cremona map with the fundamental
points pi, p9, p10, while the right-hand side should be understood as conjugated to Iqi under
the quadratic Cremona map with fundamental points pj, p9, p10.

(2) Due to point (3) of Proposition 2.5, Manin involutions Iq9 , Iq10 on P2
2 are conjugated to the

maps I(1)9 , I(1)10 on P2
1 defined in terms of lines through p9, p10, respectively. Again, while the

construction depends on the choice of a simple base point p1, the resulting map does not
depend on this choice.

The involution I(2)i,j has all base points of the pencil as singularities (indeterminacy points). For
instance, it blows up the point pk to the conic through pi, pj, pk, p9, p10. However, a composition

I(2)j,k ◦ I(2)i,j

with three distinct simple base points pi, pj, pk is well defined at pk and maps it to pi. Moreover,
this composition can be characterized as the unique map acting on the elliptic curves of the pencil
as the shift mapping pk to pi. In particular, this composition does not depend on j.
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2.4 A sextic pencil with three double base points and
two triple base points

2.4.1 Birational reduction to a cubic pencil
Consider an elliptic pencil in P2 of the type (6; 613223),

E = P(6; p1, . . . , p6, p2
7, p2

8, p2
9, p3

10, p3
11),

consisting of curves of degree 6 with six simple base points p1, . . . , p6, three double base points
p7, p8, p9, and two triple base points p10, p11. We reduce it to a cubic pencil in two steps.

Step 1. Apply a quadratic Cremona map ϕ′ with fundamental points p9, p10, p11 (the both
triple base points and one of the double base points). Thus, ϕ′ blows down the lines (p10 p11),
(p9 p11), (p9 p10) to the points denoted by q9, q10, q11, respectively, and blows up the points p9, p10,
p11 to the lines (q10q11), (q9q11), (q9q10). All other base points pi, i = 1, . . . , 8 are regular points of
ϕ′ and their images are denoted by qi = ϕ′(pi).

Proposition 2.7. The change of variables ϕ′ maps a pencil E = P(6; p1, . . . , p6, p2
7, p2

8, p2
9, p3

10, p3
11) of

sextic curves to a pencil P(4; q1, . . . , q6, q10, q11, q2
7, q2

8) of quartic curves with eight simple base points and
two double base points. The point q9 is not a base point of the latter pencil.

Proof. The total image of a curve C ∈ E is a curve of degree 12. Since C passes through p9, p10,
p11 with the multiplicities 2, 3, 3, its total image contains the lines (q10q11), (q9q11), (q9q10) with
the same multiplicities. Dividing by the linear defining polynomials of all these lines, we see that
the proper image of C is a curve of degree 12 − 8 = 4. This curve passes through all points qi,
i = 1, . . . , 8 (for i = 7, 8 with multiplicity 2).

The curve C of degree 6 has no other intersections with the line (p10 p11) different from the two
triple points p10 and p11, therefore its proper image does not pass through q9. On the other hand,
the curve C of degree 6 has one additional intersection point with each of the lines (p9 p10) and
(p9 p11), different from the double point p9 and the triple point p10, respectively p11. Therefore,
its proper image passes through q11 resp. q10, with multiplicity 1. □

Step 2. Apply a quadratic Cremona map ϕ′′ with the fundamental points q7, q8 (the both
double base points), and one of the simple base points. As we know from Proposition 2.5, the
image of the pencil P(4; q1, . . . , q6, q10, q11, q2

7, q2
8) under the map ϕ′′ is a pencil of cubic curves with

nine base points. The nature of the composition ϕ′′ ◦ ϕ′ depends on the choice of the simple base
point qi designated as the third fundamental point of ϕ′′, and is different in the cases i = 1, . . . , 6
and i = 10, 11. It turns out that the first option contains all the possibilities for the different sorts of
Manin involutions, therefore we restrict our attention to this case, taking, for definiteness, i = 6.

Thus, let ϕ′′ have three fundamental points q6, q7, q8. It blows down the lines (q6q7), (q6q8),
(q7q8) to points r8, r7, r6, respectively, and blows up the points q6, q7, q8 to the lines (r7r8), (r6r8),
(r6r7). All other base points qi, i = 1, . . . , 5, 10, 11 are regular points of ϕ′′, their images will be
denoted by ri = ϕ′′(qi).

As follows from Propositions 2.7, 2.5, we have:

Proposition 2.8. The change of coordinates ϕ = ϕ′′ ◦ ϕ′ : P2
1 → P2

2 maps a pencil

E = P(6; p1, . . . , p6, p2
7, p2

8, p2
9, p3

10, p3
11)

of sextic curves in P2
1 to a pencil

P(3; r1, . . . , r5, r7, r8, r10, r11)
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of cubic curves with nine base points in P2
2. The points r6 and r9 are not base points of this pencil.

Properties of the birational change of coordinates ϕ = ϕ′′ ◦ ϕ′ on P2 are easily obtained. It is
a Cremona map of degree 4 which blows down the lines (p9 p10), (p9 p11), (p10 p11) to the points
r11, r10, r9, respectively, and blows down the conics C(p6, p7, p9, p10, p11), C(p6, p8, p9, p10, p11),
C(p7, p8, p9, p10, p11) to the points r8, r7, r6. Moreover, ϕ blows up the points p9, p10, p11 to the lines
(r10r11), (r9r11), (r9r10), respectively, and the points p6, p7, p8 to the conics C(r7, r8, r9, r10, r11),
C(r6, r8, r9, r10, r11), C(r6, r7, r9, r10, r11), respectively. Points pi, i = 1, . . . , 5 are regular points of ϕ,
their images are ri = ϕ(pi).

The pre-image of a generic line in P2 is a quartic curve passing through p6, . . . , p11 (the points
p10 and p11 being of multiplicity 2). In particular, for any regular point p, the pencil of lines P(1; r)
through r = ϕ(p) in P2

2 corresponds to the pencil

P(4; p, p6, p7, p8, p2
9, p2

10, p2
11)

of quartic curves in P2
1.

Proposition 2.9. The change of coordinates ϕ = ϕ′′ ◦ ϕ′ : P2
1 → P2

2 has the following properties:

(1) For i = 1, . . . , 5, the pencil of lines P(1; ri) in P2
2 corresponds to the pencil

P(4; pi, p6, p7, p8, p2
9, p2

10, p2
11)

of quartic curves in P2
1.

(2) For i = 10, 11, proper pre-images of lines of the pencil P(1; ri) in P2
2 are cubics of the respective

pencil
P(3; p6, p7, p8, p9, p2

10, p11), P(3; p6, p7, p8, p9, p10, p2
11)

in P2
1.

(3) For i = 7, 8, proper pre-images of lines of the pencil P(1; ri) in P2
2 are conics of the respective pencil

P(2; p7, p9, p10, p11), P(2; p8, p9, p10, p11)

in P2
1.

Proof.

(1) This follows from the fact that pi, i = 1, . . . , 5 are regular points of ϕ.

(2) Consider the total pre-image of a line through r10. It is a quartic curve passing through
p6, . . . , p11, having p10, p11 as double points. Its defining polynomial vanishes on the line
(p9 p11), which blows down to r10. Thus, the quartic is reducible and contains that line.
Dividing by the defining polynomial of the line, we see that the proper pre-image is a cubic
passing through p6, p7, p8, p10, p11, with p10 being a double point.

(3) Consider the total pre-image of a line through r7. It is a quartic curve passing through
p6, . . . , p11, having p10, p11 as double points. Its defining polynomial vanishes on the conic
C(p6, p8, p9, p10, p11), which blows down to r7. Thus, the quartic is reducible and contains
that conic. Dividing by the defining polynomial of the conic, we see that the proper pre-
image is a conic passing through p7, p9, p10, p11.

□
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Let X be the elliptic surface obtained from P2 by blowing up the eleven base points pi, i =
1, . . . , 11. Let H be the total transform of the class of a generic line in P2, and let Ei be the total
transform of the exceptional divisors class of the i-th blow-up. The Picard group of X is Pic(X) =
ZH⊕ ZE1 ⊕ · · · ⊕ ZE11. The class of a generic curve of the pencil is

6H− E1 − E2 − E3 − E4 − E5 − E6 − 2E7 − 2E8 − 2E9 − 3E10 − 3E11. (2.8)

The quadratic Cremona map ϕ′ corresponds to the following change of basis of Pic(X):⎧⎪⎪⎪⎨⎪⎪⎪⎩
H′ = 2H− E9 − E10 − E11,
E′

9 = H− E10 − E11,
E′

10 = H− E9 − E11,
E′

11 = H− E9 − E10,

(2.9)

(and E′
i = Ei for i = 1, . . . , 8). The Cremona map ϕ′′ corresponds to the following change of basis

of the Picard group: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H′′ = 2H′ − E9 − E10 − E11,
E′′

6 = H′ − E7 − E8,
E′′

7 = H′ − E6 − E8,
E′′

8 = H′ − E6 − E7,

(2.10)

(and E′′
i = E′

i for i = 1, . . . , 5 and i = 9, 10, 11). Composing (2.9), (2.10), we easily compute⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H′′ = 4H− E6 − E7 − E8 − 2E9 − 2E10 − 2E11,
E′′

6 = 2H− E7 − E8 − E9 − E10 − E11,
E′′

7 = 2H− E6 − E8 − E9 − E10 − E11,
E′′

8 = 2H− E6 − E7 − E9 − E10 − E11,
E′′

9 = H− E10 − E11,
E′′

10 = H− E9 − E11,
E′′

11 = H− E9 − E10,

(2.11)

(and E′′
i = Ei for i = 1, . . . , 5). One can check that the classes

E′′
6 = 2H− E7 − E8 − E9 − E10 − E11, E′′

9 = H− E10 − E11

are redundant, in the sense that the class (2.8) of a general curve of the pencil E is expressed
through E′′

i , i , 6, 9:

6H− E1 − · · · − E6 − 2E7 − 2E8 − 2E9 − 3E10 − 3E11

= 3H′′ − E′′
1 − · · · − E′′

5 − E′′
7 − E′′

8 − E′′
10 − E′′

11. (2.12)

This reflects the fact that r6, r9 are not base points of the resulting cubic pencil. The redundant
classes are the class of (the proper transforms of) the conic C(p7, p8, p9, p10, p11), resp. of the line
(p10 p11) in P2

1. The surface X′ obtained by blowing down E′′
6 and E′′

9 on X, is a minimal elliptic
surface, whose anti-canonical divisor class coincides with (2.12). Generic fibers of X′ are exactly
the lifts of generic curves of the initial sextic pencil E . Note that statements of Proposition 2.9



CHAPTER 2. MANIN INVOLUTIONS ON ELLIPTIC PENCILS 24

translate to the following relations in Pic(X):

H′′ − E′′
i = 4H− Ei − E6 − E7 − E8 − 2E9 − 2E10 − 2E11, i = 1, . . . , 5, (2.13)

H′′ − E′′
10 = 3H− E6 − E7 − E8 − E9 − 2E10 − E11, (2.14)

H′′ − E′′
7 = 2H− E7 − E9 − E10 − E11. (2.15)

2.4.2 Manin involutions
We pull back the standard construction of Manin involutions for the cubic pencil P2

2 by means of
the map ϕ to the original pencil in P2

1.

Definition 2.10 (Manin involutions for pencils of type (6; 613223)).
Consider a pencil E = P(6; p1, . . . , p6, p2

7, p2
8, p2

9, p3
10, p3

11). There are three kinds of Manin involu-
tions.

(1) Involutions I(4)i,j,k, i, j ∈ {1, . . . , 6}, k ∈ {7, 8, 9}. E.g., I(4)i,j,9 is defined in terms of quartic curves of
the pencil

Qi,j,9 = P(4; pj, pj, p7, p8, p2
9, p2

10, p2
11).

Given a point p which is not a base point of E , there is a unique quartic curve of Qi,j,9 through p and a

unique sextic curve of E through p. We set I(4)i,j,9(p) = p′, where p′ is the unique further intersection
point of these two curves. This intersection is unique, since the intersection number of the quartic
with the sextic is 4 · 6 = 24, while the intersections at the points pi, pj, p7, p8, p9, p10, p11 and p

count as 1 + 1 + 2 + 2 + 4 + 6 + 6 + 1 = 23. Involutions I(4)i,j,k with k = 7, 8 are defined similarly.

(2) Involutions I(3)i,k , i ∈ {1, . . . , 6}, k ∈ {10, 11}. E.g., I(3)i,10 is defined in terms of cubic curves of the
pencil

Ki,10 = P(3; pi, p7, p8, p9, p2
10, p11).

Given a point p which is not a base point of E , there is a unique cubic curve of Ki,10 through p and a
unique sextic curve of E through p. We set I (3)

i,10(p) = p′, where p′ is the unique further intersection
point of these two curves. This intersection is unique, since the intersection number of the cubic with
the sextic is 3 · 6 = 18, while the intersections at the points pi, p7, p8, p9, p10, p11, and p count as
1 + 2 + 2 + 2 + 6 + 3 + 1 = 17. Involutions Ii,11 are defined similarly.

(3) Involutions I(2)i,j , i, j ∈ {7, 8, 9}, defined in terms of conics of the pencil

Ci,j = P(2; pi, pj, p10, p11).

Given a point p which is not a base point of E , there is a unique conic of Ci,j through p and a unique

sextic curve of E through p. We set I (2)
i,j (p) = p′, where p′ is the unique further intersection

point of these two curves. This intersection is unique, since the intersection number of the conic
with the sextic is 2 · 6 = 12, while the intersections at the points pi, pj, p10, p11, and p count as
2 + 2 + 3 + 3 + 1 = 11.

2.5 Quadratic Manin maps for special cubic pencils
In this section, we consider pencils of cubic curves,

E = P(3; p1, . . . , p9).
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Generically, a Manin involution for a cubic pencil is a birational map of degree 5 for which all base
points of the pencil are singularities (indeterminacy points). Indeed, consider IE ,pi . For any base
point pj , pi, all curves Cλ of the pencil pass through pi, pj, and have one further intersection
point with the line (pi pj). As a result, IE ,pi blows up any base point pj (j , i) to the line (pi pj).
For the same reason IE ,pj blows down this line to pi. Thus:

Proposition 2.11. For a cubic pencil, the Manin transformation IE ,pi ◦ IE ,pj for any two distinct base
points pi and pj is regular at pi and maps it to pj.

For a similar reason, some base points become regular points of Manin involutions if there are
collinearities among them:

Proposition 2.12. For a cubic pencil, if three distinct base points pi, pj, pk are collinear, then IE ,pi is
regular at pj and at pk and interchanges these two points.

2.5.1 Pascal configuration
We will say that the nine points Ai, Bi, Ci, i = 1, 2, 3, form a Pascal configuration, if the six distinct
points A1, A2, A3, C1, C2, C3 lie on a conic, and

B1 = (A2C3) ∩ (A3C2), B2 = (A3C1) ∩ (A1C3), B3 = (A1C2) ∩ (A2C1).

By Pascal’s theorem, the points B1, B2, B3 are collinear.
We consider the pencil of cubic curves

E = P(3; A1, A2, A3, B1, B2, B3, C1, C2, C3). (2.16)

Theorem 2.13. Let the points Ai, Bi, Ci, i = 1, 2, 3, form a Pascal configuration. Consider the pencil
(2.16) of cubic curves with these base points. Then the map

f = IE ,A1 ◦ IE ,B1 = IE ,B1 ◦ IE ,C1 (2.17)
= IE ,A2 ◦ IE ,B2 = IE ,B2 ◦ IE ,C2 (2.18)
= IE ,A3 ◦ IE ,B3 = IE ,B3 ◦ IE ,C3 (2.19)

is a birational map of degree 2, with I( f ) = {C1, C2, C3} and I( f−1) = {A1, A2, A3}. It has the
following singularity confinement patterns:

(C2C3) −→ A1 −→ B1 −→ C1 −→ (A2 A3) (2.20)
(C1C3) −→ A2 −→ B2 −→ C2 −→ (A1 A3) (2.21)
(C1C2) −→ A3 −→ B3 −→ C3 −→ (A1 A2) (2.22)

Proof. We start with the following property of the addition law on a nonsingular cubic curve C.
Let P1, P2, P3, P4 ∈ C, then

P1 − P3 = P4 − P2 ⇔ P1 + P2 = P3 + P4 ⇔ (P1P2) ∩ (P3P4) ∈ C.

Thus, on any cubic curve C ∈ E , we have the following relations:

(A1B2) ∩ (A2B1) = C3 ∈ C ⇒ A1 − B1 = A2 − B2 ⇒ IE ,A1 ◦ IE ,B1 = IE ,A2 ◦ IE ,B2 ,
(B1C2) ∩ (B2C1) = A3 ∈ C ⇒ B1 − C1 = B2 − C2 ⇒ IE ,B1 ◦ IE ,C1 = IE ,B2 ◦ IE ,C2 ,
(A1C2) ∩ (B1B2) = B3 ∈ C ⇒ A1 − B1 = B2 − C2 ⇒ IE ,A1 ◦ IE ,B1 = IE ,B2 ◦ IE ,C2 ,
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This proves the coincidence of all six representations in (2.17)–(2.19). Now, it follows from Propo-
sition 2.11 that the map f has only three indeterminacy points, I( f ) = {C1, C2, C3}, and similarly,
I( f−1) = {A1, A2, A3}.

Moreover, Proposition 2.11 implies the relations in the middle part of the singularity confine-
ment patterns (2.20)–(2.22). The blow-up and blow-down relations are shown with the help of
Proposition 2.12 as follows: f (C3) = IE ,A2 ◦ IE ,B2(C3) = IE ,A2(A1) = (A1 A2). □

Theorem 2.14. For a pencil of cubic curves with the base points building a Pascal configuration, perform
a linear projective transformation of P2 sending the Pascal line ℓ(B1, B2, B3) to infinity. Let (x, y) be the
affine coordinates on the affine part C2 ⊂ P2. In these coordinates, the map f : (x, y) ↦→ (x̃, ỹ) defined by
(2.17)–(2.19) is characterized by the following property. There exist constants a1, . . . , a9 ∈ C such that f
admits a representation through two bilinear equations of motion of the form{

x̃ − x = a2xx̃ + a3(xỹ + x̃y) + a4yỹ + a6(x + x̃) + a7(y + ỹ) + a9

ỹ − y = −a1xx̃ − a2(xỹ + x̃y)− a3yỹ − a5(x + x̃)− a6(y + ỹ)− a8.
(2.23)

These equations serve as the Kahan discretization of the Hamiltonian equations of motion{
ẋ = a2x2 + 2a3xy + a4y2 + 2a6x + 2a7y + a9

ẏ = −a1x2 − 2a2xy − a3y2 − 2a5x − 2a6y − a8,
(2.24)

for the Hamilton function

H(x, y) =
1
3

a1x3 + a2x2y + a3xy2 +
1
3

a4y3 + a5x2 + 2a6xy + a7y2 + a8x + a9y. (2.25)

Proof. This is a result of a symbolic computation with MAPLE, presented in [44]. □

2.5.2 Degenerate Pascal configuration (One pair of coinciding
points)

We will say that the nine points Ai, Bi, Ci, i = 1, 2, 3, with A1 ≥ C3 (i.e., A1 is infinitely near to
C3) form a degenerate Pascal configuration, if the six points A1, A2, A3, C1, C2, C3 lie on a conic
(i.e., the conic passes through the points A2, A3, C1, C2, C3 and its slope at C3 is determined by the
infinitely near point A1), and

B1 = (A2C3) ∩ (A3C2), B2 = (A3C1) ∩ (A1C3), B3 = (C3C2) ∩ (A2C1).

By Pascal’s theorem, the points B1, B2, B3 are collinear.
We consider the pencil of cubic curves

E = P(3; A1, A2, A3, B1, B2, B3, C1, C2, C3). (2.26)

Theorem 2.15. Let the points Ai, Bi, Ci, i = 1, 2, 3, form a degenerate Pascal configuration. Consider the
pencil (2.26) of cubic curves with these base points. Then the map

f = IE ,C3 ◦ IE ,B1 = IE ,B1 ◦ IE ,C1 (2.27)
= IE ,A2 ◦ IE ,B2 = IE ,B2 ◦ IE ,C2 (2.28)
= IE ,A3 ◦ IE ,B3 = IE ,B3 ◦ IE ,C3 (2.29)

is a birational map of degree 2, with I( f ) = {C1, C2, C3} and I( f−1) = {A2, A3, C3}. The map f acts
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as

(C2C3) −→ C3 −→ (C3 A2), (2.30)
(C1C3) −→ A2 −→ B2 −→ C2 −→ (C3 A3), (2.31)
(C1C2) −→ A3 −→ B3 −→ C3 −→ (C3 A2), (2.32)

while f−1 acts as

(C3 A2) −→ C3 −→ (C2C3), (2.33)
(C3 A3) −→ C2 −→ B2 −→ A2 −→ (C1C3), (2.34)
(A2 A3) −→ C1 −→ B1 −→ C3 −→ (C2C3). (2.35)

Proof. Exactly as in the proof of Theorem 2.13, we show the coincidence of all six representations
in (2.27)–(2.29). Now, it follows from Proposition 2.11 that f has only three indeterminacy points,
I( f ) = {C1, C2, C3}, and similarly, I( f−1) = {A2, A3, C3}.

Similarly as in the proof of Theorem 2.13, Proposition 2.11 implies the relations in the middle
part of the patterns (2.31), (2.32), (2.34), (2.35). Again, the blow-up and blow-down relations are
shown with the help of Proposition 2.12. □

Remark 2.16. Let X denote the surface obtained from P2 by blowing up the point C3, and f̃ be the
lift of f . On X, the patterns (2.32) for f , and (2.35) for f−1, merge to the singularity confinement
pattern

(C1C2) −→ A3 −→ B3 −→ A1 −→ B1 −→ C1 −→ (A2 A3). (2.36)

Remark 2.17. The statement of Theorem 2.14 holds also in this situation.

2.5.3 Degenerate Pascal configuration (Two pairs of coinciding
points)

We will say that the nine points Ai, Bi, Ci, i = 1, 2, 3, with A1 ≥ C3 and A2 ≥ C1 form a degenerate
Pascal configuration, if the six points A1, A2, A3, C1, C2, C3 lie on a conic, and

B1 = (C1C3) ∩ (A3C2), B2 = (A3C1) ∩ (A1C3), B3 = (C3C2) ∩ (A2C1).

By Pascal’s theorem, the points B1, B2, B3 are collinear.
We consider the pencil of cubic curves

E = P(3; A1, A2, A3, B1, B2, B3, C1, C2, C3). (2.37)

Theorem 2.18. Let the points Ai, Bi, Ci, i = 1, 2, 3, form a degenerate Pascal configuration. Consider the
pencil (2.37) of cubic curves with these base points. Then the map

f = IE ,C3 ◦ IE ,B1 = IE ,B1 ◦ IE ,C1 (2.38)
= IE ,C1 ◦ IE ,B2 = IE ,B2 ◦ IE ,C2 (2.39)
= IE ,A3 ◦ IE ,B3 = IE ,B3 ◦ IE ,C3 (2.40)

is a birational map of degree 2, with I( f ) = {C1, C2, C3} and I( f−1) = {A3, C1, C3}. The map f acts as

(C2C3) −→ C3 −→ (C1C3), (2.41)
(C1C3) −→ C1 −→ (C1 A3), (2.42)
(C1C2) −→ A3 −→ B3 −→ C3 −→ (C1C3), (2.43)
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while f−1 acts as

(C1C3) −→ C3 −→ (C2C3), (2.44)
(C1 A3) −→ C1 −→ (C1C3), (2.45)
(C3 A3) −→ C2 −→ B2 −→ C1 −→ (C1C3). (2.46)

The point B1 ∈ (C1C3) is regular for both maps and f (B1) = C1, f−1(B1) = C3.

Proof. Exactly as in the proof of Theorem 2.13, we show the coincidence of all six representations
in (2.38)–(2.40). Now, it follows from Proposition 2.11 that f has only three indeterminacy points,
I( f ) = {C1, C2, C3}, and similarly, I( f−1) = {A3, C1, C3}.

Similarly as in the proof of Theorem 2.13, Proposition 2.11 implies the relations in the middle
part of the patterns (2.43), (2.46). Again, the blow-up and blow-down relations are shown with
the help of Proposition 2.12. □

Remark 2.19. Let X denote the surface obtained from P2 by blowing up the points C1, C3, and
f̃ be the lift of f . On X, the patterns (2.43) for f , and (2.46) for f−1, merge to the singularity
confinement pattern

(C1C2) −→ A3 −→ B3 −→ A1 −→ B1 −→ A2 −→ B2 −→ C2 −→ (C3 A3). (2.47)

Remark 2.20. The statement of Theorem 2.14 holds also in this situation.

2.6 Quadratic Manin maps for special pencils of type
(4; 8, 2)

We describe the geometry of base points of a pencil of the type (4; 8122) for which one can find
compositions of Manin involutions which are quadratic Cremona maps.

• Let p2, p3, p6, p7 be four points of P2 in general position (no three of them collinear).

• Consider three intersection points of three pairs of opposite sides of the complete quadran-
gle with these vertices:

A = (p2 p6) ∩ (p3 p7), B = (p2 p3) ∩ (p6 p7), C = (p2 p7) ∩ (p3 p6). (2.48)

Consider the projective involutive automorphism σ of P2 fixing the point C and the line
ℓ = (AB) (pointwise). The points of the pairs (p2, p7) and (p3, p6) correspond under σ.

• Choose a point p9 ∈ (p3 p7), and define p10 ∈ (p2 p6) so that p9, p10 correspond under σ, or,
in other words, so that the line (p9 p10) passes through C.

• Let C ∈ P(2; p2, p3, p6, p7) be any conic of the pencil through the specified four points.
Define

p1 = the second intersection point of C with (p10 p7),
p4 = the second intersection point of C with (p9 p6),
p5 = the second intersection point of C with (p10 p3),
p8 = the second intersection point of C with (p9 p2).
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Figure 2.1: Geometry of base points of a special quartic pencil P(4; p1, . . . , p8, p2
9, p2

10).
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Recall that A, B, C are vertices of a self-polar triangle of C. In particular, the projective invo-
lution σ leaves C invariant. The points of the pairs (p1, p8) and (p4, p5) correspond under
σ.

We will call the pencil E = P(p1, . . . , p8, p2
9, p2

10) a projectively symmetric quartic pencil with
two double points.

Theorem 2.21. Let E = P(p1, . . . , p8, p2
9, p2

10) be a projectively symmetric quartic pencil with two double
points. Then:

(1) The projective involution σ can be represented as

σ = I(2)1,8 = I(2)2,7 = I(2)3,6 = I(2)4,5 . (2.49)

(2) The map

f = I(2)i,k ◦ I(2)j,k (2.50)

= I(1)9 ◦ σ = σ ◦ I(1)10 (2.51)

with (i, j) ∈ {(1, 2), (2, 3), (3, 4), (5, 6), (6, 7), (7, 8)} and k ∈ {1, . . . , 8} distinct from i, j, is a
birational map of degree 2, with I( f ) = {p4, p8, p10} and I( f−1) = {p1, p5, p9}. It has the
following singularity confinement patterns:

(p8 p10) −→ p1 −→ p2 −→ p3 −→ p4 −→ (p5 p9), (2.52)
(p4 p10) −→ p5 −→ p6 −→ p7 −→ p8 −→ (p1 p9), (2.53)
(p4 p8) −→ p9 −→ p10 −→ (p1 p5). (2.54)

(3) We have:
f 2 = I(1)9 ◦ I(1)10 . (2.55)

Proof. We start with a geometric interpretation of the addition law on a generic curve C ∈ E .
Recall that the pencil E can be reduced to a pencil of cubic curves by means of the quadratic
Cremona map ϕ based at pk, p9, p10 for some k = 1, . . . , 8. Lines in the target plane P2

2, where the
cubic pencil is considered, correspond in the source plane P2

1 of the pencil E to conics through
pk, p9, p10. Now, let p, q, r, s ∈ C, then, assuming that neither of the points pk, p9, p10 is among
p, q, r, s, we have:

p − r = s − q ⇔ p + q = r + s ⇔ (ϕ(p)ϕ(q)) ∩ (ϕ(r)ϕ(s)) ∈ ϕ(C).

The geometry of the pencil E ensures the existence of a large number of quadruples of base points
which, together with p9, p10, lie on a conic. Namely, the following sextuples are conconical:

(p1, p2, p7, p8, p9, p10) because p1 ↔ p8, p2 ↔ p7 under σ, (2.56)
(p1, p3, p6, p8, p9, p10) because p1 ↔ p8, p3 ↔ p6 under σ, (2.57)
(p1, p4, p5, p8, p9, p10) because p1 ↔ p8, p4 ↔ p5 under σ, (2.58)
(p2, p3, p6, p7, p9, p10) because p2 ↔ p7, p3 ↔ p6 under σ, (2.59)
(p2, p4, p5, p7, p9, p10) because p2 ↔ p7, p4 ↔ p5 under σ, (2.60)
(p3, p4, p5, p6, p9, p10) because p3 ↔ p6, p4 ↔ p5 under σ. (2.61)

Note that the sextuples (2.56), (2.59) and (2.61) lie on reducible conics ℓ(p1, p7, p10) ∪ ℓ(p2, p8, p9),
ℓ(p2, p6, p10) ∪ ℓ(p3, p7, p9) and ℓ(p3, p5, p10) ∪ ℓ(p4, p6, p9), respectively. One has, additionally,
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two more sextuples lying on reducible conics:

(p1, p4, p6, p7, p9, p10) on a reducible conic ℓ(p1, p7, p10) ∪ ℓ(p4, p6, p9), (2.62)
(p2, p3, p5, p8, p9, p10) on a reducible conic ℓ(p3, p5, p10) ∪ ℓ(p2, p8, p9). (2.63)

• From (2.57), (2.63), (2.62), (2.60) there follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(p1, p6, p3, p9, p10) ∩ C(p2, p5, p3, p9, p10) ∋ p8,
C(p1, p6, p4, p9, p10) ∩ C(p2, p5, p4, p9, p10) ∋ p7,
C(p1, p6, p7, p9, p10) ∩ C(p2, p5, p7, p9, p10) ∋ p4,
C(p1, p6, p8, p9, p10) ∩ C(p2, p5, p8, p9, p10) ∋ p3.

We explain how these relations are used, taking the first one as example. The intersection
C(p1, p6, p3, p9, p10) ∩ C(p2, p5, p3, p9, p10) consists of p3, p9, p10 and p8. Upon the quadratic
Cremona map ϕ based at p3, p9, p10, this means that the lines (q1q6) and (q2q5) intersect at
q8, where qi = ϕ(pi) (the blow-ups of the other three intersection points do not belong to
the proper image of the conics). The point p8 is one of the base points of the cubic pencil
ϕ(E). Thus, the four relations above imply

I(2)1,k ◦ I(2)2,k = I(2)5,k ◦ I(2)6,k , k = 3, 4, 7, 8. (2.64)

• From (2.61), (2.59), (2.63) there follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(p2, p6, p1, p9, p10) ∩ C(p3, p5, p1, p9, p10) ⊃ (p1 p9),
C(p2, p6, p4, p9, p10) ∩ C(p3, p5, p4, p9, p10) ⊃ (p4 p9),
C(p2, p6, p7, p9, p10) ∩ C(p3, p5, p7, p9, p10) ⊃ (p7 p9),
C(p2, p6, p8, p9, p10) ∩ C(p3, p5, p8, p9, p10) ⊃ (p8 p9).

Again, we explain how these relations are used, taking the first one as example. The in-
tersection C(p2, p6, p1, p9, p10) ∩ C(p3, p5, p1, p9, p10) consists of the point p10 and the line
(p1 p9). Upon the quadratic Cremona map ϕ based at p1, p9, p10, the point p10 is blown up to
a line which does not belong to the proper image of the conics, while the line (p1 p9) is blown
down to the point q10 through which the proper images of both conics pass. Thus, the lines
(q2q6) and (q3q5) intersect at q10, which is a base point of the pencil ϕ(E). Summarizing, the
four relations above imply

I(2)2,k ◦ I(2)3,k = I(2)5,k ◦ I(2)6,k , k = 1, 4, 7, 8. (2.65)

• From (2.57), (2.58), (2.59), (2.60) there follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(p3, p6, p1, p9, p10) ∩ C(p4, p5, p1, p9, p10) ∋ p8,
C(p3, p6, p2, p9, p10) ∩ C(p4, p5, p2, p9, p10) ∋ p7,
C(p3, p6, p7, p9, p10) ∩ C(p4, p5, p7, p9, p10) ∋ p2,
C(p3, p6, p8, p9, p10) ∩ C(p4, p5, p8, p9, p10) ∋ p1.

Exactly as before, these four relations imply

I(2)3,k ◦ I(2)4,k = I(2)5,k ◦ I(2)6,k , k = 1, 2, 7, 8. (2.66)
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• In exactly the same way we prove that

I(2)1,k ◦ I(2)2,k = I(2)6,k ◦ I(2)7,k , k = 3, 4, 5, 8. (2.67)

and
I(2)1,k ◦ I(2)2,k = I(2)7,k ◦ I(2)8,k , k = 3, 4, 5, 8. (2.68)

This completes the proof of coincidence of all representations (2.50), as well as the middle
part of the singularity confinement patterns (2.52), (2.53).

• One sees immediately that I(1)9 ◦ σ is a shift with respect to the addition law on the curves

of E , sending p1 → p2 → p3 → p4, while σ ◦ I(1)10 is a shift sending p5 → p6 → p7 → p8.
Therefore, these shifts must coincide with f . This proves (2.51) and the middle part of the
singularity confinement pattern (2.54).

• Collecting all the results, we see that I( f ) = {p4, p8, p10} and I( f−1) = {p1, p5, p9}, so that
f must be a quadratic Cremona map.

• It remains to show the blow-up and blow-down relations in the singularity confinement pat-
terns (2.52)–(2.54). We show the blow-down relations on the left hand side of (2.52)–(2.54).
Consider the representation f = I(1)9 ◦ σ. By definition, we see that I(1)9 blows down the

line (p1 p9) to p1, and blows down the line (p5 p9) to p5. Since I(1)9 is a quadratic involution,

we conclude that it blows down the line (p1 p5) to p9. Then composing I(1)9 with the linear
projective transformation σ yields the proof. Similarly, one can consider the representation
f = σ ◦ I(1)10 to show the blow-up relations on the right hand side of (2.52)–(2.54).

□

We now turn to canonical forms for projectively symmetric quartic pencils with two double
points, which can be achieved by projective automorphisms of P2. The most popular one cor-
responds to the choice p9 = [0 : 1 : 0], p10 = [1 : 0 : 0], so that the quartic curves become
biquadratic ones. Denote the non-homogeneous coordinates on the affine part C2 ⊂ P2 by (u, v).
We can arrange p2 = (1, a), p7 = (a, 1), p3 = (a,−1), p6 = (−1, a), so that ℓ = {u − v = 0},
C = (p2 p7) ∩ (p3 p6) = [−1 : 1 : 0], and σ is the Euclidean reflection at the line ℓ,

σ(u, v) = (v, u).

The pencil E of biquadratics reads

α(α + 1)(u2 + v2 − 1)− (α + 1)uv + β(u + v)− β2 − λ(u2 − 1)(v2 − 1) = 0, (2.69)

and is symmetric under σ. Involutions I(1)9 and I(1)10 are nothing but the standard vertical and

horizontal QRT switches for this pencil, and the map f = I(1)9 ◦ σ = σ ◦ I(1)10 of Theorem 2.21 is
given by

f : (u, v) ↦→ (ũ, ṽ),

⎧⎨⎩
ũ = v,

ṽ =
αuv + βu − 1

u − αv − β
.

(2.70)

It is the "QRT root" of f 2 = I(1)9 ◦ I(1)10 .
To arrive at another canonical form of projectively symmetric quartic pencils with two double

points, we perform a linear projective change of variables in P2, given in the non-homogeneous
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coordinates by

u =
1 + βx + y

x
, v =

1 + βx − y
x

. (2.71)

Upon substitution (2.71) and some straightforward simplifications, we come to the following sys-
tem (compare to (5.18)):{

x̃ − x = xỹ + x̃y,
ỹ − y = (1 − 2α)− 2αβ(x + x̃) + (1 − β2(1 + 2α))xx̃ − (1 + 2α)yỹ.

(2.72)

In order to give an intrinsic geometric characterization of this canonical form, we will need the
following observation.

Proposition 2.22. The following five intersection points are collinear:

(p1 p8) ∩ (p2 p7), (p1 p5) ∩ (p3 p7), (p2 p5) ∩ (p3 p8), (p1 p6) ∩ (p4 p7), (p2 p6) ∩ (p4 p8).

Proof. The triple of intersection points

(p1 p8) ∩ (p2 p7), (p1 p5) ∩ (p3 p7), (p2 p5) ∩ (p3 p8)

lies on the Pascal line for the hexagon (p1, p5, p2, p7, p3, p8), while the triple of intersection points

(p1 p8) ∩ (p2 p7), (p1 p6) ∩ (p4 p7), (p2 p6) ∩ (p4 p8)

lies on the Pascal line for the hexagon (p1, p6, p2, p7, p4, p8). These hexagons correspond under
σ, therefore this holds true also for their Pascal lines. Moreover, the Pascal lines share the point
(p1 p8) ∩ (p2 p7) = C, therefore they must coincide. □

We will call the line containing the five intersection points from Proposition 2.22 the double
Pascal line.

Theorem 2.23. For a projectively symmetric pencil of quartic curves with two double points, perform a
linear projective transformation of P2 sending the double Pascal line to infinity. By a subsequent affine
change of coordinates (x, y) on the affine part C2 ⊂ P2, arrange that ℓ coincides with the axis y = 0,
p9 = (0,−1), p10 = (0, 1). In these coordinates, the map f : (x, y) ↦→ (x̃, ỹ) defined by (2.50)–(2.51) is
characterized by the following property. There exists a0, . . . , a3 ∈ C with a0 + a3 = 2 such that f admits
a representation through two bilinear equations of motion of the form{

x̃ − x = xỹ + x̃y,
ỹ − y = a0 − a1(x + x̃)− a2xx̃ − a3yỹ.

(2.73)

Proof. A symbolic computation with MAPLE. □



Chapter 3

The singularity structure of Kahan
discretizations I

Some of the results of the chapters 1 and 3 have been published in [59].

In this chapter, we consider the class of two-dimensional quadratic differential equations(
ẋ
ẏ

)
=

1
c(x, y)

(
∂H(x, y)/∂y
−∂H(x, y)/∂x

)
, (3.1)

where

H(x, y) = ℓγ1
1 (x, y)ℓγ2

2 (x, y)ℓγ3
3 (x, y), c(x, y) = ℓγ1−1

1 (x, y)ℓγ2−1
2 (x, y)ℓγ3−1

3 (x, y),

and
ℓi(x, y) = aix + biy

are linear forms, with ai, bi ∈ C, and γ1, γ2, γ3 ∈ R \ {0}.
Integrability of the Kahan maps ϕ : C2 → C2 has been established for several cases of parame-

ters (γ1, γ2, γ3): If (γ1, γ2, γ3) = (1, 1, 1), then (3.1) is a canonical Hamiltonian system on R2 with
homogeneous cubic Hamiltonian. For such systems, a rational integral for the Kahan map ϕ was
found in [22, 43]. The Kahan maps for the cases (γ1, γ2, γ3) = (1, 1, 2) and (γ1, γ2, γ3) = (1, 2, 3)
were treated in [24, 43, 48]. In all three cases, the level sets of the integral for both the continuous
time system and the Kahan discretization have genus 1. If (γ1, γ2, γ3) = (1, 1, 0), then (3.1) is a
Hamiltonian vector field on R2 with linear Poisson tensor and homogeneous quadratic Hamilto-
nian. In this case, a rational integral for the Kahan map ϕ was found in [23]. The level sets of the
integral have genus 0.

In this paper, we study the singularity structure of the Kahan discretization as a birational
quadratic map ϕ : P2 → P2. Based on general classification results by Diller & Favre [27], we
provide the following classification for the Kahan map ϕ of (3.1) depending on the values of the
parameters (γ1, γ2, γ3):

Theorem 3.1. Let ϕ : P2 → P2 be the Kahan map of (3.1).
The sequence of degrees d(m) of iterates ϕm grows exponentially, so that the map ϕ is non-integrable,

except for the following cases:

(i) If (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), (1, 2, 3), the sequence of degrees d(m) grows quadratically. The

34
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map ϕ admits an invariant pencil of elliptic curves. The degree of a generic curve of the pencil is 3,
4, 6, respectively.

(ii) If (γ1, γ2, γ3) = (1, 1, 0) or (γ1, γ2, γ3) = (α, 1,−1), α ∈ R \ Z ∪ {0}, the sequence of degrees
d(m) grows linearly. The map ϕ admits an invariant pencil of rational curves.

(iii) If (γ1, γ2, γ3) = (n, 1,−1), n ∈ N, the sequence of degrees d(m) is bounded.

Here, (γ1, γ2, γ3) are fixed up to permutation and multiplication by λ ∈ R \ {0}.

Some of the integrable cases are discussed in further detail in Sections 3.3–3.7.

3.1 The (γ1, γ2, γ3)-class
The class of quadratic differential equations we want to consider is a generalization of the two-
dimensional reduced Nahm systems introduced in [33],{

ẋ = x2 − y2,
ẏ = −2xy,

{
ẋ = 2x2 − 12y2,
ẏ = −6xy − 4y2,

{
ẋ1 = 2x2 − y2,
ẋ2 = −10xy + y2.

(3.2)

Such systems can be explicitly integrated in terms of elliptic functions and they admit integrals of
motion given respectively by

H1(x, y) =
y
3
(3x2 − y2), H2(x, y) = y(2x + 3y)(x − y)2, H3(x, y) =

y
6
(3x − y)2(4x + y)3.

The curves {Hi(x, y) = λ} are of genus 1 (use a computer algebra system, like MAPLE, to com-
pute the Weierstrass form for H2(x, y), H3(x, y)). Systems (3.2) have been discussed in [33] and
discretized by means of the Kahan method in [43]. Integrability of Kahan discretizations{

x̃ − x = 2ε(x̃x − ỹy),
ỹ − y = −2ε(x̃y + xỹ),

{
x̃ − x = ε(4x̃x − 24ỹy),
ỹ − y = −ε(6x̃y + 6xỹ + 8ỹy),{

x̃ − x = ε(4x̃x − 2ỹy),
ỹ − y = ε(−10x̃y − 10xỹ + 2ỹy),

was shown in [43]. They have been studied in the context of minimization of rational elliptic
surfaces in [17]. The following generalization of reduced Nahm systems has been introduced
in [24, 48]:

We use the notation x = (x, y) ∈ C2. Consider the two-dimensional quadratic differential
equations

ẋ = f(x) = γ1ℓ2(x)ℓ3(x)J∇ℓ1 + γ2ℓ1(x)ℓ3(x)J∇ℓ2 + γ3ℓ1(x)ℓ2(x)J∇ℓ3, (3.3)

which can be put as
ẋ = ℓ1−γ1

1 (x)ℓ1−γ2
2 (x)ℓ1−γ3

3 (x)J∇H(x),

where
H(x) = ℓγ1

1 (x)ℓγ2
2 (x)ℓγ3

3 (x), (3.4)

and
ℓi(x, y) = aix + biy
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are linear forms, with ai, bi ∈ C, J =

(
0 1
−1 0

)
and γ1, γ2, γ3 ∈ R \ {0}. System (3.3) has the

function (3.4) as an integral of motion and an invariant measure form

Ω(x) =
dx ∧ dy

ℓ1(x)ℓ2(x)ℓ3(x)
. (3.5)

The Kahan discretization of (3.3) reads

x̃ − x =εγ1(ℓ2(x)ℓ3(x̃) + ℓ2(x̃)ℓ3(x))J∇ℓ1

+εγ2(ℓ1(x)ℓ3(x̃) + ℓ1(x̃)ℓ3(x))J∇ℓ2

+εγ3(ℓ1(x)ℓ2(x̃) + ℓ1(x̃)ℓ2(x))J∇ℓ3.
(3.6)

Multiplying (3.6) from the left by the vectors ∇ℓT
i , i = 1, 2, 3, we obtain

ℓ1(x̃)− ℓ1(x) = εd12γ2(ℓ1(x)ℓ3(x̃) + ℓ1(x̃)ℓ3(x))− εd31γ3(ℓ1(x)ℓ2(x̃) + ℓ1(x̃)ℓ2(x)), (3.7)
ℓ2(x̃)− ℓ2(x) = εd23γ3(ℓ1(x)ℓ2(x̃) + ℓ1(x̃)ℓ2(x))− εd12γ1(ℓ2(x)ℓ3(x̃) + ℓ2(x̃)ℓ3(x)), (3.8)
ℓ3(x̃)− ℓ3(x) = εd31γ1(ℓ2(x)ℓ3(x̃) + ℓ2(x̃)ℓ3(x))− εd23γ2(ℓ1(x)ℓ3(x̃) + ℓ1(x̃)ℓ3(x)), (3.9)

where
dij = aibj − ajbi.

From equations (3.7)–(3.9) it follows that the Kahan discretization leaves the lines {ℓi(x) = 0},
i = 1, 2, 3, invariant.

Proposition 3.2 (see [48]). The Kahan map (3.6) admits (3.5) as invariant measure form.

Proof. The Jacobian of the vector field (3.3) is

f
′(x) = J(A1(x)∇ℓT

1 + A2(x)∇ℓT
2 + A3(x)∇ℓT

3 ),

where

A1(x) = γ2ℓ3(x)∇ℓ2 + γ3ℓ2(x)∇ℓ3,
A2(x) = γ1ℓ3(x)∇ℓ1 + γ3ℓ1(x)∇ℓ3,
A3(x) = γ1ℓ2(x)∇ℓ1 + γ2ℓ1(x)∇ℓ2.

As for any Kahan discretization we have (see [43])

det
(

∂x̃
∂x

)
=

det(I + εf′(x̃))
det(I − εf′(x))

.

Using Sylvester’s determinant formula we obtain

det(I − εf′(x)) = (1 − ε∇ℓT
1 JA1(x))(1 − ε∇ℓT

2 B2(x)JA2(x))(1 − ε∇ℓT
3 B1(x)JA3(x)), (3.10)

where

B1(x) =
(

I − εJ(A1(x)∇ℓT
1 + A2(x)∇ℓT

2 )
)−1

, B2(x) =
(

I − εJA1(x)∇ℓT
1

)−1
,
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or, more explicitly (use the Sherman-Morrison formula),

B1(x) = I + εJ(η11(x)A1(x)∇ℓT
1 + η12(x)A1(x)∇ℓT

2 + η21(x)A2(x)∇ℓT
1 + η22(x)A2(x)∇ℓT

2 ),

B2(x) = I +
εJA1(x)∇ℓT

1
1 − ε∇ℓT

1 JA1(x)
,

where

η11(x) =
1 − ε∇ℓT

2 JA2(x)
∆(x)

, η12(x) =
ε∇ℓT

1 JA2(x)
∆(x)

,

η21(x) =
ε∇ℓT

2 JA1(x)
∆(x)

, η22(x) =
1 − ε∇ℓT

1 JA1(x)
∆(x)

,

with

∆(x) = 1 − ε(∇ℓT
1 JA1(x) +∇ℓT

2 JA2(x)) + ε2(∇ℓT
1 JA1(x)∇ℓT

2 JA2(x)−∇ℓT
1 JA2(x)∇ℓT

2 JA1(x)).

Replacing (x, ε) by (x̃,−ε) in (3.10) we obtain det(I + εf′(x̃)). Note that the expressions for det(I −
εf′(x)) and det(I + εf′(x̃)) are rational functions in the variables ε, γ1, γ2, γ3, d12, d23, d31, and ℓi(x),
i = 1, 2, 3, and ℓi(x̃), i = 1, 2, 3, respectively. Using equations (3.7)–(3.9), a symbolic computation
with MAPLE shows that

det(I + εf′(x̃))
det(I − εf′(x))

=
ℓ1(x̃)ℓ2(x̃)ℓ3(x̃)
ℓ1(x)ℓ2(x)ℓ3(x)

is an algebraic identity. This proves the claim. □

Note that in [48] the (γ1, γ2, γ3)-class was considered in the more general setting where ℓi : Rn →
R. In this case, we showed that the Kahan map admits an invariant measure form Ω(x) = dx1 ∧
· · · ∧ dxn/(ℓ1(x)ℓ2(x)ℓ3(x)), x ∈ Rn. The proof is literally the same as presented here.

Explicitly, the Kahan discretization of (3.3) as map ϕ+ : P2 → P2 is as follows:

ϕ+ : [x : y : z] −→ [x′ : y′ : z′] (3.11)

with

x′ = zx + εA2(x, y), (3.12)
y′ = zy − εB2(x, y), (3.13)

z′ = z2 + zεC1(x, y)− 2ε2C2(x, y), (3.14)

with homogeneous polynomials of deg ≤ 2

A2(x, y) = ∑
(i,j,k)

γiℓi(x, y)(bkℓj(x, y) + bjℓk(x, y)),

B2(x, y) = ∑
(i,j,k)

γiℓi(x, y)(akℓj(x, y) + ajℓk(x, y)),

C1(x, y) = ∑
(i,j,k)

γi(dikℓj(x, y) + dijℓk(x, y)),

C2(x, y) = ∑
(i,j,k)

γjγkd2
jkℓ

2
i (x, y),

where ∑
(i,j,k)

denotes the sum over all cyclic permutations (i, j, k) of (1, 2, 3).
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The inverse ϕ− : P2 → P2 of the Kahan map (3.11) is obtained by replacing ε by −ε.

Lemma 3.3. The following identities hold:

A2(−λbi, λai) = −bidijdki(γj + γk)λ
2, (3.15)

B2(−λbi, λai) = −aidijdki(γj + γk)λ
2, (3.16)

C1(−λbi, λai) = −dijdki(2γi − γj − γk)λ, (3.17)

C2(−λbi, λai) = γid2
ijd

2
ki(γj + γk)λ

2, (3.18)

where (i, j, k) is a cyclic permutation of (1, 2, 3).

Proof. This is the result of straightforward computations. □

3.2 The generic case
In the following, we assume that d12, d23, d31 , 0, i.e., that the lines {ℓi(x, y) = 0} are pairwise
distinct. Also, we consider C2 as the affine part of P2 consisting of the points [x : y : z] ∈ P2 with
z , 0. We identify the point (x, y) ∈ C2 with the point [x : y : 1] ∈ P2.

Proposition 3.4. The singularities B(i)
+ , i = 1, 2, 3, of the Kahan map ϕ+ and B(i)

− , i = 1, 2, 3, of its
inverse ϕ− are given by

B(i)
± = [± bi

εdijdki
: ∓ ai

εdijdki
: γj + γk],

where (i, j, k) is a cyclic permutation of (1, 2, 3). Let L(i)
∓ denote the line through the points B(j)

± , B(k)
± .

Then we have
ϕ±(L(i)

∓ ) = B(i)
∓ .

Proof. Substituting B(i)
+ into equations (3.12)–(3.14) and B(i)

− into equations (3.12)–(3.14) with ε
replaced by −ε, and using (3.15)–(3.18) the first claim follows immediately. The second claim is
the result of a straightforward (symbolic) computation using MAPLE. □

The map ϕ+ blows down the lines L(i)
− to the points B(i)

− and blows up the points B(i)
+ to the

lines L(i)
+ .

Theorem 3.5.

(i) Suppose that nγi , γj + γk, for 0 ≤ n < N. Then we have

ϕn
+(B(i)

− ) = [− bi
εdijdki

:
ai

εdijdki
: −2nγi + γj + γk], 0 ≤ n ≤ N, (3.19)

where (i, j, k) is a cyclic permutation of (1, 2, 3). In particular, we have

ϕ
ni−1
+ (B(i)

− ) = B(i)
+

if and only if
(ni − 1)γi = γj + γk, (3.20)

for a positive integer ni ∈ N.
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(ii) The only orbit data with exactly three singular orbits that can be realized is (σ1, σ2, σ3) = (1, 2, 3)
and (up to permutation)

(n1, n2, n3) = (3, 3, 3) if and only if (γ1, γ2, γ3) = λ(1, 1, 1),
(n1, n2, n3) = (4, 4, 2) if and only if (γ1, γ2, γ3) = λ(1, 1, 2),
(n1, n2, n3) = (6, 3, 2) if and only if (γ1, γ2, γ3) = λ(1, 2, 3),

for λ ∈ R \ {0}.

(iii) The only orbit data with exactly two singular orbits that can be realized is (σ1, σ2) = (1, 2) and

(n1, n2) ∈ N2 = N2 \ {(3, 3), (2, 4), (4, 2), (4, 4), (2, 3), (3, 2), (2, 6), (6, 2), (3, 6), (6, 3)}

if and only if
(γ1, γ2, γ3) = λ(n2, n1, n1n2 − n1 − n2),

for λ ∈ R \ {0}.

(iv) The only orbit data with exactly one singular orbit that can be realized is σ1 = 1 and n1 ∈ N

arbitrary.

Proof.

(i) We show (3.19) by induction on n. For n = 0 the claim is true by Proposition 3.4. In the
induction step (from n < N to n + 1) with (3.12)–(3.14) and (3.15)–(3.18) we find that

x′ = −
2(−nγi + γj + γk)bi

εdijdki
,

y′ =
2(−nγi + γj + γk)ai

εdijdki
,

z′ = 2(−nγi + γj + γk)(−2(n + 1)γi + γj + γk).

Since nγi , γj + γk, we find that

ϕ+(ϕ
n
+(B(i)

− )) = [− bi
εdijdki

:
ai

εdijdki
: −2(n + 1)γi + γj + γk].

This proves the claim.

(ii) From conditions (3.20), for i = 1, 2, 3, we obtain the linear system⎛⎝n1 − 1 −1 −1
−1 n2 − 1 −1
−1 −1 n3 − 1

⎞⎠⎛⎝γ1
γ2
γ3

⎞⎠ =

⎛⎝0
0
0

⎞⎠ . (3.21)

This system has nontrivial solutions if and only if

1
n1

+
1
n2

+
1
n3

= 1. (3.22)

Remarkably, equation (3.22) appears in the classification of tessellations of the Euclidean
plane by congruent triangles. Indeed, the triangles of such a tessellation all have interior
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angles π/n1, π/n2, π/n3 satisfying the relation (3.22), so that the following combinations
(n1, n2, n3) are admissible:

(3, 3, 3), (4, 4, 2), (6, 3, 2).

This coincidence deserves attention in the future study of the (γ1, γ2, γ3)-class.

(iii) From conditions (3.20), for i = 1, 2, we obtain the linear system

(
n1 − 1 −1 −1
−1 n2 − 1 −1

)⎛⎝γ1
γ2
γ3

⎞⎠ =

(
0
0

)
. (3.23)

Note that we have to exclude those values (n1, n2) ∈ N2 for which the solutions (γ1, γ2, γ3)
correspond to orbit data with three singular orbits. This yields the proof.

(iv) From conditions (3.20), for i = 1, we obtain the linear equation

(
n1 − 1 −1 −1

)⎛⎝γ1
γ2
γ3

⎞⎠ = 0. (3.24)

This yields the proof.

□

We arrive at the following classification result (compare Theorem 3.1):

Theorem 3.6. The sequence of degrees d(m) of iterates ϕm
+ grows exponentially, so that the map ϕ+ is

non-integrable, except for the following cases:

(i) If (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), (1, 2, 3), the sequence of degrees d(m) grows quadratically. The
map ϕ+ admits an invariant pencil of elliptic curves. The degree of a generic curve of the pencil is 3,
4, 6, respectively.

(ii) If (γ1, γ2, γ3) = (1, 1, 0) or (γ1, γ2, γ3) = (α, 1,−1), α ∈ R \ Z ∪ {0}, the sequence of degrees
d(m) grows linearly. The map ϕ+ admits an invariant pencil of rational curves.

(iii) If (γ1, γ2, γ3) = (n, 1,−1), n ∈ N, the sequence of degrees d(m) is bounded.

Here, (γ1, γ2, γ3) are fixed up to permutation and multiplication by λ ∈ R \ {0}.

Proof. We distinguish the number of singular orbits s = 0, 1, 2, 3 of the map ϕ+.

• Let s = 3. If (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), (1, 2, 3), the generating functions of the se-
quences of degrees are given by (3.29), (3.34) and (3.39), respectively. The sequences d(m)
grow quadratically. The invariant pencils of elliptic curves are given by (3.27), (3.32) and
(3.37), respectively. By Theorem 3.5 these are the only cases with three singular orbits.

• Let s = 2. If (γ1, γ2, γ3) = (1, 1, 0), the sequence of degrees is given by (3.55). The se-
quence d(m) grows linearly. The invariant pencil of rational curves is given by (3.53). If
(γ1, γ2, γ3) = (n, 1,−1), n ∈ N, the generating function of the sequence of degrees is given
by (3.62). The sequence d(m) is bounded. By Theorem 3.5 all other cases with two singular
orbits have orbit data (σ1, σ2) = (1, 2), (n1, n2) = (2 + i, 2 + j) with i + j > 2. With Theorem
3.3 in [11] and Theorem 5.1 in [12] it follows that in those cases λ1 > 1, i.e., the sequence
d(m) grows exponentially.
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• Let s = 1. If (γ1, γ2, γ3) = (α, 1,−1), α ∈ R \ Z ∪ {0}, by Theorem 3.5 and (3.24) we have
the orbit data σ1 = 1, n1 = 1. With Theorem 1.1 we find that the sequence d(m) grows
linearly. The claim about the existence of an invariant pencil of rational curves follows from
Theorem 0.5. With (3.24) we find that all other cases with one singular orbit have orbit data
σ1 = 1, n1 > 1. With Theorem 3.3 in [11] and Theorem 5.1 in [12] it follows that in those
cases λ1 > 1, i.e., the sequence d(m) grows exponentially.

• Let s = 0. We have dynamical degree λ1 = 2. The sequence d(m) grows exponentially.

□

3.3 The case (γ1, γ2, γ3) = (1, 1, 1)
By Theorem 3.5 this case corresponds to the orbit data (n1, n2, n3) = (3, 3, 3), (σ1, σ2, σ3) = (1, 2, 3).

In this case, we consider the Kahan map ϕ+ : C2 → C2 corresponding to a quadratic vector
field of the form

ẋ = J∇H(x), H(x) = ℓ1(x)ℓ2(x)ℓ3(x).

The Kahan map ϕ+ : C2 → C2 admits an integral of motion (see [22, 44]):

H̃(x) =
H(x)
Q(x)

, (3.25)

where

Q(x) = 1 + 4ε2((d1d3 − d2
2)x2 + (d1d4 − d2d3)xy + (d2d4 − d2

3)y
2),

with d1 = 3a1a2a3, d2 = a1a2b3 + a1a3b2 + a2a3b1, d3 = a3b1b2 + a2b1b3 + a1b2b3, d4 = 3b1b2b3.
The geometry of the Kahan discretization has been studied in [44]. The phase space of the

map ϕ+ : C2 → C2 is foliated by the one-parameter family (pencil) of invariant curves

Cλ =
{
(x, y) ∈ C2 : H(x, y)− λQ(x, y) = 0

}
. (3.26)

We consider C2 as the affine part of P2 consisting of the points [x : y : z] ∈ P2 with z , 0. We
define the projective curves Cλ as projective completion of Cλ:

Cλ =
{
[x : y : z] ∈ P2 : H(x, y)− λzQ(x, y, z) = 0

}
, (3.27)

where we set
Q(x, y, z) = z2Q(x/z, y/z).

(We have H(x, y, z) = z3H(x/z, y/z) = H(x, y) since H(x, y) is homogeneous of degree three.)
The pencil has deg = 3 and contains two reducible curves

C0 = {[x : y : z] ∈ P2 : H(x, y) = 0}

consisting of the lines {ℓi(x, y) = 0}, i = 1, 2, 3, and

C∞ = {[x : y : z] ∈ P2 : zQ(x, y, z) = 0}

consisting of the conic {Q(x, y, z) = 0} and the line at infinity {z = 0}. All curves Cλ pass through
the set of base points which is defined as C0 ∩ C∞. According to the Bézout theorem, there are 9
base points, counted with multiplicities.
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Proposition 3.7. The 9 base points are given by:

• three base points on the line ℓ1 = 0:

p1 = (− b1

2εd12d31
,

a1

2εd12d31
), p2 = [b1 : −a1 : 0], p3 = −p1,

• three base points on the line ℓ2 = 0:

p4 = (− b2

2εd23d12
,

a2

2εd23d12
), p5 = [b2 : −a2 : 0], p6 = −p5,

• three base points on the line ℓ3 = 0:

p7 = (− b3

2εd31d23
,

a3

2εd31d23
), p8 = [b3 : −a3 : 0], p9 = −p7.

The singular orbits of the map ϕ+ are as follows:

L(1)
− −→ B(1)

− = p1 −→ p2 −→ p3 = B(1)
+ −→ L(1)

+ ,

L(2)
− −→ B(2)

− = p4 −→ p5 −→ p6 = B(2)
+ −→ L(2)

+ ,

L(3)
− −→ B(3)

− = p7 −→ p8 −→ p9 = B(3)
+ −→ L(3)

+ ,

(3.28)

where L(i)
∓ denotes the line through the points B(j)

± , B(k)
± .

Proof. The singular orbits (3.28) are a consequence of Proposition 3.4 and Theorem 3.5. It can be
verified by straightforward computations that the points p1, . . . , p9 are base points of the pencil
of invariant curves Cλ. □

3.3.1 Lifting the map to a surface automorphism
We blow up the plane P2 at the nine base points p1, . . . , p9 and denote the corresponding excep-
tional divisors by Ei,0, Ei,1, Ei,2 (i = 1, 2, 3). The resulting blow-up surface is denoted by X. On
this surface ϕ+ is lifted to an automorphism ϕ̃+ acting on the exceptional divisors according to
the scheme (compare with (3.28))

L̃(1)
− −→ E1,0 −→ E1,1 −→ E1,2 −→ L̃(1)

+ ,

L̃(2)
− −→ E2,0 −→ E2,1 −→ E2,2 −→ L̃(2)

+ ,

L̃(3)
− −→ E3,0 −→ E3,1 −→ E3,2 −→ L̃(3)

+ ,

where L̃(i)
± denotes the proper transform of the line L(i)

± .
We compute the induced pullback map on the Picard group ϕ̃∗

+ : Pic(X) → Pic(X). Let H ∈
Pic(X) be the pullback of the class of a generic line in P2. Let Ei,n ∈ Pic(X), for i ≤ 3 and
0 ≤ n ≤ 2, be (the total transform of) the class of Ei,n. Then the Picard group is

Pic(X) = ZH
3⨁

i=1

2⨁
n=0

ZEi,n.
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x

y

p1p3

p4

p6p7

p9

Figure 3.1: The curves C0, C∞, C0.01 of the cubic pencil (3.26) (in red, blue and green, resp.) for
ℓ1(x) =

y
3 , ℓ2(x) = (

√
3x − y), ℓ3(x) = (

√
3x + y), ε = 1.
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The rank of the Picard group is 10. The induced pullback ϕ̃∗
+ : Pic(X) → Pic(X) is determined by

(1.4).
With Theorem 1.1 we arrive at the system of recurrence relations for the degree d(m):⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(m + 1) = 2d(m)− µ1(m)− µ2(m)− µ3(m),
µ1(m + 3) = d(m)− µ2(m)− µ3(m),
µ2(m + 3) = d(m)− µ1(m)− µ3(m),
µ3(m + 3) = d(m)− µ1(m)− µ2(m),

with initial conditions d(0) = 1, µi(m) = 0, for m = 0, . . . , 2, i = 1, 2, 3. The generating functions
of the solution to this system of recurrence relations are given by:

d(z) = − 2z3 + 1
(z + 1)(z − 1)3 , (3.29)

µi(z) = − z3

(z + 1)(z − 1)3 , i = 1, 2, 3.

The sequence d(m) grows quadratically.

3.4 The case (γ1, γ2, γ3) = (1, 1, 2)
By Theorem 3.5 this case corresponds to the orbit data (n1, n2, n3) = (4, 4, 2), (σ1, σ2, σ3) = (1, 2, 3).

In this case, we consider the Kahan map ϕ+ : C2 → C2 corresponding to a quadratic vector
field of the form

ẋ =
1

ℓ3(x)
J∇H(x), H(x) = ℓ1(x)ℓ2(x)ℓ2

3(x).

Proposition 3.8 (see [24, 48]). The Kahan map ϕ+ : C2 → C2 admits an integral of motion

H̃(x) =
H(x)

P1(x)P2(x)Q(x)
, (3.30)

where

P1(x) = 1 + ε (d23ℓ1(x)− d31ℓ2(x)) ,
P2(x) = 1 − ε (d23ℓ1(x)− d31ℓ2(x)) ,

Q(x) = 1 − ε2
(

9d2
12ℓ

2
3(x)− 4d23d31ℓ1(x)ℓ2(x)

)
.

Proof. Symbolic computation with MAPLE. □

The phase space of ϕ+ : C2 → C2 is foliated by the one-parameter family (pencil) of invariant
curves

Cλ =
{
(x, y) ∈ C2 : H(x, y)− λP1(x, y)P2(x, y)Q(x, y) = 0

}
. (3.31)

We define the projective curves Cλ as projective completion of Cλ:

Cλ =
{
[x : y : z] ∈ P2 : H(x, y)− λP1(x, y, z)P2(x, y, z)Q(x, y, z) = 0

}
, (3.32)
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where we set

Pi(x, y, z) = zPi(x/z, y/z), i = 1, 2, Q(x, y, z) = z2Q(x/z, y/z).

The pencil has deg = 4 and contains two reducible curves

C0 = {[x : y : z] ∈ P2 : H(x, y) = 0}

consisting of the lines {ℓi(x, y) = 0}, i = 1, 2, 3, with multiplicities 1, 1, 2, and

C∞ = {[x : y : z] ∈ P2 : P1(x, y, z)P2(x, y, z)Q(x, y, z) = 0}

consisting of the two lines {Pi(x, y, z) = 0}, i = 1, 2, and the conic {Q(x, y, z) = 0}. All curves Cλ

pass through the set of base points which is defined as C0 ∩ C∞.

Proposition 3.9. The 10 (distinct) base points are given by:

• four base points of multiplicity 1 on the line ℓ1 = 0:

p1 = (− b1

3εd12d31
,

a1

3εd12d31
), p2 = (− b1

εd12d31
,

a1

εd12d31
), p3 = −p2, p4 = −p1,

• four base points of multiplicity 1 on the line ℓ2 = 0:

p5 = (− b2

3εd23d12
,

a2

3εd23d12
), p6 = (− b2

εd23d12
,

a2

εd23d12
), p7 = −p6, p8 = −p5,

• two base points of multiplicity 2 on the line ℓ3 = 0:

p9 = (− b3

2εd23d31
,

a3

2εd23d31
), p10 = −p9.

The singular orbits of the map ϕ+ are as follows:

L(1)
− −→ B(1)

− = p1 −→ p2 −→ p3 −→ p4 = B(1)
+ −→ L(1)

+ ,

L(2)
− −→ B(2)

− = p5 −→ p6 −→ p7 −→ p8 = B(2)
+ −→ L(2)

+ ,

L(3)
− −→ B(3)

− = p9 −→ p10 = B(3)
+ −→ L(3)

+ ,

(3.33)

where L(i)
∓ denotes the line through the points B(j)

± , B(k)
± .

Proof. The singular orbits (3.33) are a consequence of Proposition 3.4 and Theorem 3.5. It can be
verified by straightforward computations that the points p1, . . . , p10 are base points of the pencil
of invariant curves Cλ. □

According to the Bézout theorem, there are 16 base points, counted with multiplicities. This
number is obtained by

∑
p∈C0∩C∞

(mult(p))2 = 8 · 1 + 2 · 4,

where mult(p) denotes the multiplicity of the base point p.
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Figure 3.2: The curves C0, C∞, C0.001 of the quartic pencil (3.31) (in red, blue and green, resp.) for
ℓ1(x) = y, ℓ2(x) = 2x + 3y, ℓ3(x) = x − y, ε = 1.
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3.4.1 Lifting the map to a surface automorphism
We blow up the plane P2 at the ten base points p1, . . . , p10 and denote the corresponding excep-
tional divisors by Ei,0, . . . , Ei,ni−1 (i = 1, 2, 3). The resulting blow-up surface is denoted by X. On
this surface ϕ+ is lifted to an automorphism ϕ̃+ acting on the exceptional divisors according to
the scheme (compare with (3.33))

L̃(1)
− −→ E1,0 −→ E1,1 −→ E1,2 −→ E1,3 −→ L̃(1)

+ ,

L̃(2)
− −→ E2,0 −→ E2,1 −→ E2,2 −→ E2,3 −→ L̃(2)

+ ,

L̃(3)
− −→ E3,0 −→ E3,1 −→ L̃(3)

+ ,

where L̃(i)
± denotes the proper transform of the line L(i)

± .
We compute the induced pullback map on the Picard group ϕ̃∗

+ : Pic(X) → Pic(X). Let H ∈
Pic(X) be the pullback of the class of a generic line in P2. Let Ei,n ∈ Pic(X), for i ≤ 3 and
0 ≤ n ≤ ni − 1, be (the total transform of) the class of Ei,n. Then the Picard group is

Pic(X) = ZH
3⨁

i=1

ni−1⨁
n=0

ZEi,n.

The rank of the Picard group is 11. The induced pullback ϕ̃∗
+ : Pic(X) → Pic(X) is determined by

(1.4).
With Theorem 1.1 we arrive at the system of recurrence relations for the degree d(m):⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(m + 1) = 2d(m)− µ1(m)− µ2(m)− µ3(m),
µ1(m + 4) = d(m)− µ2(m)− µ3(m),
µ2(m + 4) = d(m)− µ1(m)− µ3(m),
µ3(m + 2) = d(m)− µ1(m)− µ2(m),

with initial conditions d(0) = 1, µi(m) = 0, for n = 0, . . . , 3, i = 1, 2, and µ3(m) = 0, for m = 0, 1.
The generating functions of the solution to this system of recurrence relations are given by:

d(z) = − 2z4 + z2 + 1
(z2 + z + 1)(z − 1)3 , (3.34)

µi(z) = − z4

(z2 + z + 1)(z − 1)3 , i = 1, 2,

µ3(z) = − z2(z2 + 1)
(z2 + z + 1)(z − 1)3 .

The sequence d(m) grows quadratically.

3.5 The case (γ1, γ2, γ3) = (1, 2, 3)
By Theorem 3.5 this case corresponds to the orbit data (n1, n2, n3) = (6, 3, 2), (σ1, σ2, σ3) = (1, 2, 3).

In this case, we consider the Kahan map ϕ+ : C2 → C2 corresponding to a quadratic vector
field of the form

ẋ =
1

ℓ2(x)ℓ2
3(x)

J∇H(x), H(x) = ℓ1(x)ℓ2
2(x)ℓ

3
3(x).
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Proposition 3.10 (see [24, 48]). The Kahan map ϕ+ : C2 → C2 admits an integral of motion

H̃(x) =
H(x)

P1(x)P2(x)P3(x)P4(x)Q(x)
, (3.35)

where

P1(x) = 1 + 3εd31ℓ2(x),
P2(x) = 1 − 3εd31ℓ2(x),
P3(x) = 1 + ε (3d23ℓ1(x)− d12ℓ3(x)) ,
P4(x) = 1 − ε (3d23ℓ1(x)− d12ℓ3(x)) ,

Q(x) = 1 − ε2
(

9d2
31ℓ

2
2(x) + 16d2

12ℓ
2
3(x)

)
.

Proof. Symbolic computation with MAPLE. □

The phase space of ϕ+ : C2 → C2 is foliated by the one-parameter family (pencil) of invariant
curves

Cλ =

{
(x, y) ∈ C2 : H(x, y)− λQ(x, y)

4

∏
i=1

Pi(x, y) = 0

}
. (3.36)

We define the projective curves Cλ as projective completion of Cλ:

Cλ =

{
[x : y : z] ∈ P2 : H(x, y)− λQ(x, y, z)

4

∏
i=1

Pi(x, y, z) = 0

}
, (3.37)

where we set

Pi(x, y, z) = zPi(x/z, y/z), i = 1, . . . , 4, Q(x, y, z) = z2Q(x/z, y/z).

The pencil has deg = 6 and contains two reducible curves

C0 = {[x : y : z] ∈ P2 : H(x, y) = 0}

consisting of the lines {ℓi(x, y) = 0}, i = 1, 2, 3, with multiplicities 1, 2, 3, and

C∞ = {[x : y : z] ∈ P2 : Q(x, y, z)
4

∏
i=1

Pi(x, y, z) = 0}

consisting of the four lines {Pi(x, y, z) = 0}, i = 1, . . . , 4, and the conic {Q(x, y, z) = 0}. All
curves Cλ pass through the set of base points which is defined as C0 ∩ C∞.

Proposition 3.11. The 11 (distinct) base points are given by:

• six base points of multiplicity 1 on the line ℓ1 = 0:

p1 = (− b1

5εd12d31
,

a1

5εd12d31
), p2 = (− b1

3εd12d31
,

a1

3εd12d31
), p3 = (− b1

εd12d31
,

a1

εd12d31
),

p4 = −p3, p5 = −p2, p6 = −p1,
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• three base points of multiplicity 2 on the line ℓ2 = 0:

p7 = (− b2

4εd23d12
,

a2

4εd23d12
), p8 = [b2 : −a2 : 0], p9 = −p7,

• two base points of multiplicity 3 on the line ℓ3 = 0:

p10 = (− b3

3εd23d31
,

a3

3εd23d31
), p11 = −p10.

The singular orbits of the map ϕ+ are as follows:

L(1)
− −→ B(1)

− = p1 −→ p2 −→ p3 −→ p4 −→ p5 −→ p6 = B(1)
+ −→ L(1)

+ ,

L(2)
− −→ B(2)

− = p7 −→ p8 −→ p9 = B(2)
+ −→ L(2)

+ ,

L(3)
− −→ B(3)

− = p10 −→ p11 = B(3)
+ −→ L(3)

+ ,

(3.38)

where L(i)
∓ denotes the line through the points B(j)

± , B(k)
± .

Proof. The singular orbits (3.38) are a consequence of Proposition 3.4 and Theorem 3.5. It can be
verified by straightforward computations that the points p1, . . . , p11 are base points of the pencil
of invariant curves Cλ. □

According to the Bézout theorem, there are 36 base points, counted with multiplicities. This
number is obtained by

∑
p∈C0∩C∞

(mult(p))2 = 6 · 1 + 3 · 4 + 2 · 9.

Theorem 3.12. The map ϕ+ can be represented as compositions of Manin involutions in the following
ways:

ϕ+ = I(4)i,k,m ◦ I(4)j,k,m = I(3)i,n ◦ I(3)j,n

for any (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, k ∈ {1, . . . , 6} \ {i, j}, and m ∈ {7, 8, 9}, n ∈
{10, 11}. Here, I(4)i,k,m and I(3)i,n are the Manin involutions from Definition 2.10.

Proof. Symbolic computation with MAPLE. □

3.5.1 Lifting the map to a surface automorphism
We blow up the plane P2 at the eleven base points p1, . . . , p11 and denote the corresponding
exceptional divisors by Ei,0, . . . , Ei,ni−1 (i = 1, 2, 3). The resulting blow-up surface is denoted by
X. On this surface ϕ+ is lifted to an automorphism ϕ̃+ acting on the exceptional divisors according
to the scheme (compare with (3.38))

L̃(1)
− −→ E1,0 −→ E1,1 −→ E1,2 −→ E1,3 −→ E1,4 −→ E1,5 −→ L̃(1)

+ ,

L̃(2)
− −→ E2,0 −→ E2,1 −→ E2,2 −→ L̃(2)

+ ,

L̃(3)
− −→ E3,0 −→ E3,1 −→ L̃(3)

+ ,

where L̃(i)
± denotes the proper transform of the line L(i)

± .
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Figure 3.3: The curves C0, C∞, C−0.002 of the sextic pencil (3.36) (in red, blue and green, resp.) for
ℓ1(x) =

y
6 , ℓ2(x) = 3x − y, ℓ3(x) = 4x + y, ε = 1.
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We compute the induced pullback map on the Picard group ϕ̃∗
+ : Pic(X) → Pic(X). Let H ∈

Pic(X) be the pullback of the class of a generic line in P2. Let Ei,n ∈ Pic(X), for i ≤ 3 and
0 ≤ n ≤ ni − 1, be (the total transform of) the class of Ei,n. Then the Picard group is

Pic(X) = ZH
3⨁

i=1

ni−1⨁
n=0

ZEi,n.

The rank of the Picard group is 12. The induced pullback ϕ̃∗
+ : Pic(X) → Pic(X) is determined by

(1.4).
With Theorem 1.1 we arrive at the system of recurrence relations for the degree d(m):⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(m + 1) = 2d(m)− µ1(m)− µ2(m)− µ3(m),
µ1(m + 6) = d(m)− µ2(m)− µ3(m),
µ2(m + 3) = d(m)− µ1(m)− µ3(m),
µ3(m + 2) = d(m)− µ1(m)− µ2(m),

with initial conditions d(0) = 1, µ1(m) = 0, for m = 0, . . . , 5, µ2(m) = 0, for m = 0, 1, 2, and
µ3(m) = 0, for m = 0, 1. The generating functions of the solution to this system of recurrence
relations are given by:

d(z) = − 2z6 + z4 + z3 + z2 + 1
(z4 + z3 + z2 + z + 1)(z − 1)3 , (3.39)

µ1(z) = − z6

(z4 + z3 + z2 + z + 1)(z − 1)3 ,

µ2(z) = − z3(z + 1)(z2 − z + 1)
(z4 + z3 + z2 + z + 1)(z − 1)3 ,

µ3(z) = − z2(z2 + z + 1)(z2 − z + 1)
(z4 + z3 + z2 + z + 1)(z − 1)3 .

The sequence d(m) grows quadratically.

3.5.2 Birational reduction to a cubic pencil
We demonstrate the procedure of birational reduction to a cubic pencil, as described in Section
2.4, for a concrete example: ℓ1(x) = y

6 , ℓ2(x) = 3x − y, ℓ3(x) = 4x + y, ε = 1
2 . This system was

first considered in the context of minimization of rational surfaces by Carstea & Takenawa [17],
as map of P1 × P1. We explain the procedure of reduction to a cubic pencil (corresponding to a
minimal elliptic surface) in P2. For convenience, most formulas are given in non-homogeneous
coordinates on the affine part C2 ⊂ P2. The Kahan map is given by

f : (x, y) ↦→ (x̃, ỹ),

⎧⎪⎪⎨⎪⎪⎩
x̃ =

x + 5x2 − xy − y2

1 + 3x − y − 10x2 + 2xy − 5y2 ,

ỹ =
y(1 − 7x)

1 + 3x − y − 10x2 + 2xy − 5y2 .
(3.40)



CHAPTER 3. THE SINGULARITY STRUCTURE OF KAHAN DISCRETIZATIONS I 52

The map (3.40) admits an invariant pencil of elliptic curves E = P(6; p1, . . . , p6, p2
7, p2

8, p2
9 p3

10 p3
11).

The pencil E of sextics consists of (the projective completion of) curves

Cλ = {(x, y) ∈ C2 : F(x, y) + λG(x, y) = 0}, (3.41)

where

F(x, y) = y(3x − y)2(4x + y)3,

G(x, y) = (3x − y + 1)(−3x + y + 1)(x + 2y + 1)(−x − 2y + 1)(−25x2 − 2xy − y2 + 1).

The base points are

p1 = (
1
5

, 0), p2 = (
1
3

, 0), p3 = (1, 0) p4 = (−1, 0), p5 = (−1
3

, 0), p6 = (−1
5

, 0),

p7 = (−1
7

,−3
7
), p8 = [1 : 3 : 0], p9 = (

1
7

,
3
7
), p10 = (−1

7
,

4
7
), p11 = (

1
7

,−4
7
).

The map (3.40) is a birational map of degree 2, with I( f ) = {p6, p9, p11} and I( f−1) =
{p1, p7, p10}. It has the following singularity confinement patterns:

(p9 p11) −→ p1 −→ p2 −→ p3 −→ p4 −→ p5 −→ p6 −→ (p7 p10),
(p6 p11) −→ p7 −→ p8 −→ p9 −→ (p1 p10),
(p6 p9) −→ p10 −→ p11 −→ (p1 p7).

(3.42)

Step 1. Let ϕ′ be a quadratic Cremona map with the fundamental points p9, p10, p11. Thus,
ϕ′ blows down the lines (p10 p11), (p9 p11), (p9 p10) to points denoted by q9, q10, q11, respectively,
and blows up the points p9, p10, p11 to the lines (q10q11), (q9q11), (q9q10). The base points pi, i =
1, 2, 4, . . . , 8 are regular points of ϕ′, their images will be denoted by qi = ϕ′(pi). The base point
p3 ∈ (p10 p9) corresponds to an infinitely near point q3 ≥ q11. By a linear projective transformation
of P2 one can arrange that q7 = [0 : 1 : 0], q8 = [1 : 0 : 0].

The map ϕ′ is given by

ϕ′ : (x, y) ↦→ (u, v),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = −27x2 + 10xy + 10y2 − 3

(3x − y)(4x + y)
,

v = −15x2 − 17xy + 4y2 + 12x + 3y − 3
(3x − y)(4x + y)

.
(3.43)

• We have

q1 = (4, 0), q2 = (0,−2), q4 = (−2, 0), q5 = (0, 4), q6 = (4, 10),
q7 = [0 : 1 : 0], q8 = [1 : 0 : 0], q10 = (10, 4), q11 = (−2,−2).

• In new coordinates (x, y) = (1 + u, uv) at p3 = (1, 0), we find

ϕ′(1 + u, uv) = (−2 − 2v + 1
2

u +O(u2),−2 +
2v + 1

2
u +O(u2)),

so that all curves through p3 are mapped to curves with fixed slope −1 at q11 = (−2,−2),
i.e., the base point p3 corresponds to an infinitely near point q3 ≥ q11.

Under the change of coordinates (3.43), sextic curves of the pencil E in P2 correspond to curves
of a quartic pencil E ′ = P(4; q1, . . . , q6, q10, q11, q2

7, q2
8). The pencil E ′ consists of (the projective
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x

y

p1 p2 p3p4 p5 p6

p7

p9

p10

p11

Figure 3.4: The curves C0 (red), C−0.6 (blue) of the sextic pencil (3.41), and the lines (p10 p11),
(p9 p11), (p9 p10) (green).
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completion of) curves

C′
λ = {(u, v) ∈ C2 : F′(u, v) + λG′(u, v) = 0}, (3.44)

where

F′(u, v) = u2 − 2uv + v2 − 2u − 2v − 8,
G′(u, v) = (u − 4)(u + 2)(v − 4)(v + 2),

and the map (3.40) is given by

f ′ : (u, v) ↦→ (ũ, ṽ),

⎧⎨⎩
ũ = v,

ṽ =
uv − 2u − 2v − 12

2u − v + 2
.

(3.45)

It is the "QRT root" of ( f ′)2 = I(1)7 ◦ I(1)8 .
The map (3.45) is a birational map of degree 2, with I( f ′) = {q6, q8, q11} and I( f ′−1) =

{q7, q10, q11}. It has the following singularity confinement patterns:

(q8q11) −→ q11 −→ (q7q11),
(q6q11) −→ q7 −→ q8 −→ (q10q11),
(q6q8) −→ q10 −→ q1 −→ q2 −→ q3 −→ q4 −→ q5 −→ q6 −→ (q7q10).

(3.46)

Labeling the points of I( f ′) and, correspondingly, I( f ′−1) by

B(1)
+ = q6, B(2)

+ = q8, B(3)
+ = q11, B(1)

− = q11, B(2)
− = q7, B(3)

− = q10,

we find that (n1, n2, n3) = (1, 2, 7), (σ1, σ2, σ3) = (3, 2, 1) is the orbit data associated to f ′.
Step 2. Let ϕ′′ be a quadratic Cremona map with the fundamental points q6, q7, q8. Thus,

ϕ′′ blows down the lines (q7q8), (q6q8), (q6q7) to points denoted by r6, r7, r8, respectively, and
blows up the points q6, q7, q8 to the lines (r7r8), (r6r8), (r6r7). The base points qi, i = 2, 4, 5, 10, 11
are regular points of ϕ′′, their images will be denoted by ri = ϕ′′(qi). The base point q3 ≥ q11
corresponds to an infinitely near point r3 ≥ r11. The base base point q1 ∈ (r6r8) corresponds to
an infinitely near point r1 ≥ r7.

The map ϕ′′ is given by

ϕ′′ : (u, v) ↦→ (ζ, η),

⎧⎪⎪⎨⎪⎪⎩
ζ =

3(uv − 3v − 10)
2uv − 5u − 5v − 10

,

η =
3v(u − 4)

2(2uv − 5u − 5v − 10)
.

(3.47)

• We have

r2 = [1 : −1 : 0], r4 = [1 : 0 : 0], r5 = (
11
5

,
4
5
),

r7 = (1, 0), r8 = (2, 1), r10 = [3 : 2 : 0], r11 = (0, 1).

• In new coordinates (u, v) = (−2 + u,−2 + uv) at q11 = (−2,−2), we find

ϕ′′(−2 + u,−2 + uv) = (−5v + 2
6

u +O(u2), 1 +
1
3

u +O(u2)),
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u

v
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q2

q5

q11

q10

q6

Figure 3.5: The curves C′
0.02 (red), C′

0.08 (blue) of the quartic pencil (3.44), and the lines (q6q8),
(q6q7) (green).
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so that all curves through q11 with fixed slope v = −1 are mapped to curves with fixed
slope 2

3 at r11 = (0, 1), i.e., the base point q3 ≥ q11 corresponds to an infinitely near point
r3 ≥ r11.

• In new coordinates (u, v) = (4 + u, 0 + uv) at q1 = (4, 0), we find

ϕ′′(4 + u, 0 + uv) = (1 − 1
6

u +O(u2),O(u2)),

so that all curves through q1 are mapped to curves with fixed slope 0 at r7 = (1, 0), i.e., the
base point q1 corresponds to an infinitely near point r1 ≥ r7.

Under the change of coordinates (3.47), quartic curves of the pencil E ′ in P2 correspond to curves
of a cubic pencil E ′′ = P(3; r1, . . . , r5, r7, r8, r10, r11). The pencil E ′′ consists of (the projective
completion of) curves

C′′
λ = {(ζ, η) ∈ C2 : F′′(ζ, η) + λG′′(ζ, η) = 0}, (3.48)

where

F′′(ζ, η) = ζ2 + 4η2 − 2ζ − 5η + 1,
G′′(ζ, η) = (η − 1)(ζ + η − 1)(2ζ − 3η − 2),

and the map (3.45) is given by

f ′′ : (ζ, η) ↦→ (ζ̃, η̃),

⎧⎪⎪⎨⎪⎪⎩
ζ̃ =

ζ2 − 2ζη − 80η2 − 6ζ + 48η + 8
η(ζ − 22η + 8)

,

η̃ =
(2η − 1)(ζ − 4η − 4)

η(ζ − 22η + 8)
.

(3.49)

The map (3.49) is a birational map of degree 2, with I( f ′′) = {r5, r7, r11} and I( f ′′−1) =
{r7, r8, r11}. It has the following singularity confinement patterns:

(r5r7) −→ r7 −→ (r7r11),
(r7r11) −→ r11 −→ (r8r11),
(r5r11) −→ r8 −→ r10 −→ r1 −→ r2 −→ r3 −→ r4 −→ r5 −→ (r7r8).

(3.50)

Labeling the points of I( f ′′) and, correspondingly, I( f ′′−1) by

B(1)
+ = r11, B(2)

+ = r5, B(3)
+ = r7, B(1)

− = r7, B(2)
− = r11, B(3)

− = r8,

we find that (n1, n2, n3) = (1, 1, 7), (σ1, σ2, σ3) = (3, 1, 2) is the orbit data associated to f ′′.
The nine points r1, . . . , r5, r7, r8, r10, r11 form a degenerate Pascal configuration with two pairs

of coinciding points, namely r1 ≥ r7 and r3 ≥ r11. The points r1, r7, r3, r11, r8, r5 lie on the conic
F′′(ζ, η) = 0. The points

r4 = (r1r7) ∩ (r8r11), r10 = (r3r11) ∩ (r1r5), r2 = (r5r8) ∩ (r3r7)

lie on the Pascal line of the hexagon (r1, r7, r3, r11, r8, r5).
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ζ

η

r1 ≥ r7

r3 ≥ r11 r8

r5

Figure 3.6: The curves C′′
0 (red), C′′

3 (blue) of the cubic pencil (3.48).
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3.6 The case (γ1, γ2, γ3) = (1, 1, 0)
By Theorem 3.5 this case corresponds to the orbit data (n1, n2) = (2, 2), (σ1, σ2) = (1, 2).

In this case, we consider the Kahan map ϕ+ : C2 → C2 corresponding to a quadratic vector
field of the form

ẋ = ℓ3(x)J∇H(x), H(x) = ℓ1(x)ℓ2(x).

For ℓ1(x) = x + y, ℓ2(x) = x − y, ℓ3(x) = x the vector field reads{
ẋ = −2xy,
ẏ = −2x2,

and the Kahan discretization (3.6) reads{
x̃ − x = −2ε(x̃y + xỹ),
ỹ − y = −4εx̃x.

The Kahan map ϕ+ : C2 → C2 admits an integral of motion (see [23, 36]):

H̃(x) =
ℓ1(x)ℓ2(x)
P1(x)P2(x)

, (3.51)

where

P1(x) = 1 + εd12ℓ3(x),
P2(x) = 1 − εd12ℓ3(x).

The geometry of the Kahan discretization has been studied in [45]. The phase space of the
map ϕ+ : C2 → C2 is foliated by the one-parameter family (pencil) of invariant curves

Cλ =
{
(x, y) ∈ C2 : H(x, y)− λP1(x, y)P2(x, y) = 0

}
. (3.52)

We define the projective curves Cλ as projective completion of Cλ:

Cλ =
{
[x : y : z] ∈ P2 : H(x, y)− λP1(x, y, z)P2(x, y, z) = 0

}
, (3.53)

where we set
Pi(x, y, z) = zPi(x/z, y/z), i = 1, 2.

The pencil has deg = 2 and contains two reducible curves

C0 = {[x : y : z] ∈ P2 : H(x, y) = 0}

consisting of the lines {ℓi(x, y) = 0}, i = 1, 2, and

C∞ = {[x : y : z] ∈ P2 : P1(x, y, z)P2(x, y, z) = 0}

consisting of the two lines {Pi(x, y, z) = 0}, i = 1, 2. All curves Cλ pass through the set of base
points which is defined as C0 ∩ C∞. According to the Bézout theorem, there are four base points,
counted with multiplicities.

Proposition 3.13. The 4 base points are given by:
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• two base points on the line ℓ1 = 0:

p1 = (− b1

εd12d31
,

a1

εd12d31
), p2 = −p1.

• two base points on the line ℓ2 = 0:

p3 = (− b2

εd23d12
,

a2

εd23d12
), p4 = −p3.

The singular orbits of the map are as follows:

L(1)
− −→ B(1)

− = p1 −→ p2 = B(1)
+ −→ L(1)

+ ,

L(2)
− −→ B(2)

− = p3 −→ p4 = B(2)
+ −→ L(2)

+ ,
(3.54)

where L(i)
∓ denotes the line through the points B(j)

± , B(k)
± .

Proof. The singular orbits are a consequence of Proposition 3.4 and Theorem 3.5. It can be ver-
ified by straightforward computations that the points p1, . . . , p4 are base points of the pencil of
invariant curves Cλ. □

With (3.19) we see that the point B(3)
− is a fixed point of ϕ+ while B(3)

+ is a fixed point of ϕ−.
Therefore, they participate in patterns

L(3)
− −→ B(3)

− ⟲,

⟳ B(3)
+ −→ L(3)

+ ,

which do not qualify as singularity confinement patterns [39, 53] and need not be blown up.

3.6.1 Lifting the map to an algebraically stable map
We blow up the plane P2 at the four base points p1, . . . , p4 and denote the corresponding excep-
tional divisors by Ei,0, Ei,1 (i = 1, 2). The resulting blow-up surface is denoted by X. On this
surface ϕ+ is lifted to an algebraically stable map ϕ̃+ acting on the exceptional divisors according
to the scheme (compare with (3.54))

L̃(1)
− −→ E1,0 −→ E1,1 −→ L̃(1)

+ ,

L̃(2)
− −→ E2,0 −→ E2,1 −→ L̃(2)

+ ,

where L̃(i)
± denotes the proper transform of the line L(i)

± .
We compute the induced pullback map on the Picard group ϕ̃∗

+ : Pic(X) → Pic(X). Let H ∈
Pic(X) be the pullback of the class of a generic line in P2. Let Ei,n ∈ Pic(X), for i = 1, 2 and
n = 0, 1, be (the total transform of) the class of Ei,n. Then the Picard group is

Pic(X) = ZH
2⨁

i=1

1⨁
n=0

ZEi,n.

The rank of the Picard group is 5. The induced pullback ϕ̃∗
+ : Pic(X) → Pic(X) is determined by

(1.4).
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Figure 3.7: The curves C0, C∞, C0.1 of the quadratic pencil (3.52) (in red, blue and green, resp.) for
ℓ1(x) = x + y, ℓ2(x) = x − y, ℓ3(x) = x, ε = 1.
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With Theorem 1.1 we arrive at the system of recurrence relations for the degree d(m):⎧⎪⎨⎪⎩
d(m + 1) = 2d(m)− µ1(m)− µ2(m),
µ1(m + 2) = d(m)− µ2(m),
µ2(m + 2) = d(m)− µ1(m),

with initial conditions d(0) = 1, µ1(m) = 0, for m = 0, 1, and µ2(m) = 0, for m = 0, 1. The
solution to this system of recurrence relations is given by:

d(m) = 2m, (3.55)
µi(m) = m − 1, i = 1, 2.

The sequence d(m) grows linearly.

3.7 The case (γ1, γ2, γ3) = (n, 1,−1)
By Theorem 3.5 this case corresponds to the orbit data (n1, n2) = (1, n), (σ1, σ2) = (1, 2).

In this case, we consider the Kahan map ϕ+ : C2 → C2 corresponding to a quadratic vector
field of the form

ẋ =
ℓ2

3(x)

ℓn−1
1 (x)

J∇H(x), H(x) =
ℓn

1 (x)ℓ2(x)
ℓ3(x)

.

The case n = 1 has been studied in [48].
For ℓ1(x) = x, ℓ2(x) = x + y, ℓ3(x) = x − y the vector field reads{

ẋ = 2x2,
ẏ = −nx2 + ny2 + 2xy,

and the Kahan discretization (3.6) reads{
x̃ − x = 4εx̃x,
ỹ − y = 2ε(−nx̃x + nỹy + x̃y + xỹ).

Proposition 3.14. The Kahan map ϕ+ : C2 → C2 admits an integral of motion

H̃(x) =
H(x)
P(x)

, (3.56)

where
P(x) = ∏

k∈I
(εd23kℓ1(x) + 1)(εd23kℓ1(x)− 1), (3.57)

for I = {1, 3, 5, . . . , n − 1} if n is even and I = {2, 4, 6, . . . , n − 1} if n is odd.

Proof. Note that the following identity holds:

− d12ℓ3(x)− d31ℓ2(x) = d23ℓ1(x). (3.58)

Then, using (3.58), from equation (3.7) it follows that

ℓ1(x̃) =
ℓ1(x)

2εd23ℓ1(x) + 1
. (3.59)
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Moreover, multiplying (3.8) by ℓ3(x) and (3.9) by ℓ2(x) and then subtracting the second equation
from the first equation and again applying (3.58), we arrive at

ℓ2(x̃)
ℓ3(x̃)

= − ℓ2(x)(εd23(n + 1)ℓ1(x) + 1)
ℓ3(x)(εd23(n − 1)ℓ1(x)− 1)

. (3.60)

On the other hand, from (3.59) it follows that

εd23kℓ1(x̃)± 1 =
εd23(k ± 2)ℓ1(x)± 1

2εd23ℓ1(x) + 1
, (3.61)

and therefore, with hk
±(x) = (εd23kℓ1(x)± 1), we find

P(x̃)
P(x)

=
h−1
− (x)h1

−(x) · · · hn−3
− (x) · h3

+(x)h
5
+(x) · · · hn+1

+ (x)

(h2
+(x))n · h1

−(x)h
3
−(x) · · · hn−1

− (x) · h1
+(x)h

3
+(x) · · · hn−1

+ (x)
= −

hn+1
+ (x)

(h2
+(x))nhn−1

− (x)
,

if n is even, and

P(x̃)
P(x)

=
h0
−(x)h

2
−(x) · · · hn−3

− (x) · h4
+(x)h

6
+(x) · · · hn+1

+ (x)

(h2
+(x))n−1 · h2

−(x)h
4
−(x) · · · hn−1

− (x) · h2
+(x)h

4
+(x) · · · hn−1

+ (x)
= −

hn+1
+ (x)

(h2
+(x))nhn−1

− (x)
,

if n is odd. This proves the claim. □

With Theorem 1.1 we arrive at the system of recurrence relations for the degree d(m):⎧⎪⎨⎪⎩
d(m + 1) = 2d(m)− µ1(m)− µ2(m),
µ1(m + 1) = d(m)− µ2(m),
µ2(m + n) = d(m)− µ1(m),

with initial conditions d(0) = 1, µ1(0) = 0 and µ2(m) = 0, for m = 0, . . . , n − 1. The generating
functions of the solution to this system of recurrence relations are given by:

d(z) = 1 + 2z + · · ·+ nzn−1 +
(n + 1)zn

1 − z
, (3.62)

µ1(z) = z + 2z2 + · · ·+ (n − 1)zn−1 +
nzn

1 − z
,

µ2(z) =
zn

1 − z
.

Note that the degrees of ϕk
+ grow linearly for k = 1, . . . , n − 1 and stabilize to n + 1 for k ≥ n.

This seems to be the first example of a birational map of deg = 2 with such behavior.

3.8 The degenerate case
We discuss the singularity structure of the degenerate case of the (γ1, γ2, γ3)-class, corresponding
to two coinciding lines, say, ℓ1(x, y) = ℓ3(x, y). Then we have the differential equations

ẋ = f(x) = γ1ℓ1(x)ℓ2(x)J∇ℓ1 + γ2ℓ
2
1(x)J∇ℓ2, (3.63)

which can be put as
ẋ = ℓ2−γ1

1 (x)ℓ1−γ2
2 (x)J∇H(x),
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where
H(x) = ℓγ1

1 (x)ℓγ2
2 (x), (3.64)

and
ℓi(x, y) = aix + biy

are linear forms, with ai, bi ∈ C, J =

(
0 1
−1 0

)
and γ1, γ2 ∈ R \ {0}. System (3.63) has the

function (3.64) as an integral of motion and an invariant measure form

Ω(x) =
dx ∧ dy

ℓ2
1(x)ℓ2(x)

. (3.65)

The Kahan discretization of (3.63) reads

x̃ − x = εγ1(ℓ1(x̃)ℓ2(x) + ℓ1(x)ℓ2(x̃))J∇ℓ1 + 2εγ2ℓ1(x̃)ℓ1(x)J∇ℓ2 (3.66)

By Proposition 3.2, the Kahan discretization (3.66) admits (3.65) as invariant measure form.
Multiplying (3.66) from the left by the vectors ∇ℓT

i , i = 1, 2, we obtain

ℓ1(x̃)− ℓ1(x) = 2εγ2d12ℓ1(x̃)ℓ1(x),
ℓ2(x̃)− ℓ2(x) = −εγ1d12(ℓ1(x̃)ℓ2(x) + ℓ1(x)ℓ2(x̃)).

Thus, by a linear change of coordinates the equations (3.66) turn into{
x̃ − x = 2εx̃x,
ỹ − y = −εξ(x̃y + xỹ),

(3.67)

where ξ = γ1/γ2.
Explicitly, the Kahan discretization (3.67) as map ϕ : P2 → P2 is as follows:

ϕ : [x : y : z] −→ [x′ : y′ : z′] (3.68)

with

x′ = x(z + ξεx), (3.69)
y′ = y(z − (ξ + 2)εx), (3.70)
z′ = (z + ξεx)(z − 2εx), (3.71)

The inverse ψ : P2 → P2 of the Kahan map (3.68) is obtained by replacing ε by −ε.
If ξ = −1 the right hand sides of (3.69)–(3.71) admit (z − εx) as a common factor and the

map (3.68) simplifies to a linear projective transformation of P2. In the following we assume that
ξ , −1.
One easily finds:

I(ϕ) = {[0 : 1 : 0], [1 : 0 : −ξε]}, I(ψ) = {[0 : 1 : 0], [1 : 0 : ξε]}.

Moreover, one easily computes:

det dϕ̂(x, y, z) = 2(z − (ξ + 2)εx)(z + ξεx)2, det dψ̂(x, y, z) = 2(z + (ξ + 2)εx)(z − ξεx)2,
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so that

C(ϕ) = {z − (ξ + 2)εx = 0} ∪ {z + ξεx = 0}, (3.72)
C(ψ) = {z + (ξ + 2)εx = 0} ∪ {z − ξεx = 0}. (3.73)

One immediately sees that ϕ blows down the line {z− (ξ + 2)εx = 0} to [1 : 0 : ξε], while ψ blows
down the line {z + (ξ + 2)εx = 0} to [1 : 0 : −ξε].

Lemma 3.15. Suppose that ξ , n, for 0 ≤ n < N. Then we have

ϕn([1 : 0 : ξε]) = [1 : 0 : (ξ − 2n)ε], 0 ≤ n ≤ N. (3.74)

In particular, we have
ϕn−1([1 : 0 : ξε]) = [1 : 0 : −ξε] (3.75)

if and only if
ξ = n − 1 (3.76)

for some positive integer n ∈ N.

Proof. This can be seen easily be induction on n. □

Thus, if ξ = n − 1, this contributes the singularity confinement pattern

{z − (ξ + 2)εx = 0} −→ [1 : 0 : εξ] −→[1 : 0 : ε(ξ − 2)] −→ · · ·
−→ [1 : 0 : −εξ] −→ {z + (ξ + 2)εx = 0}.

Otherwise, the orbit of the point [1 : 0 : ξε] ∈ I(ϕ−1) under the map ϕ continues indefinitely
without hitting a point of I(ϕ), hence does not participate in a singularity confinement pattern.

Moreover, ϕ blows down the line {z + ξεx = 0} to [0 : 1 : 0], while ψ blows down the line
{z − ξεx = 0} to [0 : 1 : 0].

Remark 3.16. For generic values of ξ ∈ R the map ϕ does not admit the pattern

{z + ξεx = 0} −→ [0 : 1 : 0] −→ {z − ξεx = 0}

as a singularity confinement pattern in the sense of Definition 0.3. Indeed, for V = {z + ξεx = 0}
the images ϕ(V), ϕ2(V), . . . are all equal to [0 : 1 : 0], so that ϕn(V) does not recover to a curve for
any n ∈ N. On the other hand, the map ϕ cannot be AS since ϕ(V) ∈ I(ϕ) (compare to Definition
0.4).

If ξ = −(n + 1), the images ϕ(V), ϕ2(V), . . . , ϕn(V) are all equal to [0 : 1 : 0] and ϕn+1(V) =
{z − ξεx}. This contributes a singularity confinement pattern.

This phenomenon is due to the presence of a singularity on the exceptional divisor corrspond-
ing to the P2 blow-up at [0 : 1 : 0], and will be explained in further detail in the following.
This example demonstrates that there are subtle differences between the notions of singularity
confinement and algebraic stability.

3.8.1 Lifting the map to an algebraically stable map
First of all, we discuss the resolution of the singularity [0 : 1 : 0].

1. Singularity [0 : 1 : 0] of ψ.
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In blowing up this singularity, we always set y = 1. Change of variables:{
x = u1,
z = u1v1.

Map ψ in new coordinates:

ψ(x : y : z) =

⎡⎣ u1(v1u1 − ξεu1)
u1v1 + (ξ + 2)εu1

(u1v1 − ξεu1)(u1v1 + 2εu1)

⎤⎦ =

⎡⎣ u1(v1 − ξε)
v1 + (ξ + 2)ε

u1(v1 − ξε)(v1 + 2ε)

⎤⎦
The singularity corresponds to u1 = 0; exceptional divisor E1 is parametrized by v1 ∈ P1. On E1,
the map ψ has a singularity corresponding to v1 = −(ξ + 2)ε; all other points are mapped by ψ to
[0 : 1 : 0].

2. Singularity (u1, v1) = (0,−(ξ + 2)ε) of ψ.
Change of variables: {

u1 = u2,
v1 = −(ξ + 2)ε + u2v2.

Map ψ in new coordinates:

ψ(x : y : z) =

⎡⎣ u2(u2v2 − 2(ξ + 1)ε)
u2v2

u2(u2v2 − 2(ξ + 1)ε)(u2v2 − ξε)

⎤⎦ =

⎡⎣ −2(ξ + 1)ε + u2v2
v2

(u2v2 − 2(ξ + 1)ε)(u2v2 − ξε)

⎤⎦
The singularity corresponds to u2 = 0; exceptional divisor E2 is parametrized by v2 ∈ P1. On E2,
the map ψ is regular, its image is the (proper transform of the) line {z + ξεx = 0}.

3. Singularity [0 : 1 : 0] of ϕ.
In blowing up this singularity, we always set y = 1. Change of variables:{

x = u1,
z = u1v1.

Map ϕ in new coordinates:

ϕ(x : y : z) =

⎡⎣ u1(v1u1 + ξεu1)
u1v1 − (ξ + 2)εu1

(u1v1 + ξεu1)(u1v1 − 2εu1)

⎤⎦ =

⎡⎣ u1(v1 + ξε)
v1 − (ξ + 2)ε

u1(v1 + ξε)(v1 − 2ε)

⎤⎦
The singularity corresponds to u1 = 0; exceptional divisor E1 is parametrized by v1 ∈ P1. On E1,
the map ϕ has a singularity corresponding to v1 = (ξ + 2)ε; all other points are mapped by ϕ to
[0 : 1 : 0].

4. Singularity (u1, v1) = (0, (ξ + 2)ε) of ϕ.
Change of variables: {

u1 = u3,
v1 = (ξ + 2)ε + u3v3.
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Map ϕ in new coordinates:

ϕ(x : y : z) =

⎡⎣ u3(u3v3 + 2(ξ + 1)ε)
u3v3

u3(u3v3 + 2(ξ + 1)ε)(u3v3 + ξε)

⎤⎦ =

⎡⎣ 2(ξ + 1)ε + u3v3
v3

(u3v3 + 2(ξ + 1)ε)(u3v3 + ξε)

⎤⎦
The singularity corresponds to u3 = 0; exceptional divisor E3 is parametrized by v3 ∈ P1. On E3,
the map ϕ is regular, its image is the (proper transform of the) line {z − ξεx = 0}.

Let X1 denote the surface obtained as P2 blow-up at the point [0 : 1 : 0], and let ϕ̃1 : X1 →
X1 denote the lift of the map ϕ. The map ϕ̃1 blows down the (proper transform of the) line
{z + ξεx = 0} to v1 = −(ξ + 2) ∈ E1, while its inverse ψ̃1 blows down the (proper transform of)
line {z − ξεx = 0} to v1 = (ξ + 2)ε ∈ E1.

Lemma 3.17. The map ϕ̃ acts on E1 \ {(ξ + 2)ε} as

v1 ↦→ v1 − 2ε. (3.77)

In particular, we have
ϕ̃n−1(−(ξ + 2)ε) = (ξ + 2)ε (3.78)

if and only if
ξ = −(n + 1), (3.79)

for some positive integer n ∈ N.

Proof. We evaluate ϕ(x : y : z) for y = 1 and z = v1x:

⎡⎣X
Y
Z

⎤⎦ =

⎡⎣ x(v1x + ξεx)
v1x − (ξ + 2)εx

(v1x + ξεx)(v1x − 2εx)

⎤⎦ =

⎡⎢⎢⎢⎢⎣
v1 + ξε

v1 − (ξ + 2)ε
x

1
(v1 + ξε)(v1 − 2ε)

v1 − (ξ + 2)ε
x

⎤⎥⎥⎥⎥⎦ ,

so that Z = (v1 − 2ε)X. This proves the claim. □

Thus, if ξ = −(n + 1), this contributes the singularity confinement pattern

{z + ξεx = 0} −→ −(ξ + 2)ε −→ −(ξ + 4)ε −→ · · · → (ξ + 2)ε −→ {z − ξεx = 0}

Otherwise, the orbit of the point v1 = −(ξ + 2)ε under the map ϕ̃ continues indefinitely without
hitting a point of I(ϕ̃), hence does not participate in a singularity confinement pattern.

To lift ϕ to an AS map we have to distinguish three cases: ξ < Z, ξ = n − 1, ξ = −(n + 1).

The case ξ < Z

We blow up the plane P2 at the point [0 : 1 : 0], and denote the corresponding exceptional
divisor by E1. The resulting blow-up surface is denoted by X1. On this surface ϕ is lifted to an
algebraically stable map ϕ̃1.

We compute the induced pullback map on the Picard group ϕ̃∗
1 : Pic(X1) → Pic(X1). Let

H ∈ Pic(X1) be the pullback of the class of a generic line in P2. Let E1 be the class of E1. Then the
Picard group is

Pic(X1) = ZH
⨁

E1.
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First of all, we compute the divisor classes for the proper transforms. Using the intersection
product, we find for the lines a1 = {z + ξεx = 0}, a2 = {z − ξεx = 0}:

[ã1] = H− E1, [ã2] = H− E1,

while for the lines b1 = {z − ε(ξ + 2)x = 0}, b2 = {z + ε(ξ + 2)x = 0}:

[b̃1] = H− E1, [b̃2] = H− E1.

Proposition 3.18. We have:

ϕ̃∗(H) = 2H− E1, (3.80)
ϕ̃∗(E1) = H. (3.81)

Proof. We have:

ϕ̃−1(E1) = E1 ∪ ã1, (3.82)

ϕ̃−1(ã2) = b̃1. (3.83)

The relation (3.82) implies for the corresponding divisor classes:

ϕ̃∗(E1) = E1 + (H− E1).

This yields (3.81). The relation (3.83) implies for the corresponding divisor classes:

ϕ̃∗(H− E1) = H− E1. (3.84)

Plugging (3.81) into (3.84), we find (3.80). □

Relations (3.80), (3.81) yield the following system of recurrence relations for the degree d(m):{
d(m + 1) = 2d(m)− µ1(m),
µ1(m + 1) = d(m),

with initial conditions d(0) = 1, µ1(0) = 0. The solution to this system of recurrence relations is
given by:

d(m) = m + 1
µ1(m) = m.

The sequence d(m) grows linearly.

The case ξ = n − 1

We blow up the plane P2 at the point [0 : 1 : 0] and at the points

[1 : 0 : ξε], ϕ([1 : 0 : ξε]), . . . , ϕn−1([1 : 0 : ξε]),

and denote the corresponding exceptional divisor by E1 and E2,0, . . . , E2,n−1. The resulting blow-
up surface is denoted by X. On this surface ϕ is lifted to and algebraically stable map ϕ̃.

We compute the induced pullback map on the Picard group ϕ̃∗ : Pic(X) → Pic(X). Let H ∈
Pic(X) be the pullback of the class of a generic line in P2. Let E1 and E2,0, . . . E2,n−1 be (the total
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transforms of) the classes of E1 and E2,0, . . . , E2,n−1, respectively. Then the Picard group is

Pic(X) = H⊕ ZE1 ⊕ ZE2,0 ⊕ · · · ⊕ ZE2,n−1.

First of all, we compute the divisor classes for the proper transforms. Using the intersection
product, we find for the lines a1 = {z + ξεx = 0}, a2 = {z − ξεx = 0}:

[ã1] = H− E1 − E2,n−1, [ã2] = H− E1 − E2,0,

while for the lines b1 = {z − ε(ξ + 2)x = 0}, b2 = {z + ε(ξ + 2)x = 0}:

[b̃1] = H− E1, [b̃2] = H− E1.

Proposition 3.19. We have:

ϕ̃∗(H) = 2H− E1 − E2,n−1, (3.85)

ϕ̃∗(E1) = H− E2,n−1, (3.86)

ϕ̃∗(E2,0) = H− E1, (3.87)
ϕ̃∗(E2,m) = E2,m−1, 1 ≤ m ≤ n − 1. (3.88)

Proof. We have:

ϕ̃−1(E1) = E1 ∪ ã1, (3.89)

ϕ̃−1(E2,0) = b̃1, (3.90)

ϕ̃−1(E2,m) = E2,m−1, 1 ≤ m ≤ n − 1, (3.91)

ϕ̃−1(b̃2) = E2,n−1 ∪ ã1. (3.92)

Relations (3.90), (3.91) imply (3.87), (3.88) for the corresponding divisor classes. Relation (3.82)
implies for the corresponding divisor classes:

ϕ̃∗(E1) = E1 + (H− E1 − E2,n−1).

This yields (3.86). Relation (3.92) implies for the corresponding divisor classes:

ϕ̃∗(H− E1) = E2,n−1 + (H− E1 − E2,n−1) (3.93)

Finally, plugging (3.86) into (3.93), we find (3.85). □

Relations (3.85)–(3.88) yield the following system of recurrence relations for the degree d(m):⎧⎪⎨⎪⎩
d(m + 1) = 2d(m)− µ1(m)− µ3(m),
µ1(m + 1) = d(m)− µ3(m),
µ3(m + n) = d(m)− µ1(m),

(3.94)

with initial conditions d(0) = 1, µ1(0) = 0 and µ2(m) = 0, for m = 0, . . . , n − 1. The generating
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functions of the solution to this system of recurrence relations are given by:

d(z) = 1 + 2z + · · ·+ nzn−1 +
(n + 1)zn

1 − z
, (3.95)

µ1(z) = z + 2z2 + · · ·+ (n − 1)zn−1 +
nzn

1 − z
,

µ3(z) =
zn

1 − z
.

Note that the degrees of ϕk grow linearly for k = 1, . . . , n − 1 and stabilize to n + 1 for k ≥ n.

The case ξ = −(n + 1)

We blow up the plane P2 successively at the point [0 : 1 : 0] and at the points

−(ξ + 2), ϕ̃1(−(ξ + 2)), . . . , ϕ̃n−1
1 (−(ξ + 2)),

and denote the corresponding exceptional divisor by E1 and E3,0, . . . , E3,n−1. Here, ϕ̃1 denotes the
lift of ϕ to X1, the P2 blow-up at the point [0 : 1 : 0]. The resulting blow-up surface is denoted by
X. On this surface ϕ is lifted to and algebraically stable map ϕ̃.

We compute the induced pullback map on the Picard group ϕ̃∗ : Pic(X) → Pic(X). Let H ∈
Pic(X) be the pullback of the class of a generic line in P2. Let E1 and E3,0, . . . E3,n−1 be the total
transforms of the classes of E1 and E3,0, . . . , E3,n−1, respectively. Then the Picard group is

Pic(X) = H⊕ ZE1 ⊕ ZE3,0 ⊕ · · · ⊕ ZE3,n−1.

First of all, we compute the divisor classes for the proper transforms. Using the intersection
product, we find:

[Ẽ1] = E1 − E3,0 − · · · − E3,n−1, [Ẽ3,m] = E3,m, 0 ≤ m ≤ n − 1,

and further for the lines a1 = {z + ξεx = 0}, a2 = {z − ξεx = 0}:

[ã1] = H− E1, [ã2] = H− E1,

while for the lines b1 = {z − ε(ξ + 2)x = 0}, b2 = {z + ε(ξ + 2)x = 0}:

[b̃1] = H− E1 − E3,n−1, [b̃2] = H− E1 − E3,0.

Proposition 3.20. We have:

ϕ̃∗(H) = 2H− E1 − E3,n−1, (3.96)

ϕ̃∗(E1) = H− E3,n−1, (3.97)

ϕ̃∗(E3,0) = H− E1, (3.98)
ϕ̃∗(E3,m) = E3,m−1, 1 ≤ m ≤ n − 1. (3.99)
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Proof. We have:

ϕ̃−1(Ẽ1) = Ẽ1, (3.100)

ϕ̃−1(Ẽ3,0) = ã1, (3.101)

ϕ̃−1(Ẽ3,m) = Ẽ3,m−1, 1 ≤ m ≤ n − 1, (3.102)

ϕ̃−1(ã2) = Ẽ3,n−1 ∪ b̃1. (3.103)

Relations (3.101), (3.102) imply (3.98), (3.99) for the corresponding divisor classes. Relation (3.100)
implies for the corresponding divisor classes:

ϕ̃∗(E1 − E3,0 − · · · − E3,n−1) = E1 − E3,0 − · · · − E3,n−1. (3.104)

Plugging (3.98), (3.99) into (3.104), we find (3.97). Relation (3.103) implies for the corresponding
divisor classes:

ϕ̃∗(H− E1) = E3,n−1 + (H− E1 − E3,n−1) (3.105)

Finally, plugging (3.97) into (3.105), we find (3.96). □

Relations (3.96)–(3.99) yield the following system of recurrence relations for the degree d(m)
(compare to (3.94)): ⎧⎪⎨⎪⎩

d(m + 1) = 2d(m)− µ1(m)− µ3(m),
µ1(m + 1) = d(m)− µ3(m),
µ3(m + n) = d(m)− µ1(m),

with initial conditions d(0) = 1, µ1(0) = 0 and µ2(m) = 0, for m = 0, . . . , n − 1. The generating
function of the sequence of degrees d(m) is given by (3.95).



Chapter 4

The singularity structure of Kahan
discretizations II

4.1 The Lotka-Volterra system
Consider the two-dimensional quadratic differential equations{

ẋ = x(1 − y),
ẏ = y(x − 1).

(4.1)

System (4.1) has an integral of motion

H(x) = x + y − ln(x)− ln(y) (4.2)

and an invariant measure form
Ω(x) =

dx ∧ dy
xy

. (4.3)

The Kahan discretization of (4.1) reads{
x̃ − x = ε(x̃ + x − x̃y − xỹ),
ỹ − y = ε(x̃y + xỹ − ỹ − y).

It has been shown in [43] that the Kahan map admits (4.3) as invariant measure form.
Explicitly, the Kahan discretization of (4.1) as map ϕ+ : P2 → P2 is as follows:

ϕ+ : [x : y : z] −→ [x′ : y′ : z′] (4.4)

with

x′ = x
(
(1 + ε)2z − ε(1 + ε)x − ε(1 − ε)y

)
, (4.5)

y′ = y
(
(1 − ε)2z + ε(1 + ε)x + ε(1 − ε)y

)
, (4.6)

z′ = z
(
(1 − ε2)z − ε(1 − ε)x + ε(1 + ε)y

)
. (4.7)

The inverse ϕ− : P2 → P2 of the Kahan map (4.4) is obtained by replacing ε by −ε.

71
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It is easy to see that (4.5)–(4.7) admit a common factor of deg = 1 if and only if ε ∈ {0,±i}. In
the following we assume that ε < {0,±i}.

Proposition 4.1. The singularities B(i)
+ , i = 1, 2, 3, of the Kahan map ϕ+ and B(i)

− , i = 1, 2, 3, of its
inverse ϕ− are given by

B(1)
+ = (

1 + ε

ε
, 0), B(2)

+ = (0,
−1 + ε

ε
), B(3)

+ = [−1 + ε : 1 + ε : 0],

and
B(1)
− = (

−1 + ε

ε
, 0), B(2)

− = (0,
1 + ε

ε
), B(3)

− = [1 + ε : −1 + ε : 0].

Let L(i)
∓ denote the line through the points B(j)

± , B(k)
± . Then we have

ϕ±(L(i)
∓ ) = B(i)

∓ .

Proof. This is the result of straightforward computations. □

The map ϕ+ blows down the lines L(i)
− to the points B(i)

− and blows up the points B(i)
+ to the

lines L(i)
+ . The oribts of the points B(i)

− , i = 1, 2, 3, are disjoint, except for the case ε = ±1.
As noted in [34], the Kahan map ϕ+ is algebraically integrable for ε = ±1, and it admits

an invariant pencil of rational curves of degree 4. Moreover, numerical evidence for the non-
integrability of the map ϕ+, for other non-zero values of ε, has been presented in [34]. In the
following, we compute the orbit data for the map ϕ+, and give expressions for the sequence of
degrees d(m). This accumulates to the following result:

Theorem 4.2. The sequence of degrees d(m) of iterates ϕm
+ grows exponentially, so that the map ϕ+ is

non-integrable, except for the case ε = ±1.

4.1.1 The case ε = ±1
For ε = 1, the Kahan map (4.4) reads

ϕ : [x : y : z] −→ [x(2z − x) : xy : yz],

and its inverse (ε = −1) reads

ϕ−1 : [x : y : z] −→ [xy : y(2z − y) : xz].

The singularities B(i)
+ , i = 1, 2, 3, of the Kahan map ϕ and B(i)

− , i = 1, 2, 3, of its inverse ϕ−1 are
given by

B(1)
+ = [2 : 0 : 1], B(2)

+ = [0 : 0 : 1], B(3)
+ = [0 : 1 : 0],

and
B(1)
− = [0 : 0 : 1], B(2)

− = [0 : 2 : 1], B(3)
− = [1 : 0 : 0].

Under the map ϕ, we have

L(1)
− −→ [0 : 0 : 1] −→ L(2)

+ ,

L(2)
− −→ [0 : 2 : 1] −→ [0 : 0 : 1] −→ L(2)

+ ,

L(3)
− −→ [1 : 0 : 0] ⟲ .
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In this case, the orbits of the points B(1)
− and B(2)

− are not disjoint. We will explain the procedure
of lifting ϕ to an AS map. A general construction is given in [11].
First of all, we consider the resolution of the singularity [0 : 0 : 1].

Singularity [0 : 0 : 1] of ϕ−1.
In blowing up this singularity, we always set z = 1. Change of variables:{

x = u1,
y = u1v1,

Map ϕ−1 in new coordinates:

ϕ−1(x : y : z) =

⎡⎣ u2
1v1

u1v1(2 − u1v1)
u1

⎤⎦ =

⎡⎣ u1v1
2v1 − u1v2

1
1

⎤⎦ . (4.8)

The singularity corresponds to u1 = 0; exceptional divisor E1 is parametrized by v1 ∈ P1. On E1,
the map ϕ−1 is regular, its image is the (proper transform of the) line L(1)

− = {x = 0}.
Singularity [0 : 0 : 1] of ϕ.

Map ϕ in new coordinates:

ϕ(x : y : z) =

⎡⎣u1(2 − u1)
u2

1v1
u1v1

⎤⎦ =

⎡⎣2 − u1
u1v1

v1

⎤⎦ . (4.9)

The singularity corresponds to u1 = 0; exceptional divisor E1 is parametrized by v1 ∈ P1. On E1,
the map ϕ is regular, its image is the (proper transform of the) line L(2)

+ = {y = 0}.

Step 1. Let X1 denote the surface obtained as P2 blow-up at the point

B(1)
− = B(2)

+ , (4.10)

and let ϕ̃1 : X1 → X1 denote the lift of the map ϕ. We have I(ϕ̃1) = {B(1)
+ , B(3)

+ }, and I(ϕ̃−1
1 ) =

{B(2)
− , B(3)

− }.
From (4.8) we see that ϕ̃−1

1 maps v1 = 1 ∈ E1 to [0 : 2 : 1], while from (4.9) we see that ϕ̃1 maps
v1 = 1 ∈ E1 to [2 : 0 : 1], that is, under the map ϕ̃1, we have

L̃(2)
− → [0 : 2 : 1] → v1 = 1 → [2 : 0 : 1] → L̃(1)

+ .

Step 2. Let X2 denote the surface obtained as X1 blow-up at the points

B(2)
− , ϕ̃1(B(2)

− ), ϕ̃2
1(B(2)

− ) = B(1)
+ , (4.11)

and let ϕ̃2 : X2 → X2 denote the lift of the map ϕ̃1. We have I(ϕ̃2) = {B(3)
+ }, and I(ϕ̃−1

2 ) = {B(3)
− }.

The point B(3)
− is a fixed points of ϕ, so that the orbit under the map ϕ continues indefinitely

without hitting a point of I(ϕ), hence does not participate in a singularity confinement pattern.
Therefore, the map ϕ̃2 is AS. The singular orbits are (4.10), (4.11), so that the orbit data associated
to ϕ is given by (n1, n2) = (1, 3), (σ1, σ2) = (2, 1).
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With Theorem 1.1 we arrive at the system of recurrence relations for the degree d(m):⎧⎪⎨⎪⎩
d(m + 1) = 2d(m)− µ1(m)− µ2(m),
µ1(m + 1) = d(m)− µ1(m),
µ2(m + 3) = d(m)− µ2(m),

with initial conditions d(0) = 1, µ1(0) = 0 and µ2(m) = 0, for m = 0, 1, 2. The generating
functions of the solution to this system of recurrence relations are given by:

d(z) =
(z + 1)(z2 − z + 1)

(z − 1)2 ,

µ1(z) =
z(z2 − z + 1)

(z − 1)2 ,

µ2(z) =
z3

(z − 1)2 .

The sequence d(m) grows linearly.

4.1.2 The case ε , ±1
In the following, we assume ε < {0,±i,±1}.

Theorem 4.3. Let Rn = {r ∈ C : rn = −1 and rm , −1 for all 1 ≤ m < n} be a subset of the set of all
complex solutions to the equation rn = −1. Let An =

{
1−r
1+r : r ∈ Rn

}
, so that ε ∈ An if and only if(

1 + ε

1 − ε

)n
= −1, and

(
1 + ε

1 − ε

)m
, −1, m < n, (4.12)

and define the set A =
⋃̇

n>2 An.

(i) We have

ϕn
+(B(1)

− ) = [− (1 + ε)n

ε(1 − ε)n−1 : 0 : 1], (4.13)

ϕn
+(B(2)

− ) = [0 :
(1 − ε)n

ε(1 + ε)n−1 : 1], (4.14)

for all n ∈ N if ε < A, and for all n ≤ N + 1 if ε ∈ AN for some N > 2.

In particular, we have
ϕn−1
+ (B(i)

− ) = B(i)
+ , i = 1, 2, (4.15)

if and only if ε ∈ An−2, for n ≥ 5.

We have

ϕn
+(B(3)

− ) = [(−1)n(1 + ε) : −1 + ε : 0], (4.16)

for all n ∈ N.

(ii) The map ϕ+ admits either s = 0 or s = 2 singular orbits. The only orbit data with exactly two
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singular orbits is (σ1, σ2) = (1, 2) and

(n1, n2) = (n, n) if and only if ε ∈ An−2, for n ≥ 5.

Proof.

(i) We show (4.13) by induction on n. A direct computation shows that the claim is true for
n = 1. Now let 1 < n if ε < A, and 1 < n ≤ N if ε ∈ AN for some N > 2. In the induction
step we find with (4.5)–(4.7) that

x′ = − (1 + ε)n+1((1 + ε)(1 − ε)n−1 + (1 + ε)n)

ε(1 − ε)2(n−1)
,

y′ = 0,

z′ =
(1 − ε)((1 + ε)(1 − ε)n−1 + (1 + ε)n)

(1 − ε)(n−1)
.

By assumption, the common factor is different from zero and we find that

ϕ+(ϕ
n
+(B(1)

− )) = [− (1 + ε)n+1

ε(1 − ε)n : 0 : 1].

This proves the claim. The proof of (4.14) is similar. Further, (4.16) follows from (4.5)–(4.7)
by induction on n.

(ii) This is a direct consequence of (i).

□

If s = 0, i.e., ε ∈ C \ (A∪ {0,±i,±1}), then we have dynamical degree λ1 = 2. The sequence
d(m) grows exponentially.

If s = 2, i.e., ε ∈ An−2, n ≥ 5, then with Theorem 1.1 we arrive at the system of recurrence
relations for the degree d(m):⎧⎪⎨⎪⎩

d(m + 1) = 2d(m)− µ1(m)− µ2(m),
µ1(m + n) = d(m)− µ2(m),
µ2(m + n) = d(m)− µ1(m),

with initial conditions d(0) = 1, µi(m) = 0, for m = 0, . . . , n− 1, i = 1, 2. The generating functions
of the solution to this system of recurrence relations are given by:

d(z) =
zn + 1

zn − 2z + 1
, (4.17)

µi(z) =
zn

zn − 2z + 1
, i = 1, 2.

The dynamical degree is the reciprocal of smallest real positive zero of the denominator of (4.17).
For example, if n = 5, we have dynamical degree λ∗

1 ≈ 1.93. With Theorem 5.1 in [12] we conclude
that λ1 > λ∗

1 for n > 5. The sequence d(m) grows exponentially.



Chapter 5

How one can repair non-integrable
Kahan discretizations

This chapter is an adaption of [47].

When applied to integrable systems, the Kahan discretization preserves integrability, in the
sense that the map Φε(x) possesses as many independent integrals of motion as the original sys-
tem ẋ = f (x), much more frequently than one would expect a priori. It was even conjectured
in [42] that this always would be the case, at least for algebraically integrable systems. However,
it became clear soon that there exist simple counterexamples for this conjecture. We show that in
some cases where the original recipe fails to preserve integrability, one can adjust coefficients of
the Kahan discretization to ensure integrability.

We consider the (γ1, γ2, γ3)-class(
ẋ
ẏ

)
=

1
c(x, y)

(
∂H(x, y)/∂y
−∂H(x, y)/∂x

)
, (5.1)

where

H(x, y) = ℓγ1
1 (x, y)ℓγ2

2 (x, y)ℓγ3
3 (x, y), c(x, y) = ℓγ1−1

1 (x, y)ℓγ2−1
2 (x, y)ℓγ3−1

3 (x, y),

with γ1, γ2, γ3 ∈ R \ {0}, and ℓi(x, y) = aix + biy are linear forms. The Kahan discretization is
integrable for (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), and (1, 2, 3). In all three cases, all integral curves
of system (5.1) are of genus 1, and the same holds true for all invariant curves of the Kahan
discretization.

If (γ1, γ2, γ3) = (1, 1, 1), one is dealing with a homogeneous cubic Hamiltonian. As dis-
covered in [22], Kahan’s discretization remains integrable also for arbitrary (i.e., also for non-
homogeneous) cubic Hamiltonians.

Consider the case (γ1, γ2, γ3) = (1, 1, 2). By a linear projective change of coordinates (x, y) ∼
[x : y : 1] ∈ P2, we can arrange ℓ1(x, y) = y + 1

2 x, ℓ2(x, y) = y − 1
2 x, ℓ3(x, y) = x. Thus, the

differential equations (5.1) correspond to c(x, y) = x, H(x, y) = x2(y2 − 1
4 x2),{

ẋ = 2xy,
ẏ = x2 − 2y2.

(5.2)
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Kahan’s discretization of this system reads:{
x̃ − x = ε(x̃y + xỹ),
ỹ − y = ε(xx̃ − 2yỹ),

(5.3)

and results in the following birational map:

x̃ =
x(1 + 3εy)

1 + εy − 2ε2y2 − ε2x2 , ỹ =
y − εy2 + εx2

1 + εy − 2ε2y2 − ε2x2 .

This map is integrable and possesses the following integral of motion:

H̃(x, y) =
x2(y2 − 1

4 x2)(
1 + ε(y + x)

)(
1 + ε(y − x)

)(
1 − ε(y + x)

)(
1 − ε(y − x)

) .

All level sets of the integral are quartic curves with two double points at (0,±1/ε), and the irre-
ducible ones have genus 1.

One can now attempt to generalize this construction for a non-homogeneous case, say for
H(x, y) = x2(y2 − 1

4 x2 − 1
2 b). Then the differential equations (5.1) read{

ẋ = 2xy,
ẏ = b + x2 − 2y2,

(5.4)

and still have the above mentioned property: all integral curves are of genus 1. However, Kahan’s
discretization of this system, {

(x̃ − x)/ε = x̃y + xỹ,
(ỹ − y)/ε = b + xx̃ − 2yỹ,

(5.5)

is non-integrable. This can be shown by means of the singularity confinement criterion, by ob-
serving that for all three indeterminacy points of Φ−1

ε , the orbits never land at an indeterminacy
point of Φε. Equivalently, the dynamical degree of Φε equals 2, that is, its algebraic entropy equals
log 2. All these statement are not that easy to prove rigorously, but the numeric evidence is very
convincing. Thus, the map Φε : (x, y) ↦→ (x̃, ỹ) defined by (5.5) is a counterexample to integrabil-
ity of Kahan discretizations for algebraically completely integrable quadratic vector fields.

In the following, we demonstrate how this can be remedied.

5.1 First example
Theorem 5.1. The Kahan-type map given by{

(x̃ − x)/ε = x̃y + xỹ,
(ỹ − y)/ε = b + xx̃ − (2 − ε2b)yỹ,

(5.6)

is integrable, with an integral of motion

H̃(x, y) =
x2((1 − 1

2 ε2b)y2 − 1
4 (1 − ε2b)x2 − 1

2 b
)(

1 + ε(y + x)
)(

1 + ε(y − x)
)(

1 − ε(y + x)
)(

1 − ε(y − x)
) . (5.7)
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Proof. Consider the following map (a symmetric QRT root, cf. [3, 50]):

ũ = v, ṽ =
αuv − 1
u − αv

. (5.8)

It is a birational map of P2 (with non-homogeneous coordinates (u, v) on the affine part C2 ⊂ P2),
admitting an integral of motion

K(u, v) =
α(u2 + v2 − 1)− uv
(u2 − 1)(v2 − 1)

. (5.9)

We perform a linear projective change of variables in P2, given in the non-homogeneous coordi-
nates by

u =
1 + y

x
, v =

1 − y
x

. (5.10)

Then the first equation of motion in (5.8), ũ = v, turns into

x̃ − x = x̃y + xỹ.

The second equation of motion in (5.8) can be re-written as a bilinear relation

1
2
(ũv − uṽ) =

1
2
(ũv + uṽ) + 1 − α(uũ + vṽ).

Upon substitution (5.10), this turns into

ỹ − y = (1 − yỹ) + xx̃ − 2α(1 + yỹ).

So, we come to the system {
x̃ − x = xỹ + x̃y,
ỹ − y = (1 − 2α) + xx̃ − (1 + 2α)yỹ.

Scale x ↦→ εx, y ↦→ εy, and set 1 − 2α = ε2b, so that α = (1 − ε2b)/2 and 1 + 2α = 2 − ε2b.
Then we arrive at the Kahan-type system (5.6). The integral (5.7) is nothing but (5.9) in the new
coordinates. □

5.2 Second example
We can extend the results of the previous section by adding one more inhomogeneous term in the
Hamiltonian: H(x, y) = x2(y2 − 1

4 x2 − 2
3 cx − 1

2 b). Then system (5.1) reads:{
ẋ = 2xy,
ẏ = b + 2cx + x2 − 2y2.

(5.11)

This system still has the above mentioned property: all integral curves are of genus 1. Kahan’s
discretization of this system,{

(x̃ − x)/ε = x̃y + xỹ,
(ỹ − y)/ε = b + c(x + x̃) + xx̃ − 2yỹ,

(5.12)
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is non-integrable, like in the previous case c = 0. However, it can be repaired, as follows.

Theorem 5.2. The Kahan-type map given by{
(x̃ − x)/ε = xỹ + x̃y,
(ỹ − y)/ε = b + c(1 − ε2b)(x + x̃) +

(
1 − ε2c2(2 − ε2b)

)
xx̃ − (2 − ε2b)yỹ,

(5.13)

is integrable, with an integral of motion

H̃(x, y) =
x2((1 − 1

2 ε2b)y2 − 1
4 a1x2 − 2

3 c1x − 1
2 b
)

m1(x, y)m2(x, y)m3(x, y)m4(x, y)
. (5.14)

where

a1 = 1 − ε2b − 4
3 ε2c2 p, c1 = cp, p =

(1 − ε2b)(1 − 1
2 ε2b)

1 − 1
3 ε2b

,

m1(x, y) = 1 + εy + ε(1 − εc)x,
m2(x, y) = 1 + εy − ε(1 + εc)x,
m3(x, y) = 1 − εy + ε(1 − εc)x,
m4(x, y) = 1 − εy − ε(1 + εc)x.

Proof. The most general symmetric QRT root which is a birational map of P2 of deg = 2 reads:

ũ = v, ṽ =
αuv + βu − 1

u − αv − β
. (5.15)

It admits an integral of motion

K(u, v) =
α(α + 1)(u2 + v2 − 1)− (α + 1)uv + β(u + v)− β2

(u2 − 1)(v2 − 1)
. (5.16)

We perform a linear projective change of variables in P2, given in the non-homogeneous coordi-
nates by

u =
1 + βx + y

x
, v =

1 + βx − y
x

. (5.17)

To transform the equations of motion (5.15) into new coordinates, it is useful to re-write the second
one as a bilinear relation

1 + uṽ − αuũ − αvṽ − βu − βṽ = 0.

Upon straightforward simplifications, we come to the following system (compare to (2.72)):{
x̃ − x = xỹ + x̃y,
ỹ − y = (1 − 2α)− 2αβ(x + x̃) +

(
1 − β2(1 + 2α)

)
xx̃ − (1 + 2α)yỹ.

(5.18)

It remains to introduce a small parameter ε to make the above map to a discretization of a vector
field. To this end, scale x ↦→ εx, y ↦→ εy, and set 1 − 2α = ε2b, so that 1 + 2α = 2 − ε2b, and
β = −εc. Then we arrive at the Kahan-type system (5.13). The integral (5.14) is the function (5.16)
expressed in the new coordinates. □



Part II

Modified invariants for Kahan
discretizations
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Chapter 6

Modified invariants for numerical
integrators

Consider an autonomous initial value problem

ẋ = f (x), x(0) = x0 ∈ Rn, (6.1)

where f : Rn → Rn is a smooth vector field, and a numerical integrator Φε : Rn → Rn that can be
expanded as

Φε(x) = x + ε f (x) + ε2d2(x) + ε3d3(x) + · · · , (6.2)

with smooth functions dk : Rn → Rn.

Definition 6.1. Consider a system of differential equations of the form (6.1) that admits an integral of
motion H : Rn → R. A modified invariant H̃ε(x) of a numerical integrator Φε(x) is a (formal) series
O(ε)-close to H(x) of the form

H̃ε(x) = H(x) + ∑
n≥1

εn Hn(x), (6.3)

with smooth functions Hn : Rn → R, such that

H̃ε(Φε(x)) = H̃ε(x), (as formal series). (6.4)

Theoretical results on the existence of a modified invariant for a given numerical integrator are
provided within the theory of backward error analysis. The idea behind this technique is finding
a modified equation, which is a perturbation of the original differential equation whose solutions
exactly interpolate the numerical solutions. A detailed treatment of this topic can be found in
Hairer, Lubich & Wanner [4]. It is an essential fact that if a symplectic integrator is applied to a
Hamiltonian system, then the corresponding modified equation is Hamiltonian as well (cf. [4],
IX. Theorem 3.1). The corresponding Hamilton function is called modified Hamiltonian. This is
a modified invariant for the numerical integrator. Similarly, if a Poisson integrator is applied
to a Poisson system, the modified equations is locally a Poisson system. It is well-known that
those modified Hamiltonians are in general divergent. Although, there are examples of nonlinear
systems for which the modified Hamiltonian is convergent. This is usually related to special
circumstances, e.g., when the numerical integrator is integrable [10].

For 2-dimensional systems, the existence of an invariant measure for both, continuous and
discrete system, is a sufficient condition for the existence of a modified invariant. This is detailed
in the following statement. We use the notation x = (x, y) ∈ P2.
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Proposition 6.2.

(i) Let f (x, y) be a smooth vector field on U ⊂ R2 with invariant measure form

Ω(x, y) =
dx ∧ dy
ϕ(x, y)

,

for a smooth function ϕ(x, y) : U → R. That is, L f Ω(x, y) = 0. Then, equivalently, for every point
(x0, y0) ∈ U there exists a neighbourhood V ⊂ U and a smooth function H(x, y) : V → R such
that on V, the vector field is of the form

f (x, y) = ϕ(x, y)
(

0 1
−1 0

)
∇H(x, y). (6.5)

(ii) Suppose that a numerical integrator x̃ = Φε(x) preserves the invariant measure Ω(x, y), i.e.,
Φ∗

ε Ω(x, y) = Ω(x, y). Then the modified differential equation ẋ = fε(x) is locally a Poisson
system, i.e., for every point (x0, y0) ∈ U there exists a neighborhood V ⊂ U and smooth functions
Hn(x, y) : V → R such that on V, the modified vector field is of the form

fε(x, y) = ϕ(x, y)
(

0 1
−1 0

)(
∇H(x, y) + ε∇H1(x, y) + ε2∇H2(x, y) + · · ·

)
. (6.6)

Proof.

(i) Let f (x, y) = ( f1(x, y), f2(x, y))T. Using the Cartan formula we find that

L f Ω(x) = d
(
− f2(x)

ϕ(x)
dx +

f1(x)
ϕ(x)

dy
)

=

(
1

ϕ(x)

(
∂ f1(x)

∂x
+

∂ f2(x)
∂y

)
− 1

ϕ2(x)

(
∂ϕ(x)

∂x
f1(x) +

∂ϕ(x)
∂y

f2(x)
))

dx ∧ dy.

Thus, we have L f Ω(x, y) = 0 if and only if f (x, y) is locally of the form (6.5).

(ii) Now, let the numerical integrator x̃ = Φε(x) preserve the invariant measure Ω(x, y), i.e.,
Φ∗

ε Ω(x, y) = Ω(x, y). A straightforward computation shows that(
∂x̃
∂x

)T ( 0 1
−1 0

)(
∂x̃
∂x

)
= det

(
∂x̃
∂x

)(
0 1
−1 0

)
. (6.7)

Then from Φ∗
ε Ω(x, y) = Ω(x, y), i.e., ϕ(x̃) = ϕ(x)det (∂x̃/∂x), we conclude that the numer-

ical integrator Φε(x) is a Poisson map.

Then Theorem 3.5 in [4] guarantees that if a Poisson integrator Φε(x) is applied to the Pois-
son system (6.5), then the modified differential equation is locally a Poisson system, i.e., for
every (x0, y0) ∈ U there exists a neighborhood V and smooth functions Hn(x, y) : V → R

such that on V, the modified vector field is of the form (6.6). This yields the proof.

□

For example, Proposition 6.2 ensures the existence of a modified invariant for the Lotka-
Volterra system, treated in Section 4.1, and for the (γ1, γ2, γ3)-class, treated in Section 3.1.



Chapter 7

Combinatorial structures for
modified invariants of Kahan
discretizations

This chapter is an adaption of [58].

The following remarkable geometric property of the Kahan method has been discovered by
Celledoni, McLachlan, Owren & Quispel:

Theorem 7.1 ( [22]). Consider a Hamiltonian vector field f (x) = J∇H(x), where J is a skew-symmetric
n × n matrix, and the Hamilton function H : Rn → R is a polynomial of degree 3. Then the Kahan map
Φε(x) possesses the following rational integral of motion:

H̃ε(x) = H(x) +
2
3

ε(∇H(x))T(I − ε f ′(x))−1 f (x). (7.1)

The invariant (7.1) admits a series expansion in terms of elementary Hamiltonians

H̃ε(x) = H(x) + ∑
n≥1

εn Hn(x), (7.2)

with
H2n(x) =

2
3
∇H(x)( f ′(x))(2n−1) f (x), n ∈ N, H2n−1(x) = 0, n ∈ N.

Starting from the formula (7.2), and neglecting the fact that this series is actually convergent, it
is a natural question to ask for a combinatorial proof of the claim that this series is a modified
invariant of the Kahan map.

In the following, we show that expanding the left hand side of the equation H̃ε(Φε(x)) =

H̃ε(x) around the point x as power series in ε yields a system of partial differential equations for
the functions Hn(x). Then, utilizing the formalism of trees, we prove that the functions Hn(x) of
the modified invariant (7.2) satisfy those equations.
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7.1 Conditions for modified invariants
We consider an autonomous initial value problem

ẋ = f (x), x(0) = x0 ∈ Rn, (7.3)

where f : Rn → Rn is a quadratic vector field, and its Kahan discretization Φε : Rn → Rn.
The Kahan method has the B-series

Φε(x) = x + 2 ∑
n≥0

εn fn(x), (7.4)

where
fn(x) = ( f ′(x))n−1 f (x). (7.5)

We derive a system of partial differential equations that are satisfied by the functions Hn(x) of a
modified invariant of the form (6.3) for the Kahan discretization.

Lemma 7.2. Consider a system of differential equations of the form (7.3) that admits an integral of motion
H : Rn → R. A function H̃ε : Rn → R of the form

H̃ε(x) = H(x) + ∑
n≥1

εnHn(x), (7.6)

with smooth functions Hn : Rn → R, is a modified invariant of the Kahan map Φε(x) if and only if the
following partial differential equations are satisfied:

En(H0, . . . , Hn−1) = 0, n ∈ N, (7.7)

where

En(H0, . . . , Hn−1) =
n−1

∑
k=0

n−k

∑
i=1

∑
j1+···+ji=n−k

1≤j1≤···≤ji

2i

µ(j1, . . . , ji)
H(i)

k [ f j1 , . . . , f ji ], n ∈ N, (7.8)

where µ(j1, . . . , ji) = µ1!µ2! · · · and the integers µ1, µ2, . . . count equal terms among j1, . . . , ji, i.e.
µ1, µ2, . . . are the multiplicities of the distinct elements k1, k2, . . . ∈ {j1, . . . , ji} in the tuple (j1, . . . , ji).
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Proof. Substituting (7.4) into (7.6) and using Taylor series expansion we obtain

H̃ε(Φε(x)) = H̃ε(x) + ∑
i≥1

2i

i!
H̃(i)

ε (x)[ε f1(x) + ε2 f2(x) + ε3 f3(x) + · · · ]i

= H̃ε(x) + ∑
i≥1

∑
j1,...,ji≥1

εj1+···+ji 2i

i!
H̃(i)

ε (x)[ f j1(x), . . . , f ji (x)]

= H̃ε(x) + ∑
k≥0

∑
i≥1

∑
j1,...,ji≥1

εk+j1+···+ji 2i

i!
H(i)

k (x)[ f j1(x), . . . , f ji (x)]

= H̃ε(x) + ∑
n≥1

εn

⎛⎜⎜⎝n−1

∑
k=0

n−k

∑
i=1

∑
j1+···+ji=n−k

j1,...,ji≥1

2i

i!
H(i)

k (x)[ f j1(x), . . . , f ji (x)]

⎞⎟⎟⎠

= H̃ε(x) + ∑
n≥1

εn

⎛⎜⎜⎝n−1

∑
k=0

n−k

∑
i=1

∑
j1+···+ji=n−k

1≤j1≤···≤ji

2i

µ(j1, . . . , ji)
H(i)

k (x)[ f j1(x), . . . , f ji (x)]

⎞⎟⎟⎠ .

Clearly, H̃ε(x) is a modified invariant of the Kahan map Φε(x) if and only if the equations (7.7)
are satisfied for all n ≥ 0. □

Remark 7.3. At each step n ∈ N equation (7.7) can be solved for H(1)
n−1[ f ], depending only on

H0, . . . , Hn−2, so that the partial differential equations (7.7) can be solved recursively to obtain a
modified invariant.

Example 7.4. We consider the equations (7.7) for n = 1, 2, 3.

• Let n = 1. Equation (7.7) can be put as

H(1)
0 [ f1] = 0. (7.9)

Thus, H0 is an integral of motion of the continuous system (7.3).

• Let n = 2. Equation (7.7) can be put as

H(1)
1 [ f1] = −

(
H(1)

0 [ f2] + H(2)
0 [ f1, f1]

)
= −(H(1)

0 [ f1])
(1)[ f1] = 0. (7.10)

Thus, we may set H1 = 0.

• Let n = 3. Equation (7.7) can be put as

H(1)
2 [ f1] = −

(
H(1)

1 [ f2] + H(2)
1 [ f1, f1] + H(1)

0 [ f3] + 2H(2)
0 [ f1, f2] +

2
3

H(3)
0 [ f1, f1, f1]

)
. (7.11)

With condition (7.10) we get

0 = (H(1)
1 [ f1])

(1)[ f1] = H(1)
1 [ f2] + H(2)

1 [ f1, f1],

so that, independently of the choice of H1, equation (7.11) can be put as

H(1)
2 [ f1] = −

(
H(1)

0 [ f3] + 2H(2)
0 [ f1, f2] +

2
3

H(3)
0 [ f1, f1, f1]

)
. (7.12)
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With condition (7.9) we get

0 = (H(1)
0 [ f1])

(1)[ f2] = H(1)
0 [ f3] + H(1)

0 [ f1, f2],

so that equation (7.12) can be put as

H(1)
2 [ f1] = −

(
2
3
(H(2)

0 [ f1, f1])
(1)[ f1] +

1
3

H(1)
0 [ f3]

)
. (7.13)

Thus, it exists a solution H2 if and only if there is a function η : Rn → R such that η(1)[ f1] =

H(1)
0 [ f3]. If, for example, we are in the situation of a Hamiltonian vector field f (x) =

J∇H(x), where J is a skew-symmetric n × n matrix, with Hamilton function H : Rn → R,
we get H(1)

0 [ f3] = ∇HT JH′′ JH′′ J∇H = 0, so that we can set H2 = − 2
3 H(2)[ f1, f1] (and

η = 0).

7.2 Rooted trees
In this section, we give a concise introduction to the formalism of rooted trees following Hairer,
Lubich & Wanner [4] and Chartier, Hairer & Vilmart [20, 21].

Definition 7.5. The set

T = { , , , , , , , , . . . }

of rooted (unordered) trees is recursively defined by

∈ T, [τ1, . . . , τm] ∈ T, for all τ1, . . . , τm ∈ T,

where is the tree with only one vertex, and τ = [τ1, . . . , τm] represents the tree obtained by grafting the
roots of τ1, . . . , τm by additional edges to a new vertex which becomes the root of τ. The order |τ| of a tree
τ is its number of vertices. A collection F of rooted trees is called forest.

Remark 7.6. Note that τ = [τ1, . . . , τm] does not depend on the ordering of τ1, . . . , τn, for example,

[ , [ ]] = and [[ ], ] = are equal in T.

We use the notation V(τ) for the set of all vertices and E(τ) for the set of all edges of τ ∈ T.
We write e = (ν, ν′) for the edge linking the vertices ν and ν′. We write r(τ) ∈ V(τ) for the
root of τ. By deg(ν) we denote the number of edges attached to ν ∈ V(τ). We use the notation
b(τ) = deg(r(τ)) for the number of branches of τ.
An isomorphism of trees τ1, τ2 ∈ T is a bijective map ϕ : V(τ1) → V(τ2) such that (ν, ν′) ∈ E(τ1) if
and only if (ϕ(ν), ϕ(ν′)) ∈ E(τ2). We write τ1 ∼ τ2 for isomorphic (also referred to as equivalent)
trees τ1, τ2 ∈ T.
We define the subsets

• of tall trees: T′ = {τ ∈ T : deg(ν) ≤ 2 for all ν ∈ V(τ), and b(τ) = 1}, i.e.,

T′ = { , , , , . . . },
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• of trees with branching only at the root: T′′ = {[τ1, . . . , τm] : τi ∈ T′ for 1 ≤ i ≤ m}, i.e.,

T′′ = { , , , , , , , . . . }.

We write Tk ⊂ T for the subset of trees with exactly k vertices. Similarly, for any subset S ⊂ T, we
write Sk = S ∩ Tk.

Definition 7.7. Let u, v ∈ T, with u = [u1, . . . , um], v = [v1, . . . , vn] and γ = (ν1, . . . , νn) ∈ V(u)n.

• The Butcher product is defined as u ◦ v = [u1, . . . , um, v].

• The merging product u ×γ [v1, . . . , vn] is given by the tree obtained from u, where the rooted
subtrees v1, . . . , vn of v are attached by a new edge to the vertices ν1, . . . , νn of u respectively. By
abuse of notation we write u ×γ v meaning that a representation v = [v1, . . . , vn] is fixed.

Definition 7.8. For a tree τ = [τ1, . . . , τm] ∈ T the symmetry coefficient σ(τ) is defined recursively by

σ( ) = 1, σ(τ) = σ(τ1) · · · σ(τm)µ1!µ2! · · · ,

where the integers µ1, µ2, . . . count equal trees among τ1, . . . , τm. For a forest F the symmetry coefficient
is defined by

σ(F ) = ∏
τ∈F

σ(τ).

Definition 7.9. For a given smooth vector field f : D → Rn (with open D ⊂ Rn) and for a tree τ ∈ T
we define the elementary differential F(τ) : D → Rn by

F( )(x) = f (x), F(τ)(x) = f (m)(x) (F(τ1)(x), . . . , F(τm)(x))

for τ = [τ1, . . . , τm].

Definition 7.10. For a given smooth function H : D → R (with open D ⊂ Rn) and for a tree τ ∈ T we
define the elementary Hamiltonian H(τ) : D → R by

H( )(x) = H(x), H(τ)(x) = H(m)(x) (F(τ1)(x), . . . , F(τm)(x))

for τ = [τ1, . . . , τm]. Here, F(τi)(x) are elementary differentials corresponding to f (x) = J∇H(x), where
J is a skew-symmetric n × n matrix.

Note that the modified invariant (7.2) is given in terms of elementary Hamiltonians. The
following lemma provides relations among elementary Hamiltonians that are essential for the
validity of the equations (7.7). Here, we are in the situation of Hamiltonian systems on symplectic
vector spaces or Poisson vector spaces with constant Poisson structure.

Lemma 7.11 (see [4], IX. Lemma 9.6). Elementary Hamiltonians satisfy

H(u ◦ v)(x) + H(v ◦ u)(x) = 0 for all u, v ∈ T. (7.14)

In particular, we have H(u ◦ u)(x) = 0 for all u ∈ T.

Proof. Let u = [u1, . . . , um] ∈ T and v = [v1, . . . , vn] ∈ T. Then using the skew-symmetry of J we
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find that

H(u ◦ v) = H(m+1) (F(u1), . . . , F(um), F(v))

= F(v)T(∇H)(m) (F(u1), . . . , F(um))

= −F(u)T(∇H)(n) (F(v1), . . . , F(vn))

= −H(n+1) (F(v1), . . . , F(vm), F(u)) = −H(v ◦ u).

□

Trees u ◦ v and v ◦ u have the same graph, i.e., they are equivalent, and differ only in the
position of the root by a one step root change. Chartier, Faou & Murua [19] construct a set T∗ of
canonical representatives, such that each tree is either equivalent to some u ◦ u or to a tree in T∗,
and two trees of T∗ cannot be equivalent.

Remark 7.12. As a consequence of Lemma 7.11, we find that for equivalent trees τ1 ∼ τ2, we have
H(τ2)(x) = (−1)κ(τ1,τ2)H(τ1)(x), where κ(τ1, τ2) is the number of one step root changes that are
necessary to obtain τ2 from τ1.

Definition 7.13. For a given smooth function H : D → R (with open D ⊂ Rn) and for trees τ, t ∈ T we
define the derivative of the elementary Hamiltonian H(τ) w.r.t. the tree t as H(τ)[t] : D → R by

H(τ)[ ](x) = H(τ)(x), H(τ)[t](x) = (H(τ))(n)(x) (F(t1)(x), . . . , F(tn)(x))

for t = [t1, . . . , tn]. Here, F(ti)(x) are elementary differentials corresponding to f (x) = J∇H(x), where
J is a skew-symmetric n × n matrix.

Lemma 7.14. The following identity holds:

H(τ)[t](x) = ∑
γ=(ν1,...,νn)∈V(τ)n

H(τ ×γ t)(x) (7.15)

for t = [t1, . . . , tn]. In particular, we have H( )[t](x) = H(t)(x).

Proof. This is a consequence of Leibniz’ rule for derivatives. □

7.3 Canonical Hamiltonian systems with cubic
Hamiltonian

In this part, we consider a Hamiltonian vector field f (x) = J∇H(x), where J is a skew-symmetric
n × n matrix, and the Hamilton function H : Rn → R is a polynomial of degree 3. The following
remarkable geometric property of the Kahan map has been discovered by Celledoni, McLachlan,
Owren & Quispel.

Theorem 7.15 ( [22]). The Kahan map Φε(x) possesses the following rational integral of motion:

H̃ε(x) = H(x) +
2
3

ε(∇H(x))T(I − ε f ′(x))−1 f (x). (7.16)

As noted in [22], the modified Hamiltonian (7.16) is given by a convergent series of elementary
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Hamiltonians containing only even-order tall trees, i.e.,

H̃ε(x) = H( )(x) +
2
3

ε2H( )(x) +
2
3

ε4H( )(x) + · · · ,

which, with Lemma 7.11, can be put as

H̃ε(x) = H( )(x)− 2
3

ε2H( )(x) +
2
3

ε4H( )(x)− · · · . (7.17)

As a consequence of Theorem 7.15 and Lemma 7.2, the functions Hn(x) given by

H0(x) = c(θ0)H(θ0)(x), H2n(x) = c(θ2n)H(θ2n)(x), n ∈ N, H2n−1(x) = 0, n ∈ N,
(7.18)

for rooted trees

θ0 = , θ2n = [τn, τn], where τn ∈ T′ is the tall tree with n vertices,

and with coefficients
c(θ0) = 1, c(θ2n) =

2
3
(−1)n,

satisfy the partial differential equations (7.7).
The direct proof of Theorem 7.15, given in [22], does not clarify the combinatorial structures

that ensure the solvability of the partial differential equations (7.7). In the following, we develop
a combinatorial proof of this phenomenon.

Using the formalism of trees we arrive at following claim (compare with (7.8)):

Theorem 7.16. The functions Hn(x) given by (7.18) satisfy the equations (7.7), where

En(H0, . . . , Hn−1) =
n−1

∑
k=0

⎛⎝ ∑
t∈T′′

n−k+1

α(t)
σ(t)

Hk[t]

⎞⎠ , n ∈ N, (7.19)

where α(t) = 2b(t).

Proof. The claim follows from Lemma 7.22 and Lemma 7.23. □

For example, if n = 3, we have

E3(H0, H1, H2) =
2
3

H0[ ] + 2H0[ ] + H0[ ] + H1[ ] + H1[ ] + H2[ ].

With H0 = H, H1 = 0, H2 = − 2
3 H(θ2), we obtain

E3(H0, H1, H2) =
2
3

H( ) + 2H( ) + H( )− 2
3

H( )[ ]

=
2
3

H( ) + H( ) = −1
3

H( ◦ ) = 0.
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The expressions En(H0, . . . , Hn−1) are weighted sums of elementary Hamiltonians H(τ), τ ∈
Tn+1, so that τ = θ2k ×γ t , for some k ∈ N0 and t ∈ T′′

n−2k+1.
In fact, cancellations among those elementary Hamiltonians are based on the following observa-
tions:

• H(τ ◦ τ′) = −H(τ′ ◦ τ), for τ, τ′ ∈ T, i.e., the values of elementary Hamiltonians of equiv-
alent trees differ only in sign; in particular H(τ ◦ τ) = 0, for τ ∈ T (see Lemma 7.11).

• Since H is a polynomial of degree 3, all elementary Hamiltonians H(τ) vanish if τ has a
vertex ν with deg(ν) > 3.

This motivates the following definition of admissible trees.

Definition 7.17. A tree τ ∈ T is admissible if

• τ ∼ θ2k ×γ t, for some k ∈ N0 and t ∈ T′′,

• τ / τ′ ◦ τ′, for any τ′ ∈ T,

• deg(ν) ≤ 3, for all ν ∈ V(τ).

We denote the set of admissible trees by A ⊂ T, and define A∗ = A ∩ T∗.

Then (7.19) can be represented as

En(H0, . . . , Hn−1) = ∑
τ∈A∗

n+1

β(τ)H(τ),

with some rational coefficients β(τ). We will show that β(τ) = 0, for τ ∈ A∗. This proves
Theorem 7.16.

In the following, we develop a method to enumerate all ways in which, for a tree τ ∈ A∗, any
equivalent trees τ̃ ∼ τ can be obtained as τ̃ = θ2k ×γ t, for some k ∈ N0 and t ∈ T′′.

Definition 7.18. For a tree τ ∈ A and a subtree w ⊂ τ, we denote by τw the tree obtained by contracting
all vertices of w to one vertex which becomes the root of τw. We define the set of proper subtrees of the
tree τ by

W(τ) = {w ⊂ τ : τw ∈ T′′ and w ∼ θ2k, for some k ∈ N0}.

We use the notation w ⊂ τ for a strict subset w of τ. The subtrees w ∈ W(τ) are identified with rooted
trees w ∈ T with the middle vertex as root. For a subtree w ∈ W(τ), we write τw ∼ τ for the tree in the
equivalence class of τ that has the middle vertex of w as root.

Subtrees w, w′ ∈ W(τ) are called equivalent if and only if there is an automorphism of τ that restricts
to an isomorphism of w and w′. The set of equivalence classes is denoted by W(τ). We write w for the
equivalence class of w.

Note that for equivalent subtrees w, w′ ∈ W(τ) we have τw = τw′ and τw = τw′
. Hence, equiva-

lent subtrees correspond to the same tree τ̃ ∼ τ.

Definition 7.19. For a tree τ ∈ A and a subtree w ∈ W(τ) we count the number of ways to obtain τw

as merging product w ×γ τw with

ωτ(w) = |{γ ∈ V(w)b(τw) : w ×γ τw = τw}|.

Note that ωτ(w) does not depend on the choice of a representative w ∈ w.
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(a) w1 (b) w2 (c) w3 (d) w4

Figure 7.1: Proper subtrees w1, w2, w3, w4 (green) of τ.

Example 7.20. We consider the admissible tree τ = . All proper subtrees of τ are shown in
Figure 7.1.
The subtrees w2 and w3 are equivalent. For both of them we have

w = 2
1 3

, τw = , τw = .

To illustrate the computation of ωτ(w) we have labeled the vertices of w. Then γ1 = (1, 2),
γ2 = (2, 1), γ3 = (2, 3), γ4 = (3, 2) are all tuples of vertices such that w ×γ τw = τw, i.e.,
ωτ(w) = 4.
For the subtree w4 we have

w = 2
1 3

, τw = , τw = .

Then γ1 = (1, 1), γ2 = (3, 3) are all tuples of vertices such that w ×γ τw = τw, i.e., ωτ(w) = 2.

Definition 7.21. For a tree τ ∈ A a coloring is a map ℓ : V(τ) → {−1, 1} such that ℓ(ν) = −ℓ(ν′) for
adjacent vertices ν, ν′ ∈ V(τ).

This allows to keep track of the different signs of the elementary Hamiltonians H(τ̃) correspond-
ing to the trees τ̃ in the equivalence class of an admissible tree τ. Observe that for a tree τ ∈ A and
equivalent subtrees w, w′ ∈ W(τ) we have ℓ(r(w)) = ℓ(r(w′)), where r(w) ∈ V(τ) is the middle
vertex of w. Here, it is important that we exclude trees τ equivalent to τ′ ◦ τ′, for any τ′ ∈ T.
We are now in the position to formulate the following Lemma which is essential for the proof of
Theorem 7.16.

Lemma 7.22. We have
En(H0, . . . , Hn−1) = ∑

τ∈A∗
n+1

β(τ)H(τ), (7.20)

where

β(τ) = ∑
w∈W(τ)

α(τw)

σ(τw)
ℓ(r(w))c(w)ωτ(w). (7.21)

Here, c(w) = c(θ|w|−1), i.e.,

c(w) = 1, |w| = 1, c(w) =
2
3
(−1)

|w|−1
2 , |w| > 1.
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Proof. With Lemma 7.14 and Lemma 7.11 the r.h.s. of (7.19) turns into

n−1

∑
k=0

⎛⎝ ∑
t∈T′′

n−k+1

α(t)
σ(t)

Hk[t]

⎞⎠ =
⌊(n−1)/2⌋

∑
k=0

⎛⎝ ∑
t∈T′′

n−2k+1

α(t)
σ(t)

c(θ2k) ∑
γ∈V(θ2k)

b(t)

H(θ2k ×γ t)

⎞⎠
= ∑

τ∈A∗
n+1

⎛⎝⌊(n−1)/2⌋

∑
k=0

∑
t∈T′′

n−2k+1

α(t)
σ(t)

c(θ2k)Ωτ(θ2k, t)

⎞⎠H(τ),

where
Ωτ(θ2k, t) = ∑

τ̃∼τ

(−1)κ(τ,τ̃)|{γ ∈ V(θ2k)
b(t) : θ2k ×γ t = τ̃}|.

Given τ ∈ A∗, there is a one-to-one correspondence between triples (θ2k, t, τ̃) and equivalence
classes w. This yields the proof. □

The following Lemma completes the proof of Theorem 7.16.

Lemma 7.23. We have β(τ) = 0, for τ ∈ A∗.

7.3.1 Proof of Lemma 7.23
We observe that, for τ ∈ A∗, the graph of τ is of either one of the following types:

(1) Consider τ ∈ A∗ with deg(ν) ≤ 2, for all ν ∈ V(τ).

The graph of τ is illustrated in Figure 7.2. In this situation, the cardinality |τ| is always odd
(otherwise τ ∼ τ′ ◦ τ′, for some τ′ ∈ T). We label the vertices sequently by ν−m, . . . , νm. Let
w0 ⊂ τ be the subtree consisting of the vertex ν0.

ν−1 ν1ν−m νmν0

w0

Figure 7.2: Type (1) graph.

(2) Consider τ ∈ A∗ with deg(ν) = 3 for exactly one vertex ν ∈ V(τ).

The graph of τ is illustrated in Figure 7.3. Let ν0 denote the unique vertex with degree equal
to 3. Let w0 ⊂ τ be the subtree consisting of the vertex ν0. We denote the branches attached
to ν0 by τ1, τ2, τ3.

τ1 τ2

τ3

ν0

w0

Figure 7.3: Type (2) graph.

(3) Consider τ ∈ A∗ with deg(ν) = 3 for at least two vertices ν ∈ V(τ).
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The graph of τ is illustrated in Figure 7.4. Let ν, ν denote the extremal vertices with degree
equal to 3, i.e., all other vertices with degree equal to three lie on the segment between ν and
ν. Let w0 denote the subtree connecting ν and ν. We denote the branches attached to ν and
ν by τ1, τ2 and τ3, τ4, respectively.

ν ν

τ2 τ4

τ1 τ3w0

Figure 7.4: Type (3) graph.

Example 7.24. We show one representative w (green) of each equivalence class w ∈ W(τ) and
the associated coefficients that occur in equation (7.21), for an example of type (1) (Table 7.1), type
(2) (Table 7.2) and type (3) (Table 7.3).

w α(τw) σ(τw) c(w) ωτ(w) ℓ(r(w))

2 1 1 1 1

4 1 1 1 −1

4 2 1 1 1

4 2 − 2
3 2 1

2 1 − 2
3 2 −1

Table 7.1: Type (1): A representative w (green) of each equivalence class w ∈ W(τ) and coeffi-
cients.
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w α(τw) σ(τw) c(w) ωτ(w) ℓ(r(w))

8 2 1 1 1

2 1 − 2
3 1 1

4 2 − 2
3 4 1

4 2 − 2
3 2 −1

Table 7.2: Type (2): A representative w (green) of each equivalence class w ∈ W(τ) and coeffi-
cients.

w α(τw) σ(τw) c(w) ωτ(w) ℓ(r(w))

16 6 − 2
3 6 1

4 1 2
3 2 1

8 6 2
3 12 1

8 6 2
3 6 −1

Table 7.3: Type (3): A representative w (green) of each equivalence class w ∈ W(τ) and coeffi-
cients.
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In the following, we establish a relation between the coefficients associated to w ∈ W(τ).

Definition 7.25. Let τ ∈ A and w ∈ W(τ) with |w| > 1. Then the pair (τ, w) is called symmetric if
there is an automorphism ϕ ∈ Aut(τ) that restricts to an automorphism ϕ|w ∈ Aut(w) such that ϕ|w is
the reflection at the middle vertex of w. We define the symmetry coefficient of the pair (τ, w) by

ς(τ, w) =

⎧⎨⎩ 1 if (τ, w) symmetric,

2 if (τ, w) non-symmetric.

Lemma 7.26. Let τ ∈ A and w ∈ W(τ) with |w| > 1. Then we have

(i)

ωτ(w) = ς(τ, w)
σ(τw)

σ(τ \ E(w))
,

(ii)

|w| = ς(τ, w)

2
|Aut(τ)|

σ(τ \ E(w))
,

where τ \ E(w) denotes the forest obtained from τ by deleting all edges contained in w ⊂ τ.

Proof.

(i) Let τw = [τ1, . . . , τN ].

Observe that, if τn = τn′ , for 1 ≤ n < n′ ≤ N, and γ = (. . . , νn, . . . , νn′ , . . . ) and γ′ =
(. . . , νn′ , . . . , νn, . . . ) is the same tuple of vertices with νn and νn′ interchanged, then we have
w ×γ τw = w ×γ′ τw. This yields the factor σ(τw).

Suppose that τn = τn′ , for 1 ≤ n < n′ ≤ N, and νn = νn′ . Then the tuples γ =
(. . . , νn, . . . , νn′ , . . . ) and γ′ = (. . . , νn′ , . . . , νn, . . . ) are actually identical. Hence, we divide
by σ(τ \ E(w)).

Let the vertices of w be sequently labeled by 1, . . . , |w|. For γ ∈ V(w)N we denote by γ̄ the
tuple of vertices obtained from γ by replacing each ν ∈ γ with |w|+ 1 − ν. Obviously, we
have w ×γ τw = w ×γ̄ τw. Thus, this yields the factor 2 if (τ, w) is non-symmetric. If (τ, w)
is symmetric, γ̄ is already counted with σ(τw).

(ii) We divide the total number of automorphisms of τ by the number of automorphisms that
restrict to an automorphism of w ⊂ τ. Then the claim follows by the orbit-stabilizer theo-
rem.

□

Corollary 7.27. Let τ ∈ A and w ∈ W(τ), with |w| > 1. Then we have

ωτ(w)|Aut(τ)| = 2σ(τw)|w|. (7.22)

Proof. This is a direct consequence of Lemma 7.26. □

Now, we are in the position to complete the proof of Lemma 7.23.
For τ ∈ A we use the notation W0(τ) = {w ∈ W(τ) : |w| = 1} and W′(τ) = {w ∈ W(τ) : |w| >
1}, so that W(τ) = W0(τ) ∪ W′(τ).

Proof. For τ ∈ A∗ we distinguish by the type of the graph of τ.
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(1) With the identity (7.22), and taking into account that if |w| = 1 we have |w| = 2/σ(τw) and
ωτ(w) = 1, equation (7.21) turns into β(τ) = β0(τ) + β′(τ), where

β0(τ) =
1
2 ∑

w∈W0(τ)

α(τw)c(w)ℓ(r(w)),

β′(τ) = ∑
w∈W′(τ)

α(τw)c(w)ℓ(r(w)).

Let wij ∈ W(τ), for i ≤ j, denote the subtree connecting the vertices νi and νj. Then, for
w = wij, we have:

• If the subtree w ends at ν−m (i.e., i = −m) the number of branches b(τw) is reduced by
1 compared to b(τw0). The same holds if w ends at νm (i.e., j = m). Thus, we have:

c(w)α(τw) =

⎧⎨⎩ α(τw0)2
−(δ(i,−m)+δ(i,m)), if |w| = 1,

2
3
(−1)

j−i
2 α(τw0)2

−(δ(i,−m)+δ(j,m)), if |w| > 1.

• We can assume that ℓ(r(w)) = (−1)
i+j
2 .

Finally, we obtain

β0(τ) =
α(τw0)

2 ∑
w∈W0(τ)

(−1)i2−(δ(i,−m)+δ(i,m)),

β′(τ) =
2α(τw0)

3 ∑
w∈W′(τ)

(−1)j2−(δ(i,−m)+δ(j,m)).

Then it follows by Corollary 7.29 that β0(τ) = 0 and β′(τ) = 0. Note that, for β′(τ), the sum
vanishes along every diagonal with j − i = N.

(2) With the identity (7.22), and taking into account that |w0| = ωτ(w0) = 1 and σ(τw0) =
|Aut(τ)|, equation (7.21) turns into

β(τ) =
1

|Aut(τ)|α(τw0)c(w0)ℓ(r(w0)) +
2

|Aut(τ)| ∑
w∈W′(τ)

α(τw)c(w)ℓ(r(w)).

Let wkl
ij ∈ W(τ), k , l, denote the subtree connecting the ith vertex of the branch τk, k =

1, 2, 3, and the jth vertex of the branch τl , l = 1, 2, 3, and define the set Wkl = {wkl
ij ∈ W(τ)}.

Then, for w = wkl
ij , we have:

• If the subtree w ends at the |τk|th vertex of τk (i.e., i = |τk|) the number of branches
b(τw) is reduced by 1 compared to b(τw0). The same holds if w ends at |τl |th vertex of
τl (i.e., j = |τl |). Thus, we have

c(w)α(τw) =

⎧⎨⎩ α(τw0), if |w| = 1,
2
3
(−1)

i+j
2 α(τw0)2

−(δ(i,|τk |)+δ(j,|τl |)), if |w| > 1.

• We can assume that ℓ(r(w)) = (−1)
j−i
2 .
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• Passing from summation over all w ∈ W′(τ) to summation over all w ∈ W′
kl , for

1 ≤ k < l ≤ 3, we divide by 2δ(i,0)+δ(j,0) since the affected subtrees (with i = 0 or j = 0)
are counted multiple.

Finally, we obtain

β(τ) =
4α(τw0)

3|Aut(τ)| ∑
1≤k<l≤3

⎛⎝1
4
+ ∑

w∈W′
kl

(−1)j2−(δ(i,|τk |)+δ(j,|τl |)+δ(i,0)+δ(j,0))

⎞⎠ .

Then the claim follows by Lemma 7.28.

(3) With the identity (7.22), equation (7.21) turns into

β(τ) =
2

|Aut(τ)| ∑
w∈W(τ)

α(τw)c(w)ℓ(r(w)).

Let wkl
ij ∈ W(τ) denote the subtree connecting the ith vertex of the branch τk, k = 1, 2, and

the jth vertex of the branch τl , l = 3, 4, and define the set Wkl = {wkl
ij ∈ W(τ)}. Then, for

w = wkl
ij , we have:

• If w ends at the |τk|th vertex of τk (i.e., i = |τk|) the number of branches b(τw) is
reduced by 1 compared to b(τw0). The same holds if w ends at |τl |th vertex of τl (i.e.,
j = |τl |). Thus, we have

c(w)α(τw) =
2
3
(−1)

i+j+|w0 |−1
2 α(τw0)2

−(δ(i,|τk |)+δ(j,|τl |)).

• We can assume that ℓ(r(w)) = (−1)
j−i−|w0 |+1

2 .

• Passing from summation over all w ∈ W(τ) to summation over all w ∈ Wkl , for
k = 1, 2, l = 3, 4, we divide by 2δ(i,0)+δ(j,0) since the affected subtrees (with i = 0 or
j = 0) are counted multiple.

Finally, we obtain

β(τ) =
3α(τw0)

4|Aut(τ)| ∑
k=1,2, l=3,4

∑
w∈Wkl

(−1)j2−(δ(i,|τk |)+δ(j,|τl |)+δ(i,0)+δ(j,0)).

Then the claim follows by Lemma 7.28.

□

7.3.2 Appendix
Lemma 7.28. Let m, n ∈ N and Se

mn =
{
(i, j) ∈ Z2 : 0 ≤ i ≤ m, 0 ≤ j ≤ n, i + j even

}
and So

mn ={
(i, j) ∈ Z2 : 0 ≤ i ≤ m, 0 ≤ j ≤ n, i + j odd

}
. Then we have

∑
(i,j)∈S

(−1)j2−(δi0+δim+δj0+δjn) = 0, S = Se
mn or S = So

mn.
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Proof. The claim is true for the latices Se
2,2 and So

2,2 (Figure 7.5). Then by gluing together lattices of
type Se

2,2 or So
2,2 respectively we see that the claim holds for all lattices S with m, n even. Further,

we see that the claim is true for the lattices Se
1,1 and So

1,1. Now, by a suitable gluing procedure we
obtain that the claim holds for all lattices S with m, n ∈ N. □

1
4

1
4

−1

1
4

1
4

1
2

− 1
2 − 1

2

1
2

Figure 7.5: Se
2,2 and So

2,2

Corollary 7.29. Let m ∈ N and Sm = {i ∈ Z : 0 ≤ i ≤ m}. Then we have

∑
i∈Sm

(−1)i2−(δi0+δim) = 0.

Proof. This follows from Lemma 7.28 by contracting the lattice Se
m,1 to Sm. □



Chapter 8

Summation of a divergent modified
invariant for a Kahan discretization

In this part, we discuss an explicit example of a Kahan map (x̃, ỹ) = Φε(x, y) for which we find
a divergent modified invariant that can be obtained as an asymptotic expansion of a known tran-
scendental integral of motion as ε → 0+. We show that one can recover this transcendental
integral of motion from the divergent modified invariant using Padé approximants.
We give an integral representation (8.21) for the generalized Bernoulli polynomials Ba

2n(b), for
b = a/2 and 0 < a < 1. To the best of our knowledge this seems to be a new result.

Consider the system of quadratic differential equations{
ẋ = −x2,
ẏ = −ξxy,

(8.1)

with parameter ξ ∈ R. This system can be obtained from the equations (3.63), i.e., the degenerate
case of the (γ1, γ2, γ3)-class, with ℓ1(x, y) = x, ℓ2(x, y) = −y, γ1 = −ξ, γ2 = 1.

System (8.1) admits an integral of motion

H(x, y) = x−ξ y,

and an invariant measure form
Ω(x, y) =

dx ∧ dy
x2y

. (8.2)

The Kahan discretization of (8.1) reads (compare to (3.67)){
x̃ − x = −2εx̃x,
ỹ − y = −εξ(x̃y + xỹ). (8.3)

By Proposition 3.2 the Kahan map admits (8.2) as invariant measure form. Therefore, Propo-
sition 6.2 guarantees the existence of a modified invariant. Indeed, such a modified invariant can
be given as follows:

Proposition 8.1. The Kahan map (8.3) admits the modified invariant

H̃ε(x, y) = H(x, y)F(2εx), (8.4)

99
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with the formal series

F(z) =
∞

∑
n=0

(
ξ − 1

n

)
Bξ

n(ξ/2)zn.

Here, the coefficients Ba
n(b), for a, b ∈ R, are generalized Bernoulli polynomials, defined by

Ga,b(t) =
(

t
et − 1

)a
ebt =

∞

∑
n=0

tn

n!
Ba

n(b), for |t| ≤ 2π.

Proof. From the equations (8.3) we obtain

x̃
x
=

1
1 + 2εx

,
ỹ
y
=

1 + (2 − ξ)εx
(1 + ξεx)(1 + 2εx)

.

Then, with the substitution z = 2εx, the equation H̃ε(x̃, ỹ) = H̃ε(x, y) turns into

(1 + (1 − ξ

2
)z)

∞

∑
n=0

(
ξ − 1

n

)
Bξ

n(ξ/2)zn(1 + z)ξ−1−n = (1 +
ξ

2
z)

∞

∑
n=0

(
ξ − 1

n

)
Bξ

n(ξ/2)zn. (8.5)

With the binomial theorem, we find that

∞

∑
n=0

(
ξ − 1

n

)
Bξ

n(ξ/2)zn(1 + z)ξ−1−n =
∞

∑
n=0

(
ξ − 1

n

)
Bξ

n(ξ/2)zn
∞

∑
m=0

(
ξ − 1 − n

m

)
zm

=
∞

∑
n=0

(
n

∑
m=0

(
ξ − 1

m

)(
ξ − 1 − m

n − m

)
Bξ

m(ξ/2)

)
zn

=
∞

∑
n=0

(
ξ − 1

n

)( n

∑
m=0

(
n
m

)
Bξ

m(ξ/2)(ξ)

)
zn.

Then equation (8.5) can be re-written as

z
∞

∑
n=0

(
ξ − 1

n

)
Cn(ξ)zn = 0,

with coefficients

Cn(ξ) = −(ξ/2)Bξ
n(ξ/2) +

n

∑
m=0

(
n
m

)(
ξ − n − 1
n + 1 − m

+ (1 − ξ/2)
)

Bξ
m(ξ/2).

By summation, we arrive at

∞

∑
n=0

tn

n!
Cn(ξ) =− (ξ/2)Gξ,ξ/2(t)

+
ξ

t
(
et − 1

)
Gξ,ξ/2(t)−

d
dt
((

et − 1
)

Gξ,ξ/2(t)
)
+ (1 − ξ/2)etGξ,ξ/2(t) = 0.

The last equality can be verified by a straightforward computation. This proves the claim. □

Note that the polynomials Bξ
n(ξ/2) vanish if n is odd. This is a consequence of the identity
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Gξ,ξ/2(t) = Gξ,ξ/2(−t). The first generalized Bernoulli polynomials Bξ
2n(ξ/2) are given by

Bξ
0(ξ/2) = 1, Bξ

2(ξ/2) = − ξ

12
, Bξ

4(ξ/2) =
ξ(5ξ + 2)

240
,

Bξ
6(ξ/2) = − ξ(35ξ2 + 42ξ + 16)

4032
, Bξ

8(ξ/2) =
ξ(5ξ + 4)(35ξ2 + 56ξ + 36)

34560
,

Bξ
10(ξ/2) = − ξ(385ξ4 + 1540ξ3 + 2684ξ2 + 2288ξ + 768)

101376
.

Explicitly, the modified invariant (8.5) for this system, truncated after order 6, is

H̃ε(x, y) =x−ξ y − ε2 ξ(ξ − 1)(ξ − 2)
24

x2−ξ y + ε4 ξ(5ξ + 3)(ξ − 1)(ξ − 2)(ξ − 3)(ξ − 4)
5760

x4−ξy

− ε6 ξ(35ξ2 + 42ξ + 16)(ξ − 1)(ξ − 2)(ξ − 3)(ξ − 4)(ξ − 5)(ξ − 6)
2903040

x6−ξ y.

Remark 8.2. Nörlund (see [41]) gives the asymptotic

Bξ
2n(ξ/2)
(2n)!

∼ (−1)n(2n)ξ−12 cos(2ξπ)

Γ(ξ)(2π)2n , as n → ∞.

Then, for ξ < Z, we find with the reflection relation of the Gamma function (see [6], 5.5.3) that(
ξ − 1

2n

)
Bξ

2n(ξ/2) ∼ (−1)n(2n)ξ−14 cos(2ξπ) sin(ξπ)

(2π)2n+1 Γ(1 − ξ + 2n), as n → ∞,

so that we can conclude that the modified invariant (8.4) is divergent.

As shown in [34], the Kahan map (8.3) admits a transcendental integral of motion:

K̃ε(x, y) =
y
x

Γ(ξ/2 + 1/(2εx))
Γ(1 − ξ/2 + 1/(2εx))

. (8.6)

The modified invariant H̃ε(x, y) can be obtained as an asymptotic expansion of the integral of
motion K̃ε(x, y): following Tricomi, Erdélyi [55] and Olver (see [7], p. 118 f.) we find that

zξ−1 Γ(ξ/2 + 1/z)
Γ(1 − ξ/2 + 1/z)

≃
∞

∑
n=0

(
ξ − 1

2n

)
Bξ

2n(ξ/2)z2n, for | arg(z)| < π.

Here, ≃ denotes asymptotic equality as given in Definition 8.6. The relation between the divergent
modified invariant (8.4) and the integral of motion (8.6) is further specified by the following claim:

Theorem 8.3. Let 0 < ξ < 1. Consider the sequence of functions

H̃(m,j)
ε (x, y) = (2ε)1−ξ H(x, y) · [2m + 2j, 2m]F(2εx), j ≥ −1, (8.7)

where
[2m + 2j, 2m]F(z)

denotes the Padé approximant to the formal series F(z) of degrees 2m + 2j and 2m. It converges uniformly
to the integral of motion K̃ε(x, y) as m → ∞, on any bounded subset of {(ε, x, y) ∈ (0, ∞) × R × C},
where R denotes the right half-plane R = {z ∈ C : ℜ(z) > 0}.

Proof. This follows from Theorem 8.11. □
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8.1 Padé approximants
In this section, we give a brief introduction to Padé approximants and the convergence theory of
Padé approximants to Stieltjes functions. The main sources are Baker & Graves-Morris [1] and
Borghi & Weniger [15].

Definition 8.4. Consider a formal power series

f (z) =
∞

∑
n=0

cnzn.

The Padé approximant [m, n] f (z) to f (z) is the ratio of polynomials P[m,n](z) and Q[m,n](z) of degrees
m and n in z, i.e.,

[m, n] f (z) =
P[m,n](z)
Q[m,n](z)

,

P[m,n](z) = p0 + p1z + · · ·+ pmzm =
m

∑
i=0

pmzm,

Q[m,n](z) = q0 + q1z + · · ·+ qnzn =
n

∑
j=0

qnzn,

with q0 = 1, such that

f (z)− P[m,n](z)
Q[m,n](z)

= O(zm+n+1),

or equivalently,
Q[m,n](z) f (z)− P[m,n](z) = O(zm+n+1). (8.8)

8.1.1 Padé approximants to Stieltjes functions
Definition 8.5. A function f : C \ [−∞, 0] → C is a Stieltjes function if it admits an integral represen-
tation

f (z) =
∞∫

0

dϕ(u)
1 + zu

, (8.9)

where ϕ : [0, ∞) → [0, ∞) is a bounded, non-decreasing function (taking infinitely many different values)
and with finite real-valued moments given by

fn =

∞∫
0

undϕ(u), n = 0, 1, 2, . . . . (8.10)

The corresponding Stieltjes series is defined by

∞

∑
n=0

(−1)n fnzn. (8.11)

Definition 8.6. A formal (convergent or divergent) power series ∑∞
n=0 cnzn is an asymptotic expansion
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of a function f (z) for |z| → 0 and −α < arg(z) < β, α, β ∈ (0, π), if for each n = 1, 2, . . .

f (z) =
n

∑
k=0

ckzk + Rn+1(z),

where
Rn+1(z) = O(zn+1), for |z| → 0 and − α < arg(z) < β.

We use the notation f (z) ≃ ∑∞
n=0 cnzn, for −α < arg(z) < β. Note that for a given function

f (z) the coefficients cn are uniquely determined (see [7], p. 17).

Remark 8.7. A Stieltjes function admits the corresponding Stieljes series as asymptotic expansion,
i.e., f (z) ≃ ∑∞

n=0(−1)n fnzn, for | arg(z)| < π.

Proof. With the partial sum of the geometric series we find that

f (z) =
∞∫

0

(
n

∑
j=0

(−zu)j +
(−zu)n+1

1 + zu

)
dϕ(u) =

n

∑
j=0

(−1)j f jzj + (−z)n+1
∞∫

0

un+1

1 + zu
dϕ(u),

where the truncation error term can be estimated by (see [15])⏐⏐⏐⏐⏐⏐(−z)n+1
∞∫

0

un+1

1 + zu
dϕ(u)

⏐⏐⏐⏐⏐⏐ ≤
{

fn+1|zn+1|, | arg(z)| ≤ π/2

fn+1|zn+1cosec(arg(z))|, π/2 < | arg(z)| < π.

This shows the claim. □

Note that the moments of Stieltjes functions satisfy the determinantal conditions ( [1], Theorem
5.1.2)

|( fm+i+j)i,j=0,..,n| > 0, for all m, n ≥ 0. (8.12)

Conversely (see [1], p. 239), given a sequence ( fn)n∈N of positive real numbers that satisfy the
determinantal conditions (8.12), and also Carlemans’s condition, i.e., the series

∞

∑
n=1

f−
1

2n
n diverges, (8.13)

there exists a unique Stieltjes function f (z) such that the following asymptotic equality holds:

f (z) ≃
∞

∑
n=0

(−1)n fnzn, for | arg(z)| < π. (8.14)

In the following let D(∆) denote a bounded region of C \ [−∞, 0] which has at least distance
∆ from the cut along the negative real axis (see Figure 8.1).

Theorem 8.8. Let f (z) be a Stieltjes function and let ( fn)n∈N be positive real numbers such that the
asymptotic equality (8.14) holds and Carleman’s condition (8.13) is satisfied. Then all paradiagonal [m +
j, m], for j ≥ −1, Padé approximants to the series ∑∞

n=0(−1)n fnzn converge uniformly to f (z) in the
domain D(∆).

Proof. With Remark 8.7 we find that ∑∞
n=0(−1)n fnzn is the Stieltjes series corresponding to the

Stieltjes function f (z), and therefore the real positive coefficients ( fn)n∈N satisfy the determinan-
tal conditions (8.12). Then the claim follows from Theorem 5.5.1 in [1]. □
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D(∆)

Figure 8.1: Bounded domain D(∆).

8.2 Numerical experiments
In this section, we compare the function

F(z) = zξ−1 Γ(ξ/2 + 1/z)
Γ(1 − ξ/2 + 1/z)

numerically with Padé approximations of the series

F(z) =
∞

∑
n=0

(
ξ − 1

2n

)
Bξ

2n(ξ/2)z2n.

Figures 8.2–8.4 show plots of the function F(z) and [m − 2, m] (Figures 8.2a, 8.3a, 8.4a) and
[m, m] (Figures 8.2b, 8.3b, 8.4b) Padé approximants to the series F(z), for ξ = 0.5, ξ = −0.5 and
ξ = 6.5. In Figure 8.2 (ξ = 0.5) and Figure 8.3 (ξ = −0.5) we observe that the [m − 2, m] and
[m, m] Padé approximants seem to converge to the function F(z) as m increases. In Figure 8.4
(ξ = 6.5) we observe that the [m, m − 2] Padé approximants seem to diverge, whereas the [m, m]
approximants approach the function F(z) as m increases.
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(a) [m − 2, m] Padé approximants. (b) [m, m] Padé approximants.

Figure 8.2: ξ = 0.5 and m = 4 (dot), m = 10 (dash), m = 40 (dash-dot).

(a) [m − 2, m] Padé approximants. (b) [m, m] Padé approximants.

Figure 8.3: ξ = −0.5 and m = 4 (dot), m = 10 (dash), m = 40 (dash-dot).
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(a) [m − 2, m] Padé approximants. (b) [m, m] Padé approximants.

Figure 8.4: ξ = 6.5 and m = 10 (dot), m = 40 (dash), m = 100 (dash-dot).

8.3 Convergence results
In this section, we give rigorous convergence results corresponding to some of the observations
we obtained from the numerical experiments. We will see that the case 0 < ξ < 1 can be reduced
to the situation of Padé approximation to Stieltjes series for which a highly developed conver-
gence theory exists [1].

We prove the following integral representation. A similar statement can be found in [52].

Proposition 8.9 (Integral representation). Let F(z) be holomorphic in the domain ∆ \ S, where ∆ =
{z ∈ C : | arg(z)| < π} and S = {a1, . . . , an} ⊂ ∆ is the set of simple poles of F(z). Let F(z) ∼ zα, for
α > −1, as z → 0 and let |zβF(z)|, for β > 0, be bounded at ∞. Suppose that F(z) can be extended to
−π < arg(z) ≤ π and −π ≤ arg(z) < π by analytic continuation such that

F−(t) = lim
ε→0+

F(−t − iε) and F+(t) = lim
ε→0+

F(−t + iε)

are integrable on [0, ∞]. Then F(z) admits the representation

F(z) =
∞∫

0

f (t)
z + t

dt −
n

∑
i=1

1
ai − z

resai F, (8.15)

where
f (t) =

1
2πi

(F−(t)− F+(t)). (8.16)

Proof. Consider a contour C in the complex plane, as in Figure 8.5, such that the set of poles
S = {a1, . . . , an} of the function F(z) is contained in the interior of C. Then with the residue
theorem we find that

F(z) =
1

2πi

∫
C

F(ξ)
ξ − z

dξ −
n

∑
i=1

1
ai − z

resai F.
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By the assumption on the behaviour of F(z) as z → 0 and z → ∞ we find that the integrals along
the paths Cr and CR vanish in the limit r → 0 and R → ∞. Finally, integration along the branch
cut gives ∫

C

F(ξ)
ξ − z

dξ =

∞∫
0

F−(t)− F+(t)
z + t

dt.

This proves the claim. □

L1

L2

Cr

CR

Figure 8.5: Contour C of integration.

Remark 8.10. Note that the integral term in (8.15) admits the Stieljes integral representation (8.9)
w.r.t. the measure ϕ(u) =

∫ u
0 f̂ (s)ds, where

f̂ (s) =
1
s

f
(

1
s

)
.

8.3.1 Convergence for 0 < ξ < 1
Theorem 8.11. Let 0 < ξ < 1. Consider the formal (divergent) power series

F(z) =
∞

∑
n=0

(
ξ − 1

2n

)
Bξ

2n(ξ/2)z2n. (8.17)

Then all paradiagonal sequences of Padé approximants [2m + 2j, 2m], for j ≥ −1, converge uniformly to
the function

F(z) = zξ−1 Γ(ξ/2 + 1/z)
Γ(1 − ξ/2 + 1/z)

(8.18)

in the bounded domain
√
D(∆).

Proof. By Lemma 8.12 the function G(z) = F(
√

z) is a Stieltjes function. The seriesG(z) = F(
√

z)
satisfies the asymptotic equality G(z) ≃ G(z), for | arg(z)| < π. It remains to be shown that
Carleman’s condition (8.13) is satisfied: Note that a Stieltjes function admits its Stieltjes series as
(unique) asymptotic expansion. From the estimate (8.20) we find that the moments satisfy

Gn ≤ (Γ (ξ/2))2 Γ(2n + 1),
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for 0 < ξ < 1 and n ≥ 1. With the estimate

Γ(2n + 1) ≤
√

2π(2n + 1)2n+1/2exp(1/(6(2n + 1)))

(see [6], 5.6.9) we see that the sum ∑∞
n=1 G−1/(2n)

n diverges.
Then by Theorem 8.8 all paradiagonal Padé approximants [m + j, m]G, for j ≥ −1, converge

uniformly to G(z) in the domain D(∆). Then with [m, m + j]G(z2) = [2m, 2m + 2j]F(z) the claim
follows. □

Lemma 8.12. Let 0 < ξ < 1. Then the function G(z) = F(
√

z) is a Stieltjes function, i.e., it admits the
Stieltes integral representation (8.9) with measure ϕ(u) =

∫ u
0 ĝ(s)ds, where

ĝ(s) =
sin(πξ)

2π2 s−
1+ξ

2 e−π
√

s
⏐⏐⏐⏐Γ( ξ

2
+ i

√
s
)⏐⏐⏐⏐2 ,

and the Stieltjes moments (8.10) are finite.

Proof. Observe that the function G(z) is holomorphic in | arg(z)| < π and satisfies all require-
ments of Proposition 8.9. With the principal branch of the logarithm we have

lim
ε→0+

(−t − iε)
ξ−1

2 = ie−i π
2 ξ t

ξ−1
2 , lim

ε→0+
(−t + iε)

ξ−1
2 = −iei π

2 ξ t
ξ−1

2 ,

lim
ε→0+

(−t − iε)−
1
2 = it−

1
2 , lim

ε→0+
(−t + iε)−

1
2 = −it−

1
2 .

Then we find that

G−(t) = ie−i π
2 ξ

Γ
(

ξ
2 + i√

t

)
Γ
(

1 − ξ
2 + i√

t

) , and G+(t) = −iei π
2 ξ

Γ
(

ξ
2 − i√

t

)
Γ
(

1 − ξ
2 − i√

t

) ,

hence, with formula (8.16), we obtain

g(t) =
1

2π
t

ξ−1
2

⎛⎝e−i π
2 ξ

Γ
(

ξ
2 + i√

t

)
Γ
(

1 − ξ
2 + i√

t

) + ei π
2 ξ

Γ
(

ξ
2 − i√

t

)
Γ
(

1 − ξ
2 − i√

t

)
⎞⎠

=
1

2π
t

ξ−1
2

⏐⏐⏐⏐Γ( ξ

2
+

i√
t

)⏐⏐⏐⏐2
⎛⎝ e−i π

2 ξ

Γ
(

ξ
2 − i√

t

)
Γ
(

1 − ξ
2 + i√

t

) +
ei π

2 ξ

Γ
(

ξ
2 + i√

t

)
Γ
(

1 − ξ
2 − i√

t

)
⎞⎠ .

With the reflection relation of the Gamma function (see [6], 5.5.3) and the definition of the sin
function (see [6], 4.14.1) a straightforward computation yields

g(t) =
sin(πξ)

2π2 t
ξ−1

2 e−
π√

t

⏐⏐⏐⏐Γ( ξ

2
+

i√
t

)⏐⏐⏐⏐2 .

Finally, with Remark 8.10 we find that G(z) admits the Stieltjes integral representation (8.9) w.r.t.
the measure ϕ(u) =

∫ u
0 ĝ(s)ds, where

ĝ(s) =
sin(πξ)

2π2 s−
1+ξ

2 e−π
√

s
⏐⏐⏐⏐Γ( ξ

2
+ i

√
s
)⏐⏐⏐⏐2 . (8.19)

It remains to be shown that the corresponding moments are finite. Indeed, with the estimate
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|Γ(x + iy)| ≤ |Γ(x)| (see [6], 5.6.6) and the substitution s = w2/π2 we find that⏐⏐⏐⏐⏐⏐
∞∫

0

sn ĝ(s)ds

⏐⏐⏐⏐⏐⏐ ≤ | sin(πξ)|
π2n+3−ξ

(
Γ
(

ξ

2

))2
Γ (2n + 1 − ξ) , for ξ < 1. (8.20)

This proves the claim. □

In the following, we give an integral representation for the generalized Bernoulli polynomials
Bξ

2n(ξ/2), for 0 < ξ < 1. To the best of our knowledge this seems to be a new result.

Corollary 8.13. Let 0 < ξ < 1. Then we find that

sin(πξ)

π2

∞∫
0

s2n−ξe−πs
⏐⏐⏐⏐Γ( ξ

2
+ is

)⏐⏐⏐⏐2 ds = (−1)n
(

ξ − 1
2n

)
Bξ

2n(ξ/2). (8.21)

Proof. By Lemma 8.12 G(z) = F(
√

z) is a Stieltjes function with moments
∫ ∞

0 tn ĝ(t)dt. A Stieltjes
function admits its corresponding Stieltjes series as asymptotic expansion for | arg(z)| < π (Re-
mark 8.7). On the other hand, G(z) admits the series G(z) = F(

√
z) as asymptotic expansion for

| arg(z)| < π. The coefficients of the asymptotic expansion are unique. Then the claim follows
with the substitution t = s2/π2. □

8.3.2 Convergence for ξ < 0
Theorem 8.14. Let ξ < 0 and ξ , −1,−2, . . . . Let G(z) = F(

√
z) and G(z) = F(

√
z). The function

F(z) is meromorphic in | arg(z)| < π with simple poles at

am = −2/(2m + ξ), for m = 0, 1, . . . , ⌊|ξ|/2⌋.

Consider the formal (divergent) power series H(z) = F(z) + R(z), where

R(z) =
⌊|ξ|/2⌋

∑
m=0

resa2
m

G

a2
m − z2 ,

with

resa2
m

G =
(−1)m+12aξ+2

m
m!Γ(1 − ξ/2 + 1/am)

. (8.22)

Then all paradiagonal sequences of Padé approximants [2m + 2j, 2m]H, for j ≥ −1, converge uniformly to
the function H(z) = F(z) + R(z) in the bounded domain

√
D(∆).

Proof. By Lemma 8.15 the function K(z) = sgn(sin(πξ))H(
√

z) is a Stieltjes function. The series
K(z) = sgn(sin(πξ))H(

√
z) satisfies the asymptotic equality K(z) ≃ K(z), for | arg(z)| ≤ π. It

remains to be shown that Carleman’s conditions is satisfied: From the estimate (8.20) we find that
the moments satisfy

Kn ≤ (Γ (ξ/2))2 Γ(2n + 1 − ξ),

for ξ < 0, ξ , −1,−2, . . . and n ≥ 1. With the estimate

Γ(2n + 1 − ξ) ≤
√

2π(2n + 1 − ξ)2n−ξ+1/2exp(1/(6(2n + 1 − ξ)))

(see [6], 5.6.9) we see that the sum ∑∞
n=1 K−1/(2n)

n diverges.
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Then by Theorem 8.8 all paradiagonal Padé approximants [m + j, m]K, for j ≥ −1, converge
uniformly to K(z) in the domain D(∆). Then with sgn(sin(πξ))[m, m + j]K(z2) = [2m, 2m +
2j]H(z) the claim follows. □

Lemma 8.15. Let 0 < ξ and ξ , −1,−2, . . . . Then the function K(z) = sgn(sin(πξ))H(
√

z) is a
Stieltjes function, i.e., it admits the Stieltes integral representation (8.9) with measure ϕ(u) =

∫ u
0 k̂(s)ds,

where k̂(s) = sgn(sin(πξ))ĝ(s) for ĝ(s) given by (8.19), and the Stieltjes moments (8.10) are finite.

Proof. The function G(z) = F(
√

z) is meromorphic in | arg(z)| < π with simple poles at a2
m =

4/(2m + ξ)2, for m = 0, 1, . . . , ⌊|ξ|/2⌋, and residues (8.22). Note that G(z) satisfies all require-
ments of Proposition 8.9. Then it follows from (8.15) that

K(z) = sgn(sin(πξ))

∞∫
0

g(t)
z + t

dt,

where g(t) = (1/(2πi))(G−(t) − G+(t)). Then the proof works analogously to the proof of
Lemma 8.12. The factor sgn(sin(πξ)) ensures that the density k̂(s) is non-negative. □



Chapter 9

Conclusions and outlook

Rahter than enumerating all results of this thesis we want to reflect on some of the main findings
in the following and provide some future perspectives.

• For generic quadratic Cremona transformations we provided a classification of the orbit
data that correspond to quadratic quadratic growth of degrees of iterates, that is, the map
preserves an elliptic fibration.

• We discussed the singularity structure of Kahan discretizations of the (γ1, γ2, γ3)-class and
the Lotka-Volterra system and provided a classification of the parameter values such that
the Kahan map is integrable.

• We found a geometric description of Manin involutions for elliptic pencils consisting of
curves of higher degree, birationally equivalent to cubic pencils (Halphen pencils of index
1); and characterized the special geometry of the base points ensuring that certain composi-
tion of Manin involutions are integrable of low degree (quadratic Cremona maps). As par-
ticular cases, we identify some integrable Kahan discretizations as compositions of Manin
involutions. Both issues should be studied also for Halphen pencils of index m > 1.

• We demonstrated that it is possible to adjust the coefficients of the Kahan-type discretiza-
tions to ensure their integrability in some cases where the straightforward recipe fails to
preserve integrability. It will be an important task to find such integrable adjustments for
other cases of non-integrability of the straightforward Kahan discretization.

• In this thesis, we focused on the study of geometric and algebraic properties of (integrable)
birational maps in dimension two. While the algebraic aspects of the dynamics of such
maps are well-studied [27], the picture is far from complete in the higher-dimensional case.
In fact, by now only a few concrete examples have been investigated [18]. It will be an
important task to 1) study the singularity structure, and 2) find a geometric description for
higher-dimensional examples such as the Kahan discretization of the Euler top (dimension
3) or the Clebsch system (dimension 6) [42, 43].

• We demonstrated for a (linearizable) integrable map that certain sequences of Padé approx-
imants of a divergent formal invariant converge to a (transcendental) integral of motion of
the map. A similar, yet more complicated, problem can be considered for the Kahan dis-
cretization of the Lotka-Volterra system. As pointed out in Chapter 6 results from backward
error analysis guarantee the existence of a formal modified invariant for this map. On the
other hand, we have shown in Section 4.1 that the Kahan map is generically non-integrable.
Still one can attempt to apply summation techniques to the modified invariant to obtain a
true function. What would the dynamical meaning of this function be?

111
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• The Kahan method seems to have some remarkable features also when applied to non-
integrable systems. Consider the quadratic vector field on R2 given by{

ẋ1 = x2
1 + x2

2 − 1 + x2(ax1 + bx2 + c),
ẋ2 = −x1(ax1 + bx2 + c),

(9.1)

with parameters a, b, c ∈ R. It has the irreducible invariant algebraic curve

x2
1 + x2

2 − 1 = 0, (9.2)

with cofactor equal to 2x1. For a2 + b2 < c2, a , 0, this curve contains an algebraic limit
cycle of degree 2 [38]. Surprisingly, the Kahan discretization Φε(x) also admits, even for
fairly large values of the step size ε, a limit cycle that is a deformation of (9.2). This limit
cycle is subject to bifurcations as the step size ε varies. Finally, one observes that the map
Ψε = Φ1/ε ◦ Φ1/ε satisfies

Ψε(x) = x + εg(x) + 2ε2g′(x)g(x) +O(ε3),

where g(x) is a rational vector field on R2, so that Ψε(x) is a discretization of the vector
field g(x). Apparently, the system ẋ = g(x) has a limit cycle. This means that the Kahan
discretization of (9.1) admits a convergent sequence of limit cycles as ε → ∞. The numerous
phenomena surrounding this example deserve definitively future attention.
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