
Complexity and algorithms in matching
problems under preferences

vorgelegt von
Ágnes Cseh, M.Sc.

Szolnok

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss

Vorsitzender: Prof. Dr. Volker Mehrmann

Gutachter: Prof. Dr. Martin Skutella

Gutachter: Prof. Dr. Gerhard J. Woeginger

Tag der wissenschaftlichen Aussprache: 7. Dezember 2015

Berlin 2016

Our result provides a handy counterexample to some of the stereotypes which non-
mathematicians believe mathematics to be concerned with. Most mathematicians at one
time or another have probably found themselves in the position of trying to refute the
notion that they are people with a head for figures or that they know a lot of formulas. At
such times it may be convenient to have an illustration at hand to show that mathematics
need not be concerned with figures. [. . .] The argument [of our theorem] is carried out not
in mathematical symbols but in ordinary English; there are no obscure or technical terms.
Knowledge of calculus is not presupposed. In fact, one hardly needs to know how to
count. Yet any mathematician will immediately recognize the argument as mathematical,
while people without mathematical training will probably find difficulty in following the
argument, though not because of unfamiliarity with the subject matter.
What, then to raise the old question, is mathematics? The answer, it appears, is that

any argument which is carried out with sufficient precision is mathematical.

D. Gale and L. S. Shapley.
College admissions and the stability of marriage. 1962

Acknowledgment

I am grateful to my supervisor Martin Skutella for all the advice, time and encouragement
he gave me in the past years. Martin did not only guide me through his supervision, but
also gave me full support whenever I showed interest in applying for grants, workshops
or research stays, which happened quite frequently.

I thank Brian C. Dean for hosting me at Clemson University for 4 months in 2013.
He facilitated a very vivid, active and friendly work relationship.
Right after my stint at Clemson, David F. Manlove hosted me at the University of

Glasgow for 7 months in 2014. I felt immediately welcomed in Scotland. Through
David’s patience and enormous knowledge about matchings under preferences, I learned
a lot.
In 2015, Telikepalli Kavitha hosted me at the Tata Institute of Fundamental Research

in Mumbai for 3 months. Kavitha, besides being a strikingly friendly person, also in-
spired me to tackle quite challenging and beautiful problems.

The time spent at my home institution was wonderful, due to the COGA spirit which
I will badly miss. Thanks to all Coganer, and among them, special thanks to Dorothea
Kiefer who made administrative tasks so much easier during these years.
The silent guardians of this thesis are Martin Groß, Jannik Matuschke and Julie

Meißner. Their comments on earlier versions lead to an improved presentation of the
thesis. I am especially grateful to Ashwin Arulselvan, who corrected my peculiar phras-
ings in this thesis and often outside of it.
For their whole-hearted support (and for showing me what a stable marriage is in

practice), I wish to thank my parents.

I also thank the Deutsche Telekom Stiftung for funding my PhD program and my var-
ious stints in abroad. Their generous support made it possible for me to gain experience
in several groups. Some of these trips were partially funded by the Research Training
Group ’Methods for Discrete Structures’. I also received financial support from the ICT
COST Action IC1205, for which I am grateful.

Berlin, August 2015 Ágnes Cseh

Contents

Introduction 1

1 Basic notions in stable matchings 5
1.1 Theoretical background . 5

1.1.1 The stable marriage problem . 5
1.1.2 Extensions of the stable marriage problem 8

1.2 Applications . 10

2 Stable marriage and roommates problems with restricted edges 13
2.1 Introduction . 13
2.2 Preliminaries . 15
2.3 Almost stable matchings with restricted edges 17

2.3.1 General complexity and approximability results 18
2.3.2 Bounded parameters . 23
2.3.3 Stable roommates problem . 34

2.4 Stable matchings with the minimum number of violated constraints on
restricted edges . 34
2.4.1 General complexity and approximability results 35
2.4.2 Bounded parameters . 40

2.5 Conclusion and open problems . 42

3 Other complexity results for stable matchings 45
3.1 Maximum stable marriage with free edges 45
3.2 Stable roommates with ties and short preference lists 49
3.3 Conclusion and open problems . 55

4 Paths to stable allocations 57
4.1 Introduction . 57
4.2 Preliminaries . 59

4.2.1 Stable allocations . 60
4.2.2 Better and best response steps for allocations 62

4.3 Correlated markets . 63
4.4 Best and better responses with rational data 64

4.4.1 Better response dynamics . 65
4.4.2 Best response dynamics . 69

4.5 Irrational data - a strongly polynomial algorithm 72
4.5.1 Accelerated first phase . 72

4.6 Conclusion and open problems . 83

5 Unsplittable stable allocation problems 85
5.1 Introduction . 85

Contents

5.2 Preliminaries . 86
5.2.1 Problem definition . 86
5.2.2 Relaxed unsplit allocations . 88

5.3 Machine-optimal relaxed unsplit allocations 88
5.3.1 The reversed Gale-Shapley algorithm 90
5.3.2 Properties of the job- and machine-optimal solutions 91
5.3.3 A variant of the Rural Hospitals Theorem 95

5.4 Rounding algorithms . 95
5.5 Conclusion and open problems . 97

6 Stable flows 99
6.1 Introduction . 99
6.2 Preliminaries . 100
6.3 A polynomial algorithm for stable flows 103

6.3.1 Known algorithms for stable flows 103
6.3.2 Our algorithm . 104

6.4 Stable flows with restricted edges . 106
6.4.1 Forced edges . 107
6.4.2 Forbidden edges . 109

6.5 Stable multicommodity flows . 113
6.5.1 Problem definition . 113
6.5.2 Integral multicommodity stable flows 115

6.6 Conclusion and open problems . 120

7 Popular matchings 121
7.1 Introduction . 121
7.2 Preliminaries . 123

7.2.1 Strict preferences . 123
7.2.2 Ties in preferences . 124

7.3 Dominant popular matchings . 125
7.3.1 A characterization of dominant matchings 125
7.3.2 The set of dominant matchings . 127

7.4 Popular matching with 1-sided ties . 134
7.5 Conclusion and open problems . 138

Bibliography 139

Introduction

Motivation

The National Resident Matching Program (NRMP) is a non-profit organization created
in 1952 to centrally match medical school graduates to residency positions in the United
States. The main motivation behind founding NRMP was the chaotic competitive pro-
cedure students had to go through in order to receive a suitable residency contract. Since
there had been no centralized framework, students could easily benefit from misreport-
ing their true preferences and applying for jobs years before the starting date, which
forced hospitals to grant contracts to the promising candidates well ahead of time unless
they were ready to risk losing them [86]. This latter problem was so urgent that the
Association of American Medical Colleges called for a centralized solution as early as in
1927 [31].
In the academic year of 1950-51, a dry run of the developed centralized algorithm was

performed and student bodies were informed about the procedure. The medical students
immediately protested claiming that the algorithm was more beneficial to the hospitals
than to the students and it did not resolve the problem of students benefiting from
reporting false preferences, thus encouraging them to trick the system. The NRMP
then seemingly altered the matching procedure due to these complaints [103] – yet
implemented essentially the same method, which was in use until 1997, even though
by that time numerous renowned scientists pointed out the failures of the system with
mathematical rigor and voiced their concerns against it [49, 86, 103, 104]. The modified
algorithm used nowadays is described in [89] in detail. In 2015 alone, the NRMP handled
applications from over 41000 medical students [107].
The major characteristic feature of the desired resident allocation is straightforward. If

a student is not assigned to a specific hospital, then it must be either because the hospital
could fill up all its positions with more suitable candidates or because the student was
assigned to another hospital that she ranked better. This notion is exactly captured by
stable matchings, defined with mathematical rigor by Gale and Shapley in 1962 [44].
Besides resident allocation, variants of the stable matching problem are widely used

in other employer allocation markets [91], university admission decisions [9, 19], campus
housing assignments [24, 84] and bandwidth allocation [43]. A recent honor proves the
currentness and importance of results in the topic: in 2012, Lloyd S. Shapley and Alvin
E. Roth were awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel for their outstanding results on market design and matching theory.
In this thesis, we discuss various problems in stable matchings from the algorithmic

point of view, either presenting an efficient algorithm for solving them or proving hard-
ness.

1

Outline of the thesis

The problems investigated in all 7 chapters of this thesis are related to stable matchings
and organized based on the complexity of the instance they are defined on. We start
with discussing various problems in the simplest, one-to-one matching setting and then
through more complex capacitated instances we move to problems defined on network
flow instances. Finally, we also discuss an alternative optimality notion and its relation
to stable matchings.

Chapter 1: Basic notions in stable matchings. We introduce the concept of stable
matchings formally and present some of the most important theorems related to it,
including the Gale-Shapley algorithm. Real-life applications are also discussed briefly.

Chapter 2: Stable marriage and roommates problems with restricted edges. We
start with classical one-to-one matchings in bipartite and non-bipartite graphs and in-
vestigate the problem of stable matchings when forced and forbidden edges are present.
A stable solution must contain all of the forced pairs, while it must contain none of the
forbidden pairs. Two approximation concepts are described here: (1) the matching is
blocked by as few pairs as possible, or (2) it violates as few constraints as possible on re-
stricted pairs. This chapter is a comprehensive study of complexity and approximability
results in these two problems.

Chapter 3: Other complexity results for stable matchings. In this chapter we in-
vestigate two problems in the stable matching setting. The first problem is defined on
bipartite stable matching instances with free edges. Free edges can appear in stable
matchings, but they are not able to block matchings by definition. We show that a max-
imum cardinality stable matching is NP-hard to find. The second problem tackled is a
degree constrained version of the stable roommates problem with ties, which is known to
be NP-complete [85] in the general case. Here we present complexity results depending
on the highest degree in the graph.

Chapter 4: Paths to stable allocations. We introduce the stable allocation problem,
a capacitated variant of the stable marriage problem. There, the agents are often called
jobs and machines. We investigate the case of uncoordinated processes in stable alloca-
tion instances. In this setting, a feasible allocation is given and jobs and machines are
allowed to selfishly modify it. We analyze both better and best response dynamics from
an algorithmic point of view and discuss deterministic and random procedures as well.

Chapter 5: Unsplittable stable allocation problems. In this chapter we study a natural
“unsplittable” variant of the stable allocation problem, where each assigned job must
be fully assigned to a single machine. Our main result is to show that the problem
is solvable in polynomial time. We also show that in the event there is no feasible
solution, our approach computes a solution of minimal total congestion (overfilling of all

2

Introduction

machines collectively beyond their capacities). We also describe a technique for rounding
the solution of a stable allocation problem to produce “relaxed” unsplit solutions that
are only mildly infeasible, where each machine is overcongested by at most a single job.

Chapter 6: Stable flows. As most matching problems, stable matchings also can be
extended to network flows. In this chapter we present the polynomial version of the
Gale-Shapley algorithm for stable flows. Then, a direct combinatorial algorithm for
stable flows with forced and forbidden edges is presented. Finally, we study stable
multicommodity flows and show that it is NP-complete to decide whether an integral
solution exists.

Chapter 7: Popular matchings. In the last chapter we discuss an optimality notion
that can be seen as an alternative to stability. A matching M in a bipartite graph G
with preferences is popular if there is no matching M ′ such that the vertices that prefer
M ′ to M outnumber those that prefer M to M ′. We investigate two problems. The
first problem is defined on graphs with strict preferences on both sides. We identify a
natural subclass of popular matchings called “dominant matchings” and show that every
dominant matching in G can be realized as an image of a stable matching in a modified
graph G′. In the second setting, ties might occur in the preferences, but only on one
side of G. We show that the problem of deciding whether G admits a popular matching
is NP-hard even in very restricted instances.

General concepts

We assume that the reader is familiar with basic concepts in graph theory such as
bipartite graphs, paths, cycles, walks, directed networks, and so on. For any missing
reference, we advise to turn to the book of West [102].

Running time of an algorithm. An algorithm is said to run in polynomial time if there
is a polynomial p such that the number of elementary steps taken by the algorithm is
bounded by p(x) for every possible input, where x is the encoding size of the problem
input. Constant factors are often omitted when discussing running times. The notation
O(p(x)) stands for all polynomial running times r(x) so that r(x) ≤ cp(x) for some
constant c ∈ R>0 and sufficiently large x. Since the focus of this thesis is complexity
theory, we will call all polynomial algorithms efficient, even though in practice, only
polynomials of very low degree are widely considered to be truly efficient.

NP-completeness. A decision problem is in the complexity class P, if it admits a poly-
nomial time algorithm. We also call these problems tractable. A superclass of P is NP:
a decision problem is in the complexity class NP, if each “yes” instance has a polynomial
size certificate. A problem is NP-hard if all problems in class NP can be polynomially
reduced to it. A decision problem is NP-complete if it is NP-hard and it is also in NP.
It is common to assume that P ̸= NP, thus NP-hard and NP-complete problems are
assumed to be computationally intractable.

3

Satisfiability problems. In a satisfiability problem, a Boolean formula is given and the
question is whether there is a truth assignment of the variables so that the formula
is satisfied. One of the most fundamental NP-complete problems is 3-sat, where the
Boolean formula is given in conjunctive normal form (CNF) and each clause contains at
most 3 literals. This and also other variants of satisfiability problems will be used later
in this thesis to prove NP-hardness of numerous problems discussed. For background
on these and other notions in complexity theory, we refer the reader to the book of
Wegener [101].

Approximation. When discussing optimization problems, one often talks about an ap-
proximate solution. A minimization problem min c(x), where c(x) ≥ 0 for all feasible
solutions x, admits an α-approximation, α ≥ 1, if there is a polynomial algorithm deliv-
ering a feasible solution x∗ so that c(x∗) ≤ αc(xopt), where xopt is an optimal solution.
In this thesis we will show approximation algorithms and inapproximability results as
well with constant and instance-dependent α values. See the book of Williamson and
Shmoys [105] for more information about approximation algorithms.

Distributive lattice. A partially ordered set (poset) is a pair P = (S,≤), where the
binary relation ≤ is reflexive, transitive and antisymmetric on set S. If any two elements
s1, s2 ∈ S have a unique lowest upper bound s1 ∨ s2 and a unique greatest lower bound
s1 ∧ s2 with respect to ≤, then P is called a lattice. Moreover, if s1 ∨ (s2 ∧ s3) =
(s1 ∨ s2) ∧ (s1 ∨ s3) for arbitrary s1, s2, s3 ∈ S, then the lattice is distributive. More
details about these notions can be found in the book of Davey and Priestley [32].

Milestones in the literature

Until today, four books have been published on stable matchings. Each of them ap-
proaches the problem from a different point of view and provides the reader with the
research focus of different times. The first book, written by Knuth [70], can be used as
lecture notes, includes several exercises and established connections with various com-
binatorial problems. It also contains the famous 12 problems of Knuth that since then
have served as targets for the stable matching community. In 1989, Gusfield and Irving
published their elaborate study on the underlying structure of stable matchings [49]. An
updated list of 12 major problems can also be found in this work. Two years later, a book
from a game-theoretic viewpoint was published, authored by Roth and Sotomayor [91].
This book reflects the interests of the economics society related to matchings under pref-
erences. Very recently, Manlove wrote a detailed study on the complexity and algorithms
of matchings under preferences [73]. Besides stability, he also elaborates on alternative
optimality concepts such as Pareto-optimality or popular matchings. This book served
as an excellent source of currently known results and relevant literature while writing
this thesis.

4

1 Basic notions in stable matchings

Matching problems lie at the heart of discrete mathematics. Besides their importance
in theory, maximum cardinality and minimum cost matchings are clearly among the
problems with the broadest scale of applications [6]. In this thesis we focus on matching
markets under preferences – each market participant expresses their preferences as an
ordered list of possible scenarios. Our task is to find a matching that is optimal with
respect to these preferences. The most common notion of optimality is stability, formally
defined below.
In this introductory chapter we give an overview of the most relevant results in stable

matchings. Then, we also show various examples on how the theory is used in practice.

1.1 Theoretical background

1.1.1 The stable marriage problem

Stable matchings were first formally defined in the seminal paper of Gale and Shap-
ley [44]. They described an instance of the college admission problem and introduced
the terminology based on marriage that since then became wide-spread.
In the classical stable marriage problem , a bipartite graph G = (V = (U ∪W), E) is

given, where one side symbolizes a set of men U and the other side stands for a set of
women W . The vertices in G are often called agents as well. Man u and woman w are
connected by edge uw ∈ E if they find one another mutually acceptable. Unless it is
otherwise stated, we assume that G is not necessarily a complete bipartite graph.
Each agent in G provides a strictly ordered preference list of the acceptable agents of

the opposite gender (see also Figure 1.1). The a set of these preference lists is denoted
by O. We will now introduce the used notation focusing only on a u ∈ U vertex, and
remark that there is an analogous version for w ∈ W . Vertex u prefers w1 to w2 if w1

has a better rank (a lower number) on u’s preference list than w2. In this case we say
that w1 dominates w2 at u and denote it by w1 ≥u w2, following the convention. The
same can also be expressed with the help of the rank function ranku∈U : N(u) → Z>0,
where N(u) stands for the agents adjacent to u. We define δ(u) ⊆ E(G) to be the set
of edges incident to u and deg(u) = |N(u)| to be the degree of u. Using this notation,
w1 ≥u w2 is equivalent to ranku(w1) ≤ ranku(w2). Occasionally we introduce non-
integer ranks when adding new agents to lists in our proofs. For convenience we also
allow ranking and comparing edges instead of vertices: we can write uw1 ≥u uw2 or
ranku(uw1) ≤ ranku(uw2). Being unmatched is always considered as a less beneficial
position than being matched to anyone on the preference list.

A set of edges M is a matching if every vertex is adjacent to at most one edge in M .
The vertex matched to u ∈ U by M is denoted by M(u).

Definition 1.1 (blocking edge, stable matching). An edge uw ∈ E blocks matching M
if it fulfills the following three requirements:

5

1 Basic notions in stable matchings

1. uw /∈M ;

2. M(u) = ∅ or w ≥u M(u);

3. M(w) = ∅ or u ≥w M(w).

A stable matching is a matching not blocked by any edge.

Later on in this thesis, we will modify these three points several times to define the
blocking element of more and more complex instances, such as blocking walks to network
flows.

Problem 1. sm
Input: I = (G,O); a bipartite graph G = (V = (U ∪W), E) and a set of strictly ordered
preference lists O.
Question: Is there a matching not blocked by any edge?

In this thesis, we directly define the problem on instances with incomplete lists. In
various complexity results, the completeness of the bipartite graph plays a crucial role.
Note that an instance with incomplete lists can easily be transformed into an instance
with complete lists. Assume that u ∈ U has an incomplete list. We first introduce a
dummy vertex wu and add it at the bottom of the initial list of u. The women not
yet listed by u can then be added to the bottom of u’s list in arbitrary order. The
most preferred man of wu is u, then all the men follow in arbitrary order. Analogous
operations are executed for all vertices in V (G). With this construction, each vertex is
either matched to someone on its initial list or to its dummy counterpart.
When illustrating stable matching instances, there are two widely accepted variants,

as presented in Figure 1.1. One of them is a graph-oriented interpretation while the
second one is focused on preference lists. In this thesis we will mostly rely on the graph-
based illustration, but whenever the instance size is very prohibitive for it, we will use a
list based structure.

u1 u2 u3

w1 w2

2

1

2

1

1

2

1

2

1

3

u1: w1

u2: w1 w2

u3: w2 w1

w1: u3 u2 u3

w1: u2 u3

Figure 1.1: An sm instance with stable matchings {u2w2, u3w1} and {u2w1, u3w2}. The
graph-based illustration is on the left side, while the list-based one is to the
right.

6

1.1 Theoretical background

The Gale-Shapley algorithm

The linear-time Gale-Shapley algorithm provided the first proof for the existence of
stable matchings. In the past decades numerous variants of it were developed to solve
different stable matching problems. Some of them are presented in later chapters of this
thesis.
The deferred acceptance algorithm of Gale and Shapley can be outlined in the fol-

lowing way. Each round of the algorithm consists of two steps: the proposal and the
acceptance/refusal steps. In the very fist step, all men propose along their best edge. In
the second step of the same round, women who received proposals keep the single edge
ranked best by them and refuse the rest of the proposals. Refused edges are deleted
from the graph. Now the second round starts with the currently unmatched men sub-
mitting proposals along their best edge not yet deleted from the graph. Then, women
compare these offers and their currently accepted edge and only keep the best one. Such
rounds are executed until there is no unmatched man whose edges have not been deleted
yet. Since every edge can be proposed along and accepted or rejected at most once, the
running time is bounded by O(|E|).

Theorem 1.2 (Gale, Shapley [44]). For any instance I of sm, the Gale-Shapley algo-
rithm delivers a stable matching in O(|E|) time.

Lattice structure

The Gale-Shapley algorithm delivers one stable matching, but an instance can have
exponentially many stable solutions. Stable matchings in an instance admit a rich struc-
ture.

Theorem 1.3 (Knuth [70], attributed to Conway). Stable matchings in a fixed sm
instance form a distributive lattice.

The two extreme points of this lattice are called the man- and woman-optimal stable
matchings [44]. The man-optimal stable matching assigns each man his best partner
reachable in any stable matching. At the same time, it is also the woman-pessimal
stable matching: it assigns to each woman the worst partner reachable in any stable
matching. The analogous statement holds for woman-optimal stable matching. For sm,
the Gale-Shapley algorithm can be reversed easily, with women proposing instead of
men, to obtain a woman-optimal solution. The join of two stable matchings can be
formed by choosing the better edge for every man, while the meet can be reached by
choosing the worse edge.

Rural Hospitals Theorem

Another interesting and useful property of stable solutions is the so-called Rural Hospi-
tals Theorem, named after the less popular – typically rural – hospitals in the Hospitals
/ Residents problem (see below) that cannot fill up their open positions. The crucial
part of this theorem states the following:

7

1 Basic notions in stable matchings

Theorem 1.4 (Gale, Sotomayor [45]). If an agent is unmatched in one stable matching,
then all stable solutions leave her unmatched.

Rotations

In the following we will sketch some structural results that give rise to a technique used
in generating all stable solutions of an sm instance. We are given a stable matching M
in I which is not the woman-optimal stable solution. Our goal is to modify M so that
a different stable matching M ′ is derived.
Let us mark all edges uw of a woman w so that u >w M(w). Intuitively, these are

the potential marriages w is inclined to switch to. Now let all men who have marked
edges choose the best marked edge. Note that all these marked edges are worse for men
than their matching edge, otherwise M would not be stable. Gusfield and Irving [49]
show that the chosen edges and edges of M on the same vertex set form a set of cycles.
Each cycle is a rotation: augmenting M along it results in a different stable matching.
As a matter of fact, more is true; rotations form a partially ordered set (poset), where
the relation is the order they can be executed. The closed subsets of this rotation poset
are in a one-to-one correspondence with the stable matchings in I. Due to an efficient
representation of the rotation poset, stable matchings can be listed in O(|V |) time per
matching, following O(|E|) pre-processing time. Note that a polynomial algorithm for
listing all stable matchings in an instance cannot occur, because the number of stable
solutions itself can be exponentially large.
In our example instance depicted in Figure 1.1, the gray matching u2w1, u3w2 is not

woman-optimal. Vertices w1 and w2 mark edges u3w1 and u2w2, respectively, which are
also the best marked edges of men u3 and u2, respectively. These four edges thus form
the rotation turning the gray matching into the purple matching.
Rotations opened the gate to solving a very important variant of sm: the weighted

stable marriage problem. Here we are given edge weights on G and we seek a stable
matching with minimum total weight. Each rotation can be assigned a weight depending
on the edges it adds and edges it eliminates when it is augmented along. Finding a
minimum weight stable matching then translates into finding a minimum weight closed
subset in the rotation poset. Weighted stable matchings model various problems, such
as fair stable marriage or stable marriage with restricted pairs, as demonstrated in
Chapter 2.

1.1.2 Extensions of the stable marriage problem

Many-to-one matching

This generalization of sm is also know as the Hospitals / Residents problem and plays a
crucial role in applications. As defined by Gale and Shapley [44], the problem instance
involves residents as vertices on one side and hospitals as vertices on the other side of G.
While residents need to be matched to at most one hospital, hospitals submit an upper
quota on the number of admitted residents. The definition of stability can be translated
easily to such b-matching instances. It is also straightforward to see that many-to-many

8

1.1 Theoretical background

stable matchings can be defined analogously. Later in this thesis, we will define stability
on more complex instances along the line of one-to-one, many-to-one and many-to-many
matchings.

Non-bipartite instances

One of the most widely studied extensions of sm is the stable roommates problem [44, 52],
defined on general graphs instead of bipartite graphs. The notion of a blocking edge is
as defined above, except that it can now involve any two agents in general.

Problem 2. sr
Input: I = (G,O); a not necessarily bipartite graph G = (V,E) and a set of strictly
ordered preference lists O.
Question: Is there a matching not blocked by any edge?

Several results for sm do not carry over to this setting. Most importantly, the existence
of a stable solution is not guaranteed any more. However, there is a linear-time algorithm
to find a stable matching or report that none exists [52]. Moreover, the corresponding
variant of the Rural Hospitals Theorem holds in the roommates case as well: the set of
matched agents is the same for all stable solutions [49].

Ties in preferences

Another natural extension is the stable matching problem with ties . So far we have
assumed that each agent ranks all its neighbors strictly. Especially in large instances in
practice it is an unrealistic assumption to make. Introducing ties, i.e., equally ranked
neighbors in preference lists radically changes the complexity of many problems.
First of all, when ties are present, the definition of a blocking edge must be revised.

Irving and Manlove [53, 72] define the following three types of stability.

Definition 1.5 (blocking edge in the weakly, strongly and super stable sense). An edge
uw ∈ E blocks matching M weakly if it fulfills the following three requirements:

1. uw /∈M ;

2. M(u) = ∅ or w >u M(u);

3. M(w) = ∅ or u >w M(w).

An edge uw ∈ E blocks matching M strongly if it fulfills the first and at least one of
the second and third requirements:

1. uw /∈M ;

2. (M(u) = ∅ or w >u M(u)) and (M(w) = ∅ or u ≥w M(w)) or

3. (M(u) = ∅ or w ≥u M(u)) and (M(w) = ∅ or u >w M(w)).

9

1 Basic notions in stable matchings

An edge uw ∈ E blocks matching M in the super stable sense if it fulfills the following
three requirements:

1. uw /∈M ;

2. M(u) = ∅ or w ≥u M(u);

3. M(w) = ∅ or u ≥w M(w).

In words, an edge uw blocks M weakly if both u and w strictly prefer one another to
their current partners in M , uw blocks M in the super stable sense if u and w do not
prefer their current partners strictly to each other, and finally, uw blocks M strongly if
u strictly prefers v to M(u), and v does not prefer M(v) to u, or the other way round.
In all cases, the stricter notion of blocking implies the weaker notion.
It is trivial that the weakly stable marriage problem can be solved efficiently, since

every stable matching for any linear extension of the preference lists remains stable
under the weak notion of stability. On the other hand, stable solutions need not exist
in the weakly stable roommates problem, in fact, it is NP-complete to decide whether
any exists [85]. Many other problems turn out to be computationally hard under weak
stability; one of the most vividly studied open questions in matchings under preferences
is the best approximation of the NP-complete maximum size weakly stable marriage
problem [57, 68, 74].
Deciding whether a super-stable matching exists and if so, producing one is possible in
O(|E|) time for sm [56] and for sr [55] as well. The fastest known algorithm for finding
a strongly stable matching or a proof for its nonexistence requires O(|V ||E|) time in
sm [61], and O(|E|2) time in sr [94].

1.2 Applications

As already indicated in the introduction, the first algorithm to solve sm was discovered
and implemented in practice years earlier than the notion of stability was mathematically
defined. The medical students protesting in 1951 against a hospital-optimal solution
and questioning the truthfulness of the Gale-Shapley algorithm with hospitals proposing
actually established important theoretical results about the set of stable solutions and
the proposed mechanism. Thus it is not surprising that stable matchings are used widely
to model various real-life problems.
Stability is a well-known concept used for matching markets where the aim is to reach

a certain type of social welfare, instead of profit-maximizing [86]. The measurement of
optimality is not maximum cardinality or minimum cost, but the certainty that no two
agents are willing to selfishly modify the market situation. Such markets model resident
allocation, university admission decisions or bandwidth allocation. Both sm and sr are
widely used in various applications worldwide. An online collection of these applications
can be found under [11].

10

1.2 Applications

Employer allocation. For sm, the oldest and most common area of applications is
employer allocation markets [91]. On one side, job applicants are represented, while the
job openings form the other side. Each application corresponds to an edge in the bipartite
graph. The employers rank all applicants to a specific job offer and similarly, each
applicant sets up a preference list of jobs. Given a proposed matching M of applicants
to jobs, if an employer-applicant pair exists such that the position is not filled or a
worse applicant is assigned to it, and the applicant received no contract or a worse
contract, then this pair blocks M . In this case, the employer and applicant find it
mutually beneficial to enter into a contract outside of M undermining its integrity. If no
such blocking pair exists, then M is stable. As already mentioned in the Introduction,
stability as an underlying concept is also used to allocate graduating medical students
to hospitals in many countries [88, 108].

College admission. The second largest application area is higher education admission
procedures. There, high-school graduates rank the university programs they apply to,
while the universities set up their lists based on the scores of the applicants. A stable
matching guarantees that every student is allocated to their most preferred university
that could not fill up its quota with students who scored higher. A centralized matching
algorithm outputs the college placement of over 140000 high school graduates each year
in Hungary alone [13].

P2P networks. sr has applications in the area of peer-to-peer (P2P) networks [43]. In
such problems, nodes in a communication network need to be paired up to perform some
action, e.g., file transfer from one computer to another or to cooperate in a multiplayer
game. Depending on the task, each node ranks all other nodes based on properties, e.g.,
their upload and download speed, computer performance or physical distance. It is in
the interest of each peer to find a stable matching.

Living donor kidney exchange. Many patients with chronic kidney disease are on the
waiting list for a transplantation, despite having a volunteering donor, because the donor
and the recipient are medically incompatible. If there is a large pool of such incompat-
ible pairs, cross-donations or even donations in cycles can be organized. sr provides a
framework suitable for organizing cross-donations centrally, based on preferences calcu-
lated from the compatibility of two patient-donor pairs. Living donor kidney exchange
programs are organized in several countries, such as the UK [109] or the USA [110]. To
the best of our knowledge, these programs operate under cardinal (and not ordinal) pref-
erences, and the main objective is to maximize the number of transplantations. Even
though no kidney exchange program seems to currently work on the basis of finding
stable matchings, sr provides an alternative framework that is also well-studied in the
literature, even with focus on kidney exchange [75, 90].

11

2 Stable marriage and roommates problems
with restricted edges

In this chapter we focus on the stable marriage and stable roommates problems.
We investigate the complexity of finding a stable solution satisfying additional con-
straints on restricted pairs of vertices. Restricted pairs can be either forced or
forbidden. A stable solution must contain all of the forced pairs, while it must
contain none of the forbidden pairs.

Dias et al. [36] gave a polynomial-time algorithm to decide whether such a solution
exists in the presence of restricted edges. If the answer is “no”, one might look for a
solution close to optimal. Since optimality in this context means that the matching
is stable and satisfies all constraints on restricted pairs, there are two ways of
relaxing the constraints by permitting a solution to: (1) be blocked by as few as
possible pairs, or (2) violate as few as possible constraints on restricted pairs.

Our main theorems prove that for the stable marriage problem, case (1) leads to
NP-hardness and inapproximability results, whilst case (2) can be solved in poly-
nomial time. For stable roommates problem instances, case (2) yields an NP-hard
but (under some cardinality assumptions) 2-approximable problem. In the case of
NP-hard problems, we also discuss polynomially solvable special cases, arising from
restrictions on the lengths of the preference lists, or upper bounds on the numbers
of restricted pairs.

The results presented in this chapter are joint work with David F. Manlove and

have been published in [30].

2.1 Introduction

Motivation. As mentioned in Chapter 1.2, sm and sr are widely used notions in various
market modeling tasks. Forced and forbidden edges in sm and sr open the way to
formulate various special requirements on the sought solution. Such edges now form part
of the extended problem instance: if an edge is forced , it must belong to a constructed
stable matching, whilst if an edge is forbidden, it must not. In certain market situations,
a contract is for some reason particularly important, or to the contrary, not wished by
the majority of the community or by some central authority in control. In such cases,
forcing or forbidding the edge and then seeking a stable solution ensures that the wishes
on these specific contracts are fulfilled while stability is guaranteed. Henceforth, the
term restricted edge will be used to refer either to a forbidden edge or a forced edge.
The remaining edges of the graph are referred as unrestricted edges.

Note that simply deleting forbidden edges or fixing forced edges and searching for
a stable matching on the remaining instance does not solve the problem of finding a
stable matching with restricted edges. Deleted edges (corresponding to forbidden edges,
or those adjacent to forced edges) can block that matching. Therefore, to meet both
requirements on restricted edges and stability, more sophisticated methods are needed.

13

2 Stable marriage and roommates problems with restricted edges

Literature review. The attention of the community was drawn very early on to the
characterization of stable matchings that must contain a prescribed set of edges. In
the seminal book of Knuth [70], forced edges first appeared under the term arranged
marriages . Knuth presented an algorithm that finds a stable matching with a given set
of forced edges or reports that none exists. This method runs in O(|V |2) time, where
V is the set of vertices in the graph. Gusfield and Irving [49] provided an algorithm
based on rotations (see Section 1.1) that terminates in O(|Q|2) time, following O(|V |4)
pre-processing time, where Q is the set of forced edges. This latter method is favored
over Knuth’s if multiple problems are proposed in the same instance, all of them with
forced sets of small cardinality.
Forbidden edges appeared only in 2003 in the literature, and were first studied by

Dias et al. [36]. In their paper, complete bipartite graphs were considered, but the
methods can easily be extended to incomplete preference lists. Their main result was
the following.

Theorem 2.1 (Dias et al. [36]). The problem of finding a stable matching in an sm
instance with forced and forbidden edges or reporting that none exists is solvable in
O(|E|) time.

While Knuth’s method relies on basic combinatorial properties of stable matchings,
the other two algorithms make use of rotation (see Section 1.1). The problem of finding a
stable matching with forced and forbidden edges can easily be formulated as a weighted
stable matching problem (that is, we seek a stable matching with minimum weight,
where the weight of a matching M is the sum of the weights of the edges in M). Let us
assign all forced edges weight -1, all forbidden edges weight 1, and all remaining edges
weight 0. A stable matching satisfying all constraints on restricted edges exists if and
only if there is a stable matching of weight −|Q| in the weighted instance, where Q is
the set of forced edges. With the help of rotations, minimum weight stable matchings
can be found in polynomial time [38, 39, 54].
Since finding a minimum weight stable matching in sr instances is known to be an

NP-hard task [38], it follows that solving the problem with forced and forbidden edges
requires different methods from the aforementioned weighted transformation. Fleiner et
al. [42] showed that any sr instance with forbidden edges can be converted into an sm
problem involving ties that can be solved in O(|E|) time [55] and the transformation has
the same time complexity as well. Forced edges can easily be eliminated by forbidding
all edges adjacent to them, therefore we can state the following result.

Theorem 2.2 (Fleiner et al. [42]). The problem of finding a stable matching in an
sr instance with forced and forbidden edges or reporting that none exists is solvable in
O(|E|) time.

As we have seen so far, answering the question as to whether a stable solution con-
taining all forced and avoiding all forbidden edges exists can be solved efficiently in the
case of both sm and sr. We thus concentrate on cases where the answer to this question
is “no”. What kind of approximate solutions exist then and how can we find them?

14

2.2 Preliminaries

sm sr

case BP:

min # blocking edges

NP-hard to approximate

within |V |1−ε

NP-hard to approximate

within |V |1−ε

case CV: min # violated

restricted edge constraints

solvable

in polynomial time

NP-hard; 2-approximable

if |Q| is large or 0

Table 2.1: Summary of results.

Our contribution and structure. Since optimality is defined by two criteria, it is
straightforward to define approximation from those two points of view. In case BP,
all constraints on restricted edges must be satisfied, and we seek a matching with the
minimum number of blocking edges. In case CV, we seek a stable matching that violates
the fewest constraints on restricted edges. The optimization problems that arise from
each of these cases are defined formally in Section 2.2.
In Section 2.3, we consider case BP: that is, all constraints on restricted edges must be

fulfilled, while the number of blocking edges is minimized. We show that in the sm case,
this problem is computationally hard and not approximable within |V |1−ε for any ε > 0,
unless P = NP. We also discuss special cases for which this problem becomes tractable.
This occurs if the maximum degree of the graph is at most 2 or if the number of blocking
edges in the optimal solution is a constant. We point out a striking difference in the
complexity of the two cases with only forbidden and only forced edges: the problem is
polynomially solvable if the number of forbidden edges is a constant, but by contrast it is
NP-hard even if the instance contains a single forced edge. We also prove that when the
restricted edges are either all forced or all forbidden, the optimization problem remains
NP-hard even on very sparse instances, where the maximum degree of a vertex is 3.
Case CV, where the number of violated constraints on restricted edges is minimized

while stability is preserved, is studied in Section 2.4. It is a rather straightforward
observation that in sm, the setting can be modeled and efficiently solved with the help
of edge weights. Here we show that on non-bipartite graphs, the problem becomes NP-
hard, but 2-approximable if the number of forced edges is sufficiently large or zero. As in
case BP, we also discuss the complexity of degree-constrained restrictions and establish
that the NP-hardness results remain intact even for graphs with degree at most 3, while
the case with degree at most 2 is polynomially solvable.
A structured overview of our results is contained in Table 2.1.

2.2 Preliminaries

In this section, we introduce the notation used in the remainder of the chapter and also
define the key problems that we investigate later.
As already mentioned in Chapter 1.1, an sr instance need not admit a stable solution.

The number of blocking edges is a characteristic property of every matching. The set
of edges blocking M is denoted by bp(M). A natural goal is to find a matching mini-

15

2 Stable marriage and roommates problems with restricted edges

u1 u2 u3 u4

w1 w2 w3 w4

3

1

2

2

1

3

1

1

1

1

2

1

2

2

1

2

Figure 2.1: An example stable marriage instance with forbidden edges.

mizing |bp(M)|. For convenience, the minimum number of edges blocking any matching
of an instance I is denoted by bp(I). Following the consensus in the literature, match-
ings blocked by bp(I) edges are called almost stable matchings . This approach has a
broad literature: almost stable matchings have been investigated in sm [17, 50, 65] and
sr [1, 16] instances.
All problems investigated in this chapter deal with at least one set of restricted edges.

The set of forbidden edges is denoted by P , while Q stands for the set of forced edges. We
assume throughout the chapter that P ∩Q = ∅. A matching M satisfies all constraints
on restricted edges if M ∩ P = ∅ and M ∩Q = Q.

In Figure 2.1, an example sm instance on four men and four women can be seen. The
preference ordering is shown on the edges. The set of forbidden edges P = {u2w2, u3w3}
is marked by dotted colored edges. The unique stable matching M = {u1w1, u2w2,
u3w3, u4w4} contains both forbidden edges. Later on, we will return to this example
instance to demonstrate approximation concepts on it.

The first approximation concept (case BP described in Section 2.1) is to seek a match-
ing M that satisfies all constraints on restricted edges, but among these matchings, it
admits the minimum number of blocking edges. This leads to the following problem
definition.

Problem 3. min bp sr restricted
Input: I = (G,O, P,Q); an sr instance, a set of forbidden edges P and a set of forced
edges Q.
Output: A matching M such that M ∩ P = ∅, Q ⊆M and |bp(M)| ≤ |bp(M ′)| for every
matching M ′ in G satisfying M ′ ∩ P = ∅, Q ⊆M ′.

Special attention is given to two special cases of min bp sr restricted: in min bp
sr forbidden, Q = ∅, while in min bp sr forced, P = ∅. Note that an instance
of min bp sr forced or min bp sr restricted can always be transformed into an
instance of min bp sr forbidden by forbidding all edges that are adjacent to a forced
edge. This transformation does not affect the number of blocking edges.
According to the other intuitive approximation concept (case CV described in Sec-

tion 2.1), stability constraints need to be fulfilled, while some of the constraints on
restricted edges are relaxed. The goal is to find a stable matching that violates as few
constraints on restricted edges as possible.

16

2.3 Almost stable matchings with restricted edges

Problem 4. sr min restricted violations
Input: I = (G,O, P,Q); an sr instance, a set of forbidden edges P and a set of forced
edges Q.
Output: A stable matching M such that |M ∩ P | + |Q \M | ≤ |M ′ ∩ P | + |Q \M ′| for
every stable matching M ′ in G.

Just as in the previous approximation concept (referred to as case BP in Section 2.1),
we separate the two subcases with only forbidden and only forced edges. If Q = ∅, sr
min restricted violations is referred as sr min forbidden, while if P = ∅, the
problem becomes sr max forced. In case BP, the subcase with only forced edges can
be transformed into the other subcase, simply by forbidding edges adjacent to forced
edges. This straightforward transformation is not valid for case CV. Suppose a forced
edge was replaced by an unrestricted edge, but all of its adjacent edges were forbidden.
A solution that does not contain the original forbidden edge might contain two of the
forbidden edges, violating more constraints than the original solution. Yet most of our
proofs are presented in detail for the problem with only forbidden edges, and they require
only slight modifications for the case with forced edges.
A powerful tool used in several proofs in this chapter is to convert some of these

problems into a weighted sm or sr problem, where the goal is to find a stable matching
with the lowest edge weight, taken over all stable matchings. Irving et al. [54] were the
first to show that the weighted sm can be solved in O(|V |4 log |V |) time if the weight
function is monotone in the preference ordering, non-negative and integral. Feder [38, 39]
shows a method to drop the monotonicity requirement. He also presents the best known
bound for the running time of an algorithm for finding a minimum weight stable matching
in sm: O(|V |2 · log(K

|V |2 + 2) · min {|V |,
√
K}), where K is the weight of an optimal

solution. Redesigning the weight function to avoid the monotonicity requirement using
Feder’s method can radically increase K. For weighted sr, finding an optimal matching
is NP-hard, but 2-approximable, under the assumption of monotone, non-negative and
integral weights [38]. These constraints restrict the practical use of Feder’s results to
a large extent. Fortunately, linear programming techniques allow the majority of the
conditions to be dropped while retaining polynomial-time solvability. A simple and
elegant formulation of the sm polytope is known [93] and using this, a minimum weight
stable matching can be computed in polynomial time via linear programming. For
weighted sr, a 2-approximation can be found for every non-negative weight function [99,
100].

Throughout this chapter, the discussed sm and sr problems are defined as optimization
problems. Not defining them as decision problems is for the sake of approximation
results. Every time we work with the decision version of the problem – which occurs
often in hardness proofs – we explicitly say so.

2.3 Almost stable matchings with restricted edges

In this section, constraints on restricted edges must be fulfilled strictly, while the number
of blocking edges is minimized. Our results are presented in three subsections, and most

17

2 Stable marriage and roommates problems with restricted edges

of the results are given for min bp sm restricted. Firstly, in Section 2.3.1, basic
complexity results are discussed. In particular, we prove that the studied problem min
bp sm restricted is in general NP-hard and also hard to approximate. Thus, restricted
cases are analyzed in Section 2.3.2. First we assume that the number of forbidden, forced
or blocking edges can be considered as a constant. Due to this assumption, two of the
three problems that naturally follow from imposing these restrictions become tractable,
but surprisingly, not all of them. Then, degree-constrained cases are discussed. We show
that the NP-hardness result for min bp sm restricted holds even for instances where
each preference list is of length at most 3, while on graphs with maximum degree 2, the
problems become tractable. Finally, in Section 2.3.3 we mention the problem min bp
sr restricted and briefly elaborate on how results established for the bipartite case
carry over to the sr case.

2.3.1 General complexity and approximability results

When minimizing the number of blocking edges, one might think that removing the
forbidden edges temporarily and then searching for a stable solution in the remaining
instance leads to an optimal solution. Such a matching can only be blocked by forbidden
edges, but as the upcoming example demonstrates, optimal solutions are sometimes
blocked by unrestricted edges exclusively. In some instances, every almost stable solution
admits only non-forbidden blocking edges. Moreover, a man- or woman-optimal almost
stable matching with forbidden edges may not always exist.
Let us recall the sm instance in Figure 2.1. In the graph with edge set E(G) \ P ,

a unique stable matching exists: M = {u1w1, u4w4}. However, in the original in-
stance M is blocked by both forbidden edges. On the other hand, matching M1 =
{u1w1, u2w4, u4w3} is blocked by exactly one edge: bp(M1) = {u4w4}. Similarly, match-
ing M2 = {u1w3, u2w1, u4w4} is blocked only by u1w1. Therefore, M1 and M2 are both
almost stable matchings and bp(I) = 1. One can easily check that M1 and M2 are the
only matchings with the minimum number of blocking edges. They both are blocked
only by unrestricted edges. Moreover, M1 is better for u1, w1 and w3, whereas M2 is
preferred by u2, u4 and w4.
In Theorems 2.3 and 2.4 we present two results demonstrating the NP-hardness and

inapproximability of restricted variants of min bp sm restricted.

Theorem 2.3. min bp sm forbidden and min bp sm forced are NP-hard.

The NP-hard problem we reduce to min bp sm restricted is perfect almost stable
matching with incomplete preference lists:

Problem 5. min bp psmi
Input: I = (G,O); an sm instance on an incomplete bipartite graph.
Output: A perfect matching M such that |bp(M)| ≤ |bp(M ′)| for every perfect match-
ing M ′.

min bp psmi is NP-hard and unless P = NP, it is not approximable within a factor of
|V |1−ε, for any ε > 0 [17].

18

2.3 Almost stable matchings with restricted edges

u1 u2 u3 ui un

w1 w2 w3 wi wn

q1 q2 qK+1

p1 p2 pK+1

Figure 2.2: The transformation from min bp psmi to min bp sm forbidden. The edges
in P are colored and dotted.

Proof. We firstly show NP-hardness of min bp sm forbidden and then indicate how to
adapt the proof to show a similar result for min bp sm forced. We reduce from min
bp psmi as mentioned above. Given an instance I = (G,O,K) of the decision version of
this problem, we define the following instance I ′ = (G′, O′, P,K) of the decision version
of min bp sm forbidden. The vertices of graph G: ui, 1 ≤ i ≤ n and wi, 1 ≤ i ≤ n form
a subset of V (G′). In addition, K + 1 new vertices representing women are introduced.
They are denoted by q1, q2, ...qK+1. Similarly, K+1 new men are added to V (G), denoted
by p1, p2, ...pK+1. Thus, each side of G′ consists of n + K + 1 vertices. Edges form a
complete bipartite graph on them. The edges added to a sample edge uiwi can be seen
in Figure 2.2.
The preference lists of vertices already in V (G) are structured in three blocks. Each

man ui of the original instance I keeps his preference list in O at the top of his new
list in O′. After these vertices in W , the entire set of newly-introduced q1, q2, ...qK+1

women follows, in arbitrary order. Finally, the rest of the women are listed. The ordering
within this last block is also arbitrary. An analogous ordering is used when defining the
preference list of each wj . The original list in O is followed by the vertices p1, p2, ...pK+1

added to G, then the rest of the men follow.

ui: w listed in O q1, q2, ...qK+1 rest

wj : u listed in O p1, p2, ...pK+1 rest

pk : w1, w2, ..., wn qk rest

qk : u1, u2, ..., un pk rest

The added vertices have the following preference orderings. Man pk’s list consists of
the set of wj vertices from V (G), followed by pk, and then the rest of the women in G′

19

2 Stable marriage and roommates problems with restricted edges

in arbitrary order. Similarly, qk ranks all ui ∈ V (G) first, followed by qk, and then the
rest of the men in arbitrary order.
Having described G′ and O′ completely, all that remains is to specify the set of for-

bidden edges P . Each man ui has K + 1 forbidden edges adjacent to him, namely, all
edges to the newly-introduced q1, q2, ...qK+1 vertices. Similarly, edges between every wj

and all p1, p2, ...pK+1 vertices are also forbidden. In total, I ′ has 2n(K + 1) forbidden
edges.

Claim 1. If M is a perfect matching in I and |bp(M)| ≤ K, then there is a matching
M ′ in I ′ with M ′ ∩ P = ∅ and |bp(M ′)| ≤ K.

Proof. The construction of M ′ begins with copying M to G′. Since M is a perfect
matching, all vertices in V (G) are matched to vertices in V (G) and thus, no forbidden
edge can be in M ′. The remaining vertices q1, q2, ...qK+1 and p1, p2, ...pK+1 are paired
to each other: each qjpj is added to M ′.

M ′ is a perfect matching in G′ and M ′∩P = ∅. Next, we show that no edge in E(G′)\
M ′ blocks M ′ that did not block M already. First of all, none of the forbidden edges
blocks M ′, because the preference lists of the vertices already in V (G) were constructed
in such a way that the vertices on preference lists in O are better than the added vertices
and all ui, wj vertices were matched in the perfect matching M . The first n choices of any
newly-added vertex are thus not blocking edges. At the same time, all these new vertices
are matched to their first-choice partners among the newly-added vertices. Therefore
no edge incident to them can block M ′. All that remains is to observe that uiwj edges
blocking M ′ in I ′ already blocked M in I, because M is the restriction of M ′ to G.
Therefore, the edges blocking M and M ′ are identical. �

Claim 2. If M ′ is a matching in I ′ with M ′ ∩ P = ∅ and |bp(M ′)| ≤ K, then its
restriction to G is a perfect matching M in I with |bp(M)| ≤ K.

Proof. First, we discuss some essential structural properties of M ′. The forbidden edges
are not in M ′, and at most K of them block it. Suppose that there is a man ui not
married to any woman wj in graph G. Since wj ranks exactly K + 1 forbidden edges
after its listed partners in G, and forbidden edges are the first n choices of their other
end vertex, all K+1 of them block M ′, regardless of the remaining edges in M ′. Having
derived a contradiction in our assumption that at most K edges block M ′ in total, we
can state that each man ui is matched to a vertex wj in M ′. Thus, the restriction of M ′

to G is a perfect matching with at most K blocking edges. �
NP-hardness can be obtained for min bp sm forced by simply forcing all edges of

the form pkqk in the above reduction.

Theorem 2.4. Each of min bp sm forbidden and min bp sm forced is not approx-
imable within a factor of |V |1−ε, for any ε > 0, unless P = NP.

The NP-complete problem we make use of in this proof is exact maximal matching.

Problem 6. exact maximal matching
Input: I = (G,K); a bipartite graph G and an integer K.
Question: Is there a maximal matching M in G such that |M | = K?

20

2.3 Almost stable matchings with restricted edges

exact maximal matching is NP-complete even for graphs where all vertices repre-
senting men have degree two, while all vertices of the other side have degree three [81].
Here we also use this restricted case of the problem. We show that if there were a poly-
nomial approximation algorithm within a factor of |V |1−ε for some ϵ > 0 to min bp sm
forbidden, then it would also find an exact maximal matching in I.

Proof. In our proof, every degree-restricted instance I of exact maximal matching
is transformed into a corresponding instance I ′′ of min bp sm forbidden. Let n1 and
n2 denote the size of each side in I, such that m = 2n1 = 3n2. Furthermore, another
transformation is used, involving I ′, an instance of perfect matching with incomplete
preference lists (Problem 5). In [17], an instance I ′ of min bp psmi is created corre-
sponding to each I of exact maximal matching with some special properties. The
crucial one of them is that if G in I has a maximal matching of cardinality K, then I ′
has a perfect matching admitting exactly n1 + n2 blocking edges, where n1 + n2 is the
number of vertices in I. Otherwise, if G has no maximal matching of cardinality K,
then any perfect matching in I ′ is blocked by at least n1 + n2 + C edges, where C is a
huge number. To be more precise, let B = ⌈3ε⌉ and C = (n1 + n2)

B+1 + 1. The number
of vertices in each side of I ′ is 3n1 + 2mC + 4n2 −K.

Now we describe how I ′ is transformed into I ′′. Note that this method is very similar
to the one we used in the proof of Theorem 2.3. First, C new men: pi, 1 ≤ i ≤ C
and C new women: qi, 1 ≤ i ≤ C are introduced. Therefore, each side consists of
3n1+2mC+4n2−K+C vertices. The preference lists can be sketched in the following
way:

u in I ′: w listed in O in I ′ q1, q2, ..., qC all remaining women in I ′

w in I ′: u listed in O in I ′ p1, p2, ..., pC all remaining men in I ′

pi: all women in I ′ qi q1, q2, ..., qi−1, qi+1, ..., qC

qi: all men in I ′ pi p1, p2, ..., pi−1, pi+1, ..., pC

The set of forbidden edges comprises all edges of the form pw or uq. For min bp sm
forced, the set of forced edges consists of all edges of the form piqi (with identical
indexes). Due to this construction, if M is a matching in I ′′ in which there is a man ui
not matched to a woman he is adjacent to in I ′, then M is blocked by at least C edges.

We will show that if N is the number of vertices in I ′′, then N1−ε < C. Therefore,
any N1−ε-approximation of min bp sm forbidden guarantees a matching in I ′ admit-
ting less than C blocking edges. This latter induces a perfect matching in I ′, which
corresponds to a solution of exact maximal matching.

With Inequalities (2.1)-(2.7) we give an upper bound for N , while with Inequali-
ties (2.8)-(2.12) we establish a lower bound. Then, combining these two in Inequali-
ties (2.13)-(2.16), we derive that N1−ε < C. Explanations for the steps are given as
necessary after each of the three sets of inequalities.

21

2 Stable marriage and roommates problems with restricted edges

N = 2(3n1 + 2mC + 4n2 −K + C) (2.1)

= 6n1 + 8n1C + 8n2 − 2K + 2C (2.2)

≤ 6n1 + 8n1((n1 + n2)
B+1 + 1) + 8n2 − 2K + 2(n1 + n2)

B+1 + 2 (2.3)

= 14n1 + (n1 + n2)
B+1(8n1 + 2) + 8n2 + 2 (2.4)

≤ 14n1 + 14n2 + (n1 + n2)
B+1(14n1 + 14n2) (2.5)

≤ 14[(n1 + n2)
B+1(n1 + n2) + (n1 + n2)

B+1(n1 + n2)] (2.6)

= 28(n1 + n2)
B+2 (2.7)

(2.1): N is the number of vertices in I ′′
(2.2): m = 2n1

(2.3): C = (n1 + n2)
B+1 + 1 by definition

(2.4): omit −2K
(2.5): n2 ≥ 1, increase all coefficients to the highest coefficient 14
(2.6): multiply 14n1 + 14n2 by (n1 + n2)

B+1

N = 6n1 + 8n1C + 9n2 − 2K + 2C (2.8)

> C (2.9)

> (n1 + n2)
B+1 (2.10)

> nB
1 (2.11)

≥ 28B (2.12)

(2.8): N is the number of vertices in I ′′
(2.9): keep only C from the sum
(2.10): C = (n1 + n2)

B+1 + 1 by definition
(2.11): keep only nB

1 from the sum coefficient 14
(2.12): without loss of generality, we can assume that n1 > 28

C > (n1 + n2)
B (2.13)

≥ 28−
B

B+2N
B

B+2 (2.14)

≥ N1− 3
B+2 (2.15)

≥ N1−ε (2.16)

(2.13): C = (n1 + n2)
B+1 + 1 by definition

(2.14): (2.1)-(2.7)
(2.15): (2.8)-(2.12)
(2.16): B = ⌈3ε⌉ by definition

22

2.3 Almost stable matchings with restricted edges

2.3.2 Bounded parameters

Our results presented so far show that min bp sm restricted is computationally hard
even if P = ∅ or Q = ∅. Yet if certain parameters of the instance or the solution can be
considered as a constant, the problem can be solved in polynomial time. Theorem 2.5
firstly shows that this is true for min bp sm forbidden.

Theorem 2.5. min bp sm forbidden is solvable in O(|V |2|E|L) time, where L = |P |,
which is polynomial if L is a constant.

Proof. Here we work with the decision version of min bp sm forbidden, asking whether
there is a matching M such that M ∩P = ∅ and |bp(M)| ≤ K for a fixed K ∈ Z>0. Our
first observation is that the problem is trivially solvable if the target value K satisfies
K ≥ L. In this case, deleting the L forbidden edges from E(G) and finding a stable
matching in the remaining graph delivers a matching that is blocked in the original
instance by only a subset of the removed edges. Thus, a matching M with M ∩ P = ∅
and |bp(M)| ≤ K always exists.
Otherwise, we assume that K < L. Suppose firstly that there is a matching M with

M ∩P = ∅ and |bp(M)| = k ≤ K < L. If those k blocking edges are deleted from E(G),
then there is a stable matching M ′ in the remainder of G that contains none of the
forbidden edges. Note that we did not specify which edges block M : they can be both
forbidden and unrestricted. Due to Theorem 2.1, deciding whether a stable matching
with no forbidden edges exists is polynomially solvable. The last task is to check each
possible set of blocking edges. Every edge set of size at most K is such a potential
blocking set. During the execution of our algorithm, we try out all of these sets one by
one. After such an edge set is deleted from G, a stable matching that avoids all of the
remaining forbidden edges is searched for. If such a matching exists, then it admits at
most K blocking edges. It is sufficient to try out

∑K
i=0

(
m
i

)
sets of edges. In other words,∑K

i=0

(
m
i

)
≤

∑L
i=0

(
m
i

)
subsets are generated to decide whether there is a matching that

does not contain any of the L forbidden edges and admits at most K blocking edges.
The number of rounds is thus at most O(|E|L), while each round takes O(|V |2) time to
complete.

In sharp contrast to the previous result on polynomial solvability when the number of
forbidden edges is small, we state the following theorem for min bp sm forced.

Theorem 2.6. min bp sm forced is NP-hard even if |Q| = 1.

Proof. The NP-complete problem we reduce to the decision version of min bp sm forced
is exact maximal matching. As previously mentioned, this problem is NP-complete
even for graphs where all vertices representing men have degree two, while all vertices
of the other side have degree three [81]. Hence suppose we are given an instance I of
this restriction, comprising a graph G = (U0 ∪W0, E) and an integer K.

In this proof, we construct a min bp sm forced instance I ′ with a single forced edge
in such a way that there is a maximal matching of cardinality K in I if and only if there

23

2 Stable marriage and roommates problems with restricted edges

z1

z2

u1

u2

u3

1
1

2

1

1
1

2
2

w1

w2

w3

w4

v1

v2

v3

1
1

1
1

1
11

2

2

2

3
2

u′′0

u′0

u0

w′′
0

w′
0

w0 lastlast

2

1

last

1

2 last

Figure 2.3: A u-gadget, a w-gadget and the special gadget.

is a matching containing the forced edge and admitting exactly |U0| + |W0| blocking
edges in I ′. Our construction is based on ideas presented in [17].
All vertices label their edges in an arbitrary but fixed order. We will refer to these

labels when constructing I ′. We now describe I ′. The vertex set of graph G′ in I ′ can
be partitioned into seven sets: U , V , W , Z, S, X and Y . Specific subgraphs of G′

are referred as u-gadgets, w-gadgets, a special gadget containing the forced edge, see
Figure 2.3. Aside from these, G′ also contains some extra vertices, the so-called garbage
collectors, partitioned into two sets: X and Y . Later we will see that these garbage
collectors are paired to the vertices not covered by the matching in G. To that end,
|X| = |W0| −K and |Y | = |U0| −K. The whole construction is illustrated in Figure 2.4.

Each u-gadget replaces a vertex u ∈ U0 in G. It is defined on five vertices: u1, u2, u3 ∈
U and z1, z2 ∈ Z. Its edges and the preferences on them are shown in Figure 2.3. Two
interconnecting edges connect the special gadget to u3. They are ranked as the last two
edges by u3. It is described later which vertices of the special gadget are incident to
these edges of u3. The u-gadget also has edges to all w-gadgets representing vertices
in W0 to which u was adjacent. After describing the w-gadget, we elaborate on the
position of these edges referred as relevant edges. Aside from these, every u1 has edges
to all garbage collectors in Y . These edges are all worse than the relevant edges of u1
and they are ranked arbitrarily at the bottom of u1’s list. The vertices in Y also rank
all u1 vertices arbitrarily.

The w-gadgets are structured similarly. Each gadget consists of seven vertices: w1, w2,
w3, w4 ∈ W and v1, v2, v3 ∈ V . Aside from the edges within the gadget, it has two
interconnecting edges between w4 and vertices in the special gadget (described in detail
later), and three relevant edges between w1, w2, w3 and vertices in U of u-gadgets. These
are the edges drawn in accordance with the edge labels. Suppose edge uw was ranked
i-th by u and j-th by w, where i ∈ {1, 2} and j ∈ {1, 2, 3}. Then, ui in the u-gadget
is connected to wj in the w-gadget. Therefore, each edge in I is transformed into a
single edge in I ′ and each ui, i ∈ {1, 2} and wj , j ∈ {1, 2, 3}, has exactly one relevant

24

2.3 Almost stable matchings with restricted edges

edge. All of these edges are second choices of both of their end vertices. In addition to
these, if a u- and a w-gadget, for which uv ∈ E(G) are not already connected by u1w1,
we add u1w1, which is referred as an adjacency edge. This edge is ranked by both u1
and w1 after their relevant edges, but ahead of their edges to garbage collectors. Similar
to u-gadgets, w-gadgets are also connected to garbage collectors. Each w1 vertex has
|W0| −K edges to the vertices in X, ranked arbitrarily at the bottom of w1’s preference
list. Also the vertices in X rank the w1 vertices arbitrarily.
The special gadget is defined on only six vertices forming set S: u0, u

′
0, u

′′
0, w0, w

′
0

and w′′
0 . The unique forced edge in the entire instance is u0w0. Apart from u′0 and w′′

0 ,
they are connected to u- and w-gadgets. In each u-gadget, u3 is adjacent to w0 and w′

0,
while in each w-gadget, w4 is adjacent to u0 and u′′0. These four vertices prefer their
interconnecting edges to their edges inside of the special gadget. Moreover, u0 and w0

are connected to all garbage collectors of the opposite side. These edges are ranked
better than u0w0 by these two vertices and ranked last by the vertices in X and Y .

Claim 3. To each maximal matching M in I of cardinality K there is a matching M ′

in I ′ with u0w0 ∈M ′ and |bp(M ′)| = |U0|+ |W0|.

Proof. First, the set of relevant edges in G′ corresponding to M is chosen. They cover
exactlyK of the |U | = 3|U0| vertices of U , and analogously, exactly K of the |W | = 4|W0|
vertices in W .

In u-gadgets, where either of u1 and u2 has a relevant edge in M ′, the other vertex
in U is matched to its copy in Z. The remaining two vertices of the gadget are then
paired to each other. In the other case, if u was unmatched in M , then u2z2, u3z1 ∈M ,
and M(u1) ∈ Y . Given the set of u1 vertices to pair with the garbage collectors, we find
any stable matching in this subgraph and add it to M ′. Note that this step matches the
|U0| −K u1 vertices to the |U0| −K garbage collectors in Y .

The strategy is similar for the w-gadgets. Suppose that wj is already matched to a
vertex in U , because that relevant edge corresponds to a matching edge in M . We then
connect w4 to vj and pair the remaining two vertices in W with their partners in V .
Otherwise, if w was unmatched in M , then w1 is matched to a garbage collector, and
{w2v2, w3v3, w4v1} ⊆ M ′. On the subgraph induced by the garbage collectors and w1

vertices corresponding to unmatched w vertices we construct a stable matching and add
it to M ′. This step matches the |W0|−K w1 vertices to the |W0|−K garbage collectors
in X.

In the special gadget, u0w0, u
′
0w

′
0 and u′′0w

′′
0 are chosen.

Now we investigate the number of blocking edges incident to at least one vertex in any
u-gadget. The edges running to garbage collectors cannot block, because M ′ restricted
to that subgraph is a stable matching and u1 vertices not matched to garbage collectors
have better relevant edges in M ′. Since all u3 vertices are matched to their first or
second choices, their edges to the special gadget do not block either. Consider now a
relevant edge uiwj . Since M was a maximal matching, at least one of the two gadgets
are set so that it corresponds to a matched vertex in M . On that side, uiwj is dominated
by the matching edge. Regarding the adjacency edges, they only block M ′ if both of
their end vertices are matched to garbage collectors. But they both are then unmatched

25

2 Stable marriage and roommates problems with restricted edges

3
3

2
2

z1

z2

u1

u2

u3

1
1

2

1

1
1

2
2

w1

w2

w3

w4

v1

v2

v3

1
1

1
1

1
11

2

2

2

3
2

u′′0

u′0

u0

w′′
0

w′
0

w0 lastlast

2

1

last

1

2 last

3
4

4
5

2

2

x1

x|W0|−Klast

y1

y|U0|−K

last

last last

Figure 2.4: As the purple relevant edge shows, u and w were connected in I by an edge
labeled second by both of them. The gray edge is an adjacency edge.

and adjacent in G, which contradicts to the fact that M is maximal. The only edges
remaining are in the u-gadgets. In each u-gadget, exactly one edge blocks M ′: if the
vertex was matched to its i-th labeled edge in M , then uizi blocks M ′, otherwise u1z1
blocks M ′. Therefore, up to this point, we have exactly |U0| blocking edges.
Analogous arguments prove that among the edges incident to all w-gadgets, |W0| are

blocking. In the previous paragraph we discussed that no relevant or adjacency edge
blocks M ′. The subgraph induced by the garbage collectors and w1 vertices does not
contain any blocking edge, because a stable matching was chosen and the unmatched w1

vertices are all matched to a better vertex. Edges connecting w4 vertices and the special
gadget are last choice edges of the matched w4 vertices. In the w-gadget, exactly one

26

2.3 Almost stable matchings with restricted edges

edge blocks M ′: if w was matched and therefore uiwj ∈M ′, then wjvj , otherwise w1v1.
It is easy to see that in the special gadget, none of the four non-matching edges

blocks M ′. �

Claim 4. To each matching M ′ in I ′ with u0w0 ∈M ′ and |bp(M ′)| = |U0|+ |W0| there
is a maximal matching M in I of cardinality K.

Proof. First we show that if u0w0 ∈M ′, then each u- and w-gadget is adjacent to at least
one blocking edge. Since w0 prefers all its edges to u0w0, if a u-gadget is not incident to
any blocking edge, then u3 is matched to its first or second choice edge. But either of
z1 or z2 is then not matched to its first-choice edge, which is the best edge of its other
end vertex as well. Since such edges block the matching immediately, we have found
at least one blocking edge incident to the vertices of the u-gadget. The same argument
applies to u0 and w4. If M(w4) ∈ V , then M(w4) has a blocking edge, otherwise u0w4

blocks M ′. Therefore, if |bp(M ′)| ≤ |U0| + |W0|, then each u- and w-gadget is adjacent
to exactly one blocking edge.
In the coming two paragraphs, we investigate which edges can play the role of blocking

edges. Trivial candidates are the edges uizi, where i ∈ {1, 2} and wjvj , where j ∈
{1, 2, 3}, because they are the first-choice edges of both of their end vertices. Suppose
u1z1 /∈ M ′, therefore it blocks M ′. Then, u2z2 ∈ M ′, otherwise it also blocks M ′.
Now we know that u3z1 ∈M ′, otherwise u3z1 forms a blocking edge. This construction
guarantees that the edges incident to vertices in the u-gadget are all dominated by
matching edges, except for the edges of u1. The second option is that u2z2 /∈ M ′.
Similarly, u1z1 ∈ M ′ and u3z2 ∈ M ′, moreover, the only edges incident to the gadget
that might block M ′ are the edges of u2. The remaining case is that u1z1, u2z2 ∈M ′. In
this case, u3 is either unmatched or matched to w′

0 and in both cases u3w0 blocks M ′.
In all three cases, no edge incident to the gadget at u1 or u2 can block M ′, because that
would mean more than one blocking edge per gadget.

An analogous reasoning can be derived for w-gadgets. If wjvj /∈M ′ for a j ∈ {1, 2, 3},
then wj−1vj−1, wj+1vj+1 ∈ M ′, where addition and subtraction are taken modulo 3. In
this case, wjvj blocks M ′. In the very last case, if wjvj ∈ M ′ for all j ∈ {1, 2, 3}, then
w4u0 forms a blocking edge. For all four matchings, no further blocking edge can occur.

At this point, we have proved that each u-gadget and each w-gadget has exactly
one blocking edge and blocking edges never appear anywhere else in the graph. In
particular, the special gadget contains no blocking edge. Moreover, if u′0w

′
0 /∈ M ′, then

u′0w0 blocks M
′. Therefore, u′0w

′
0 ∈M ′. This observation has an effect on the u-gadgets.

If any vertex u3 would be unmatched in M ′, then it would immediately have two blocking
edges, one to w0 and another one to w′

0. Therefore, u3 is matched to z1 or z2 and either
u1 or u2 is matched to a vertex outside of the u-gadget. From this follows the fact
that the number of relevant edges in M ′ plus the number of matching edges incident to
garbage collectors in Y is |U0|. Similarly, if u′′0w

′′
0 /∈M ′, then u0w

′′
0 blocks M ′. Thus, all

w4 vertices are matched to a vertex in V and the number of relevant edges in M ′ plus
the number of matching edges incident to garbage collectors in X is |W0|.
Suppose now that there is an unmatched vertex y ∈ Y . This vertex has an edge to

u0 which blocks M ′. Therefore, all |U0| − K vertices in Y are matched to u1 vertices

27

2 Stable marriage and roommates problems with restricted edges

of various u-gadgets. Similarly, all |W0| −K vertices in X are matched to w1 vertices.
Therefore, there are in total K u-gadgets contributing a single relevant edge to M ′.
These edges therefore form a matching of size K in G. All that remains to show is
that this matching is maximal. If we suppose otherwise, i.e., there are two gadgets
corresponding to vertices u and w in G such that all their vertices in U and W in G′

are matched to either garbage collectors or to their z- or v-copies. This is only possible
if u1 and w1 are both matched to garbage collectors, but the adjacency edge u1w1then
blocks M ′. �

A counterpart to Theorem 2.5 holds in the case of min bp sm restricted if the
number of blocking pairs in an optimal solution is a constant.

Theorem 2.7. min bp sm restricted is solvable in O(|E|L+1) time, where L is the
minimum number of edges blocking an optimal solution, which is polynomial if L is a
constant.

For the sake of simplicity, we use the decision version of min bp sm restricted,
asking whether there is a matching M such that M ∩ P = ∅, Q ⊆ M and |bp(M)| ≤ K
for K ∈ Z>0 fixed in the input.

Proof. Let us consider all edge sets of cardinality L. Removing one of these sets from G
yields a graph G′. If there is a matching in G blocked by a subset of the L removed edges
and not violating any of the constraints on restricted edges, then the same matching is
stable and still does not violate any constraint on the restricted edges in G′. Therefore, it
is sufficient to check whether there is a matching not violating any of the constraints on
the restricted edges in G′. There are O(|E|L) sets to remove and checking the existence
of a stable matching with forced and forbidden edges can be done in O(|E|) time.

Next we study the case of degree-constrained graphs, because for most hard sm and
sr problems, it is the most common special case to investigate [16, 50, 81]. Here, we
show in Theorem 2.8 that min bp sm restricted remains computationally hard even
for instances with preference lists of length at most 3. On the other hand, according to
Theorem 2.9, the problem can be solved by identifying forbidden subgraphs when the
length of preference lists is bounded by 2.

Theorem 2.8. min bp sm forbidden and min bp sm forced are NP-hard even if
each vertex has a preference list consisting of at most 3 elements.

The problem we reduce to our problem is (2,2)-e3-sat. This satisfiability problem is
NP-complete [10].

Problem 7. (2,2)-e3-sat
Input: I = B; a Boolean formula in CNF, in which each clause comprises exactly 3
literals and each variable appears exactly twice in unnegated and exactly twice in negated
form.
Question: Is there a truth assignment satisfying B?

28

2.3 Almost stable matchings with restricted edges

For convenience, let us denote the number of variables by n and the number of clauses
by m. Our goal is to construct an instance I of min bp sm forbidden so that bp(I) =
m+ n if and only if B is a satisfiable formula.
Our construction for such an instance combines ideas from two papers. To each

Boolean formula, we introduce a variable gadget and a clause gadget. The first one is a
slightly more sophisticated variant of the variable gadget used in Theorem 7 of [17], to
show NP-hardness of finding a maximum cardinality almost stable matching. Our clause
gadget is a simplified version of another clause gadget from Theorem 1 in [16]. There,
the almost stable roommates problem is shown to be NP-hard. Both proofs investigate
the case with bounded preference lists.

Proof. Using the already described transformation, any min bp sm forced instance
with short preference lists can be converted into a min bp sm forbidden instance with
short preference lists. Therefore, it is sufficient to investigate min bp sm forbidden.
The problem we reduce to our problem is (2,2)-e3-sat. Our goal is to construct

an instance I of min bp sm forbidden so that bp(I) = m + n if and only if B is a
satisfiable formula.
When constructing graph G to a given Boolean formula B, we keep track of the order

of the three literals in each clause and the order of the two unnegated and two negated
appearances of each variable. Each appearance is represented by an interconnecting
edge.

The variable gadget. To each variable in B, a graph on 44 vertices is defined. The
right hand-side of Figure 2.5 illustrates the essential part of a variable gadget, a cycle of
length 24. This cycle contains no forbidden edge, and all vertices along it have degree 3
due to an additional forbidden edge. For sake of simplicity, only four of these edges are
depicted in the figure, namely the ones incident to vertices x1, x2, x3 and x4, as they are
responsible for the communication between clause and variable gadgets. Each of these
four vertices has its third, forbidden edge connected to a clause gadget. These edges are
called interconnecting edges and ranked second on the preference list of both of their
end vertices.
Consider the variable v. Due to the properties of max (2,2)-e3-sat, v occurs twice

in unnegated form, say, in clauses C1 and C2. Its first appearance, as the i-th literal of
C1 is represented by the interconnecting edge between x1 and ai of the clause gadget
corresponding to C1. Similarly, x2 is connected to an a-vertex in the clause gadget
of C2. The same variable, v, also appears twice in negated form. The variable gadgets
representing those clauses are connected to x3 and x4, respectively. The other end
vertices of these two interconnecting edges mark where these two literals appear in their
clauses.
As mentioned before, all vertices along the cycle have exactly one forbidden edge

attached to them. Regarding the remaining 20 vertices of the cycle, there is a dummy
vertex with a forbidden edge attached to each of them (these edges are not depicted in
Figure 2.5). This edge is their last choice. These edges guarantee that if any of these 20
vertices remains unmatched in the cycle, then it contributes a blocking edge.

29

2 Stable marriage and roommates problems with restricted edges

r1 p3 b3 a3 q3 r2

p2
b2 a2

q2

p1 b1 a1 q1

1 3 132 2 1 1 3 2

1 2 1 1 3 1

2

2

1 1

3

23

1

2

1

3

1

2

1

2

2

2

r1 p3 b3 a3 q3 r2

p2
b2 a2

q2

p1 b1 a1 q1

1 3 132 2 1 1 3 2

1 2 1 1 3 1

2

2

1 1

3

23

1

2

1

3

1

2

1

2

2

2

r1 p3 b3 a3 q3 r2

p2
b2 a2

q2

p1 b1 a1 q1

1 3 132 2 1 1 3 2

1 2 1 1 3 1

2

2

1 1

3

23

1

2

1

3

1

2

1

2

2

2

x1

x2

x3

x4

u1

u2

u3

u4

u5

u6

u7

u8

v1

v2

v3

v4

v5

v6

v7

v8
y4

y1

y2

y3

1

1

1

2

3

1

3

1

3 1

3 1

1 2

1 1

2 1

2 1

1 2

2 1

2 1

2 1

1 2

2 1

1

2

1

2

2

1

2

2

2

1

1

2

2

2

2

1

2

2

2

2

Figure 2.5: A clause and a variable gadget with their special matchings, marked by
colors. The dotted edges are forbidden.

Two special matchings are defined on a variable gadget: MT , denoted by black edges
and MF , comprising the colored edges. While MT is blocked by x1u1 exclusively, MF is
blocked by x4u8 exclusively.

Claim 5. Let M be a matching on a variable gadget. If M is not MT or MF , then it is
blocked by at least two edges, one of them belonging to the variable gadget.

Proof. Since x1u1 and x4u8 are best-choice edges of both of their end vertices, they
block any matching not containing them. If both of them are in M , then there is at
least one unmatched vertex on the cycle between u8 and u1 and another unmatched
vertex between x4 and x1. The first path comprises vertices with a forbidden edge
as their last choice, therefore, it already contributes a blocking edge. The only way to
avoid additional blocking edges on the second path is to leave a special vertex unmatched,

30

2.3 Almost stable matchings with restricted edges

namely x2 or x3. Since they both are first choices of some other vertex along the cycle,
edges of the cycle block M . Therefore, x1u1 and x4u8 cannot be in M simultaneously.
The remaining case is when exactly one of them is in M . If every second edge in the

cycle belongs to M , then it is either MT or MF . Otherwise, for simple parity reasons,
there are two unmatched vertices on the 24-cycle between u1 and u8. They already
induce two blocking edges, since their last-choice edges are the forbidden edges hanging
on them. �

The clause gadget. To each clause in B, a graph on 14 vertices is defined. Three
of them; a1, a2 and a3, are connected to variable gadgets via interconnecting edges, all
ranked second. There are three special matchings on a clause gadget, blocked by only
a single edge. They can be seen on the left hand-side of Figure 2.5. The colored edges
denote M1,M2 and M3, from the top to the bottom.

Claim 6. Let M be a matching in a clause gadget. If M is not M1, M2 or M3, then it
is blocked by at least two edges, one of them belonging to the clause gadget.

Proof. First, suppose that there is a matching M ̸= Mi for all i ∈ {1, 2, 3} blocked by
a single edge. Since all three edges connecting a and b-vertices are first choices of both
of their end vertices, they block any matching not including them. Another restriction
arises from the fact that the forbidden edges r1p3 and r2q3 ensure that if p3 or q3 are
unmatched, they also contribute a blocking edge. Similarly, if p1 or q1 is unmatched,
they contribute a blocking edge.
Suppose biai ∈ M for all i ∈ {1, 2, 3}. Then, p2 is matched either to p1 or to p3,

leaving the other one unmatched. The same argument applies for the q-vertices on the
other side of the gadget. Therefore, at least two edges block M .
In the remaining case, exactly one of the biai edges is outside of M . Since we are

searching for a matching blocked by only a single edge, no further blocking edge can
occur. Therefore, p1, q1, p3 and q3 are all matched in M . From this point on, it is easy
to see that all matchings fulfilling these requirements are M1,M2 and M3. �
Claims 5 and 6 guarantee that if a matching M ’s restriction to any of the variable or

clause gadgets deviates from their special matchings, then |bp(M)| > n+m.

Claim 7. In the min bp sm forbidden instance I, bp(I) ≤ m+ n if and only if B is
a satisfiable formula.

Proof. First, we construct a matching M with |bp(M)| = m + n to a given truth
assignment. On the variable gadgets, the edges of MT are chosen if the corresponding
variable is true, and the edges of MF otherwise. There is at least one literal in each clause
that is true in the truth assignment. If this literal is the i-th in the clause, matching
Mi is chosen, where i ∈ {1, 2, 3}. If more than one literal is true, we choose one of them
arbitrarily. Due to Claims 5 and 6, each gadget contributes a single blocking edge. As a
last step, we show that no interconnection edge blocks M . Suppose that aixj blocks M .
Since it is the second choice of ai, it follows that biai /∈M . We now know that the i-th
literal of the clause was true in the truth assignment. Therefore, xi is matched to its
first choice.

31

2 Stable marriage and roommates problems with restricted edges

To prove the opposite direction, we again rely on Claims 5 and 6. On one hand, these
two statements prove that bp(I) ≥ m+ n. On the other hand, |bp(M)| = m+ n occurs
if and only if M ’s restriction to variable gadgets are MT or MF and its restriction to
clause gadgets are M1,M2 or M3. Then, assigning true to all variables with MT in their
gadgets and false to the rest results in a truth assignment. Since no interconnection edge
blocks M , at least one literal per clause is true. �

Theorem 2.9. min bp sm restricted is solvable in O(|V |) time if each preference
list consists of at most 2 elements.

Proof. In this constructive proof we describe an algorithm that produces an optimal
matching. First, the input is simplified. Then, the graph is segmented so that each
subgraph falls under a category with a specified choice rule for the edges of an optimal
matching. As in previous cases, it is sufficient to tackle min bp sm forbidden, because
instances of min bp sm forced can be transformed to this problem.
Due to the degree constraints, every component of the underlying graph is a path or a

cycle. If any of these components is free of forbidden edges, then we simply fix a stable
matching on it. This step is executed whenever such a component appears during the
course of the algorithm. For those components with forbidden edges, we split all vertices
having a first-choice forbidden edge and a second edge - unrestricted or forbidden - into
two vertices. This change does not affect |bp(M)|, because in this case, both edges block
the matching if and only if their other end vertex is matched to a worse partner or is
unmatched. After this splitting is executed, all components contain forbidden edges that
start paths or that are inside a path, being the last choices of both of their end vertices.
Each component consists of segments of unrestricted edges, separated by forbidden

edges. When talking about a segment, we always mean a series of adjacent unrestricted
edges. Since unrestricted cycles have already been eliminated by fixing a stable matching
on them, every segment is a path. Due to the Rural Hospitals Theorem, each path admits
a unique stable matching. Fixing a matching on a segment induces blocking edges
only among the unrestricted edges of the segment and the forbidden edges adjacent to
the segment. We claim that in an optimal solution, each segment and the (at most
two) forbidden edges surrounding it contribute at most two blocking edges. This is
simply due to the fact that any stable solution on the unrestricted edges is blocked only
by forbidden edges. Therefore, deviating from this solution might only pay off if the
matching restricted to this segment is blocked by a single edge and covers both of its
end vertices.
The unique stable matching M on a segment ⟨v1, v2, ..., vk⟩ falls into exactly one of

the following categories:

1. M covers both v1 and vk;

2. M covers either v1 or vk;

3. M covers neither v1 or vk.

32

2.3 Almost stable matchings with restricted edges

In each step of our algorithm, a segment is chosen and a matching is fixed on it. The
segment and some of the forbidden edges adjacent to it is then removed from the graph.
This is done in the following way in these three cases.
In case 1, an optimal solution arises from choosing M . If a forbidden edge e is

incident to either v1 or vk, it cannot block M . Nor can it block any superset of M in the
original instance, so e can be deleted. In case 2, again the optimal solution arises from
choosing M . Without loss of generality suppose that v1 is covered. As in case 1, if a
forbidden edge is incident to v1, it cannot block a superset of M in the original instance.
Now suppose that a forbidden edge e is incident to vk. Edge e may block M , and may
also block a superset of M in the original instance, so it is retained.
The third case is divided into two subcases, depending on whether there is a matching

M ′ that is blocked by only one edge and covers both v1 and vk. Finding such a matching
or proving that none exists can be done iteratively, assuming that a chosen edge is the
single blocking edge and then constructing M ′ so that no more edge blocks it. If such
an M ′ does not exist, then M is fixed, and the segment (but not the forbidden edges) is
removed. At the end, the matching restricted to this segment will be blocked by no other
edge than the two forbidden edges. Suppose that changing the optimal matching to M ′

increases the number of blocking edges adjacent to this segment. This is only possible if
at least one of the forbidden edges becomes blocking. Assume without loss of generality
that it is v1. Then, the optimal matching covered v1. Since no stable matching covers
v1, the optimal matching is blocked by at least one unrestricted edge of the segment.
This must still be less than the number of edges blocking M ′, therefore the forbidden
edge at vk blocks M ′, but it does not block the optimal matching. This is only possible
if the optimal matching covers vk, which contradicts our assumption.

On the remaining components, M leaves v1 and vk unmatched in every segment.
Therefore, all remaining forbidden edges block M . On the other hand, to each segment
there is a matching M ′, covering both v1 and vk and admitting only one unrestricted
blocking edge. A chain of such segments - always connected by a forbidden edge - can
be eliminated in the following way. On the first segment, M ′ is fixed, then M , and so
on, in an alternating manner. Consider an arbitrary segment of a chain. A matching
on this segment is blocked by at least one unrestricted edge or it leaves both v1 and vk
unmatched. Take one of the optimal solutions in which the latter case occurs the least
times. Then, neither of the forbidden edges incident to v1 and vk can block in the optimal
solution. Otherwise, fixing M ′ on the segment would lead to a solution that is at least as
good as the optimal one. This is only possible if this segment is between two segments
with at least one end vertex covered by the optimal matching. But their other end vertex
then also can be covered, because M ′ already minimizes the number of blocking edges
on a segment provided that at least one end vertex is covered. With this we showed that
if M occurs in a component, then it must be between two components with M ′ on them.
On the other hand, if M ′ occurs at least once, the two forbidden edges at the two end
vertices do not block any more. Therefore, each of the two segments surrounding this
segment is blocked by at most one edge in an optimal solution. Choosing M on these
segments leads to at most one blocking edge. Therefore, the strategy of fixing M and
M ′ in alternating manner eliminates as many blocking forbidden edges as possible.

33

2 Stable marriage and roommates problems with restricted edges

Even with the previous two theorems, we have not quite drawn the line between
tractable and hard cases in terms of vertex degrees. The complexity of min bp sm
restricted remains open for the case when preference lists are of length at most 2
on one side of the bipartite graph and they are of unbounded length on the other side.
However we believe that this problem is solvable in polynomial time.

Conjecture 1. min bp sm restricted is solvable in polynomial time if each woman’s
preference list consists of at most 2 elements.

2.3.3 Stable roommates problem

Having discussed several cases of sm, we turn our attention to non-bipartite instances.
Since sm is a restriction of sr, all established results on the NP-hardness and inap-
proximability of min bp sm restricted carry over to the non-bipartite sr case. As a
matter of fact, more is true, since min bp sr restricted is NP-hard and difficult to
approximate even if P = ∅ and Q = ∅ [1]. We summarize these observations as follows.

Remark 1. By Theorems 2.3 and 2.4, min bp sr forbidden and min bp sr forced
are NP-hard and not approximable within |V |1−ε, for any ε > 0, unless P = NP. More-
over Theorems 2.6 and 2.8 imply that min bp sr forbidden and min bp sr forced are
NP-hard even if all preference lists are of length at most 3 or, in the latter case, |Q| = 1.

Finally min bp sr restricted is NP-hard and not approximable within |V |
1
2
−ε, for any

ε > 0, unless P = NP, even if P = ∅ and Q = ∅ [1].

Remark 1 already shows that Theorem 2.5 does not carry over to the sr case, since min
bp sr forbidden is computationally hard even if P = ∅. As for the other polynomially
solvable cases, the proof of Theorem 2.7 carries over without applying any modifications.
Theorem 2.9 also carries over to the sr case, but it needs a slight modification. If
deg(v) ≤ 2 for every v ∈ V (G), then G consists of paths and cycles. Each odd preference
cycle without a forbidden edge contributes at least one blocking edge to any matching [97]
and any maximal matching on such a cycle is blocked by exactly one edge. On the
remainder of the graph, the algorithm described in the proof of Theorem 2.9 delivers an
optimal matching for min bp sr restricted.

Remark 2. min bp sr restricted is solvable in polynomial time if the minimal num-
ber of edges blocking an optimal solution is a constant or if each preference list consists
of at most 2 elements.

2.4 Stable matchings with the minimum number of violated
constraints on restricted edges

In this section, we study the second intuitive approximation concept. The sought match-
ing is stable and violates as few constraints on restricted edges as possible. We return to
our example that already appeared in Figure 2.1. As already mentioned earlier, the in-
stance admits a single stable matching, namely M = {u1w1, u2w2, u3w3, u4w4}. Since M

34

2.4 Stable matchings with the minimum number of violated constraints on restricted edges

contains both forbidden edges, the minimum number of violated constraints on restricted
edges is 2.
This section is structured as follows: in Section 2.4.1, complexity and approximability

results are presented for sm min restricted violations, sr min forbidden, sr
max forced and sr min restricted violations. In Section 2.4.2 we consider the
complexity of sr min restricted violations when the degree of the underlying graph
is bounded.

2.4.1 General complexity and approximability results

As mentioned in Section 2.1, a weighted stable matching instance models sm min re-
stricted violations.

Theorem 2.10. sm min restricted violations is solvable in polynomial time.

Proof. We convert sm min restricted violations into a weighted sm problem so that
a matching M is of weight |P ∩M | − |Q ∩M | = |Q| + |P ∩M | + |Q \M | using the
following weight function:

ω(e) =

⎧⎪⎨⎪⎩
−1 if e is forced,

0 if e is unrestricted,

1 if e is forbidden.

In the sr context, finding a minimum weight stable matching is NP-hard [38], so the
above technique for sm does not carry over to sr. Indeed even restricted variants of sr
min restricted violations are NP-hard, as the following result shows.

Theorem 2.11. sr min forbidden and sr max forced are NP-hard.

Here, we give two alternative proofs for the same theorem. On one hand, the com-
plexity results in Theorem 2.11 can be derived by reducing the minimum vertex cover
problem to our current problems. We use this reduction later to establish an inapprox-
imability bound. On the other hand, the other reduction to prove Theorem 2.11 is
somewhat shorter and uses a satisfiability problem.

Problem 8. min vx cover
Input: I = G; a graph G on n vertices and m edges.
Output: A vertex cover C ⊆ V (G) with |C| ≤ |C ′| for every vertex cover C ′.

min vx cover is NP-hard and cannot be approximated within a factor of 2−ε for any
positive ε, assuming that the Unique Games Conjecture is true [64]. The set of vertices
covered by any maximal matching in G gives a 2-approximation.

Proof. Given an instance (G,K) of the decision version of min vx cover, the following
instance (G′, O,K) of the decision version of sr min forbidden is constructed. The
entire graph G is copied, and then, a gadget is attached to each vertex vi ∈ V (G). It is

35

2 Stable marriage and roommates problems with restricted edges

pi: p̄i adjacent p vertices q̄i rest

p̄i: qi pi rest

qi: q̄i p̄i rest

q̄i: pi qi rest

p p̄

q q̄

1 2

≥ 3

1

1 2

2

1

Figure 2.6: Adding K2,2 to each vertex of the min vx cover instance.

a complete bipartite graph on four vertices: one of them is vi = pi, whilst the remaining
three are denoted by p̄i, qi and q̄i. Vertex pi preserves vi’s preference list and places p̄i
at the top, and q̄i at the bottom of this list. The new vertices’ orderings can be seen in
Figure 2.6. In order to derive an instance with complete lists, all remaining vertices can
be placed in arbitrary order to the bottom of the lists. Later we will see that these edges
never appear in stable matchings, neither do they block them. The set of forbidden edges
is formed by all pip̄i edges corresponding to the dotted colored edges in our illustrations
in Figure 2.6.

Claim 8. If M is a stable matching in G′, then for each 1 ≤ i ≤ n either pip̄i ∈M and
qiq̄i ∈M , or piq̄i ∈M and p̄iqi ∈M .

Proof. This claim follows from the structure of the introduced gadget. First, we observe
that in M , each p̄i is either matched to pi or to qi. Otherwise, pip̄i blocks M , since p̄i
is pi’s first choice. Similarly, qiq̄i ∈ M or qip̄i ∈ M . Otherwise p̄iqi would block M .
Finally, piq̄i ∈M or qiq̄i ∈M , otherwise qiq̄i blocks M . These three requirements imply
that for each 1 ≤ i ≤ n either pip̄i ∈M and qiq̄i ∈M , or piq̄i ∈M and p̄iqi ∈M . �

Claim 9. If there is a vertex cover C ⊆ V (G) with |C| ≤ K, then there is a stable

36

2.4 Stable matchings with the minimum number of violated constraints on restricted edges

matching M in G for which |M ∩ P | ≤ K.

Proof. The matching M is constructed based on the following case distinction:

{pip̄i, qiq̄i} ⊆M if vi ∈ C

{piq̄i, p̄iqi} ⊆M if vi /∈ C

Clearly |M ∩ P | ≤ K. Moreover, no edge in the gadgets can block M , because the
preferences inside the gadget are cyclic. Due to the vertex cover property, edges between
two p-vertices have at least one end vertex in C, thus, at least one of their end vertices
is matched to its first-choice partner p̄ in G′. For each vertex in G′, the edges in the sets
“rest” are worse than the edge in M . �

Claim 10. If there is a stable matching M in G for which |M ∩ P | ≤ K, then there is
a vertex cover C ⊆ V (G) with |C| ≤ K.

Proof. Claim 8 allows us to investigate only two cases per gadget. Exactly the same
function is used to derive C from M , as above, in the opposite direction:

vi ∈ C if {pip̄i, qiq̄i} ⊆M

vi /∈ C if {piq̄i, p̄iqi} ⊆M

Trivially, |C| ≤ K. Suppose C is not a vertex cover. Then, there is an edge vivj = pipj
for which {piq̄i, pj q̄j} ⊂ {piq̄i, p̄iqi, pj q̄j , p̄jqj} ⊆M . Then pipj blocks M . �

To prove the complexity result for sr max forced, let Q = {piq̄i : 1 ≤ i ≤ n}.

The second NP-hard problem we reduce to sr min forbidden is weighted-2-satisfiability.
It can be regarded as a generalization of the minimum vertex cover problem in undirected
graphs.

Problem 9. w2sat
Input: I = B; a Boolean formula B with n variables in m clauses, each of them consisting
of exactly 2 non-negated literals.
Output: A valid truth assignment that maximizes the number of variables set to true.

Proof. To each variable xi in B we introduce four vertices in our sr instance: pi, p̄i, qi
and q̄i. The complete preference lists are formed based on the clauses that appear in B.
Their structure can be sketched in the following way:

pi: p̄i intermediate p vertices q̄i rest

p̄i: qi pi rest

qi: q̄i p̄i rest

q̄i: pi qi rest

The block of intermediate vertices on pi’s preference list consists of all pj vertices in
arbitrary order for which (xi∨xj) is a clause in B. All four preference lists are completed
by the remainder of V (G). To each variable xi, a single forbidden edge pip̄i is introduced.

37

2 Stable marriage and roommates problems with restricted edges

Claim 11. If f is a satisfying truth assignment of B with at most K true variables,
then there is a stable matching M in G for which |M ∩ P | ≤ K.

Proof. Let us define M in the following way. For each 1 ≤ i ≤ n

{pip̄i, qiq̄i} ⊆M if f(xi) = true

{piq̄i, p̄iqi} ⊆M if f(xi) = false

Trivially, |M∩P | ≤ K. It also follows from the construction that every vertex in V (G)
is matched to a vertex better than any other placed in the last block on its preference
list, denoted by rest above. Therefore, this block can also be omitted. Suppose that M
is unstable, i.e., there is a blocking edge. This blocking edge must belong to either of
the following groups:

• pip̄i, piq̄i, p̄iqi or qiq̄i: They are last-choice edges of either of their end vertices,
therefore, they cannot block M .

• pipj : The values of xi and xj are determined by the fact that pipj is better than
pi’s and pj ’s edges in M . Since piq̄i ∈ M and pj q̄j ∈ M , f(xi) = f(xj) = false.
Since pj appeared on pi’s list as a intermediate vertex, (xi ∨ xj) appeared in B.
Thus, f is not a satisfying truth assignment. �

Claim 12. If there is a stable matching M in G for which |M ∩ P | ≤ K, then there is
a satisfying truth assignment f that has at most K true variables.

Proof. First, we observe that in M , each p̄i is either matched to pi or to qi. Otherwise,
pip̄i blocks M , since p̄i is pi’s first choice. Similarly, qiq̄i ∈ M or qip̄i ∈ M . Otherwise
p̄iqi would block M . Finally, piq̄i ∈ M or qiq̄i ∈ M , otherwise qiq̄i blocks M . These
three requirements imply that for each 1 ≤ i ≤ n either pip̄i ∈ M and qiq̄i ∈ M , or
piq̄i ∈ M and p̄iqi ∈ M . At this point, we are ready to construct the truth assignment,
since either {pip̄i, qiq̄i} ⊆M or {piq̄i, p̄iqi} ⊆M .

f(xi) = true if {pip̄i, qiq̄i} ⊆M

f(xi) = false if {piq̄i, p̄iqi} ⊆M

Function f has at most K true variables. The last step in our proof is to show that f
is a valid truth assignment. Suppose that an invalid (xi∨xj) is in B. Since both literals
are false, {piq̄i, pj q̄j} ⊂ {piq̄i, p̄iqi, pj q̄j , p̄jqj} ⊆M . At the same time, pi is listed on pj ’s
preference list as a intermediate vertex and vice versa. Thus, pipj blocks M . �

Our proof for the NP-hardness of the problem sr min forbidden can be converted
easily to sr max forced. Instead of labeling all pip̄i edges as forbidden, here we take
all piq̄i edges as forced edges. The set of stable matchings in G is not impaired by this
modification. The bijection between pairs of edges in M and truth values of variables
in B implies that |M ∩Q| equals the number of false variables.

38

2.4 Stable matchings with the minimum number of violated constraints on restricted edges

In our first proof above, we reduced min vx cover to sr min forbidden and sr max
forced. Since min vx cover is NP-hard and cannot be approximated within a factor
of 2− ε for any positive ε, assuming that the Unique Games Conjecture is true [64], the
reduction also answers basic questions about the approximability of our two problems.
Since any vertex cover on K vertices can be interpreted as a stable matching containing
K forbidden edges in sr min forbidden and vice versa, the (2 − ε)-inapproximability
result carries over. The same holds for the number of violated forced edge constraints
in sr max forced. On the positive side, we can close the gap with the best possible
approximation ratio if Q = ∅ or |Q| is sufficiently large. To derive this result, we use
the 2-approximability of weighted sr for non-negative weight functions [38, 100]. Due
to the non-negativity constraint, the case of 0 < |Q| < |M | remains open.

Theorem 2.12. If |Q| ≥ |M | for a stable matching M , then sr min restricted
violations is 2-approximable in polynomial time.

Proof. We know that the NP-hard minimum weight sr problem is 2-approximable in
polynomial time [38, 100] for all non-negative weight functions. The assumption Q = ∅
or |Q| ≥ |M | is needed to guarantee non-negativity. A simple computation shows that
the weight of the a stable matching M is |Q \M | + |P ∩M |, if the following weight
function is defined on the edges:

ω(e) =

⎧⎪⎪⎨⎪⎪⎩
|Q|
|M | − 1 if e is forced,
|Q|
|M | if e is unrestricted,
|Q|
|M | + 1 if e is forbidden.

When studying sr max forced, we measured optimality by keeping track of the
number of violated constraints. One might find it more intuitive instead to maximize
|Q∩M |, the number of forced edges in the stable matching. Our NP-hardness proof for
sr max forced remains intact, but the approximability results need to be revisited.
In fact, this modification of the measure changes the approximability of the problem as
well:

Theorem 2.13. For sr max forced, the maximum of |Q∩M | cannot be approximated

within |V |
1
2
−ε for any ε > 0, unless P = NP.

Proof. We adapt the first proof of Theorem 2.11 so that the reduction is from max ind
set, the problem of finding a maximum independent set in a given graph G = (V,E).
max ind set is not approximable within N1−ε for any ε > 0, unless P = NP [106], where
N = |V |. In the modified reduction the forced edges comprise Q = {piq̄i : 1 ≤ i ≤ n}.
An independent set of vertices S in G corresponds to the matching

M = {piq̄i, p̄iqi : vi ∈ S} ∪ {pip̄i, qiq̄i : vi /∈ S}

in the constructed instance I of sr max forced. Suppose that A is a |V |
1
2
−ε-approxima-

tion algorithm that approximates |Q ∩Mopt| in I, for some ε > 0, where Mopt is an

39

2 Stable marriage and roommates problems with restricted edges

optimal solution in I. Note that |Sopt| = |Mopt|, where Sopt is a maximum independent

set in G. Moreover |V |
1
2
−ε = (4N)

1
2
−ε ≤ N1−ε since |V | = 4N and without loss of gener-

ality we can assume that N ≥ 4. We thus reach a contradiction to the inapproximability
of max ind set.

2.4.2 Bounded parameters

We now turn to the complexity of sr min restricted violations and its variants
when the degree of the underlying graph is bounded or some parameter of the instance
can be considered as a constant. With Theorems 2.14 and 2.15 we draw the line between
NP-hard and polynomially solvable cases in terms of degree constraints.

Theorem 2.14. sr min forbidden and sr max forced are NP-hard even if every
preference list is of length at most 3.

Proof. Let I = (G,K) be an instance of the decision version of min vx cover in a
cubic graph, where G = (V,E), E = {e1, . . . , em} and V = {v1, . . . , vn}. For each i,
1 ≤ i ≤ n, suppose that vi is incident to edges ej1 , ej2 and ej3 in G, where without loss
of generality j1 < j2 < j3. Define ei,s = ejs , where s ∈ {1, 2, 3}. Similarly for each j,
1 ≤ j ≤ m, suppose that ej = vi1vi2 , where without loss of generality i1 < i2. Define
vj,r = vir , r ∈ {1, 2}. Note that these are not vertices or edges of the sr min forbidden
instance we are constructing, it is only notation necessary to introduce in order to define
the graph.
We construct an instance I ′ of sr min forbidden as follows. The set V ′∪W ∪E′∪F

constitutes the set of vertices in I ′. The preference lists of these vertices (also indicating
the edges of the graph) are as shown in Figure 2.7. In the preference list of a vertex vri ,
the symbol e(vri) denotes vertex esj ∈ E′ such that ej = ei,r and vi = vj,s. Since i and r
are given, ej can be computed. Now we know i and j in the second equation, therefore
we can compute s. Similarly in the preference list of vertex esj , the symbol v(esj) denotes
vertex vri ∈ V ′ such that ej = ei,r and vi = vj,s.

V ′ = {vri : 1 ≤ i ≤ n ∧ r ∈ {1, 2, 3}}
W = {wr

i : 1 ≤ i ≤ n ∧ r ∈ {1, 2, 3}}
E′ = {esj : 1 ≤ j ≤ m ∧ s ∈ {1, 2}}
F = {f s

j : 1 ≤ j ≤ m ∧ s ∈ {1, 2}}

Let P = {v1iw1
i : 1 ≤ i ≤ n} be the set of forbidden edges in I ′. The edges connecting

V ′ and E′ capture the incidence relations of the original graph G, while vertices in W
and F can be seen as garbage collectors.
Finally we define some further notation in I. For each i, 1 ≤ i ≤ n, let V c

i = {vriwr
i :

r ∈ {1, 2, 3}} and let V u
i = {vriw

r+1
i : r ∈ {1, 2, 3}}, where addition is taken modulo 3.

Note that each V c
i contains exactly one forbidden edge, while V u

i has no forbidden edge.
Similarly for each j, 1 ≤ j ≤ m, let E1

j = {e1je2j , f1
j f

2
j } and let E2

j = {e1jf2
j , e

2
jf

1
j }.

Claim 13. I ′ admits a stable matching in which every vertex is matched.

40

2.4 Stable matchings with the minimum number of violated constraints on restricted edges

v1i : w1
i e(v1i) w2

i (1 ≤ i ≤ n)

v2i : w2
i e(v2i) w3

i (1 ≤ i ≤ n)

v3i : w3
i e(v3i) w1

i (1 ≤ i ≤ n)

e1j : e2j v(e1j) f2
j (1 ≤ j ≤ m)

e2j : f1
j v(e2j) e1j (1 ≤ j ≤ m)

w1
i : v3i v1i (1 ≤ i ≤ n)

w2
i : v1i v2i (1 ≤ i ≤ n)

w3
i : v2i v3i (1 ≤ i ≤ n)

f1
j : f2

j e2j (1 ≤ j ≤ m)

f2
j : e1j f1

j (1 ≤ j ≤ m)

Figure 2.7: Preference lists in the constructed instance of sr min forbidden.

Proof. Let M =
⋃n

i=1 V
c
i ∪

⋃m
j=1E

1
j . Starting with the argument that each vri , each e1j

and each f1
j receives its best-choice edge in M , it is straightforward to verify that M is

stable: the remaining vertices list only edges running to these vertices better than their
matching edges. The Rural Hospitals Theorem implies then that every stable matching
in I ′ matches every vertex in I ′. �
In Claims 14 and 15 we show that G has a vertex cover C where |C| ≤ K if and only

if I ′ has a stable matching M where |M ∩ P | ≤ K.

Claim 14. If G has a vertex cover C such that |C| ≤ K in I, then there is a stable
matching M in I ′ with |M ∩ P | ≤ K.

Proof. We construct a matching M in I as follows. For each i, 1 ≤ i ≤ n, if vi ∈ C,
add V c

i to M , otherwise add V u
i to M . For each j, 1 ≤ j ≤ m, if vj,1 ∈ C, add E2

j to C,

otherwise add E1
j to C. Then |M ∩ P | = |C| ≤ K.

Now we verify that M is stable in I. The edge sets V c
i , V

u
i , E1

j and E2
j are defined

in such a way that edges running between V ′ and W or between E′ and F are always
dominated by them at one end. Edges connecting V ′ and E′ cannot block for the
following reasons. These edges dominate M at vri only if vi /∈ C (and therefore, V u

i was
added to M). Since C was a vertex cover, every ej incident to vi in G has its other end
vertex in C. Assume now that vi = vj,1. The proof for the case vi = vj,2 is analogous.
We know that every ej with vj,1 /∈ C is covered by an E1

j subgraph in M . These edges

dominate all non-matching edges at e1j vertices, thus e2j is the only potential end vertex

of a blocking edge in E′. But e2j is only adjacent to vertices derived from vj,2, and those
are matched to their best choice partners in M , because vj,2 ∈ C. �

Claim 15. If there is a stable matching M with |M ∩P | ≤ K in I ′, then G has a vertex
cover C in I such that |C| ≤ K.

Proof. We construct a set of vertices C in G as follows. Claim 13 states that M matches
every vertex in I, then for each i, 1 ≤ i ≤ n, either V c

i ⊆M or V u
i ⊆M . In the former

case add vi to C. As |M ∩P | ≤ K, it follows that |C| ≤ K. Also, for each j, 1 ≤ j ≤ m,
as M matches every vertex in I, either E1

j ⊆M or E2
j ⊆M .

Assume that C is not a vertex cover in G, i.e., there is an edge ej = vj,1vj,2 such that
for both vj,1 and vj,2, and for the corresponding vi1 = vj,1 and vi2 = vj,2, the edge sets

41

2 Stable marriage and roommates problems with restricted edges

V u
i1
∈ M and V u

i2
∈ M . In this case, M is dominated by some edge connecting V ′ and

E′ at vri vertices. In I ′, the vertices corresponding to vi1 and vi2 are adjacent to e1j and

e2j , respectively. All these edges dominate M at their end vertex in V ′. Since it is either

E1
j or E1

j that covers e1j and e2j , one of these vertices are matched to its worst partner,
thus we found an edge that blocks M . �

For sr max forced, an analogous proof can be derived if we define the set of forced
edges as Q = {v1iw2

i : 1 ≤ i ≤ n}.

Theorem 2.15. sr min restricted violations is solvable in O(|V |) time if every
preference list is of length at most 2.

Proof. Since the set of matched vertices is the same in all stable matchings, finding
a stable matching in O(|V |) time in these very strongly restricted instances marks all
vertices that need to be matched. In each component, there are at most two possible
matchings satisfying these constraints. We choose the one that is stable and violates
fewer constraints.

Short preference lists are not the only case when sr min restricted violations
becomes tractable, as our last theorem shows.

Theorem 2.16. sr min restricted violations is solvable in polynomial time if the
number of restricted edges or the minimal number of violated constraints is constant.

Proof. Suppose that the number of restricted edges is L. No stable matching can violate
more than L constraints on restricted edges, therefore, it is sufficient to investigate the
case when the target number of violated constraints in the sought solution satisfies K ≤
L. Choose a set of restricted edges of cardinality K, where K ≤ L. For all edges
in this set, reverse the restriction: let forced edges become forbidden and forbidden
edges become forced. With the modified set of restricted edges, stable matchings violate
exactly K constraints on restricted edges. Checking all edge sets of cardinality at most
K takes O(|E|K) = O(|E|L) iterations.

2.5 Conclusion and open problems

In this chapter, we investigated the stable marriage and the stable roommates problems
on graphs with forced and forbidden edges. Since a solution satisfying all constraints need
not exist, two relaxed problems were defined. In min bp sm restricted, constraints
on restricted edges are strict, while a matching with the minimum number of blocking
edges is searched for. On the other hand, in sr min restricted violations, we seek
stable solutions that violate as few constraints on restricted edges as possible. For both
problems, we determined the complexity and studied several special cases.
One of the most striking open questions is the approximability of sr min restricted

violations if 0 < |Q| < |M |. Our other open question is formulated as Conjecture 1:
Is there a polynomial algorithm for min bp sm restricted if each woman’s preference
list consists of at most 2 elements? A more general direction of further research involves

42

2.5 Conclusion and open problems

the sm min restricted violations problem. We have shown that it can be solved in
polynomial time, due to algorithms for minimum weight stable marriage. The following
question arises naturally: is there a faster method for sm min restricted violations
that avoids reliance on Feder’s algorithm or linear programming methods?

43

3 Other complexity results for stable
matchings

In this chapter we investigate the complexity of two additional problems in the
one-to-one stable matching setting. The first problem, max sm free is defined
on bipartite stable matching instances with free edges. Free edges can be seen
as a third sort of restricted edges, besides forced and forbidden edges: they can
appear in stable matchings, but they are not able to block matchings by definition.
While a stable matching always exists in the presence of free edges, we show that
a maximum cardinality stable matching is NP-hard to find. This result has been
proved independently by Askalidis et al. [5].

The second problem tackled is a degree constrained version of the weakly stable
roommates problem with ties (or shorter, weak srt), which is known to be NP-
complete [85]. Here we prove that weak 3-srti, the weakly stable roommates
problem with preference lists of length at most 3 is already NP-complete, even if
the preference lists are either strictly ordered or comprised of a single tie of length 2.
Later we also study min bp 3-srti, the almost stable approximation version of the
previous problem and prove an inapproximability bound. At the end of this chapter,
a polynomial time algorithm for the case of degrees at most 2 is presented.

The results presented in Section 3.2 are joint work with David F. Manlove.

This short chapter is divided into two sections, each of them focused on a computa-
tionally hard variant of sm or sr. Since the two settings only share their one-to-one
matching nature, we present them separately, motivating and placing them into the
literature on their own.

3.1 Maximum stable marriage with free edges

Motivation. An edge uw ∈ E(G) of an sm instance can play three essentially different
roles with respect to a (not necessarily stable) matching M . Based on these roles, E(G)
can be partitioned into the following three disjoint subsets.

Set 1: uw ∈M

Set 2: uw /∈M and uw is dominated by some edge in M

Set 3: uw /∈M and uw blocks M (uw ∈ bp(M))

An equivalent definition of stability is that M is stable if and only if Set 3 is empty.
Introducing restrictions on these sets leads to concepts that are interesting not only from
the theoretical point of view, but also from the perspective of applications.
Forced and forbidden edges are derived from the first two properties above, i.e., forced

edges must fall into Set 1, while forbidden edges must fall into Set 2. A third type of
special edges can be introduced with the help of the third property. Here we declare

45

3 Other complexity results for stable matchings

a matching stable if it is only blocked by edges in a predefined edge set F , called free
edges. In other terms, Set 3 must be a subset of F .

Literature review. Clearly, the presence of free edges allows a larger set of solutions.
Cechlárová and Fleiner [21] show that the polynomially solvable sr becomes NP-complete
when free edges appear in the graph. The application motivating this research is the
living donor kidney exchange program. Free edges can model special market contacts,
where pair forming is controlled by central authorities. Such deals can be made in
order to reach stability, but they also can be left unused. In the latter case, the pair of
agents does not block the matching, since they might not have full information on the
preferences in the system. Moreover, all agents know that their partnership is strictly
controlled by some authority and they are not able to to cooperate on their own.
Recently, Askalidis et al. published several results on free edges [5]. They call the

problem the socially stable matching problem, interpreting free edges as lack of social
ties between agents of a many-to-one sm instance. After proving that the problem of
finding a maximum socially stable matching in sm is NP-hard even if the preference lists
are of length at most 3, they also give a 2/3-approximation algorithm and show that
this approximation is the best possible, assuming the Unique Games Conjecture.

Our contribution. In this section we provide an alternative proof for the NP-complete-
ness of the maximum cardinality stable marriage problem with free edges. Askalidis et
al. [5] reduce the NP-complete perfect weakly stable marriage problem [74] to our prob-
lem, while we use the very closely related maximum cardinality weakly stable marriage
problem. Our proof is more technical than theirs.

Problem 10. max sm free
Input: I = (G,O, F); an sm instance and a set of free edges F .
Output: A matching M such that bp(M) ⊆ F and |M | ≥ |M ′| for every matching M ′ in
G with bp(M ′) ⊆ F .

The NP-hard problem we reduce to max sm free is the maximum cardinality weakly
stable marriage problem with incomplete lists.

Problem 11. max wsmi
Input: I = (G,O); an sm instance in an incomplete bipartite graph with ties.
Output: A weakly stable matching M such that |M | ≥ |M ′| for every weakly stable
matching M ′.

Theorem 3.1 (Manlove at al. [74]). max wsmi is NP-hard even if ties only occur on
the men’s side, only at the bottom of the list and they are of length 2.

We are now ready to present our hardness proof.

Theorem 3.2. max sm free is NP-hard.

46

3.1 Maximum stable marriage with free edges

u

w1 w2

u

w1 w2

a

b

c

d

3

1

3

2

4

1

5

1

3

2

2

1

1

2

2

1.5

1

2

1 2

2
3 1

1 2

2
3 1

Figure 3.1: Constructing a max sm free instance from an example restricted max wsmi
instance. The free edges are colored purple.

Proof. For the sake of simplicity, we work with the decision versions of both problems.
Each max wsmi instance I can be converted into an instance I ′ of max sm free. The
construction is very simple, the two instances differ only at edges that form the ties in I.
As Theorem 3.1 states it, we can assume that all ties are of length 2 and they occur at
the bottom of men’s list. Let us denote the two edges in a tie by uw1 and uw2. In I ′,
uw1 remains unchanged, its rank on u’s preference list is deg(u). On the other hand, we
substitute uw2 with two parallel paths: ⟨u, a, b, w2⟩ and ⟨u, c, d, w2⟩. Edges uc, dw2 and
ab are free. The preferences are the following.

ranku(ua) = deg(u) + 1

ranku(uw1) = deg(u)

ranku(uc) = deg(u)− 1

ranka(ua) = 1

ranka(ab) = 2

rankb(ba) = 1

rankb(bw2) = 2

rankc(dc) = 1

rankc(uc) = 2

rankd(dw2) = 1

rankd(dc) = 2

rankw2(bw2) = rankw2(uw2) in I − 0.5

rankw2(dw2) = rankw2(uw2) in I

Such an instance conversion is illustrated in Figure 3.1.

Claim 16. If there is a weakly stable matching M with |M | ≥ K for every K ∈ N≥0 in
I, then there is a stable matching M ′ with free edges in I ′ such that |M ′| ≥ K + 2.

Proof. The construction of M ′ is as follows. Apart from uw2 for every u ∈ U , we copy
all edges of M to I ′. For the rest of the graph, three scenarios are possible, as also
shown in Figure 3.2.

Scenario 1: If uw2 ∈M , then uc, dw2, ab ∈M ′.

47

3 Other complexity results for stable matchings

Scenario 1 Scenario 2 Scenario 3

Figure 3.2: The three possible scenarios for M . The purple edges in the transformed
graph belong to M ′.

Scenario 2: If u is unmatched (and w1 and w2 are both matched to better partners
than u), then ua, cd ∈M ′.

Scenario 3: If u is matched to a vertex different from w2, then cd, ab ∈M ′.

In all three cases, |M ′| = |M | + 2. Moreover, edges in I preserve their dominance
relationship in I ′: each edge dominated by the M -edge in I remains dominated by its
representative inM ′, and each edge dominating theM -edge also dominates its copy in I ′.
This is due to the construction of preference lists of u and w2: their edges substituting
uw ∈ E(G) are placed where uw ∈ E(G) stood. Also note that the transformations do
not change the matched or unmatched status of u,w1 and w2, except for Scenario 2,
where the originally unmatched u gets matched in I ′. But in this case, u’s edge is its
worst ranked edge, which is equivalent to being unmatched. We shall now show that M ′

is a stable matching in I ′.
Suppose M ′ is blocked by an edge. Since M was weakly stable in I, the blocking

edge must be incident to at least one of the vertices whose position has been changed:
u,w1, w2, a, b, c and d. Three of their edges, ab, uc and dw2, are free, therefore they
cannot block. If the blocking edge is incident to u, it has to be ua or uw1, because
only these unrestricted edges on u’s preference list were affected by the transformation.
Similarly, if it is incident to w2, it must be bw2. The last edge that could block M ′ is cd.
We consider for each of these four edges individually Scenarios 1,2 and 3 and lead the
assumption that the edge is blocking to a contradiction. The two reasons that contradict
an edge to be blocking are

(i) it is in M ′ or

(ii) one of its end vertices is matched in M ′ to a better vertex.

To avoid an elaborate case distinction we list for all 12 cases the applicable reason for
the contradiction in Table 3.1. For contraction reason (ii) we include in the table the
name of the end vertex matched to a better vertex. With this we showed that no edge
blocks M ′. �

Claim 17. If there is a stable matching M ′ with free edges in I ′ such that |M ′| ≥ K+2,
then there is a weakly stable matching M with |M | ≥ K in I for every K ∈ N≥0.

48

3.2 Stable roommates with ties and short preference lists

Scenario 1 Scenario 2 Scenario 3

ua (ii) u (i) (ii) u

cd (ii) d (i) (i)

bw2 (ii) b (ii) w2 (ii) b

uw1 (ii) u (ii) w1 (i) or (ii) u

Table 3.1: The four possibly blocking edges in the three scenarios and the reason why
they do not block M ′.

Proof. If M ′ is given, it is straightforward to construct a stable matching M in I. Let
M and M ′ be identical on all edges apart from uw2 for every u ∈ U . Note that I ′ was
constructed in such a way that the subgraph spanned by the vertices u, a, b, c, d and w2

contains either two or three edges of any stable matching M . It is easy to see that apart
from the three Scenarios above, exactly one more matching, {ua, cd, bw2} can also be
part of a stable matching M ′. Considering all cases, if u is matched to a or c in M ′ and
w2 is matched to b or d, then let uw2 ∈ M , otherwise let uw2 /∈ M . These operations
decrease the cardinality of the matching by exactly 2.
All that remains is to show that no edge blocks M . The preference lists were only

changed inside of the ties: any dominance between edges in the tie and out of it is
still valid. Thus, the only edges that can block M are uw1 and uw2. They are at the
bottom of the preference list of u and hence they only block M if u is unmatched and
w1 or w2 has a worse partner than u or they are unmatched. Suppose uw1 blocks M .
Since the same edge did not block M ′ in I ′, uc ∈ M ′. This implies that dw2 ∈ M ′′

as well, otherwise cd blocks M ′. Then uw2 ∈ M by construction, which contradicts
our assumption that uw2 /∈ M . Let us consider the other case, when uw2 blocks M for
some uw2 ∈ E(G). As mentioned above, u is then unmatched in M . Because of edge ua,
u cannot be unmatched in M ′ and since u is then unmatched in M , either ua ∈ M ′ or
uc ∈ M ′. Thus, if uw2 /∈ M , then bw2 /∈ M ′ and dw2 /∈ M ′, otherwise we would have
included uw2 in M . Then cd blocks M ′. �

We remark here that there is an alternative, analogously structured proof of Theo-
rem 3.2 that avoids most of the technical details. If two parallel edges are introduced
instead of the paths ⟨u, a, b, w2⟩ and ⟨u, c, d, w2⟩, then most of the case distinctions can
be spared. On the other hand, the hardness of max sm free is proved then for instances
with parallel edges, which is against the convention.

3.2 Stable roommates with ties and short preference lists

Motivation. As mentioned in Section 1.1.2, ties in the preference lists allow us to
define weak, strong and super stability, out of which weak stability is the most actively
researched concept. An edge uv /∈M blocks M in the weak sense if v is strictly preferred
to M(u) by u and conversely, u is strictly preferred to M(v) by v. To the best of our

49

3 Other complexity results for stable matchings

knowledge, there has not been any work published on weakly stable matchings in sr
with bounded length preference lists. Here we make an attempt to fill this gap in the
literature.

Literature review. Presenting a highly technical reduction from 3-sat, Ronn [85]
proves the NP-completeness of weak srt, the weakly stable roommates problem with
ties. Gusfield and Irving [49] give a different reduction from r-3-sat, a variant of 3-sat,
where no literal occurs more than twice. Finally, Irving and Manlove [55] provide a short
proof using the NP-complete perfect weakly stable bipartite matching problem [74]. This
latter problem is shown to be hard via a reduction from 1-in-3-sat –where exactly one
literal must be true in each clause– by Iwama et al. [57]. Even though all these proofs
including our proof use a reduction from a variant of 3-sat, the gadgets employed to
obtain them are essentially different.

Our contribution. First we define the stable roommates problem with ties and bounded-
length preference lists and its almost stable variant formally. Then, we present an NP-
completeness and an inapproximability proof for the case with degree bound 3, and
finally finish with a polynomial time algorithm for the case of degrees at most 2.

Problem 12. d-srti
Input: I = (G,O); an sr instance with ties and preference lists of length at most d.
Question: Is there a weakly stable matching M in I?

Problem 13. min bp d-srti
Input: I = (G,O); an sr instance with ties and preference lists of length at most d.
Output: A matching M in I so that |bp(M)| ≤ |bp(M ′)| for every matching M ′ in I.

Both for the hardness proof of 3-srti and for the inapproximability result on min
bp 3-srti, (2,2)-e3-sat (Problem 7) is used. We begin with the hardness of 3-srti
and then build on the constructed graph in the proof of Theorem 3.5, which is the
inapproximability result on min bp 3-srti.

Theorem 3.3. 3-srti is NP-complete.

Proof. In this proof, we use ideas of Biró et al. [16], in particular the gadgets designed
to prove the NP-completeness of finding an almost stable roommates assignment in
bounded-degree graphs, called min bp 3-sri.
First, we sketch the 3-srti instance I = (G,O) created to a given Boolean formula B.

Each graph G consists of a variable gadget, a clause gadget and a set of interconnecting
edges between them. These subgraphs and the preference orderings on edges are shown
in Figure 3.3.

When constructing graph G for a given Boolean formula B, we keep track of the order
of the three literals in each clause and the order of the two unnegated and two negated
appearances of each variable. Each appearance is represented by an interconnecting
edge.

50

3.2 Stable roommates with ties and short preference lists

y3

y4

y2 y1 p3 b3 a3 q3 x1 x2 x3

x4

p2

b2 a2
q2

p1 b1 a1 q1

1

2

2 2

3

1

1

2

22

3

1

1 2 1 3 12132 1 1 1 3 2

1 1 1 1 3 1

2

1

1 1

3

23

1

2

1

3

1

2

1

v1 v2

v3

v4

1 3

1

3

13

1

3

2
2

2

2

2

2

2

Figure 3.3: Clause and variable gadgets for 3-srti. The dotted edges are the intercon-
necting edges. We know it from edge a1v4 that the first literal of the corre-
sponding clause (a1) is the second appearance of the corresponding variable
in negated form (v4).

A variable gadget comprises the 4-cycle ⟨v1, v2, v3, v4⟩ with cyclic preferences. Each
of these four vertices is incident to an interconnecting edge. These edges end at specific
vertices of clause gadgets. Consider the variable x. Due to the properties of (2,2)-e3-
sat, x occurs twice in unnegated form, say, in clauses C1 and C2. Its first appearance, as
the i-th literal of C1, is represented by the interconnecting edge between v1 and ai of the
clause gadget corresponding to C1. Similarly, v3 is connected to a vertex ai, i ∈ {1, 2, 3}
in the clause gadget of C2. The same variable, x, also appears twice in negated form.
The variable gadgets representing those clauses are connected to v2 and v4, respectively.
The other end vertices ai, i ∈ {1, 2, 3} of these two interconnecting edges mark where
these two literals appear in their clauses.

Claim 18. For any truth assignment satisfying B, a weakly stable matching M can be
constructed in G.

Proof. In Figure 3.4, we define two matchings, MT and MF , on the variable gadgets and
three matchings, M1,M2 and M3, on the clause gadgets.

If a variable is assigned to be true, MT is added to M , otherwise MF is added.
Similarly, if the first literal of a clause is true, M1 is added to M , otherwise, if the second
literal is true, M2 is added, and finally, if only the third literal is true, M3 is added. The
intuition behind this choice is that if a literal is true, then the vertex representing it in
the variable gadget is matched to its best choice. On the other hand, if some literals
in a clause are true, then the vertex representing the appearance of one of them in that
clause is matched to its last-choice vertex.

51

3 Other complexity results for stable matchings

MT = {v1v2, v3v4}
MF = {v1v4, v2v3}

M1 = {a1q1, b1p1, a2b2, a3b3, q2q3, p2p3, y1y2, y3y4, x1x2, x3x4}
M2 = {a2q1, b2p1, a1b1, a3b3, q2q3, p2p3, y1y2, y3y4, x1x2, x3x4}
M3 = {a3q3, b3p3, a1b1, a2b2, q1q2, p1p2, y1y2, y3y4, x1x2, x3x4}

Figure 3.4: The matchings corresponding to true and false variables and to the first,
second or third literal being true in a fixed clause.

We claim that no edge blocks M . Checking the edges in the clause and variable
gadgets is easy. The five special matchings were designed in such a way that no edge
in the gadgets blocks them. More explanation is needed regarding the interconnecting
edges. Suppose one of them, aivj , blocks M . Since M is a perfect matching, ai needs to
be matched to a q-vertex. Similarly, vj has to be matched to its worst partner. While
the first edge indicates that the literal represented by vj is true in the clause, the latter
edge means that the literal is false. �

Claim 19. For any weakly stable matching M in G, there is a truth assignment satis-
fying B.

Proof. In the next three paragraphs we show that the restriction of M to any variable or
clause gadget is one of the above listed special matchings, and no interconnecting edge
is in M .
First of all, if vertex v is the only first choice of another vertex, then v certainly needs

to be matched in M . This property is fulfilled for all vertices of all clause gadgets except
for each of x3, y3, a2 and a3. Let us first study an arbitrary clause gadget. If any y4

is matched to y2, then y2y3 blocks M . Thus, y3y4, and similarly, x3x4 are part of M
for all clause gadgets. Since y2 and x2 both need to be matched, the same can be said
about y1y2 and x1x2.

Our proof for clause gadgets from this point on consists of listing all matchings covering
all ten vertices that need to be matched out of the remaining twelve. We differentiate
two possible cases, depending on the matching edge of p3. In the first case, p3b3 ∈
M . Therefore, p2p1 ∈ M too, because p2 has to be matched. For similar reasons,
{b1a1, b2a2, q1q2, q3a3} ⊆ M . This gives us matching M3. In the second case, if p3

is matched to p2, then {b3a3, q3q2} ⊆ M . There are two possible matchings on the
remaining six vertices: {p1b1, a1q1, b2a2} and {p1b2, q1a2, b1a1}. These two matchings
together with the lower part of the gadget form M1 and M2.

Since all a-vertices are matched to vertices in their clause gadgets, no interconnecting
edge can be a part of M . For the variable gadgets, it is straightforward to see that MT

and MF are the only matchings covering all vertices of the 4-cycles.
The truth assignment to B is then defined in the following way. Each variable whose

gadget has the edges of MT in M is assigned to be true, while all other variables with
MF on their gadgets are false.
All that remains is to show that this is indeed a truth assignment. Suppose that

there is an unsatisfied clause C in B. Since all three of its literals are false, the three

52

3.2 Stable roommates with ties and short preference lists

interconnecting edges dominate the matching edges at the variable gadgets. Since M
was stable, these three edges are dominated by M at their other end vertex. It is only
possible if a1b1, a2b2 and a3b3 are all in M , which never occurs in any stable matching
as shown above. �

Our construction guarantees that the complexity result holds even if the preference
lists are either strictly ordered or comprised of a single tie of length two. Moreover,
this proof also justifies that minimizing the number of blocking edges also must be
computationally hard.

Corollary 3.4. min bp 3-srti is also NP-hard.

We establish an even stronger certificate for the hardness of min bp 3-srti below.

Theorem 3.5. Unless P = NP, min bp 3-srti is not approximable within |V |1−ε for
any ε > 0.

Proof. Our proof is an analogous version of a similar inapproximabilty result for the
almost stable Hospitals / Residents problem with couples [15]. The core idea of the
proof is to gather several copies of the instance created in the previous proof together
with a small instance where no stable solution exists. By doing so, we create a min bp
3-srti instance I in which bp(I) is large if the Boolean formula is not satisfiable, and
bp(I) = 1 otherwise. Therefore, finding a good approximation is equivalent to finding
an optimal solution.
The smallest instance not admitting any weakly stable solution is a 3-cycle with cyclic

strict preferences. Aside from this, k copies of the above described instance are created
to the same Boolean formula B. We have to ensure that k is large enough: let c = ⌈2/ε⌉
and k = nc, where n is the number of variables in B. We use m to denote the number
of clauses in B. Due to the proof of Theorem 3.3 above, this instance has either a single
blocking edge or it has at least k + 1 blocking edges.

In the rest of the proof we show that |V |1−ε ≤ k. Therefore, any |V |1−ε-approximation
is an optimal matching, admitting a single blocking edge. With Inequalities (3.1)-(3.4)
we give an upper bound for |V |. This is used in Inequalities (3.6)-(3.9) as we establish
k as an upper bound for |V |1−ε. Explanations for the steps are given as and when it is
necessary after each set of inequalities.

|V | = k(4n+ 20m) + 3 (3.1)

= k(4n+ 20
4n

3
) + 3 (3.2)

≤ 32kn (3.3)

= 32nc+1 (3.4)

(3.1): |V | is the number of vertices in the large min bp 3-srti instance
(3.2): m = 4n

3 in max (2,2)-e3-sat

53

3 Other complexity results for stable matchings

(3.3): we can assume without loss of generality that kn > 3
(3.4): k = nc

Since c was defined as ⌈2/ε⌉, the following inequality also holds.

c− 1

c+ 1
= 1− 2

c+ 1
≥ 1− ε (3.5)

|V |1−ε ≤ |V |
c−1
c+1 (3.6)

≤ 32
c−1
c+1nc−1 (3.7)

≤ nc (3.8)

= k (3.9)

(3.6): Inequality (3.5)
(3.7): Inequalities (3.1)-(3.4)
(3.8): c−1

c+1 < 1 and we can assume without loss of generality that n ≥ 32
(3.9): definition of k

To complete the study of cases in min bp d-srti, we establish a positive result for
instances with degree at most 2.

Theorem 3.6. min bp 2-srti is solvable in O(|V |) time.

Proof. We claim that for an instance I of min bp 2-srti, bp(I) equals the number of
odd parties in G. An odd party is a cycle C = ⟨v1, v2, ..., vk⟩ of odd length, where the vi
strictly prefers vi+1 to vi−1 (addition and subtraction are taken modulo k).
Since an odd party never admits a weakly stable matching, bp(I) is bounded by the

number of odd parties by below. This bound is tight: by taking an arbitrary maximum
matching in an odd party component, an almost stable solution is already reached. Now
we show that a weakly stable matching M can be constructed in all other components.
Consider a component that is not an odd party. Every edge uv is added to M that

would block M regardless of the rest of M . This scenario occurs if 1) ranku(v) = 1 and
there is no other vertex v′ so that ranku(v

′) = 1 and 2) rankv(u) = 1 and there is no
other vertex u′ so that rankv(u

′) = 1. Edges adjacent to these fixed edges are deleted.
These two steps are iterated until the graph contains no edges to fix. Now we search for
a maximum matching in each component; a path or a cycle comprising an even number
of edges. Since maximum matchings cover all vertices in these components and no edge
is preferred strictly by both of its end vertices, this already delivers a weakly stable
solution. If the component is an odd path, selecting every second edge is sufficient to
construct a stable matching. Regarding the odd cycle components, since they are not
odd parties, there is at least one vertex not strictly preferred by either of its adjacent
vertices. Leaving this vertex uncovered and adding a perfect matching in the rest of the
cycle results in a weakly stable matching.

54

3.3 Conclusion and open problems

3.3 Conclusion and open problems

In this chapter we gave an alternative proof for the hardness of max sm free and
discussed the degree constrained version of weak srt. For the latter problem we proved
that weak 3-srti is already NP-complete, presented a polynomial time algorithm for
weak 2-srti and an inapproximability result for min bp 3-srti.
The NP-hardness result for max sm free immediately implies that the analogously

defined max sa free and max sf free problems are also computationally hard. It
could be interesting to extend the 2/3-approximation algorithm of Askalidis et al. [5] to
more complex instances.

55

4 Paths to stable allocations

The stable allocation problem is one of the broadest extensions of the stable mar-
riage problem. In an allocation problem, edges of a bipartite graph have capacities
and vertices have quotas to fill. Here we investigate the case of uncoordinated pro-
cesses in stable allocation instances. In this setting, a feasible allocation is given
and the aim is to reach a stable allocation by raising the value of the allocation
along blocking edges and reducing it on worse edges if needed. Do such myopic
changes lead to a stable solution?

In this chapter, we analyze both better and best response dynamics from an
algorithmic point of view. With the help of two deterministic algorithms we show
that random procedures reach a stable solution with probability one for all rational
input data in both cases. Surprisingly, while there is a polynomial path to stability
when better response strategies are played (even for irrational input data), the
more intuitive best response steps may require exponential time. We also study the
special case of correlated markets. There, random best response strategies lead to
a stable allocation in expected polynomial time.

The results presented in this chapter are joint work with Martin Skutella and

have been published in [29].

4.1 Introduction

Motivation. Capacitated matching markets without prices model various real-life prob-
lems such as, e.g., employee placement, task scheduling or kidney donor matching. Sta-
bility is probably the most widely used optimality criterion in that case.
Finding equilibria in markets that lack a central authority of control is another widely

studied, challenging task. Besides modeling uncoordinated markets, like third-generation
(3G) wireless data networks [48], selfish and uncontrolled agents can also represent modi-
fications in coordinated markets, e.g., the arrival of a new participant or slightly changed
preferences [18]. In this chapter, those two topics are combined: we study uncoordinated
capacitated matching markets.
A natural extension of matching problems arises when capacities are introduced. The

stable allocation problem is defined on a bipartite graph with edge capacities and quotas
on vertices. The exact problem formulation and a detailed example are provided in
Section 4.2.
Central planning is needed in order to produce a stable matching in sm instances with

the Gale-Shapley algorithm. In many real-life situations, however, such a coordination is
not available. Agents play their selfish strategy, trying to reach a best possible solution.
A path to stability is a series of myopic operations leading to a stable solution. The
intuitive picture of a myopic operation in sm is the following. If a man and a woman
block a marriage scheme, then they both agree to form a couple together, even if they
divorce their current partners to that end. This step may induce new blocking pairs. A
sequence of such changes are made until a stable matching is reached.

57

4 Paths to stable allocations

Literature review. The study of uncoordinated matching processes has a long history.
In the case of one-to-one matchings, two different concepts have been studied: better
and best response dynamics. One side of the bipartite graph is chosen to be the active
side. These vertices submit proposals to the passive vertices. According to best response
dynamics , the best blocking edge of an active vertex is chosen to perform a myopic
change. In better response dynamics , any blocking edge can play this role.
The core questions regarding these uncoordinated processes rise naturally. Can a series

of myopic changes result in returning back to the same unstable matching? If yes, is there
a way to reach a stable solution? How do random procedures behave? The first question
about uncoordinated two-sided sm markets was brought up by Knuth [70] in 1976. He
also gives an example of a matching problem where better response dynamics cycle. More
than a decade later, Roth and Vande Vate [92] came up with the next result on the topic.
They show that random better response dynamics converge to a stable matching with
probability one. Analogous results for best response dynamics were published in 2011 by
Ackermann et al. [4]. They show an instance in which best response dynamics cycle and
give a deterministic algorithm that constructs a sequence of myopic operations reaching
a stable solution in polynomial time. They also prove that the convergence time is
exponential in both random cases.
Besides these works on uncoordinated sm, there is a number of papers investigating

variants of it from the paths-to-stability point of view. For sr it is known that there is
a series of myopic operations that leads to a stable solution, if one exists [35]. A path to
stability also exists in a more application-oriented model of sm where payments, flexible
salaries and productivity are present [23]. In the Hospitals / Residents problem, when
couples are present, the existence of such a path is only guaranteed if the preferences are
weakly responsive [69]. Weak responsiveness in the Hospitals / Residents problem with
couples ensures consistence between the preferences of each partner and the couple’s
preference list on pairs of hospitals. In many-to-many markets, supposing we are given
substitutable preferences on one side and responsive preferences on the other side, a path
to stability can be found [59]. Both substitutable and responsive preferences are defined
in instances where preferences are given on sets of vertices. Although many variants
of sm have been studied, for the best of our knowledge no paper discusses the case of
allocations (instead of matchings or b-matchings), where edges are capacitated, and thus
might be partially contained in stable solutions. In this chapter we make an attempt to
fill this gap in the literature.

Our contribution and structure. In the next section, the essential theoretical basis
is provided: stable allocations, and better and best response modifications on such in-
stances are defined. In Section 4.3, a special case of allocation instances are investigated.
We show that although random best response processes generally run in exponential
time, in the case of correlated markets, polynomial convergence is expected. Better and
best response dynamics in the general case on rational input are extensively studied
in Section 4.4. We describe two deterministic algorithms that generalize the result of
Ackermann et al. on sm to stable allocation instances and also show algorithmic differ-

58

4.2 Preliminaries

shortest path to stability random path to stability

best response dynamics exponential length converges with probability 1

better response dynamics polynomial length converges with probability 1

Table 4.1: Our results for a shortest and a random path to a stable allocation on instances
with rational input.

u3u2u1

w1 w2 w3

3

1

1

2

2

1

1

3

2

1

3

2

2

2

3

3

1

3

Figure 4.1: A stable marriage instance and a cycle of best response blocking edges.

ences between better and best response strategies. In the case of random procedures,
convergence is shown for both strategies. Section 4.5 focuses on running time efficiency.
There, a better response algorithm is presented that terminates with a stable solution
in O(|V |2|E|) time, even for irrational input data. A counterexample proves that such
an acceleration cannot be reached for the best response dynamics. Our contribution is
summarized in Table 4.1.

4.2 Preliminaries

In this section, we demonstrate that best response dynamics can cycle in sm instances,
define stable allocations and extend the notion of better and best response strategies to
them.

Example 4.1. Best response cycle on an sm instance [4].

Figure 4.1 demonstrates that best response dynamics can cycle in sm. Starting with
the unstable colored matching {u2w2, u3w3}, and saturating the blocking edges u1w3,
u2w1, u3w1, u1w2, u2w2, u3w3 in this order leads back to the same unstable matching.
In each round, the chosen blocking edge is the best blocking edge of the corresponding
vertex ui.

59

4 Paths to stable allocations

4.2.1 Stable allocations

sm has been extended in several directions. A great deal of research effort has been
spent on many-to-one and many-to-many matchings, sometimes also referred to as b-
matchings. Their extension is called the stable allocation problem , also known as the
ordinal transportation problem, since it is a direct analog of the classical cost-based trans-
portation problem. In this problem, the vertices of a bipartite graph G = (V,E), V =
J ∪M have quotas q : V (G)→ R≥0, while edges have capacities c : E(G)→ R≥0. Both
functions are real-valued, unlike the respective functions in many-to-many instances,
where capacities are unit, while quotas are integer-valued. Therefore, allocations can
model more complex problems, for example those in which goods can be divided un-
equally between agents.

In order to avoid confusion caused by terms associated with the marriage model,
we call the vertices one side of the graph jobs and the remaining vertices machines.
We follow the convention of denoting machines with M throughout Chapters 4 and 5,
where stable allocations are discussed. Since no matching instance is studied in these
two chapters, this notational convenience cannot be a source of confusion. For each
machine, its quota is the maximal time spent working. A job’s quota is the total time
that machines must spend on the job in order to complete it. In addition, machines have
a limit on the time spent on a specific job; this is modeled by edge capacities. A feasible
allocation is a set of contracts where no machine is overloaded and no job is worked on
after it has been completed. Note that feasibility allows jobs not to be fully completed.

Definition 4.2 (allocation). Function x : E(G) → R≥0 is called an allocation if for
every edge e ∈ E(G) and every vertex v ∈ V (G):

1. x(e) ≤ c(e);

2. x(v) :=
∑

e∈δ(v) x(e) ≤ q(v), where δ(v) is the set of edges incident to v.

We refer to |x| :=
∑

e∈E(G) x(e) as the size of the allocation, while x(e) is the allocation
value on edge e. If x(e) = 0 for some edge e ∈ E(G) or x(v) = 0 for some vertex
v ∈ V (G), then we say that e or v, respectively, is empty in x. To define stability we
need preference lists as well. Analogous to sm, all vertices rank their incident edges
strictly. Vertex v prefers uv to wv, if uv is ranked better on v’s preference list than
wv: rankv(uv) < rankv(wv). A stable allocation instance I consists of four elements:
I = (G, q, c, O), where O is the set of all preference lists.

Definition 4.3 (blocking edge, stable allocation). An allocation x is blocked by an edge
jm if all of the following properties hold:

1. x(jm) < c(jm);

2. x(j) < q(j) or j prefers jm to its worst edge with positive value in x;

3. x(m) < q(m) or m prefers jm to its worst edge with positive value in x.

A feasible allocation is stable if no edge blocks it.

60

4.2 Preliminaries

j3 (1.9) j4 (1)j2 (1)j1 (1)

m1 (2.8) m2 (1) m3 (1)

2

2

1

2

3

1

1

2

2

113

Figure 4.2: A stable allocation instance with unit capacities and a feasible, but unstable
allocation, marked by colored edges.

In other words, edge jm is blocking if it is unsaturated and neither end vertex of jm
has filled up its quota with at least as good edges as jm. If an unsaturated edge fulfills
the second criterion, then we say that it dominates x at j. Similarly, if the third criterion
is fulfilled, then we talk about an edge dominating x at m.

Problem 14. sa
Input: I = (G, q, c, O); a bipartite graph G, quotas q : V (G) → R≥0, capacities c :
E(G)→ R≥0 and preference orderings of vertices over their incident edges O.
Question: Is there an allocation not blocked by any edge?

Example 4.4. sa instance.

Figure 4.2 illustrates an sa instance. Just like in Chapter 2, we use the same example
throughout the entire chapter to demonstrate different notions defined here. For the
sake of simplicity, all edge capacities are unit. The numbers within parenthesis over
and under the vertices represent the quota function. The preferences can be seen on the
edges: the more preferred edges carry a better rank, i.e., a smaller number. For example,
machine m1’s most preferred job is j2, its second choice is j3, while its least preferred,
but still acceptable job is j1. The function x = 1 on the colored edges and x = 0 on the
remaining edges is a feasible allocation, since no quota or capacity constraint is violated.
The unique blocking edge is easy to find: j3m1 blocks x, because it is unsaturated and
both end vertices have free quota.
Bäıou and Balinski [8] prove that stable allocations always exist. They also give two

algorithms for finding them, an extended version of the Gale-Shapley algorithm and an
inductive algorithm. The worst case running time of the first algorithm is exponen-
tial, but the latter one runs in strongly polynomial time. Dean and Munshi [34] speed
up the polynomial algorithm using sophisticated data structures: their version runs in
O(|E| log |V |) time for any real-valued instance.

61

4 Paths to stable allocations

4.2.2 Better and best response steps for allocations

First, we provide some basic definitions and notation that we will use throughout the
chapter. The instance can be written as I= (G, q, c, O, x), where a feasible but possibly
unstable allocation x is given at the beginning. In our instance I, jobs form the active
side J , while machines M are passive players. For the sake of simplicity we denote the
residual capacity c(jm)− x(jm) of edge jm by x̄(jm) and similarly, the residual quota
q(v)− x(v) of vertex v by x̄(v). The definition of better and best response strategies is
not as straightforward as it is in the matching instance with unit quotas and capacities.
Here, the possible outcomes for a player are ordered lexicographically. We say that
machine m prefers allocation x1 to allocation x2 if x1(j

′m) > x2(j
′m) the for the best

ranked edge j′m among edges with x1(jm) ̸= x2(jm).
Although lexicographic order seems to be a natural choice, it is somewhat against

the convention when discussing stable allocations. In most cases, when comparing the
position of a vertex in two stable allocations, the so called min-min criterion is used [8].
According to this rule, the vertex prefers the allocation in which its worst positive edge is
ranked better. In order to make use of such an ordering relation, each vertex has to have
the same allocation value in all stable solutions. The Rural Hospitals Theorem holds
forsa, but since x in I only becomes stable when the output is reached, it is irrelevant
when comparing allocations along the path to stability. Therefore here, when studying
and comparing arbitrary feasible allocations, this concept proves to be counter-intuitive.
Later on, in Chapter 5 lexicographic order will again be used as a measure of optimality,
because the model discussed there also fails to satisfy the Rural Hospitals Theorem.
On the other hand, in Chapter 6, the conventional min-min criterion will decide which
allocation is better for a vertex, because the Rural Hospitals Theorem applies to the
problem tackled there.

An active player j having some blocking edges is chosen to perform a best response
step on the current allocation x. Amongst j’s blocking edges, let jm be the one ranked
best on j’s preference list. The aim of player j is to reach its best possible lexicographic
position via increasing x(jm). To this end, j is ready to allocate all its remaining quota
x̄(j) to jm, moreover, it may reassign allocation from all edges worse than jm to jm.
Thus, j aims to increase x(jm) by x̄(j) + x(edges dominated by jm at j). To preserve
feasibility, x(jm) is not increased by more than x̄(jm). The passive player m agrees to
increase x(jm) as long as it does not lose allocation on better edges. This constraint
gives the third upper bound, x̄(m) + x(edges dominated by jm at m). To summarize
this, in a best response step x(jm) is increased by the following amount.

A := min{x̄(j) + x(edges dominated by jm at j), x̄(jm),

x̄(m) + x(edges dominated by jm at m)}

Once this A and the new x(jm) is determined, j and m fill their remaining quota, then
refuse allocation on their worst allocated edges, until x becomes feasible.

Better response steps are much less complicated to describe. The chosen active vertex
j increases the allocation on an arbitrary blocking edge jm. Both j and m are allowed
to refuse allocation on worse edges than jm. This rule guarantees that j’s lexicographic

62

4.3 Correlated markets

situation improves and that the change is myopic for both vertices. By definition, best
response steps are always better response steps at the same time. The execution of a
single better response step consists of modifications on at most |δ(j)|+|δ(m)|−1 ≤ |V |−1
edges.
In our example in Figure 4.2, j3 and m1 mutually agree to allocate value 1 to j3m1. If

best response strategies are played, m1 refuses 0.2 amount of allocation from j1m1, while
j3 reduces x(j3m2) to 0.9. Through this step, they induce blocking elsewhere in G: now
j4m2 blocks the new x, because m2 lost some allocation. Thus, another myopic change
would be to increase x(j4m2), and so on. A better response step of the same vertex j3
would be for example to increase x(j3m1) to 1, while refusing j3m2 entirely. To keep
feasibility, m1 has to refuse 0.2 amount of allocation from j1m1.

4.3 Correlated markets

Before tackling the general paths to stability problem, we first restrict ourselves to
instances with special preference profiles. In this section, we study the case of stable
allocations on an uncoordinated market with correlated preferences. Later we will prove
that the convergence time of random best and better response strategies is exponential
on general instances. By contrast, here we show that on correlated markets, random
best response strategies terminate in expected polynomial time, even in the presence of
irrational data. At the end of this section we also elaborate on the behavior of better
response dynamics.

Definition 4.5 (correlated market). An allocation instance is correlated, if there is a
function f : E(G) → N such that rankv(uv) < rankv(wv) if f(uv) < f(wv) for every
u, v, w ∈ V (G) and no two edges have the same f value.

Correlated markets are also called instances with globally ranked pairs or acyclic mar-
kets . The latter property means that there is no cycle of incident edges such that every
edge is preferred to the previous one by their common vertex. Abraham et al. [3] show
that acyclic markets are correlated and vice versa. It is easy to see that every correlated
one-to-one matching market admits a unique stable matching M : the edge with the
lowest f -value must be in all stable matchings, therefore the edges incident to it cannot
be in them, then we take the edge in the remaining graph with the lowest f -value and
so on. This argument carries over to the allocation case as well, as we show in detail in
the proof of Theorem 4.6. The instance depicted in Figure 4.2 is not correlated: edges
⟨j3m3, j4m3, j4m2, j3m2⟩ form a preference cycle. Ackermann et al. [4] were the first to
prove that random better and best response dynamics reach a stable matching on cor-
related markets in expected polynomial time. Using a similar argumentation, we extend
their result to allocation instances.

Theorem 4.6. On correlated allocation instances with real-valued input data, random
best response dynamics reach a stable solution in expected time O(|V |2|E|).

Proof. Before studying paths to stability we show that on correlated instances, the set
of stable solutions has cardinality one. There is an absolute minimum of f(jm). The

63

4 Paths to stable allocations

single edge jm with this minimal f value must be in all stable allocations with value
min {c(jm), q(j), q(m)}, otherwise it is blocking. Fixing x on jm and decreasing the
quotas of j and m respectively leads to another correlated allocation instance. In this
instance, the stable solutions are exactly the stable solutions of the original instance
without jm. This leads to an inductive algorithm that proves that there is a unique stable
allocation on correlated markets. We will show that random best response dynamics
reach this unique solution in expected polynomial time.
Whenever a job j with an unsaturated edge jm of an absolute minimal f(jm) is

chosen to submit an offer, its best response strategy is to increase x on jm. Due to
this single best response operation performed by j, x(jm) = min {c(jm), q(j), q(m)}
is reached. The probability that a vertex j ∈ J is chosen to take the next step is at
least 1

|J | . As mentioned in Section 4.2.2, one best response step requires at most O(|V |)
modifications. Thus, in order to reach x(jm) = min {c(jm), q(j), q(m)} on the best
edge in G, |J | · |V | = O(|V |2) modifications are needed in expectation. After this, jm
with minimal f value reached its final position in the unique stable allocation, x(jm) will
never be reduced, because neither j, nor m have a better neighboring edge. Thus, x(jm)
can be fixed, and a new minimum of f can be chosen for the same procedure as before.
The number of iterations is bounded from above by the number of edges in the graph.
The unique stable allocation is thus reached in O(|V |2|E|) time in expectation.

In order to establish a similar result for better response dynamics in real-valued in-
stances, an exact interpretation of random events would be needed. In the matching
case, best and better response dynamics differ exclusively in the rank of the chosen
blocking edge: when playing best response strategy, the best blocking edge is chosen
by an active vertex j. In contrast to this, here, better response steps differ also in the
amount of modification and in the edges chosen to refuse allocation along. The first
factor indicates a continuous example space.
If we assume that any better response step results in reassigning the highest possible

allocation value to an arbitrary blocking edge, an analogous proof can be derived.

Theorem 4.7. On correlated allocation instances with real-valued input data, random
better response dynamics reach a stable solution in expected time O(|V |3|E|).

Proof. The only difference to the setting with best response steps is that after j is
chosen, the expected time of reaching x(jm) = min {c(jm), q(j), q(m)} is larger. In this
case, j chooses jm with probability at least 1

|δ(j)| . This implies that reaching the stable

allocation value on the best edge takes |δ(j)| · (|δ(j)| + |δ(m)| − 1) = O(|V |2) steps in
expectation. In total, for all vertices j ∈ J and all edges the algorithm takes O(|V |3|E|)
steps in expectation.

4.4 Best and better responses with rational data

In this section, the case of allocations in an uncoordinated market with rational data
is studied. As already mentioned, better and best response dynamics can cycle in such

64

4.4 Best and better responses with rational data

instances. We describe two deterministic methods, a better response and a best response
algorithm that yield stable allocations in finite time. Our best response algorithm is by
definition a better response algorithm as well, yet we present a different, better but
not best response strategy in Section 4.4.1, because it can be accelerated to reach a
stable solution in polynomial time, while the best response strategy cannot, as shown in
Section 4.4.2. The main idea of our algorithms is to distinguish between blocking edges
based on the type of blocking at the job: dominance or free quota.
A blocking edge can be of two types. Recall point 2 of Definition 4.3: if jm blocks x,

then x(j) < q(j) or j prefers jm to its worst edge with positive value in x. We talk
about blocking of type I in the latter case, if jm blocks x because j prefers jm to its
worst edge having positive value in x. Blocking of type II means that j has no allocated
edge that is worse than jm, but j has not filled up its quota yet, x(j) < q(j). Note that
the reason of the blocking property at m is not involved when defining the two types.

4.4.1 Better response dynamics

First, we provide a deterministic algorithm (Algorithm 1 below) that constructs a finite
path to stability from any feasible allocation. In the first phase of our algorithm, only
blocking edges of type I are chosen to perform myopic changes along. The active vertices
(jobs) choose one of their blocking edges of type I, not necessarily the best one. In all
cases, withdrawal is executed along worst allocated edges. The amount of new allocation
added to the blocking edge is determined in such a way that at least one edge or a vertex
becomes saturated or empty. Thus, in the first phase, active vertices replace their worst
edges with better ones, even if they have free quota. When no blocking edge of type I
remains, the second phase starts. The allocation value is increased on blocking edges of
type II such that they cease to be blocking.
The running time of our algorithm is exponential. Later, in Section 4.5 we will show

that this algorithm can be accelerated such that a stable solution is reached in strongly
polynomial time.

Theorem 4.8. For every allocation instance with rational data and a given rational
feasible allocation x, there is a finite sequence of better responses that leads to a stable
allocation.

The main idea of the proof is the following. We need to keep track of the change
in the size of the allocation and in the lexicographic position of the active vertices
simultaneously. In one step of the first phase along edge jm, either both j and m refuse
edges, thus, the size of the allocation |x| =

∑
j∈J x(j) decreases, or only j does so, leaving

|x| unchanged and improving j’s situation lexicographically. Since both procedures are
monotone and the second one does not impair the first one, the first phase terminates.
Termination of the second phase is implied by the fact that passive vertices improve
their lexicographic situation in each step. The technical details of this proof sketch are
presented as Claims 20 and 21.
Recall our example in Figure 4.2. The unique blocking edge j3m1 is of type I, because

j3, its active vertex, prefers edge j3m1 to its worst allocated edge j3m2.

65

4 Paths to stable allocations

In the first phase, the jobs propose along arbitrary blocking edges of type I. We will
show that this process ends with an allocation where no job has a blocking edge of type I.
In the second phase, the jobs propose along their best blocking edges of type II. Later we
will see that during this phase until termination, no job gets a blocking edge of type I.
A pseudocode is provided after the description of both phases.

First phase. In one step, an arbitrary blocking edge jm of type I is chosen. Both
end vertices, j and m may refuse some allocation along worse edges when increasing x
on jm. Job j has a refusal pointer r(j) that denotes the worst edge allocated to j, if
any exists. Similarly, r(m) stands for the worst currently allocated edge of m. A step of
Phase I consists of two or three operations, each along jm, r(j) and possibly along r(m).
Two operations take place, if m has not filled up its quota yet. In this case, x(r(j))
is decreased by A := min {x(r(j)), x̄(jm), x̄(m)}. At the same time, x(jm) is increased
by the same amount. Depending on which expression is the minimal one, edge r(j)
becomes empty or jm becomes saturated or m fills up its quota. Note that r(m) plays
no role because m does not refuse any allocation. In the remaining case, if m has a full
quota, three operations take place, since m has to refuse some allocation. The amount
of allocation we deal with is now A := min {x(r(j)), x̄(jm), x(r(m))}. The allocation on
the blocking edge jm will be increased by A, on the other two edges it will be decreased
by A, until one of them becomes empty or saturated. We emphasize that whenever a job
j with free quota adds a new edge better than its worst allocated edge to x, it withdraws
some allocation from the worst edge.
We return to our example again. It has already been mentioned that the unique

blocking edge j3m1 is of type I. The refusal pointer r(j3) is j3m2. Since m1 has not filled
up its quota yet, its refusal pointer j1m1 is irrelevant at the moment. Due to the same
reason, two operations take place. We augment with min {x(j3m2), x̄(j3m1), x̄(m1)} =
0.8 amount of allocation. After this operation, x(j3m1) = 0.8, x(j3m2) = 0.2, and j3m1

is still a Phase I blocking edge. Since x(m1) = q(m1) holds now, three operations are
executed with A = min {x(j3m2), x̄(j3m1), x(j1m1)} = 0.2. Now j3m1 is saturated,
hence it ceases to be blocking. During the first operation, j4m2 became blocking of
type I, because m2 lost allocation. In the next step, one unit of allocation is reallocated
to j4m2 from j4m3. But j3m3then becomes blocking of type I, and so on.

Claim 20. Phase I terminates in finite time.

Proof. We use the following potential function in order to show that the process does
not cycle:

Θ(x) :=
∑
j∈J

∑
jm∈E(G)

x(jm) rankj(jm)

Recall that rankj(jm) stands for the rank of jm on j’s preference list. The smaller
rankj(jm) is, the better is m for j. The expression above is bounded for any feasible
allocation x:

0 ≤ Θ(x) ≤ |J | · max
jm∈E(G)

c(jm) ·max
j∈J
|δ(j)|.

66

4.4 Best and better responses with rational data

j′′ j j′

m m′

32

2

1

1

Figure 4.3: Edges affected by one myopic operation along the blocking edge jm of type II.

We will show that Θ(x) decreases in each step of the procedure. The process terminates
if the amount of decrement is always greater than a fixed positive constant. If all data
are rational, this is guaranteed.

Considering the potential function, we need to keep track of those two jobs that
proposed or got refused, since the allocation of all other jobs remains the same, thus
their contributions to the summations of Θ(x) do not change.
As mentioned above, a step consists of either two or three edges changing their value

in x. In the first case, when only two edges change their value in x, there is only one job j
that modifies its contribution. Thus Θ(x) decreases, because some allocation will move
from a less preferred edge to jm. In the second case, where three edges are involved,
there is a job j that improves its lexicographic position, and another job j′ that loses
allocation. The effect of the first change at j is just as above, Θ(x) decreases. Losing
allocation for j′ also decreases Θ(x), since x(j′) decreases. �

Second phase. In the second phase, we are allowed to increase x(j). When improving
the allocation along a blocking edge jm of type II, m may refuse some allocation, but
j cannot, since the reason of blocking is that j has not filled up its quota yet. Thus,
we do not need the pointer r(j) any more. One step consists of changes along one edge
if x(m) < q(m), or along two edges otherwise. If m has not filled up its quota yet, then
we simply assign as much allocation to jm as possible without x(j), x(m) and x(jm)
exceeding q(j), q(m) and c(jm), respectively. If m has to refuse something from a job
j′ in order to accept better offers from j, we improve m’s position until j′m becomes
empty or jm becomes saturated or j gets its quota filled up.

Claim 21. No step in Phase II can induce a blocking edge of type I.

Proof. One step in Phase II leaves all vertices but j,m and the possibly refused j′

unchanged. Thus, if there is a blocking edge of type I after the modification, it must
be incident to one of those vertices. The three cases, illustrated in Figure 4.3, are the
following.

• Edge j′′m blocks x. The position of m became lexicographically better, thus, no

67

4 Paths to stable allocations

new blocking edge incident to m was introduced. The existing blocking edges j′′m
of type II cannot become of type I, because j′′’s position remained unchanged.

• Edge jm′ (or jm) blocks x. The only change at j is that x(jm) increases, thus, j
also improves its lexicographic position. Thus, no new blocking edge incident to
j appeared. Blocking edges of type II can change their type of blocking only if j
increased its allocation on a worse edge. But this cannot happen since we chose
the best blocking edge jm in Phase II.

• Edge j′m′ (or j′m) blocks x. The only change in j′’s neighborhood is that x(j′m)
decreases. After this step, consider an unsaturated edge j′m′ preferred by j′ to
its worst allocated edge. Since no machine worsens its lexicographic position in
Phase II, if j′m′ dominates the new allocation x, it already dominated the previous
allocation. Thus, j′m′ must have been a blocking edge of type II prior to the
modification and thus remains of type II.

We have argued that once Phase II has started, Phase I can never return. �
The last step ahead of us is to show that Phase II may not cycle. But this follows

from the fact that in each step exactly one machine strictly improves its lexicographic
situation, while all other machines maintain the same allocation as before. In case of a
rational input, this improvement is bounded from below, thus, the second phase of the
algorithm terminates.
With this we finished the proof of Theorem 4.8.

Algorithm 1 Two-phase better response algorithm

while ∃j ∈ J with a blocking edge of type I do
Improvement I(j)

end while
while ∃j ∈ J with a blocking edge of type II do

Improvement II(j)
end while

The duration of both phases strongly depends on the capacities and quotas. The
examples in Figure 4.4 show two bad instances. The capacity is N on all edges, where
N is an arbitrarily large integer. Quotas are marked above and below the vertices. The
initial allocation for Phase I is N on j1m1 and on j2m2 and zero on the remaining two
edges. The first phase performs N augmenting steps along the same cycle. Phase II
terminates after N iterations in the second instance, starting with the empty allocation.

This algorithm also proves an important result regarding rational random better re-
sponse processes. If the input is rational (there is a smallest positive number that can
be represented as a linear integer combination of all data), it is clearly worthwhile to
restrict the set of feasible better response modifications to the ones that reassign a mul-
tiple of this unit. For this reason, the set of reachable allocations is finite and they can

68

4.4 Best and better responses with rational data

procedure Improvement I(j)
jm← blocking edge of type I of j
if x(m) < q(m) then

A := min {x(r(j)), x̄(jm), x̄(m)}
x(r(j)) := x(r(j))−A
x(jm) := x(jm) +A

else
A := min {x(r(j)), x̄(jm), x(r(m))}
x(r(j)) := x(r(j))−A
x(jm) := x(jm) +A
x(r(m)) := x(r(m))−A

end if
end procedure

procedure Improvement II(j)
jm← best blocking edge of type II of j
if x(m) < q(m) then

A := min {x̄(jm), x̄(j), x̄(m)}
x(jm) := x(jm) +A

else
A := min {x(r(m)), x̄(jm), x̄(j)}
x(jm) := x(jm) +A
x(r(m)) := x(r(m))−A

end if
end procedure

j1(N) j2(N)

m1(N) m2(N + 1)

1

2

2

1

1

2

2

1

j1(N + 1) j2(N)

m1(N) m2(N)

1

2

2

1

1

2

2

1

Figure 4.4: Worst-case instances for our better response algorithm. On the graph on the
left hand-side, Phase I cycles along ⟨j1m2, j2m2, j2m1, j1m1⟩ N times. On
the second instance, Phase II first assigns N amount of allocation to edges
j1m2 and j2m1 and then cycles N times along ⟨j1m1, j2m1, j2m2, j1m2⟩.

be seen as states of a discrete time Markov chain. Our algorithm proves that from any
state there is a finite path to an absorbing state with a positive probability.

Theorem 4.9. In the rational case, random better response strategies terminate with a
stable allocation with probability one.

Polynomial time convergence cannot be shown for random better response strate-
gies, since they need exponential time to converge in expectation even in matching
instances [4].

4.4.2 Best response dynamics

In this subsection, we derive analogous results for best response modifications to the
ones established for better response strategies. The main difference from the algorithmic
point of view is that instances can be found in which no series of best response strategies

69

4 Paths to stable allocations

terminate with a stable solution in polynomial time. A simple example shown on the
right in Figure 4.4 resembles the instance given by Bäıou and Balinski [8] to prove that
the Gale-Shapley algorithm requires exponential time to terminate in stable allocation
instances. Let G be a complete bipartite graph on four vertices, with quota q(j1) =
N + 1, q(j2) = q(m1) = q(m2) = N and initial allocation x(j1m1) = x(j2m2) = N for
an arbitrary large number N . If the preference profile is chosen to be cyclic, such that
rankj1(m1) = rankj2(m2) = rankm1(j2) = rankm2(j1) = 2, the unique series of best
response steps consists of 2N operations. A path of exponential length to stability can
still be found.

Theorem 4.10. For every allocation instance with rational data and a given rational
feasible allocation x, there is a finite sequence of best responses that leads to a stable
allocation.

Proof. Similar to our method for better response strategies, we prove that there is a
two-phase algorithm that terminates with a stable solution.

All blocking edges we take into account are best blocking edges of their job j. De-
pending on their rank compared to j’s worst allocated edge r(j), they are either of type I
or type II. A job j’s best blocking edge jm is

• of type I(a), if rankj(jm) < rankj(r(j)) and
x̄(j) < min {x̄(jm), x̄(m) + x(edges dominated by jm at m)};

• of type I(b), if rankj(jm) < rankj(r(j)) and
x̄(j) ≥ min {x̄(jm), x̄(m) + x(edges dominated by jm at m)};

• of type II, if rankj(jm) ≥ rankj(r(j)).

The intuitive interpretation of the grouping above is given by the steps that we need to
execute when jm is chosen to perform a best response operation. If jm is of type I(b),
then jm can be saturated without any refusal made by j, since j has sufficient free
quota. On the other hand, if j agrees to reduce x(r(j)) in order to accommodate more
allocation on jm, then jm is a blocking edge of type I(a). The remaining case occurs
when jm is worse than r(j), that is, j accepts x̄(m) allocation from m. In this case, no
rejection is called by j.
In Phase I, only best blocking edges of type I(a) and I(b) are selected. Then, when

only type II blocking edges remain, Phase II starts. In order to prove finite termination,
we introduce two potential functions, Θ(x) and Ψ(x). When proving termination of the
first phase, both of them are used, while the second phase is discussed by analyzing the
behavior of Ψ(x) only.
The first function, Θ(x) comprises two components. The first component is the sum

consisting of the rank of refusal pointers at jobs. The second term is a sum consisting
of the allocation value of refusal pointers at jobs. When we say that Θ(x) decreases, it
is meant in the lexicographic sense. The second function, Ψ(x) is a set of |M | vectors,
each of them corresponding to a machine. Each vector contains |δ(m)| entries, defined as
x(jm) for all j ∈ J , ordered as they appear inm’s preference list. We denote these vectors

70

4.4 Best and better responses with rational data

by lex(m), because lex(m) increases lexicographically if and only if the lexicographic
position of m improves. When we say that Ψ(x) decreases we mean that at least one
vector in it increases lexicographically and no vector decreases lexicographically. This
also implies that we could add up the i-th elements of these vectors and follow the
lexicographic increment of the resulting vector. We choose not to do so for intuitive
reasons, but the reader can also think of Ψ(x) as a single vector of maxm∈M deg(m)
scalar components.

Θ(x) := (Θ1(x),Θ2(x)) :=

⎛⎝∑
j∈J

rankj(r(j)),
∑
j∈J

x(r(j))

⎞⎠
Ψ(x) := −

(
lex(m1), lex(m1), ..., lex(m|M |)

)
Claim 22. The best response step of job j along edge jm of type I(a) decreases Θ(x).

Proof. Due to the type-defining characteristics listed above, there is a rejection on r(j).
If x(r(j)) becomes 0 through this step, then Θ1(x) decreases, while Θ2(x) might increase.
Otherwise, if x(r(j)) > 0 holds even after executing the step, Θ1(x) remains unchanged,
but Θ2(x) decreases. Any other decrement in x, such as allocation refused by m on r(j′)
for some j′ ̸= j can only further decrease both components of Θ(x). �

Claim 23. The best response step of job j along edge jm of type I(b) decreases Ψ(x)
and does not increase Θ(x).

Proof. Since j does not reject any allocation, x(r(j)) remains unchanged. If any other
r(j′) for some j′ ̸= j is affected, Θ(x) is decreased. The only machine whose position
changes is m itself: it clearly improves its lexicographic position, thus one component of
Ψ(x) decreases, while the remaining vectors remain unchanged. �
For any rational input data, the changes in Θ(x) or Ψ(x) in each round are bounded

from below. Since both functions have an absolute minimum, Phase I terminates in
finite time.

Claim 24. The best response step of job j along edge jm of type II decreases Ψ(x).
Moreover, no edge becomes blocking of type I(a) or I(b).

Proof. During the second phase, no machine loses allocation, thus, their lexicographic
position cannot worsen. In addition, for the machine of the current blocking edge jm,
lex(m) improves. This also implies that no edge j′m′ dominates x at m′ that has not
already dominated it before the myopic change. Moreover, edges that lost allocation
during that step are the worst-choice edges of j, hence they cannot be blocking of
type I(a) or I(b). If there is an edge j′m′ that became blocking of type I(a) or I(b), then
it is better than the worst edge in x at j′. These edges were already unsaturated before
the last step and also already dominated x at both end vertices. This contradicts the
fact that best blocking edges are chosen in each step. �

The same arguments as above, in Theorem 4.9, imply the result on random procedures.

Theorem 4.11. In the rational case, random best response strategies terminate with a
stable allocation with probability one.

71

4 Paths to stable allocations

4.5 Irrational data - a strongly polynomial algorithm

In our previous section, we relied several times on the fact that in each step, x is changed
with values greater than a specific positive lower bound. When irrational data are
present, e.g., q, c or x are real-valued functions, this can no longer be guaranteed. Hence,
our arguments for termination are not any more valid. Moreover, both our algorithms
require exponentially many steps to terminate. In this section, we describe a fast version
of our two-phase better response algorithm that terminates in polynomial time with a
stable allocation for irrational input data as well. We also give a detailed proof of
correctness for the first phase and show a construction with which all Phase II steps can
be interpreted as Phase I operations on a slightly modified instance.
As usual in graph theory, an alternating path with respect to an allocation x is a

sequence of adjacent edges that are saturated in x and of those that are unsaturated in
x in an alternating manner.

4.5.1 Accelerated first phase

The algorithm and the proof of its correctness can be outlined in the following way
(see also Algorithm 2 below). A helper graph is built in order to keep track of edges
that may gain or lose some allocation. A potential function is also defined, it stores
information about the structure of the helper graph and the degree of instability of
the current allocation. In the helper graph we are looking for walks to augment along.
The amount of allocation we augment with is specified in such a way that the potential
function decreases and the helper graph changes. When using walks instead of proposal-
refusal triplets, more than one myopic operation can be executed at a time. Moreover,
we also keep track of consequences of locally myopic improvements. For example, we
spare running time by avoiding reducing allocation on edges that later become blocking
anyway.
First, we elaborate on the structure of the helper graph, define alternating walks

and specify the amount of augmentation. The method, the proof of correctness, the
pseudocode and a example execution are all described in detail here.

Helper graph

Recall that our real-valued input I consists of a stable allocation instance (G, q, c, O)
and a feasible allocation x. First, we define a helper graph H(x) on the same vertices
as G. This graph is dependent on the current allocation x and will be changed whenever
we modify x. The edge set of H(x) is partitioned into three disjoint subsets. The first
subset P is the set of Phase I blocking edges. Each job j that has at least one edge
with positive x value, also has a worst allocated edge r(j). When a myopic change is
made, jobs tend to reduce x along exactly these edges. These refusal pointers form R,
the second subset of E(H(x)). We also keep track of edges that are currently not of
blocking type I, but later on they may enter set P. This last subset P ′ consists of edges
that may become blocking of type I after some myopic changes. An edge jm /∈ P has
to fulfill three criteria in order to belong to P ′:

72

4.5 Irrational data - a strongly polynomial algorithm

1. c(jm) > x(jm);

2. m has at least one refusal edge, i.e., δ(m) ∩R ̸= ∅;

3. jm >j r(j).

Such an edge immediately becomes blocking of type I if m loses allocation along one of
its refusal edges. Edges in P ′ are called possibly blocking edges, the set P ∪ P ′ forms
the set of proposal edges. Note that a job j may have several edges in P and P ′, but
at most one in R. Moreover, if j has a proposal edge in H(x), it also has an edge
in R. Regarding the machines, if m has a P ′-edge, it also has an R-edge. Note that
(P ∪P ′)∩R = ∅, because both P and P ′ per definition comprises edges that are ranked
better by j than r(j). The following lemma provides an additional structural property
of H(x).

Lemma 4.12. If jm ∈ P and j′m ∈ P ′, then rankm(jm) < rankm(j′m).
That is, blocking edges are preferred to possibly blocking edges by their common ma-
chine m.

Proof. Since jm ∈ P is a blocking edge of type I, jm dominates x at m. If the statement
is false, then rankm(jm) > rankm(j′m) for some unsaturated edge j′m that is better
than the worst allocated edge of j′. Then also j′m dominates x at m. This, together
with the first and last properties of possibly blocking edges implies that j′m ∈ P .

Once again we return to our example shown in Figure 4.2. The only blocking edge
j3m1 alone forms P. The set R contains all four edges with positive allocation value:
j1m1, j2m1, j3m2 and j4m3. Edges j3m3 and j4m2 are possibly blocking. Thus, in this
case, G = H(x).

Alternating walks

Our algorithm performs augmentations along alternating walks, so that the allocation
value of the refusal edges decreases, while the value of proposal edges increases. This is
done in such a way that R, P or P ′ (and thus, H(x)) changes. The main idea behind
these operations is the same we used in our the proof of Theorem 4.8: reassigning
allocation to blocking edges from worse edges, such that the procedure is monotone.
The difference between this method and the one presented in Section 4.4.1 is that while
our first algorithm tackles a single blocking edge in each step, here we deal with several
blocking edges (forming the alternating walk) at once.
When constructing the alternating proposal-refusal walk ρ to augment along, the

following rules have to be obeyed:

1. The first edge jm1 is a P-edge.

2. P and P ′-edges are added to ρ together with the refusal edge they are incident
with on the active side.

3. Machines choose their best P or P ′-edge.

73

4 Paths to stable allocations

4. Walk ρ ends 1) at m if m has no proposal edge or 2) at j or m if it is already on ρ.

As long as there is a blocking edge of type I, the first edge jm1 of such a walk can
always be found. Lemma 4.12 guarantees that point 3 is not violated by this jm1 ∈ P.
After taking r(j), all that remains is to continue on best proposal edges of machines and
refusal edges of jobs they end at. Since H(x) is a finite graph, either of the cases listed
in point 4 will appear. According to these rules, proposal-refusal edge pairs are added to
the current path until 1) there is no pair to add or 2) the path reaches a vertex already
visited. In the first case, ρ is a path. In the latter case, ρ is a union of a path and a
cycle, connected at a single vertex. This vertex is the last vertex listed on ρ, where our
method halts observing point 4. Such a walk ρ can be a single cycle as well.

Before elaborating on the amount of augmentation, we emphasize that ρ is just a
subset of the set of edges whose x value changes during an augmentation step. The
goal is to reassign allocation from refusal edges to blocking edges, until a stable solution
is derived. Naturally, on an alternating walk, refusal edges lose the same amount of
allocation that proposal edges gain. However, except if augmentations are performed
along a single cycle, the first machine m1 on ρ gains allocation in total (and the last
machine on ρ loses allocation). In order to preserve feasibility, m1 might have to refuse
allocation on edges not belonging to ρ. The exact amount of these refusals is discussed
later, together with the amount of augmentation along ρ. Since no other vertex gains
allocation in an augmentation step, feasibility cannot be violated elsewhere. Thus, these
are the only edges not on ρ that need to be modified.
By contrast, if the augmentation is performed along a cycle C, refusals only happen

on r(j) ∈ C ∩ R edges. Even if the machine m1 that started C has a full quota,
it does not need to refuse any allocation, since x(m1) remains unchanged during the
augmentation. Note that executing several local myopic steps greedily, like in our first
algorithm (Algorithm 1), would lead to a different output. A simple example for that
can be seen on a slightly modified version of the first instance in Figure 4.4, depicted in
Figure 4.5.

j1(N) j2(N) j3(1)

m1(N) m2(N + 2)

1

2

2

1

1

2

2

1 3

Figure 4.5: An example for a cycle augmentation in the accelerated better response al-
gorithm. In the accelerated version, j3m2 remains intact, while in the step-
by-step version (Algorithm 1) it gets deleted and then added again.

74

4.5 Irrational data - a strongly polynomial algorithm

Let us assume that q(m2) = N + 2 and m2 has an edge j3m2 ranked third, where
c(j3m2) = 1. Let us start with the allocation x(j1m1) = x(j2m2) = N, x(j3m2) = 1.
Edge j1m2 ∈ P , so we can start the walk at m1, augment along C = ⟨m2j1, j1j1,m1j1,
j2m2⟩ with allocation value 1 and arrive at a stable solution. On the other hand, our
step-by-step better response algorithm presented in Section 4.4.1 would first reject j3m1

fully, augment along the same cycle and, in Phase II, add j3m1 again.
It is easy to see that the removal of edges like j3m1 can cause more superfluous rounds

if the instance is more complex. Generally speaking, here we avoid m1 refusing edges,
knowing that it loses allocation later. As a result of that, m1 would go under its quota,
and would possibly create new blocking edges. Both strategies are better response, the
difference is that our second algorithm keeps track of changes made as a consequence of
a myopic operation.

Amount of augmentation

Once ρ is fixed, the amount of allocation A to augment with has to be determined. It
must be chosen so that 1) a feasible allocation is derived and 2) at least one refusal edge
becomes empty or at least one proposal edge leaves P ∪P ′. These points guarantee that
H(x) changes. To fulfill these two requirements, the minimum of the following terms is
determined.

1. Allocation value on refusal edges along ρ: x(r(j)), where r(j) ∈ ρ ∩R.

2. Residual capacity on proposal edges along ρ: x̄(p), where p ∈ ρ ∩ (P ∪ P ′).

3. If ρ is not a single cycle, m1 may refuse a sufficient amount of allocation such that
jm1 does not become saturated, but it stops dominating x at m1. In this case,
the residual quota of m1 must be filled up and, in addition, the sum of allocation
values on edges worse than jm1 must be refused. With this, jm1 becomes the
worst allocated edge of a full machine. Until reaching this point, jm1 may gain
x̄(m1) + x(edges dominated by jm1 at m1) amount of allocation in total.

To summarize, we augment with

A := min{x(r(j)), x̄(p)|r(j) ∈ ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}

if ρ is a cycle, because the last case with the starting vertex m1 does not occur. Other-
wise, the amount of augmentation is

A := min{x(r(j)), x̄(p), x̄(m1) + x(edges dominated by jm1 at m1)|

r(j) ∈ ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}.

75

4 Paths to stable allocations

Algorithm 2 Accelerated Phase I

while |P| > 0 do
FindWalk(H(x))
if ρ is a cycle then

AugmentCycle(ρ)
else

AugmentWalk(ρ)
end if
update R, P, P ′

end while

procedure FindWalk(H(x))
i := 1, ρ := ∅, find any m1 ∈M with a P-edge
while mi has a best proposal edge jimi and mi /∈ ρ do

if ji /∈ ρ then
ρ := ρ ∪ {jimi} ∪ {r(ji)}
jimi+1 := r(ji), i := i+ 1

else
ρ := ρ ∪ {jimi}

end if
end while

end procedure

procedure AugmentCycle(ρ)
A := min{x(r(j)), x̄(p)|r(j) ∈ ρ ∩R, p ∈ ρ ∩ (P ∪ P ′)}
for p ∈ ρ ∩ (P ∪ P ′) do

x(p) := x(p) +A
end for
for r(j) ∈ ρ ∩R do

x(r(j)) := x(r(j))−A
end for

end procedure

procedure AugmentWalk(ρ)
A := min{x(r(j)), x̄(p), x̄(m1) + x(edges dominated by j1m1 at m1)|r(j) ∈ ρ ∩

R, p ∈ ρ ∩ (P ∪ P ′)}
if A− x̄(m1) > 0 then

m1 refuses A− x̄(m1) allocation from its worst edges
end if
for p ∈ ρ ∩ (P ∪ P ′) do

x(p) := x(p) +A
end for
for r(j) ∈ ρ ∩R do

x(r(j)) := x(r(j))−A
end for

end procedure

76

4.5 Irrational data - a strongly polynomial algorithm

j3(1.9) j4(1)j2(1)j1(1)

m1(2.8) m2(1) m3(1)

2

2

1

2

3

1

1

2

2

11
0.8

3

Figure 4.6: After the first round of the accelerated Phase I algorithm.

Recall the example instance in Figure 4.2 again. Checking both proposal and both
refusal edges on ρ = ⟨m1j3, j3m2,m2j4, j4m3⟩, the residual capacity of m1, and the
allocation on m1’s worse edges, one can compute that A = 1. Thus, allocation x shown
in the figure above is obtained after the first augmentation. Edge j3m1 leaves P, and
j3m3 enters it. The set of refusal edges consists of all edges with positive allocation
value. P ′ is empty. In the second round, ρ is easy to find: it is ⟨m3j3, j3m1⟩. After
reassigning allocation of value 1 to j3m3, Phase I ends. The allocation derived (see also
Figure 4.6) is not yet stable: j1m1 and j3m2 block it, but they are both of type II.

The second phase of our method can be interpreted as the execution of the first phase
on a modified instance. The modification needed consists of introducing a dummy job
and swapping the roles of the active and passive sides, as described in detail below.
In total, the algorithm performs O(|V ||E|) rounds, each of them needs O(|V |) running

time. Thus, it runs in O(|V |2|E|) time. For a detailed proof of correctness and running
time computation, see the proof below.

Theorem 4.13. For every real-valued allocation instance and given feasible allocation,
there is a sequence of better responses leading to a stable allocation in O(|V |2|E|) time.

Proof. Potential function. We show with the help of the following multicriteria
potential function that the procedure is monotone and finite:

Θ(x) := (Θ1(x),Θ2(x)) :=⎛⎝∑
j∈J

rankj(r(j)), −
∑
m∈M

rankm(best proposal edge at m)

⎞⎠ .

If x(j) = 0, then rankj(r(j)) can be interpreted as a large number, for example
as |M | + 1. In lack of proposal edges, the expression in the second component can
also be interpreted as a large constant, for example as |J | + 1. In order to keep both
terms decreasing, a minus sign is added to the second expression. When function Θ(x)
decreases, it does so in the lexicographical sense.

77

4 Paths to stable allocations

Each round of our algorithm consists of two operations that change x: procedure
augment and update. First, we prove that Θ(x) lexicographically strictly decreases
after each augmentation. If no job receives a worse allocated edge than its current
edges, and, in addition, at least one job loses its worst allocated edge entirely, then Θ1

strictly decreases. If no machine receives a proposal edge better than all of its current
proposal edges and at least one machine loses its best proposal edge, then the second
component Θ2 decreases. As a second step, we will see that the update operation never
increases Θ(x).

Since Θ(x) is a bounded, integer-valued function, any procedure that modifies it mono-
tonically, is finite. Later, we elaborate on the running time of our algorithm.

Augmentation. As mentioned above, our goal here is to show that each augmenta-
tion step decreases Θ(x). The amount of allocation we augment with depends only on
the extreme points of the min function. Recall the three points we listed when defining
the amount of augmentation.

1. x(r(j))
The worst allocated edge of j becomes empty, while x(j) remains unchanged, hence
Θ1(x) decreases.

2. x̄(p)
If one of the proposal edges reaches its capacity, it stops being blocking. Since it
was the best blocking edge of its machine, Θ2(x) decreases.

3. In case of walks: x̄(m1) + x(edges dominated by jm1 at m1)
The first blocking edge on ρ, m1’s best proposal edge ceases to dominate x at m1,
hence Θ2(x) decreases.

Since the proposal and refusal pointers are monotone, no job receives a worse allocated
edge and no machine receives a better proposal edge. Having shown that Θ(x) decreases
every time when either of the augmenting procedures are called, all that remains to be
shown is that the second operation, updating H(x), does not destroy this monotonicity.
The vertex set of H(x) is fixed. In the following, we study the three subsets of E(H)
separately and show that updating them never increases either component of Θ(x).

Update R

Claim 25. During the accelerated Phase I algorithm, r(j) ∈ R moves monotonically on
j’s preference list, always pointing to a better machine.

Proof. Suppose that there is a refusal pointer that moves to a worse edge. Since r(j) is
always the worst allocated edge of j, this implies that j increased x along an edge worse
than any of its allocated edges and by definition no proposal edge may be worse than
the current refusal pointer.

With this claim we showed that any operation that shifts a refusal pointer improves
our potential function Θ(x). From this point on, we consider a setting where all refusal

78

4.5 Irrational data - a strongly polynomial algorithm

pointers are fixed. This also implies that Θ1 does not change, thus, we only concentrate
on Θ2.

Update P

If Θ2(x) increases, then there is a machine m whose best proposal edge became better.
Since the preference lists are fixed, this is only possible, if an edge that was not in P∪P ′

becomes blocking or possibly blocking, moreover, it becomes the best proposal edge of
its machine. If it becomes blocking (and not possibly blocking), then update P adds an
edge jm /∈ P ∪ P ′ to P. Blocking edges of type I have to fulfill three criteria, at least
one of them was not fulfilled before the augmentation.

1. jm became unsaturated

• One of the two possibilities for an edge to lose allocation occurs when jm ∈
ρ ∩R. Since jm is already the worst allocated edge of j, it cannot become a
blocking edge of type I.

• Even if jm /∈ ρ, it can lose allocation, but only if x(jm) was reduced by m =
m1, the starting vertex of the alternating walk. It is the only machine that
refuses allocation, and it does so only if A − x̄(m1) > 0. When the refusal
happens, x(m1) = q(m1) and m1 has no worse allocated edge than jm1. In
addition, m1 does not lose any allocation in the current step. Since q(m1) is
full with edges better than jm1, jm1 is not blocking.

2. jm became better than the worst allocated edge of j
Claim 25 shows that j’s worst allocated edge never becomes worse during Phase I.

3. jm became better than the worst allocated edge of m or m became unsaturated

• In the first case, m increased x along an edge worse than jm. This worse
edge was in P ∪ P ′, hence jm already dominated x at m or m already had
a refusal pointer. Thus, changing this property is not sufficient for jm to
become blocking.

• If m lost some allocation, then it was the last vertex on ρ and thus, it had a
refusal pointer. According to our definition of P ′, all unsaturated edges that
dominate x at their job and are incident to a refusal pointer at their machine
already belonged to P ′. They may leave this set now and be added to P, but
P ∪ P ′ remains unchanged and thus, the best proposal edge at m remains
unchanged as well.

Update P ′

Θ2(x) may also increase if an edge jm /∈ P ∪ P ′ is added to P ′ and it becomes the best
proposal edge of m. Just like above, we check the three criteria that have to be fulfilled
by edges in P ′.

1. jm became unsaturated

79

4 Paths to stable allocations

• First we consider the case when jm ∈ ρ ∩ R. But jm is then a refusal edge
and worst allocated edges of jobs are never in P ′.

• The other option is that x(jm) was reduced by m = m1. As mentioned
above, the only machine that refuses allocation is m1, the first vertex on an
alternating walk. Even if jm becomes a P ′-edge, m1 had a better proposal
edge at the beginning of the augmentation: the first edge of ρ.

2. jm became better than the worst allocated edge of j
We can again rely on Claim 25.

3. m gained a refusal edge
We supposed that set R is fixed, no refusal pointer moves.

We have investigated the effects of the update operation on Θ(x) for all three subsets
of E(H(x)). Each round of the algorithm consists of the following three steps: finding
an alternating walk, augmenting along it and then updating H(x). The first procedure
does not change Θ(x), the second strictly decreases it, and the last one never increases it.
Thus, Θ(x) changes strictly monotonically in each round. Since Θ(x) is integer-valued
and bounded, our algorithm terminates.

Running time

The helper graph H(x) has at most as many edges and vertices as G. In each iteration,
Θ(x) improves. Consider first the case when only Θ2 changes. The best proposal edge of
each machine m can move along all |δ(m)| edges of m. Since the procedure is monotone,
|E| such steps can be executed in total, for all machines. Then, Θ1 has to improve. Just
like Θ2, Θ1’s monotone behavior also allows |E| steps in total. Yet it is not possible that
both components need all |E| rounds. When a refusal pointer r(j) = jm switches to a
better edge jm′, most of the elements in vector Θ2 remain unchanged.
Suppose the last augmentation along walk ρ shifted a single refusal pointer r(j) = jm.

We investigate the change in Θ2. Clearly, Θ2 can be increased, since only lexicographic
monotonicity of Θ(x) can be shown. There are at most three special machines in G:
m, m′ and the last machine in ρ if ρ is not a single cycle. Machines not in ρ remain
unchanged. Other machines in ρ reallocate some allocation to better jobs than before.
Thus, they improve their lexicographic situation and keep their refusal edges. Machines
with the same set of refusal edges do not gain new possibly blocking edges, and machines
with a better lexicographic situation do not gain new blocking edges either. Thus, all
new edges in P ∪ P ′ must be incident to one of the three machines mentioned above.
Due to the last operation along ρ that shifted r(j), m possibly ceases to have any refusal
edge, thus, it may lose its possibly blocking edges. Regarding the last machine on ρ, it
loses allocation, and through that it may receive at most |J | − 1 new blocking edges.
These edges were all possibly blocking before, moreover, they lead back to ρ. Gaining a
refusal edge, m′ may become the end vertex of new possibly blocking edges, but there
are at most |J | − 1 of them. To summarize: when Θ1 improves in one element, Θ2 may
increase in at most one element by at most |J | − 1 < |V |.

80

4.5 Irrational data - a strongly polynomial algorithm

This argumentation shows that the number of iterations can be bounded by O(|V ||E|)
from above, because Θ(x) cannot have more different states during the execution of the
algorithm. Next, we determine how much time is needed to execute a single augmenta-
tion. Procedure FindWalk starts with choosing any machine that has a blocking edge
of type I. This can be done in O(|V |) time. Adding the best proposal edge and the
refusal pointer takes constant time, if they are stored for each vertex. Since at most one
vertex is visited twice by the walk, after O(|V |) steps ρ is chosen. Then, either of the
two augmenting procedures is called. It modifies x on at most O(|V |) edges. At last,
R,P, and P ′ are updated. As explained above, the change in those sets involves at most
O(|V |) edges.
In total, the algorithm performs O(|V ||E|) rounds, each of them needs O(|V |) time

to be computed. Thus the accelerated Phase I algorithm runs in O(|V |2|E|) time.
Our method resembles the well-known notion of rotations [49]. As mentioned in

Section 1.1, they can be used when deriving a stable solution from another, by finding
an alternating cycle of matching and non-matching edges and augmenting along them. In
our algorithm, when we are searching for augmenting cycles or walks, we use an approach
similar to rotations: jobs candidate their edges that are better than their worst positive
edge, while machines choose the best out of them. However, two differences can be
spotted right away. While rotations are always assigned to a stable solution different
from the job-optimal, our method works on unstable input. Moreover, besides cycles,
we also augment along paths and walks.

Accelerated second phase

The second phase can be accelerated in a very similar manner to the first phase. Instead
of describing this new algorithm directly and proving its correctness using the same
methods as above, we choose a simpler approach. The main idea in this subsection is
that the accelerated second phase of our algorithm is actually the accelerated first phase
of the same algorithm on a slightly modified instance. Thus, its correctness and running
time have already been proved.

At the beginning of our argumentation we make these modifications on the instance
I given at the termination of the accelerated Phase I algorithm. We show that the set
of blocking edges of type I on the modified instance I ′ and the set of blocking edges of
type II on I coincide. Then we let our accelerated Phase I algorithm run on I ′. At the
end, we argue that its output is stable on I.

Modified instance

After termination of the first phase, an allocation x0 is given so that all blocking edges
are of type II. This input of the second phase is modified in the following way. A
dummy job jd and edges between each machine and jd are added to G. The capacity
of these edges equals the maximum quota amongst all machines, and q(jd) is their sum.
While jd’s preference list can be chosen arbitrarily, the new edges are ranked worst on
the preference lists of the machines. The new graph is called G′. Not only the graph,

81

4 Paths to stable allocations

j3(1.9) j4(1)j2(1)j1(1)

m1(2.8) m2(1) m3(1)

2

2

1

2

3

1

1

2

2

11
0.8

3

Figure 4.7: Allocation x0 on I, denoted by colored edges.

j3(1.9) j4(1)j2(1)j1(1)

m1(2.8) m2(1) m3(1)

1
0.8

3

jd(4.8)

4 3 3

2

2

1

2

3

1

1

2

2

1

Figure 4.8: Allocation x′0 on I ′, denoted by colored edges and the thick gray edge jdm1.

but also the allocation x0 is slightly modified: machines under their quota assign all
their free quota to jd. In this new allocation x′0 all machines are saturated. The new
instance I ′ consists of G′, q′, c′, O′ and x′0. A example instance modification is illustrated
in Figures 4.7 and 4.8.
As mentioned above, our goal is to perform Phase I operations on I ′. In order to be

able to do so, we swap the two sides: jobs play a passive role, while machines become
the active players. Since each active vertex has a filled up quota, all blocking edges are
of type I in I ′.
Note that I ′ was constructed in such a way that – regardless of the type of blocking –

each edge blocking x also blocks x′ and vice versa. This is due to the fact that the only
difference between the two instances is that machines’ free quota appears as allocation
on their worst edge in I ′. The definition of a blocking edge does not distinguish between
those two notions. In particular, given a specific allocation x0 with no blocking edge of
type I, the set of Phase II blocking edges on I and the set of Phase I blocking edges on
I ′ trivially coincide.
Let us denote the output of the accelerated Phase I algorithm on I ′ by x′, and its

restriction to E(G) by x.

Claim 26. Allocation x is stable in I.

82

4.6 Conclusion and open problems

Proof. Suppose edge jm blocks x. On I ′, jm is unsaturated and dominates x′ at both
end vertices, hence jm blocks x′ as well. Since x′ is the output of the accelerated Phase I
algorithm on I ′, jm is of type II. Our goal is to show by induction that x′(m) = q(m)
for all machines. Thus, a contradiction is derived, because in I ′ no Phase II blocking
edge can occur.
Initially, x′(m) = q(m) for all machines. The key property of x′0 is that all unsaturated

edges that dominate x′0 at their (saturated) machine are not better than their job’s worst
edge in x′0. Otherwise, they would be blocking edges of type I for x0. Augmenting along
a blocking edge jm in x′0 can therefore never result in a refusal by the passive vertex j.
Thus, after the first round, x′(m) = q(m) still holds. Alternating walks are chosen in
such a manner that jobs increase x′ only on their best proposal edges. This guarantees
that even after the first round, if jm dominates the current allocation x′1 at m, it is not
better than j’s worst edge in x′1. From here on, induction applies. �
The running time of this phase cannot exceed the running time of the accelerated

Phase I algorithm, since the size of I ′ does not exceed the size of I significantly.
With this we finished the proof of the following result.

Theorem 4.14. For every allocation instance and given feasible allocation x, there is
a sequence of better responses that leads to a stable allocation in O(|V |2|E|) time.

4.6 Conclusion and open problems

We solved the problem of uncoordinated processes on stable allocation instances algo-
rithmically. Our first method is a deterministic better response algorithm that finds
a stable solution through executing myopic steps. In case of rational input data, the
existence of such an algorithm guarantees that random better response strategies termi-
nate with a stable solution with probability one. Analogous results are shown for best
response dynamics. We also prove that random best response strategies terminate in
expected polynomial time on correlated markets, even in the presence of irrational data.
An accelerated version of our first, better response algorithm is provided as well. For
any real-valued instance, it terminates after O(|V |2|E|) steps with a stable allocation.
We also show a counterexample for a possible acceleration for the case of best response
dynamics.
Applied to a matching instance, our best response algorithm performs the same steps

as the two-phase best response algorithm of Ackermann et al. Our better response
variant can also be interpreted as an extended version of the above mentioned method.
The only difference is that while our first phase is better response, theirs is best response.
However, this seems to be a minor difference, as their proof is also valid for a better
response first phase, and our proof still holds if only best blocking edges are chosen.
Moreover, stable allocations might be the most complex model in which this approach
brings results. The most intuitive extension of Ackermann et al.’s algorithm for stable
flows, defined by Fleiner [41], does not even result in feasible myopic changes.
On the other hand, our accelerated better response algorithm generalizes another

known method, the polynomial algorithm that finds a stable allocation. Applied di-

83

4 Paths to stable allocations

rectly to an instance with empty allocation, our accelerated Phase II performs augmen-
tations like the augmenting path algorithms of Bäıou and Balinski [8], and of Dean and
Munshi [34]. Since our accelerated Phase II is a slightly modified variant of our first
algorithm, our solution concept offers a bridge between two known methods for solving
two different problems, namely the paths to stability problem on sm instances and the
stable allocation problem, providing a solution to both of them.
Future research may involve more complex stability problems from the paths-to-

stability point of view, such as stable flows.

84

5 Unsplittable stable allocation problems

Building on the initial work of [33], we study a natural “unsplittable” variant of
the stable allocation problem, where each assigned job must be fully assigned to
a single machine. Such unsplittable bipartite assignment problems generally tend
to be NP-hard, including previously-proposed variants of the unsplittable stable
allocation problem [79]. Our main result is to show that under an alternative
model of stability, the unsplittable stable allocation problem becomes solvable in
polynomial time. Although this model is less likely to admit feasible solutions than
the model proposed in [79], we show that in the event there is no feasible solution,
our approach computes a solution of minimal total congestion (overfilling of all
machines collectively beyond their capacities). We also describe a technique for
rounding the solution of a stable allocation problem to produce “relaxed” unsplit
solutions that are only mildly infeasible, where each machine is overcongested by
at most a single job.

The results presented in this chapter are joint work with Brian C. Dean and have

been published as [25].

5.1 Introduction

Motivation. Capacitated allocation problems have been extensively studied in the al-
gorithmic literature, where typical objectives are to find a feasible assignment or one of
maximum weight. While the fractional (splittable) variants of these problems are easy
to solve in polynomial time via network flow techniques, it is NP-hard to find an unsplit
allocation of either maximum total size or of maximum weight; the former is a variant of
the multiple subset sum problem [20], and the latter is known as the multiple knapsack
problem [22].
In this chapter, we study sa in the unsplittable setting, which was shown to be NP-

hard in [79] using one natural definition for stability. We show here that by contrast, a
different and more strict notion of stability, proposed initially in [33], leads to an O(|E|)
algorithm for the unsplit problem. The tradeoff is that under this different notion of
stability, it is unlikely that feasible allocations will exist. However, we show that by
relaxing the problem to allow mildly infeasible allocations, our algorithm computes a
“relaxed” unsplit stable allocation (in which each machine is filled beyond its capacity
by at most the allocation of a single job), in which the total amount of overcongestion
across all machines is minimized (so in particular, if there is a feasible allocation with
no congestion, we will find it).
In addition to the straightforward application of scheduling jobs in a non-preemptive

fashion, a motivating application especially for the unsplittable variant of the stable
allocation problem is in assigning personnel with “two-body” constraints. For example,
in the National Resident Matching Program [108], a married pair of medical school
graduates might act as an unsplittable entity of size 2. This particular application has
been studied in substantial detail in the literature; see [14] for further reference.

85

5 Unsplittable stable allocation problems

Literature review. Through the work of several former authors [37, 95, 96], the “re-
laxed” model has become relatively popular in the context of unsplittable bipartite
assignment and unsplittable flow problems. The standard approximation algorithm
framework typically does not fit these problems, since even finding any feasible solu-
tion is usually NP-hard. Instead, authors tend to focus on pseudo-approximation results
with minimal congestion per machine or per edge. Analogous results were previously de-
veloped for unsplit stable allocation problems in [33], where an unsplit stable allocation
can be found in linear time in which each machine is overcongested by at most a single
job. The model of stability proposed in [33] is the one we further develop here, and
among all of these prior approaches (including those for standard unsplittable bipartite
assignment and flows), it seems to be the only unsplit model studied to date in which
minimization of total congestion is possible in polynomial time. Hence, there is a sub-
stantial algorithmic incentive to consider this model, even though its notion of stability
is less natural than in [79].

Contribution and structure. We review preliminary concepts and background material
in Section 5.2. Then, in Section 5.3 we present our structural and algorithmic results:
we show how to compute in O(|E|) time a job-optimal allocation that maximizes the
total size |x| of all assigned jobs, and a machine-optimal allocation that minimizes |x|.
We also show that this machine-optimal solution minimizes total congestion. In order
to produce potentially other solutions (e.g., that might be more fair to both sides), in
Section 5.4 we show also a technique for “rounding” a solution of the fractional stable
allocation problem to obtain a relaxed unsplit solution.

5.2 Preliminaries

5.2.1 Problem definition

We use the notation introduced in Chapter 4 for sa. If x(jm) ∈ {0, q(j)} for all jm ∈
E(G), we say the allocation is unsplit , since each assigned job is assigned in its entirety
to a single machine. We often forgo the use of edge capacities c(jm) when discussing
unsplit allocations, since an edge jm can simply be deleted if c(jm) < q(j). We say
that edges with positive x value are in x. If any machine m has q(m) >

∑
j∈J c(jm),

then q(m) is set to
∑

j∈J c(jm). Machines with x(m) = q(m) are saturated. Later, when
x(m) > q(m) occurs in the relaxed version of the problem, we talk about over-capacitated
machines. If any job prefers machine m to any of its allocated machines, then m is called
popular, otherwise m is unpopular. It is easy to see that all popular machines must be
saturated in any stable allocation. Note that the expression “popular’’ is not related
to the notion of popular matchings discussed in Chapter 7, it is by chance that both
concepts are named identically in the literature.
For simplicity, we introduce a “dummy” machine md with high capacity, which acts

as the last choice for every job. This lets us assume without loss of generality that an
unsplittable allocation always exists in which every job is assigned. In this context, we

86

5.2 Preliminaries

j1(1)

m1(1)

j2(2)

m2(2)

2

1

1

1

1

2

Figure 5.1: On this instance, the unique stable allocation x(j2m1) = x(j2m2) = 1 is
fractional. The colored unsplit allocation is stable according to the definition
in [79], but it is blocked by edge j2m1 according to our definition of stability.

define the size |x| of an allocation x so that jobs assigned to md do not count, since they
are in reality unassigned.
From a complexity standpoint, one of the main results of this chapter is that how we

define stability in the unsplit case seems quite important. In [79], the following natural
definition was proposed: an edge jm is blocking if j prefers m to its current partner,
and if m prefers j over q(j) units of its current allocation or unassigned quota. It was
shown in [79] that this definition makes the computation of an unsplit stable allocation
NP-hard. We therefore consider an alternative, stricter notion of stability where edge jm
is blocking if j prefers m to its current partner, and if m prefers j over any amount of its
current allocation or if it has free quota. In other words, if j would prefer to be assigned
to m over its current partner, then m must be saturated with jobs that m prefers to j. A
simple instance demonstrates the difference between these two definitions in Figure 5.1.

Problem 15. unsplit sa
Input: I = (G, q, c, O); an sa instance.
Question: Is there a stable allocation x such that x(jm) ∈ {0, q(j)} for all jm ∈ E(G)?

Aside of the integrality constraint, this definition is fully aligned with the classical
definition of a stable allocation. As in the splittable case, popular machines must there-
fore be saturated. Practice shows [87] that if a hospital is willing to hire one person in
a couple, but it has no free job opening for the partner, it will most likely make room
for both applicants. This gives sufficient practical motivation to justify our definition of
a blocking pair.
The existence of an unsplit stable allocation cannot be guaranteed. A simple instance

where the unique stable allocation is fractional is shown in Figure 5.1. Similar to the
figures in Chapter 4, the quota of each job and machine is displayed above and below
the vertex, while the preference lists are displayed on the edges.

87

5 Unsplittable stable allocation problems

5.2.2 Relaxed unsplit allocations

The downside of our alternative definition of stability is that it is unlikely to allow feasible
unsplit stable allocations to exist in most large instances. Therefore, we consider allowing
mildly-infeasible solutions where each machine can be over-capacitated by a single job
– a model popularized by previous results in the approximation algorithm literature for
standard unsplittable assignment problems [37, 95, 96], and introduced in the context
of unsplit sa by Dean et al. [33].

Definition 5.1. Function x : E(G)→ R≥0 is a relaxed unsplit allocation if the follow-
ing three properties are fulfilled:

1. x(jm) ∈ {0, q(j)} for every edge jm ∈ E(G);

2. x(j) ≤ q(j) for every job j ∈ J ;

3. for each machine m, the removal of the least preferred job assigned to m would
cause x(m) < q(m).

Our definition of stability extends readily to the relaxed setting. We say a relaxed
unsplit allocation x is stable if for every edge jm with x(jm) = 0, either j is assigned to
a machine that j prefers to m, or m’s quota is filled or exceeded with jobs that m prefers
to j. Otherwise, if edge jm with x(jm) = 0 is preferred by j to its allocated machine
and m’s quota is not filled up with better edges than jm, then jm blocks x. The model
introduced in [33] allows x(m) ≤ q(m), but we believe strict inequality is actually a
better choice – mathematically and from a modeling perspective. For example, the old
definition applied to a hospital-resident matching scenario with married couples might
cause a hospital to accept two more residents than its quota, while the new definition
would only require accepting one more resident. The results in [33] hold with either
definition.

Problem 16. relaxed unsplit sa
Input: I = (G, q, c, O); an sa instance.
Question: Is there a stable allocation x with relaxed quota constraints for machines? That
is, for each machine m, the removal of the least preferred job assigned to m would cause
x(m) < q(m) and x(jm) ∈ {0, q(j)} for all jm ∈ E(G).

Note that the relaxed unsplit model differs from the non-relaxed unsplit model with
capacities inflated by maxj∈J q(j), since stability is still defined with respect to original
capacities. It may be best to regard “capacities” here as constraints governing start time,
rather than completion time of jobs. A machine below its capacity is always willing to
launch a new job, irrespective of job size.

5.3 Machine-optimal relaxed unsplit allocations

In [33], a version of the Gale-Shapley algorithm is described to find the job-optimal
relaxed unsplit stable allocation xjopt. In this context, job-optimal means that there is

88

5.3 Machine-optimal relaxed unsplit allocations

j1(2) j2(1) j3(2)

m1(2) m2(1)

2

1

2

1

1

2

1

2

1

3

j1(2) j2(3) j3(1)

m1(1) m2(3) m3(1)

1

2

1

2

2

1

2

1

1

3

2

1

Figure 5.2: The instance on the left admits two relaxed unsplit allocations differing in
cardinality. The colored edges form a relaxed unsplit stable allocation of
size 3, while the remaining edges build another relaxed unsplit stable allo-
cation of size 5. The second example is evidence against an exact Rural
Hospitals Theorem, where m1 is empty in one relaxed unsplit stable alloca-
tion (given by the colored edges) but filled beyond its capacity in another
(given by the black edges).

no relaxed unsplit stable allocation x′ such that any job is assigned to a better machine
in x′ than in xjopt. The implementation described in [33] runs in O(|E||V | log |V |) time,
but this running time could be brought down to O(|E|). In this section, we show how
to define and compute a machine-optimal relaxed unsplit stable allocation xmopt also in
O(|E|) time, and we prove the following:

Theorem 5.2. Among all relaxed unsplit stable allocations x, |x| is maximized at x =
xjopt and minimized at x = xmopt.

One of the main challenges with computing a machine-optimal allocation is defining
machine-optimality. In sa, existence of a machine-optimal allocation follows from the
fact that all stable allocations form a distributive lattice under the standard min-min
ordering relationship introduced in [8]. Recall that the min-min criterion elects the
allocation with the lower allocation value on the worst allocated edge of m to be the
better allocation for m. However, as already mentioned in Section 4, this ordering
seems to depend crucially on the existence of a Rural Hospitals Theorem, which no
longer holds in the relaxed unsplit case, since relaxed unsplit stable allocations can
differ in cardinality, as demonstrated in Figure 5.2. The same figure shows that even an
appropriately relaxed version of the Rural Hospitals Theorem seems difficult to formulate
over relaxed instances: machines can be saturated or even over-capacitated in one relaxed
unsplit stable allocation, while being empty in another one. Nonetheless, we can still
prove a result in the spirit of the Rural Hospitals Theorem, which we discuss further in
Section 5.3.3.

Without an “exact” Rural Hospitals Theorem, comparing two allocations using the
original min-min ordering seems problematic, and indeed one can construct instances
where two relaxed unsplit stable allocations are incomparable according to this criterion

89

5 Unsplittable stable allocation problems

j1(1) j2(2) j3(2) j4(1) j5(1) j6(2) j7(1)

m1(1) m2(2) m3(2) m4(2) m5(1)

2

1

2

1

1

3

2

2

1

3

1

2

1

2

1

2

1

2

1

3

1

3

2

1

2

1

2

1

Figure 5.3: The graph shows two relaxed stable unsplit allocations (denoted by colored
and black edges, respectively) that are incomparable according to the min-
min criterion from the perspective of m3. In the black allocation, m3 receives
its first and third-choice jobs of size 3 in total, while in the colored allocation,
its second and third choice job of size 3 are assigned to it.

Algorithm 3 Reversed relaxed unsplit Gale-Shapley

x(jmd) := q(j) for all j ∈ J , x(jm) := 0 for every other jm ∈ E(G)
while ∃m : x(m) < q(m) with a non-empty preference list do

m proposes to its best job j with value q(j)
if j prefers m to its current partner then

x(jm) := q(j)
x(jm′) := 0 for ∀m′ ̸= m

end if
delete j from m’s preference list

end while

(see Figure 5.3). We therefore adopt the same natural ordering relation as in Chapter 4:
lexicographic order . Note that since jobs are always assigned to machines in an unsplit
fashion, the lexicographic and min-min relations are actually the same from the job’s
perspectives; hence, “job optimal” means the same thing under both. The lexicographic
position of the same agent in different allocations can always be compared, and we say a
relaxed stable allocation x is machine-optimal if it is at least as good for all machines as
any other relaxed stable allocation (although we still need to show that such an allocation
always exists).

5.3.1 The reversed Gale-Shapley algorithm

For sm, the Gale-Shapley algorithm can be reversed easily with women proposing in-
stead of men to obtain a woman-optimal solution. In Claims 27-29 we show that this
idea can be generalized (carefully accounting for multiple assignment and congestion
among machines) to compute a machine-optimal relaxed unsplit stable allocation. The
pseudocode for the algorithm appears as Algorithm 3.

90

5.3 Machine-optimal relaxed unsplit allocations

Claim 27. The algorithm terminates in O(|E|) time.

Proof. In each step a job is deleted from a machine’s preference list. �

Claim 28. The algorithm produces an allocation x that is a relaxed unsplit stable allo-
cation.

Proof. First, we check the three feasibility constraints of Definition 5.1 for x. Since
proposals are always made with q(j) and refusals are always full rejections, the quota
constraints of the jobs cannot be violated. Moreover, each job is assigned to exactly
one machine. Machines can be over-capacitated, but deleting the worst job from their
preference list results in an allocation under their quota. Otherwise the machine would
not have proposed along the last edge. If x is unstable, then there is an empty edge
jm blocking x. During the execution, m must have proposed to j. This offer was
rejected, because j already had a better partner in the current allocation. Since jobs
monotonically improve their position in the allocation, this leads to a contradiction. �

Claim 29. The output x is the machine-optimal relaxed unsplit stable allocation (i.e., no
machine has a better lexicographic position in any other relaxed unsplit stable allocation).

Proof. Assume that there is a relaxed unsplit stable allocation x′, where some machines
are better off than in x. To be more precise, in the symmetric difference x△x′, the
best edge incident to these machines belongs to x′. When running the reversed relaxed
unsplit Gale-Shapley algorithm, there is a step when the first such edge jm1 carries a
proposal from m1 but gets rejected. Otherwise, m1 has filled up or exceeded its quota in
x with only better edges than jm1. Let us consider only this edge jm1 first and denote
the feasible, but possibly unstable relaxed allocation produced by the algorithm so far
by x0.

When j refused jm1, it already had a partner m0 in x0, which was better than m1.
Even if there is no guarantee that jm0 ∈ x, it is certain that jm0 /∈ x′ and jm0 does
not block x′, though rankj(jm0) > rankj(jm1) for jm1 ∈ x′. It is only possible if m0

is saturated or over-capacitated in x′ with edges better than jm0. Since jm0 ∈ x0,
allocation x0 cannot contain all of these edges, otherwise m0 is congested in x0 beyond
the level required for a relaxed unsplit allocation. During the execution of the reversed
relaxed unsplit Gale-Shapley algorithm, m0 proposed along all of these edges and got
rejected by at least one of them. This edge is never considered again, it cannot enter x
later. Thus, jm1 is not the first edge in x′ \ x that was rejected in the algorithm. �
With this, we completed the constructive proof of the following theorem:

Theorem 5.3. In relaxed unsplit sa, the machine-optimal relaxed unsplit stable
allocation xmopt can be computed in O(|E|) time.

5.3.2 Properties of the job- and machine-optimal solutions

In this section we discuss structural properties of relaxed unsplit sa, related to the
Rural Hospitals Theorem and the lattice structure of sa.

91

5 Unsplittable stable allocation problems

Theorem 5.4. In relaxed unsplit sa, the job-optimal relaxed unsplit stable allo-
cation xjopt is the machine-pessimal relaxed unsplit stable allocation and vice versa, the
machine-optimal relaxed unsplit stable allocation xmopt is the job-pessimal relaxed unsplit
stable allocation.

Proof. We start with the first statement. Suppose that there is a relaxed unsplit stable
allocation x′ that is worse for some machine m than xjopt. This is only possible if m’s
best edge jm in xjopt△x′ belongs to xjopt. Since xjopt is the job-optimal solution, jm′,
j’s edge in x′ is worse than jm. But m is then saturated or over-capacitated in x′ with
better edges than jm. We assumed that all edges in x′ that are better than jm are also
in xjopt. Thus, omitting m’s worst job from xjopt leaves m at or over its quota.
The second half of the theorem can be proved similarly, using the reversed Gale-

Shapley algorithm. Assume that there is a relaxed unsplit stable allocation x′ that
assigns some jobs to worse machines than xmopt does. Let us denote the set of edges
preferred by any job to its allocated machine in x′ by E(G′). Due to our indirect
assumption, E(G′) contains some edges of xmopt. When running the reversed Gale-
Shapley algorithm in the instance, there is an edge jm ∈ E(G′) that is the first edge in
E(G′) carrying a proposal. Since j is not yet matched to a better machine, it also accepts
this offer. Even if jm /∈ xmopt, j’s edge in xmopt is at least as good as m, because jobs
always improve their position during the course of the reversed Gale-Shapley algorithm.
On the other hand, m cannot fulfill its quota in xmopt with better edges than jm, simply
because the proposal step along jm took place.

Since jm /∈ x′, but j prefers jm to its edge in x′, m is saturated or over-capacitated
with better edges than jm in x′. As observed above, not all of these edges belong
to xmopt. Let us denote one of them in x′ \xmopt by j′m. Before proposing along jm, m
submitted an offer to j′ that has been refused. The only reason for such a refusal is that
j′ has already been matched to a better machine m′. But since j′m ∈ x′, j′m′ ∈ E(G′).
This contradicts to our indirect assumption that jm is the first edge in E(G′) that carries
a proposal.

Theorem 5.2 also follows from the proof above. It is straightforward that xjopt is a
relaxed unsplit stable allocation of largest size, because no job exists that is unmatched
in xjopt, but matched in some other relaxed unsplit stable allocation. Assume there is a
relaxed unsplit stable allocation x with |x| < |xmopt|. Since we know now that |xmopt|
is the worst for every single job individually, no job can occur that is matched in xmopt,
but unmatched in some other relaxed unsplit stable allocation.
We note that although we can compute the job-optimal and machine-optimal relaxed

unsplit stable allocations, there in general does not appear to be an obvious underlying
lattice structure behind relaxed unsplit solutions. For sm or sa, computing the meet or
join of two solutions is fairly easy. In order to reach the join (meet) of x1 and x2, all
jobs choose the better (worse) edge set out of those two allocations [21]. The example in
Figure 5.4 illustrates that this property does not carry over to relaxed unsplit allocations.
Similar examples can easily be constructed to show that choosing the worse allocation
also can lead to instability.

92

5.3 Machine-optimal relaxed unsplit allocations

j1(1) j2(2) j3(1) j4(2) j5(3) j6(1) j7(2)

m1(1) m2(2) m3(2) m4(3) m5(1) m6(1)

1

3

2

1

2

1

2

2

1

3

1

2

1

2

2

1

1

2

1

2

1

3

2

1

2

1

2

1

2

1

Figure 5.4: This instance is a counterexample showing the difficulty of formulating join
and meet operations. If all jobs chose the better allocation, m3 remains
empty and j7m3 becomes blocking. If all jobs chose the worse allocation, then
m3 exceeds its quota with so much allocation that it violates the feasibility
of relaxed solutions.

Our ability to compute xmopt in O(|E|) time now gives us a linear-time method for
solving unsplit sa.

Lemma 5.5. If an instance I of relaxed unsplit sa admits an unsplit stable as-
signment x, then the machine-optimal relaxed unsplit stable assignment xmopt in the
corresponding relaxed instance I ′ is also an unsplit stable assignment in I.

Proof. Suppose the statement is false, e.g., although there is an unsplit stable assign-
ment x, xmopt is no unsplit stable assignment in I. This can be due to two reasons:
either the feasibility or the stability of xmopt is violated in I. The latter case is easier
to handle. An allocation that is feasible in both instances and stable in I ′ cannot be
blocked by any edge in I, since the set of unsaturated edges is identical in both instances.
The second case, namely if xmopt violates some feasibility constraint on I, needs more
care.
I and I ′ differ only in the constraints on the quota of machines. If xmopt is infeasible

in I, then there is a machine m for which xmopt(m1) > q(m1). Regarding the unsplit
stable assignment x, the inequality x(m1) ≤ q(m1) trivially holds. Now we use Theo-
rem 5.2 for x and xmopt that are both relaxed unsplit stable assignments in I ′. This
theorem implies that if there is a machine m1 with xmopt(m1) > x(m1), then another
machine m2 exists for which xmopt(m2) < x(m2) holds.

This machine m2 plays a crucial role in our proof. It has a lower allocation value in
the machine-optimal relaxed solution xmopt than in another relaxed stable solution x
in I. Its lexicographic position can only be better in xmopt than in x if the best edge
j2m2 in x△xmopt belongs to xmopt. Moreover, x△xmopt also contains an edge j3m2 ∈ x,
otherwise xmopt(m2) > x(m2). Naturally, rankm(j2m2) < rankm(j3m2). At this point,
we use the property that xmopt(m2) < q(m2). Since m2 has free quota in xmopt and j3m2

is not a blocking edge, j3 must be matched to a machine better than m2 in xmopt. Thus,
there is a job that comes better off in the machine-optimal (and job-pessimal) relaxed

93

5 Unsplittable stable allocation problems

solution than in another relaxed stable solution. This contradiction to Theorem 5.4
finishes our proof.

Lemma 5.5 shows that if there is an unsplit solution, it can be found in linear time by
computing the machine-optimal relaxed solution. Unfortunately, the existence of such
an unsplit assignment is not guaranteed. Our next result applies to the case when no
feasible unsplit solution can be found. In terms of congestion, with the machine-optimal
solution we come as close as possible to feasibility.

Theorem 5.6. Among all relaxed unsplit stable solutions in an instance of relaxed
unsplit sa, xmopt has the lowest total congestion.

Proof. Let Mu denote the set of machines that remain under their quota in xmopt. Note
that

∑
m/∈Mu

xmopt(m), the total allocation value on the remaining machines clearly
determines the total congestion of xmopt, given by

∑
m/∈Mu

xmopt(m)− q(m). Let x be
an arbitrary relaxed solution. Due to Theorem 5.2, the size of the allocation is minimized
at xmopt. Therefore, for any relaxed unsplit stable allocation x, the following inequalities
hold: ∑

m∈M
x(m) ≥

∑
m∈M

xmopt(m)∑
m/∈Mu

x(m) +
∑

m∈Mu

x(m) ≥
∑

m/∈Mu

xmopt(m) +
∑

m∈Mu

xmopt(m)

∑
m/∈Mu

x(m)−
∑

m/∈Mu

xmopt(m) ≥
∑

m∈Mu

xmopt(m)−
∑

m∈Mu

x(m)

∑
m/∈Mu

(x(m)− q(m))−
∑

m/∈Mu

(xmopt(m)− q(m)) ≥
∑

m∈Mu

xmopt(m)−
∑

m∈Mu

x(m)

At this point, we investigate the sign of both sides of the last inequality. The core of
our proof is to show that for each m ∈Mu and relaxed stable solution x, the inequality
xmopt(m) ≥ x(m) holds. This result, proved below in Lemma 5.7, has two benefits.
On one hand, the term on the right hand-side of the last inequality is non-negative.
Therefore, the inequality implies that the total congestion on machines in M \Mu is
minimized at xmopt. On the other hand, no machine in Mu is over-capacitated in any
relaxed solution. Thus, the total congestion is minimized at xmopt.

Our last observation in this subsection refers to the unsaturated machines.

Lemma 5.7. For every m ∈Mu and relaxed solution x, the inequality xmopt(m) ≥ x(m)
holds.

Proof. Suppose that there is a machine m ∈ Mu for which xmopt(m) < x(m) for some
relaxed solution x. Since m is unsaturated in xmopt, it is unpopular. On the other hand,
there is at least one job j for which jm ∈ x \ xmopt. As m is unpopular in xmopt, j is
allocated to a better machine in xmopt than in x. Since as established in Theorem 5.7
xmopt is the job-pessimal relaxed solution, thus we derived a contradiction.

94

5.4 Rounding algorithms

5.3.3 A variant of the Rural Hospitals Theorem

In the relaxed unsplit case, one can find counterexamples against an exact Rural Hospi-
tals Theorem (e.g., where all machines have the same amount of allocation in all relaxed
unsplit allocations) or even a weakened theorem stating that all unsaturated and all con-
gested machines have the same status in all relaxed unsplit allocations (see Figure 5.2).
Lemma 5.7 above however suggests an alternative variant of the Rural Hospitals Theo-
rem that does hold.

Theorem 5.8. A machine m that is not saturated in xmopt will not be saturated in any
relaxed unsplit stable solution, and a machine m that is over-capacitated in xjopt must
at least be saturated in every relaxed unsplit stable solution.

Proof. The first part is shown by Lemma 5.7. For the second part, consider a machine
m that is over-capacitated in xjopt but has x(m) < q(m) in some relaxed unsplit alloca-
tion x. Consider any job j in xjopt\x, and note that since xjopt is job-optimal, j prefers
m to its partner in x. Hence, jm blocks x.

As of the jobs’ side, Theorem 5.4 already guarantees that if a job is unmatched in
xjopt, then it is unmatched in all relaxed stable solutions and similarly, if it is matched
in xmopt, then it is matched in all relaxed stable solutions.

5.4 Rounding algorithms

We have seen now how to compute xjopt and xmopt in linear time. We now describe how
to find potentially other relaxed unsplit solutions by “rounding” (fractional) solutions of
sa. For example, this could provide a heuristic for generating relaxed unsplit solutions
that are more balanced in terms of fairness between the jobs and machines. Our approach
is based on augmentation around rotations, alternating cycles that are commonly used
in sm and sa to move between different stable solutions. We shortly discussed rotations
in Chapter 1.1 and advise the reader to [34, 49] for more details on them. We would also
like to point it out that the proposal-refusal machinery used in this section resembles
the techniques applied in Chapter 4, although due to the different nature of the two
problems the technical details are different.
We begin with a stable allocation x with x(j) = q(j) for every job j, thanks to the

existence of a dummy machine. For each job j that is not fully assigned to its first-
choice machine, we define its refusal edge r(j) to be the worst edge jm incident to j
with x(jm) > 0. Jobs with refusal edges also have proposal edges – namely all their
edges ranked better than r(j). Recall that a machine with incoming proposal edges is
said to be popular. We call a machine dangerous if it is over-capacitated and has zero
assignment on all its incoming proposal edges.

Claim 30. Consider a popular machine m in some fractional stable allocation x. Among
all proposal edges incoming to m, at most one has positive allocation value in x, and this
positive proposal edge is ranked worse on m’s preference list than any other edge of m
with positive allocation.

95

5 Unsplittable stable allocation problems

Proof. Let rankm(j1m) < rankm(j2m) be proposal edges such that x(j1m) and x(j2m)
are both positive. Note that j1m blocks x, since j1 and m have worse allocated edges
in x. A similar argument implies the last part of the claim. �
Our algorithm proceeds by a series of augmentations around rotations, defined as

follows. We start from a popular, non-dangerous machine m (if no such machine exists,
the algorithm terminates, having reached an unsplit solution). Since m is popular and
non-dangerous, it has incoming proposal edges with positive allocation by definition,
and due to Claim 30, it must have exactly one such edge jm. We include jm as well
as j’s refusal edge jm′ in our partial rotation, then continue building the rotation from
m′ (again finding an incoming proposal edge, etc.). We continue until we close a cycle,
visiting some machine m visited earlier (in which case we keep just the cycle as our
rotation, not the edges leading up to the cycle), or until we reach a machine m that is
unpopular or dangerous, where our rotation ends.
To enact a rotation, we increase the allocation on its proposal edges by ε and decrease

along the refusal edges by ε, where ε is chosen to be as large as possible until either (i) a
refusal edge along the rotation reaches zero allocation, or (ii) a dangerous machine at the
end of the rotation drops down to being exactly saturated from being over-capacitated,
and hence ceases to be dangerous. We call case (i) a “regular” augmentation. This
concludes the algorithm description.

Claim 31. The algorithm terminates after O(|E|) augmentations.

Proof. Jobs remain fully allocated during the whole procedure, and their lexicographic
positions never worsen. With every regular augmentation, some edge stops being a
refusal edge, and will never again be increased or serve as a proposal or refusal edge. We
can therefore have at most O(|E|) regular augmentations. Furthermore, a machine can
only become dangerous if one of its incoming refusal pointers reaches zero allocation, so
the number of newly-created dangerous machines over the entire algorithm is bounded
by |E|. Hence, the number of non-regular augmentations is at most O(|M | + |E|) =
O(|E|). �

Claim 32. The final allocation x is a feasible relaxed unsplit assignment.

Proof. Since we start with a feasible assignment and jobs never lose or gain allocation,
the quota condition on jobs cannot be violated. If there is any edge jm with 0 < x(jm) <
q(j), then j has at least two positive edges, the better one must be a positive proposal
edge. This contradicts the termination condition, and hence x is unsplit.

We now show that deleting the worst job from each machine results in an allocation
strictly below the machine’s quota. It is clearly true at the beginning, where no machine
is over-capacitated (since x starts out as a feasible stable allocation). The only case when
x(m) increases is when m is the first machine on a rotation. As such, m has a positive
proposal edge jm, which is also its worst allocated edge, due to our earlier claim. If m is
not over-capacitated when choosing the rotation, then even if x(jm) rises as high as q(j),
this increases x(m) by strictly less than q(j). Thus, deleting jm, the worst allocated
edge of m, guarantees that x(m) sinks under q(m). If m is saturated or over-capacitated

96

5.5 Conclusion and open problems

when choosing the rotation, then jm would have been the best proposal edge of m earlier,
when x(m) was not greater than q(m). Thus, assigning j entirely to m does not violate
the relaxed quota condition. Let us consider the last step as x(m) exceeded q(m). Again,
m was the starting vertex of an augmenting path, having a positive proposal edge. If
it was jm, our claim is proved. Otherwise m became over-capacitated while x(jm) was
zero, and then increased the allocation on jm. But between those two operations, m
had to become dangerous, because it switched its best proposal edge to jm. Dangerous
machines never start alternating paths. Thus, we have a contradiction to the fact that
we considered the last step when x(m) exceeded q(m). �

Claim 33. The final allocation x is stable.

Proof. Suppose some edges block x. Since we started with a stable allocation, there was
a step during the execution of the algorithm when the first edge jm became blocking.
Before this step, either j or m was saturated or over-capacitated with better edges
than jm. The change can be due to two reasons: either j gained allocation on an edge
worse than jm, or m gained allocation on an edge worse than jm. As already mentioned,
j’s lexicographic position never worsens: rankj(p) < rankj(r(j)) always holds. The
second event also cannot occur, because machines always increase the allocation value
on their best positive proposal edge. An edge jm that becomes blocking when allocation
is increased on an edge worse than it, was already a proposal edge before. Thus, m would
have chosen jm, or an edge better than jm to add it to the augmenting path. �

Since each augmentation requires O(|V |) time and there are O(|E|) augmentations,
our rounding algorithm runs in O(|E||V |) total time. If desired, dynamic tree data
structures can be used (much like in [34]) to augment in O(log |V |) time, bringing the
total time down to just O(|E| log |V |).

Although jobs improve their lexicographic position in each rotation, the output of
the algorithm is not necessarily xjopt. In fact, even xmopt can be reached via rounding.
Ideally, this approach can serve as a heuristic to generate many other relaxed unsplit
stable allocations, if run from a variety of different initial stable solutions x.

5.5 Conclusion and open problems

In this chapter, we reformulated the definition of stable unsplit allocations. Several basic
properties of sm and sa are discussed on the relaxed setting. Most of them carry over to
unsplit allocations, but we also showed examples for certain structural properties that
do not hold in the unsplittable case.
We proved that the reversed relaxed unsplit Gale-Shapley algorithm can be used to

decide in polynomial time whether a regular instance admits an unsplit stable assign-
ment. If not, relaxed solutions can be searched for. Besides constructing the job-optimal
and the machine-optimal solutions, we also showed a method that rounds any fractional
stable solution to a relaxed unsplit stable allocation.
On the other hand, we mentioned that the Rural Hospitals Theorem has no gener-

alization for unsplit assignments: relaxed stable solutions can have different cardinality

97

5 Unsplittable stable allocation problems

and the same vertex can have various lexicographic positions in them. The set of relaxed
solutions also has been investigated: the distributive lattice structure known for sm and
sa cannot be observed here. Although rotations can be used to derive an unsplit solution
from a fractional one, moving from one unsplit solution to another one is impossible just
by rotations along cycles.
This latter obstacle raises a problem about optimizing over the set of solutions. If the

instance contains cost on edges, how to find a minimum-value stable solution? Round-
ing the optimal fractional assignment does not necessarily lead to an optimal unsplit
allocation. A similar question can be addressed about fair allocations. Aside from these,
any combination with well-known notions in stability problems can be studied: ties,
restricted edges, etc. Since unsplittable flows are widely studied and stability is also
defined for network flows (as also discussed in Chapter 6), unsplittable stable flows also
could be studied extending either of the blocking definitions mentioned in this chapter.
Another straightforward generalization would be to define k-splittable allocations and
investigate their properties.

98

6 Stable flows

As most matching problems, stable matchings also can be extended to network
flows. In a stable flow instance, all vertices in a directed network express their
preferences over their incident edges. A network flow is stable if there is no group
of vertices that all could benefit from rerouting the flow along a walk.

We start this chapter with presenting the polynomial version of the Gale-Shapley

algorithm for stable flows. Then, stable flows with forced and forbidden edges are

discussed. Although a polynomial algorithm for finding a stable flow with restricted

edges can easily be derived from methods known for weighted stable allocation

problems [34], no direct combinatorial method had been discovered yet. We fill this

gap and provide a simple and fast algorithm for the problem. Finally, we study

stable multicommodity flows. A stable solution is known to exist [67], but it is

PPAD-hard to find one. We show that it is NP-complete to decide whether an

integral solution exists.

6.1 Introduction

Motivation. Stable flows can be seen as a generalization of stable marriage, many-to-
one matching, many-to-many matching and allocation problems. To the best of our
knowledge, it is the most complex generalization of sm, thus it plays a crucial role
from the theoretical point of view. Furthermore, it also has a great potential regarding
applications.
A directed network with preferences models a market situation. The vertices are

vendors dealing with some goods, while edges connecting them represent possible deals.
Through this preference list, each vendor specifies how desirable a specific trade would
be to him. Sources and sinks model producers and consumers. A feasible network flow
is stable, if there is no set of vendors such that they mutually agree to modify the flow in
the same manner. A blocking walk represents a set of vendors with a set of possible deals
so that all of these vendors would benefit from rerouting some flow along the blocking
walk.

Literature review. The notion of stability was extended to so-called “vertical networks”
by Ostrovsky in 2008 [82]. Even though the author proves the existence of a stable
solution and presents an extension of the Gale-Shapley algorithm, his model is restricted
to unit-capacity acyclic graphs. Stable flows in the more general setting were defined by
Fleiner [41], who reduced the stable flows problem to sa. He translated the existence
of stable solutions, the Rural Hospitals Theorem and the lattice structure from sa to
stable flows. In Section 6.2 we elaborate on these results.
The best currently known computation time of a stable flow is O(|E| log |V |) on a

network with vertex set V and edge set E. This bound is due to Fleiner’s reduction to
sa and its fastest solution described by Dean and Munshi [34]. Since the reduction takes
O(|V |) time and does not change the instance size significantly, furthermore, weighted sa

99

6 Stable flows

can be solved in O(|E|2 log |V |) time [34], the same holds for the maximum weight stable
flow problem. The Gale-Shapley algorithm can also be extended for stable flows [28].
Stable flows have also been defined for more complex types of network flows, such as
flows over time [28] and multicommodity flows [67].

Our contribution and structure. In this chapter we discuss three problems defined on
stable flow instances of different complexity. In Section 6.3 we present a polynomial ver-
sion of the Gale-Shapley algorithm for stable flows. We use the proposal-refusal pointer
machinery known from sa to accelerate the pseudo-polynomial Gale-Shapley algorithm.
Then, in Section 6.4 stable flows with forced and forbidden edges are discussed. We pro-
vide a simple combinatorial algorithm to find a flow fulfilling all constraints on restricted
edges and also discuss the algorithm in the sm case. Finally, in Section 6.5 we study
stable multicommodity flows. There, a stable solution is known to exist [67], but it is
PPAD-hard to find one. We reduce 3-sat to the integral stable multicommodity flow
problem and show that it is NP-complete to decide whether an integral solution exists
even if the network in the input has integral capacities only.

6.2 Preliminaries

A network (D, c) consists of a directed graph D = (V,E) and a capacity function c :
E(D)→ R≥0 on its edges. The vertex set of D is divided into two disjoint subsets: the
set of terminals S and the set of non-terminals V (D) \ S.

Definition 6.1 (flow). A function f : E(D) → R≥0 is a flow if it fulfills both of the
following requirements:

1. capacity constraints: f(uv) ≤ c(uv) for every uv ∈ E(D);

2. flow conservation:
∑

uv∈E(D) f(uv) =
∑

vw∈E(D) f(vw) for all v ∈ V (D) \ S.

A stable flow instance is a triple I = (D, c,O). It comprises a network (D, c) and
O, the preference ordering of vertices on their incident edges. Each non-terminal vertex
ranks its incoming and also its outgoing edges strictly and separately. Similar to the
previous models, if v prefers edge vw to vz, then we write rankv(vw) < rankv(vz)
or vw >v vz. Terminals do not rank their edges, because their preferences are irrelevant
with respect to the following definition.

Definition 6.2 (blocking walk, stable flow). A blocking walk of flow f is a directed
walk ρ = ⟨v1, v2, ..., vk⟩ such that all of the following properties hold:

1. f(vivi+1) < c(vivi+1), for each edge vivi+1, i = 1, ..., k − 1;

2. v1 ∈ S or there is an edge v1u such that f(v1u) > 0 and v1v2 >v1 v1u;

3. vk ∈ S or there is an edge wvk such that f(wvk) > 0 and vk−1vk >vk wvk.

A flow is stable, if there is no blocking walk in the graph.

100

6.2 Preliminaries

s v

u

t
1

1

22

1

1
s vin vout

uinuout

t
1

20

02

03

30

2

1 1

2
1

Figure 6.1: Substituting each non-terminal vertex by two parallel edges, putting them
to the top and to the bottom of the original lists of incoming and outgoing
edges. Edges in both instances have capacity 1. The colored edges mark
the vendor-optimal solution. The allocation corresponding to the customer-
optimal flow uses the other two added edges.

Walks fulfilling point 2 are said to dominate f at start, while walks fulfilling point 3
dominate f at the end. We can say that a walk blocks f if it dominates f at both ends.

Problem 17. sf
Input: I = (D, c,O); a directed network (D, c) and O, the preference ordering of vertices.
Question: Is there a flow f so that no walk blocks f?

Theorem 6.3 (Fleiner [41]). sf always has a stable solution and it can be found in
polynomial time.

Fleiner’s reduction to sa is based on splitting each non-terminal vertex v to vin and
vout, and connecting them by two parallel edges, as shown in Figure 6.1. The two added
edges become the first and last ranked edges of vin, and the last and first ranked edges
of vout, respectively. Their capacity, the quota of vin and vout are the highest amount of
flow that can pass through v. Since we are working on an sa instance, the edges lose
their orientation given in the sf instance. Fleiner shows that stable allocations guarantee
flow conservation at non-terminal vertices.
Due to the transformation, the lattice structure of stable allocations carries over

to flows; job- and machine-optimal stable allocations are realized as vendor-optimal
and the customer-optimal stable flows. Nonetheless, the hidden allocation edges – be-
tween vin and vout – introduce some counterintuitive properties. In Figure 6.1, the
two extreme points of the lattice, the vendor-optimal and the customer-optimal stable
flows are identical: f(sv) = f(vt) = 1. The third stable flow placed between them in
the lattice is a better solution lexicographically and also in the Pareto-optimal sense:
f(sv) = f(vt) = f(vu) = f(uv) = 1. In the allocation instance, it corresponds to the
allocation between the two extreme points. The lattice operations meet and join are
defined for sa using the min-min criterion. When building the join of two allocations,
each job chooses its position in the allocation that is better for it according to the min-
min criterion. It was shown that the resulting allocation is stable [8]. The meet works
analogously, with jobs choosing their allocation edges in the worse allocation. These two
operations carry over to sf, but due to the hidden allocation edges, the choices of the
vertices are a lot more complex.

101

6 Stable flows

Besides these results, Fleiner also extended the Rural Hospitals Theorem to flows,
which will be used later in our proofs.

Theorem 6.4 (Fleiner [41]). For a fixed sf instance, each edge incident to a terminal
vertex has the same value in every stable flow.

It is necessary to discuss some technical details mainly regarding notation.

• The only characterizing property of a terminal vertex is that flow conservation
does not necessarily hold for this vertex. The terms source and sink are often
used in the literature. We do not assign distinguished roles to terminals with only
outgoing or only incoming edges, but splitting each s ∈ S to a source sout and a
sink sin does not interfere with any of the previous or our results. Unless otherwise
stated, we assume that terminal vertices are split in such a way and S = Sin∪Sout.
Introducing a super-source and a super-sink would also be possible, but it would
affect the usage of Theorem 6.4, so we forgo that.

• Another technical detail is that in our setting the network (D, c) may contain paral-
lel edges and loops. These edges can be split by a dummy vertex without changing
any relevant property of the network. Formally, the number of vertices (with only
one incoming and one outgoing edge) can reach O(|E|) after the change. We as-
sume that all loops and parallel edges have been split in that way in our instances,
because this technical change simplifies notation when it comes to denoting walks
by the ordered list of vertices appearing in the walk. We would like to emphasize
though that all algorithms and proofs presented here carry over for the case with
loops and parallel edges without any essential modification.

• There is no difference between a vertex setting up a single list of all of its incident
edges – as originally defined by Fleiner – or the same vertex keeping two separate
lists: one on the incoming and one on the outgoing edges. The rank of an incoming
and an outgoing edge are never compared to one another.

• We also emphasize that we do not interpret the directed edge uv as edge vu with
f(vu) = −f(uv), as it is common when dealing with maximum flow problems, due
to the notion of residual networks. When talking about edge uv, we mean the edge
directed from u to v.

Even though any unsaturated terminal-terminal walk blocks a flow, the size of the
flow |f | of stable flows can be much smaller than the size of some maximum flows in
the network. Flows with no unsaturated terminal-terminal paths are maximal flows.
We know that every stable flow is maximal and it is folklore that the ratio of the
size of maximal and maximum flows can be of O(|E|). As the instance in Figure 6.2
demonstrates, this ratio can also be achieved by stable and maximum flows in a graph.

102

6.3 A polynomial algorithm for stable flows

s v1 v2 v3 v4 v5 v6 t
1 1 1 1 1 1 1 1 1 1 1 1

2

2
2

2
2

2

Figure 6.2: The maximum flow (marked by colored edges) has value 3, while the unique
stable flow is of value 1 and is sent along the path ⟨s, v1, v2, ..., t⟩. It is easy
to see that this instance can be extended to demonstrate ratio Ω(|E|).

6.3 A polynomial algorithm for stable flows

6.3.1 Known algorithms for stable flows

As mentioned in Section 6.1, the best currently known computation time of a stable flow
is O(|E| log |V |), due to Fleiner’s reduction to sa. The by far most common solution
method for stability problems, the Gale-Shapley algorithm, can also be extended to
sf [28]. At start, all terminal vertices s ∈ S send c(sv) flow on all outgoing edges sv.
The vertices that have received flow, gain some overflow : the amount of excess flow
they still need to forward or reject, if needed. Each vertex v with positive overflow now
decides whether it is able to forward the flow on its outgoing edges. If so, v passes on as
much flow as it can along its outgoing edges, in the order of its preferences. The rest of
the overflow is then refused along the worst incoming edges of v, sending back overflow
to the vertex making the offer. Thus v reaches 0 overflow. In each step of the algorithm,
vertices with positive overflow submit offers along their best edges, and receivers accept
or refuse them as long as there is any overflow at non-terminal vertices.
In [28], two variants of this algorithm are presented: a simultaneous version with col-

lective proposal and refusal rounds, and a preflow-push variant, where a single proposal
is immediately accepted and forwarded or rejected. In this latter version, one terminal is
activated at a time to send off flow, until the overflow becomes 0, then the next terminal
becomes active and so on. The two variants resemble the characteristics of breath-first
search and depth-first search, respectively. Their output is the same stable flow.
Note that the Gale-Shapley algorithm runs in pseudo-polynomial time already for sa

instances, and the above mentioned extension to sf also requires pseudo-polynomial
time to terminate. Here we present a polynomial time algorithm to produce a stable

103

6 Stable flows

flow. Our method is based on the augmenting path algorithm of Bäıou and Balinski [7]
and Dean and Munshi [34]. The main idea is to introduce proposal and refusal pointers
to keep track of possible Gale-Shapley steps and execute them in bulk. Note that in
Section 4.5 we used a similar approach to speed up the better-response algorithm on
uncoordinated allocation instances.

6.3.2 Our algorithm

We work in a helper graph H(f) and associate a function x : E(H(f))→ R≥0 with the
current flow f . The set of vertices V (D) remains intact in H(f). The edges of H(f)
are the current proposal and refusal pointers as defined below. The main idea of the
algorithm is to augment along walks of proposal and refusal pointers, thus executing
several Gale-Shapley steps simultaneously.
At start, each vertex v ∈ V (D) \ S is assigned a single proposal pointer p(v) ∈ E(D),

pointing to v’s first choice outgoing edge. During the course of our algorithm, p(v)
moves towards the bottom of v’s preference list on its outgoing edges. Once it reaches
the last element and this edge becomes saturated, it turns into a refusal pointer. The
first refusal edge is the worst incoming edge of v. From this point on, the refusal pointer
r(v) ∈ E(D) takes a step upwards on v’s preference list on incoming edges.
Terminal vertices add all their outgoing edges to the set of proposal edges. When such

a proposal edge is fully refused, the terminal vertex does not get refusal edges, because
terminal vertices have no incentive to refuse any flow.
While proposal edges preserve their orientation in H(f), refusal edges are represented

as backward edges. Due to this, each non-terminal vertex has at most one outgoing edge
in H(f), but it can have several incoming edges. If v has a proposal edge or v ∈ Sin,
we say that v ∈ P , otherwise v ∈ R. Our algorithm performs augmenting steps along
walks of proposal and refusal edges, always starting with a proposal edge. In order to
specify the amount of flow we augment with, we allocate x values to each pointer, that
is, capacities to each edge in H(f). We define x in the following way.

x(p(v)) = c(p(v))− f(p(v))

x(r(v)) = f(r(v))

Pointers p and r step further on the preference lists in two cases. Firstly, if x(p(v)), or
x(r(v)), respectively, reaches 0, then the pointer leaves the current edge and is shifted
to the next edge as described above. In addition, any edge that has become a refusal
pointer at any point cannot be a proposal pointer of its starting vertex, as the proposal
pointer immediately steps further in such cases.

In one step of the algorithm a walk starting with a proposal edge at a terminal vertex
is chosen. Since each vertex has at most one outgoing pointer in H(f), this walk can
be of two types: it is either a path between two terminal vertices or a union of a path
and a cycle: it ends in one of its already listed vertices. We augment along the entire
path, or, in the second case, along the cycle with the smallest x capacity along it. After
this augmentation the pointers have to be updated, because at least one of them moves
further.

104

6.3 A polynomial algorithm for stable flows

The process terminates when there is no walk to augment along. Since the pointers
are monotone and each augmentation moves at least one pointer, this point is reached
in O(|E|) rounds. In each round we need to find a walk to augment along, compute the
lowest x value along it and then update the pointers. This can be done in O(|V |) time,
although it is highly likely that sophisticated data structures allow one to implement
these steps in O(log |V |) time in the same manner as for sa.

Theorem 6.5. The output of the algorithm f is a stable flow.

Proof. We start our proof with the following observations that are immediate conse-
quences of the monotonicity of p and r.

Observation 1. If f(uv1) < c(uv1) and f(uv2) > 0 for some uv1 >u uv2, then p(u) has
passed through uv1 and was rejected by v1.

Observation 2. If f(v1u) < c(v1u) and f(v2u) > 0 for some v1u >u v2u, then r(u) has
not reached v1u and thus the reason for f(v1u) < c(v1u) is that v1 never proposed along
v1u with c(v1u).

Assume there is a walk ρ = ⟨v1, v2, . . . , vk⟩ blocking f . Due to point 2 in Definition 6.2,
either v1 ∈ S or v1v2 >v1 v1u for some v1u ∈ E(D) with f(v1u) > 0, thus the conditions
of Observation 1 are fulfilled. Since v1 ∈ S or p(v1) passed through the unsaturated v1v2,
flow along v1v2 was rejected by v2. Therefore, v2 ∈ R. If ρ = ⟨v1, v2⟩, then v2 rejected
a better edge than its worst edge with positive flow on it, which is a contradiction.
Similarly, if ρ = ⟨v1, v2, v3⟩ and we already know that v2 ∈ R, then v2 must have
proposed along v2v3, but got rejected by v3, even though v3 has a worse edge with
positive flow value. For cases k ≥ 4 we will now show that there is a saturated edge
along ρ.

Claim 34. Along ρ there is at least one edge vivi+1 with vi ∈ R and vi+1 ∈ P ∪ S, for
some 1 ≤ i ≤ k − 1.

Proof. We already know that v2 ∈ R and if vk ∈ P ∪ S, we are done. Consider now
vk ∈ R. According to point 3 in Definition 6.2, either vk ∈ S or vk−1vk >vk uvk for some
uvk ∈ E(D) with f(uvk) > 0. In the second case, the conditions of Observation 2 are
fulfilled; thus vk−1 has never proposed along vk−1vk with c(vk−1vk), that is, vk−1 ∈ P .
To summarize this, there is an edge along ρ with vi ∈ R and vi+1 ∈ P . �

Claim 35. For every uv ∈ E with u ∈ R and v ∈ P ∪ S, f(uv) = c(uv).

Proof. Assume that f(uv) < c(uv) for some uv with u ∈ R and v ∈ P ∪S. Since u ∈ R,
u made a proposal with c(uv) along uv during the course of the algorithm. This proposal
must have been rejected by v, because f(uv) < c(uv). Then v ∈ R as well. �

105

6 Stable flows

6.4 Stable flows with restricted edges

In this section we translate the notion of restricted edges (introduced in Chapter 2) to
sf. While we discussed mainly approximation concepts for sm and sr, here we present
a direct algorithm to solve sf with restricted edges.
Restricted edges in sf can be motivated similarly as in sm and sr. If a certain deal is

for some reason particularly important, or to the contrary, not wished by the majority
to be realized, but the vendors participating in the deal are free to act according to their
will, stable flows with restricted edges correspond to solutions acceptable for all market
participants.
In sf, where edges have capacities, the notion of a restricted edge as known from

Chapter 2 requires revision. We need to model more complex constraints than in sm,
such as a stable flow being acceptable only if its flow value is between two given values. A
lower capacity function ℓ : E(D)→ R≥0 and an upper capacity function u : E(D)→ R≥0

are introduced.

Problem 18. sf restricted
Input: I = (D, c,O, ℓ, u); an sf instance (D, c,O), a lower capacity function ℓ : E(D)→
R≥0 and an upper capacity function u : E(D)→ R≥0.
Question: Is there a stable flow f so that ℓ(uv) ≤ f(uv) ≤ u(uv) for all uv ∈ E(D)?

If u(uv) = c(uv) for all uv ∈ E(D), then we call the problem sf forced, and anal-
ogous, if ℓ(uv) = 0 for all uv ∈ E(D), then we talk about sf forbidden. Note that
the introduced upper capacity u is not equivalent to decreasing c(uv), because blocking
walks can use uv even if f(uv) = u(uv) < c(uv) holds.

If ℓ(uv) > u(uv) for some uv ∈ E(D), then sf restricted trivially has no solution.
Otherwise, we execute a small technical change for the sake of simpler proofs later. As
shown in Figure 6.3, we substitute each edge uv ∈ E(D) with three parallel paths (to
avoid parallel edges): ⟨u, x, v⟩, ⟨u, y, v⟩ and ⟨u, z, v⟩. While uy and yv take over the rank
of uv, ux and xv are ranked just above, uz and zv are ranked just below uy and yv.
The capacities of the introduced edges are as follows.

ℓ(ux) = ℓ(xv) = u(ux) = u(xv) = c(ux) = c(xv) = ℓ(uv)

ℓ(uy) = ℓ(yv) = 0

u(uy) = u(yv) = c(uy) = c(yv) = u(uv)− ℓ(uv)

ℓ(uz) = ℓ(zv) = u(uz) = u(zv) = 0

c(uz) = c(zv) = c(uv)− u(uv)

In words, this splitting is substituting an edge uv with lower and upper capacities by
three paths: the first path ⟨u, x, v⟩ forcing ℓ(uv) amount of flow, the last path ⟨u, z, v⟩
forbidding u(uv) amount of flow and the middle path ⟨u, y, v⟩ being an unrestricted
path. It is straightforward to see that the solutions of sf restricted on the original
instance are in one-to-one correspondence with the solutions of sf restricted on the
modified instance and the input size is increased by at most a constant factor. From

106

6.4 Stable flows with restricted edges

u v
a b u v

x

y

z

a− 0.5
a

a+ 0.5

b− 0.5
b

b+ 0.5

Figure 6.3: Splitting an edge with lower and upper capacities. Due to the preferences and
capacities defined on the modified instance, the first ℓ(uv) units of flow will
saturate ⟨u, x, v⟩, then, the coming u(uv) − ℓ(uv) units of flow will saturate
⟨u, y, v⟩, and the remaining c(uv)− u(uv) units of flow will use ⟨u, z, v⟩.

this point on we assume that the input is given so that ℓ(uv), u(uv) ∈ {0, c(uv)} for
all uv ∈ E(D). This also allows us to use identical notation to the one in Chapter 2, we
use Q = {uv ∈ E|ℓ(uv) = c(uv)} and P = {uv ∈ E|u(uv) = 0}.

Here we describe a polynomial algorithm that finds a stable flow with forced and
forbidden edges or proves its nonexistence. We show that forced and forbidden edges can
be handled with the help of reductions to unrestricted sf. We would like to emphasize
that it is rather straightforward to see that sf restricted can be solved by transforming
the sf restricted instance first into a weighted sf, and then into a weighted sa
instance, both solvable in O(|E|2 log |V |) time [34]. The advantages of our method are
that it can be applied directly to the sf restricted instance and it also gives us
insights to solving sr restricted directly, as pointed out at the end of Sections 6.4.1
and 6.4.2. Moreover, our running time is only O(|E| log |V |). The coming two sections
are organized in the same manner: first, the case with a single special edge is studied,
then the solution for the general case is described.

6.4.1 Forced edges

A single forced edge

We are given an sf forced instance with Q = {uv}. We modify graph D to derive a
helper graph Dst. This modification consists of deleting the forced edge uv and intro-
ducing two new edges to substitute it. One of them starts at a new terminal vertex s
and ends at v, the other edge starts at u and ends at a new terminal t. They both have
capacity c(uv) and take over uv’s rank on u’s and on v’s preference lists, as shown in
Figure 6.4.

Lemma 6.6. There is a stable flow f in D with f(uv) = c(uv) if and only if there is a
stable flow fst in Dst with fst(sv) = fst(ut) = c(sv) = c(ut).

Proof. Assume first that there is a stable flow f in D with f(uv) = c(uv). The stable
flow in Dst is constructed by copying f to the new graph and replacing f(uv) = c(uv)
by fst(sv) = fst(ut) = f(uv) = c(sv) = c(ut). Comparing the dominance situation at

107

6 Stable flows

u v

s

u v

t

ranku(uv) rankv(uv)

rankv(uv)ranku(uv)

Figure 6.4: Substituting forced edge uv by edges sv and ut in Dst.

vertices, it is straightforward that there is no blocking walk to fst that did not block f ,
because the unsaturated edges are exactly the same in both flows.
To show the opposite direction, suppose that there is a stable flow fst in Dst with

fst(sv) = fst(ut) = c(sv) = c(ut). If fst(sv) = fst(ut), then feasibility is kept while
replacing sv and ut by uv and setting f(uv) to fst(sv). Just as before, the dominance
situation remains unchanged.

Recall Theorem 6.4: testing whether a stable flow exists with specific values on edges
incident to terminals can be done in polynomial time. It is sufficient to find any stable
flow, because the flow value on sv and ut edges is the same for all stable flows. Lemma 6.6
together with Theorem 6.4 guarantees that sf forced with |Q| = 1 can be solved simply
by computing any stable flow in Dst in O(|E| log |V |) time.

General case

Being able to handle a single forced edge we are ready to consider the case |Q| ≥ 2.
Substituting more than one forced edge in a manner described above can be done inde-
pendently, without the forced edges impacting each other. Thus, introducing terminal
vertices s and t, deleting all edges in Q and substituting each one of them by two edges,
one from s and one to t results in a classical stable flow instance on Dst. For this
instance, the following theorem holds:

Theorem 6.7. There is a stable flow f in D with f(uv) = c(uv) for all uv ∈ Q if
and only if there is a stable flow fst in Dst with fst(sv) = fst(ut) = c(sv) = c(ut) for
each uv ∈ Q.

Just as in the |Q| = 1 case, due to Theorem 6.4, it is enough to compute any stable
flow in Dst to solve sf forced. Thus, sf forced can be solved in O(|E| log |V |) time.
Our results provide a fairly simple method for sm and sr with forced edges, because

the Rural Hospitals Theorem holds for those two cases as well. After deleting each forced
edge uw ∈ Q from the graph, we add uws and utw edges to each of the pairs. They
take over the rank of uw. Unlike in sf, here we need to introduce a separate dummy
vertex to each forced edge, simply due to the matching constraints. There is a stable
matching containing all forced edges if and only if an arbitrary stable matching covers all
of these new vertices ws and ut. The running time of this algorithm is O(|E|), since it is
sufficient to construct a single stable solution in an instance with at most 2|V | vertices.

108

6.4 Stable flows with restricted edges

u v

s

u v

t

rankv(uv)− 0.5

rankv(uv)

ranku(uv)− 0.5

ranku(uv)

Figure 6.5: Adding edges sv in Ds and ut in Dt to forbidden edge uv.

More vertices cannot occur, because in sm and sr more than one forced edge incident
to a vertex immediately implies infeasibility.

6.4.2 Forbidden edges

In order to handle sf forbidden, we present here an argumentation of the same struc-
ture as in the previous section. First, the problem of stable flows with a single forbidden
edge is solved and then an algorithm for the general case is described.

A single forbidden edge

Assume that P = {uv}. First we present two modified instances that will come handy
when solving sf forbidden. The first construction produces graph Ds, by adding a
terminal vertex s to V (D) and an edge sv to E(D). We set c(sv) to an arbitrary positive
number. The rank of sv on v’s preference list is better than the rank of uv, but it is
worse than all edges better than uv in D. The second construction is similar to the first
one. Graph Dt differs from D in one terminal vertex t and an edge ut. The capacity of
ut is positive and ut is right before uv on u’s preference list. Both graphs are illustrated
in Figure 6.5.
In the following, we characterize sf forbidden instances with the help of Ds and Dt.

Our claim is that sf forbidden in D has a solution if and only if there is a stable flow
fs in Ds with fs(sv) = 0 or there is a stable flow ft in Dt with ft(ut) = 0. The latter
existence problem can be solved easily in polynomial time, since all stable flows have the
same value on edges incident to terminal vertices, as Theorem 6.4 states.

Lemma 6.8. There is a stable flow f in D with f(uv) = 0 if and only if at least one of
the following holds:

Property 1: there is a stable flow fs in Ds with fs(sv) = 0 or

Property 2: there is a stable flow ft in Dt with ft(ut) = 0.

Proof. Assume first that there is a stable flow f in D with f(uv) = 0. Since f is stable
and uv is unsaturated, every unsaturated walk passing through uv dominates the flow
on at most one end. Depending on which end it is, we will construct flow fs or ft in
either of the modified graphs.

109

6 Stable flows

Suppose there is no unsaturated walk containing uv that dominates f at its end. In
this case, Ds is chosen: fs = f on all edges, except fs(sv) = 0. Since sv is the only edge
that can dominate fs but does not dominate f , all walks that possibly block fs must
contain sv. The edge sv does not block fs, because we assumed that no unsaturated
walk ending at v dominates f at v, not even uv. Thus v has no incoming edge with
positive flow value that is worse than uv (or, equivalently sv). Moreover, since there is
no unsaturated walk starting at v that dominates f (and fs) at its end, fs is stable.
In the remaining case, when there is no unsaturated walk that dominates f at its

beginning, ft in Dt is constructed. Similarly as above, ft = 0 on ut and ft = f on
all other edges. If there is a blocking walk to ft, it must pass through ut. But our
assumption implies that u’s worst outgoing edge with positive f -value is better than uv
and that there is no dominating walk ending at u. Thus, neither ut nor any other walk
can block ft.
Now we show the opposite direction. Suppose Property 1 is fulfilled. Since fs(sv)=0

and sv dominates uv, fs(uv) must be 0 for all stable flows. We construct f from fs
simply by omitting fs(sv). For this f , the equality f(uv) = 0 holds. Moreover, f is
stable, since no edge has less flow than in fs and no edge became dominant to f that
did not dominate fs. An analogous argumentation holds for the case of Property 2.

General case

The method described above solves sf forbidden with |P | = 1 in O(|E| log |V |) time.
However, if |P | > 1 it is not straightforward how to find sv or ut edges to all forbidden
edges. Applying our method greedily for each forbidden edge does not lead to correct
results, since the steps can impact each other. An immediate consequence of Lemma 6.8
is that if there is a stable flow in the network with forbidden edges, we can add an
sv or a ut edge to each of them so that f(sv) = f(ut) = 0 for all of them. However,
finding it with the same procedure may require 2|P | steps. In the following, we outline
a polynomial algorithm that solves sf forbidden.
We start with two rather straightforward observations that we will refer to several

times later. The first one essentially says that deleting edges not used by stable flows
from the network cannot create new blocking walks.

Observation 3. If f(uv) = 0 for an edge uv ∈ E(D) and stable flow f in D, then f
remains stable in D \ uv as well.

Another key observation is that during the execution of the Gale-Shapley algorithm,
adding more edges from sources to the graph cannot result in more flow on edges already
coming from terminals or in less flow on edges running to terminals.

Observation 4. Let f denote the output of the Gale-Shapley algorithm executed on
I = (D, c,O), where s′v′ /∈ E(D). For all stable flows f ′ in I ′ = (D′ = D ∪ s′v′, c′, O)
the inequalities f(sv) ≥ f ′(sv) and f(vs) ≤ f ′(vs) hold for every sv, vs ∈ E(D) and
s ∈ S.

110

6.4 Stable flows with restricted edges

Proof. Since the order of proposals in the Gale-Shapley algorithm in D′ does not change
the output, we can first find the stable flow in D and then call propose on v′. The
proposal-refusal steps started from v′ can never increase f(sv), because s is not an
active terminal any more and they cannot decrease any f(vs), because terminal vertices
do not refuse already existing flow.

Note that Observation 4 is in general true for any stable flow, not only the output of
the Gale-Shapley algorithm. These two basic observations come handy when analyzing
the output of the following algorithm for sf forbidden.
At start, we fix P0 = P and test whether Property 1 in Lemma 6.8 is fulfilled for

edges in P0. To that end, we add sv to all uv ∈ P0 and find a stable flow. We say that
uv fails the first test if f(sv) > 0 for stable flows. We do the same with Property 2 in
Lemma 6.8: after adding ut to all uv ∈ P0 to the original graph D, we find a stable
flow. Forbidden edges failing the first test are taken out from P0 and placed into set
P1, while edges failing the second test are moved to P2. If an edge fails both tests, then
we terminate the algorithm claiming that there is no stable flow avoiding all forbidden
edges. Otherwise, at the end of the first round, we check stable flows in the new network
D, extended with sv edges for all uv ∈ P1 and ut edges for all uv ∈ P2. If they leave all
added edges empty (with flow value 0), we proceed to round 2, otherwise no stable flow
with forbidden edges exist.
When continuing testing, we require for edges already added to P1 and P2 that their

sv and ut edges are empty in stable flows. We start testing the remaining forbidden
edges in P0. Note that an edge that passed both tests in the previous round might fail
them, now that some edges were put in P1 or P2. As in the first round, edges failing
exactly one test are put into the corresponding set, and stable flows in the extended
network are checked.
The algorithm terminates if there is no edge in P0 failing any test. This includes

the case of P0 becoming empty. In each round, three stable flows are computed in
O(|E| log |V |) time. The number of rounds cannot exceed |P |, because if the network
is not changed in a round, then the algorithm terminates. Thus, our running time is
O(|P ||E| log |V |).
Before showing how to produce a stable flow from sets P0, P1 and P2, we justify that

if our algorithm outputs that there is no solution for sf forbidden, then indeed no
stable flow avoids all forbidden edges. Such an output occurs in two cases.

• If both tests fail for an edge uv.

• If after fixing sets P1 and P2, stable flows do not avoid all added edges.

In the following lemma we will show that failing a test for sv means that the only chance
for the existence a stable flow avoiding uv is adding ut to uv and vice versa. Thus, if
either of the two cases above appear, no stable flow avoids uv.

Lemma 6.9. If a test fails for some sv (or ut, respectively) edge added to uv ∈ E(D),
then no stable flow exists that avoids all forbidden edges and also avoids sv (or ut,
respectively) in D ∪ sv (or D ∪ ut, respectively).

111

6 Stable flows

Proof. Assume first that an edge uv fails the first test in a round, when sv edges are
added to D. Assume inductively that the edges already fixed in P1 and P2 must have
an sv edge or ut edge, respectively, added to reach a stable flow avoiding them. Due
to Observation 3, applied for added sv edges with f(sv) = 0 and Observation 4 applied
for added sv edges with f(sv) > 0, the test would have failed even if the other sv edges
added in this round had not been present in the graph. Thus, there is no stable flow
avoiding the edges already in P1 ∪ P2 and avoiding sv as well. The proof is analogous
for the case of a test failing for some ut edge.

Now we show that if the algorithm has not outputted that no stable flow avoiding
all forbidden edges exists, then there is indeed one and it is straightforward to output.
When this phase terminates, P can be partitioned into three disjoint sets: P0, P1 and P2.
The following holds for each u0v0 ∈ P0: in the graph extended with the sv edges of all
edges in P1 and with the ut edges of all edges in P2, there is a stable flow f so that
u0v0 ∈ P0 is not part of any unsaturated walk dominating f at start and there is a stable
flow f ′ so that u0v0 ∈ P0 is not part of any unsaturated walk dominating f ′ at the end.
We claim that either adding a ut edge to all vertices in P0 or adding an sv edge to all

of them both yield graphs with a stable flow leaving all added edges empty. This is due
to the join and meet operations defined on the lattice of stable flows. We demonstrate
here with the help of the transformed sa instance how the join is built. When the testing
phase halts, there is a stable flow in D for each u0v0 ∈ P0 so that

1. f(u′v) = 0 for every uv ∈ P1 and for all edges u′v ∈ E(D) with u′v <v uv;

2. f(uv′) = 0 for every uv ∈ P2 and for all edges uv′ ∈ E(D) with uv′ <u uv;

3. f(u′v0) = 0 for all edges u′v0 ∈ E(D) with u′v0 ≤v0 uv0.

Note that these hold for stable flows in D, not just in extended networks Ds or Dt.
If we take the join of these stable flows for each u0v0 in P0, it will again be a stable
flow. When constructing the join, each vertex chooses his position regarding its incoming
edges in a flow that is best for it, as defined in [41]. It is easier to follow these choices
on the sa instance corresponding to the sf instance. For forbidden edges in P1 and
P2, none of these stable flows uses them, thus, the join will also avoid them. For edges
in P0, every uout gets to chose the best allocation, while every uin receives the worst
allocation. Since for each u0v0 in P0 there is a stable flow f so that f(u′v0) = 0 for all
edges u′v0 ≤v0 uv0, the best position of u0out will also have u′v0 ≤v0 uv0 for each u0v0.
Thus fjoin(uv) = 0.
With this algorithm we have proved the following theorem.

Theorem 6.10. sf restricted can be solved in O(|P ||E| log |V |) time.

sf restricted can also be solved via weighted sa, but that method is less efficient. As
mentioned in Section 6.1, sf instances can be converted into sa instances. The maximum
weight sa problem was solved by Dean and Munshi [34]. By using rotations, they prove
that an optimal solution can be found in O(|E|2 log |V |) time. In our problem, if both

112

6.5 Stable multicommodity flows

forced and forbidden edges are present in an sf restricted instance, the following
strategy leads to a solution. First, the instance is converted into an sa with forced and
forbidden edges instance. Then, weight is assigned to each edge: 1 to forced edges, −1 to
forbidden edges and 0 to the all remaining edges. If a stable allocation with forced and
forbidden edges exists, it is also a maximum weight stable allocation. Therefore, this
method also answers the question whether sf restricted is solvable. Since P ⊆ E(D),
our running time cannot be worse.
Just like in the previous subsection, we finish this part with the direct interpretation

of our results in sr and sm instances. To each forbidden edge uw ∈ P we introduce edges
uws or utw. According to the preference lists, they are slightly better than uw itself. A
stable matching with forbidden edges exists, if there is a suitable set of these uws and
utw edges such that all ws and ut are unmatched. Our algorithm for several forbidden
edges runs in O(|P ||E|) time, because computing stable solutions in each of the |P | or
less rounds takes only O(|E|) time in sm. With this running time, it is somewhat slower
than the best known method [36] that requires only O(|E|) time, but it is a reasonable
assumption that the number of forbidden edges is small.

6.5 Stable multicommodity flows

6.5.1 Problem definition

In many flow-based applications, various goods are exchanged. Such problems are usually
modeled by multicommodity flows [58]. Many multicommodity flow problems admit only
fractional solutions even if their input is integral. The maximum multicommodity flow
problem can be solved in strongly polynomial time [98], but finding a maximum integer
multicommodity flow is already an NP-hard task [47]. In this section we will outline
the results already achieved in the topic of multicommodity stable flows, including the
existence of a stable solution. However, there is no method known for finding one. We
show that it is NP-complete to decide whether an integer stable multicommodity flow
exists.
A multicommodity network (D, ci, c), 1 ≤ i ≤ n consists of a directed graph D =

(V,E), non-negative commodity capacity functions ci : E(D) → R≥0 for all the n com-
modities and a non-negative cumulative capacity function c : E(D) → R≥0 on E(D).
For every commodity i, Si ⊆ V (D) is the set of terminals for commodity i.

Definition 6.11 (multicommodity flow). A set of functions f i : E(D)→ R≥0, 1 ≤ i ≤
n is a multicommodity flow if it fulfills all of the following requirements:

1. capacity constraints for commodities:
f i(uv) ≤ ci(uv) for all uv ∈ E(D) and commodity i;

2. cumulative capacity constraints:
f(uv) =

∑
1≤i≤n f

i(uv) ≤ c(uv) for all uv ∈ E(D);

3. flow conservation:∑
uv∈E(D) f

i(uv) =
∑

vw∈E(D) f
i(vw) for all v ∈ V (D) \ Si.

113

6 Stable flows

The concept of stability was extended to multicommodity flows by Király and Pap [67].
A multicommodity stable flow instance I = (D, ci, c, OE , O

i
V), 1 ≤ i ≤ n comprises a

network (D, ci, c), 1 ≤ i ≤ n, edge preferences OE over commodities, and vertex pref-
erences Oi

V , 1 ≤ i ≤ n over incident edges for commodity i. Each edge uv ranks all
commodities with ci(uv) > 0 in a strict order of preference. Separately for every com-
modity i, each non-terminal vertex ranks its incoming and also its outgoing edges strictly
with respect to commodity i. Note that these preference orderings of v can be different
for different commodities and they do not depend on the edge preferences (over com-
modities) of the ranked edges. If edge uv prefers commodity i to commodity j, then we
write i >uv j. Analogously, if vertex v prefers edge vw to vz with respect to commod-
ity i, then we write vw >i

v vz. We denote the flow value with respect to commodity i
by f i =

∑
s∈Si

∑
u∈V (D) f

i(su).

Definition 6.12 (stable multicommodity flow). A directed walk ρ = ⟨v1, v2, ..., vk⟩
blocks flow f with respect to commodity i if all of the following properties hold:

1. f i(vjvj+1) < ci(vjvj+1) for each edge vjvj+1, j = 1, ..., k − 1;

2. v1 ∈ Si or there is an edge v1u such that f i(v1u) > 0 and v1v2 >
i
v1 v1u;

3. vk ∈ Si or there is an edge wvk such that f i(wvk) > 0 and vk−1vk >i
vk

wvk;

4. if f(vjvj+1) = c(vjvj+1), then there is a commodity i′ such that f i′(vjvj+1) > 0
and i >vjvj+1 i′.

A multicommodity flow is stable, if there is no blocking walk with respect to any com-
modity in the graph.

Note that due to point 4, this definition allows saturated edges to occur in a blocking
walk with respect to commodity i, provided that these edges are inclined to trade in
some of their forwarded commodities for more flow of commodity i. On the other hand,
the role of edge preferences is limited: blocking walks still must start at vertices who are
willing to reroute or send extra flow along the first edge of the walk according to their
vertex preferences with respect to commodity i.

Problem 19. msf
Input: I = (D, ci, c, OE , O

i
V), 1 ≤ i ≤ n ; a directed multicommodity network (D, ci, c),

1 ≤ i ≤ n, edge preferences over commodities OE and vertex preferences over incident
edges Oi

V , 1 ≤ i ≤ n.
Question: Is there a multicommodity flow f so that no walk blocks f with respect to any
commodity?

Theorem 6.13 (Király, Pap [67]). A stable multicommodity flow exists for any instance,
but it is PPAD-hard to find.

PPAD-hardness is a somewhat weaker evidence of intractability than NP-hardness [83].
Király and Pap use a polyhedral version of Sperner’s lemma [66] to prove this existence
result. Note that msf is one of the very few problems in stability where a stable solution
exists, but no extension of the Gale-Shapley algorithm is known to solve it (not even a
variant with exponential running time).

114

6.5 Stable multicommodity flows

u

v1

v2

v3

2

1
2

2

2

3

2

2 2

3

2

1

1

1

3,1

1

1

1,2

11 2,3

Figure 6.6: The edge preferences are marked with colored labels in the middle of edges,
while Oi

V is black and closer to the vertices. For all edges, c = 1. The purple
edges can forward two commodities, while the black edges can carry only one
commodity.

6.5.2 Integral multicommodity stable flows

In this section, we investigate the integral version of msf.

Problem 20. imsf
Input: I = (D, ci, c, OE , O

i
V), 1 ≤ i ≤ n ; a directed multicommodity network (D, ci :

E(D) → Z≥0, c : E(D) → Z≥0), 1 ≤ i ≤ n, edge preferences over commodities OE and
vertex preferences over incident edges Oi

V , 1 ≤ i ≤ n.
Question: Is there an integer multicommodity flow f : E(D) → Z≥0 so that no walk
blocks f with respect to any commodity?

For the single commodity case, Fleiner [41] shows that imsf always has a solution and
it can be found efficiently. In contrast, there are imsf instances with no integer solution.
Király and Pap give an example instance with N commodities and N vertices, where
no stable multicommodity flow exists with denominators at most N for any integer N .
Here we present a small and slightly modified version of that instance as an example
and later use it as a gadget in our hardness proof.

Example 6.14. imsf instance with no solution.

We claim that the instance depicted in Figure 6.6 admits no integer multicommodity
flow. Vertex u is the only terminal vertex in the graph. Below we will distinguish two
cases: 1) S1 = S2 = S3 = {u} (see Lemma 6.15) and 2) ∃i ∈ {1, 2, 3} : Si = ∅ (see
Lemma 6.16). The edge capacities with respect to commodities are 1 for the commodities

115

6 Stable flows

that appear in OE for the specific edge and 0 for the remaining commodities. All edges
have cumulative capacity 1. The vertex preferences are the same for all commodities:
v1, v2 and v3 are inclined to receive and send the flow along the edges between themselves
rather than trading with u. Each commodity i has a unique feasible cycle Ci through
u and it is easy to see that due to the choice of the ci functions, no other cycle or
terminal-terminal path exists in the network.

• C1 = ⟨u, v1, v2, v3, u⟩

• C2 = ⟨u, v2, v3, v1, u⟩

• C3 = ⟨u, v3, v1, v2, u⟩

Lemma 6.15. If S1 = S2 = S3 = {u}, then there is no integer stable flow.

Proof. First we show that the following fractional flow is stable. In this flow, each
commodity i where i ∈ {1, 2, 3}, is sent along cycle Ci with flow value 1

2 .

g3(v1v2) = g1(v1v2) = g1(v2v3) = g2(v2v3) = g2(v3v1) = g3(v3v1) =
1
2

g1(uv1) = g1(v3u) = g2(uv2) = g2(uv1) = g3(uv3) = g3(uv2) =
1
2

Claim 36. No walk blocks g.

Proof. It is enough to show that no walk ρ with respect to commodity 1 blocks g,
as the instance is symmetric for all three commodities, and thus the nonexistence of
blocking walks with respect to the other two commodities can be shown analogously.
The only edges allowed to carry commodity 1 are the edges of C1, thus ρ ⊆ C1. Even
though uv1, v2v3 and v3u fulfill points 1-4 in Definition 6.12, v1v2 is saturated and ranks
commodity 1 last, violating point 4 in Definition 6.12. �

Claim 37. No integral multicommodity flow is stable in the instance.

Proof. Assume that there is an integral stable flow f in the instance. The empty flow
cannot be f , because there is a cycle running through u for each commodity and such
cycles block the empty flow. Without loss of generality we can now assume that C1 is
saturated by commodity 1:

f1(uv1) = f1(v1v2) = f1(v2v3) = f1(v3u) = 1,

while all other flow values must be 0 due to commodity capacity constraints on edges.
This flow is blocked by commodity 3 on the path ⟨u, v3, v1, v2, u⟩. It is easy to see that
analogous arguments work for C2 and C3 as well. Thus, no integer stable flow exists in
the graph. �

Lemma 6.16. If u is a terminal for at most two out of the three commodities, then an
integer stable flow exists.

116

6.5 Stable multicommodity flows

Proof. Let us now investigate the same instance with a slight modification: S1 = S2 =
{u}, but S3 = ∅. Then, the following integer flow is stable:

f1(uv1) = f1(v1v2) = f1(v2v3) = f1(v3u) = 1.

A blocking walk with respect to commodity 1 cannot exist, because all edges that can
carry commodity 1 also carry it to their upper capacity. Commodity 2 could block along
C2, but edge v2v3 is saturated with its most preferred commodity. It is trivial that the
same flow remains stable if we set S1 = u and S2 = S3 = ∅. If S1 = S2 = S3 = ∅, then
the empty flow is stable.

To sum up the established results about Example 6.14: the instance admits an integer
stable flow if and only if u has at most two commodities. This argument will help us
prove Claim 39 later in our hardness proof.

Theorem 6.17. Deciding whether imsf has a solution is NP-complete. This holds even
if all commodities share the same set of terminal vertices and all vertices have the same
preferences with respect to all commodities (but edges might have different capacities with
respect to different commodities).

Proof. Testing whether a feasible integral multicommodity flow is stable can be done in
polynomial time, as pointed out also in [67]. It is sufficient to check the existence of
edges fulfilling points 2 and 3 in Definition 6.12 for every commodity and then execute
a breadth-first search for every pair of vertices as v1 and vk vertices of the potential
blocking walk. Thus imsf is in NP.

Now we describe imsf instances I ′ constructed to every instance I of 3-sat, also
illustrated in Figure 6.7. To each of the n variables in the Boolean formula we create 2
commodities, i and ī, corresponding to truth values true and false. To simplify notation,
we say that ¯̄i = i. Every clause in the formula is assigned a clause gadget, identical
to the instance presented in Example 6.14, but with u being a non-terminal for all
commodities. The three relevant commodities are the commodities corresponding to the
negations of the three literals appearing in the clause. The preferences of u in such a
gadget are chosen so that the edges of the gadget are preferred to edges outside of the
gadget. Their order with respect to each other is irrelevant due to the ci constraints.

All commodities share the same terminals s and t. There is a long path running from
s to t, consisting of three segments. The first and the third segment are two copies of
the same variable gadget, while the second segment consists of the u vertices of clause
gadgets. A variable gadget is defined on vertices {a, b1, b2, ..., bn, d}, where edges with
c = 1 and unrestricted commodity capacities run from a to each bi and from each bi to d.
Edge abi ranks commodity i best, ī second, and the rest in arbitrary order, while bid
ranks commodity ī best, i second, and the rest in arbitrary order. The vertex preferences
of a and d are also arbitrary. These three segments are chained together so that the only
edge of s ends at a of the first variable gadget, d of the same gadget is connected to the
first u vertex of the second segment, the last u of the same segment is adjacent to a of
the second variable gadget and d of this gadget has an edge running to t. On the edges

117

6 Stable flows

a

b1

b2

bn−1

bn

d

1, 1̄, rest

n, n̄, rest

1̄, 1, rest

n̄, n, rest

s a

b1

bn

d u1 ui um a

b1

bn

d t

v1

v2

v3

Figure 6.7: A variable gadget and the entire construction for imsf.

connecting the segments and the u vertices of clause gadgets with each other and with
the terminals, ci = c = 2n + 1 for all 1 ≤ i ≤ n, and edge preferences can be chosen
arbitrarily.

Lemma 6.18. If an integral stable multicommodity flow f exists in I ′, then there is a
truth assignment in I.

Proof. As defined after Definition 6.11, f i denotes the total flow value with respect to
commodity i.

Claim 38. For every commodity i, f i + f ī = 1.

Proof. If f i(abi) + f ī(abi) < 1 for some commodity i and edge abi of a variable gadget,
then there is an s-t path through bi, where edges are either unsaturated or they prefer
both i and ī to the commodities they carry. This path blocks f . Since c(abi) = 1 for
every 1 ≤ i ≤ n, f i(abi) + f ī(abi) = 1, thus edges abi and bid of the variable gadgets
are saturated with commodities i and ī. This already implies that f i + f ī = 1 for every
1 ≤ i ≤ n. �
This claim allows us to assign exactly one truth value to each variable: xi is true if

f i = 1 and it is false if f ī = 1.

Claim 39. For every clause C = xi ∨ xj ∨ xk, where the variables in C can be in a

negated or unnegated form, f ī + f j̄ + f k̄ ≤ 2, for every 1 ≤ i, j, k ≤ n.

118

6.5 Stable multicommodity flows

Proof. Since u prefers sending flow along its edges in the gadget over forwarding it to
the next u vertex on the path, u can be seen as a terminal vertex with respect to the
commodities reaching it. As we have shown in Example 6.14, if there is a solution to
ismf, then at most two relevant commodities are present at u. This is why we decided
to take the negated version of each literal in the clause: at most two literals are false in
each clause. �

Lemma 6.19. If there is a truth assignment in I, then there is an integral stable mul-
ticommodity flow f in I ′.

Proof. The constructed flow to the given truth assignment is the following. For every
variable i, f i = 1, f ī = 0 if i is true, and f i = 0, f ī = 1 otherwise. This rule obviously
determines f on all edges not belonging to clause gadgets. Since we started with a
valid truth assignment, each clause gadget has at most two out of the three relevant
commodities i1, i2 and i3 reaching u. Commodity ij corresponds to commodity j in
Example 6.14. If commodity ij , j ∈ {1, 2, 3} is not present at u, then we send commodity
ij+1 (modulo 3) along cycle Cij+1 and set all other flow values in the gadget to 0. If two
commodities are missing, we send the third along its cycle. If no relevant commodity
reaches the gadget, then we leave all edges of the gadget empty.
We need to show now that f is an integral stable flow. Feasibility and integrality

clearly follows from the construction. Since the a-d paths in the two variable gadgets
are saturated and one of them carries its most preferred commodity to its full cumulative
capacity, no blocking walk ρ leaves s or reaches t, in fact, ρ must run between d of the
first variable gadget and a of the second variable gadget.
Having eliminated the terminals as starting or end vertices of ρ, we also eliminated

the possibility that a commodity i with f i = 0 blocks f . Now we investigate which edge
can play the role of the starting edge of a blocking walk ρ.

• Blocking walks cannot start or end with edges outside of clause gadgets, because
these edges are the least preferred edges of both of their end vertices.

• Assume now without loss of generality that the first edge of ρ is uv1 in some
clause gadget with relevant commodities i1, i2 and i3, in this order. Then, f i1 = 1,
but commodity i1 was not chosen to fill C1. According to our rules above, the
only reason for it is that commodity i2 is not present at u and commodity i3
saturates C3. But the only edge that could be the second edge in ρ is then v1v2 in
the gadget and it is saturated by its best ranked commodity i3.

• The last possibility to check is whether ρ can start with an edge of a clause gadget
not incident to u. Without loss of generality let us assume this edge is v1v2, but
it is the only outgoing edge of v1, thus it cannot fulfill point 2 of Definition 6.12,
because each commodity has exactly one outgoing edge at each of vertices v1, v2
and v3. �

119

6 Stable flows

6.6 Conclusion and open problems

In this chapter we presented three results:

1. a polynomial version of the Gale-Shapley algorithm for stable flows;

2. a direct algorithm for stable flows with forced and forbidden edges;

3. the NP-completeness of the integral stable multicommodity flow problem.

The most riveting open question regarding Section 6.4 is probably about approxi-
mation algorithms. The approximation concepts known from Chapter 2 for min bp sr
restricted and sr min restricted violations can be translated to sf restricted.
Even if there is no stable flow containing all forced or avoiding all forbidden edges, how
can stability be relaxed such that all edge conditions are fulfilled? Or the other way
round: how many edge conditions must be violated by stable flows?
Note that the more complex structure gives rise to alternative interpretations of bp(M)

and |M ∩ P | + |Q \ M |. Do intersecting blocking walks count as separate blocking
coalitions? If a restricted edge constraint is violated, is it relevant to ask by how much
flow?
The big open question of Section 6.5 is clearly algorithms for finding a (possibly

fractional) stable multicommodity flow for restricted cases of imsf. Even though Theo-
rem 6.13 states that it is PPAD-hard to find a solution in the general case, it is natural to
ask whether this complexity changes with restricted number of commodities, low degree,
and so on. Since the Gale-Shapley algorithm typically executes steps with integer values
if the input is integral and we showed the hardness of imsf, it is likely that a novel
approach is needed. Linear programming is a promising direction, but constructing a
description of the msf polytope seems to be an extremely challenging task. At the mo-
ment, the most elaborate structure for which a linear program is know is many-to-many
stable matchings [40].
Finally, sf restricted and msf can be combined with other common notions in

stability or flows, such as ties on preference lists, edge weights, unsplittable flows, and
so on.

120

7 Popular matchings

In this last chapter of the thesis we discuss an alternative concept of optimality
to stability on matchings under preferences. As in the stable marriage problem,
here we are also given a bipartite graph G = (U ∪ W,E) where each vertex has
a preference list ranking its neighbors. A matching M is popular if there is no
matching M ′ such that the vertices that prefer M ′ to M outnumber those that
prefer M to M ′. We investigate two problems in this chapter.

The first problem is defined on graphs with strict preferences on both sides. We
identify a natural subclass of popular matchings called “dominant matchings” and
show that every dominant matching in G can be realized as an image (under a
simple and natural mapping) of a stable matching in a modified graph G′. This
structural result allows us to find weight-minimal dominant matchings.

In the second setting, every u ∈ U ranks its neighbors in a strict order of pref-
erence, whereas the preference lists of w ∈ W may contain ties. We show that
the problem of deciding whether G admits a popular matching is NP-hard. This is
the case even when every w ∈ W either has a strict preference list or puts all its
neighbors into a single tie.

The results presented in Section 7.3 are joint work with Telikepalli Kavitha and

have been submitted, while the results presented in Section 7.4 are joint work with

Chien-Chung Huang and Telikepalli Kavitha and have been published in [26].

7.1 Introduction

Motivation. We are given a bipartite graph G = (V,E), V = U ∪W and each vertex
has a (not necessarily strict) preference list ranking its neighbors. We say that a vertex
v ∈ V (G) prefers matchingM to matchingM ′ if either v is matched inM and unmatched
inM ′ or v is matched in both and in v’s preference list, M(v) is ranked better thanM ′(v).
For matchings M and M ′ in G, let φ(M,M ′) be the number of vertices that prefer M
to M ′. If φ(M ′,M) > φ(M,M ′) then we say that M ′ is more popular than M .

Definition 7.1. A matching M is popular if there is no matching that is more popular
than M ; in other words, φ(M,M ′) ≥ φ(M ′,M) for all matchings M ′ in G.

Thus in an election between any pair of matchings, where each vertex casts a vote
for the matching that it prefers, a popular matching never loses. It can be therefore
regarded as a global, community-optimal solution, while stable matchings capture local
optimality.
Another strikingly important feature of popular matchings is that they beat stable

matchings in size. The size of a stable matching in G can be as small as |Mmax|/2, where
Mmax is a maximum matching in G. Relaxing stability to popularity yields larger match-
ings and it is easy to show that a largest popular matching has size at least 2|Mmax|/3.

Literature review. The popular matching problem has been studied in the following
two models.

121

7 Popular matchings

• 1-sided model: here it is only vertices in U that have preferences and cast votes;
vertices in W are objects with no preferences or votes.

• 2-sided model: vertices on both sides have preferences and cast votes.

Popular matchings have been well-studied in the 1-sided model [2, 63, 71, 76, 78, 80].
Abraham et al. [2] gave efficient algorithms to determine if a given instance admits a
popular matching or not – their algorithm also works when preference lists of vertices in
U admit ties. The notions of least unpopular matchings [77] and popular mixed match-
ings [62] were also proposed to deal with instances that had no popular matchings.
In the 2-sided model when all preference lists are strict, it can be shown that any

stable matching is popular; thus a popular matching can be found in linear time using
the Gale-Shapley algorithm [46]. Moreover, a stable matching is actually a minimum
size popular matching and efficient algorithms for computing a maximum size popular
matching were given in [51, 60].
When ties are allowed in preference lists on both sides in the 2-sided model, Biró,

Irving, and Manlove [12] showed that the popular matching problem is NP-complete.
An intermediate variant between the 1-and 2-sided models with strict lists, namely if it
is only vertices in U that have preference lists ranking their neighbors, however vertices
on both sides cast votes, is studied in [26]. This version of the problem can be solved in
polynomial time.

Our contribution and structure. In this chapter we work in the 2-sided model. In
Section 7.3 we assume that all vertices rank their neighbors strictly. We define a natural
subclass of popular matchings, called “dominant matchings”. A popular matching M is
dominant if M is strictly more popular (φ(M,M ′) > φ(M ′,M) for every matching M ′)
than any matching of larger size than |M |. A characterization of dominant matchings is
given in Section 7.3.1. In Section 7.3.2 we show that every dominant matching in G can
be realized as an image (under a simple and natural mapping) of a stable matching in a
new graph G′. This mapping between stable matchings in G′ and dominant matchings
in G can also be used to find a minimum weight dominant matching in G efficiently,
where we assume that there is a rational weight function on E(G).
In the case with ties we investigate a case between the NP-complete popular matchings

with ties problem [12] and the polynomially solvable problem where vertices on one side
have a single tie as a preference list [26]. In Section 7.4 we show that the following
highly restricted version of the 2-sided popular matching problem with 1-sided ties is
NP-complete:

• every u ∈ U has a strict preference list of length 2 or 4;

• every w ∈W has either a strict preference list of length 2 or a single tie of length 2
or 3 as a preference list.

122

7.2 Preliminaries

7.2 Preliminaries

Let M be any matching in G = (V,E). We introduce a function to simplify notation
used in all our proofs later.

Definition 7.2. For any v ∈ V (G) and neighbors x and y of v, define v’s vote between
x and y as:

votev(x, y) =

⎧⎪⎨⎪⎩
+1 if x >v y

−1 if x <v y

0 otherwise (i.e., x = y or rankv(x) = rankv(y)).

If a vertex v is unmatched, then M(v) = ∅ and we define votev(v
′,M(v)) to be +1

for all neighbors v′ of v since every vertex prefers to be matched than to be unmatched.
Label each edge e = uw in E(G) \M by the pair (αe, βe), where αe = voteu(w,M(u))
and βe = votew(u,M(w)), i.e., αe is u’s vote for w vs. M(u) and βe is w’s vote for
u vs. M(w). Note that if an edge uw is labeled (+1,+1), then uw blocks M in the
stable matching sense. If an edge uw is labeled (−1,−1), then both u and w prefer
their respective partners in M to each other. Let GM be the subgraph of G obtained by
deleting edges that are labeled (−1,−1).

7.2.1 Strict preferences

The notation introduced in this section will be used in Section 7.3. Let us assume that
every vertex in V (G) ranks its incident edges in a strict order of preference. We now
identify a natural subclass of popular matchings called dominant popular matchings or
dominant matchings, in short. In order to define dominant matchings, we first define
the relation “defeats” as follows.

Definition 7.3. Matching M defeats matching M ′ if either of these two conditions
holds:

(i) M is more popular than M ′, i.e., φ(M,M ′) > φ(M ′,M);

(ii) φ(M,M ′) = φ(M ′,M) and |M | > |M ′|.

When M and M ′ gather the same number of votes in the election between M and M ′,
instead of declaring these matchings as incomparable (as done under the “more popular
than” relation), it seems natural to regard the larger of M,M ′ as the winner of the
election. Condition (ii) of the defeats relation captures this notion. We define dominant
matchings to be those popular matchings that are not defeated by any matching (as per
Definition 7.3).

Definition 7.4. Matching M is dominant if there is no matching that defeats it; in
other words, M is popular and for any matching M ′, if |M ′| > |M |, then M is more
popular than M ′.

123

7 Popular matchings

u1 : w1 w2 w3 w1 : u1 u2 u3

u2 : w1 w2 w2 : u1 u2

u3 : w1 w3 : u1

u1

w2

w1

u2

w3 u3

2

1

1 13

22
1

2
3

Figure 7.1: There are two maximum size popular matchings here: M1 = {u1w1, u2w2}
and M2 = {u1w2, u2w1}. The matching M1 is not dominant since the larger
matchingM3 = {u1w3, u2w2, u3w1} defeats it. The matchingM2 is dominant
since M2 is more popular than M3.

Note that a dominant matching has to be a maximum size popular matching since
smaller-sized popular matchings get defeated by a popular matching of maximum size.
However not every maximum size popular matching is a dominant matching, as the
example (from [51]) in Figure 7.1 demonstrates.
Analogous to Definition 7.4, we can define another interesting subclass of popular

matchings: those popular matchings M such that for any matching M ′, if |M ′| < |M |
then M is more popular than M ′. It is easy to show that this class of matchings is
exactly the set of stable matchings. That is, we can show that any popular matching
M that is more popular than every smaller-sized matching is a stable matching and
conversely, every stable matching is more popular than any smaller-sized matching.
The first direction follows from the fact that if M is blocked by the edge uw, then for
M ′ = M ∪ uw \ uM(u) \ wM(w), that is, the matching derived from M by adding the
blocking uw, it is the case that φ(M,M ′) = φ(M ′,M) = 2, even though |M ′| < |M |.
The other direction is trivial, since every stable matching is a minimum size popular
matching. We can say that dominant matchings are to the class of maximum size popular
matchings what stable matchings are to the class of minimum size popular matchings:
these are popular matchings that carry the proof of their maximality (minimality) by
being more popular than every matching of larger (smaller) size.

7.2.2 Ties in preferences

In the second half of this chapter, in Section 7.4, ties are allowed in preference lists. The
general problem we investigate is popular matchings with ties.

Problem 21. pmt
Input: I = (G,O); a bipartite graph G = (V,E) and preference lists O on both sides,
possibly with ties.
Question: Is there a popular matching M?

Here we discuss a variant of pmt where vertices in U have strict preferences while
vertices in W are allowed to have ties in their preference lists. Thus each man ranks all
women that he finds acceptable in a strict order of preference, while each woman need not
come up with a total order on all acceptable men. This model captures characteristics
of students applying to universities or applicants to posts, as in NRMP [108]. While it

124

7.3 Dominant popular matchings

is reasonable to assume that applicants submit a strictly ordered list of posts, they may
get grouped together in terms of their suitability, thus equally competent applicants are
tied together at the same rank.
Observe that popular matchings need not always exist in such instances. Consider

an instance where U = {u1, u2, u3} and W = {w1, w2, w3} and for i ∈ {1, 2, 3}, each ui
has the same preference list: ⟨w1, w2, w3⟩, while each wi ranks u1, u2, u3 the same, i.e.,
u1, u2, u3 are tied together in wi’s preference list. It is easy to see that for any matching
M here, there is another matching M ′ such that M is more popular than M , thus this
instance admits no popular matching.

7.3 Dominant popular matchings

Throughout this section, we assume that every vertex in G = (V,E) has a strictly
ordered preference list. In Theorem 7.5 we present a known characterization of popular
matchings in such instances, and then in Corollary 7.7 we extend this to dominant
matchings.
Besides forming a natural subclass of popular matchings, dominant matchings can

also be used to solve the following two problems [27].

• The popular edge problem, an analogous variant of the stable edge problem, asks
whether a popular matching exists in G that contains a fixed edge e. One can
show that if the answer is yes, then there exists either a stable matching in G
that contains e or a dominant matching in G that contains e. These are easy to
compute, e.g., using the weighted versions of the problems.

• When all popular matchings in G have the same size, it could be the case that every
popular matching in G is also stable. One can use dominant matchings to efficiently
check if this is the case or not. If there exists an unstable popular matching in G,
then there has to exist an unstable dominant matching in G. This latter is easy to
check by iterating through all edges, assuming they block a dominant matching.

7.3.1 A characterization of dominant matchings

Recall from Chapter 4 that an alternating path with respect to a matching M is a
sequence of incident edges that are in M and outside of it in an alternating manner.
An alternating path is called augmenting if its first and last edges are both outside
of M . As defined earlier, GM is the subgraph of G obtained by deleting edges that are
labeled (−1,−1). The following theorem characterizes popular matchings.

Theorem 7.5 (from [51]). A matching M is popular if and only if the following three
conditions are satisfied in the subgraph GM :

(i) There is no alternating cycle with respect to M that contains a (+1,+1) edge.

(ii) There is no alternating path starting from an unmatched vertex with respect to M
that contains a (+1,+1) edge.

125

7 Popular matchings

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

x yu v

Figure 7.2: The u-v augmenting path ρ in G where the solid edges are in M ; at least
one edge here (say, xy) is labeled (−1,−1).

(iii) There is no alternating path with respect to M that contains two or more (+1,+1)
edges.

Lemma 7.6 characterizes those popular matchings that are dominant. The “if” side
of Lemma 7.6 was shown in [60]: it was shown that if there is no augmenting path
with respect to a popular matching M in GM then M is more popular than all larger
matchings, thus M is a maximum size popular matching.
Here we show that the converse holds as well, i.e., if M is a popular matching such

that M is more popular than all larger matchings, in other words, if M is a dominant
matching, then there is no augmenting path with respect to M in GM .

Lemma 7.6. A popular matching M is dominant if and only if there is no augmenting
path with respect to M in GM .

Proof. Let M be a popular matching in G. Suppose there is an augmenting path ρ with
respect to M in GM . Let us use M ⊕ρ for the matching derived from M by augmenting
along ρ, and M ≈M ′ to denote both matchings getting the same number of votes in an
election between them, i.e., φ(M,M ′) = φ(M ′,M). We will now show that M ⊕ ρ ≈M .
Since M ⊕ ρ is a larger matching than M , if M ⊕ ρ ≈ M , then it means that M ⊕ ρ
defeats M , thus M is not dominant.
Consider M ⊕ ρ versus M : every vertex that does not belong to the path ρ gets the

same partner in both these matchings. Hence vertices outside ρ are indifferent between
these two matchings. Consider the vertices on ρ. In the first place, there is no edge
in ρ \ M that is labeled (+1,+1), otherwise that would contradict condition (ii) of
Theorem 7.5. Since the path ρ belongs to GM , no edge is labeled (−1,−1) either. Hence
every edge in ρ \M is labeled either (+1,−1) or (−1,+1). Note that the +1 signs count
the number of votes for M ⊕ ρ while the −1 signs count the number of votes for M .
Thus the number of votes for M ⊕ ρ equals the number of votes for M on vertices of ρ,
and thus in the entire graph G. Hence M ⊕ ρ ≈M .

Now we show the other direction: if there is no augmenting path with respect to a
popular matching M in GM then M is dominant. Let M ′ be a larger matching. Consider
M ⊕M ′ in G: this is a collection of alternating paths and alternating cycles and since
|M ′| > |M |, there is at least one augmenting path with respect to M here. Call this
path ρ, running from vertex u to vertex v, without any restriction on which side of the
graph they belong to. Let us count the number of votes for M versus M ′ among the
vertices of ρ.
No edge in ρ is labeled (+1,+1) as that would contradict condition (ii) of Theorem 7.5,

thus all the edges of M ′ in ρ are labeled (−1,+1), (+1,−1), or (−1,−1). Since ρ does
not exist in GM , there is at least one edge that is labeled (−1,−1) here (see Figure 7.2).

126

7.3 Dominant popular matchings

Thus among the vertices of ρ, M gets more votes than M ′ (recall that +1’s are votes
for M ′ and −1’s are votes for M). Thus M is more popular than M ′ among the vertices
of ρ.
By the popularity of M , we know that M gets at least as many votes as M ′ over

all other paths and cycles in M ⊕M ′; this is because if ρ is an alternating path/cycle
in M ⊕M ′ such that the number of vertices on ρ that prefer M ′ to M is more than
the number that prefer M to M ′, then M ⊕ ρ is more popular than M , a contradiction
to the popularity of M . Thus adding up over all the vertices in G, it follows that
φ(M,M ′) > φ(M ′,M). Hence M is more popular than any larger matching and so M
is a dominant matching.

Now we are ready to present a characterization of dominant matchings, following
immediately from Theorem 7.5 and Lemma 7.6.

Corollary 7.7. Matching M is a dominant matching if and only if M satisfies con-
ditions (i)-(iii) of Theorem 7.5 and condition (iv): there is no augmenting path with
respect to M in GM .

7.3.2 The set of dominant matchings

In this section we show a surjective mapping from the set of stable matchings in a new
instance G′ = (U ′ ∪W ′, E′) to the set of dominant matchings in G = (U ∪W,E). The
construction of G′ = (U ′ ∪W ′, E′) is as follows.
Corresponding to every man u ∈ U , there will be two men u0 and u1 in U ′ and one

woman du in W ′. The vertex du will be referred to as the dummy woman corresponding
to u. Corresponding to every woman w ∈ W , there will be exactly one woman in W ′ –
for the sake of simplicity, we will use w to refer to this woman as well. Thus W ′ = W ∪D,
where D = {du : u ∈ U} is the set of dummy women.
Regarding the other side of the graph, U ′ = U0 ∪ U1, where Ui = {ui : u ∈ U} for

i ∈ {0, 1}, and vertices in U0 are called level 0 vertices, while vertices in U1 are called
level 1 vertices.

We now describe the edge set of G′ and the preferences of the vertices. For each u ∈ U ,
the vertex du has exactly two neighbors: these are u0 and u1 and du’s preference order is
u0 followed by u1. The dummy woman du is u1’s most preferred neighbor and u0’s least
preferred neighbor. The preference list of u0 is all the neighbors of u (in u’s preference
order) followed by du. On the other hand, the preference list of u1 is du followed by the
neighbors of u (in u’s preference order) in G.
For any w ∈ W , its preference list in G′ is level 1 neighbors in the same order of

preference as in G followed by level 0 neighbors in the same order of preference as in G.
For instance, if w’s preference list in G is u followed by u′, then w’s preference list in G′

is top-choice u1, then u′1, and then u0, and the last-choice is u′0. We show an example
in Figure 7.3.
We now define the mapping T : {stable matchings in G′} → {dominant matchings

in G}. Let M ′ be any stable matching in G.

127

7 Popular matchings

u

w

w′

u′

2

1

1 1

22

1

2
u1

u0
du

u′0

u′1

du′

w

w′
2

3

3

1

2
4

3
2

1
3

2
1

1

4

2

2

3
1

1

2

3
1

1

2

Figure 7.3: The graph G′ on the right corresponding to G on the left. We used purple
to color edges in (U1×W)∪ (U0× du) and gray to color edges in (U0×W)∪
(U1 × du).

• T (M ′) is the set of edges obtained by deleting all edges involving vertices in D
(i.e., dummy women) from M ′ and replacing every edge uiw ∈ M ′, where w ∈ W
and i ∈ {0, 1}, by the edge uw.

It is easy to see that M = T (M ′) is a matching in G. This is because M ′ has to
match du, for every u ∈ U , since du is the top-choice for u1. Thus for each u ∈ U , one of
u0, u1 has to be matched to du. Hence at most one of u0, u1 is matched to a non-dummy
woman w and thus M = T (M ′) is a matching in G. First we show that M = T (M ′)
is a dominant matching in G if M ′ was a stable matching in G′. Then, we will prove
that T is surjective: corresponding to any dominant matching M in G, there is a stable
matching M ′ in G′ such that T (M ′) = M .

M is a dominant matching in G.

Lemma 7.8. If M ′ is a stable matching in G′, then M = T (M ′) is a dominant matching
in G.

Proof. This proof is similar to the proof of correctness of the maximum size popular
matching algorithm in [60]. As described in Section 7.3.1, in the graph G, label each
edge e = uw in E(G) \M by the pair (αe, βe), where αe ∈ {+1,−1} is u’s vote for w vs.
M(u) and βe ∈ {+1,−1} is w’s vote for u vs. M(w).

• It will be useful to assign a value in {0, 1} to each u ∈ U . If M ′(u1) = du, then
f(u) = 0 else f(u) = 1. In particular, if u ∈ U is unmatched in M then u0du ∈M ′

and so f(u) = 1.

• We will now define f -values for vertices in W as well. IfM ′(w) ∈ U1 then f(w) = 1,
else f(w) = 0. So if w ∈W is unmatched in M ′ (and thus in M) then f(w) = 0.

128

7.3 Dominant popular matchings

Claim 40. The following statements hold on the edge and vertex labels for every u, y ∈ U
and w, z ∈W :

(1) If the edge uw is labeled (+1,+1), then f(u) = 0 and f(w) = 1.

(2) If yz is an edge such that f(y) = 1 and f(z) = 0, then yz has to be labeled (−1,−1).

Proof. We show part (1) first. The edge uw is labeled (+1,+1). Let M(u) = z and
M(w) = y. Thus w >u z and u >w y. We know from the definition of our function T
that M ′(z) ∈ {u0, u1} and M ′(w) ∈ {y0, y1}. So there are 4 possibilities: M ′ contains
(1) u0z and y0w, (2) u1z and y0w, (3) u1z and y1w, (4) u0z and y1w.
We know that M ′ has no blocking edge in G′ since it is a stable matching. In (1),

the edge u0w blocks M ′, and in (2) and (3), the edge u1w blocks M ′. Thus the only
possibility is (4). That is, M ′(w) ∈ U1 and M ′(u1) = du. In other words, f(u) = 0 and
f(w) = 1.

We now show part (2) of Claim 40. We are given that f(y) = 1, so M ′(y0) = dy. We
know that dy is y0’s last choice and y0 is adjacent to z, thus M ′(z) >z y0. Since we are
given that f(z) = 0, i.e., M ′(z) ∈ U0, it follows that M

′(z) = u0, where u >z y in G.
In G′, y1 >z u0 since z prefers any level 1 neighbor to a level 0 neighbor. Thus

y1 is matched to a neighbor that is ranked better than z in y’s preference list, i.e.,
M ′(y1) = v, where v >y z. We have the edges yv and uz in M , thus both y and
z prefer their respective partners in M to each other. Hence the edge yz has to be
labeled (−1,−1). �
Claims 41 and 42 shown below, along with Lemma 7.6, imply that M is a dominant

matching in G.

Claim 41. There is no augmenting path with respect to M in GM .

Proof. Let u ∈ U and w ∈ W be unmatched in M . Then f(u) = 1 and f(w) = 0.
If there is an augmenting path ρ = ⟨a, · · · , b⟩ with respect to M in GM , then in ρ we
move from a man whose f -value is 1 to a woman whose f -value is 0. Thus there have
to be two consecutive vertices y ∈ U and z ∈ W on ρ such that f(y) = 1 and f(z) = 0.
However part (2) of Claim 40 tells us that such an edge yz has to be labeled (−1,−1).
In other words, GM does not contain the edge yz or equivalently, there is no augmenting
path ρ in GM . �

Claim 42. M is a popular matching in G.

Proof. We will show that M satisfies conditions (i)-(iii) of Theorem 7.5.

Condition (i). Consider any alternating cycle C with respect to M in GM and let u ∈ U
be any vertex in C: if f(u) = 0 then its partner w = M(u) also satisfies f(w) = 0 and
part (2) of Claim 40 tells us that there is no edge in GM between w and any u′ such that
f(u′) = 1. Similarly, if f(u) = 1 then its partner w = M(u) also satisfies f(w) = 1 and
though there can be an edge yw labeled (+1,+1) incident on w, part (1) of Claim 40
tells us that f(y) = 0 and thus there is no way the cycle C can return to u, whose f -value
is 1. Hence if GM contains an alternating cycle C with respect to M , then all vertices

129

7 Popular matchings

in C have the same f -value. Since there can be no edge labeled (+1,+1) between two
vertices whose f -value is the same (by part (1) of Claim 40), it follows that C has no
edge labeled (+1,+1).

Condition (ii). Consider any alternating path ρ with respect to M in GM and let the
starting vertex in ρ be u ∈ U . Since u is unmatched in M , we have f(u) = 1 and we
know from part (2) of Claim 40 that there is no edge in GM between such a man and a
woman whose f -value is 0. Thus u’s neighbor in ρ is a woman w′ such that f(w′) = 1.
Since f(w′) = 1, its partner u′ = M(w′) also satisfies f(u′) = 1 and part (2) of Claim 40
tells us that there is no edge in GM between u′ and any w′′ such that f(w′′) = 0, thus
all vertices of ρ have f - value 1 and thus there is no edge labeled (+1,+1) in ρ.

Suppose the starting vertex in ρ is w ∈ W . Since w is unmatched in M , we have
f(w) = 0 and we again know from part (2) of Claim 40 that there is no edge in GM

between such a woman and a man whose f -value is 1. Thus w’s neighbor in ρ is a woman
u′ such that f(u′) = 0. Since f(u′) = 0, its partner w′ = M(u′) also satisfies f(w′) = 0
and part (2) of Claim 40 tells us that there is no edge in GM between w′ and any u′′

such that f(u′′) = 1, thus all vertices of ρ have f - value 0 and thus there is no edge
labeled (+1,+1) in ρ.

Condition (iii). Consider any alternating path ρ with respect to M in GM . We can
assume that the starting vertex in ρ is matched in M (as condition (ii) has dealt with
the case when this vertex is unmatched). Suppose the starting vertex is u ∈ U . If
f(u) = 0 then its partner w = M(u) also satisfies f(w) = 0 and part (2) of Claim 40
tells us that there is no edge in GM between w and any u′ such that f(u′) = 1, thus all
vertices of ρ have f - value 0 and thus there is no edge labeled (+1,+1) in ρ. If f(u) = 1
then after traversing some vertices whose f -value is 1, we can encounter an edge yz that
is labeled (+1,+1) where f(z) = 1 and f(y) = 0. However once we reach y, we get stuck
in vertices whose f -value is 0 and thus we can see no more edges labeled (+1,+1).
Suppose the starting vertex in ρ is w ∈ W . If f(w) = 1 then its partner u = M(w)

also satisfies f(u) = 1 and part (2) of Claim 40 tells us that there is no edge in GM

between u and any w′ such that f(w′) = 0, thus all vertices of ρ have f -value 1 and thus
there is no edge labeled (+1,+1) in ρ. If f(w) = 0 then after traversing some vertices
whose f -value is 0, we can encounter an edge yz labeled (+1,+1) where f(y) = 0 and
f(z) = 1. However once we reach z, we get stuck in vertices whose f -value is 1 and thus
we can see no more edges labeled (+1,+1). Thus in all cases there is at most one edge
labeled (+1,+1) in ρ. �

T is surjective

Lemma 7.9. Corresponding to any dominant matching M in G, there is a stable match-
ing M ′ in G′ such that T (M ′) = M .

Proof. We will work in GM , the subgraph of G obtained by deleting all edges la-
beled (−1,−1). We now construct sets U0, U1 ⊆ U and W0,W1 ⊆ W as described
in Algorithm 4. These sets will be useful in constructing the matching M ′.

130

7.3 Dominant popular matchings

Algorithm 4 Construction of U0, U1 ⊆ U and W0,W1 ⊆W

1: initialize U0 := W1 := ∅
2: U1 := {unmatched men in M}
3: W0 := {unmatched women in M}
4: for every edge yz ∈M that is labeled (+1,+1) do
5: U0 := U0 ∪ y
6: W0 := W0 ∪M(y)
7: W1 := W1 ∪ z
8: U1 := U1 ∪M(z)
9: end for

10: while ∃ a matched man u /∈ U0 that is adjacent in GM to a woman in W0 do
11: U0 := U0 ∪ u
12: W0 := W0 ∪M(u)
13: end while
14: while ∃ a matched woman w /∈W1 that is adjacent in GM to a man in U1 do
15: W1 := W1 ∪ w
16: U1 := U1 ∪M(w)
17: end while

All unmatched men are in U1 and all unmatched women are in W0. For every edge
yz, y ∈ U, z ∈ W that is labeled (+1,+1), we add y and its partner to U0 and W0,
respectively while z and its partner are added to W1 and U1, respectively. For any man
u, if u is adjacent to a vertex in W0 and u is not in U0, then u and its partner get added
to U0 and W0, respectively. Similarly, for any woman w, if w is adjacent to a vertex in
U1 and w is not in W1, then w and its partner get added to W1 and U1, respectively.
The following observations are easy to see (refer to Figure 7.4). Every u ∈ U1 has an

even length alternating path in GM to either

(1) a man unmatched in M (by lines 1-3 and lines 14-17 in Algorithm 4) or

(2) a man M(z) where z has an edge labeled (+1,+1) incident on it (by lines 4-9 and
lines 14-17).

Similarly, every u ∈ U0 has an odd length alternating path in GM to either

(3) a woman unmatched in M (by lines 1-3 and lines 10-13) or

(4) a woman M(y) where y has an edge labeled (+1,+1) incident on it (by lines 4-9
and lines 10-13).

The proof of the following claim is based on the characterization of dominant match-
ings in terms of conditions (i)-(iv) as given by Corollary 7.7. We will also use (1)-(4)
observed above.

Claim 43. U0 ∩ U1 = ∅.

131

7 Popular matchings

U0

U0

W0

W0

W0

U0

U0

U1

U1

W0

W0

W1

W1

(+1,+1)

U1

U1

U1

W1

W1

Figure 7.4: Vertices get added to U1 and U0 by alternating paths in GM from ei-
ther unmatched vertices (first and third paths) or endpoints of edges la-
beled (+1,+1) (middle path). The solid edges are in M and the colored
vertices are the ones that are added to their respective sets at the beginning,
in lines 1-9 of Algorithm 4.

Proof. Case 1. Suppose u satisfies reasons (1) and (3) for its inclusion in U1 and in
U0, respectively. So u is in U1 because it is reachable via an even alternating path in
GM from an unmatched man u; also u is in U0 because it is reachable via an odd length
alternating path in GM from an unmatched woman w. Then there is an augmenting path
⟨u, . . . , w⟩ with respect to M in GM – a contradiction to the fact that M is dominant
(by Lemma 7.6).

Case 2. Suppose u satisfies reasons (1) and (4) for its inclusion in U1 and in U0, respec-
tively. So u is in U1 because it is reachable via an even alternating path with respect to
M in GM from an unmatched man u; also u is in U0 because it is reachable via an odd
length alternating path in GM from z, where edge yz is labeled (+1,+1). Then there is
an alternating path with respect to M in GM from an unmatched man u to the edge yz
labeled (+1,+1) and this is a contradiction to condition (ii) of popularity.

Case 3. Suppose u satisfies reasons (2) and (3) for its inclusion in U1 and in U0, re-
spectively. This case is absolutely similar to Case 2. This will cause an alternating path
with respect to M in GM from an unmatched woman to an edge labeled (+1,+1), a
contradiction again to condition (ii) of popularity.

Case 4. Suppose u satisfies reasons (2) and (4) for its inclusion in U1 and in U0, re-
spectively. So u is reachable via an even length alternating path in GM from an edge
labeled (+1,+1) and M(u) is also reachable via an even length alternating path in GM

from an edge labeled (+1,+1). If it is the same edge labeled (+1,+1) that both u
and M(u) are reachable from, then there is an alternating cycle in GM with a (+1,+1)
edge – a contradiction to condition (i) of popularity. If these are two different edges la-
beled (+1,+1), then we have an alternating path in GM with two edges labeled (+1,+1)
– a contradiction to condition (iii) of popularity.
These four cases finish the proof that U0 ∩ U1 = ∅. �
We now describe the construction of the matching M ′. Initially M ′ = ∅.

• For each u ∈ U0: add the edges u0M(u) and u1du to M ′.

• For each u ∈ U1: add the edge u0du to M ′ and if u is matched in M then add

132

7.3 Dominant popular matchings

U1
u

U0

W1
w

W0
v

Figure 7.5: If v >u1 w in G′, then v >u w in G; thus the edge uv has to be present
in GM .

u1M(u) to M ′.

• For u /∈ (U0 ∪ U1): add the edges u0M(u) and u1du to M ′.

Note that the men outside U0∪U1 are not reachable from either unmatched vertices or
edges labeled (+1,+1) via alternating paths in GM . Now we show that the constructed
matching M ′ is indeed stable.

Claim 44. M ′ is a stable matching in G′.

Proof. Suppose M ′ is not stable in G′. Then there are edges uiv and ujw in M ′ where
i, j ∈ {0, 1}, such that in the graph G′, the vertices v and uj prefer each other to ui and
w, respectively. There cannot be a blocking edge involving a dummy woman, thus the
edges uv and uw are in M .
If i = j, then the edge uv blocks M in G. However, from the construction of the sets

U0, U1,W0,W1, we know that all the blocking edges with respect to M are in U0 ×W1.
Thus there is no blocking edge in U0×W0 or in U1×W1 with respect to M and so i ̸= j.
Since uj >v ui in G′, the only possibility is i = 0 and j = 1. It has to be the case
that v >u w, so there is an edge labeled (+1,−1) between u ∈ U1 and v ∈ W0 (see
Figure 7.5).
So once v got added to W0, since u is adjacent in GM to a vertex in W0, vertex

u satisfied the condition in line 10 of our algorithm to construct the sets U0, U1,W0,
and W1. So u would have got added to U0 as well, i.e., u ∈ U0 ∩ U1, a contradiction to
Claim 43. Thus there is no blocking edge with respect to M ′ in G′. �

For each u ∈ U , note that exactly one of u0du, u1du is in M ′. In order to form the set
T (M ′), the edges of M ′ with women in D are pruned and each edge uiw ∈ M ′, where
w ∈W and i ∈ {0, 1}, is replaced by uw. It is easy to see that T (M ′) = M .

This concludes the proof that every dominant matching in G can be realized as an
image under T of some stable matching in G′. Thus T is surjective.

Our mapping T can also be used to solve the minimum weight dominant matching
problem in polynomial time. Here we are given a weight function ω : E(G) → Q and
the problem is to find a dominant matching in G whose sum of edge weight is the most.
We will use the mapping T established from {stable matchings in G′} to {dominant
matchings in G} to solve the minimum weight dominant matching problem in G. It
is easy to extend ω to the edge set of G′. For each edge uw in G, we will assign

133

7 Popular matchings

ω(u0w) = ω(u1w) = ω(uw) and we will set ω(u0du) = ω(u1du) = 0. Thus the weight of
any stable matching M ′ in G′ is the same is the weight of the dominant matching T (M ′)
in G.

Since every dominant matching M in G equals T (M ′) for some stable matching M ′

in G′, it follows that the minimum weight dominant matching problem in G is the same
as the minimum weight stable matching problem in G′. Since a minimum weight stable
matching in G′ can be computed in polynomial time [38, 39, 54, 93], we can conclude
Theorem 7.10.

Theorem 7.10. Given a graph G = (V,E) with strict preference lists and a weight
function ω : E(G)→ Q, the problem of computing a minimum weight dominant matching
can be solved in polynomial time.

7.4 Popular matching with 1-sided ties

In this section, we study instances of the popular matching problem where ties can occur
in preference lists. It is known [12] that when ties are allowed on both sides, the popular
matching problem is NP-complete. An intermediate variant between the 1- and 2-sided
models with strict lists, namely if it is only vertices in U that have strict preference lists
ranking their neighbors, however vertices on both sides cast votes, is studied in [26].
This version of the problem can be solved in polynomial time. Here we build a bridge
between these two results with the following theorem.

Theorem 7.11. Let G = (V,E) be a bipartite graph where each u ∈ U has a strict
preference list while each w ∈W either has a strict preference list or puts all its neighbors
into a single tie. pmt in G is NP-complete.

Given a matching M in G = (V,E), it was shown in [12] that M can be tested for
popularity in O(

√
|V | · |E|) time, even in the presence of ties. Thus it is known that the

problem is in NP, we only need to show NP-hardness.
Our reduction from the (2,2)-e3-sat problem (Problem 7 in Chapter 2) shows that

the following version of pmt in G = (V,E) with 1-sided ties is NP-complete:

• every vertex in U has a strict preference list of length 2 or 4;

• every vertex in W has either a strict preference list of length 2 or a single tie of
length 2 or 3 as a preference list.

Recall from Chapter 2 that the (2,2)-e3-sat problem takes as its input a Boolean
formula I in CNF, where each clause contains three literals and every variable appears
exactly twice in unnegated form and exactly twice in negated form in the clauses. The
problem is to determine if I is satisfiable or not and this problem is NP-complete [10].

Constructing a popular matching instance G = (V,E) from I. Let I have m clauses
and n variables. The instance G constructed consists of n variable gadgets, m clause
gadgets, and some interconnecting edges between these, as also shown in Figure 7.6.

134

7.4 Popular matching with 1-sided ties

A variable gadget representing variable vj , for 1 ≤ j ≤ n, is a 4-cycle on vertices
uj1 , wj1 , uj2 , and wj2 , where uj1 , uj2 ∈ U and wj1 , wj2 ∈W . A clause gadget representing
clause Ci, for 1 ≤ i ≤ m, is a subdivision graph of a claw. Its edges are divided into
three classes: ci ∈W is at the center, the neighbors of ci are xi1 , xi2 , xi3 ∈ U , and finally,
each of xi1 , xi2 , xi3 is adjacent to its respective copy in Yi = {yi1 , yi2 , yi3}, where Yi ⊆W .
A vertex in Yi represents an appearance of a variable. For instance, y31 is the first

literal of the third clause. Each of the vertices in Yi is connected to a vertex in the variable
gadget via an interconnecting edge. Vertex yik is connected to the gadget standing for
variable j if the k-th literal of the i-th clause is either vj or ¬vj . If it is vj , then the
interconnecting edge ends at uj1 , else at uj2 . The preferences of this instance can be seen
in Figure 7.6. The constructed graph trivially satisfies both conditions claimed above,
i.e., every vertex in U has a strict preference list of length 2 or 4 and every vertex in W
has either a strict preference list of length 2 or a single tie of length 2 or 3 as a preference
list.

Lemma 7.12. If there is a popular matching M in G, then one can construct a truth
assignment in I.

Proof. The graph G is as described above. Claim 45 states that any popular matching
M in G has a certain structure.

Claim 45. Any popular matching M in G has to obey the following properties.

• M avoids all interconnecting edges.

• M is one of the two perfect matchings on any variable gadget; i.e., for each j, the
edges of M restricted to the gadget corresponding to variable vj are either (i) uj1wj1

and uj2wj2, or (ii) uj1wj2 and uj2wj1.

• M leaves exactly one vertex per clause i unmatched and this unmatched vertex yik
is adjacent to a ujt that is matched to wj1.

We prove Claim 45 below. For now, we assume this claim and show how we construct
a satisfying truth assignment for I. We assign true to all variables vj such that M ⊇
{uj1wj1 , uj2wj2} and false to all variables vj such that M ⊇ {uj1wj2 , uj2wj1}.
The truth value of every variable is now uniquely defined and all we need to show is

that every clause has a true literal. Assume that in clause Ci, all three literals are false.
The clause gadget has an unmatched vertex yik that is adjacent to a ujt . If the literal is
false, then ujt prefers yik to M(ujt) = wj2 and ujtyik becomes an edge labeled (+1,+1)
with an unmatched end vertex – this contradicts the popularity of M . Hence in every
clause, there is at least one true literal and so this is a satisfying assignment.
Proof of Claim 45. Our first observation is that every ci, for 1 ≤ i ≤ m, and every

wj1 , for 1 ≤ j ≤ n, must be matched in M . That is because these vertices are the top
choices for each of their neighbors, hence if one of them is left unmatched, then there
would be an edge labeled (+1,+1) incident to an unmatched vertex. This contradicts
the popularity of M .

135

7 Popular matchings

ci1

xi1

xi2

xi3

yi1

yi2

yi3

1

1

1 1

1

1

2 1

2 1

2 1

2

2

2

uj1 wj1

uj2 wj2

1 1

4

11

1

4 1

2

3

2

3

(-1,0)

(+1,0)

(+1,0)

(+1,0)

(-1,+1) (+1,-1)

(+1,0)

(+1,0)

(-1,+1)

(-1,+1)

Figure 7.6: A clause gadget, a variable gadget, and the structure of the entire construc-
tion with a variable that appears at the second place in the first clause in
unnegated form and at the third place in the second clause in negated form.
The thick colored matching corresponds to a true variable.

Assume without loss of generality that {cixi3 , uj1wj1} ⊆M . Also, the edges xi1yi1 and
xi2yi2 must be in M , because they are the top-ranked edges of yi1 and yi2 , respectively.
We now claim that uj2wj2 ∈M as well.

Suppose uj2wj2 /∈M . Since M is a maximal matching, uj2yik ∈M for some ik. Based
on the above described structure of the clause gadgets, the edges xjkcj , xjk+1

yjk+1
, and

xjk+2
yjk+2

are in M , where the subscripts are taken modulo 3. Consider the following
augmenting path ρ with respect to M :

ρ = ⟨wj2 , uj1 , wj1 , uj2 , yjk , xjk , cj , xjk+1
, yjk+1

⟩.

But now M ⊕ ρ is more popular than M , which contradicts the popularity of M . Thus

136

7.4 Popular matching with 1-sided ties

uj2wj2 ∈M .
An analogous argument proves that if uj2wj1 ∈ M for some j, then uj1wj2 has to

be in M . The last observation we make is that if yik is unmatched in M , then its
interconnecting edge leads to a ujt that is matched to wj1 . Otherwise yikujt would be
labeled (+1,+1) with one vertex unmatched, a contradiction again to the popularity
of M . This finishes the proof of Claim 45.�

Lemma 7.13. If there is a truth assignment in I, then there is a popular matching M
in G.

Proof. Here we first construct a matching M in the graph G as described below and then
show that it is popular. Initially M = ∅. For each j, where 1 ≤ j ≤ n, if vj = true in the
assignment, then add uj1wj1 and uj2wj2 to M , else add uj1wj2 and uj2wj1 to M . For each
i, where 1 ≤ i ≤ m, in the gadget corresponding to clause Ci, any true literal is chosen
(say, the k-th literal) and yik , representing its appearance, is left unmatched. Moreover,
edges xikci, xik+1

yik+1
and xik+2

yik+2
(where the subscripts are taken modulo 3) are added

to M . No interconnecting edge appears in M . This finishes the description of M .

Claim 46. The matching M is popular in G.

Proof. Suppose M is not popular. Then there is another matching M ′ that is more
popular than M . This can only happen if M ⊕M ′ contains a component ρ such that the
number of vertices in ρ that prefer M ′ to M is more than those that prefer M to M ′. To
achieve this, the matching M ′ should contain at least one edge labeled either (+1,+1)
or (+1, 0). We now analyze the cases based on the occurrences of such “positive” edges.

Since we started with a truth assignment, no interconnecting edge can be labeled
(+1,+1). In fact, it is easy to check that no edge here can be labeled (+1,+1). We now
check for the occurrences of edges labeled (+1, 0). These can occur at two places: the
edge ujtwj1 for any 1 ≤ j ≤ n and the edge xikci for any 1 ≤ i ≤ m.
Case 1. Suppose uj2wj1 is labeled (+1, 0). This happens if vj is true in the truth
assignment. We start the augmenting path ρ at uj2wj1 . Augmenting along the 4-cycle
is not sufficient to break popularity, therefore, uj1 must be matched along one of its
interconnecting edges, say uj1yik .

• If yik is unmatched, consider the path ρ = ⟨wj2 , uj2 , wj1 , uj1 , yik⟩. There are two
vertices (uj1 and wj2) that prefer M to M ⊕ ρ and two vertices (uj2 and yik) that
prefer M ⊕ ρ to M .

• If yik is matched, then extend the path ρ till the unmatched vertex of the i-th
variable gadget (call this yit). The path ρ is described below:

ρ = ⟨wj2 , uj2 , wj1 , uj1 , yik , xik , ci, xit , yit⟩.

So four vertices, i.e., wj2 , uj1 , yik , and xit , prefer M to M ⊕ ρ while three vertices,
i.e., uj2 , xik , and yit , prefer M ⊕ ρ to M .

137

7 Popular matchings

Case 2. Now suppose xikci is labeled (+1, 0). Let us assume that this edge is xi3ci
and suppose xi1ci ∈ M . Consider the alternating path ρ = ⟨yi1 , xi1 , ci, xi3 , yi3⟩. In the
matching M ⊕ ρ, the vertices xi3 and yi1 are better off while xi1 and yi3 are worse off,
i.e., they prefer M to M ⊕ ρ. In order to collect one more vertex that prefers M ⊕ ρ, let
us extend this alternating path ρ to include ujkyi3 , the interconnecting edge of yi3 . The
vertex yi3 still prefers M to M ⊕ ρ since yi3 was paired in M to its top-ranked neighbor.

Without loss of generality, let us assume that this interconnecting edge is uj2yi3 . We
have two cases here: either {uj1wj1 , uj2wj2} ⊆M or {uj1wj2 , uj2wj1} ⊆M .

• In the first case, the path ρ gets extended to ⟨· · · , uj2 , wj2⟩. So uj2 prefers M ⊕ ρ
to M , however wj2 is left unmatched in M ⊕ ρ, so wj2 prefers M to M ⊕ ρ.

• In the second case, the path ρ gets extended to ⟨· · · , uj2 , wj1 , uj1 , wj2⟩. So uj1
prefers M ⊕ ρ to M , however both uj2 and wj2 prefer M to M ⊕ ρ.

We have analyzed all the cases where edges can labeled (+1, 0) and we showed that there
is no alternating cycle or path ρ containing an edge labeled (+1, 0) such that M ⊕ ρ is
more popular than M . Thus M is popular. �

Theorem 7.11 clearly follows from Lemmas 7.12 and 7.13.

7.5 Conclusion and open problems

In this chapter, we presented an alternative notion of optimality, based on collective
voting. We brought up several arguments why popular matchings are closely related to
stable matchings and can be seen as a relaxation of them.
First dominant matchings were defined in instances with strictly ordered lists and an

even closer connection between stable matchings and dominant matchings was pointed
out. Then, the hardness of very restricted instances with ties was shown.
Interestingly, in the case of strictly ordered lists, all polynomial time algorithms cur-

rently known for computing any popular matching in G = (V,E) compute either a stable
matching or a dominant matching in G. The question rises naturally: can one come up
with an efficient algorithm that computes a non-dominant and non-stable matching?
At the moment, even the complexity of deciding whether such a matching exists, is
unknown, although we conjecture it to be a tractable problem.
For the case with ties, when each w ∈ W either has a single tie of length at most 3

or a strict preference list (and each u ∈ U has a strict preference list), we showed that
the popular matching problem becomes NP-hard. The complexity of the same problem
with ties of length at most 2 instead of 3 is open.

138

Bibliography

[1] D. J. Abraham, P. Biró, and D. F. Manlove. “Almost stable” matchings in the
roommates problem. In T. Erlebach and G. Persiano, editors, Proceedings of
WAOA ’05: the 3rd Workshop on Approximation and Online Algorithms, volume
3879 of Lecture Notes in Computer Science, pages 1–14. Springer, 2006.

[2] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings.
SIAM Journal on Computing, 37:1030–1045, 2007.

[3] D. J. Abraham, A. Levavi, D. F. Manlove, and G. O’Malley. The stable roommates
problem with globally-ranked pairs. Internet Mathematics, 5:493–515, 2008.

[4] H. Ackermann, P. W. Goldberg, V. S. Mirrokni, H. Röglin, and B. Vöcking. Unco-
ordinated two-sided matching markets. SIAM Journal on Computing, 40:92–106,
2011.

[5] G. Askalidis, N. Immorlica, A. Kwanashie, D. F. Manlove, and E. Pountourakis.
Socially stable matchings in the Hospitals / Residents problem. In F. Dehne,
R. Solis-Oba, and J.-R. Sack, editors, Algorithms and Data Structures, volume 8037
of Lecture Notes in Computer Science, pages 85–96. Springer Berlin Heidelberg,
2013.

[6] D. Avis. A survey of heuristics for the weighted matching problem. Networks,
13:475–493, 1983.

[7] M. Bäıou and M. Balinski. Many-to-many matching: stable polyandrous polygamy
(or polygamous polyandry). Discrete Applied Mathematics, 101:1–12, 2000.

[8] M. Bäıou and M. Balinski. Erratum: the stable allocation (or ordinal transporta-
tion) problem. Mathematics of Operations Research, 27:662–680, 2002.

[9] M. Balinski and T. Sönmez. A tale of two mechanisms: student placement. Journal
of Economic Theory, 84:73–94, 1999.

[10] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electronic Colloquium on Computational
Complexity Report, number 49, 2003.

[11] P. Biró. Matching schemes: online collection, 2014. http://econ.core.hu/

english/res/game_app.html.

[12] P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and
roommates problems. In Proceedings of CIAC ’10: the 7th International Confer-
ence on Algorithms and Complexity, volume 6078 of Lecture Notes in Computer
Science, pages 97–108. Springer, 2010.

139

http://econ.core.hu/english/res/game_app.html
http://econ.core.hu/english/res/game_app.html

BIBLIOGRAPHY

[13] P. Biró and S. Kiselgof. College admissions with stable score-limits. Central Eu-
ropean Journal of Operations Research, pages 1–15, 2013.

[14] P. Biró and F. Klijn. Matching with couples: a multidisciplinary survey. Interna-
tional Game Theory Review, 15, article number 1340008, 2013.

[15] P. Biró, D. F. Manlove, and I. McBride. The Hospitals / Residents problem with
couples: complexity and integer programming models. In J. Gudmundsson and
J. Katajainen, editors, Experimental Algorithms, volume 8504 of Lecture Notes in
Computer Science, pages 10–21. Springer International Publishing, 2014.

[16] P. Biró, D. F. Manlove, and E. J. McDermid. “Almost stable” matchings in the
roommates problem with bounded preference lists. Theoretical Computer Science,
432:10–20, 2012.

[17] P. Biró, D. F. Manlove, and S. Mittal. Size versus stability in the marriage problem.
Theoretical Computer Science, 411:1828–1841, 2010.

[18] Y. Blum, A. E. Roth, and U. G. Rothblum. Vacancy chains and equilibration in
senior-level labor markets. Journal of Economic Theory, 76:362–411, 1997.

[19] S. Braun, N. Dwenger, and D. Kübler. Telling the truth may not pay off: an
empirical study of centralized university admissions in Germany. The B.E. Journal
of Economic Analysis and Policy, 10, article 22, 2010.

[20] A. Caprara, H. Kellerer, and U. Pferschy. A PTAS for the multiple subset sum
problem with different knapsack capacities. Information Processing Letters, 73:111
– 118, 2000.

[21] K. Cechlárová and T. Fleiner. Stable roommates with free edges. Technical Report
2009-01, Egerváry Research Group on Combinatorial Optimization, Operations
Research Department, Eötvös Loránd University, 2009.

[22] C. Chekuri and S. Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35:713–728, 2005.

[23] B. Chen, S. Fujishige, and Z. Yang. Decentralized market processes to stable job
matchings with competitive salaries. Discussion papers, Department of Economics,
University of York, 2011.

[24] Y. Chen and T. Sönmez. Improving efficiency of on-campus housing: an experi-
mental study. American Economic Review, 92:1669–1686, 2002.

[25] Á. Cseh and B. C. Dean. Improved algorithmic results for unsplittable stable
allocation problems. Journal of Combinatorial Optimization, pages 1–15, 2015.

[26] Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided pref-
erences and one-sided ties. In M. M. Halldórsson, K. Iwama, N. Kobayashi, and

140

BIBLIOGRAPHY

B. Speckmann, editors, Automata, Languages, and Programming, volume 9134 of
Lecture Notes in Computer Science, pages 367–379. Springer Berlin Heidelberg,
2015.

[27] Á. Cseh and T. Kavitha. Popular edges and dominant matchings. CoRR,
abs/1508.00614, 2015.

[28] Á. Cseh, J. Matuschke, and M. Skutella. Stable flows over time. Algorithms,
6:532–545, 2013.

[29] Á. Cseh and M. Skutella. Paths to stable allocations. In R. Lavi, editor, Algo-
rithmic Game Theory, volume 8768 of Lecture Notes in Computer Science, pages
61–73. Springer Berlin Heidelberg, 2014.

[30] g. Cseh and D. F. Manlove. Stable marriage and roommates problems with re-
stricted edges: Complexity and approximability. In M. Hoefer, editor, Algorithmic
Game Theory, volume 9347 of Lecture Notes in Computer Science, pages 15–26.
Springer Berlin Heidelberg, 2015.

[31] W. Darrach. Letter. Bulletin of the Association of American Medical Colleges,
68(2), January 1927.

[32] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge
university press, 2002.

[33] B. C. Dean, M. X. Goemans, and N. Immorlica. The unsplittable stable marriage
problem. In G. Navarro, L. E. Bertossi, and Y. Kohayakawa, editors, Proceedings
of IFIP TCS ’06: the 4th IFIP International Conference on Theoretical Computer
Science, volume 209 of IFIP — International Federation for Information Process-
ing, pages 65–75. Springer, 2006.

[34] B. C. Dean and S. Munshi. Faster algorithms for stable allocation problems.
Algorithmica, 58:59–81, 2010.

[35] E. Diamantoudi, E. Miyagawa, and L. Xue. Random paths to stability in the
roommate problem. Games and Economic Behavior, 48:18–28, 2004.

[36] V. M. F. Dias, G. D. da Fonseca, C. M. H. de Figueiredo, and J. L. Szwarcfiter.
The stable marriage problem with restricted pairs. Theoretical Computer Science,
306:391–405, 2003.

[37] Y. Dinitz, N. Garg, and M. X. Goemans. On the single-source unsplittable flow
problem. Combinatorica, 19:17–41, 1999.

[38] T. Feder. A new fixed point approach for stable networks and stable marriages.
Journal of Computer and System Sciences, 45:233–284, 1992.

[39] T. Feder. Network flow and 2-satisfiability. Algorithmica, 11:291–319, 1994.

141

BIBLIOGRAPHY

[40] T. Fleiner. On the stable b-matching polytope. Mathematical Social Sciences,
46:149–158, 2003.

[41] T. Fleiner. On stable matchings and flows. Algorithms, 7:1–14, 2014.

[42] T. Fleiner, R. W. Irving, and D. F. Manlove. Efficient algorithms for generalised
stable marriage and roommates problems. Theoretical Computer Science, 381:162–
176, 2007.

[43] A.-T. Gai, D. Lebedev, F. Mathieu, F. de Montgolfier, J. Reynier, and L. Viennot.
Acyclic preference systems in P2P networks. In A. Kermarrec, L. Bougé, and
T. Priol, editors, Proceedings of Euro-Par ’07 (European Conference on Parallel
and Distributed Computing): the 13th International Euro-Par Conference, volume
4641 of Lecture Notes in Computer Science, pages 825–834. Springer, 2007.

[44] D. Gale and L. S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962.

[45] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Dis-
crete Applied Mathematics, 11:223–232, 1985.

[46] P. Gärdenfors. Match making: assignments based on bilateral preferences. Be-
havioural Science, 20:166–173, 1975.

[47] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San
Francisco, CA., 1979.

[48] M. X. Goemans, E. L. Li, V. S. Mirrokni, and M. Thottan. Market sharing games
applied to content distribution in ad hoc networks. IEEE Journal on Selected
Areas in Communications, 24:1020–1033, 2006.

[49] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

[50] K. Hamada, K. Iwama, and S. Miyazaki. An improved approximation lower bound
for finding almost stable maximum matchings. Information Processing Letters,
109:1036–1040, 2009.

[51] C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem.
Information and Computation, 222:180–194, 2013.

[52] R. W. Irving. An efficient algorithm for the “stable roommates” problem. Journal
of Algorithms, 6:577–595, 1985.

[53] R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48:261–272, 1994.

[54] R. W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal”
stable marriage. Journal of the ACM, 34:532–543, 1987.

142

BIBLIOGRAPHY

[55] R. W. Irving and D. F. Manlove. The stable roommates problem with ties. Journal
of Algorithms, 43:85–105, 2002.

[56] R. W. Irving, D. F. Manlove, and S. Scott. The Hospitals / Residents problem with
ties. In M. M. Halldórsson, editor, Proceedings of SWAT ’00: the 7th Scandina-
vian Workshop on Algorithm Theory, volume 1851 of Lecture Notes in Computer
Science, pages 259–271. Springer, 2000.

[57] K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incom-
plete lists and ties. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors,
Proceedings of ICALP ’99: the 26th International Colloquium on Automata, Lan-
guages, and Programming, volume 1644 of Lecture Notes in Computer Science,
pages 443–452. Springer, 1999.

[58] W. S. Jewell. Multi-commodity Network Solutions. Operations Research Center,
University of California, 1966.

[59] S. Kalyanaraman and C. Umans. The complexity of rationalizing matchings. In
S. Hong, H. Nagamochi, and T. Fukunaga, editors, Proceedings of ISAAC ’08: the
19th International Symposium on Algorithms and Computation, volume 5369 of
Lecture Notes in Computer Science, pages 171–182. Springer, 2008.

[60] T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM
Journal on Computing, 43:52–71, 2014.

[61] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Strongly stable matchings in
time O(nm) and extension to the Hospitals-Residents problem. ACM Transactions
on Algorithms, 3, article number 15, 2007.

[62] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical
Computer Science, 412:2679–2690, 2011.

[63] T. Kavitha and M. Nasre. Optimal popular matchings. Discrete Applied Mathe-
matics, 157:3181–3186, 2009.

[64] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2−ε.
Journal of Computer and System Sciences, 74:335–349, 2008.

[65] S. Khuller, S. Mitchell, and V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science, 127:255–267, 1994.

[66] T. Király and J. Pap. A note on kernels and Sperner’s Lemma. Discrete Applied
Mathematics, 157:3327–3331, 2009.

[67] T. Király and J. Pap. Stable multicommodity flows. Algorithms, 6:161–168, 2013.

[68] Z. Király. Linear time local approximation algorithm for maximum stable marriage.
Algorithms, 6:471–484, 2013.

143

BIBLIOGRAPHY

[69] B. Klaus and F. Klijn. Paths to stability for matching markets with couples.
Games and Economic Behavior, 58:154–171, 2007.

[70] D. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976. En-
glish translation in Stable Marriage and its Relation to Other Combinatorial Prob-
lems, volume 10 of CRM Proceedings and Lecture Notes, American Mathematical
Society, 1997.

[71] M. Mahdian. Random popular matchings. In J. Feigenbaum, J. C. Chuang, and
D. M. Pennock, editors, Proceedings of EC ’06: the 7th ACM Conference on Elec-
tronic Commerce, pages 238–242. ACM, 2006.

[72] D. F. Manlove. Stable marriage with ties and unacceptable partners. Technical
Report TR-1999-29, University of Glasgow, Department of Computing Science,
January 1999.

[73] D. F. Manlove. Algorithmics of Matching Under Preferences. World Scientific,
2013.

[74] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants
of stable marriage. Theoretical Computer Science, 276:261–279, 2002.

[75] D. F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK:
algorithms and experimentation. ACM Journal of Experimental Algorithmics, 19,
article number 2.6, 2014.

[76] D. F. Manlove and C. Sng. Popular matchings in the capacitated house allocation
problem. In Y. Azar and T. Erlebach, editors, Proceedings of ESA ’06: the 14th
Annual European Symposium on Algorithms, volume 4168 of Lecture Notes in
Computer Science, pages 492–503. Springer, 2006.

[77] R. M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin
criteria for matching problems with one-sided preferences. In E. Laber, C. Born-
stein, L. Nogueira, and L. Faria, editors, Proceedings of LATIN ’08: the 8th Latin-
American Theoretical Informatics Symposium, volume 4957 of Lecture Notes in
Computer Science, pages 593–604. Springer Berlin Heidelberg, 2008.

[78] E. McDermid and R. W. Irving. Popular matchings: structure and algorithms.
Journal of Combinatorial Optimization, 22:339–358, 2011.

[79] E. McDermid and D. F. Manlove. Keeping partners together: algorithmic results
for the Hospitals / Residents problem with couples. Journal of Combinatorial
Optimization, 19:279–303, 2010.

[80] J. Mestre. Weighted popular matchings. ACM Transactions on Algorithms, 10,
article number 2, 2014.

[81] G. O’Malley. Algorithmic Aspects of Stable Matching Problems. PhD thesis, Uni-
versity of Glasgow, Department of Computing Science, 2007.

144

BIBLIOGRAPHY

[82] M. Ostrovsky. Stability in supply chain networks. American Economic Review,
98:897–923, 2008.

[83] C. H. Papadimitriou. On the complexity of the parity argument and other ineffi-
cient proofs of existence. Journal of Computer and System Sciences, 48:498–532,
1994.

[84] N. Perach, J. Polak, and U. G. Rothblum. A stable matching model with an
entrance criterion applied to the assignment of students to dormitories at the
Technion. International Journal of Game Theory, 36:519–535, 2008.

[85] E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285–
304, 1990.

[86] A. E. Roth. The evolution of the labor market for medical interns and residents:
a case study in game theory. Journal of Political Economy, 92:991–1016, 1984.

[87] A. E. Roth. The national residency matching program as a labor market. Journal
of the American Medical Association, 275:1054–1056, 1996.

[88] A. E. Roth. Deferred acceptance algorithms: history, theory, practice, and open
questions. International Journal of Game Theory, 36:537–569, 2008.

[89] A. E. Roth and E. Peranson. The redesign of the matching market for American
physicians: Some engineering aspects of economic design. American Economic
Review, 89:748–780, 1999.

[90] A. E. Roth, T. Sönmez, and M. U. Ünver. Pairwise kidney exchange. Journal of
Economic Theory, 125:151–188, 2005.

[91] A. E. Roth and M. A. O. Sotomayor. Two-Sided Matching: A Study in Game-
Theoretic Modeling and Analysis, volume 18 of Econometric Society Monographs.
Cambridge University Press, 1990.

[92] A. E. Roth and J. H. Vande Vate. Random paths to stability in two-sided matching.
Econometrica, 58:1475–1480, 1990.

[93] U. G. Rothblum. Characterization of stable matchings as extreme points of a
polytope. Mathematical Programming, 54:57–67, 1992.

[94] S. Scott. A study of stable marriage problems with ties. PhD thesis, University of
Glasgow, Department of Computing Science, 2005.

[95] D. B. Shmoys and É. Tardos. Scheduling unrelated machines with costs. In V. Ra-
machandran, editor, Proceedings of SODA ’93: the 4th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 448–454, 1993.

[96] M. Skutella. Approximating the single source unsplittable min-cost flow problem.
Mathematical Programming, 91:493–514, 2002.

145

BIBLIOGRAPHY

[97] J. Tan. A necessary and sufficient condition for the existence of a complete stable
matching. Journal of Algorithms, 12:154–178, 1991.

[98] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research, pages 250–256, 1986.

[99] C.-P. Teo and J. Sethuraman. LP based approach to optimal stable matchings. In
M. E. Saks, editor, Proceedings of SODA ’97: the 8th ACM-SIAM Symposium on
Discrete Algorithms, pages 710–719. ACM-SIAM, 1997.

[100] C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its
applications. Mathematics of Operations Research, 23:874–891, 1998.

[101] I. Wegener. Complexity theory: exploring the limits of efficient algorithms. Springer
Science & Business Media, 2005.

[102] D. B. West. Introduction to Graph Theory, volume 2. Prentice-Hall Upper Saddle
River, 2001.

[103] K. J. Williams. A reexamination of the NRMP matching algorithm. National
Resident Matching Program. Academic Medicine, 70:470–6; discussion 490–4, June
1995.

[104] K. J. Williams, V. P. Werth, and J. A. Wolff. An analysis of the resident match.
New England Journal of Medicine, 304:1165–1166, May 1981.

[105] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[106] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3:103–128, 2007.

[107] National Resident Matching Program, Results and Data: 2015 Main Residency
Matchr. National Resident Matching Program, Washington, DC. 2015.

[108] National Resident Matching Program. About the NRMP. Web document avail-
able at http://www.nrmp.org/match-process/match-algorithm/. Accessed 25
August 2015.

[109] Organ Donation and Transplantation Directorate, NHS Blood and Transplant
website. http://www.organdonation.nhs.uk. Accessed 25 August 2015.

[110] Paired Donation Network website. http://www.paireddonationnetwork.org.
Accessed 25 August 2015.

146

http://www.nrmp.org/match-process/match-algorithm/
http://www.organdonation.nhs.uk
http://www.paireddonationnetwork.org

	Titlepage
	Contents
	Introduction
	1 Basic notions in stable matchings
	1.1 Theoretical background
	1.1.1 The stable marriage problem
	1.1.2 Extensions of the stable marriage problem

	1.2 Applications

	2 Stable marriage and roommates problems with restricted edges
	2.1 Introduction
	2.2 Preliminaries
	2.3 Almost stable matchings with restricted edges
	2.3.1 General complexity and approximability results
	2.3.2 Bounded parameters
	2.3.3 Stable roommates problem

	2.4 Stable matchings with the minimum number of violated constraints on restricted edges
	2.4.1 General complexity and approximability results
	2.4.2 Bounded parameters

	2.5 Conclusion and open problems

	3 Other complexity results for stable matchings
	3.1 Maximum stable marriage with free edges
	3.2 Stable roommates with ties and short preference lists
	3.3 Conclusion and open problems

	4 Paths to stable allocations
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Stable allocations
	4.2.2 Better and best response steps for allocations

	4.3 Correlated markets
	4.4 Best and better responses with rational data
	4.4.1 Better response dynamics
	4.4.2 Best response dynamics

	4.5 Irrational data - a strongly polynomial algorithm
	4.5.1 Accelerated first phase

	4.6 Conclusion and open problems

	5 Unsplittable stable allocation problems
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Problem definition
	5.2.2 Relaxed unsplit allocations

	5.3 Machine-optimal relaxed unsplit allocations
	5.3.1 The reversed Gale-Shapley algorithm
	5.3.2 Properties of the job- and machine-optimal solutions
	5.3.3 A variant of the Rural Hospitals Theorem

	5.4 Rounding algorithms
	5.5 Conclusion and open problems

	6 Stable flows
	6.1 Introduction
	6.2 Preliminaries
	6.3 A polynomial algorithm for stable flows
	6.3.1 Known algorithms for stable flows
	6.3.2 Our algorithm

	6.4 Stable flows with restricted edges
	6.4.1 Forced edges
	6.4.2 Forbidden edges

	6.5 Stable multicommodity flows
	6.5.1 Problem definition
	6.5.2 Integral multicommodity stable flows

	6.6 Conclusion and open problems

	7 Popular matchings
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Strict preferences
	7.2.2 Ties in preferences

	7.3 Dominant popular matchings
	7.3.1 A characterization of dominant matchings
	7.3.2 The set of dominant matchings

	7.4 Popular matching with 1-sided ties
	7.5 Conclusion and open problems

	Bibliography

