
Functional regression of densities with
application to the simulation of

molecular dynamics

vorgelegt von
M.Sc.

Felix Brockherde
geb. in Stadtlohn

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Klaus Obermayer

Gutachter: Prof. Dr. Kieron Burke

Gutachter: Prof. Dr. Marius Kloft

Gutachter: Prof. Dr. Benjamin Blankertz

Tag der wissenschaftlichen Aussprache: 9. August 2018

Berlin 2018

Abstract

Applications of machine learning have shown promising results modeling the
non-interacting kinetic energy functional in 1-D. This holds the promise of en-
abling orbital-free density functional theory calculations, by-passing the com-
putationally expensive Kohn-Sham equations. This would yield substantial sav-
ings in computer-time so that larger systems or longer time scales can be sim-
ulated. These approaches, however, where limited by the need to model an ac-
curate derivate. This thesis investigates possibilities to overcome this difficulty
and extend the principle to 3-D molecules. Presented is a machine learning
method for training a direct potential to density model, a machine learning
Hohenberg-Kohn map. The method is set on a theoretical foundation via func-
tional data analysis and operator-valued kernel models. The new approach is
rigorously evaluated on 1-D data and applied to small molecules in 3-D. Practi-
cal challenges like data generation, sampling, and normalization problems are
solved. Finally, an application to molecular dynamics simulation evaluates the
method’s robustness and demonstrates its practical value. The result of this the-
sis is a successful extension of the orbital-free principle to 3-D. The Hohenberg-
Kohn map outperforms the previous approach in 1-D and archives competitive
results for 3-D molecules. It even proves to be robust enough to make molecular
dynamics simulations with a machine learned density functional possible and
allows investigation of rare events that were not included in the training set. The
Hohenberg-Kohn map thus allows construction of accurate density functionals
for realistic molecular systems.

Zusammenfassung

Die Anwendung von maschinellem Lernen zeigte vielversprechende Ergebnisse
beim Modellieren des nicht-interagierenden kinetischen Energiefunktionals
in 1-D. Dies bringt die Aussicht Orbital-freie Dichtefunktionaltheorie Berech-
nungen zu ermöglichen, somit die rechenintensiven Kohn-Sham Gleichungen
zu umgehen, und erhebliche Reichenzeit einzusparen, sodass größere Systeme
oder längere Zeitskalen simuliert werden können. Diese Ansätze waren aber
beschränkt bei der Notwendigkeit eine genaue Ableitung zu modellieren. Diese
Dissertation untersucht Möglichkeiten diese Schwierigkeiten zu überwinden
und das Prinzip auf 3-D Moleküle zu erweitern. Präsentiert wird eine Methode
des maschinellen Lernens um ein direktes Potential-zu-Dichtefunktion Modell
zu trainieren: eine Hohenberg-Kohn Abbildung via maschinelles Lernen. Die
Methode wird auf eine theoretische Grundlage gesetzt mit Hilfe von funk-
tionaler Datenanalyse und operatorwertigen Kernmethoden. Der neue Ansatz
wird auf 1-D Daten und angewendet auf kleine Moleküle in 3-D. Praktische
Herausforderungen wie Datengenerierung, Abtastung, und Normalisierung
werden gelöst. Schließlich evaluiert eine Anwendung auf Moleküldynamik-
simulationen die Robustheit der Methode und demonstriert ihren praktischen
Wert. Das Ergebnis der Dissertation ist eine erfolgreiche Erweiterung des
Orbital-freien Prinzips auf 3-D. Die Hohenberg-Kohn Abbildung übertrifft
den vorherigen Ansatz und erreicht konkurrenzfähige Ergebnisse auf 3-D
Molekülen. Sie weist sich sogar als robust genug heraus um Moleküldy-
namiksimulationen mit einem maschinell gelernten Dichtefunktional zu
ermöglichen und erlaubt die Untersuchung von seltene Ereignissen, die nicht
im Trainingsdatensatz enthalten waren. Die Hohenberg-Kohn Abbildung
erlaubt somit die Konstruktion von genauen Dichtfunktionalen für realistische
Molekülsysteme.

Acknowledgements

I am deeply grateful for having worked with so many brilliant and inspiring
minds over the last years. I would like to thank Prof. Dr. Klaus-Robert Müller
from TU Berlin for supervising this PhD thesis. He has been the visionary of
this work and has provided an invaluable stream of support throughout its cre-
ation. For accompanying this thesis from a natural science point, I would like
to thank Prof. Dr. Kieron Burke from the University of California at Irvine who
has repeatedly explained complex chemical and physical concepts to my layman
understanding and provided the theoretical foundation for this work’s applica-
tion.

For fruitful collaboration, I owe gratitude to Dr. Li Li from the University of
California at Irvine, Dr. Leslie Vogt and Prof. Mark E. Tuckerman from the New
York University, Dr. John Snyder from TU Berlin, and Dr. Henning Glawe and
Prof. Dr. Hardy E.K.U Gross from the Max-Planck-Institute of Microstructure
Physics in Halle.

I thank the Machine Learning Group at TU Berlin and its members, especially
Kristof Schütt and Stefan Chmiela, for inspiring discussions and all the help
received during this research time.

The Institute of Pure and Applied Mathematics at the University of California,
Los Angeles, receives my gratitude for repeated hospitality and workshop orga-
nization without which this work could not have progressed as effectively.

I would like to thank the TU Berlin and the Max-Planck-Institute of Microstruc-
ture Physics in Halle for financing this research.

Finally, I owe my deepest gratitude to my wife Silvina Colombato for supporting
me in finishing this thesis.

Table of Contents

1 Motivation and Background 1
1.1 Introduction . 1
1.2 From quantum mechanics to machine learning 3
1.3 Organization and own contributions 12

2 Machine Learning for Functionals and Functional Response Data 15
2.1 Functional data representations 15
2.2 Machine learning for dependent data 24
2.3 Toy experiment . 40
2.4 Discussion . 45

3 Hohenberg-Kohn map 47
3.1 Kinetic energy approach . 47
3.2 Electron density prediction . 54
3.3 Model evaluation and error measure 59
3.4 Discussion . 61

4 Prediction of quantum mechanical observables 63
4.1 Application to 1-D particle-in-a-box data 63
4.2 Geometry normalization and sampling in 3-D 68
4.3 Application to 3-D molecules . 74
4.4 Molecular dynamics with machine learning models 87
4.5 Discussion . 92

5 Conclusion 95

Appendix A Integrated prediction of density matrices 99
A.1 Motivation . 99

A.2 Density matrices . 100
A.3 Machine learning model for density matrix prediction 103
A.4 Experiments . 105
A.5 Discussion . 107

Acronyms

CCSD(T) coupled cluster single dou-
ble estimated triple

DFT density functional theory
FCI full configuration interaction
FDA functional data analysis
FFT fast Fourier transform
GTO Gaussian-type orbital
HK Hohenberg-Kohn
iid independently and identically dis-

tributed
KE kinetic energy
Kernel PCA Kernel principle compo-

nent analysis
KRR kernel ridge regression
KS Kohn-Sham
KS-DFT Kohn-Sham density func-

tional theory
LDA local density approximation ex-

change correlation

MAE mean average error
MD molecular dynamics
ML machine learning
ML-HKmachine-learning-Hohenberg-

Kohn
ML-KS machine-learning-Kohn-

Sham
MO molecular orbital
MSE mean squared error
OF orbital-free
PBE Perdew-Burke-Ernzerhof ex-

change correlation
PCA principle component analysis
PES potential energy surface
QM quantum mechanics
RKHS reproducing kernel Hilbert

space
RRM regularized risk minimization
SCF self-consistent field

1
Motivation and Background

1.1 Introduction

In recent years, there has been a surge in application of machine learning to
problems in the natural sciences. The fundamental task for finding new com-
pounds or materials is the prediction of chemical and physical quantities. The
complex quantum mechanical effects involved make costly electronic structure
calculations necessary. Calculating properties for just one configuration when
screening databases for promising materials or simulating molecular dynamics
that require high levels of accuracy from the quantum-chemical methods can
take several days on high-performance clusters. Machine learning now offers
to learn from previous recorded calculations and to predict properties via ma-
chine learning models that give instantaneous results. Successful application
of machine learning can thus speed-up compound design in pharmaceutical
industries or material design and discovery.

The majority of these machine learning applications involve predicting prop-
erties of molecules or materials from large databases of Kohn-Sham density
functional theory (KS-DFT) calculations. A few applications involve finding
potential energy surfaces within molecular dynamics simulations.

These approaches treat KS-DFT as a black-box and neglect the theoretical
achievements in this area. However, promising research has recently shown

2 Chapter 1 Motivation and Background

that a tighter integration of machine learning and density functional theory
seems possible. This would allow us to take advantage of well-known parts
of density functional theory and its matured methodology. If such attempts
could be made practical for real world systems, we can expect an enormous
speed-up in repeated density functional theory (DFT) calculations of similar
species, e.g. in ab initio molecular dynamics (MD) simulations.

Since the previous research focused on 1-D toy systems, this thesis covers the
adaption of these ideas to 3-D systems of real molecules.

The research dives into two rather distinct disciplines, quantum chemistry and
machine learning, and is thus fundamentally interdisciplinary. Challenging was
not only the gap between quantum chemistry and machine learning, but also
the combination of DFT and MD. Since machine learning is a new set of tools
for physicists and chemists, there is a high standard of proof that the approaches
(a) actually work and (b) will become applicable and useful for practitioners.

At the beginning of the research that is documented here, both machine learn-
ing and the application of machine learning in the area of electronic structure
calculations where in a different place. The machine learning research was dom-
inated by kernel methods, whereas the recent years fueled a renewed interest in
neural networks, especially deep learning. The prediction of functional data,
however, is still a well suited problem for kernel methods. Although there was
earlier work that applies machine learning (ML) methods to speed up DFT
tasks, it was rather exotic. Nowadays ML is an established part of projects trying
to go beyond what is possible with standard electronic structure codes.

When the thesis commenced it was thought to go into a different direction.
The original idea was to search for superconductors and evaluate crystal prop-
erties. A fruitful collaboration with the Max-Planck-Institute of Microstruc-
ture Physics in Halle laid a foundation [Sch+14]. However, once it was realized
how ground-breaking and impactful ML in physics would become, the research
shifted to more fundamental and general problems. From a physical point of
view, it offered the challenge of having to dive much deeper into density func-
tional theory and electronic structure codes. From the machine learning per-
spective, it offers the challenge of working with high-dimensional structured
objects such as 3-D density functions.

1.2 From quantum mechanics to machine learning 3

Due to the interdisciplinary nature of this thesis, it has to strive for a balance
between explaining all relevant parts for reaching the conclusions on the one
hand and the limited space available on the other hand. This is why the fol-
lowing sections give only a short introduction into the problem setting from a
natural science point of view and how machine learning can be applied.

The explicit goal of this thesis is to document the research and ideas that are
tremendously interesting, but were not published, either because they did
not work well, did not yield significant improvements, or were not important
enough to include in the publication. Since it is not subject to peer review, the
PhD thesis is the perfect medium for this.

The thesis starts with simple 1-D toy problems but continues all the way to 3-D
MD simulations. Its results have thus drawn interest far beyond the ML, DFT,
or MD community.

Being able to do research in this area and being a part of the developments in
this field have been an honor and will continue to shape the author’s engineering
and scientific mind. I wish all curious readers an interesting time with many
new and inspiring ideas.

Felix Brockherde
Berlin, 2018

1.2 From quantum mechanics to machine learning

This section gives a brief introduction to the physical and chemical background
of the thesis. It introduces the basics of quantum mechanics (QM), DFT and
MD. Finally, the possibility to apply machine learning in these areas is discussed.
It also sets the notation for the following chapters.

The state of a quantum mechanical system is described mathematically by a
wavefunction Ψ(rrr1, . . . , rrrN) which is a function of, for example, the positions
of all particles in the system.

The stationary states of a quantum system are the solutions of the time-

4 Chapter 1 Motivation and Background

independent Schrödinger equation:

ĤΨ = [T̂ + V̂ee + V̂ext]Ψ = EΨ. (1.1)

Ĥ is the Hamiltonian operator. It consists of the kinetic energy operator T̂, the
external potential energy operator V̂ext and the electron-electron interaction
energy operator V̂ee. The external potential energy stems from the external
field generated by the nuclei in the system and thus makes the equation unique
for every system. The electron-electron interaction energy operator prohibits
separation into simpler single-particle equations. The constant E is the energy
of the state. Solving the Schrödinger equation is a fundamental problem in
quantum mechanics. Exact solutions are known only for the smallest systems.
In order to solve the Schrödinger equation for interesting systems, it is neces-
sary to make approximations, thus trading speed for accuracy. The amount of
accuracy we are willing to trade depends on the application.

The first approximation we make is the so-called Born-Oppenheimer approxi-
mation. It is the assumption that the motion of atomic nuclei and electrons can
be separated, and allow us to treat the motion of atomic nuclei and electrons
independently. For now we assume that the atomic nuclei are fixed in position.

1.2.1 Density functional theory (DFT)

A good theory that operates within the Born-Oppenheimer approximation and
that provides us with an excellent trade-off between accuracy and speed is KS-
DFT[KS65]. We first introduce DFT and then describe the Kohn-Sham (KS)
system.

The fundamental variable in DFT is the electron density. It is a probability den-
sity and can be interpreted as a relative likelihood of finding an electron at a
specific point in space. It is always positive (≥ 0) and integrates to the num-
ber of electrons N in the system. For a given normalized ground-state Ψ, it is

1.2 From quantum mechanics to machine learning 5

defined as1

n(rrr) = N∫ d3r2⋯∫ d3rNΨ∗(rrr, rrr2, . . . , rrrN)Ψ(rrr, rrr2, . . . , rrrN). (1.2)

The foundation of modern DFT is the Hohenberg-Kohn (HK) theorem[HK64]
It states that, first, the ground-state density n uniquely determines the external
potential v of a many-body system (up to a trivial additive constant). Thus, the
HK theorem establishes a one-to-one relationship between ground-state density
and external potential. Assuming only non-degenerate2 states we can write the
wave-function as a functional of the ground-state density: Ψ[n]. The HK theo-
rem also states that the ground-state density minimizes the energy functional

Ev[n] = ∫ d3r v(rrr)n(rrr) + F[n] (1.3)

if we minimize over the set of positive normalized densities. Here, the kinetic
energy and coulomb repulsion,

T̂ = − 1
2

N
∑
i=1
∇2

i and (1.4)

V̂ee =
1
2∑i≠j

1
∣rrri − rrrj∣

, (1.5)

are grouped in the universal many-body functional

F[n] = ⟨Ψ[n]∣T̂ + V̂ee∣Ψ[n]⟩ . (1.6)

The function v(rrr) is the external potential. For example, given a number of
atoms with nuclear charges Z1, . . . ,ZNatoms and positions R1, . . . ,RNatoms , the
Coulomb potential is given by

v(rrr) =
Natoms

∑
i=1
− Zi
∥Ri − rrr∥

. (1.7)

For plane-wave (Fourier) basis sets, pseudo-potentials are preferred in practical

1Note that we adopt the physics notation of writing the differential right after the integral sign.
We also use the shorthand d3r for dxdydz.

2Otherwise, we define Ψ[n] to be the wave-function that yields n and minimizes T̂ + V̂ee.

6 Chapter 1 Motivation and Background

applications. They represent the core electrons and are frozen so that only the
valence electrons are dealt with explicitly.

The functional F is universal in the sense that it is valid for any external po-
tential. Minimizing E[n] under the constraint that the density is normalized,
i.e. ∫ d3r n(rrr) = N, yields

δ

δn
[F[n] + ∫ d3r v(rrr)n(rrr) − µ(∫ d3r n(rrr) −N)] = 0 (1.8)

whereµ is the Lagrange multiplier associated with the normalization constraint.
The minimizing density must fulfill the corresponding Euler-Lagrange equation

δF
δn(rrr)

+ v(rrr) = µ. (1.9)

Let us note that DFT itself did not introduce any approximation, it is just for-
mulated in terms of densities as fundamental quantities, not wave-functions.

Since we can easily derive the density from a wave-function but not the other
way round, we might worry that we lose information about our system by solely
looking at the density. But since the HK theorem provides us with a one-to-one
relationship between ground-state density and external potential, we know that
every observable of our system can be expressed as a functional of the ground-
state density. This allows us to work with three dimensional densities instead of
3N dimensional wave-functions.

The second part of the HK theorem (Eq. 1.3) leads us to a strategy for find-
ing the ground-state density via iterative optimization. However, the univer-
sal many-body functional F is unknown. The idea of applying ML to learn
the non-interacting kinetic energy functional is explored in the work of Sny-
der et al. [Sny+12], Snyder et al. [Sny+13b], and Snyder et al. [Sny+15]. Li et al.
[Li+16a] explores the idea of learning a universal functional to solve chains of
1-D hydrogen atoms. We will come back to this later. First, we introduce the
KS approximation.

Instead of approximating F directly, KS-DFT imagines a fictitious system ofnon-
interacting electrons that gives rise to the same density as the original interacting
system. The potential that this non-interacting system is exposed to is called the

1.2 From quantum mechanics to machine learning 7

KS potential vs. The orbitals of the non-interacting system are given by the non-
interacting Schrödinger equation

{− 1
2
∇2 + vs(rrr)}φi(rrr) = ϵiφi(rrr) (1.10)

and its density by

n(rrr) =
N
∑
i=1
∣φi(rrr)∣2. (1.11)

The corresponding Euler-Lagrange equation is given by

δTs
δn(rrr)

+ vs(rrr) = µ (1.12)

where Ts is the kinetic energy of the non-interacting electrons. We can now
write F of the interacting system in terms of the non-interacting kinetic energy
Ts. Since the Hartree energy

U[n] = 1
2 ∫

d3r∫ d3r′ n(r
rr)n(rrr′)
∣rrr − rrr′∣

(1.13)

is known and contributes a large part to the difference between Ts and T, we
write it out explicitly and have

F[n] = Ts[n] +U[n] + EXC[n]. (1.14)

The remainder is contained in EXC which is thus implicitly defined by Eq. 1.14.
Inserting Eq. 1.14 into Eq. 1.9 and comparing to 1.12 yields

vs(rrr) = v(rrr) + vH(rrr) + vXC[n](rrr), vXC[n](rrr) =
δEXC

δn(rrr)
. (1.15)

where vH(rrr) = δU/δn(rrr) = ∫ d3r′ n(rrr′)/∣rrr−rrr′∣ is the Hartree potential.

Note that the system has to be solved self-consistently since the KS potential
depends on the density. KS-DFT makes no approximations in itself and is thus
an exact theory. However, the exchange-correlation functionalEXC is unknown
and we have to resort to approximations of EXC to use KS-DFT. Several good

8 Chapter 1 Motivation and Background

approximations exist, providing varying levels of accuracy.

A simple approximation is local density approximation (LDA) which solely de-
pends on the value of the density n at each point in space, e.g.

ELDA
XC = ∫ d3rn(rrr)ϵXC(n) (1.16)

where ϵXC is the exchange-correlation energy per particle of a homogeneous
electron gas of charge density n. A better approximation that will be used in
Chapter 4 is the Perdew-Burke-Ernzerhof (PBE) exchange-correlation poten-
tial.

For more resources on KS-DFT, refer to Burke and Wagner [BW12].

1.2.2 Molecular dynamics

So far the atomic nuclei where always assumed fixed in their position and only
the electrons were allowed to move. Each set of fixed atomic positions for a
molecule is called a configuration. The Born-Oppenheimer approximation al-
lowed us to separate the motion of atomic nuclei and electrons. The atomic
nuclei have so far been fixed in space. We now want to look at their motion.
This approach is called molecular dynamics (MD) and we use it to simulate the
physical movement of atoms. The atoms are allowed to interact for a certain
period of time allowing us to view the dynamical evolution of the system. This
allows us to observe properties that we can not observe by investigating one con-
figuration alone. We will later apply MD to the malonaldehyde molecule and
observe proton transfer events. This allows us to estimate the energy barrier for
the intramolecular proton transfer.

The forces that act on the atomic nuclei can be described by Newton’s second law
of motion. We can write the forces in a pair of first order differential equations

F(X) =M∂V(t)
∂t

(1.17)

V(t) = ∂X(t)
∂t

(1.18)

where we write V(t) for the velocities and X(t) for the positions rrr at time t.

1.2 From quantum mechanics to machine learning 9

The equations of motion (Eqs. 1.17 and 1.18) form a system of ordinary differ-
ential equations. For Natoms atoms, there are 3Natoms coordinates and 3Natoms

velocities. Since an analytical solution is impossible, we turn to numerical solu-
tions.

Fortunately, the numerical solution is straight forward. We iteratively evaluate
velocities and forces of each atom and take small step ϵ forward, i.e. for a mo-
ment i in time

Xi+1 = Xi + ϵVi (1.19)

Vi+1 = Vi + ϵ
F(Xi)
M

. (1.20)

Later, we use the Velocity Verlet algorithm which averages two timesteps to
increase robustness. Additionally, a so-called thermostat can be used to control
the temperature of the simulation. To start the simulations, we initialize the
velocities V0 by drawing randomly from a Maxwell-Boltzman distribution so
that the initial kinetic energy yields the desired temperature of the simulation.

To find the forces F, we differentiate between classical MD and ab initio MD.

• Classical MD. In classical MD, we define a force field which uses
an interatomic potential or energy function. It can be written as a
parametrized sum of terms that depend on the position of the atoms.
We then can calculate the force acting on an atom as derivatives of the
total energy with respect to the atom position

F(X) = −∇XE. (1.21)

The forces are typically fast to evaluate but often not sufficiently accurate
because they can only take quantum effects into account by fitting the
parameters to e.g. experimental data or quantum chemistry calculations.
As quantum effects can be greatly affected by the molecular environment,
no single parameterization can account for all environments.

• Ab initio MD. Forces can be obtained from ab initio calculations, for ex-
ample DFT calculations as discussed above. However, these calculations
are computationally much more expensive. To run an ab initio MD simu-

10 Chapter 1 Motivation and Background

lation, we have run one DFT calculation per time step. However, it is not
necessary to start from scratch in every step, it is usually possible to, for
example, use the previous MD-step’s electron density or wave function in
the start of the Kohn-Sham loop.

At each step of the simulation, we thus have to first compute the forces acting
on each atom and, secondly, move the atoms a little bit, i.e. update the positions
and velocities of each atom using Newton’s laws of motion.

1.2.3 Machine learning

KS-DFT is the milestone that made solving many electronic structure problems
possible. For some calculations, however, especially for bigger systems, the re-
quired computational resources are still too high. At the same time, these calcu-
lations need the accuracy of KS-DFT so that introducing approximations that
run faster is not helpful. This case is where machine learning comes into play.
With ML we have the ability to learn models from data that can represent phys-
ical relationships that require too many computational resources to evaluate.

Three scenarios that could benefit from ML stand out.

• Searching databases for materials or molecules that have
specified desirable properties: In some cases we are looking for a
molecule or material with specific properties that we expect to be part of
a given database, i.e. a database that indexes all published materials, or
that systematically indexes all possible molecules up to a certain size. In
this case we can calculate the properties of interest either with DFT or
even more accurate methods of a subset of the database and use ML to
create a model with which we can predict the properties of the remaining
set.

An example application is the search for new superconducting materials.
Newly discovered superconductors often turn out to have been used in
industry in other contexts, i.e. the structures are well known. It is thus
possible to predict properties that influence superconductivity with ma-
chine learning [Sch+14].

1.2 From quantum mechanics to machine learning 11

• MD simulations: In order to simulate molecular dynamics it is required
to repeatedly run electronic structure calculations with slightly varying
molecular geometries to calculate forces and energies. Additionally, an
MD trajectory will repeatedly cross its previous path. MD simulations
are therefore perfect application environments for ML.

• Structure search: Finding new stable structures, i.e. structures
that are not part of known databases, with desirable properties is a
much harder problem than finding properties for a given molecule
or material. With DFT we have a computationally challenging, but
conceptually straight-forward method to go from atomic positions
(Z1,R1), . . . , (ZNatoms ,RNatoms) to a certain property. The inverse
problem can only be tackled with more or less trial and error approaches.
ML can help conceptually by providing smarter search strategies and by
providing models for specific properties that allow fast evaluation and
thus make exploring bigger structure spaces possible.

1.2.4 Densities and density functionals

Most prominent approaches use ML to model direct maps from atom positions
to properties, e.g. potential energy surface (PES) models learn a map

(Z1,R1), . . . , (ZNatoms ,RNatoms)↦ E. (1.22)

However, DFT provides us with a physically sound theory were most parts are
well-known and easy to compute or good approximations exist. It is therefore
desirable to use ML for the unknown or hard parts (i.e. computational bottle-
necks). Approaches that follow this idea will be more complex not only concep-
tually but also practically for two reasons.

First, there is no training data available. Most datasets used to train ML models
for quantum mechanics and quantum chemistry provide the atomic positions
R1, . . . ,RNα and chargesZ1, . . . ,ZNα plus properties of interest, e.g. atomization
energy, band gap, forces, etc. If we want access to the density n or the kinetic
energy T, we have to design and compute new datasets.

12 Chapter 1 Motivation and Background

Secondly, if we use ML to model e.g. density functionals, we still have to find the
density, for example via iterative optimization methods. We might also have to
search for self-consistent solutions. This requires the ML model to be robust in
the sense that it has to perform reasonably well even when slightly outside the
training set region.

This area of research has been pioneered in the work of Snyder et al. [Sny+12],
Snyder et al. [Sny+13b], and Snyder et al. [Sny+15]. It follows the approach of
learning a model of the kinetic energy (KE) functional. An ML model for the
KE functional would allow us to bypass the KS equations that use iterative op-
timization of the total energy functional E[n]. It is also a universal functional
which makes it theoretically possible to transfer knowledge the model has about
some system to predict on other systems, see for example [Li+16a]. However,
technical difficulties (described further in Sec. 3.1) prevented progress beyond
1-D toy systems.

This thesis now deals with the extension of this approach to 3-D systems. It de-
velops new methodology that even outperforms present approaches in 1-D. We
also design datasets and run electronic structure calculations to make testing
the new methodology in 3-D possible.

1.3 Organization and own contributions

The major results of this thesis have been published in

Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke,
and Klaus-Robert Müller. “Bypassing the Kohn-Sham equations with
machine learning”. In: Nat. Commun. 8.1 (2017), p. 872.

Since Nature Communications is a natural science journal, the publications
concentrates on the DFT and MD parts. Contributions to the publication K. T.
Schütt, H. Glawe, F. Brockherde, A. Sanna, K.-R. Müller, and E. K. U. Gross.
“How to represent crystal structures for machine learning: Towards fast predic-
tion of electronic properties”. In: Phys. Rev. B 89.20 (May 2014), p. 205118 are
not part of this thesis.

1.3 Organization and own contributions 13

The thesis is roughly divided in three parts. Chapter 2 sets the machine learning
foundation for the machine-learning-Hohenberg-Kohn (ML-HK) map. Chap-
ter 3 reviews previous approaches and introduces the ML-HK map together
with evaluation measures. Chapter 4 applies the new method to increasingly
difficult systems: from 1-D toy systems to 3-D molecules, to molecular dynam-
ics simulations.

The organization and each chapter’s contribution is structured as follows:

Chapter 2 This chapter lays the technical foundation for the thesis. The first
part covers basis representations for density functions. The second part intro-
duces the framework of reproducing kernel Hilbert spaces (RKHSes) for func-
tional prediction and discusses least-squares regression for functions in basis
representation. The thesis contributes an elegant approach to regularize the
smoothness of the machine learning model output, the density function, by
using integral operator-valued kernels with a Fourier basis representation. It
provides an efficient algorithm to cross-validate the hyper-parameters for func-
tional prediction models. Finally, an experiment on toy data shows how the
new method compares to baseline approaches in different settings.

Chapter 3 Earlier work on learning the non-interacting kinetic energy
functional and its difficulties are presented. Then this thesis contributes the
machine-learning-Hohenberg-Kohn map, a direct potential to density map, a
machine learning energy functional, and the machine-learning-Kohn-Sham
map, a benchmarking method. The thesis further contributes extensive error
measures to allow detailed analysis of different prediction approaches.

Chapter 4 This chapter evaluates the machine learning methods and covers
application specific details. The thesis contributes molecular datasets that in-
clude densities for several small molecules. It contributes normalization ap-
proaches and an efficient possibility to sample data for training from classical
MD trajectories. The machine-learning-Hohenberg-Kohn (ML-HK) map de-
rived in Chapter 3 is applied to 3-D molecules up until the simulation of molec-
ular dynamics. The thesis contributes a method to simulate ab initio molecular

14 Chapter 1 Motivation and Background

dynamics with machine learning without ever having to run ab initio MD for
training data generation.

Chapter 5 This chapter concludes and provides a brief outlook.

Appendix The appendix provides a proof of concept for more advanced ideas
that are touched in discussions throughout the thesis.

2
Machine Learning for Functionals and
Functional Response Data

This chapter lays the foundation for and introduces the ML-HK map that is used
in Chapter 4 for predicting electron densities and other observables. Sec. 2.2
reviews the theory behind reproducing kernel Hilbert spaces (RKHSes) and
gives a theoretical motivation for the methodology behind the ML-HK map.
Sec. 3.1 reviews the kinetic energy approach and discusses why an application
to 3-D is impractical. Finally, Sec. 3.2.2 introduces the ML-HK map.

2.1 Functional data representations

We are interested in working with functional data, either as output of our mod-
els, i.e. predicting densities, or as input, i.e. learning density functionals. Func-
tions are often described in analytical form, i.e. a coulomb potential v ∶ Rd → R
is given by

v(rrr) =
Natoms

∑
α=1

Zα

∥rrrα − rrr∥
. (2.1)

To work with functions numerically, we have to represent the analytical form
in vectorial form. The simplest representation is grid based: We define a grid
with grid-points g1, . . . , gG ∈ Rd and define the vectorial representation of the

16 Chapter 2 Machine Learning for Functionals and Functional Response Data

function v as ṽi = v(gi), i = 1, . . . ,G. A grid representation is natural and data
is often measured in grid form. Problematic is the high dimensionality and
over-representation.

Especially in higher dimensions, e.g. in 3-D, the number of grid points quickly
exceed the limits given by storage constraints or time complexity of analysis al-
gorithms. Functional data in grid representation is over-represented because
functions are usually smooth and we can assume an inherent correlation be-
tween evaluations of neighboring grid points. Additionally when predicting
functions in grid representation with machine learning even small inaccura-
cies in the output can lead to significant inaccuracies in derived quantities of
the output functions, e.g. derivatives.

We therefore choose to represent functional data with basis functions. Basis
functions are a set of functions that span a function space. We are interested
in finite basis function sets so we can work with the basis function coefficients.
For a function y ∈ Y and basis functions φi, . . . , φL, we inherently define the
basis coefficients ỹ1, . . . , ỹL as

y(rrr) =
L
∑
l=1

ỹlφl(rrr) (2.2)

This does not always lead to well-defined basis coefficients. Depending on the
set of basis functions, there might be multiple representations. For orthogonal
basis systems, however, the basis coefficients are unique and thus well-defined.
We say that a function y is basis representable, if y ∈ span{φ1, . . . , φL}.

Practically, if functional data is given in grid representation and we want to
transform it into basis representation, we can find basis coefficients by solving
a least-squares minimization problem [RS05]

min
ỹ

G
∑
i=1
∥y(gi) −

L
∑
l=1

ỹlφl(gi)∥
2

. (2.3)

The minimization problem has a unique solution if the vectors Φl =
(φl(g1), . . . , φl(gG))⊺ are orthogonal.

Since functional data is omnipresent in the sciences, many practically applica-

2.1 Functional data representations 17

ble basis system are in use. Each basis system has unique properties that pre-
determine it for specific applications. We will now define basis function systems
used throughout this thesis describe how to practically compute the basis coeffi-
cients for data given in discretized form on a grid. We define a formal grid basis,
the Fourier basis, and a Kernel PCA basis. Finally, we discuss the accuracy loss
that results from the use of basis functions.

2.1.1 Grid basis

We formally define a grid basis in order to make notation in later derivations
applicable to functional data in grid representation. For equally spaced grid
points g1, . . . , gG with grid spacing ∆, i.e.∀i = 1, . . . ,G− 1, we have gi+1−gi =∆,
we can define the grid basis as

φl(rrr) =
1√
∆
1gl−∆

2 ≤rrr<gl+
∆
2
. (2.4)

This allows us to treat functions in grid representation and other basis represen-
tations the same throughout the theory. Since

∫ drrrφl(rrr)φl(rrr) =
1
∆
∫ drrr1gl−∆

2 <=rrr<gl+
∆
2
= 1
∆
∆ = 1 (2.5)

and

∫ drrrφl(rrr)φm(rrr) = 0 (2.6)

the grid basis is orthonormal. The grid basis extends naturally to 3-D.

2.1.2 Fourier basis

The Fourier basis is a very popular basis system in electronic structure codes.
The Fourier series decomposes any periodic function into a sum of simple os-
cillating functions, i.e. sines and cosines or complex exponentials. It has several
key advantages.

• Periodicity. The Fourier basis is periodic and thus allows a natural treat-

18 Chapter 2 Machine Learning for Functionals and Functional Response Data

ment of crystal structures. Boundary conditions are fulfilled by defini-
tion. This makes implementations easier and calculations more efficient.

• Fast Fourier transform. Transformation between basis and grid rep-
resentation is easy and efficient. The fast Fourier transform (FFT) imple-
mentations are highly optimized and matured.

• Frequency order. The Fourier basis can be sorted from high-frequency
to low-frequency basis functions. This makes it easy to select a truncated
basis function set by setting or converging the cut-off parameter.

• Theoretical properties. The Fourier basis has several convenient the-
oretical properties, e.g. Parseval’s theorem that directly relates the inte-
gral of a squared function to its squared Fourier transform and the convo-
lution theorem that relates convolutions to multiplications between fre-
quency domain and time domain.

For our application not all functions that we want to represent with a Fourier
basis are periodic. However, they are defined on a bounded domain or have no
support outside a bounded set, for example electronic density functions. This
allows us to treat these functions as periodic where one period spans the com-
plete space we are interested in.

The Fourier transform has real and imaginary parts. We interleave them, so we
end up with a list of real basis coefficients. They are sorted from low to high
frequency. We define the basis on a grid 0 = g1, . . . , gG = 1 as

φl(rrr) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2 cos{2πrrr(l − 1)/2} , l odd
√

2 sin{2πrrrl/2} , l even
l = 1, . . . ,L. (2.7)

For other grids, we can stretch and translate the basis functions accordingly.
The basis is orthonormal since for m, l ∈ {1, 2, . . .}

∫
1

0
drrr
√

2 sin(2πrrrm)
√

2 cos(2πrrrl) = 0 (2.8)

2.1 Functional data representations 19

0 2 4 6 8 10
rrr

−0.2

0.0

0.2

0.4

0.6

0.8 g1(rrr)
g2(rrr)
g3(rrr)
g4(rrr)
g5(rrr)

g6(rrr)
g7(rrr)
g8(rrr)
g9(rrr)
g10(rrr)
f(rrr)

Figure 2.1: The function f(rrr) = exp(−∣rrr − 4.5∣2) − 1/4 exp(−1/4∣rrr − 5.5∣2)
(dashed) should be represented by 10 Fourier basis functions. We
plot the function fwhen represented bym = 1, . . . , 10 basis functions,
i.e. the truncated Fourier expansion gm = f̃1φ1+⋯+ f̃mφm (g7, g8 and
g9, g10 overlap).

and (with δml = 1 if m = l, 0 otherwise)

∫
1

0
drrr
√

2 sin(2πrrrm)
√

2 sin(2πrrrl) = ∫
1

0
drrr
√

2 cos(2πrrrm)
√

2 cos(2πrrrl) = δml.

(2.9)

An example for how the Fourier basis fits a given function is provided in Fig. 2.1.
The basis is able to fit arbitrary functions and thus comes close to the peaks.
However, we can also observe the characteristical oscillations at the domain
edges where the original function is nearly flat.

We can transform a function in grid representation into the Fourier basis by
applying a discrete Fourier transform. The truncated discrete Fourier transform
gives us accurate basis coefficients that are equal to the least-squares solution,
i.e. the firstNFourier coefficients from a discrete Fourier transform are the same
as the least squares fit with N basis functions [SS03].

20 Chapter 2 Machine Learning for Functionals and Functional Response Data

The basis naturally extends to 3-D. We can enumerate the 3-D Fourier basis
functions as

φlmn(rrr) =
√

2 exp (2πi(lrrr1 +mrrr2 + nrrr3)) (2.10)

We could reindex the triple index imaginary coefficients to single index real co-
efficients and we will assume a single index for this thesis. There is, however, no
need to write it out explicitly, because we do not need to use the basis functions
in any implementation. If we want to implement the 3-D Fourier basis, we use
the FFT, just as for the 1-D Fourier basis. For a function in grid representation,
we transform along one axis first, then transform the resulting coefficients along
the second axis, and so on. This gives us the 3-D discrete Fourier transform for
a function y ∈ Y on a 3-D grid g1,1,1, . . . , g1,1,G, . . . , gG,G,G:

ỹm,n,l =
1√
2

G−1
∑

i,j,k=0
y(gijk) exp (−2πi(mi + nj + lk)/L) , i, j, k = 0, . . . ,G.

(2.11)

For real functions (y(gijk) ∈ R), the basis coefficients ỹmnl show some symme-
tries [SS03], specifically

ỹmnl = ỹ∗−m,−j,−k for i, j, k ≥ 1 (2.12)

where we adopt the Fourier analysis notation of writing G − i as −i and the star
denotes the complex conjugate. We thus truncate the basis coefficients for a
fixed L to

⋃
l,m,n≤L

{ỹl,m,n, ỹ−l,m,n, ỹl,−m,n, ỹl,m,−n}. (2.13)

The 3-D Fourier basis system as defined here is also orthonormal.

2.1.3 Kernel PCA basis

Kernel principle component analysis (Kernel PCA) [SSM98a] defines a basis in
kernel feature space. These are not basis functions per se, but can give a very

2.1 Functional data representations 21

compact representation of functional data. The representation is given in terms
of basis coefficients in the feature space.

For a dataset x1, . . . , xM, let Φ ∶ X → W be a scalar kernel feature map and
K be the corresponding positive definite kernel matrix Kij = K(xi, xj) =
⟨Φ(xi),Φ(xj)⟩. We assume the data points xi are centered in the feature space
W , i.e. ∑M

i=1 Φ(xi) = 0. We find parameters pjl by eigen-decomposition of the
Kernel matrix K. Let (pk1, . . . , pkM)⊺ be the k-th eigenvector corresponding
to the k − th largest eigenvalue λk. We normalize the eigenvectors pk so that
∥pk∥2 = 1/λk. The Kernel PCA basis coefficients for a data point x are given by

x̃l = ⟨Φ(x), φl⟩ =
M
∑
j=1

pljK(x, xj) (2.14)

and the basis in feature space is given by

φl =
M
∑
j=1

pljΦ(xj). (2.15)

We can show that the basis is orthonormal, since

⟨φl, φm⟩ =∑
i,j
plipmjKij = ⟨pl,Kpm⟩ = ⟨pl, λmpm⟩ = λm⟨pl, pm⟩ = δlm. (2.16)

As is common for kernel algorithms, the transformation Φ(x) does not have
to be carried out explicitly. Problematic is then the back-projection: Given the
basis coefficients x̃ in feature space, we know that

Φ(x) =
L
∑
l=1

x̃lφl, (2.17)

But how can we find x? The back-projection problem for Kernel PCA is not triv-
ial but several solutions exist. Mika et al. [Mik+99] suggest a gradient descent
approach. Bakır, Weston, and Schölkopf [BWS04] suggest to learn the back-
projection map. This approach turns out to be very robust in practice, but has
a tremendous computational overhead, because it is necessary to learn a map
from x̃ to the high-dimensional functional objects x.

22 Chapter 2 Machine Learning for Functionals and Functional Response Data

2.1.4 Atom-centered basis functions

Ab initio electronic structure calculations are often carried out using atom-
centered basis functions for the KS orbitals. The orbitals of the non-interacting
Schrödinger equation were given in Eq. 1.10 and the KS potential in Eq. 1.15.
The non-interacting system is thus described by the Kohn-Sham equations

[Ts + vH(r) + vXC(r) + v(r)]φα(r) = ϵαφα(r). (2.18)

These orbitals φα(r) are expanded over an atom-centered Gaussian-type or-
bital (GTO) basis set χ, i.e.:

φα(r) =
Q
∑
p=1

Cαpχp(r). (2.19)

The basis functions χp depend not only on the type of atoms but also on the
chemical effects one wishes to simulate. They have the format of

χ(x, y, z) = xlymzn exp{−ζd2}, (2.20)

where rrr = (x, y, z)⊺ are the cartesian coordinates, d is the distance to the atomic
center, and l,m,n and ζ are parameters. Quantum-chemistry codes usually im-
plement these basis functions and make them practically usable by parametriz-
ing them based on atom type and level of chemical accuracy.

These orbital basis functions also allow us to parametrize the density. This leads
to a conceptually different approach but makes it possible to integrate the ma-
chine learning model into an electronic structure code. A proof of concept is
described and discussed in Appendix A.

2.1.5 Accuracy loss in basis function representation

Although all basis function systems explored in this thesis are complete, i.e. we
can represent all functions in the function space with the full basis function sys-
tem and span(φ1, φ2, . . .) = Y , we always limit the number of basis functions
L and thus introduce an error (quantified by the least-squares error in Eq. 2.3)

2.1 Functional data representations 23

just by using the basis function representation.

How can we choose a reasonable number of basis functions L? L is a hyper-
parameter and ideally chosen like the parameters in an electronic structure cal-
culation, often referred to as parameter converging. We first fix an error that
we can comfortably tolerate in the output of our experiment. If we predict den-
sity functions and then predict energies with densities as features, we can fix
an energy error of for example 1 × 10−2 eV. Then we increase the number of
basis functions until adding new basis functions yields no improvement above
the fixed energy error. This method guarantees a reasonable basis function pa-
rameters. However, we have to keep in mind that other applications that we
want to use the training data and models for might have stricter requirements.
For example, predicting forces as gradients of the energy might require a higher
energy accuracy and thus more basis functions.

Most electronic structure codes use basis functions themselves. Here, the num-
ber of basis functions is also fixed by converging the parameter with respect to
an output value like the total energy. This parameter though is often magni-
tudes higher than what is required for the machine learning application. This
is because the electronic structure codes work numerically with the density in
more complex ways whereas the machine learning application often just calcu-
lates distances between density functions. Smaller inaccuracies are treated by
interpolation and regularization as noise and have little effect on the results.

A too large number of basis functions can even have negative consequences
in the machine learning application. Errors in predicting coefficients of high-
frequency basis functions can lead to larger inaccuracies than just setting these
basis function coefficients to zero. Techniques to avoid this issue are discussed
in Section 2.2.

An example of inaccuracies introduced by a basis function representation for
the benzene molecule is given in Fig. 2.2. It shows that the inaccuracies are
on the order of the difference resulting from PBE [PBE96] and LDA [PZ81]
exchange-correlation treatment.

24 Chapter 2 Machine Learning for Functionals and Functional Response Data

−0.010

−0.005

0.000

0.005

0.010

0.015
nPBE − nLDA

nPBE − nPBEb

Figure 2.2: The effect of a Fourier basis representation with L = 125000 basis
functions compared to the effect of different exchange-correlation
functionals for the density of the relaxed benzene molecule. The
plot shows a 1-D cut through the center of the difference between
the original PBE density nPBE and the information the basis repre-
sentation holds nPBEb (i.e. the effect of transforming into basis rep-
resentation and back) in comparison to the difference between the
original PBE density and the original LDA density nLDA.

2.2 Machine learning for dependent data

The section introduces the RKHSes, specifically functional RKHS, and the
functional least-squares regression problem for predicting functional data. We
derive a numerical solution for the least-squares problem for the Gaussian
kernel and contribute a solution for the integral operator-valued kernel for
Fourier basis functions. After discussing efficient numerical strategies for
hyper-parameter cross-validation, the section closes with toy experiments that
showcase the advantages of the approach.

Sec. 2.2.1 and the beginning of Sec. 2.2.2 are based on Micchelli and Pontil
[MP05]. The discussion of the functional least-squares regression problem is
a generalization of Kadri et al. [Kad+16].

2.2 Machine learning for dependent data 25

2.2.1 Regularized risk minimization

We start by reviewing the classical supervised learning setup and its extension
to functional data. Here, we are given training samplesD = {(xi, yi)}Mi=1, where
the xi are from some input space X and the yi are from some output space Y ,
where we also call the xi the features of the i-th data point. Usually the output
space is a set of scalar real numbers,Y ⊂ R. In this thesis, we focus on functions
as output. In this case the yi ∈ L2(Rd) and we call them functional responses.

For example, the features might describe a molecular geometry and the func-
tional responses might be corresponding electron densities.

In supervised learning we try to find a hypothesis f ∈ F that provides a map
between input and output space and a prediction f(x) that is close to the output
values y for previously unseen data that is similar to the training data. We also
say, in statistical terms, that the unseen data has to be independent and identi-
cally distributed to the training data. The distance between the prediction f(x)
to the label y is measured by a loss function l ∶ Y ×Y → R. For functional data,
we prefer to measure the difference between f(x) and y by the natural norm on
L2,

l ∶ L2(Rd) ×L2(Rd)→ R; l(f(x), y) = ∫ ddrrr ∣(f(x))(rrr) − y(rrr)∣ 2. (2.21)

A popular approach to supervised learning is the regularized risk minimiza-
tion [Vap98] framework. We minimize

min
f∈F

M
∑
i=1

l(f(xi), yi) + λΩ(f). (2.22)

The first part is the empirical risk of the hypothesis f. In empirical risk mini-
mization it is usually divided by M, but we leave this out for convenience in the
derivations later on.

The second part is a regularizer Ω ∶ L2(Rd)→ R, and a λ ∈ R is the scalar regu-
larization parameter. The regularizer, that is usually chosen to be Ω(f) = ∥f∥2F ,
has two functions. First, the solution of the minimization problem might be ill-
defined without it, and secondly, it penalizes the complexity of the hypothesis

26 Chapter 2 Machine Learning for Functionals and Functional Response Data

f. Thus the regularization parameter allows us to control a trade-off between
empirical loss on the training set and model complexity.

For functional data we are interested in the regularized least-squares regression
problem

min
f∈F

M
∑
i=1
∥f(xi) − yi∥2Y + λ∥f∥

2
F . (2.23)

The solution depends on the Hilbert space F and its inner product. In the fol-
lowing we restrict the solution to a special kind of Hilbert spaces, the RKHSes.
Its kernel will determine the distance measure between the features and thus al-
low solutions that are non-linear in X . A representer theorem guarantees that
the functional regression problem admits a convenient solution whose param-
eters can be found analytically.

We assume that the functional responses yi are given in a basis representation,
i.e.

yi(rrr) =
G
∑
j=1

γijφj(rrr) (2.24)

with basis functions φj ∶ Rd → R and basis coefficients γij ∈ R. The output
space is then all Fourier representable functions with G basis functions, i.e. the
linear span of the basis functions,

Y = span ({φj}Gj=1) . (2.25)

2.2.2 Reproducing kernel Hilbert space

We start out by defining a RKHS and its unique reproducing kernel. A RKHS
is usually defined in its weakest form, only requiring that the evaluation func-
tional is a bounded operator. It is then possible to show the existence of a repro-
ducing kernel via the Fréchet-Riesz representation theorem and that the kernel
uniquely determines the RKHS (up to isometry). For an overview of this ap-
proach, see for example Smola, Schölkopf, and Müller [SSM98b] or Micchelli
and Pontil [MP05].

2.2 Machine learning for dependent data 27

Here, we give more intuitive definitions. We first define the kernel, then define
the RKHS based on this kernel. It is then possible to show that the RKHS deter-
mines the kernel. For more details on this approach, see Kadri et al. [Kad+16].

Let Y be a (separable) Hilbert space of functions, for example L2(Rd). We
can now define an (operator-valued) kernel, i.e. a function on X 2 that maps
to L(Y), the space of operators on Y . Just like a scalar-valued kernel, it should
have equivalent symmetric and positive definite properties.

Definition. An operator-valued kernel is a function K ∶ X ×X → L(Y) that is

(i) hermitian, i.e. K(w, z) = K(z,w)∗ for w, z ∈ X and

(ii) positive-definite, i.e. for m ∈ N, {xi}mi=1 ⊆ X , {yi}mi=1 ⊆ Y ,

m
∑
i,j=1
⟨K(xi, xj)yi, yj⟩Y ≥ 0. (2.26)

Note that this definition generalizes the definition of a scalar-valued kernel K ∶
X ×X → R.

Definition. K is a reproducing operator-valued kernel of a Hilbert space F if
every function inF can be represented by taking an inner product with a kernel
function, i.e. for all f ∈ F , x ∈ X , f(x) = ⟨K(x, ⋅), f(⋅)⟩.

We can now define a (functional) RKHS. It is a Hilbert space with an associated
reproducing kernel.

Definition. LetF be a Hilbert space of functions fromX toY with inner prod-
uct ⟨⋅, ⋅⟩F . Then we sayF is a reproducing kernel Hilbert space if there is repro-
ducing kernel KF ∶ X ×X → Y so that

(i) for all z,w ∈ X , g ∈ Y , the function z↦ KF(z,w)g is in F and

(ii) the kernel has the reproducing property, i.e. for every f ∈ F , w ∈ X , g ∈ Y ,

⟨f(w), g⟩Y = ⟨f,KF(w, ⋅)g⟩F . (2.27)

28 Chapter 2 Machine Learning for Functionals and Functional Response Data

2.2.3 Kernels

We now define some operator valued kernels. First, we take a look at scalar-
valued kernels and later describe how to adapt them to operator-valued kernels.

Popular scalar-valued kernels are the linear kernel

G(x, x′) = ⟨x, x′⟩X (2.28)

or the polynomial kernel of degree d

G(x, x′) = (⟨x, x′⟩X + c)
d
. (2.29)

The hyper-parameter c ≥ 0 controls the trade-off between higher-order and
lower-order terms in the polynomial. The most popular kernel, however, is the
Gaussian kernel.

Definition. The Gaussian kernel is defined as

G ∶ X ×X → R; G(x, x′) = exp (−σ∥x − x′∥2
X) (2.30)

for a hyper-parameter σ > 0.

Its versatility makes it ubiquitous in kernel learning approaches. The hyper-
parameter σ has significant influence on the resulting model and needs careful
cross-validation. Another kernel that has proven to yield competitive results in
quantum-chemical applications is the Laplacian kernel

G(x, x′) = exp (−σ∥x − x′∥X) . (2.31)

The hyper-parameter σ follows the same function as for the Gaussian kernel. Its
norm inside the exponential is not squared, thus leading to a stronger penalty on
high-frequency model functions which gives good results in low-noise settings.

We now define a way to adapt scalar-valued kernels into operator-valued kernels
by multiplying with a positive-definite operator. We can show that kernels that
are constructed in this way are positive-definite and then give two examples.

2.2 Machine learning for dependent data 29

Definition. The adapted operator-valued kernel is a multiplicative adaption of
a scalar-valued kernel to an operator valued-kernel. It is defined as

KF ∶ X ×X → L(Y); (2.32)

(KF(xi, xj)y)(rrr) = G(xi, xj)(T(y))(rrr) (2.33)

where G ∶ X × X → R is a scalar-valued kernel and T ∶ Y → Y is a positive-
definite operator.

Since G is symmetric as a scalar-valued kernel and T is self-adjoined as a
positive-definite operator, the kernel KF must be hermitian. When we fix
Y ⊆ L2(Rd), we know the inner product and can write

∑
i,j
⟨KF(xi, xj)yi, yj⟩Y (2.34)

=∑
i,j
⟨G(xi, xj)T(yi), yj⟩Y (2.35)

=∫ ddr G(xi, xj) (T(yi))(rrr) yj(rrr) (2.36)

=∫ ddr∑
i,j
G(xi, xj) (T(yi))(rrr) yj(rrr) (2.37)

The sum is non-negative for each rrr since G is positive definite as a scalar-valued
kernel and thus KF is positive definite and an operator-valued kernel.

Definition. The trivial operator-valued kernel is an adapted operator-valued
kernel based on the identity operator, i.e. (T(y))(rrr) = y(rrr). We can write it as

KF ∶ X ×X → L(Y); (2.38)

(KF(xi, xj)y)(rrr) = G(xi, xj)y(rrr) (2.39)

where G ∶ X ×X → R is a scalar-valued kernel.

The trivial operator-valued kernel allows us to recover naive approaches to
learning kernel models with functional responses later on. We now define an
operator valued kernel that was popularized by the functional data analysis
(FDA) community.

30 Chapter 2 Machine Learning for Functionals and Functional Response Data

Definition. The integral operator-valued kernel is an adapted operator-valued
kernel based on the positive-definite integral operator, i.e. (T(y))(rrr) =

∫ ddr′m(rrr − rrr′)y(rrr) where m(rrr − rrr′) = exp{−∣rrr − rrr′∣} links the functional
responses in the Rd space. The kernel is defined as

KF ∶ X ×X → L(Y); (2.40)

(KF(xi, xj)y)(rrr) = G(xi, xj)∫ ddr′ exp{−∣rrr − rrr′∣}y(rrr′) (2.41)

where, again, G ∶ X ×X → R is a scalar-valued kernel.

Numerical solutions to functional least-squares regression with these two ker-
nels and intuitive interpretations are derived in Secs. 2.2.4 and 2.2.5. Sec. 2.3
compares the two kernels experimentally.

2.2.4 Functional least-squares regression

We now want to solve the regularized empirical risk minimization problem, that
was introduced in Sec. 2.2.1 for the two kernels defined above. The problem is
given by

min
f∈F

M
∑
i=1
∥yi − f(xi)∥2Y + λ∥f∥

2
F (2.42)

where F is the RKHS associated with the operator-valued kernel KF .

We first state an analog of the representer theorem for functional data in ba-
sis representation that will allow us to solve the regularized least-squares prob-
lem for functional data. Then we derive the numerical solution for the trivial
operator-valued kernel and arbitrary basis functions.

Theorem. LetF be a functional RKHS with kernel KF . Consider the regularized
least-squares minimization problem

min
f∈F

M
∑
i=1
∥yi − f(xi)∥2Y + λ∥f∥

2
F . (2.43)

2.2 Machine learning for dependent data 31

Then the solution f∗ ∈ F has the representation

f∗(x) =
M
∑
i=1

KF(xi, x)βi (2.44)

with βi ∈ Y .

A detailed proof, even for general function spaces, is given in Kadri et al.
[Kad+16]. The idea is setting the analogue of the directional derivative (the
Gâteaux derivative) of the objective in Eq. 2.43 to zero.

Using the representer theorem, we can replace the minimization over the RKHS
by a minimization over weights β ∈ Y :

min
β

M
∑
i=1

XXXXXXXXXXX
yi −

M
∑
j=1

KF(xi, xj)βj
XXXXXXXXXXX

2

Y

+ λ∥
M
∑
i=1

KF(⋅, xi)βi∥
2

F
(2.45)

If we expand the norm, we can use the reproducing property and

∥
M
∑
i=1

KF(⋅, xi)βi∥
2

F
(2.46)

=⟨
M
∑
i=1

KF(⋅, xi)βi,
M
∑
j=1

KF(⋅, xj)βj⟩Y (2.47)

=
M
∑
i,j=1
⟨KF(⋅, xi)βi,KF(⋅, xj)βj⟩Y (2.48)

=
M
∑
i,j=1
⟨KF(xi, xj)βi, βj⟩Y . (2.49)

This yields

min
β

M
∑
i=1

XXXXXXXXXXX
yi −

M
∑
j=1

KF(xi, xj)βj
XXXXXXXXXXX

2

Y

+ λ
M
∑
i,j=1
⟨KF(xi, xj)βi, βj⟩Y . (2.50)

First, we solve this optimization problem for the trivial operator-valued kernel,
i.e.

(KF(xi, xj)y)(rrr) = G(xi, xj)y(rrr). (2.51)

32 Chapter 2 Machine Learning for Functionals and Functional Response Data

Let G be the scalar-valued kernel matrix, i.e. Gij = G(xi, xj).

Since we assume that the output space consists of Fourier representable func-
tions, we can write y andβ in basis representation. Let γ be the basis coefficients
for y, and b be the basis coefficients for β, i.e.

yi =
L
∑
j=1

γijφj and βi =
L
∑
j=1

bijφj. (2.52)

Then, the optimization problem is given by

min
b

M
∑
i=1

XXXXXXXXXXX

L
∑
l=1

γilφl −
M
∑
j=1

Gij
L
∑
l=1

bjlφl

XXXXXXXXXXX

2

Y

(2.53)

+ λ
M
∑
i,j=1
⟨Gij

L
∑
l=1

bilφl,
L
∑
l=1

bjlφl⟩Y . (2.54)

Expanding the norm, using the linearity of the inner product, and reordering
of sums yields

min
b

L
∑
l,m

⎡⎢⎢⎢⎢⎣

M
∑
i=1

γilγim − 2
M
∑
i,j=1

Gijγilbjm +
M
∑

i,j,k=1
GijGikbjlbkm (2.55)

+ λ
M
∑
i,j=1

Gijbilbjm
⎤⎥⎥⎥⎥⎦
⟨φl, φm⟩Y . (2.56)

This can be simplified substantially if we assume that the basis functions are
orthonormal. This is the case for the Fourier basis and the grid basis which
allows us to treat functions given on a grid. The optimization problem reduces
to

min
b

L
∑
l=1

⎡⎢⎢⎢⎢⎣

M
∑
i=1

γ2
il − 2

M
∑
i,j=1

Gijγilbjl +
M
∑

i,j,k=1
GijGikbjlbkl + λ

M
∑
i,j=1

Gijbilbjl
⎤⎥⎥⎥⎥⎦
, (2.57)

a multivariate regression problem of b on G, i.e. we can solve for each basis
function φl independently. Moreover the problem is independent of the actual
basis function, relevant are only the basis coefficients. To derive the solution
of each individual φl, we drop the l indices and use b = (b1, . . . , bM)⊺ and γ =

2.2 Machine learning for dependent data 33

(γ1, . . . , γM)⊺ as vectors. In matrix form, we have to solve

min
b
∥γ −Gb∥2 + λb⊺Gb. (2.58)

This is just regular kernel ridge regression (KRR). The solution is well known:
We set the derivative to zero,

−2G⊺γ + 2G⊺Gb + 2λGb = 0, (2.59)

and arrive at the well-known analytical solution

b = (G + λI)−1γ. (2.60)

We thus are able to reduce the problem that arises from a function-valued treat-
ment of our data to a multivariate vector-valued problem. For grid-based data
and orthonormal basis functions, we can use the trivial operator-valued kernel
based on the identity operator to recover the naive solutions of learning each
grid point or each basis function coefficient independently. Indeed, since the
evaluation is given by

f(x) =
M
∑
i=1

KF(xi, x)βi =
M
∑
i=1

G(xi, x)
L
∑
l=1

bilφl, (2.61)

the solution for the l-th basis function coefficient of f(x) ∈ Y is given by

M
∑
i=1

G(xi, x)bil. (2.62)

2.2.5 Integral operator-valued kernel

We now derive the numerical solution of the functional least-squares regres-
sion problem for the integral operator-valued kernel. The derivation assumes a
Fourier basis function system. Without assuming a specific basis function sys-
tem it is not possible to calculate the integrals and arrive at a numerical solution.

34 Chapter 2 Machine Learning for Functionals and Functional Response Data

The integral operator-valued kernel

KF ∶ X ×X → L(Y); (2.63)

(KF(xi, xj)y)(rrr) = G(xi, xj)∫ ddrrr′m(rrr − rrr′)y(rrr′) (2.64)

creates a dependence between the output evaluations y(rrr) in Rd space. We usu-
ally set

m(rrr − rrr′) = exp{−ν∣rrr − rrr′∣} (2.65)

and thus create a distance measure in feature space that isolates functions that
are not smooth. The effect can be controlled with the weight parameter ν inside
the exponential, just as for the Gaussian kernel. We can remove all indepen-
dence by setting

m(rrr − rrr′) = δrrr−rrr′ . (2.66)

This recovers the trivial operator-valued kernel and thus the naive approach to
functional response learning as discussed above.

We can now find an elegant solution for the regularized least-squares regression
problem Eq. 2.50 for the integral operator-valued kernel and Fourier basis func-
tions. Let us introduce a shorthand for the integral operator applied to a basis
function

µl(rrr) = ∫ dnr′m(rrr − rrr′)φl(rrr′). (2.67)

Since we would like to eliminate the orthonormal basis functions from our op-
timization problem later on, it is useful to write µl in its basis representation as
well. We can implicitly define the basis coefficients µ̃ and m̃ as

µl(rrr) =
L
∑
p=1

µ̃lpφp(rrr) and m(rrr) =
L
∑
p=1

m̃pφp(rrr). (2.68)

We can observe that µl is a convolution with a basis function that admits a very
simple Fourier basis representation. A convolution in the real domain is a mul-

2.2 Machine learning for dependent data 35

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
m(rrr)
m̃(ξ)

0 10 20
p/2

101

102

µ̃−1pp

Figure 2.3: (Left) The exponential function m(rrr) for ν = 1 and its Fourier trans-
form m̃(ξ). (Right) The regularization multiplier µ̃−1 for an example
Fourier basis.

tiplication in the Fourier domain.

The exponential function m has Fourier transform

m̃(ξ) = 1
π

ν

ξ2 + ν2 , (2.69)

a Lorentzian function. Its constant scaling factor depends on the normalization
of the Fourier basis. Note that m might not be Fourier representable with G
basis functions, i.e. we can not write m as written in Eq. 2.68. We ignore this
for now and give a justification later. Its basis coefficients are then (according
to the definition of the Fourier basis in Section 2.1.2) given by

m̃p = m̃(⌊
p
2
⌋) = 1

π
√

2
ν

⌊ p2⌋
2 + ν2

. (2.70)

The function m(rrr) and its Fourier transform m̃(ξ) are visualized in Fig. 2.3.

The second part, φl, is already a Fourier basis function, so its l-th basis coeffi-

36 Chapter 2 Machine Learning for Functionals and Functional Response Data

cient is 1 and the rest are zero. This gives us the basis coefficients of µ as

µ̃lp =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
π
√

2
ν

⌊ p2 ⌋
2+ν2

, if l = p

0, else.
(2.71)

After this preparation, we can start solving the optimization problem. Using
the new terminology and the basis coefficients γ and b for y and β we can write
it, after reordering the basis coefficient sum, as

min
b

M
∑
i=1

XXXXXXXXXXX

L
∑
l=1

γilφl −
M
∑
j=1

Gij
M
∑
l=1

bjlµl

XXXXXXXXXXX

2

Y

+ λ∑
ij
⟨Gij

L
∑
l=1

bilµl,
L
∑
l=1

bjlφl⟩
Y
. (2.72)

After replacing µ with its basis representation and separating the sums over the
basis functions, we get

min
b

L
∑
p,q=1

⎡⎢⎢⎢⎢⎣

L
∑
i=1

⎛
⎝
γipγiq − 2

L
∑
j=1

M
∑
l=1

γiqGijbjlµ̃lp (2.73)

+
M
∑
j,k=1

G
∑
l,m=1

GijGikbjlbkmµ̃lpµ̃mq
⎞
⎠

(2.74)

+ λ
M
∑
i,j=1

L
∑
l=1

Gijbilbjqµ̃lp

⎤⎥⎥⎥⎥⎦
⟨φp, φq⟩Y . (2.75)

Since the inner product is zero for p ≠ q and µ̃lp is zero for l ≠ p, the objective
gets significantly shorter. Note that this will be the case for all linking functions
m(rrr − rrr′) that are even. This is due to the convolution theorem of the Fourier
basis. We have

min
b

L
∑
p=1

M
∑
i=1

⎡⎢⎢⎢⎢⎣
γ2
ip − 2

M
∑
j=1

γipGijbjpµ̃pp+ (2.76)

M
∑
j,k=1

GijGikbjpbkpµ̃2
pp

⎤⎥⎥⎥⎥⎦
+ λ

M
∑
i,j=1

Gijbipbjpµ̃pp. (2.77)

This objective is independent for each p again. This also means that additional
basis functions, in case m is not Fourier representable with G basis functions,

2.2 Machine learning for dependent data 37

become irrelevant for the solution and we can safely ignore them. Dropping the
index, we can write the p independent objectives as

min
b
∥γ − (µ̃G)b∥2 + λb⊺(µ̃G)b. (2.78)

The solution is already given in Eq. 2.60 and only has a modified kernel here as
in

b = (µ̃G − λI)−1γ (2.79)

For further analysis, we divide by µ̃,

b = 1
µ̃
(G − λ

µ̃
I)
−1
γ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=b′

, (2.80)

and define a b′ as the solution to a trivial operator-valued kernel problem that
has a modified regularization parameter λ/µ̃.

Let us now analyze the evaluation of the model function f. With x ∈ X , the
evaluation f(x) ∈ Y is given by

f(x)(rrr) =
M
∑
i=1

KF(xi, x)βi(rrr) (2.81)

=
M
∑
i=1

G(xi, x)∫ ddrrr′m(rrr − rrr′)βi(rrr′) (2.82)

=
M
∑
i=1

G(xi, x)
L
∑
l=1

bil∫ ddrrr′m(rrr − rrr′)φl(rrr′) (2.83)

38 Chapter 2 Machine Learning for Functionals and Functional Response Data

and its Fourier basis coefficients by

f̃(x)p =
M
∑
i=1

G(xi, x)
L
∑
l=1

bilµ̃lp (2.84)

=
M
∑
i=1

G(xi, x)bipµ̃pp (µ̃lp = 0 for l ≠ p) (2.85)

=
M
∑
i=1

G(xi, x)b′ip (2.86)

Thus we recover also the evaluation of the trivial operator-valued kernel model
for the problem with modified regularization parameter

λ

µ̃pp
= λπ

√
2

ν
(⌊p

2
⌋

2
+ ν2) . (2.87)

A visualization of the modification µ̃−1
pp obtained in an example setting is given

in Fig. 2.3.

2.2.6 Numerical solution and hyper-parameter cross-validation

We now discuss ways to solve the problem (Eqs. 2.60 and 2.80) numerically. To
ease notation, we concentrate on solving

b = (G + λI)−1γ. (2.88)

and comment on the effects of a modified regularization parameter λ/µ̃ later.

As a kernel matrix, G is positive semidefinite. And since λI is positive definite
for λ > 0, G + λI is positive definite as well. Although this is only a theoretical
guarantee, we do not need to worry much about numerical inaccuracies. We
can always enforce a positive definite matrix by regularizing a bit more.

We can avoid an expensive and unstable inversion of G + λI by viewing the
problem as a system of linear equations. These can be solved by LU decomposi-
tion [Sch95] and subsequent forward and backward substitution. Here though,
since G+λI is guaranteed to be positive definite, we can almost halve the com-
putation time required by using a Cholesky decomposition instead [Pre+92].

2.2 Machine learning for dependent data 39

For functional data, we have to solve many problems of Eq. 2.88 (one for each
basis function coefficient) with γ being the only changing variable. Thus, we can
do the Cholesky decomposition once and just do many forward and backward
substitutions.

The numerical inversion offers an interesting alternative. We have to invert
once and then only do many vector multiplications (compared to many forward
and backward substitutions). Leaving stability concerns aside, there is a point
when the inversion becomes computationally cheaper overall than the Cholesky
decomposition approach (when the number of basis functions L≫M, the num-
ber of data points). However since the numerical instability of the matrix inver-
sion can lead to significant performance losses for the regression models, we
avoid this approach and only use the Cholesky decomposition.

At the beginning of this chapter we assumed that the functional responses are
given in basis representation. We saw that we can fit the model based on ba-
sis coefficients alone. For the cross-validation of hyper-parameters we are now
again interested in optimizing the loss in ∥⋅∥Y , but would like to keep working
with basis coefficients. Fortunately, we can use the same approach as above and
take advantage of orthonormal basis functions. For a, b ∈ Y with basis repre-
sentations ã, b̃, we have

∥a − b∥2Y =
⎛
⎝

L
∑
l,m=1

ãlãm − 2ãlb̃m + b̃lb̃m
⎞
⎠
⟨φl, φm⟩Y (2.89)

= ∥ã − b̃∥2
2 (2.90)

and we can cross-validate the mean squared error (MSE) of the basis coeffi-
cients.

The complete approach, for one cross-validation fold and the Gaussian kernel
function (Eq. 2.30), is summarized in Algorithm 1.

Note that we have to run only one Cholesky decomposition per hyper-
parameter combination. For the integral-operator valued kernel, we have
different regularization parameters for each basis coefficient and thus need to
run Cholesky decompositions not only for each hyper-parameter combination,
but also for each basis coefficient. This is computationally much more complex,

40 Chapter 2 Machine Learning for Functionals and Functional Response Data

however it scales nicely to high-performance-clusters because the loops are
parallelizable.

Kernel-ridge-regression allows efficient leave-one-out cross-validation by com-
puting an eigen-decomposition of the kernel matrix. Changing the regulariza-
tion then only requires inverting a diagonal matrix. This efficiency translates to
the integral-operator valued kernel approach with Fourier basis functions.

Data: Features X = (x1, . . . , xM), Labels Γ = (γ1, . . . , γM), Kernel
parameters Σ ⊂ R, Regularization parameters Λ ⊂ R

Result: Loss for each combination of kernel parameter, regularization
parameter, and basis coefficient errσ,λ,l

D← pairwise distance matrix of X
foreach σ ∈ Σ do

Gσ = exp(−σD2)
foreach λ ∈ Λ do

C← Lower triangular, s.t. CC⊺ = Gσ + λI (Cholesky
decomposition)

for l← 1 to L do
Sl ← C−1(γ1l, . . . , γMl)⊺ (via forward substitution)
bσ,λ,l ← C⊺−1Sl (via backward substitution)

end
errσ,λ,l = ∥Gσbσ,λ,l − (γ1l, . . . , γMl)⊺∥

2
2

end
end

Algorithm 1:Efficient cross-validation fold for functional response learning.
Using the integral-operator valued kernel requires moving the Cholesky de-
composition into the l-loop.

2.3 Toy experiment

To demonstrate the integral operator-valued kernel approach with Fourier basis
functions, we create a toy dataset.

2.3 Toy experiment 41

2.3.1 Dataset

We create M = 100 functional responses as sums of sine functions that are given
by

y′i(rrr) = ai sin(rrr − bi) + ci sin(2rrr). (2.91)

We assume that the y′i are given on an equi-distant grid g1, . . . , gG with endpoints
g1 = 0 and gG = 2π and G = 100 grid points.

We add random independently and identically distributed (iid) noise to the
functional responses. We will try to learn from the noisy examples but eval-
uate on the functional responses without noise, so we set

yij = y′i(gj) + ϵij (2.92)

and then use a FFT to find G = 50 basis functions ỹp, 1 ≤ p ≤ G. The noise ϵi

and the parameters ai, bi, ci are drawn normally distributed, i.e.

ϵij ∼ N (0, τ) and (2.93)

ai ∼ N (1, 0.2), bi ∼ N (0, 0.2), ci ∼ N (1, 0.1). (2.94)

We run experiments with different noise levels τ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}.
Some example responses yi are given in Fig. 2.4. For the features, we simply
choose the model parameters, i.e.

xi = (ai, bi, ci)⊺. (2.95)

After predicting, we transform the responses back into grid space and evaluate
using the MSE, that is given by

MSE(f, x, y) = 1
MG

M
∑
i=1

G
∑
j=1
∣f(xi)(gj) − yi(gj)∣

2
. (2.96)

42 Chapter 2 Machine Learning for Functionals and Functional Response Data

0 1
2
π

π 3
2
π

2π

rrr

−2

−1

0

1

y(rrr)
y(rrr) + ϵ

Figure 2.4: Three randomly chosen functional responses y(rrr) (solid curves)
and noisy versions y(rrr) + ϵ (dashed curves) for the toy dataset with
noise level τ = 0.2.

2.3.2 Methods

We compare our approach to three baselines.

• Naive approach: The first baseline is simply the naive approach to func-
tional response learning, i.e. learning each basis function coefficient inde-
pendently. This is equivalent to the trivial operator-valued kernel learn-
ing approach or the integral operator-valued kernel learning approach
using the delta function as a linkage function.

• Independent CV approach: The second approach is a slight variation of
the first. We can learn each basis function coefficient independently but
also cross-validate its hyper parameters independently. This gives the
model more flexibility and might lead to better performance. On the
other hand, it might overfit on higher frequency basis function coeffi-
cient, should the coefficients accidentally correlate with the noise. This
case is more likely for larger basis sets.

• Moving average approach: In this approach, we take the model generated

2.3 Toy experiment 43

by the naive approach and apply a moving average (MA) filter with rolling
window of size 2l + 1 (l ∈ N) to its results, i.e.

MA(f(x))(gi) =
1

min(l,G) −max(0,−l) + 1

min(l,G)
∑

j=max(0,−l)
f(x)(gj). (2.97)

This approach might work well on this toy dataset to counter the random iid
noise we added. On other datasets, where the noise is not iid, it might decrease
prediction performance.

For the Integral operator approach with Fourier basis functions, we cross-
validate the integral operator linking function parameter ν over {10−3, . . . , 101}.

2.3.3 Cross-validation and hyper-parameter selection

We cross-validate the Gaussian kernel parameter σ and the regularization pa-
rameter λ over {2−60, . . . , 220}. We use 5-fold cross-validation for the hyper-
parameters (same folds for every method). To evaluate the performance we
randomly split the dataset into 90 training samples and 10 test samples. The
hyper-parameters are cross-validated on the training samples, so the test sam-
ples remain unseen until evaluation.

We repeat the procedure including the drawing of the random variables 3 times
and for different noise levels τ .

2.3.4 Results

The results are given in Table 2.1 and are visualized in Fig. 2.5.

The integral operator-valued approach outperforms the other approaches con-
sistently. The effect is largest for scenarios with more noise. It gives consistently
good results even in low-noise settings unlike the moving average correction.
The independent CV approach overfits in the high noise setting. The naive ap-
proach, the independent CV approach and the integral operator-valued kernel
approach yield similar performance in low-noise settings.

44 Chapter 2 Machine Learning for Functionals and Functional Response Data

0.050.100.150.200.250.30
Noise level τ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
M

ea
n

sq
ua

re
d
er

ro
r[

10
−3

]
Naive
Moving average (l = 1)
Moving average (l = 2)
Independent CV
Integral operator-valued

Figure 2.5: Comparison of different model approaches for the toy dataset.

Noise level τ

Method 0.3 0.2 0.1 0.05 0.01

Naive 2.4±0.62 1.3 ±0.36 0.46±0.13 0.19±0.050 0.069±0.0031

Moving avg. (l = 1) 1.9±0.46 1.1 ±0.27 0.56±0.088 0.37±0.026 0.28 ±0.0067

Moving avg. (l = 2) 2.3±0.35 1.8 ±0.18 1.3 ±0.031 1.2 ±0.021 1.1 ±0.041

Independent CV 5.1±1.0 3.4 ±0.87 0.82±0.23 0.23±0.048 0.065±0.0016

Integral operator 1.1±0.23 0.63±0.12 0.26±0.050 0.13±0.021 0.065±0.00096

Table 2.1: Mean squared errors in 10−3. We report the mean and standard devi-
ation over the repetitions.

2.4 Discussion 45

−

()
Id()()

∫ ()()

Figure 2.6: Three randomly chosen example prediction for the toy dataset with
noise level τ = 0.2. For each example, the functional response
without noise (f, solid line), the prediction of the identity operator-
valued kernel model (fId, dotted line), and the prediction of the in-
tegral operator-valued kernel model (f∫ , dashed line), are shown.

2.4 Discussion

We can note two important results. First, solving the regularized least-squares
regression problem for the integral operator-valued kernel and Fourier basis
representations is computationally more complex than a naive functional re-
sponse learning approach but scales nicely. We can even reuse standard KRR
implementations.

Second, we can now interpret what the integral operator-valued kernel does
from an intuitive point of view: Since it modifies the regularization to λ/µ̃, we
can say that it increases regularization of high-frequency Fourier basis func-
tions. The effect of this regularization could be controlled by adding a hyper-
parameter to the exponential of m, as mentioned above.

One might argue that smoothing achieves a similar effect. And although
smoothing is a well established technique in functional data analysis [RS05],
the integral operator-valued kernel yields a more sophisticated approach. It

46 Chapter 2 Machine Learning for Functionals and Functional Response Data

does not apply blind smoothing but instead shifts the bias-variance tradeoff for
high-frequency basis coefficients.

We have thus a method that regularizes twofold: the integral-operator valued
kernel regularizes the model function f(x) over x via λ and the functional re-
sponses (f(x)) (rrr) over rrr via ν.

However, regularizing the functional responses provides little improvement in
accuracy for low-noise settings such as for electron densities. The additional
computational complexity on the other hand makes this approach less practical
for large numbers of basis functions. The ML-HK map in Sec. 3.2.2 is therefore
introduced using the trivial operator-valued kernel.

3
Hohenberg-Kohn map

The previous chapters introduced the basics of DFT, basis representations,
and functional prediction. Now these concepts will be applied to predicting
electron densities. First, the discussion of the kinetic energy approach in
Sec. 3.1 will serve as a motivation to model the electron density as a func-
tional prediction problem. This concept is introduced in Sec. 3.2.2 as the
machine-learning-Hohenberg-Kohn (ML-HK) map. Additionally, an ML
energy functional EML that allows practical application of the ML-HK map is
described in Sec. 3.2.3. Finally, the machine-learning-Kohn-Sham (ML-KS)
map is introduced in Sec. 3.2.4 to serve as a benchmark and allow relative
performance evaluation. The goal is to introduce a robust possibility to learn
and apply an ML model for electron densities in 3-D. Finally, a set of physically
interpretable error measures is introduced in Sec. 3.3.

3.1 Kinetic energy approach

This section reviews the previous approaches to learn electron densities and
density functions in 1-D. Additionally it gives some analysis of why this ap-
proach does not translate to 3-D.

48 Chapter 3 Hohenberg-Kohn map

3.1.1 Introduction

Density functional theory tells us that the energy is a function of the electron
density, E = E[n]. A natural approach is to guess a density and try a gradient
descent approach.

In its most simple form, we can assume that the electrons are not interacting,
thus assuming that U = EXC = 0 and F[n] = Ts[n]. This leaves us for 1-D with

E[n] = Ts[n] + ∫ drrr v(rrr)n(rrr). (3.1)

Since we have

δE
δn(rrr)

= δTs[n]
δn(rrr)

+ v(rrr), (3.2)

we only have to find the derivative of Ts for the gradient descent approach. The
derivative of Ts at a given density is equal to the associated external potential
plus the chemical potential µ, as given by the Euler-Lagrange equation

δTs
δn(rrr)

= −v(rrr) + µ. (3.3)

That would require us to learn a map from n to v. Although the Hohenberg-
Kohn theorem gives us a one to one relationship between v and n, learning a
map from n to v is much harder than learning a map from v to n. The dif-
ferent complexity of these maps is apparent from the perspective of electronic
structure calculations. Whereas there it is relatively straight-forward to find
the density given a potential with modern electronic structure codes, the most
promising strategy to find a potential given a specific density is to guess an ini-
tial potential and iterate, comparable to an inverse problem. Comparing the
L2 distances between potentials and densities of the 1-D dataset introduced in
Snyder et al. [Sny+12] supports this hypothesis. For each data point (v,n,E),
we gather the three nearest neighbors with respect to the potential v and the
three nearest neighbors with respect to the density n. For each neighbor pair,
we visualize the distances between potentials and densities in Fig. 3.1. We can
observe that similar potentials lead to similar densities, however, similar densi-

.

∥ − ∥

∥
−

∥

∣
−

∣

Δ
Δ

Δ

→

50 Chapter 3 Hohenberg-Kohn map

If we assume a training set with densities n1, . . . ,nM, kernel model with kernel
k of the form1

TML[n] =
M
∑
j=1

αjk[nj,n] (3.4)

with model parametersα, we can calculate the functional derivative analytically.
We assume that k is a Gaussian kernel, whose functional derivative is given by

δk[n,n′]
δn(rrr)

= 1
σ2 (n

′(rrr) − n(rrr))k[n,n′]. (3.5)

The functional derivative of the kernel model TML is then given by

δTML[n]
δn(rrr)

=
M
∑
j=1

1
σ2αj(n(rrr) − nj(rrr))k[nj,n]. (3.6)

For orthogonal basis functions, we can just calculate with the vectorial basis
coefficients instead of the density functions. The Euler-Lagrange equation
(Eq. 3.3) gives us the correct derivative and thus a possibility to evaluate the
derivative of the kinetic energy model directly. Unfortunately, the accuracy
turned out to be disastrous. The training densities lie on a manifold and are
thus very sparse inside the space of functions the kinetic energy model can
map. With the functional derivative, we want to know how the kinetic energy
would change when modifying a density in every direction independently.
This information is not given by the data and the kinetic energy model has
no knowledge about it. The functional derivative calculated in Eq. 3.6 is a
regularized extrapolation, but is far from the truth. An example derivative is
given in Fig. 3.2a.

3.1.3 Gradient de-noising

The oscillating derivatives are not encouraging, but a strategy is presented: We
assume that the density that minimizes E[n] lies on the training densities man-

1Note that TML can be an operator from the functional space of densities or a multivariate
function from a discretized function or basis coefficient space. Adaption of the presented
equations is straight-forward.

.

−

δ []
δ ()

− ()

[] (δ []
δ ())

[] (− ())

T

M

− ()

δ []
δ ()

[](− ()) [] (δ []δ ())

M

T

52 Chapter 3 Hohenberg-Kohn map

ifold and can thus restrict the gradient descent trajectory to the densities man-
ifold where the kinetic energy model has more information. The idea is visual-
ized in Fig. 3.2b.

To restrict the gradient descent trajectory, we have to describe the densities
manifold. The earliest idea, first presented in Snyder et al. [Sny+12] and de-
scribed in more detail in Li et al. [Li+16b], utilizes a localized PCA. Here, lo-
calized means that for each gradient descent step, the local neighborhood of
the current density is considered. The principle components of the p nearest
neighbors are computed and the gradient is projected onto the local PCA man-
ifold and back via a localized projected operator P[n]. The complete projection
gradient descent update step is

n(t)(rrr) = n(t)(rrr) − ϵP[n(t)]
⎛
⎝
δTML[n]
δn(rrr)

∣
n=n(t)

+ v(rrr)
⎞
⎠
. (3.7)

This method accurately reproduces the projected correct gradient. Fig. 3.2a
shows a comparison between the projected gradient prediction and the pro-
jected potential.

While the presented approach works for the 1-D particle in a box dataset, it has
not been applied successfully to more complex systems. Suggestions have been
made to improve the robustness of the gradient procedure, mainly by improving
the description of the densities manifold.

The densities manifold can be described globally by Kernel PCA components,
see Sec. 2.1.3. Global in the sense that Kernel PCA components are computed
once for the complete training set and stay the same for every gradient descent
step. The projection in features space is given by

Q =
L
∑
l=1

φlφ
⊺
l (3.8)

where φl are the Kernel PCA components in feature space.

Optimization along a manifold described by a small number of Kernel PCA
components can be more stable because the localized PCA components do not
combine to a smooth global manifold. Since a global Kernel PCA avoids the

3.1 Kinetic energy approach 53

necessity to compute localized principle components in every gradient step, it
is much faster as well.

Restricting the optimization trajectory to a Kernel PCA manifold, however, still
allows the gradient steps to traverse into regions outside the training data. These
regions still lie on the densities manifold but the kinetic energy model might be
very inaccurate in this area. Additionally, the number of Kernel PCA compo-
nents has to chosen in advance. A specific choice might be too little for some
areas of the training data or too many for others.

Ideally, the number of components that are used to describe the densities man-
ifold should be adapted locally. Although this is slower, it can give more accu-
rate results and be more robust. Crucial is the question on how to adapt the
dimensionality of the local densities manifold.

One method is presented as non-linear gradient denoising in Snyder et al.
[Sny+13a] and Snyder et al. [Sny+15]. An application to 1-D bond-breaking is
presented in Snyder et al. [Sny+13b]. Here, the general idea is to observe the
curvature of the function that describes the Kernel PCA reconstruction error

p[n] = ∥Φ[n] −QΦ[n]∥2 (3.9)

and analyze its Hessian. The eigenvalues of the Hessian are a measure of the
amount of curvature along the direction of the corresponding eigenfunctions.
High curvature corresponds to areas outside the training set region. It is thus
possible to set a cut-off parameter for the curvature and construct a projection
with all eigenfunctions corresponding to eigenvalues below the cut-off param-
eter.

Unfortunately even with these improvements, the approach of learning a ki-
netic energy functional and following the energy gradient remains challenging
because of the trade-off between describing the densities manifold accurately
and removing the noise. Snyder et al. [Sny+15] compares the non-linear gradi-
ent de-noising approach with the localized PCA approach for the 1-D particle
in a box dataset. In Sec. 4.1 we show a comparison between the gradient ap-
proaches and density prediction approaches.

54 Chapter 3 Hohenberg-Kohn map

3.2 Electron density prediction

This section introduces the machine-learning-Hohenberg-Kohn (ML-HK)
map for predicting the electron density from potentials. It also introduces
the energy map EML in Sec. 3.2.3 to allow practical application of the ML-HK
map. Finally, the machine-learning-Kohn-Sham (ML-KS) map is introduced
in Sec. 3.2.4 to allow comparison and performance evaluation in 3-D.

3.2.1 Introduction

Since the application of the kinetic energy approach (Sec. 3.1) to 3-D molecules
remains unsuccessful, a different approach seems necessary. A small motivation
has been given while discussing the one-to-one relationship between potential
and density via the Hohenberg-Kohn theorem

v←→ n. (3.10)

While the n → v map is hard to learn via machine learning, the v → n map
seems more promising. We refer to this map as the Hohenberg-Kohn map.

A theoretical motivation for learning the Hohenberg-Kohn map can be derived
from Ribeiro et al. [Rib+15]. Here, the authors show that Hohenberg-Kohn map
can be approximated extremely accurately using semiclassical expressions.

It is thus suggested to circumvent the kinetic-energy approach and directly
learn a multivariate machine learning model for the Hohenberg-Kohn map, a
machine-learning-Hohenberg-Kohn (ML-HK) map.

Besides the ML-HK map, we differentiate two other machine learning ap-
proaches in the following. One approach is the kinetic energy approach
discussed in Sec. 3.1, also referred to as the orbital-free (OF) approach. The
second approach was discussed in Sec. 1.2.3 and is the idea of learning potential
energy surface (PES), or a direct map from potential to energy (v → E). We
refer to this map as the Kohn-Sham (KS) map. An overview of the different
approaches is given in Fig. 3.3.

3.2 Electron density prediction 55

Potential

Hoh
en

be
rg-

Koh
n (

HK) M
ap

pin
g

Density

till convergence
O

rb
ita

l-F
re

e
(O

F)

Kohn-Sham (KS) Mapping

M
ap

pi
ng

Euler equation

Total Energy

Figure 3.3: The bottom arrow rep-
resents E[v], the result of a con-
ventional electronic structure cal-
culation, i.e. KS-DFT, and is thus
called the KS map. E[n] is the
total energy density functional.
The red arrow is the HK map
n[v] from external potential to its
ground state density. The upper
left side describes the approach of
learning the kinetic energy func-
tional which leads to a solution
without KS orbitals and is thus
called the orbital-free (OF) ap-
proach.

3.2.2 The machine-learning-Hohenberg-Kohn map nML

Learning a machine learning model for the HK map describes a functional re-
gression problem as discussed in Chapter 2. Here, not only the output as the
density n is functional, but also the input as the potential v. Although this
setting received special attention in earlier research [RS05], the application of
kernel methods with isotropic (or homogeneous) kernels (like the Gaussian or
Laplace kernel) solely require a distance measure. Here, we use the natural L2

norm to measure distances between potentials.

To keep notation consistent, we write f[v] for the physical relationship and
fML[v] for the machine learning equivalent, e.g. n[v] and nML[v].

Since the training data for the ML-HK map will stem from converged electronic
structure calculations, we expect little benefit from introducing a regularization
for the functional responses nML[v](rrr) over rrr as additionally validated by the
experiments in Sec. 2.3. We thus use a trivial operator-valued kernel and the
problem reduces to learning several independent regression models, one for
each basis function coefficient.

56 Chapter 3 Hohenberg-Kohn map

For the scalar-valued part, we use the Gaussian kernel

G(v, v′) = exp{−σ∥v − v′∥2}. (3.11)

It is not only robust and yields excellent results in a wide variety of settings but
also agrees with the physical intuition that the HK map is smooth.

We define an artificial Gaussian potential for use in the ML-HK map. It is de-
signed to give an appropriate distance measure for the potential but will not be
physically accurate or relevant since it is never used to calculate physical quan-
tities directly. We define it for a set of charges Zi and atom positions Ri as

v(rrr) =
Natoms

∑
i=1

Zi exp{
∥Ri − rrr∥2

2γ2 }. (3.12)

The γ is a hyper-parameter and can be cross-validated. A value of γ = 0.2Å is
reasonable and yields good results in all applications.

For given training data with potentials v1, . . . , vM and densities n1, . . . ,nM with
basis representation

ni(rrr) =
L
∑
l=1

ñilφl(rrr), i = 1, . . . ,M, (3.13)

we thus write the ML-HK map as

nML[v](rrr) =
L
∑
l=1

βl[v]φl(rrr) =
M
∑
i=1

G(v, vi)
L
∑
l=1

β̃ilφl(rrr) (3.14)

with independent maps for each basis function coefficient

βl[v] =
M
∑
i=1

β̃ilG(v, vi) (3.15)

3.2 Electron density prediction 57

for which we have to solve

β̃l = (G + λI)−1

⎛
⎜⎜⎜⎜⎜⎜
⎝

ñ1l

⋮

ñMl

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (3.16)

3.2.3 The energy map EML

Once we have a density, we can predict further properties like the total energy.
The total energy density functional is given by

Ev[n] = Ts[n] +U[n] + EXC[n] + ∫ d3r v(rrr)n(rrr). (3.17)

Since the Hartree functional U is known and good approximations exist for
EXC, it would be sufficient to learn a machine learning model for Ts. This ap-
proach worked well for non-interacting particles in 1-D [Sny+12]. For real world
applications, however, there are practical challenges. We usually do not work
with full electron densities, but with pseudo-densities stemming from the use of
pseudo-potentials, see Sec. 1.2.1. Evaluations of the functionals would then re-
quire implementations for the specific pseudo-potentials used. The complexity
of these implementations make them impractical for our experiments. Instead,
we work with pseudo-densities and learn a machine learning model for the total
energy E[n].

Learning a model for the total energy E[n] is a simple regression problem and
can be trained via KRR. The kernel model is given by

EML[n] =
M
∑
j=1

αjkE(n,nj). (3.18)

Many practical applications (e.g. the simulation of molecular dynamics) will re-
quire a chained evaluation of the HK map and the energy map, i.e.EML[nML[v]].
How fast this evaluation can be computed will depend on the dimensionality of
the nML output, i.e. the number of basis functions L used for n.

58 Chapter 3 Hohenberg-Kohn map

It is desirable to make the chained evaluation independent of the number of
basis functions. A theoretical possibility exists but turns out to be numerically
impractical: Evaluation of the chained models (EML ○nML)(v) requires (as part
of the kernel evaluation kE and assuming orthogonal basis functions) compu-
tation of the distances D with

Dj = ∥nML(v) − nj∥ = ∥
M
∑
i=1

β̃iG(∥v − vi∥) − ñj∥ . (3.19)

Introduce the shortcut k = (G(∥v − v1∥), . . . ,G(∥v − vM∥))T. Then the dis-
tances require evaluation of the dot product β̃k with β̃ ∈ RL×M and L very large.
This costly operation has to be repeated several times in every MD simulation
step.

Fortunately, we can rewrite the distance evaluation as:

D2
j = ∥

M
∑
i=1

β̃iG(∥v − vi∥) − ñj∥
2

(3.20)

= ∥β̃k − ñj∥2 (3.21)

= kTβ̃Tβ̃k − 2kTβ̃Tñj + ñTj ñj (3.22)

This allows us to precompute β̃Tβ̃ ∈ RM×M, β̃Tñj ∈ RM, and ñTj ñj ∈ R which
makes the distance evaluation, that is necessary in every MD step, independent
of the number of basis functions L.

Unfortunately this approach turns out to be rather impractical. It is well known
that the absolutes of the individual parts of the summation in Eq. 3.22 are of-
ten much larger than D2

j which results in numerical errors. Here, these errors
are particularly large. This can be alleviated partially by increasing the regular-
ization parameter of the nML model to yield smaller β̃ values but nevertheless
results in significant performance drops of the total energy prediction.

3.2.4 The ML-KS map EML-KS

Since the orbital-free approach will turn out too inaccurate for application in
3-D, this section introduces a machine learning model for the Kohn-Sham (KS)

3.3 Model evaluation and error measure 59

map E[v] that maps the external potential v to the total energy E (see Fig. 3.3).
Just as the energy map EML, it solves a simple regression problem and can be
trained via KRR. The kernel model of the ML-KS map is given by

EML-KS[v] =
M
∑
j=1

αjk(v, vj). (3.23)

This map can be used to benchmark the performance of the Hohenberg-Kohn
map nML in Sec. 4.3. It is not meant to compete with other potential energy sur-
face (PES) approaches (Sec. 1.2.3). Predicting the total energy given a potential
will be less accurate than approaches that start with the atomic positions, due
to the restricted normalization options as will be explained in Sec. 4.2.1.

3.3 Model evaluation and error measure

To train the ML-HK map, we optimize the L2 norm. To evaluate the accuracy of
the density predictions this is not intuitive though. The requirement from the
application perspective is that the density prediction must be accurate enough
so that the resulting total energy reaches chemical accuracy compared to the
reference (e.g. PBE) energy of the system.

Recently it has been shown how to separate out the error in the density and the
error in the functional on the resulting total energy error of any approximate,
self-consistent DFT calculation [KSB13]. Let F̃ be an approximate many-body
functional and ñ an approximate ground-state density that results from using F̃
in the Euler equation (Eq. 1.9). By defining Ẽ[n] = F̃[n] + ∫ d3r n(rrr) v(rrr), it is
possible to separate the error made by both the density approximation and the
functional approximation as

∆E = Ẽ[ñ] − E[n] =∆EF +∆ED (3.24)

with

∆EF = F̃[n] − F[n] (3.25)

60 Chapter 3 Hohenberg-Kohn map

being the functional-driven error and

∆ED = Ẽ[ñ] − Ẽ[n] (3.26)

being the density-driven error. For most DFT calculations, ∆E is dominated by
∆EF. The standard DFT approximations can, in some specific cases, produce
abnormally large density errors that dominate the total error. In such situations,
using a more accurate density can greatly improve the result [KSB13; KSB14;
Kim+15].

Inspired by this separation of errors, we can define accuracy measures for the
machine learning application.

Since we will not train a separate machine learning model for the many-body
functional F[n] in 3-D (only a total energy model EML) we define

EML[n] = TML[n] + ∫ drrr n(rrr) v(rrr) (3.27)

for 1-D experiments. This allows us to keep the notation between 1-D and 3-D
consistent and leads us to define the following error measures. We differentiate
the energy error, a functional-driven error, and an ML-density-driven error.

The energy error, given a potential v, is measured as

∆E = EML [nML[v]] − Ev. (3.28)

The functional-driven error, given a density n, is measured as

∆EF = EML[n] − E[n]. (3.29)

Note that this leads to ∆EF = TML[n] − Ts[n] in 1-D. Lastly, the (ML-)density-
driven error, given a potential v, is measured as

∆EML
D = EML [nML[v]] − EML[nv]. (3.30)

In 1-D, where we limit the experiments to 1-electron simulations, we can use the

3.4 Discussion 61

von-Weizsäcker kinetic energy functional [DG90],

TvW[n] = 1
8 ∫

drrr ∇n(r
rr) ⋅ ∇n(rrr)
n(rrr)

, (3.31)

that is exact for 1-electron systems. Using this functional, we can define a more
exact density-driven error for 1-D experiments only:

∆ED = TvW [nML[v]] + ∫ drrr nML[v] v − (TvW[nv] + ∫ drrr nv v) . (3.32)

Since the densities vanish at the edges, a naive implementation of the von-
Weizsäcker functional leads to numerical inaccuracies. We therefore first define
φ(rrr) =

√
n(rrr) and calculate its numerical derivative via central differences.

Then we can calculate the kinetic energy by integrating, e.g. via Simpson’s rule,

Ts[n] =
1
2 ∫

drrr ∣φ′(rrr)∣2. (3.33)

Since the general kinetic energy functional is unknown, we can not use the same
definition for ED for the experiments in 3-D.

To ensure that the energy error ∆E is comparable to errors made by a KS map,
we always use the same training point pairs (v,n,E,T) (or (v,n,E) in 3-D) for
training both the nML and EML maps.

3.4 Discussion

The ML-HK map is conceptually different to the gradient descent approach. On
the one hand, this is motivated by the challenge to describe and limit the gra-
dient descent to the density manifold. On the other hand, it is motivated by
the reality of electronic structure codes. Apart from a kinetic energy model, it
would also be necessary to implement the other potential functionals, e.g. the
exchange-correlation functional, and work with pseudo-potentials. The ML-
HK map is immediately applicable to 3-D molecules and provides a more di-
rect path to interesting applications. Electronic structure codes often do not
implement a direct kinetic energy functional, but rewrite the problem in terms

62 Chapter 3 Hohenberg-Kohn map

of orbital basis coefficients and an eigenvalue problem. More details and how
this leads to density matrix predictions is described in Appendix A.

The ML-HK map reduces to a set of independent KRR models and is thus
straight-forward without many complexities. This is due to the application
driven design approach. The goal is to start with a simple model that works
well and robust for the intended application. Adding complexity to the model,
e.g. by using an integral-operator valued kernel, comes with additional compu-
tational cost whereas the improvement with respect to the application might not
be significant. The strategy is therefore to increase the application complexity
and only increase the model’s complexity once it fails.

In the next chapter we will see that the tangential areas, like functional repre-
sentation, normalization, choosing which simulations to run for training data
generation, and physical properties like the choice of pseudo-potentials, have
a larger influence on the machine learning approach’s performance than the
model itself. This is less interesting from an ML research perspective but de-
manded by the drive to succeed on the application side.

The errors are measured unconventionally. For example, the ML-HK map can
be evaluated by measuring the L2 error, however, this error does not lead to an
easily interpretable quantity and thus does not allow us to see how significant
methodological changes are. The following chapter will also look at the density
prediction error by comparing the influence of ML, basis representation, and
physical theory level.

4
Prediction of quantum mechanical
observables

After setting the theoretical foundation and the methodological prerequisites it
is now possible to turn to the application. The first Sec. 4.1 will evaluate the ML-
HK map on 1-D densities. Sec. 4.2 a deals with representation, normalization,
and sampling of molecular structures for the specific case of density prediction.
Sec. 4.3 applies the HK map to several 3-D datasets of increasing complexity.
Additionally it showcases the ability to simulate MD with the ML-HK map. The
final Sec. A covers the prediction of density matrices: an approach that promises
a solution for the scalability problem of predicting densities.

4.1 Application to 1-D particle-in-a-box data

We will first evaluate the ML-HK map approach on the 1-D particle-in-a-box
dataset published in Snyder et al. [Sny+12]. The dataset includes randomly gen-
erated potentials of the form

vi(rrr) = −
3
∑
i=1

ai exp{−∣rrr−bi∣2/2c2
i} (4.1)

64 Chapter 4 Prediction of quantum mechanical observables

and the resulting exact densities ni, kinetic energies Ti, and total energies Ei
when assuming that particles are subject to the potential vi in a [0, 1] box with
infinite walls. The densities were found on an equi-distant grid

g1 = 0, . . . , gG = 1 with G = 500 (4.2)

using Numerov’s method [HNW93]. An example of a potential is given in
Fig. 3.2a.

To fit the ML-HK map on the 1-D dataset, we use a Gaussian kernel. To measure
the distances between potentials we discretize the potentials on the same grid
as the densities and take the euclidean distance

∥vi − vj∥ = ∥(vi(g1), . . . , vi(gG))⊺ − (vj(g1), . . . , vj(gG))
⊺∥

2
. (4.3)

To get a total energy model EML[n], we follow Snyder et al. [Sny+12] and train
a KRR model for the kinetic energy TML[n] and calculate the potential energy

V[n] = ∫
1

0
drrr n(rrr) v(rrr) (4.4)

by integrating over the grid via Simpson’s rule.

We employ standard cross-validation procedures to evaluate the performance
of our models [Han+13]. We follow the approach of splitting of a hold-out test
dataset of 1000 data points to evaluate the ML models on. The remaining points
are available for training. Of these points we take subsets of varying sizes M
which become the training set for both the TML and nML model. The subset is
chosen as described in Sec. 4.2.2.

We use 5-fold cross-validation on the training set to choose the hyper-
parameters of the model. Both models TML and nML have a regularization
parameter and a Gaussian kernel width parameter. These parameters for the
TML model and the nML model are chosen independently from each other. We
optimize the hyper-parameters for best mean-squared-error.

The results for the different error measures are given in Table 4.1. A direct com-
parison of the density-driven error is given in Figure 4.1.

4.1 Application to 1-D particle-in-a-box data 65

ML-OF

ML-HK

(grid)

ML-HK

(other)

∆
E

∆
E F

∆
E D

∆
E

∆
E D

∆
EM

L
D

∆
E D

(Fourier)

∆
E D

(KPCA)

M
MAE

max

MAE

max

MAE

max

MAE

max

MAE

max

MAE

max

MAE

max

MAE

max

20
7.7

47

7.7

60
8.7

58

3.5

27
0.76

8.9

9.7

70

0.58

8
0.15

2.9

35
2.3

22

2.4

16
1.8

35

5.2

40
0.18

2.9

4.9

28

0.17

2.9

0.018

0.41

50
1.4

12

1.3

7.3

0.92

10
1.2

7.1

0.079

0.92

0.27

2.4

0.078

0.91

0.011

0.17

75
0.84

10

0.28

3.1

0.61

7.3

0.3

3.5

0.042

0.63

0.17

1.9

0.044

0.64

0.0026

0.061

100

0.74

21
0.2

2.6

0.69

15

0.19

2.1

0.027

0.43

0.18

2.4

0.031

0.42

0.0012

0.028

150

0.23

8.7

0.078

1.4

0.15

11

0.11

1.2

0.01

0.22

0.1

1.2

0.019

0.24

0.0007

0.024

200

0.16

2.4

0.039

0.6

0.1

6.2

0.042

0.59

0.0065

0.15

0.02

0.46

0.017

0.14

0.00055

0.015

Table

4.1
:

Energy

errors

for
the

1-D

particle

in

a
box

dataset.

The

errors

are

given

in

kcal/mol

for
various

training

set

sizes

M

.
Displayed

are
the

energy

error

∆
E,

the
functional-driven

error

∆

E F
,the

density-driven

error

∆

E D
and

its

approximation

∆
EML

D

.

66 Chapter 4 Prediction of quantum mechanical observables

25 50 75 100 125 150 175 200
Number of training points M

10−3

10−2

10−1

100

101

∆
E D

(k
ca

l/m
ol
)

HK Fourier
HK KPCA

Orbital-Free
HK Grid

Figure 4.1: The development of the density-driven error with increasing train-
ing set sizes for the orbital-free approach and the ML-HK approach
with different basis function representations.

Originally the quality of the densities were measured by a density-driven error
based on an ML kinetic energy functional, not a total energy functional, trained
on 200 densities. A comparison of these errors in both approaches is given in
Table 4.2a. Note that the errors here are much higher than the density-driven
error based on the total energy functional (Eq. 3.30). This phenomenon is usual
for DFT calculations and is due to a cancellation of errors in kinetic energy and
potential energy. A plot of error in kinetic energy vs. error in potential energy
for both approaches is given in Fig. 4.2b.

The results show us that the density-driven error ∆ED for the OF approach is
always comparable to, or greater than, the functional-driven error ∆EF. This is
due to the poor functional derivative generated by the OF approach. As men-
tioned in Sec. 3.3, this is an abnormal calculation and the results can be greatly
improved by using more accurate densities.

As the number of training points M grows, the error becomes completely dom-
inated by the density-driven error. This also indicates that the largest source of
error lies in solving the Euler equation with the ML approximation of Ts to find

Δ D

−
Δ D

−

−Δ
D

Δ

Δ

Δ

=

=

68 Chapter 4 Prediction of quantum mechanical observables

back to their original (grid) space (see Sec. 2.1.3). It is thus not immediately ap-
plicable to 3-D and we therefore use the Fourier basis for the 3-D molecules in
Sec. 4.3.

4.2 Geometry normalization and sampling in 3-D

4.2.1 Representation and normalization

To use kernel based machine learning approaches, it is necessary to transform
the features into a format that the kernel works on. For most kernels this is a
vectorial form. In the previous section the input data was given in the form
of a potential, however, the input data in 3-D is usually given in the form of
molecular geometries, i.e. atom positions and charges. When representing a
molecular geometry in a vectorial form we should pay attention to the invari-
ances of a molecule. For example, a rotation of a molecular system changes
atom positions but does change the energy of the system.

Machine learning models benefit tremendously from features that keep all the
invariances of the underlying data. In the case of rotation invariance a Gaussian
kernel based model would need training data for each rotation angle if the fea-
tures are not rotation invariant. This is because it would see rotated geometries
as different geometries which properties it would learn separately although it is
the same molecule.

In the case of density prediction, there is another complication. Rotating a
molecular system rotates its density as well, it is rotation transparent (f(Rx) =
Rf(x)). It is thus not possible to use a rotation invariant feature representation,
because the rotation information is necessary for the density prediction.

Molecules are rotation and translation invariant, but also invariant to atom in-
dexing: it does not matter in which order the atoms are listed, the system stays
the same. For energy prediction, it is preferable to use a representation that is
invariant to all these properties. For density prediction, the feature represen-
tation and model has to be rotation and translation transparent, but should be
invariant to atom indexing.

4.2 Geometry normalization and sampling in 3-D 69

We note that even in the 1-D case training data could be almost halved when the
rotation (or flip) invariance would be taken into consideration. The presented
results, however, do not take any invariances into account to stay comparable
with other published results.

Different concepts for invariances

We can differentiate three concepts to treat invariances in molecular geometries.

The first concept is to find a representation that is intrinsically invariant. An ex-
ample is the Coulomb matrix presented in Rupp et al. [Rup+12]. The coulomb
matrix is intrinsically invariant to rotation and translation because it is based on
distances between atoms. An extension to make the representation invariant to
atom indexing is presented in Montavon et al. [Mon+13]. A representation that
changes continuously with atom position changes is given in Bartók, Kondor,
and Csányi [BKC13]. An examples for crystal structures is given in Schütt et al.
[Sch+14]. An example for building an intrinsically invariant model via neural
networks is given in Schütt et al. [Sch+17]. The community’s predominant inter-
est in predicting energies explains the popularity of this concept. For predicting
densities, we can not use translation and rotation invariant representations, be-
cause the model has to be transparent towards these invariances.

This leads us the the second concept: normalization. The idea is to translate
and rotate all molecular geometries so that they are most similar to each other,
then find a representation that is invariant to atom indexing, but not invari-
ant to translations or rotations. This should yield the benefit of considering
invariances but still allow the predictions of densities. We discuss different ap-
proaches that use this concept below.

The third concept is data augmentation. Instead of making the representation
invariant, we can, for example, rotate a geometry and introduce it as a new
data point. However, this concept is not suitable for kernel learning approaches
and almost only used with iterative learning approaches because the number of
training points multiplies. An example application of this concept is to flip im-
ages when training image classifiers.

70 Chapter 4 Prediction of quantum mechanical observables

Normalization approaches

For smaller molecules with few parameters, we can find a configuration specific
normalization approach. For example, for H2 the atoms can be placed centered
on the x axis. For H2O the Oxygen atom can be placed in the coordinate system
center, the bonds can have equal angle from the y axis with the longer bond
always being on a fixed side.

The configuration specific approaches become to complicated to set up for
larger molecules with many parameters. We therefore introduce two methods.
The first method is based on principle directions in the molecule and the
second methods is based on aligning with a base geometry.

For the first method, we calculate the principle directions of the atom positions
weighted by their atomic mass, similar to PCA. Let Ri be the atom positions and
mi the masses. We compute the centered atom positions R̄i = Ri − R̄, where

R̄ = 1
∑Natoms

i=1 mi

Natoms

∑
i=1

miRi (4.5)

is the weighted molecule center. Then we compute the scatter matrix

S =
Natoms

∑
i=1

m2
i R̄iR̄⊺i (4.6)

and the principle directions of the molecule are given by its eigenvectors Vj

sorted by its corresponding eigenvalues λ1 ≥ λ2 ≥ λ3. To avoid the sign am-
biguity of the eigenvectors, we project the weighted atom positions onto the
eigenvectors and correct each principle direction by the sign

V′j = Vj sign
⎛
⎝

Natoms

∑
i=1

V⊺j R̄imi
⎞
⎠
, j = 1, 2, 3. (4.7)

The principle directions determine the new coordinate system. The centered

4.2 Geometry normalization and sampling in 3-D 71

points are rotated via

R′i =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∣ ∣ ∣

V′1 V′2 V′3

∣ ∣ ∣

⎞
⎟⎟⎟⎟⎟⎟
⎠

R̄i, i = 1, . . . ,Natoms. (4.8)

For the second method, we select a base geometry, e.g. the equilibrium geome-
tryR0

i . Then we rotate and translate the atoms so that the squared distance of the
atom positions to the corresponding atoms in the base geometry is minimized,
i.e. we find a least squares fit to a base geometry and solve

min
R,t

Natoms

∑
i=1
∥RRi + t − R0

i ∥
2
. (4.9)

For this optimization problem, there exists an analytical solution via calculating
the singular value decomposition of a covariance matrix between the base ge-
ometry positions R0

i and the positions of the geometry to be fitted Ri [AHB87].
The normalized atom positions are then given by

R′i =RRi + t, i = 1, . . . ,Natoms. (4.10)

To make the approach more robust to the fluctuating hydrogen atoms, we only
fit the positions of the heavy atoms (Zi > 1). Note that this normalization
method always matches according to atom indexing although switching the
atom assignment might be more advantageous for the ML model, especially
for symmetrical molecules.

In practical applications, the least squares approach works much better. The
primary reason is that some molecules, like the highly symmetrical benzene,
can have very different principle directions, as is shown in Fig. 4.3. It compares
both the PCA and least squares approach. For the application to 3-D molecules
we therefore choose the least squares approach in all examples.

− .

.

.

− . . .

− .

.

.

− . . . − . . . − . . .

4.2 Geometry normalization and sampling in 3-D 73

classical MD trajectories can make the MD trajectory run into regions the ML
model has not seen before. In Section 4.3.3 we discuss how to circumvent this
via chemical knowledge and intuition. A different approach to circumventing
this is active learning or running DFT whenever the ML model trained on clas-
sical MD trajectories is below a certain confidence threshold. We call the data
points gathered from classical MD trajectories training point proposals. We can
take a strategic selection of these proposal geometries and only calculate DFT
energies and densities for this selection. This leads to far fewer DFT calculations
than necessary for the ab initio MD sampling approach.

It should be pointed out that DFT calculations in the ab-inito MD approach run
much faster than the DFT calculations in the classical MD sampling approach.
This is due to the fact that ab-inito DFT codes take into account that the poten-
tial changes vary little from trajectory step to trajectory step and thus kick-start
the DFT iteration with the data from the previous trajectory point. Neverthe-
less, the time spend on DFT calculations required for classical MD sampling
approach remains significantly shorter.

It remains to be discussed how the training points from the training point pro-
posal set can be selected. The motivation is to create a machine learning model
without weak spots throughout the region a trajectory might cover. Without
having trained any models and without labels, the idea is to select training
points from the proposals so that every point is relatively close to at least one
training point. We therefore strive to minimize the distance between proposals
points and training points.

Let Rj be the normalized atomic positions of the proposed geometry j. We want
to find training points R̃1, . . . , R̃M so that

min
R̃1,...,R̃M

M
∑
i=1
∑
j∈#i

∣∣R̃i − Rj∣∣2, (4.11)

where#i = {j ∣ i =mink ∥Rj − R̃k∥} is the index set of all proposal positions that
are closest to the training point R̃i. The norm averages the euclidean distances
over each atom position of the molecule. The optimization problem describes
the K-means clustering algorithm [Ste56] for which fast and robust implemen-

−

−

−

−

−

−

(
)

.

−

Δ

Δ
H =

−

() H

˜

˜

4.3 Application to 3-D molecules 75

4.3.1 H2 molecule

The first example in 3-D is the Hydrogen gas molecule. It is the most simple
molecule, consisting only of two Hydrogen atoms. Its only degree of freedom
is the distance between the Hydrogen atoms. A data set of 150 geometries is cre-
ated by varying the distance between the atoms R between 0.5 and 1.5 Å (sam-
pled uniformly). A randomly chosen subset of 50 geometries is designated as
the test set and is unseen by the ML model. These geometries are used to mea-
sure the out-of-sample error.

The energy curve E(R) is shadowed in Fig. 4.4. It shows the behavior of the
H2 molecule around the PBE equilibrium bond length (R0 = 0.74Å). The total
energy for the H2 molecule grows quickly as the atoms get closer. As the Hydro-
gen atoms drift apart the energy curve grows slower and converges to double
the energy of an isolated Hydrogen atom.

The remaining 100 geometries are the training point proposals. The geometries
are normalized by centering the molecule and fixing the Hydrogen atoms to
the x-axis. Subsets of varying sizes M are chosen as training points Because the
required training subsets are so small, careful selection of a subset that covers
the complete range of R is necessary. This is accomplished by selecting the M
training points out of the training point proposals so that the distances R are
nearly equally spaced as described in Sec. 4.2.2.

The performance of the ML-HK map is compared by evaluating the ML-KS map
that maps from the Gaussian potential to the total energy and the combination
of nML[v] that maps from Gaussian potential to the ground-state density in a
3D Fourier basis representation (l = 25) and EML[n] that maps from density to
total energy.

The prediction errors are listed in Table 4.2. Both the mean average error (MAE)
and the maximum error of the energy evaluated using the ML-HK map are
significantly smaller than those of the ML-KS map. This indicates that even
for a 3D system, learning the potential-density relationship via the HK map is
much easier than directly learning the potential-energy relationship via the KS
map.

Fig. 4.4 shows the errors made by the ML-KS map and the ML-HK map. The

76 Chapter 4 Prediction of quantum mechanical observables

ML-KS ML-HK

∆E ∆E ∆EML
D

M MAE max MAE max MAE max

5 1.3 4.3 0.18 0.54 0.70 2.9

H2 7 0.37 1.4 0.054 0.16 0.17 0.73

10 0.080 0.41 0.017 0.086 0.019 0.11

10 0.27 0.94 0.099 0.60 0.12 0.39

H2O 15 0.11 0.43 0.032 0.13 0.044 0.21

20 0.015 0.064 0.011 0.058 0.0091 0.060

Table 4.2: Errors are shown for increasing numbers of training points M for the
ML-KS and ML-HK approaches for both H2 and H2O. In addition,
the estimated density-driven contribution to the error for the ML-HK
approach (Eq. 3.30) is given. Energies are given in kcal/mol.

error of the ML-HK map is smoother than the ML-KS map error and is much
smaller, even for the most problematic region when R is smaller than the equi-
librium bond distance.

The mean average error (MAE) that is introduced by the PBE approximation on
the H2 dataset is 2.3 kcal/mol. This number is obtained by comparison to FCI
calculations. FCI calculations are computationally significantly more expensive
but give much more accurate energies. Here, the PBE errors are well above the
errors of the ML model and verifies that the error introduced by the ML-HK
map is negligible for a DFT calculation.

The H2 molecule is of special interest to the DFT community because most
exchange-correlation functionals cannot predict the disassociation behavior of
the H atoms correctly [CMY08]. Ironically the most simplest molecule is chal-
lenging whereas the exchange-correlation functionals are mostly robust for far
more complex molecules. Since ML fits the energy curve it does not suffer from
errors of this nature.

. . . .

¯()

.

.

.

.

.

.

θ(
○

)

. . . .

¯()

− −

− −

−

−

H O

H O

H O
′ θ

= ′ = . θ = .

± . ± . ± .

H

78 Chapter 4 Prediction of quantum mechanical observables

0.0 0.1 0.2 0.3
ML-HK

0.0

0.1

0.2

0.3

0.4

0.5

M
L-

KS

(a)

θ

R

R’

(b)

Figure 4.6: (a) Comparison of the absolute errors the ML-HK and ML-KS ap-
proaches make on the test set when training on 15 training points.
(b) The parametrization of H2O.

The results of the experiments are given in Table 4.2. As expected, the increase
in degrees of freedom for H2O compared to H2 requires a larger training set
size M. However, even for the more complicated molecule, the ML-HK map
is consistently more precise than the ML-KS map (Fig. 4.6a) and provides an
improved potential energy surface, as shown in Fig. 4.5. With an MAE of 1.2
kcal/mol for PBE energies relative to CCSD(T) calculations (similar to FCI a
more expensive but more accurate method than PBE KS-DFT) for this data set,
we again show that the ML model does not introduce a new significant source
of error.

4.3.3 Ethane, benzene, and malonaldehyde

As a next step, we turn to molecules that have significantly more degrees of
freedom: ethane with chemical formula C2H6 (Fig. 4.7), benzene with chemical
formula C6H6 (Fig. 4.8), and malonaldehyde with chemical formula C3H4O2

(Fig. 4.9).

4.3 Application to 3-D molecules 79

Figure 4.7: A visualization of the 300 K + 350 K ethane dataset. Red points mark
the atom positions of the training set proposal points as selected by
the k-means approach. Blue points mark the atom positions of the
points in the test set, taken from an independent MD trajectory. To
better visualize the dataset, the molecule was aligned to the carbon
atoms and the Hydrogen atoms in the background.

Ethane has in total eight atoms and thus serves as a first more complex molecule
to test the proposed methodology on. It has a small energy barrier for the rel-
ative rotation of the methyl groups. Benzene has a highly symmetrical ring
structure and thus serves as a challenge for the normalization procedure. Mal-
onaldehyde has a Hydrogen atom that jumps between the Oxygen atoms (re-
ferred to as an intramolecular proton transfer). This proton transfer does not
occur when simulating via classical MD and is therefore not part of the training
set. The malonaldehyde molecule thus serves as an extrapolation challenge for
the ML models.

80 Chapter 4 Prediction of quantum mechanical observables

Figure 4.8: A visualization of the 300 K + 350 K benzene dataset. Red points
mark the atom positions of the training set proposal points as se-
lected by the k-means approach. Blue points mark the atom posi-
tions of the points in the test set, taken from an independent MD
trajectory.

The increased degrees of freedom make it impractical to parameterize and to
sample the parameters to generate a dataset of realistic molecular geometries.
It is therefore necessary to establish a new sampling strategy. To sample these
datasets we take the approach of running cheap classical MD simulations as de-
scribed in Sec. 4.2.2. We run simulations at different temperatures. Although
we want to predict data points from an MD trajectory run at 300 K (room tem-
perature), we generate proposals by running classical isothermal MD not only at
300 K, but also at 350 K and 400 K temperature for ethane and benzene. The MD
simulations are run using the General Amber Force Field (GAFF) [Wan+04] in
the PINY_MD package [Tuc+00]. For malonaldehyde we run trajectories at

4.3 Application to 3-D molecules 81

Figure 4.9: Top. The distribution of malonaldehyde atom positions. Red points
mark the atom positions of the training set proposal points as se-
lected by the k-means approach. Turquoise points mark the atom
positions of the points in the test set, taken from an independent ab
initio MD trajectory. Blue points mark the atom positions sampled
by the ML-HK model.
Bottom. A closer view of the region outlined with a dashed box for
the ab initio (turquoise) and ML-HK (blue) trajectories.

82 Chapter 4 Prediction of quantum mechanical observables

300 K and 350 K temperature.

This has two effects. First, an ab initio trajectory for 300 K might cover areas
that an classical trajectory for 300 K never reaches. Sampling with higher tem-
peratures (here: 350 K and 400 K) makes the molecule move in a wider range
and is thus more likely to cover the complete area of an ab initio trajectory.
Secondly, MD trajectories stay mostly in low energy areas and rarely reach ar-
eas that require higher energies. Increasing the temperature of the simulation
make the trajectory run through higher energy areas more often and thus sam-
ple these regions more completely. We later analyze in how far data points from
higher temperature simulations help the machine learning model.

We combine geometries of one 300 K trajectory and one higher temperature
trajectory (each 1 ns) in order to generate more sets of training set proposal
points. From these proposals we select 2000 training points via the k-means
approach as described in Sec. 4.2.2. We thus have, for each ethane and benzene,
three different datasets for training: 300 K, 300 K + 350 K, and 300 K + 400 K.
For malonaldehyde we combine two sets of 300 K and 350 K simulations, one
for each tautomer (the proton being attached to either of the two oxygens).

The number of 2000 training points is chosen because it leads to a data set that
is still comfortably manageable with the kernel models but should also cover
the sampling area well. This will allow us to evaluate whether the sampling,
normalization, and training approach works on molecules with more degrees
of freedom. Evaluating different numbers of training points here would require
a different selection of the proposal points and thus more expensive DFT calcu-
lations.

The test sets should be independently distributed from the training set. It is
therefore necessary that the test set geometries stem from an independent MD
trajectory. For ethane and benzene, we simulate independent trajectories via
classical MD and select 200 snapshots following a random initial timestamp as
test points. The overlay of training and test data is visualized for ethane and
benzene in its Figs. 4.7 and 4.8 correspondingly. For malonaldehyde, the most
complex molecule, we choose to simulate a more realistic, but also computa-
tionally more expensive, 0.25 ns ab initio MD trajectory at 300 K for the test set.
Fig. 4.9 shows how the sampling from the classical trajectory differs from the

4.3 Application to 3-D molecules 83

∆E ∆EML
D

Molecule Training traj. Test trajectory MAE max MAE max

300 K 0.42 1.7 0.32 1.5

Benzene 300 K + 350 K classical 300 K 0.37 1.8 0.28 1.5

300 K + 400 K 0.47 2.3 0.30 1.8

300 K 0.20 1.5 0.17 1.3

Ethane 300 K + 350 K classical 300 K 0.23 1.4 0.19 1.1

300 K + 400 K 0.14 1.7 0.098 0.62

Malonaldehyde 300 K + 350 K ab initio 300 K 0.27 1.2 0.21 0.74

Table 4.3: The errors (in kcal/mol) of the ML-HK models for the MD datasets
on their test set trajectories.

points of the ab initio trajectory.

The results for evaluations on the test set trajectories are given in Table 4.3 and
are visualized for ethane and benzene in Fig. 4.10. The ML error is reduced by
creating the training set from trajectories at both the target temperature and a
higher temperature to increase the representation of more distorted geometries.
The MAE of the ML-HK map for the benzene data set using training geometries
from 300 K and 350 K trajectories is only 0.37 kcal/mol for an energy range that
spans more than 10 kcal/mol (Table 4.3). For ethane the ML-HK model repro-
duces the energy of geometries with a MAE of 0.23 kcal/mol for an independent
MD trajectory at 300 K (Fig. 4.10). This test set includes conformers from the
sparsely-sampled eclipsed configuration (Fig. 4.7). Using points from a 400 K
trajectory improves the ML-HK map due to the increased probability of higher
energy rotamers in the training set (Table 4.3). Generating appropriate geome-
tries for training via computationally cheap classical MD thus significantly de-
creases the cost of the ML-HK approach.

The ab-initio MD test trajectory of malonaldehyde includes a proton transfer
event, i.e. points that would not be sampled in the classical MD training trajec-

M
L[

M
L]

M
L[

M
L]

4.3 Application to 3-D molecules 85

M
L
[

M
L
]

0.
4

0.
5

0.
6

Relativeprotonposition

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

Si
m

ul
at
io

n
tim

e(
5f

s)

510 E(kcal/mol)

M
D

vi
aM

L
D
FT

Figure

4.11

:
Top.

Energy

errors

of

ML-HK

along

a

0.25 ps

ab

initio

MD

trajectory

of

malonaldehyde.

PBE

values

in

blue,

ML-

HK

values

in

red.

The

ML

model

correctly

predicts

energies

during

proton

transfer

in

frames

7–-15

without

explicit

inclusion

of
these

geometries

in

the
training

set.

Bottom.

Energy

errors

of
ML-HK

along

a
1 ps

MD

trajectory

of
malonaldehyde

generated

by

the

ML-HK

model.

ML-HK

values

in
red,

PBE

values

of
trajectory

snapshots

in

blue.

The

shaded

grey

curve

shows

the

relative

proton

position.

− .

− .

.

.

.

.
PBE − LDA

PBE − PBEb

PBEb − ML

=

=

4.4 Molecular dynamics with machine learning models 87

An example of a benzene density predicted by the nML model is given in Fig. 4.12.
It is clear that the errors introduced by the Fourier basis representation are
larger than the errors introduced by the ML-HK map by two orders of magni-
tude. Furthermore, the ML-HK errors in density (as evaluated on a grid in the
molecular plane of benzene) are also considerably smaller than the difference
in density between density functionals (PBE vs. LDA). This result verifies that
the ML-HK map is specific to the density used to train the model and should be
able to differentiate between densities generated with other electronic structure
approaches.

The basis representation introduces errors of the same magnitude as the differ-
ence in theory levels. The final energy predictions are unaffected by this because
the EML map learns directly from the the densities affected by the basis repre-
sentation. However, depending on how the densities should be used, a larger
number of basis functions or a basis set that is more specifically tailored to the
molecule might be necessary.

4.4 Molecular dynamics with machine learning models

As a final step in the evaluation of the ML-HK approach, we run an MD sim-
ulation with the ML model, i.e. an MD simulations without running any DFT
calculations.

Sec. 1.2.2 explains how MD simulations work in general. To run ab initio quality
MD simulations without running DFT calculations, we have to obtain forces
from the ML model. So far, we can obtain densities (via nML) and energies
(via EML) from the ML-HK approach. To obtain the forces, we need a way to
calculate the gradients of the total energy EML[nML] with respect to the atom
positions.

There are two possibilities. First, the forces could be predicted by a specifically
trained forces model. This approach promises a fast and reliable approach to
force prediction and is popular when learning PES models [Puk+09; Chm+17].
The forces, however, are tied to each atom of the molecule which makes it nec-
essary to keep track of atom indexing. By predicting the density n(rrr) in the nML

88 Chapter 4 Prediction of quantum mechanical observables

map, the prediction result becomes invariant to atom indexing and thus make
this idea impractical for the ML-HK approach.

The second possibility is to derive the forces from energy predictions by calculat-
ing the gradients numerically, i.e. via finite differences. This approach, however,
tends to be slower due to the high number of necessary EML[nML] evaluations.
In Sec. A we will discuss a possibility to obtain forces fast by learning densities
in specific basis function representations that make analytical force calculations
possible.

The force acting upon atom i with position Ri is given by the negative gradient

Fi = −∇RiE
ML[nML[vR]] ∈ R3 (4.12)

where the Gaussians potential v is given as in Eq. 3.12. We compute the gradient
via central finite differences, i.e.

δh(R) = EML[nML[vR+ 1
2h
]] − EML[nML[vR− 1

2h
]]. (4.13)

The forces are then computed via

Fi = −
1
ϵ
(δ(ϵ,0,0)⊺(Ri), δ(0,ϵ,0)⊺(Ri), δ(0,0,ϵ)⊺(Ri))

⊺
. (4.14)

The evaluation of the forces thus requires six energy evaluations per atom. The
finite difference distance parameter ϵ has to be chosen carefully. A smaller value
yields more accurate gradients in general, however, a larger ϵ smooths out the
ML model’s slightly inaccurate energy manifold and yield more accurate gradi-
ents in this case. We can identify a good value for ϵ by either comparing com-
puted forces to exact ones from the reference calculations or by starting with a
large ϵ and making it smaller until the force values become unstable. Here, we
find a value of 0.001 Å to yield accurate force predictions.

It is important to remember that the atom positions have been normalized for
training and ML model evaluation. To get accurate results, this normalization
procedure has to be built in to the force calculation procedure as well. Both
the MD simulation and the finite difference displacement change the atom po-
sitions and require a normalization step.

4.4 Molecular dynamics with machine learning models 89

Data: Atomic positions R1, . . . ,RNatoms ∈ R3, Models nML and EML,
Gaussians potential function VR, Normalization function
normalize ∶ R↦ R, Finite difference distance parameter ϵ

Result: Forces for each atom: F1, . . . ,FNatoms

for i = 1, . . . ,Natoms do
for d = 1, 2, 3 do

Rl
i ← Ri − ϵ

2ei (ei is i-th unit vector)
Rr
i ← Ri + ϵ

2ei
Rl
i ← normalize(Rl

i)
Rr
i ← normalize(Rr

i)
vl ← V(R1,...,Rl

i ,...RNatoms)
vr ← V(R1,...,Rr

i ,...RNatoms)

fd ← − 1
ϵ
(EML[nML[vl]] + EML[nML[vr]])

end
Fi ← (f1, f2, f3)⊺

end
Algorithm 2: Force calculation for MD with ML via central finite differ-
ences.

The complete algorithm for calculating forces from the nML and EML models is
summarized in Algorithm 2.

Since the simulation should run at a fixed temperature of 300 K, it is necessary
to use a thermostat. Here, we use the Langevin thermostat as implemented in
the Atomic Simulation Environment (ASE) [Hjo+17]. To maintain temperature
it modifies Newton’s second law of motion by adding friction and a random
force. The amount of friction is controlled by a parameter γ. We want to set the
parameter so that the trajectory conserves energy well (see below), in this case
the value is set to 0.413 fs−1 (0.01 atomic units). We initialize the velocities by
drawing randomly from a Maxwell-Boltzman distribution.

The energy curve of the MD simulation that is generated by forces calculated
from the ML model is shown in Fig. 4.11 (bottom). No DFT calculation was run
to obtain this trajectory.

We now evaluate the quality of the simulation in three different ways. First,
we can take the geometry snapshots of the MD trajectory generated by ML and
compute the total energies via DFT. Fig. 4.11 shows the comparison between the

.

.

.

−

−

−

−

−

Δ

Δ

C O H(−CH) H(−OH)

Δ
(
)
×

−

Δ ()

92 Chapter 4 Prediction of quantum mechanical observables

[Tuc10]. Here, E(t) is the energy at time step t and ∆E(t) is defined as

∆E(t) = 1
t

t
∑
t′=0
∣E(t

′) − E(0)
E(0)

∣. (4.15)

The trajectory conserves energy reasonably well over the 2 ps trajectory.

4.5 Discussion

Application of the ML-HK map showed that the approach works in 1-D and
3-D. For 1-D it outperforms previous gradient descent based approaches. It is
robust enough for complex applications. The approach can be applied without
much adaptation to 1-D toy problems, smaller and larger molecules, and even
MD simulations.

The chained model is robust enough to yield gradients that are accurate enough
for MD simulations. Here, calculating the energy gradients (forces) via finite
differences requires a trade-off when choosing the distance parameter ϵ. More
interesting is the outlook that the prediction of density matrices gives us in Ap-
pendix A. There, the approach of predicting densities generalizes to the predic-
tion of density matrices. Once density matrices are predicted, it is possible to
calculate the energy gradients analytically and thus avoid the finite differences.

The robustness of the chained model in regions where no training data is avail-
able, i.e. in the region of the proton transfer, is interesting. The models based
on the Gaussian kernel flatten the predicted energy manifold and thus lead the
molecular dynamics trajectory into this area. However, the energies’ trend is
predicted well enough to also lead the trajectory out and back into known ter-
ritory. This behavior can be particularly useful when the ML aided simulation
of molecular dynamics is applied in combination with active learning.

The MD simulation then leads to exploratory predictions, which in machine
learning are a classical application for active learning. It describes how the ML-
HK approach with the classical MD sampling scheme can work in practice. In
this setting the model would query a DFT code whenever it is not confident in
its own prediction and retrain itself with this new data. This allows relatively

4.5 Discussion 93

cheap exploration of rare events. The time-consuming part of predicting ge-
ometries from the often visited regions is then expedited by machine learning.

A limit to the approach will be the size of the molecule. Increasing the num-
ber of atoms in the molecule will make it necessary to increase the number of
Fourier basis functions for the density. At some point this number reaches the
computational complexity limit, for example, when the basis coefficients can
not fit into memory. A possibility to circumvent this problem is given by uti-
lizing atom contributions. Atom contributions to the density are imaginable
when atom-centered basis functions are used. The first step in this directions
are density matrices and the proof of concept described in Appendix A.

5
Conclusion

The application of machine learning to density functional theory had just
started to gain interest and first successful attempts had been made on 1-D
systems when this research began. The purpose of the thesis was to adapt
these approaches to 3-D systems. This has been successful with the machine-
learning-Hohenberg-Kohn map. A new framework has been introduced that
outperforms the previous work in 1-D and also analyzes how and where the
errors are made that contribute to this result.

In the course of applying the methods to 3-D many tangential problems have
been solved. A basis set had to be selected that works with electronic structure
codes and allows efficient application of the machine learning training and in-
ference routines. The molecule geometries had to be normalized in a robust
way. To work with smooth densities, the right pseudo-potentials had to be se-
lected. To generate training data for the MD parts, a sampling routine based on
classical dynamics had to be designed.

This thesis also sets a solid theoretical foundation for the machine-learning-
Hohenberg-Kohn map by embedding it into the framework of functional pre-
dictions with operator-valued kernels and the use of basis function representa-
tions. An efficient multivariate KRR training routine has been implemented.

The new approach not only works in 3-D but is also robust enough to allow
application to the simulation of molecular dynamics. It was even possible to

96 Chapter 5 Conclusion

simulate chemical phenomena that were not included in the training set. The
scope of these results go far beyond what was initially thought possible. Where
the original draft of the publication Brockherde et al. [Bro+17] only included
application to 1-D systems, a 2-year long series of internal discussions, peer
reviews, and addition of more authors, made it grow to not only contain appli-
cation to 3-D system but also an application to MD simulations. The American
Chemical Society’s Chemical & Engineering News now lists it among the most
notable chemistry “research of the year” 2017 [Jac17].

Future research that builds upon the results presented here is already under-
way. Part of this is the extension to density matrices where preliminary results
are presented in the Appendix A. Other work involves predicting CCSD(T) en-
ergies from DFT densities.

A
Integrated prediction of density matrices

A.1 Motivation

The thesis results show that learning electron densities promise good excellent
results for prediction of DFT energies with the approach even being able to sim-
ulate molecular dynamics. However, the method of predicting electron densi-
ties via the HK map requires a total energy map EML and does not give direct
access to forces. Moreover it does not preserve the physics of DFT and does
not make use of easily computable parts that are either known or for which
good approximations exist, for example the Hartree and exchange-correlation
potentials. Making use of these parts of DFT would make the predictions more
robust and would allow us to easily calculate other quantum chemical quantities
directly without having to learn separate machine learning models like EML.

To demonstrate the idea of integrating density predictions as a proof of con-
cept, this part of the thesis follows the approach of combining self-consistent
field (SCF) calculations and density predictions by avoiding the computation-
ally dominant Roothaan-Hall diagonalization in KS-DFT and introducing a
machine learning model that predicts density matrices from non-interacting
Hamiltonians in basis set representation (i.e. Fock matrices).

Density matrices (which are defined in the following section) contain signifi-
cantly more information than electron densities. The benefit of density matri-
ces is that they make use of specifically tailored atom-centered basis functions

100 Appendix A Integrated prediction of density matrices

that are physically motivated. This leads to the disadvantage that the number of
basis functions grows with the number of atoms and orbitals and the approach
is thus not orbital-free. A possibility to avoid the scaling problem that this in-
troduces is discussed later on.

A.2 Density matrices

The basics of DFT where introduced in Sec. 1.2.1. It was discussed that Kohn-
Sham DFT reduces the intractable many-body problem of interaction electrons
in a static potential to an auxiliary problem of non-interacting electrons in an
effective potential.

The orbitals of the non-interacting Schrödinger equation were given in Eq. 1.10
and the KS potential in Eq. 1.15. The non-interacting system is thus described
by the Kohn-Sham equations

[Ts + vH(rrr) + vXC(rrr) + v(rrr)]φα(rrr) = ϵαφα(rrr). (A.1)

We expand the orbitals φα(rrr) over an atom-centered Gaussian-type orbital
(GTO) basis set χ, i.e.: The GTO basis set χ was already discussed in Sec. 2.1.4.
It allows us to expand the orbitals φα via

φα(rrr) =
Q
∑
p=1

Cαpχp(rrr). (A.2)

This basis set allows us to reformulate Eq. A.1 as a generalized eigenvalue prob-
lem by multiplying on the left by χ∗q(rrr) and integrating over rrr. We then have
the Roothaan-Hall equation

FC = ΛSC (A.3)

which we have to solve for the molecular orbital (MO) coefficients C. Due to
KS-DFT’s historic similarity to Hartree-Fock methods, the matrix

Fqp = ∫ χ∗q(rrr) [Ts + vH(rrr) + vXC(rrr) + v(rrr)]χp(rrr)drrr. (A.4)

A.2 Density matrices 101

Other
contrib.

Atom
positions

Fock
matrix F

Orthog.
Fock

matrix L−1F

Orthog.
orbitals
V = LC

Molecular
orbitals C

Orthog.
Density
VVT

Density
matrix

D = CCT

ForcesEnergy Density

diag.

(a)

(b)

via VH and VXC

Common ML
approach

Hohenberg-Kohn
map

Density matrix prediction
w/o orthog.

Density matrix
prediction w/ orthog.SCF loop

Figure A.1: Position of the approach in Kohn-Sham density functional theory
and its self-consistent field loop. Dashed lines are machine learn-
ing models. DFT codes usually take route (a) to have access to the
molecular orbitals. Here, we take route (b) when predicting with or-
thogonalization. For predicting without orthogonalization we avoid
the lower orthogonalization half entirely. Note that common ML ap-
proaches that learn the potential energy map can neither factor in
other external contributions nor have they access to other properties
like analytic energy gradients (forces). The main part of the thesis
(the approach via the Hohenberg-Kohn map) discusses predicting
the density n directly.

102 Appendix A Integrated prediction of density matrices

is referred to as the Fock matrix. The overlap matrix S accounts for the non-
orthogonality of the basis set and is given by

Sqp = ∫ χ∗q(rrr)χp(rrr)drrr. (A.5)

Solving Eq. A.3 is not straight forward: The Hartree potential vH and the ex-
change correlation functional vXC depend on the density matrix which itself
depends on the molecular orbital coefficients. We define the density matrix D
implicitly via the density n of the system:

n(rrr) =
N
∑
α=1

φ∗α(rrr)φα(rrr) =∑
pq

N
∑
α=1

C∗αqCαpχ
∗
q(rrr)χp(rrr) =∑

pq
Dpqχ

∗
q(rrr)χp(rrr).

To solve the eigenvalue problem, the self-consistent field (SCF) method iterates
over

1. building the Fock matrix and

2. diagonalizing it to find the density

until convergence. There are two parts that dominate the computational com-
plexity: The evaluation of the two-electron integrals that are necessary for the
Hartree potential vH in part (1) and the diagonalization of the Fock matrix in
part (2). The naive evaluation of the two-electron integrals has O(Q4) com-
plexity, but usually only a few two-electron integrals are significantly larger
than zero. It is thus possible and common to find these non-zero integrals by
bounding the integrals via Cauchy-Schwartz inequality. This only requires the
computation of Q2 integrals plus the only two-electron integrals that will be
significantly larger than zero.

This leaves the diagonalization as the only remaining bottleneck of the DFT cal-
culation. It is possible to lessen the computational burden by using power iter-
ation to diagonalize F because only the lowest N (occupied) eigenvalue vectors
are used to compute the density. However, the number of necessary eigenvec-
tors is still substantial so that the diagonalization step remains the computation-
ally dominant part of the iteration.

In this approach we want to avoid the diagonalization completely by replacing

A.3 Machine learning model for density matrix prediction 103

step (2) with a machine learning model. Eq. A.3 is usually solved by orthogonal-
izing the basis functions first. This removes the overlap and leads to a regular
eigenvalue problem. The basis functions are orthogonalized as V = LTC by find-
ing a square root L of the overlap matrix S = LLT. We can then rewrite Eq. A.3
as

L−1FL−TV = ΛV. (A.6)

The density matrix is then given by D = L−TVVTL−1.

There are two common choices for the square root L. One, known as symmet-
ric orthogonalization, is to use the Cholesky decomposition since the overlap
matrix S should be positive definite. However, this might not always be the
case which is why another choice is often preferred: canonical orthogonaliza-
tion. This approach uses an eigen-decomposition of the overlap matrix and
incorporates the eigenvalues bigger than zero into the eigenvector matrices to
yield a square root of S.

A.3 Machine learning model for density matrix prediction

This section explains how ML can be used to skip the diagonalization in Kohn-
Sham DFT. Fig. A.1 contains an overview of Kohn-Sham DFT and clarifies
the ML approaches. All density matrix prediction approaches predict a den-
sity matrix given a Fock matrix. The differences are in how the Fock matrices
are orthogonalized. The different orthogonalization possibilities lead to three
possible machine learning models:

No orthogonalization We ignore the overlap matrix and predict F Ð→ D.
This approach has the advantage that we do not have to find a square
root of the overlap matrix which is computationally expensive. However,
the map F Ð→ D might be ill-defined. Without knowledge of S there
might be many possible density matrices that fit one Fock matrix. We
could clumsily add the overlap matrix to the ML model (i.e. by adding it
as extra features) but this turned out to be unnecessary in practice.

Symmetric orthogonalization Here, we predict L−1FL−T Ð→ VVT and then
compute D. This is a clean solution because the map is well-defined. The

104 Appendix A Integrated prediction of density matrices

disadvantages are a possibly not positive definite overlap matrix and the
cost of the Cholesky decomposition.

Canonical orthogonalization We predict L−1FL−T Ð→ VVT just as above but
use canonical orthogonalization to find L. This seems to be the best so-
lution. The only disadvantage is the cost of the eigen-decomposition of S
but this has to be done only once for a DFT calculation since S does not
change during the SCF iteration.

The application of all three models require the SCF loop. To collect training
data, we have to do full-featured DFT calculations and collect the (F,D) or
(L−1FL−T,VVT) pairs in each iteration. (In the following, we refer to all pairs
as (F,D) regardless of the orthogonalization approach.)

For the two ML approaches with orthogonalization, there are two notable devia-
tion from common KS-DFT implementations. First, we avoid the computation
of the molecular orbital coefficients C = L−1V because we need the orthogonal-
ized density matrix VVT instead. We discuss the implications later. The second
deviation is the orthogonalization after the first SCF iteration. Some codes use
the molecular orbitalsC of the previous iteration to orthogonalize F. We instead
use the initial orthogonal basis L (i.e. the square root of S) for all SCF iterations.

The most successful ML total energy prediction approaches are based on pre-
dicting atom-environment contributions as in

Etot =
Natoms

∑
i=1

ϵi.

Here, ϵi is the ML prediction of the energy contribution of the i-th atom envi-
ronment. This energy decomposition generally has no physical meaning but
seems intuitive with the near-sightedness principle in mind. For the prediction
of electron densities we where not able to make use of this idea. However, by
using atom-centered basis functions this becomes possible in an analogous way.

We are not dealing with atom environments but with basis function coefficients:
Let’s say that q and p are close if the atoms corresponding to χq and χp are close
to each other. Then, since the GTO basis functions are centered around one
specific atom, we can — with the same argument as above — also postulate that

A.4 Experiments 105

Dqp does not depend on Fq′p′ when either q′ or p′ centers are far away from q
or p centers (and thus Dqp = 0 for distant q and p centers). For close q and p
centers we can predict Dqp from Fq′p′ that are part of the atom environment. In
fact, this idea might work even better than for the energy prediction, because
we are predicting single-electron orbitals and all electron-interactions are still
handled by the exchange-correlation potential.

This view might provide the possibility to scale this method to much larger
molecules. For the results on small molecules presented here however, we do
not make use of the orbital environment view.

We use the methodology introduced in Chapter 2 to predict basis coefficients
for predicting density matrix coefficients, i.e. with independent kernel models

DML
qp (F) =

N
∑
i=1

α
(i)
qp k(F,F(i)). (A.7)

To generate training data, we collect (F,D) pairs from multiple DFT calcu-
lations. We use stratified cross-validation, i.e. we do not validate the hyper-
parameters on (F,D) pairs that were collected from calculations that also con-
tributed to the training set. We thus avoid training a model that relies on knowl-
edge about DFT iterations from a geometry for which we want to make predic-
tions.

We apply a similar method for evaluating the accuracy of the method. All pre-
sented results are predictions on geometries that did not contribute to the model
training.

A.4 Experiments

We tested the theoretic suggestions by implementing the methodology into the
computational chemistry software NWChem [Val+10]. NWChem implements
gaussian-type orbital Kohn-Sham density functional theory. We use the6-31G*
basis functions [DHP71] provided in the NWChem library and B3LYP [Bec93;
Ste+94] exchange-correlation.

NWChem by default uses canonical orthogonalization for the first iteration but

106 Appendix A Integrated prediction of density matrices

Orthogonalization MAE 90% max

H2

None 0.064 0.12 0.59

Canonical 0.0028 0.0052 0.024

Cholesky 0.053 0.15 0.36

H2O

None 0.083 0.15 0.29

Canonical 1.2 0.77 16

Cholesky 0.020 0.053 0.15

Table A.1: Total energy mean average errors for density matrix prediction with
different orthogonalization approaches. For H2, we trained the
model with 5 reference calculations; for H2O, we trained the model
with 15 reference calculations. Errors in kcal/mol.

then orthogonalizes by writing the Fock matrix in a basis of the previous itera-
tion’s molecular orbitals.

We evaluate the method on the H2 and H2O atom positions used in Secs. 4.3.1
and 4.3.2 by comparing total energies. The results are given in Table A.1.

What happens if the density matrix prediction becomes inaccurate for some
iterations? This can happen when the iteration trajectory leaves the training
data manifold. We simulate this by adding noise to the density for the first
five iterations. We measure the variance of the density matrix entries vqp =
Var(Dqp) for the training data. Then we add Gaussian noise with variance σ

times vqp, i.e.
Dqp ← Dqp +N (0, σvqp) (A.8)

for the first five iterations. We plotted the energy trajectory for calculations
of several geometry with added noise (σ = 50%) in Fig. A.2. The trajectory
does not deviate too much even with heavy noise influence and converges to
the ground-state energy in every case.

−

−

−

−

H H O

H O H

H O

108 Appendix A Integrated prediction of density matrices

predict the density matrix. This means that the overlap information must be
encoded in the Fock matrix, i.e. a change in overlap changes the Fock matrix
so distinctly that the data manifold does not contain similar Fock matrices as-
sociated to different overlap matrices. These would result in different density
matrices and thus be unpredictable by the ML model.

It is interesting that this approach is robust, even with heavy noise influence.
We presume that the Fock matrix step provides some kind of self correcting
behavior.

The approach skips the diagonalization of the Fock matrix and directly pre-
dicts the corresponding density matrix. We thus have no access to either the
molecular orbital coefficients nor the eigenvalues. The eigenvalues are impor-
tant because they are used to determine the HUMO-LUMO gap but they can
be retrieved via the Roothaan-Hall equation.

This example implementation and its result show that the principle of pre-
dicting densities is even adaptable to SCF calculations. Having access to
the density matrix even allows the calculation of analytical energy gradients
(forces) [Pul14]. Implementing the energy gradients is possible, yet not
straight-forward. It requires substantial modifications to the NWChem code
and goes beyond the scope of this thesis.

Bibliography

[AHB87] K. S. Arun, T. S. Huang, and S. D. Blostein. “Least-Squares Fitting
of Two 3-D Point Sets”. In: IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-9.5 (Sept. 1987), pp. 698–700.

[AV07] David Arthur and Sergei Vassilvitskii. “k-means++: the advantages
of careful seeding”. In: Proc. eighteenth Annu. ACM-SIAM Symp.
Discret. algorithms. New Orleans, Louisiana: Society for Industrial
and Applied Mathematics Philadelphia, 2007, pp. 1027–1035.

[Bec93] Axel D. Becke. “Density-functional thermochemistry. III. The role
of exact exchange”. In: J. Chem. Phys. 98.7 (1993), pp. 5648–5652.

[BKC13] Albert P Bartók, Risi Kondor, and Gábor Csányi. “On representing
chemical environments”. In: Phys. Rev. B 87.18 (May 2013), p. 184115.

[Bro+17] Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron
Burke, and Klaus-Robert Müller. “Bypassing the Kohn-Sham
equations with machine learning”. In: Nat. Commun. 8.1 (2017),
p. 872.

[BW12] Kieron Burke and Lucas O. Wagner. “DFT in a nutshell”. In: Int. J.
Quantum Chem. 113.2 (2012), pp. 96–101.

[BWS04] Gökhan H Bakır, Jason Weston, and Bernhard Schölkopf. “Learn-
ing to find pre-images”. In: Adv. Neural Inf. Process. Syst. 2004,
pp. 449–456.

[Chm+17] Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor
Poltavsky, Kristof T Schütt, and Klaus-Robert Müller. “Machine
learning of accurate energy-conserving molecular force fields.” In:
Sci. Adv. 3.5 (May 2017), e1603015.

112 Bibliography

[CMY08] Aron J. Cohen, Paula Mori-Sanchez, and Weitao Yang. “Insights
into Current Limitations of Density Functional Theory”. In: Science
321.5890 (Aug. 2008), pp. 792–794.

[DG90] Reiner M. Dreizler and Eberhard K. U. Gross. Density Functional
Theory: An Approach to the Quantum Many-Body Problem.
Springer Berlin Heidelberg, 1990.

[DHP71] R. Ditchfield, W. J. Hehre, and J. A. Pople. “Self-Consistent
Molecular-Orbital Methods. IX. An Extended Gaussian-Type
Basis for Molecular-Orbital Studies of Organic Molecules”. In: J.
Chem. Phys. 54.2 (1971).

[Han+13] Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fa-
zli, Matthias Rupp, Matthias Scheffler, O. Anatole von Lilienfeld,
Alexandre Tkatchenko, and Klaus-Robert Müller. “Assessment
and Validation of Machine Learning Methods for Predicting
Molecular Atomization Energies”. In: J. Chem. Theory Comput.
9.8 (Aug. 2013), pp. 3404–3419.

[Hjo+17] Ask Hjorth Larsen et al. “The atomic simulation environment—a
Python library for working with atoms”. In: J. Phys. Condens. Mat-
ter 29.27 (July 2017), p. 273002.

[HK64] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In:
Phys. Rev. 136.3B (Nov. 1964), B864–B871.

[HNW93] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving
ordinary differential equations I: Nonstiff Problems. New York:
Springer, 1993.

[Jac17] Mitch Jacoby. Research of the year. Ed. by Chemical & Engineering
News. https://cen.acs.org/articles/95/i49/chemistry-research-of-
the-year-2017.html. [Online; posted December 18, 2017]. 2017.

[Kad+16] Hachem Kadri, Emmanuel Duflos, Philippe Preux, Stéphane
Canu, Alain Rakotomamonjy, and Julien Audiffren. “Operator-
valued Kernels for Learning from Functional Response Data”. In:
J. Mach. Learn. Res. 17.20 (2016), pp. 1–54.

Bibliography 113

[Kim+15] Min-Cheol Kim, Hansol Park, Suyeon Son, Eunji Sim, and Kieron
Burke. “Improved DFT Potential Energy Surfaces via Improved
Densities”. In: J. Phys. Chem. Lett. 6 (2015), pp. 3802–3807.

[KS65] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Ex-
change and Correlation Effects”. In: Phys. Rev. 140.4A (Nov. 1965),
A1133–A1138.

[KSB13] Min-Cheol Kim, Eunji Sim, and Kieron Burke. “Understanding
and Reducing Errors in Density Functional Calculations”. In: Phys.
Rev. Lett. 111.7 (Aug. 2013), p. 73003.

[KSB14] Min-Cheol Kim, Eunji Sim, and Kieron Burke. “Ions in solution:
Density corrected density functional theory (DC-DFT)”. In: J.
Chem. Phys. 140.18 (2014), 18A528.

[Li+16a] Li Li, Thomas E. Baker, Steven R. White, and Kieron Burke. “Pure
density functional for strong correlation and the thermodynamic
limit from machine learning”. In: Phys. Rev. B 94.24 (Dec. 2016),
p. 245129.

[Li+16b] Li Li, John C. Snyder, Isabelle M Pelaschier, Jessica Huang, Uma-
Naresh Niranjan, Paul Duncan, Matthias Rupp, Klaus-Robert
Müller, and Kieron Burke. “Understanding machine-learned
density functionals”. In: Int. J. Quantum Chem. 116.11 (2016),
pp. 819–833.

[Mik+99] Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert
Müller, Matthias Scholz, and Gunnar Rätsch. “Kernel PCA and de-
noising in feature spaces”. In: Adv. Neural Inf. Process. Syst. 1999,
pp. 536–542.

[Mon+13] Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro
Vazquez-Mayagoitia, Katja Hansen, Alexandre Tkatchenko, Klaus-
Robert Müller, and O. Anatole von Lilienfeld. “Machine learning
of molecular electronic properties in chemical compound space”.
In: New J. Phys. 15.9 (Sept. 2013), p. 95003.

114 Bibliography

[MP05] Charles A. Micchelli and Massimiliano Pontil. “On Learning
Vector-Valued Functions”. In: Neural Comput. 17.1 (Jan. 2005),
pp. 177–204.

[PBE96] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. “Gener-
alized Gradient Approximation Made Simple”. In: Phys. Rev. Lett.
77.18 (Oct. 1996), pp. 3865–3868.

[Pre+92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C: The Art of Scientific
Computing. 2nd ed. Cambridge University England EPress, 1992,
p. 994.

[Puk+09] A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar,
S. Bukkapatnum, and R. Komanduri. “Simultaneous fitting of a
potential-energy surface and its corresponding force fields using
feedforward neural networks”. In: J. Chem. Phys. 130.13 (Apr. 2009),
p. 134101.

[Pul14] Peter Pulay. “Analytical derivatives, forces, force constants, molec-
ular geometries, and related response properties in electronic
structure theory”. In: Wiley Interdiscip. Rev. Comput. Mol. Sci. 4.3
(2014), pp. 169–181.

[PZ81] J. P. Perdew and Alex Zunger. “Self-interaction correction to
density-functional approximations for many-electron systems”.
In: Phys. Rev. B 23.10 (May 1981), pp. 5048–5079.

[Rib+15] Raphael F. Ribeiro, Donghyung Lee, Attila Cangi, Peter Elliott, and
Kieron Burke. “Corrections to Thomas-Fermi Densities at Turning
Points and Beyond”. In: Phys. Rev. Lett. 114.5 (Feb. 2015), p. 050401.

[RS05] James Ramsay and Bernard W. Silverman. Functional Data Analy-
sis (Springer Series in Statistics). Springer, 2005.

[Rup+12] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and
O. Anatole von Lilienfeld. “Fast and Accurate Modeling of Molec-
ular Atomization Energies with Machine Learning”. In: Phys. Rev.
Lett. 108.5 (Jan. 2012), p. 58301.

Bibliography 115

[Sch+14] K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.-R. Müller, and
E. K. U. Gross. “How to represent crystal structures for machine
learning: Towards fast prediction of electronic properties”. In: Phys.
Rev. B 89.20 (May 2014), p. 205118.

[Sch+17] Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus-
Robert Müller, and Alexandre Tkatchenko. “Quantum-chemical
insights from deep tensor neural networks”. In: Nat. Commun. 8
(Jan. 2017), p. 13890.

[Sch95] A. Schwarzenberg-Czerny. “On matrix factorization and efficient
least squares solution.” In: Astron. Astrophys. Suppl. 110 (Apr. 1995),
p. 405.

[Sny+12] John C. Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert
Müller, and Kieron Burke. “Finding Density Functionals with
Machine Learning”. In: Phys. Rev. Lett. 108.25 (June 2012).

[Sny+13a] John C. Snyder, Sebastian Mika, Kieron Burke, and Klaus-Robert
Müller. “Kernels, Pre-images and Optimization”. In: Empirical In-
ference. Springer Berlin Heidelberg, 2013, pp. 245–259.

[Sny+13b] John C. Snyder, Matthias Rupp, Katja Hansen, Leo Blooston, Klaus-
Robert Müller, and Kieron Burke. “Orbital-free bond breaking via
machine learning”. In: J. Chem. Phys. 139.22 (Dec. 2013), p. 224104.

[Sny+15] John C. Snyder, Matthias Rupp, Klaus-Robert Müller, and Kieron
Burke. “Nonlinear gradient denoising: Finding accurate extrema
from inaccurate functional derivatives”. In: Int. J. Quantum Chem.
115.16 (Aug. 2015), pp. 1102–1114.

[SS03] Elias M. Stein and Rami Shakarchi. Fourier analysis: an introduc-
tion. Princeton University Press, 2003.

[SSM98a] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
“Nonlinear Component Analysis as a Kernel Eigenvalue Problem”.
In: Neural Comput. 10.5 (July 1998), pp. 1299–1319.

[SSM98b] Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert Müller. “The
connection between regularization operators and support vector
kernels.” In: Neural Netw. 11.4 (June 1998), pp. 637–649.

116 Bibliography

[Ste+94] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. “Ab
Initio Calculation of Vibrational Absorption and Circular Dichro-
ism Spectra Using Density Functional Force Fields”. In: J. Phys.
Chem. 98.45 (1994), pp. 11623–11627.

[Ste56] H. Steinhaus. “Sur la division des corps matériels en parties”. In:
Bull. Acad. Pol. Sci. Cl. III. 4 (1956), 801–804 (1957).

[Tuc+00] Mark E. Tuckerman, D. A. Yarne, Shane O. Samuelson, Adam L.
Hughes, and Glenn J. Martyna. “Exploiting multiple levels of paral-
lelism in Molecular Dynamics based calculations via modern tech-
niques and software paradigms on distributed memory comput-
ers”. In: Comput. Phys. Commun. 128.1–2 (2000), pp. 333–376.

[Tuc10] Mark E. Tuckerman. Statistical mechanics : theory and molecular
simulation. Oxford University Press, 2010, p. 123.

[Val+10] M. Valiev et al. “NWChem: A comprehensive and scalable open-
source solution for large scale molecular simulations”. In: Comput.
Phys. Commun. 181.9 (2010), pp. 1477–1489.

[Vap98] Vladimir Naumovich Vapnik. Statistical learning theory. Wiley,
1998.

[Wan+04] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Koll-
man, and David A. Case. “Development and testing of a general
amber force field”. In: J. Comput. Chem. 25.9 (2004), pp. 1157–1174.

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	Acronyms
	Motivation and Background
	Introduction
	From QM to ML
	Organization and own contributions

	Machine Learning for Functionals and Functional Response Data
	Functional data representations
	ML for dependent data
	Toy experiment
	Discussion

	Hohenberg-Kohn map
	Kinetic energy approach
	Electron density prediction
	Model evaluation and error measure
	Discussion

	Prediction of quantum mechanical observables
	Application to 1-D particle-in-a-box data
	Geometry normalization and sampling in 3-D
	Application to 3-D molecules
	MD with ML models
	Discussion

	Conclusion
	Appendix Integrated prediction of density matrices
	Motivation
	Density matrices
	ML model for density matrix prediction
	Experiments
	Discussion

