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ABSTRACT Next app prediction can help enhance user interface design, pre-loading of apps, and network
optimizations. Prior work has explored this topic, utilizing multiple different approaches but challenges
like the user cold-start problem, data sparsity, and privacy concerns related to contextual data like location
histories, persist. The user cold-start problem occurs when a user has recently registered to the smartphone
app system and there is not enough information about his/her preferences and his/her history of smartphone
usage. In this work, we try to address the above issues. We introduce WhatsNextApp, an approach based on
LSTM (Long Short-Term Memory) networks using sequences of app usage logs. Our approach is inspired
by Word Embeddings and treats sequences of app usage logs as sequences of words. We collect a real-life
data set consisting of 975 Android users with over 22 million app usage events. We build a generic (user-
independent) WhatsNextApp model and the evaluation with our data set shows that it outperforms related
studies for existing users where we achieve a recall@8 (recall for the top 8 apps) of 92%. For the user
cold-start problem with the 500 most frequent apps, we achieve a recall@8 of 82.7%.

INDEX TERMS Human-centered computing, smartphone, machine learning algorithms, LSTM.

I. INTRODUCTION
Every day, smartphone users use a variety of apps for dif-
ferent purposes [1]. The number of apps in Google Play
and the Apple App Store already exceeds 2.8 million apps
and 2.2 million apps, respectively [2]. In several studies,
researchers attempt to tackle the problem of predicting the
next app usage, but they face the limitation of poor perfor-
mance of their approach in the case of the cold-start prob-
lem. The cold-start problem describes states that make the
prediction hard or less accurate because there is a lack of
training data to perform a prediction, for instance, when a
user has recently registered to the system [3]. Furthermore,
many Spatio-temporal features must be extracted to improve
the prediction performance, raising privacy concerns, as the
user has to provide more data.

Several actors are interested in knowing which apps the
users are going to use. These actors include software devel-
opers, mobile OS operators, and network operators. We see
three main benefits from predicting app usage: user interface
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optimization for enhancing usability and accessibility, load-
ing apps that are about to be used into memory or keep-
ing them in memory, and optimizing network infrastructure,
as different apps produce different amounts of traffic with
different endpoints.

App usage prediction can help designers and software
developers to improve user interfaces. The point is that
smartphones can figure out the next app based on repetitive
patterns. For instance, the smartphone can be aware that a
calendar app will open because a user usually uses the app
when the user gets a call or after checking an email app.
Therefore, some smartphones are released embedded with
functions of next app suggestions based on app usage in the
user interface such as app suggestion by Siri on iPhone [4].
However, if the next app is predicted more accurately, users
could get a more efficiently operational interface with the
next app to be used.

Another applicable case for app usage prediction is related
to pre-loading the next app into memory. By pre-loading
those apps that are predicted to be used next, opening times
can be decreased. For example, people frequently experi-
ence the fact that some heavy apps (e.g., gaming apps) take
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over 20 seconds to launch and need more seconds to be
used [5]. Moreover, not only overloaded apps but also even
simple apps such as weather apps require at least 10 sec-
onds [2]. As a result, if those circumstances depend on app
prediction, the system can load the next apps in advance,
and people can use their app without considerable waiting
periods.

Also, app usage prediction is helpful for network resource
allocation. On the business side, the communication carriers
exploit app usage prediction for customizing bandwidth allo-
cation schemes [2]. Their service quality relies on offering
stable bandwidth. However, the bandwidth has changeability
depended on the time and locations of smartphone usage
[2], [6]. Hence, if they can predict the next app usage, carriers
could proactively determine the bandwidth allocation. On the
user side, through correctly cached network contents of the
predicted apps, the app content could be provided with much
higher network speeds [4].

In this work, we propose the WhatsNextApp approach,
a deep learning approach based on Long Short-Term Mem-
ory Networks (LSTMs) that considers the sequences of app
usage and is inspired by the concept of word embeddings.
The approach is generic (user-independent) and addresses
the problem as a multiclass classification problem. What-
sNextApp is applied to a dataset of 975 Android users with
over 22 million app usage events and 19,485 distinct app
package names, collected from October 2018 to June 2019.
In particular, we take sequences of apps that occur within
specific timewindows of 5minutes, 1 hour, 12 hours, one day,
and one week and we find the mean app usage within these
time windows for constructing sequences of fixed lengths.
Our main contributions are:
• Our approach, WhatsNextApp, with a prediction per-
formance of 92% for the top 8 apps outperforms the
methods presented in the existing literature.

• We address the cold-start problem as our approach
is generic (user-independent), and the next apps of
new users can be predicted. Moreover, we achieved
higher prediction results for the cold-start problem than
the state-of-the-art methods, particularly a recall@8
of 82.7%.

• We predict the next app usage only by using temporal
features without including more Spatio-temporal fea-
tures like location and smartphone activity as many
state-of-the-art approaches do.

• We investigate the case when we predict the right next
app and several next apps (specifically the next ten apps)
using an LSTM encoder-decoder.

The rest of this paper is structured as follows. In Section II,
we present the related works and their limitations. Then,
in Section III, we describe the WhatsNextApp approach
in detail, and in Section IV, we describe our data set and
gain meaningful insights of our data. Finally, in Section V,
we present the results of our extensive experimental evalua-
tion and in Section VI our conclusions and the further work
that can follow.

II. RELATED WORK
Baeza et al. [7] develop a model that uses sequences of apps
and Spatio-temporal features like time, latitude, and longi-
tude. The authors use the Parallel Tree Augmented Naive
Bayesian Network (PTAN) as a predictive model because
it uses correlations among attributes. For the user cold-start
problem, they apply the Most Similar User Strategy based
on collaborative filtering. Their approach achieves approx-
imately 90% precision for the next app prediction but only
45.7% precision for new users.

Prior works employ Markov models in their approaches
[8]–[10]. The authors use app transitions or app sequences
for their prediction models. A global Markov Model lacks
capturing diverse transition patterns, whereas a fully person-
alized model suffers from the sparsity of the observed transi-
tions. In this context, there are efforts to make a cluster-level
Markov model by clustering users’ one-step app transition
and compute a representative Markov model per cluster [11].
Despite the advanced attempts, Markov models suffer from
insufficient training data with different lengths of sequences
when dynamic changes happen [1]. To overcome the chal-
lenges, Parate et al. [12] designed a system that not only
predicts the next app but also prefetches it on the mobile
phone. The authors apply text compression with Prediction
by Partial Match (PPM), including a variable-length Markov-
based predictor.

Zhao et al. propose AppUsage2Vec for predicting app
usage [3]. AppUsage2Vec was influenced by the concept of
Doc2Vec and predicts app usage with a multiclass classi-
fier. The authors also highlight the cold-start problem that
the personalized models cannot solve successfully. An app
attention mechanism measures the contribution of different
apps to the prediction of the target app, and a dual deep neural
network uses theHadamard product on user and app sequence
vectors. A recall of 86% for the top 5 apps is achieved, with
8,739 users in the data set. The authors show that the generic
model gives better results than the individual model when the
sequence samples decrease, but they do not show the results
in terms of recall@5 for the user cold-start problem.

Han et al. propose a recommender system called Predictor,
based on incremental k-nearest neighbors (IKNN) algorithm
for addressing the problem of decreasing accuracy due to
the increasing amount of training data over time [13]. The
dynamic conditional probability of the user similarity and the
app periodicity is used to address the cold-start problem. For
evaluating app usage prediction performance as a situation of
incremental data, 89.3% of average accuracy is obtained with
ICANN. For the cold-start problem, the accuracy is 53%.

Yu et al. focus on the app usage across various locations
in an urban environment [14]. Publicly available points of
interest (POIs) data is used to predict app usage at a given
location. The authors employ a transfer learning model based
on collaborative filtering. The approach gives 83% hit rate for
the top 5 apps in each location. Fang et al. [15] use a topic
model for converting app and users’ preferences into latent
vectors, and then the KNN algorithm is used. Furthermore,
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TABLE 1. Comparison of app prediction studies, top-K means the result is based on top-K selected candidate apps and ‘‘–’’ stands for unreported
information.

the prediction is built on a chain-augmented Naive Bayes
model since the authors use sequential temporal data. Finally,
Chen et al. [16] attempt to solve the user cold-start problem
by using the app usage history from other users to find sim-
ilarities between their latent vectors and the latent vectors of
the new users. Lee et al. [17] use an LSTM-based framework
for predicting the click sequences in Android Mobile Apps
in order to improve user experience. Firstly, they use data
from all users, and then they create a personalized model
including the 100 most frequent apps. However, the paper
does not investigate the framework’s performance for usual
problems like user cold-start problems. Lee et al. [18] utilize
an LSTM-based framework for app usage prediction in dual
display devices. The top 5-level accuracy is 86.43%, but they
do not mention how they address the cold-start problem.
Shen et al. [19] propose DeepApp based on reinforcement
learning with decreased prediction time (by 6.58 times com-
pared to the state of the art methods) and report a precision
of 70.6% and recall of 62.4%, but they do not mention how
they deal with the cold-start problem. Jiang et al. [20] use app
usage similarity networks using data from 25,376 users, and
they accomplish almost 60% precision and recall.

Some of the studies analyzed above utilize a small number
of smartphone users, or they collect data in a short period [8],
[9], [12], [13]. Furthermore, the user cold-start problem is an
open issue, even though the proposed solutions improve it sig-
nificantly [13], [19]. Additionally, models based on Bayesian
Networks [7] cannot react flexibly to changes in the app
usage over time. Also, models that use features like location
should include publicly available Points of Interests (POIs)
in order to make the model applicable [14], [21]. Lastly,
almost all of the studies focus on predicting only the first
next app.

Table 1 shows an overview of these approaches. From
the papers presented in Table 1, six out of the sixteen
reviewed papers (37.5%) are dealing with the user/app cold-
start problem. Additionally, five out of sixteen (31.25%) pro-
pose a Markov-model-based approach, and three (18.75%)
propose an LSTM-based model. The number of users ranges
from 34 to 30,000 and the period from 7 days to one year.
Some recent studies focus on LSTM-based approaches [2],
[17], [18], probably due to the increased popularity of LSTMs
with sequential data. Finally, seven out of sixteen papers
(44%) present personalized models, whereas five out of six-
teen (31%) generic models.

WhatsNextApp uses a deep-learning-based approach that
exploits LSTM networks and considers temporal features and
specifically the sequences of app usage logs. Furthermore,
by not having data from the same user both in training and
testing sets, we address user cold-start problems with results
that outperform state-of-the-art approaches. For example, for
predicting the next app, we achieve highly accurate results
for existing users by using only the sequences of app usage
without includingmore Spatio-temporal features like location
and smartphone activity. We build a generic model that does
not depend on the user. Also, we implement an encoder-
decoder LSTM that predicts for several next steps the app
usage, whereas inmost of the relatedworks, only the first next
app is predicted [13], [14]. Finally, by using a deep learning
approach, we avoid problems related to collaborative filtering
such as data sparsity [11], [13].

III. WhatsNextApp: APP USAGE PREDICTION USING
SEQUENCES OF APP USAGE
Smartphone users spend a lot of their time on their smart-
phones as the numerous apps can satisfy various everyday
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needs. However, these apps could be not functionally related
to each other, such as gaming and camera apps, or they could
work harmoniously for specific aims or activities such as
shopping and bank apps. Consequently, app usage appears
in time order, and an app is frequently used in combination
with other apps to meet specific needs [3]. In this section,
we present the WhatsNextApp approach. First, we deal with
the problem of predicting the next app as a supervised mul-
ticlass classification problem. In this context, we use LSTM-
based models. Next, we describe the LSTM models that we
use in detail and explainwhy they are suitable for dealingwith
a sequence of apps, ordered by time. Then, we explain how
we determine the fixed sequence length of apps and transform
the app names toword embeddings using the embedding layer
of the LSTM. The model predicts the next app based on
these sequences but without considering the user related to
them, as it is a generic model. Next, we present the recall@k
metric for evaluating the performance of our models. Finally,
we use an LSTM encoder-decoder to address the problem by
forecasting the next apps within a specific timing window.
Figure 1 describes all the steps of this approach.

FIGURE 1. Design overview of the model.

Firstly, we conduct the data cleaning. The data cleaning
step includes tasks like deduplication, extraction of helpful
app logs (in foreground state), and treatment of outliers [23].
Then, the data analysis focuses on finding characterization
and statistics of app usage with the cleaned data set. Hence,
it is helpful to understand the principal streams and patterns
of the data set.

Figure 2 shows the structure of the WhatsNextApp
approach, which is a generic model. In other words, every
user does not have a personalized model. Instead, the generic
model can be applied and predict the next app based on all
users’ data. The reason behind choosing to use a generic
model is to solve the user’s cold-start problem. The dataset
contains 975 app usage logs. Furthermore, we split the data
set into two parts, 90 percent of users for training and 10 per-
cent for testing without any intersection. This splitting helps

FIGURE 2. Overview of WhatsNextApp.

to correctly evaluate the model’s quality and deal with the
user cold-start problem. The model predictions are biased
when data from the same users is used in training and test-
ing sets. In the meantime, the model may poorly predict
the next app of a new user. Given a set of apps A and an
observed sequence consisting of n most recently used apps
(ar−n, ar−n+1, . . . , ar−1), where each app a ε A predicts the
next app ar from A. As a result, the conditional probability
of the next app is:

Pr (âr |ar−n, ar−n+1, . . . , ar−1) (1)

where ar−i means the (r − i)-th app, ordered from the latest
to the oldest.

The fundamental algorithm for the prediction model is
LSTM. LSTM is an improved algorithm compared to Recur-
rent neural networks (RNNs). Moreover, LSTM is bet-
ter at memorizing input data, which is emerged past than
RNNs [24], [25].

A. THE CONCEPT OF LSTM
LSTM is an improved version of conventional RNNs that
deals with the problem of long-term dependencies [26], [27].
So far, the simplest LSTM model is based on forward pass
LSTM networks. In the forward pass LSTM networks, the
ht takes the input sequences forward (from the less recent
timestamp to the most recent ones). Thus, the backward pass
LSTM networks consider input sequences with the oppo-
site direction, from the most recent to the less recent ones
(backward direction) [24], [28]. The LSTM is capable of
removing or adding information to the cell state. A module
of LSTM networks can be categorized in three multiplicative
gates: forget gate, input gate, and output gate. The forget gate
consists of two inputs, ht−1 and xt that are fed into the cell
state Ct−1 through sigmoid ft . This gate determines whether
the information is to be remembered or not. The ht keeps all
the useful information from past to time t. Because it goes
through sigmoid, the output is placed between 0 and 1. If the
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output value is closer to 1, it is more likely to keep the inputs.
The second, the input gate, decides to update cell state Ct−1
with input xt . With new candidate values C̃t from the tanh
layer, the output from the input gate updates the cell state. The
last, the output gate, calculates what will be the output. Based
on the cell state, the gate filters via sigmoid ot . Formally, the
formulas in a module of LSTM networks at time t are stated
below [24], [28], [29]:

ft = σ (Wf ht−1 + Uf xt + bf ) (2)

it = σ (Wiht−1 + Uixt + bi) (3)

ht = ot � tanh(ct ) (4)

C̃t = tanh(Wcht−1 + Ucxt + bc) (5)

ot = σ (Woht−1 + Uoxt + bo) (6)

Since all the formulas are at the time t, t-1 indicates that prior
time sequence. Also, xt is the input vector. As it is stated
above, ft , it , and ot are for the forget, input, and output gates
respectively. All U and W are the weight matrices, and all b
denotes the bias vectors for each gate. The σ is the logistic
sigmoid function that is applied component-wise [28].

The fact that LSTM networks can remember the informa-
tion from a long time ago makes them memory cells. In the
view of amodule in LSTMnetworks, the new output cell state
Ct is generated through multiplied previous cell state Ct−1
with forget gates to decide the old states and input gates to
determine how much each state is updated [28], [29].

Ct = ft � Ct−1 + it � C̃t (7)

The bi-directional LSTM networks introduced by
Schuster et al. take both past and future information [30].
The bi-directional LSTM is relatively advantageous regard-
less of tasks and contexts because it exploits the sequential
information in both directions (from past to future and vice
versa) [28], [31]. Besides, this paper utilizes an additional
model of LSTM architecture to deal with general sequence
to sequence problems. In particular, the encoder layer (the
first LSTM layer) maps a variable-length input sequence
to a representation that is produced in a fixed dimension
vector with the learned information. Then, the decoder layer
(the second LSTM layer) generates a variable-length target
sequence through the vector representations. In this proce-
dure, the decoder reconstructs the target time-series through
the current hidden state and the prediction results based
on previous time-step values. The LSTM encoder-decoder
model has been applied successfully in various fields such as
language translation and anomaly detection [32], [33].

B. WORD EMBEDDINGS
In machine learning, there are many ways to help treat text
during modeling for natural language processing, such as
document classification, sentiment analysis, and question-
answering. Treating single words as unique symbols consid-
ers similarities and dissimilarities between words [34]. The
easiest way to associate a representation with a text or a

bundle of text is to choose a representation randomly. How-
ever, we cannot capture the semantic relationship between
representations in this way. For this reason, many works pro-
pose to represent words as dense vectors with neural-network
language modeling as training methods. This methodology is
named ‘Neural Embeddings’ or ‘Word Embeddings’. Word
embedding is an algorithm to convert texts or words to vectors
as representations with relations among them, such as cap-
turing context, similarity, and semantic. When people train a
machine learning model with the text or character types of
data, it is necessary to convert it to a form that computers can
understand.

Hence, people try to transform the data into numbers or
vectors. For instance, ‘King’ turns to 1, ‘Queen’ maps to 2,
‘Man’ connects to 3, and ‘Woman’ converts to 4. One other
way, one-hot encoding, is associating every integer number
of the words with a binary vector that just one element
is 1. The problem is that the represented numbers or vectors
cannot contain a specific semantic or relationship, such as a
relationship between ‘King’ - ‘Queen’ and ‘Man’ - ‘Woman’.
Even though the representations consist of vectors by one-
hot encoding, the vectors cannot express connection and
correlation among the data. Moreover, the more words in the
dataset, the sparser and higher dimensions of vectors exist.
Word embedding can solve those weak points.

FIGURE 3. Comparison of representations between one hot encoding and
word embeddings.

Word embedding has an abstract space of N dimensions
to represent words to vectors. If there are words that have
some correlations or e similar contexts between the terms, the
representations (vectors) are close to each other. In Figure 3,
the example compares two methods. A list of the rectangle is
a symbolized vector of the label. If the color in a rectangle is
getting darker, the real value in the vector is getting close to 1.
Therefore, we can get words that appear in similar contexts
through a cosine similarity measure in the vector space with
word embeddings. Moreover, the word embedding method
can adjust the number of dimensions that helps to have
dense representations, and the representations are reliable
and flexible because they learn from actual data. Because of
the benefits, people exploit this in various natural language
processing (NLP) tasks [35]. Besides, word embeddings are
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for general natural language processing and heavily cus-
tomized or specific tasks. It means the spaces of the word
embeddings can vary depending on the datasets.

In our work, we apply word embedding on Application
Name in order to represent the Application Name data in
latent vectors. The primary input data for the models is logs
of app usage data. The input data of the LSTM algorithm is
the Application Name attribute, which is a string. However,
there is a common problem in the form of input for LSTM.
The LSTM model, like all other neural networks, does not
take raw texts as inputs. LSTMs are compatible only with
numerical data as inputs. Therefore, the fundamental step
is converting text values of Application Name to numerical
values.

In this paper, the first layer of the LSTM model uses the
Word Embeddingsmethod for the inputs ofApplication Name
of the models. The Word Embeddings help to represent the
data in vectors with latent low dimensionalities. All applica-
tion names are converted into dense vectors. Each application
name corresponds to a word, and all application log data are
a data set of the words such as documents. The apps that have
similar contexts and there are relationships between them are
represented with closer word embeddings.

In summary, this work tries to understand our data better
and get deeper insights through data analysis. Then, this work
tries to implement a reliable prediction model using LSTM-
based architectures andWord Embeddings to predict next app
by exploiting the app usage sequences.

C. PREDICTION MODEL
With the strong points of LSTM, the input of the LSTM
algorithm is app usage sequences. As we presented before,
there are three types of LSTM networks (forward, backward,
and bi-directional) based on the direction that LSTM takes
the inputs. Hence, we will implement those three LSTM
models and compare them. Also, we define a sequence within
different time windows: 5 minutes, 1 hour, 12 hours, one
day, and one week. The reasons for deciding to use those
time windows will be explained in Section IV and V. Then,
we will train models with sequences within the time win-
dows and try to evaluate the results. Our approach uses the
embedding layer of the LSTM to find the word embeddings
of the input data. After that, we train the LSTM, and we
get the output through a softmax function. The output will
be an array that contains probabilities of each app, meaning
that the app with a higher likelihood is more likely to be
the next app. In particular, given a sequence of n ordered
apps (ar−n, ar−n+1, . . . , ar−1), the objective of the What-
sNextApp model in the training procedure is to minimize the
sparse cross entropy:

−
1
D

D∑
r=n

ytempr logPr (âr |ar−n, ar−n+1, . . . , ar−1) (8)

where D is the set of all sequences, a multiclass classifier
typically handles in the prediction task. At the prediction

FIGURE 4. Overview of the prediction model (encoder-decoder).

time, we employ softmax as activation, and we have:

Pr ( ˆtempr |ar−n, ar−n+1, . . . , ar−1) =
exp(yâr )∑
i
exp(yâi )

(9)

This work also differentiates from the previous works as
it addresses the problem of forecasting the next apps using
time information of the app usage. As a result, the second
part of our work is forecasting the next apps with an LSTM
encoder-decoder. Figure 4 shows an overview of the model.
The forecasting of the next apps with a specific time win-
dow includes the decoder that generating the next outputs
repeatedly using their previous outputs. As a result, we can
get several predicted apps if we implement the decoder that
generates outputs sequentially. Each element of sequences
includes the probabilities of each app to be the next app.

The main aim is to get a model that predicts the next
app usage correctly. Therefore, the evaluation step focuses
on estimating the predictive model performance. Before the
evaluation, this research plans to obtain the top k apps by
selecting the apps with the k highest probabilities. Then, the
performance quality is assessed with the recall metric. The
recall is a reliable metric, as it is used widely for similar
purposes in state-of-the-art works [3], [11], [36], [37]. In the
related work, k has values between 5 and 20. Therefore,
we take the median value eight as k. In summary, we measure
the recall at top-k (Recall@k, k = 1, 2, 3, 4, 5, 6, 7, and 8).
When the predicted app is in the list of top-k apps, the recall
is higher. When a prediction of app corresponds to smaller k,
it can be interpreted as a better prediction.

Besides, the LSTM algorithm has several types. Therefore,
we will compare the three LSTM networks models (forward
pass LSTM, backward pass LSTM, and bidirectional LSTM)
to identify a better quality of the prediction model within
different time window sizes. Lastly, we will set the conditions
of testing the models which are similar to other studies and
assess the capability of our models. This evaluation helps
to understand that our models can predict better than other
studies. The time windows we created of 5 minutes, an hour,
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one day, and one week contain specific apps extended in
chronological order. With these sequences of apps from dif-
ferent users, we train our network. New users have very little
data about their usage app history, creating the user cold-start
problem. Therefore, when new users appear, the sequences
of apps within the specific windows are matched with the
sequences of existing users that show similar patterns. Thus,
based on the common patterns with existing users, the LSTM
network can predict the next apps of new users with high
accuracy. The LSTMnetwork, including the word embedding
layer, contributes to the high prediction accuracy as it exploits
the sequential nature of the data. As explained in a previous
section, the word embedding layer creates word embeddings
with a shorter distance between them for app names that have
a higher probability of appearing in adjacent positions in the
sequence of apps.

We have a high-quality dataset with data from the TYDR
app over nine months from 975 users and 19485 different
apps. This guarantees a diverse dataset that can capture many
different user behaviors in app usage and contribute to a good
training of the LSTM network. In particular, we have created
sequences of apps with specific time windows chronologi-
cally ordered that show the time dependencies between app
usages. So, they are treated similarly to time series. After this
feature extraction step, the first layer of the LSTM network
is the embedding layer that, after the training, creates word
embeddings where geometrical relationships between the
app names represent semantic relationships between them.
Apps with a smaller distance between them show a stronger
relationship and a higher probability of appearing in neigh-
bor positions in the sequences. Then, we have the LSTM
layer that exploits the time dependencies of the app in the
sequences to predict the next app accordingly. In LSTMs,
the information flows through cell states that decide what
apps in the sequences are essential for predicting the next
app by giving them the proper weights. Also, as the LSTM
network is trained, latent relationships between the different
app sequences are captured, enhancing the higher prediction
accuracy. So, when we have a sequence of apps from a new
user, the LSTM network can use patterns from similar app
sequences from other users and the latent representations
between app sequences to predict the next app for the new
user.

IV. DATA SET AND DATA ANALYSIS
A. DATA COLLECTION
We collected app event logs from Android smartphones with
the app TYDR (Track Your Daily Routine) [38]. TYDR
was designed for the collection of context data in combi-
nation with posing psychometric personality questionnaires
[39], [40]. Collecting data with TYDR was approved by the
ethics committee of the Technical University Berlin [41].
While a multitude of different context data was collected
within the TYDR project, only the app event logs directly
recorded by the Android operating system are used for this
paper.

FIGURE 5. CDF of app usage logs.

We collected data in the nine months from October 2018 to
June 2019. Overall, our data set has 1,166 users with
58,223,360 app event log entries. An anonymized user ID
is stored for each entry, along with the application name,
timestamp, and event type.

B. DATA CLEANING
In WhatsNextApp, we only used foreground events, i.e., apps
that were actively used. Users could freely choose for
how long they used TYDR. In the process of data clean-
ing, we removed outliers meaning users with very lit-
tle data. More specifically, we checked the Cumulative
Distributed Functions (CDFs) of the app usage logs in
Figures 5, 6, 7.

We observed that they are shaped logarithmic, and the
graphs sharply increase around the starting points. There is
an extreme increment at 0.2 on the CDF axis. Therefore,
we decided to use this 20% point as the reference for remov-
ing outliers. The other 80% have 1,963 app usage log entries,
seven days of recording, and 40 different applications. This
action removes 190 users. We removed one more user with
timestamps from the future, probably from manually chang-
ing the time on his/her phone.

The final data set contains 22,037,158 million app usage
log entries from 975 users. Overall, this data set contains
19,485 different apps. Note that we consider the package
name string provided by the Android system1 as the relevant
source of the recorded event and define it as the app for the
predictions.

C. ANALYSIS OF APPLICATION USAGE
This section gives insights about our data set for the apps’
diversity and which ones are used most. Figure 8 shows the
normalized density of the number of distinct applications
used. The density is highest for the range of 50 to 75 different
apps used. The range from 50 to 125 contains half of the users.
With about 19,485 different apps in our data set, we assume

1https://developer.android.com/reference/android/app/usage/
UsageEvents.Event#getPackageName(); accessed 2021-09-29
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FIGURE 6. CDF of usage period.

FIGURE 7. CDF of distinct used apps.

FIGURE 8. Normalized density with the number of the distinct apps.

that the users’ overlap is not very large. WhatsApp is by far
the most used app in our dataset, cf. Figure 9. Its foreground
events account for nearly 20% of all application event logs
of all 975 users. In the figure, we show the top 30 apps and
their percentage of all app usage logs. Rank 13 represents
less than 1% of all app use events, and rank 26 represents
less than 0.5%. Overall, we observe a clear dominance of
Social Networking Services (SNS) and messaging apps. The
phone call and contact apps are also frequently used by
users. Youtube and Spotify are the most frequently used
entertainment-related apps in our data set.

FIGURE 9. Top 30 apps and their percentage of the whole app usage over
our dataset.

V. EXPERIMENTAL RESULTS
A. EXPERIMENT SETUP
Figure 10 shows an overview of the implementation. The
implementation consists of three parts: pre-processing, model
implementation, and evaluation.

1) PRE-PROCESSING
The pre-processing step is about preparing the variables
that can affect the model implementation. According to the
design, we take the app usage logs as inputs. Afterward,
we split the dataset into training and testing sets. As What-
sNextApp is a general model, having separate users in train-
ing and testing sets is meaningful. Subsequently: 90% of the
users for the training and 10% of the users for testing without
intersections.

There are numerous choices of how much app usage log
data we should include in a sequence. Several studies connect
app usage with temporal features [5], [7], [9], [12], [22].
Temporal features are features that change over time. There-
fore, the temporal characteristics are decisive for the opti-
mal sequence length. This paper proposes that one sequence
should contain the median number of the users’ app usage
logs per week. After that, it will be implemented with the
median numbers of the app usage logs per day, 12 hours,
1 hour, and 5 minutes to compare the model’s qualities
depending on the life cycle periods and find the best time
window. Previously, we fixed the number of app usage logs
according to the periods. However, just binding the number
of logs in one sequence is not accurate. The app usage logs
have to be extracted relied on the periods through disposal
and padding. Some users use smartphones more actively than
the average user, and others have different app usage logs
during the same period. Table 2 shows the different sequences
of apps in fixed periods and the corresponding number of
samples. In order to change the imbalanced situation, the logs
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FIGURE 10. Overview of the WhatsNextApp implementation.

TABLE 2. Details of the sequences.

in a sequence are truncated or padded with 0. Subsequently,
we notice that the app usage logs are imbalanced regarding
the number of times each app appears. Therefore, we try to
address the next app prediction as a multiclass classification
problem. Under these circumstances, a study by Han et al.
suggests additional methods like under-sampling or oversam-
pling to deal with the problem of imbalanced classes [42].
We planned to solve the imbalanced app usage data by using
either themethod of oversampling or under-sampling because
a balanced data set improves the detection rate of minor-
ity classes in our models [42], [43]. We do random under-
sampling as it consumes less computational resources than
oversampling.

2) SETUP OF THE ARCHITECTURE
The first model is implemented for the prediction of the next
app. When we feed the inputs of the LSTM model, the first
layer generates the word embeddings. The text format of the
app name is already tokenized in the pre-processing step.
The embedding dimensionality is set to 64, the number of
neurons is 64, and the dropout rate is 0.2. We use the softmax
activation function, and finally, as loss function, we use the
sparse cross-entropy. As an optimizer, we use the Adam
optimizer, and we set the number of epochs to 20 [44] and
the batch size to 8. To explain concretely about the model,

FIGURE 11. Architecture of the LSTM model.

it is crucial to figure out how the architecture of LSTM
model is formed. The visualized architecture is depicted in
Figure 11. In principle, the model takes the inputs, which are
the productions of the previous phase. Also, the model has
two layers: embedding and LSTM layers. The layers save
the weights for discovering a collection of values to make
inputs match the real target. Then, if the model completes the
learning, it can get the ideal weights to make the predictions
the most closely or correct with the real targets. In the middle
of the structure, there are other components such as Dropout,
Dense, and Optimizer. When the inputs are inserted, they
encounter the first layer, which conducts the word embed-
dings. The text format of the Application name is already
tokenized in the previous pre-processing. Then, the vectors of
every application are extracted that contain semantic distance
among associated apps. This layer is set as the first layer
of the LSTM network. Through the embedding layer, every
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token which stands for the distinct application names are
transformed into dense vectors included correlations between
them. In this layer, random vectors are assigned at the start;
embedding vectors are generated by learning the weights.
This layer accepts two-dimensional inputs (samples, length
of a sequence). The weights are assigned initially and contin-
uously adjusted through the training. The outputs formulate a
three-dimensional shape (samples, length of a sequence, the
dimensionality of the embeddings) [45].

In this work, the embedding dimension is 64. The way
of tuning the number of dimensionalities is described in
similar research. According to [3], the result of prediction is
improved when the embedding size is getting bigger. How-
ever, when the embedding size exceeds 50, the growth is
slowed down, and there is only 5% less deviation than when
the embedding size is 600. Moreover, the execution time is
exponentially higher when the embedding size is over 200.
Hence, considering two factors, this research decides to try a
similar number of 50.

After the first layer, the transformed inputs as vectors meet
the second layer, the LSTM layer. We implemented three
types of LSTM networks: forward (default), backward, and
bi-directional in terms of the direction of passing the inputs.
There will be 15 different models because we already have
five types of time windows for the input sequences with three
categories of LSTM models. We define the number of units,
64, which indicates the number of neurons or nodes of the
LSTM layer. If the number increases, it will contribute to
higher model quality. However, the execution performance is
getting worse [45]. We tried to tune the number for the units
with the users’ inputs for the training. However, the execution
environment, precisely the size of memory, cannot afford
more than 64. Then, the procedure ofDropout is implemented
for the LSTM network in order to avoid the overfitting [46].
One of the cases is when a model is working with a training
dataset almost correctly, like memorizing the entire dataset.
However, it has a deficiency in dealing with new data. The
main idea is dropping out (zeroed out) units randomly in
a network that disconnects incoming and outgoing connec-
tions [46]. We can customize the dropout rate, which means
the fraction. We fix the rate as 0.2 because the referred
study [45] shows that the prevailing rate is set between 0.2 and
0.5. The Dense, working with softmax activation, means that
it will generate an array of a designated number of probability
scores. For our case, the number of the units for the Dense
step is identical with the amount of the different apps, 19,485,
because we want to get the probabilities of every app.

These LSTM networks also have tens of millions of
weights that impact the predictions. The loss function calcu-
lates scores (distances) between the predictions (outputs) and
the real targets, and it assesses how the networks are doing
well for the inputs. In this implementation, categorical cross-
entropy (CCE) is applied. According to the [47], CCE, which
is eligible for cases of classifications of classes, shows more
improved performances than the function of mean absolute
error (MAE). The networks regard the loss scores as feedback

FIGURE 12. Architecture of the LSTM model (encoder-decoder).

indicators to modify the weights. The optimizer has the role
of adjusting the scores. The job of the optimizer is to make
the loss score lower through the backpropagation algorithm.
Though the execution sets the weights of the LSTM networks
with random values at first, the weights go in the direction
of making the decline of the loss score during the train-
ing with the data [45]. We select an adaptive moment esti-
mation (Adam) optimizer for this development. The Adam
optimization estimates adaptive learning rates from the first
and second moments of the gradients. We select Adam opti-
mization because it is beneficial for the updates of massive
parameters and memory consumption [48]. Besides, we have
to use the technique of epoch and batches because we want
to avoid model overfitting through iterative gradient descent
works, and the app usage data is too big to process them at
once. In the following epochs, the weights are adjusted in
the networks. We set 20 epochs because in [44] Greff et al.
stated that there were no changes after fifteen epochs with-
out improvement of validation data. Also, we set the batch
size to 8 to prevent the entire dataset from passing into the
networks at once.

3) MODEL FOR SEVERAL STEPS OF NEXT APPS
The secondmodel can predict several apps, and it is presented
in Figure 12. The first step is identical to the model for one
next app. The tokenized inputs are formed into sequences,
and the embedding layer receives the inputs. Theweights start
with a random value during the transformation and are repeat-
edly adjusted. The defined number of latent dimensionality
is 64, indicating dimensions of compressed representations.
The encoder returns its internal state that serves the next
layer, the decoder. The implementation keeps information of
states in variables. The decoder layer is trained to generate
target sequences by adding the previous output to the sub-
sequent input data and repeating the process many times.
The important thing is that the initial state for the decoder is
the encoder’s state vectors. It is the way the decoder gains
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information for the networks. Therefore, the stored states
variables of the encoder are used to set up the decoder’s
initial state. The size target sequence in the decoder is 1.
State vectors and previously generated targets are inserted
into the decoder for several prediction steps. The next pre-
diction is based on the former prediction. We have to define
the rule to stop the decoder loop here. The encoder-decoder
model for other cases such as translation utilizes end-of-
sequence (sentence) token to make the model stop predic-
tions [49]. However, the app usage does not have some sort of
tokens. Therefore, the model only predicts ten app usage as
a sequence. The ten app usage is decided based on multiple
reasons. Firstly, the app usage, which happens many steps
later, is not helpful because the app usage bursts unexpectedly
happen even in 10 seconds. The second reason is that the
model could predict different results when the new app usage
appears. The other reason is that the model can fully cover
the 5 minutes of future usage because the median number
of app usage in 5 minutes is 5. The rest of the parts, such
as dense, loss function, optimization, epochs, and batches,
correspond to the first model.

4) RECALL@8
In the tests, we use the recall metric to measure the prediction
performance. First, we calculate the score of recall for the top
k apps with the highest probabilities to be the next app, andwe
name the score recall@k. We give the definition of recall@k
in Equation 10, as shown at the bottom of the page.

We denote Dtest set of test data, ai is the real target app of
ith test data, Appsi is predicted k apps, and I is an indicator
function [3], [36], [50].

The recall indicates the proportions of accurately predicted
apps out of the number of apps in the foreground in the
testing set. The recall metric is the most frequently used
assessment in recent studies [2], [3], [8], [9], [11], [12], [22].
Unfortunately, even though they use the identical method to
calculate their result, they name the same metric differently:
hit rate, recall, and accuracy. However, we verified that all the
formulas are the same, and the basis of them is [50], which
evaluates the performance of top-k recommendations.
When we generate a sequence in the implementation

section, within a time window, we obtain the median number
of app usage for each time window, and the median number
of logs formulates a sequence. In the experiments, we try
five different time windows: 5 minutes with five usage events
per sequence, 1 hour with 23, 12 hours with 208, 1 day
with 453, and 1 week with 2,807, and we use three different
LSTM architectures. Also, this work uses a standard method,
MFU (Most Frequently Used), as a baseline, also presented
in similar works [2], [3], [37].

B. NEXT APP PREDICTION
1) COLD-START PROBLEM – MODEL FOR NEW USERS
The first prediction model is for predicting the next app. The
performance of this model is tested on users unseen in
the training set, evaluating the performance for new users
(cold-start problem). The model’s objective is to find which
LSTM model has a better prediction performance in terms
of recall@k and within which time window. The LSTM
models are forward, backward, and bi-directional. Firstly,
we want to check recall@k for the 500 most frequent apps.
As we mentioned in the Data Analysis section, the number
of different apps is 19,485. It is the largest number of dis-
tinct apps compared to other studies in Table 1. Our amount
of specific apps is about two times more than the biggest
number [11]. Therefore, we select 500 different apps, then
calculate the recall@8 for the 500 different apps. In the
testing set, only apps that are relevant to the 500 different
apps comprise Dtest and ai to calculate the recall. Table 3
includes the recall@k of the bi-directional LSTM and MFU
model. When the value of the k parameter is 8, and the time
window is 1 hour, we obtain the highest value for recall@k:
82.74%.A limitation of LSTM is that it reduces the prediction
accuracy for very long app sequences since they face the
problem of vanishing gradients and exploding gradients [26].
For example, we notice that our accuracy in the cold-start
problem for a 1 hour time window when using the 500 most
frequent apps is 82.74%. The prediction accuracy decreases
as the app sequences become more prolonged, with 70.14%
accuracy for a one-day time window and 67.50% accuracy
for a one-week window. For a time window of 12 hours,
the accuracy decreases slightly compared to the one-hour
window, and when we have very short sequences (for a time
window of 5 minutes), the accuracy is again worse, 77.37%
because we fail to represent the sequential relationship of the
apps adequately. One solution to the problem of vanishing
gradients and exploding gradients is to use an attention mech-
anism like temporal attention that gives different weights to
the apps within the sequence.

2) COMPARISON WITH RELATED WORK – MODEL FOR
EXISTING USERS
All other works in Table 1 utilize sequences of the app by
using data from the same users both in training and testing
sets. Therefore, we decide to adopt the same procedure and
compare the results. We use 90% of app usage data from all
users for the training set and 10% of app usage data from all
users for the testing set. Then, we evaluate the results of our
models within the best timewindow, 1 hour. Figure 13 depicts
recall@k with the original testing set divided by app usage.
We notice that the model with the randomly selected testing

recall@k =

∑|Dtest |
i=1 I (ai,Appsi)

|Dtest |
, I =

{
1 ai ∈ Appsi
0 otherwise

k = 1, . . . , 8 (10)
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TABLE 3. Recall@k of the LSTM (bi-directional) and MFU models about the 500 most frequent apps for the cold-start problem.

FIGURE 13. Recall@k of all the models with testing data set (model for existing users; users can be in training and testing set; time
unit: 1h), (a) about all app and (b) about 500 apps, ‘‘R’’ stands for with randomly selected testing data set of all users.

data of all users can predict the next app more precisely
in terms of recall@k both for the 500 most frequent apps
(Figure 13 (b)) but also all apps (Figure 13 (a)). When using
the 500 most frequent apps, we achieve 92% of recall@8.

3) COMPARISON WITH RELATED WORK – A MODEL FOR
ALL APPS FOR NEW USERS
As a next step, we again run the experiments for all the
different apps (19,485) for new users (cold-start problem) to
further validate our model’s efficiency. First of all, the best
model with a recall value of 76.34% is the bi-directional
LSTM model, which predicts eight apps with 1 hour time
window.When we see Figure 14, we can figure out the trends
of the models with 1 hour time window. There is only a
slight deviation in the three LSTM models. However, the
recall@k of the MFU model is less than half of the three
LSTM models in broad outlines. Although the recall scores
of the three LSTM models are not entirely different, always
the bi-directional LSTM model is better than the others.

Especially when the k is getting smaller, the forward
and backward LSTM models with 12 hours, one-day, and
one-week time windows predict poorly, as we can see in
Tables 4 and 5. Some predictions of the forward and backward
LSTMmodels (when k is 1, and the time window is 12 hours)
are worse than the MFU model. The bi-directional LSTM
model achieves over 32% in any condition. Thus, the
model which can predict the next app with overall k is the
bi-directional LSTM model. In all three models, the 1 hour
time window generates the most outstanding recall scores
among all-time windows. The LSTM models generally
accomplish over 45% of recall score in all conditions even
though k is 1. However, 12 hours, one-day, and one-week
time windows achieve relatively low recall scores when k is
small. Besides, in the situation that k increases, Recall@k of
those three windows is consistently lower than the 1 hour time
window. In Figure 15, there is a trend curve to compare the
time windows of the bi-directional model. The time window
of 12 hours also seems to perform well; however, it does not
predict well enough when k is 1. Besides, the 5-minute model
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TABLE 4. Recall@k of the LSTM (forward) and LSTM (backward) models for all the apps (19,485 apps) and for the cold-start problem.

TABLE 5. Recall@k of the LSTM (bi-directional) and MFU models for all the apps (19,485 apps) and for the cold-start problem.

FIGURE 14. Recall@k of all models for all the apps (19,485 apps) for the
cold-start problem and time window: 1h.

is also more reliable than the one-day and one-week ones, and
it has no poor quality compared to the 1 hour and 12 hours
models. The 5-minute model is also suitable for apps such
as pre-loading because the model can work with data for a
short period with a small amount of computing power. Hence,
considering which time window is most helpful in predicting
performance, the 1-hour timewindow is the right one. In other
words, the app usage during 1 hour is the most advantageous
pattern to predict the next app.

C. PREDICTION OF THE NEXT TEN APPS
Next, we implement the model of encoder-decoder to pre-
dict app usage in the short term. The prediction result

FIGURE 15. Recall@k of the bi-directional LSTM model for all the apps
(19,485 apps) and for the cold-start problem.

is a sequence of apps that a user will likely open (in
the foreground) consecutively. We define the steps of pre-
dicted apps as 10. From a practical point of view, excessive
numbers of predicted apps are disadvantageous for pre-
loading. Moreover, a user’s frequent new logs can change
the results. We notice that the 1-hour time window gives
better results for one and several next time steps of app
prediction. In particular, the larger the k, the better the recall
value.

Figure 16 shows the recall@8 of the encoder-decoder
model with 500 apps for the next ten apps. Within all time
windows, we accomplish a recall of over 40% at all steps.
We get the best results with the 1-hour time window. So we
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FIGURE 16. The trend of the encoder-decoder model depended on
different time units (recall@8, 500 apps).

can see that for predicting the next app, we get 70.37% of
recall@8, and for predicting the next two apps, 67.61%.

VI. CONCLUSION AND FUTURE WORK
This paper presented WhatsNextApp, a deep learning
approach for next app prediction that utilizes LSTM-based
models. The expected advantages of accurate next app predic-
tion are (a) UX (user experience) optimizations, (b) loading
apps that are about to be used into memory (or keeping
them in memory), (c) optimize network infrastructure (as
different apps produce different amounts of traffic with dif-
ferent endpoints). WhatsNextApp takes the temporal feature
as an input, app usage sequences, and predicts the next
app. The model is generic and uses supervised multiclass
classification. We have a relatively large data set consisting
of 975 users and 19,485 different apps. We take the 500 most
frequently used apps, and for the cold-start problem, we reach
for the 1-hour time window a recall@8 of 82.7%, whereas
in the case of existing users, a recall@8 of 92%. Finally,
we use an LSTM encoder-decoder to predict the next ten
apps when dealing with new users. For the 1-hour time win-
dow, we achieve 70.37% of recall@8, whereas the recall@8
decreases for predicting the next two apps with a value of
67.61% and 65.32% for the three next apps.

Even though our results are promising, we use only the
time sequence app usage as a feature, and we believe that we
can further improve the results by extracting more temporal
features like weekday and weekends patterns. Additionally,
We could aim at predicting which app is going to be used
next and when.
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