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Abstract

In this thesis we present degree bounds for the circumference c(G) of k-

connected graphs G with 3 ≤ k ≤ 5. Let C be a longest cycle in a graph G

and let L(G−C) be the length of a longest path in G−V (C). Let 2 ≤ k ≤ 5

and L(G−C) ≥ k−1. It is known that c(G) = |C| ≥ (k+1)δ−(k−1)(k+1),

if G is (k+1)-connected and n = |G| ≥ (k+1)δ−k(k−1), if G is k-connected .

The exceptional classes for these estimates when the connectivity is reduced

by 1 are essentially determined. Moreover, for 3-connected graphs G, the

exceptional classes for the estimates c(G) ≥ 4δ − c with c ∈ {5, 6, 7, 8} are

essentially characterized.
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Gradabschätzungen für den Kreisumfang von Graphen

Zusammenfassung

In dieser Dissertation werden neue Gradabschätzungen für den Kreisum-

fang c(G) von k-zusammenhängenden Graphen G mit 3 ≤ k ≤ 5 angegeben.

Sei C ein längester Kreis in G und L(G−C) die Länge der längesten Wege in

G−C := G−V (C). Es ist bekannt, daß c(G) = |C| ≥ (k+1)δ−(k+1)(k−1)

gilt, wenn L(G−C) ≥ k−1 und G ein (k+1)-zusammenhängende Graph ist.

Die Ausnahmeklassen bzgl. dieser Abschätzungen für k-zusammenhängende

Graphen werden im wesentlichen bestimmt. Für 3-zusammenhängende

Graphen G werden die Ausnahmeklassen bzgl. der Abschätzung |C| ≥ 4δ−c

bei L(G− C) ≥ 2 für 5 ≤ c ≤ 8 im wesentlichen bestimmt.
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Chapter 1

Introduction

This thesis is the result of more than three years research in the field of graph

theory. Except the first two introductory chapters, the other three chapters

are based on papers written during these years. Chapters 3 and 4 are joint

work with Jung. Chapter 3 is published in“Results in Mathematics 41(2002)

118-127”(see [13]).

In this introductory chapter we give a short survey of our results and

indicate some connections with other known results. We use Bondy and

Murty [1] as our main source for terminology and notation. Some additional

terminology and the definitions of several classes of graphs-so called ”exep-

tional classes”-are given in chapter 2. In this chapter, whenever undefined

classes of graphs are involved, we will indicate the section where they are

first introduced.

All graphs considered in this thesis are finite, undirected and without

loops or multiple edges. For a graph G, let V (G) and E(G) denote respec-

tively, the vertex set and the edge set of G. n will denote the number of

vertices, and α and κ(G) the independence number of G and the connectiv-

ity of G, respectively. For α ≥ k ≥ 1 let σk = min{d(u1) + · · · + d(uk) :

{u1, . . . , uk} is an independent set in G}. For the minimum degree in G,

instead of σ1 we use the more common notation δ.

The length of a longest cycle in G is called the circumference of G and

denoted by c(G). A graph G is called hamiltonian if c(G) equals the number
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of vertices of G. A cycle in G is called a Dλ-cycle, if all components of G−
V (C) have fewer than λ vertices. A hamiltonian cycle (path) is a cycle (path)

which contains all vertices of G. A graph G is called hamilton-connected, if

there exists a hamiltonian path between every pair of distinct vertices of G.

For a subgraph H of G let N(H) denote the set of all vertices in G− V (H)

which are adjacent to some vertex in H. A connected subgraph H of G is

called normally linked in G, if |H| := |V (H)| = 1 or |(N(x)∪N(y))∩H| ≥ 2

for any distinct elements x, y of N(H). We call H strongly linked in G, if

moreover H is hamilton-connected.

Let G and H be two vertex-disjoint graphs. The join of G and H, denoted

by G∨H, is a graph with vertex set V (G∨H) = V (G)∪V (H) and edge set

E(G ∨H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.
The literature on longest cycles in graphs is extensive. The following two

classic results of G.A.Dirac (see [5]) in 1952 were the first degree bounds for

longest cycles and led to an intensive research in this area of graph theory.

Theorem 1.1 [5] A graph G on n ≥ 3 vertices with minimum degree δ ≥ n
2

has a hamiltonian cycle.

Theorem 1.1 is best possible as can be seen from the graphs Kn−1
2
∨ n+1

2
K1,

which are non-hamiltonian graphs on n vertices with δ = n−1
2

(n odd).

Clearly the condition δ ≥ n
2
≥ 3 implies that G is 2-connected. Therefore

the following result generalizes Theorem 1.1.

Theorem 1.2 [5] Let G be a 2-connected graph with minimum degree δ.

Then G has a hamiltonian cycle or c(G) ≥ 2δ.

Also Theorem 1.2 is best possible as can be seen from the graphs K2 ∨
qKδ−1 (q ≥ 3, δ ≥ 2) and Kδ ∨ pK1 (p > δ ≥ 2).

While Theorem 1.1 and 1.2 are best possible, many results have been

obtained in terms of variations of the degree bounds. Better bounds are

known for certain classes of graphs, for example in bipartite graphs and
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regular graphs, also in line graphs and more generally in claw-free (K1,3-free)

graphs. For 3 ≥ κ(G) ≤ 6, a nutral extension ( namely Theorem 1.3 below)

of the results of Dirac was given by Jung in 1990 (see [9]). Some parts of

Theorem 1.3 have also been obtained by other authors (see [9]). A tree H

is called a doublestar, if all vertices but exactly two of H have degree 1. A

quasistar is a star or doublestar, or a graph obtained from a star H1 with

|H1| ≥ 4 by adding an edge. Let H5 and H6 denote the set of all stars and

quasistars, respectively. For k < 5 set Hk = ∅.

Theorem 1.3 [9] Let C be a longest cycle in the graph G and H a component

of G− V (C) such that |H| ≥ k − 1 (k = 2, 3, 4, 5, 6). There exists a vertex v

in H such that

(a) |C| ≥ kd(v)− k(k − 2), if G is k-connected and H 6∈ Hk;

(b) |C ∪H| ≥ kd(v)− (k−1)(k−2), if G is (k−1)-connected and H 6∈ Hk.

In particular, if G is k-connected with k ∈ {2, 3, 4}, then each longest

cycle is a Dk−1-cycle or |C| ≥ kδ − k(k − 1). For k = 3 this was first proved

by Voss ([20]). See also [10].

The graphs G = Kk ∨ mKδ+1−k (m ≥ k), which have connectivity k

and c(G) = k + k(δ + 1 − k) = kδ − k(k − 2), show that small connectivity

is one of the obstructions standing against better degree bounds. As the

exceptional classes Hk (k = 5, 6) indicate, small L(G−C) is another barrier

against getting better degree bounds for c(G). In fact, the graph G = Kk ∨
mK1,r (m ≥ k ≥ 4, r ≥ 2) have connectivity k and c(G) = 4k = 4δ − 4 and

the longest cycles C in G split off components isomorphic to K1,r, and hence

L(G−C) = L(K1,r) = 2. Therefore L(G−C) is an appropriate parameter for

the investigation of better degree bounds. As a matter of fact, Bondy in 1980

(see [1]) conjectured that if G is a k-connected graph on n ≤ σk+1− k(k + 1)

vertices, then L(G− C) < k − 1 for every longest cycle C of G. A variation

of Bondy’s conjecture is settled in Theorem 1.3 (b) for k ≤ 6. In terms of
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L(G− C) Theorem 1.3 can be written in the following way.

Theorem 1.3′ Let C be a longest cycle in a graph G such that L(G−C) ≥
k − 1 (2 ≤ k ≤ 5). There exists a vertex v in G− C such that

(i) |C| ≥ (k + 1)δ − (k − 1)(k + 1), if G is (k + 1)-connected;

(ii) n ≥ (k + 1)δ − k(k − 1), if G is k-connected.

In chapters 3 and 4 we work on the characterization of the exceptional classes

for 3-connected graphs G to have c(G) ≥ 4δ − c (4 ≤ c ≤ 8). Actually

our estimates have the form c(G) ≥ 2σ2 − c (4 ≤ c ≤ 8). Moreover all

exceptional classes for the estimates c(G) ≥ 2σ2−c (4 < c ≤ 8) are essentially

characterized. In chapter 5, we study the exceptional classes for the estimates

in Theorem 1.3′ where the connectivity condition is relaxed by 1.

Our main result in chapter 3 is the following Theorem 1.4. For the definition

of the class E see Section 3.1.

Theorem 1.4 Let C be a longest cycle in the 3-connected graph G and let

H be a component of G − C such that |H| ≥ 3. There exist non-adjacent

vertices u ∈ V (G) and v ∈ V (G)− V (C) such that

(i) |C| ≥ 2d(u) + 2d(v)− 8, if |N(H)| ≥ 4,

(ii) |C| ≥ 2d(u) + 2d(v)− 4, if |N(H)| ≥ 4 and H is not complete,

(iii) |C| ≥ 2d(u) + 2d(v) − 5, if H is not strongly linked in G, with strict

inequality unless G ∈ E .

Theorem 1.4 is a refinement of the following Theorem 1.5 of Jung. More-

over the present approach simplifies the proof of Theorem 1.5 considerably.

Theorem 1.5 [10] Let C be a longest cycle of the 3-connected graph G and

H a component of G− C. If H is not hamilton-connected, then there exists

a vertex v in H such that |C| ≥ 4d(v)− 5.

In Chapter 4, based on the results of Chapter 3, we pursue the classification

of exceptions concerning the estimate c(G) ≥ 2σ2 − 8 for C in 3-connected

graphs G. We essentially characterize the exceptional classes for the estimates
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c(G) ≥ 2σ2 − c for c ∈ {5, 6, 7, 8}. The main result of Chapter 4 is the

following Theorem 1.6. The definition of E0 is given in Section 4.1.

Theorem 1.6 Let G be a 3-connected graph such that some longest cycle in

G is not a D3-cycle. If G 6∈ E0, then c(G) ≥ 2σ2 − 8.

In Chapter 4 we also obtain the following result.

Corollary 1.1 Let G be a 3-connected graph and let C be a longest cycle of

G which is not a D3-cycle.

(i) If H1, H2 are two components of G−C such that N(H1) 6= N(H2), then

|C| ≥ 2σ2 − 6;

(ii) If H1, H2 and H3 are components of G−C such that N(H1), N(H2) and

N(H3) are distinct, then |C| ≥ 2σ2 − 5.

In Chapter 5, we turn to estimates of the form c(G) ≥ (k + 1)δ − c for

k-connected graphs allowing 3 ≤ k ≤ 5. Also the corresponding ”splitting-

structure” for (k − 1)-connected graphs with n ≤ (k + 1)δ − c is essentially

determined. The definitions of G, G ′ and G ′2 are given in Chapter 2.

Theorem 1.7 Let C be a longest cycle in a connected graph G such that

L(G− C) ≥ k − 1 (k = 3, 4, 5).Then

(i) |C| ≥ (k + 1)δ − (k − 1)(k + 1) + 2, if G is k-connected and G 6∈ G ;

(ii) n ≥ (k +1)δ−k(k +1)+1, if G is (k−1)-connected and G 6∈ G ′ ∪G ′2.

In the process of proving Theorem 1.7 we get the following Corollary 1.2.

Corollary 1.2 If G is a 2-connected graph with n ≤ 2σ2 − 6 and G 6∈ G ′2 ,

then every longest cycle of G is a D3-cycle .

Part (ii) with k = 3 of Theorem 1.7 was announced by Jung in the workshop

on hamiltonian graph theory at the University of Twente in 1992. In 1995

a proof was given by Brandt (see [3]). Corollary 1.2 is a slight refinement
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of that result. For some related results obtained by Veldman ([19]) and

Trommel ([17]) see Section 5.1.

Since G ′2 is a subclass of all non-3-cyclable graphs we obtain the following

Corollary 1.3 If G is a 3-cyclable graph on n ≤ 2σ2−6 vertices, then every

longest cycle is a D3-cycle.



Chapter 2

Preliminaries

In this chapter we present some definitions and preliminary results, which

will be used in this thesis.

The graphs G in this thesis are finite and have neither multiple edges nor

loops. We take Bondy & Murty [1] as our main source of terminology and

notation. For a graph G, let V (G) and E(G) denote respectively, the vertex

set and the edge set of G. n will denote the number of vertices, and α and

κ(G) the cardinality of maximum set of independent vertices in G and the

connectivity of G, respectively.

For a subgraph H of G let N(H) denote the set of all vertices in V (G)−
V (H) which are adjacent to some vertex in H. We write |H| short for |V (H)|,
and G − H short for G − V (H). For H, K ⊆ G we use the abbreviation

NK(H) = N(H)∩K. In particular NK(v) = N(v)∩K and dK(v) = |NK(v)|
for v ∈ V (G). For edge-disjoint subgraphs H, K of G let e(H; K) denote the

number of edges between H and K.

Let G be a connected graph and a, b ∈ V (G). We denote by DG(a, b) the

length of a longest (a, b)-path in G. If G has no cut vertex and |G| ≥ 2, we

set D(G) = min{DG(a, b), a, b ∈ V (G), a 6= b}. For |G| = 1 we set D(G) = 0.

Furthermore let L(G) denote the length of longest paths in G.

Let C be a cycle in G with a fixed cyclic orientation. For vertices x, y ∈
V (C), we use C[x, y], C(x, y] and C(x, y) for the corresponding subpaths of

C . A path Q, which has its end vertices on C and is openly disjoint with
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C, is called a C-chord. For x ∈ V (C) let x+ and x− denote respectively the

successor and predecessor of x according to the given orientation of C. We

abbreviate x++ = (x+)+ and x−− = (x−)− etc. For a set N = {x1, · · · , xs} ⊆
V (C) let N+ = {x+

1 , · · · , x+
s } and N− = {x−1 , · · · , x−s }. A subgraph H of G

is called normally linked in G, if |H| = 1 or |NH(x) ∩ NH(y)| ≥ 2 for any

distinct vertices a, b ∈ N(H). We call H strongly linked in G, if in addition

H is hamilton-connected.

In the following we define the classes of graphs G and G ′ ∪ G ′2 which are

involved in our main results in Chapter 5.

Let C be a cycle in a 2-connected graph G and S ⊆ V (C). We say that

S splits C, if C − S has |S| components C1, · · · , C|S| and each V (Ci) spans a

component of G−S. If S1, S2 split C and |S1| = κ(G), then clearly S1 ⊆ S2.

By definition a graph G belongs to the class G, if there exists a (then unique)

set S ⊆ V (G) of the cardinality κ(G) which splits every longest cycle in G and

all components of G−S := G−V (S) are strongly linked in G. Let G ′ denote

the class of all G ∈ G such that in addition ω(G− S) = |S|+ 1 = κ(G) + 1,

where ω(G− S) is the number of components of G− S.

A graph G is called 3-cyclable, if any three vertices of G lie on a common

cycle. Let G2 denote the class of all 2-connected graphs which are not 3-

cyclable. This class G2 was characterized by Watkins and Mesner (see [21]).

They showed G2 = G1,1 ∪ G1,3 ∪ G3,3. By definition G1,1 is the class of all

2-connected graphs G such that ω(G − S) ≥ 3 for some 2-element set S of

V (G). Let G ′1,1 be the class of all graphs G ∈ G ′ with κ(G) = 2. By definition

G is in G1,3 (respectively G ′1,3), if there exist vertex-disjoint connected graphs

G1, G2, G3 and 4-element set S = {x, y1, y2, y3} in G such that G − S =

G1 ∪ G2 ∪ G3, furthermore N(Gi) = {x, yi} (i = 1, 2, 3) and {y1, y2, y3}
spans a triangle (respectively in addition G1, G2, G3 are strongly linked in

G). By definition G is in G3,3 (respectively G ′3,3), if there exist vertex-disjoint

connected graphs G1, G2, G3 and 6-element set S = {x1, x2, x3, y1, y2, y3} in G

such that G−S = G1∪G2∪G3, furthermore N(Gi) = {xi, yi} (i = 1, 2, 3) and

{x1, x2, x3} and {y1, y2, y3} span triangles (respectively in addition G1, G2, G3
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Figure 2.1: The graphs in G ′2

are strongly linked in G). Let G ′2 = G ′1,1 ∪ G ′1,3 ∪ G ′3,3. It is easy to see that

the set S in the definition of ”G ∈ G ′2” is uniquely determined.

The following two estimates are standard and easily follow from the fact that

C is a longest cycle.

Lemma 2.1 Let C be a longest cycle in a graph G and let H be a com-

ponent of G − C. Furthermore, let x1, x2 be distinct vertices on C. If

v1 ∈ NH(x1), v2 ∈ NH(x2), then |C(x1, x2)| ≥ DH(v1, v2) + 1.

Lemma 2.2 Let C be a longest cycle in a graph G and let H be a component

of G − C. Let x1, y1, x2, y2 ∈ V (C) and v1 ∈ NH(x1), v2 ∈ NH(x2). If

C(x1, y1) and C(x2, y2) are disjoint and some C-chord Q[z1, z2] through G−H

joins C(x1, y1) and C(x2, y2), then |C(x1, z1)∪C(x2, z2)| ≥ DH(v1, v2) + 1 +

(|Q| − 2).

The following three lemmas are due to H.A.Jung.
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Lemma 2.3 [9] Let a, b be distinct vertices in the 2-connected graph G and

let P be a longest (a, b)-path in G. Each component H of G− P contains a

vertex v such that |P | ≥ dG(v) + 1.

Lemma 2.4 [9] Let H be a 2-connected graph. There exsist distinct vertices

v1, v2 and v3 in H such that

(i) D(H) ≥ dH(vi) for i = 1, 2 and DH(v1, v2) ≥ dH(v3);

(ii) D(H) ≥ dH(v3)− 1 with strict inequality unless H = K−
4 .

Lemma 2.5 [9] Let C be a longest cycle in a 3-connected graph G. Each

separable component H of G − C contains non-adjacent vertices v1 and v2

such that

|C| ≥ 2d(v1) + 2d(v2)− 4.

We also use the following result of Enomoto.

Proposition 2.1 [6] Let H be a 3-connected graph which is not Hamilton-

conneted. There exist non-adjacent vertices v1, v2 in H such that D(H) ≥
dH(v1) + dH(v2)− 2.



Chapter 3

On the Circumference of
3-connceted Graphs

3.1 Introduction

In this chapter we supply degree bounds for the circumference c(G) of 3-

connected graphs G. Let C be a longest cycle in G and let H be a component

of G − C. As noted above, it is known that |C| ≥ 3d(v) − 3 for some

v ∈ V (H), If |H| ≥ 2 and G is 3-connected. Moreover, if G is 4-connected

and |H| ≥ 3, then |C| ≥ 4d(v)− 8 for some v ∈ V (H) (see [9]). We present

extensions for 3-connected graphs. Our estimates actually have the form

|C| ≥ 2d(u) + 2d(v)− c (4 ≤ c ≤ 8) for some non-adjacent vertices u, v in G.

In [10] Jung proved the following result

Theorem 3.1 Let C be a longest cycle in a 3-connected graph G and H a

component of G−C. If H is not hamilton-connected, there exists some vertex

v in H such that

|C| ≥ 4d(v)− 5.

Let C be a longest cycle in the 3-connected graph G and let H be a

component of G − V (C) such that |H| ≥ 3. We will show that |C| ≥
2d(u) + 2d(v) − 8 for some non-adjacent vertices u ∈ V (G) and v ∈ V (H),

if |N(H)| ≥ 4. If H is not strongly linked in G, we can drop the condition
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|N(H)| ≥ 4 and still obtain |C| ≥ 2d(u) + 2d(v) − 5. In this event in fact

|C| ≥ 2d(u) + 2d(v) − 4 unless G belongs to the following exceptional class

E of graphs.

Definition 3.1 G is in E, if G is 3-connected and there exist x1, x2, x3 ∈
V (G) such that all components of G−{x1, x2, x3} have three or four vertices,

at least four of them have four vertices and at least one is K−
4 or C4.

Remark 3.1 If G ∈ E, then c(G) = 15 and the set {x1, x2, x3} in the above

definition is uniquely determined. Furthermore, N(G−C) = {x1, x2, x3} for

all longest cycles C in G.

Proof. Let C be a longest cycle in G and let S = {x1, x2, x3} be a set

according to the definition. First assume that x3 is in a component K of

G− C. As |C| ≥ 6 necessarily x1, x2 ∈ C and C(x1, x2), C(x2, x1) belong to

different components H1, H2 of G−S. In particular |C| ≤ 10. Let H1, H2, H3

and H4 be distinct components of G − S. Then H3, H4 ⊆ K. Since x3

and xh have distinct neighbors in Hh+2 (h = 1, 2) it readily follows that

|C(x1, x2)| ≥ 7 and |C(x2, x1)| ≥ 7, a contradiction. Hence indeed S ⊆ C.

Using a similar argument one obtains N(G−C) = {x1, x2, x3} and that each

component of C − S is a spanning subgraph of a component of G− S. 2

Our main result in this chapter is

Theorem 3.2 Let C be a longest cycle in the 3-connected graph G and let

H be a component of G − C such that |H| ≥ 3. There exist non-adjacent

vertices u ∈ V (G) and v ∈ V (G)− V (C) such that

(i) |C| ≥ 2d(u) + 2d(v)− 8, if |N(H)| ≥ 4,

(ii) |C| ≥ 2d(u) + 2d(v)− 4, if |N(H)| ≥ 4 and H is not complete,

(iii) |C| ≥ 2d(u) + 2d(v) − 5, if H is not strongly linked in G, with strict

inequality unless G ∈ E .

The estimate in (iii) is a refinement of the result of Theorem 3.1, namely

the estimate |C| ≥ 4δ − 5, if H is not hamilton-connected. In the present

approach the proof of that result is considerably simplified.
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3.2 Proof of Theorem 3.2

In the following let C be a longest cycle in the 3-connected graph G. We fix

one of the two cyclic orientations of C.

Lemma 3.1 Let C be a longest cycle in a 3-connected graph G, and let H

and K be non-separable components of G − C such that |H| + |K| ≥ 3. If

there exists a vertex x0 on C such that x0 ∈ N(H) and x+
0 ∈ N(K), then

|C| ≥ 2d(v) + 2d(w)− 4

for some v ∈ V (H) and w ∈ V (K).

Proof. If |H| ≥ 2 and NH(x0) = {v0}, we set X = NC(H−v0) and determine

v ∈ V (H − v0) such that D(H) ≥ dH(v). If |H| = 1 or |NH(x0)| ≥ 2, we set

X = N(H) and determine v = v0 ∈ V (H) such that D(H) ≥ dH(v).

Analogously we define Y,w0 and w such that D(K) ≥ dK(w), further-

more, w 6= w0 and NK(x+
0 ) = {w0}, if Y 6= N(K). To emphasize the

symmetry we set y0 = x+
0 . Note that {v0} ∪ X is a cut set of G. Also

|X − NC(v0)| ≥ 2, if X 6= N(H). Since NC(v) ⊆ X and NC(w) ⊆ Y it

suffices to show

|C| ≥ 2|X|+ 2|Y |+ 2D(H) + 2D(K)− 4 (3.1)

Let x, y be distinct elements of N(H). We call C[x, y] a useful segment for

H, or just useful segment, if |NH(x) ∪NH(y)| ≥ 2.

We call a segment C[x, y] of C a crossing segment, if x ∈ X and y ∈
Y ∩ C(x, x0). If C[x, y] is a crossing segment, then

|C(x, y)| ≥ D(H) + D(K) + 2 (3.2)

To show (3.2) we determine a longest (x0, x)-path Q and a longest (y0, y)-

path R with inner vertices in respectively H and K. Then |Q| ≥ D(H) + 1

and |R| ≥ D(K) + 1. As C is a longest cycle and Q ∪R ∪C[y0, x] ∪C[y, x0]

is a cycle we obtain (3.2).
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If C[x, y] is a minimal (w.r.t. subpath relation) crossing segment, then

C(x, y) ∩ (X ∪ Y ) = ∅. Let C[x1, y1], . . . , C[xs, ys] be all minimal crossing

segments listed according to the given orientation on C.

Case 1. s = 0.

Let x and x′ be the first and last vertex on C(y0, x0) in X. Obviously,

|C(x′, x0)| ≥ D(H) + 1.

If C[x, x′] contains another useful segment for H, then |C(x, x0]| ≥ 2|X| −
2 + 2D(H).

If C[x, x′] contains no useful segment for H, then X 6= NC(H) since G is

3-connected. Moreover, there exists a vertex v1 ∈ H − v0 such that NH(z) =

{v1} for all z ∈ NC(H) − NC(v0), consequently V (H) = {v0, v1}. In this

event |C(x, x0]| ≥ 2|X|+ D(H) = 2|X| − 1 + 2D(H).

Similarly, |C[y0, y)| ≥ 2|Y |−2+2D(K), where y is the last vertex on C(y0, x0)

in Y . As s = 0 implies y ∈ C(y0, x] we obtain |C| ≥ 2|X|+2|Y |−3+2D(H)+

2D(K). This settles Case 1.

In the following we assume s > 0. We set xs+1 = x0 and determine for

0 ≤ i ≤ s the last element y
′
i of Y ∪{y0} and the first element x

′
i of X ∪{x0}

in C[yi, xi+1].

We abbreviate P0 = C(x1, ys), P1 = C[ys, x0] and P2 = C[y0, x1]. For 0 ≤
i ≤ s we have x

′
i ∈ C[y

′
i, xi+1] since C[yi, xi+1] contains no crossing segments

and hence |P | ≥ 2|Y ∩ P |+ 2|X ∩ P | − 3 for P = C[yi, xi+1]. Using (3.2) we

infer

|P0| ≥ 2|X ∩ P0|+ 2|Y ∩ P0|+ s(D(H) + D(K)− 1) + 3. (3.3)

If x
′
s 6= x0, then |C(x

′′
s , x0)| ≥ D(H) + 1, where x

′′
s is the last element of X

on C[ys, x0). In this event

|P1| ≥ 2|Y ∩ P1|+ 2|X ∩ P1|+ D(H)− 3. (3.4)

If x
′
s = x0, then |C(y

′
s, y0)| ≥ D(K) + 1 and hence

|P1| ≥ 2|Y ∩ P1|+ 2|X ∩ P1|+ D(K)− 2. (3.5)
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For P2 we have symmetric estimates

|P2| ≥ 2|Y ∩ P2|+ 2|X ∩ P2|+ D(K)− 3, if y
′
0 6= y0. (3.6)

and

|P2| ≥ 2|Y ∩ P2|+ 2|X ∩ P2|+ D(H)− 2, if y
′
0 = y0. (3.7)

Case 2. C[ys, x0) ∩X 6= ∅ and C(y0, x1] ∩ Y 6= ∅.
In this event we have (3.4) and (3.6). By combination with (3.3) we

obtain |C| ≥ 2|X|+ 2|Y | − 2 + (s + 1)(D(H) + D(K)− 1) hence (3.1).

Case 3. C[ys, x0) ∩X = ∅ and C(y0, x1] ∩ Y = ∅.
In this event we have (3.5) and (3.7), and hence |C| ≥ 2|X|+ 2|Y |+ (s +

1)(D(H) + D(K)− 1), again (3.1).

Case 4. C[ys, x0) ∩X 6= ∅ and C(y0, x1] ∩ Y = ∅ or vice versa.

In view of the symmetry we may assume C[ys, x0) ∩X = ∅. Then |P1| ≥
2|Y ∩P1|+2|X∩P1|+D(K)−2 and |P2| ≥ 2|Y ∩P2|+2|X∩P2|+D(K)−3.

If s ≥ 2, then |C| ≥ 2|X| + 2|Y | − 2 + s(D(H) + D(K) − 1) + 2D(K) and

hence (3.1).

If s = 1 and C[y0, x1] contains useful segment for H, then |P2| ≥ 2|Y ∩P2|+
2|X ∩P2|+D(K)+D(H)−3 and |C| ≥ 2|X|+2|Y |+2(D(H)+3D(K)−3.

It remains the subcase when s = 1 and C(y0, x1] contains no useful

segment for H. As in the Case 1 we deduce X 6= N(H) and |H| = 2.

Hence in fact |P1| ≥ 2|Y ∩ P1| + 2|X ∩ P1| + D(K) + D(H) − 1 and |C| ≥
2|X|+ 2|Y |+ 2D(H) + 3D(K)− 1. 2

Using Lemma 3.1 we first settle the case when H is not normally linked

in G.
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Lemma 3.2 Let H be a 2-connected component of G−C. There exist non-

adjacent vertices u ∈ V (G)− V (H) and v ∈ V (H) such that

(a) |C| ≥ 2d(u) + 2d(v)− 8, if |N(H)| ≥ 4,

(b) |C| ≥ 2d(u) + 2d(v)− 4, if H is not normally linked in G.

Proof. If H is not normally linked in G, then there exist distinct elements

z1, z2 of N(H) such that NH(z1) ∪ NH(z2) = {y}. In this event we label

NC(H − y)∪ {z1, z2} = {x1, . . . , xs} according to the given orientation on C

and let {z1, z2} = {xj, xk}. If |N(H)| ≥ 4 and H is normally linked in G, let

N(H) = {x1, · · · , xs} and choose any distinct xj, xk ∈ N(H). Observe that

s ≥ 4 in either case. We define β = 0, if H is not normally linked in G, and

β = 1 otherwise. We will show that |C| ≥ dC(x+
j ) + dC(x+

k ) + 2d(v)− 4− 4β

for some vertex v ∈ V (H). Then (a) and (b) follow by Lemma 3.1.

For 1 ≤ i ≤ s let ui denote the first vertex on C(xi, xi+1] in N(x+
j ) ∪

N(x+
k ) ∪ {xi+1}, (xs+1 := x1). Using Lemma 2.4 we can determine a vertex

v ∈ V (H)− {y} such that D := D(H) ≥ dH(v). We define γi = 1, if

xi+1 6∈ N(v), and γi = 0, if xi+1 ∈ N(v).

For 1 ≤ i ≤ s we use the representation

|C(xi, xi+1]| = |N(x+
j ) ∩ C(xi, xi+1]|+ |N(x+

k ) ∩ C(xi, xi+1] +

+ 2|N(v) ∩ C(xi, xi+1]|+ αi

Since D ≥ dH(v) it suffices to show

s∑

i=1

αi ≥ 2D − 4− 4β (3.8)

First we supply the estimate

|C[ui, xi+1]| ≥ |N(x+
j ) ∩ C(xi, xi+1]|+ |N(x+

k ) ∩ C(xi, xi+1]| − 1 (3.9)

Let xi ∈ C[xj, xk). For any u ∈ N(x+
k ) ∪ C(xi, xi+1] we have u+ 6∈ N(x+

j )

since C is a longest cycle. Hence (3.9).

If |C(xi, ui)| ≥ D + 1, then αi ≥ D + 2γi − 2. If H is normally linked in G,

then clearly |C(xi, ui)| ≥ D +1 for all xi ∈ N(H)−{xj, xk} and hence (3.8).
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Now let H be not normally linked in G. If |C(xi, ui)| < D + 1 and

xi 6∈ {xj, xk}, then ui = xi+1 6∈ N(x+
j ) ∪N(x+

k ), furthermore |NH(xi) ∪
NH(xi+1)| = 1 and αi ≥ 2γi. If xj−1 6= xk and xk−1 6= xj, then v 6∈ N(xi+1)

and hence αi ≥ D for i = j − 1, k − 1. Finally let xj−1 = xk or xk−1 =

xj, say xj−1 = xk. Then |NH(xj+1) ∪ · · · ∪NH(xj−2)| ≥ 2 since otherwise

NH(xj+1) ∪ · · · ∪NH(xj−2) = {y′} and {y, y′} would be a cut set of G. Hence

we can pick xl ∈ C[xj+1, xj−2) such that |NH(xl) ∪NH(xl+1)| ≥ 2. Since H

is not normally linked in G we have xj−1, xj 6∈ N(v), and hence αj−2 ≥ D

and αj−1 ≥ 0. Furthermore, αl ≥ D + 2γl − 2 and hence again (3.8). 2

Now we turn to the case when H is not hamilton-connected. In the rest

of the proof we assume that H is normally linked in G.

Lemma 3.3 If H is 3-connected but not hamilton-connected, then there exist

non-adjacent vertices u, v in H such that |C| ≥ 2d(u) + 2d(v)− 4.

Proof. By Proposition 2.1 there exist two non-adjacent vertices v1 and v2 in

H such that D := D(H) ≥ dH(v1) + dH(v2)− 2. Since H is 3-connected we

have D ≥ 4. We label N(H) = {x1, · · · , xs}.
As |C| ≥ s(D + 2) ≥ 2s + 2s + 2D − 4 + (s − 2)(D − 2) it remains the

subcase when |NC(v1)∩NC(v2)| = 3 = s and 4 ≤ D ≤ 5. Let P be a longest

(v1, v2)-path in H. If |P | > D + 1, then |C(xi, xi+1)| ≥ |P | ≥ D + 2 for

i = 1, 2, 3 and hence the claim.

Now suppose |P | = D + 1. By assumption |P | < |H|. Let H
′

be a

component of H−P . Since |P | ≤ 6 necessarily |NP (H
′
)| < 4, say NP (H

′
) =

{z1, z2, z3} and |P (z1, z2)| ≤ |P (z2, z3)| ≤ 2. As |P (z1, z2)| = 1 we obtain

NH′ (z1) ∪ NH′ (z2) = {w} and NP (H
′ − w) ⊆ {z3}. Since H is 3-connected

necessarily H
′
= {w}. As |P | ≤ 6 we may assume z1 = v1 and |C(z1, z2)| = 1.

Let z be the vertex on P (z1, z2). If z ∈ NH(w
′
) for some w

′ ∈ V (H)−V (P ),

then Np(w
′
) ⊆ {z, v2} because P is a longest (v1, v2)-path. Hence in fact

dH(z) = dP (z). Also no successor or predecessor of z2, z3 is adjacent to z.

Hence N(z) = {z1, z2, z3}. If |P | = 6, then |C| ≥ 21 ≥ 2d(z) + 2d(w)− 3.

Finally let |P | = 5, and hence also D = dH(z)+dH(w)−2. If NC(z)∩NC(w) 6=
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{x1, x2, x3}, then |C| ≥ 2d(z)+2d(w)−4 by the preceding argument ({v1, v2}
replaced with {z, w}). If NC(z) ∩NC(w) = {x1, x2, x3}, then |C(xi, xi+1)| ≥
1 + DH(v1, z) = 6 for 1 ≤ i ≤ 3 and again |C| ≥ 21 = 2d(z) + 2d(w)− 3. 2

Lemma 3.4 Let H be not hamilton-connected and not separable. If H 6∈
{C4, K

−
4 }, then |C| ≥ 2d(v1) + 2d(v2) − 4 for some non-adjacent vertices

v1, v2 in H.

Proof. By the preceding lemmas it remains the case when H has connectivity

2 and hence has a 2-element cut set.

We first determine b ∈ H such that the number of cut vertices of H − b

is maximum. Let B1, · · · , Br be the endblocks of H − b with corresponding

cut vertices c1, · · · , cr of H − b in V (B1), · · · , V (Br). We adopt the notation

so that D(B1) ≤ D(Bρ) for 1 ≤ ρ ≤ r, furthermore, c1 6= c2, if H − b

has at least two cut vertices. In the sequel we fix for h = 1, 2 vertices

vh ∈ Bh − ch with minimum dH(vh). Then D(B1) ≥ dH−b(v1) ≥ dH(v1) − 1

and D(B2) ≥ dH−b(v2) ≥ dH(v2)− 1 by Lemma 2.4

Next we label (NC(B1−c1)∪NC(B2− c2)) = {y1, · · · , yt} in order around

C. We say that C[yi, yi+1] is a good segment, if yi ∈ N(B1 − c1) and yi+1 ∈
N(B2 − c2) or vice versa. If C[yi, yi+1] is good and say v

′
1 ∈ N(yi) ∩N(B1 −

c1) and v
′
2 ∈ N(yi+1) ∩ N(B2 − c2), then |C(yi, yi+1)| − 1 ≥ DH(v

′
1, v

′
2) by

Lemma 2.1, and hence |C(yi, yi+1)| − 1 ≥ D(B1) + DH−b(c1, c2) + D(B2).

Claim 1. If c1 = c2 and v
′
2 ∈ B2 − c2, then DH−c2(b, v

′
2) ≥ dH(v2)− 1.

This is obvious, if |B2| = 2. Now let |B2| > 2 and determine w2 ∈
N(b) ∩ (B2 − c2 − v

′
2). Such a vertex w2 exists since otherwise b and v

′
2 are

cut vertices of H − c2, contrary to c1 = c2 and the choice of b, B1 and B2.

If B2 − c2 has no cut vertex we determine v∗2 ∈ B2 − c2 such that D(B2 −
c2) ≥ dB2(v

∗
2). Then dB2(v

∗
2) ≥ dH(v∗2)− 2 ≥ dH(v2)− 2 and DH−c2(b, v

′
2) ≥

1 + DH−b−c2(w2, v
′
2) ≥ 1 + D(B2− c2). If B2− c2 has a cut vertex, let B∗

2 , B
∗
3

be distinct endblocks with corresponding cut vertices c∗2, c
∗
3 of B2 − c2 in

V (B∗
2), V (B∗

3). We may assume that v
′
2 6∈ B∗

2 − c∗2. Since b, c∗2 are not both

cut vertices of H−c2 we can determine w∗
2 ∈ N(b)∩(B∗

2−c∗2). Now D(B∗
2) ≥
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dB∗2 (v
∗
2) for some v∗2 ∈ B∗

2 − c∗2 and hence D(B∗
2) ≥ dH(v∗2)− 2 ≥ dH(v2)− 2.

Also DH−c2(b, v
′
2) ≥ 1 + DH−b−c2(w

∗
2, v

′
2) ≥ 1 + D(B∗

2). Hence Claim 1.

Claim 2. Let v
′
h ∈ Bh − ch (h = 1, 2). If r ≥ 3, then DH(v

′
1, v

′
2) ≥

dH(v1) + dH(v2).

We determine for ρ = 1, 3 vertices wρ ∈ N(b) ∩ (Bρ − cρ) and then

obtain DH(v
′
1, v

′
2) ≥ DH−b−c1(v

′
1, w1) + 2 + DH−b(w3, v

′
2) hence DH(v

′
1, v

′
2) ≥

2 + D(B3) + D(B2) ≥ 2 + D(B1) + D(B2). Hence Claim 2.

Claim 3. Let H 6= C4 and v
′
h ∈ Bh − ch (h = 1, 2). Then DH(v

′
1, v

′
2) ≥

dH(v1) + dH(v2) − 1 and DH(v
′
1, v

′
2) ≥ 3. Moreover DH(v

′
1, v

′
2) ≥ 4 or H ∈

{K−
4 , C5}.
In view of Claim 2 we may assume r = 2.

If c1 6= c2 we have DH(v
′
1, v

′
2) ≥ D(B1)+D(B2)+DH−b(c1, c2) ≥ dH(v1)+

dH(v2) − 1. If in addition DH(v
′
1, v

′
2) = 3, then |B1| = |B2| = 2 and

DH−b(c1, c2) = 1. In this event |H| = 5 and c1, c2 6∈ N(b), consequently

H = C5.

Now let c1 = c2. If |B1| = |B2| = 2, then |H| = 4 and consequently

H = K−
4 and DH(v

′
1, v

′
2) = dH(v1) + dH(v2)− 1. If r = |B1| = 2 < |B2|, then

N(b) contains an element w2 of B2 − c2 − v
′
2 since otherwise v

′
2 and b are

cut vertices of H − c2 which contradicts c1 = c2 and the choice of b, B1, B2.

Therefore in fact DH(v
′
1, v

′
2) ≥ 2 + DH−b(w2, v

′
2) ≥ 2 + D(B2) and the claim.

It remains the case when 2 ≤ D(B1) ≤ D(B2) and c1 = c2. As just shown

there exist wh ∈ N(b) ∩ (Bh − ch − v
′
h) (h = 1, 2). By Claim 1 we obtain

DH(v
′
1, v

′
2) ≥ DH−b(v

′
1, w1)+1+DH−c2(b, v

′
2) ≥ D(B1)+1+dH(v2)−1. This

settles Claim 3.

In the rest of this proof we distinguish several cases. If t ≥ 2, let D∗ denote

the minimum of |C(yi, yi+1)|−1 taken over all good segments C[yi, yi+1]. Then

|C| ≥ 2t + qD∗, where q is the number of good segments on C.

Case 1. t ≥ 3 and H 6∈ {C4, K
−
4 }.
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Let D∗ = |C(yj, yj+1)| − 1. Choose v
′
1 ∈ B1 − c1 and v

′
2 ∈ B2 − c2

such that v
′
1 ∈ N(yj) and v

′
2 ∈ N(yj+1) or vice versa. By Claim 3 we have

|C(yj, yj+1)| − 1 ≥ DH(v
′
1, v

′
2) ≥ dH(v1) + dH(v2) − 1, consequently D∗ ≥

dH(v1) + dH(v2)− 1. Observe that q ≥ 2 and q ≥ |NC(v1) ∩NC(v2)|. Hence

t+q ≥ dC(v1)+dC(v2). As |C| ≥ 2t+qD∗ = 2t+2q+2D∗−4+(q−2)(D∗−2)

it remains the subcase when q = |NC(v1)∩NC(v2)| and (q− 2)(D∗− 2) ≤ 1.

Then t = q = |NC(v1) ∩NC(v2)|. By Claim 3 we have D∗ ≥ 3 and therefore

q = D∗ = 3. Moreover H = C5 again by Claim 3. Consider x ∈ N(b)∩C. If

x = yi for some i, then |C(yi, yi+1)| − 1 ≥ 4 = D∗ + 1. If x 6∈ {y1, y2, y3}, say

x ∈ C(y1, y2), then also C(y1, x)|− 1 ≥ 4. Anyway |C| ≥ 2d(v1)+2d(v2)− 4.

This settles Case 1.

Case 2. t = 2.

Let v
′
1 ∈ B1 − c1 and v

′
2 ∈ B2 − c2 such that v

′
1 ∈ N(y1) and v

′
2 ∈ N(y2)

or vice versa. If DH(v
′
1, v

′
2) ≥ dH(v1) + dH(v2), then |C| ≥ 2DH(v

′
1, v

′
2) + 4 ≥

2d(v1) + 2d(v2) − 4. If r ≥ 3, then indeed DH(v
′
1, v

′
2) ≥ dH(v1) + dH(v2) by

Claim 2. If DH−b(c1, c2) ≥ 2, then again DH(v
′
1, v

′
2) ≥ D(B1)+DH−b(c1, c2)+

D(B2) ≥ dH(v1) + dH(v2).

Thus it remains the subcase when r = 2 and DH−b(c1, c2) ≤ 1. Since G is

3-connected there exists a vertex x in (N(b) ∪N(c1) ∪N(c2))∩(C−{y1, y2}),
say x ∈ C(y1, y2). If x ∈ N(b), then |C(y1, x)| ≥ 1+(D(B1)+D(B2)+1) and

|C(x, y2)| ≥ 1+(D(B1)+D(B2)+1). Hence |C| ≥ 10+2D(B1)+2D(B2) ≥
2d(v1) + 2d(v2)− 2. If say c1 ∈ N(x), then |C(y1, x)| ≥ 1 + (D(B2) + 2) and

|C(x, y2)| ≥ 1 + (D(B1) + 2). Also |C(y2, y1)| ≥ 1 + D(B1) + D(B2), and

hence |C| ≥ 10 + 2D(b1) + 2D(B2) ≥ 2d(v1) + 2d(v2)− 2.

Case 3. t = 1.

There exist distinct vertices x, x
′ ∈ N(H) such that y1 ∈ C(x, x

′
). We

may assume |C(x, y1)| ≤ |C(y1, x
′
)|. Then |C| ≥ 2|C(x, y1)|+4. We will show

that |C(x, y1)| ≥ dH(v1) + dH(v2), consequently |C| ≥ 2d(v1) + 2d(v2). For

h = 1, 2 we can determine v
′
h ∈ N(y1)∩ (Bh− ch) and wh ∈ N(b)∩ (Bh− ch)

such that wh 6= v
′
h, if |Bh| ≥ 3.
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First assume that b ∈ N(x) or |B1| = 2. If b ∈ N(x), then |C(x, y1)| ≥ 1+

(1+DH−b(w2, v
′
1)) ≥ 2+D(B1)+D(B2). Hence |C(x, y1)| ≥ dH(v1)+dH(v2).

If b 6∈ N(x) and |B1| = 2, then |C(x, y1)| ≥ 1 + (2 + DH−b(w2, c2)) ≥
2 + D(B1) + D(B2). Again |C(x, y1)| ≥ dH(v1) + dH(v2).

In the rest of Case 3 let x ∈ N(H)−N(b), |B1| ≥ 3 and |B2| ≥ 3. Then

by construction v
′
h 6= wh (h = 1, 2). Let Q be a shortest path in H − b

from N(x) to {c1, c2}. If c1 6∈ Q, then |C(x, y1)| ≥ 1 + (DH−b(c2, w2) + 2 +

DH−b(w1, v
′
1)) ≥ 1 + (D(B2) + 2 + D(B1)) ≥ 1 + dH(v1) + dH(v2). Similarly,

|C(x, y1)| ≥ 1 + dH(v1) + dH(v2), if c2 6∈ Q. It remains the case when

c1, c2 ∈ Q, that is c1 = c2. Then by Claim 1 we have

|C(x, y1)| ≥ 1 + (DH−b(c1, w1) + 1 + DH−c2(b, v
′
2))

≥ 1 + D(B1) + 1 + (dH(v2)− 1)

≥ dH(v1) + dH(v2)

This settles Case 3 and completes the proof of the Lemma. 2

Lemma 3.5 Let H be not hamilton-connected and not separable. Then

|C| ≥ 2d(u) + 2d(v)− 5 for some non-adjacent vertices u, v ∈ V (G)− V (C)

with strict inequality unless G ∈ E .

Proof. By Lemmas 2.5,3.3 and 3.4 it remains the case when H ∈ {C4, K
−
4 }.

Pick non-adjacent vertices v1, v2 in H and let V (H) = {v1, v2, v3, v4}. Observe

that dH(v1) = dH(v2) = D(H) = 2. Label N(H) = {x1, . . . , xs} according to

the given orientation on C. Note that

|C| ≥ s(D + 2) = 4s = 2s + 2|NC(v1) ∩NC(v2)|+ 2(s− |NC(v1) ∩NC(v2)|).

If s > |NC(v1) ∪NC(v2)|, then also s > |NC(v1) ∩NC(v2)| and hence

|C| ≥ 2dC(v1) + 2dC(v2) + 4 = 2d(v1) + 2d(v2)− 4.

If H = C4 and s > |NC(v3) ∪ NC(v4)|, similarly |C| ≥ 2d(v3) + 2d(v4) − 4.

Thus it remains the subcase when N(H) = NC(v1) ∪NC(v2) and, moreover
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N(H) = NC(v3) ∪ NC(v4), if H = C4,. Then |C(xi, xi+1)| ≥ 4 for all xi ∈
N(H) and hence |C| ≥ s(D + 3). Therefore |C| ≥ 2d(v1) + 2d(v2)− 4 unless

3=s= |NC(v1) ∩NC(v2)|.
Now let 3 = s = |NC(v1) ∩ NC(v2)|. Then d(v1) = d(v2) = 5. By

symmetry we may also assume that NC(v3) ∩ NC(v4) = {x1, x2, x3}, if H =

C4.

If |C(xi, xi+1)| ≥ 5 for some xi ∈ N(H), then |C| ≥ 16 = 2d(v1) +

2d(v2) − 4. Thus we may in addition assume |C(xi, xi+1)| = 4 (i = 1, 2, 3)

in the rest of this proof. For any distinct xi, xj ∈ N(H) there exist v ∈
NH(xi) and v

′ ∈ NH(xj) such that DH(v, v
′
) = 3. If some C-chord joins

zi ∈ C(xi, xi+1) and zj ∈ C(xj, xj+1), then |C(xi, zi)| + |C(xj, zj)| ≥ 4 and

|C(zi, xi+1)| + |C(zj, xj+1)| ≥ 4, a contradiction. Hence in fact there exists

no such C-chord.

Next we consider a component K of G−C other than H. As just shown

N(K) ⊆ C(xj, xj+1)∪N(H) for some xj ∈ N(H). In view of Lemmas 2.5 and

3.1 we may assume that K is not separable and x+
j , x−j+1 have no neighbors in

K. This yields |N(K) ∩C(xj, xj+1)| ≤ 1. If |K| ≥ 3, we may by Lemma 3.2

assume that K is normally linked in G. In this event N(K)∩C(xj, xj+1) = ∅
since otherwise |C(xj, z)| ≥ D(K) + 1 ≥ 3 or |C(z, xj+1)| ≥ D(K) + 1 ≥ 3,

where z ∈ N(K)∩C(xj, xj+1). If |K| ≥ 5, then K is not Hamilon-connected

and therefore the assertion follows by Lemma 3.4.

It remains the case when |K| ≤ 4 and N(K) = N(H) for all components

K of G− C such that |K| ≥ 3. If G 6∈ E , then |K| ≤ 2 for some component

K of G− C. If V (K) = {w1}, then d(w1) ≤ 4. If V (K) = {w1, w2} and say

d(w1) ≤ d(w2), then d(w1) ≤ 4. For if d(w1) = d(w2) = 5, then NC(w1) =

NC(w2) = N(H)∪{z}, where z ∈ C(xj, xj+1). But then again |C(xj, z)| ≥ 2

and C(z, xj+1)| ≥ 2, a contradiction. Hence in fact |C| ≥ 2d(v1)+2d(w1)−3.

This settles Lemma 3.5. 2

Lemma 2.5, Lemma 3.2 and Lemma 3.5 yield (i) and (iii) of Theorem 3.2,

also (ii) in the case when H is not strongly linked in G. Finally let H be

not complete and |N(H)| = s ≥ 4. We pick two non-adjacent vertices u, v
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in H. Assuming that H is strongly linked in G we infer |C| ≥ s(|H| + 1) ≥
4(|H| − 1) + 4s− 8. Since 4(|H| − 1) + 4s ≥ 2d(u) + 2d(v) + 4 we obtain (ii).

This completes the proof of Theorem 3.2. 2



Chapter 4

Exceptional Classes for
c(G) ≥ 4δ − c

4.1 Introduction

In this chapter, based on the results of preceding chapter, we work on the

classification of exceptional classes for the estimates c(G) ≥ 2σ2− c (5 ≤ c ≤
8) for 3-connected graphs G.

We define the class E0.

Definition 4.1 Let C be a cycle in a connected graph G and let S ⊆ V (C).

We say that S splits C, if C − S has |S| components C1, . . . , C|S| and each

V (Ci) spans a component of G− S.

Definition 4.2 Let G be a 3-connected graph. G is in the class E0, if there

exists a unique 3-element set S ⊆ V (G) such that S splits every longest cycle

in G and all components of G− S are strongly linked in G.

The main result of this chapter is the following Theorem 4.1 and Corol-

lary 4.1.

Theorem 4.1 Let G be a 3-connected graph such that some longest cycle in

G is not a D3-cycle. If G 6∈ E0, then c(G) ≥ 2σ2 − 8.

In section 4.2 we will prove the follwing result.
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Corollary 4.1 Let G be a 3-connected graph and let C be a longest cycle of

G which is not a D3-cycle.

(i) If H1, H2 are two components of G−C such that N(H1) 6= N(H2), then

|C| ≥ 2σ2 − 6;

(ii) If H1, H2 and H3 are components of G−C such that N(H1), N(H2) and

N(H3) are distinct, then |C| ≥ 2σ2 − 5.

In the proof of Theorem 4.1 we will encounter the graphs for which the

above estimates are sharp. In the last section we describe the exceptional

graphs for c = 7 and c = 6. Our proof builds on the results of preceding

chapter, in particular Theorem 3.2.

4.2 The case N(H) 6= N(G− C).

In this section a longest cycle C in the 3-connected graph G and a cyclic

orientation of C are fixed. We first supply some further auxiliary results.

Lemma 4.1 Let H and K be non-separable components of G−C such that

max{|H|, |K|} ≥ 3 and N(K) − N(H) 6= ∅. Suppose |C| < 2σ2 − 4. Then

N(H) ⊂ N(K) and N(K) ⊆ C(x, x
′
) ∪ N(H) for some component C(x, x

′
)

of C −N(H). Furthermore D(H) ≥ D(K).

Proof. By Lemma 3.2 every component of G − C is normally linked in G

or has exactly 2 vertices. Abbreviate |N(H)| = s and |N(K)| = t. If H is

normally linked in G, we abbreviate D := D(H) and determine v ∈ V (H)

with minimum dH(v) and hence D ≥ dH(v) by Lemma 2.4. If H is not

normally linked in G, we set D = 0 (= |H|−2) and pick v ∈ V (H) such that

s ≥ dC(v) + 2. Similarly we define D∗ and w ∈ V (K) such that either D∗ =

D(K) ≥ dK(w) or else D∗ = 0 = |K|−2 and t ≥ dC(w)+2. By construction

D + s ≥ d(v) and D∗ + t ≥ d(w), consequently |C| < 2D + 2D∗ + 2s + 2t− 4

by hypothesis. We label N(H) = {x1, · · · , xs} according to the orientation

on C and set xs+1 = x1.
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We first show

Claim 1. D ≥ D∗, if s < t.

Suppose that D < D∗. Then D∗ ≥ 2 and t ≥ 4. By Lemma 3.2 then

K is normally linked in G and hence |C| ≥ t(D∗ + 2) ≥ 4D∗ + 4t − 8 ≥
2D + 2D∗ + 2s + 2t− 4, a contradiction. Hence Claim 1.

For 1 ≤ i ≤ s we abbreviate |N(K) ∩ C(xi, xi+1]| = ti and |N(K) ∩
C(xi, xi+1)| = li . Let X = {xi ∈ N(H) : li > 0}. For xi ∈ X let zi denote

the first and z
′
i the last element of N(K) on C(xi, xi+1).

Secondly we show

Claim 2. |X| = 1, if |H| ≥ 3.

Suppose |X| ≥ 2. For xi ∈ N(H)−X we have ti ≤ 1 and hence

|C(xi, xi+1]| ≥ D + 2 ≥ 2ti + 2 (4.1)

If xi ∈ X, then |C[zi, z
′
i]| ≥ (li − 1)(D∗ + 2) + 1 and hence

|C[zi, z
′
i]| ≥ 2li − 1 ≥ 2ti − 3. (4.2)

For xi ∈ X we abbreviate

αi = |C(xi, xi+1]| − (D + D∗ + 2ti).

For any distinct xj, xk ∈ X we have αj+αk ≥ 0. To see this consider a longest

(xj, xk)-path Q with inner vertices in H and a longest (zj, zk)-path R with

inner vertices in K. By construction |Q| − 2 ≥ D + 1 and |R| − 2 ≥ D∗ + 1.

As Q ∪ R ∪ (C − C(xj, zj) − C(xk, zk)) is a cycle and C is a longest cycle

we obtain |C(xj, zj) ∪ C(xk, zk)| ≥ D + D∗ + 2 (see Fig.4.1). Similarly,

|C(z
′
j, xj+1) ∪ C(z

′
k, xk+1)| ≥ D + D∗ + 2. Hence

|C(xj, xj+1] ∪ C(xk, xk+1]| ≥ 2D + 2D∗ + 6 + |C[zj, z
′
j]|+ |C[zk, z

′
k]|,

and indeed αj + αk ≥ 0 by (4.2).

Now we choose xj ∈ X with minimum αj.

If αj ≥ 0, then αi ≥ 0 for all xi ∈ X, and

|C| ≥ |X|(D + D∗ − 2) + 2s + 2t ≥ 2D + 2D∗ + 2s + 2t− 4,
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Figure 4.1: Cycle C
′
= Q ∪R ∪ (C − C(xj, zj)− C(xk, zk)).

a contradiction. If αj < 0, then αj +αi ≥ 0 and αi > 0 for all xi ∈ X−{xj},
and hence

|C| ≥ 2D + 2D∗ − 4 + |X| − 2 + 2s + 2t ≥ 2D + 2D∗ + 2s + 2t− 4,

again a contradiction. Hence Claim 2.

Next we show

Claim 3. N(H) ⊂ N(K).

Suppose N(H) − N(K) 6= ∅. By symmetry and hypothesis we may also

assume |H| ≥ 3. Then |X| = 1 by Claim 2, say X = {x1}. Observe that

s + l1 > t ≥ 3.

If N(K) ⊆ C[x1, x2], then

|C| ≥ (s− 1)(D + 2) + (t− 1)(D∗ + 2) ≥ 2D + 2D∗ + 2s + 2t− 4,

a contradiction.

If N(K)∩C(x2, x1) 6= ∅, pick xk ∈ N(K)∩C(x2, x1). In a similar way as

in the proof of Claim 2 we infer |C(x1, z1) ∪ C(xk−1, xk)| ≥ D + D∗ + 2 and

|C(z
′
1, x2) ∪ C(xk, xk+1)| ≥ D + D∗ + 2. Hence |C(x1, x2] ∪ C(xk−1, xk+1]| ≥

2D +2D∗+7+ |C[z1, z
∗
1 ]| ≥ 2D+2D∗+2l1 +6. As |C(xi, xi+1]| ≥ D +2 ≥ 4

we obtain

|C| ≥ 2D + 2D∗ + 2l1 + 6 + 4(s− 3),



28 4 Exceptional Classes for c(G) ≥ 4δ − c

again a contradiction. This settles Claim 3.

By Claim 3 and Claim 1 necessarily D ≥ D∗.

The proof of Lemma 4.1 is complete. 2

Lemma 4.2 Let H and K be components of G− C such that

max{|H|, |K|} ≥ 3 and N(K)−N(H) 6= ∅. Then |C| ≥ 2σ2 − 6.

If |C| < 2σ2 − 4, then

(a) H and K are strongly linked in G and complete,

(b) |H| ≥ |K|,
(c) |N(K)−N(H)| = 1 or |K| ≤ 2.

Proof. Suppose |C| < 2σ2− 4. By Lemma 2.5 and Lemma 4.1 we know that

H, K are not separable and D(H) ≥ D(K). Hence H is normally linked in

G by Lemma 3.2.

We continue the notation as introduced in the proof of Lemma 4.1. By

Lemma 4.1 we have N(H) ⊂ N(K) and may assume N(K) ⊆ N(H) ∪
C(x1, x2). Since |C(xi, xi+1]| ≥ D + 2 for 2 ≤ i ≤ s and |C(y, y

′
]| ≥ D∗ + 2

for all l1 + 1 = t− s + 1 components C(y, y
′
) of C[x1, x2]−N(K) we obtain

|C| ≥ (s− 1)(D + 2) + (l1 + 1)(D∗ + 2)

≥ 2D + 4s− 8 + (l1 + 1)(D∗ + 2) + (s− 3)(D − 2)

Since s ≥ 3 and t− s + 1 = l1 + 1 ≥ 2 we have

|C| ≥ 2D + 2D∗ + 2s + 2t− 6 + β (4.3)

where β = (s − 3)(D − 2) + (l1 − 1)D∗ ≥ 0. As noted above (4.3) implies

|C| ≥ 2σ2 − 6. If K is not normally linked in G, then D∗ = |K| − 2 = 0

and t ≥ dC(w) + 2 = d(w) + 1 by Lemma 3.2. But then (4.3) yields |C| ≥
2d(v) + 2d(w)− 4, contrary to the assumption.

So far we have shown that H and K are normally linked in G. By

Remark 3.1 and N(K) 6= N(H) we have G 6∈ E . Hence by assumption

and Theorem 3.2 necessarily H is strongly linked in G, and so is K, if

|K| ≥ 3. If |K| ≤ 2, then K is strongly linked in G since K is normally
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linked in G. In particular D = |H| − 1 and D∗ = |K| − 1. If H or K

is not complete, then D > dH(v) or D∗ > dK(w) by construction, and

hence again (4.3) yields |C| ≥ 2d(v) + 2d(w) − 4, a contradiction. Hence

|H| − 1 = D(H) ≥ D(K) = |K| − 1. By hypothesis β ≤ 1 and hence (c). 2

Lemma 4.3 Let H,K be components of G− C such that

max{|H|, |K|} ≥ 3 and N(K)−N(H) 6= ∅. If |C| < 2σ2 − 4, then

(a) |H| ≤ |C(x, x′)| ≤ |H| + 1 for every component C(x, x′) of C −N(H)

such that C(x, x′) ∩N(K) = ∅,
(b) |K| ≤ |C(y, y′)| ≤ |K| + 1 for every component C(y, y′) of C − N(K)

such that y 6∈ N(H) or y′ 6∈ N(H),

(c) There exists no C-chord between distinct components of C −N(K),

(d) If |H| 6= |K|, there exists no C-chord between distinct components of

C −N(H).

Proof. By Lemma 4.1 we have N(H) ⊂ N(K) and N(K) ⊆ C(x, x′)∪N(H)

for some component C(x, x′) of C − N(H). By Lemma 4.2 we know that

H and K are strongly linked in G and complete. Let N(H) = {x1, · · · , xs}
and x = x1 as in the preceding proof. We also label N(K) ∩ C[x1, x2] =

{y0, · · · , yl+1} in order from y0 = x1 to yl+1 = x2. We abbreviate t =

|N(K)|, D = |H| − 1 and D∗ = |K| − 1. Then l = t − s and |C| ≥
(s− 1)(D + 2) + (l + 1)(D∗ + 2), hence

|C| = 2D + 2D∗ + 2s + 2t− 6 + γ + γ∗ + β (4.4)

where γ =
s∑

i=2
(|C(xi, xi+1)|−(D+1)) ≥ 0, γ∗ =

l∑
j=0

(|C(yj, yj+1)|−(D∗+1)) ≥
0 and β = (s− 3)(D − 2) + (l − 1)D∗ ≥ 0.

As D + s ≥ d(v) and D∗ + t ≥ d(w) for any v ∈ V (H) and w ∈ V (K),

the assumption |C| < 2σ2 − 4 implies γ + γ∗ + β ≤ 1. This in turn implies

D + 1 ≤ |C(xi, xi+1)| ≤ D + 2 for i 6= 1 and D∗ + 1 ≤ |C(yi, yi+1)| ≤ D∗ + 2

for 0 ≤ i ≤ l. Hence (a) and (b).

Note that

d(x) ≥ D + s (4.5)
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for all x ∈ V (G)−(N(K)∪K). For otherwise |C| ≥ 2d(x)+2d(w)−4 ≥ 2σ2−4

by (4.4), a contradiction.

Let Q be a C-chord between distinct components of C − N(H) or C −
N(K). By Lemma 2.2 and γ + γ∗ ≤ 1 necessarily Q has an endvertex

z on C(x1, x2) and the other endvertex u on C(x2, x1) − N(H). Let u ∈
C(xk, xk+1), where xk ∈ N(H)− {x1}.

If z ∈ C(x1, y1)∪C(yl, yl+1), say z ∈ C(x1, y1), then again by Lemma 2.2,

|C(x1, z)∪C(xk, u)| ≥ D + 1 and |C(z, y1)∪C(u, xk+1)| ≥ D∗ + 1. But then

C(x1, y1) ∪ C(xk, xk+1)| ≥ D + D∗ + 4, contrary to γ + γ∗ ≤ 1. Hence in

fact z ∈ C[y1, yl], say z ∈ C[yj, yj+1), where 1 ≤ j ≤ l. Using appropriate

paths through H and K we can construct a cycle which contains all vertices

of C − (C(x1, y1)∪C(z, yj+1)∪C(xk, u)) and D + D∗ + 2 vertices of G−C.

As C is a longest cycle we obtain

|C(x1, y1) ∪ C(z, yj+1) ∪ C(xk, u)| ≥ D + D∗ + 2.

If z ∈ C(yj, yj+1), then yj+1 6= x2 and symmetrically

|C(yj, z) ∪ C(yl, x2) ∪ C(u, xk+1)| ≥ D + D∗ + 2.

But in this case

|C(x1, y1)∪C(yj, yj+1)∪C(xk, xk+1)∪C(yl, x2)| ≥ 2D+2D∗+6 ≥ D+3D∗+6,

contrary to γ + γ∗ ≤ 1. Hence in fact z = yj ∈ N(K). It remains to show

(d).

Let |H| 6= |K|. Then D > D∗ by Lemma 4.1.

We next show

u 6∈ {x+
k , x−k+1}, u+ 6∈ N(x+

k ), u− 6∈ N(x−k+1) (4.6)

Otherwise say u = x+
k or u+ ∈ N(x+

k ) − {xk+1}. If u = x+
k , let R =

C(xk, xk+1) and otherwise R = C[x+
k , u] ∪ x+

k u+ ∪ C[u+, xk+1). Anyway R is

a (u, x−k+1)-path and contains all vertices of C(xk, xk+1). Using Q,R and

appropriate paths through H and K we can construct a cycle C ′ which



4.2 The case N(H) 6= N(G− C). 31

C’

xux

y y

xu

1 y1 z= j j+1 x2

+ kk
+

k+1

K

x

H

Figure 4.2: The cycle C
′
.

contains all vertices of C − (C(x1, y1)∪C(yj, yj+1)) and D + D∗ + 2 vertices

of G−C (see Fig. 4.2). Since |C| ≥ |C ′| we obtain |C(x1, y1)∪C(yj, yj+1)| ≥
D + D∗ + 2. Hence γ∗ ≥ D−D∗. Employing γ + γ∗ + β ≤ 1 we first deduce

D − D∗ = γ∗ = 1 and |C(xk, xk+1)| = D + 1, then l = 1 from D∗ ≥ 1 and

β = 0. Replacing on C ′ the path through K by C[y1, x2] we obtain another

cycle C ′′ and deduce |C(x1, y1)| ≥ D + 1 from |C| ≥ |C ′′|. Hence in fact

|C(x1, y1)| = D∗ + 2 = |C(y1, x2)| + 1. From |C(y1, x2)| < D + 1 we deduce

y1 6∈ N(x−k+1). Hence x2 ∈ N(x−k+1) since d(x−k+1) ≥ D + s by (4.5). But

then we could embed R ∪ x−k+1x2 ∪ C[xk+1, y1] ∪ C[x2, xk] into a cycle C ′′

which contains all vertices of C −C(y1, x2) and D + 1 vertices of G−C, and

consequently |C ′′| ≥ |C|+ D −D∗, a contradiction. Hence (4.6).

From γ ≤ 1 and d(x+
k ) ≥ D + s we deduce |C(xk, xk+1)| = D + 2 =

D + 1 + γ, moreover N(x+
k ) = N(H) ∪ V (C(x+

k , xk+1)) − {u+}. Symmetri-

cally N(x−k+1) = N(H) ∪ (C(xk, x
−
k+1) − {u−}). Furthermore u 6= x++

k since

otherwise u− and x−k+1 would be distinct elements of C(x+
k , xk+1)−N(x+

k ).
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Symmetrically u 6= x−−k+1. Observe that the (u, x−k+1)-path R = C[x+
k , u]∪

x+
k u++∪C[u++, x−k+1] contains all vertices of C(xk, xk+1)−{u+} and gives rise

to a cycle C
′
which contains all vertices of C−(C(x1, y1)∪C(yj, yj+1)∪{u+})

and D+D∗+2 vertices of G−C. As above we infer |C(x1, y1)∪C(yj, yj+1)|+
1 ≥ D + D∗ + 2. Employing γ = γ + γ∗ + β = 1 and γ = |C(xk, xk+1)| −
(D + 1) we again obtain D −D∗ = 1 and l = 1. Furthermore |C(x1, y1)| =

|C(y1, x2)| = D∗ + 1 and |C ′| ≥ |C| − (2D∗ + 3) + (D + D∗ + 2) ≥ |C|.
Therefore u+ has no subsequent neighbours on R. In particular u−, x+

k are

distinct elements of C(xk, xk+1) − N(u+). Since d(u+) ≥ D + s it follows

that u+ has a neighbour in a component L of G − C. Using Lemma 4.1

we infer N(L) ⊆ C(xk, xk+1) ∪ N(H). As |C(x1, x2)| ≥ 2D∗ + 3 ≥ D + 3

application of (a) to the pair H,L yields the final contradiction. Thus the

proof of Lemma 4.3 is complete. 2

Lemma 4.4 Let H and K be components of G− C such that

max{|H|, |K|} ≥ 3 and N(K) − N(H) 6= ∅. Let |C| < 2σ2 − 4. Then all

components of G− C are strongly linked in G and complete.

If |H| 6= |K|, then |H| − |K| = |N(K)−N(H)|.
If |H| = |K|, then |N(K)−N(H)| = 1, furthermore |L| = |K| and N(L) =

N(K) for all components L of G− (C ∪H).

Proof. By Lemma 4.2 both H and K are strongly linked in G and complete

graphs, and consequently D = |H| − 1 ≥ |K| − 1 = D∗ by Lemma 4.1.

Let again N(H) = {x1, · · · , xs} and N(K) ⊆ C(x1, x2) ∪ N(H). We use

the notation of the previous proof. By assumption we have (4.4) with 0 ≤
γ + γ∗ + β ≤ 1.

Let L be any component of G− C other than H and K. Again L is not

separable by Lemma 2.5. Pick a vertex u ∈ V (L) such that D(L) ≥ dL(u).

If N(L) = N(H), then (4.5) yields D + s ≤ d(u) ≤ D(L) + s and hence

D(H) ≤ D(L). By symmetry in fact D(L) = D(H). In this event L is

strongly linked in G and complete by Lemma 4.2 applied to L and K. If

N(L) 6= N(H), then Lemma 4.2 applied to H and L yields that L is strongly
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linked in G and complete.

First assume |H| 6= |K|. By Lemma 4.1 then D > D∗ and by Lemma 4.3

there exists no C-chord between distinct components of C − N(H) . Since

γ ≤ 1 we can choose xj ∈ N(H) − {x1} such that |C(xj, xj+1)| = D + 1.

Lemma 3.1 and Lemma 4.3 yield d(x+
j ) ≤ D + s. If D + s < D∗ + t, then

by (4.4) we have |C| ≥ 4D + 4s − 4 ≥ 2d(x+
j ) + 2d(v) − 4, a contradiction.

Hence in fact D + s ≥ D∗ + t. Since γ∗ ≤ 1 we obtain |C(x1, y1)| = D∗ + 1

or |C(yl, x2)| = D∗ + 1, say |C(x1, y1)| = D∗ + 1. Again Lemma 3.1 and

Lemma 4.3 yield d(x+
1 ) ≤ D∗ + t. If D + s > D∗ + t, then again by (4.4) we

have |C| ≥ 2d(x+
1 )+2d(w)−4, a contradiction. Hence in fact D+s = D∗+t,

that is |H| − |K| = |N(K)−N(H)|.
In the rest of this proof let |H| = |K|. Since D∗ = D ≥ 2 and β ≤ 1 we

have |N(K) − N(H)| = l = t − s = 1, hence N(K) = N(H) ∪ {y1}. Next

assume N(L)−N(K) 6= ∅. Lemma 4.1 applied to K and L yields y1 ∈ N(L).

Application of Lemma 4.1 to the pair H, L yields N(L) ⊆ N(H)∪C(x1, x2).

Again applying Lemma 4.1 to the pair K,L we obtain N(L) ⊆ N(H) ∪
C(x1, y1] or N(L) ⊆ N(H) ∪ C[y1, x2), say N(L) ⊆ N(H) ∪ C(x1, y1]. Let z

be the first element of N(L) on C(x1, y1). As noted above, the components

of C(x1, x2)−N(L) have D(L) + 1 or D(L) + 2 vertices. Hence D(L) + 2 ≥
|C(y1, x2)| ≥ D∗ + 1, consequently D∗ − D(L) ≤ 1 and D(L) ≥ 1. On the

other hand D(L)+1 ≤ |C(x1, z)| ≤ D∗+2−(D(L)+2) ≤ 1, a contradiction.

Hence in fact N(L) ⊆ N(K).

If N(K) − N(L) 6= ∅, then D(L) ≥ D(K) and N(L) ⊂ N(K) by

Lemma 4.1. If in addition N(L) 6= N(H), then application of Lemma 4.1

yields N(H) ⊂ N(L) ⊂ N(K) or N(L) ⊂ N(H) ⊂ N(K). Since D(H) =

D(K) ≥ 2 and D(L) ≥ 2 we obtain a contradiction by Lemma 4.2. If instead

N(L) = N(H), then D(L) = D(H) = D(K). Now D+s = D(L)+s ≥ d(u),

and by (4.3) we obtain |C| ≥ 4D+4s−4 ≥ 2d(u)+2d(v)−4, a contradiction.

This shows that N(L) = N(K), which by the preceding implies |L| = |K|.
2
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Figure 4.3: The graphs in F0.

In the following Kq
h denotes a vertex-disjoint union of q complete graphs

on h vertices. We introduce the class F(G1, . . . , Gl; s1, . . . , sl) in Defini-

tion 4.3 . The exceptional class in Theorem 4.2 below is

F0 =
⋃{F(Kp

3 , K
q
2 , K

r
1 ; s, 1, 1) : p ≥ s ≥ 3, q ≥ 2, r ≥ 3}.

Definition 4.3 Let G be a 3-connected graph and let S1, . . . , Sl (l ≥ 1) be

disjoint non-empty subsets of V (G). We call (S1, . . . , Sl) an l-center of G

with tower G1, . . . , Gl, if G−(S1∪ . . .∪Sl) = G1∪̇ . . . ∪̇Gl and S1 ∪ . . . ∪ Si ⊆
N(v) for all v ∈ V (Gi) and i = 1, . . . , l. We say that G belongs to the class

F(G1, . . . , Gl; s1, . . . , sl), if there exists an l-center (S1, . . . , Sl) with tower

G1, . . . , Gl such that |Si| = si (i = 1, . . . , l).

Theorem 4.2 Let C be a longest cycle in the 3-connected graph G and let

H, K and L be components of G − C such that N(H), N(K) and N(L) are

distinct and max{|H|, |K|, |L|} ≥ 3. Then |C| ≥ 2σ2−5 with strict inequality

unless G ∈ F0.

Proof. Suppose |C| < 2σ2 − 4. Let |H| = max{|H|, |K|, |L|}. Then by

Lemma 4.4 necessarily |H| > |K| and |H| > |L|. By Lemma 4.1 we have

N(H) ⊆ N(K) ∩N(L) and hence N(K)−N(H) 6= ∅ and N(L)−N(H) 6= ∅.
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Furthermore, N(K)−N(H) ⊆ C(x, x′) and N(L)−N(H) ⊆ C(u, u′) for some

components C(x, x′) and C(u, u′) of C −N(H). We label N(K)∩C[x, x′] =

{y0, · · · , yl+1} and use the notation as introduced in the proofs of Lemma 4.1

and Lemma 4.3. By Lemma 4.1 the graphs H, K, L are strongly linked in G

and complete.

Claim 1. C(x, x′) = C(u, u′).

By Lemma 4.4 we have l = |H| − |K|, and hence

|C(x, x′)| ≥ (l + 1)(|K|+ 1)− 1 = 2|H| − 1 + (l − 1)(|K| − 1) ≥ |H|+ 2.

By symmetry also |C(u, u′)| ≥ |H|+ 2. If x 6= u then we obtain a contradic-

tion to (a) in Lemma 4.3. Hence the Claim.

Claim 2. |K| ≤ 2 and |L| ≤ 2.

Otherwise N(K) ⊂ N(L) or N(L) ⊂ N(K) by Lemma 4.1, say N(K) ⊂
N(L). Hence |N(L) − N(H) ≥ 2 and consequently |L| ≤ 2 by Lemma 4.2.

Furthermore, l = |H| − |K| = |N(K) − N(H)| = 1 by Lemma 4.4, applied

to H, K. Hence N(L)−N(K) ⊆ C(x, y1) or N(L)−N(K) ⊆ C(y1, x
′). Let

N(L)−N(K) ⊆ C(x, y1) and let z be the first element of N(L) on C(x, y1).

As in the proof of Lemma 4.4 we obtain D(L) + 2 ≥ |C(y1, x
′)| ≥ D(K) + 1,

hence D(K) − D(L) ≤ 1 and D(L) ≥ 1. On the other hand D(L) + 1 ≤
|C(x, z)| ≤ D(K) + 2− (D(L) + 2) ≤ 1, a contradiction. Hence Claim 2.

Without loss of generality we may assume |K| ≥ |L|.

Claim 3. |K| > |L|.
Otherwise |K| = |L|. This implies |N(K)| = |N(L)| as |N(K)−N(H)| =

|H| − |K| = |H| − |L| = |N(L) − N(H)| by Lemma 4.4. As N(L) 6= N(K)

necessarily N(L) has an element z on some C(yk, yk+1). Lemma 4.3 (c)

applied to the pair H, L yields yk ∈ N(L) or yk+1 ∈ N(L), say yk ∈ N(L).

Then |C(yk, z)| ≥ |L| = |K|. By (b) in Lemma 4.3 we have |C(yk, yk+1)| =

|K| + 1. Hence z+ = yk+1. Using Lemma 3.1 we infer |H| = |K| = 1 and

yk+1 6= y′. This in turn yields l ≥ 2. From γ∗ ≤ 1 we infer |C(yi, yi+1)| = 1
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x y j z = y k
+ y k+1ky=j+1y x’

K LH

C

Figure 4.4: The cycle through K, L and C − C(yj, yj+1).

for i 6= k. Clearly yi ∈ N(L) for all yi 6= yk+1.

If yk 6= y0 = x, set yj = yk−1 ∈ N(L). If yk = x, set yj = y2 ∈ N(L). Anyway

|C(yj, yj+1)| = 1, and there exists a cycle through K and L which contains all

vertices of C −C(yj, yj+1) (see Fig.4.4), contrary to |C(yj, yj+1)| = 1. Hence

Claim 3.

Claim 4. |H| = 3.

From β ≤ 1 we infer l ≤ 2 and hence |H| = |K|+ l ≤ 4. If |H| = 4, then

β = 1 and γ∗ = 0, hence |C(yi, yi+1)| = 2 for 0 ≤ i ≤ l = 2. By Lemma 3.1

we obtain y+
i , y−i+1 6∈ N(L) for 0 ≤ i ≤ 2. But then N(L) ⊆ N(K), contrary

to |N(L)−N(H)| ≥ l + 1. Hence Claim 4.

Claim 5. N(K) ⊂ N(L) and |C| = 2σ2 − 5.

As γ∗ ≤ 1 we have 4 ≤ |C(y0, y1)| + |C(y1, y2)| ≤ 5, say |C(y0, y1)| = 2.

Again y+
i , y−i+1 6∈ N(L) for 0 ≤ i ≤ l = 1. Since |N(L)| > |N(K)| necessarily

N(L) = N(K) ∪ {y++
1 } and |C(y1, y2)| = 3. Hence γ∗ = 1 and Claim 5.

We have shown that |C| < 2σ2 − 4 implies |C| = 2σ2 − 5 and |H ′| ≤ 3

for all components H ′ of G − C. Furthermore N(H ′) = N(H), if |H ′| = 3,

N(H ′) = N(K), if |H ′| = 2, and N(H ′) = N(L), if |H ′| = 1. Abbreviate

S = N(H) and |S| = s. As |C| = 2σ2 − 5 necessarily d(v) = s + 2 for all

v ∈ V (G)− (S ∪ {y, z}), where y = y1 and z = y++. Hence indeed G ∈ F0.

2
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Given positive integers s, q, and r we abbreviate

F1 = (
⋃

q≥s+2≥5
F(K3, K

q
3 ; s, 1))

⋃
(

⋃
h≥4,q≥5

F(Kh, K
q
h; 3, 1));

F21 = (
⋃

q≥s≥3,r≥3
F(Kq

3 , K
r
2 ; s, 1))

⋃
(

⋃
q,r,h≥3

F(Kq
h, K

r
h−1; s, 1));

F22 = (
⋃

q≥s≥3,r≥4
F(Kq

3 , K
r
1 ; s, 2))

⋃
(

⋃
q≥3,r≥h+1≥4

F(Kq
h, K

r
1 ; 3, h− 1)).

Observe that c(G) = 4δ−4 = 2σ2−6 for G ∈ F1, while c(G) = 4δ−6 = 2σ2−6

for G ∈ F21 ∪ F22.

Theorem 4.3 Let C be a longest cycle in the 3-connected graph G and let

H and K be components of G−C such that max{|H|, |K|} ≥ 3 and N(H) 6=
N(K). Then |C| ≥ 2σ2 − 6 with strict inequality unless G ∈ F1 ∪F21 ∪ F22.

Proof. Assume that |C| < 2σ2 − 5 and N(K) − N(H) 6= ∅. By Lemma 4.4

all components of G − C are complete and strongly linked in G, and by

Lemma 4.2 we have |C| = 2σ2 − 6. By Lemma 4.1 we have |H| ≥ |K|,
furthermore, N(H) ⊂ N(K) and N(K) ⊆ N(H) ∪ C(x, x′) for some com-

ponent C(x, x′) of C − N(H). Using Theorem 4.2 we infer N(L) = N(H)

or N(L) = N(K) for all components L of G − C. We use the notation

as introduced in the proofs of Lemma 4.1 and Lemma 4.3. In particular

N(H) = {x1, · · · , xs} and N(K) ∩ C[x1, x2] = {y0, · · · , yl+1}. Note that

|C| = 2σ2 − 6 = 2D + 2D∗ + 4s + 2l − 6 (4.7)

Therefore γ + γ∗ + β = 0, and consequently |C(xi, xi+1)| = D + 1 = |H| for

2 ≤ i ≤ s and |C(yi, yi+1)| = D∗ + 1 = |K| for 0 ≤ i ≤ l.

Case 1. |H| = |K|.
Invoking Lemma 4.4 we infer l = 1, furthermore N(L) = N(K) and

|L| = |K| for all components L of G − (C ∪H). Since d(v) = D + s for all

v ∈ V (H) necessarily d(w) ≥ D + s + 1 for all w ∈ V (G) − (H ∪ N(H)).

Consider a component C(z, z′) of C − N(K). By Lemma 4.3 the vertices

on C(z, z′) have only neighbors in C(z, z′) ∪ N(K). Therefore V (C(z, z′))
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induces a complete graph on h := |H| in G and N(u) ⊇ N(K) for every

vertex u on C(z, z′). This proves that indeed G ∈ F1 with (s−3)(h−3) = 0.

Case 2. |H| 6= |K|.
First consider a component L of G− (C∪H ∪K). If N(L) = N(H), then

D(L)+1 ≤ |C(x2, x3)| = D(H)+1 since γ = 0. If in addition D(L) < D(H),

then (4.7) yields that |C| = 2D+2D∗+4s+2l−6 ≥ 2D(L)+2D∗+4s+2l−4,

a contradiction. Hence in fact |L| = |H|. If N(L) = N(K), then |L| = |K|
since |H| − |H ′| = |N(H ′)−N(H)| for H ′ = L,K.

It readily follows that all components H ′ of G − N(K) are complete

graphs on |H| or |K| vertices. Moreover, N(H ′) = N(H), if |H ′| = |H|, and

N(H ′) = N(K), if |H ′| = |K|. Hence indeed G ∈ F21 ∪ F22. 2

4.3 Special segments

In this section we consider again a longest cycle C in a 3-connected graph G

and a 2-connected component H of G−C. We fix one of two cyclic orientation

on C.

We call a component C[u, w] of C −N(H) a special segment of C, if u,w

have no crossing neighbors on C[u,w]. This means N(u)∩C(u,w] ⊆ C(u, y]

and N(w) ∩ C[u,w) ⊆ C[y, w) for some y ∈ C(u,w).

In the next two lemmas we assume that some component of C −N(H) is

special. We label N(H) = {x1, · · · , xs} in order around C so that C(x1, x2)

is special. We abbreviate D := D(H) and determine a vertex v ∈ V (H) such

that D ≥ dH(v).

Lemma 4.5 |C| ≥ 2σ2 − 6, and strict inequality holds unless (N(x+
1 ) ∪

N(x−2 )) ⊆ C(x1, x2) ∪N(H).

Proof. If x+
1 or x−2 has a neighbor in G−C, application of Lemma 3.1 yields

|C| ≥ 2σ2 − 4. In the rest of this proof let N(x+
1 ) ∪N(x−2 ) ⊆ V (C).

For 1 ≤ i ≤ s we abbreviate ti = |N(x+
1 ) ∩ N(x−2 ) ∩ C(xi, xi+1)|. Let y be

the last neighbor of x+
1 and y′ be the first neighbor of x−2 on C(x1, x2).
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For C(x1, x2) we use the representation

|C(x1, x2)| = e(x+
1 , x−2 ; C(x1, x2)) + 1 + α1 (4.8)

For 2 ≤ i ≤ s we use the representation

|C(xi, xi+1)| = e(x+
1 , x−2 ; C(x1, x2)) + 1 + D + αi (4.9)

Obviously α1 ≥ |C(y, y′)| + 1 − t1 ≥ 0. We first show αi ≥ tiD for

2 ≤ i ≤ s. To this end we label N(x+
1 ) ∩N(x−2 ) ∩ C(xi, xi+1) = {u1, · · · , ut}

in order from u0 := xi to xi+1. For 0 ≤ τ < t let u
′
τ be the last element

of N(x+
1 ) ∪ N(x−2 ) ∪ {xi} on C[uτ , uτ+1) and let u

′
t be the first element of

N(x+
1 ) ∪N(x−2 ) ∪ {xi+1} on C(ut, xi+1]. By constructing appropriate cycles

we obtain |C(u
′
τ , uτ+1)| ≥ D + 1 for 0 ≤ τ < t and |C(ut, u

′
t)| ≥ D + 1. By

construction these segments contain no elements of N(x+
1 ) ∪ N(x−2 ). Hence

indeed αi ≥ tiD.

Combination of (4.8) and (4.9) yields

|C| = d(x+
1 ) + d(x−2 ) + (s− 1)D +

s∑

i=0

αi (4.10)

where α0 = |N(H)−N(x+
1 )|+ |N(H)−N(x−2 )|.

Since (s − 1)D ≥ 2s + 2D − 6 + (s − 3)(D − 2) and 2s + 2D ≥ 2d(v)

we obtain |C| ≥ d(x+
1 ) + d(x−2 ) + 2d(v)− 6 + (s− 3)(D − 2) +

s∑
i=0

αi. Hence

|C| ≥ 2σ2 − 6.

Now suppose |C| = 2σ2−6 and (N(x+
1 )∪N(x−2 ))∩C(xj, xj+1) 6= ∅ for some

xj ∈ N(H)−{x1}, say N(x−2 )∩C(xj, xj+1) 6= ∅. Then (s−3)(D−2)+
s∑

i=0
αi =

0, consequently t2 = · · · = ts = 0 and y = y′. Let yj be the last vertex on

C(xj, xj+1) in N(x−2 ) and let y
′
j be the first element of N(x+

1 ) ∪ {xj+1} on

C(yj, xj+1]. By Lemma 2.1 we have |C(yj, y
′
j)| ≥ D + 1. Since αj = 0, all

vertices on C(xj, yj] are in N(x+
1 ) ∪ N(x−2 ). If N(x+

1 ) ∩ C[xj, yj] 6= ∅, then

αj ≥ D as just shown, a contradiction. If N(x+
1 )∩C[xj, yj] = ∅, then α0 ≥ 1,

again a contradiction. Hence Lemma 4.5. 2

Lemma 4.6 If there exists a C-chord between distinct components of C −
N(H), then |C| ≥ 4δ − 5, moreover |C| ≥ 2σ2 − 5 unless G ∈ F1.
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Proof. We continue the notation introduced in the proof of Lemma 4.5. By

Lemma 4.5 it remains the case when |C| = 2σ2 − 6 and N(x+
1 ) ∪ N(x−2 ) ⊆

C(x1, x2)∪N(H). By Theorem 3.2 we obtain that H is strongly linked in G.

As shown in the proof of Lemma 4.5 necessarily y = y′ and
s∑

i=0
αi +

(s − 3)(D − 2) = 0. Hence also N(x+
1 ) = V (C(x+

1 , y]) ∪ N(H), N(x−2 ) =

V (C[y, x−2 )) ∪ N(H) and |C(xi, xi+1)| = D + 1 for 2 ≤ i ≤ s. Using (4.10)

we infer d(u) ≥ D + s for all u ∈ V (G)− ((N(x+
1 ) ∪N(x−2 )) ∪ {x+

1 , x−2 }).

Claim 1. If Q is a C-chord between distinct components of C − N(H),

then |Q| = 2 and y is an endvertex of Q.

By Lemma 2.5 no component of G − C is separable. Therefore |Q| = 2

by Lemma 4.1. As αi = 0 necessarily Q has an endvertex z on C(x+
1 , x−2 ).

Let Q = zuj, where uj ∈ C(xj, xj+1). Suppose z 6= y, say z ∈ C(x1, y). Since

N(x+
1 ) ⊇ C(x+

1 , y] we have z+ ∈ N(x+
1 ). But then there exists a cycle which

contains all vertices of C − C(xj, uj) and D + 1 vertices of H, contrary to

αj = 0. Hence Claim 1.

Claim 2. |C(x1, y)| ≥ D + 1 and |C(y, x2)| ≥ D + 1.

If x+
j is adjacent to y, then |C(x1, y)| ≥ D + 1 by Lemma 2.2. If x+

j

is not adjacent to y, then x+
j is adjacent to u+

j since d(x+
j ) ≥ D + s and

|C(xj, xj+1)| = D + 1. Using edges x+
j u+

j and e = yuj we can construct a

cycle C ′ which contains all vertices of C −C(x1, y) and D + 1 vertices of H.

Anyway |C(x1, y)| ≥ D + 1. By symmetry |C(y, x2)| ≥ D + 1.

Claim 3. |C| = (s + 1)(D + 2) and d(u) ≥ D + s + 1 for all u ∈ V (G) −
(N(H) ∪H). In particular |C(x1, y)| = |C(y, x2)| = D + 1.

By Claim 2 we have |C| ≥ (s+1)(D+2). Equality holds, since otherwise

|C| ≥ 4D + 4s − 3 ≥ 2d(v) + 2d(x+
2 ) − 5, a contradiction. In particular

|C(x1, y)| = |C(y, x2)| = D + 1. By the same reason d(u) ≥ D + s + 1 for all

u ∈ V (G)− (N(H) ∪H). Hence Claim 3.

By the preceding argument it follows that H is complete. By Claim 1

and Claim 3 we know that V (C(xi, xi+1)) induces a complete graph on D+1



4.3 Special segments 41

vertices and N(y) ⊇ V (C(xi, xi+1))(i 6= 1). Also |C| ≥ 4D + 4s − 4 ≥
4d(v)− 4.

Claim 4. If K is a component of G−C other than H, then K is strongly

linked in G, furthermore N(K) = N(H) ∪ {y} and D(K) = D(H).

By assumption K is not separable. By Lemma 4.1 (H, K interchanged)

there exist xi ∈ N(H) − {x1} such that xi, xi+1 ∈ N(K). If |K| ≥ 3,

then K is strongly linked in G by Theorem 3.2. Anyway, D(H) + 1 =

|C(xi, xi+1)| ≥ D(K) + 1. As D(K) ≥ dK(w) for some w ∈ V (K) we obtain

|N(K)| > |N(H)| by Claim 3. Pick z ∈ N(K)−N(H), say z ∈ C(xj, xj+1).

Observe that xj = x1 since otherwise x+
j , z+ are adjacent, contrary to xj, z ∈

N(K). Using Lemma 4.1 we infer N(K) ⊆ N(H) ∪ C(x1, x2) and N(H) ⊆
N(K).If z ∈ C(x1, y), then x+

1 and z+ are adjacent, again a contradiction.

By symmetry z 6∈ C(y, x2) and hence N(K) = N(H) ∪ {y}. Using again

Claim 3 we infer D(K) ≥ D. Therefore D(K) = D. This settles Claim 4.

Claim 5. No edge of G connects a vertex u on C(x1, y) to vertex z on

C(y, x2).

Assume the contrary. By assumption there exists a C-chord Q = Q[uj, y],

where uj ∈ C(xj, xj+1) for some xj ∈ N(H) − {x1}. By the preceding

discussion we have x+
j u+

j ∈ E(G) and u+x+
1 ∈ E(G). Using x+

j u+
j and u+x+

1

we can construct a cycle C ′ which contains all vertices of C − C(y, z) and

D +1 vertices of H. Hence |C(y, z)| ≥ D +1, contrary to |C(y, x2)| = D +1.

Hence Claim 5.

By Claim 3 and Claim 5 we obtain that V (C(x1, y)) and V (C(y, x2) span

complete graphs on D + 1 vertices. We have shown that all components

of G − (N(H) ∪ {y}) are complete graphs on |H| vertices. Furthermore,

N(H)∪{y} ⊆ N(v) for all vertices v ∈ V (G)− (N(H)∪{y}∪V (H)). Hence

indeed G ∈ F1, if |C| = 2σ2 − 6. 2
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4.4 Nonspecial segments

In this section we consider a longest cycle C in a 3-connected graph G and a

2-connected component H of G such that N(K) = N(H) for all components

K of G− C. We assume

|C| < 2σ2 − 5 (4.11)

We also assume that no component of C −N(H) is a special segment.

Invoking Theorem 3.2 we infer that H is strongly linked in G. Fixing a

cyclic orientation on C we label N(H) = {x1, . . . , xs} in order around C. We

abbreviate D := D(H) = |H| − 1. Let v be a vertex in V (H) with minimum

degree in H.

Let a1, a2, b1 and b2 be distinct vertices on C. We call edges a1b1 and a2b2

crossing edges, if a2 ∈ C(a1, b1) and b2 ∈ C(b1, a1).

Remark 4.1 Let xj and xk be distinct elements of N(H) and let x+
j a and

x+
k b be crossing edges. If a, b are on C(xk, xj], then |C(a, b)| ≥ D + 1; if a, b

are on C(xj, xk], then |C(b, a)| ≥ D + 1.

If, for example, a, b are on C(xk, xj] we can construct a cycle C ′ which con-

tains all vertices of C − C(a, b) and D + 1 vertices in V (H). Since C is a

longest cycle indeed |C| ≥ |C| − |C(a, b)|+ D + 1.

In the following we study edges between distinct components of G− C.

Lemma 4.7 N(x+
j ) ∩ C(xp, x

−
p+1) = ∅ and N(x−j+1) ∩ C(x+

p , xp+1) = ∅ for

any distinct elements xj, xp of N(H).

Proof. We first define some parameters. Let xj and xk be distinct elements

of N(H).

For xi ∈ N(H)− {xj, xk} we use the representation

|C(xi, xi+1]| = e(x+
j , x+

k ; C(xi, xi+1]) + D + ε
(i)
jk ,

and for xi ∈ {xj, xk} the representation

|C(xi, xi+1]| = e(x+
j , x+

k ; C(xi, xi+1]) + ε
(i)
jk .
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Clearly,

|C| = d(x+
j ) + d(x+

k ) + (s− 2)D +
s∑

i=1

ε
(i)
jk

If
s∑

i=1
ε
(i)
jk ≥ D + 1, then

|C| ≥ d(x+
j ) + d(x+

k ) + (s− 2)D + D + 1

and consequently, |C| ≥ d(x+
j ) + d(x+

k ) + 2d(v) − 5 ≥ 2σ2 − 5. Hence by

(4.11)
s∑

i=1

ε
(i)
jk ≤ D (4.12)

Claim 1. ε
(i)
jk ≥ (|N(x+

j )∩N(x+
k )∩C(xi, xi+1]|−1)D. Furthermore ε

(i)
jk ≥ 1,

if |N(x+
j ) ∩N(x+

k ) ∩ C(xi, xi+1]| = 0.

For definiteness assume that xk is on C(xj, xi]. Let y1, · · · , yt be the

common neighbors of x+
j and x+

k on C(xi, xi+1] in order from xi to xi+1.

For 0 < τ < t the edges x+
j yτ and x+

k yτ+1 are crossing edges. Note that

there exist y ∈ C[yτ , yτ+1) ∩ N(x+
k ) and y

′ ∈ C(y, yτ+1] ∩ N(x+
j ) such that

C(y, y
′
)∩(N(x+

j )∪N(x+
k )) = ∅, and by Remark 4.1 we have |C(y, y′)| ≥ D+1.

Hence indeed ε
(i)
jk ≥ (t− 1)D. If t = 0, clearly ε

(i)
jk ≥ 1. Hence Claim 1.

Using Claim 1 and (4.12) we infer |N(x+
j ) ∩N(x+

k ) ∩ C(xi, xi+1]| ≤ 2.

In the rest of this proof let N(x+
j ) ∩ C(xp, x

−
p+1) 6= ∅ for some distinct

xj, xp ∈ N(H), say (N(x+
2 )∪ · · · ∪N(x+

s ))∩C(x1, x
−
2 ) 6= ∅. Let u be the first

and u′ the last elements of N(x+
2 ) ∪ · · · ∪N(x+

s ) on C(x1, x
−
2 ).

Claim 2. N(x+
1 ) ∩ C(u, x2) = ∅.

Suppose that x+
1 has a first neighbor z on C(u, x2]. Let u∗ be the

last element of N(x+
2 ) ∪ · · · ∪ N(x+

s ) on C[u, z). By Remark 4.1 we have

|C(u∗, z)| ≥ D + 1. Using Claim 1 and (4.12) we infer that for xj 6= x1

the vertices x+
1 , x+

j have exactly two common neighbors on C(x1, x2]. At

most one of them (namely u) is on C(x1, z). Furthermore for any xj 6= x1

the vertices in C[u, x2] − C(u∗, z) are in N(x+
1 ) ∪ N(x+

j ). By Remark 4.1

this yields that x+
1 , x+

j have a unique common neighbor z′j on C[z, x2] and
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hence u ∈ N(x+
2 ) ∩ · · · ∩N(x+

s ). Also by Remark 4.1 all vertices on C[z, z′j]

are in N(x+
1 ) and all vertices on C[z′j, x2] are in N(x+

j ). Hence in fact z′j
is the last neighbor of x+

1 on C(x1, x2] and all vertices on C(z′j, x2] are in

N(x+
2 )∩· · ·∩N(x+

s ). Therefore for all xi 6= x1 necessarily z′i = z′j and all ver-

tices on C(z′j, x2] are in N(x+
i ). This in turn implies z′j = x2 by Remark 4.1.

By a similar argument all vertices on C[u, u∗] are in N(x+
2 )∩· · ·∩N(x+

s ) which

in turn implies u = u∗, that is (N(x+
2 ) ∪ · · · ∪N(x+

s )) ∩ C(x1, x2] = {u, x2}.
This settles Claim 2.

As C(x1, x2) is not special there exist edges x+
1 z1 and x−2 z2 in G such

that z1, z2 ∈ V (C) and z1 is on C(z2, x2]. We determine z1, z2 so that in

addition C(z2, z1) ∩ (N(x+
1 ) ∪ N(x−2 )) = ∅. Invoking Claim 2 we infer z1 ∈

C(x1, u]. Determine xj ∈ N(H) − {x1} such that u′x+
j ∈ E(G). As H

is normally linked in G we can determine a C-chord Q = Q[x1, xj] such

that |Q| ≥ D + 3 and then a cycle C ′ which contains Q and all vertices of

C− (C(z2, z1)∪C(u′, x−2 )). Therefore C(z2, z1)∪C(u′, x−2 ) has at least D +1

vertices and these are outside N(x+
1 ) ∪ N(x+

2 ) ∪ · · · ∪ N(x+
s ). By Claim 2

we have N(x+
1 )∩ (N(x+

2 )∪ · · · ∪N(x+
s )) = {u, x2}. As above we obtain that

both x−2 and x2 are in N(x+
2 ) ∩ · · · ∩N(x+

s ) which by Remark 4.1 is absurd.

2

Lemma 4.8 There exists no edge between distinct segments of the form

C(x+
j , x−j+1) and C(x+

k , x−k+1).

Proof. Assume that there exists an edge R = yjyk from C(x+
j , x−j+1) to

C(x+
k , x−k+1) for some distinct xj, xk ∈ N(H).

We continue the notation introduced in the proof of Lemma 4.7. We will

deduce ε
(j)
jk + ε

(k)
jk ≥ D + 1, and then get a contradiction to (4.12).

By Lemma 4.7 and (4.11) we have

N(x+
i ) ⊆ C(xi, xi+1) ∪N(H) ∪ {x−1 , · · · , x−s } and,

N(x−i+1) ⊆ C(xi, xi+1) ∪N(H) ∪ {x+
1 , · · · , x+

s }.
We first construct for l = j, k certain (yl, xl+1)-path Ql as follows.



4.4 Nonspecial segments 45

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

kk
+

kkkk+1
x −

j

k+1

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

k
+

kkkk+1

j

k+1
x −

k

k

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

kk
+

kkkk+1
x −

j

k+1

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

k
+

kkkk+1

j

k+1
x −

k

k

j

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

kk
+

kkkk+1
x −

j

k+1

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

k
+

kkkk+1

j

k+1
x −

k

k

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

kk
+

kkkk+1
x −

j

k+1

R

x xu’u’’

Q

Q

x

x y u xx

y

C’
j

j
+

j
j+1

k
+

kkkk+1

j

k+1
x −

k

k

j

Figure 4.5: Qj, Qk and C ′.

If x+
l has a first neighbor ul on C(yl, xl+1] we set Ql = C[x+

l , yl] ∪ x+
l ul ∪

C[ul, xl+1]. If N(x+
l ) ∩ C(yl, xl+1] = ∅ we use the fact that C(xl, xl+1) is not

special to determine u
′
l ∈ N(x−l+1)∩C(xl, yl) and u

′′
l ∈ N(x+

l )∩C(u
′
l, yl] such

that N(x+
l ) ∩ C(u

′
l, u

′′
l ) = ∅. In this case we obtain Ql by adding the edges

x+
l u

′′
l , x

−
l+1u

′
l and x−l+1xl+1 to C[x+

l , u
′
l] ∪ C[u

′′
l , yl].

Let Q = Qj∪Qk∪R∪C[xj+1, xk]∪C[xk+1, xj]. Using Q we can construct

a cycle C ′ which contains all vertices of C−Q := C−V (Q) and D+1 vertices

of H (see Fig.4.5). Since C is a longest cycle we obtain |C −Q| ≥ D + 1.

Let xl ∈ {xj, xk}. If x+
l has a first neighbor ul on C(yl, xl+1], then (4.11)

and Lemma 4.7 yield N(x+
l ) ⊆ C(x+

l , yl]∪C[ul, xl+1]∪N(H)∪{x−1 , · · · , x−s }.
Similarly, N(x+

l ) ⊆ C(x+
l , u

′
l]∪C[u

′′
l , yl]∪ (N(H)−{xl+1})∪ ({x−1 , · · · , x−s }−

{x−l+1}), if N(x+
l ) ∩ C(yl, xl+1] = ∅.

Hence in fact N(x+
l ) ∩ (C − Q) = ∅ for l = j, k. Note that by Lemma 4.7

and Remark 4.1 we have |N(x+
j )∩N(x+

k )∩C(xl, xl+1]| = |N(x+
j )∩N(x+

k )∩
{x−l+1, xl+1}| ≤ 1 for l = j, k. This in turn implies ε

(j)
jk +ε

(k)
jk ≥ |C−Q|+2−2 ≥

D + 1, a contradiction. 2

Lemma 4.9 If |N(H)| ≥ 4, there exist no C-chords between distinct com-

ponents of C −N(H).
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Proof. We continue the notation introduced in the proof of Lemma 4.7.

In the following Claim 1 we consider distinct elements xj, xk, xp and xq

of N(H).

Claim 1. Let |C(xj, xj+1)|+|C(xk, xk+1)| = 2D+2+ξ and ui ∈ C(x+
i , x−i+1)

for i = p, q. Then |C| ≥ d(up) + d(uq) + 2D + 2s − 8 + ξ + ε, where ε =

|N(H)−N(up)|+ |N(H)−N(uq)|.
Clearly, |C(xp, xp+1)| + |C(xq, xq+1)| ≥ d(up) + d(uq) + 2 − 2s + ε since

N(ui) ⊆ C(xi, xi+1) ∪ N(H) for i = p, q. Furthermore | ⋃
i6=p,q

C(xi, xi+1)| ≥
(s − 2)(D + 1) + ξ since |C(xi, xi+1)| ≥ D + 1 for xi ∈ N(H). This yields

Claim 1 since s+(s−2)(D+1) = (s−4)(D−2)+2D+4s−10 ≥ 2D+4s−10.

Now we assume that there exists a C-chord between distinct components

of C − N(H). By Lemma 4.7 and Lemma 4.8 this C-chord consists of an

edge x+
j x−k+1, where xj, xk are distinct elements of N(H).

By Claim 1 and hypothesis (4.11) we have |C(xi, xi+1)| ≤ D + 2 for

i = j, k. Also by Lemma 2 we have |C(xj, xj+1)| + |C(xk, xk+1)| ≥ 2D + 4.

Hence in fact ||C(xj, xj+1)| = |C(xk, xk+1)| = D + 2.

Case 1. xk 6= xj+1.

We pick distinct xp, xq ∈ N(H)− {xj, xk} such that xp is on C[xj+1, xk).

Abbreviate ui = x++
i for i = p, q. Note that xk+1, xj 6∈ N(up) since otherwise

we could construct a cycle which is longer than C. By Claim 1 we obtain

|C| ≥ d(up)+d(uq)+2D+2s−4 ≥ d(up)+d(uq)+2d(v)−4, a contradiction.

Case 2. xk = xj+1.

In this case as noted above |C(xj, xj+1)| = |C(xk, xk+1)| = D + 2. Let

u = x−−k and w = x++
k . Since C is a longest cycle we have xk+1, xk−1(= xj) 6∈

(N(u) ∪N(w)). Therefore d(u) ≤ (s + D + 1)− 2 = s + D − 1 and d(w) ≤
s + D− 1. But then |C| ≥ s(D + 2) + 2 = 4D + 4s− 6 ≥ 2d(u) + 2d(w)− 2,

again a contradiction. 2

Lemma 4.10 There exist no C-chords between distinct components of C −
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Figure 4.6: Case 1.1

N(H).

Proof. By Lemma 4.9 it remains the case when |N(H)| = 3. Suppose

that there exists some edge between distinct components of C −N(H). By

Lemma 4.7 and Lemma 4.8 all edges between distinct components of C −
N(H) have the form x+

i x−j+1.

Case 1. x+
i x−i+2 ∈ E(G) for some xi ∈ N(H).

For definiteness assume x+
1 x−3 ∈ E(G). As noted above x1, x3 have no

neighbors on C[x−−2 , x++
2 ]−{x2} and (N(x−1 )∪N(x+

3 ))∩C[x−−2 , x++
2 ] ⊆ {x2}.

In particular |C(x1, x2)| ≥ d(x−−2 ) and |C(x2, x3)| ≥ d(x++
2 ).

Case 1.1. N(x1) ∪N(x3) has elements on C(x+
1 , x−3 )− {x2}.

By symmetry we may assume that x1 has a neighbor z on C(x+
1 , x−3 ) −

{x2}. First assume z ∈ C(x+
1 , x2). Let z∗ be the last neighbor of z− on

C[z, x2). If z 6= z∗, set Q = C[x+
1 , z−] ∪ z−z∗ ∪ C[z, z∗], and otherwise

Q = C[x+
1 , z]. Anyway, Q gives rise to a cycle which contains all vertices of

H ∪ (C − C(z∗, x2)). Hence |C(z∗, x2)| ≥ D + 1 and |C(x1, x2)| ≥ D + 2 +

|N(z−) ∩ C(x1, x2)|. As |N(z−) ∩ C[x2, x1]| ≤ 5 we obtain

|C| − 3 ≥ D + 2 + d(z−)− 5 + d(x++
2 ) + d(x++

3 )− 2,

contrary to D + 2 ≥ d(v)− 1 and |C| < 2σ2 − 6.
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If z ∈ C(x2, x
−
3 ), a symmetric argument yields |C(x2, x3)| ≥ D + 2 +

|N(z+)∩C(x2, x3)| and |C|−3 ≥ D+2+d(z+)+d(x−−2 )+d(x++
3 )−2, again

a contradiction.

Case 1.2. (N(x1) ∪N(x3)) ∩ C(x+
1 , x−3 ) ⊆ {x2}.

As {x+
1 , x2} is not a cut set of G some edge e has endvertices z1 ∈

C(x+
1 , x2) and z2 ∈ C(x2, x

+
1 ). As z2 6∈ {x1, x3} necessarily e = x−2 x+

2 . As

{x+
1 , x−2 } is not a cut set of G some edge e′ has endvertices z ∈ C(x+

1 , x−2 )

and x2. Again z ∈ C(x++
1 , x2). Let z∗ be the first neighbor of z+ on C(x1, z].

Note that z∗ 6= x+
1 . Now we can construct a cycle which contains all ver-

tices of H ∪ (C − C(x+
1 , z∗)). We deduce |C(x+

1 , z∗)| ≥ D + 1 and hence

|C(x1, x2)| ≥ D + 3 + |N(z+) ∩ C(x1, x2)|. As N(z+) ∩ C[x2, x1] ⊆ {x2, x
+
2 }

we obtain |C| > 2σ2 − 5, a contradiction.

Since Case 1 is empty we may assume x−1 x+
1 ∈ E(G). As noted above we

have N(x1) ∩ {x−−i , x−i , x+
i , x++

i } = ∅ for i = 1, 2.

Case 2. x1 has a neighbor z on C(x+
1 , x−1 )− {x2, x3}.

By symmetry we may assume z ∈ C(xi, xi+1) for i = 1 or i = 2. Let

z∗ be the last neighbor of z− on C[z, xi+1). We can construct a cycle which

contains all vertices of H ∪ (C − C(z∗, xi+1)). Hence |C(z∗, xi+1)| ≥ D + 1

and consequently |C(xi, xi+1)| ≥ D + 2 + |N(z−) ∩ C(xi, xi+1)|. Clearly

|N(z−)∩C[xi+1, xi]| ≤ 5−i ≤ 4 and hence |C(xi, xi+1)| ≥ D+2+(d(z−)−4),

again a contradiction as in Case 1.

Case 3. x1 has no neighbor on C(x+
1 , x−1 )− {x2, x3}.

As N(x1) ∩ C(x2, x3) = ∅ some vertex z on C(x2, x3) has a neighbor z′

on C(x1, x2) ∪ C(x3, x1), say z′ ∈ C(x1, x2). By the preceding necessarily

z = x+
2 and z′ = x−2 . Since {x+

2 , x3} is not a cut set of G there exists

an edge from w ∈ C(x+
2 , x3) to w′ ∈ C(x3, x

+
2 ). By the preceding discussion

necessarily w′ 6∈ C[x−1 , x+
2 ] and hence ww′ = x−3 x+

3 . But then by the preceding

discussion no edge joins C(x+
1 , x−2 ) to C(x−2 , x+

1 ), contrary to the fact that G
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is 3-connected. 2

4.5 Proof of the main result and further re-

finements

Using the previous results we are now ready to supply the proof of our main

result. We also present some further refinements of the main result.

Proof of Theorem 4.1: Let C be a longest cycle in the 3-connected graph G

and let H be a component of G−C such that |H| ≥ 3. Suppose |C| < 2σ2−6.

By Theorem 3.2 we know that every component H ′ of G − C is strongly

linked in G or has exactly two vertices. Let D := D(H) = |H| − 1 and

S := N(H) = {x1, . . . , xs} as above. Clearly, D ≥ d(v) for all v ∈ V (H).

Using Theorem 4.3 we infer N(H ′) = N(H) for all components H ′ of G−C.

If some component H ′ of G−C is not strongly linked in G, then |H ′| = 2 and

s = dC(v′) + 2 = d(v′) + 1 for some v′ ∈ V (H ′). But then |C| ≥ s(D + 2) ≥
4s+2D−4 ≥ 2d(v)+2d(v′)−2 , a contradiction. Hence in fact all components

of G−C are strongly linked in G. By Lemma 4.5 no component of C − S is

special. Using Lemma 4.10 we infer that S = N(H) splits C. Since S splits

C, the subgraph Li of G which is induced by V (C(xi, xi+1)) is a 2-connected

subgraph of G− S (i = 1, . . . , s).

Next assume s = 3 and that every component of G−S is strongly linked

in G. Consider any longest cycle C ′ in G. Since each component K of

G − C is strongly linked in G we have |C ′| = |C| > |K| + 2. Therefore C ′

intersects at least two components of G − S and hence S ⊆ V (C ′). Since

G is 3-connected S also splits C ′. Consider a set S ′ which splits C. By

definition S ′ ⊆ V (C) and vertices of S ′ are not subsequent on C. As L1, L2

and L3 are hamilton-connected S cannot be a proper subset of S ′. Suppose

S − S ′ 6= ∅, say x1 6∈ S ′. Since N(H) = S for all components H of G − C

necessarily {x2, x3} ⊆ S ′. As L2 is hamilton-connected it follows that L2 is

a component of G − S ′. Since L2 and L3 are hamilton-connected we obtain

S ′ ∩ (C(x+
1 , x2) ∪ C(x3, x

−
1 )) = ∅. But N(x1) ∩ C(x2, x3) 6= ∅ since G is



50 4 Exceptional Classes for c(G) ≥ 4δ − c

3-connected. This is not possible because S ′ splits C. Hence S = S ′ which

means G ∈ E0.

Therefore it remains the case when s ≥ 4 or some component of G−S is

not strongly linked in G. If s ≥ 4, then |C| ≥ 2σ2 − 8 by Theorem 3.2. In

the case when s = 3 and some component L of G− S is not strongly linked

in G we have L = Li for some i ∈ {1, 2, 3}. Since N(L) = S necessarily L

is not hamilton-connected. Hence there exists a vertex w ∈ V (L) such that

|L| ≥ 2dL(w), consequently |C| ≥ |L| + 2|H| + 3 ≥ 2dL(w) + 2dH(v) + 5 ≥
2d(w) + 2d(v)− 7. 2

Corollary 4.2 Let C be a longest cycle in the 3-connected graph G with

toughness t.

If t > 5
6
, then |C| ≥ 2σ2 − 6 or C is a D4-cycle.

If t ≥ 1, then |C| ≥ 2σ2 − 6 or C is a D3-cycle.

Proof. Assume |C| < 2σ2 − 6. Let H be any component of G − C such

that |H| ≥ 3. Using t > 3
4

we infer G 6∈ E0. Therefore by the preceding

proof H is strongly linked in G and N(H) splits C. This implies t < 1

and yields the second claim of the Corollary. Moreover |N(H)| ≥ 4. Label

N(H) = {x1, . . . , xs} in order around C such that |C(x1, x2)| ≤ |C(xi, xi+1)|
for all xi ∈ N(H). Abbreviating D = |H| − 1 we have

|C| ≥ 2|C(x1, x2)|+ 4s− 2 + 2D − 8 + (s− 4)(D − 2) + γ

where γ =
s∑

i=3
(|C(xi, xi+1)| −D − 1) ≥ 0. For any v ∈ V (H) we obtain

|C| ≥ 2d(v) + 2d(x+
1 )− 8 + (s− 4)(D − 2) + γ

By assumption (s − 4)(D − 2) + γ ≤ 1. If t > 5
6
, then s ≥ 6 and hence

D = 2 = |H| − 1. This yields that C is a D4-cycle. 2

Abbreviating F3 = (
⋃

s≥4,q≥5
F(Kq

3 ; s))
⋃

(
⋃

h≥4,q≥5
F(Kq

h; 4)) we next prove

the following refinement of Theorem 4.1.
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Theorem 4.4 Let C be a longest cycle in the 3-connected graph G and let

C be not a D3-cycle. If G 6∈ E0 ∪ F3, then |C| ≥ 2σ2 − 7.

Proof. Suppose G 6∈ E0 and |C| < 2σ2 − 6.

Let D = D(H) and N(H) = {x1, . . . .xs} as in the preceding proof. By

that proof each component of G − C is strongly linked in G and N(H ′) =

N(H) for all components H ′ of G − C. Moreover S = N(H) splits C.

Furthermore s ≥ 4 or some component of C − S is not strongly linked in G.

In the latter case |C| ≥ 2σ2 − 7.

Now let s ≥ 4. By Theorem 3.2 all components of G − C are complete

graphs. If h := |H| > |H ′| for some component H ′ of G − C, clearly |C| ≥
s(D + 2) ≥ 4s + 2D + 2(D − 1)− 6 ≥ 2d(v) + 2d(v′)− 6 for any v ∈ V (H)

and v′ ∈ V (H ′), a contradiction. By symmetry |H ′| = |H| = h for all

compopnents H ′ of G− C. For i = 1, . . . , s let Li as above be the subgraph

of G which is induced by V (C(xi, xi+1)). We may assume h′ = |L1| ≤ |Li|
for i = 1, . . . , s. Abbreviate ε = (s − 4)(h − 3) +

s∑
i=1

(|Li| − h′). As |C| =

s(h′ + 1) +
s∑

i=1
(|Li| − h′) ≥ 2(h − 1) + 2(h′ − 1) + 4s − 8 + 2(h′ − h) + ε =

2d(v) + 2d(w) − 8 + 2(h′ − h) + ε we obtain h′ = h and dL1(w) = h′ − 1.

Hence L1 is a complete graph and so is each component Li such that |Li| = h.

Furthermore ε = (s− 4)(h− 3) +
s∑

i=1
(|Li| − h) ≤ 1 and d(w) ≥ h− 1 + s for

all w ∈ V (G)− S.

If |C| = 2σ2− 8 we obtain by the preceding that all components of G−S

are complete graphs on h vertices and S ⊆ N(v) for all v ∈ G − S. Also

(s− 4)(h− 3) = 0. That is G ∈ F3 as stipulated. 2

As a final refinement we describe the exceptional classes for c = 6. We

define some graphs and classes of graphs.
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Definition 4.4 Let G be a 3-connected graph. We say that G belongs to

the class H(q, h, s), if there exist S ⊂ V (G) and a decomposition G − S =

Kq
h∪̇L such that S ⊆ N(v) for all v ∈ V (G − (S ∪ L)), furthermore |L| =

h + 1 and all vertices of L have degree h + |S| or h + |S| − 1. Let H =

(
⋃

q≥s≥4
H(q, 3, s))

⋃
(

⋃
q≥5,h≥3

H(q, h, 4)).

Note that in this definition L has minimum degree |L| − 1 or |L| − 2. In

particular L is hamilton-connected, if h ≥ 4.

In Theorem 4.5 below the exceptional class E0 ∪ F3 ∪ H ∪ F4 for the

estimate c(G) ≥ 2σ2 − 6 is supplied. Let F4 = F41 ∪ F42 ∪ F43 ∪ F44, where

F41 =
⋃

q≥6
F(Kq

4 ; 5);

F42 = (
⋃

q,h≥3
F(Kh+1, K

q
h; 3, 1))

⋃
(

⋃
q≥s≥4

F(K4, K
q
3 ; s− 1, 1));

F43 =
⋃

q,h≥3
F(Kq

h, K
2
h−2; 3, 2) ;

F44 =
⋃

q,h,r≥3
F(Kq

h, K
r
1 ; 3, r).

Theorem 4.5 Let G be a 3-connected graph such that some longest cycle of

G is not a D3-cycle. If G 6∈ E0 ∪ F3 ∪H ∪ F4, then c(G) ≥ 2σ2 − 6.

Proof. Let C be a longest cycle in G and let H be a component of G − C

such that h := |H| ≥ 3. Suppose G 6∈ E0 and |C| < 2σ2 − 6.

Let S = N(H) = {x1, . . . , xs} and D = D(H) as in the preceding proof.

By that proof S splits C and all components of G−C are strongly linked in

G. Furthermore s ≥ 4 or some component of C − S is not strongly linked in

G. Let Li and ε be defined as in the preceding proof.

Case 1. s ≥ 4.

Let L1| ≤ |Li| for all 1 ≤ i ≤ s. By Theorem 3.2 all components of G−C

are complete graphs on h vertices. As ε ≤ 1 all components Li of C − S

with one possible exeption have h = |L1| vertices. Since d(u) ≥ h − 1 + s

for all u ∈ V (G) − S we obtain that S ⊆ N(v) for all v ∈ V (G) − C and
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all v ∈ V (Li) whenever |Li| = h. In particular Li is a complete graph, if

|Li| = h.

Case 1.1. N(Lj) 6= S for some j ∈ {1, . . . , s}.
Then |Lj| = h + 1 and Lj is a complete graph. Let xp ∈ N(H)−N(Lj).

By the preceding (S−{xp}, {xp}) is a 2-center of G. Since ε = (s−4)(h−3)+1

we have (s− 4)(h− 3) = 0, and therefore

G ∈ (
⋃

q,h≥3

F(Kh+1, K
q
h; 3, 1))

⋃
(

⋃

q≥s≥4

F(K4, K
q
3 ; s− 1, 1)) = F42.

Case 1.2. N(Li) = S for all 1 ≤ i ≤ s.

First assume that |Li| = h for all 1 ≤ i ≤ s. Then S is a center of G and

G−S = Kq
h, where q ≥ s+1. Also ε = (s−4)(h−3) ≤ 1. If (s−4)(h−3) = 0,

then G ∈ F3. If (s− 4)(h− 3) = 1, then G ∈ ⋃
q≥6

F(Kq
4 ; 5) = F41.

Next assume that |Lj| = h + 1 for some j ∈ {1, . . . , s}. As already noted

Lj has minimum degree |Lj| − 1 or |Lj| − 2. Since d(u) ≥ h − 1 + s for all

u ∈ V (G)− S we obtain G ∈ H. This settles Case 1.

Case 2 s = 3 and some component of C − S is not strongly linked in G.

Let L = L1 be not strongly linked in G. As G is 3-connected and |L| ≥
h ≥ 3 we have N(L) = S and that L is normally linked in G. By definition L

is not hamilton-connected and hence |L| ≥ 2δL ≥ 4, where δL is the minimum

degree of L. Since |C| ≥ 2h+ |L|+3 ≥ 2(h−1)+2δL +3 ≥ 2σ2−7 it follows

that |L| = 2δL and all components of G − (S ∪ L) are complete graphs on

h vertices. Also δL ≤ h − 1 since otherwise |C| ≥ 4(h − 1) + 7 ≥ 2σ2 − 5.

Furthermore S ⊆ N(v) for all v ∈ V (G) − (S ∪ L) and L has a hamilton

cycle.

First assume that L has a two-element cut set {c1, c2}. Then |L| = 2δL

and L−{c1, c2} has two components. These components are complete graphs

on δL− 1 vertices. Moreover, S ∪ {c1, c2} ⊆ N(v) for all v ∈ V (L)−{c1, c2}.
If δL < h− 1, then |C| ≥ 4δL + 7 ≥ 2σ2 − 5, again a contradiction. Hence in

fact δL = h− 1 which means that S, {c1, c2} is a 2-center of G and therefore
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G ∈ ⋃
q,h≥3

F(Kq
h, K

2
h−2; 3, 2) = F43.

Thus it remains the subcase when L is 3-connected. Determine distinct

vertices a, b ∈ V (L) and a longest (a, b)-path P in L such that |P | < |L|.
Choose a component K of L − P and label T = N(K) ∩ L = {z1, . . . , zr}
in order from a to b. Pick u ∈ V (K) and let w be the successor of z1 on

P . Note that w is not adjacent to the successors of z2, . . . , zr−1 and hence

|L| ≥ dL(u) + dL(w). As dL(u) = dL(w) = δL it follows that zr = b and w

is adjacent to all vertices of L−K except the successors of z2, . . . , zr−1. By

symmetry a = z1. As this holds for all components of L − P , necessarily

K = L−P . Moreover, NL(u)∪{u} = {z1, . . . , zr}∪ V (K) for all u ∈ V (K).

This in turn implies |K| = 1 since otherwise the first two elements on P [z2, z3]

would not be adjacent to w, again a contradiction. From |K| = 1 and |P | =
2dL(u) − 1 we deduce |C(zi, zi+1)| = 1 for 1 ≤ i ≤ r − 1. As P is a longest

(a, b)-path in fact L−T has no edges. As noted above dL(w′) = dL(w) for all

w′ ∈ V (L)−T . From |C| = |C(x1, x2)|+2(h+2)−1 ≥ 2δL+d(x+
2 )+d(x+

3 )−1

we deduce S ⊆ N(v′) for all v′ ∈ V (L) − T and δL = h − 1 = dL2(x
+
2 ) ≥ 2.

Therefore S, T is a 2-center of G, and G ∈ ⋃
q,h,r≥3

F(Kq
h, K

r
1 ; 3, r) = F44. 2

The following Remark follows readily from the definition of F(G; s).

Remark 4.2 Let C be a longest cycle in the 3-connected graph G and let S

be a 3-element subset of V (C) which splits C. If some component of G− C

has at most two elements, then |C| ≥ 2σ2 − 7 with strict inequality unless

G ∈ ⋃
q≥4

F(Kq
2 ; 3).



Chapter 5

Further Extensions

5.1 Introduction

In this chapter we will extend some of the results of Chapters 3 and 4 to

graphs with higher connectivity. Recall that L(G) is the length of the longest

paths in G. Let C be a longest cycle in G and let L(G − C) ≥ k − 1

where 3 ≤ k ≤ 5. The exceptional classes concerning the estimate c(G) ≥
(k+1)δ−(k−1)(k+2)+2 for k-connected G are essentially determined. Also

the exceptional classes concerning the estimate n ≥ (k + 1)δ − k(k + 1) + 1

for (k − 1)-connected G are essentially determined. The main result of this

chapter is the following Theorem 5.1. For the definitions of G, G ′ and G ′2
see chapter 2.

Theorem 5.1 Let C be a longest cycle in a graph G and let L(G−C) ≥ k−1

where 3 ≤ k ≤ 5. Then

(i) |C| ≥ (k + 1)δ − (k − 1)(k + 2) + 2, if G is k-connected and G 6∈ G;

(ii) n ≥ (k +1)δ− k(k− 1)+1, if G is (k− 1)-connected and G 6∈ G ′ ∪G ′2.

As noted above, our main result is an extension of Jung’s result (namely

Theorem 5.2 below) to the graphs with connectivity relaxed by one.
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Theorem 5.2 ([9]) Let C be a longest cycle in a graph G and let L(G−C) ≥
k − 1 where 2 ≤ k ≤ 5. There exists a vertex v in G− C such that

(i) |C| ≥ (k + 1)d(v)− (k − 1)(k + 1), if G is (k + 1)-connected;

(ii) n ≥ (k + 1)d(v)− k(k − 1),if G is k-connected.

In the process of proving Theorem 5.1 we get the following Corollary 5.1.

Corollary 5.1 If G is a 2-connected graph with n ≤ 2σ2 − 6, then every

longest cycle of G is a D3-cycle or G ∈ G ′2.

A well-known result due to Nash-Williams [22] is the following

Theorem 5.3 If G is a 2-conncected graph with n ≤ 3δ− 2 and α ≤ δ, then

G is hamiltonian.

The following Theorem 5.4 is implicit in Nash-Williams’ proof of Theo-

rem 5.3.

Theorem 5.4 If G is a 2-conncected graph with n ≤ 3δ − 2, then every

longest cycle of G is a D2-cycle.

Obviously, the following result of Veldman is a consequence of (ii) with k = 3

of Theorem 5.1.

Theorem 5.5 [19] If G is a 2-connected graph with n ≤ 4δ − 6, then G

contains a D3-cycle or G ∈ G ′2.

The following Theorem 5.6 of Veldman is an easy consequence of Theo-

rem 5.5.

Theorem 5.6 [19] If G is a 2-connected graph with n ≤ 4δ−6 and α ≤ δ−1,

then G is hamiltonian or G ∈ G ′2.

Theorem 5.6 was extented by Trommel [17]. He showed
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Theorem 5.7 [17] If G is a 2-connected graph with n ≤ 4δ − 6 , then G

contains a cycle of length at least min{n, n + 2δ − 2α− 2} or G ∈ G ′2.

As noted by Trommel in [17], the proof of Theorem 5.7 can be considerably

shortened by using Theorem 5.1.

5.2 Preliminaries

In this section we supply some preliminary results. The following result is

due to Jung.

Lemma 5.1 [9] Let C be a longest cycle in a 2-connected graph G and H a

separable component of G − C such that L(H) ≥ k − 1 (k = 3, 4, 5). There

exists a vertex v in H such that

(i) |C| ≥ 2d(v) + 2;

(ii) |C| ≥ (k + 1)d(v)− 4k + 8, if G is k-connected;

(iii) |C ∪H| ≥ (k + 1)d(v)− 3k + 8, if G is (k − 1)-connected.

In the following lemma we consider a 2-connected component H of G−C

with small D(H), where C is a longest cycle in G.

Lemma 5.2 Let C be a longest cycle in a k-connected graph G (k = 4, 5)

and H a 2-connected component of G−C such that D(H) ≤ k−2 ≤ |H|−2.

Then

(i) |C| ≥ (k + 1)δ − k(k − 1) + 1, if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 2) + 1, if G is (k − 1)-connected.

Proof. Pick a, b ∈ V (H) such that DH(a, b) = D(H) ≤ k − 2. We label

N(H) = {x1, . . . , xs} in order around C.

Case 1. D(H) = 2.

Obviously, V (H)− {a, b} is an independent set and hence dH(v) = 2 for

all v ∈ V (H)−{a, b} and DH(v, v′) ≥ 3 for any distinct v, v′ ∈ V (H)−{a, b}
with the strict inequality unless |H| = 4.
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First assume |H| ≥ 5. In this case we take three distinct vertices v1, v2, v3

in H − {a, b}. Note that in this case DH(v, v′) ≥ 3 for any distinct v, v′ ∈
V (H) such that {v, v′} 6= {a, b}, and DH(v, v′) = 4 if v, v′ ∈ V (H) − {a, b}.
Hence

|C(xi, xi+1]| ≥ e(v1, v2, v3; xi, xi+1) (5.1)

For if both xi and xi+1 have neighbors in {v1, v2, v3}, then we have

|C(xi, xi+1]| ≥ 6 unless e(v1, v2, v3; xi, xi+1) ≤ 2. Hence (5.1) holds in this

case. If, say, xi has no neighbor in {v1, v2, v3} and e(v1, v2, v3; xi, xi+1) ≥ 1,

then |C(xi, xi+1]| ≥ 5, hence again (5.1). Thus (5.1). Summation of (5.1)

over i = 1, . . . , s yields

|C| ≥ 2dC(v1) + 2dC(v2) + 2dC(v3) ≥ 2d(v1) + 2d(v2) + 2d(v3)− 12,

and consequently n ≥ 6δ − 7. .

Now let |H| = 4. By hypotheses k = 4. Let V (H)−{a, b} = {v1, v2} . In

this case

|C(xi, xi+1]| ≥ e(v1, v2; xi, xi+1) + e(b; xi+1) (5.2)

If |C(xi, xi+1]| < 4, then {xi, xi+1} has at most one neighbor in {v1, v2, b}
and hence e(v1, v2; xi, xi+1) + e(b; xi+1) ≤ 2. If |C(xi, xi+1]| = 4, then at

least one of v1, v2, b is not of neighbor of xi or xi+1 since DH(b, vj) = 3 for

j = 1, 2, and hence e(v1, v2; xi, xi+1) + e(b; xi+1) ≤ 4. Therefore (5.2) holds.

Summation of (5.2) yields |C| ≥ 5δ − 11 and n ≥ 5δ − 7.

Case 2. D(H) = 3.

By hypotheses k = 5 and |H| ≥ 5. Obviously, the components T1, . . . , Tr

of H−{a, b} are trees. Furthermore L(Tρ) ≤ 2 for 1 ≤ ρ ≤ r. Let |T1| ≥ · · · ≥
|Tr|. Note that |T1| ≥ 2 since D(H) = 3. We will determine distinct vertices

v1, w1 ∈ V (T1) and v2 outside T1 such that dH(u) ≤ 3 for u ∈ {v1, w1, v2}
and for i = 1, . . . , s

|C(xi, xi+1]| ≥ e(v1, w1, v2; xi, xi+1) (5.3)

Then the claim follows from (5.3).
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Case 2.1. |T1| ≥ 3.

We may assume that a is adjacent to some endvertex v of T1. Then

all other endvertices of T1 are not adjacent to b but they are adjacent to

a. Therefore, b is also not adjacent to v and hence b must be adjacent to

the center c1 of T1. Let v1, w1 be two distinct endvertices of T1. Note that

dH(v1) = dH(w1) = 2 since DH(a, b) = D(H) = 3. If r ≥ 2 we pick an

endvertex v2 of T2, and otherwise set v2 = b. In the latter case NH(v2) =

{a, c1}. In both cases we have dH(v2) ≤ 3. Clearly, DH(v1, w1) ≥ 4. If

|C(xi, xi+1]| < 5, then |NH(xi) ∪ NH(xi+1)| = 1 since D(H) = 3, and hence

e(v1, w1, v2; xi, xi+1) ≤ 2. If |C(xi, xi+1]| = 5, then at least one of v1, w1 is not

in N(xi) ∪N(xi+1) and hence e(v1, w1, v2; xi, xi+1) ≤ 5. Hence (5.3) holds.

Case 2.2. |Tρ| ≤ 2 for 1 ≤ ρ ≤ r.

Then r ≥ 2 and |T1| = 2, say T1 = {v1, w1}. We pick v2 in T2. Note that

dH(u) ≤ 3 for u ∈ {v1, w1, v2} and DH(v1, w1) ≥ 4. A similar argurment as

that in Case 2.1 yields (5.3). 2

Let C be a longest cycle in a graph G and let H be a non-separable

component of G−C. We call a segment C[y, z] on C a good N(H)-segment,

if C(y, z) ∩N(H) = ∅, and moreover |H| = 1 or |NH(y) NH(z)| ≥ 2.

Remark 5.1 Let C be a cycle in a k-connected graph G (k ≥ 2) and H a

non-separable component of G−C. If |H| ≥ k, there exist at least k distinct

good N(H)-segments on C.

Proof. As |H| ≥ k there exist by Menger’s Theorem at least k disjoint edges

from H to C, hence also at least k good N(H)-segments on C. 2
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5.3 The case N(G− C) 6= N(H)

In this section a longest cycle C in a 2-connected graph G and a 2-connected

component H of G−C are fixed. We choose one of the two cyclic orientations

of C. Let k ∈ {3, 4, 5}.

Lemma 5.3 Let H and K be distinct components of G− C such that

max{L(H), L(K)} ≥ k − 1. Suppose that there exists a vertex x on C such

that x ∈ N(H) and x+ ∈ N(K). Then

(i) |C| ≥ (k + 1)δ − k(k − 2) + 2, if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 3) + 2, if G is (k − 1)-connected.

Proof. In view of Lemma 5.1 we may assume that H or K is not separable.

If neither H nor K is separable we assume D(H) ≥ D(K). If H or K is

separable we assume that H is not separable and L(K) ≤ k − 2. If K is

separable we can determine an end block B of K and w ∈ V (B − c(B))

such that D(B) ≥ dK(w) and NK(x+) 6= {w}, where c(B) is the unique cut

vertex of K in B. If K is not separable we set B = K. In the latter case we

determine w ∈ V (K) such that D(B) ≥ dK(w), and moreover NK(x+) 6= {w}
or |K| = 1. In view of Lemma 5.2 we may further assume that H is 2-

connected with D := D(H) ≥ k − 1. Hence also D ≥ D∗ := D(B) by

convention. If NH(x) = {v0} we set X = {x} ∪ NC(H − v0) and determine

by Lemma 2.4 distinct vertices v1, v2 ∈ V (H − v0) such that D ≥ dH(v1)

and D ≥ dH(v2) − 1. If |NH(x)| ≥ 2 we set X = N(H) and determine by

Lemma 2.4 distinct vertices v1, v2 ∈ V (H) such that D ≥ dH(vh) for h = 1, 2.

If |K| ≥ 2 and NK(x+) = {w0} we set Y = {x+} ∪ NC(K − w0), otherwise

let Y = N(K).

We label X = {x1, . . . , xs} in order around C so that x1 = x. For 1 ≤
i ≤ s let ti = |N(K)∩C(xi, xi+1]| and ei,l = 2ti + e(v1; xi, xi+1)+ le(v2; xi+1),

where l = k − 3. Furthermore, if Y ∩ C(xi, xi+1] 6= ∅ we denote by zi and

z′i respectively the first and the last element of Y on C(xi, xi+1]. Clearly,
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s∑
i=1

ei,l = 2dC(w) + 2dC(v1) + ldC(v2). Let mi be the number of good Y -

segments on C(xi, xi+1], i = 1, . . . , s.

Claim 1. |C(x1, x2]| ≥ max{e1,l + m1D
∗ − 3− l, e1,l + D∗ − 3− l}.

Clearly, |C(x1, x2]| ≥ 2t1− 1 + m1D
∗. Hence we may assume m1 = 0. By

construction this implies z′1 = x+ and t1 ≤ 1. Then since |NH(x)∪NH(x2)| ≥
2 we obtain

|C(x1, x2]| ≥ D + 2 ≥ e1,l + D − 2− l ≥ e1,l + D∗ − 2− l.

Hence Claim 1.

Claim 2. Let xi ∈ X − {x1}. If Y ∩ C(xi, xi+1] 6= ∅, then |C(xi, z
′
i]| ≥

2ti + 1 + D + (mi + 1)D∗.

By construction we have |NH(x) ∪ NH(xi)| ≥ 2, hence |C(xi, zi]| ≥ D +

D∗ + 3. Since |C(zi, z
′
i]| ≥ 2ti − 2 + miD

∗ we obtain Claim 2.

The following Claim 3 is the immediate consequence of Claim 2.

Claim 3. Let xi ∈ X − {x1} and Y ∩ C(xi, xi+1] 6= ∅. Then

|C(xi, z
′
i]| ≥ ei,l + D + (mi + 1)D∗ − l − 1 ≥ ei,l.

Hence |C(xi, xi+1]| ≥ ei,l +D+(mi +1)D∗− l−1 with strict inequality unless

xi+1 ∈ N(w) ∪N(v1).

Since z′s 6= x1 we obtain by Claim 3 the following observation:

Observation If Y ∩ C(xs, x1] 6= ∅, then

|C(xs, x1]| ≥ es,l + D + (ms + 1)D∗ − l.

Claim 4. Let xi ∈ X − {x1} and y ∩C(xi, xi+1] = ∅. Then |C(xi, xi+1]| ≥
ei,l. If in addition |NH(xi) ∪ NH(xi+1)| ≥ 2 or xi = xs, then |C(xi, xi+1]| ≥
ei,l + D − l.

If |NH(xi)∪NH(xi+1)| = 1, then ei,l ≤ 2 and hence |C(xi, xi+1]| ≥ 2 ≥ ei,l.

If |NH(xi) ∪NH(xi+1)| ≥ 2, then |C(xi, xi+1]| ≥ D + 2 ≥ ei,l + D − l. Since

|NH(xs) ∪NH(x1)| ≥ 2 we obtain Claim 4.
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By the preceding two claims we have |C(xi, xi+1]| ≥ ei,l for all xi − {x1}.
If in addition |NH(xi) ∪ NH(xi+1)| ≥ 2 or xi = xs then |C(xi, xi+1]| ≥ ei,l +

D − l − 1. Thus we obtain

|C| ≥ 2dC(w) + 2dC(v1) + (k − 3)dC(v2) + (
s∑

i=1

mi)D
∗ + αl (5.4)

where αl ≥ 0.

Now let G be (k − 1)-connected. Then since |H| ≥ k by Remark 5.1

there exist(s) at least (k − 2) element(s) xi ∈ X − {x1} such that |NH(xi) ∪
NH(xi+1)| ≥ 2. Hence by Claim 1-4 we have αl ≥ (k − 2)(D − l − 1) + 1.

Furthermore, by Claim 1 and Remark 5.1 we have
s∑

i=1
mi ≥ 1. Therefore, by

(5.4) we have

n ≥ |C ∪H ∪K|
≥ 2dC(w) + 2dC(v1) + (k − 3)dC(v2) + 2D∗ + (k − 1)D − (k − 2)2 + 3

≥ 2d(w) + 2d(v1) + (k − 3)d(v2)− k(k − 3) + 2.

This is (ii).

Finally let G be k-connected. Note that |H| ≥ k. Again by Remark 5.1

and preceding claims αl ≥ (k − 1)(D − l − 1) + 1, moreover
s∑

i=1
mi ≥ 2.

Therefore again by (5.4)

|C| ≥ 2dC(w) + 2dC(v1) + (k − 3)dC(v2) + 2D∗

+(k − 1)D − (k − 1)(k − 2) + 1

≥ 2d(w) + 2d(v1) + (k − 3)d(v2)− k(k − 2) + 2.

2

Lemma 5.4 Let L(H) ≥ k − 1. If H is not normally linked in G, then

(i) |C| ≥ (k + 1)δ − k(k − 1) + 2, if G is k-connected,

(ii) n ≥ (k + 1)δ − k(k − 2) + 2, if G is (k − 1)-connected.

Proof. Suppose G is (k−1)-connected. Then in view of the previous lemmas

we may assume that H is 2-connected with D(H) ≥ k − 1. By hypotheses
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there exist distinct elements z1, z2 of N(H) such that NH(z1)∪NH(z2) = {y}.
Label X = {z1, z2} ∪ NC(H − y) = {x1, . . . , xs} according to the given

orientation on C. Suppose {z1, z2} = {xp, xq} with p < q.

In view of Lemma 5.3 we may assume dC(x+
i ) = d(x+

i ) and dC(x−i ) =

d(x−i ) for all xi ∈ X. Using Lemma 2.4 we determine two distinct vertices

v1, v2 ∈ V (H − y) such that D = D(H) ≥ dH(v1) and D + 1 ≥ dH(v2).

For 1 ≤ i ≤ s let ui be the first vertex on C(xi, xi+1] in N(x+
p ) ∪ N(x+

q ) ∪
{xi+1}, (xs+1 := x1), moreover we define γi = 1 if xi+1 6∈ N(v1) ∪N(v2), and

γi = 0 if xi+1 ∈ N(v1) ∪N(v2). Let l = k − 3.

For 1 ≤ i ≤ s we use the representation

|C(xi, xi+1]| = e(x+
p , x+

q ; C(xi, xi+1]) + 2e(v1; xi+1) + le(v2; xi+1) + αi (5.5)

Firstly, we supply the estimate

|C[ui, xi+1]| ≥ e(x+
p , x+

q ; C(xi, xi+1])− 1 (5.6)

Let xi ∈ C[xp, xq). For any u ∈ N(x+
q )∪C(xi, xi+1] we have u+ 6∈ N(x+

p )

since C is a longest cycle. Hence (5.6).

Next using (5.6) we supply the estimate of αi for i = 1, . . . , s.

Obviously, αi ≥ (k − 1)γi − (k − 1) for i ∈ {p, q}.
Now let xi ∈ X − {xp, xq}. If |C(xi, ui)| ≥ D + 1, then by (5.6) we have

αi ≥ (D − k + 1) + (k − 1)γi. If |C(xi, ui)| < D + 1 and xi 6∈ {xp, xq}, then

ui = xi+1 6∈ N(x+
p ) ∪ N(x+

q ), furthermore |NH(xi) ∪ NH(xi+1)| = 1. In this

event we obtain 2e(v1; xi+1) + le(v2; xi+1) ≤ max{2, k − 3} = 2, and hence

αi ≥ 2γi.

Summation of (5.6) over i = 1, . . . , s yields

|C| = d(x+
p ) + d(x+

q ) + dC(v1) + (k − 3)dC(v2) +
s∑

i=1

αi (5.7)

Claim.
s∑

i=1
αi ≥ (k − 2)(D − k + 1).

Note that G − y is (k − 2)-connected and |H − y| ≥ k − 1. Then by

Remark 5.1 there exist at least (k − 2) elements xi ∈ X − {xp, xq} with
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|NH(xi) ∪ NH(xi+1)| ≥ 2. First assume xp 6= xq−1 and xq 6= xp−1. Then

by above estimates we have αp−1 ≥ D and αq−1 ≥ D. Hence
s∑

i=1
αi ≥

(k − 4)(D − k + 1) + 2D − 2k + 2 = (k − 2)(D − k + 1). Next assume

xp = xq−1 or xq = xp−1, say xp = xq−1. In this case xp−1 6= xq and hence

αp−1 ≥ D and αp ≥ 0. Again we have
s∑

i=1
αi ≥ (k−3)(D−k+1)+D−k+1 =

(k − 2)(D − k + 1). Hence the Claim.

Now by the above Claim and (5.7) we obtain

n ≥ d(x+
p ) + d(x+

q ) + 2dC(v1) + (k − 3)dC(v2)

+(k − 2)(D − k + 1) + D + 1

≥ (k + 1)δ − k(k − 2) + 2

Now let G be k-connected. Then a similar argument yields
s∑

i=1
αi ≥ (k − 1)(D − k + 1), and consequently by (5.7)

|C| ≥ d(x+
p ) + d(x+

q ) + 2dC(v1) + (k − 3)dC(v2) + (k − 1)(D − k + 1)

≥ (k + 1)δ − k(k − 1) + 2

2

Corollary 5.2 Let L(H) ≥ k − 1. Then

(i) |C| ≥ (k + 1)δ − (k − 1)(k + 1), if G is k-connected

and |N(H)| ≥ k + 1 ;

(ii) n ≥ (k + 1)δ − k(k − 1) + 1, if G is (k − 1)-connected

and |N(H)| ≥ k;

(iii) n ≥ 2σ2 − 5, if |N(H)| ≥ 3.

Proof. By previous lemmas we may assume that H is 2-connected and nor-

mally linked in G. Let G be (k − 1)-connected and D := D(H) ≥ k − 1. If

s = |N(H)| ≥ k, then

|C| ≥ s(D + 2)

≥ k(D + s)− k(k − 2) + (s− k)(D − k + 1)

≥ kδ − k(k − 2)
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and consequently

n ≥ s(D + 2) + D + 1

≥ (k + 1)(D + s)− k(k − 1) + 1 + (s− k)(D − k + 1)

≥ (k + 1)δ − k(k − 1) + 1

It is not difficult to prove that |C| ≥ d(x+
1 ) + d(x+

2 ) + (s − 2)D, and

consequently n ≥ d(x+
1 ) + d(x+

2 ) + (s− 1)D + 1. This implies (iii). 2

Lemma 5.5 Suppose that there exist components H,K of G − C such that

N(H) 6= N(K) and max{L(H), L(K)} ≥ k − 1. Then

(i) |C| ≥ (k + 1)δ − k(k + 1) + 4, if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 1) + 1, if G is (k − 1)-connected.

Proof. Assume that G is (k − 1)-connected and L(H) ≥ k − 1. In view of

Lemmas 5.1,5.2 and 5.4 we may assume that H is 2-connected and normally

linked in G, and moreover we assume |N(H)| = k − 1 and D(H) ≥ k − 1.

Using Lemma 2.4 we determine a vertex v ∈ V (H) such that D ≥ dH(v). We

choose a vertex w ∈ V (K) with the minimum degree in K. If L(K) ≥ k− 1,

in view of previous results, we assume that K is 2-connected and normally

linked in G. In this event we set D∗ := D(K) and by Lemma 2.4 we have

D∗ ≥ dK(w). If L(K) ≤ k − 2, in view of Lemma 5.2, we may assume that

K is separable or |K| ≤ k − 1. In this event we set D∗ = 0. Note that in

this case k − 2 ≥ L(K) ≥ dK(w). Let D
∗

= D∗ if D∗ 6= 0, and D
∗

= k − 2 if

D∗ = 0. Then we have D
∗ ≥ dK(w).

We label N(H) = {x1, . . . , xs} and write t = |N(K)|. By convention

s = k − 1. For 1 ≤ i ≤ s we abbreviate |N(K) ∩ C(xi, xi+1]| = ti and

|N(K) ∩ C(xi, xi+1)| = pi. Let X = {xi ∈ N(H) : pi > 0}. For xi ∈ X we

denote by zi and z′i, respectively, the first and the last elements of N(K) on

C(xi, xi+1).

Case 1. |X| ≥ 2.

For xi ∈ N(H)−X we have ti ≤ 1 and hence

|C(xi, xi+1]| ≥ D + 2 ≥ D + 2ti (5.8)
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Obviously, for xi ∈ X we have

|C[zi, z
′
i]| ≥ 2ti − 3 (5.9)

For any distinct xp, xq ∈ X let Q be a longest (xp, xq)-path with inner

vertices in H and let R be a longest (zp, zq)-path with inner vertices in K. By

construction |Q| − 2 ≥ D + 1 and |R| − 2 ≥ D∗ + 1. Obvously, Q∪R∪ (C −
C(xp, zp)−C(xq, zq)) gives rise to a cycle. As C is a longest cycle we obtain

|C(xp, zp) ∪C(xq, zq)| ≥ D + D∗ + 2. Similarly, |C(z′p, xp+1) ∪C(z′q, xq+1)| ≥
D + D∗ + 2. Hence by (5.9)

|C(xp, xp+1] ∪ C(xq, xq+1]| ≥ 2D + 2D∗ + 6 + |C[zp, z
′
p]|+ |C[zq, z

′
q]|

≥ 2D + 2D∗ + 2tp + 2tq

Label X = {xi1 , . . . , xim} in order around C. Then

∑

xi∈X

|C(xi, xi+1]| =
1

2

∑

xij
∈X

|C(xij , xij+1] ∪ C(xij+1
, xij+1+1]|

≥ 1

2

∑

xij
∈X

(2D + 2D∗ + 2tij + 2tij+1
)

= |X|(D + D∗) + 2
∑

xi∈X

ti

Combination of the above estimate and (5.8) yields

|C| ≥ sD + 2D∗ + 2t

≥ (k − 1)(D + s) + 2(D
∗
+ t)− (k − 1)2 − 2k + 4

≥ (k − 1)d(v) + 2d(w)− k2 + 3

and since |H ∪K| ≥ k + 1 we obtain

n ≥ |C ∪H ∪K| ≥ (k + 1)δ − k(k − 1) + 4.

Case 2. |X| = 1.
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We may assume X = {x1}. Then N(K) ⊆ C(x1, x2) ∪N(H).

Case 2.1. N(K) ∩ C(x2, x1) 6= ∅.
Let xp ∈ N(K) ∩ (N(H) − {x1, x2}). As in Case 1 we infer |C(x1, z1) ∪

C(xp−1, xp)| ≥ D +D∗+2 and |C(z
′
1, x2)∪C(xp, xp+1)| ≥ D +D∗+2. Hence

|C(x1, x2] ∪ C(xp−1, xp+1]| ≥ 2D + 2D∗ + 7 + |C[z1, z
′
1]|

≥ 2D + 2D∗ + 2t1 + 4

≥ 2D + 2D∗ + 2t1 + 2tp−1 + 2tp

Using (5.8) for all xi ∈ N(H)− {x1, xp−1, xp} we obtain

|C| ≥ (s− 1)D + 2D∗ + 2t (5.10)

Then since |K| ≥ dK(w) + 1 we have

n ≥ sD + 2D∗ + 2t + |K|+ 1

≥ (k − 1)(D + s) + (D
∗
+ |K| − 1 + 2t)− (k − 1)2 − (k − 1) + 3

≥ (k + 1)δ − k(k − 1) + 3

Now assume in additon that G is k-connected, then s = k and by (5.10)

|C| ≥ (k − 1)(D + s) + 2(D
∗
+ t)− k(k − 1)− 2(k − 1) + 2

≥ (k + 1)δ − k(k + 1) + 4

Case 2.2. N(K) ⊆ C[x1, x2].

In this subcase instead of using D
∗

we define D(B). If K is separable we

choose an endblock B of K, otherwise set B = K. Then by Lemma 2.4 we

have D(B) ≥ dK(w). Since H is normally linked in G we have

|C| ≥ (s− 1)D + 2s + 2t− 4 + mD(B) (5.11)

where m is the number of good N(K)-segments on C. Obviously, m ≥
2 or |K| = 1. Hence

n ≥ sD + 2s + 2t + 2D(B) + 2− 4 + D(B)

= (k − 1)(D + s) + 2(D(B) + t)− (k − 1)2 − 2 + 2s

≥ (k + 1)δ − (k − 1)2 + 2
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If G is k-connected, then we have s = k, and moreover m ≥ 3 or |K| = 1.

Hence by (5.11)

|C| ≥ (k − 1)D + 2s + 2t− 4 + 2D(B)

= (k − 1)(D + s) + 2(D(B) + t)− k(k − 1)− 4 + 2s

≥ (k + 1)δ − k(k − 1) + 2

Case 3. |X| = 0.

By hypotheses we have N(H) − N(K) 6= ∅. This in turn implies s =

|N(H)| > |N(K)| ≥ k − 1, and the claim follows from Corollary 5.2. 2

Corollary 5.3 Suppode that there exist distinct compopnents H and K of

G−C such that max{L(H), L(K)} ≥ k−1. Then n ≥ (k+1)δ−k(k−1)+1.

Proof. Let G be a (k − 1)-connected graph. We continue the notation in-

troduced in the proof of Lemma 5.5. Also by that proof we are left with the

case when N(H) = N(K) and s = t = k − 1 = |N(H)|. By symmetry we

may assume D ≥ D∗. Since |K| − 1 ≥ D
∗ ≥ dK(w) and D ≥ D

∗
we obtain

n ≥ (k − 1)(D + 2) + D + |K|+ 1

≥ (k + 1)δ − k(k − 1) + 3

2

5.4 The case N(G− C) = N(H)

In this section again a longest cycle C in a 2-connected graph G and a 2-

connected component H of G−C are fixed. Moreover let N(G−C) = N(H).

We use k as a variable restrict to the set {3, 4, 5}. We aim at the estimates

with factor k+1. In view of Lemma 5.1 we may assume D := D(H) ≥ k−1.

Using Lemma 2.4 we determine a vertex v in V (H) such that D ≥ dH(v).

Label N(H) = {x1, . . . , xs} in order around C. In view of the results of
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preceding section we may assume that H is normally linked in G and s =

κ(G) , moreover d(x+
i ) = dC(x+

i ) and d(x−i ) = dC(x−i ) for all xi ∈ N(H).

First we define some kinds of special segments on C.

Recall that a segment C[xi, xi+1] is called a sepecial segment on C, if there

exists a vertex y on C(xi, xi+1) such that N(x+
i )∩C(xi, xi+1] ⊆ C(xi, y] and

N(x−i+1) ∩ C(xi, xi+1] ⊆ C[y, xi+1].

Let xp, xq be distinct elements of N(H) and zp, zq ∈ V (C) − ({x+
p , x+

q } ∪
N(H)) such that zp ∈ N(x+

p ) and zq ∈ N(x+
q ). We call C[zp, zq] a crossing

segment w.r.t. {x+
p , x+

q }, if xq ∈ C(xp, zp) and zq ∈ C(zp, xp). Similarly, for

xj ∈ N(H), we call C[zj, z
′
j] a crossing segment w.r.t.{x+

j , x−j+1}, if zj, z
′
j ∈

V (C)− (N(H) ∪ C(xj, xj+1)) and zj ∈ N(x+
j ), z′j ∈ N(x−j+1) or vise versa.

Obviously, if C[z, z
′
] is a crossing segment w.r.t.{x+

p , x+
q } or w.r.t.{x+

j , x−j+1},
then |C(z, z

′
)| ≥ D + 1 and |C(z′, z)| ≥ D + 1.

Lemma 5.6 If there exists a special segment on C, then

(i) |C| ≥ (k + 1)δ − k(k − 1), if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 2), if G is (k − 1)-connected.

Proof. Suppose that G is (k − 1)-connected. Without loss of generality we

may assume that C[x1, x2] is a special segment. Let y and y′ be respectively,

the last neighbor of x+
1 on C(x1, x2] and the first neighbor of x−2 on C(x1, x2].

For 1 ≤ i ≤ s let ti = |N(x+
1 ) ∩ N(x−2 ) ∩ C(xi, xi+1)|. Then t1 ≤ 1 by the

definition.

For C(x1, x2) we use the representation

|C(x1, x2)| = e(x+
1 , x−2 ; C(x1, x2)) + 1 + α1 (5.12)

and for 2 ≤ i ≤ s let

|C(xi, xi+1)| = e(x+
1 , x−2 ; C(xi, xi+1)) + 1 + D + αi (5.13)

Obviously, α1 ≥ |C(y, y′)|+ 1− t1 ≥ 0.

As shown in the proof of Lemma 4.5 we have αi ≥ tiD, for 2 ≤ i ≤ s.
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Combination of (5.12) and (5.13) yields

|C| = d(x+
1 ) + d(x−2 ) + (s− 1)D +

s∑

i=0

αi

where α0 = |N(H)−N(x+
1 )|+ |N(H)−N(x−2 )|. Hence

n ≥ d(x+
1 ) + d(x−2 ) + (k − 1)D + 1

= d(x+
1 ) + d(x−2 ) + (k − 1)(D + s)− (k − 1)2 + 1

≥ (k + 1)δ − k(k − 2).

If, in addition, G is k-connected, then s = k. Hence the above estimate yields

|C| ≥ d(x+
1 ) + d(x−2 ) + (k − 1)D

≥ d(x+
1 ) + d(x−2 ) + (k − 1)(D + k)− k(k − 1)

≥ (k + 1)δ − k(k − 1).

2

In view of Lemma 5.6 we assume in following three lemmas that no seg-

ment C[xi, xi+1] of C is special, i = 1, . . . , s.

Lemma 5.7 If N(x+
p ) ∩ C(xq, x

−
q+1) 6= ∅ for some distinct elements

xp, xq ∈ N(H), then

(i) |C| ≥ (k + 1)δ − k(k − 1),if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 2), if G is (k − 1)-connected.

Proof. Let G be a (k − 1)-connected graph. For definiteness let p < q.

For xi ∈ N(H)− {xp, xq}(if there are any), we use the representation

|C(xi, xi+1]| = e(x+
p , x+

q ; C(xi, xi+1]) + D + ε(i)
pq ,

and for xi ∈ {xp, xq} we use the representation

|C(xi, xi+1]| = e(x+
p , x+

q ; C(xi, xi+1]) + ε(i)
pq .
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Clearly,

|C| = d(x+
p ) + d(x+

k ) + (s− 2)D +
s∑

i=1

ε(i)
pq

By Claim 1 in the proof of Lemma 4.7 we have the following Claim.

Claim 1 ε(i)
pq ≥ (|N(x+

p ) ∩N(x+
q ) ∩C(xi, xi+1]| − 1)D, furthermore ε(i)

pq ≥ 1

if |N(x+
p ) ∩N(x+

q ) ∩ C(xi, xi+1]| = 0.

Claim 2 ε(q)
pq ≥ D.

Let z and z
′

be the first and last elements of N(x+
p ) on C(xq, x

−
q+1),

respectively.

If N(x+
q )∩C(z, xq+1) 6= ∅, then there exists a crossing segment C(y, y

′
) ⊆

C[z, xi+1) w.r.t.{x+
p , x+

q } such that C(y, y
′
) ∩ (N(x+

p ) ∪ N(x+
q )) = ∅. Hence

ε(q)
pq ≥ |C(y, y

′
)| ≥ D + 1− 1 = D.

Suppose N(x+
q ) ∩ C(z, xq+1) = ∅. Since C[xq, xq+1] is not special there

exists a crossing segment C[u, u
′
] ⊆ C(x+

q , z] w.r.t. {x+
q , x−q+1} such that

C(u, u
′
)∩ (N(x+

p )∪N(x+
q )) = ∅. Let Q be a longest (xp, xq)-path with inner

vertices in V (H). Then |Q| ≥ D + 3. Since Q ∪ C[xq, u] ∪ x+
q u

′ ∪ C[u
′
, z

′
] ∪

z
′
x+

p ∪ C[x+
p , xq] ∪ ux−q+1 ∪ C[x−q+1, xp] is a cycle which contains all verices

of C − (C(u, u
′
) ∪ C(z

′
, x

′
i+1)) and at least D + 1 vertices in V (H) we have

|C(u, u
′
) ∪ C(z

′
, x

′
i+1)| ≥ D + 1, and therefore ε(q)

pq ≥ D. Hence Claim 2.

Now by Claim 1 and Claim 2 we have |C| ≥ d(x+
p ) + d(x+

q ) + (s − 1)D,

and hence Lemma 5.7. 2

In the following two lemmas we assume that N(x+
i ) ⊆ C(xi, xi+1) ∪

N(H)∪N−(H) and N(x−i+1) ⊆ C(xi, xi+1)∪N(H)∪N+(H) for all xi ∈ N(H).

Lemma 5.8 If there exists an edge e = ypyq from C(x+
p , x−p+1) to C(x+

q , x−q+1)

for some distinct elements xp, xq of N(H), then

(i) |C| ≥ (k + 1)δ − k(k − 1), if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 2), if G is (k − 1)-connected.

Proof. We continue the notation introduced in Lemma 5.7.
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Since C[xp, xp+1] is not special we have either N(x+
p ) ∩ C(yp, xp+1) 6= ∅

or N(x−p+1) ∩ C(xp, yp) 6= ∅, say N(x+
p ) ∩ C(yp, xp+1) 6= ∅. Let y′p be the first

neighbor of x+
p on C(yp, xp+1). Let Q be a longest (xp, xq)-path with inner

vertices in H. Then |Q| ≥ D + 3. By the previous Lemma we obtain

|C| ≥ d(x+
p ) + d(x+

q ) + (s− 2)D +
s∑

i=1

ε(i)
pq .

We will show ε
(j)
jk +ε

(k)
jk ≥ D+1. Then the claim follows by the above estimate.

Case 1. N(x+
q ) ∩ C(yq, xq+1) 6= ∅.

Let y
′
q be the first element of N(x+

q ) on C(yq, x
−
q+1). Using Q and edges

e, x+
p y

′
p and x+

q y
′
q we can construct a cycle which contains all vertices of

Q∪ (C− (C(yp, y
′
p)∪C(yq, y

′
q))). Hence |C(yp, y

′
p)∪C(yq, y

′
q))| ≥ D+1. This

implies ε
(j)
jk + ε

(k)
jk ≥ D + 1.

Case 2. N(x+
q ) ∩ C(yq, xq+1) = ∅.

Since C[xq, xq+1] is not special there exists a segment C[zq, z
′
q] ⊆ C[x+

q , yq]

such that C(zq, z
′
q) ∩ (N(x+

p ) ∪ N(x+
q )) = ∅ and zq ∈ N(x−q+1), z

′
q ∈ N(x+

q ).

Then, as in Case 1, one can construct a cycle which contains all vertices

of Q ∪ (C − (C(zq, z
′
q) ∪ C(yq, x

−
q+1) ∪ C(yp, y

′
p)). Since (N(x+

p ) ∪ N(x+
q )) ∩

(C(zq, z
′
q) ∪ C(yq, x

−
q+1) ∪ C(yp, y

′
p)) = ∅ we have

ε
(j)
jk + ε

(k)
jk ≥ |C(zq, z

′
q) ∪ C(yq, x

−
q+1) ∪ C(yp, y

′
p)| ≥ D + 1

. 2

Lemma 5.9 Suppose that there exists an edge between distinct components

of C −N(H). Then

(i) |C| ≥ (k + 1)δ − k(k − 1), if G is k-connected (k = 3, 4, 5);

(ii) n ≥ (k + 1)δ − k(k − 2), if G is (k − 1)-connected (k = 4, 5).

Proof. We only prove the case when G is 4-connected. The proof of the

case when G is 5-connected is similar, and the proof of the case when G is

3-connected is given in [13].
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By previous results it remains the case when |N(H)| = 4 and all possible

edges from distinct components of C−N(H) have the form x+
i x−j+1 for some

distinct elements xi, xj ∈ N(H). We write N(H) = {x1, x2, x3, x4}. Since

|H| ≥ D + 1 ≥ d(v) − 3 for some vertex v in H it sufficies to show that

|C| ≥ 5δ − 12.

Case 1. x+
i x−j ∈ E(G) for some xj ∈ {xi+2, xi+3}.

For definiteness assume x+
1 x−3 ∈ E(G). It is easy to see that x1, x3 have no

neighbors on C[x−−2 , x++
2 ]−{x2} and (N(x−1 )∪N(x+

3 ))∩C[x−−2 , x++
2 ] ⊆ {x2}.

In particular

|C(x1, x2)| ≥ d(x−−2 )− 1, |C(x2, x3)| ≥ d(x++
2 )− 1;

|C(x3, x4)| ≥ d(x++
3 )− 3, and |C(x4, x1)| ≥ d(x++

4 )− 3.

Case 1.1. N(x1) ∪N(x3)) has element on C(x+
1 , x−3 )− {x2}.

By symmetry we may assume that x1 has a neighbor z on C(x+
1 , x−3 ) −

{x2}. First assume z ∈ C(x+
1 , x2). Let z∗ be the last neighbor of z− on

C[z, x2). If z 6= z∗, set Q = C[x+
1 , z−] ∪ z−z∗ ∪ C[z, z∗], and otherwise

Q = C[x+
1 , z]. Anyway, Q gives rise to a cycle which contains all vertices of

H∪(C−C(z∗, x2)) and at least D+1 vertices in H. Hence |C(z∗, x2)| ≥ D+1

and |C(x1, x2)| ≥ D + 2 + |N(z−) ∩ C(x1, x2)|. Obviously, if x1x
++
1 ∈ E(G),

then x−1 x+
1 6∈ E(G), and hence |N(z−) ∩ C[x2, x1]| ≤ 7. Therefore

|C| − 4 ≥ D + 2 + d(z−)− 7 + d(x++
2 ) + d(x++

3 ) + d(x++
4 )− 7 ≥ 5δ − 16.

If z ∈ C(x2, x
−
3 ), asymmetric argument yields |C(x2, x3)| ≥ D + 2 +

|N(z+) ∩ C(x2, x3)| and |C| − 4 ≥ D + 2 + d(z+) − 7 + d(x−−2 ) + d(x++
3 ) +

d(x++
4 )− 7. This settles Case 1.1.

Case 1.2. (N(x1) ∪N(x3)) ∩ C(x+
1 , x−3 ) = {x2}.

As {x+
1 , x2, x4} is not a cut set of G some edge e has endvertices z1 ∈

C(x+
1 , x2) and z2 ∈ C(x2, x

+
1 ). Since {x+

1 , x−2 , x4} is not cut set of G some

edge e′ has endvertices z ∈ C(x+
1 , x−2 ) and x2. Obviously, z ∈ C(x++

1 , x2).
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Let z∗ be the first neighbor of z+ on C(x1, z]. Note that z∗ 6= x+
1 since C is

a longest cycle. Now we can construct a cycle which contains all vertices of

C − C(x+
1 , z∗) and at least D + 1 vertices of H. This implies |C(x+

1 , z∗)| ≥
D + 1, and therefore |C(x1, x2)| ≥ D + 3 + |N(z+) ∩C(x1, x2)|. As N(z+) ∩
C[x2, x1] ⊆ {x2, x3, x4} we obtain

|C| − 4 ≥ D + 3 + d(z+)− 3 + d(x++
2 ) + d(x++

3 ) + d(x++
4 )− 7.

This settles Case 1.

Now we may assume in addition x−i x+
i ∈ E(G) for some i = 1, 2, 3, 4,

say x−1 x+
1 ∈ E(G). As noted above N(x1) ∩ {x−−i , x−i , x+

i , x++
i } = ∅ for

i = 1, 2, 3, 4, moreover

|C(x1, x2)| ≥ d(x−−2 )− 2, |C(x2, x3)| ≥ d(x++
2 )− 2

|C(x3, x4)| ≥ d(x++
3 )− 2, and |C(x4, x1)| ≥ d(x++

4 )− 2.

Case 2. x1 has a neighbor z on C(x+
1 , x−1 )− {x2, x3, x4}.

By symmetry we may assume z ∈ C(xi, xi+1) for i = 1, 2. Let z∗ be the

last neighbor of z− on C[z, xi+1). As noted above we deduce |C(z∗, xi+1)| ≥
D+1, and consequently, |C(xi, xi+1)| ≥ D+2+|N(z−)∩C(xi, xi+1)|. Clearly,

|N(z−)∩C[xi+1, xi]| ≤ 6− i ≤ 5, and hence |C(xi, xi+1)| ≥ D +2+d(z−)−5

for i = 1, 2. Again we obtain |C| ≥ D +4+ d(z−)+ 3δ− 9. This settles Case

2.

Case 3. x1 has no neighbor on C(x+
1 , x−1 )− {x2, x3, x4}.

As N(x1) ∩ C(x2, x3) = ∅ and {x2, x3, x4} is not a cut set of G some

vertex z ∈ C(x2, x3) has a neighbor z′ on C(x1, x2). By the precedings

necessarily z = x+
2 and z′ = x−2 . Since {x+

2 , x3, x4} is not a cut set of G there

exists an edge e with the endvertices w ∈ C(x+
2 , x3) and w′ ∈ C(x3, x

+
2 ). By

the preceding w′ 6∈ C[x4, x2] and hence ww′ = x−3 x+
3 . A similar argument

will yield x−4 x+
4 ∈ E(G). But then by the above discussion there exists no

edge joining C(x+
1 , x−2 ) to C(x−2 , x+

1 ), this is contrary to the fact that G is

4-connected. This final contradiction settles Lemma 5.9. 2
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Using a similar argument as in the proof of the previous lemma one can

obtain

Corollary 5.4 Let C be a longest cycle in a 2-connected graph G and H

a component of G − C. Suppose N(H) = {x1, x2}. If x−i x+
i ∈ E(G) and

N(xi) ∩ (C(x+
i , x−i )− {xi+1}) 6= ∅ for some i ∈ {1, 2}, then n ≥ 2σ2 − 3.

2

Lemma 5.10 Let K be a component of G − C. If K is not strongly linked

in G, then

(i) |C| ≥ (k + 1)δ − k(k − 1)− 2, if G is k-connected;

(ii) n ≥ (k + 1)δ − k(k − 2)− 2, if G is (k − 1)-connected.

Proof. Let G be (k− 1)-connected. By assumption there exists a component

H of G − C such that H is 2-connected with D := D(H) ≥ k − 1. Then

|H| ≥ D + 1 ≥ d(v) − k + 2. Since |N(G − C)| = |N(H)| = k − 1 we infer

that all components of G− C are normally linked. Hence

|C| ≥ (k − 1)(D + 2) (5.14)

Case 1. K is 3-connected.

By Proposition 2.1 there exist non-adjacent vertices v1, v2 ∈ V (K) such

that D(K) ≥ dK(v1) + dK(v2) − 2 ≥ d(v1) + d(v2) − 2k. Using Lemma 2.4

we determine v′ ∈ V (K) such that D(K) ≥ dK(v′) ≥ d(v′)− k + 1. Since K

is normally linked in G we have

|C| ≥ d(v1) + d(v2)− 2k + 2 + (k − 2)(D(K) + 2)

≥ kδ − (k − 1)(k − 2)− 2

and

n ≥ |C ∪K|
≥ (k + 1)δ − (k − 1)(k − 2)− 2− (k − 1) + 1

≥ (k + 2)δ − k(k − 2)− 2.
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Case 2. K has connectivity 2.

We determine a ∈ V (K) such that the number of cut vertices of K − a is

maximum. Let B1, . . . , Br be the endblocks of K− a with corresponding cut

vertices c1, . . . , cr of K − a in V (B1), . . . , V (Br). We adopt notation so that

D(B1) ≤ D(Bρ) for 1 ≤ ρ ≤ r, furthermore c1 6= c2, if K− a has at least two

cut vertices. We fix for h = 1, 2 vertices vh ∈ Bh− ch with minimum dK(vh).

Then D(Bh) ≥ dK−a(vh) ≥ dK(vh)− 1 ≥ d(vh)− k for h = 1, 2.

First we consider the case when G is a 2-connected graph and N(K) =

{x1, x2}. Let B be the block of K with minimum D(B). Then since K is

normally linked we obtain |C| ≥ 2D(B) + 4 ≥ 2d(v) for some v ∈ V (B).

As K is not hamilton-connected there exists a vertex w ∈ V (K) such that

|K| ≥ 2dK(w) ≥ 2d(w) − 4. Hence in this event we obtain n ≥ |C ∪ K| ≥
2d(v) + 2d(w)− 4 ≥ 2σ2 − 4.

In the rest of Case 2 we assume that G is a (k− 1)-connected graph with

k ∈ {4, 5}.
Pick an xj ∈ N(K) such that xj ∈ NC(B1 − c1). If xj−1 or xj+1, say

xj+1, has a neighbor in B2 − c2, then |C(xj, xj+1]| ≥ D(B1) + D(B2) + 2 ≥
d(v1) + d(v2)− 2k + 2. Hence in this event by (5.14) we have

|C| ≥ d(v1) + d(v2)− 2k + 2 + (k − 2)(D + 2)

≥ kδ − (k − 1)(k − 2)− 2

and n ≥ (k + 1)δ − k(k − 2)− 2.

If a ∈ N(xj−1)∪N(xj+1), say a ∈ N(xj+1), then |C(xj, xj+1] ≥ D(B1)+

D(B2) + 2, and the claim.

Now assume xj−1, xj+1 6∈ NC(B2 − c2) ∪ NC(a). Since |N(K)| = k − 1

we have xj ∈ NC(B2 − c2). By symmetry we may assume that xj−1, xj+1 6∈
NC(B1 − c1) either.

If xj+1 ∈ NC(Bp − cp) for some p 6= 1, 2 or xj+1 ∈ NC(B′) for some

block B′ 6= B1, B2, then also we have |C(xj, xj+1]| ≥ D(B) + D(B1) + 2 for

B ∈ {Bp, B
′}, and hence the claim. For the case when k = 4 the claim

follows by Theorem 3.1.
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It remains the case when r = 2 and c1 = c2, moreover k = 5 and

NK(xj−1) ∪ NK(xj+1) = c1. If |K| = 4, then it is easy to check that

|C| ≥ 5δ−12. Let |K| ≥ 5. Then |B1| ≥ 3 or |B2| ≥ 3, say the latter. In this

event we have |NB2−c2(xj)∪NB2−c2(a)| ≥ 2 or |NB2−c2(xj+2)∪NB2−c2(a)| ≥ 2,

say the former. Then since c1 ∈ NK(xj−1) we have again |C(xj−1, xj]| ≥
D(B1) + 2 + D(B2) + 2, and this settles Case 2.

Case 3. K is separable.

If L(K) ≥ k−1, then the claim follows from Lemma 5.1. Assume L(K) ≤
k−2 ≤ 3. Then it is not difficult to verify that K is a quasistar. Hence there

exists a vertex u ∈ V (K) such that d(u) ≤ k. By (5.14) we obtain

|C| ≥ (k − 1)(D + k − 1) + 2k − 2− (k − 1)2

≥ (k + 1)δ − k(k − 2)− 3

and n ≥ (k + 1)δ − k(k − 3)− 3. 2

5.5 Proof of the main result

Proof of Theorem 5.1 Let C be a longest cycle in a (k − 1)-connected

graph G and H a component of G− C such that L(H) ≥ k − 1.

We first consider the case when G is a 2-connected graph and N(H) =

{x1, x2}. Suppose n < 4δ − 5. By lemmas 5.5 and 5.10 all components of

G − C have the same set of attachment on C and are strongly linked in

G. By Lemmas 5.6—5.8 the possible edges between C(x1, x2) and C(x2, x1)

are x−1 x+
1 and x−2 x+

2 . Moreover, if x−i x+
i ∈ E(G), then Corollary 5.4 yields

N(xi) ∩ (C(x+
i , x−i ) − {xi+1}) = ∅ (i = 1 or 2). For i = 1, 2 set Si = {xi},

if x−i x+
i 6∈ E(G), otherwise Si = {x−i , xi, x

+
i }. We define S = S1 ∪ S2.

Obviously, all components of C − S are normally linked. Suppose that some

component L of C − S is not strongly linked in G. Then necessarily L is

not hamilton-connected. Thus there exists a vertex w ∈ V (L) such that

|L| ≥ 2dL(w) ≥ 2d(w) − 4. Since H is strongly linked in G we obtain

n ≥ |C ∩H| ≥ 2|H|+2+ |L| ≥ 2d(v)+2d(w)− 4 ≥ 2σ2− 4, a contradiction.
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Hence G ∈ G ′2. If k = 3 and |N(H)| ≥ 3, then Corollary 5.2 (iii) applies. If

k ≥ 4 and |N(H)| ≥ k, then also by Corollary 5.2 we have |C| ≥ kδ−k(k−2)

and n ≥ (k + 1)δ − k(k − 1) + 1. It remains the case when k ≥ 4 and

|N(H)| = k−1. In view of Lemma 5.10, we may in addition assume that every

component of G−C is strongly linked in G. Therefore, if |C| ≥ kδ−k(k−2),

then n ≥ |C∪H| ≥ kδ−k(k−2)+ |H| ≥ kδ−k(k−2)+(D+k−1)−k+2 ≥
(k + 1)δ − k(k − 1) + 2.

Let |C| < kδ − k(k − 2). We will show G ∈ G.

By Lemma 5.6 no segment of C−N(H) is special. Using Lemma 5.9 and

Corollary 5.3 we infer that S := N(H) = {x1, . . . , xk−1} splits C. Further-

more, since no segment of C−S is special, the subgraphs Li of G which is in-

duced by V (C(xi, xi+1)) is a 2-conncected subgraph of G−S, i = 1, . . . , k−1.

Assume that every component of G − S is strongly linked in G. Let C ′

be any longest cycle of G. Let H1, . . . , Ht be all components of G− C with

|H1| ≥ |H2| ≥ · · · ≥ |Ht|. Since all Hj (j = 1, . . . , t) are strongly linked in

G we have |C(xi, xi+1]| ≥ |H1| + 1 ≥ |Hj| + 1 for 1 ≤ i ≤ k − 1. For any

component Hj of G − C, we have |C ′| = |C| ≥ (k − 1)(|Hj| + 1). Hence

C ′ intersects at least k − 2 components of G − S and therefore S ⊆ V (C ′).

Since G is (k − 1)-connected S also splits C ′. Consider a set S ′ which splits

C. By definition S ′ ⊆ V (C) and vertices of S ′ are not subsequent on C.

As L1, . . . , Lk−1 are hamilton-connected S cannot be a proper subset of S ′.

Suppose S − S ′ 6= ∅, say x1 6∈ S ′. Since N(Hj) = S for all components Hj

of G − C necessarily {x2, . . . , xk−1} ⊆ S ′. As L2 is hamilton-connected it

follows that L2 is a component of G − S ′. Since L2, . . . , Lk−1 are hamilton-

connected and {x2, . . . , xk−1} ⊆ S ′ we obtain S ′ ∩ ((C(x+
1 , x2)∪C(x3, x

−
1 ))−

{x3, . . . , xk−1}) 6= ∅. But then N(x1) ∩ C(x2, x3) 6= ∅ since G is (k − 1)-

connected. This contradicts the fact that S ′ splits C. Hence S = S ′ and

G ∈ G.

Now we assume that some component L of G−S is not strongly linked in

G. By the preceding L is induced by some V (C(xi, xi+1)). Since N(L) = S

and |S| = k − 1 we infer that L is normally linked, and hence necessarilly L
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is not hamilton-connected. Thus there exists a vertex w ∈ V (L) such that

|L| ≥ 2dL(w) ≥ 2d(w) − 2k + 2, and |C| ≥ |L| + (k − 2)|H1| + k − 1 ≥
2d(w)− 2k +2+(k− 2)d(v)− (k− 2)(k− 2)+k− 1 ≥ (k +1)δ−k(k− 3)− 3

for some v ∈ V (H1), a contradiction. Hence indeed G ∈ G. So far we have

shown that if |C| < kδ − k(k − 2), then G ∈ G.

Finally assume that G ∈ G and ω(G − S) ≥ κ(G) + 2 = |S| + 2. Since

S splits every longest cycle we have ω(G− C) ≥ 2. Let H ′ be a component

of G − C other than H. Without loss of generality we may assume D =

|H| − 1 ≤ |H ′| − 1. Then n ≥ |C ∪ H ∪ H ′| ≥ (k − 1)(D + 2) + 2D + 2 ≥
(k + 1)δ − k(k − 2) + 1. Hence if n < (k + 1)δ − k(k − 1) + 1, then G ∈ G ′.
This completes the proof of Theorem 5.1. 2
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