
Seamless Interoperability and Data
Portability in the Social Web for

Facilitating an Open and
Heterogeneous Online Social

Network Federation

vorgelegt von
Dipl.-Inform.

Sebastian Jürg Göndör
geb. in Duisburg

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Thomas Magedanz
Gutachter: Prof. Dr. Axel Küpper
Gutachter: Prof. Dr. Ulrik Schroeder
Gutachter: Prof. Dr. Maurizio Marchese

Tag der wissenschaftlichen Aussprache: 6. Juni 2018
Berlin 2018

iii

A Bill of Rights for Users of the Social Web

Authored by Joseph Smarr, Marc Canter, Robert Scoble, and Michael Arrington1
September 4, 2007

Preamble:

There are already many who support the ideas laid out in this Bill of Rights,
but we are actively seeking to grow the roster of those publicly backing the
principles and approaches it outlines. That said, this Bill of Rights is not a
document “carved in stone” (or written on paper). It is a blog post, and it is
intended to spur conversation and debate, which will naturally lead to tweaks
of the language. So, let’s get the dialogue going and get as many of the major
stakeholders on board as we can!

A Bill of Rights for Users of the Social Web

We publicly assert that all users of the social web are entitled to certain
fundamental rights, specifically:
Ownership of their own personal information, including:
• their own profile data
• the list of people they are connected to
• the activity stream of content they create;
• Control of whether and how such personal information is shared with
others; and

• Freedom to grant persistent access to their personal information to trusted
external sites.

Sites supporting these rights shall:
• Allow their users to syndicate their own profile data, their friends list, and
the data that’s shared with them via the service, using a persistent URL or
API token and open data formats;

• Allow their users to syndicate their own stream of activity outside the site;
• Allow their users to link from their profile pages to external identifiers in a
public way; and

• Allow their users to discover who else they know is also on their site, using
the same external identifiers made available for lookup within the service.

1The text A Bill of Rights for Users of the Social Web has been published on September 4, 2007 byJoseph Smarr et al. at http://www.opensocialweb.org/2007/09/05/bill-of-rights [1] and has beenreprinted with permission.

http://www.opensocialweb.org/2007/09/05/bill-of-rights

v

Abstract

Online Social Networks (OSN) have become an integral part of our everyday lives.
We express ourselves, create and collect content such as images or videos, share
content and information with our friends and colleagues, exchange messages, or
keep track of what’s happening in the world. Yet, despite social communication
being implicitly a distributed, decentralized phenomenon, most OSN services are
built in a central, monolithic fashion, concentrating all knowledge and power in
one company or organization. This contradicts the idea of the social web, as
proprietary and isolated walled gardens keep users from being able to freely
choose an OSN platform provider or to effectively control their privacy. In
order to mitigate the problem, alternative architectures that distribute control
and data to multiple independent services were proposed. Unfortunately, the
implicit network effects existing in large OSN services still prevent users from
migrating to alternative solutions in significant numbers. Moreover, technical
protocols for facilitating holistic and seamless interoperability and furthermore
data portability in OSN services do not exist. Ultimately, today’s OSN market
is dominated by one single service which has been able to attract a significant
amount of users, while a large number of competing services and alternative
solutions exist that combine a comparably small number of users.
Two main issues have been identified that contribute to the current situation

of one OSN service heavily dominating the entire market, being the lack of data
portability and interoperability between different OSN services.
This work proposes Sonic, a solution that aims to interconnect arbitrary OSN

services into one open and heterogeneous federation of OSN services. Sonic
introduces an open communication protocol and data formats that are able to
facilitate interconnectivity of OSN services. The proposed architecture supports
core features implemented in today’s most popular OSN services and facilitates
extended functionality through an extensibility framework.

vii

Zusammenfassung

Online Social Networks (OSN) sind zu einem integralen Bestandteil unseres
täglichen Lebens geworden. Wir artikulieren unsere Meinung, erstellen und
sammeln Bilder und Videos, teilen Inhalte und Informationen mit unseren
Freunden und Kollegen, kommunizieren und halten uns auf dem Laufenden
über Geschehnisse in der Welt. Doch obwohl soziale Kommunikation inhärent
ein verteiltes, dezentrales Phänomen ist, folgen die meisten OSN Dienste in
einer zentralistischen und monolithischen Konzeption, welche alles Wissen
und alle Macht einer einzigen Organisation überlässt. Dies läuft der Idee
des sozialen Webs zuwider, da proprietäre und isolierte Plattformen Nutzer
daran hindern, selbstbestimmt eine Netzwerkplattform zu wählen oder die
Kontrolle über ihre Daten zu behalten. Um das Problem zu beheben, wurden
alternative Architekturen entworfen, durch welche Kontrolle und Daten auf
mehrere unabhängige Dienstplattformen verteilt wird. Allerdings hindern die
impliziten Netzwerkeffekte großer Netzwerke Nutzer daran, in signifikanter
Anzahl zu alternativen Angeboten zu migrieren. Darüber hinaus existieren keine
Protokolle, welche ganzheitliche und nahtlose Interoperabilität und darüber
hinaus Datenportabilität in OSN Diensten ermöglichen. Im Resultat wird der
heutige OSN Markt von einem einzigen Dienst dominiert, welcher in der Lage
war, eine signifikante Anzahl an Nutzern zu gewinnen, während eine große
Anzahl an konkurrierenden Diensten und alternativen Angeboten existiert, auf
welche sich eine verhältnismäßig kleine Zahl an Nutzern vereint.
Zwei Probleme konnten hierbei als Hauptursache für die aktuelle Situation,

in welcher ein OSN Dienst den gesamten Markt stark dominiert, identifiziert
werden. Hierbei handelt es sich um die fehlende Unterstützung von
Datenportabilität und Interoperabilität zwischen verschiedenen OSN Diensten.
Das vorliegende Werk stellt Sonic vor, eine Lösung zur Anbindung beliebiger

OSN Dienste untereinander in einer heterogenen Föderation von OSN Diensten.
Sonic spezifiziert ein offenes Kommunikationsprotokoll sowohl als auch
Datenformate, durch welche Interkonnektivität von OSN Diensten ermöglicht
wird. Die vorgestellte Architektur unterstützt die Kernfunktionalitäten heutiger
OSN Dienste und ermöglicht darüber hinaus eine Unterstützung erweiterter
Funktionalitäten über ein Erweiterungsframework.

ix

Acknowledgements

The work described in this thesis wouldn’t have been possible without the help
and support of several people. I am deeply thankful for the support I received
and would like to mention those who helped and supported me.
First of all, my most sincere thank goes to my supervisor Prof. Dr. Axel

Küpper for giving me the opportunity to work on my research as part of the
research group Service-centric Networking. He not only provided a professional
and inspiring working environment, but also gave me the opportunity to learn
and grow. In the years I worked on my thesis, he always supported my research
and provided invaluable feedback and motivation. Furthermore, I would like
to express my sincere gratitude to Prof. Dr. Ulrik Schroeder and Prof. Dr.
Maurizio Marchese for supervising this thesis and providing invaluable feedback
and support.
I also would like to thank my colleagues at the research group for inspiring

discussions and valuable feedback and support. I owe special gratitude to Dirk
Thatmann, who managed to keep work off my back in the Cyclone project in the
last phase of writing my dissertation.
Work on this thesis essentially was started in 2014 with the research

project Sonic, which was funded by the Software Campus initiative. As part
of this project, I worked with and received support from several people. Most
importantly I would like to thank my mentor, Riccardo Pascotto, who always
managed to have time to discuss the various issues I faced and provided valuable
advice and support. Furthermore, I would like to thank the researchers and
student workers who worked with me in the Sonic project, specifically Senan
Sharhan, Felix Beierle, Hussam Hebbo, Evren Küçükbayraktar, and Markus
Beckmann. Special thanks go out to the entire Software Campus team for
their wonderful and professional support, specifically to Erik Neumann, Maren
Lesche, Susanne Kegler, and Kerstin Potemka.
Proofreading a scientific dissertation is a cumbersome and time-consuming,

yet utterly important task. I would hence like to express sincere and special
gratitude to Jan Benzenberg, Maria João Ruiz, and Steffen Bretzke for spending
countless hours proofreading the thesis, pointing out mistakes I made, and
providing invaluable feedback and criticism.
Finally, I would like to thank my parents, Jürgen Göndör and Elisabeth

Smetka-Göndör, as well as Maria João Ruiz for their invaluable support and
motivation over the years I worked on this thesis. Thank you for believing in
me!

xi

Publications

Some of the ideas, methods, and results that significantly contributed to
this thesis have been published in scientific publications and presented at
international workshops and conferences. To a certain extent, parts of this thesis
are therefore contained in the following publications:
• Göndör, S. and Devendraraj, J. (2013). C2M: Open and Decentralized
Cloud Contact Management. Procedia Computer Science, International
Conference on Computational Science (ICCS) 2013. Elsevier. [2].

• Göndör, S. and Hebbo, H. (2014). SONIC: Towards Seamless Interaction
in Heterogeneous Distributed OSN Ecosystems. 1st Workshop on Dynamic
Social Networks (DSoNets) 2014. IEEE. [3].

• Göndör, S. and Beierle, F. and Küçükbayraktar, E. and Hebbo, H. and
Sharhan, S. and Küpper, A. (2015). Towards Migration of User Profiles
in the SONIC Online Social Network Federation. 10th International
Multi-Conference on Computing in the Global Information Technology
(ICCGI) 2015. IARIA. [4].

• Göndör, S. and Beierle, F. and Sharhan, S. and Hebbo, H. and
Küçükbayraktar, E. and Küpper, A. (2015). SONIC: Bridging the Gap between
Different Online Social Network Platforms. 8th International Conference on
Social Computing and Networking (SocialCom) 2015. IEEE. [5].

• Beierle, F. and Grunert, K. and Göndör, S. and Schlüter, V. (2017). Towards
Psychometrics-based Friend Recommendations in Social Networking
Services. 1st International Conference on AI & Mobile Services (AIMS) 2017.
IEEE. [6].

• Göndör, S. and Beierle, F. and Sharhan, S. and Küpper, A. (2016).
Distributed and Domain-Independent Identity Management for User
Profiles in the SONIC Online Social Network Federation. 5th International
Conference on Computational Social Networks (CSoNet) 2016. Springer. [7].

• Javed, I. and Copeland, R. and Crespi, N. and Beierle, F. and Göndör, S.
and Küpper, A. and Bouabdallah, A. and Emmelmann, M. and Ancuta, A.
and Corre, K. and Crom, J.-M. and Oberle, F. and Friese, I. and Caldeira, A.
and Dias, G. and Chaves, R. and Santos, N. (2016). Global Identity and
Reachability Framework for Interoperable P2P Communication Services.
19th conference on Innovations in Clouds, Internet and Networks (ICIN)
2016. [8].

xii

• Beierle, F. and Göndör, S. and Küpper, A. (2015). Towards a Three-tiered
Social Graph in Decentralized Online Social Networks. 7th International
Workshop on Hot Topics in Planet-scale Mobile Computing and Online
Social Networking (HOTPOST) 2015. ACM. [9].

• Friese, I. and Copeland, R. and Göndör, S. and Beierle, F. and Küpper,
A. and Pereira, R. and Crom, J.-M. (2017). Cross-Domain Discovery of
Communication Peers - Identity Mapping and Discovery Services (IMaDS).
European Conference on Networks and Communications (EUCNC) 2017.
IEEE. [10].

• Javed, I. and Copeland, R. and Crespi, N. and Emmelmann, M. and Corici,
A. and Bouabdallah, A. and Zhang, T. and El Jaouhari, S. and Beierle, F. and
Göndör, S. and Küpper, A. and Corre, K. and, Crom, J.-M. and Oberle, F.
and Friese, I. and Caldeira, A. and Dias, G. and Santos, N. and Chaves, R.
and Pereira, R. (2017). Cross Domain Identity and Discovery Framework for
Peer-to-Peer Calling Services. Annals of Telecommunications. 2017. ISSN:
1958-9395. Springer. [11].

• Göndör, S. (2017). The Importance of Data Portability and Interoperability
in the Social Web. In: Practical Implementation of the Right to Data
Portability - Legal, Technical and Consumer-Related Implications. Ed. by
N. Horn and A. Riechert. ISBN: 978-3-00-058336-0. Stiftung Datenschutz,
Nov. 2017. [12].

• Göndör, S. and Küpper, A. (2017). The Current State of Interoperability
in Decentralized Online Social Networking Services. 4th International
Conference on Computational Science and Computational Intelligence
(CSCI) 2017. IEEE. [13].

xiii

Contents

Titlepage i

A Bill of Rights for Users of the Social Web iii

Abstract v

Zusammenfassung vii

Acknowledgements ix

Publications xi

1 Introduction 1
1.1 The Social Web . 2
1.2 The Social Graph . 4
1.3 Locked into Walled Gardens . 5
1.4 Motivation . 8
1.5 Problem Statement . 12

1.5.1 Challenges . 13
1.5.2 European Law Perspective . 15

1.6 Research Questions . 16
1.7 SOcial Network InterConnect . 17

1.7.1 The Sonic Vision . 18
1.8 Contribution . 19

1.8.1 Definition of a Core Featureset of OSN Platforms 20
1.8.2 Privacy Preserving OSN Architecture 20
1.8.3 APIs and Data Formats for Seamless OSN Interoperability . . 21
1.8.4 Global User and Object Identification 21
1.8.5 Data Portability for User Accounts 21

1.9 Research Methodology and Outline 22
2 Related Work 23
2.1 Online Social Networks . 23

2.1.1 Definition . 23
2.1.2 Classification . 24

2.2 OSN Services . 27
2.2.1 DOSN Services . 28

P2P DOSN Services . 29
Federated DOSN Services . 30
Hybrid DOSN Services . 32

2.3 Connecting Microblogging Services 33

xiv

2.4 Cross-platform Interoperability . 37
3 Concept and Design 43
3.1 Definitions . 44
3.2 Use Cases . 45

3.2.1 Use Case 1: Signing Up . 45
3.2.2 Use Case 2: Multiple Social Profiles 46
3.2.3 Use Case 3: Inconsistencies with Posting and Commenting . . 46
3.2.4 Use Case 4: Event Management 47
3.2.5 Use Case 5: Data Portability . 47

3.3 Requirements . 48
3.4 A Taxonomy of Featuresets of Online Social Networks 52

3.4.1 Related Work . 52
3.4.2 OSN Features . 56
3.4.3 Analyzed OSN Services . 57

Facebook . 58
Google+ . 60
VKontakte . 61
RenRen . 62
Twitter . 63
Linkedin . 63
Xing . 64
Diaspora . 64
Friendica . 65
Mastodon . 65
Instagram . 65
Pinterest . 66

3.4.4 OSN Feature Taxonomy . 66
Social Profile . 66
Link . 67
Conversation . 68
Poke . 68
Like . 68
Reaction . 69
Collection . 69
Image . 69
Video . 69
Live Video . 70
Comment . 70
Voice Call . 70
Video Call . 70
Stream & Activity . 70
Tag . 71
Event Management . 71
Vote . 71
File . 71
Document . 72

xv

Review . 72
Group . 72
Page . 72
Check-In . 73
Music & Playlist . 73
Gift . 73
Offer . 73
Endorsement . 73

3.4.5 Sonic Core Featureset . 74
3.5 User Identification . 76

3.5.1 Related Work . 77
Directory Services . 81

3.5.2 Global User Identification . 83
The Social Record Dataset . 84
Security Considerations . 86

3.5.3 Global Social Lookup System 88
GSLS API . 89

3.5.4 Profile Migration . 90
3.6 Architecture . 91

3.6.1 Related work . 93
3.6.2 Sonic Architecture . 96

Sonic OSN Architecture . 96
3.6.3 Relationship Model . 100
3.6.4 Content Model . 100

Sonic URLs . 101
Unique Object Identifiers (UOID) 101
Content Model . 102
Content Ownership . 104
Roles . 104

3.6.5 Access Control Model . 106
3.7 The Sonic Protocol . 110

3.7.1 Related work . 110
Data Formats . 112
Data Formats for Social Information 114
OpenSocial . 115
Protocols for Social Information Exchange 119
Protocols and APIs of OSN services 120
Other Approaches . 122

3.7.2 The Sonic Protocol . 123
Protocol Context . 124
Request-Response Pattern . 125

3.7.3 Platform API . 125
FEATURE . 126
MIGRATION . 127
SEARCH . 131

3.7.4 Profile API . 133

xvi

LINK . 133
PROFILE . 136
ACTIVITY . 137
COMMENT . 138
LIKE . 140
TAG . 141
CONVERSATION . 142
IMAGE . 147
Supporting data formats . 148

4 Implementation 151
4.1 GSLS . 151

4.1.1 Functionality . 152
4.1.2 Implementation . 152

Build . 152
Run . 153
Configuration . 153

4.2 Sonic SDK . 154
4.2.1 Functionality . 155

AccessControl . 155
Identity . 156
Model . 156
Crypt . 156
Request . 156
API . 157
Date . 157
Config . 157

4.2.2 Implementation . 157
4.2.3 Configuration . 159

Setup . 159
4.3 Sonic OSN . 160

4.3.1 Implementation . 160
4.3.2 SonicPi . 162

5 Evaluation 163
5.1 Qualitative Assessment of Requirements and Challenges 163

5.1.1 Core Features and Extensibility 165
5.1.2 Openness . 165
5.1.3 Independence & distributed control 166
5.1.4 Data portability . 166
5.1.5 Global Identity . 167
5.1.6 Interoperability . 168
5.1.7 Transparency and Integration 169
5.1.8 Privacy . 170
5.1.9 Relations . 170
5.1.10 Availability . 171
5.1.11 Mobile support . 171

xvii

5.1.12 Third Party Support . 172
5.1.13 Performance & Scalability . 172
5.1.14 Discussion . 174

5.2 Comparison . 175
5.2.1 Architecture . 175
5.2.2 Interoperability . 177
5.2.3 User Identification . 179
5.2.4 Data Privacy . 180
5.2.5 Discussion . 181

5.3 Performance Evaluation of the GSLS 182
5.4 Integration . 184

5.4.1 Friendica . 184
5.4.2 Feature Extensions . 184
5.4.3 Sonic App . 185
5.4.4 ReThink . 186

6 Conclusion 187
6.1 Summary of Results . 188
6.2 Addressed Research Questions . 189
6.3 Future Work . 191

A Projects 193
A.1 Sonic . 193
A.2 ReThink . 194

Bibliography 195

1

1 Introduction

"The web is more a social creation than a technical one. I designed it for a
social effect— to help people work together— and not as a technical toy. The
ultimate goal of the Web is to support and improve our weblike existence in
the world. We clump into families, associations, and companies. We develop
trust across the miles and distrust around the corner."

- Tim Berners-Lee, Weaving The Web, 1999
Ever since the advent of the web in the 1990s, people welcomed this new

technology as a basis for novel ways of information retrieval, collaboration,
and communication [14]. Being mostly a place for computer scientists and
tech-savvy users in the early days, it was quickly adopted by the broader public
and managed to conquer more and more aspects of our world. As of today, the
Internet has become an integral part of our everyday lives, being completely
interwoven with everything we do. It has become a commodity, something most
people would not want to - or cannot - miss in their daily routines [15]. We read
the news, communicate with our relatives and colleagues, seek for entertainment
and distraction, work and collaborate, buy and sell goods, watch movies and
listen to music, research and share information, express opinions, and manage
our bank accounts using a set of protocols and standards that allow countless
servers and client devices around the globe to seamlessly interact with each
other. And we are able to access this technology from mostly any device, at
any time we wish, anywhere [16]. The Global Village, as envisioned by Marshall
McLuhan in 1962 [17], has become a reality.
What has become normal to be available anytime, anywhere [18] once was

cumbersome and complicated to most people. In its early stages, the Web
presented itself in a much more basic fashion. Access technology was scarce,
expensive, and slow [15], while early web pages were mostly static HTML files,
occasionally formatted using CSS, and interlinked via URLs1. In these days, the
Web could be consumed but not interacted with. Bulletin Boards (BBS), Usenet
Newsgroups, and Internet Relay Chat (IRC) offered ways of communication
between users, but were rather limited in usability and complicated to use
[19]. Despite these limitations, the groundbreaking idea behind the underlying
technology of the Web was able to attract millions of users, building a global
network of interlinked documents and information [20].
Yet, when Tim Berners-Lee invented the World Wide Web (WWW) at CERN

[21], he thought of it as a social communication and collaboration medium, not
a technical tool for the mere transfer and retrieval of data [22]. This vision

1Archived version of the first webpage on the WWW by Tim Berners-Lee: https://www.w3.org/
History/19921103-hypertext/hypertext/WWW/TheProject.html. Accessed: 15.7.2017

https://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html

2 Chapter 1. Introduction

came closer to manifestation with the Web 2.0 in the early 2000s. Web 2.0
technology presented a paradigm shift towards bidirectional communication and
collaboration, allowing web browsers to communicate with websites on behalf
of users [23]. This allowed people to express opinions, create content, and
collaborate in completely different ways and set the stage for the social web.

1.1 The Social Web

"The static web is an artifact of the past, having been replaced by the idea
that sites or applications should, as a standard practice, provide their users
with an experience customized to their preferences. The Internet has quickly
become a vast community of people who find relevance in their online social
experiences and interactions."

- Jonathan LeBlanc, Programming Social Applications, 2011
In the late 1990s, a new kind of web service emerged that allowed people to

connect to each other on the web. According to Boyd and Ellison, SixDegrees.com
was the first Online Social Network (OSN) or Social Network Site (SNS) to be
launched in 1997 [24]. Sixdegrees.com allowed users to create a user profile to
represent themselves and specify a list of other users as friends, where this list
could then be traversed by other users who could view the social profiles of one’s
friends. This allowed users to visualize their circle of friends and acquaintances
and create a digital representation of themselves for others to see. While Boyd
and Ellison acknowledge that similar functionality had existed before, the site
was the first to combine certain functionality in one single service, satisfying
their definition of an SNS. According to [24], an SNS is a web based service that
allows "[...] individuals to (1) construct a public or semi-public profilewithin a bounded
system, (2) articulate a list of other users with whom they share a connection, and (3)
view and traverse their list of connections and those made by others within the system".
Friendster, another popular SNS launched in 2002, extended the idea of browsing
through a user’s friends list by allowing friends of friends to be introduced as
potential new acquaintances. Until its shutdown in 2015, the service managed to
attract an unprecedented number of 75 million users in 2008 [25], and continued
to grow to over 100 million users [26].
The enormous success of Friendster caused new venture-backed OSN services

to emerge all over the world, causing a stiff competition for attention of users.
Suddenly, small startups competed with large organizations and established OSN
services altogether. MySpace, which was launched in 2003, allowed users to build
a highly personalized profile page andmanaged to attract former Friendster users
who were put off by Friendster’s terms of services. Until the beginning of its
decline in the beginning of 2011, MySpace managed to "attract 95 million unique
visitors" [27]. An extensive overview of the history of OSN services is described
in [24].
Popularity of OSN services did not evolve evenly around the globe, but showed

regional differences. For example, Orkut, an OSN service founded by Google in
2004, failed to be successful in the US but managed to become extraordinarily

1.1. The Social Web 3

Figure 1.1: World map of OSN use in June 2009. Image source:
http://vincos.it/world-map-of-social-networks/

popular in Brazil, while VKontakte was the most popular OSN service in Russia
at the same time (see Figure 1.1) [28]. The social web was diverse with many
different services available and competing for the attention of users. This was,
until Facebook started to gain a critical mass of users and hence began to
dominate the social web on a global scale.
Facebook was launched in 2004 by Mark Zuckerberg as a closed OSN service

only available for students of Harvard university. Named The Facebook in its
early days, it quickly attracted a significant user base and grew beyond the
borders of Harvard university. The service offered users to create a social
profile page including a profile picture, and specify information such as name,
hobbies, or relationship status. Furthermore, users were able to specify a list
of friends, join groups, and post status updates, being textual messages that
were displayed in a feed for other users to see. In 2004, Facebook expanded
its reach to the universities Stanford, Columbia, and Yale, which led to an
increase in its user base to one million users by the end of 2004 [29]. To attract
even more users, the service extended and improved its functionalities, such
as introducing the Like button, a mobile application for smartphones, or photo
support [29]. Consequently, Facebook was opened in 2005 to accept users from
further educational facilities, such as colleges, high schools, and international
schools. By the beginning of 2006, Facebook had reached six million users
worldwide and started to accept registrations from everyone around the world.
From hereon, Facebook’s success seemed to be unstoppable. Within only four
years, Facebook managed to attract 500 million users in total in 2010 [30],
reaching one billion users worldwide who accessed the service at least once per
month only two years later [31].

http://vincos.it/world-map-of-social-networks/

4 Chapter 1. Introduction

Figure 1.2: Mark Zuckerberg announcing 2 billion Facebookusers in June 2017. Source: https://www.facebook.com/zuck/posts/
10103831654565331?pnref=story. Accessed: 2.7.2017

With Facebook’s extraordinarily powerful position came doubts and concerns
regarding to data privacy and protection [32]. People started to feel apprehensive
about the fact that one company had access to all their social profile data while
claiming full ownership of all content uploaded to or created on the platform
at the same time. The fact that the company used the - partly very personal
- information for targeted advertisements [33] led to Facebook being perceived
as an all seeing, all knowing Big Brother [34]. Concerns regarding to privacy
violations and misuse dominance of the market even started to attract attention
from the European Commission [35].
Yet, with more andmore users registering at Facebook, it became increasingly

difficult for competing OSN services to attract or keep customers. Many social
networks were forced out of the market or decided to focus on niche markets
that Facebook did not cover [24][36]. Google+ for example, which was launched
in 2011 by Google with the objective to challenge Facebook’s dominant position
in the OSN market, ultimately failed to achieve this goal. Diversity of the social
web started to decline, as users in more and more countries around the world
concentrated in the market leader’s OSN service. Between 2009 and 2012, global
diversity of the most popular OSN services by country decreased from seventeen
different OSN services to just seven, with Facebook taking leadership in more and
more countries around the globe [28]. Finally, in June 2017, Mark Zuckerberg
announced that Facebook had reached two billion users (see Figure 1.2) [37] -
approximately 80% of all OSN users worldwide [38][39].

1.2 The Social Graph

By specifying who their friends and acquaintances are and generating content in
their social profiles, users of OSN services have been creating a global network of
social connections being a "global mapping of everybody and how they are related"
[40]. This Social Graph represents users as nodes and connections between them
as edges, where different classes of edges can be defined. The most common

https://www.facebook.com/zuck/posts/10103831654565331?pnref=story
https://www.facebook.com/zuck/posts/10103831654565331?pnref=story

1.3. Locked into Walled Gardens 5

edge type is the bidirectional friend relation, indicating that two users (nodes)
are friends. Other edge types can also be unidirectional, such as following,
liking, or commenting on a another user’s content [41]. While management and
storage of such an enormous dataset requires special methods [42], the social
graph, as depicted by Facebook in Figure 1.3, has been attracting the interest of
researchers from all over the world [43] [44] [45] [46] [47] [48]. Analysis of the
characteristics of the social graph showed that a resemblance of a small world
network, being an almost fully connected graph with a short average path length
and high clustering [49] [43]. This can be explained by the fact that circles of
friends tend to be well-connected among themselves, with fewer connections
to other clusters. In the resulting graph, users have many connections to other
nodes with a regional similarity and a smaller number of long range connections
that help to traverse the social graph in a few steps to reach any specific node
[50]. As shown by Travers and Milgram in their famous small world experiment
in 1967 [51], individuals are connected to any other individual in the world by
up to 6 hops, coining the term "six degrees of separation" [52]. Research on the
Facebook social graph in 2011 showed that this number is actually even smaller
and individuals are connected on average by 4.7 hops globally, while US American
users are connected by just 4.3 hops [50]. Most of these connections are not
arbitrary, as a survey by the PEW Research Center found in 2011, as only a
small fraction of users are willing to connect themselves on OSN services to
people whom they never met or only met once [53]. This showed, how densely
connected we are as individuals, even though the average Facebook user has a
median friend count of 99, where a small portion of users referred to as hubs are
connected to several hundred or thousand users [50].
A dataset of how a significant portion of the world’s population is connected,

including information about personal preferences, is obviously "valuable
information to marketers, employers, credit rating agencies, insurers, spammers,
phishers, police, and intelligence agencies" [54]. As the social graph is constructed
of highly personal information, individuals must be able to control who accesses
what kind of their data. Yet, as stated by Bonneau et al. in [54], it is much
more difficult to protect the social graph as a whole than it is to protect personal
information in general.

1.3 Locked into Walled Gardens

By long, people had started organizing their everyday lives with the help
of OSN services [55]. The original use case of modeling connections to
friends and acquaintances had been augmented and extended, motivating
users to disclose partly very personal and sensitive information "due to the
convenience of maintaining and developing relationships and platform enjoyment"
[56]. Organizing events and inviting guests, representing companies and
brands including handling customer feedback, expressing opinions, text and
voice-based communication, and reading the news have moved to OSN services
[38]. Surveys found that 11% of American adults found it ’very hard’ to give up
on social networks, with another 17% claiming it would be ’somewhat hard’ [15],

6 Chapter 1. Introduction

Figure 1.3: Visualization of the Facebook Social Graph in June 2017[37]. Image source: https://newsroom.fb.com

with 90% of Facebook’s users accessing the service 10 times a day [57]. With the
dependence on OSN services came the problem of being bound to the service one
signed up with in the first place, as services did not support interoperability
between each other. Existing network effects were cleverly exploited by the
platforms, as the more users are using the same service, the more value a
membership for any user has [58]. Eventually, users began to realize that
they were locked into walled gardens, where all their created content legally
belonged to the OSN platform operator and connectivity to other OSN services
was inhibited.
To be able to access more than just one OSN service, many users started

to setup and maintain social profiles in multiple OSN services [38]. In 2015,
GWI reported that the average user of OSN services had 5.54 OSN accounts, of
which 2.82 were actively used [59]. To alleviate the organizational overhead,
OSN aggregator services were introduced. Aggregator services would sign into
multiple OSN accounts of a user simultaneously on his behalf and fetch content
that could then be displayed in a unified user interface. Subsequently, content
created by users would then be pushed to and published in all connected
OSN services. While this made management of multiple OSN accounts easier,
problems of data privacy were not solved, as content was simply replicated to
multiple OSN services who in turn gained ownership of that content according
to their terms and conditions. The social web has evolved into a landscape
of isolated islands, where protocols and standards for connecting different
networks. Communication and collaboration between individuals, by its very
own nature decentralized and open, is now managed by centralized service
operators.
Centralized communication architectures anyhow introduce several

drawbacks, such as single point of failures, the threat of a service being
discontinued, and often missing interoperability with competing solutions.
History has shown that centralized services and architectures can be replaced
by open, decentralized solutions, which ultimately are able to overcome

https://newsroom.fb.com

1.3. Locked into Walled Gardens 7

the drawbacks introduced by their centralized counterparts. Email, Instant
Messaging (IM) services, and even the WWW itself are open and decentralized
alternatives that managed to replace their closed and centralized predecessors
by building on open standards and protocols [60].
Today’s situation of incompatible OSN services, lacking support for data

portability and interoperability between services mirrors the situation of IM
services at the end of the past century. IM became a popular alternative to
web-based communication via Bulletin Boards, email, or IRC in the 1990s [19]
[61]. While not considered to be OSN services by the European Commission [62],
IM allowed users to directly exchange messages over the web using a simple
and easily understandable user interface, thus making communication feel more
real-time and direct compared to predominant communication techniques such
as email or bulletin boards [63]. Especially for younger users, IM quickly became
the most important form of communication [64][65][66]. The first and probably
most famous IM application was ICQ, which was released by the Israeli company
Mirabilis in 1996. ICQ allowed users to search for other users in a directory,
add friends to a contact list, and exchange text messages [67], defining the
primary use of IM services as social communication, such as to connect to or
stay connected with friends [68]. ICQ introduced a proprietary protocol for
client-server communication, where clients would register with the central ICQ
server and were identified by a numeric identifier, the UIN. To use the service,
clients would login at the central ICQ server, which relayed all communication
between clients and maintained the presence of all users, thus allowing others
to see who was currently online or not [61]. The service’s popularity peaked in
2001, where ICQ reported a user-base of 100 million registered users [69]. The
enormous success of ICQ led to the development of several alternative messenger
services such as AOL Instant Messenger (AIM), Microsoft Messenger (MSN), or
Yahoo Messenger, which provided similar functionality but each implemented
individual proprietary protocols and were hence incompatible with each other2
[67].
To alleviate the struggle of users being forced to have multiple IM applications

installed simultaneously in order to stay connected with friends in different
IM networks, multi-messengers were introduced. Multi-messengers such as
Trillian3, Miranda IM4, or Pidgin5 allowed users to handle multiple user accounts
from one single application by simply utilizing the proprietary protocols of
the respective IM services and connecting to all of them at the same time.
While the overall user experience was streamlined this way, users still needed
to register with multiple IM service providers in parallel, as communication
between different IM services was mostly not supported. Moreover, group chat
communication or any form of collaboration with users from different networks
was not possible.
2AOL bought ICQ from Mirabilis in 1998, eventually replacing the ICQ’s native protocol with AOL’sOSCAR protocol [70][71]. OSCAR was developed as an proprietary protocol for AOL’s IM service AIMand was opened to support third party applications in 2006: https://en.wikipedia.org/wiki/OSCAR_

protocol. Accessed: 13.5.20173Trillian: https://www.trillian.im/. Accessed: 14.5.20174Miranda IM: http://www.miranda-im.org/. Accessed: 14.5.20175Pidgin: https://pidgin.im/. Accessed: 14.5.2017

https://en.wikipedia.org/wiki/OSCAR_protocol
https://en.wikipedia.org/wiki/OSCAR_protocol
https://www.trillian.im/
http://www.miranda-im.org/
https://pidgin.im/

8 Chapter 1. Introduction

Jabber, which was later renamed to XMPP [72], revolutionized IM in 1999
using an extensible, federated, and open protocol and architecture. Similar to
email, user accounts in Jabber could be created at any server, which then relayed
messages to the server of one’s communication partner, thus eliminating the
need to entrust one’s data to more than one IM service provider. This way,
Jabber not only freed users from the need of having multiple user accounts with
different IM service providers, but also from being forced to trust the companies
behind the IM services as everyone could run a Jabber server and host his own
user account, or simply choose a Jabber provider one trusted.
Today’s situation of incompatible OSN services, lacking support for data

portability and interoperability between services reflects the situation of IM at
the end of the past century. Missing standards and protocols prevent forming
a truly open and decentralized social web, in which users control and own their
data, while not being locked into the walled garden of the OSN service they
once decided to sign up with. In this thesis, a solution for interoperability of
OSN services is presented, allowing users to break free of the firm grip of OSN
providers.

1.4 Motivation

"We all are on Facebook because we all are on Facebook"

- Michael "MSPro" Seemann, Re:publica 14
Today’s major OSN platforms are mostly implemented in a closed, proprietary

fashion. Even though access to parts of the services’ functionality is being made
available via proprietary APIs, OSN platforms keep their users from seamlessly
connecting to users of other services to create well-calculated lock-in effects. This
hinders users from being able to freely communicate with services of competitors
while the individual cost of migrating to a competitor’s service is intentionally
kept high. In addition, the created network effects, described as effects where "the
consumption benefit of a network good is proportional to the total number of consumers
[...]" [60], are utilized to decrease the attractiveness of alternative services with
less users. Accordingly, the more users a certain OSN platform is able to attract,
the more each user benefits from the network effect of the platform as finding
a specific individual’s user profile on this platform becomes more likely. Vice
versa, these network effects keep users from using other OSN services, leading
to the current situation of isolated islands of OSN services, in which users are
locked into walled gardens, being proprietary platforms or ecosystems in which
the provider has full control over applications, content, and communication,
effectively binding their users to the platform. Here, "[...] pictures, videos and
everything else is stranded [...], cut off from the rest of the web" [73].
As a result of this intentional isolation of OSN services in terms of user

interaction, a user’s choice for a certain OSN platform automatically becomes a
choice against all other options, unless one is willing to actively maintain more
than one social profile simultaneously. In June 2017, Facebook as the market
leader reported 2 billion monthly active users (MAU) [37]. As depicted in Figure

1.4. Motivation 9

1.4, themore successful competitors of Facebook were able to attract between 100
and 600millionmonthly active users in the same time6 [74] - a difference of over
a billion users. Even Google+ is believed to have attracted only approximately
500 million monthly active users in 20157 [75] and is expected to be discontinued
[76].
Facebook being today’s most dominant OSN service can be explained as

a intentional consequence of the platform’s design as a walled garden, thus
creating network effects or social gravitation. The term social gravitation describes
the phenomenon where a social web platform is more attractive to users themore
users it already has, thus being able to attract even more users [77] and fueling
the principle of the rich get richer. As analyzed by Westland [58], OSN services
don’t experience the benefits of a first-to-market effect after being launched,
as network effects in OSN services are weak in early stages. Yet, being the first
service to be launched helps to beat competitors in the race of attracting a critical
mass of users, which again is crucial for sustaining an OSN service in the long
term [78]. After such a critical mass of users is reached, a giant cluster forms in
the social graph, causing implicit network effects [79] to manifest that cause the
service to become "self sustainable" [58]. Seemann claims that these effects cause
smaller services to be forced out of the market, as most users will choose to sign
up with the dominating OSN service, leaving no room for a "second place" on the
market [77]. The simple explanation for this effect is that for a potential new user
of OSN services, it is more reasonable to register with an OSN platform most of
his friends are already using instead of signing up with a different service, even
though it might be better suited for this user’s demands or expectations. As OSN
services do not allow seamless communication between different OSN platforms,
choosing a platform not used by the majority of OSN users will essentially cut one
off from communication with most other OSN users. Even though this might be
desirable in some special scenarios, being locked out contradicts with the basic
idea of the social web of being able to communicate and sharing content with
each other. The consequence of this being that "we are all on Facebook because we
all are on Facebook" [77]. OSN platform operators have learned to use this to keep
existing customers and attract new ones simultaneously. As stated by Seemann
[77], timing is an important factor in becoming the OSN service with the highest
social gravitation, as being the first service on the market might allows it to
attract a critical mass of users before competitors enter the market. An example
of this effect is the success of Twitter, which managed to attract more users
than StatusNet, a service with a similar concept that was being developed at the
same time, but wasn’t market ready yet when Twitter was publicly launched.
Consequently, StatusNet had no chance to compete with Twitter, as Twitter,
which was launched in 2006, had already gained a large user base as described
by Westmann [58] at the time StatusNet was released in 2009.
The design of OSN services as walled gardens and the resulting lock-in effects

for customers [73] hinder users from moving away to a competitor’s platform
in case they become dissatisfied with the current service. The term lock-in
6Messenger services are not considered as OSN services per definition by Boyd and Ellison [24]and the European Commission [62] and are hence not considered here.7Google does not release official numbers regarding to MAUs in Google+.

10 Chapter 1. Introduction

Figure 1.4: Number of active users of OSN services (in millions) inAugust 2017 [74][83].

effect originally stems from the field of economics where vendor lock-ins inhibit
customers to use a competitor’s product, and make switching to a competitor’s
product unreasonably expensive [79]. The term was applied to social web
services in 2010 by The Independent [80], describing a technological lock-in
where abandoning an OSN platform for another one results in losing one’s
social profile along with all content and connections to other individuals. The
more content and information one had created by using the service and the
more friends are using the same OSN service, the stronger the OSN lock-in
effect is. Technologically, lock-in effects are created by the use of proprietary
interfaces and data formats, disallowing interoperability and data portability.
This way, third party services, including competitor OSN platforms, are not
able to communicate from the outside with an OSN service unless explicitly
allowed by the operator, while users are kept from using their social profile data
with services or migrating to a competitor’s OSN platform altogether [81]. For
example, befriending users, sending invitations to an event managed on an OSN
platform, or simply posting on another user’s wall is not possible if the addressed
user is using a different OSN platform. Essentially, a "stickiness" was created that
kept users from moving away from the networks they were caught in [82].
As network effects and social gravitation cause the global user-base to

converge in few OSN platforms (see Figure 1.4), sensible and personal data of
billions of users is stored and managed by only a small number of companies
[73]. This practice resulted in an ever ongoing conflict of interests, as OSN
providers often automatically claim ownership of the managed data, including
personal information, pictures, and text messages, which is then used for
targeted advertisement and data analysis [84][85]. This enables OSN service
providers to create highly detailed profiles of their users, which are based on
personal information most users wouldn’t want to be used by anyone. Facebook,
for example, states in their terms and conditions8 that they claim "non-exclusive,
transferable, sub-licensable, royalty-free, worldwide license to use any IP content" that
is posted on the platform, and further sharing information about their users with
8Facebook terms and conditions: https://www.facebook.com/terms. Accessed: 18.7.2017

https://www.facebook.com/terms

1.4. Motivation 11

"vendors, service providers, and other partners who globally support our business"9.
The implications of this concerns users, as control over one’s data privacy is
essentially lost [40]. As a result, the amount of information people willingly
specify in their OSN profiles, such as a home address or phone number, declined
over time [86] as users realized that "if you are not paying for it, you’re not the
customer; you’re the product being sold" [87]. The prevalent loose handling of
personal data by OSN providers resulted in a "well documented frustration" of users
[81] who wanted to "jump out of thewalled gardens" [85]. Researchers and users of
OSN services started to demand that OSN services should "open up" [73], allowing
the social graph to be transformed into a "community asset" [40].
In 2007, Smarr et al. proclaimed a Bill of Rights for Users of the Social

Web, in which they assert an entitlement of all users of the social web to
certain fundamental rights [1]. These rights comprised ownership of personal
information such as profile data, friend lists, and activities, including full control
over how this data is shared with and used by other users and services. OSN
services were urged to allow their users to "[...] syndicate their own profile data,
their friends list, and the data that’s shared with them via the service, [...] using a
persistent URL or API token and open data formats; [...] syndicate their own stream of
activity outside the site; [...] link from their profile pages to external identifiers in a public
way; and [...] discover who else they know is also on their site, using the same external
identifiers made available for lookup within the service" [1].
The situation of the social web being controlled by a small number of OSN

providers led to the development of distributed, federated OSN services [85][88].
A number of decentralized OSN (DOSN) services relying on peer-to-peer (P2P)
technology [89][90][91][92], a federation of loosely coupled servers [93][94],
or hybrid approaches [95] were proposed. For example Diaspora10, a highly
anticipated approach, aimed for an open and decentralized OSN service, where
users would host their social profiles on pods, which are connected in a federated
fashion. The service raised high expectations and aimed at developing the
foundation for a federated social web, allowing users to choose their OSN server
or even host their own pod [96]. Ultimately, users would start developing their
own pod software, which would lead to a federated social web connected by the
Diaspora protocols [97]. Yet, even with the existing federated or P2P solutions,
people are still confined within one OSN systemwhere communication with other
OSN systems is not possible at all or limited to few options. In the majority of
federated or P2P environments, even though users are able to control their own
data by either hosting their profiles themselves or entrusting profile data to a
provider of their choosing, seamless communication with other platforms is still
not possible. Moreover, data portability, being the ability to move a profile to
another provider, is not possible without manually copying all data associated
with a social profile [98][99]. Exceptions to this are Friendica11 and Diaspora,
which allow limited exchange between the two networks by implementing the
respective other platform’s native protocol and allowing basic data portability
through manual extraction and re-import of social profile information.
9Facebook data policy: https://www.facebook.com/about/privacy/. Accessed: 21.5.201710Diaspora: https://diasporafoundation.org/. Accessed: 22.5.201711Friendica: http://friendi.ca/. Accessed: 22.5.2017

https://www.facebook.com/about/privacy/
https://diasporafoundation.org/
http://friendi.ca/

12 Chapter 1. Introduction

Other approaches to connect incompatible OSN platforms make use of
integration plugins or apps, such as SocialDeskApp12, or middleware platforms,
such as SNSAPI [100] or OneAll13. Both approaches have in common that
communication with connected OSN platforms is facilitated via the proprietary
APIs and protocols these platforms offer. Consequently, users need to be
registered with each connected OSN platform in order to be granted permission
to use these APIs to exchange information with different platforms [101]. Data
is then fetched from all connected remote OSN services and combined in the
user interface, while write operations, such as posting status updates, lead
to the content being replicated to all connected profiles [101]. Using these
solutions, most profile data is accessible across OSN platform borders, but the
approach fails to allow users to seamlessly connect to each other. Moreover, core
functionality of OSN platforms such as group discussions, event management, or
friend list management cannot be realized using these approaches. As building
connections between profiles and communicating with other individuals is one
of the most important features of the social web, using integrator plugins and
middleware solutions cannot solve the issue of walled gardens. In fact, OSN
integrators or middleware platforms even aggravate the problem of data privacy
issues by replicating data to multiple servers and accounts, making it accessible
to multiple OSN platform providers in the process [101].
Besides proposing alternative OSN architectures and services, efforts to

connect OSN services resulted in an extensive collection of microstandards such
as Activity Streams 2.0 [102], Web Finger [103], or Friend-of-a-Friend (FOAF)
[104]. While many OSN services adopted some of these standards in their APIs
and protocols, their use is still kept proprietary and does not allow seamless
inter-platform communication [13].

1.5 Problem Statement

The current situation of the social web [12] can be characterized as a landscape of
different OSN services, designed as isolated data silos [85]. These silos are shut
off from each other by the use of proprietary APIs, protocols, and data formats.
Users of OSN services tend to have multiple accounts in order to be able to keep
in touch with friends in different OSN services [59], resulting in an overlap of
information [98]. Yeung et al. note that given that OSN services are preventing
interconnectivity with competing services, users "would like to ’jump out of the
walled gardens’ [...] to share their data with their friends whomay bemembers of other
social networking sites." [85]. After all, social communication and collaboration
is, by its own nature, peer to peer and not centralized [101]. In the envisioned
decentralized social web, users would not be restricted to the OSN service they
signed up with in the first place anymore [85].
With the aim to "build their own social web" [73], programmers and researchers

proposed alternatives to the closed, proprietary silos, driven by the belief that
"a truly universal, open, and distributed social web architecture is needed" [105] and
12SocialDeskApp: http://socialdeskapp.com/. Accessed: 22.5.201713OneAll: https://www.oneall.com/. Accessed: 22.5.2017

http://socialdeskapp.com/
https://www.oneall.com/

1.5. Problem Statement 13

that the Internet needed "a way to take the features of the popular social networks
andmake them available to theworld at large" [73]. Applequist et al. identified four
major problems for users of closed OSN services, being the ability to move social
profile data between OSN services (portability), using one identity across the
entire social web instead of separated ones (identity), the ability to link to social
profiles and data from outside the OSN service storing this data (linkability),
and being in control over access and use of one’s social profile data (privacy)
[105]. They proposed an approach for a "standards-based, open and privacy-aware
social web", in which users would own and control their social profile data in
a trusted location while disclosing selected parts of it to selected OSN services.
This way, online personas could be created with different scopes, for example
for personal and professional use, where only content suitable for the respective
persona would be accessible in the respective OSN service [105]. Still, following
this approach would require users to sign up with multiple OSN services, where
data is replicated to the connected social profiles [101], a practice that users are
"sick of" [40].
While proposing alternative architectures to address network and lock-in

effects [82], researchers acknowledged that a major challenge of DOSN services
is adoption by users [85]. Applequist et al. state that "participation is the life blood
of social networks. If [...] too few people participate, a social networking application
dies" [105]. As found by Westland [58], OSN services experience network effects
after they reached a critical mass of participating users. According to perlocation
theory, at this point a phase change happens in the social graph and a giant
cluster of users forms in the network [58]. An OSN then becomes self-sustaining
and is able to attract evenmore users for the simple reason that most likely, most
of the friends, relatives, or acquaintances of a certain user are already using the
OSN service in question. Hence, a user is not free anymore in his choice of an
OSN service and has to sign up with the dominant OSN service as otherwise,
he would be cut off from the rest of the social web. As a result, OSN services
that manage to achieve a certain critical mass of users as the first service in the
market massively benefit from implicit network effects and are therefore able to
easily dominate the market [58].

1.5.1 Challenges

To address the issues of the current social web, Fitzpatrick and Recordon defined
in their much-noticed article Thoughts on the Social Graph several goals, including
to "make the social graph a community asset [...]", namely by establishing a "[...]
non-profit and open source software" ensuring "[...] that the design [of components]
is such that others can run their own instances, sharing data with each other" [40]. As
to this date solutions built with these requirements in mind were not able to
attract a significant number of users, Paul et al. defined a list of requirements
in their survey on DOSN services [106]:

14 Chapter 1. Introduction

• Transparency: The distribution of services needs to be entirely transparent
to the user.

• Integration: Access to data and functionality needs to be accessible via a
single integrating interface covering search, publication, and retrieval of
information.

• Functionality: All data related functions of central OSN, such as chats,
posts, pictures, or profiles, need to be provided.

• Relations: Relations between users in the social graph need to be
represented.

• Availability: Availability of data and services must not be interrupted.
• Confidentiality: Confidentiality of data and communication must be
ensured.

• Access Control: Access control must be implemented and enforced, even
though a central authority is missing.

• Privacy: Privacy must be supported for users and their data.
Also, Koll et al. analyzed factors of success of DOSN services and provided a

list of nine challenges DOSN services have to accomplish in order to be successful
in the market [101]:
• Independence: Storage and management of social profiles and data must
not depend on any provider.

• Free-of-Charge: Membership and usage of the service must be free of
charge for the users.

• Online Times: The service needs to be available at all times.
• Mobile Support: Access to the service must be possible frommobile devices,
ideally via a dedicated mobile application.

• Efficiency: Communication and storage designmust minimize unnecessary
overhead.

• Scalability: The service must be scalable to several millions of users.
• Resiliency: The service must implement protective measures against
attacks and other kinds of misuse.

• Privacy: Users of the service must be able to control access to their data on
a very fine-grained basis.

• Performance: The service has to be performant.
Koll et al. argue that while an ideal OSN service would satisfy all listed

challenges, some of them are rather mutually exclusive [101]. Hence, a balanced
compromise needs to be found for a DOSN service to be successful. For example,
independence of external resource providers and efficiency are hard to satisfy at

1.5. Problem Statement 15

the same time, as a central system is able to prevent communication overhead
far better than a decentralized one. Hence, a DOSN service can either reduce
communication overhead or dependence on (central) providers. Other examples
are that performance and high availability is financially hard to achieve when
the service is free of charge for its users, and that privacy control prevents
business models as employed by Facebook. Koll et al. conclude that a distributed,
federated approach where social profiles and associated data is hosted on a user’s
home gateway provides the best option to build a successful DOSN service [101],
where the feasibility of this approach has been proven [107].

1.5.2 European Law Perspective

The situation of a social web consisting of closed, proprietary walled gardens has
also been addressed by European law. In an analysis of European regulatory and
competition law issues, Graef argues that OSN services are mainly multi-sided
businesses with users on the one and advertisers on the other side, as indirect
network effects between users and advertisers can be clearly identified [35].
These indirect network effects, as described by Katz and Shapiro [79], result in an
increased utility of the service for customers as the overall number of consumers
of the service increases. In case of OSN services, a higher number of users results
in an increased value of the service for advertising companies, as more users
can be reached by publishing advertisements in the OSN service. Graef further
notes that OSN markets are "[...] typically quite concentrated, since it is necessary
to have a critical mass of customers" to be able to succeed in the market, making
it "[...] difficult for competing platforms to gain a foothold in the [OSN] market", what
ultimately tends to "[...] limit the number of viable firms in amarket" [35]. Following
the European Court of Justice’s definition of dominance, being "a position of
economic strength enjoyed by an undertaking which enables it to prevent effective
competition beingmaintained on the relevantmarket by giving it the power to behave to
an appreciable extend independently of its competitors, customers, and ultimately of its
consumers" [108], Graef sees Facebook in a dominant market position, effectively
hindering competitors being successful in the OSN market. Seeing OSN services
as communication platforms, Graef argues that legal action should ensure that
competition is made possible again. To alleviate the current situation of one
OSN platform dominating the entire OSN market, Graef proposes to mandate
regulatory action based on European competition laws where two aspects should
be addressed in specific, being data portability and interoperability.
Graef describes data portability in the domain of OSN services as a user’s

ability to automatically move their social profile data including photos, posts,
and friend lists to a competitor’s service, where "technical standards have to be
developed to ensure that data portability can be effectively implemented [...]" so that
"it [is] possible for data extracted from one social network to be seamlessly inserted into
another [OSN service]" [35]. Yet, data portability as proposed in the General Data
Protection Regulation of the European Commission merely grants the extraction
and transfer of data that would allow to identify a user and would therefor
not necessarily allow users to transfer all social profile data to a competitor’s
OSN platform. Graef argues hence that regulation is necessary to ensure

16 Chapter 1. Introduction

interoperability is implemented, giving users the ability to "[...] connect and
interact with each other irrespective of their social network provider" [35], thus being
even more powerful than data portability alone. Graef argues that implementing
OSN network interoperability would be "away to redress network effects and increase
competition in the [OSN] market [...]" furthermore reducing "[...] switching costs and
the degree of user lock-in [...]" as "[...] the number of people that a user can reach is
not limited anymore to the number of users on the social network that the user decided
to join" [35]. Furthermore, Graef states that "[...] interconnection requirements
should be imposed in general on all social networks and in all situations" as "real
interoperability can only be established when all social network providers are obliged
to participate in the process" [35]. Finally, Graef notes that mandating support
for data portability and interoperability may affect the business models of OSN
services, yet will encourage new services to enter the market, leading to more
and healthy competition and consumer choice, and will ultimately result in
a better protection of the rights and interests of users of OSN services [35].
As of 2016, data portability has been regulated in the General Data Protection
Regulation (GDPR) by the European Union (EU) [109]. The regulation addresses
a mandatory ability to export personal information "[...] in a structured, commonly
used, machine-readable, and interoperable format [...]" including the ability to
transmit the exported information to other services. With the intention to
"further strengthen the control" over one’s data, the regulation is enforceable as of
May 2018, yet lacks a technical implementation of how data should be exported,
described, or re-imported. As pointed out by Sperlich [110], this creates technical
challenges, as service providers mostly use proprietary data formats which are
tailored to the individual data processing systems with the intention to create
lock-in effects for customers.

1.6 Research Questions

To address the prevalent situation of centralized OSN service dominating the
social web, a novel kind of service and architecture is required. Following
the requirements for an open, distributed, and privacy-aware, social web as
discussed in Section 1.5, the following research questions have been identified:
Research Question RQ1: Enabler for OSN Diversity
The existing strong network effects in today’s OSN service landscape threaten the
diversity of OSN services. As social gravitation draws users to the OSN services
with the most users, it is nearly impossible for new OSN services to attract users.
A solution needs to provide means to weaken existing network effects to allow
new and smaller OSN services to succeed in the market.
Research Question RQ2: Mapping OSN Features
Today’s OSN services provide a rich and diverse set of functionality. Building
a service that aims to connect all possible OSN solutions needs to be able to
provide a solution for communication between OSN services with different or
incompatible featuresets, while covering functionality of existing OSN services.

1.7. SOcial Network InterConnect 17

Research Question RQ3: Enabling OSN Interoperability
Today’s OSN services are mostly not allowing interoperability between each
other. While microstandards and protocols exist for specific issues, a holistic
standard for interoperability of OSN services does not exist. Hence, a solution
needs to implement a holistic protocol including data formats that are able to
provide interoperability between arbitrary OSN services.
Research Question RQ4: Enabling Data Portability
Today’s OSN services offer only limited manual export of profile information,
if at all. To this date, a complete and automated profile export from one and
re-import at another OSN service is not possible. Furthermore, moving profile
data between service domains will inevitably break links to other profiles and
data. Hence, a solution does not only need to implement portability of profile
data, but also ensure that connections to other profiles stay intact.
Research Question RQ5: Identification
User profiles in today’s OSN services are usually identified by a locally unique
identifier or username, which is used in combination with the service’s domain
name. As of this, user identifiers are bound to the OSN service they were created
in. Allowing migration of social profiles between service domains hence needs
to implement a domain-agnostic identification architecture that allows user
identifiers to remain valid after an account has been migrated to another service
domain.

1.7 SOcial Network InterConnect

To address current issues of mostly proprietary and closed OSN architectures,
several alternative architectures and paradigms have been proposed. Existing
architectures can be categorized into centralized and decentralized approaches,
of which the latter can be distinguished further into federated, P2P, and
hybrid [111]. All existing approaches have in common that users need to
register a separate OSN account, which cannot be used with other OSN services,
while seamless interoperability between services is not possible or severely
limited. Users and their data are therefore still locked in with alternative OSN
architectures, what contributes to the lacking willingness of users to abandon
their accounts in the predominant OSN services. Designs for Yet Another Social
Networking Service (YASNS) would hence face the same problems as existing
solutions have, unless successfully addressing and solving the aforementioned
issues existing in OSN services.
In contrast, a solution that addresses the identified research questions and

challenges, thus providing interoperability, seamless connectivity, and data
portability between arbitrary OSN services would introduce several advantages
to the entire landscape of OSN services. As stated by Palfrey and Gasser,
interoperability of systems and services does not only provide a greater choice
and autonomy for the consumer, but also supports competition and innovation,

18 Chapter 1. Introduction

while additionally providing benefits for both customers as well as providers in
terms of systemic efficiency [60].

1.7.1 The Sonic Vision

In this thesis, SOcial Network InterConnect (Sonic), a distributed architecture
and design for an open and decentralized Online Social Network Federation
(OSNF) is presented, being a "heterogeneous network of loosely coupled OSN
platforms using a common set of protocols and data formats in order to allow seamless
communication between different platforms" [3]. Sonic is built on the idea of
utilizing and combining existing OSN microstandards to provide a holistic
framework for OSN interconnectivity. The vision of Sonic is an open, seamlessly
interconnected, heterogeneous ecosystem of OSN platforms, in which users are
not restricted to communicating with connected users of the same OSN platform,
but can seamlessly interact and collaborate with users of other OSN services
as platform borders become transparent. Lock-in effects, keeping users from
abandoning an OSN service they are dissatisfied with, are eradicated as user
profiles may be freely migrated from one OSN platform to another at any time
without losing established relationships in the social graph. This would allow
users to freely choose an OSN platform of their liking instead of being limited in
their choice to the platform used by one’s friends. In this thesis, the following
definition of the OSNF is used:
Definition 1: Online Social Network Federation (OSNF)
An Online Social Network Federation (OSNF) is a heterogeneous network of
loosely coupled OSN platforms using a common set of protocols and data
formats in order to allow seamless communication and interoperability
between different OSN platforms. While heterogeneity allows the
participating OSN platforms to support different OSN featuresets or different
implementations of OSN features, the Sonic core featureset must be
supported.
To realize this vision of an ecosystem of freely interconnected ONS services,

Sonic proposes a holistic approach comprising an open and extensible social API
as well as data formats. The APIs and data formats proposed by Sonic are built
around existing open standards to allow for a high compatibility with existing
implementations while easing implementation and integration overhead for
developers at the same time. This allows any OSN service provider to implement
and integrate the required protocols and interfaces and connect existing OSN
platforms to a global ecosystem of OSN services as envisioned by Yeung et al. in
[85]. Furthermore, as more and more smaller OSN services connect themselves
in the OSNF, a critical mass of users and services could be used to make the OSNF
self-sustainable as described by Westland in [58]. This could cause a disruption
of currently employed business models focused on centralization.
Eradicating lock-in effects in the way envisioned by Sonic also allows users

to freely communicate between different platforms and even migrate between
OSN platforms at any time without losing any social profile data or connections

1.8. Contribution 19

to other users. Addressing the issue of social profiles being bound to the OSN
platform they were created in by providing a holistic solution allows users to
maintain social profiles at any server they want while allowing them to migrate
profiles to a new server if wanted.
Hence, Sonic introduces a solution for the effect of social gravitation as users

of Sonic-compliant OSN services are not locked-in anymore and the individual
choice of a user for a specific OSN service does not automatically cut him off from
communicating with other OSN services. As choosing a small OSN service instead
of the one with the largest user base does not isolate users anymore, smaller or
new OSN services stand a much better chance on the market. If OSN service
providers cannot rely on network effects anymore, they need to compete for
users via alternative benefits, such as better functionality, performance, support,
or privacy. Consequently, Sonic re-introduces competition and innovation in the
consolidated OSN market.
The outcome is a federated, heterogeneous social ecosystem, in which users

are able to maintain full control and ownership of their social profile data.
Such an ecosystem allows OSN platforms to be connected by loose coupling
and exchange informations using common data formats and APIs. The resulting
OSNF as of Definition 1 would therefore allow any OSN platform to communicate
freely with any other Sonic-compliant OSN platform as depicted in Figure 1.5.

Figure 1.5: Sonic OSNF: Any OSN platform is loosely coupledwith any other OSN platform using common data structures andprotocols. The result is an open and heterogeneous OSN federation.

1.8 Contribution

This thesis proposes a holistic architecture for a distributed, heterogeneous OSN
ecosystem, the OSNF. The envisioned solution addresses existing issues such
as data privacy, lock-in effects, and missing interoperability. Sonic not only
allows users to connect to each other across platform borders and seamlessly
communicate, but also to move their profiles between OSN platforms without

20 Chapter 1. Introduction

losing data or connections to other user’s profiles. Current issues of centralized,
proprietary OSN platforms, such as the lack of data privacy, lock-in effects or
the walled garden phenomenon, can be avoided altogether with the proposed
solution. Challenges for DOSN services as identified by Applequist et al, [105],
Paul et al. [111], and Koll et al. [101] are either addressed directly by design, or
can easily be implemented by OSN platforms. The following solutions for the
area of DOSN ecosystems are a contribution of this thesis:

1.8.1 Definition of a Core Featureset of OSN Platforms

OSN platform implementations vary in the features and functionality they
provide as OSN platform providers implement new features to follow the latest
trends and keep up with competitors to attract new customers and defendmarket
shares [112]. Still, OSN platforms provide a set of basic core functionality, which
usually does not differ from the implementations of other OSN platforms. Such
features comprise for example profile pages, messaging functionality, or liking
content of other users. To allow the definition of a common social protocol and
set of data formats, Sonic defines a taxonomy for features of OSN platforms and
derives a core featureset of OSN functionality [5]. The features comprised by the
core featureset are supported by almost all existing OSN implementations, while
implementation details rarely diverge. To support features not comprised by the
core featureset, feature extensions are used to allow OSN platforms to create a
unique user experience by providing unique features to their users.

1.8.2 Privacy Preserving OSN Architecture

Most of today’s popular OSN platforms, such as Facebook, Google+, or Twitter,
are built in a centralized manner. This allows the operators of these services to
exert full control over all user data. Alternative architectures have been proposed
to allow users to regain control about their data, including mobile-hosted,
decentralized approaches, some of those being organized as federated or
peer-to-peer based, or even hybrid approaches [113][111]. The idea behind these
alternative architectures is that a user should be free to chose the provider to host
the social profile and control access to the profile’s contents. Sonic proposes
a decentralized, federated OSN architecture, similar to Friendica or Diaspora,
but builds on the idea of seamlessly connecting various different kinds of OSN
implementations. The architecture is fully decentralized to prevent situations in
which control of a vital component of the social ecosystem lies in the hand of a
single individual or company, allowing for potential abuse. This allows users to
host their own social profile if desired and remain in full control of the comprised
data. This builds the foundation for an open, heterogeneous OSN federation, the
OSNF.

1.8. Contribution 21

1.8.3 APIs and Data Formats for Seamless OSN Interoperability

Even though a variety of data standards and protocol exist that address
communication and data exchange in the social web [105], a holistic approach
that facilitates seamless communication between different OSN platform
implementations does not exist. Existing solutions focus on mostly isolated
issues and tasks, such as describing activities [114], discovery of user
profiles [103], or modeling links between users [104]. Sonic addresses
this issue by proposing a holistic approach, comprising data formats and
APIs that allow seamless exchange of data between different OSN platform
implementations. The proposed data formats are built to be compatible with
existing microstandards such as Activity Streams 2.0 [102], Open Social [115],
or OStatus [116] to ensure easy integration in existing OSN implementations.
The protocols proposed by Sonic cover functionality supported by the majority
of existing OSN implementations, allowing an easy integration into an existing
OSN platform.

1.8.4 Global User and Object Identification

The way how OSN platforms identify users and data objects, such as a user’s
profile page or a posted status update, differs between OSN platforms. Normally,
OSN platforms issue locally unique identifiers for users, which can be resolved to
the user’s identity or data object only in conjunction with the issuing platform’s
domain name. As of this, the issuing platform always remains responsible for
routing requests for user identities or data objects, even after migrating to a
competitor’s service. Users of migrated accounts would therefore have to trust
their original OSN provider to allow resolving of identities of remote social
profiles. To prevent this kind of situation, Sonic proposes domain-agnostic
identifiers for all user identities as well as all social profile data. Sonic introduces
the concept of GlobalIDs, which are domain-agnostic, globally unique identifiers
for users. Data objects are identified via Unique Object IDs (UOIDs), which
comprise the object creator’s GlobalID. GlobalIDs - and therefore UIODs - are
resolved via the Global Social Lookup System (GSLS), a distributed DHT-based
directory service. GlobalIDs are self-issued, where the ownership of any
identifier can be verified using digital certificates.

1.8.5 Data Portability for User Accounts

The well calculated lock-in effects of today’s centralized OSN platforms keep
users from moving their social profile to a competitor’s service. In case a user
is not satisfied anymore with his current OSN platform or its terms of usage, he
is unable to move to a competitor’s platform without losing all his social profile
data and connections to other users. The use of open OSN architectures such as
federated or P2P-based approaches cannot solve this issue, as a user would again
be caught within the boundaries of this architecture. Without means to freely
move a social profile to any other OSN platform, federated approaches still lock
the user into their domain.

22 Chapter 1. Introduction

Sonic addresses this issue through migration functionality, which allows to
extract a complete social profile from any Sonic-compliant OSN platform and
import it to another OSN platform of the user’s choosing. Connections between
social profiles, such as the friend roster or comments from other users, are kept
intact by the migration process.

1.9 Research Methodology and Outline

The research in this thesis follows the methodology of design research as
described by Hevner et al. in [117]. The design research methodology aims at
innovation by creating new and innovative artifacts in order to solve specific
problems in research, where artifacts can be constructs, models, methods, or
instantiations. Hevner et al. [117] defined a set of guidelines for conducting
design research, where the research process can be separated into three research
cycles that provide a framework for research activities [118]. Here, the relevance
cycle describes the definition of the research problem and an assessment of its
relevance. The rigor cycle then evaluates and applies knowledge from related
work from other researchers to ensure a novel contribution is created by the
research activity. Finally, the design cycle designs, implements, and evaluates
artifacts, and furthermore provides a detailed formal description of each artifact.
The contribution of this thesis and its relevance have been motivated and
assessed in the relevance cycle, where the State-of-the-Art has been analyzed
in the rigor cycle. The contribution of this thesis can be distinguished into
four separate artifacts, being the definition of a common core featureset of OSN
services, the concept and design of a distributed user identity management, the
Sonic architecture, and the Sonic protocol. These four building blocks address
the aforementioned research questions and provide a holistic solution for the
identified problem. The designed artifacts have been designed, implemented,
and evaluated in the design cycle.
The structure of this thesis reflects the individual tasks addressed by the three

cycles defined by design research. Chapter 1 provides an extensive overview of
the history of distribution of OSN services and describes the motivation for the
research as well as research questions to be addressed. Chapter 2 then gives an
overview of approaches for facilitating distribution of OSN platforms. Chapter 3
presents use cases motivating the idea and describing benefits of an open OSNF,
followed by a list of identified requirements for the proposed solution. The rest
of the chapter is organized in four main sections, of which each describes the
concept and design of one of the aforementioned designed artifacts, each being
a major building block of the holistic Sonic solution. Each section describes its
own overview of related work as well as the concept and design of the proposed
solution. These sections describe a taxonomy of OSN features (Section 3.4),
user identification management (Section 3.5), the OSN platform architecture
(Section 3.6), and the Sonic protocol (Section 3.7). Chapter 4 describes the
implementation of the distinct components, followed by the evaluation of the
concepts and components of Sonic in Chapter 5. Chapter 6 concludes the thesis.

23

2 Related Work

As of today, OSN services have become an integral part of our everyday digital
lives. We express ourselves, communicate, and even collaborate using social
services and applications. While functionality of early social platforms, such
as Classmates.com or Sixdegrees.com was mostly limited to discussion boards
andmodeling andmaintaining relationships with friends and colleagues, today’s
OSN services have become one of the main communication and collaboration
platforms. Here, users are able to communicate via text, audio, and video,
and furthermore share content, plan events, or just stay in contact with
friends and relatives. While early OSN platforms were mostly organized in
a closed, proprietary fashion, several architectures, services, and protocols
have been proposed that aim at decentralizing aspects of OSN services, storage
and management of the users’ personal data and information, or entire
service architectures altogether. This chapter provides an overview of existing
definitions and categories of OSN services as well as of the proposed approaches
to decentralize OSN services.

2.1 Online Social Networks

To describe and analyze OSN services, several definitions of OSN services have
been given in scientific literature. Existing literature employs various terms for
social web services, including Online Social Network (OSN), Social Web Site (SWS)
and Social Networking Site (SNS). While the terms are mostly interchangeable,
this thesis exclusively uses the term Online Social Network (OSN) to prevent
inconsistencies and possible misunderstandings. Following, an overview of
definitions and classifications of OSN services is provided.

2.1.1 Definition

One of the most accepted and used definitions of OSN services was given by
Boyd and Ellison in [24], being a web based service that allows "[...] individuals
to (1) construct a public or semi-public profile within a bounded system, (2) articulate
a list of other users with whom they share a connection, and (3) view and traverse
their list of connections and those made by others within the system". Boyd and
Ellison gave another, extended definition in [119], defining OSN services as "[...]
networked communication platforms inwhich participants 1) have uniquely identifiable
profiles that consist of user-supplied content, content provided by other users, and/or
system-provided data; 2) can publicly articulate connections that can be viewed and
traversed by others; and 3) can consume, produce, and/or interact with streams of
user-generated content provided by their connections on the site."

24 Chapter 2. Related Work

Datta et al. extended the original definition given by Boyd and Ellison in [88]
by defining an OSN as "an online platform that (1) provides services for a user to build
a public profile and to explicitly declare the connection between his or her profile with
those of other users; (2) enables a user to share information and content with the chosen
users or public; and (3) supports the development and usage of social applications with
which the user can interact and collaborate with both friends and strangers".
Another definition was given by Schneider et al. [120] according to

which "OSNs form online communities among peoplewith common interests, activities,
backgrounds, and/or friendships" where users can "[...] upload profiles (text, image,
and video) and interact with others in numerous ways". Adamic and Adar [121]
describe OSNs as services that "[...] gather information on users’ social contacts,
construct a large interconnected social network, and reveal to users how they are
connected to others in the network." Pallis et al. [122] define an OSN service as a
website that "acts as a hub for individuals to establish relationships with other persons
[...], includes awide rangeof tools for people to build a sense of community inan informal
and voluntary way, [...] and contain specific components that allow people to: define
an online profile, list their connections [...], receive notifications on their activities [...],
participate in group or community activities, and control permission, preference, and
privacy settings." Kim et al. [123] define social websites as "web sites that make
it possible for people to form online communities and share user-created contents".
People in this definition can be individuals of a particular organization or are
arbitrary Internet users; communities may be "a network of offline friends [...],
online acquaintance, or one or more interest groups [...]"; content may be photos,
videos, bookmarks of web pages, user profiles, status updates, comments, or
posts in a blog or microblog; and sharing describes actions such as posting,
viewing, commenting, voting on, saving, and re-transmitting content. Kaplan
and Haenlein describe OSN services as "applications that enable users to connect by
creating personal information profiles, inviting friends and colleagues to have access to
these profiles, and sending e-mails and instant messages between each other" where
"[...] profiles can include any type of information, including photo, video, audio files, and
blogs" [124]. Finally, Richer and Koch [125] defined OSN services as "applications
systems that offer users functionalities for identity management (1) [...] and enable
furthermore to keep in touch (2) with other users".
While the existing definitions vary, certain aspects are mentioned in most

definitions. These recurring aspects are (1) a public social profile, (2) the ability
to create, maintain, and publish a list of connections to other users, (3) means to
create and publish content in various forms, and (4) communication with other
users.

2.1.2 Classification

Besides defining the essence of social applications and services, researchers
also have analyzed how OSN services can be categorized, where a distinction
can be made based on functionality and scope of a service or based on
it’s architecture. To distinguish OSN services from other forms of social
web services, Kaplan and Haenlein presented a categorization of Social Media
services in general based on two criteria, being social presence/media richness

2.1. Online Social Networks 25
Table 2.1: Classification of Social Media by social presence/mediarichness and self-presentation/self-disclosure as of Kaplan andHaenlein [124]

Social presence / Media richness
Low Medium High

Self-presentation/Self-disclosure High Blogs Social networkingsites (e.g.,Facebook)
Virtual socialworlds (e.g., SecondLife)

Low Collaborativeprojects (e.g.,Wikipedia)
Contentcommunities (e.g.,YouTube)

Virtual game worlds(e.g., World ofWarcraft)

and self-presentation/self-disclosure [124]. As shown in Table 2.1, a high social
presence and media richness is found in virtual social worlds or social game
worlds, while a low social presence and media richness is found in blogs and
collaborative projects such as Wikipedia1. According to their classification, OSN
sites and other community web services, such as YouTube2 exhibit medium
values of social presence and media richness, where OSN sites distinguish
themselves via a high level of self presentation and self disclosure compared
to community web services [126].
Heidemann et al. proposed a classification of OSN services based on their

respective targeted audiences [36]. Following her classification as depicted
in Figure 2.1, OSN platforms can be distinguished based on three criteria
being primary usage, focus, and access. While primary usage describes whether
an OSN service targets private or business-related connections (private vs.
business), focus describes whether an OSN service focuses on a certain topic
(general vs. special interest), such as publishing photos or music. Finally,
access distinguishes between networks with open registration and networks that
restrict access to a specific group of users (open vs. closed) [113].
Other categorizations distinguish OSN services based on their architectures.

As the term Online Social Network generally applies to all OSN architectures,
OSN services can be distinguished into traditional, centralized OSN (COSN) and

1Wikipedia: https://www.wikipedia.org. Accessed: 5.9.20172YouTube: https://www.youtube.com. Accessed: 5.9.2017

Figure 2.1: Classification of Online Social Networks proposed byHeidemann et al. Image source: [127].

https://www.wikipedia.org
https://www.youtube.com

26 Chapter 2. Related Work

Figure 2.2: Categorization of OSN architectures.

decentralized OSN (DOSN) services [106]. In comparison to COSN services,
DOSN services can be further categorized based on their architectural model.
Here, Paul et al. note that decentralization of OSN services has more than one
dimension and distinguishes between technical and authorial decentralization
[111]. Technical authorization describes a distribution of resources, where parts
of an OSN service are run on different machines, while authorial decentralization
describes that a number of "distinct and independent authorities run and maintain
technical resources". According to the definition, a DOSN service is fully
decentralized, when all basic functionality of a DOSN service does not rely on
a centralized component.
To further categorize DOSN services, Paul et al. proposed a classification

based on how storage of data is organized in a DOSN service [111]. While
peer-to-peer-based OSN services (P2P-OSN) distribute storage and control
entirely to individual peers of a p2p overlay network, federated OSN service
(F-OSN) rely on multiple interconnected servers. Finally, hybrid solutions
(Hybrid-OSN) rely on a mixture of both solutions.
A similar classification was proposed by Koll et al. in [101], which

distinguishes between server-based, cooperation-based, and hybrid solutions [101].
According to this classification, distributed server-based architectures are based
on permanently available resources to host data, allowing continuous access to
all information. This type of architecture usually comprises functionality and
data hosted on web servers or cloud services, hence providing high availability.
Distributed architectures following the cooperation-based approach solely rely
on end-user devices to host functionality and data instead of fixed servers. As
user-operated devices usually do not provide high availability and moreover may
change their logical and physical location in the network, such architectures need
to provide sophisticated mechanisms to ensure data availability and methods for
data retrieval. This is usually achieved through (implicit) cooperation of users,
for example via self-organizing peer-to-peer-based overlay networks. Finally,
hybrid approaches combine architectural elements of both approaches, where
data availability and functionality is provided by both permanently available
resources and user cooperation. An overview of the distinct categories of ONS
architectures is depicted in Figure 2.2.

2.2. OSN Services 27

Chowdhury et al. defined criteria for comparing of peer-to-peer-based
DOSN services in [128], which focus on distribution of control and storage
in a DOSN service. Inspired by classification of peer-to-peer networks, the
proposed organization of both aspects can either be structured, semi-structured,
or unstructured. Structured approaches provide a organized overlay, which
provides means for routing messages and requests to their destination in
a limited number of steps, where the overlay in structured approaches
is self-maintained and distributed between all participating entities. In
comparison, unstructured approaches lack an overlay for organization of the
network. Messages and queries are hence flooded throughout the entire network
without a guarantee that a message reaches it’s destination. Semi-structured
approaches introduce a small subset of super-peers, which organize a sort of
overlay or index in the system. Other nodes connect to super-peers, who then
are managing the routing of messages and queries.

2.2 OSN Services

In the beginning of the social web, OSN services were organized as central
web services. With only a few services available that modeled connections
between users, interoperability and exchange of information was not prioritized.
Early OSN services such as Friendster or Classmates.com still mostly focused
on modeling connections between users, where interoperability issues were
not addressed. A comprehensive overview of the market of centralized OSN
services including the history of the early social web itself has been described
by Boyd and Ellison in [24], Heidemann et al. in [127], as well as by Pallis et
al. in [122], where Figure 2.3 depicts the timeline of the foundation of OSN
services in the earlier years of the social web. With growing importance of social
functionality and services, OSN providers aimed at attracting and keeping users
on their platforms. Creating lock-in effects proved to be a valuable asset in the
pursuit of this goal and resulted in the isolated islands of OSN services we know
today. Facebook, which was founded by Marc Zuckerberg in 2004, changed the
landscape of OSN services. With more than two billion monthly active users
worldwide [37], the service managed to establish worldwide dominance in the
OSN market and continues to grow. The strong network effects made it nearly
impossible for competitors to persist in the market. For example Google+, even
though implemented and maintained by a large cooperation, couldn’t attract a
significant number of users and is today expected to be discontinued [76]. Other
examples are the discontinued OSN services StudiVZ/MeinVZ [129] as well as
Orkut [130].
As of today, relatively few large OSN services manage to prevail on the OSN

market, where alternatives to Facebook often focus either on niche markets
or managed to acquire regional dominance. For example RenRen, which
translates to "everyone’s network", managed to attract a high number of Chinese
users with design, functionality, and business model strikingly resembling
Facebook [131]. While benefiting in its early years from the Internet blockade
of non-Chinese services including Facebook and Google, RenRen experienced

28 Chapter 2. Related Work

a decline in user numbers in the past years, as Chinese users moved towards
OSN services of competitors. VKontakte, being a very popular OSN service in
Russia, also resembles Facebook’s design and functionality to great extends, yet
introduces additional and unique functionality such as music and playlists. At
the same time, services such as Linkedin or Instagram focused on special niches
such as modeling business networks or posting photography.

2.2.1 DOSN Services

Due to the prevalent loose handling of personal information of users by OSN
operators and the restraining lock-in effects, distributed OSN services were
proposed. As pointed out by Paul et al. in [111], OSN services can be distributed
both technologically and authorially. While technological decentralization
distributes the various components of an OSN service on different machines,
authorial decentralization causes "distinct and independent authorities [to] run and
maintain technical resources [of the service]". Paul et al. argue that due to the
large numbers of today’s major OSN services, most services are technologically
decentralized. Yet, within these services, one single entity, usually being the
company running the service, holds all power over the entire service. Such OSN
services are therefore considered to be of a centralized nature. According to Paul
et al., an OSN service is considered to be decentralized, if core functionality of
OSN service is supported and furthermore at least one core functionality of OSN
services does not rely on centralized architecture. Following their definition,
an OSN service is considered to be fully decentralized when all functionality is
implemented independent of central control or a central component.

Figure 2.3: Timeline of the foundation of Online Social Networksbetween 1997 and 2011. Image source: [127].

2.2. OSN Services 29

Based on the categorizations of DOSN architecture models by Paul et al. [111]
and Koll et al. [101] presented in Section 2.1, DOSN architecture models can
be categorized into peer-to-peer-based OSN services (P2P-OSN) that distribute
storage and control entirely to individual peers of a P2P overlay network,
federated OSN services (F-OSN) that rely on multiple interconnected servers,
and hybrid solutions (Hybrid-OSN) that rely on a mixture of both solutions. In
the remainder of this section, an overview of existing solutions based on the
categorization of Paul et al. [111] is given.

P2P DOSN Services

As social communication and interaction is by it’s own nature decentralized
without relying on central entities, researchers aimed to eliminate central
components entirely by moving functionality and data storage capabilities to
the devices of users, which are connected in a peer-to-peer (P2P) fashion as
depicted in Figure 2.4a. Offloading functionality and storage of a OSN service to
the individual user’s devices introduces several challenges. Not only are such
devices usually not running and reachable at all times, smaller devices such
as smartphones or tables provide less storage and processing power compared
to a regular server. Furthermore, P2P-based architectures introduce potential
threats into the P2P-OSN, as all functionality is executed on untrusted devices.
P2P-based DOSN services hence face challenges such as availability, efficiency,
or trust.
Buchegger et al. proposed hosting user profiles and associated data on

user-controlled devices connected in a P2P fashion, thus building a "peer-to-peer
infrastructure that supports the most important features of Online Social Networks in
a distributed way" called PeerSoN [89]. The architecture of PeerSoN comprises
two tiers, of which the first tier is a Distributed Hash Table (DHT) based P2P
network and the second tier are the nodes representing users. The system
uses the DHT for routing and storage for offline messages, while the individual
nodes connect to each other directly. Another P2P-based DOSN service, Safebook
[95], aims at protecting user and data privacy by replicating data to the nodes
of connected users, which are logically organized in shells called Matroyschkas
around a user, where more direct connections are located closer to the node
storing the actual profile. Requests for that data are then routed through the
shells surrounding a profile to ensure anonymity and data privacy. The concept
was adapted and improved with Proofbook [132], where replication of content is
implemented with Blockchain technology [133][134] that ensures authenticity of
data through a consensus protocol. LotusNet [135] implements OSN functionality
in form of widgets, where data is stored in a DHT. The relationships defined in
the social graph are used for access control, where each user specifies types of
relationships that can access specific functionality and information. Prometheus
[136] implements social sensors that collect information about a user’s activity in
the social network. Data in Prometheus as well as information acquired from
social sensors is stored in a DHT, where a implicit meta-graph is constructed
that describes connections between users based on their activities and interests.
Several other proposed architectures, such as LifeSocial.KOM [137], Decent [138],

30 Chapter 2. Related Work

(a) P2P-OSN (unstructured) (b) F-OSN
Figure 2.4: Architectures of DOSN services. In comparison tothe depicted architectural styles, Hybrid-OSN services combine amixture of both approaches.

or DiDuSoNet [139], propose approaches which store data objects in a DHT where
special replication techniques are applied to ensure uninterrupted availability of
content. Many of the proposed approaches rely on asymmetric cryptography to
encrypt the stored content and furthermore provide secure communication and
access control.

Federated DOSN Services

In order to combine the benefits of reliable and fast servers with the
freedom for users to host their social profiles and data at any server, F-OSN
architectures were introduced. F-OSN architectures usually rely on a network
of loosely-coupled servers, where users can register at any server they trust -
or even run a self-hosted instance that connects to the rest of the federation.
An example architecture of an FOSN service is depicted in Figure 2.4b. F-OSN
services can rely on a better availability and performance compared to P2P-based
architectures and were able to attract a large number of users.
Diaspora3 is a federated OSN service that bases on the three principles

decentralization, freedom, and privacy. Diaspora connects servers called pods
in a loosely coupled federation, where users are free to either choose an existing
server or host their own instance. The service allows users to follow each other,
where contacts can be organized in so-called aspects representing categories.
Diaspora is written in Ruby on Rails and implements a broad variety of open
standards and protocols for communication between individual pods. Similar
to Diaspora, Friendica4 implements a federated OSN service that allows users to
create a user profile on an arbitrary Friendica server instance. While originally
built with the use case of microblogging in mind, Friendica evolved past this
use case and provides a broad variety of OSN functionality. All Friendica
servers are connected in a loosely coupled fashion, where messages between
distinct Friendica instances are sent via HTTP. Mastodon5 is a decentralized
microblogging service built with the intention to provide a decentralized
microblogging service [140]. Mastodon builds on a federated architecture, where

3Diaspora homepage: https://diasporafoundation.org/. Accessed: 17.9.20174Friendica homepage: http://friendi.ca/. Accessed: 17.9.20175Mastodon homepage: https://mastodon.social/about. Accessed: 17.9.2017

https://diasporafoundation.org/
http://friendi.ca/
https://mastodon.social/about

2.2. OSN Services 31

users are able to register with arbitrary services. Built on open protocols,
Mastodon allows users to create follow relationships between each other
regardless of the server they are registered on. Messages are then automatically
exchanged between the individual Mastodon instances. Several other federated
OSN services following similar approaches were introduced, such as GnuSocial6,
HubZilla7, or Pump.io8.
While Diaspora, Friendica, and Mastodon are the only DOSN services

in operation with a significant number of users, several other, mostly
academic, architectures and services have been proposed. Vodafone’s initiative
OneSocialWeb was driven by the vision of enabling free, open, and decentralized
social networking platforms [141]. The project built on XMPP, using XMPP
servers to form a federation of social platforms while adapting existing standards
such as Activity Streams or vCard. OneSocialWeb was abandoned as of 2011
without a given reason. The initiative drafted a list of standards as XEP
extensions [142], which unfortunately were never finalized. For example, Social
Relationships [143] was proposed as a data format and protocol to define and
publish information on relationships between individuals in a social application
or network. The standard was built to allow defining nature and status of a
relationship, as well as built-in access control rules. Furthermore, OneSocialWeb
proposed standards for Activity Streams and vCard via XMPP, as well as a
Personal Eventing Storage for storage and distribution of content9. PrPl [144]
aims at distributing contents of a user’s profile to selected servers and cloud
services. The key concept of PrPl is an agent referred to as butler that manages
and controls all information stored by that user. Users can specify rules for
access control, which are enforced by the butler. SoNet [145] is a federated DOSN
architecture that addresses user privacy while providing optimal data availability.
In SoNet, clients connect to servers of OSN providers in an architecture similar to
XMPP. Content is hidden from OSN providers using encryption techniques, while
employing replication strategies to compensate for node failures. Finally, SoNet
introduces a special pseudonym system, that obfuscates identities of users.
Mantle [146] is a DOSN service that implements all data-related functionality on
a user’s device, where content is off-loaded to arbitrary cloud storage services.
The architecture builds on a publish-subscribe model to facilitate interaction
between users, which is implemented without any central component. Persona
[147] uses servers as data storage for content, where each user has to maintain
his own server on which his own content is then stored and published in an
encrypted fashion. Servers in Persona also manage read and write requests
from other users, where access control lists (ACL) are used to manage access
to individual data items, which again are encrypted using attribute based
encryption (ABE) [148].
6GnuSocial homepage: https://gnu.io/social/. Accessed: 8.10.20177Hubzilla homepage: https://project.hubzilla.org. Accessed: 8.10.20178Pump.io homepage: https://pump.io. Accessed: 8.10.20179OneSocialWeb draft specifications: http://onesocialweb.org:80/developers-protocol.html.Accessed: 2.8.2017 via http://web.archive.org/web/20140927180256/http://onesocialweb.org:

80/developers-protocol.html

https://gnu.io/social/
https://project.hubzilla.org
https://pump.io
http://onesocialweb.org:80/developers-protocol.html
http://web.archive.org/web/20140927180256/http://onesocialweb.org:80/developers-protocol.html
http://web.archive.org/web/20140927180256/http://onesocialweb.org:80/developers-protocol.html

32 Chapter 2. Related Work

Hybrid DOSN Services

In order to combine the advantages of reliable and performant servers with
the control provided by P2P-based approaches, hybrid architectures were
introduced.
Via-à-Vis [149] employs Virtual Individual Servers (VIS) on cloud services

such as Amazon EC210 or Microsoft Azure11, on which OSN profiles and contents
are stored. This way, availability of the stored content is ensured, while search
and discovery is implemented via a DHT-based P2P lookup service. With the
objective to "[...] preservemonetary incentives for OSNproviders", Polaris [92] allows
users to distribute their personal information and data to arbitrary specialized
cloud services, for example photo hosting platforms or microblogging services.
This way, content is distributed over a number of content hosting services
without impairing their business models. Highly sensitive content is stored
at a user’s personal mobile device, which is assumed to be able to maintain
the content’s availability at all times. The authors argue that due to the
distribution of content, the overall data privacy is improved. In order to limit
unintended disclosure of personal data and the extent of privacy breaches, Vegas
[90] limits browsing the social graph to a user’s direct connections referred
to as the ego network. Vegas is designed as a mobile-based P2P OSN that
uses reliable data stores to guarantee availability of content. To ensure data
privacy and confidentiality, Vegas employs a public key infrastructure (PKI),
where connected users exchange their public keys, while symmetric encryption
is used to encrypt the content. Liu et al. propose an architecture for protection
of OSN related data called Confidant, where unencrypted personal data is
replicated to storage servers of trusted peers based on the assumption that
other storage servers are not trustworthy [150]. The proposed architecture
focuses on decentralized performant processing of OSN content while preserving
data privacy via access control policies. SuperNova [151] connects clients
in an unstructured P2P-overlay, in which clients act as storage nodes while
organizational functionality is offloaded to super peers. Super peers are
selected automatically by the underlying P2P system based on an above-average
performance and available resources.
The aforementioned proposals for federated, P2P-based, and hybrid DOSN

architectures were designed and implemented with the intention to decentralize
functionality and storage of OSN services in order to allow users to keep
control over how data is accessed and used. While privacy, confidentiality,
and lack of control over one’s data have been addressed by the numerous
aforementioned architectures and systems, data portability and interoperability
are not considered by most approaches. The resulting services, even though
they implement decentralization of functionality and data storage, again
introduce closed ecosystems, in which users are confined in the respective
service. Moreover, the discussed architectures mainly focus on architectural
and organizational issues, while the definition of open communication protocols
and data formats are mostly omitted or neglected. As a consequence, most
10Amazon Elastic Compute Cloud (EC2): https://aws.amazon.com/ec2/. Accessed: 17.9.201711Microsoft Azure: https://azure.microsoft.com/. Accessed: 17.9.2017

https://aws.amazon.com/ec2/
https://azure.microsoft.com/

2.3. Connecting Microblogging Services 33

DOSN services implement native protocols and data formats, which are often
not documented. Notably, most proposed solutions are of rather academic nature
and fail to attract a significant amount of users as analyzed by Koll et al. in [101].
Solutions to connect different OSN services in a heterogeneous federation has

been addressed by only few OSN services, where the scope has been limited to
microblogging. A holistic standard for interoperability and interplay of general
OSN services covering all important functionality of today’s OSN services does
not exist.

2.3 Connecting Microblogging Services
12 The idea of building a federated ecosystem of social web services was originally
introduced in the area of microblogging services. Possessing characteristics such
as creation of ambient awareness, push-pull communication, and being a "platform
for virtual exhibitionism and voyeurism" [126], microblogging services differ from
OSN services in the sense as they are mainly focused on publishing and
consuming status updates, with less focus on direct communication, managing
a social profile page, or creating list of friends and acquaintances. Kaplan
and Haenlein distinguish traditional OSN services form microblogging, as OSN
services provide a higher ’social presence’, being any kind of contact between
individuals, and ’media richness’, defined as the "amount of information that can
be transmitted in a given time interval" [124][126].
Early approaches to provide interoperability through open protocols and

standards were introduced with StatusNet, a PHP-based software suite that
allowed blogs and websites to link to each other and subscribe to feeds, forming
a federation of blogging services. This way, new published content as well as
updates to already published content are synchronized to all subscribers. The
solution based on open protocols and standards, such as OStatus [116], Salmon
[152], Microformats [153], XMPP [154], and PubSubHubbub [155], to build a
network of microblogging serviced in which publish-subscribe functionality
notified subscribed users if a user published new content. The idea of OStatus is
that blogs and microblogging accounts require a form of real-time distribution
system that automatically routes newly published content to an author’s
subscribers, where content is encoded using a set of data formats and standards
while distribution is handled by the Salmon protocol. This way, content could
be shared with users from other servers and services in an automated fashion.
Users in OStatus are identified by URIs, from which structured user information
can be retrieved using HTTP, including information about a user’s feed location
and an endpoint for PubSubHubbub.
The underlying Salmon protocol addresses the issue of distributed publishing

of content that arises when content is replicated over multiple hosts or services
[152]. Content, once replicated to and stored in multiple locations, needs to
be kept synchronized when updated. While publishing of updated versions of
the original content by the author is relatively simple, decentralized creation of
comments and other forms of annotations is rather complex. Salmon addresses
12This section has previously been published in [13] ©2017 IEEE.

34 Chapter 2. Related Work

this issue using a publish-subscription management, where updates for content,
comments, and other forms of annotations are managed and distributed in an
automated fashion. Salmon introduces the roles of publisher and aggregator,
where aggregators subscribe to publishers. Content created or updated by the
publisher is then automatically distributed to all aggregators, resulting in a
synchronized version of the content being available frommultiple locations. Vice
versa, publishers subscribe to all linked aggregators, which forward comments
and annotations to the content back to the publisher who then updates the
original content, causing the update to be distributed to all existing replicas.
Salmon works for publicly available content, yet misses support for privacy and
access control.
In 2010, StatusNet merged with two other microblogging platforms,

FreeSocial and Laconica [156]. The resulting GNUSocial project, defining itself
as "social communication software", maintains and releases the OStatus protocol.
Identi.ca, a microblogging platform founded in 2008, originally based on
GNUSocial, but switched to Pump.io later, as it was seen as a more progressive
standard for decentralized communication in microblogging based on Activity
Streams 1.0 and OAuth 1.0. As of today, OStatus is used by several DOSN
services such as Diaspora, Friendica, or Mastodon. Yet, as OStatus focuses on
distribution of status updates and discussion threads in form of comments,
support for most other functionality of today’s OSN services is omitted. Using
OStatus, users can follow other user accounts by subscribing to other user’s
status updates using PubSubHubbub [155], retrieve and comment on posted
content using the Salmon protocol [152], where content is formatted as Atom
Activity Streams [157]. Most use cases and features of traditional OSN services
are not covered by OStatus-based solutions, including messaging functionality,
support for collections of media items such as photos and videos, or pages.
Approaches similar to OStatus were proposed. Until it’s abandonment in

2015, Tent.io [158] aimed at a subscription-based distribution of microblogging
content similar to OStatus using Activity Streams and PubSubHubbub. Tent.io
proposed an evented data storage architecture and data formats for content
based on JSON, where the atomic unit for content is called a post. Post
objects encapsulate published content and comprise metainformation such as
the content’s type, id, as well as permissions. While Tent.io was designed for
distribution of posts in microblogging applications and blogs, it also supported
further use cases such as calendar synchronization, polls, or collaborative
editing.
Being implemented as a "stream server that does most of what people really want

from a social network" [159], Pump.io follows an approach similar to OStatus to
decentralize microblogging services. The server is written in node.js and is
based on Activity Streams 1.0 [114] and follows parts of the Atom Publishing
Protocol (APP) [160] with authentication being realized via OAuth 1.0 [161].
Using Activity Streams 1.0 as a container, Pump.io aims at supporting "almost
anything", including "short or long text, bookmarks, images, video, audio, events, [or]
geo checkins" [159] with the intent to allow everyone to host a microblogging
profile on his own server. Pump.io’s "API uses REST-ish principles" and allows to

2.3. Connecting Microblogging Services 35

exchange activity objects between servers and user profiles, where user accounts
specify a set of inboxes in form of URLs, to which content can be pushed. Content
can then be retrieved via a REST-based API, such as /api/activity/:id, where
individual objects are addressed via their identifiers.
In the attempt to build a federated OSN service, the Distributed Friends &

Relations Network (DFRN) was specified as an XML-based protocol. DFRN was
designed "to provide an open and distributed social communication platform with
server requirements comparable to that of a typical hosted blog", where multiple
nodes instead of one central server "communicate with each other on your behalf"
[162]. Following the federated approach, DFRN-compatible nodes would host
user profiles and associated data, where users from arbitrary nodes could connect
to each other and access and exchange content using the DFRN protocol. DFRN is
based on the Atom Syndication Protocol [163] and provides polling and pushing
of content between DFRN compliant nodes. DFRN defines two roles for actors
in the protocol, being owner and author. An author is a user who created
content such as a status update, where the owner is the user in whose profile the
content was posted. Functionality covered by DFRN comprises a profile page,
sending and handling of friend requests, a subscription mechanism that notifies
subscribers of newly published content, and content retrieval, where "content
[...] can be most anything and is designed to be extensible". To identify users across
different nodes and domains, identifiers in DFRN are designed in an "email
style", comprising the node’s domain name and a locally unique user handle.
When connecting to another user, DFRN supports sending friend requests to
another user, who can accept or reject the request where a friend relationship is
created upon acceptance. DFRN interprets friend relationships as granting the
respective other user the permission to access one’s content, where connections
are designed as unidirectional follow relationships. While DFRN generally targets
distributed microblogging and social networking, the distributed OSN platform
Friendica was built as a reference platform for the protocol [162] which managed
to gain some publicity and attracted developers who extended and improved
the platform13. Besides DFRN, Friendica uses OStatus [116] for dissemination of
content and WebFinger for discovery of user profiles. The Friendica API supports
access to accounts, messages, favorites, groups, profiles, photos, friends lists,
status posts, while aiming to provide compatibility with the GNU Social and the
Twitter API14.
As DFRN as the protocol was considered as too cumbersome and bulky by

the Friendica developers, development of an alternative protocol called ZOT
was initiated, which was designed to connect different OSN platforms by using
publicly available APIs and protocols and building on widely adopted open
standards. In 2012, ZOT was discontinued because of tendencies of centralized
OSN platforms to apply "strict limits to outside services accessing their proprietary
platforms"15 but was reintroduced in 2015 as the federation protocol of the
microblogging service Hubzilla [164]. ZOT is based on JSON and implements
13Friendica protocol: https://github.com/friendica/friendica/wiki/Protocol Accessed: 23.6.201714Friendica API: https://github.com/friendica/friendica/wiki/Friendica-API Accessed: 23.6.201715The Friendica Blog: http://friendica.com/node/24. Accessed: 9.7.2017 via archive.org: https:

//web.archive.org/web/20120323163030/http://www.friendica.com/node/24

https://github.com/friendica/friendica/wiki/Protocol
https://github.com/friendica/friendica/wiki/Friendica-API
http://friendica.com/node/24
https://web.archive.org/web/20120323163030/http://www.friendica.com/node/24
https://web.archive.org/web/20120323163030/http://www.friendica.com/node/24

36 Chapter 2. Related Work

an API inspired by REST16. Content in Hubzilla is published in channels, which
can represent an entity of arbitrary type, such as persons, forums, or pages17.
Individual channels may be then cloned and replicated to multiple hosts in the
Hubzilla network in order to improve availability of the content. Updates to
a channel’s contents are then synchronized with all clones. Authorization in
Hubzilla is managed via authentication through proof of possession of a key pair.
This way, Hubzilla introduces the concept of nomadic identities, allowing users to
use their key pair as proof of identity with any server in the network, allowing
to publish content in one’s channel via any server. Today, ZOT and its reference
implementation Hubzilla are still in early stages with parts still unspecified and
not implemented.
Communication between pods in Diaspora is realized utilizing a variety of

open protocols and standards to interface with other Diaspora pods, including
Salmon [152], WebFinger [103], hCard [165], or Magic Signatures [166],
where specifically outdated versions of hCard and WebFinger are used [167].
The implementation of the Diaspora protocol mandates to listen for HTTP
POST requests on two API endpoints for public and private messages, being
/receive/public and /receive/users/:guid that accept XML-encoded content18.
Information sent via the simplistic interface can comprise information such
as comments, conversations, events, likes, photos, polls, profiles, or status
messages.
Mastodon describes an API for accessing user profiles and content, and

furthermore facilitates access to a user’s own account, allowing simple
integration of the service in third party applications19. Being based on REST,
Mastodon allows other services to retrieve and push content from and to defined
endpoints. The API supports accessing and manipulating timelines, individual
statuses, and user accounts, as well as publishing media items, creating and
editing follow relationships. Furthermore, Mastodon supports a streaming API
that allows a client to subscribe to status updates being posted for a specific tag
or user, or for the general public timeline.
Based on the experience of OStatus and Pump.io, work on ActivityPub, a

novel "decentralized social networking protocol" for management and delivery of
notifications and content was started [168]. ActivityPub is based on Activity
Streams 2.0 and replicates published content to special inboxes of a user’s
followers. Inboxes are OrderedCollections as of the Activity Streams 2.0
specification and are grouped by type of content, being followers and following,
liked and likes, public addressing, and shares. This way, the standard aspires to
cover microblogging functionality using recent standards and data formats. As
of mid 2017, the protocol is considered a W3C Candidate Recommendation and
is yet to be finalized and still misses a reference implementation.
16ZOT API: https://project.hubzilla.org/help/en/developer/api_zot. Accessed: 19.10.201717Hubzilla Documentation: https://project.hubzilla.org/help/en/about/about#Glossary.Accessed: 22.11.201718The described version of the Diaspora API "[...] provides the documentation for the future federation

protocol for diaspora*. Current diaspora* servers still use anolder protocol [...]" where the current "Diaspora
release 0.6.0.0 and newer has support to receive entities with this protocol, but still sends entities with an older
protocol." [167]19Mastodon API Documentation: https://github.com/tootsuite/documentation/tree/master/
Using-the-API. Accessed: 7.8.2017

https://project.hubzilla.org/help/en/developer/api_zot
https://project.hubzilla.org/help/en/about/about#Glossary
https://github.com/tootsuite/documentation/tree/master/Using-the-API
https://github.com/tootsuite/documentation/tree/master/Using-the-API

2.4. Cross-platform Interoperability 37

While several approaches have been proposed and implemented to open up
and decentralize OSN services, a truly open and interoperable solution does
not exist to this date. P2P-based DOSN architectures mostly exclusively focus
on the technical distribution and management of nodes, where protocols and
data formats for interconnectivity with other OSN and DOSN approaches are not
addressed. In such an architecture, ownership and control over one’s data and
privacy is given back to the users, yet data portability as well as interoperability
with other OSN services is still not supported. The resulting OSN services hence
are again isolated islands, in which a technological distribution of users and
content is implemented, yet in which users are still locked in.
Similar to P2P-based DOSN architectures, hybrid and federated DOSN service

mostly from a lack of support for data portability and interoperability. Even
though Friendica implements rudimentary support for manual export and
re-import of user profiles, migration of user accounts is limited to OSN platforms
of the same service. This way, user profiles can be migrated to a new server
and operator, yet causes user identifiers to change, due to the domain-bound
nature of user identifiers used by Friendica. While Friendica addresses this issue
by notifying all connected OSN profiles about the change of the identifier of
the migrated OSN profile, other links, including links from outside services,
inevitably break.
While data portability in form of OSN profile migration is not supported

by almost all DOSN implementations, interoperability is supported by some
federated DOSN services with a limited extent. As Diaspora, Friendica, and
Mastodon implement OStatus for dissemination of content, exchange of content
is supported for status updates, yet is mostly not implemented for other types of
content. For example, viewing photo albums between a Diaspora and a Friendica
instance is not possible, while likes for remote content can mostly be accessed.
Furthermore, viewing the social profile of another user hosted on another OSN
service will redirect. While Friendica redirects the user to the domain of the
hosting OSN service, Diaspora only displays basic information about the remote
OSN profile.

2.4 Cross-platform Interoperability
20 In order to evaluate existing solutions for interoperability of OSN services,
communication between existing OSN and microblogging services was assessed
in a realistic scenario [13]. For this evaluation, user accounts have been created in
each of the evaluated OSN services, where freely available services were chosen
to create a realistic scenario for interoperability. From each user account, an
attempt was made to create a follow relationship with all other OSN services [13].
After all possible connections between the OSN profiles were created, content
was posted by each OSN profile with the intent to access it from each of the
other OSN services and user accounts. This way, support for interoperability of
the supported OSN features between the different OSN service implementations
could be assessed. For the evaluation, user accounts were created on OSN servers
20This section has previously been published in [13] ©2017 IEEE.

38 Chapter 2. Related Work

Figure 2.5: Display of a remote Friendica profile in Diaspora. Theprofile view only shows the username and profile picture. Whilethe remote profile’s stream of status updates can be accessed, othercontent of the remote profile such as photo albums, or friends listsare not accessible. ©2017 IEEE.

that accept public registrations. The services include Diaspora on joindiaspora.

com running version 0.7.0.1-p6f542522, Friendica on snarl.de running version
3.5.3, GnuSocial on gnusocial.com running version 1.1.3-release, Mastodon on
mastodon.social running version 1.6.1, Pump.io on datamost.com running version
4.1.3, and Hubzilla on hub.togart.de running version 2.6.3. The results of the
survey [13] are summarized in Table 2.2.
• Diaspora Federation in Diaspora is based on a set of open protocols and
standards and allows users to connect to remote Friendica profiles, yet
fails to discover and connect to profiles hosted on GnuSocial, Mastodon,
or Hubzilla services. Consequently, content created by users of GnuSocial,
Mastodon, or Hubzilla can’t be accessed by Diaspora accounts, ultimately
disallowing any form of communication and interoperability between
Diaspora and these service platforms. Diaspora supports accessing
Friendica user profiles, yet only shows status updates posted by the remote
profile and omits the list of connections and other form of content. As
depicted in Figure 2.5 other content posted in a Friendica OSN profile, such
as image or video collections, generally cannot be accessed from Diaspora.
Status updates posted by Friendica users can be accessed, commented
on, and liked by a Diaspora account. Diaspora can also send and receive
messages to and from Friendica servers. Finally, Diaspora supports poll
functionality, which can only be used by other Diaspora users, while users
from other services cannot vote.

joindiaspora.com
joindiaspora.com
snarl.de
gnusocial.com
mastodon.social
datamost.com
hub.togart.de

2.4. Cross-platform Interoperability 39

(a) Timeline in GnuSocial

(b) Timeline in Mastodon. ©2017 IEEE.
Figure 2.6: Timelines of the microblogging platforms GnuSocial (a)and Mastodon (b). While GnuSocial is able to receive and displaystatus updates from connected users in Friendica and Mastodon,Mastodon is able to access content from user profiles of Friendica,Hubzilla, and GnuSocial.

40 Chapter 2. Related Work

Table 2.2: Interoperability of selected DOSN and microbloggingservices. The table shows which service (active network) is ableto access what features and content types of other services (targetnetwork). For example, a profile created by a Hubzilla user cannotbe accessed by a Diaspora user, while a profile created by a Diasporauser can be accessed by a Hubzilla user, where status updatescreated by the Diaspora account cannot be accessed by a Hubzillauser. ©2017 IEEE.

Active network Target network Fol
low

a
)

Pro
file

Str
eam

Com
me
nt

Lik
e

Me
ssa
ge

Diaspora
Friendica G#b)

GnuSocial # # # # # #

Mastodon # # # # # #

Hubzilla # # # # # #

Pump.io # # # # # #

Friendica
Diaspora G#c)

GnuSocial G#c) #

Mastodon G#c) #

Hubzilla G#c) # # # #

Pump.io G#d) # # # # #

GnuSocial
Diaspora G#b) # # # #

Friendica G#b) #

Mastodon G#b) #

Hubzilla G#b) # # # #

Pump.io # # # # # #

Mastodon
Diaspora # # # # # #

Friendica G#b) # #

GnuSocial G#b) # #

Hubzilla G#b) # #

Pump.io # # # # # #

Hubzilla
Diaspora G#c) # # # #

Friendica G#c) # # # #

GnuSocial G#c) #

Mastodon G#c) #

Pump.io # # # # # #

Pump.io
Diaspora # # # # # #

Friendica # # # # # #

GnuSocial # # # # # #

Mastodon # # # # # #

Hubzilla # # # # # #

 Content in the target network can be accessed by the active network
G# Content in the target network can be accessed with limitations
Content in the target network can not be accessed
a) To follow indicates that the active network is able to create a followrelationship to a user in the targeted network.b) Only access to a stub profile with username and profile picture.c) Access to profile only via redirect to remote server.d) Friendica could detect the Pump.io endpoint, yet couldn’t retrieve anyinformation from it.

2.4. Cross-platform Interoperability 41

• Friendica Friendica showed the highest degree of interoperability compared
to the other services based on OStatus and the DFRN protocol. Following
accounts from all other services is supported, yet when accessing a remote
social profile, Friendica redirects the user to the server and domain on which
the targeted OSN profile is hosted, hence not displaying user profiles in an
integrated view. Friendica is able to retrieve status updates, comments on
status updates, as well as likes from Diaspora, GnuSocial, and Mastodon,
yet fails to access streams of Hubzilla users. Friendica supports creation
of photo and video collections, which cannot be accessed by other OSN
networks. Additional features, such as starring or disliking status updates,
or creating events can only be seen in the Friendica network, but not in any
other OSN service. Finally, Friendica supports exchanging messages with
other users. Messages sent by a Friendica account can be received by user
accounts in Diaspora, but cannot be sent to or received by Mastodon and
GnuSocial services, as they both do not support messaging functionality.

• GnuSocial GnuSocial, as depicted in Figure 2.6a, is based on OStatus and
is able to create follow relationships to all other services, yet is not able
to access profile information such as a user’s connections. GnuSocial is
only able to access status updates, comments, and likes from Friendica and
Mastodon users, where access to any form of content from Diaspora and
Hubzilla user accounts is not supported.

• Mastodon Similar to GnuSocial, Mastodon is based on OStatus and allows to
create follow relationships with Friendica, GnuSocial, and Hubzilla, while
interoperability with Diaspora servers is not supported. Mastodon shows
remote user profiles in an integrated view but is not able to access a
remote account’s list of connections. As depicted in Figure 2.6b, status
updates and comments posted by remote user profiles can be accessed by
Mastodon. Surprisingly, likes were not synchronized between services.
Finally, Mastodon supports a view of media items published by a user
profile but only shows media items published in form of a status update.
Collections of images or videos as available in Friendica cannot be accessed.
Mastodon and GnuSocial both don’t support messaging functionality, yet
status updates can be directed at a specific user via a mentioning a
username.

• Hubzilla Hubzilla implements the ZOT protocol, which showed only limited
compatibility with other services. For interoperability, Hubzilla implements
the native protocols of OStatus and Diaspora, while advertising that
"basic communications are supported to/from Diaspora, Friendica, GNU-Social,
Mastodon". The evaluation showed, that while a Hubzilla user is able
to create follow relationships with all other networks, yet was only able
to access streams, comments, and likes from GnuSocial and Mastodon.
Surprisingly, Hubzilla allowed to send messages to connected users of
GnuSocial and Mastodon, even though these services do not support private
messaging. Subsequently, messages were not received by the recipients in

42 Chapter 2. Related Work

GnuSocial and Mastodon. Message exchange with Diaspora or Friendica
users was not possible.

• Pump.io Pump.io implements a REST-based protocol based on Activity
Streams and JSON to communicate with other servers and services. After
creating a user profile, the service could not connect to any other OSN
service, nor could a connection from other remote OSN profiles be
established with the Pump.io profile. Friendica as the only service in the
survey was able to detect the Pump.io profile’s endpoint, but was unable
to retrieve any information. As a consequence, communication of any kind
with other OSN services was not possible for the Pump.io service.

Even though a number of open protocols and data formats exist for
interoperability and communication between different OSN service, the interplay
of today’s open and distributed OSN platforms presents itself as flawed and error
prone. While interoperability between distinct OSN services based on the same
protocol suite generally works better with less incompatibilities, interoperability
between OSN services based on different protocols and standards shows many
inconsistencies ar fails to work entirely. For example, both GnuSocial and
Mastodon are based on OStatus and are able to subscribe to each other’s content
streams, allowing exchange of status updates and comments. Still, likes created
by a GnuSocial account are not synchronized to a Mastodon user’s stream, while
likes from a Mastodon user are synchronized to a GnuSocial user’s account
without problems. At the same time, interoperability between Diaspora and
Friendica services shows a high quality, even though both networks use different
protocol suites. One of the possible reasons for the incompatibilities between
the surveyed OSN services may be the lack of proper reliable documentation
of interfaces and data formats. Some interfaces are not described at all, while
others rely on listing API endpoints to which requests should be directed. A
lack of a thorough and detailed description of all API endpoints, including
data formats, response messages, and communication flows might be the
main reason causing problems and incompatibility in communication between
different service platforms. Still, the implemented interoperability is limited
to the use case of microblogging and thus ignores most of the elemental
functionality of today’s OSN services [5]. For example, creating photo albums
and video collections is a feature supported by Friendica, which cannot be
accessed by any other OSN service and is not covered by the protocols evaluated
in this analysis. Similarly, Diaspora supports the creation of polls to allow
users to vote, where only Diaspora users can access the functionality. The
survey [13] shows that a holistic standard for OSN interoperability that covers
all functionality of today’s OSN services is needed.

43

3 Concept and Design

With the aspiration of forming an open and heterogeneous ecosystem of loosely
coupled OSN services, Sonic provides means allowing existing OSN platforms to
connect to each other in a transparent way. This chapter describes requirements
and use cases as well as the concept and design of the various building blocks of
the Sonic OSNF.
Sonic is based on the idea that social profiles and associated data should be

stored on a server of a user’s choice, where connectivity and interoperability
between servers and profiles is implemented in a transparent manner. It is
hence rendered irrelevant whether a social profile is hosted on the same or
another OSN platform, allowing users to freely choose an OSN service platform
of their liking instead of being forced to sign up with the market leader’s
OSN service. This allows an open and distributed federation of heterogeneous
OSN services to emerge. Users in Sonic are identified by globally unique,
domain-agnostic identifiers, which are resolvable by a decentralized directory
service. By resolving an identifier via the directory service a user’s profile
location is retrieved, allowing to access the respective user’s social profile and
initiate communication. As the identifiers are designed in a domain-agnostic
fashion, social profiles can be easily moved between OSN services without
connections between users or content objects being broken. In order to allow
any OSN service to connect to the federation, a basic set of core features of OSN
services is supported. Sonic proposes a set of commonly used interfaces and data
formats that allow content being able to be interpreted and used by any OSN
service of the federation, where a protocol for feature extensions implements
support for arbitrary features to be supported by individual OSN platforms.
The individual concepts and components of Sonic are introduced and

described in this chapter. First, a set of use cases is described in Section 3.2 to
highlight the benefits of the Sonic approach. Second, requirements for an open
and decentralized OSNF are derived in Section 3.3, which are used for the concept
and design of the proposed OSN ecosystem. Section 3.4 analyzes functionality of
today’s most popular OSN services to derive a common set of core features, which
are to be supported by the OSNF. Section 3.5 describes the concept and design of
the identification of users, followed by a description of the concept and design
of the OSNF architecture in Section 3.6, including roles, components, and the
general data model. Finally, Section 3.7 describes the protocol for facilitating
seamless communication and interoperability between OSN platforms in the
OSNF.

44 Chapter 3. Concept and Design

3.1 Definitions

In the last decade, the OSN community has created its own lingo to describe
activities and assets in OSN services. To prevent ambiguous interpretation of
terms, this thesis uses the following terms:
Definition 2: User
In the scope of this thesis, a user is a natural person who uses an OSN service.
Each user has a registered user account for an OSN service, in which his OSN
profile is stored and managed, which again is identified by a globally unique
identifier (GlobalID).
Definition 3: Identity
By registering a user account in an OSN service, a user creates an online
identity representing himself, also referred to as online persona. As of the
definition of the ISO/EIC specified in [169], the term identity describes a set
of attributes related to an entity. In the scope of this thesis, a user (entity)
maintains an OSN profile (set of attributes) and is uniquely identifiable via a
globally unique identifier, the GlobalID (see Section 3.5).
Definition 4: OSN Profile
An OSN profile is the online representation of a user, including all associated
data. The OSN profile comprises data such as the social profile page, sent
and received messages, status updates, images, or the friends list, but
also extends to user account information such as username, password, and
cryptographic keys.
Definition 5: Social Profile
A social profile or social profile page is the social homepage of a user, on which
he can describe himself. Social profiles usually comprise a profile picture, the
user’s name or nickname, and other details such as the date of birth, address,
or relationship status. Being a representation of the user, the idea of a social
profile page is to be accessible for other users depending on the specified
access policies.
Definition 6: OSN Service
An OSN service is defined as a specific implementation of OSN. The term
hence refers to the general functionality and user interface provided by the
implementation, usually providing a specific and unique user experience
that distinguishes it from other OSN services. Examples for OSN services
are Facebook, Google+, or Diaspora and Friendica in general. While larger
OSN services, such as Facebook or Google+, are usually distributed over a
larger number of datacenters, the service is provided to the user as a single,
monolithic service with a unified, streamlined user experience. Monolithic
OSN services such as Facebook are hence still single, centralized OSN services.

3.2. Use Cases 45

Definition 7: OSN Platform
An OSN platform is a specific instance of an OSN service. OSN platforms
refer to a single individual installation of an OSN service, which exists
independently from other OSN platforms. Examples for OSN platforms are
Facebook, Google+, or a single Diaspora pod or Friendica instance.
Definition 8: OSN Client
An OSN client is any application to access the functionality of an OSN platform
on behalf of a user. This includes a OSN platform’s web page to be used and
displayed in a web browser, as well as dedicated smartphone and desktop
applications, which access the OSN platform’s functionality via special APIs.
Finally, OSN clients can also be third party applications that use an OSN
platform’s API.

3.2 Use Cases

To explain the benefits of the Sonic approach, five use cases are described that
point out the shortcomings of closed, proprietary OSN platforms and point out,
how an open and heterogeneous OSNF can help to solve them. In the following
use case scenarios, four individuals Alice, Bob, Charlie, and Dave are considered,
who want to keep in touch with each other using an OSN service. As depicted
in Figure 3.1, Alice and Bob already signed up with an OSN PA, while Charlie is
using a separate OSN platform PB because most of his other friends use it too.
Both platforms PA and PB are popular and easy to use, but use their customers’
personal data for targeted advertisements. Dave has always been a little hesitant
when it comes to using OSN services in general, as he is very concerned about
his privacy. Hence, he has not registered with any OSN platform yet and tends to
keep in touch with his friends and relatives via email and phone to avoid giving
his personal data away.

3.2.1 Use Case 1: Signing Up

As Alice and Bob are using the OSN platform PA and Charlie uses a separate OSN
platform PB, Dave is forced to either sign up with both platforms PA and PB,
or not be able to connect to either Alice and Bob on platform A, or Charlie on
platform PB. None of the options is desirable, as they either require him to give
his personal information to two platform providers, or not connect to some of
his friends. Dave would prefer a separate OSN platform PC, which is known for
not sharing their customers’ data with advertisers. In the given scenario, Dave is
forced to sign up with platform PA, allowing him to connect to his friends Alice
and Bob, but not Charlie, whose profile is hosted on platform PB.
In the Sonic OSNF, it is irrelevant on which platform a user registers, as

connections to other users can be created across platform borders. Here, Dave
could have signed up with his preferred OSN platform PC, while connecting
to all of his friends on both of the platforms PA and PB. Sonic promotes
seamless connectivity between social profiles on all compatible OSN platforms,

46 Chapter 3. Concept and Design

Figure 3.1: Initial situation for the described use cases: Users Aliceand Bob are using OSN platform PA, user Charlie is using OSNplatform PB. User Dave is not registered with any OSN platform.

thus rendering borders between different platforms irrelevant and transparent
to users. For users, connecting to a friend whose social profile is hosted on a
different OSN platform works exactly the same as if it was hosted on the same
platform.

3.2.2 Use Case 2: Multiple Social Profiles

To alleviate the situation from Use Case 3.2.1 where Charlie cannot stay in contact
with his friends Alice, Bob, and Dave, Charlie also registers with the OSN platform
PA and connects to his friends. Now, all four users have a social profile on
platform PA, but as Charlie wants to stay in contact with his other friends and
associates on platform PB, he keeps his user account and social profile there.
Hence, he now has to manage two separate social profiles in two separate
OSNs. In case Charlie wants to share some content with his friends in both OSN
platforms, he has to publish it twice. This results in some overhead for him as
he wants to only have one online persona.
In the Sonic OSNF, a user only manages one social profile and may connect to

other users on any OSN platform in the OSN ecosystem. As users are connected
across OSN platform borders, creating and managing more than one profile is
possible, but not necessary. In case a user wants to have more than one social
profile, which are separated from each other, different identities can be used.
This might be desirable for different contexts of usage, for example for having a
personal profile and one for a professional, work-related context.

3.2.3 Use Case 3: Inconsistencies with Posting and Commenting

To prevent inconsistencies between his two separate profiles, Dave installs an
integrator application that connects to both of his social profiles on the platforms
PA and PB. The integrator application fetches all news from all connected
social profiles, and displays them in one view. Vice versa, posts of Dave are
automatically published by the integrator application in all connected profiles.
If a friend of Dave, for example Alice, now happens to comment on a posting of
Dave, this comment will be automatically shown to him in his integrated view,
but will not be published in any other connected social profiles. In case Dave
replies to the comment with another comment, his reply will be published in all
his connected social profiles by the integrator. However, as Alice’s comment has

3.2. Use Cases 47

only been published in the OSN she is using, the list of comments in all of Dave’s
other OSN profiles are missing her comments and hence may lose their meaning,
assuming the content of the comments is referencing one another.
In the Sonic OSNF, the comments of all users are received by the user’s OSN

platform that created it in the first place. As all comments are stored in one
location, inconsistent representations of the content is prevented. Hence, users
from all connected OSN platforms will receive the same content.

3.2.4 Use Case 4: Event Management

Alice wants to organize a meeting with her friends and manage the meeting
using her OSN platform. She creates the event and starts inviting people.
Unfortunately, she can only invite people from the same OSN platform. As
of this, she has to create a separate event in all connected OSNs in which
she wants to invite people. As a consequence, the same event needs to be
maintained in multiple platforms, while guest lists and discussion boards cannot
be synchronized. Hence, guests invited on platform PA cannot see guests and
posts from other platforms and vice versa.
In the Sonic OSNF, event support can be implemented using a feature

extension. Here, the event organizer’s OSN platform manages the event data,
which can be accessed by all attendees.

3.2.5 Use Case 5: Data Portability

In order to stay in touch with his friends, Charlie has set up a second OSN profile
on platform PA in addition to his main profile on platform PB. As more and
more friends of Charlie setup a social profile at platform PA, his original profile at
platform PB becomes less and less relevant. Charlie hence decides to abandon his
profile at platform PB and start using his new profile at platform PA exclusively.
Yet, Charlie’s profile at platform PB stores information such as photo albums,
exchanged messages, and status updates he wants to keep, as they were created
and curated over a long period. To move his profile data to platform PA, Charlie
has to extract all data manually, including texts, images, and friend connections.
At platform PB, he has tomanually insert the data into his new OSN profile. While
this is possible for some content, other content cannot be inserted. For example,
it is possible for Charlie to create a new photo album and upload the images to
platform PA, but messages he exchanged with his friends cannot be ’inserted’
into his new profile. The content therefore is lost. Furthermore, links to content
of other profiles as well as links to his profile data are broken, as Charlie’s user
identifier changed due to abandoning his old OSN profile at platform PB.
In the Sonic OSNF, Charlie can simply create a new OSN profile on a new

platform and migrate all data automatically to the new profile location. Data is
formatted using a common standard, so all data is kept and can be used in in the
new OSN profile at platform PA. Furthermore, Charlie’s user identifier remains
unchanged, so links from and to his OSN profile are kept intact.

48 Chapter 3. Concept and Design

3.3 Requirements

To address the shortcomings and drawbacks of current centralized and
decentralized OSN platforms as described in Section 1, the following architectural
significant requirements (ASR) [170] have been derived and identified as
prerequisites for an open and heterogeneous OSN ecosystem [3]. In software
architecture design, an architectural significant requirement is a requirement
that determines and shapes an architecture [170]. The following non-functional
requirements therefore describe specifications for the overall architecture of the
OSNF and its components and thus define the foundation for the OSNF and its
components.
Requirement R1: Non-Intrusive Design
Sonic follows the idea of building a federation of existing OSN platforms to create
an open and heterogeneous OSN ecosystem. Assuming the general willingness of
operators of existing OSN platforms to open their services to such a federation,
requirements to alter core parts of an existing OSN platform implementation will
most likely repel platform operators or at least hinder gaining their acceptance of
the approach. Hence, the overhead of implementing the required protocols and
functionalities into an existing OSN platform implementation should be kept to
a minimum with as little required adaptations as possible. Most importantly,
implementing the proposed solution must allow OSN platforms to provide an
unchanged user experience to their customers, which is in many cases used as a
trademark of the OSN.
Requirement R2: Platform Independent Social Personas
Social profiles can be interpreted as online personas, through which users
interact with websites and each other. With the web becoming more and more
interconnected and social, these kind of social identities have become an integral
part of how content is discovered, consumed, and shared. As of today, these
social identities and profiles are bound to the OSN platform they were created
in. Having access to a person’s social persona hence allows to extract and derive
highly sensitive personal information about it’s owner. An example for this are
Facebook identities, where visits to arbitrary websites are tracked by Facebook
through Like buttons [171]. Social personas being tethered to the OSN platforms
ultimately binds users to the OSN platform they signed up with. Hence, user
identities as well as the social profiles, including all associated data, must be
independent of the OSN service and platform they were created on.
Requirement R3: Decentralized and Federated Architecture
To address the issue of walled gardens and lock-in effects in OSN platforms,
users need to be able to chose between a variety of interconnected OSN platforms
and operators, thus not limiting users to a single platform based on their choice.
A decentralized, federated architecture allows users to chose a provider they trust
and moreover select OSN platform implementations that match their personal
needs and preferences, or even implement and host their own OSN platform. This
contributes to a highly diverse OSN ecosystem. The architecture of Sonic must

3.3. Requirements 49

hence provide loose coupling of OSN platforms without a central component that
is able to control communication in the federation. Furthermore, the architecture
must allow scaling to a large number of users.
Requirement R4: Distributed Control and Management
Centralized OSN providers are often confronted with the accusation of misusing
their power that originates from being in full control of some or all central
components and functionalities, which are crucial for an OSN service’s operation.
This is a result of intentionally creating lock-in effects through usage of
proprietary protocols and data formats as well as using the users’ personal
information to create revenue, for example through targeted advertisement. As
of this, introducing a central entity in an OSN federation should be avoided as
it would allow operators of this entity to control the entire federation. The
proposed solution should not be dependent on any central entity that could
interrupt or impair the functioning of entire federation or parts of it.
Requirement R5: Users Control their Data
OSN operators are often criticized for using their customers’ personal profile
data for targeted advertisement or selling their customers’ profiles to companies.
Users of such platforms are mostly not informed about what data is actually used
for which purposes or to which third parties information is disclosed while not
allowing them to control which data is used for what or accessed by whom. By
offering users the choice of which OSN platform and operator to entrust their
personal data to and who gains access to which parts of a social profile, users
are allowed to exert full control over where their personal data is stored and who
has access to what parts of it.
Requirement R6: Seamless Communication and Interoperability
One of the major drawbacks of today’s OSN landscape is that users cannot
communicate freely with users of different OSN platforms and services. Being
mediums for social interaction and communication, OSN platforms should allow
seamless communication between and interperability with each other [35] [5].
Platform borders should be entirely transparent to users so that it is rendered
irrelevant whether a connected user’s social profile is hosted on the same OSN
platform or not.
Requirement R7: Open Protocols and Data Formats
Not only is "a lack of interoperability among products and services [...] bad for
competition and innovation" [60], but also does the lack of common standards,
protocols, and data formats create barriers between OSN platforms that hinder
users to communicate freely. Hence, open protocols and data formats are
needed to facilitate seamless communication and interoperability between OSN
platforms [35]. This builds a foundation for an open OSN ecosystem, in which
data and messages can be exchanged seamlessly. The proposed solution must
hence introduce transparent interoperability and connectivity between OSN
platforms. At the same time OSN platform implementations must be able to
integrate the solution with minimal overhead while remaining independent in

50 Chapter 3. Concept and Design

their design choices regarding to business logic and user interfaces at the same
time.
Requirement R8: Migration of OSN Profiles
Migration describes data portability of OSN profiles, being the possibility to
move entire user accounts from one OSN platform to another without losing
any kind of data or connection to other users or social profiles [4]. Support
for data portability in combination with interoperability in OSN networks, as
described in Requirement R6, ultimately erases lock-in effects. As stated
by Graef [35], migration allows users of any OSN platform to migrate to a
competitors platform at any time in case they become dissatisfied with the
services of their current platform or when a competing service offers a more
appealing quality of experience. This would give rise to a shift of power from
OSN platform operators to their customers, as an unsatisfied user will not keep
using a service if alternatives exist that satisfy his needs better. Hence, this
would contribute to more competition among OSN platform operators, most
likely resulting in more innovation of existing services.
Requirement R9: Singular Social Profiles
Users of OSN services should not be forced to maintain and manage multiple
social profiles when attempting to stay connected to other users on multiple
different OSN platforms. Doing so aggravates the impact on data privacy related
issues, as personal profile information is not only stored at one, but on multiple
OSN platforms. Furthermore, maintaining multiple social profiles may result in
inconsistencies between the different social profiles. While in some occasions
such differences may be desirable for the user, having to keep multiple social
profiles updated is a cumbersome task and often results in outdated information
on social profiles. OSN integrators, such as SocialDeskApp1, are realized via
applications or plug-ins and require a separate user account and social profile
in each connected OSN platform. The integrator then synchronizes the data with
the connected OSN platforms, resulting in an unnecessary replication of all user
information across multiple platforms.
Requirement R10: Global User Identification
In an open and decentralized OSN ecosystem that allows not only seamless
and transparent interoperability across platform borders, but also migration
of entire user accounts, user identification must allow continuously resolving
user identifiers to the current location of their user accounts and social profiles.
Moreover, user identifiers should remain stable and unchanged even after
migrating a profile. As current user identifiers are either built for single
platform purposes and hence depend directly on the respective OSN platform
implementation, or depend on the domain name of the platform that assigned
the identifier, new means of identification for an open and decentralized OSN
ecosystem need to be implemented [7]. The proposed solution hence needs to
support globally unique, domain-independent identifiers, which can be resolved
to the respective user’s profile location.

1SocialDeskApp: http://socialdeskapp.com/. Accessed: 25.5.2017

http://socialdeskapp.com/

3.3. Requirements 51

Requirement R11: Extensibility
OSN services evolve and adapt to trends and new technologies to provide
a state-of-the-art user experience for their customers. With changing
functionality, static OSN solutions that fail to adapt to changes in customer
demands will most likely be unable to succeed and will ultimately be superseded
by more flexible systems or solutions. Built-in support for evolving functionality
is hence a feature of great importance for an architecture of an OSNF to allow
OSN services to continuously extend and improve their services.

52 Chapter 3. Concept and Design

3.4 A Taxonomy of Featuresets of Online Social
Networks

Following the idea of an open and heterogeneous OSN ecosystem, in which a
federation of loosely coupled OSN platforms allows users to host their social
profile at any OSN platform they choose without being disconnected from
their friends or acquaintances using other OSN platforms, means to exchange
information between different OSN platform implementations in a common
fashion are of paramount importance. As of today, a high number of OSN
services exist that differ in scope and functionality [24], making a mapping of
functionality between them a seemingly complicated task. Still, even though
today’s OSN platforms differ to great extents in appearance, user interfaces,
architecture, functionalities, or API model, one can identify recurring ’default’
features that are semantically equivalent or at least similar. For a common
standard to be able to connect platforms, different implementations of features
need to be mapped to each other in a standardized fashion. Unfortunately to this
date, no extensive survey exists that analyzes the functionality of OSN services
that facilitates communication and general information exchange between user
profiles. In this section, a survey of OSN functionality is presented that analyzes
the features of different OSN services and derives a common taxonomy of OSN
functionality. Using the OSN feature taxonomy, functionality of varying OSN
platforms are made comparable, thus allowing for a detailed comparison of
featuresets of different OSN platforms. From the results of this survey, a
common set of default features, which is commonly supported by today’s most
popular OSN platforms, is derived. This core of OSN functionality, the core OSN
featureset, is then later used in the design and architecture of the Sonic ecosystem
in Sections 3.6 and 3.7, thus ensuring that the presented solution is compatible
with commonly supported features of today’s OSN platforms.

3.4.1 Related Work

In the pursuit of analysis of social services and platforms, researchers derived
several definitions of the term "Online Social Network". Most definitions include
amore or less abstract definition of OSN functionality, but lack a clear description
and analysis of the individual supported features.
As defined by Boyd, "social network sites are based around profiles, a form of

individual [or group] home page, which offers a description of each member". Boyd
added that social profiles comprise a list of friends and content such as text,
images, video, and comments [172]. In [24], Boyd and Ellison give another,
rather abstract, definition of OSNs, in which they derive a general featureset
of social networking sites comprising the ability of users to create semi-public
profiles, model connections to other users, and traverse this list of connections. The
work further lists standard functionality being profiles, friends, comments, and
private messaging. Boyd and Ellison refined their definition in [119], stating
that an OSN is a "[...] networked communication platform [with] uniquely identifiable
profiles, [...] connections, and [...] streams of user-generated content [...]".

3.4. A Taxonomy of Featuresets of Online Social Networks 53

Basic functionalities of OSN platforms have also been defined by Heidemann
et al., giving an abstract definition of core functionalities of OSN services [127].
The classification lists personalized user profiles, topics of interest, e.g. in form of
special groups one can subscribe to, and personal contacts, being lists of friends
or acquaintances.
A more detailed description was given by Richter and Koch [125], who

argue that OSN services offer six basic functionalities for their users, which
are specializations of two fundamental categories of OSN functionality, keeping
in touch and identity management. The six basic functionalities named by
Richter and Koch are identitymanagement, expert search, context awareness, contact
management, network awareness, and exchange. Identity management in this
context describes the construction of a social profile of a user that can be viewed
by others. The social profile is used for presenting or staging oneself for a
particular audience or task, while configuring access permissions regarding to
what users are allowed to access which part of the social profile information.
Expert search comprises functionality that allows a user to both search for
information by certain criteria, such as name or location, as well as proactively
receiving contact recommendations from the OSN service. Context awareness
describes common context with other users, indicating what connects two
individuals or a group. This could be a common employer one has worked for in
the past, the city one is living in, or interest in a certain kind of music. Contact
management describes the management of connections to other users, for
example the list of friends or acquaintances, but also extends to tagging people
and managing access restrictions to one’s social profile. Network awareness
describes support for indirect communication, for example in form of news
feeds. This allows users to be aware of posts or events of their contacts. Finally,
exchange describes means to communicate directly with other users, for example
in form of text messages.
A similar classification of general features of social networks was defined by

Rohani and Hock in [173]. Their classification lists seven general features, some
of them comprising several functionalities. The list specified in [173] comprises
a personal profile, basically being a homepage with various information about
the user, and a personal bill board of content a user published. Furthermore,
users can model connections and relationships to other users in a friendship
network, while staying in touch via the exchange of messages or IP-based phone
calls (communicationwith online connections). The classification also describes the
functionality of a thinking room, being a user’s ability to interact with content
on the OSN. This comprises the ability to leave comments for content, voting
for content for example by leaving reviews in form of a one to five star rating,
publicly marking content as a favorite, or flagging it as inappropriate. Forums,
which are described as functionality to form user groups for certain topics, allow
users to publish content to a specific group of users. In Rohani and Hock’s
definition, only members can publish content in a forum, yet everyone can view
it. Finally, the functionality of e-newsletters describes a recommendation of
content to be published by the user, where the recommendation is generated
by the OSN service.

54 Chapter 3. Concept and Design

Kneidinger grouped OSN functionality into three categories, being tools for
communication, entertainment, and presentation, where common functionality of
OSN services is characterized as having a profile for self-representation, adding
friends to one’s network, observe and comment on activities of friends, and using
communication chat tools [174].
Schneider et al. [120] described features of OSN services. The list of features

comprises managing profiles including content in form of text, images, and video,
maintaining a list of friends, joining and participating in groups and networks,
write on other user’s walls, communicate via internal messaging services, and
use third-party applications.
Paul et al. adapted the definition given by Boyd and Ellison in [24]. They

defined an OSN as a platform that allows users to build public profiles, explicitly
model connections to other users, share information and content publicly
or addressed to specific users, and allow connectivity for social applications
for interaction and collaboration. Furthermore, Paul et al. specified a
list of networking functions, comprising a profile, relationship management,
applications, a newsfeed for posting pictures, videos, or hyperlinks, tagging
users, liking or disliking content, commenting, messaging, and groups [106].
In [111], they derived basic and extended functionality of OSN services from
their earlier definition. In their definition, basic functionality comprises
profile management, relationship handling, and interaction, where interaction can
be direct or indirect. Here, direct interaction defines a messaging system
(1:1 communication) and indirect interaction defines sharing of content with
multiple users (1:n). Extended functionality comprises an API for third party
applications to connect, search functionality for users to search for content or
other users, a recommender system that allows users to be recommended as
friends, and a social network connector that connects different OSN services, for
example in form of integrator plugins.
Kietzmann et al. defined seven building blocks of social media, being

identity, conversations, sharing, presence, relationships, reputation, and groups
[175]. Identity, being the core functionality, comprises disclosure of personal
information in a social profile, while relationships cover users establishing a
network of friends by adding each other in lists. Reputation allows to evaluate
a user’s trustworthiness or social standing in the OSN service, for example with
endorsements, likes, or ratings. Sharing describes the ability of users to create and
publish content in a form of feed, conversations are defined by direct message
exchange with other users, and presence allows users to be informed about other
users’ current status or whereabouts. Finally, groups allow users to bundle the
sheer amount of content published on OSN services by topic.
For creating an ontology of OSN functionality for the SocIoS project, Tserpes

et al. derived a list of common OSN functionality. The resulting vocabulary is
adapted from the data models of OpenSocial and comprise person, media item,
activity, event, message, rating, and group [176].
In their definition of OSN services, Kim et al. [123] listed functionality of OSN

services being people, communities, photos, videos, bookmarks of web pages, user
profiles, user’s activity updates, comments, sharing, and voting.

3.4. A Taxonomy of Featuresets of Online Social Networks 55
Table 3.1: Comparison of definitions of OSN features given inliterature.

Definitions Pr
ofi
le

Fr
ie
nd
s

Fe
ed

Co
m
m
en
t

Ta
g

Li
ke
&
D
is
lik
e

Im
ag
e
&
Vi
de
o

G
al
le
ri
es

M
es
sa
gi
ng

G
ro
up
s

Ev
en
ts

Vo
te

Re
vi
ew

Pr
es
en
ce

En
do
rs
e

Se
ar
ch

Re
co
m
m
en
da
ti
on

3r
d
Pa
rt
y
Ap
ps

Boyd & Ellison [24][119] # # # # # # # # # # # #

Heidemann [127] # # # # # # # # # # # # # # #

Schneider et al. [120] # # # # # # # # # # #

Richter and Koch [125] # # # # # # # # # # # #

Rohani and Hock [173] # # # # # # # # #

Kneidinger [174] # # # # # # # # # # # # #

Paul et al. [106][111] # # # # #

Kietzmann et al. [175] # # # # # # # # #

Tserpes et al. [176] # # # # # # # # # # # #

Kim et al. [123] # # # # # # # # # #

Europ. Commission [62] # # # # # # # # # #

When deciding upon whether Facebook and WhatsApp should be allowed
to merge, the European Commission defined a list of functionalities of OSN
services. According to Case No. COMP/M.7217 - Facebook/WhatsApp [62], essential
functionalities of OSN services comprise a public or semi-public profile and a
list of friends or contacts. Furthermore, messaging, comments, recommending
friends, and posting content such as pictures, videos, or links are recognized as
important functions of OSN services, giving users the ability "to indicate their
interests, activities or life events, create photo albums and express opinions on other
users’ postings (for example, by commenting or ’liking’)". Finally, the document
published by European Commission states that not all of these features have
to be implemented by a service to be qualified as an OSN.
As shown in Table 3.1, existing definitions of OSN functionality differ to great

extents. Moreover, functionality such as liking, tagging, or managing photos
are not covered by most definitions, even though being commonplace in almost
every existing OSN service as of today. Finally, many of today’s popular OSN
features, such as event management or support for pages, are not covered by
most of the existing definitions. To determine which functionality is supported
by OSN services, a more comprehensive definition is needed.

56 Chapter 3. Concept and Design

3.4.2 OSN Features

While functionality of OSN services changed and evolved since SixDegrees.com
was launched in 1997 [24], the main functionality remained mostly unchanged.
According to the various definitions of OSN functionality discussed in Section
3.4.1, OSN services feature user profiles, allow users to establish links between
each other, publish content, and exchange private messages.
In order to define a common standard for seamless interaction of various

diverse OSN platforms, supported functionalities and features of different
platforms need to be mapped to one another. Even though some OSN
platforms differ to great extents in appearance, user interfaces, architecture,
functionalities, or API models, one can identify recurring default features that
are semantically equivalent or at least similar. Hence, a common set of OSN
functionality, the core featureset, can be derived.
In the scope of allowing different OSN services to seamlessly connect to each

other, only functionality related to interaction with profiles or information of
other social profiles is relevant. As OSN services implement a high variety of
functions that just affects user interface, app integration, or user experience, the
following definition is used to clarify that only functionality related to interaction
between OSN profiles is considered.
Definition 9: OSN Feature
An OSN feature in an OSN service is functionality that enables a user to directly
interact with content of another user’s OSN profile by means of creating,
reading, updating, or deleting data.
For example, a social profile page is accessible for other users and is therefore

considered to be an OSN feature. While at the same time, photo editing,
games, recommendations, search, or displaying notifications to the user are not
considered to be OSN features in the sense of this definition. The combination
of all OSN features of an OSN platform describes its functionality, defined as the
OSN featureset.
Definition 10: OSN Featureset
The combination of all OSN features implemented by an OSN platform is
defined as its OSN featureset.
Finally, the OSN core featureset represents what OSN features are

implemented and supported by the majority of the most popular OSN platforms.
Definition 11: OSN Core Featureset
The combination of all OSN features present in the majority of major OSN
platforms define the OSN core featureset.

3.4. A Taxonomy of Featuresets of Online Social Networks 57

3.4.3 Analyzed OSN Services

For the analysis of OSN featuresets2, today’s most popular OSN services are
considered [178]. As popularity of OSN services varies geographically and
changes over time [177], OSN services with only regional importance are
considered as well (see Figure 3.2). The Social Media Update 2016 published
by the Pew Research Center lists the most popular OSN platforms in the USA
being Facebook, Instagram, Pinterest, LinkedIn, and Twitter. According to the
study, Facebook is used by 79% of online US American adults, Instagram by 32%,
Pinterest by 31%, LinkedIn by 29%, and Twitter by 24% [38]. A study by Ofcom
analyzed popularity of OSN services by country [16]. As shown in Figure 3.3,
Facebook is the most popular OSN service in all surveyed countries, while the
popularity of Twitter, LinkedIn, Google+, and Pinterest varies. Based on these
findings, the OSN services Facebook, Google+, Twitter, Linkedin, Instagram,
and Pinterest are analyzed. Furthermore, the popular German career-network
Xing is considered. In Russia and several former soviet states such as Belarus,
Kazakhstan, Estonia, Kyrgyzstan, Moldova, Ukraine and Latvia, the OSN service
VKontakte is the most popular site according to Alexa Internet Ranking [179].
For China, the very popular OSN service RenRen is considered being one of
the "most popular, most open and best-financed social network sites" in China [180].
Finally, to also consider distributed OSN services, Diaspora, Friendica, and the
relatively new distributed OSN service Mastodon are analyzed as well. All three
2For the survey, the operational websites and - if available - developer platforms of the surveyedOSN services as of August 2017 were investigated. As OSN service operators constantly implementnew features to improve product quality and user experience, the results of this survey may need tobe updated in the future.

Figure 3.2: Most popular OSN services by country [177]. Imagesource: http://vincos.it

http://vincos.it

58 Chapter 3. Concept and Design

Figure 3.3: Reach of OSN platforms by country in August 2016 [16].Image source: https://www.statista.com

OSN services are built on a federated open source architecture that allows users
to entrust their social profile and personal information to a trusted provider or
even host their own OSN server node. Diaspora, Friendica, and Mastodon gained
a lot of attention in the last years due to their focus on decentralization and a
privacy conserving architecture [97], yet couldn’t attract a significant user base
due to various reasons as analyzed by Koll et al. in [101].
Messenger services, such as WhatsApp or Skype, are intentionally not

considered in this study, as they lack core social networking functionalities
[62]. Most importantly, messenger services usually do "not enable users to create
detailed profiles containing a number of data fields [...], time-lines or news feeds, or
to post information, explore other users’ networks [...] or carry out many of the other
features that form part of the social networking user experience" [62].

Facebook

Facebook is built around the features of the user’s social profile page, a feed of
content published by other users, and messaging functionality. The profile page
features information such as the user’s name, a profile picture, a cover photo to
be used as a background image, information about educational background and
work, places one has lived, contact information and basic details such as gender
or date of birth, relationship status information, list of family members, personal
details, and life events. Furthermore, users can add a set of featured photos, a
textual biography, or nicknames. While most of this information is optional, the
parameter name is required. Facebook tries to enforce users to use their full real

https://www.statista.com

3.4. A Taxonomy of Featuresets of Online Social Networks 59

name instead of abbreviations or fake names3. Secondly, Facebook features a list
of friends with whom a user is connected. The friend list is populated by sending
or accepting friend requests. The friendship relation in Facebook is bidirectional,
meaning that once a friend request is accepted, both parties are added to each
other’s friend list. The friend list can be viewed by other users unless access
permissions are defined to deny accessing this content. Once a user has been
added to one’s friend list, one automatically starts following this user. Following
a user or a page is a subscription to content published by this user or page, while
not being added to the friend list of the followed person. In contrast to the friend
relation, following is unidirectional.
Furthermore, users can post status updates such as messages, images, or

videos and share status updates previously published by other users. Each social
profile page in Facebook features a feed for each user referred to as ’timeline’.
This timeline shows all status updates of this user in chronological order, hence
representing a history of a user’s (public) activity on Facebook. Posts from the
timelines of all friends are shown in a feed on Facebook’s homepage with the
intention to give the user an overview of what is happening in the (digital) lives
of one’s friends. To manage images, users can create photo albums, in which
photos are published. Also, videos and live videos can be published to one’s feed.
Albums as well as individual photos or videos can be edited, for example by
adding a title or description, location, or tagging other users. To further allow
users to broadcast what is currently happening, for example at an event or place,
Facebook supports live video streaming. Live videos can be up to 30 minutes long
and are shown in the user’s or page’s feed. When the streaming is stopped, the
video is added as a regular video to the collection of videos of the user or page.
To directly communicate with other users, Facebook features conversations

between two or more communication partners. Conversations comprise textual
messages, which can also contain other content such as images or files. Moreover
Facebook allows IP voice calls and video chats and introduced a feature to transfer
money [181]. Users can poke other users, a feature without a fixed meaning or
purpose. Sending a poke to a user simply results in the user being notified about
the fact that a poke has been sent to him and by whom. Users can react to other
user’s published contents in a variety of ways. The probably most popular one
is to like content, where the number of likes is accumulated and displayed next
to the content as an indicator of its popularity. As of 2016, Facebook introduced
reactions that allow users to specify how they feel about content in more detail.
Using this feature, users can chose between like, love, wow, haha, sad, angry, and
thankful [182]. Furthermore, users can comment on content, which allows to
have (public) discussions about a topic.
To represent businesses, places, companies, brands, products, companies,

artists, bands, or just interests, Facebook features pages. Similar to a regular
user’s profile page, pages have a name, a feed, a profile picture, and a background
image and can be used by the respective owner to get in touch with people by
for example announcing news regarding to a brand or handle customer feedback
for a product. Pages are created by regular users and bound to them, where

3What names are allowed on Facebook? https://www.facebook.com/help/112146705538576.Accessed: 5. May 2017

https://www.facebook.com/help/112146705538576

60 Chapter 3. Concept and Design

the creator of a page assumes the role of the page’s administrator. Hence, as
pages do not represent persons, they cannot be added as friends, yet pages can
be followed, liked, and shared on one’s timeline. Furthermore, one can send
messages to a page, which are then to be answered by the administrator(s) of
the page. Finally, pages can be reviewed by users by giving one to five stars and an
optional textual explanation of their rating. Facebook also features information
about locations without a page being created, called places. Users can like places
and check in, in the sense of publicly announcing that they are at this place. As
places are similar to a page, a place and a page can be merged to represent for
example a restaurant. As a recent feature, Facebook’s marketplace enables users
to create and publish offers for items or services they would like to sell [183].
To organize events, such as a party, meeting, or general public event,

Facebook allows users and pages to host events for a certain topic. The event’s
administrator can decide whether an event should be public or private, and can
invite people to attend. Invited people are listed as attending, interested, maybe,
declined, or no reply to allow others to see who is attending or not. Events have
an internal feed, videos and live videos, albums with photos, and comments.
Users can also organize themselves in groups for certain topics. A group is created
by a user, who assumes the role of the group’s administrator, and who can
invite other group members. Groups allow members to access an internal feed,
documents, events, albums and photos, and videos, which are not accessible
by non-members. Support for documents and files allows users to create, view,
and edit textual documents together or upload and download arbitrary files in a
group.

Google+

In contrast to Facebook and other OSN services that focus on self-representation
of users in form of social profile pages, Google+ is mainly organized around posts
of content [46][184][185]. While the main page of Google+ shows a feed of posts
from users that one follows, every profile in Google+ has a feed showing the posts
of the respective profile owner. Posts can be textual messages, images, videos,
or a user’s current location, and can include a list of tagged users, indicating that
they are linked to the content in some way. To express an opinion or answer,
users can write textual comments on posts, which comprise a textual message
and optionally a picture or hyperlink. Furthermore, a post can contain a poll with
predefined answers, of which viewers can choose one from, where all answers to
a poll are recorded and shown to viewers after they answered the poll. Posts can
further be shared by users, thus publishing them on one’s profile feed. Similar to
Facebook’s feature like, Google+ implements a +1 feature. By clicking a +1 button,
users express that they like or value content posted on Google+. The number of
submitted votes is then shown as an indicator of the content’s popularity on
Google+.
A user’s profile page in Google+ shows the user name, a profile picture, a

background image, and a list of collections, communities, and posts created by
the user. Furthermore, the profile optionally comprises information such as
a textual ’tagline’, gender, date of birth, personal contact details, workplace,

3.4. A Taxonomy of Featuresets of Online Social Networks 61

or education. What part of a profile’s information is visible to others can be
configured by the profile owner. Only the profile picture, background image, and
user name will always be visible to others. In Google+, users may follow other
users, thus forming unidirectional relationships instead of bidirectional ones. In
comparison to other OSN services where a friend request has to be accepted first,
following a profile is instantaneous and does not need to be approved. People one
follows can be organized in circles, which are logical groups or categories, where
users can belong to multiple circles simultaneously. This way, one’s contacts
can be easily organized, while adding users to circles has no effect on those user
accounts and is also not announced to them.
To organize content, Google+ supports collections. Collections bundle content

such as posts or images, allowing users to create channels for specific topics.
Users can subscribe to collections, resulting in content posted to a collection one
is subscribed to showing up in one’s news feed. A collection is always owned
and managed by the user who created it, allowing only him to add posts or
images to the collection. Users are able to publish status updates with photos or
videos, which are then implicitly organized in albums. While photos, videos, and
albums can be liked, commented on, and shared, specifying a title, description,
or location is not possible. Users can also organize in groups called communities.
Compared to collections, a community has a list of member, who have to be
invited by one of the community’s moderators. Community members can post
content within the community, which is accessible only for other community
members.
Finally, Google+ supports event management. Events have a title, a date,

a starting time, and a list of invited users, with additional optional parameters
such as end time, location, website, transit information, and textual description.
Furthermore, each event has a theme, which comprises a background image to
be used when the event is displayed. Invited users can choose to accept the
invitation by choosing between the options yes, maybe, and no, and can specify
a number of guests they would like to bring in case this was allowed by the
event’s creator. Finally, users can post to an event similar as to a community,
thus posting images or comments.

VKontakte

The Russian OSN platform VKontakte, being Russian for "in contact", is often
described as the "Russian Facebook" due to its impressive popularity in Russia,
Ukraine, Belarus and Kazakhstan [186]. Similar to Facebook, users in VKontakte
can create a social profile with information such as one’s name, gender, interests,
or date of birth [187]. Users can add other users as friends or simply follow
each other. Similar to Facebook, befriending a user involves sending a friend
request that has to be accepted and is bidirectional, while following a user
merely subscribes to content published by the followed user and is unidirectional.
VKontakte features a feed for every user, on which users can publish posts, which
can be shared by other users. Content can be liked and commented on by users.
Users can upload photos and videos and organize them in albums, where

photos, videos, and albums all can have an optional title and textual description.

62 Chapter 3. Concept and Design

Streaming of live videos is also supported by the service, where the streamed video
is shown in the user’s profile. Users can send gifts in form of icons to other users,
which have to be bought. Gifts received by a user are optionally shown on the
user’s profile page. VKontakte integrates music support, where users can upload
and collect songs and organize them in playlists, while being accessible for other
users and played via an integrated audio player. Users can also create, edit,
and publish textual documents and notes, and up- and download files. VKontakte
supports communities, which can represent a normal group, a page, or an event.
Communities have a feed, photos, videos, and links and further specify a name, a
description, a cover image, and a subject that specifies the community’s purpose.
Communities allow managers to send community messages, which are shown
to all members as part of the community page. Regular communities can be
open, closed, or private, where in closed or private communities the contents can
only be accessed by community members. Communities that resemble pages are
always public and can be followed by users. Finally, events can be open or closed
and have a location, starting and ending date, and contact information. Invited
users can accept or decline an invitation, or accept the invitation tentatively.
All invited users are listed as members of the event. Users in VKontakte can
sell items on a market. To privately sell a product, a user creates an item by
specifying title, description, and an asking price, and adds a photo of the item.
Furthermore, a category of the item being sold needs to be specified as well as
the location where the item is being sold. Users interested in buying the item
can then contact the seller via the platform.

RenRen

The Chinese OSN service RenRen, meaning "everyone’s network", "organizes
users into membership-based networks representing schools, companies, and
geographic locations" [131]. The service, which was formerly named Xiaonei
and allegedly copied its design and business model from Facebook [180], allows
users to create a social profile and add information such as name, date of birth,
or a profile picture. Users can furthermore set a status message, indicating what
they are currently doing, which can be accessed by other users. Users, who
accessed another user’s profile will be listed as visitors, allowing the owner
to see who visited their profile. To create connections to other users on the
network, users can add each other to a friend list. The friend list is publicly
accessible for other users. Users can post status updates in blogs and post images
and videos, where images can be organized in photo albums. Users can comment
on, like, and share posted content, and furthermore communicate privately
by sending messages to each other. RenRen supports places, representing
locations similar to Facebook’s pages. A place has a name, an address, and
geocoordinates. Users can then check in to places, announcing that they are
currently visiting the place. Separately, RenRen makes use of locations, which
represent regional areas. A location is defined by specifying country, province,
city, county, a name of the nearest street, an address, and geocoordinates. Users
can access a location’s feed by specifying a latitude, longitude, and a radius to
retrieve content posted with coordinates in the specified area.

3.4. A Taxonomy of Featuresets of Online Social Networks 63

Twitter

Twitter is a microblogging service that allows users to publicly post status
updates called Tweets of a maximum length of 140 characters4. Tweets can be
used to express opinions, broadcast news, or even announce events, and embed
images and videos via a URL. All tweets posted by a user form a user’s feed.
Twitter uses a system of keywords called hashtags to tag messages and allow
users to browse available tweets by topic. Users can follow each other, forming
unidirectional links that require no permission by the followed user to be created.
To prevent users from following or accessing one’s tweets, accounts can be
operated as private accounts, which require the account owner to accept follow
requests and only show information of the account to accepted followers. Tweets
of a user are then displayed to all his followers. Users can retweet tweets of other
users, reposting the tweet in their own timeline with an indication that it has
been originally published by another user. To communicate privately, Twitter
supports sending direct messages between users, also including conversations
with multiple users5. Finally, Twitter supports lists that work similar to groups.
Lists aggregate tweets of one or multiple users, called members, where only
members can publish tweets on the list. Lists can be either private or public,
where content published on a private list is only visible to it’s members, while
public lists can be followed by other users.

Linkedin

Linkedin is a professional OSN service focusing on modeling relations between
business partners and professionals. Users can create a social profile, which is
focused on the representation of the career of the user and is subdivided in
the categories experience and education, skills, accomplishments, and interests.
Furthermore, users can specify their current employer and position. Users can
add acquaintances or coworkers as connections, which have to be accepted and are
established as bidirectional links. Linkedin allows users to post status updates in
a feed, where posts can be simple textual messages or comprise articles or images,
where articles are textual documents that can be edited and downloaded. Users
can react to content by liking, commenting, and sharing the post, image or article.
Users can furthermore endorse users for skills they claimed to possess on their
profiles, indicating that one agrees or vouches for the user to actually possess the
skill in question. To represent organizations or companies, Linkedin supports
companies, which work like a combination of groups and pages at Facebook.
Companies in Linkedin allow a company or organization to publish a description
and updates in form of a feed. Furthermore, users can join a company, becoming
listed as employees. Finally, Linkedin allows users to use a messaging system,
which enables users to send private messages to one or multiple individuals.
4Twitter started testing tweets with an extended length limit of 280 characters in September 2017[188]5Twitter direct messages: https://about.twitter.com/directmessages. Accessed: 25. May 2017

https://about.twitter.com/directmessages

64 Chapter 3. Concept and Design

Xing

Xing is a career-oriented OSN platform modeling professional relationships.
Users can create a profile comprising information resembling a CV such as skills,
current and previous employments, education, received certificates, or languages
spoken. Finally, users can express what they are searching for career wise
by specifying a position or project they want to work in. Users can create
connections to other users, indicating that they worked together or are related in a
professional context. To stay in contact with connected users, private messages
can be sent, where two or more users can be added to a conversation. Xing
features a feed, in which status updates are posted, which can be simple textual
messages and can optionally comprise a link to an external website. Posted
status updates can be marked as interesting, commented on, and recommended,
resulting in the item being shared in one’s feed. Companies and organizations
can create pages in Xing to represent themselves, where users can follow the
page and write reviews, where multiple aspects of a company or organization
are rated, including "internal communication", or "equality". To allow users
to organize themselves to discuss specific topics, Xing supports groups. Groups
can be either closed or public, and specify a topic and a textual description.
Groups have a feed, in which members can post status updates that are accessible
only to group members. Finally, Xing features events, where events have a title,
description, category, and star and ending date. Events can be either public or
private, where invited users can see and register for attendance.

Diaspora

Diaspora6 allows users to connect by following each other. While following a user
establishes a subscription to this user’s content, the followed user explicitly has
to "start sharing" with him, where followers are grouped in "aspects" similar to
Google+’s circles. Content in Diaspora is then published in a stream and visible
for users of selected aspects. While posts are regular textual messages, they can
comprise other types of content as well. Here, Diaspora supports images, where
uploaded files are added to a global list and cannot be organized in albums.
Furthermore, users can start votes, where the posting user specifies a question
and a set of predefined answers, from which other users can then choose. The
results of the poll are then displayed in the post. To react to posts, users can like
a post and reshare it, where liking of content is restricted to the original posts,
while comments and other content cannot be liked. Finally, users can comment
on posts, where comments are simple textual messages and cannot contain rich
content such as images or videos. Diaspora also features a profile, where name,
gender, date of birth, and location can be specified. Furthermore, the profile
can have a profile picture, a textual description, and a list of keywords the user
is interested in. To communicate with other users directly, Diaspora supports
conversations, where support for conversations was added in the latest release
0.6.
6Version 0.6 of Diaspora has been analyzed, which has been released on August 26th 2016: https:

//blog.diasporafoundation.org/33-diaspora-version-0-6-0-0-released. Accessed: 11. June 2017

https://blog.diasporafoundation.org/33-diaspora-version-0-6-0-0-released
https://blog.diasporafoundation.org/33-diaspora-version-0-6-0-0-released

3.4. A Taxonomy of Featuresets of Online Social Networks 65

Friendica

The distributed OSN service Friendica7 mainly focuses on Microblogging and
allows users to build a social profile, which can comprise information such as
name, profile picture, gender, date of birth, contact information, keywords,
or a textual description. Users can add each other as friends and exchange
messages. Due to the underlying implementation of the federation, accessing
another user’s profile, will redirect users to the host of the viewed profile,
resulting in a inconsistent look and feel of the network. Users can post status
updates, which are published in a stream that is accessible by other instances
of Friendica as well. Posts can be liked, disliked, and starred, allowing a more
detailed response to published content. Furthermore, posts can be shared,
commented on, and tagged, where tags can be either for other users or keywords
in form of hashtags. Friendica allows users to upload photos and videos, where
images can be organized in albums, and upload files that can then be accessed and
downloaded by other users. Finally, the platform supports the creation of events,
where users can specify a title, description, start and end date, and location.
Furthermore, events can be shared with other users, who then can reply by
accepting or rejecting the invitation, or respond tentatively.

Mastodon

Mastodon is a decentralized microblogging service with functionality similar to
Twitter [140]. Built with the intention to provide equal or better functionality
than the centralized original, it aims at allowing users to host their own servers
and decentralize control of the social web. Mastodon8 allows users to post
status messages in a timeline, where hashtags can be used and other users
can be mentioned. For direct communication, Mastodon supports restricting
the audience of individual status posts to specified users, allowing private
conversations. The service features a simple profile, allowing users to follow
each other. Similar to Twitter, status posts can be favorited and replied to.
Furthermore, Mastodon supports uploading and managing of image and video
files. Finally, Mastodon offers a fine-grained management of privacy settings
and access control that allows users to restrict access to individual parts or the
entire user profile.

Instagram

Instagram focuses on images posted by users in a feed. Users can follow each
other, resulting in a subscription to the followed user’s feed. Images posted on
the feed can be liked and commented on by other users. Instagram also features
a profile page, which allows a user to specify basic information, being a name,
biography, profile picture, gender, title, location, and contact information such
as an email address, website, and phone number. A unique feature of Instagram

7Version 3.5.2 of Friendica has been analyzed, which has been released on June 6th 2017: http:
//friendi.ca/2017/06/06/friendica-3-5-2-released/. Accessed: 11. June 20178Version 1.5.1 of Mastodon has been analyzed, which has been released on August 6th 2017: https:
//github.com/tootsuite/mastodon. Accessed: 7. August 2017

http://friendi.ca/2017/06/06/friendica-3-5-2-released/
http://friendi.ca/2017/06/06/friendica-3-5-2-released/
https://github.com/tootsuite/mastodon
https://github.com/tootsuite/mastodon

66 Chapter 3. Concept and Design

is the possibility of users to choose and change their username, which is used
as the profile’s identifier. Finally, users can send direct messages to each other,
where communication between multiple users at once is not supported.

Pinterest

Pinterest evolves around the pinning of images, which are then posted in a feed.
Pinned images can have a textual description and a link leading to a website
associated with the pinned image. Unlike other OSN services, Pinterest is a
"social curating service" and does not focus on connections between users, but
rather connections between users and content [189]. Consequently, users can
follow each other as well as boards, where boards are collections of pins, for
example by category. Following a user or board creates a subscription to pins
posted on the followed profiles or boards. Boards can be created with a public or
secret setting, where users need to be invited to become a member to view and
pin images to and from a secret board. Furthermore, pinned images can be saved,
essentially sharing them in another board. Pinterest features a simplistic user
profile that features the username and a profile picture. The profile furthermore
shows a feed of pins posted by the user and the boards he created. The main
page of Pinterest shows a feed of pinned images chosen by the service based
on what a user likes. Users can comment on pins, where comments consist of
simple textual messages. Furthermore, users can announce that they "tried" a
pin, indicating they reviewed the pin’s content and approve it in the sense that
they successfully followed a recipe or followed the advice contained. The total
number of approvals is shown next to the pinned image. The approving user
can optionally write a textual comment and upload further images to give more
detailed feedback.

3.4.4 OSN Feature Taxonomy

To make functionalities of different OSN services comparable, a taxonomy for
OSN features is required. While the various implementations of a certain OSN
feature may differ between services, they still describe similar or even equivalent
functionality. For example, a Facebook like is fully equivalent to a +1 in Google+,
while support for photos differs in details between the two OSN platforms. To
study and compare the support of OSN features in different OSN services, a
taxonomy for OSN features has been derived.

Social Profile

A social profile is a customizable page in an OSN service that allows users to
express themselves and describe what is going on in one’s life. The social profile
stores information in key-value pairs such as the user’s name, profile picture,
a cover photo to be used as a background image, information about educational
background and work, places one has lived, contact information and basic details
such as gender or date of birth, relationship status information, list of family
members, personal details, and life events. Furthermore, users can add a set

3.4. A Taxonomy of Featuresets of Online Social Networks 67

of featured photos, a textual biography, or nicknames, where the type of data
users can add to a social profile page differs between OSN services. While social
profiles are implemented in all surveyed OSN services, the OSN feature differs in
the information stored within a profile. While Facebook or Google+ for example
allow users to specify a variety of information, Instagram and Pinterest support
only a minimalistic profile. Other special OSN services such as Linkedin or Xing
focus more on representing one’s career path, essentially turning the social
profile into a web-based curriculum vitae. The issue of varying information
available in social profiles is also addressed by Open Social as described in
Chapter 3.7, which specifies an extensive list of optional parameters that could
be added to a social profile, with only a user identifier and a user name being
mandatory.

Link

A link is a connection between individuals in an OSN service, indicating
friendship, acquaintance, or merely interest in a person the person’s context
[190]. Allowing users to connect to each other is supported by all surveyed
OSN services, hence being one of the most essential OSN features. To add
a user to one’s list and establish a link between two individuals, a request
is sent by one of the users to the other user, where existing links to other
users are collected in a link roster, also referred to as friends or followers
list [190]. Most OSN implementations require the requested user to explicitly
accept the request before the user is actually added to the link roster. Once
accepted, links can either be uni- or bidirectional. While unidirectional links
indicate that a user A is connected to a user B but not the other way around,
bidirectional links assume that if user A is connected to user B, B is also
connected to user A. All links established in an OSN service form the social
graph, representing information about how individuals are connected to each
other. Links between users of OSN services are often also used for access control,
where users in the link roster are allowed to access certain parts of a user’s
social profile, while others are not. Similar to links between users indicating
friendship or being acquainted, follow-relationships indicate interest in content
published by another user or page, which is then either proactively pushed to
the follower’s OSN profile, or reactively fetched on demand. Following someone
hence equals subscribing to content the followed entity posts to its stream,
where follow-relations are usually unidirectional. All surveyed OSN services
support either uni- or bidirectional connections with some services supporting
both at the same time. As bidirectional connections can be composed of two
unidirectional links between two users, links in this taxonomy are unidirectional
to support both paradigms of connections between users.

68 Chapter 3. Concept and Design

Conversation

Conversations bundle textual communication in form of text messages between
two or multiple communication partners. Messages can be sent by any
participant of a specific conversation and are received by all other participants.
The term conversation covers simplemessaging restricted to two communication
partners as well as group communication between multiple communication
partners. Messages in a conversation usually have a status parameter indicating
its local status, such as received, read, or deleted. Using this status, the recipient
can determine which messages he has already read, deleted, or which are still
unread. Conversation implementations can also comprise a remote status that
indicates whether a message has been received, read, or deleted by a recipient.
Moreover, messages can often contain content other than text, such as images,
videos, voice recordings, links, location information, or general file attachments.

Poke

A poke is a feature without a fixed meaning or purpose. Most prominently
implemented in Facebook, a poke can be sent to another user resulting in a
notification that this user was "poked" by the initiator of the poke. The feature
also exists in some other services, for example in an XMPP extension called
attention [191], or as the feature "gruscheln" in StudiVZ [129] and is sometimes
also referred to as nudge or buzz. The feature was even turned into a standalone
service called Yo9, whose creators describe it as "the simplest notification platform"
where you can send a "simple ping that let’s you know something happened and the
predefined context fills in the data that is not provided in the notification" [192].

Like

To allow users to express that they like content such as status updates, photos,
profiles, or messages, most OSN platforms provide a like feature. Users can send
a like, usually by clicking a specific like button next to the content. The total
number of likes is then summed up and displayed, indicating how popular the
content is. While most OSN platforms such as Facebook, VKontakte, LinkedIn,
or Twitter implement the feature using the term "like", other OSN platform
implement the same functionality using different terms. For example, Google+
allows users to send a "+1", Xing uses the German term "interessant" (engl.:
"interesting"), and Diaspora uses the term "love". The feature is one of the
most popular ones in OSN services, where only Pinterest, as the only analyzed
OSN implementation without support for the like feature, removed it’s support
early 201710.
9Yo app: https://www.justyo.co/. Accessed: 20.6. 201710As of early 2017, Pinterest removed a previously existing like feature and added the savefunctionality instead [193].

https://www.justyo.co/

3.4. A Taxonomy of Featuresets of Online Social Networks 69

Figure 3.4: Visualization of reactions in Facebook. Reactions noneand thankful have no graphical representation. Image source:
https://en.facebookbrand.com/assets

Reaction

As the like feature does not allow users to express more complex reactions to
content, reactions offer feedback in a variety of predefined expressions. Reactions
work very similar to the likes, but allow the user to chose from a variety of
meanings. For example, Facebook’s implementation of the feature [194] allows
users to chose between none, like, love, wow, haha, sad, angry, and thankful as
depicted in Figure 3.4. The number of reactions of every type are then listed -
similar to the number of regular likes - next to the content in that context they
were posted to indicate how many people reacted to this and in what way.

Collection

Collections allow users to publish content such as images or videos bundled by
topic, event, or category. A collection has a title and can additionally have a
textual description, describing a location or a date. The collection’s owner can
add or remove content to a collection.

Image

Users use images such as photos or graphics to express ideas, share experiences,
and visualize achievements. The image feature allows users to post and manage
pictures or photos in their OSN profile, where an image can optionally be added
to a collection or posted in a stream. Images either store the actual image data
in an encoded format or a URL of an image file. Optionally, an image has a
title, description, and additional image metadata such as the image’s resolution,
encoding algorithm, width and height, date of creation, copyright information,
or location information.

Video

Videos work similar to images and can be posted and managed by users in their
OSN profiles, for example by posting it to a stream or adding it to a collection.
Besides either storing the video data in an encoded format or a URL to the video
file, videos can optionally have a title, description, and metainformation such
as information about resolution, length, width and height, video codec, date of
creation, copyright information, or location at which the video was recorded.

https://en.facebookbrand.com/assets

70 Chapter 3. Concept and Design

Live Video

Live video allows users to share a video stream of what is happening instantly.
While the user records the video using for example a mobile phone, the video is
streamed to the OSN service and can be seen by other users. After the live video
feed is ended, the video is added as a regular video to the user’s collection of
videos.

Comment

To express a more detailed opinion or reaction to content in an OSN, most OSN
services allow users to write comments. In a general sense, comments are textual
feedback to content such as photos, status updates, or even other comments, and
are attached to the content that is commented on.

Voice Call

Mostly common in IM services, voice call functionality allows users to call
other users in a VoIP manner [195]. The feature has become very popular as
a replacement for international phone calls, as only the fees for Internet access
apply.

Video Call

Similar to voice calls, video calls allow users to call other users with a video feed.
Extended support for this feature even supports video conferencing.

Stream & Activity

OSN services use a stream of activities, where users can inform their network of
friends and acquaintances about news and events in their life by posting about
something they did, saw, or experienced. An activity usually comprises a textual
message, image, video, link, or any other type of content, and furthermore
stores other information such as the activity’s author, time being published,
or tagged users. To further specify the type of content enclosed, a parameter
type is used in many implementations, where the standard Activity Streams 2.0
[102] has been widely adopted to describe activities and streams. The Activity
Streams 2.0 Vocabulary differentiates between twelve distinct types of status
update content types (objects), such as document, event, image, place, or video,
and further specifies twenty-eight different types of actions to be expressed,
such as announce, create, listen, offer, or travel [196]. Activities posted by a user
are usually published in his stream, a list of all status updates by that user. The
stream, also referred to as "timeline" or "feed", hence comprises a journal of
that user’s activity within the OSN service. Given the required access permission,
status updates can also be posted on another user’s stream, or on the private
stream of a group, page, or event. Status updates of linked users and pages are
normally shown in a main stream, functioning as a "personalized streamof stories,
recommendations andnews from the people, news sources, artists and businesses you’ve

3.4. A Taxonomy of Featuresets of Online Social Networks 71

connected with" [197]. Users can also share status updates that have previously
been posted by other users. Sharing a status update creates a copy of the original
post and re-publishes it in a user’s stream. The post is marked as a share to
indicate that the content has been posted by someone else before and lists the
name of the original author.

Tag

To mention a user in a status update, image, or other content, a tag can be
created that is attached to the content the tagged person is mentioned in. This
way, the participation in or presence of users at in for example an event can
be indicated. When tagged in content, users are listed when the content is
displayed, for example in the description of an image in a photo gallery. Some
implementations such as Friendica extend the concept of tags by additionally
allowing to tag content of other users with hashtags being textual keywords.

Event Management

Event management functionality allows users to organize events using OSN
services. An event usually has a title, a date, a starting time, and a list
of participants, and other optional parameters such as a description, ending
time, location, or a background picture. The event’s host assumes the role
of administrator and can hence change the configuration of the event. When
invited to an event, a user can choose to decline, accept, or accept tentatively,
where the information about who is invited and who accepted the invitation or
not can be seen by all other invited participants. To communicate with other
participants and announce news, an event has a stream, where participants can
post status updates. Content published in the context of an event is only visible
and accessible to the invited participants. Depending on the support of the OSN
service, an event may support further OSN functionality such photo albums or
documents, where the respective information is only accessible to the event’s
participants.

Vote

Voting defines the ability to create a poll for a certain topic with a number of
configurable options. Depending on the type of the poll, users can then select
one or multiple of the options. The results can be displayed, showing which
option got the most votes. For example, a group of friends planning to go to the
cinema could decide which movie they want to see using a poll.

File

Files can be published in a social network for other user to download and specify
a title and a file type. Files are usually in a binary format, such as pdf documents
or zip files.

72 Chapter 3. Concept and Design

Document

Documents are files that can be edited by users directly, allowing collaboration
on articles, spreadsheets, or lists. Depending on document type and access
permissions, documents can be either just read or even edited and overwritten
by users.

Review

A Review describes functionality to express a comparative assessment of the
quality, standard, or performance of content. A review allows a user to express
his opinion in form of a rating by giving up to five stars for content, where
content is usually a page, venue, location, brand, or similar. A one-star-rating
would equal the worst, five stars equal the highest possible opinion. Optionally,
a review can include a textual comment to allow users to explain the rating they
have given.

Group

Groups are logically separated areas in an OSN in which content can be published
that is only accessible within the group. To distinguish who is able to access
the group’s contents and who can not, a group has a list of members, who
exclusively are able to access the group’s contents and publish new content in
the group. Groups can be open or closed, defining whether everybody can join
the group or approval of the group’s administrator is required to do so. Similar
to chat rooms in IRC, groups are mainly used for collaboration such as to discuss
topics, events, or other activities. Groups have a name, a description, and in
most cases a background picture. A group has an administrator, who can change
the configuration of the group, including to change the group’s topic, invite
users, or configure the group’s access permissions. Furthermore, a group has a
list of members who can access the group. Each group has an activity stream,
where content posted to the group is shown. Depending on the support of the
OSN service, groups may support other OSN functionality such photo albums,
documents, or events.

Page

A page is a website within an OSN service that represents an entity that is not a
regular user. Pages are used to represent businesses, places, companies, brands,
products, artists, bands, movies, or just interests. Similar to regular social profile
pages, pages feature a name, a description, and a profile picture. Each page has
one ore more administrators, who can create and publish content in the context
of the page and also change the page’s configuration.

3.4. A Taxonomy of Featuresets of Online Social Networks 73

Check-In

Originally introduced by services such as Foursquare11 or Gowalla12, a check-in is
a public announcement of a user that he is currently at a certain place, usually
a venue such as club, restaurant, or a public place. Check-ins can be used to
determine how many people are at a certain place, or if a certain person is
even currently there. The feature raised concerns regarding to privacy issues,
as anyone could see when you were not at home13.

Music & Playlist

Music support allows users to upload audio files. Audio files have a title, an artist
or band name, and album information. Furthermore, they can have additional
metainformation such as the audio codec or duration. Audio files can be added to
playlists, which arrange multiple audio files in a specific order, where users can
specify a playlist’s title and description. Audio files and playlists can be viewed
by other users, where usually an integrated audio player allows users to play the
selected audio file or playlist.

Gift

Gifts are icons that can be bought and gifted to users, who can then display
them in their social profile. The amount and type of the received gifts is thought
to indicate how respected or loved a user is by his friends and connections.
Gifts usually have to be bought using real money or a special kind of currency
introduced by the OSN service.

Offer

Offers describe physical goods or items a user is willing to sell. Each offer
describes the item to be sold by specifying a category, selling price, title,
description, and physical location. Furthermore, pictures of the item can be
added to give potential buyers a better understanding of the item for sale. Offers
can be viewed by other users, who can get in contact with the seller in case they
are interested.

Endorsement

To confirm a claim someone made on his profile, users can endorse that claim
to publicly give the claim more credibility. The total number of endorsements
of a certain claim is then displayed in the user’s profile. Endorsements are
mostly used in career networks, where users claim to have a certain set of skills,
and coworkers and acquaintances can endorse users for the skills they claim to
possess.
11Foursquare: http://foursquare.com. Accessed: 12. April 201712Gowalla: http://blog.gowalla.com/. Accessed: 12. April 201713PleaseRobMe.com: http://pleaserobme.com/why. Accessed: 10. June 2017

http://foursquare.com
http://blog.gowalla.com/
http://pleaserobme.com/why

74 Chapter 3. Concept and Design

3.4.5 Sonic Core Featureset

From the analysis of the OSN features supported by the twelve surveyed OSN
services as listed in Table 3.2, a core featureset of OSN functionality can be
derived. While the OSN features social profile, link, stream & activity, and
comment are supported by all surveyed OSN services, likes and conversations
are supported by 11, and images and tags by 9 out of 12. Groups, videos, and
collections are also popular OSN features, yet are only supported by 6 of the
surveyed networks, followed by events and pages (supported by 5 services each).
All other OSN features are supported by 4 or less networks, being check-ins, live
videos, voting, files, documents, offers, and reviews (supported by 2 services), as
well as reactions, music & playlists, poking, gifts, voice calls, video calls, money
transfers, and endorsements (supported by 1 service each).
As the results of this survey depend on the choice of OSN platforms and

may hence differ in a similar comparison using a different set of surveyed OSN
services, only OSN features with a high popularity are considered as features
of the core featureset. Furthermore, as OSN services continuously evolve and
implement new features, the percentage of OSN services supporting a certain
feature may change over time. For the Sonic core featureset, a threshold of two
thirds was chosen for an OSN feature to be considered in the core featureset,
resulting in the following definition of the Sonic core featureset:
Definition 12: Sonic Core Featureset
The Sonic core featureset comprises OSN features supported by a two-thirds
majority of OSN services, being profile, link, conversation, stream& activities,
image, like, comment, and tag.
Based on the results of the analysis of OSN features supported by twelve

popular OSN services, a more detailed definition of an Online Social Network
can be given that extends the original definition given by Boyd and Ellison in
[24]:
Definition 13: Online Social Network
An Online Social Network, short OSN, is a web-based service platform that
allows users to (i) create and access social profile pages, (ii) link to each
other and traverse those links, (iii) exchange messages, (iv) post activities
in a stream, (v) tag each other in posts, (vi) comment on published content,
(vii) like content, and (viii) publish images. OSN services can furthermore
implement additional OSN features for a unique portfolio and user experience.

3.4. A Taxonomy of Featuresets of Online Social Networks 75

Table 3.2: Comparison of the support of OSN features of differentOSN services.

Feature Fa
ce
bo
ok

G
oo
gl
e+

Fr
ie
nd
ic
a

D
ia
sp
or
a

VK
on
ta
kt
e

Re
nR
en

Xi
ng

Li
nk
ed
In

Tw
it
te
r

M
as
to
do
n

In
st
ag
ra
m

Pi
nt
er
es
t

Social Profile

Page # # # # # # #

Link

Conversation #

Voice Call # # # # # # # # # # #

Video Call # # # # # # # # # # #

Stream & Activity G#a)

Like G#b) #

Reaction # G#c) # # # # # # # # #

Comment

Tag G#d) # # #

Collection # # # # # #

Image # # #

Video # # # # # #

Live Video # # # # # # # # # # #

File # # # # # # # # #

Document # # # # # # # # #

Music & Playlist # # # # # # # # # # #

Event # # # # # # # #

Group # # # # # #

Poke # # # # # # # # # # #

Review # # # # # # # # # # G#e)

Vote # # # # # # # # # #

Check-in # # # # # # # # # #

Gift # # # # # # # # # # #

Offer # # # # # # # # # #

Money Transfer # # # # # # # # # # #

Endorsement # # # # # # # # # # #

 Supported G# Partly supported # Not supported

a) Instagram supports a stream of images or videos, but does not support publishing other
content.
b) Diaspora only supports liking status updates, but not comments or other content.
c) Friendica supports reacting to content by liking, disliking, and starring.
d) Friendica supports adding textual tags to content.
e) Pinterest only allows to write textual reviews. Giving a rating is not supported.

76 Chapter 3. Concept and Design

3.5 User Identification

A decentralized, heterogeneous OSN ecosystem, in which migration of entire
user accounts between OSN platforms is supported, needs to provide means to
discover OSN profiles and enclosed data where established links between social
profiles and associated content are kept intact even when an OSN profile is
migrated to a new OSN platform and is hence not accessible anymore at the
former location. As of today, user accounts and content is mostly identified and
addressed via URIs [198], which comprise the domain name of the OSN platform
they are created and stored in. In such a scenario, if an OSN profile that is
identified in this manner is migrated to a new OSN platform, identifiers for the
profile itself as well as for all enclosed content invariably remain pointing to the
former OSN platform’s domain and hence become invalid. Tomaintain a profile’s
accessibility and addressability, identifiers of all content and the user profile
itself would need to be changed to the new OSN platform’s domain, resulting in
links in other OSN profiles pointing to the migrated profile to break. Examples
for this are friends lists pointing to the migrating user’s profile, or comments
written by other users that reference content that’s stored in the migrated OSN
profile. Furthermore, linking to content published in a social profile from other
web services and applications, for example in form of a website or blog, is not
feasible if links should be kept intact even after a profile has been moved. If
identifiers change when migrating an OSN profile to a new location, links to
the migrated profile become invalid, rendering links in other user’s friends
lists, as well as all content created by or referencing the migrated profile or
content in it, unreachable. To alleviate this issue, a separate mechanism would
be required to update all references in all content in all profiles on all OSN
platforms, including every content object ever created that links to this identifier.
Friendica, which uses email-style identifiers, proposes a rudimentary approach
for profile migration where a user manually extracts his social profile dataset and
re-imports it at another Friendica node. After this manual migration process,
linked user profiles are informed about the migration, where the user identifier
is updated to reflect the new profile location14. While this approach allows a user
to move his profile manually, links to content are broken as the user identifier for
the moved OSN profile is changed. For example, content containing hyperlinks
to a user’s profile page or other content he published in his OSN profile are not
updated, resulting in broken links.
To avoid links being interrupted, identifiers should remain unchanged even

after an OSN profile is moved to a OSN platform with another domain name.
Hence, using domain-agnostic identifiers will allow user profiles to remain
completely independent of the OSN service they were originally created in,
resulting in platform independent social personas as of Requirement R2 as
defined in Chapter 3.3. As the domain-part of domain-bound identifiers
guarantees global uniqueness, domain-agnostic identifiers must introduce
other means to prevent ambiguity of identifiers following Requirement R10.
Additionally, identifiers must be created and managed by users themselves, as
14Moving accounts in Friendica: https://github.com/friendica/friendica/blob/develop/doc/

Move-Account.md. Accessed: 23.6.2017

https://github.com/friendica/friendica/blob/develop/doc/Move-Account.md
https://github.com/friendica/friendica/blob/develop/doc/Move-Account.md

3.5. User Identification 77

Requirement R4 disallows any form of central authority that could exert control
over the entire OSNF or parts of it. This is due to the fact that in a system
where identifiers are resolved to locate the actual social profile linked to it,
a central authority could block the resolution of identifiers easily and hence
indirectly exert control over communication in the entire OSNF by inhibiting the
lookup of OSN profiles and content. Even when control is distributed between
multiple authorities, where each authority would be in control of creation and
management of a distinct set of identities, each authority would remain in full
control of the identities it manages and could hence block access of any affected
user to the OSNF, for example when a customer migrated to a competitor’s OSN
platform. To prevent a possible misuse of power by a central or semi-central
authority, identifiers in Sonic are created and resolved independently of any
authority that could voluntarily interfere with the identifier’s usage. As in such
an architecture no central authority is able to assert a user’s identity claim,
users need to be able to prove ownership of their identifiers to other users and
OSN platforms so that impersonation of users is prevented. Finally, to allow
identifiers in Sonic to be resolvable to the actual OSN profile’s location without
the help of a central authority, Sonic distributes control between all participating
servers via a distributed hash table (DHT). For this purpose, Sonic introduces the
Global Social Lookup System (GSLS), a distributed directory service built on peer
to peer (P2P) technology using DHT technology.

3.5.1 Related Work

Services that managemultiple users or objects require ameasure of identification
to distinguish between individual users or objects, where the concept of identity
is defined to be a set of attributes related to an entity [169]. For this purpose,
an identifier (ID) is assigned to each entity, where an identifier is a name that
usually is a sequence of letters, numbers, or symbols, with the usual intent of
being unique in a certain domain. This assures that each user or object can be
uniquely addressed via its assigned identifier, and two equal entities can always
be distinguished from each other. Traditionally, a service assigns identifiers to
each user and data object, which is unique within the domain of the service but
not necessarily on a global scale. As a well known example, the Linux operating
system identifies each user via a unique user name and a serial number (userid,
uid). The uid is used by the system to identify users, while the actual user name
is mostly used for authentication and displaying purposes. OSN services also
identify users by a - not uncommonly numerical - user identifier, which has to be
unique within the domain of this service or application. As long, alphanumerical
identifiers are hard to remember and distinguish for humans, most services
introduce a human readable username or handle, which in most services also
acts as an identifier for the same profile. Hence, usernames also need to be
unique and are hence not suited for representing regular names. Furthermore,
most OSN services allow their users to pick a displayable, human readable name,
also referred to as display name, which is not necessarily unique and is used as a
normal name when displaying information about a user. For example, Facebook
uses two identifiers for users, a user name and a numeric ID. While both the user

78 Chapter 3. Concept and Design

name as well as the numeric ID are unique in the domain of Facebook and can
hence be used to address user profiles, a regular name, which is not necessarily
unique, is displayed in the profile. This name is thought to represent the user’s
actual name and Facebook urges users to use their actual first and last names15.
For example, Mark Zuckerberg’s user name is zuck, his ID is 4, and his regular
name is Mark Zuckerberg. To retrieve his social profile, both identifiers can be
used: https://www.facebook.com/zuck as well as https://www.facebook.com/4.
If identifiers are only issued and resolved within a single domain or service,

identifying and localizing the individual entities is simple as creation of all
identifiers can be easily controlled by the service operator. The drawback
of this approach is that the identifier can not be used directly to identify
entities outside of the issuing domain. An example of this are user names in
UNIX-based systems, where user names are unique on each system, but cannot
be used to identify a user on another server. In most services and systems that
require identifiers to be used and resolved across domain borders, identifiers
are composed of a local identifier, which is unique in the domain in which it is
issued, and the service’s domain name, which globally and uniquely identifies
the service domain. This simplifies the process of determining whether an
identifier is already in use by another entity, as querying (all) other domains
for already issued identifiers is not necessary. This allows situations in which an
identifier for a user Alice can exist in multiple separate domains at the same time
without any conflict, as only the identifier’s domain-part needs to be globally
unique. This kind of composed identifiers is used by web-based services and
applications, where the domain’s full qualified domain name (FQDN) is used as
the identifier’s domain-part. Here, first the identifier’s domain part is resolved
via the Domain Name Service (DNS) [199], while resolving the identifier’s local
part is delegated to the respective domain. Composed identifiers are used by
most web-based applications and services, for example in the form of URIs [198],
email addresses [200], or jabber-IDs (JID) implemented by XMPP in the format
local-part@domain-part [201].
Unified Resource Identifiers (URI) or International Resource Identifiers (IRI)

[198] are also used to uniquely identify entities such as documents or persons.
Basically, URIs comprise a scheme, which is usually registered with the Internet
Assigned Numbers Authority (IANA)16, an authority part, describing a domain or
IP address, a path further specifying the targeted resource in hierarchical form,
and an optional query- and fragment-part, where the query can be used to
describe key-value-pairs, and the fragment to specify a fragment-id. Using
URIs, the identified entities can be classified and categorized, for example
by specifying paths such as http://company.com/employees/berlin/alice. By
utilizing URIs as identifiers for entities in a service or app, users and services can
easily resolve an identifier to a resource or document, which then may provide
further information about the linked entity.
WebID [202] uses URIs as identifiers for individuals or entities, which can

be resolved to a profile document via HTTP or HTTPS. Profile documents are
15Facebook naming regulations: https://www.facebook.com/help/112146705538576. Accessed:23.8.201716Internet Assigned Numbers Authority (IANA): https://www.iana.org/. Accessed: 12.8.2017

https://www.facebook.com/zuck
https://www.facebook.com/4
http://company.com/employees/berlin/alice
https://www.facebook.com/help/112146705538576
https://www.iana.org/

3.5. User Identification 79

provided in RDF [203] and provide semantic information about the described
individual or entity. WebID was extended in 2009 by FOAF+SSL to a decentralized
and secure authentication protocol [204]. The standard, which was later
renamed to WebID-TLS [205], published an entity’s cryptographic public key
in the WebID document, which could then be used to establish an encrypted
communication channel with the owner of the matching cryptographic private
key. The standard uses FOAF social graph information [104] specified in the
WebID documents to verify how a requesting entity is related to the identified
individual or entity. This way, the standard even allows for authentication of
users without the need for a central authority, as users build a decentralized
web of trust using FOAF. Yet, with WebID, each user is required to own and
operate a domain and functioning website for a WebID to be resolvable.
WebFinger is an HTTP-based protocol for discovery of information about

entities being individuals or things, where entities are identified via email-style
URIs using a special URI scheme acct:// [103]. WebFinger resources will answer
a query for a specific entity with a JSON Resource Descriptor (JRD) specifying
the targeted entity with a subject, as well as aliases, properties, and links.
WebFinger is used as the discovery protocol for OpenID Connect [206], and has
been implemented by DOSN services such as Diaspora or Friendica.
In 2003, the OASIS group introduced eXtensible Resource Identifiers (XRI)

as an identifier scheme for abstract identifiers [207]. XRIs are designed to
be domain-, location-, and platform-independent and can be resolved to an
eXtensible Resource Descriptor Sequence (XRDS) document via HTTP(S) [208] in
case they comprise a resolvable domain name. Work on the XRI 2.0 specification
was discontinued in 2008 by the XRI Technical Committee at OASIS.
OpenID is a decentralized authentication framework promoted by the OpenID

Foundation17 that allows users to be authenticated at any web service supporting
this standard [209]. The standard allows users to choose an arbitrary OpenID
Provider (OP) and register an identity, which a user then can use to register and
login with arbitrary other services supporting the standard. OpenID employs
URLs as identifiers, where the OpenID 2.0 specification also supports XRIs [207]
to be used, resulting in identifiers being unalterably bound to the domain of
the provider. In OpenID, users connect to a service referred to as Relaying Party
(RP), identifying themselves with an OpenID identifier. The RP then contacts the
OP and retrieves an Extensible Resource Description Sequence (XRDS, formerly
Yadis [208]) document describing the capabilities and provided functionality of
the OpenID provider, where a shared secret is established between RP and OP. The
user’s user agent is then redirected to the OP to authenticate using his credentials
and is redirected back to the RP after successful authentication with the shared
secret. The RP then verifies the shared secret and accepts the user agent as
being successfully authenticated. The standard has been combined together with
OAuth into OpenID Connect [206], extending the concept to authorizing a service
(RP) to access a resource owned by the user while being authenticated similar to
OpenID.
17OpenID Foundation: http://openid.net/. Accessed: 12.8.2017

http://openid.net/

80 Chapter 3. Concept and Design

As of today, almost every web-based service utilizes domain-bound
identifiers, as they can be issued easily without the need to check for possible
collisions. As the DNS is used to resolve the domain-part of the identifier to
the issuing service domain, the identifiers can also be used to identify entities
in other service domains. Yet, migrating a domain-bound identifier to a domain
distinct from its issuing domain introduces additional complications. Firstly, the
local-part of the identifier may be used in the new service domain by another
entity and hence result in a collision so exchanging the domain-part of the
identifier is generally not possible. Secondly, if the identifier’s domain-part
is kept, the former service domain would remain responsible for resolving the
identifier, giving the domain’s operator full control of disabling identifiers issued
in his domain. Solutions such as WebID-TLS are able to circumvent the problem,
yet require every user to register and maintain a domain name - a task that could
overburden the average user of OSN services. To overcome these issues, a single
issuing domain can be used for identifiers.
In consequence, if entities need to be identified independently of a fixed

service domain, domain-bound identifiers cannot be applied. In scenarios,
where identifiers are not issued by a central authority but in a non-orchestrated,
distributed fashion, random values can be used as identifiers, where measures
need to be implemented to reduce the likelihood of a collision. Cryptographic
hash functions can be used to derive a seemingly random bit-sequence from
a combination of random input, for example created by a random number
generator (RNG), or deterministic input values. The resulting output is then,
depending on the quality of the used hash function, unlikely to be created
twice and may therefore be used to identify entities. This paradigm is used
for example by Universally Unique Identifiers (UUID), also known as Globally
Unique Identifiers (GUID) [210]. UUIDs are 128 bit identifiers created by using a
machines MAC address and a timestamp (version 1 and 2), MD5 or SHA1 hashes
of the machine’s namespace identifier (version 3 and 5), or a random number
created by a Random Number Generator (RNG) (version 4). The uniqueness of
UUIDs is hence based on the assumption that generating the same identifier twice
is very unlikely and creation of the identifiers abides to the standard, meaning
that MAC addresses are not forged with the intent of creating a collision. The
UUID standard does not describe means to resolve an identifier to a location or
object, and no central registry of issued UUIDs exists.
Other identifier schemas followed similar approaches. Twitter Snowflake

[211] is an identifier schema based on hashing a timestamp, a preconfigured
machine number, and a sequence number. Twitter Snowflake was built for fast
and distributed id generation without the need for the machines generating the
ids to coordinate with each other. Snowflake was discontinued in 2010, but
other implementations of the approach exist, for example PHP Cruftflake [212]
or Boundary Flake [213]. Boundary Flake, which follows a similar approach as
Twitter Snowflake, is a "decentralized, k-ordered id generation service" [213] that
hashes a machine’s MAC address, a UNIX timestamp, and a 12 bit sequence
number to create a 128-bit identifier.

3.5. User Identification 81

In comparison to identifiers composed of a local and a domain-part,
identifiers based on randomness or machine-dependent information such as
MAC addresses can be generated in a distributed fashion, that is without a central
entity controlling the process. Anyhow, verification of an entity’s identity might
be problematic, as any entity can assume any ID. To circumvent this, distributed
entity’s need to be resolvable in a trusted and secure manner.

Directory Services

In order to locate a resource identified by an identifier, the identifier is usually
resolved to a data record or a document that specifies further information about
the user or entity that is linked with the identifier. Such data records are usually
stored and published in a directory service that authorized clients and services
can access to resolve an identifier.
Directory services organize data records, referred to as entries, in a

hierarchical structure. Each entry is addressable via a distinguished name (DN),
which serves as an identifier that is not necessarily unique. Entries are organized
in a hierarchical manner, where each entry stores a reference to its parent
entry, resulting in a tree-like data structure. This allows each entry to be
uniquely identified and addressable via a unique path from the tree’s root entry
to the entry in question. A concatenation of all entries on this path results in
a unique identifier, the relative distinguished name (RDN). Directory services
allow entries to be shifted between branches or levels in the tree-like structure.
As of this, an entry’s RDN is not guaranteed to remain unchanged. A widely
adopted and popular standard for directory services is the Lightweight Directory
Access Protocol (LDAP) [214] [215] [216], which is based on the ITUT standard
X.500 [217]. LDAP is often used in corporate networks for employee or email
directories.
Built as a service to resolve URIs in the web, the Domain Name System

(DNS) [199] [218] has been designed as a decentralized directory service that
organizes entries in a hierarchical fashion. The DNS allows users and services
to resolve human readable domain names into IP addresses, from which
requested documents or resources can then be requested directly, hence mapping
identifiers to a network location. The DNS architecture uses a worldwide network
of hierarchically organized DNS servers with DNS root servers functioning as
the main authorities. The global domain space is categorized into zones, where
authority for a zone can be delegated to servers. Each zone can comprise one or
more domains, where information about resolvable domain names is stored in
resource records (RR). Each RR specifies data required to discover the location
of the resource to be accessed, being the host’s IP address. The DNS root zone
is maintained by the Internet Corporation for Assigned Names and Numbers18
(ICANN), which delegates authority for zones specifying domains below top
level domains (TLDs) to other servers and organizations. Information about
TLDs is managed by DNS root servers operated by ICANN. Resolving a URL
to the respective web server’s IP address requires the client (DNS resolver) to
recursively contact DNS servers starting at a root server, where a server will
18ICANN Website: https://www.icann.org/. Accessed: 23.8.2017

https://www.icann.org/

82 Chapter 3. Concept and Design

refer the client to the next DNS server by specifying its location. As this process
is rather time consuming, caching strategies have been implemented to keep
information about often contacted domains and servers in a local database. While
LDAP and the DNS are built on a network of servers providing the respective
service, both systems are build on a hierarchical design and ultimately require a
central organization or company to maintain and exert control.
Peer-to-peer (P2P) architectures introduce several advantages compared to

traditional client-server approaches [219]. Data stored and managed in a
P2P network can be accessed by every participant in the network (sharing),
while control over the network in terms of data, resources, and services is
decentralized without a central authority (decentralization). In a P2P network,
every participant is both client and server at the same time, allowing each
node to specify the amount of resources it wants to make available to the
network (self management). Due to the lack of a central authority orchestrating
communication and message flow in the network, participating nodes need
to organize themselves in terms of new nodes joining the network (self
organization). Furthermore, unexpected failures and problems need to be
automatically solved, for example when a node unexpectedly fails and the data
and informationmanaged by this node is not available anymore (self healing). As
control of the system is distributed over all participating nodes, the architecture
lacks a single point of failure and is hence resilient against attacks such as DDoS
[220]. While an attacker could still attack a single node, functioning of the overall
system is not impaired due to the self healing and organizing mechanisms of the
architecture. Still, special attacks on P2P networks exists that exploit specific
features of the attacked network structure [221].
While earlier generations of P2P networks, such as Gnutella [222] or KaZaA

[223], connected nodes in a unstructured way, modern P2P architectures such
as CAN [224], Chord [225], Pastry [226], or Kademlia [227] create structured
overlays referred to as Distributed Hash Tables (DHT) to organize nodes. DHTs
separate a large address space into smaller sections, where responsibility for
each section is assumed by one of the participating nodes. Each node is assigned
a unique address (key), which functions as the node’s logical location in the
DHT. To maintain connectivity in the network, each node further stores and
manages a list of links to neighboring nodes as well as links to a small number
of randomly selected, distant nodes called routing table. These links are utilized
as shortcuts when traversing the network, effectively reducing the average path
length in the network. This creates an overlay network disregarding physical
connections or proximity of the participating nodes. To store information in
a DHT, each data object to be managed by the P2P network is assigned a key,
which is usually created by hashing the object’s contents. The node responsible
for the section of the DHT’s address space, the object’s key is located in,
will then store the object or information regarding its retrieval. For retrieval
of information, DHTs implement key-based routing (KBR) strategies where
requests for a specified key are automatically forwarded within the network to
the node responsible for handling the key. As the structure of a P2P network
overlay usually exhibits a power-law distribution [228] [229], it is possible for

3.5. User Identification 83

a query to traverse the entire network in just O(logN) steps by following the
links stored by the individual nodes. The Kademlia protocol [227] bases on a
reactive KBR approach, which automatically manages and stabilizes a node’s
routing table. The protocol utilizes parallel, asynchronous lookups to reduce
delays and furthermore compensate for failed nodes. This way, Kademlia-based
systems are able to provide performant, robust, and resilient services that scale
to high numbers of servers [230]. In consequence, scalable, robust, and efficient
applications can be built based on DHT-based P2P networks [231]. For example,
DHT-based alternative designs for the DNS were proposed by Ramasubramanian
and Sirer [232], and Cox et al. [233]. The proposed solutions were able to provide
a similar performance compared to the original architecture, but showed a far
better resilience against orchestrated attacks [234].

3.5.2 Global User Identification

In order to provide unambiguous, yet decentrally issued and managed
identification in the Sonic OSNF, users and platforms are identified via globally
unique, domain-agnostic identifiers called GlobalID. GlobalIDs are designed to
be domain and platform independent and remain invariant even when a user’s
OSN profile is moved to a new OSN platform and domain. Following this
approach, a user’s OSN profile can be identified and addressed regardless of the
server and domain on which it is actually hosted on. With invariant, platform
independent identifiers, a seamless migration of OSN profiles is made possible,
where connectivity between different OSN profiles is maintained - even when
the location of a user’s OSN profile is changed frequently [4]. As GlobalIDs
are issued without the support of a central authority, collisions with existing
GlobalIDs need to be prevented. Similar to approaches used in UUIDs or Twitter
Snowflake, GlobalIDs are hence created using cryptographic hash functions,
rendering the creation of two identical GlobalIDs highly unlikely. To prevent
potential attackers from illicitly claiming a user’s identity, GlobalIDs are derived
from an RSA key pair’s public key, referred to as PersonalKeyPair. This allows
the rightful owner of a GlobalID to prove ownership of the identity using the
matching private key, which remains in the possession of it’s owner.
Specifically, GlobalID’s are derived from an PKCS#8-formatted RSA public key

and a salt of 4 characters length using the key derivation function PBKDF#2 with
settings SHA256, 10000 iterations, and 256bit output length. The result is
converted to base36, creating an alphanumeric string of upper case characters
and digits (A-Z, 0-9) as described in Listing 3.1 in order to shorten the length of
an identifier. Lower case characters are not used for GlobalIDs to reduce possible
ambiguities, such as 1 and l, and make the identifier visually distinguishable
from regular hash values, which are commonly encoded using base64, including
lower-case characters. The process of creating a GlobalID is depicted in Figure
3.5 and creates identifiers with a length of 50 to 52 characters. An example of
a GlobalID is 2UZCAI2GM45T160MDN44OIQ8GKN5GGCKO96LC9ZOQCAEVAURA8. As GlobalIDs
are designed to be domain-agnostic by omitting any domain-bound party, they
cannot be resolved via the DNS to a service providing information about a OSN
profile’s actual location. For this reason, all GlobalIDs are registered in a globally

84 Chapter 3. Concept and Design

distributed directory service, the Global Social Lookup System (GSLS), which
provides an interface for applications and services to resolve a GlobalID to the
actual location of the associated OSN profile. Information about the OSN profile’s
location, as well as other information required for verification of authenticity and
integrity are stored in a dataset maintained by the GSLS called Social Record.
UALPHA = %41-5A ; (A-Z)

DIGIT = %x30 -39 ; (0-9)

GLOBALID = 50*52(UALPHA / DIGIT)

Listing 3.1: GlobalID format in ABNF [235]
As GlobalIDs are encoded hash values, they are not human-readable or easily

memorable and should hence not be used for displaying purposes. In fact, the
respective human-readable display name specified in each Social Record should
be used when displaying information about a user in the Sonic OSNF. In social
networking, a link between two users is usually created by a user sending a
friend or follow request to the targeted user profile. This is usually the case after
the targeted user profile has been found as a result of a directed search request
or because a recommendation system recommended the targeted user profile
based on certain criteria. Also, the targeted user profile might be discovered
by browsing a common friend’s friend roster, a list of members of a group, or
viewing content created by the targeted user. In all these cases, the targeted
user profile is usually displayed by showing its human readable display name
and optionally the profile picture. Furthermore, additional information, such as
the city of residency or country can be displayed. Hence, handling the GlobalID
identifiers is not necessary for users. While the displayable information is not
necessarily unique and may lead to confusion, GlobalIDs are used by the service
internally to uniquely identify each user.

The Social Record Dataset

The GlobalID and associated information is published in a dataset called Social
Record, which comprises information that is required in order to resolve a
GlobalID to the respective profile’s current location in form of a URL. Besides the
profile’s actual location, the Social Record dataset comprises information such as
the public key of the PersonalKeyPair and the salt, which are used to construct
the GlobalID; the GlobalID itself as well as the GlobalID of the OSN platform
hosting the OSN profile; the public key of the AccountKeyPair, which is used
to verify integrity and authenticity of request and response messages as well as

Figure 3.5: Creation of GlobalIDs.

3.5. User Identification 85

Figure 3.6: Social Record format

content objects created by the respective user; a list of revoked AccountKeyPairs;
a timestamp in XSD-datetime format indicating the date and time when the
dataset was edited; the user’s username for displaying purposes; and a parameter
active, which is used for announcing the state of the Social Record, for example
during an ongoing profile migration as described in Section 3.5.4. The individual
parameters of the Social Record dataset are described in Table 3.3.
To make a Social Record’s integrity verifiable, each Social Record dataset is

digitally signed using the owner’s PersonalKeyPair. This allows OSN platforms
and users to verify that the dataset’s contents have not been altered by an
unauthorized party. A Social Record’s signature is a JSON Web Signature
(JWS), encoding the dataset as a JSON Web Tokens (JWT) [236] using the
RS512 JSON Web Algorithm (JWA) to digitally sign the payload using the dataset
owner’s PersonalKeyPair. The Social Record data itself is a private claim named
socialRecord and has to be a serialized, base64-encoded JSON object. As the
digital signature of the JWT is created using the user’s RSA private key of
the PersonalKeyPair, so the signature can be verified by everyone using the
respective public key that is included in the signed dataset. The resulting JWT is
a base64-encoded string [237] that can be easily transfered and validated. Figure
3.6 depicts the format of the Social Record encoded as a signed JWT. The Social
Record object itself is encoded as a JSON object and stored in the body part of the
JWT. Here, the enclosed RSA public key of the user’s PersonalKeyPair is used in
combination with the salt to derive the GlobalID via PBKDF#2. The JWT’s JOSE
header specifies the used signature algorithm, while the digital signature itself
is created with the matching RSA private key of the user’s PersonalKeyPair.
In case that the user’s AccountKeyPair has been compromised and should be

revoked, a key revocation certificate can be created. Following the Certificate
Revocation List (CRL) specifications of X.509 [238], the created key revocation
certificate comprises the encoded revoked public key, date and time of the
revocation, a numerical indication of the reason for the revocation, and a digital
signature. All revocation certificates are published in the Social Record, while
the outdated AccountKeyPair is replaced with a new one. As the entire Social
Record dataset including the list of revocation certificates is signed by the
user’s PersonalKeyPair, the revocation and exchange of a AccountKeyPair can
be verified by any third party.

86 Chapter 3. Concept and Design

Table 3.3: SocialRecord format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "socialrecord" specifying theobject type.
type String Required. Type of the Social Record. Can be user or

platform.
globalID GlobalID Required. The identifier for the user profile.
platformGID GlobalID Required. GlobalID of the associated OSN platform.
displayName String Required. Human-readable username for on screendisplay.
salt String Required. Cryptographic salt of 4 byte length.
accountPublicKey String Required. Base64-encoded RSA public key of the user’sAccountKeyPair.
personalPublicKey String Required. Base64-encoded RSA public key of the user’sPersonalKeyPair.
datetime XSD-Datetime Required. Date and time of the creation or last changeof the Social Record.
keyRevocation List KeyRevocationCertificate Required. List of revoked account key pairs.
active int Required. Flag that describes the current status of theSocial Record.

Table 3.4: KeyRevocationCertificate format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "keyrevocationcertificate"specifying the object type.
key String Required. The revoked public key of an AccountKeyPair.
datetime XSD-Datetime Required. Date and time of the creation of thecertificate.
reason int Required. Numeric value for specifying the reason ofrevocation as specified by X.509 [238].
signature String Required. Base64-encoded signature created with theuser’s PersonalKeyPair.

Security Considerations

As GlobalIDs are generated in a distributed fashion without a trusted central
authority preventing an intended or unintended creation of a collision,
uniqueness of GlobalIDs needs to be ensured by other means. As per design
no central trusted authority exists that could assert identities in a controlled
fashion, the difficulty of creating an already existing GlobalID again is the only
guarantee that identifiers are unique and collisions cannot occur. GlobalIDs are
created by hashing an RSA public key using SHA256. Hence, an attacker would

3.5. User Identification 87

either need to recreate the key pair or create a collision with a combination of
a key pair and a salt that yields a known GlobalID. The probability of creating a
collision for a specific or arbitrary GlobalID is therefore limited to a minimum by
design, where the likelihood of unintentionally created collisions for a GlobalID
are insignificantly low given the assumption that a secure RSA key generator is
used. Hence, in the remainder of this section only intentional attempts to create
a collision for a GlobalID are considered as attack scenarios. For every attack
scenario, the information available for an attacker is the data stored in a Social
Record dataset, specifically the PersonalKeyPair’s public key, the 4-byte salt, the
resulting GlobalID, and the digital signature that has been created for the JWT
encoding.
An attacker’s goal could be to entirely take over a user’s social identity in

order to be able to act on his or her behalf in the OSNF. This would require the
attacker to either update the Social Record or overwrite the entire Social Record
dataset in the GSLS with a valid alternative. As Social Record datasets are digitally
signed, unauthorized changes of parts of a Social Record would result in invalid
signatures. Attack scenarios on a user’s identity hence require an attacker to
create a new valid signature for a forged Social Record.
Deriving an RSA private key from mere knowledge of the public key is

considered not to be feasible [239]. An attacker could therefore alternatively
attempt to exchange the PersonalKeyPair’s public key in the Social Record with
an arbitrary new key pair he created for this purpose. Yet, simply replacing the
PersonalKeyPair’s public key itself would create a new, distinct identity in the
GSLS, as a changed key would result in an invalid Social Record dataset. Updating
the GlobalID to prevent the dataset from being rendered invalid would result in a
changed GlobalID. This is due to the fact that the GlobalID is directly derived from
the PersonalKeyPair’s public key, while being used as the lookup key in the GSLS.
In consequence, a changed key and GlobalID would not overwrite or change an
existing Social Record dataset in the GSLS, but merely create a separate, valid
identity. The attack would hence be deflected.
Another attack scenario is prevented by the use of a cryptographic salt value.

Without the use of a salt, an attacker could build a huge database of all GlobalIDs
and associated keys in the GSLS in order to attempt to break any GlobalID in the
database via brute force. The attacker would then attempt to create a collision
for any GlobalID in the database by creating a large number of RSA key pairs
until a created key pair matches any one of the GlobalIDs in the database. This
attack could be further improved by creating lists of key pairs following the
idea of rainbow tables. While this attack scenario would not allow to target
a specific GlobalID, it’s probability of success increases with the total number
of attacked Social Record datasets. Anyhow, this attack essentially attempts to
re-create a 4096-bit RSA private key by brute force which has been proven to be
practically impossible [239]. Anyhow, as generating an RSA key pair is the most
time consuming task in creating a GlobalID, an attacker might choose one key
and just alter the salt in oder to find a collision. To limit the possibility of this
attack to succeed, the length of the salt has been fixed to 4 bytes, allowing only
232 possible salt values, effectively eliminating the chance of creating a collision

88 Chapter 3. Concept and Design

Figure 3.7: Global Social Lookup System architecture

through manipulation of the salt. Using the birthday bound [240], an attacker
would need to create 4.8× 1037 key pairs and salts for a 1% chance of a collision,
thus rendering an attack practically impossible. The introduction of an individual
cryptographic salt value into the process of how GlobalIDs are derived from a
key further hardens the process, as the salt is different for each simultaneously
attacked GlobalID.
Finally, an attacker could attempt to steal the PersonalKeyPair from a

user’s device by acquiring either physical or logical access to it, or use social
engineering to obtain a copy of the key pair voluntarily provided by the key
pair’s owner himself. Due to the computational overhead required to successfully
forge a valid Social Record dataset, stealing the key or persuading the owner
into handing it over to the attacker would probably be the attack vector with
the highest success rate. Anyhow, Sonic cannot provide security mechanisms to
prevent such attack scenarios, as they solely depend on the user and the user’s
device.

3.5.3 Global Social Lookup System

Following the idea of a fully decentralized OSN ecosystem that does not depend
on any entity or service controlled by a single corporation or group, the GSLS
was designed as a directory service built on DHT technology. Similar to the
DNS, any participant in the Sonic ecosystem is able to host a GSLS server
that is automatically integrated into the DHT, forming a dynamic, heavily
distributed directory service. The GSLS operates as a global directory service with
a REST-based interface for read and write operations as described in Table 3.5.
As data in the GSLS is public and may be overwritten by unauthorized entities,
the data is digitally signed using the user’s PersonalKeyPair. As the GlobalID is
derived directly from the enclosed public key and the salt, unauthorized changes
in the payload would result in either an invalid digital signature or - in case the
key pair is exchanged - an altered GlobalID.

3.5. User Identification 89

GSLS API

For resolving GlobalIDs of users and platforms as well as for creating and
updating Social Records in the GSLS, the service features a REST-like API as
described in Table 3.5. Social Records for specific GlobalIDs can be retrieved via
HTTP GET by specifying the respective GlobalID. As Social Records are publicly
accessible, the API does not need to implement access policies. If a Social Record
exists in the DHT for the specified GlobalID, it is sent to the requesting client
encoded as a JWT. The client receiving the signed JWT can then extract the Social
Record and verify the digital signature of the JWT as well as the integrity of the
Social Record itself.
When a new Social Record is to be created and written to the GSLS, the user

identified by the GlobalID creates a valid Social Record dataset. The Social Record
is then encoded as a JWT, which is signed using the user’s PersonalKeyPair.
The signed JWT is then sent to the GSLS via HTTP POST, where the receiving
node verifies both the digital signature and the Social Record’s integrity. If the
enclosed Social Record dataset and the JWT’s signature are valid, the GSLS node
will store JWT in the DHT using the GlobalID as it’s key for retrieval. In case
a Social Record is already stored for this GlobalID, the signature is not valid, or
the Social Record dataset’s contents are not valid, the GSLS server will return an
error.
Similar to writing a new Social Record to the GSLS, updating an existing Social

Record that is already stored in the DHT is implemented via HTTP PUT. Similar
to creating a new Social Record, a user creates a valid Social Record dataset with
the updated information, which is then encoded as a JWT and signed using the
user’s PersonalKeyPair. When a GSLS node receives an updated Social Record, it
checks whether dataset and signature are valid and if the GlobalID has already
been registered. The JWT is then stored in the DHT, effectively overwriting the
old version of the JWT.
Finally, the GSLS allows to request a status report for diagnostic purposes

via HTTP GET, where the requested node’s version information as well as it’s
connectivity status in the DHT network is returned.

Table 3.5: GSLS API
Method Path Parameter

GET / N/A
GET /:globalID N/A
POST / Social Record as JWT
PUT /:globalID Social Record as JWT

90 Chapter 3. Concept and Design

3.5.4 Profile Migration

Identifying users via domain-agnostic, globally unique identifiers allows
addressing OSN profiles independently of the service and domain they are stored
in. As GlobalIDs are resolved to profile locations via the GSLS, a change of a
profile’s location only needs to be updated in the respective Social Record dataset.
Initiating a connection to a target OSN profile requires the sender to resolve the
targets GlobalID via the GSLS. From the result of the request, the sender is able to
extract and verify the actual profile location in form of a URL, to which messages
then can be sent directly. If the profile location is changed in the Social Record
dataset, all communication attempts are automatically redirected to the targeted
OSN profile’s new profile location. As described in Section 3.6.4, Sonic URLs are
used for links to OSN profiles and content in the Sonic OSNF, which comprise the
respective owner’s GlobalID instead of it’s actual URL. When a request is sent
to a social profile following the Sonic protocol as described in Section 3.7, the
GlobalID is automatically substituted with the OSN platform’s URL. Following
this paradigm for resolving links to OSN profiles, links to a user’s OSN profile
and content may remain unaltered and valid after a profile is moved to a new
OSN platform hosted under a different domain name.
This enables migration of OSN profiles between OSN platforms and services

with a minimal overhead, while keeping links between OSN profiles intact at
all times. Migrating a user’s OSN profile from a source OSN platform PA to a
target OSN platform PB is initiated by the respective profile owner by creating
an empty stub account at the target OSN platform. Following the Sonic protocol
for migration as described in Section 3.7, first the Social Record is updated where
the value of the parameter active is set to 2 to indicate that the OSN profile is
currently being migrated to a new location. This enables OSN platforms and
clients sending a request to the OSN profile that is being migrated to detect
an ongoing migration. As the OSN profile contents are moved to the target OSN
platform in the migration process, non-idempotent requests that create, update,
or delete content in the OSN profile being migrated could result in loss of data
or inconsistencies. Hence, only idempotent requests for reading content should
be allowed and answered during an ongoing migration, while all other requests
should be denied by the OSN platform with an error message indicating that a
profile migration is in process and the request should be sent again later. The
next step of the migration process comprises transmitting all profile content
to the target platform PB, where data is encapsulated according to the data
formats described by the Sonic protocol. In case no error occurred during the
entire process, the profile migration is concluded through an update of the Social
Record where the profile’s location is updated to point to the target OSN platform
PB and the value of the parameter active is reseted to 1. Requests targeting the
OSN profile are now automatically directed to the new profile location at the
target OSN platform. To finalize a successful migration, all profile data is deleted
from the source OSN platform PA, while in case of a failed migration, all content
is deleted from the target platform and the profile’s location remains unchanged
in the Social Record. The individual steps and details of the migration process
are described in Section 3.7.

3.6. Architecture 91

3.6 Architecture

Today’s most common type of architecture for web services in general and for
OSN services in particular is a centralized one. While the majority of OSN services
is built in a centralized way, components of these services are often in themselves
distributed [111], caused by an increasingly complex internal setup [48]. The
architecture of Facebook, for example, "consists of multiple datacenter sites and a
backbone connecting these sites, [...] where each datacenter contains multiple clusters"
[241] [242]. As the dataset comprising the entire social graph of Facebook is
simply too large to be handled by a single instance, "The Associations and
Objects" (TAO), a read-optimized graph data store is used to "distribute [the
dataset of the social graph] as a single geographically distributed instance" [243]. Yet,
while being technically highly distributed geographically and logically, services
such as Facebook only expose a single or few domains and APIs to their customers
and thus create a perception of the service as one monolithic entity. As noted
by Paul et al., this allows centralized OSN services to provide a holistic, single
service for its users as well as third party services and applications, where control
over all components is held and managed by one company [111]. Yet, as described
in Chapter 2.1.2, this form of decentralization is simply of technical nature
instead of an authorial one. According to the definition of Paul et al. given in
[111], a DOSN service is fully decentralized when all basic functionality of a DOSN
service does not rely on a centralized component and "distinct and independent
authorities run and maintain [all] technical resources".
For the design and implementation of web services, several requirements

have been defined by the World Wide Web Consortium (W3C) [244], including
interoperability, integration with the World Wide Web, security, scalability, and
extensibility. Similarly, the FIArch group identified 5 design principles for the
design and implementation of novel Internet services and applications in their
report on "Future Internet Design Principles" [245]. Theses principles comprise
heterogeneity, scalability, robustness, loose coupling, and locality. Here, the
principle of heterogeneity describes that different devices, programs, or services
are connected in an open architecture, while scalability is defined as the ability of
a service to support large numbers of nodes and users. Robustness dictates that
a service needs to be able to deal with any kind of error that occurs, while the
principle of locality proposes to store data where it is needed instead of remote
locations in order to provide fast response times and less overhead. Finally, loose
coupling allows simple testing and maintenance procedures, and a minimized
unwanted interference with other systems and components.
Existing DOSN approaches, such as Diaspora, Peerson, or Friendica, aim to

create fully distributed OSN services and are built in a way where functionality
as well as control over data is distributed over a larger number of servers
or devices. In these architectures, functionality is distributed over a large
network of servers, while data is kept and maintained by the respective server’s
administrator or device owner. All servers or devices in such a DOSN service
cooperate and communicate using a common protocol, using certain standards
and data formats to exchange information and data. Yet, as pointed out in

92 Chapter 3. Concept and Design

Chapter 1.5 and analyzed in Chapter 2.3, while this allows users registered on
different servers to freely communicate with other users of the same DOSN
service, users are still mostly confined in the DOSN service they signed up with
and cannot migrate in most cases to an alternative OSN service if needed.
Following the vision of a truly open and decentralized OSNF, as described in

Chapter 1.7, in which multiple OSN services are connected via loose coupling
to form a heterogeneous federation, an OSN ecosystem requires an underlying
standard for how OSN platforms communicate and how information and data
objects are exchanged. In order to allow arbitrary OSN services to connect
to each other, an architecture needs to satisfy the architectural significant
requirements for an OSNF as defined in Section 3.1. These requirements comprise
a non-intrusive design (Requirement R1), support for decentralization and
federation of participating services (Requirement R3), distributed control and
management of data and social profiles (Requirement R4 and R5), seamless
and transparent communication and interoperability (Requirement R6), open
protocols and data formats (Requirement R7), as well as support for migration
of user profiles (Requirement R8).
As described in Chapter 1.5, Koll et al. defined a list of challenges distributed

OSN services would have to face if they want to prevail on the market [101]. The
requirements stated include independence of any external resource providers,
being efficient in terms of communication and storage overhead, providing
scalability for a large user base at a reasonable performance, being resilient
against threats that could destabilize the network, as well as providing means for
users to exert full control over their data. While Koll et al. acknowledge that not
all stated requirements can be fully satisfied at the same time, they conclude that
a distributed, federated approach with OSN functionality and data hosted on the
users’ servers or home gateways would provide a promising way to combine both
performance of the individual nodes and independence from any central entity.
The feasibility of this approach has been proven by Salve et al., who analyzed
data availability in distributed data stores [246].
While hosting one’s OSN profile on a private server already exists in F-OSN

services such as Friendica or Diaspora, Sonic aims to create a federated
environment, which is able to interconnect all kinds of OSN services. The
architecture of Sonic is therefore designed to allow arbitrary existing OSN
services to join the OSNF by integrating the required components to connect
to other OSN platforms in the federation. A set of common data formats as
described in Chapter 3.7 ensures that content can be exchanged between OSN
platforms using the Sonic protocol. Following this approach, existing OSN
platforms with large numbers of users can directly communicate with small
self-hosted OSN platform implementations. This way, individual users whowant
to host their own OSN profile in their home network or on a private server, are
able to connect to the OSNF equally as large OSN services with millions of users.
The Sonic architecture therefore introduces a set of components that

implement connectivity in the OSNF, which can be integrated into an existing
OSN implementation with a minimal overhead. This way, existing OSN services
are able to implement the Sonic architecture and thus connect to the OSNF

3.6. Architecture 93

Figure 3.8: Architecture of DOSN services as described by Pallis etal. [122]

without the need to change their unique user experience, user interface, or
underlying architecture.
This section presents the Sonic architecture, its components as well as

concepts of how features of Sonic are implemented. Section 3.6.1 elaborates
on related work related to the architectures of social web services, while Section
3.6.2 describes the architecture of the Sonic OSNF, including the role model,
content model, and access control mechanisms.

3.6.1 Related work

Following the definition of Boyd and Ellison given in [24], OSN services are
web services in general, which are defined by the W3C as "[...] a software system
designed to support interoperable machine-to-machine interaction over a network"
[247]. According to the definition, the purpose of a web service is to provide
a specific kind of functionality on behalf of its owner, referred to as the provider
entity. A web service is then consumed by a requester entity, being a person or
organization that wants to access and use the web service’s functionality. Here,
communication is implemented via messages exchanged between requester and
provider entity, where both parties "must first agree on both the semantics and
the mechanics of the message exchange" in order for the messages to be correctly
interpreted by the receiving side [247].
While a trend can be observed according to which OSN services are becoming

increasingly complex and less structured [48], several general architectures
for DOSN services have been proposed that simplify and generalize OSN

94 Chapter 3. Concept and Design

Figure 3.9: Architecture of DOSN services as described by Datta etal. [88]

architectures, which are loosely based on the n-tier architecture pattern as
described by Richards in [248].
In [122], Pallis et al. describe a reference architecture of OSN services

comprised of three main layers as depicted in Figure 3.8. On top of the basic
layers that describe hardware infrastructure and the operating system, the data
storage layer manages persistence of data objects of an OSN service. The data
storage layer comprises two components, of which the storage manager controls
storage of information while the data store component comprises the technical
means to store information, for example in form of a database. The second
layer, the content management layer comprises three distinct components, being
a content aggregator, a data manager, and an access control manager. While the
content aggregator acquires and distributes social content, the data manager
facilitates maintenance and retrieval of the social content graph. In addition, the
access control manager controls access to the contents of OSN profiles according
to access control policies. On top, the application layer provides services and
functionality to access, consume, or create data. In their architecture definition,
all functionality such as search, news feeds, media collections, or mobile access
to the service are encapsulated in separate services, which communicate with
the underlying content management layer in order to access and manipulate
information stored in the social content graph [122].
Datta et al. defined a reference architecture for DOSN services in [88]

comprising six layers as depicted in Figure 3.9. While the lowest layer describes
the physical communication network, the distributed or P2P overlaymanagement layer
provides functionality for connectivity of peer nodes in a P2P overlay or servers
in a federation. The third layer implements functionality for querying, writing,
and updating content in the distributed service. All core OSN functionality
is implemented in the social networking layer, including search functionality,
messaging, user account management, or access control management. On top of

3.6. Architecture 95

Figure 3.10: Architecture of DOSN services as described by Paul etal. [111]

the social networking layer, a DOSN service implements a set of APIs for external
services and applications, preferably conforming to common open standards.
These APIs are used on the top layer by the OSN service’s GUIs in form of apps
or websites, as well as basic OSN applications and third party applications [88].
Paul et. al describe a general architecture of DOSN services, which they

derived from their survey of DOSN services in [111]. As depicted in Figure
3.10, the architecture model describes three layers, of which the lowest layer
represents the communication network. The DOSN core layer provides all
essential functionality of the DOSN, including access control management,
profile storage, and communication mechanisms in a federation or overlay
network. The access control components may be implemented in three different
ways, being access control policies or encryption schemes, or a combination of
both. The component responsible for communication organizes the exchange of
messages between the different nodes or servers in the DOSN service, including
protocols for direct user interaction as well as support for technical information
exchange. Finally, the profile storage component manages the persistence of all
OSN profiles including all associated data. The top layer is again divided into two
sublayers, of which the first sublayer provides APIs for connectivity of third party
applications and services, and additionally an OSN connector component that
implements connectivity to other OSN services in form of plug-ins. Furthermore,
the layer implements search and recommendation functionality that allow users
to search and discover content and user profiles. The upper sublayer implements
GUIs for the user of the DOSN service to access and use as well as applications
that communicate with the DOSN service via the provided APIs [111].

96 Chapter 3. Concept and Design

3.6.2 Sonic Architecture

The architecture of the Sonic OSNF is an open and heterogeneous federation of
loosely coupled OSN platforms, where all OSN platforms are connected via the
Sonic protocol. This protocol specifies a common API as well as data formats
as described in Section 3.7 and thus facilitates interoperability in the OSNF. In
this open federation, a user can register at an arbitrary OSN platform, set up an
OSN profile, and publish content. Content and information is then accessible in
the entire OSNF via the federation of OSN platforms. To access their accounts
and content in the OSNF users employ OSN client applications, such as websites
or smartphone applications, in order to access the OSN platform they registered
with. Content from other OSN profiles is then fetched and accumulated from all
OSN platforms in the OSNF, allowing each OSN platform to provide content from
all sources in the OSNF to their users. As the idea of the Sonic OSNF is to facilitate
seamless interoperability between existing OSN services, the architecture design
of the Sonic OSN platform is designed to allow existing services to implement
necessary components of the architecture without being forced to change the
platform’s overall look and feel or QoE.
The architecture of the OSNF describes three distinct entities, being OSN

platforms, OSN clients, and GSLS servers. OSN platforms, as defined in Chapter 3,
are specific instances of an OSN service which implement the functionality of an
OSN service and furthermore store and maintain OSN profiles of one or multiple
users. Users in the Sonic OSNF register with a specific OSN platform, where
multiple users may register with and use the same OSN platform simultaneously.
For accessing a OSN platform’s service, OSN platforms provide OSN clients, for
example in form of a web page or mobile application, that allow users to access
and use the OSN platform’s functionality and manage user accounts. Here, OSN
clients may access the respective OSN platform’s functionality via a proprietary
and platform-specific API provided by the OSN platform for this specific use.
Based on the Sonic protocol as described in Chapter 3.7, OSN platforms are
connected to each other in a loosely coupled fashion. This allows OSN platforms
to directly communicate with each other and exchange information about users.
Finally, the architecture of the Sonic OSNF comprises a network of GSLS servers
as described in Chapter 3.5, which provide information about a user’s identity in
the OSNF. Figure 3.11 depicts the interworking of the components of the Sonic
OSNF.

Sonic OSN Architecture

The Sonic architecture adopts the general idea of a layered DOSN architecture as
proposed by Datta et al. in [88], Pallis et al. in [122], and Paul et al. in [111]. For
this, the Sonic architecture adopts layers for presentation, business logic, and
data storage, and furthermore adds a federation layer that manages connectivity
in the OSNF as well as an identity layer that implements functionality for user
and object identification. The resulting five-tier architecture, as depicted in
Figure 3.12, is loosely based on the n-tier architecture pattern as described by
Richards in [248], in which each layer encapsulates functionality for a specific

3.6. Architecture 97

domain and communicates with components implemented in other layers if
necessary.
The Presentation Layer implements communication functionality with OSN

clients and third-party services. For allowing users to access the service and
interact with its functionality, the presentation layer manages communication
with OSN clients, which render the graphical user interface (GUI) of the OSN
service. The most common forms of user interfaces for OSN services are websites
that ace accessible via HTTP to be displayed in a web browser on the client’s
device or mobile applications. Furthermore, the presentation layer may feature
additional APIs to communicate with other services, for example to integrate
OSN elements in third-party web services or to allow external applications to
access the functionality of the OSN service. The design of a Sonic OSN platform
does not mandate which additional types of interfaces a OSN platform provides.
This is to allow any form of service delivery to the end user, especially allowing
existing OSN services to integrate the Sonic OSN service architecture into the
existing architecture without changing existing core service features or the QoE
experienced by the user.
The OSN Layer implements the core functionality of the OSN service. Most

importantly, the OSN layer implements the business logic of the OSN platform
that is required for the service to function, including functionality for acting on
requests received from the federation layer, or performing an action requested
by the user accessing the OSN platform’s GUI via an OSN client. This includes the
program logic for handling all supported OSN features as described in Chapter

Figure 3.11: Architecture of the Sonic OSNF. Users utilize OSNclient applications to connect to OSN platforms, on which theirOSN profiles are stored. All OSN platforms are connected in aloosely coupled fashion based on the Sonic protocol. Managementof identities in the Sonic OSNF is managed by the distributed GSLS,to which OSN platforms connect via the GSLS API.

98 Chapter 3. Concept and Design

Figure 3.12: 5-Layer model of the Sonic architecture

3.4, such as status updates, comments, profile pages, or likes. Furthermore, the
OSN layer provides functionality for user account management, which allows
users to configure and manage their user accounts on an OSN platform server,
for example by configuring privacy settings or access control rules. Besides this,
the OSN layer implements functionality for user account management as well as
access control functionality, allowing users to specify policies of who can access
what parts of their OSN profiles. The access control component implements
functionality to verify an incoming requests’ permission to access the user’s
content. To allow OSN platforms in the Sonic OSNF to implement various forms
of access control as described in Section 3.6.5, Sonic does not marshal how access
control mechanisms are implemented, allowing OSN implementations to keep
using existing solutions. Finally, the OSN layer implements search and optional
recommendation mechanisms [6], allowing users to actively search for users and
content, as well as receive recommendations from the OSN platform.
The Data Layer implements handling of data objects including persistence of

data. This includes functionality for serialization and deserialization of content
objects, as well as functionality for verification and validation of content received
from remote, potentially untrusted OSN platforms. Furthermore, the data layer
optionally implements functionality to transcode Sonic content objects into the
OSN platform’s native data formats and Sonic-formatted content objects into
their respective native formats. As depicted in Figure 3.13, this allows existing
OSN implementations to keep using their own data formats for content objects
and information, while being able to exchange content with other OSN platforms
in the OSNF in a common data format.
Interoperability with the Sonic OSNF is implemented in the Federation Layer,

which implements the functionality required to connect an OSN platform to
other OSN platforms in the Sonic OSNF. Most importantly, the federation layer
implements the Sonic Profile API and Sonic Platform API as described in Chapter
3.7, to which requests from remote OSN platforms can be directed. Incoming
requests are verified by the request management component implemented in
the federation layer, which inspects the integrity of incoming request messages

3.6. Architecture 99

via the enclosed digital signatures as well as the general formatting of messages.
Valid requests are then parsed by the data layer and forwarded to the business
logic implemented in the OSN layer for processing. Finally, the federation
layer implements functionality to build, format, and sign outgoing request
messages in order to allow OSN platforms in the OSNF to communicate with
each other. Migration functionality is implemented in the migration component,
which orchestrates the migration of an entire OSN profile from one OSN
platform to another. Here, the migration component implements functionality
to encapsulate all data of an OSN profile in a migration data format as described
in Chapter 3.7, which allows to recreate the entire OSN profile at a different OSN
platform after the information has been transferred.
The Identity Layer encapsulates functionality for the identity management,

including communication with the GSLS. Specifically, the identity layer
implements functionality to resolve GlobalIDs to the associated Social Record
datasets via the GSLS API, as well as functionality for caching and verification of
the datasets. By resolving GlobalIDs, an OSN platform is not only able to locate
remote OSN profiles of users and verify their identity, but also to translate Sonic
URLs to regular URLs, which can then be used to identify and locate content
objects in the OSNF as described in Section 3.6.4. As requests and data objects in
the Sonic OSNF are digitally signed in order to ensure integrity and authenticity
of data objects and requests, the identity layer implements functionality to
handle a user’s key pairs for signing and for verification of content and requests
messages as part of managing SocialRecord datasets of users.
The proposed architecture model for OSN platforms in the OSNF has been

designed to be easily integrable into existing OSN implementations as well as
new projects. While the general architecture builds on architectural models
described by Datta et al. [88], Pallis et al. [122], and Paul et al. [111], functionality
for federation support and identification have been introduced in the federation
and identity layer. By implementing the functionality covered by the respective
components, OSN services can provide interoperability and data portability in the
OSNF. To further support an easy implementation of the required components, a
PHP-based SDK has been developed that implements the required functionality.
Implementation and structure of the Sonic SDK are described in Chapter 4.

Figure 3.13: Transcoding of a like object in between two OSNplatforms using proprietary data formats. While Platform Ainternally uses its own data format of a like, likes are disseminatedto other OSN platforms in the appropriate Sonic data format asdescribed in Chapter 3.7. If required, other OSN platforms can thentranscode the received likes into their own representation.

100 Chapter 3. Concept and Design

3.6.3 Relationship Model

OSN services implement various forms of link relationships between users. The
most common form are bidirectional links indicating a mutual friendship or
acquaintance between two individuals as described in Chapter 3.4. Establishing
such a link usually requires that one user sends a friend request to another user,
who can then accept, reject, or simply ignore the request. If the request is
accepted, both users are added to the respective other’s list of friends. This
friend list can then be published in their OSN profiles. While bidirectional links
are used as connections between users by most traditional OSN services such as
Facebook, Linkedin, or VKontakte, other OSN services implement unidirectional
links between users. Unidirectional links are mostly used to indicate that a
user is ’following’ or ’interested in’ another user’s profile and content, and
hence often implies a subscription to content created by the followed user. For
example, Instagram, Twitter, or Diaspora implement a unidirectional linkmodel,
where two separate, opposing unidirectional links can be created to construct a
bidirectional connection. Unidirectional links are often allowed to be created
without the followed user approving a request. This approach either relies on
the idea that ’everything is public’, as for example implemented by Twitter19,
or assume that a user’s privacy settings or access control policies dictate what
content is made available to which followers.
In order to provide a design for relationship management that is compatible

with all OSN platforms, links in Sonic are designed as unidirectional connections.
Each connection needs to be requested by a user and confirmed by the user
targeted by the link request. To prevent users from creating forged link rosters
and falsely claim that they are connected to other users, links are represented by
digitally signed data objects, where the user targeted by a link request creates the
signature of the created link object. This prevents users from illegibly claiming
that another user, for example a celebrity, is a friend. Functionality for the
creation of and access to remote link collections is provided by the Sonic protocol
as described in Section 3.7.

3.6.4 Content Model

To allow users to keep full control over their data and control who accesses
what part of their OSN profiles according to Requirement R5, Sonic proposes
a decentralized data storage. Content management in Sonic stores content
created and owned by a user in his own OSN profile, where every user can
freely choose the OSN platform the OSN profile and all comprised content is
stored on. Content of OSN profiles is stored in open formats defined by Sonic
and addressable via UOIDs, rendering OSN profiles independent from the OSN
platform they are hosted on. This allows OSN profiles to be migrated to other
OSN platforms without links to and from the migrated content being interrupted.
In order to allow content in the Sonic OSNF to be managed and delivered in a
common fashion, all content is encapsulated in content objects of distinct types,
19While all tweets in Twitter are public by default, user profiles can be configured to be ’private’ sothat creating follow relationships and accessing a user’s tweets requires approval by a profile owner.

3.6. Architecture 101

where data for each OSN feature of the Sonic core featureset is represented by
the matching data format. Content is addressable via Sonic URLs, which are
domain-independent. As all types of the Sonic core featureset are represented
in a common, human-readable data format, any OSN platform is able to use and
process the enclosed information.

Sonic URLs

To uniquely address content stored in OSN profiles, Sonic URLs based on the
respective user’s GlobalID are used. Sonic URLs used in the Sonic OSNF replace
the authority-part of a regular URL [198] with the GlobalID of the respective
user. Following this paradigm, OSN profiles and all associated content can be
uniquely addressed regardless of the OSN platform the content is stored in and
even remain valid after a profile is moved to a new OSN platform and domain.
When resolving a Sonic URL, the GlobalID in the authority-part is resolved to
the associated Social Record dataset using the GSLS. Following, the GlobalID
in the Sonic URL’s authority-part is replaced with the value of the parameter
profileLocation provided by the Social Record dataset as depicted in Figure 3.14.
The value can either represent a domain name, including a specific sub-domain
and port, or an IP address. The resulting URL is then used to locate and
address the profile or content at its current location. This way, URLs can remain
unchanged even if a profile is moved to a new OSN platform with a different
domain.

Figure 3.14: Resolving Sonic URLs in Sonic

Unique Object Identifiers (UOID)

To uniquely identify content across multiple federated servers while at the same
time allowing OSN profiles and associated content to be migrated between
OSN platforms, Unique Object Identifiers (UOIDs) are introduced. UOIDs are
constructed of a global-part and a local-part, where the global-part is a
GlobalID as defined in Section 3.5 and the local-part being an alphanumeric
identifier that does not need to be unique on a global scale, yet is required
to uniquely identify the content object in the context of the respective OSN
profile. When creating a new UOID for a content object in the OSNF, the
GlobalID of the user creating the content is used as the global-part of the
UOID, while the local-part has to be unique for the OSN profile of the

102 Chapter 3. Concept and Design

respective user. An example of a UOID comprising a 12-char local-part
is 2UZCAI2GM45T160MDN44OIQ8GKN5GGCKO96LC9ZOQCAEVAURA8:a32bf569f2ad, where the
structure of a UOID is described in Listing 3.2.
UALPHA = %41-5A ; (A-Z)

LALPHA = %x61 -7A ; (a-z)

DIGIT = %x30 -39 ; (0-9)

GLOBAL -PART = 50*52(UALPHA / DIGIT)

SEP = ":"

LOCAL -PART = 1*16(ALPHA / DIGIT)

UOID = GLOBAL -PART SEP LOCAL -PART

Listing 3.2: Format of UOIDs in ABNF [235]

Content Model

The Sonic architecture implements a content model that stores content objects
within the OSN profiles of their owners, from where they can be retrieved on
demand. As Sonic explicitly abstains from publish-subscribe-models that would
automatically replicate content to all subscribers, unnecessary replication of
content objects is prevented. This allows owners of content to exert full control
over the distribution of content.
In OSN services, several use cases exist, in which content is created to be

used and displayed within the social profile of another user. Examples for this
are status updates posted in another user’s stream or a comment one creates
on a friend’s picture. Storing this type of content objects in the respective
author’s OSN profile would introduce a massive communication overhead, as
displaying any content would require an OSN platform to query all remote
locations and retrieve the respective associated content, such as comments,
status updates, or likes. The design of Sonic’s content model addresses this
problem by storing content that was created in reference to other content directly
at the location of the referenced content, thus satisfying Requirement R5. This
way, communication overhead is prevented. Here, Sonic specifies two distinct
types of content types, being local and remote content.

1 {
2 "@context": "http ://sonic -project.net/", "@type": "comment",
3 "objectID": "4YIS70QYSITGCVQYYBSKY3P8I6W3J4QCNNF5V4K0H8ZHSPQ9C9 :4857 d0f26230c8c9",
4 "targetID": "4YIS70QYSITGCVQYYBSKY3P8I6W3J4QCNNF5V4K0H8ZHSPQ9C9 :79 a1f01e74c208eb",
5 "comment": "Test comment",
6 "author": "4YIS70QYSITGCVQYYBSKY3P8I6W3J4QCNNF5V4K0H8ZHSPQ9C9",
7 "datePublished": "2017 -12 -05 T14 :21:22+01:00",
8 "signature": {
9 "@context": "http ://sonic -project.net/", "@type": "signature",
10 "targetID": "4YIS70QYSITGCVQYYBSKY3P8I6W3J4QCNNF5V4K0H8ZHSPQ9C9 :4857 d0f26230c8c9",
11 "creatorGID": "4YIS70QYSITGCVQYYBSKY3P8I6W3J4QCNNF5V4K0H8ZHSPQ9C9",
12 "timeSigned": "2017 -12 -05 T14 :21:22+01:00",
13 "random": "b6bf9f23e368ef89",
14 "signature": "-----BEGIN SIGNATURE -----M9eHleAKh9znXy8sX4hz09FlhJfaMgfyPQx6vVEN5pgIA
15 A1jOSGmWarFIY7UcchsZd3ZWvKh3L4k5bTBXlBLOqCXn25GGL+QXLEKdJ75mhcYiNDTk+nZ6yp3sBES7v18CD
16 /ds7g6575wDxZbyAm1Ltc5OoYPjIItghsz1u4jHcTF5RnP30Kp20hrkyQkxpIzC1ROqWhsoAwtt9s93t1z47f
17 nNEDtkBzXct9R8g0bY0YYorP4uaWZ+HWXOdRQRJ+llpmChmXCI4cef4AmI7MjAX53ipr1tEwQ+akAaUJAIU4a
18 zAdeCeAtNGKaekRRfM1ASLJsiKHtlLXdhYQHN7pKFw ==-----END SIGNATURE -----" }
19 }

Listing 3.3: Example comment content object

3.6. Architecture 103

• Local Content Content objects in Sonic are stored within the OSN profile
of its creator and are referred to as local content. The content’s author
therefore has full control over the content, including access control, editing,
or deleting data.

• Remote Content Content, which is associated with content stored within the
OSN profile of another user, is stored within the OSN profile of the targeted
content. As this type of content is possibly stored in a remote OSN profile, it
is referred to as remote content. The owner of the OSN profile the content is
being stored in gains full control over storage and distribution of all remote
content objects, including deletion. As the content’s creator loses direct
control over the content’s distribution and dissemination, remote content
objects are secured against unauthorized change and edits via a digital
signature created by the content author’s AccountKeyPair. This allows
anyone accessing the content to verify its integrity, so that unauthorized
changes can be detected.

To uniquely identify a content object in Sonic, every content object specifies
a parameter objectID specifying the object’s UOID, as well as the GlobalID of the
content’s author. Furthermore, content objects can reference other content, for
example a comment on an image or status update. In this case, the referenced
content object is specified via a parameter targetID, allowing OSN platforms to
identify all content that is associated with a given content object. Finally, remote
content needs to be signed by its author and hence specifies a digital signature.
The basic parameters of content objects in Sonic can be summarized as follows:
• Object ID: Every content object in Sonic can be identified by its globally
unique UOID, which is composed of the author’s GlobalID and a locally
unique identifier. This allows content objects to be uniquely identified
across different OSN profiles and platforms.

• Target ID: If content is related to other content objects, the relation
is described by specifying the UOID of the related object as targetID.
For example, when commenting on an image, the object describing the
comment will specify the image object by specifying the image object’s
UOID as its targetID.

• Author: The author of a content object is the user who created it and is
the only user who is allowed to edit its contents. In case of remote content
objects, a digital signature ensures that the object’s contents are not altered
by an unauthorized user.

• Signature: As remote content can be stored in remote OSN profiles
depending on the targeted content, remote content objects comprise a
digital signature.

104 Chapter 3. Concept and Design

Content Ownership

As content in Sonic is stored by default within its author’s OSN profile, the
author also assumes the role of the content’s owner, giving him full control
over the distribution of his own content. If content is accessed by another user,
Sonic makes a distinction between local and remote content objects. While local
content is always stored at the author’s OSN platform within his own social
profile, remote content references another content object and is stored within
the same social profile as the referenced content. This can result in situations
where content is stored in a different social profile and platform. For example,
a comment from a user Alice on a picture posted by another user Bob is stored as
an attachment to the picture of Bob within Bob’s account. In this scenario, even
though Alice is the Author of the comment object, Bob assumes ownership of it
and is therefore responsible for storage and delivery of the comment object of
Alice. By storing remote content alongside the content it references, the overhead
required to fetch all associated content objects is reduced, as all content is stored
in one location instead of being distributed across multiple social profiles and
OSN platforms.

Roles

All data in Sonic is encapsulated in content objects along with additional
meta information, comprising information about its owner, creator, or type.
When handling content objects, actors will assume one of the roles Author,
Owner, Viewer, or Provider. This section explains the concept of The concept
of encapsulating content in content objects is described in Section 3.6.4. Figure
3.15 depicts the roles employed in the Sonic OSNF.
• Author When creating content objects in Sonic, the creating user
automatically assumes the role of the content object’s author. Being the
author of a content object authorizes a user to edit the content in any
way. In order to indicate who created a content object, information about
authorship is stored in every content object by specifying the author’s
GlobalID. To prevent content from being altered by someone other than
the author, a digital signature is used to guarantee the content’s integrity
for some types of content.

• Owner Content objects are usually stored within the social profile of the user
who created it. The user in who’s OSN profile the content object is actually
stored, gains ownership of the content, where the owner of content has full
control over storage and access control of the content object. As certain
content objects are stored within the social profile of a user who is not the
content’s author, some content objects are digitally signed by the author to
prevent the owner from altering the content object’s contents.

• Viewer A viewer is any user accessing (consuming) a content object of any
user. Depending on the access permissions set by the content’s owner,
different viewers will be provided with different content. For example, Alice,
a close friend of Bob, might access personal profile information such as a

3.6. Architecture 105

Figure 3.15: Sonic role model

private phone number, which is not accessible to other users. A viewer
cannot edit content objects he accesses but is able to react, for example by
commenting, to the content he accesses, depending on the type of content
and the access permissions specified by its owner.

• Provider A provider runs a OSN platform, on which one or more social
profiles are hosted. As the OSN platform provides the interfaces for
accessing the content objects of the social profiles located on the platform,
a provider is responsible for facilitating access to the data and handling
protocol requests and responses. A provider is usually not author or owner
of the content objects he handles. Providers must follow the directives
specified by the content’s owner andmust not deviate from them. Providers
must not change content objects.

106 Chapter 3. Concept and Design

3.6.5 Access Control Model

As described in Section 3.6.4, content objects in the OSNF are always stored
within the OSN profile of the respective content’s owner. This guarantees that
users remain in full control of their data, as it is stored within their own OSN
profile. In comparison to other DOSN architectures, for example solutions that
are based on the Salmon protocol, content is not replicated to all subscribers.
This allows users to exert more direct control over who is granted access to
individual data records. Still, remote content objects are stored within the OSN
profile it references and is hence possibly stored within the OSN profile of another
user on another OSN platform. In this case, the remote OSN profile’s owner
assumes ownership of the remote content object, allowing him to specify access
control policies for the content object.
As described in Chapter 1, the idea of the Sonic OSNF is to create a

heterogeneous and open federation of OSN services, in which novel and existing
OSN services are connected in a loosely coupled fashion. Existing OSN services
can join the OSNF by implementing the architectural components specified by
Sonic in order to be able to interoperate within the OSNF. This includes existing
OSN service implementation with an already implemented access control model
and policy definition mechanisms that allow users to specify and manage their
privacy settings. Sonic aims to introduce as little overhead for integration into
existing OSN implementations as possible and hence does not mandate how
access control is implemented or exerted by an OSN platform. Nevertheless,
Sonic specifies a format for describing access control rules, which can be directly
applied to content and functionality specified by the Sonic protocol. The access
control model of Sonic is hence defined as an optional model and can be
substituted with other mechanisms for access control.
A survey of existing access control mechanisms implemented in existing

DOSN services has been conducted by Pathak et al. in [249]. The survey found
that most DOSN services implement a form of role-based access control scheme,
allowing users to specify access control rules with varying granularity, while
some of the surveyed DOSN services only support very basic access control
mechanisms. The authors conclude that "users should be able to express rich policies
in terms of their social context, links, groups, and domain, which should be enforced
before granting access to their data" [249].
As specified by the NIST, role-based access control (RBAC) "provides a valuable

level of abstraction to promote security administration [...]" and hence provides a
flexible and extensible framework for access control in DOSN services [250].
The basic model of RBAC specifies permissions to access certain resources based
on a set of defined roles. Users are then explicitly assigned to these roles and
automatically acquire the permissions that were assigned to all members of
this role, where both permission-role as well as user-role assignments can be
many-to-many. To allow users to specify permissions for all users including
users not explicitly assigned to a role, permissions can be specified for a role
"*", to which all users belong. This allows users to specify base directives that
apply in case no more specific permissions have been defined.

3.6. Architecture 107

For access control in Sonic it has to be noted that the Sonic protocol in itself
already specifies how content of a specific resource can be accessed. For example
as described in Chapter 3.7, content of the resource PROFILE can only be read, but
never created, updated, or deleted by anyone else other than the owner himself.
Other resources, for example COMMENT or ACTIVITY, furthermore allow remote
users to create, update, or delete content. While content may only be updated
or deleted by the respective content’s author, the content’s owner may deny any
legit requests to any form of content stored in his own OSN profile.
For regulating access to content of one’s OSN profile, the Sonic access control

model implements a two-tier access control mechanism based on the flat RBAC
model [250] that allows users to specify fine granular policies. Following the
Create-Read-Update-Delete (CRUD)-pattern popular in database management
systems [251] or REST-ful web services [252], Sonic allows to specify access
based on the HTTP method of an incoming request, being HTTP GET, HTTP
POST, HTTP PUT, and HTTP DELETE.
The first tier of the Sonic access control model specifies permissions for

accessing resources in form of access control rules, where each rule specifies
whether to allow or deny access for every access method for a specific role.
Access control rules are formatted as AccessControlRule objects as described in
Table 3.6. The enforcement of the specified policies is implemented as follows:
First, the mechanism determines all roles a user is assigned to. Second, all access
control rules specified for any of the roles the user is assigned to are considered.
If any of the specified rules allows access for the access method of the request,
access is granted. Otherwise, access is denied, which is communicated to the
requesting user via a HTTP 403 "permission denied" status code [253]. This
allows scenarios in which a user Alice is both assigned to the roles friend and
acquaintance for accessing another user Bob’s OSN profile. Here, write access
to the Bob’s ACTIVITY resource can be denied for acquaintances, while it is
allowed for friends. Alice hence is granted writing access to the resource, as
she is assigned the role friend.
While tier one access control facilitates the definition of fine-granular access

control rules on resource level, tier two access control allows to further specify
content-specific access restrictions. Here, a user can specify access restriction
rules for individual content objects, which then overwrite a decision of the tier
one access control mechanism. This enables a user Bob to specify that his friend
Alice with the assigned roles friend, acquaintance, and *may not access a specific
status update object, even though she is generally allowed to access the ACTIVITY
resource. Access restriction rules are formatted as AccessControlRestrictionRule
objects as described in Table 3.7.

108 Chapter 3. Concept and Design

Table 3.6: AccessControlRule format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "AccessControlRule"specifying the object type.
objectID UOID Required. The UOID identifying the AccessControlRuleobject.
owner GlobalID Required. The GlobalID of the access control rule’s owner.
permission String Required. Specifies what kind of action therequesting entity is asking to perform following theCreate-Read-Update-Delete (CRUD)-pattern. C maps toHTTP POST, R to HTTP GET, U to HTTP UPDATE, and D toHTTP DELETE.role UOID Required. The UOID of the role to which the access controlrule applies.
resource String Required. The name of the resource targeted. For example

PROFILE.

Table 3.7: AccessControlRestrictionRule format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "AccessControlRestrictionRule"specifying the object type.
objectID UOID Required. The UOID identifying the AccessControlRuleobject.
owner GlobalID Required. The GlobalID of the access control rule’s owner.
restriction String Required. Specifies what kind of action therequesting entity is asking to perform following theCreate-Read-Update-Delete (CRUD)-pattern. C maps toHTTP POST, R to HTTP GET, U to HTTP UPDATE, and D toHTTP DELETE.role UOID Required. The UOID of the role to which theAccessControlRule applies.
targetID UOID Required. The UOID of the resource targeted.

Table 3.8: AccessControlRole format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "AccessControlRole"specifying the object type.
objectID UOID Required. The UOID identifying the AccessControlRoleobject.
owner GlobalID Required. The GlobalID of the object owner.
name String Required. Unique name of the role.
members Array<GlobalID> Required. Array of GlobalIDs assigned to this role.

3.6. Architecture 109

Table 3.9 specifies an example set of rules. The example assumes that two
separate roles R1 and R2 are assigned to a user Alice, who wants to update a
specific comment object she created earlier identified by UOID1. The first rule
specifies that no one is allowed to access the resource comment. The second rule
specifies that users assigned to the role R1may access the resource via HTTP GET,
but may not create, update, or delete content. Finally, the third rule specifies
that users assigned to role R2 may have full access to the resource. The tier one
access control evaluation would hence grant Alice access to update the targeted
comment object under the assumption that she is the legitimate author of the
content object.
For tier two, a separate restriction rule is specified that disallows access for

users assigned to role R2 for the object identified by UOID1. Alice is hence denied
access to this specific comment object, even though full access is granted for
all other content of the resource comment. The example shows that with the
proposed access control model, users can specify fine-grained access control
policies, where access can be controlled on a fine-grained level in tier one, and
on a object-specific level in tier two.

Table 3.9: Access control example
Tier 1 Rules

role resource permission

* COMMENT
R1 COMMENT R
R2 COMMENT CRUD

Tier 2 Restriction Rules

role target restriction

R2 UOID1 UD

110 Chapter 3. Concept and Design

3.7 The Sonic Protocol

In order to facilitate seamless communication and interoperability in
a heterogeneous federation of OSN service implementations, a common
communication standard is required. Agreeing on a common way of
communicating with each other allows OSN platforms to connect in an loosely
coupled, federated fashion, where users are free to choose an OSN platform
according to their personal preferences without being cut off from the rest of
the social web.
A definition of a common protocol must be easy to introduce into existing

OSN platform implementations as of Requirement R1 without the requirement
for existing implementations to change their business logic, user interface,
or overall service too much. Furthermore, the protocol must implement a
decentralized, federated network of communicating servers (Requirement R3)
that does not rely on any centralized component for control or management
(Requirement R4). Most importantly, the solution must provide seamless
communication and interoperability, rendering platform borders entirely
transparent to users (Requirement R6). Finally, the protocol must support data
portability of entire OSN profiles (Requirement R8) and provide extensibility
(Requirement R11). Based on the requirements for an OSNF as defined in Section
3.3, a holistic protocol describing a set of APIs and data formats, the Sonic
protocol, is introduced.
Existing platforms that implement the Sonic protocol must agree on providing

the APIs defined by Sonic and receive content in the described data formats.
Furthermore, OSN platforms are required to provide access to content according
to the protocol, such as a user’s profile page or stream, where data again is
provided using the described data formats. Sonic does not stipulate how data is
stored, handled, or displayed to the user, as such a requirement would demand
existing OSN implementations to change their internal logic and user interface
to great extends and lessen the acceptance of the approach.
This section is organized as follows: First, existing communication protocols

and data formats are described Section 3.7.1, followed by an overview of proposed
OSN communication standards and implemented APIs. Section 3.7.2 then
describes the details of the Sonic protocol, including an extensive description
of the APIs and data formats.

3.7.1 Related work

To allow servers in a loosely coupled federation to communicate with each other,
all communication partners need to agree on a commonly used protocol and
provide APIs as endpoints for message exchange [254]. Daigneau [255] describes
three different styles of web service APIs, being RPC-based, message-based,
and resource-based. Independently of the style of client-server communication,
Daigneau points out that certain design principles should be followed, such as
encapsulation or autonomy. Encapsulation should be used to hide complexity
and implementation details from clients interfacing with an API in order to

3.7. The Sonic Protocol 111

prevent an implementation from becoming too tightly coupled with the API,
while autonomy guarantees independence from other services.
For clients to remotely execute functionality of a web service, Remote

Procedure Call (RPC) based APIs are used. RPC-based APIs usually expose a
single or few endpoints, to which all RPC requests are sent. Request messages
in RPC-based APIs uniquely identify the targeted function of the service to be
executed [256]. To pass required or optional parameters to the service, requests
specify a set of parameters that map directly to the parameters of the targeted
function. Upon reception of the RPC request, the service maps the request to the
targeted procedure, executes it, and returns a response message containing the
procedure’s return values. As clients address and access a service’s functionality
and data directly using RPC-based APIs, architectures built in this fashion are
tightly coupled. Hence, changes in the design and the interface of the service
require the client to be updated accordingly. Message-based APIs allow clients
to send request messages containing information that describe a task to be
executed. In comparison to RPCs, a service handler determines how to process
and answer the request, so that functionality and data representation are kept
hidden from the client. Message-based APIs are often used in SOAP [257], while
in most cases messages are encoded using XML [258]. This way, message-based
APIs are more decoupled from the service implementation and less tightly
coupled. Resource-based APIs allow clients to access and manipulate a service’s
resources while being insulated from the underlying implementation and data
representation of the service. Resources in the sense of resource-based APIs
can describe anything from files to individual records in a database table. The
pattern became popular with the Representational State Transfer (REST) [252],
which promotes an HTTP-based framework for accessing web-based resources.
REST relies heavily on the existing functionality of HTTP [259] as well as

other fundamental technologies of the web. Clients employ HTTP methods to
perform Create-Read-Update-Delete (CRUD) operations for resources, which are
uniquely identified by a URI. As stated by Tilkov et al., REST is based on five
basic principles, being unambiguous identification of resources via URIs, Links
and Hypermedia, standard HTTP methods, flexible representation of resources,
and stateless communication, where the main benefits of RESTful APIs are loose
coupling, interoperability, reusability, and scalability [260].
Best practices for designing Web APIs that are easy to learn, use, and maintain

were described by Mulloy in [261]. The guide points out flexibility and freedom
of REST as an architectural style for web APIs, promoting a pragmatic REST
approach. In his guide, Mulloy emphasizes that use of naming and a clear
structure of resources is important, while use of concrete names should be
favored over use of verbs. Mulloy also points out the importance of error
handling, where the occurrence of errors should be considered for every resource.
Following the idea of utilizing HTTP status codes [253] to report errors, Mulloy
suggests to use only a small subset of defined HTTP status codes, namely 200,
201, 304, 401, 403, 404, 400, and 500, and optionally provide more detailed
information in a separate status code and detailed human-readable status
message. Furthermore, Mulloy proposes that web APIs should be versioned to

112 Chapter 3. Concept and Design

allow clients to target a specific version of an API, where the addressed version
of a request or response should be transferred as a dedicated HTTP header.
Recommendations for designing Web APIs were also proposed by Espinha et

al. in [262] including providing a stable API that does not change too often
to allow developers to migrate to new versions, while providing backwards
compatibility with older API versions, as unexpected change of proprietary web
APIs is acknowledged as a major problem in web service design. At the same
time, the authors argue that older API versions should be removed after a
reasonable amount of time, while example code for interaction of the API should
be provided for the latest version to help developers implement against an API
and to prevent under-specification.

Data Formats

With the idea to make social profile information an asset of the social web, a
number of standards and data formats have been created that allow services and
applications to provide and store social information in an open and standardized
way. While early OSN services employed mostly proprietary data formats,
more and more OSN services are adopting and building upon open standards.
To allow information to be interpreted and used independently of service
architecture, programming language, or operating system, several standards for
representation of data and objects exist.
The Hypertext Markup Language (HTML) was introduced by Tim Berners-Lee

in the 1990s to describe the structure of web pages with the use of HTML
elements or tags [263]. HTML constructs, such as images, interactive forms, or
sections allowed web designers to specify how a web page was to be rendered by
the end user’s browser software. The HTML standard was continuously evolved
and extended by the W3C. To overcome the lack of mandatory well-formed
documents, XHTML was introduced as an XML-based version of HTML [264].
While XHTML offered several benefits over the original SGML-based HTML
standard, acceptance was comparably low resulting in an abandonment of the
XHTML standard as work on newer versions of the original HTML standard
proceeded. The latest version of the HTML standard, HTML 5.2, was released
in 2017 [263].
As HTML does not support self-defined elements, the Extensible Markup

Language (XML) was introduced as a standard to create structured documents
for arbitrary purposes [258]. XML introduces XML-Schema for specifying a
schema that allows to validate the structure and contents of XML documents;
Extensible Style Sheets (XSL) [265] and XSL Transformation (XSLT) [266]
for transformation of XML documents to human-readable and displayable
documents, for example HTML; and XPath [267] for automatically traversing the
document structure and addressing specific nodes in the document tree. XML
has become a widely adopted standard for structuring data in web based services.
The Atom Syndication Format (ASF, commonly referred to as Atom) is an

XML-based language designed for structuring and publishing web feeds [163].
An Atom-document defines a <feed> with a list of <entry> items that encapsulate
published content. Atom feeds can be linked in HTML web pages using a <link>

3.7. The Sonic Protocol 113

element that links the Atom feed with the page. Feed reader software can then
access and download this feed and display the contents in a client application.
The JavaScript Object Notation (JSON) is a widely adopted text-based data

format for platform and language independent representation of data and
objects, based on a subset of the JavaScript language. JSON was specifically
designed to be lightweight and easy to read and compose by humans, while being
easy to generate and parse for machines at the same time. The JSON standard
describes two data structures, being JSON objects and JSON arrays [268]. While
JSON objects store key-value pairs, JSON arrays are simple ordered lists of values.
JSON supports a variety of data types, such as strings, numbers, JSON objects and
arrays, boolean, and null, and is natively supported by most of today’s popular
programming languages [269]. The JSON format is described in two competing
standards, of which ECMA 404 [268] describes the JSON syntax and IETF RFC
#7159 describes interoperability issues [269].
To utilize JSON in various scenarios, several extensions have been specified.

To allow a specification of structure of JSON objects, JSON Schema has been
introduced. JSON Schema provides structural validation of JSON objects and
can be used for automated testing and validation purposes [270]. To support
Linked Data (LD) [271] principles for semantic web support, JSON objects
can be augmented with semantic annotations [272]. The JSON-LD standard
augments JSON objects with context in form of machine-interpretable semantic
annotations starting with an "@"-prefix, while the original data structure
remains intact. This way, JSON objects can be linked to concepts in an ontology.
To securely transport JSON-encoded claims or data over an untrusted

communication channel, JSON Web Token (JWT) has been introduced [273].
A JWT is a "[...] compact, URL-safe means of representing claims to be transferred
between two parties" [236], where the payload of a JWT is either signed as a JSON
Web Signature (JWS) [274] or encrypted as a JSON Web Encryption (JWE) [275].
A JWT can be used to transport one’s claim of identity between communication
parties, assert one’s identity, or generally transport data in a secure fashion
over an untrusted communication channel. Depending on whether a JWT is a
JWS or a JWE, the payload is encrypted or signed. JWTs comprise three parts,
being a JSON Object Signing and Encryption (JOSE) header, the payload, and the
signature [236]. Both header and payload are formatted as JSON objects, where
the JOSE header specifies the JWT’s type and used algorithm. For serialization,
both header and the - in case of JWE encrypted - payload are separately encoded
using base64url [237], where the signature is created for the encoded payload.
Encoded header, payload, and base64url-encoded signature are concatenated
with a "." as separator, thus creating a string representation of the original
object that can be easily distributed between systems and services.

114 Chapter 3. Concept and Design

Data Formats for Social Information

To model persons or entities as well as the relationships between them, several
standards have been proposed. vCard [276] was introduced by the Versit
Consortium in the early 1990s as a standard to digitally exchange contact
details. vCard stores data in textual files, formatted as key-value pairs with
a specific format defined by the standard, where a vCard document typically
specifies information such as a person’s name, phone number, email, or postal
address. While vCard has been widely adopted by email and contact management
applications, several proposals have been made to utilize modern and common
data formats, such as JSON-based jCard [277], XML-based xCard [278], or
XHTML-based hCard [153].
Portable Contacts (PoCo) is an open protocol and data format for describing

and accessing contact information [279]. The standard was introduced
to facilitate and support data portability of existing contact management
applications and services. Portable Contacts is based on JSON and describes a
request/response mechanism to query contact details from service providers.
Until its abandonment in 2016, Portable Contacts was integrated in OpenSocial
and OStatus.
The Friend-of-a-Friend (FOAF) ontology allows to describe connections

between individuals in a decentralized fashion [104]. The standard defines
a vocabulary using the Resource Description Framework (RDF) [203] and the
Ontology Web Language (OWL) [280] to model relationships and store their
semantics in a machine-readable format. Using semantic web technologies,
the standard allows to store a user’s contact details as well as information
about connections and relationships to other users. This way, users can model
and publish a local view of the social graph, which can then be accessed and
interpreted by semantic interpreters. FOAF is used in the WebID specifications
[202] and is one of the key components of WebID+TLS [205].
Similar to FOAF, the XHTML Friends Network (XFN) aims to describe and

publish social relationship information in a semantic way [281]. XFN is based on
XHTML and utilizes <rel> attributes to specify how a person or entity represented
by a website is related to other entities, where all entities are identified by URLs.
This way, XFN allows to specify if and how individuals are related, for example
by specifying that someone is a colleague and friend, or that both have actually
met in person.
With the idea of a "pragmatic path towards the vision set forth for the semantic

web" [153], Khare and Çelik defined a set of XHTML-based formats to describe
addresses, events, calendars, or contact information, published under the name
Microformats. The standard targeted information published in blogs that should
becomemachine-readable. The philosophy behind the collection of formats aims
at reducing complexity in order to yield simple solutions, reuse existing and
widely-adopted standards, and recycle through modularity. In 2011, work on the
successorMicroformats2 started, which is based on JSON. As of 2017, the standard
comprises formats for addresses, contact information, blog posts, events, news
feeds, locations, generic lists, products, cooking recipes, resumes, and reviews20.
20Microformats2: http://microformats.org/wiki/microformats2. Accessed: 2.8.2017

http://microformats.org/wiki/microformats2

3.7. The Sonic Protocol 115

Other approaches focus on representing content created by users in OSN
services. The Open Graph Protocol (OGP) was proposed by Facebook in 2010 with
the intent to enable "[...] anywebpage to becomea rich object in a social graph" [282].
The standard was inspired by the Dublin Core metadata element set published by
the Dublin Core Metadata Initiative (DCMI)21, which is a standardized vocabulary
for creating metadata [283]. The OGP and makes use of RDFa [284] to enrich a
web page with semantic information that describes the web page’s contents.
Meta information is added in form of HTML <meta> tags by specifying a title,
a type, an image, the web page’s URL, and further optional parameters [285].
Following this standard, social web services can read and use this information
to describe the web page or its contents as an entity in a social graph.
Activity Streams is a data format used to provide semantic descriptions of

actions, referred to as activities. Activities usually comprise an actor, a verb,
an object, and a target, with the semantic meaning that someone (actor) carried
out an action (verb) with or affecting an entity (object). Activity Streams hence
provides "a model for representing potential and competed activities" [102]. The
JSON-based format has been initially introduced in 2011 [114] and is widely
adopted by other platforms and standards such as OpenSocial, Windows Live,
or MySpace22. Activity Streams 2.0 has been published in 2014 and employs
JSON-LD [272] to enrich activity streams objects with semantic information
[102].
In direct comparison to Activity Streams 1.0 [114], which defines an activity

by specifying who (actor) did what (verb) with what (object) to whom or what
(target), the Activity Streams 2.0 vocabulary [196] distinguishes 9 different types
of activity objects, being Object, Link, Activity, IntransitiveActivity, Actor, Collection,
OrderedCollection, CollectionPage, and OrderedCollectionPage, where different types
can be specified for objects, activities, and actors. An example is an activity
typed as "view", indicating that the activity’s actor has viewed the associated
object, allowing to describe activities in a far more detailed fashion. While the
data formats significantly changed in comparison to Activity Streams 1.0, the
semantics mostly stayed the same.

OpenSocial

OpenSocial, the first holistic approach to access data from different OSN services
using a single API has been proposed by Google in 2007 [115]. The standard,
which has been abandoned in 2014, defines a set of APIs for building social
applications on the web, and includes not only a protocol and API, but also
an extensive set of data formats and furthermore covers user identification.
The motivation for the standard is that developers of applications that should
access information of a user’s social profile had to implement a library for the
- mostly proprietary - APIs of all OSN services they wanted their application to
work with. OpenSocial provides a common REST API that allows an application
that implements it to work with any OpenSocial compliant OSN service,
21Dublin Core Metadata Initiative: http://dublincore.org/. Accessed: 2.8.201722Implementors of Activity Streams: http://wiki.activitystrea.ms/w/page/24500522/Implementors.Accessed: 2.8.2017

http://dublincore.org/
http://wiki.activitystrea.ms/w/page/24500522/Implementors

116 Chapter 3. Concept and Design

called container. OpenSocial applications are then able to access information
of social profiles of any compatible OSN service using the common set of
APIs. As a reference implementation for OpenSocial, the Apache Foundation
developed Shindig23, which functioned as a blueprint for developing OpenSocial
applications until it was retired in late 2015. While the first versions of the
OpenSocial specification followed a one-size-fits-all approach, Version 1.0,
which was released in March 2010, introduced a modularized architecture and
added extensibility to containers. Version 2.0 added support for Activity Streams
1.0 [114] in 2011 and removed outdated data formats in favor of newer ones.
After a decline of adoptions of the standard, the W3C announced that further
work in the area should be moved to the W3C Social Web Working Group and W3C
Social Interest Group by the end of 2014, effectively announcing the abandonment
of the standard24. The latest stable version of the OpenSocial API, version
2.5.1, allows CRUD operations for all endpoints, being people, groups, activities,
activitystreams, appdata, albums, mediaItems, and messages:
• people: The resource people allows to retrieve user profiles or list of user
profiles, which are returned as Person objects or lists of those. Using
query parameters, this resource is also used to retrieve user profiles of
certain groups by specifying a parameter group-id, or a person’s friends
list using the parameter @friends. While support of reading access for
the resource people is required by the standard, containers may optionally
implement support for creating, updating, and deleting links between user
profiles. For this functionality, the standard explicitly states that this is a
"generalization of many use cases including invitation and contact creation" and
that dual opt-in can optionally be required by implementations [115]. The
Person data format describes a person in the context of the OSN service.
While the format only requires only two parameters id and name to be
specified, the standard lists an extensive collection of optional parameters,
including one’s gender, location, or relationship status.

• groups: OpenSocial supports user groups, which may be used to "tag or
categorize people and their relationships". An OpenSocial group is owned by
a person, who can configure it to be private, invitation-only, public, or
personal. The resource group may optionally be supported by containers
and allows functionality to read, create, update, and delete user groups.
When requested, a Group data object is returned, being a simple container
format with two mandatory parameters id and title, and an optional
parameter description.

• activitystreams: OpenSocial added support for Activity Streams 1.0 [114]
in version 2.0, which replaced the former resource activities. OpenSocial’s
implementation of Activity Streams organizes ActivityEntries in lists, where
each ActivityEntry describes a single activity by specifying a verb, actor,
object, target, and additional optional parameters. Support for the resource

23Apache Shindig: http://shindig.apache.org/24OpenSocial foundation moves standards work to W3C Social Web Activity: https://www.w3.
org/blog/2014/12/opensocial-foundation-moves-standards-work-to-w3c-social-web-activity/.Accessed: 3.8.2017

http://shindig.apache.org/
https://www.w3.org/blog/2014/12/opensocial-foundation-moves-standards-work-to-w3c-social-web-activity/
https://www.w3.org/blog/2014/12/opensocial-foundation-moves-standards-work-to-w3c-social-web-activity/

3.7. The Sonic Protocol 117

activitystreams is mandatory for containers and features CRUD operations
for ActivityEntries, as well as means to retrieve the Activity Stream, for
example a list of ActivityEntries, from a person.

• albums and mediaItems: Support for albums as well as for mediaItems
is implemented as an optional feature. Albums would group mediaItems,
where each mediaItem would specify the id of the album it is associated to.
Albums specify a title and description, the type and number of contained
mediaItems, location, URL of a thumbnail to be used as the album’s cover,
the owners id, and an object identifier, but don’t comprise or link to the
actual media items. The mediaItem format itself comprises an extensive list
of parameters, including it’s album id, comments, number of times the item
was viewed, a rating, tags, and a title and description. The actual contents
data is linked via a URL. Both the album and mediaItem resource feature
CRUD operations to create, read, update, and delete individual albums or
media items.

• appdata: To allow third party applications to store data when used with a
OpenSocial-compliant OSN service, the resource appdata provides support
for storing arbitrary information in form of key-value pairs. Information
stored using the appdata store is only accessible by the currently active user
(viewer), who can read, write, and delete the information.

• messages: OpenSocial features optional message support to read, send,
and delete messages, where a message is a textual message that can be
addressed to one or multiple recipients. To mark messages as new, read,
or deleted, a message can be updated by updating its status parameter.
Finally, messages can be grouped in message collections, for example by
topic. Amongst other information, the message data format specifies a
message title, body, list of associated URLs, a timestamp of when the
message has been sent, a list of recipients, the sender, and the message’s
status. Furthermore, the format specifies a list of replies to this message
following the ATOM threading model [286].

Table 3.10 provides an overview of existing data formats and their coverage
of the Sonic core featureset as introduced in Section 3.4. Specification of social
profile pages is covered to a varying extent by most standards. While vCard
and its derivatives only support storing basic contact information but support
extensions and focus on storing address information such as phone numbers,
email addresses, or postal addresses, Microformats provides address formats
in addition to it’s hCard specification. Activity Streams 2.0 provides an object
type Profile that allows to link to an Actor Type object, representing for example a
group, organization, or person. This allows to represent basic information about
a person in the context of an activity, but does not support specifying detailed
social profile pages. While being extensible, Activity Streams has been designed
for describing activities and not for encapsulating data. Portable Contacts
specifies an extensive list of profile attributes and hence facilitates formatting
and storage of entire social profile pages. The format is directly referenced
by Open Social, which specifies the type Person that allows specification of an

118 Chapter 3. Concept and Design

Table 3.10: Overview of Sonic core featureset coverage per dataformat

Feature vC
ar
d
[27
6]

Po
Co
[27
9]

FO
AF
[10
4]

XF
N
[28
1]

OG
P
[28
2]

AS
2.
0
[10
2]

Op
en
So
ci
al
[115

]
M
ic
ro
fo
rm
at
s
[15
3]

Social Profile G# # # # G# G#

Link # # # # #

Conversation # # # # # # #

Stream # # # # #

Like # # # # # # #

Comment # # # # # # #

Tag # # # # # # #

Image # # # # # G# G# #

extensive list of attributes for a user. Specifications of connections between
individuals are covered by both FOAF and XFN. Both standards allow to specify
a connection between users and furthermore give a description of the type of
the relationship. Yet, both FOAF and XFN lack a description of how links are
established. The Activity Streams 2.0 specification specifies a Relationship object
type that can be used to represent a relationship between individuals. While the
standard does not support a format for representing initializing a link between
users, a combination of an Offer typed object with a Relationship is used as an
example for requesting a link to be established. Description of messages are
supported by Open Social, where assignment of messages to a conversation is
not covered. Streams as a representation of posted activities are supported by
both Activity Streams 2.0 and Open Social, where the latter standard explicitly
references Activity Streams 1.0 as the format for activity description. Activity
Streams further supports formatting activities that resemble likes, comments,
and tags. Finally, support for images, being media items in general, is supported
by both Open Social and Activity Streams 2.0. Both standards provide a way to
store information about an image, while the actual image data has to be stored
and managed separately.
The comparison shows that none of the surveyed standards is able to cover

the entire OSN core featureset as introduced in Chapter 3.4. While Activity
Streams 2.0 covers support for most OSN features, the standard is designed
for representation of activities in a feed and is hence not fully suited for
representation of several OSN features. Sonic data formats are therefore inspired
by the aforementioned standards and aim at inheriting their strengths while
adding support for use cases that the original standards lack.

3.7. The Sonic Protocol 119

Protocols for Social Information Exchange

While representation of information in OSN services is crucial, distribution
of content in a standardized way poses an even more challenging task in
decentralized, independent service federations. For this domain, a number of
protocols have been proposed that address the issue of communication and
distribution of content or messages in decentralized services.
The likely most famous protocol in this domain is the Extensible Messaging

and Presence Protocol (XMPP). Originally named Jabber, the protocol was
invented in 1998 as an open and decentralized alternative to the plethora of
mutually incompatible IM services. The first version, jabberd 1.0, was published
in 2000 and managed to attract a large community of developers, ultimately
resulting in a standardization of the protocol under the name XMPP in 2004 [72].
XMPP implements a protocol and data formats that "power real-time interactions
over the Internet" [72]. While the standard was predominantly perceived for it’s
use in IM, many extensions have been proposed and implemented that extend
the scope of the standard far beyond simple exchange of messages.
XMPP builds on a distributed client-server infrastructure, where XMPP

servers are connected in a loosely coupled federation [154]. As protocols and data
formats for server-to-server (s2s) and client-to-server (c2s) communication
are standardized, any client or server implementation that is compliant with
the standard can be used to connect to the XMPP network. This allows users
to register with any XMPP server and connect to the network via any XMPP
client. When logged in on an XMPP server, messages from a user’s XMPP client
are sent to the connected server, which forwards them to the recipient’s server,
from where they can be accessed by the message’s recipient. Communication in
XMPP uses XML streams for data exchange for c2s and s2s communication where
XML-based data primitives, called XMPP stanzas, can be either of type message,
iq (info/query), or presence. While message stanzas are used to send typed
messages that do not require a response or acknowledgment by the receiving
entity, iq stanzas require the receiving entity to respond, thus implementing
a request-response pattern similar to HTTP [72]. Finally, presence stanzas
implement publishing of a user’s current status, such as ’busy’ or ’online’ [287].
XMPP identifies users via Jabber Identifiers (JID), which comprise a

local-part, being an identifier that is locally unique on a specific XMPP server,
and a domain-part, which represents the FQDN of the XMPP server, where local
and domain-part of a JID are separated by an "@" [201].
To support versatility and extensibility of the standard for use cases beyond

IM, XMPP supports the XMPP Extension Protocol (XEP) as defined in [142]. XEP
allows adding support for various functionality, such as Multi User Chat (MUC)
[288], feature negotiation [289], or delivery of message receipts [290]. As of
August 2017, 189 protocol extensions have been published.
Matrix [291] has been introduced in 2014 as an alternative to XMPP and

other traditional communication protocols, being an open, federated set of APIs
and protocols for IM, Voice over IP (VoIP), and the Internet of Things (IoT)
for real-time communication. As XMPP was deemed to be "not particularly
web-friendly" and its support for history synchronization and lacking support for

120 Chapter 3. Concept and Design

mobile use-cases [292], Matrix was started as an open source project to draft
and implement a HTTP and JSON-based communication framework25. Similar
to XMPP, Matrix consists of a federation of loosely coupled servers, to which
users connect with Matrix compatible client applications. Messages called events
in Matrix are routed to their destination from the originating client via its
connected server to the recipients’ servers, from where they can be accessed.
All servers participating in a Matrix communication maintain a history of sent
and received events in an event graph and account information for all clients.
WebSub, which initially has been published under the name PubSubHubbub

(PuSH) [155], provides a mechanism for content distribution between publishers
and subscribers [293] and has become a basis for many other content distribution
standards. For a subscriber to create a valid subscription in WebSub, a publisher
offers an endpoint called hub that validates and processes subscription requests.
To establish a subscription, an HTTP request is sent to the publisher’s hub
comprising information about the subscribers endpoint, being described by a
URL. After a subscription has been successfully registered, content posted by the
publisher is automatically sent to the subscribers endpoint.
Further protocols targeting microblogging services have been discussed in

Chapter 2.3, showing that the existing protocols facilitate a federation of a
multitude of instances of the same microblogging service, but mostly fail to
implement interoperability with other service implementations.

Protocols and APIs of OSN services

As of today, most OSN platforms provide an API and protocol to allow developers
of third party applications and services to connect to the OSN, thus creating
well integrated solutions delivering a streamlined QoE for the user [294]. Most
existing APIs are based on REST and utilize open data formats and standards.
Still, all existing APIs require users and third-party services to register with the
service to access its API, where authentication is done in most cases using OAuth
2.0.
Facebook provides an extensive HTTP-based RESTful API for third party

applications, named Graph API "after the idea of a social graph" [194], where
information is represented as nodes, edges, and fields. Following this model,
nodes represent items such as posts, comments, or users and are connected by
edges, for example linking a comment to a posted photo. Every node is identified
and addressable via a unique ID and can be accessed either directly or by
following edges connecting individual nodes. Finally, fields contain information
about nodes, such as a person’s name or date of birth. As support for new
features is added from time to time, the API is versioned. New features are added
in newer versions, while older versions of the API are supported for a duration
of two years after a newer version was released. In order to both provide a
stable and continuously supported API for Facebook functionality and support
new features at the same time, the Graph API is divided into core and extended
APIs. While core functionality is guaranteed to be available and unmodified
25Matrix standards are still under development. As of August 2017, most Matrix APIs were markedas unstable [291].

3.7. The Sonic Protocol 121

in a specific version for a certain time after release, extended functionality
may be modified or even removed and has hence to be accessed by explicitly
specifying the API version to utilize. Functionality in version 2.9 of the Graph API
[194] covers access to user profiles, pages, groups, and events, but also allows
access to content associated or contained in these nodes, such as photo albums
and videos, comments, conversations and messages, status updates, or friends
lists. Furthermore, the API provides access to information valuable to third
party developers and advertisers such as "insights", "offers", or "promotional
information".
Google+ offers a REST-based API that allows third party developers to access

a user’s social profile, which is not versioned [295]. In contrast to most other
OSN services, Google+ restricts API access to reading content, while publishing,
editing, or deleting content is not supported. The API allows to address the
resources people, activities, and comments, where individual objects can be
addressed by their IDs. The resource people implements access to individual
person resources, where every person represents a unique user profile on
Google+. While individual profiles can be retrieved by specifying their ID, the
people resource is also capable of listing all person objects associated with a
certain object in Google+, for example users who commented on or shared a post.
Additionally, users can search for other Google+ users. Activities can be retrieved
individually or as a list of available objects. Furthermore, the resource allows to
search for activities matching specified search criteria. Finally, comments can
also be addressed individually by their ID or as a list, but cannot be searched.
VKontakte provides an RPC-based [256] API for third party applications26.

Like with most other APIs, applications are authenticated via OAuth 2.0 [296],
where the API in version 5.65 facilitates access to an extensive list of resources
such as documents, users and friends, groups, feeds, pages, photos and videos,
or messages.
RenRen allows access for third party applications via a HTTP-based RESTful

API27. The API in version 2.0 authenticates applications accessing it using OAuth
2.0 [296] and allows access for most OSN features supported by the service,
including profiles, friends of users, blogs and feeds, likes, comments, photos, or
check-ins.
Linkedin provides a HTTP-based API28 supporting XML and JSON [268] data

formats. The API provides access to basic features of the network and has two
base resources, people and companies. While for companies information such
as the company’s page, status updates, shares, and a list of followers can be
accessed, access to the resource people simply allows access to a user’s profile.
While most of the service’s API allows only reading access, creating comments
and shares are supported.
Xing provides a REST-based API29 for accessing and editing resources. The

API allows requesting and editing one’s user profile and read, write, and edit
content in groups in form of posts and comments and even manage one’s
26VKontakte API: https://vk.com/dev/methods Accessed: 23.6.201727RenRen API: http://open.renren.com/wiki/English_version_for_API2. Accessed: 23.6.201728Linkedin API: https://developer.linkedin.com/docs. Accessed: 3.8.201729Xing API: https://dev.xing.com/docs/resources. Accessed: 3.8.2017

https://vk.com/dev/methods
http://open.renren.com/wiki/English_version_for_API2
https://developer.linkedin.com/docs
https://dev.xing.com/docs/resources

122 Chapter 3. Concept and Design

contacts by accessing and managing contact lists. Furthermore, conversations
and messages, feeds, news, events, and companies can be accessed and created.
Twitter supports a set of well-documented, distinct APIs30 to access

information of the service. The REST API provides access to content on a
request-response basis, the Streaming API allows developers to request a stream
of tweets, and a Webhook API provides real-time access to account data. The
APIs are based around four main object types, tweets, users, entities, and places,
which are formatted using JSON [268]. The REST API facilitates access of a user
to his own account and associated data. Functionality covered by the REST API
comprises searching, sending, and requesting tweets grouped by topic or users,
accessing profiles and lists of followers, and send and receive direct messages.
Twitter addresses objects and users within the service using Twitter Snowflake31,
a service to create unique identifiers [211], while authentication is based on OAuth
2.0 [296].
Instagram provides a RESTful API for third party applications. The API allows

read access to the endpoints users, media, tags, and location, where for the
resources tags and location a list of media objects is returned that fits to the
specified tag or location. Furthermore, comments and likes can be read, created,
and deleted for specified media items, and follow relationships between users
can be created and modified.
Pinterest provides an HTTP-based API32 for accessing the service. The API

supports requesting information about users, including their public boards and
pins, and allows users to create and remove follow relationships for boards and
other users. Furthermore, the API supports CRUD access for one’s boards and
pins and allows search requests. Data objects defined as return types are users,
boards, and pins.
While most APIs and Protocols are building on open standards to some extent,

their design and architecture still remains proprietary and specifically targets
the respective service infrastructure. Aside from the discontinued standard
OpenSocial, accessing multiple OSN service platforms with one protocol is not
supported.

Other Approaches

Hu et al. proposed SNSAPI, a cross-platform middleware for Meta Social
Networks (MetaSN), which are defined as a federation of OSN services that are
not relying on a common protocol or service architecture [100]. The SNSAPI
middleware connects to a list of centralized OSN services using their proprietary
APIs to facilitate communication between the different services. In order to allow
content to be exchanged between services with incompatible data formats, Hu et
al. derived a common data format for data objects, which can be used to reformat
content objects from a source format into the format of the target OSN service.
This way, communication between OSN services is made possible, yet introduces
30Twitter APIs: https://dev.twitter.com/overview/api. Accessed: 3.8.201731Twitter Snowflake: https://dev.twitter.com/overview/api/twitter-ids-json-and-snowflake.Accessed: 3.8.201732PinterestAPI: https://developers.pinterest.com/docs/getting-started/introduction/. Accessed:3.8.2017

https://dev.twitter.com/overview/api
https://dev.twitter.com/overview/api/twitter-ids-json-and-snowflake
https://developers.pinterest.com/docs/getting-started/introduction/

3.7. The Sonic Protocol 123

some drawbacks. The middleware categorizes OSN functionality into three
distinct categories, being base functions, derived functions, and extra functions.
SNSAPI exclusively covers base and derived functionality, being authentication,
home timeline, update, reply, and forward, as the authors deemed extra functions,
such as album and like support, not to be "very common across platforms". Extra
functions are hence not supported by the SNSAPI approach.
Similar to SNSAPI, the EU-funded project SocIoS33 proposes a SOAmiddleware

that relied on adapters connecting to proprietary APIs of OSN services. The
project derived an ontology for OSN functionality comprising persons, media
items, activities, events, messages, ratings, and groups [176]. The architecture
aims at extracting content from popular OSN services and to aggregate them in
the SocIoS service for further processing depending on the desired use case [297]
and hence also relies directly on proprietary APIs.
Other approaches also proposed connecting OSN services based on wrappers

for the various proprietary APIs. For example, Mostarda et al. proposed an
OpenID-based middleware architecture that is based on adapters and converters
for OSN APIs [298], while Gouriten and Senellart proposed API Blender, a
middleware that aims at unifying proprietary OSN APIs by creating WSDL-based,
machine-readable descriptions of API capabilities [299]. Furthermore, a number
of software frameworks, such as Spring Social34, has been proposed that aims
at easing integration of OSN APIs in applications and services by providing a
wrapper classes.
Even though social features such as commenting, expressing appreciation,

messaging, or sharing content have become an integral part of the social
web we know, integration of such features as of today is only possible by
implementing against proprietary APIs. While an extensive selection of open
standards and protocols have been published, they fail to provide a holistic and
platform independent communication and interoperability framework. Most
solutions cover a specific, isolated aspect of the social web, such as describing
activities [114], subscribing to other user’s content updates [152], or third-party
applications accessing social content [115]. A holistic solution that facilitates
seamless interoperability between arbitrary OSN services has yet to be defined.

3.7.2 The Sonic Protocol

The Sonic protocol marshals access to contents of a user’s social profile and
communication between Sonic compliant platforms using RESTful APIs. The
protocol comprises two separate APIs, being the Profile API and the Platform
API, while communication with the separate GSLS is covered by the GSLS API
as described in Section 3.5.3. While the Profile API facilitates access to a user’s
social profile information in the scope of a user, the Platform API organizes
access to a platform’s general functionality, such as searching or negotiating
supported platform features. Finally, the GSLS API allows for resolving of
GlobalIDs and updating Social Records via the GSLS.
33SocIoS project web page: http://www.sociosproject.eu/. Accessed: 3.8.201734Spring Social: http://projects.spring.io/spring-social/. Accessed: 4.8.2017

http://www.sociosproject.eu/
http://projects.spring.io/spring-social/

124 Chapter 3. Concept and Design

The Sonic protocol exclusively covers communication between OSN platforms
and profiles, while resolving GlobalIDs via the GSLS is handled by a separate
API. Sonic does not specify any requirements for displaying or handling of
information and content to allow both existing and new OSN implementations to
have full control about how content is delivered and displayed and hence provide
a unique user experience for users on their platform.

Protocol Context

All requests and responses in Sonic are sent in the context of an entity, where an
entity is either a user or an OSN platform that creates the request or response.
To verify the authenticity of requests and responses of the Sonic protocol, a list
of HTTP headers is specified. These HTTP headers comprise information about
origin and targeted entity of the request or response. Furthermore, a digital
signature is created by the sending entity to make a request’s and response’s
authenticity and integrity verifiable. To digitally sign the request or response,
the sending entity’s AccountKeyPair is used, while the sending entity’s GlobalID
is specified in the HTTP header SonicSourceGID. This allows the recipient to verify
the enclosed digital signature by retrieving the matching public key from the
GSLS.
The digital signature is created by concatenating the HTTP method used, the

URL of the request, the HTTP headers of the request, followed by the content of
the request’s or response’s body. The signature is then created using OpenSSL
with RSA and SHA512 and encoded as of PKCS#1v2.1 [300].
Table 3.11 lists the HTTP headers specified by requests and responses

according to the Sonic protocol. All headers are required and need to have valid
values. Any request or response with missing headers or invalid values should
be discarded by the receiving OSN platform.

Table 3.11: Sonic HTTP Headers
Header Description

SonicTargetAPI Specifies the version of the Sonic protocol used in a request or responseto allow support for different versions of the protocol.
SonicResourceDate Date and time of a request or response in XSDDateTime format.
SonicPlatformGID GlobalID of the OSN platform sending the request or response.
SonicSourceGID GlobalID of the entity (i.e. platform or user) in whose context therequest or response is sent.
SonicRandom Random value for added security [301][302].
SonicFeatureID Hash of the supported feature extensions as of Section 3.7.3.
SonicSignature Digital RSA signature of the request or response. The signaturecomprises the Sonic HTTP headers, the body, and for requestsadditionally the HTTP method and URL

3.7. The Sonic Protocol 125

Request-Response Pattern

Communication in the Sonic protocol follows the Request-Response pattern
using HTTP. Upon reception of a request, a Sonic OSN platform must answer
the request with an adequate response containing a response object. Response
objects are JSON-formatted objects that comprise information about the success
or failure of the matching request and can optionally contain serialized payload
(see Table 3.12).

Table 3.12: Response object format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "response" specifying the object type.
responseCode int Required. The HTML status code for the response.
message String Optional textual message.
errorCode int Optional numerical error code identifying the cause of anerror.
body String Serialized payload of the response. Optional depending onthe type of request.

If a response is used to deliver data, the information is transferred within
the response object, where the content to be transferred is encoded as a content
object as introduced in Section 3.6.4. Sonic defines adequate data formats for
every OSN feature in the OSN core featureset to ensure that the receiving side of
the response message is able to interpret and use the transmitted information. In
the remainder of this section, data formats and API calls are described to retrieve
and transmit data in the OSNF.

3.7.3 Platform API

For requests that are not executed in the context of a user, the Profile API cannot
be used, as the Profile API only supports access to the content published in the
OSN profile of a user. Hence, access to a OSN profile’s contents are managed
via the Profile API, where the request is handled in the context of the targeted
user. Requests, which are not executed in the context of a user, are executed
in the context of the respective OSN platform. Here, the active entity is the
OSN platform itself. Scenarios, in which the Platform API is used instead of the
Profile API are an OSN platform answering a request targeting a not existing
user, answers to search requests, or negotiating feature support between OSN
platforms.

126 Chapter 3. Concept and Design

FEATURE

Negotiation of supported features between servers and clients or servers and
servers has been addressed in a list of other open protocols and services. The
File Transfer Protocol (FTP) [303] allows clients to request a list of commands
from a server that extend the default set of commands as specified in [304].
RFC 2389 specifies a FEAT command to be sent by a client to a server, which
is to be answered with a list of supported commands. Clients then may use
the listed commands when communicating with the server, where all optionally
supported commands are described in RFC 2389 and are identified by a unique
name [304]. The FTP protocol hence allows support for a limited set of optional
commands, which are specified in a central document. A similar implementation
for negotiation of supported features exists in the Datagram Congestion Control
Protocol (DCCP), which allows clients to may request a list of supported features
from a server, where available features are specified in RFC 4340 [305].
XMPP [154] supports extensibility of the protocol via the XMPP extensions

protocol [142]. For discovery of support for feature extensions, the service
discovery extension (disco) provides a mechanism for clients and servers to
request a list of all supported protocol extensions. The requested entity responds
to a request with a list of supported protocol extensions, where each listed feature
is identified via the unique name it is registered with at the XMPP Standards
Foundation (XSF) registrar. To reduce the amount of disco requests, the list of
supported features is hashed and transmitted in presence stanzas. Clients and
servers may store a received hash and hence are able to detect when the list of
supported protocol extensions was changed.
To allow negotiation of supported features between different OSN platforms,

the Sonic protocol supports feature negotiation similar to XMPP. This API allows
OSN platforms to request a list of feature implementations implemented by other
OSN platforms, which are not covered by the OSN core featureset of Sonic as
defined in Chapter 3.4. The feature API allows any OSN platform to send a request
for supported features to another OSN platform. A feature is described by a
feature object as described in Table 3.14 specifying a name, a URI functioning
as a unique identifier, a version number, a list of compatible feature versions
of the same feature, and the API path to which requests for this feature can be
sent. Using this information, it is possible for the OSN platform to define, which
features can be used when communicating with another OSN platform. The list
of supported features can be accessed via HTTP GET as described in Table 3.13.
To reduce the overhead of requesting an OSN platform’s features more often

than necessary, each platform exposes a hash value for the supported Sonic
protocol version and all additionally supported features and versions in all
request and response messages as HTTP headers as specified in Section 3.7.2.
OSN platforms may store the hashes published by other platforms. A changed
hash value indicates that the featureset of the respective OSN platform was
changed. An OSN platform may then request the updated list of OSN features
via the feature negotiation protocol.

3.7. The Sonic Protocol 127
Table 3.13: Sonic feature API

Method Path Parameter

GET /FEATURE
GET /FEATURE/:featureID

Table 3.14: FEATURE format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "feature" specifying the object type.
objectID UOID Required. The UOID identifying the feature object.
namespace String Required. Namespace of the feature implementation.
name String Required. Name of the feature implementation.
version String Required. Version of the feature implementation.
compatVersion String Required. Minimal version of this feature implementationthat is compatible.
apiPath String Required. Base URL path for this feature.

MIGRATION

The resource migration allows users to relocate their entire OSN profile to
another OSN platform as described in Chapter 3.5. All data and content, such
as posted status updates, images, or linked friends is migrated with the profile.
At the same time, connections to and from other OSN profiles, such as posted
comments or friends lists, are kept intact through the use of domain-agnostic
GlobalIDs. Basically, migrating an OSN profile copies the entire profile to the
new OSN platform and then updates the Social Record dataset in the GSLS to
point to the new profile location. The steps of the migration process from a
platform PA to PB are depicted in Figure 3.15.
To migrate an OSN profile from a source OSN platform PA to a new target OSN

platform PB, the protocol requires the user to register an empty stub account at
the target platform PB first. Here, the GlobalID and the AccountKeyPair of the
migrated OSN profile needs to be specified at PB.
In order to provide an overview to the user about features that can be used at

PB after a completed migration, PB may optionally retrieve a list of supported
features from the source OSN platform PA using the feature API. This allows PB

to provide an overview about features that can be used at PB after a completed
migration to the user, allowing him to abort the migration in case important
additional features he uses at PA are not supported at PB.

128 Chapter 3. Concept and Design

To prepare the migration, the target OSN platform PB creates a migration
object as specified in Table 3.17, which specifies the parameters of the migration.
These parameters include the source OSN platform PA, the target OSN platform
PB, the GlobalID of the migrated OSN profile, a timestamp, and a UOID to
allow unique identification of the migration object via its parameter objectID.
As the migration object will be sent to the empty stub account on the target
OSN platform PB, migration objects are remote content and therefore digitally
signed. This way, the migration object functions as a kind of digital contract for
a specific migration process between source and target platform.
Before starting to copy the OSN profile’s contents, the Social Record dataset

is updated in the GSLS. Here, the value of the active parameter is set to the
objectID of the migration object, indicating that the OSN profile is currently
being migrated to a new location. In this phase, the OSN profile can still be
accessed at PA by other users, but only in a read-only state. By signing the
Social Record dataset including the migration object’s objectID value using the
user’s PersonalKeyPair, the migration is explicitly authorized by the user.
The migration is then initiated by the source OSN platform PA by sending the

migration object to the target OSN platform PB via HTTP POST. The authorization
of the migration can be verified by either OSN platform via the migration object’s
objectID in the signed Social Record dataset. Platform PA now starts the data
transfer by encapsulating all content objects of the migrated OSN profile in
migration data objects, where one or more items can be transferred with each
migration item object. This way, platform PA can limit the size of the requests
being transferred and furthermore manage the entire data transfer. The format
of migration data objects is described in Table 3.18.
Upon reception of a each migration data object, platform PB extracts the

encapsulated data objects, verifies their content, and stores them in the local
database. Each received migration data object is acknowledged by the target
OSN platform. This allows the source OSN platform PA to track what data objects
have successfully been received by the target OSN platform PB. Once all content
objects have successfully been transferred to the target OSN platform PB, the
migration is concluded.
The migration can be aborted at any point by either of the OSN platforms

via a (signed) HTTP DELETE request for the migration object. In this case, all
data associated with the migration is deleted from the target OSN platform PB,
causing the process to be reverted. The process then may be started over again
by initiating a new migration.
In case all content objects have been successfully transferred to and received

by the target OSN platform, the user’s OSN profile may be deleted from the old
location, including all data. If the migration fails or is aborted at any point, the
Social Record is reset to its original values and already transferred data is deleted
from the target OSN platform’s database. Following, the Social Record dataset is
updated again, where the value for the property profileLocation is set to point
to the target OSN platform PB, and the parameter platformGID is set to the target
platform’s GlobalID. Also, the parameter active is reset to its original value 1,
allowing access to all functionality of the new OSN platform. To prevent possible

3.7. The Sonic Protocol 129

Table 3.15: Sequence of a migration: After providing the user’sGlobalID and account key pair to the target OSN platform PB, allprofile data is transferred. Once all data has been successfullytransferred, the profile is deleted at the old location and the SocialRecord is updated to point to the new location.

Table 3.16: Sonic migration API
Method Path Parameter

POST /MIGRATION Migration object
DELETE /MIGRATION/:migrationID
POST /MIGRATION/:migrationID/DATA Migration data object

130 Chapter 3. Concept and Design

Table 3.17: MIGRATION format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "migration" specifying the object type.
objectID UOID Required. The UOID identifying the migration object.
migrationSource GloablID Required. GlobalID of the platform the profile is migratedaway from.
migrationTarget GlobalID Required. GlobalID of the platform the profile is migratedto.
datetime XSD-Datetime Required. The date and time the migration object wascreated.
signature Signature Signature of the migration object.

Table 3.18: MIGRATION DATA format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "migration-data" specifying the objecttype.
objectID UOID Required. The UOID identifying the migration data object.
targetID UOID Required. UOID of the migration object.
datetime XSD-Datetime Required. The date and time the migration object wascreated.
item Array<JSONObject> Required. Array of content objects
signature Signature Signature of the migration data object.

future misuse of the AccountKeyPair by the source OSN platforms at a later time,
the user may revoke the key pair by updating the Social Record dataset in the
GSLS, replacing it with a new one as described in Chapter 3.5.

3.7. The Sonic Protocol 131

SEARCH

The resource search allows to send search requests to other known OSN
platforms. Search requests are sent following a flooding approach similar to
Gnutella [222], where the search request is forwarded by each receiving OSN
platform recursively. OSN platforms receiving a search request perform a local
search for the search term and respond with a list of results if a match was
found. The results are directly sent back to the OSN platform that initiated the
search query and may be displayed to the user. The sequence of a search request
is depicted in Figure 3.16. To limit the congestion effects of this approach,
search requests specify a numerical limit stating how often the request is to be
forwarded. Each receiving platform then decreases the value by one and abstains
from forwarding the search request if the value is 0. To prevent search requests
from being forwarded to the same OSN platform multiple times, each search
request object is uniquely identified by a UOID. If a search request is received
more than once, all subsequently received duplicates are ignored.
The actual search query is formatted as an Elastic Search query [306] and is

encapsulated in a search object, which specifies further details, such as the search
objects UOID, the hop limit, the querying GlobalID, and the address to which
results should be sent back. The format of search request objects is described
in Table 3.20. When receiving a search query object, an OSN platform performs
a local search and creates a list of search result objects, in which each result is
represented as a single object. Search result objects encapsulate an Elastic Search
result object along with additional information such as the result’s UOID and its
owner’s GlobalID. All search result objects are then encapsulated in a search
result collection object and sent to the OSN platform that originally initiated the
search query. Once search results have been received by the OSN platform from
which the search has been started, the results from all OSN platforms can be
displayed to the user. Due to the distributed nature of the search functionality,
search results are likely to be received with a delay. The format of search result
objects and search result collection objects is described in Tables 3.22 and 3.21.

Figure 3.16: SEARCH in SONIC

132 Chapter 3. Concept and Design

Table 3.19: Resource SEARCH
Method Path Parameter

POST /SEARCH Search query object
POST /SEARCH/:searchID/RESULT Search result collection object

Table 3.20: SEARCH QUERY format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "search-query" specifying the objecttype.
objectID UOID Required. The UOID identifying the search-request object.
initiatingGID GlobalID Required. The GlobalID of the user initiating the searchrequest.
query JSONObject Required. Elastic Search query as defined in [306].
hopCount int Required. Hop count value. Not part of the signature.
datetime XSD-Datetime Required. The date and time the search-request object wascreated.
signature Signature Required. Digital signature of the search-request object.

Table 3.21: SEARCH RESULT COLLECTION format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "search-result-collection"specifying the object type.
objectID UOID Required. The UOID identifying the search-result-collectionobject.
targetID UOID Required. The UOID identifying the original search-requestobject.
platformGID GlobalID Required. The GlobalID of the platform returning the searchresults.
datetime XSD-Datetime Required. The date and time the link object was created.
results Array<search-result> Required. The list of search-result objects.

3.7. The Sonic Protocol 133
Table 3.22: SEARCH RESULT format

Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "search-result" specifying the objecttype.
objectID UOID Required. The UOID identifying the search-result object.
targetID UOID Required. The UOID identifying the original search-requestobject.
resultOwnerGID GlobalID Required. The GlobalID of the owner of the found content.
resultObjectID UOID Required. The UOID identifying the found content object.
resultIndex int Required. The result index as of Elastic Search.
resultType String Required. The result type, matching the @type parameter ofthe found content object, e.g., profile.
displayName String Human readable string representation of the search resultfor displaying purposes.
datetime XSD-Datetime Required. The date and time the link object was created.

3.7.4 Profile API

The Profile API of the Sonic protocol facilitates access to the contents of a
user’s OSN profile. While all features of the OSN core featureset are covered
by the Profile API, additional features can be accessed via the feature extension
functionality as described in 3.7.3. All requests in the Profile API address a
specific user profile, which is identified via its GlobalID.

LINK

The resource link covers the creation and deletion of links between different
social profiles, as well as retrieving a user’s friend roster. To provide
compatibility to other OSN implementations, links in Sonic are unidirectional,
where bidirectional links can be composed by establishing two opposite links. To
initiate a unidirectional connection between two users, a link-request object as
of Table 3.24 is created by the requesting user and sent to the targeted user’s OSN
profile via HTTP POST. The targeted user can now react to the link request by
accepting or rejecting the request, where responses are encoded in link response
objects. As the decision on rejecting or accepting a request has to be made by
the targeted user and therefore may be delayed, the response to a request is sent
back in a separate request. If the link request is accepted, the accepting user
creates a signed link object as of Table 3.23 that states that a unidirectional link
exists from the requesting user, identified by the parameter initiatingGID, to
the targeted user, identified by the parameter targetedGID. As the link object is
signed by the targeted user, the authenticity and integrity of a claim of being
connected to someone can be easily verified by anyone.

134 Chapter 3. Concept and Design

Figure 3.17: Resource LINK

3.7. The Sonic Protocol 135

The link object is then send back to the requesting user’s profile via HTTP
POST, encapsulated in a link-response object that references the matching
link-request object and specifies whether the request was accepted or not and
may furthermore include an optional textual message. The format of link
response objects are described in Table 3.25. In case the request is not accepted,
a link-response is returned without the enclosed link-object. All successfully
established links are then stored in the OSN profile of the requesting user,
where the targeted user of a link can always request deletion of the link to
him by sending a HTTP DELETE request targeting the link-object’s UOID.
Sonic platforms must then verify whether the request for deletion is correctly
signed and delete the link if it has been signed correctly by the author of the
respective link object. Finally, users can retrieve a collection of all available link
objects owned by a user. Using HTTP GET, a collection object can be requested
comprising a list of all links to other users owned by a user. The sequence of
interaction with the link resource is depicted in Figure 3.17.

Table 3.23: LINK format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "link" specifying the linktype.
objectID UOID Required. The UOID identifying the link object.
owner GlobalID Required. The GlobalID of the user who owns the link object.
datetime XSD-Datetime Required. The date and time the link object was created.
signature Signture Required. Digital signature for the link object created by theauthor.

Table 3.24: LINK-REQUEST format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "link-request" specifyingthe object type.
objectID UOID Required. The UOID identifying the link-request object.
initiatingGID GlobalID Required. The GlobalID of the user that initiated the request.
targetedGID GlobalID Required. The user targeted by the link request.
datetime XSD-Datetime Required. The date and time the link-request object wascreated.
message String Optional textual message.

136 Chapter 3. Concept and Design

Table 3.25: LINK-RESPONSE format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "link-response" specifyingthe object type.
objectID UOID Required. The UOID identifying the link-response object.
targetID UOID Required. The UOID identifying the associated link-requestobject.
datetime XSD-Datetime Required. The date and time the link-response object wascreated.
accept Boolean Required. Boolean value that determines, whether a linkrequest was accepted (true) or not (false).
message String A textual message for specifying a reason why a request wasaccepted or not.
link Link object Required if accept is true.

Table 3.26: Resource LINK
Method Path Parameter

GET /:globalID/LINK
GET /:globalID/LINK/:linkID
POST /:globalID/LINK/:linkID/REQUEST Link-request object
POST /:globalID/LINK/:linkID/RESPONSE Link-response object
DELETE /:globalID/LINK/:linkID

PROFILE

The resource profile allows access to a user’s social profile information in
form of a profile object. As social profiles comprise a variety of information
in existing OSN implementations, profile objects comprise an extensive list of
attributes, similar to OpenSocial’s implementation of Person objects [115], where
only few parameters, such as the profile owner’s GlobalID and a displayable
user name are required. Further parameters, such as the user’s age, gender,
name, a description, or even a list of postal addresses, can be omitted if desired.
To further allow a high grade of personalization of a user’s profile, a profile
can specify an extensive list of key-value pairs to allow specifying additional
arbitrary information about a user. Following this paradigm, detailed social
profiles as used in Facebook or VKontakte as well as minimalistic profiles as used
in Instagram or Pinterest are supported, where only the most basic information
that is required to identify a user is required. With all other parameters of a
profile being optional, OSN platforms may omit additional information when
displaying the profile of a user. Furthermore, OSN platforms may specify access

3.7. The Sonic Protocol 137

control rules that disclose certain parts of a profile object to authorized users, for
example only showing a user’s birthday to users who are already linked to the
profile’s owner. As listed in Table 3.27, a user profile can only be read by other
users, while profile creation, editing, and deletion are not supported by the API
itself. Table 3.28 describes the base profile format as returned by the API.

Table 3.27: Resource PROFILE
Method Path Parameter

GET :globalID/PROFILE

Table 3.28: PROFILE format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "profile" specifying theobject type.
objectID UOID Required. The UOID identifying the profile object.
globalID GlobalID Required. The GlobalID identifying the profile’s owner.
displayName String Required. A human-readable username to used for displaypurposes.

ACTIVITY

The resource activity describes functionality that allows publishing a stream
of activities, being status updates, check ins, or shared content, that make
up a user’s activity stream. The format of individual activity objects is based
on Activity Streams 2.0 [102], where an activity object encapsulates the actual
JSON-formatted Activity Streams object and augments it with information
required for addressing content objects in the Sonic OSNF. This way, the full
potential of the Activity Streams 2.0 standard can be used to describe a user’s
actions. Activity objects are remote content as they can be published in a remote
user’s OSN profile. Therefore, activity objects comprise a digital signature of
the respective author. Remotely stored activities can be updated by their author
via HTTP PUT, where the activity’s contents are overwritten with a new activity
object.
As listed in Table 3.29, activities can be created, read, updated, and deleted

by other users, where update and delete requests can only be created by
the respective object’s author. Furthermore, activity objects can be liked,
commented on, and tagged, where a collection of likes, comments and tags for
an individual activity object can be retrieved via the API. Table 3.30 specifies the
format of activity objects, which can be accessed individually or as a collection.

138 Chapter 3. Concept and Design

Table 3.29: Resource ACTIVITY
Method Path Parameter

GET :globalID/ACTIVITY
GET :globalID/ACTIVITY/:activityID
GET :globalID/ACTIVITY/:activityID/LIKE
GET :globalID/ACTIVITY/:activityID/COMMENT
GET :globalID/ACTIVITY/:activityID/TAG
POST :globalID/ACTIVITY activity object
PUT :globalID/ACTIVITY/:activityID activity object
DELETE :globalID/ACTIVITY/:activityID

Table 3.30: ACTIVITY format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "activity" specifying the object type.
globalID GlobalID Required. The GlobalID identifying the owner of the activity.
displayName String Required. A human-readable username to used for displaypurposes.
objectID UOID Required. The UOID identifying the activity object.
author GlobalID Required. The GlobalID identifying the profile’s owner.
datetime XSD-Datetime Required. The date and time the activity object was created.
activity JSON Object Required. Serialized Activity Streams 2.0 object.
signature Signature Required. Digital signature for the activity object created bythe author.

COMMENT

The resource comment allows users to comment on content, where comments
are textual messages that allow to express a detailed opinion, explanation, or
feedback. Comment objects comprise a textual message, and furthermore a
timestamp indicating the date and time of the comment’s creation, and the
GlobalID of the comment’s author. To uniquely specify what a comment is
targeting, comment objects specify a parameter targetID as a reference to the
targeted content object’s UOID. Comment objects are remote content, as they can
reference content objects published in other user’s OSN profiles, which causes

3.7. The Sonic Protocol 139

the comment to be stored in a OSN profile other than the author’s. As of this,
comment objects specify a mandatory signature created by the author of the
content. The signature allows to verify the integrity of the comment object and
prohibits that the comment’s owner alters the content’s data without permission
of its author. Comment objects can be updated by their author, where the
comment’s text is overwritten and a parameter dateUpdated is set to specify the
date and time at which the object was updated. The complete format of comment
objects is described in Table 3.31. As described in Table 3.32, comment objects
can be created, read, updated, and deleted by their author. As users can be
tagged in comments and furthermore like comments, a list of likes or tags can
be requested.

Table 3.31: COMMENT format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "comment" specifying the object type.
objectID UOID Required. The UOID identifying the comment object.
targetID UOID Required. The UOID of the content object that this commentobject targets.
body String Required. The comment message.
author GlobalID Required. The GlobalID of the author of the comment object.
datetime XSD-Datetime Required. The date and time the comment object wascreated.
dateUpdated XSD-Datetime The date and time the comment object was updated.
signature Signature Required. Digital signature for the comment object createdby the author.

Table 3.32: Resource COMMENT
Method Path Parameter

GET :globalID/COMMENT/:commentID
GET :globalID/COMMENT/:commentID/TAG
GET :globalID/COMMENT/:commentID/LIKE
POST :globalID/COMMENT/ Comment object
PUT :globalID/COMMENT/:commentID Comment object
DELETE :globalID/COMMENT/:commentID

140 Chapter 3. Concept and Design

LIKE

The resource like implements the OSN feature like as described in Chapter 3.4.4
and allows users to express that they like certain content that has been published.
As like objects do not comprise content by themselves and merely represent an
indication that a user likes certain content, like objects simply specify a the liked
content’s UOID, a timestamp indicating the date and time of creation, and the
GlobalID of the like’s author. Like objects are remote content and therefore
specify a mandatory signature created by the author of the like object. The
complete format of like objects is described in Table 3.33. As described in Table
3.34, like objects can be created, read, and deleted by their author, yet cannot be
updated.

Table 3.33: LIKE format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "like" specifying the objecttype.
objectID UOID Required. The UOID identifying the like object.
targetID UOID Required. The UOID of the content object the like objecttargets.
author GlobalID Required. The GlobalID of the user that created the likeobject.
datetime XSD-Datetime Required. The date and time the like object was created.
signature Signature Required. Digital signature for the like object created by theobject’s author.

Table 3.34: Resource LIKE
Method Path Parameter

GET :globalID/LIKE/:likeID
POST :globalID/LIKE/ Like object
DELETE :globalID/LIKE/:likeID

3.7. The Sonic Protocol 141

TAG

The resource tag implements the OSN feature tag as defined in Chapter 3.4.4 and
allows users to express that a user is linked to the content object in a certain way.
An example is users being tagged in a photo or in a status update describing an
event. Tag objects simply express which user is associated with what content and
therefore specify a mandatory tagged GlobalID and the targetID of the content
the tagged user is tagged in. Furthermore, tag objects specify the creator of the
object, the date and time of creation, and an objectID. Tag objects are remote
content and therefore specify a mandatory signature created by the author of
the tag object. The complete format of tag objects is described in Table 3.36.
As described in Table 3.35, tag objects can be created, read, and deleted by their
author, yet cannot be updated.

Table 3.35: Resource TAG
Method Path Parameter

GET :globalID/TAG/:tagID
POST :globalID/TAG/ Tag object
DELETE :globalID/TAG/:tagID

Table 3.36: TAG format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed JSONLD-value "tag" specifying the objecttype.
objectID UOID Required. The UOID identifying the tag object.
targetID UOID Required. The UOID of the content object the tag objecttargets.
tag GlobalID Required. The GlobalID of the user tagged by the tag object.
author GlobalID Required. The GlobalID of the user that created the tagobject.
datetime XSD-Datetime Required. The date and time the tag object was created.
signature Signature Required. Digital signature for the tag object created by theobject’s author.

142 Chapter 3. Concept and Design

CONVERSATION

The resource conversation describes the exchange of messages between two
or multiple users. Each conversation encapsulates a conversation’s state and
the messages exchanged between all participants. Upon initiation, an empty
conversation object as described in Table 3.39 is created, with the initiating
user as its administrator and optionally one or more other users as participants.
The conversation object is then sent to all participants via HTTP POST. After a
conversation has been initialized, a conversation’s state can only be changed by
the administrator, where conversation objects are remote content and digitally
signed by their administrator. Conversation administrators can change a
conversation’s topic and add or remove participants. When a conversation’s
state is changed, an update is broadcast to all participants of the conversation.
Accordingly, when a new participant is added to a conversation, the conversation
object is replicated to the new user’s OSN profile, causing all further updates
to the conversation being send to him as well. Actions of participants of
the conversation are broadcast the all participants via conversation status
updates, where conversation status updates can be an update of the conversation
topic or adding or removing participants. Each conversation status change is
communicated via a conversation status object as described in Table 3.40, which
is sent via HTTP POST to all conversation participants. Conversation status
updates are informal and do not invoke any change of the conversation’s state.
Figure 3.37a depicts the communication flow for conversation and conversation
status messages.
Communication in conversations is implemented via messages, where each

message is broadcast by its author to all participants. After being sent, messages
can be updated by their author. To announce that a message has been received,
read, or (locally) deleted by a participant, message status updates are broadcast.
A message status is encoded as described in Table 3.42. This allows to track
which participants of a conversation have received or read a specific message,
or even deleted it manually. Similar to conversation status updates, message
status updates are informal and do not invoke changes in a conversation or
message. As conversation data is replicated to one or multiple other OSN profiles,
conversation objects, message objects, and status updates for both conversations
and messages are implemented as remote content and digitally signed by their
respective author. This allows all participants to monitor who received or read
a specific message. Figure 3.37b depicts the communication flow for messages
and message statuses.
The individual endpoints for the resource conversation are described in

Table 3.38. Figure 3.18 depicts a sequence of message flows for an example
conversation between three participants Alice, Bob, and Charlie. In this example,
participant Alice initiates the conversation with her and Bob as participants. As
the initiator and administrator of the conversation, Alice then adds Charlie to
the conversation and sends the conversation object to him. As the conversation
object has been changed, the updated object is also sent to Bob. Alice then
creates a conversation status object stating that Charlie has been added as a
participant. The conversation status object is broadcast to both Bob and Charlie,

3.7. The Sonic Protocol 143

(a) Message flow for conversation andconversation status messages. (b) Message flow for conversation-message andconversation-message-status messages.
Table 3.37: Message flow for resource conversation.

Table 3.38: Resource CONVERSATION
Method Path Parameter

POST :globalID/CONVERSATION/ conversation object
PUT :globalID/CONVERSATION/:conversationID conversation object
DELETE :globalID/CONVERSATION/:conversationID
POST :globalID/CONVERSATION/:conversationID/CONVERSATION-STATUS conversation-status object
POST :globalID/CONVERSATION/:conversationID/MESSAGE message object
PUT :globalID/CONVERSATION/:conversationID/MESSAGE/:messageID message object
POST :globalID/CONVERSATION/:conversationID/MESSAGE/:messageID/STATUS conversation-message-statusobject

144 Chapter 3. Concept and Design

announcing that a new participant has been added. Next, Charlie creates a
message object which he sends to both Alice and Bob. Both Alice and Bob create
a conversation message status object stating that the message has been received
and broadcast this conversation message status to all other participants. When
the message is actually read by Alice, she creates a new conversation message
status to announce that she read the message. The new status is also broadcast
to all other participants of the conversation. This example demonstrates, how
communication between multiple communication partners is implemented by
the Sonic protocol, where messages are broadcast to all communication partners.

Table 3.39: CONVERSATION format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "conversation" specifying the objecttype.
objectID UOID Required. The UOID identifying the conversation object.
topic String Topic of the conversation.
owner GlobalID Required. The GlobalID identifying the conversation’screator.
members Array<GlobalID> Required. Array of GlobalIDs of all participants. At least oneparticipant needs to be listed.
datetime XSDDatetime Required. Datetime of creation or last update of theconversation.
signature Signature Required. Digital signature for the conversation objectcreated by the object’s author.

Table 3.40: CONVERSATION STATUS format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "conversation-status" specifying theobject type.
objectID UOID Required. The UOID identifying the conversation-statusobject.
targetID UOID Required. UOID of the conversation the conversation statusobject targets.
status String Status conveyed by this conversation-status. Can be ADDED,

REMOVED, INVITED, JOINED, LEFT, or DECLINED.
author GlobalID Required. The GlobalID identifying the status’ author.
targetGID GlobalID Required. The GlobalID of the user targeted by theconversation-status.
datetime XSDDatetime Required. Datetime of creation of the conversation-status.
signature Signature Required. Digital signature for the conversation status objectcreated by the object’s author.

3.7. The Sonic Protocol 145

Figure 3.18: Example sequence of communication flow for aconversation between three participants Alice, Bob, and Charlie.

146 Chapter 3. Concept and Design

Table 3.41: CONVERSATION MESSAGE format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "conversation-message" specifying theobject type.
objectID UOID Required. The UOID identifying the conversation-messageobject.
targetID UOID Required. UOID of the message the conversation messagestatus targets.
title String Title of the message.
body String Required. The message body.
author GlobalID Required. The GlobalID identifying the author of themessage.
datetime XSDDatetime Required. Datetime of creation or last update of theconversation-message.
status String Required. Local status of the message, used to markmessages. Can be NEW, READ, or DELETED.
signature Signature Required. Digital signature for the conversation messageobject created by the object’s author.

Table 3.42: CONVERSATION MESSAGE STATUS format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "conversation-status" specifying theobject type.
objectID UOID Required. The UOID identifying the conversation-statusobject.
targetID UOID Required. UOID of the targeted message.
conversationID UOID Required. The UOID of the conversation the targetedmessage belongs to.
status String Required. Status conveyed by thisconversation-message-status. Can be RECEIVED, READ,or DELETED.author GlobalID Required. The GlobalID identifying the message status’author.
datetime XSDDatetime Required. Datetime of creation of theconversation-message-status.
signature Signature Required. Digital signature for the conversation messagestatus object created by the object’s author.

3.7. The Sonic Protocol 147

IMAGE

The resource image implements support for images to allow users to publish
photos and pictures. As described in Table 3.44, an image object specifies a
parameter objectID, the GlobalID of its owner, date and time of its creation, the
images width and height and an optional title and description of the image.
In order to support portability of the image data and prevent having image

metadata and the actual image file stored in separate locations, all data is stored
in the Sonic image object. The actual binary image data is stored encoded as
base64 using the data URI scheme [307]. As base64-encoded images are usually
approximately 33% larger as the original binary image file [308], the data URI
is compressed using gzip [309], resulting in only a minimal inflation of file size
[308]. Using data URIs, images can be directly displayed in a browser, while
extraction of the original binary image file is possible. Optionally, image objects
can store a reduced-size thumbnail of the image as a separate gzipped data URI.
Image objects are local content and therefore do not specify a signature. As
described in Table 3.43, image objects can only be read from their owner’s OSN
profile, allowing him to exert full control over each image’s distribution.

Table 3.43: Resource IMAGE
Method Path Parameter

GET :globalID/IMAGE/:imageID

Table 3.44: IMAGE format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "image" specifying the object type.
objectID UOID Required. The UOID identifying the image object.
owner GlobalID Required. The GlobalID identifying the image’s owner.
datetime XSD-Datetime Required. The date and time the link object was created.
title String Title for the image.
description String Textual description of the image contents.
imageData String Required. The base64-encoded image content as a data URI.
imageThumbnail String The base64-encoded thumbnail content as a data URI.
imageWidth Integer Required. Width of the image in pixels.
imageHeight Integer Required. Height of the image in pixels.

148 Chapter 3. Concept and Design

Supporting data formats

Besides the aforementioned data formats for encapsulating OSN profile
information, additional general data formats are defined that are independent
of OSN features.
• Collection Collection objects are used to describe lists of content objects. In
comparison to simple arrays, collection objects specify information about
the enclosed content, the owner of the collection, and are addressable via a
UOID. The format of the collection object is described in Table 3.45.

• Signature Remote content objects in Sonic comprise a digital signature that
guarantees that the original content is unaltered. Signature objects are
encoded similar to the JSON-based Linked Data Signature standard [310].
Besides the actual base64-encoded digital signature, signature objects
comprise information about the creator of the signature and the date and
time the object was signed. Furthermore, signature objects comprise a
random value for added security [301][302]. Signature objects are linked to
the content object they were created for by specifying the targeted content’s
UOID. The format of the signature object is described in Table 3.46.

3.7. The Sonic Protocol 149

Table 3.45: Collection object format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "collection" specifying the objecttype.
objectID UOID Required. The UOID of the collection object.
owner GlobalID Required. The GlobalID identifying the collection’s owner.
collectionType String Required. Type of the items stored in the collection.
items Array<JSONObject> Required. List of items in the collection

Table 3.46: Signature object format
Parameter Type Description

@context String Required. Fixed value "http://sonic-project.net/".
@type String Required. Fixed value "signature" specifying the object type.
targetID UOID Required. UOID of the content object the signature wascreated for.
creatorGID GlobalID Required. GlobalID of the user creating the signature.
timeSigned XSD-Datetime Required. XSD-Datetime specifying the date and time ofcreation of the signature.
random String Required. Random value for added security [301][302].
signature String Required. Digital RSA signature of the content object. Thesignature comprises the content object’s contents except forthe signature object itself.

151

4 Implementation

The solutions presented and described in Chapter 3 have been implemented to
provide a proof of concept and reference implementation, as well as to evaluate
the concept and design. This chapter describes the individual implementations,
including the respective procedure for building and installing the individual
projects, including their configuration and operation. First, the implementation
of the GSLS is described, followed by a description of the Sonic SDK. Finally, the
implementation of the Sonic OSN is described.

4.1 GSLS

The GSLS plays a crucial role in registering and connecting to users in the Sonic
OSNF. As described in Section 3.5, users register a GlobalID which is generated
from an RSA public key pair using SHA256 with PBKDF#2. This way, GlobalIDs
are created without a central authority controlling the process. The GlobalID and
public key of a user are stored in the Social Record, a dataset that furthermore
comprises information about the actual OSN profile’s URL. The Social Record is
digitally signed by its creator and stored as a JWT (JWS) to allow verification
of the dataset’s integrity. Resolving a known GlobalID to the associated Social
Record hence provides all information required to initiate a connection to a user’s
OSN profile.
The GSLS functions as a decentralized and globally distributed directory

service that stores all Social Record datasets. To achieve a fully decentralized
operation of the GSLS, data is stored in a DHT, a key-value store that is
distributed over all participating GSLS nodes. For retrieval of a Social Record,
its GlobalID is used as the lookup key, where the Social Record is tethered to its
GlobalID via the enclosed public key as described in Chapter 3.5. As by design
of the GSLS, no central authority exists that authenticates users or authorizes
requests, Social Record datasets stored in the GSLS are publicly readable, while
authorization for write access (create, update) is verified by the authenticity of
the JWT’s digital signature. This way, every user and service can request and
access any Social Record, while only a GlobalID’s creator and owner can update
his own dataset.
For ensuring availability of both the service as well as the managed datasets,

the GSLS relies on the self-management of the underlying DHT. As described
in Chapter 3.5, DHTs implement self-organization and self-healing capabilities
that result in a high resilience against individual node failures and various
directed attacks against the network. For data availability, the GSLS employs
indirect replication of the datasets. Indirect replication of data distributes each

152 Chapter 4. Implementation

dataset to multiple nodes using a set of alternative KBR procedures. This way,
even when several nodes fail, availability of a dataset is ensured.

4.1.1 Functionality

The GSLS implements functionality to write new Social Records to the DHT,
update existing ones, or retrieve a Social Record identified by its GlobalID. When
resolving a GlobalID, the GSLS attempts to retrieve the signed JWT stored for this
GlobalID from the DHT. In case a JWT is found, the enclosed Social Record dataset
is extracted and the JWT’s signature is verified. Furthermore, the data format of
the Social Record is checked, specifically verifying whether the GlobalID is valid.
This is done by hashing the values of personalPublicKey and salt, as described in
Chapter 3.5, creates the specified GlobalID. In case no error occurred, the signed
JWT is returned to the requesting entity. When a new identity is created or an
existing one is updated, the respective Social Record is sent to the GSLS as a
signed JWT. The GSLS then extracts the public key from the dataset in order to
verify the signature. Furthermore, the dataset’s format and GlobalID are checked
similarly to the checks performed when retrieving a Social Record. Only if no
error occurred, the JWT is written to the DHT, thus making it globally available.

4.1.2 Implementation

The GSLS is implemented in Java 81 as a Spring Boot2 application. Spring
Boot "takes an opinionated view of building production-ready Spring applications"
and "favors convention over configuration" and hence allows to build scalable and
robust software services based on an industry standard-grade framework. The
DHT functionality of the GSLS is provided by the open source project TomP2P3
[311], which provides an easy way to connect nodes into a structured overlay
network based on Kademlia [227]. The project uses Apache Maven4 to manage
code dependencies and the building process of the project and Docker5 to build
runnable containers for easy and platform-independent service deployment. The
requirements for building and running the GSLS service are summarized in Table
4.1. Further requirements, such as the Spring Boot or TomP2P libraries, are
managed by Maven. The source code of the GSLS has been released under the
MIT open source license6 and is available on GitHub via https://github.com/

sgoendoer/gsls.

Build

To build the project, the Maven plugins clean and install are used, which
create a single jar file including all dependencies according to the Maven
project configuration as specified in the project’s pom.xml file. To ensure

1Java 8: https://www.java.com/en/download/faq/java8.xml. Accessed: 30.8.20172Spring Boot: https://projects.spring.io/spring-boot/. Accessed: 30.8.20173TomP2P: https://tomp2p.net/. Accessed: 30.8.20174Apache Maven: https://maven.apache.org/. Accessed: 30.8.20175Docker: https://www.docker.com/what-docker. Accessed: 30.8.20176MIT Software License: https://opensource.org/licenses/MIT. Accessed: 30.8.2017

https://github.com/sgoendoer/gsls
https://github.com/sgoendoer/gsls
https://www.java.com/en/download/faq/java8.xml
https://projects.spring.io/spring-boot/
https://tomp2p.net/
https://maven.apache.org/
https://www.docker.com/what-docker
https://opensource.org/licenses/MIT

4.1. GSLS 153
Table 4.1: GSLS Requirements

Requirement Version Build/Run

Java 8 JDK 8 ✓/ ✗

Java 8 JRE 8 ✗/ ✓

Maven 4 ✓/ ✗

Docker 17 ✓/ ✓

the functionality of the code, a set of JUnit7 tests are implemented that are
automatically run by Maven during compilation of the project. Finally, a Docker
container is created that runs the GSLS service once started. Listing 4.1 lists the
commands required to build the project and create a runnable Docker container
identified as sonic/gsls:0.2.5.

1 git clone https:// github.com/sgoendoer/gsls.git

2 git ckeckout tags /0.2.5

3 mvn clean

4 mvn install

5 docker build -t sonic/gsls :0.2.5 .

Listing 4.1: Building the GSLS server from sources with Maven and
Docker

Run

To run the GSLS service, the Docker container is started via the command docker

run. The parameters -d and –restart=always start the container as a background
service that runs in detached mode and is restarted in case of an unexpected exit
or crash. The container exposes the ports 4001 (TCP and UDP) and 4002 (TCP),
where 4001 is used by the TomP2P overlay management of connections with
other nodes and exchange of messages, and 4002 is used for the REST interface
used by clients to access the service. Alternatively, the compiled jar file can be
started directly via java -jar gsls-0.2.5.jar -h.

1 docker run -d -p 4001:4001/ tcp -p 4001:4001/ udp -p 4002:4002/ tcp

2 --restart=always sonic/gsls :0.2.5

Listing 4.2: Building the GSLS server with Maven and Docker

Configuration

The GSLS features a list of configuration options that control specific behavior
of the service during runtime. The individual configuration parameters are
listed in Table 4.2. If no configuration values are explicitly specified during
service startup, default values are used. The most important configuration
parameter connectNode is specifying an existing GSLS node to connect to during

7JUnit testing framework: http://junit.org. Accessed: 1.9.2017

http://junit.org

154 Chapter 4. Implementation

startup. If at the specified location no GSLS service is detected, the GSLS will
bootstrap a new DHT. To prevent a separation the GSLS into multiple distinct
DHTs due to misconfiguration or network connectivity issues, GSLS nodes will
periodically attempt to re-connect to other known GSLS nodes. In case two
separate DHT overlays were created at some point, a reconnect will join both DHT
overlays back into one. The configuration parameter defaults to an IP address
managed by Technische Universität Berlin at which a GSLS node is running.
The configuration parameter portREST specifies the TCP port at which the GSLS
service is listening for incoming HTTP requests to retrieve, create, or update
Social Records. The configuration parameter logPath determines to what path
log files created by the service are written. The parameter defaults to logs, which
is created in the base folder of the service. When running the service as a Docker
container, log messages are managed by the Docker service and can be accessed
via the command docker $container logs, where $container is the container’s
id. The configuration parameter networkInterface allows to specify the network
interface to be used by TomP2P for maintaining and managing the DHT overlay.

Table 4.2: GSLS Configuration Parameters
Requirement Default Explanation

connectNode 130.149.22.220 IP address to connect to during service startup.
portREST 4002 Port of the HTTP REST interface.
logPath logs Path of the logfiles created by the service
networkInterface eth0 Network interface to use for DHT connectivity.

4.2 Sonic SDK

Sonic can be seen as a framework that marshals format and encapsulation of
data as well as the exchange of data objects between OSN platforms. Here,
the Sonic SDK provides a reference implementation for the Sonic protocol and
associated functionality. As Sonic simply marshals how content and messages
are exchanged between OSN platforms, any OSN platform implementing the
Sonic protocol only needs to provide functionality to send and receive such
requests and responses, where content needs to be formatted according to the
protocol specifications. A platform hence also needs to implement functionality
to format and parse information according to the data formats specified by the
Sonic protocol and furthermore provide means to digitally sign and verify the
data. The Sonic SDK aims to automate the entire process of sending and receiving
requests and responses, allowing developers of OSN platforms to integrate Sonic
into new and existing projects with little overhead.
The Sonic SDK is implemented in PHP, a popular scripting language with

OOP features. PHP is used by popular open source projects such as GnuSocial,
Mastodon, or Friendica and even is used in parts of Facebook [312]. Furthermore,

4.2. Sonic SDK 155

Figure 4.1: Overview of the package structure and dependencies inthe Sonic SDK.

a broad variety of open source frameworks and libraries based on PHP exist,
allowing a PHP-based SDK to be used in a broad variety of services and platforms.

4.2.1 Functionality

The Sonic SDK provides functionality that allows developers to automate tasks
and procedures required by the Sonic protocol. For example, the Sonic SDK
provides means to create and resolve GlobalIDs and Social Record datasets via
the GSLS in an automated fashion. Similar to the concept of DNS caches,
the Sonic SDK provides functionality to cache Social Record datasets in order
to minimize the amount of requests for resolving GlobalIDs. Furthermore,
the Sonic SDK provides functionality to create, format, and sign, as well as
parse and validate request and response messages to be sent or being received.
Request and responsemessages can be parsed, where transmitted content objects
can be transfered to data objects as specified by the Sonic content model.
Digital signatures of messages and content objects are automatically created and
verified, where the keys required for the verification of the digital signatures are
retrieved via the GSLS. Finally, the Sonic SDK implements support management
of access control policies in order to allow specification of access control policies
and rules as well as algorithms for policy evaluation.
The Sonic SDK implements a main class Sonic.php that initializes all

dependencies in the SDK according to implementation and configuration.
Functionality for the various domains is encapsulated into separate packages
as depicted in Figure 4.1, of which each is responsible for a distinct type of
functionality. The packages of the Sonic SDK are AccessControl, API, Identity,
Config, Crypt, Date, Model, and Request, encapsulating functionality as follows:

AccessControl

The package AccessControl implements optional access control functionality
for the Sonic SDK. The implementation allows to specify access control rules
for accessing resources, and furthermore allows to control access to individual
content objects. For evaluation and enforcement of access control rules,
a class AccessControlManager is provided that implements functionality for

156 Chapter 4. Implementation

interpretation and application of rules. If configured in the Sonic SDK instance,
access control rules are applied and evaluated when accessing all resources and
content objects.

Identity

The package Identity encapsulates classes and functionality for management of
a user’s identity and resolving other users GlobalIDs. While PersonalKeyPairs
of users should not be made available to an OSN platform in general, the
Sonic SDK implements functionality to create andmanage both PersonalKeyPairs
and AccountKeyPairs, and furthermore allows to create and manage Social
Record datasets. For verification purposes, the package Identity implements
functionality to verify integrity and authenticity of Social Records and also
implements functionality for interaction with the GSLS and caching of Social
Record datasets.

Model

The package Model provides classes and functionality to format and parse objects
specified by the Sonic protocol and architecture. Model classes implement
serialization functionality and deserialization via builder classes [313] to ensure
automated validation of enclosed information and signatures.

Crypt

The package Crypt provides functionality for creating and handling of
cryptographic key pairs, creation of random strings, as well as creation and
verification of digital cryptographic signatures.

Request

The package Request encapsulates functionality for creating, parsing, and
verifying incoming and outgoing requests and responses. For outgoing requests
and responses, the mandatory Sonic HTTP headers are automatically set and
the entire request is digitally signed by the sending entity, being either the user
or the OSN platform. For incoming requests and responses, data formats and
digital signatures are automatically verified, so that invalid messages received
by an OSN platform are directly intercepted.

4.2. Sonic SDK 157

API

The package API implements functionality to create requests for all resources
specified by the Sonic protocol. Requests can be created and dispatched via static
methods, thus minimizing the interaction with other packages and classes for
developers.

Date

The package Date encapsulates management of datetime functionality as well as
creation and verification of timestamps used by the Sonic SDK.

Config

The package Config encapsulates management of the SDK’s configuration.
The SDK’s configuration is stored and managed by a class implementing the
Singleton pattern [313], so that it can directly be accessed fromwithin the project.

4.2.2 Implementation

The Sonic SDK has been implemented as a Composer8 project, allowing
dependencies to be installed and updated automatically. The Sonic SDK is
implemented in PHP 7.09 and is fully compatible with PHP 5.6, 7.1, and 7.2,
where OpenSSL10 is required for signature and key management and cURL11 is
required for request handling. The SDK includes a set of PHPUnit12 tests, where
a set of tests has been implemented for each package.

Table 4.3: Sonic SDK Requirements
Requirement Version

PHP 5.6+ / 7.0+
cURL 7.20.0+
OpenSSL 1.0.0+

composer 1.0+

The Sonic SDK is instantiated via the main class Sonic.php, which implements
the Singleton pattern [313]. A basic example for initialization and configuration
of the Sonic SDK is described in Listing 4.3.
8Composer: https://getcomposer.org/. Accessed: 7.9.20179PHP: https://www.php.net. Accessed: 7.9.201710OpenSSL: https://www.openssl.org/. Accessed: 7.9.201711cURL: https://curl.haxx.se/. Accessed: 7.9.201712PHPUnit test framework: https://www.phpunit.de. Accessed: 1.9.2017

https://getcomposer.org/
https://www.php.net
https://www.openssl.org/
https://curl.haxx.se/
https://www.phpunit.de

158 Chapter 4. Implementation

1 require_once(__DIR__ . ’/vendor/autoload.php’);

2
3 use sgoendoer\Sonic\Sonic;

4 use sgoendoer\Sonic\Config\Config;

5 use sgoendoer\Sonic\Identity\EntityAuthData;

6 use sgoendoer\Sonic\Identity\SocialRecord;

7 use sgoendoer\Sonic\Identity\SocialRecordManager;

8
9 try {

10 // Sonic requires the Social Record of the OSN platform for

11 // initialization.

12 $platformSR = ’{" socialRecord ":{" @context ": --truncated -- }’;

13 $sr = SocialRecordManager :: importSocialRecord($platformSR);

14 $platformSocialRecord = $sr[’socialRecord ’];

15 $platformAccountKeyPair = $sr[’accountKeyPair ’];

16 $platformPersonalKeyPair = $sr[’personalKeyPair ’];

17
18 // Import SocialRecord for a user Alice

19 $aliceSR = ’{" socialRecord ":{" @context ": --truncated -- }’;

20 $sr = SocialRecordManager :: importSocialRecord($aliceSR);

21 $userSocialRecord = $sr[’socialRecord ’];

22 $userAccountKeyPair = $sr[’accountKeyPair ’];

23 $userPersonalKeyPair = $sr[’personalKeyPair ’];

24
25 // Configuring SDK. Default values are used otherwise.

26 Configuration :: setVerbose (1);

27
28 // Initialize the Sonic SDK. The SDK’s context is set "platform"

29 Sonic:: initInstance(new EntityAuthData($platformSocialRecord ,

30 $platformAccountKeyPair ,

31 $platformPersonalKeyPair));

32
33 // From this point on, the Sonic SDK is fully initialized. In order

34 // to perform requests in the context of a user , the context must

35 // be set to "user":

36 Sonic:: setUserAuthData(

37 new EntityAuthData($userSocialRecord , $userAccountKeyPair));

38 Sonic:: setContext(Sonic:: CONTEXT_USER);

39
40 // Perform a request to another user’s profile using a GlobalID

41 $globalID = ’28 B6TE8T9NUO202C5NZIUTNQSP88E70B8JAWH4FQ58OJOB8LIF ’;

42 $response = (new ProfileRequestBuilder($globalID))

43 ->createGETProfile ()->dispatch ();

44 $p = ProfileObjectBuilder :: buildFromJSON($response ->getPayload ());

45
46 echo "Profile object: " . $p ->getJSONString () . "\n\n";

47 } catch (\ Exception $e) {}

Listing 4.3: Example instantiation of the Sonic SDK

4.2. Sonic SDK 159

4.2.3 Configuration

The Sonic SDK allows to specify a set of configuration parameters that influence
certain behavior of the framework. Configuration values may be passed to the
configuration object as described in Listing 4.3 in Line 26. Table 4.4 lists all
configuration parameters of the Sonic SDK.

Table 4.4: GSLS Configuration Parameters
Requirement Default Explanation

primaryGSLSNode 130.149.22.220:4002 IP address and port of the GSLS node to resolveGlobalIDs.
secondaryGSLSNode 130.149.22.227:4002 Secondary GSLS node to be contacted in case theprimary GSLS node is not available.
apiPath /sonic/ Path from the base domain to reach a scripthandling Sonic protocol requests.
timezone Europe/Berlin Timezone of the OSN platform.
verbose 0 Verbosity of the service. 0: log nothing, 1: logerrors, 2: log info, 3: log everything.
requestTimeout 3 Timeout of protocol requests in seconds.
gslsTimeout 3 Timeout of GSLS requests in seconds.
logfile sonic_log.txt Path to the logfile.

Setup

In order to setup the Sonic SDK for an OSN platform, Composer is used to install
the SDK resources and manage all dependencies. To setup the SDK, it hence
needs to be added as a requirement to the overall project’s composer.json project
file as listed in Listing 4.4.

1 "require": {

2 "sgoendoer/sonic": "0.5.0"

3 }

Listing 4.4: Setup of the Sonic SDK
The Sonic SDK has been published on Packagist13, the package repository of

Composer. To install or update the Sonic SDK from Packagist, the command
./composer update is used. This causes Composer to install the Sonic SDK and all
of its dependencies automatically in the specified location.
13Sonic SDK on Packagist: https://packagist.org/packages/sgoendoer/sonic. Accessed: 30.8.2017

https://packagist.org/packages/sgoendoer/sonic

160 Chapter 4. Implementation

4.3 Sonic OSN

In order to test, evaluate, and demonstrate Sonic, the Sonic OSN has been
implemented as a reference implementation for Sonic-based OSN platforms
utilizing the Sonic SDK. While being initially developed for testing purposes only,
the implementation has been extended to provide an option for end users to
install and use an OSN platform compliant with the specifications of the Sonic
OSNF. The Sonic OSN implementation supports all functionality of the Sonic SDK
and allows to interconnect with other OSN platforms in the Sonic OSNF. Users
can register with a OSN platform running the Sonic OSN and create a social profile
page. In order to create a network of friends or acquaintances, the Sonic OSN
supports adding users to a friend roster using the Sonic protocol. Users can
post activities in a stream, access other user’s streams and profile pages, and
comment on, like, or tag posted content. The Sonic OSN furthermore supports
private communication between users via the Sonic protocol as described in
Section 3.7. Figure 4.2 depicts two example screens of the web frontend of the
Sonic OSN implementation.
Still, the Sonic OSN has been developed as a reference implementation to

develop and test the Sonic SDK. The implementation hence did not focus on a
streamlined user experience or state of the art user interface. For example for
evaluation purposes, raw contents of data objects used by the Sonic architecture
are displayed, allowing developers analyze sent and received data objects and
messages.

4.3.1 Implementation

The Sonic OSN has been implemented using the PHP-based framework Laravel14.
Laravel is a free and open source framework for building web applications and
services. The framework builds on the model-view-controller (MVC) pattern
[313] and utilizes the Composer package management system.
The Sonic OSN specifies a list of dependencies as listed in Table 4.5. The list

includes PHP, the Sonic SDK, as well as the Laravel framework. Furthermore,
the Sonic OSN requires a web server, for example a Apache HTTPd, for handling
incoming requests as well as a Database Management System (DBMS), for
example MySQL, for persisting data objects.

Table 4.5: Sonic OSN Requirements
Requirement Version

PHP 5.6+ / 7.0+
Sonic SDK 0.3.0+
Laravel 5.4.0+

14Laravel: https://laravel.com/. Accessed: 12.11.2017

https://laravel.com/

4.3. Sonic OSN 161

(a) Profile in the Sonic OSN.

(b) Display of the Social Record in the Sonic OSN.
Figure 4.2: Example screens of the Sonic OSN referenceimplementation.

162 Chapter 4. Implementation

4.3.2 SonicPi

To allow users to host a own Sonic-based OSN platforms without the need to
own a administrate their own server, the project SonicPi was developed as part
of a masters thesis in the Sonic project [314] and provides an installable version
of the Sonic OSN implementation, which has been adopted for deployment on
RhaspberryPi-computers. RhaspberryPi computers are affordable and small
single-board computers15. SonicPi has been built using a RhaspberryPi 2 Model
B, which features a ARM BCM2836 CPU based on the ARMv8-A 64/32-bit
architecture and 1GB RAM. The board features several connectivity options,
including USB 2.0, HDMI 1.3, 10/100 Ethernet, Bluetooth 4.1, 802.11n wireless
LAN, and a bootable MicroSDHC card slot. The board, excluding external
components, consumes approximately 350mA and does not require cooling and
hence is an ideal option for cost-efficient hosting of small web services at
home16. A SonicPi computer can be integrated into a user’s personal computer
network at home, for example by connecting it to the Internet router as depicted
in Figure 4.3.
The implementation of the SonicPi features an easy-to-use installation script

for setting up a home-hosted Sonic platform and connect it to the OSNF. As
broadband Internet connections typically do not support static IP addresses
and therefore change the IP address periodically, the SonicPi implementation
provides functionality to automatically update the IP address in the GSLS
[314]. This ensures availability of the SonicPi instance at all times, even when
a new IP address is assigned by the network operator, for example after a
(periodically forced) disconnect. The implementation of the SonicPi showed
that hosting an OSN instance within the home network of each user is feasible.
Still, RaspberryPi-based computers only provide a limited performance, causing
requests for a user’s profile and associated data to be comparably slow.

Figure 4.3: Architecture of the SonicPi implementation.

15RhaspberryPi documentation: https://www.raspberrypi.org/documentation/. Accessed: 12.11.201716RhaspberryPi FAQ: https://www.raspberrypi.org/help/faqs/. Accessed: 12.11.2017

https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/help/faqs/

163

5 Evaluation

To evaluate the proposed approach for an open and heterogeneous OSNF, a
four-fold evaluation is performed. First, a qualitative analysis is presented,
which assesses the proposed solution using requirements and challenges defined
in scientific literature. In a second qualitative analysis, the proposed solution is
evaluated based on the architectural significant requirements (ASR) defined in
Chapter 3.3, where a comparison of the developed components with existing
solutions in other OSN services is presented. Following, results of a quantitative
performance analysis of the GSLS are presented. To conclude the evaluation
of this thesis, a brief review of projects integrating the Sonic protocol and
architecture in new and existing solutions is given.

5.1 Qualitative Assessment of Requirements and
Challenges

Challenges faced by distributed OSN services and systems have been analyzed
and specified in scientific literature, where requirements have been derived
that should be fulfilled by DOSN services in order to successfully address
and overcome the issues of closed, centralized OSN services. Fitzpatrick and
Recordon defined several goals in their much-noticed article Thoughts on the
Social Graph, including to "make the social graph a community asset [...]", namely
by establishing a "[...] non-profit and open source software" ensuring that "[...] the
design [of components] is such that others can run their own instances, sharing data
with each other" [40]. Furthermore, Applequist et al. listed four major issues to be
tackled by DOSN services, being portability of OSN profiles and data, use of global
identifiers, "linkability" of data, and data privacy [105]. Paul et al. identified
a list of requirements for approaches to successfully distribute OSN services
in [106]. The list comprises transparency of the distribution of the service,
integration of functionality and content from all nodes in the service in a unified
user interface, support of all relevant OSN features, support for connections
between users on different nodes, uninterrupted availability of content and
functionality, and the ability of users to protect their privacy and specify who
is allowed to access what part of their profiles. In [315] and [88], Buchegger
et al. present an early overview of challenges to be addressed by P2P-based
DOSN services. The identified challenges specifically focus on issues in DOSN
services based on P2P-systems, but lists several challenges that also apply to
federated DOSN services. Challenges also applicable for federated DOSN services
comprise technical issues to solve such as topology of the architecture, locality
of data storage and message routing, identification and dissemination of content

164 Chapter 5. Evaluation

and users, security and data privacy, or robustness against failures and attacks.
Since user numbers in open DOSN alternatives are small compared to numbers as
reported by Facebook, Koll et al. analyzed technical reasons why DOSN services
were not able to attract a significant amount of users so far [101]. The survey
provided a list of identified challenges that should be met by DOSN services in
order to be able to succeed on the market. The list of challenges comprises
independence from any centralized component or provider, general availability
of the service independently of time and location, support for mobile-only
operation, minimization of communication overhead caused by the distribution
of the service, the ability to scale to a large number of users, resiliency against
attacks and potential misuse, support for data privacy for users, and overall
good performance of the service. Finally, Pathak et al. analyzed handling of
privacy in OSN services and implemented mechanisms for access control [249].
From their findings, they compiled a set of recommendations for federated
DOSN services regarding to privacy and access control, including support of
open standards, a comprehensive and extensible data model, fine-grained access
control mechanisms, identification of users, support for communication between
any two entities of the DOSN service, and discovery mechanisms for content.
From a more technical perspective, the W3C defined a collection of requirements
for web services, including interoperability, integration with the World Wide
Web, security, scalability, and extensibility [244]. A set of design principles
has also been defined by the FIArch group [245] comprising heterogeneity,
scalability, robustness, loose coupling, and locality. While heterogeneity as one
of the major characteristics of the Internet in general [316] describes the support
for different types of services and implementations, the principle of loose
coupling allows individual components to remain independent from each other.
Loose coupling should be supported because "loosely coupled systems are said to
have more flexibility in time constraints, sequencing, and environmental assumptions
than do tightly coupled systems" [245]. Scalability describes that services should be
able to scale to millions of users, while robustness suggests that services should
be able to deal with any possible kind of error [317]. Finally, locality suggests
that in order to prevent communication overhead in distributed systems, data
should be stored close to where it is actually processed.
The identified challenges and requirements can be grouped into thirteen

categories to be addressed, being support of core features and extensibility,
independence from central entities and distributed control, data portability, use
of global identities, openness of standards and formats, interoperability of services
and platforms, transparency of the federation and integration, data privacy and
access control, the ability to create and create and maintain relations with other
users, availability of data and functionality, support formobile devices, performance
& scalability, and third-party application support. In the remainder of this section,
the Sonic approach is evaluated against the aforementioned thirteen categories.

5.1. Qualitative Assessment of Requirements and Challenges 165

5.1.1 Core Features and Extensibility

Functionality in the social web differs between individual OSN platforms.
Researchers therefore note that novel OSN services have to support all important
functionality and furthermore also allow extensibility for support of possible
future features and functions. Paul et al. argue that a DOSN service must
implement and provide all core functionality of today’s OSN services, being
"publication, search, and retrieval of profiles and attributes", including "all data
related functions" [106]. Koll et al. further note that a DOSN service has to
allow integration and support for new features [101], while Pathak et al. note
that an OSN’s data model should not only support the description of existing
social resources, but also allow extensibility in order to support new types of
functionality and concepts [249]. Also, extensibility has been identified as an
important criterion for web services by the W3C [244].
As part of this thesis, featuresets of today’s most popular OSN services are

analyzed. Based on this analysis, a taxonomy of OSN features has been derived,
which is used to define a OSN core featureset. This core featureset comprises all
functionality supported by a two thirds majority of today’s most popular OSN
services and can hence be interpreted as standard functionality of the social web
of today. The Sonic protocol implements functionality for the OSN core featureset
and furthermore supports the implementation of additional functionality via
feature extensions. This way, different OSN platforms can implement a set of
additional OSN features not included in the OSN core featureset, where the Sonic
protocol provides functionality to negotiate supported feature implementations
between different OSN platforms.

5.1.2 Openness

Openness is an important factor for the long-term acceptance of technologies
and standards in the social web. Fitzpatrick et al. state that a solution to unify
the social web into one social federation should be open source and non-profit
[40], in order to allow anyone to contribute and adopt formats and protocols.
Pathak et al. also argue that DOSN services should comply to open standards
in order to support the integration of heterogeneous systems [249]. Openness
has also been stated as a requirement by the W3C for web services in general,
demanding a integrability with the World Wide Web [244]. By using open
standards instead of proprietary and closed ones, web services are able to freely
access relevant information from remote locations - in contrast to information
being locked up via restrictive interfaces. Similarly, the FIArch group listed
support for heterogeneity as well as independence of services via loose coupling
as requirements for future Internet services [245].
Sonic aims to build an open and heterogeneous OSNF of which any OSN

service can become a part of by implementing the required functionality and
protocol. The proposed protocol and employed data formats are therefore built
on existing open standards, which have been widely adopted by the web in
general and by OSN services in specific. For example, data in Sonic is encoded
in JSON, a platform-independent and human-readable format for encoding and

166 Chapter 5. Evaluation

exchanging information, while status updates are encoded using the Activity
Streams 2.0 standard. To ease the integration of existing OSN services into
the federation, a PHP-based SDK is provided, which implements all required
functionality to connect to other OSN platforms in the OSNF. Sonic intentionally
avoids the usage of proprietary APIs or data formats and instead builds on
existing open standards and formats. This allows both large OSN services as well
as developers of smaller solutions to connect their services to each other without
relying on proprietary formats or protocols. Both the Sonic architecture and
protocol are published in the public domain, where reference implementations
have been published on GitHub under the MIT open source license.

5.1.3 Independence & distributed control

The World Wide Web itself was designed as an open and distributed network of
information, in which no single entity is able to control and inhibit information
exchange. Still as of today, many services and platforms of the web are built in
a centralized fashion, creating strong dependencies on specific services and the
companies behind them. As pointed out in Chapter 1, the social web itself has
become a landscape of centralized, isolated walled gardens, in which users are
locked in. To address this issue, Fitzpatrick et al. point out that it is important
for the design of an open and federated social web to be designed in a way that
allows users to "run their own instances [and] sharingdatawith eachother" [40]. Koll
et al. further specify that a "DOSNmust not depend on any external resource provider,
neither commercial nor altruistically motivated" as a centralized resource provider
might not only to "observe communication patterns, but also [might] change the terms
and conditions or shut down their service [...]" [101], effectively impairing or entirely
interrupting a DOSN service’s functionality.
The architecture of the Sonic OSNF is designed in a distributed, open fashion.

This way, OSN platforms that implement the Sonic protocol remain independent
from each other following the principle of loose coupling. In case one OSN
platform in the federation fails, user profiles and content hosted on the failed
platform become unavailable for everyone in the OSNF as OSN services are
operated independently from each other. Consequently, interoperability of all
other OSN platforms in the OSNF is not impaired. Furthermore, the GSLS as
the common identity management service is organized in a distributed fashion
itself. GSLS servers join a P2P network that distributes content and control over
the DHT to all participating GSLS servers, where no centralized authority is able
to interrupt or censor datasets and requests.

5.1.4 Data portability

In today’s social web, users are locked into the OSN service they signed up
with. Missing support for interoperability of most OSN services inhibit seamless
communication between users of different OSN platforms. Furthermore, implicit
network effect bind users to the service they signed up with, relieving them
of any option to migrate to a competitor’s OSN service in case they become
dissatisfied for any reason. While many OSN services already provide export

5.1. Qualitative Assessment of Requirements and Challenges 167

functionality for OSN profile data, the implemented data formats are not suitable
for importing the data at a new location. In consequence, users can only change
their OSN provider by abandoning their entire OSN profiles and creating a new
one in the desired service. Following this process, all data is lost unless it
is imported in a cumbersome, manual process. While few implementations
support basic and mostly manual portability of OSN profiles, user identifiers
are inevitably changed, resulting in broken links in the social web.
The fact that users are inevitably bound to the OSN platform they initially

signed up with has been identified as one of the major issues of today’s social
web and web services in general. Applequist et al. note that the lack of support
for data portability is one of the four major problems experienced by users of
OSN services [105]. As it might be desirable for users to utilize content they
created in OSN services in other OSN services as well, Graef argues that OSN
services should provide functionality for a user to automatically extract his entire
OSN profile from any OSN platforms and import it in any other OSN service
without losing data [35]. As of 2016, the European General Data Protection
Regulation (GDPR) grants customers of web services the right to export personal
information, including the ability to transmit the exported information to other
services with the intention to import the data at the new location for further use
[109].
One of the main contributions of Sonic is the support of seamless and

automated migration of OSN profiles. Following the proposed concept of OSN
profile migration, data is automatically extracted from one OSN platform and
imported into another one. Here, the migration functionality encapsulates all
OSN profile information in a common data format that allows any OSN platform
to interpret and import an OSN profile. As user identifiers are resolved via the
GSLS to a OSN profiles current location, identifiers to and from a migrated OSN
profile remain intact and unchanged. This way, Sonic provides an automated
and seamless process for portability of data and profiles.

5.1.5 Global Identity

User identifiers in today’s social web are bound to the OSN platform they signed
up with and therefore have to be exchanged in case an OSN profile is migrated
to a new location. As described in Chapter 3.5, user identifiers usually comprise
the OSN platform’s domain name. In case a profile is migrated to a new service,
discovery of an OSN profile identified in this manner would therefore yield the
old OSN profile’s OSN service. As in consequence, the user identifier needs to be
changed to comprise the new OSN service’s domain name, links to the migrated
OSN profile become invalid.
Applequist et al. point out that a problem exists with the inability of users to

reuse their identity when signing up with a new OSN service. Specifically, users
need to "re-find their friends" while connections to friends are lost when a profile
is moved [105]. Buchegger and Datta [315] as well as Pouwelse et al. [91] also
note that it is essential to discover peers independently of their physical address.
Pathak et al. also note that means to securely identify communication partners
are essential for a DOSN service, where an "advanced cryptographic system" should

168 Chapter 5. Evaluation

provide trust and security [249]. They also note that resources need to be able
to be distributed within the federation, including mechanisms for identification
and discovery [249]. While focusing on P2P-base OSN services where a node’s
location in the network may frequently change, this also holds as a requirement
for the Sonic OSNF as it allows migration of OSN profiles.
Sonic introduces a self-issued, globally unique and domain-agnostic

identifier, the GlobalID, as well as an identity management service, the GSLS.
GlobalIDs are self-issued by users without the assistance of a central authority
and are derived from an RSA public key pair using PBKDF#2 hashes with SHA256.
This way, identifiers in Sonic are not only based on strong cryptographic
mechanisms, but also remain independent of the domain of a user’s OSN profile
location. As domain-agnostic identifiers require an alternative form of discovery
mechanism, the GSLS provides a distributed and decentralized lookup of OSN
profiles. Therefore in case an OSN profile is migrated to a new location, the
user’s identifier can remain unchanged, so that links to and from other user’s
OSN profiles are not interrupted.

5.1.6 Interoperability

Today’s social web is a landscape of isolated islands, where users of OSN
services are intentionally kept from seamlessly communicating with the users
of competitors’ services. This lack of interoperability has been identified
as one of the major challenges not only in DOSN services, but also in web
services in general [244]. In OSN services, interoperability would allow users
to communicate with other users on different OSN platforms. Interoperability
has been implicitly proposed by Smarr et al. in their Bill of Rights for the Social Web
[1], and has been listed by Graef as one of the main issues of closed, centralized
OSN services. Graef also claims that interoperability of OSN services is even more
important than data portability alone, as "porting personal data fromone network to
another does not solve the problem of loosing one’s friends if one moves" [35]. Finally,
the ability of any two entities in a federation to communicate with each other
regardless of the used service has also be noted as an important requirement
by Pathak et al. in their assessment of privacy in a federated OSN environment
[249].
Sonic addresses the issue of lacking interoperability in the social web

by proposing a holistic approach for seamless communication. The
approach comprises the Sonic protocol, which facilitates data exchange and
communication between OSN platforms. As OSN featuresets differ between
existing OSN implementations the Sonic protocol supports the OSN core
featureset, which is supported by a two-thirds majority of today’s most popular
OSN services as described in Chapter 3.4. Furthermore, support for additional
features can be implemented via the feature extension of the Sonic protocol,
allowing for support of new functionality as well as evolution of existing features.
This way, Sonic implements seamless interoperability of OSN services and allows
users of different OSN platforms to connect to and interact with each other. This
way, platform borders become transparent for users, as it is rendered irrelevant
on which OSN platform a user’s OSN profile is hosted.

5.1. Qualitative Assessment of Requirements and Challenges 169

5.1.7 Transparency and Integration

The social web has become a communication medium for people worldwide
and is used by individuals regardless of nationality, gender, age, or educational
background. Paul et al. therefore state that the distribution of OSNs therefore
needs to be entirely transparent, as it has to address a broad range of users,
including inexpert audiences [106]. Transparency mandates, that it is rendered
irrelevant whether an accessed profile or data object is hosted on a local or remote
OSN platform, and whether the hosting OSN platform is a different OSN service
implementation than the one the profile or data is accessed from or not. To
achieve this, Paul et al. argue that a single integrating user interface must be
provided, in which data from all connected OSN profiles and platforms can be
displayed for a user [111].
The Sonic approach provides a protocol and a set of data formats to exchange

and describe information in a unified fashion between different OSN platforms.
In the resulting OSNF, accessing data from another user’s OSN profile will
retrieve this data from the respective OSN platform hosting the profile, where
data is formatted using the data formats described by Sonic. The requesting OSN
platformmay then extract and verify the received information and display it in its
own user interface to the user. Following this approach, data from different OSN
profiles hosted on different OSN platforms will be displayed in a common way,
following the design and look & feel of the respective OSN platform’s interface as
depicted in Figure 5.1. Platform borders are hence eradicated, as it is rendered
irrelevant for users at which OSN platform data is hosted.

Figure 5.1: Dissemination of content in the OSNF: Content isretrieved from connected OSN platforms and displayed locally ina single integrating interface. Following this principle, platformborders become transparent to the user as it is rendered irrelevantat which OSN platform content is hosted.

170 Chapter 5. Evaluation

5.1.8 Privacy

Protecting a user’s data privacy is a major issue web services in general and DOSN
services in specific face [244], where data should be stored locally within the OSN
profile of its owner following the locality principle [245]. Being one of the main
reasons for decentralization of OSN services, support for controlling access to
one’s data, for example via definition of fine-grained access control, is crucial
and must be provided by all DOSN implementations [101]. Furthermore, Paul et
al. [106] note that confidentiality, defined as the fact "that information is notmade
available or disclosed to unauthorized individuals, entities, or processes" [318] should
be ensured and access to every attribute of OSN profiles needs to be controlled.
To address privacy issues of today’s centralized OSN services, Applequist et al.
[105] propose a policy-based approach allowing users to define fine-grained
permissions to control who is allowed to access what parts of their profiles.
Similarly, Pathak et al. note that users should be able to define fine-grained
access control policies to control who is allowed to access certain parts of their
OSN profiles [249].
Based on the Sonic protocol, different kinds of OSN platforms are connected,

rendering it irrelevant which type of OSN service is used to host a user’s OSN
profile. Hence, users can freely choose a OSN provider they trust, or even
run their own OSN platform, for example on a virtual machine in the cloud
or at home. This improves data privacy for all users, as they are able to
control, which OSN provider gains access to their entire OSN profiles, effectively
preventing unwanted use of profile information for targeted advertisement or
similar uses. As Sonic proposes a open and heterogeneous federation of OSN
services in which OSN profiles and all associated data is hosted on different OSN
platforms, attackers are implicitly hindered from accessing all user’s information
when successfully attacking one OSN platform as "a decentralized systemwithout a
single, central data repository [...] limits the risk of large-scale privacy breaches" [88].
Finally, Sonic implements a role-based access control mechanism as proposed by
Applequist et al. [105] and Pathak et al. [249]. By defining fine-grained access
control rules, users are able to specify, which users are able to access what part
of their social profile data and in what way.

5.1.9 Relations

OSN services are built on the principle of users being able to connect to each
other, forming a global network of friends and acquaintances referred to as the
social graph. A decentralized federation of OSN services needs to address the
issue of how to create and maintain the social graph in a distributed fashion,
without a central entity being able to monitor and control the process. Paul
et al. note that it is imperative that relations between users need to be able
to be modeled just as in traditional, centralized OSN services [106]. They
further state that modeling relations is important as they are often used for
"publish-subscribe-like communication, ease of access control, andpublicly announcing
real world friend- and other relationships".

5.1. Qualitative Assessment of Requirements and Challenges 171

Sonic allows to define unidirectional, explicit links between individuals,
where each link needs to be requested explicitly and confirmed by the targeted
user before it is considered to be established. In case a link request is confirmed,
a digitally signed link object is created, acting as proof of the fact that the
connection has been confirmed by the user to whom the request was directed.
This way, a distributed, reliable social graph can be built, in which the creation
of fake friends lists is prevented.

5.1.10 Availability

OSN services in general build on the idea of building a digital representation of
oneself, which then can be accessed and viewed by other users. In consequence,
availability of data and functionality of an OSN service is a crucial criteria
and needs to be guaranteed [106][245]. While the use of dedicated servers in
federated DOSN environments provides a basis for uninterrupted availability,
single-user OSN platforms hosted at home or on mobile devices might fail to
provide the required availability due to changing IP addresses or interrupted
network connections. Especially P2P-based mobile DOSN approaches introduce
the issue of availability of data, as nodes hosting contentmay become unavailable
and information therefore unreachable. Here, Koll et al. state that functionality
and availability of a DOSN service must be ensured at all times [101].
The Sonic OSNF creates a heterogeneous ecosystem of loosely coupled,

independent OSN platforms. While in this approach, individual platform servers
may fail causing OSN profiles hosted on these OSN platforms to become
unavailable, the overall functionality of the OSNF would remain unimpaired and
fully functional. Still, availability of functionality and data provided by individual
OSN platforms needs to be ensured by the respective OSN platform operator.
The GSLS as the overarching directory of identities is organized itself as a

DHT-based P2P service. To provide uninterrupted availability and operation of
the service, all Social Record datasets are replicated to multiple GSLS nodes in
the overlay using indirect replication. In case one or some GSLS nodes fail,
the DHT reorganizes itself using its built-in self-healing capabilities, while the
replication strategy ensures that no data is lost.

5.1.11 Mobile support

Due to the ongoing trend towards mobile Internet access [319], Koll et al. argue
that an OSN service has to be able to be run on mobile devices and remain
fully functional even if all components of an OSN service are hosted solely on
mobile devices [101]. Mobile devices face a series of technical limitations, such
as bandwidth limitation, battery lifetime, allowed high speed traffic, availability
due to insufficient network coverage, or computational power. These limitations
make running and hosting a OSN platform in the Sonic OSNF a complicated task,
as it requires the mobile device to be constantly reachable while running an
application server and other services.
Sonic was not designed with mobile hosted services in mind and hence lacks

support for addressing the aforementioned limitations, as well as resulting issues

172 Chapter 5. Evaluation

such as availability of content or changing IP addresses of the device. Current
hardware of mobile devices is anyhow capable of running a Sonic-compliant OSN
platform. While this claim has been proven by the SonicPi project as described in
Chapter 4.3, integrating mobile devices as OSN platforms into the OSNF would
require to tackle several issues regarding to availability and connectivity.

5.1.12 Third Party Support

Buchegger and Datta note that support of third-party applications and services
is of importance, as third-party applications and services add and extend the
usability and attractiveness of OSN services in general [315]. The architecture
of Sonic allows OSN platforms to implement any form of additional APIs and
interfaces, such as Open Social, in order to provide optimal flexibility for
developers. Still, Sonic does not specify any APIs or guidelines for the integration
of third-party applications and services.

5.1.13 Performance & Scalability

As the social web has become one of the main communication mediums of
today, OSN architectures are required not only to be designed for efficiency
and performance, but also to be able to scale to several millions of individual
users. Koll et al. [101] note that a DOSN service needs to provide an at least
"user-friendly performance", as especially P2P-based solutions often exhibit high
latencies. They argue that even though a distributed OSN service will not be able
to perform as good as a centralized one due to the inevitable communication
overhead, "[...] query delays should be well within 2 seconds". Generally, Koll et al.
note that storage and communication overhead should be kept at a minimum in
order to prevent the entire service to be slowed down, while at the same time
the service needs to be able to scale to a high number of users.
As of today, the user base of the social web is concentrated in a small number

of OSN services, which therefore each host a high number of OSN profiles.
For example, Facebook as today’s largest OSN service worldwide, is used by
more than 2 billion users [74] while RenRen is used by 240 million users [83].
In consequence, providers of large OSN services are forced to employ large
datacenters to satisfy a high number of customers with an at least reasonable
performance [242]. DOSN architectures distribute both OSN profiles of users and
workload over a number of nodes, thus lowering the need for highly performant
servers being deployed. Still, low performance nodes might negatively influence
the overall performance of a DOSN service.
The OSNF, as envisioned by Sonic, introduces a paradigm shift towards a

larger number of OSN platforms each hosting a smaller number of OSN profiles.
This would allow even small companies with limited resources to operate an OSN
service for a smaller number of users in the OSNF. In the most extreme version
of this scenario, all users would host their own OSN profile on a self-hosted
server, resulting in every OSN platformmaintaining exactly one OSN profile. This
way, users are able to remain in full control of their OSN profiles and associated
information. Individual users who demand and value a high level of privacy and

5.1. Qualitative Assessment of Requirements and Challenges 173

control for their OSN profile can setup and run their own private server. At the
same time, users who prefer to have their OSN profile hosted for them can choose
an OSN service operator that fulfills their demands and expectations.
As found by Darwish and Ghazinour [320], users can be grouped by howmuch

they value privacy in OSN services. Users, who value data privacy and direct
control of their OSN profile high enough, are able to to go through the required
overhead of operating their own private server in order to run their own OSN
platform in the OSNF. Still, the average user of OSN services will most likely
choose an OSN service provider that offers the convenience of hosting one’s OSN
profile.
The current federated social web demonstrates, how users choose their

DOSN platform in a federation of DOSN servers. Here, the website podupti.me
maintains a list of available servers in the federated social web, including the
respective number of users hosted on each server1. As servers have to be
added to the list proactively, the list cannot be considered as comprehensive
as many existing servers are probably not listed. Still, the numbers published by
Podupti.me2 allow to derive an estimation of how the number user accounts per
server varies. Podupti.me lists 133 individual servers with an availability of more
than 50%3, of which 102 reported the number of hosted users profiles. In total,
42,812 users are reported with an average number of hosted user profiles of 419.7
and a median of 50 users. 18 of the listed servers report ten or less registered
users, where 5 servers report more than 1,000 users each. The largest server is
run by the Diaspora project and reports 16,967 individual users. Hence, even
though a federated approach introduces overhead for communication and data
exchange [101], the overall feasibility of federated social networks has proven
itself through the evolution of federation protocols and services of the past
decade. Further analysis of federated social web services has been conducted,
for example by Marcon et al. [107], Koopmans [321], or Koll et al. [322].
Sonic implements distribution of content with little communication overhead

as content is not replicated to other OSN platforms. Following this paradigm,
content is only transferred when it is actually requested, allowing to minimize
the overall overhead of storage.
Scalability has also been identified as an important criterion for web

service design in general [244][245]. As identified by the FIArch group as a
design principle for web services in general, a diverse, loosely coupled, and
heterogeneous architecture should be provided [245]. Loose coupling reduces
dependencies between individual components, which function independently
from each other and communicate using open protocols. This allows to connect
different implementations in a scalable, diverse federation of services.
As the performance of a specific OSN platform directly depends on multiple

aspects, such as implemented functionality, quality of the implementation,
or hardware specifications, the proposed approach cannot guarantee a good
performance. Still, the design of the OSN platform architecture allows OSN

1Project Podupti.me: https://podupti.me/. Accessed: 26.11.20172Numbers as published by Podupti.me by the end of November 20173Uptime is tracked via Uptimerobot: https://uptimerobot.com/, Accessed: 26.11.2017

https://podupti.me/
https://uptimerobot.com/

174 Chapter 5. Evaluation

service operators to implement an OSN service with a good efficiency and
performance.
Furthermore, while scalability of the Sonic approach with millions OSN

profiles and a high number of servers couldn’t be verified in practice, existing
DOSN implementations in today’s federated social web demonstrate that
distribution of OSN services in a federated approach is working in terms of
performance and scalability.

5.1.14 Discussion

For creating a foundation for an open and decentralized social web, several
challenges have been identified that can be grouped into thirteen distinct
categories. The challenges and requirements listed not only address technical
issues that are required to be solved in order to build a viable solution for a
decentralized social web, but also address the question of success factors for
OSN services. While some of the identified challenges are mutually exclusive or
at least hard to satisfy at the same time [101], they point the way towards an
open, decentralized, and successful social web.
Sonic addresses all issues and challenges of the aforementioned thirteen

categories. While all important features of the social web as of today are
defined in the OSN core featureset and supported by the Sonic protocol,
support for additional OSN feature implementations can be added through
protocol extensions (Core Features & Extensibility). This way, a common way of
communication and interoperability is established (Interoperability). The protocol
builds on and adapts existing open protocols and standards such as Activity
Streams 2.0, PortableContacts, or JWT, and therefore allows for easy integration
and adoption by other services and implementations (Openness). Users in the
OSNF are able to create social profile pages and define connections to each
other (Relations), where individual users and data objects are identified via
self-issued, globally unique, and domain-agnostic identifiers (Global Identity).
The use of domain-agnostic identifiers for both users and objects allows OSN
profiles to exist independently from the OSN service they were created in, and
thus facilitates addressing user profiles regardless of the domain of the OSN
service they are hosted on. This results in an interoperable federation of servers,
where platform borders are rendered entirely transparent to users (Transparency).
Moreover, OSN profiles being independent from OSN services facilitates support
for seamless migration of entire OSN profiles between OSN platforms without
the connections between OSN profiles being severed (Data Portability).
All components of the OSNF that is being realized by Sonic are connected

in a loosely coupled fashion without any centralized entity being able control
or inhibit communication or the general functionality of the federation
(Independence & Distributed Control). The design of the Sonic architecture aims
to minimize overhead for communication in the OSNF, and hence allows the
federation to scale to a high number of users, while the performance of individual
OSN platforms depends on the respective implementation and deployed
equipment (Performance & Scalability), including the respective uninterrupted
availability of a service (Availability). The proposed OSNF generally stores

5.2. Comparison 175

content within the OSN profile of its creator, without replicating copies to all
connected users. Only content objects that are associated with other content are
stored in remote locations, where unauthorized editing of content is prevented
via digital signatures. This allows users to keep full control of their data,
including reactions of other users to their content, for example in form of textual
comments or likes. Furthermore, users can define fine-grained access control
rules to specify which users are allowed to access which parts of their OSN
profiles (Privacy & Access Control). One important aspect of today’s social web
is the integration of third-party applications into OSN services. As described in
Chapter 3.7, today’s OSN services provide APIs for external services to connect
to and access their platforms, while Open Social has been proposed as an open
alternative for access of third-party services to OSN platforms. To allow optimal
flexibility for OSN platform implementations, the Sonic architecture hence does
not explicitly specify APIs or protocols for integration of third-party applications
and services (Third-party support). Finally, while several DOSN approaches have
been proposed that implement functionality and data storage to be managed on
mobile devices, the architecture of the proposed OSNF envisions a federation of
stable OSN platforms, each one hosting one or multiple users. While in theory,
OSN platform solutions may be implemented for and deployed on small and
mobile devices, this would raise issues regarding to availability and performance
of both functionality and data (Mobile Support).
The proposed solution therefore successfully addresses nine of the thirteen

categories of challenges. Two more categories, being availability and
performance & scalability, are addressed partly. Two categories, being mobile
support and third-party application support, are not covered. While not being
directly addressed and solved by the proposed approach, the partially supported
and not supported challenges can be addressed and fully solved by respective
OSN platform implementations. Table 5.1 summarizes the challenges addressed
by Sonic.

5.2 Comparison

The OSNF, as proposed and designed by Sonic, addresses a series of challenges
and issues a solution for an open and federated social web has to tackle. While
Sonic proposes a holistic solution that addresses a list of issues and challenges
identified in scientific literature as described in Chapter 5.1, other solutions exist
in the social web that also address some of these issues. In order to provide an
overview of existing solutions for the aforementioned issues in the social web,
this chapter presents a comparison of how the individual issues are addressed in
other solutions for a federated social web.

5.2.1 Architecture

Centralized OSN architectures combine all control over the service as well as their
users’ data in one single company or organization, causing concerns regarding to
data privacy and how one’s personal data is handled. To address the drawbacks of

176 Chapter 5. Evaluation

Table 5.1: List of Requirements and Challenges for DOSN servicescovered by Sonic.
Core Features & Extensibility: [106][249][244]

Openness: [40][105][249]

Independence & Distributed Control: [40][101]

Data Portability: [105][35]

Global Identity: [105][249]

Interoperability: [105][35][249][244]

Transparency: [106]

Privacy: [105][106][101][249][244][245]

Relations: [106]

Availability: [106][101][245] G#

Mobile Support: [101] #

Third-party Application Support: [315] #

Performance & Scalability: [101][244][245] G#

centralized architectures, decentralized alternatives for OSN services have been
proposed. As discussed in Chapter 1, an open and heterogeneous federation
of OSN services would allow to address lock-in effects in the social web and
would furthermore allow users to freely choose their OSN provider. Through
the distribution of all functionality as well as data storage to multiple, mutually
independent OSN operators, no single organization or service operator is able
to control, monitor, or inhibit functionality of the OSNF as a whole. One
requirement for an open and decentralized federation of OSN services is hence
the full distribution of control of functionality and data by disallowing any
central point of failure in the architecture. The necessity for a decentralized
architecture and control has been defined as non-functional requirements in
Chapter 3.3 in Requirements R3 (Decentralized and Federated Architecture)
and R4 (Distributed Control and Management), while the need for an easy
integrability of the architectural components is addressed by Requirement R1
(Non-Intrusive Design).
As described in Chapter 2.1.2, DOSN services commonly employ either

a federation of loosely coupled, but otherwise independent servers, a

5.2. Comparison 177

self-organizing P2P network of client devices, or hybrid architectures combining
both approaches. P2P-OSN architectures, such as Peerson or LotusNet execute
OSN functionality and store data on the end users’ devices, which organize
themselves in a P2P-network so that no central server is required that could
inhibit or control communication flows in the network. F-OSN services host
functionality and data on servers, which remain mutually independent from each
other. In federated service architectures, each server operator is able to control
all communication to and from the respective OSN platform, and furthermore
control the content of all hosted OSN profiles. Anyhow, functionality of the
overall OSN federation can neither be controlled nor inhibited. Federated
architectures for DOSN services have been proven to be potent and scalable
foundations for OSN services in general and have been implemented in
various services, such as Diaspora, Friendica, Mastodon, or Hubzilla. For
identification of OSN profiles and content objects, F-OSN services implement
domain-dependent identities as described in Chapter 3.5. In consequence, OSN
service operators are able to inhibit availability of OSN profiles hosted on their
domain. While Friendica offers a simple migration mechanism for OSN profiles
that allows users to move their OSN profile to another Friendica server, the user
identifier is changed in the migration process, resulting in possible broken links.
Sonic proposes a highly diverse, heterogeneous OSN ecosystem, in which

OSN platforms are connected in a loosely coupled fashion based on a common
protocol that holistically covers all OSN functionality as defined in the OSN core
featureset. As seamless interoperability between arbitrary OSN platforms in
the OSNF is supported, users are able to choose an OSN service and platform
they prefer in order to maintain an OSN profile in the social web without being
cut off from communicating with users of other OSN platforms. To implement
independence of all OSN platforms in the OSNF, Sonic introduces a decentralized
architecture, in which no single entity can control any vital part of the OSNF. As
OSN platforms in the OSNF are connected in a loosely coupled fashion, each OSN
platform operator is able to exert control of the respective platform and the OSN
profiles stored on it, but cannot influence or inhibit functionality of the overall
OSNF. Furthermore, the GSLS as the identity management system of the Sonic
OSNF is in itself distributed and therefore exposes no single point of failure. At
the same time, individual node failures in the GSLS are compensated by the self
healing functionality of the underlying DHT. As OSN profiles as well as content in
the OSNF is identified and addressed in a domain-agnostic fashion, OSN profiles
and all associated data can remain functional even after the OSN platform they
were created on is discontinued. The Sonic OSNF hence introduces no single
point of failure, as all components are able to work independently in case any
component or service ceases to function.

5.2.2 Interoperability

Interoperability in the social web enables different OSN platforms to seamlessly
connect to each other in order to form an open and heterogeneous network, in
which users are able to communicate and connect to each other across platform
borders. To allow OSN platforms to connect to each other in a seamless and

178 Chapter 5. Evaluation

transparent fashion, communication protocols and data formats for information
exchange are required. These protocols and data formats should rely on existing
and widely adopted open standards of the social web and support all standard
OSN features of today’s OSN services. Furthermore, as noted in Chapter 3.4,
featuresets of OSN services are diverse and evolve over time as new or improved
functionality is continuously added to the existing OSN implementations. A
communication protocol as a solution for interoperability in the social web
is therefore required to support a variety of different implementations and
featuresets, and furthermore needs to be extensible in order to support the
integration of new functionality. Seamless interoperability, enabled through
open and extensible protocols and data formats, has therefore been defined
as non-functional requirements in Chapter 3.3 as Requirements R6 (Seamless
Communication and Interoperability), R7 (Open Protocols and Data Formats),
and R11 (Extensibility).
As described in Chapter 2.3, a variety of open protocols exist that implement

interoperability between different OSN services. Being mostly based on open and
widely adopted data formats and standards such as Activity Streams or Portable
Contacts, these protocols facilitate exchange of content between different OSN
service implementations without the need of a user to be registered in more than
one OSN service. Individual OSN platforms connect to each other in a federation
of mutually independent, loosely coupled servers, where messages are routed to
the OSN platform of a targeted OSN profile. While this way basic interoperability
is implemented, only a very limited set of functionality is supported as analyzed
in Chapter 2.3. Yet, most of the standard functionality of the OSN core featureset
as defined in Chapter 3.4 is not supported. Furthermore, the existing protocols
lack of an extensive documentation, which aggravates the task of implementing
support for a specific protocol suite. In consequence, interoperability in the
federated social web is error prone and faulty, and furthermore lacks support
for most standard functionality in the social web [13]. While being published
under open source licenses, the existing federation protocols do not implement
support for extensibility. As a result, developers are able to implement extended
functionality for a protocol. Still, as long as the proposed changes are not
published as a new version of the original standard, altered versions of the same
protocol may become incompatible to the original and other extended versions.
Anyhow, as a large variety of OSN features exist and new functionality is added
to the existing OSN implementations on a regular basis, this would result in a
high number of different, incompatible versions for the same protocol.
Sonic implements seamless communication and interoperability with all OSN

platforms through the Sonic protocol as described in Chapter 3. Differences
between OSN platforms in the Sonic OSNF become entirely transparent to users,
as access to another user’s OSN profile is made possible independently from its
actual location and service type. In order to facilitate compatibility and easy
adoption, the protocol is based on widely adopted standards and data formats.
For example, a user’s stream of status updates is based on Activity Streams 2.0,
while social profile pages are encoded in a format based on Portable Contacts.
Finally, all data in Sonic is encoded using JSON and JSON-LD, a platform

5.2. Comparison 179

independent and widely adopted open format. At the same time, the protocol
is built in a REST-ful fashion, allowing for an easy integration in existing
web-based services. This eases the task of building software and services for
the OSNF. Based on the proposed protocol, Sonic supports all main features
of today’s popular OSN services and furthermore supports additional features
though its built-in extensibility. For extensibility support, the Sonic protocol
allows OSN services to implement and use individual features in collaboration
with all other OSN platforms in the OSNF. All feature extensions implemented
by an OSN platform are then published via the feature API, allowing other OSN
platforms in the OSNF to request a list of supported extensions. This way, the
compatibility for specific functionality of an OSN platform can be determined
and synchronized between communicating OSN platforms. Implemented feature
extensions may then be used if both communication partners support the same
feature implementation with a compatible version. The proposed solution hence
supports seamless communication between users of different OSN services as
well as holistic service interoperability.

5.2.3 User Identification

By inhibiting users of different OSN services to seamlessly communicate with
each other, users are confined within the OSN platform they signed up with.
In order to connect to and communicate with users of other OSN services as
well, users are forced to sign up with multiple OSN services simultaneously. Not
only is the simultaneous maintenance of multiple OSN profiles cumbersome for
users, but furthermore discloses personal data to multiple OSN providers at the
same time as data is published in multiple OSN services simultaneously. Support
for interoperability of different OSN platforms provides a basis for singular OSN
profiles in the social web, allowing users to use one single OSN profile to connect
to friends and acquaintances on any other OSN services. Furthermore, OSN
profiles should be portable in order to allow users to migrate their entire OSN
profile to a new service at any time, without connections to and from other
OSN profiles being broken due to the change of location and hosting service.
In Chapter 3.3, Sonic hence specifies a set of non-functional requirements for
identity management of users in Requirements R2 (Platform Independent Social
Personas), R9 (Singular OSN Profiles), R10 (Migration of OSN Profiles), and R8
(Global User Identification).
In contrast to centralized OSN services that lack support for interoperability

with other OSN services, F-OSN alternatives based on protocols such as OStatus,
Pump.io, or ZOT allow communication between different OSN services and
platforms to a certain extent. By supporting interoperability, users may use
a single OSN profile to connect to and communicate with users from other
OSN platforms. This way, singular OSN profiles are supported, even though
functionality of existing social federation protocols is limited to few core OSN
features. As described in Chapters 2.3 and 3.5, most F-OSN architectures rely
on email-style identifiers for users, thus ultimately binding a user identifier
to its domain. While this way discovery of OSN profiles is simple and straight
forward, OSN profiles cannot be migrated to other OSN platforms without the

180 Chapter 5. Evaluation

user identifier being changed. In consequence, links to the migrated OSN profile
in content or in other OSN profiles become invalid and inevitably break. Friendica
as the only F-OSN service implements a manual profile migration, following
which a user’s identifier is changed. To minimize the amount of broken links in
the network resulting from a profile migration, Friendica supports a notification
mechanism that informs users of connected OSN profiles about the change of the
identifier. Still this way, only links in other user’s address books are updated,
while links in content such as status updates, tags, or images are left unchanged.
To address the problem of being forced to register with multiple OSN services

at the same time, the Sonic OSNF introduces the concept of singular OSN profiles
that allow users to maintain only a single OSN profile that is not replicated
to other locations. This singular OSN profile can then be used to connect to
users of arbitrary other OSN services without the need to register in these other
OSN services as well. Singular OSN profiles in the Sonic OSNF are enabled via
a unified identity management via the GSLS, which implements a global and
domain-agnostic way of identifying users and content via GlobalIDs. This allows
any OSN platform to access information of a - potentially remote - user’s OSN
profile, while all content is protected against unauthorized changes via digital
signatures. Furthermore, OSN profiles in the Sonic OSNF remain independent
from any OSN service or domain and can hence be migrated to other OSN
platforms at any time. As described in Chapter 3.5.4, Sonic provides migration
functionality to transfer entire user accounts seamlessly from one OSN platform
to another one in an automated fashion. The data transfer is supported by the
Sonic protocol, while the use of domain-agnostic SonicURIs, as introduced in
Chapter 3.6.4, ensures that links to migrated content are kept intact. At the
same time, connections to other user profiles are kept intact through the use of
globally unique and domain-agnostic GlobalIDs.

5.2.4 Data Privacy

One of the main reasons for alternative DOSN services being implemented is
the lack of data privacy and control users are forced to accept in traditional
centralized OSN services. As discussed in Chapter 1, centrally organized OSN
services, such as Facebook or Twitter, claim ownership of all data their customers
create on or upload to their OSN service platforms. The data is then used for
building highly detailed user profiles, which again are utilized for purposes
such as targeted advertisements. In consequence, the individual user has no
control over this process and is usually not even informed about what parts of
his personal data are used how. Control of one’s personal data as well as access
to it is hence defined in Chapter 3.3 as Requirement R5.
Decentralized approaches allow users to host their personal data on any OSN

platform operator they trust, thus giving users a choice to whom to entrust their
data without being cut off from the rest of the users of the social web. While
choosing an existing OSN platform operator requires users to trust that their
data won’t be used and accessed in ways they would not agree to, it provides
a convenient way of using OSN services for users with less or no technical
background. Users with a high demand for privacy and security can furthermore

5.2. Comparison 181

host their own OSN platform in order to host their own OSN profile, allowing
them to exert ultimate control over the entire social profile. Still, most existing
DOSN services disseminate content to all friends, creating multiple copies of the
data which are then stored in remote locations at which the originating author
has no direct control.
In order to allow users to remain in control of their data, Sonic introduces

a content model following which content is always stored at the OSN platform
of the author with no replicas being created and distributed to other connected
OSN platforms per default. Only remote content, such as comments on another
user’s content, are stored under certain conditions within the OSN profile of the
respective other user, who then assumes full ownership of such a content object.
Sonic furthermore defines a fine-grained access control model, allowing users to
specify detailed access control policies and therefore fully control, who is allowed
to access what parts of their OSN profile.

5.2.5 Discussion

While several aspects that are able to decentralize control and data in the
social web have been successfully been solved and implemented in existing
DOSN approaches, several issues of the closed and proprietary social web
haven’t yet been solved by existing OSN implementations. While existing
DOSN implementations solve issues stemming from centralized architectures
by distributing both functionality and data across multiple servers or nodes,
seamless interoperability between different OSN platforms is mostly not
supported at all. Protocol suites such as DFRN, OStatus, or Pump.io address the
issue of lacking interoperability, but only cover a very limited set of functionality
of today’s social web. Furthermore, existing approaches are not extensible and
therefore cannot be dynamically adapted to changing featuresets of the social
web. The proposed solution implements a holistic protocol, which not only
supports the standard functionality of today’s social web, but also allows OSN
platforms to dynamically extend their implemented functionality via feature
extensions.
Furthermore, today’s OSN profiles and user identities are inevitably bound

to the OSN service and platform they are created in and therefore cannot
be easily migrated to a new OSN platform. While Friendica offers a very
limited implementation of portability for OSN profiles, Hubzilla implements
a concept following which content and user account information is replicated
to multiple nodes, so that user accounts can be controlled from multiple OSN
platform servers. Still, no holistic concept for data portability exists for OSN
profile migration. Sonic implements a holistic profile migrations mechanism,
which allows to migrate user accounts between OSN services without loss of
information of connections.

182 Chapter 5. Evaluation

5.3 Performance Evaluation of the GSLS

As requests for other OSN profiles rely on the availability of the associated Social
Record dataset in the GSLS, the OSNF is one of themost crucial components of the
OSNF. The GSLS is therefore designed in a decentralized manner with no central
entity or organization able to control its overall availability and functioning. Any
user or organization involved in the OSNF is able to run and maintain a GSLS
server, which is automatically included in the DHT based on its self-organizing
architecture. This way, service availability of the GSLS is guaranteed by all
participants of the OSNF, while no single entity is able to control the service
or the managed datasets.
As all requests in the OSNF are being routed with help from the GSLS, its

performance and availability is of key importance. DHTs are designed for use
with very high numbers of users running individual nodes with a reasonable
performance. For example, analysis of a Kademlia-based DHT showed that DHTs
with approximately one million individual nodes provide a robust operation
based on data replication and redundant routing, providing an overall tradeoff
between availability, overhead, and performance [230].
For a quantitative evaluation of the GSLS, a network of three separate virtual

servers was set up. The GSLS was installed on each of the servers and configured
to connect to the other servers. Each virtual machine featured 1 CPU, 1 GB of RAM,
and 10 GB of disk space running Debian Linux "Jessie" with a 3.16.0 kernel. The
GSLS daemon itself was running as a dockerized service using Docker 17.09.0-ce.
The conducted test evaluated the performance of the GSLS under high load. To
simulate a high load situation, Apache JMeter4 was used to simulate multiple
clients accessing the service simultaneously using 100 threads. The machine
used for sending the requests to the GSLS was a late-2011 Apple MacBook Pro,
featuring an Intel i7-2620M dual code processor at 2.70 GHz and 12GB of RAM
running MacOS X.
As creating Social Record datasets and the associated key pairs is the

computationally most demanding part of registering an identity in the GSLS,
5000 individual Social Record datasets were created in a first offline phase and
stored in a comma-separated-value (CSV) file. Each stored record comprised the
respective record’s number, the GlobalID, and the Social Record dataset encoded
as a signed JWT. Using this file, the computed Social Records could be read from
the file and directly sent to the GSLS without any need for further encoding.
In the second online phase, the Social Record datasets were read from the

CSV file and send via HTTP POST to the configured GSLS server. To simulate
simultaneous requests, JMeter was configured to perform 10 requests per second
until all 5000 datasets were sent to the GSLS via HTTP POST. Following the
writing phase of Social Record datasets, a second phase was performed, in which
all Social Record datasets were read from the GSLS.
In the given scenario, when resolving a GlobalID to the associated Social

Record dataset via HTTP GET, the GSLS service performed well with an average
response time of 11.24ms and a median response time of 7ms. While the fastest
4Apache JMeter: http://jmeter.apache.org/. Accessed: 15.11.2017

http://jmeter.apache.org/

5.3. Performance Evaluation of the GSLS 183

response was completed after 3ms, few requests took several seconds to complete
with amaximum response time of 528ms. When registering identities by sending
new Social Record datasets via HTTP POST to the GSLS, an average response time
of 19.24ms and a median of 13ms was measured. The increased duration when
writing Social Record datasets is thought to be caused by the internal overhead
of writing data to the DHT. Here, the slowest response observed took 2746ms to
complete, the fastest one 8ms.
While the performance of the GSLS showed very fast response times, this

could be caused by the fact that all GSLS nodes as well as the machine running
the performance test were located in the same network. In scenarios where
the individual nodes of the DHT are distributed over multiple networks, routing
paths will be longer and most likely result in worse service response times. The
results reflect the findings of Ramasubramanian and Sirer presented in [232],
which found their DHT-based DNS service to perform well with a mean of 106ms
for resolving queries.

(a) CDF of performance measurements for read operations of the GSLS.

(b) CDF of performance measurements for write operations of the GSLS.
Figure 5.2: Cumulative Distribution Function (CDF) of performancemeasurements of the GSLS.

184 Chapter 5. Evaluation

5.4 Integration

The concepts and components proposed in this work have been utilized and
integrated in a list of software development and research projects. This section
provides an overview of the integration activities that used or adopted concepts
of this thesis.

5.4.1 Friendica

In order to demonstrate and test the applicability of the OSNF, the architectural
components of Sonic have been integrated into the open source OSN Friendica
by Hebbo [323] as part of the research project Sonic (see Appendix A). The
integration replaced the formerly used protocol suite of Friendica as described in
Chapter 2.3 entirely, allowing an adapted Friendica server to seamlessly connect
to any other OSN platform in the OSNF. The functionality of the architectural
components of the Sonic architecture could be added with little overhead. As
Friendica implements a complex and not documented database structure tailored
to its specific functionality, the database table structure needed to be replaced
in larger parts for the integration. As Friendica stores multiple, separately
encrypted versions of content for all connected users, the redesign of the table
structure resulted in a more efficient and simple database table structure.
Finally, the GUI of the original Friendica OSN was left unchanged apart from
minor details such as displaying Sonic-compliant user identifiers.
In direct comparison with the original Friendica protocol suite, messages

exchanged between Sonic-compliant Friendica platforms showed 20% less
overhead with a slightly increased computational overhead due to Sonic’s digital
signatures for both content and messages. Summarizing, Hebbo notes that
implementing the Sonic protocol into Friendica makes the "development process
[of connecting OSN platforms] easier and simpler", as multiple fragmented protocols
are replaced by a single, well-defined one [323]. The resulting Sonic-compliant
Friendica implementation is able to interact with the Sonic OSN reference
implementation, while the solution allows the Friendica platform to maintain
its look and feel as well as its overall user experience. Still, by integrating the
Sonic architecture into Friendica, a "better usability and [a] more convenient user
experience" is achieved through a more transparent way of handling requests
and visualizing content without redirecting the user agent.

5.4.2 Feature Extensions

Apart from the integration of Sonic into the Friendica OSN, Beckmann developed
feature extensions for the Sonic protocol to demonstrate the feasibility of the
approach. The implemented functionality comprised a presence notification
feature as well as a poke feature. The presence notification extension allows
users to set a status in their OSN profile, such as away or available for chat, which
can be retrieved by other users. The poke feature extension implements the
functionality of Facebook’s poke feature as described in Chapter 3.4. Both OSN
features were implemented and integrated in the Sonic OSN. Summarizing his

5.4. Integration 185

experiences with the Sonic SDK, he noted that he found the Sonic SDK to be an
"easy form for developers whowant to include the [Sonic] protocol in their OSNs" [324].
Furthermore, he highlighted that the extendability of the core featureset via the
feature extension protocol would provide a viable advantage of the architecture.

5.4.3 Sonic App

As management of the RSA key pairs associated with one’s Social Record dataset
can be a cumbersome task that might overwhelm normal users of OSN services
Sonic App, a mobile application for the management of the PersonalKeyPair and
AccountKeyPair as described in Chapter 3.5, has been implemented. The Sonic
App is based on Google Android and allows users to create or edit a Social Record
dataset and associated cryptographic key pairs. The application implements the
GSLS API and is therefore able to synchronize the managed Social Record dataset
directly with the GSLS. Furthermore, the application is capable to synchronize
the created key pairs directly with a OSN platform via a special API, which has
been integrated into the Sonic OSN. This way, management of a user’s identity is
made simple and convenient. Furthermore, the app allows users to create a QR
code comprising their GlobalID, which can be scanned by other users. Scanning
another user’s QR code hence allows to verify one’s identity or add someone to
one’s friend list. Examples of the Sonic App user interface are depicted in Figure
5.3.

(a) Main Screen. (b) Editing a Social RecordDataset. (c) Scanning a QR code.

Figure 5.3: User interface of the Sonic App.

186 Chapter 5. Evaluation

5.4.4 ReThink

The concept and architecture of the GSLS was adopted by the EU-funded
project ReThink (see Appendix A). ReThink proposes a novel architecture
for decentralized web-based communication facilitating dynamic trusted
relationships among distributed applications [8][11]. Based on the ReThink
architecture, service providers are able to build solutions for a novel distributed
Internet, in which various communication platforms are able to communicate
with each other using a set of automatically negotiated protocols. As one of
the core requirements of ReThink, independence of a user’s identity from any
service provider’s domain could be realized by applying the concept of Sonic’s
globally unique, domain-agnostic GlobalIDs. ReThink implements the concept
of the GSLS in its Identity Mapping and Discovery Service (IMaDS) [10], in
which users are able to manage self-asserted identities. The IMaDS comprises a
discovery service that implements functionalities of a contextual search engine,
as well as registry services that manage the identity records of the users of
the ReThink architecture. Identity information is then stored in a distributed
directory services that maps the globally unique identities to user accounts in
the various service domains.

187

6 Conclusion

OSN services by long have become an integral part of our everyday lives. The
rise of the social web changed how we use and see the web, introducing a
shift from static to dynamic and from separated to connected. As of today,
we use OSN services to express ourselves, create and collect content such as
images or videos, share content and information with our friends and colleagues,
exchange messages, plan and organize events, or keep track of what’s happening
in the world. Yet, despite social communication being intrinsically a distributed,
decentralized phenomenon, most OSN services are built in a central, monolithic
fashion, following which all knowledge and power is concentrated in one
company or organization. When people started to realize that their data was
being used by OSN providers for monetary gain, discontent started to spread.
Users of the social web started to feel apprehensive about the fact that their
personal and in parts very private data was being used for targeted advertisement
while at the same time they were implicitly forced to forfeit their rights of
ownership and control to OSN providers. Yet despite users continuously voicing
concerns regarding these practices, the design of today’s closed and proprietary
OSN services still disallows users from freely communicating with other services,
while implicit network effects are used to create walled gardens, in which users
are locked-in and are unable to migrate to alternative solutions without losing
their data.
To address the prevalent situation of the social web being run by few

organizations in a restrictive manner, alternative OSN architectures were
proposed that distribute control and data to multiple independent servers.
Decentralization as an architectural concept promised users the ability to remain
in control of any data they collected in their social profiles. Still, the implicit
network effects that exist in large OSN services keep preventing users from
migrating to alternative solutions in significant numbers, as abandoning one
OSN service for another one would inevitably result in losing one’s friend list,
profile page, and created data. Trying to avoid losing all this information and
content they accumulated over years of usage, the majority of users of OSN
services are reluctant to consider alternative solutions. Ultimately, today’s
OSN market is dominated by one single service, which was able to attract a
significant amount of users while a large number of competing services and
alternative solutions exist that combine a comparably rather small number of
users. The social web, which once was diverse and heterogeneous, has become
a monoculture of few dominating OSN services.
Two main aspects have been identified that contribute to the current situation

of few OSN services heavily dominating the entire market [35]. First, the lack of
data portability prevents users from moving existing OSN profiles to alternative

188 Chapter 6. Conclusion

solutions that would better fit their demands and expectations. Without
functionality to export one’s OSN profile data and re-import it at another
arbitrary OSN platform with the ability to keep using it at the new location, users
would have to abandon their OSN profiles and enclosed information altogether
and create a new and empty OSN profile in a new OSN service. Moreover, the
situation wouldn’t be resolved at all as they would simply be locked in again in
just another OSN service. Besides the lack of support for data portability, the
lack of interoperability prevents users of different OSN services from seamlessly
communicating with each other. The lack of support for interoperability creates
isolated islands of OSN services, to which users and data are confined. While data
portability alone would simply facilitate users tomove their OSN profiles to a new
service without losing data, they would still be left isolated from all users who
refused to migrate with them without any means to communicate with them.
Therefore, interoperability represents an even more important aspect of an open
and decentralized social web, as it would allow users to connect to each other
and furthermore seamlessly communicate.

6.1 Summary of Results

In this thesis, the concept, design, and implementation of Sonic, an architecture
for an open and heterogeneous federation of OSN services, is presented. Sonic
is built on the idea of utilizing and combining existing OSN microstandards to
provide a holistic framework for OSN interconnectivity. The overarching vision
of Sonic is an open, seamlessly interconnected, and heterogeneous ecosystem
of OSN platforms, in which users are not restricted to only communicating with
users of the same OSN platform, but can seamlessly interact and collaborate
with users of arbitrary other OSN services. Following this approach, borders
between individual OSN platforms become transparent to users and are therefore
rendered irrelevant. In consequence, lock-in effects of today’s social web, which
are keeping users from abandoning an OSN service they are dissatisfied with,
are eradicated as user profiles may be freely migrated from one OSN platform to
another at any time without losing established relationships in the social graph.
This allows users to freely choose an OSN platform of their liking instead of being
limited in their choice to the platform used by the majority of one’s friends as a
decision for another OSN service essentially would result in being cut off from all
users of other OSN services. This vision of an Online Social Network Federation
(OSNF) is built on a holistic approach comprising an open and extensible social
API as well as data formats.
The main contribution of this thesis is four-fold. First, an extensive analysis

of supported functionality in today’s most popular OSN services is presented
in Chapter 3.4. Based on the results of this analysis, a taxonomy of OSN
functionality is introduced that allows to map different, yet equivalent feature
implementations to each other. Furthermore, the core OSN featureset is defined,
which comprises the most popular functionality of today’s social web and
therefore represents today’s "default OSN functionality". Designers of novel
OSN services can use this taxonomy to build OSN services that support the

6.2. Addressed Research Questions 189

standard functionality of today’s social web. Second, an architecture model
for OSN services is presented in Chapter 3.6. The Sonic architecture introduces
components for OSN platforms to seamlessly connect to each other in the OSNF.
The architecture is designed to be easily integrable, thus allowing existing OSN
service implementations to retain their look and feel and overall user experience.
Third, as user identifiers in the social web are traditionally domain-bound, Sonic
introduces a novel concept for domain-agnostic and globally unique identifiers
in Chapter 3.5. These GlobalIDs are derived from a user’s RSA key pair and
are registered in a distributed directory service based on DHT technology, the
GSLS. This allows users to register identities without the need of a central entity
controlling the process. As GlobalIDs are domain-agnostic, OSN profiles and all
associated data may be migrated between OSN platforms in the OSNF without
links between user accounts being broken in the process. Finally, based on
the OSN core featureset, the Sonic protocol is presented in Chapter 3.7. The
Sonic protocol is based on REST and adopts existing open standards of the
social web. This way, seamless interoperability between OSN platforms in the
OSNF is implemented. To further allow OSN services to implement and support
additional features, the Sonic protocol supports feature extensions.
To support integration of both architecture and protocol into new and existing

implementations, the PHP-based Sonic SDK is introduced in Chapter 4. The
Sonic SDK automates the handling of communication in the OSNF, formatting
data, as well as communication with the GSLS. As a proof of concept, the Sonic
OSN has been developed, which demonstrates the applicability of the approach.
Both the Sonic SDK and the GSLS have been published under open source licenses.
To furthermore evaluate the feasibility integrating the architectural components
and the protocol into existing OSN implementations, separate projects assessing
the integration of Sonic were conducted. In a first project, the proposed
architecture and protocol has been integrated into the DOSN service Friendica,
demonstrating the feasibility of integration into existing implementations. In
a second project, the proposed architecture and protocol has been applied to
a RhaspberryPi implementation that allows self-hosting of a fully functional
Sonic compliant OSN platform at home. Finally, to ease handling one’s RSA key
pairs and Social Record datasets, an Android-based mobile application has been
implemented that allows users to create and edit identity information in the
GSLS.

6.2 Addressed Research Questions

Sonic addresses a set of research questions as defined in Chapter 1.6, comprising
an enabler for OSN diversity, mapping of OSN features and featuresets, seamless
interoperability between OSN services, data portability for OSN profiles, and
domain-agnostic identification of users and content in a distributed social web.
• Enabler for OSN Diversity OSN markets are traditionally of a concentrated
nature, as network effects make it hard for new and smaller services to
prevail on the market [35]. This ultimately limits the number of viable

190 Chapter 6. Conclusion

companies in the market, resulting in a homogeneous landscape of OSN
services. Today, few large OSN services dominate the entire market, leaving
little room for smaller competitors. Research Question RQ1 hence addresses
ways how to re-introduce heterogeneity and diversity into the OSN market,
allowing small and new OSN services to compete with other companies
without being eclipsed by the network effects of large services. With the
vision of an open and heterogeneous OSNF, Sonic introduces a platform for
a diverse and open social web.

• Mapping OSN Featuresets To allow different OSN featuresets of the various
existing OSN services to be mapped to one another as stated in Research
Question RQ2, OSN features of today’s most popular OSN services are
analyzed in Chapter 3.4. The analysis shows that while OSN services differ
in user experience, design, and functionality, certain recurring OSN features
can be identified. While individual implementations of OSN features differ
between OSN services, synonymous OSN features can be mapped to one
another. Based on the analysis of today’s twelve most popular OSN services,
a taxonomy of OSN features is derived, where the OSN features supported by
the majority of the surveyed OSN services define the Sonic core featureset,
comprising the OSN features profile, link, conversation, stream & activities,
image, like, comment, and tag.

• Enabling OSN Interoperability As stated by Graef in [35], interoperability of
different OSN services is needed in order to enable competition in the OSN
market, which currently is dominated by few overly powerful OSN services.
Research Question RQ3 therefore targets viable solutions for implementing
interoperability protocols for OSN services. Sonic proposes an open and
platform independent protocol and furthermore a REST-ful API that enables
OSN platforms to communicate with each other and exchange information.
In order to guarantee compatibility with existing standards, Sonic specifies
data formats for the exchange of content objects based on JSON and other
open standards.

• Enabling Data Portability The European General Data Protection Regulation
(GDPR)mandates that users of web servicesmust be able tomigrate existing
user accounts and associated information to another service with the intent
to use it at the target location [109]. Data portability in the social web would
allow users to abandon an OSN service in case one becomes dissatisfied
and in consequence would force OSN services to compete with each other.
Given the option to move to a competitor’s OSN service at any time, OSN
services would need to attract users by providing a better service quality or
user experience than their competitors. As this would contribute to more
innovation and competition in the OSN market [35], Research Question
RQ4 hence addresses viable ways of migrating OSN profiles between OSN
platforms without existing connections to the migrated profile to break.
Sonic proposes a migration API, which allows users to export their OSN
profiles along with all comprised information from their current OSN
service and re-import it at the desired target OSN service.

6.3. Future Work 191

• Identification As user profiles in OSN services are usually identified by local,
domain-bound identifiers, migrating an OSN profile to another OSN service
and therefore domain will inevitably break connections to the migrated OSN
profile. Research Question RQ5 therefore addresses identification of users
and data objects in the Sonic OSNF independently from an OSN service’s
domain. Sonic introduces a globally unique and domain agnostic identifier,
the GlobalID. GlobalIDs are self-issued by the users in the Sonic OSNF
and are derived directly from cryptographic key pairs. As GlobalIDs are
domain-agnostic by design, Sonic introduces the Global Social Lookup
System (GSLS), a decentralized directory service built on DHT technology,
for resolving identifiers to the associated OSN profile locations.

As of today, implicit network effects draw users to the OSN services with
the most users. Once registered, users are caught and bound by lock-in
effects and the resulting threat to lose all data when abandoning the service.
The solution proposed by Sonic allows arbitrary OSN services to connect to
each other in a seamless fashion. In the resulting heterogeneous and diverse
federation of OSN services, users are able to connect to OSN profiles of friends,
relatives, and acquaintances regardless of what OSN service in the OSNF they
use. Sonic introduces a non-intrusive design that can easily be integrated into
existing OSN implementations with little overhead or impact on the existing
user experience and business logic. The architecture facilitates OSN service
federation using the Sonic protocol and data formats, allowing arbitrary OSN
platforms to seamlessly communicate and exchange data, hence implementing
interoperability in the social web. As OSN functionality continuously changes and
evolves, Sonic implements extendability in order to support future functionality
and use cases of the social web. As Sonic implements migration of user
profiles, data portability as mandated by the GDPR is supported, where global
and domain-agnostic user identification is provided. This way, Sonic promotes
platform independent social personas which can be migrated between different
OSN platforms on demand. Sonic supports the use of singular OSN profiles,
which allows users to access the social web and collaborate and interact with
users of arbitrary OSN services without the need for maintaining multiple OSN
profiles in order to stay in touch with users of different OSN services. Finally,
Sonic allows users to keep end exert full control over their personal data and
information, as OSN profiles can be hosted at trusted locations and can be moved
in case an OSN platform is not trusted anymore.

6.3 Future Work

One of the main challenges the distributed social web faces today is the lacking
motivation of users to abandon closed OSN services and migrate to new, open
alternatives. Reasons for this are not only the strong network effects that draw
users to the OSN services with the largest user base, but also aspects such as the
fear of losing one’s carefully created and collected data due to the OSN lock-in
effect, being cut off from the majority of the users of the social web in smaller,

192 Chapter 6. Conclusion

alternative DOSN services, or the fact that alternative services such as Diaspora
or Friendica again constrain their users in their own ecosystems, in which users
are again mostly unable to freely communicate with other services in the social
web. As long as users don’t have a user-friendly, attractive alternative for
the predominant centralized OSN services, willingness to change to alternative
solutions is likely to remain low for most users.
With Sonic, a solution is proposed that facilitates to eradicate lock-in effects,

allowing users to move away from closed, centralized solutions without losing
their data. Still, today’s largest OSN services such as Facebook or RenRen are
most likely not willing to open up to a federated, open social web and allow their
users to freely choose whether to migrate to a competitor’s solution or not. As
long as the threat of losing one’s OSN profile and carefully curated data exists,
the majority of users of OSN services will most likely be reluctant to abandon
their profiles in favor of an open, decentralized alternative.
As found by Krasnova et al., the most important criteria for a user’s choice

for an OSN service are price and network popularity [56]. Yet, as most OSN
services allow users to sign up and use the service without a monetary fee,
the remaining main criterion for choosing a network is its popularity. DOSN
services today represent comparably isolated solutions themselves and thus do
not provide enough motivation for users to abandon their existing OSN profiles
in closed OSN services.
Sonic presents a holistic solution that allows small OSN services to connect

to each other seamlessly, thus connecting the small and in itself isolated
communities they represent in the process. Given the assumption that a
larger number of alternative OSN platforms adopts Sonic as a standard for OSN
interoperability, users in the resulting OSNF would be able to use the network
of OSN services as a free and open social web. The resulting OSNF would feature
OSN services targeting different needs and demands, thus offering every user
a platform he or she might find more suitable than the closed alternatives
in existence. Ultimately, this will attract more and more users to join the
decentralized, federated social web, fostering heterogeneity and openness. Once
a large enough number of users and OSN services start using services in the
ONSF, it will eventually become self-sustainable as analyzed by Westland [58]
and establish itself as a de facto standard. Ultimately, the large centralized OSN
services that dominate the market as of today will be coerced to join to OSNF
themselves to avoid being cut off from the majority of users. Therefore, the main
objective for the future of the social web is to implement and support Sonic as a
common, open standard for interoperability in a large number of OSN services.
This way, the OSNF will eventually be able to attract a significant number of
users.

193

A Projects

A.1 Sonic

Sonic (SOcial Network Interconnect) is a research project that aimed at
developing an innovative concept for online social networks (OSN) that addresses
problems of current OSN platforms. Sonic mainly focused on novel concepts
for data privacy, data portability, and interoperability issues. As part of Sonic,
innovative protocols and algorithms were designed and implemented, which
allow seamless communication and data exchange between different brands and
types of OSN platforms. The developed solution facilitates a seamless integration
of different OSN platforms and allows users of these services to change operator
and platform at any time without losing any data.
Sonic has been chosen by the Federal Ministry of Education and Research

(BMBF) as one of the IT projects in 2014 to be funded within the Software Campus
initiative. Software Campus1 integrates leading research and practical experience
in a new type of concept in order to create a new generation of top managers
and entrepreneurs with an excellent IT background.
• Project title: SONIC (SOcial Network Interconnect)
• Project coordinator: Sebastian Göndör
• Project partners:

– Telekom Innovation Laboratories (T-Labs), Germany
– Technische Universität Berlin (TUB), Germany

• Project duration: 03/2014 – 07/2016
• Programme: SoftwareCampus (BMBF / EIT-ICT)
• Förderkennzeichen: 01IS12056
• Project website: http://sonic-project.net
1Software Campus website: http://www.softwarecampus.de/. Accessed: 19.7.2017

http://sonic-project.net
http://www.softwarecampus.de/

194 Appendix A. Projects

A.2 ReThink

The EU-funded research initiative ReThink addresses the status quo of
web based services being built in a closed fashion. Similar to the
situation with OSN services, a large number of web services is designed
and operated in a closed, proprietary fashion. ReThink proposes a design
and prototype for a new, web-centric P2P service architecture enabling
dynamic trusted relationships among distributed applications called Hyperlinked
Entities (Hyperties) that supports use-cases beyond traditional telephony such
as contextual communication, social communication, or content oriented
services, facilitating interoperability, data portability, and a globally unique and
domain-independent identity management for arbitrary web services.
• Project title: ReThink
• Project coordinator: Anastasius Gravas (Eurescom)
• Project partners:

– Eurescom GmbH, Germany
– Orange SA, France
– Deutsche Telekom AG, Germany
– Portugal Telecom Inovação e Sistemas SA (TPInS), Portugal
– Fraunhofer Gesellschaft zur Förderung der angewandten Forschung
e.V. (Germany)

– Apizee, France
– Institut Mines-Telecom (IMT), France
– Instituto de Engenhariade Sistemas e Computadores, Investigação e
Desenvovlimento em Lisboa (INESC-ID), Portugal

– Quobis Networks SL (QUOBIS), Spain
– Technische Universität Berlin (TUB), Germany

• Project duration: 01/2015 – 06/2017
• Programme: EU-H2020
• Grant Agreement Number: 645342
• Project website: http://rethink-project.eu

http://rethink-project.eu

195

Bibliography

[1] J. Smarr, M. Canter, R. Scoble, and M. Arrington. ABill of Rights for Users of
the Social Web. http://www.opensocialweb.org/2007/09/05/bill-of-rights.
Accessed: 14.7.2017 via https://web.archive.org/web/20080314063658/

www.opensocialweb.org/2007/09/05/bill-of-rights. 2007.
[2] S. Göndör and J. Devendraraj. “C2M: Open and Decentralized

Cloud Contact Management”. In: Procedia Computer Science 18 (2013),
pp. 2076–2085. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.
2013.05.377.

[3] S. Göndör and H. Hebbo. “SONIC: Towards Seamless Interaction in
Heterogeneous Distributed OSN Ecosystems”. In: Proceedings of the 10th
International IEEE Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE. 2014, pp. 407–412.

[4] S. Göndör, F. Beierle, E. Küçükbayraktar, H. Hebbo, S. Sharhan, and
A. Küpper. “Towards Migration of User Profiles in the SONIC Online
Social Network Federation”. In: Proceedings of the 10th International
Multi-Conference on Computing in the Global Information Technology (ICCGI).
IARIA. 2015.

[5] S. Göndör, F. Beierle, S. Sharhan, H. Hebbo, E. Küçükbayraktar, and
A. Küpper. “SONIC: Bridging the Gap between Different Online Social
Network Platforms”. In: Proceedings of the 8th International IEEEConference
on Social Computing and Networking (SocialCom). IEEE. 2015.

[6] F. Beierle, K. Grunert, S. Göndör, and V. Schlüter. “Towards
Psychometrics-based Friend Recommendations in Social Networking
Services”. In: arXiv preprint arXiv:1705.10512 (2017).

[7] S. Göndör, F. Beierle, S. Sharhan, and A. Küpper. “Distributed
and Domain-Independent Identity Management for User Profiles in
the SONIC Online Social Network Federation”. In: Proceedings of the
International Conference on Computational Social Networks. Springer. 2016,
pp. 226–238.

[8] I. T. Javed, R. Copeland, N. Crespi, F. Beierle, S. Göndör, A. Küpper, M.
Emmelmann, A. A. Corici, K. Corre, J.-M. Crom, F. Oberle, I. Friese,
A. Caldeira, G. Dias, R. Chaves, and N. Santos. “Global Identity and
Reachability Framework for Interoperable P2P Communication Services”.
In: 2016 Conference on Innovations in Clouds, Internet and Networks (ICIN).
2016, pp. 59–66.

http://www.opensocialweb.org/2007/09/05/bill-of-rights
https://web.archive.org/web/20080314063658/www.opensocialweb.org/2007/09/05/bill-of-rights
https://web.archive.org/web/20080314063658/www.opensocialweb.org/2007/09/05/bill-of-rights
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.377
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.377

196 Bibliography

[9] F. Beierle, S. Göndör, and A. Küpper. “Towards a Three-tiered Social
Graph in Decentralized Online Social Networks”. In: Proceedings of the 7th
International Workshop on Hot Topics in Planet-scale Mobile Computing and
Online Social Networking. ACM. 2015, pp. 1–6.

[10] I. Friese, R. Copeland, S. Göndör, F. Beierle, A. Küpper, R. L. Pereira,
and J. Crom. “Cross-Domain Discovery of Communication Peers. Identity
Mapping and Discovery Services (IMaDS)”. In: 2017 European Conference
on Networks and Communications (EuCNC). 2017.

[11] I. T. Javed, R. Copeland, N. Crespi, M. Emmelmann, A. Corici, A.
Bouabdallah, T. Zhang, S. El Jaouhari, F. Beierle, S. Göndör, A. Küpper,
K. Corre, J.-M. Crom, F. Oberle, I. Friese, A. Caldeira, G. Dias, N. Santos,
R. Chaves, and R. L. Pereira. “Cross-Domain Identity and Discovery
Framework for Web Calling Services”. In: Annals of Telecommunications
(2017). issn: 1958-9395. doi: 10.1007/s12243-017-0587-2.

[12] S. Göndör. “The Importance of Data Portability and Interoperability in
the Social Web”. In: Practical Implementation of the Right to Data Portability
- Legal, Technical and Consumer-Related Implications. Ed. by N. Horn and A.
Riechert. ISBN: 978-3-00-058336-0. Stiftung Datenschutz, Nov. 2017.

[13] S. Göndör and A. Küpper. “The Current State of Interoperability in
Decentralized Online Social Networking Services”. In: Proceedings of the
2017 International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE. 2017. doi: 10.1109/CSCI.2017.313.

[14] N. Carr. The Big Switch: Rewiring the World, from Edison to Google. W.W.
Norton & Company, 2009. isbn: 0393333949, 9780393333947.

[15] S. Fox and H. Rainie. TheWeb at 25 in the US. http://www.pewinternet.org/
2014/02/25/the-web-at-25-in-the-u-s. Accessed: 6.7.2017. Pew Research
Center [Internet & American Life Project], 2014.

[16] Ofcom. CommunicationsMarket Report 2016. Tech. rep. https://www.ofcom.
org.uk/__data/assets/pdf_file/0026/95642/ICMR-Full.pdf. Accessed:
1.6.2017. Ofcom, Dec. 2016.

[17] M. McLuhan. The Gutenberg Galaxy: The Making of Typographic Man.
Canadian University Paperbooks. University of Toronto Press, Jan. 1962.
isbn: 9780802060419.

[18] D. Tapscott. Grown Up Digital: How the Net Generation is Changing Your
World. 1st ed. Mcgraw-Hill, 2008. isbn: 0071508635, 9780071508636.

[19] M. Petronzio. A Brief History of Instant Messaging. http://mashable.com/
2012/10/25/instant-messaging-history/. Accessed: 29.5.2017. Oct. 2012.

[20] Internet Growth Statistics. Tech. rep. http://www.internetworldstats.com/
emarketing.htm. Accessed: 18.7.2017. Miniwatts Marketing Group, 2017.

[21] T. Berners-Lee. “The World Wide Web - Past, Present and Future”. In:
Journal of Digital Information 1.1 (2006). issn: 1368-7506. url: https://
journals.tdl.org/jodi/index.php/jodi/article/view/3.

https://doi.org/10.1007/s12243-017-0587-2
https://doi.org/10.1109/CSCI.2017.313
http://www.pewinternet.org/2014/02/25/the-web-at-25-in-the-u-s
http://www.pewinternet.org/2014/02/25/the-web-at-25-in-the-u-s
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/95642/ICMR-Full.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0026/95642/ICMR-Full.pdf
http://mashable.com/2012/10/25/instant-messaging-history/
http://mashable.com/2012/10/25/instant-messaging-history/
http://www.internetworldstats.com/emarketing.htm
http://www.internetworldstats.com/emarketing.htm
https://journals.tdl.org/jodi/index.php/jodi/article/view/3
https://journals.tdl.org/jodi/index.php/jodi/article/view/3

Bibliography 197

[22] T. Berners-Lee and M. Fischetti. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. 1st. Harper San
Francisco, 1999. isbn: 0062515861.

[23] G. Cormode and B. Krishnamurthy. “Key Differences Between Web 1.0
and Web 2.0”. In: First Monday 13.6 (2008). issn: 13960466. doi: 10.5210/
fm.v13i6.2125. url: http://www.ojphi.org/ojs/index.php/fm/article/
view/2125.

[24] D. M. Boyd and N. B. Ellison. “Social Network Sites: Definition, History,
and Scholarship”. In: Journal of Computer-Mediated Communication 13.1
(2007), pp. 210–230. issn: 1083-6101. doi: 10.1111/j.1083-6101.2007.
00393.x.

[25] L. O’Neill. Friendster Deploys OpenSocial Support for Benefit of 75 Million
Users, Developers and Industry. http : / / www . friendster . com : 80 / info /

presscenter.php?A=pr42. Accessed: 23.7.2017 via https://web.archive.

org / web / 20110623174254 / http : / / www . friendster . com : 80 / info /

presscenter.php?A=pr42. Aug. 2008.
[26] J. Yang and J. Leskovec. “Defining and Evaluating Network Communities

Based on Ground-Truth”. In: 2012 IEEE 12th International Conference on
Data Mining. 2012, pp. 745–754. doi: 10.1109/ICDM.2012.138.

[27] E. Barnett.MySpaceLoses 10MillionUsers inaMonth. http://www.telegraph.
co.uk/technology/myspace/8404510/MySpace-loses-10-million-users-in-

a-month.html. Accessed: 15.7.2017. Mar. 2011.
[28] V. Cosenza. World mMp of Social Networks. http://vincos.it/world-map-

of-social-networks/. Accessed: 12.6.2017. 2016.
[29] Facebook. Company Info. https : / / newsroom . fb . com / company - info/.

Accessed: 16.7.2017. 2017.
[30] M. Hicks. 500 Million Stories. https://www.facebook.com/notes/facebook/

500-million-stories/409753352130. Accessed: 16.7.2017. July 2010.
[31] M. Zuckerberg. One Billion People on Facebook. https://newsroom.fb.com/

news/2012/10/one-billion-people-on-facebook/. Accessed: 16.7.2017. Oct.
2012.

[32] A. Acquisti and R. Gross. “Imagined Communities: Awareness,
Information Sharing, and Privacy on the Facebook”. In: International
Workshop on Privacy Enhancing Technologies. Springer. 2006, pp. 36–58.

[33] T. Gerace and R. Barbour. Computer Method and Apparatus for Targeting
Advertising. US Patent App. 11/451,995. 2006. url: https://www.google.
com/patents/US20060282328.

[34] G. Orwell. 1984. Houghton Mifflin Harcourt, 1983. isbn: 9780547249643.
[35] I. Graef. “Mandating Portability and Interoperability in Online Social

Networks: Regulatory and Competition Law Issues in the European
Union”. In: Telecommunications Policy 39.6 (2015), pp. 502–514.

[36] J. Heidemann, A. Landherr, F. Probst, M. Klier, and F. Calmbach. “Special
Interest Networks — Eine Fallstudie am Beispiel von Netzathleten.de”.
In: HMD Praxis der Wirtschaftsinformatik 48.6 (2011), pp. 103–112.

https://doi.org/10.5210/fm.v13i6.2125
https://doi.org/10.5210/fm.v13i6.2125
http://www.ojphi.org/ojs/index.php/fm/article/view/2125
http://www.ojphi.org/ojs/index.php/fm/article/view/2125
https://doi.org/10.1111/j.1083-6101.2007.00393.x
https://doi.org/10.1111/j.1083-6101.2007.00393.x
http://www.friendster.com:80/info/presscenter.php?A=pr42
http://www.friendster.com:80/info/presscenter.php?A=pr42
https://web.archive.org/web/20110623174254/http://www.friendster.com:80/info/presscenter.php?A=pr42
https://web.archive.org/web/20110623174254/http://www.friendster.com:80/info/presscenter.php?A=pr42
https://web.archive.org/web/20110623174254/http://www.friendster.com:80/info/presscenter.php?A=pr42
https://doi.org/10.1109/ICDM.2012.138
http://www.telegraph.co.uk/technology/myspace/8404510/MySpace-loses-10-million-users-in-a-month.html
http://www.telegraph.co.uk/technology/myspace/8404510/MySpace-loses-10-million-users-in-a-month.html
http://www.telegraph.co.uk/technology/myspace/8404510/MySpace-loses-10-million-users-in-a-month.html
http://vincos.it/world-map-of-social-networks/
http://vincos.it/world-map-of-social-networks/
https://newsroom.fb.com/company-info/
https://www.facebook.com/notes/facebook/500-million-stories/409753352130
https://www.facebook.com/notes/facebook/500-million-stories/409753352130
https://newsroom.fb.com/news/2012/10/one-billion-people-on-facebook/
https://newsroom.fb.com/news/2012/10/one-billion-people-on-facebook/
https://www.google.com/patents/US20060282328
https://www.google.com/patents/US20060282328

198 Bibliography

[37] M. Nowak and G. Spiller. Two Billion People Coming Together on Facebook.
https://newsroom.fb.com/news/2017/06/two- billion- people- coming-

together-on-facebook/. Accessed: 3.7.2017. June 2017.
[38] S. Greenwood, A. Perrin, and M. Duggan. Social Media Update 2016. Tech.

rep. http://www.pewinternet.org/2016/11/11/social-media-update-2016/
Accessed on 30.5.2017. PEW Research Center, 2016.

[39] Number of Social Network Users Worldwide from 2010 to 2021 (in Billions).
Tech. rep. https://www.statista.com/statistics/278414/number- of-
worldwide-social-network-users/ Accessed on 23.7.2017. Statista, 2017.

[40] B. Fitzpatrick and D. Recordon. Thoughts on the Social Graph. http : / /
bradfitz.com/social-graph-problem/ Accessed: 15.5.2017. 2007.

[41] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson,
S. Kunnatur, S. Lassen, P. Pronin, S. Sankar, et al. “Unicorn: A System
for Searching the Social Graph”. In: Proceedings of the VLDB Endowment
6.11 (2013), pp. 1150–1161.

[42] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon, et al. “TAO: How
Facebook Serves the Social Graph”. In: Proceedings of the 2012ACMSIGMOD
International Conference on Management of Data. ACM. 2012, pp. 791–792.

[43] M. Newman and J. Park. “Why Social Networks are Different From Other
Types of Networks”. In: Physical Review E 68.3 (2003).

[44] M. Roth, A. Ben-David, D. Deutscher, G. Flysher, I. Horn, A. Leichtberg,
N. Leiser, Y. Matias, and R. Merom. “Suggesting Friends Using
the Implicit Social Graph”. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM.
2010, pp. 233–242.

[45] S. Wasserman and K. Faust. Social Network Analysis: Methods and
Applications. Vol. 8. Cambridge University Press, 1994.

[46] G. Magno, G. Comarela, D. Saez-Trumper, M. Cha, and V. Almeida. “New
Kid on the Block: Exploring the Google+ Social Graph”. In: Proceedings of
the 2012 ACM Conference on Internet Measurement Conference. ACM. 2012,
pp. 159–170.

[47] A. Mislove, M.Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee.
“Measurement and Analysis of Online Social Networks”. In: Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement. ACM. 2007,
pp. 29–42.

[48] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. “Analysis of
Topological Characteristics of Huge Online Social Networking Services”.
In: Proceedings of the 16th International Conference onWorldWideWeb. ACM.
2007, pp. 835–844.

[49] D. J. Watts and S. H. Strogatz. “Collective Dynamics of ’Small-World’
Networks”. In: Nature 393.6684 (1998), p. 440.

[50] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. “The Anatomy of the
Facebook Social Graph”. In: arXiv preprint arXiv:1111.4503 (2011).

https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/
https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/
http://www.pewinternet.org/2016/11/11/social-media-update-2016/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
http://bradfitz.com/social-graph-problem/
http://bradfitz.com/social-graph-problem/

Bibliography 199

[51] J. Travers and S. Milgram. “The Small World Problem”. In: Phychology
Today 1 (1967), pp. 61–67.

[52] J. Kleinberg. “The Convergence of Social and Technological Networks”.
In: Communications of the ACM 51.11 (2008), pp. 66–72.

[53] K. Hampton, L. Sessions Goulet, L. Rainie, and K. Purcell. Social
Networking Sites and Our Lives. Tech. rep. http://www.pewinternet.org/
2011 / 06 / 16 / social - networking - sites - and - our - lives/. Accessed:
21.6.2017. PEW Research Center, 2011.

[54] J. Bonneau, J. Anderson, R. Anderson, and F. Stajano. “Eight Friends are
Enough: Social Graph Approximation via Public Listings”. In: Proceedings
of the Second ACM EuroSys Workshop on Social Network Systems. ACM. 2009,
pp. 13–18.

[55] J. LeBlanc. Programming Social Applications: Building Viral Experiences with
OpenSocial, OAuth, OpenID, and DistributedWeb Frameworks. O’Reilly Media,
2011. isbn: 9781449315276.

[56] H. Krasnova, S. Spiekermann, K. Koroleva, and T. Hildebrand. “Online
Social Networks: Why We Disclose”. In: Journal of Information Technology
25.2 (2010), pp. 109–125.

[57] A. De Salve, B. Guidi, and P. Mori. “Predicting the Availability of Users’
Devices in Decentralized Online Social Networks”. In: Concurrency and
Computation: Practice and Experience (2017).

[58] J. C. Westland. “Critical Mass and Willingness to Pay for Social
Networks”. In: Electronic Commerce Research and Applications 9.1 (2010),
pp. 6–19.

[59] J. Mander. Internet Users Have Average of 5.54 Social Media Accounts. Tech.
rep. http://blog.globalwebindex.net/chart-of-the-day/internet-users-
have-average-of-5-54-social-media-accounts/ Accessed on 18.7.2017.
Global Web Index, 2015.

[60] J. G. Palfrey and U. Gasser. Interop: The Promise and Perils of Highly
Interconnected Systems. Basic Books, 2012.

[61] A. Peslak, W. Ceccucci, and P. Sendall. “An Empirical Study of Instant
Messaging (IM) Behavior Using Theory of Reasoned Action”. In: Journal
of Behavioral and Applied Management 11.3 (2010), p. 263.

[62] European Commission. Case M.7217 – Facebook/WhatsApp. Commission
Decision Pursuant to Article 6(1)(b) of Council Regulation. No 139/2004. http:
//ec.europa.eu/competition/mergers/cases/decisions/m7217_20141003_

20310_3962132_EN.pdf. Accessed: 7.7.2017. 2014.
[63] B. A. Nardi, S. Whittaker, and E. Bradner. “Interaction and Outeraction:

Instant Messaging in Action”. In: Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work. ACM. 2000, pp. 79–88.

[64] A. Lenhart, O. Lewis, and L. Rainie. Teenage Life Online. Tech. rep. http:
//www.pewinternet.org/2001/06/21/teenage- life- online/. Accessed:
7.7.2017. PEW Research Center, June 2001.

http://www.pewinternet.org/2011/06/16/social-networking-sites-and-our-lives/
http://www.pewinternet.org/2011/06/16/social-networking-sites-and-our-lives/
http://blog.globalwebindex.net/chart-of-the-day/internet-users-have-average-of-5-54-social-media-accounts/
http://blog.globalwebindex.net/chart-of-the-day/internet-users-have-average-of-5-54-social-media-accounts/
http://ec.europa.eu/competition/mergers/cases/decisions/m7217_20141003_20310_3962132_EN.pdf
http://ec.europa.eu/competition/mergers/cases/decisions/m7217_20141003_20310_3962132_EN.pdf
http://ec.europa.eu/competition/mergers/cases/decisions/m7217_20141003_20310_3962132_EN.pdf
http://www.pewinternet.org/2001/06/21/teenage-life-online/
http://www.pewinternet.org/2001/06/21/teenage-life-online/

200 Bibliography

[65] A. Lenhart, P. Hiltin, and M. Madden. Teens and Technology. Tech. rep.
http : / / www . pewinternet . org / 2005 / 07 / 27 / teens - and - technology/.
Accessed: 7.7.2017. PEW Research Center, July 2005.

[66] A. Lenhart and M. Madden. Social Networking Websites and Teens. Tech.
rep. http : / / www . pewinternet . org / 2007 / 01 / 07 / social - networking -

websites - and - teens/. Accessed: 7.7.2017. PEW Research Center, Jan.
2007.

[67] B. S. Boneva, A. Quinn, R. Kraut, S. Kiesler, and I. Shklovski. “Teenage
Communication in the Instant Messaging Era”. In: Computers, Phones, and
the Internet: Domesticating Information Technology (2006), pp. 201–218.

[68] K. J. Wood. “Instant Messaging Usage and Academic and Social
Integration”. Master thesis. Virginia Polytechnic Institute and State
University, 2007.

[69] Time Warner. ICQ Celebrates 100 Million Registered Users. http : / / www .

timewarner.com/newsroom/press-releases/2001/05/09/icq-celebrates-

100-million-registered-users. Accessed: 2.6.2017. May 2001.
[70] A. D. Network. OSCAR Protocol. https : / / web . archive . org / web /

20080308233204/http://dev.aol.com/aim/oscar/. Accessed: 17.6.2017.
2014.

[71] D. Oleynichenko. ICQ: 20 Years Is No Limit! https : / / medium . com /

@Dimitryophoto / icq - 20 - years - is - no - limit - 8734e1eea8ea. Accessed:
29.5.2017. Nov. 2016.

[72] P. Saint-Andre, K. Smith, and R. Tronçon. XMPP: The Definitive Guide.
O’Reilly, 2009.

[73] S. Gilbertson. Slap in the Facebook: It’s Time for Social Networks to Open Up.
https://www.wired.com/2007/08/open-social-net/ Accessed: 21.5.2017.
2007.

[74] Most Famous Social Network Sites Worldwide as of August 2017, Ranked by
Number of Active Users (in Millions). Tech. rep. https://www.statista.com/
statistics/272014/global-social-networks-ranked-by-number-of-users/.
Accessed: 15.9.2017. Statista, 2017.

[75] E. Enge. Hard Numbers for Public Posting Activity on Google Plus. Tech. rep.
https://www.stonetemple.com/real-numbers-for-the-activity-on-google-

plus/. Accessed: 19.7.2017. StoneTemple, Apr. 2015.
[76] S. Denning. Has Google+ Really Died? Tech. rep. https : / / www . forbes .

com/sites/stevedenning/2015/04/23/has-google-really-died. Accessed:
19.7.2017. Forbes, Apr. 2015.

[77] M. Seemann. Dezentrale Social Networks - Warum sie scheitern und es gehen
könnte. http://14.re-publica.de/session/dezentrale-social-networks-
warum - sie - scheitern - und - es - gehen - koennte Accessed: 14.5.2017.
re:publica 14, 2014.

[78] D. S. Evans and R. Schmalensee. “Failure to Launch: Critical Mass in
Platform Businesses”. In: Review of Network Economics 9.4 (2010).

http://www.pewinternet.org/2005/07/27/teens-and-technology/
http://www.pewinternet.org/2007/01/07/social-networking-websites-and-teens/
http://www.pewinternet.org/2007/01/07/social-networking-websites-and-teens/
http://www.timewarner.com/newsroom/press-releases/2001/05/09/icq-celebrates-100-million-registered-users
http://www.timewarner.com/newsroom/press-releases/2001/05/09/icq-celebrates-100-million-registered-users
http://www.timewarner.com/newsroom/press-releases/2001/05/09/icq-celebrates-100-million-registered-users
https://web.archive.org/web/20080308233204/http://dev.aol.com/aim/oscar/
https://web.archive.org/web/20080308233204/http://dev.aol.com/aim/oscar/
https://medium.com/@Dimitryophoto/icq-20-years-is-no-limit-8734e1eea8ea
https://medium.com/@Dimitryophoto/icq-20-years-is-no-limit-8734e1eea8ea
https://www.wired.com/2007/08/open-social-net/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.stonetemple.com/real-numbers-for-the-activity-on-google-plus/
https://www.stonetemple.com/real-numbers-for-the-activity-on-google-plus/
https://www.forbes.com/sites/stevedenning/2015/04/23/has-google-really-died
https://www.forbes.com/sites/stevedenning/2015/04/23/has-google-really-died
http://14.re-publica.de/session/dezentrale-social-networks-warum-sie-scheitern-und-es-gehen-koennte
http://14.re-publica.de/session/dezentrale-social-networks-warum-sie-scheitern-und-es-gehen-koennte

Bibliography 201

[79] M. L. Katz and C. Shapiro. “Network Externalities, Competition,
and Compatibility”. In: The American Economic Review 75.3 (1985),
pp. 424–440.

[80] Independent. Facebook may Lock-In its Internet Dominance. http://www.
independent . co . uk / incoming / facebook - may - lock - in - its - internet -

dominance-5519916.html. Accessed: 2.6.2017. 2010.
[81] T. Berners-Lee. Socially Aware Cloud Storage. 2009. url: https://www.w3.

org/DesignIssues/CloudStorage.html (visited on 07/12/2017).
[82] S. W. Waller. “Antitrust and Social Networking”. In: North Carolina Law

Rev. 90 (2011), p. 1771.
[83] Number of Renren.com Users in China from 2009 to 2016 (in Millions). Tech.

rep. https://www.statista.com/statistics/227059/number-of-renren-com-
users-in-china/. Accessed: 15.9.2017. Statista, 2017.

[84] O. Malik. Is Facebook Beacon a Privacy Nightmare? Tech. rep. https : / /

gigaom. com /2007 /11 / 06 / facebook- beacon- privacy- issues/. Accessed:
6.6.2017. 2007.

[85] C. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-Lee.
“Decentralization: The Future of Online Social Networking”. In: W3C
Workshop on the Future of Social Networking Position Papers. Vol. 2. 2009.

[86] F. Stutzman, R. Gross, and A. Acquisti. “Silent Listeners: The Evolution
of Privacy and Disclosure on Facebook”. In: Journal of Privacy and
Confidentiality 4.2 (2013), p. 2.

[87] A. Lewis. User-Driven Discontent. http : / / www . metafilter . com / 95152 /
Userdriven-discontent#3256046. Accessed: 24.7.2017. Aug. 2010.

[88] A. Datta, S. Buchegger, L.-H. Vu, T. Strufe, and K. Rzadca. “Decentralized
Online Social Networks”. In: Handbook of Social Network Technologies and
Applications. Springer, 2010, pp. 349–378.

[89] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta. “PeerSoN: P2P Social
Networking: Early Experiences and Insights”. In: Proceedings of the Second
ACM EuroSys Workshop on Social Network Systems. ACM. 2009, pp. 46–52.

[90] M. Durr, M. Maier, and F. Dorfmeister. “Vegas - A Secure
and Privacy-Preserving Peer-to-Peer Online Social Network”. In:
International Conference on and 2012 International Conference on Social
Computing (SocialCom) Privacy, Security, Risk and Trust (PASSAT). IEEE. 2012,
pp. 868–874.

[91] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. H. Epema, M. Reinders, M. R. Van Steen, and H. J. Sips. “TRIBLER:
A Social-Based Peer-to-Peer System”. In: Concurrency and Computation:
Practice and Experience 20.2 (2008), pp. 127–138.

[92] C. Wilson, T. Steinbauer, G. Wang, A. Sala, H. Zheng, and B. Y.
Zhao. “Privacy, Availability and Economics in the Polaris Mobile Social
Network”. In: Proceedings of the 12thWorkshop onMobile Computing Systems
and Applications. ACM. 2011, pp. 42–47.

http://www.independent.co.uk/incoming/facebook-may-lock-in-its-internet-dominance-5519916.html
http://www.independent.co.uk/incoming/facebook-may-lock-in-its-internet-dominance-5519916.html
http://www.independent.co.uk/incoming/facebook-may-lock-in-its-internet-dominance-5519916.html
https://www.w3.org/DesignIssues/CloudStorage.html
https://www.w3.org/DesignIssues/CloudStorage.html
https://www.statista.com/statistics/227059/number-of-renren-com-users-in-china/
https://www.statista.com/statistics/227059/number-of-renren-com-users-in-china/
https://gigaom.com/2007/11/06/facebook-beacon-privacy-issues/
https://gigaom.com/2007/11/06/facebook-beacon-privacy-issues/
http://www.metafilter.com/95152/Userdriven-discontent#3256046
http://www.metafilter.com/95152/Userdriven-discontent#3256046

202 Bibliography

[93] Diaspora. An Introduction to the Diaspora Source. https : / / wiki .

diasporafoundation . org / An _ introduction _ to _ the _ Diaspora _ source,
Accessed: 9.1.2017. 2015.

[94] Friendica. Develop. http://friendica.com/develop, Accessed: 15.1.2017.
[95] L. A. Cutillo, R. Molva, and T. Strufe. “Safebook: A Privacy-Preserving

Online Social Network Leveraging on Real-Life Trust”. In:
Communications Magazine, IEEE 47.12 (2009), pp. 94–101.

[96] A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and H. Zhang. “The
Growth of Diaspora - A Decentralized Online Social Network in the Wild”.
In: 2012 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE. 2012, pp. 13–18.

[97] A. Bleicher. “The Anti-Facebook”. In: IEEE Spectrum 48.6 (2011),
pp. 54–82.

[98] W. Chao, Y. Guo, and B. Zhou. “Social Networking Federation: A Position
Paper”. In: Computers & Electrical Engineering 38.2 (2012), pp. 306–329.

[99] F. McCown and M. L. Nelson. “What Happens When Facebook is Gone?”
In: Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries.
ACM. 2009, pp. 251–254.

[100] P. Hu, Q. Fan, and W. C. Lau. “SNSAPI: A Cross-Platform Middleware for
Rapid Deployment of Decentralized Social Networks”. In: arXiv preprint
arXiv:1403.4482 (2014).

[101] D. Koll, J. Li, and X. Fu. “The Good Left Undone: Advances and Challenges
in Decentralizing Online Social Networks”. In: Computer Communications
(2017).

[102] James Snell and Evan Prodromou. Activity Streams 2.0. http://www.w3.org/
TR/activitystreams-core/. Accessed: 9.5.2017. 2017.

[103] P. Jones, G. Salgueiro, M. Jones, and J. Smarr. WebFinger. http://tools.
ietf.org/html/rfc7033. Accessed: 1.8.2017. 2013.

[104] D. Brickley and L. Miller. FOAF Vocabulary Specification 0.99. Tech. rep.
http://xmlns.com/foaf/spec/. Accessed: 1.8.2017. W3C, 2014.

[105] D. Appelquist, D. Brickley, M. Carvahlo, R. Iannella, A. Passant, C. Perey,
and H. Story. “A Standards-Based, Open and Privacy-Aware Social Web”.
In: W3C Incubator Group Report 6 (2010).

[106] T. Paul, S. Buchegger, and T. Strufe. “Decentralized Social Networking
Services”. In: Trustworthy Internet. Springer, 2011, pp. 187–199.

[107] M. Marcon, B. Viswanath, M. Cha, and K. P. Gummadi. “Sharing
Social Content from Home: A Measurement-Driven Feasibility Study”.
In: Proceedings of the 21st International Workshop on Network and Operating
Systems Support for Digital Audio and Video. ACM. 2011, pp. 45–50.

[108] European Court. Judgment of the Court of 14 February 1978. United Brands
Company and United Brands Continentaal BV v Commission of the European
Communities. Chiquita Bananas. Case 27/76. http://eur- lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX:61976CJ0027. Accessed: 8.7.2017. 1978.

https://wiki.diasporafoundation.org/An_introduction_to_the_Diaspora_source
https://wiki.diasporafoundation.org/An_introduction_to_the_Diaspora_source
http://friendica.com/develop
http://www.w3.org/TR/activitystreams-core/
http://www.w3.org/TR/activitystreams-core/
http://tools.ietf.org/html/rfc7033
http://tools.ietf.org/html/rfc7033
http://xmlns.com/foaf/spec/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:61976CJ0027
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:61976CJ0027

Bibliography 203

[109] European Parliament. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the Protection of Natural Persons With
Regard to the Processing of Personal Data and on the Free Movement of Such
Data, and Repealing Directive 95/46/EC (General Data Protection Regulation).
http : / / eur - lex . europa . eu / legal - content / EN / TXT / PDF / ?uri = CELEX :

32016R0679&from=EN. Accessed: 15.9.2017. 2016.
[110] T. Sperlich. “Das Recht auf Datenübertragbarkeit”. In: Datenschutz und

Datensicherheit - DuD 41.6 (June 2017), pp. 377–377. issn: 1862-2607.
[111] T. Paul, A. Famulari, and T. Strufe. “A Survey on Decentralized Online

Social Networks”. In: Computer Networks 75, Part A (2014), pp. 437–452.
issn: 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2014.10.005.

[112] Wired. FacebookCameraMeans Snapping IsOfficially theFuture. https://www.
wired.com/2017/03/facebook-camera-means-snapping-officially-future/.
Accessed: 1.6.2017. Mar. 2017.

[113] J. Heidemann. “Online Social Networks - Ein sozialer und technischer
Überblick”. In: Informatik-Spektrum 33.3 (2010), pp. 262–271.

[114] Diso Project. Activity Streams. http : / / activitystrea . ms/. Accessed:
9.5.2017. 2013.

[115] M. Halvorson. OpenSocial Specification. https://opensocial.atlassian.
net/wiki/display/OSD/Specs. Accessed: 23.6.2017. 2013.

[116] E. Prodromou, B. Vibber, J. Walker, and Z. Copley. OStatus 1.0 Draft 2.
Aug. 30, 2010. url: http : / / ostatus . github . io / spec / OStatus % 201 . 0 %
20Draft%202.html (visited on 06/23/2017).

[117] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science
in Information Systems Research”. In: MIS Quarterly 28.1 (2004),
pp. 75–105.

[118] A. R. Hevner. “A Three Cycle View of Design Science Research”. In:
Scandinavian Journal of Information Systems 19.2 (2007), p. 4.

[119] N. B. Ellison and D. M. Boyd. “Sociality Through Social Network Sites”.
In: The Oxford Handbook of Internet Studies. 2013.

[120] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger.
“Understanding Online Social Network Usage from a Network
Perspective”. In: Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement Conference. ACM. 2009, pp. 35–48.

[121] L. Adamic and E. Adar. “How to Search a Social Network”. In: Social
Networks 27.3 (2005), pp. 187–203.

[122] G. Pallis, D. Zeinalipour-Yazti, and M. D. Dikaiakos. “Online Social
Networks: Status and Trends”. In: NewDirections inWebDataManagement
1. Springer, 2011, pp. 213–234.

[123] W. Kim, O.-R. Jeong, and S.-W. Lee. “On Social Web Sites”. In:
Information Systems 35.2 (2010), pp. 215–236.

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2014.10.005
https://www.wired.com/2017/03/facebook-camera-means-snapping-officially-future/
https://www.wired.com/2017/03/facebook-camera-means-snapping-officially-future/
http://activitystrea.ms/
https://opensocial.atlassian.net/wiki/display/OSD/Specs
https://opensocial.atlassian.net/wiki/display/OSD/Specs
http://ostatus.github.io/spec/OStatus%201.0%20Draft%202.html
http://ostatus.github.io/spec/OStatus%201.0%20Draft%202.html

204 Bibliography

[124] A. M. Kaplan andM. Haenlein. “Users of theWorld, Unite! The Challenges
and Opportunities of Social Media”. In: Business Horizons 53.1 (2010),
pp. 59–68.

[125] A. Richter and M. Koch. “Functions of Social Networking Services”. In:
Proc. Intl. Conf. on the Design of Cooperative Systems. 2008, pp. 87–98.

[126] A. M. Kaplan and M. Haenlein. “The Early Bird Catches the News: Nine
Things You Should Know About Micro-Blogging”. In: Business Horizons
54.2 (2011), pp. 105–113.

[127] J. Heidemann, M. Klier, and F. Probst. “Online Social Networks: A Survey
of a Global Phenomenon”. In: Computer Networks 56.18 (2012), pp. 3866
–3878. issn: 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2012.
08.009.

[128] S. R. Chowdhury, A. R. Roy, M. Shaikh, and K. Daudjee. “A Taxonomy of
Decentralized Online Social Networks”. In: Peer-to-Peer Networking and
Applications 8.3 (2015), pp. 367–383.

[129] Entwicklung der Visits der VZ-Netzwerke von Dezember 2010 bis Dezember
2012 (in Millionen Visits). Tech. rep. https://de.statista.com/statistik/
daten/studie/235531/umfrage/entwicklung-der-visits-der-deutschen-

social-networks/. Accessed: 29.10.2017. Statista, 2013.
[130] P. Golgher. Adeus ao Orkut. https://brasil.googleblog.com/2014/06/

adeus-ao-orkut.html. Accessed: 29.10.2017. June 2014.
[131] X. Fu, J. Luo, and M. Boos. Social Network Analysis: Interdisciplinary

Approaches and Case Studies. CRC Press, 2017. isbn: 9781498736688. url:
https://books.google.de/books?id=59WRDgAAQBAJ.

[132] S. Biedermann, N. P. Karvelas, S. Katzenbeisser, T. Strufe, and A. Peter.
“ProofBook: An Online Social Network Based on Proof-of-Work and
Friend-Propagation”. In: Proceedings of the 40th International Conference
on Current Trends in Theory and Practice of Computer Science. Springer. 2014,
pp. 114–125.

[133] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A.
Lysyanskaya. “Incentivizing Outsourced Computation”. In: Proceedings
of the 3rd International Workshop on Economics of Networked Systems. ACM.
2008, pp. 85–90.

[134] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya,
and E. Rachlin. “Making P2P Accountable Without Losing Privacy”. In:
Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society. ACM.
2007, pp. 31–40.

[135] L. M. Aiello and G. Ruffo. “LotusNet: Tunable Privacy for Distributed
Online Social Network Services”. In: Computer Communications 35.1
(2012), pp. 75–88.

https://doi.org/http://dx.doi.org/10.1016/j.comnet.2012.08.009
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2012.08.009
https://de.statista.com/statistik/daten/studie/235531/umfrage/entwicklung-der-visits-der-deutschen-social-networks/
https://de.statista.com/statistik/daten/studie/235531/umfrage/entwicklung-der-visits-der-deutschen-social-networks/
https://de.statista.com/statistik/daten/studie/235531/umfrage/entwicklung-der-visits-der-deutschen-social-networks/
https://brasil.googleblog.com/2014/06/adeus-ao-orkut.html
https://brasil.googleblog.com/2014/06/adeus-ao-orkut.html
https://books.google.de/books?id=59WRDgAAQBAJ

Bibliography 205

[136] N. Kourtellis, J. Finnis, P. Anderson, J. Blackburn, C. Borcea, and A.
Iamnitchi. “Prometheus: User-Controlled P2P Social Data Management
for Socially-Aware Applications”. In: Proceedings of the ACM/IFIP/USENIX
11th International Conference on Middleware. Springer-Verlag. 2010,
pp. 212–231.

[137] K. Graffi, C. Gross, D. Stingl, D. Hartung, A. Kovacevic, and R.
Steinmetz. “LifeSocial.KOM: A Secure and P2P-Based Solution for Online
Social Networks”. In: ConsumerCommunications andNetworkingConference
(CCNC). IEEE. 2011, pp. 554–558.

[138] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia.
“DECENT: A Decentralized Architecture for Enforcing Privacy in Online
Social Networks”. In: 2012 IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops). IEEE.
2012, pp. 326–332.

[139] B. Guidi, T. Amft, A. De Salve, K. Graffi, and L. Ricci. “DiDuSoNet: A
P2P Architecture for Distributed Dunbar-based Social Networks”. In:
Peer-to-Peer Networking and Applications 9.6 (2016), pp. 1177–1194.

[140] C. Newton. Mastodon.social is an Open-Source Twitter Competitor that’s
Growing Like Crazy. https : / / www . theverge . com / 2017 / 4 / 4 / 15177856 /
mastodon-social-network-twitter-clone. Accessed: 7.8.2017. Apr. 2017.

[141] OneSocialWeb. Tech. rep. http://onesocialweb.org/about.html. Accessed
on 1.8.2017 via http://web.archive.org/web/20141230081222/http://

onesocialweb.org/about.html. Vodafone RD, 2011.
[142] P. Saint-Andre and D. Cridland. XEP-0001: XMPPExtensionProtocols. Tech.

rep. https://xmpp.org/extensions/xep- 0001.html. Accessed: 1.8.2017.
XMPP Standards Foundation, 2016.

[143] L. Eschenauer. SocialRelationships. Tech. rep. http://onesocialweb.org:
80/spec/1.0/osw-relations.html. Accessed on 2.8.2017 via http://web.

archive.org/web/20141013124054/http://onesocialweb.org:80/spec/1.0/

osw-relations.html. Vodafone RD, 2011.
[144] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K. Teh, R.

Chu, B. Dodson, and M. S. Lam. “PrPl: A Decentralized Social Networking
Infrastructure”. In: Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond. ACM. 2010, p. 8.

[145] L. Schwittmann, C. Boelmann, M. Wander, and T. Weis. “SoNet -
Privacy and Replication in Federated Online Social Networks”. In:
33rd International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE. 2013, pp. 51–57.

[146] A. Famulari and A. Hecker. “Mantle: A Novel DOSN Leveraging Free
Storage and Local Software”. In: Advanced Infocom Technology. Springer,
2013, pp. 213–224.

[147] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin. “Persona:
An Online Social Network with User-Defined Privacy”. In: ACM SIGCOMM
Computer Communication Review. Vol. 39. 4. ACM. 2009, pp. 135–146.

https://www.theverge.com/2017/4/4/15177856/mastodon-social-network-twitter-clone
https://www.theverge.com/2017/4/4/15177856/mastodon-social-network-twitter-clone
http://onesocialweb.org/about.html
http://web.archive.org/web/20141230081222/http://onesocialweb.org/about.html
http://web.archive.org/web/20141230081222/http://onesocialweb.org/about.html
https://xmpp.org/extensions/xep-0001.html
http://onesocialweb.org:80/spec/1.0/osw-relations.html
http://onesocialweb.org:80/spec/1.0/osw-relations.html
http://web.archive.org/web/20141013124054/http://onesocialweb.org:80/spec/1.0/osw-relations.html
http://web.archive.org/web/20141013124054/http://onesocialweb.org:80/spec/1.0/osw-relations.html
http://web.archive.org/web/20141013124054/http://onesocialweb.org:80/spec/1.0/osw-relations.html

206 Bibliography

[148] J. Bethencourt, A. Sahai, and B. Waters. “Ciphertext-Policy
Attribute-Based Encryption”. In: IEEE Symposium on Security and Privacy.
IEEE. 2007, pp. 321–334.

[149] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and A.
Varshavsky. “Vis-à-Vis: Privacy-Preserving Online Social Networking
via Virtual Individual Servers”. In: 3rd International Conference on
Communication Systems and Networks (COMSNETS). IEEE. 2011, pp. 1–10.

[150] D. Liu, A. Shakimov, R. Cáceres, A. Varshavsky, and L. P. Cox. “Confidant:
protecting OSN data without locking it up”. In: Proceedings of the
12th International Middleware Conference. International Federation for
Information Processing. 2011, pp. 60–79.

[151] R. Sharma and A. Datta. “SuperNova: Super-Peers based Architecture for
Decentralized Online Social Networks”. In: 4th International Conference on
Communication Systems and Networks (COMSNETS). IEEE. 2012, pp. 1–10.

[152] J. Panzer. Salmon Protocol. http://www.salmon-protocol.org/. Accessed:
17.6.2017. Jan. 2011.

[153] R. Khare and T. Çelik. Microformats: A Pragmatic Path to the Semantic Web.
Tech. rep. https://commerce.net/wp-content/uploads/2012/04/CN-TR-06-
01.pdf. Accessed: 2.8.2017. CommerceNet, 2006.

[154] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core.
Tech. rep. https://tools.ietf.org/html/rfc6120. Accessed: 31.7.2017.
IETF, 2011.

[155] B. Fitzpatrick, B. Slatkin, M. Atkins, and J. Genestoux. PubSubHubbubCore
0.4. http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub- core-
0.4.html. Accessed: 23.6.2017. 2014.

[156] D. Strype. A Brief History of the GNU Social Fediverse and ’The Federation’.
https://www.coactivate.org/projects/disintermedia/blog/2017/04/01/

a- brief-history- of- the- gnu- social- fediverse- and- the- federation/.
Accessed: 29.10.2017. Apr. 2017.

[157] M. Atkins, W. Norris, C. Messina, M. Wilkinson, and R. Dolin. Atom
Activity Streams 1.0. Tech. rep. http://activitystrea.ms/specs/atom/1.0/.
Accessed: 1.10.2017. Activity Streams Working Group, 2011.

[158] Apollic Software, LLC. Tent.io. https://tent.io/. Accessed: 1.8.2017. 2013.
[159] Pump.io. Pump.io API. https://github.com/pump-io/pump.io/blob/master/

API.md. Accessed: 7.8.2017. 2017.
[160] J. Gregorio and B. de Hora. The Atom Publishing Protocol. Tech. rep. https:

//tools.ietf.org/html/rfc5023. Accessed: 7.8.2017. IETF, 2007.
[161] E. Hammer-Lahav. The OAuth 1.0 Protocol. Tech. rep. https://tools.ietf.

org/html/rfc5849. Accessed: 7.8.2017. IETF, 2010.
[162] M. Macgirvin. DFRN - The Distributed Friends & Relations Network. https:

//github.com/friendica/friendica/blob/master/spec/dfrn2.pdf Accessed:
23.6.2017. 2011.

http://www.salmon-protocol.org/
https://commerce.net/wp-content/uploads/2012/04/CN-TR-06-01.pdf
https://commerce.net/wp-content/uploads/2012/04/CN-TR-06-01.pdf
https://tools.ietf.org/html/rfc6120
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
https://www.coactivate.org/projects/disintermedia/blog/2017/04/01/a-brief-history-of-the-gnu-social-fediverse-and-the-federation/
https://www.coactivate.org/projects/disintermedia/blog/2017/04/01/a-brief-history-of-the-gnu-social-fediverse-and-the-federation/
http://activitystrea.ms/specs/atom/1.0/
https://tent.io/
https://github.com/pump-io/pump.io/blob/master/API.md
https://github.com/pump-io/pump.io/blob/master/API.md
https://tools.ietf.org/html/rfc5023
https://tools.ietf.org/html/rfc5023
https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849
https://github.com/friendica/friendica/blob/master/spec/dfrn2.pdf
https://github.com/friendica/friendica/blob/master/spec/dfrn2.pdf

Bibliography 207

[163] M. Nottingham and R. Sayre. The Atom Syndication Format. Tech. rep.
https://tools.ietf.org/html/rfc4287. Accessed: 5.7.2017. IETF, 2005.

[164] M. Macgirvin. Hubzilla Documentation: Developers. https : / / project .

hubzilla.org/help/developer/zot_protocol Accessed: 19.10.2017. 2015.
[165] T. Çelik. hCard. http : / / microformats . org / wiki / h - card. Accessed:

17.6.2017. June 2017.
[166] J. Panzer, B. Laurie, and D. Balfanz.Magic Signatures. https://cdn.rawgit.

com/salmon-protocol/salmon-protocol/master/draft-panzer-magicsig-

01.html. Accessed: 17.6.2017. Jan. 2011.
[167] Diaspora* Federation Protocol. Tech. rep. https://diaspora.github.io/

diaspora_federation/. Accessed: 17.5.2017. Diaspora Foundation, 2017.
[168] C. A. Webber, J. Tallon, and O. Shepherd. ActivityPub. Tech. rep. https:

//www.w3.org/TR/activitypub/. Accessed: 8.8.2017. W3C, 2017.
[169] ISO/IEC. ISO/IEC 29115:2013: Information Technology - Security Techniques -

Entity Authentication Assurance Framework. https://www.iso.org/standard/
45138.html. Accessed: 1.6.2017. Apr. 2013.

[170] L. Chen, M. A. Babar, and B. Nuseibeh. “Characterizing Architecturally
Significant Requirements”. In: IEEE software 30.2 (2013), pp. 38–45.

[171] Forbes. Facebook Will Use Your Browsing and Apps History For Ads. https :
//www.forbes.com/sites/kashmirhill/2014/06/13/facebook- web- app-

tracking-for-ads/#44aff2635d58 Accessed: 22.5.2017. 2014.
[172] D. Boyd. “Why Youth (Heart) Social Network Sites: The Role of Networked

Publics in Teenage Social Life”. In: MacArthur Foundation Series on Digital
Learning - Youth, Identity, and Digital Media Volume (2007), pp. 119–142.

[173] V. A. Rohani and O. S. Hock. “On Social Network Web Sites: Definition,
Features, Architectures and Analysis Tools”. In: Journal of Computer
Engineering 1 (2009), pp. 3–11.

[174] B. Kneidinger. Facebook und Co. Springer, 2010.
[175] J. H. Kietzmann, K. Hermkens, I. P. McCarthy, and B. S. Silvestre. “Social

media? Get serious! Understanding the Functional Building Blocks of
Social Media”. In: Business Horizons 54.3 (2011), pp. 241–251.

[176] K. Tserpes, G. Papadakis, M. Kardara, A. Papaoikonomou, F. Aisopos, E.
Sardis, and T. A. Varvarigou. “An Ontology for Social Networking Sites
Interoperability”. In: Proceedings of the 4th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowledge Management.
2012, pp. 245–250.

[177] Vincenzo Cosenza. World Map or Social Networks. http://vincos.it/world-
map-of-social-networks/. Accessed: 8.6.2017. 2017.

[178] Social Media Fact Sheet. Tech. rep. http://www.pewinternet.org/fact-
sheet/social-media/ Accessed on 23.7.2017. PEW Research Center, 2017.

[179] Alexa. Top Sites in Russia. http://www.alexa.com/topsites/countries/RU.
Accessed: 8.6.2017. 2017.

https://tools.ietf.org/html/rfc4287
https://project.hubzilla.org/help/developer/zot_protocol
https://project.hubzilla.org/help/developer/zot_protocol
http://microformats.org/wiki/h-card
https://cdn.rawgit.com/salmon-protocol/salmon-protocol/master/draft-panzer-magicsig-01.html
https://cdn.rawgit.com/salmon-protocol/salmon-protocol/master/draft-panzer-magicsig-01.html
https://cdn.rawgit.com/salmon-protocol/salmon-protocol/master/draft-panzer-magicsig-01.html
https://diaspora.github.io/diaspora_federation/
https://diaspora.github.io/diaspora_federation/
https://www.w3.org/TR/activitypub/
https://www.w3.org/TR/activitypub/
https://www.iso.org/standard/45138.html
https://www.iso.org/standard/45138.html
https://www.forbes.com/sites/kashmirhill/2014/06/13/facebook-web-app-tracking-for-ads/#44aff2635d58
https://www.forbes.com/sites/kashmirhill/2014/06/13/facebook-web-app-tracking-for-ads/#44aff2635d58
https://www.forbes.com/sites/kashmirhill/2014/06/13/facebook-web-app-tracking-for-ads/#44aff2635d58
http://vincos.it/world-map-of-social-networks/
http://vincos.it/world-map-of-social-networks/
http://www.pewinternet.org/fact-sheet/social-media/
http://www.pewinternet.org/fact-sheet/social-media/
http://www.alexa.com/topsites/countries/RU

208 Bibliography

[180] Kai Lukoff. China’s Top Four Social Networks: RenRen, Kaixin001, Qzone, and
51.com. https://venturebeat.com/2010/04/07/chinas- top- 4- social-
networks-renren-kaixin001-qzone-and-51-com/. Accessed: 8.6.2017. 2010.

[181] Facebook. Send Money to Friends in Messenger. https://newsroom.fb.com/
news/2015/03/send-money-to-friends-in-messenger/. Accessed: 20.5.2017.
Mar. 2015.

[182] Facebook. Reactions Now Available Globally. https://en.facebookbrand.
com/assets/reactions. Accessed: 20.6.2017. Feb. 2016.

[183] M. Ku. Introducing Marketplace: Buy and Sell With Your Local Community.
https://newsroom.fb.com/news/2016/10/introducing-marketplace-buy-

and-sell-with-your-local-community/. Accessed: 28.10.2017. Oct. 2016.
[184] S. Kairam, M. Brzozowski, D. Huffaker, and E. Chi. “Talking in Circles:

Selective Sharing in Google+”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM. 2012, pp. 1065–1074.

[185] D. Schiöberg, F. Schneider, H. Schiöberg, S. Schmid, S. Uhlig, and
A. Feldmann. “Tracing the Birth of an OSN: Social Graph and Profile
Analysis in Google+”. In: Proceedings of the 4th Annual ACM Web Science
Conference. ACM. 2012, pp. 265–274.

[186] K. Baran and W. Stock. “Facebook has Been Smacked Down. The Russian
Special Way of SNSs: Vkontakte as a Case Study”. In: Proceedings of the
2nd European Conference on Social Media (ECSM 2015), 9.-10. July 2015, Porto,
Portugal. 2015, pp. 574–582.

[187] S. Khveshchanka and L. Suter. “Vergleichende Analyse von
profilbasierten sozialen Netzwerken aus Russland (VKontakte),
Deutschland (StudiVZ) und den USA (Facebook)”. In:
Information–Wissenschaft und Praxis 61.2 (2010), p. 2010.

[188] A. Rosen and I. Ihara. Giving YouMore Characters to Express Yourself. https:
//blog.twitter.com/official/en_us/topics/product/2017/Giving-you-

more-characters-to-express-yourself.html. Accessed: 30.11.2017. Sept.
2017.

[189] M. Zarro and C. Hall. “Pinterest: Social Collecting for #Linking #Using
#Sharing”. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on
Digital Libraries. ACM. 2012, pp. 417–418.

[190] D. Boyd. “Friends, Friendsters, and Top 8: Writing Community Into
Being on Social Network Sites”. In: First Monday 11.12 (2006). http://
www.firstmonday.org/ojs/index.php/fm/article/view/1418. Accessed:
7.7.2017. issn: 13960466. doi: 10.5210/fm.v11i12.1418.

[191] A. Monitzer. XEP-0224: Attention. Tech. rep. https : / / xmpp . org /

extensions / xep - 0224 . html. Accessed: 2.6.2017. XMPP Standards
Foundation, 2008.

[192] Life Before Us, LLC. What is Yo? http : / / docs . justyo . co/ Accessed:
3.5.2017. 2017.

[193] K. O’Rourke. Goodbye, Like Button. https : / / blog . pinterest . com / en /

goodbye-button. Accessed: 9.6.2017. Apr. 2017.

https://venturebeat.com/2010/04/07/chinas-top-4-social-networks-renren-kaixin001-qzone-and-51-com/
https://venturebeat.com/2010/04/07/chinas-top-4-social-networks-renren-kaixin001-qzone-and-51-com/
https://newsroom.fb.com/news/2015/03/send-money-to-friends-in-messenger/
https://newsroom.fb.com/news/2015/03/send-money-to-friends-in-messenger/
https://en.facebookbrand.com/assets/reactions
https://en.facebookbrand.com/assets/reactions
https://newsroom.fb.com/news/2016/10/introducing-marketplace-buy-and-sell-with-your-local-community/
https://newsroom.fb.com/news/2016/10/introducing-marketplace-buy-and-sell-with-your-local-community/
https://blog.twitter.com/official/en_us/topics/product/2017/Giving-you-more-characters-to-express-yourself.html
https://blog.twitter.com/official/en_us/topics/product/2017/Giving-you-more-characters-to-express-yourself.html
https://blog.twitter.com/official/en_us/topics/product/2017/Giving-you-more-characters-to-express-yourself.html
http://www.firstmonday.org/ojs/index.php/fm/article/view/1418
http://www.firstmonday.org/ojs/index.php/fm/article/view/1418
https://doi.org/10.5210/fm.v11i12.1418
https://xmpp.org/extensions/xep-0224.html
https://xmpp.org/extensions/xep-0224.html
http://docs.justyo.co/
https://blog.pinterest.com/en/goodbye-button
https://blog.pinterest.com/en/goodbye-button

Bibliography 209

[194] Facebook. Facebook Graph API Reference v2.9. https : / / developers .

facebook.com/docs/graph-api/reference/v2.9/. Accessed: 17.6.2017. June
2017.

[195] B. Goode. “Voice Over Internet Protocol (VoIP)”. In: Proceedings of the IEEE
90.9 (2002), pp. 1495–1517.

[196] James Snell and Evan Prodromou. Activity Vocabulary. https://www.w3.
org/TR/activitystreams-vocabulary/. Accessed: 9.5.2017. 2017.

[197] Facebook Brand Resource Center. News Feed. https://en.facebookbrand.
com/assets/newsfeed, Accessed: 21.5.2017. 2017.

[198] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. https://www.tools.ietf.org/html/rfc3986. Accessed:
3.6.2017. 2005.

[199] P. Mockapetris. Domain Names - Concepts and Facilities. Tech. rep. https:
//tools.ietf.org/html/rfc1034. Accessed: 23.8.2017. IETF, 1987.

[200] P. Resnick. Internet Message Format. https : / / tools . ietf . org / html /

rfc5322. Accessed: 5.6.2017. 2008.
[201] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Address

Format. Tech. rep. https : / / tools . ietf . org / html / rfc6122. Accessed:
31.7.2017. IETF, 2011.

[202] A. Sambra, S. Corlosquet, H. Story, and T. Berners-Lee. WebID 1.0: Web
Identity and Discovery. Tech. rep. http://dvcs.w3.org/hg/WebID/raw-
file/tip/spec/identity-respec.html. Accessed: 1.8.2017. W3C, 2017.

[203] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B.
McBride. RDF 1.1 Concepts and Abstract Syntax. Tech. rep. http://www.w3.
org/TR/rdf11-concepts/. Accessed: 1.8.2017. W3C, 2014.

[204] H. Story, B. Harbulot, I. Jacobi, and M. Jones. “FOAF+SSL: Restful
Authentication for the Social Web”. In: Proceedings of the First Workshop
on Trust and Privacy on the Social and Semantic Web (SPOT2009). 2009.

[205] H. Story, S. Corlosquet, A. Sambra, T. Inkster, and B. Harbulot.
WebID-TLS: WebID Authentication over TLS. Tech. rep. https://www.w3.org/
TR/auth-webid/. Accessed: 1.8.2017. W3C, 2017.

[206] N. Sakimura, J. Bradley, M. Jones, and E. Jay. OpenID Connect Discovery
1.0 Incorporating Errata Set 1. Tech. rep. http://openid.net/specs/openid-
connect- discovery- 1_0.html. Accessed: 2.8.2017. OpenID Foundation,
2014.

[207] D. Reed and D. McAlpin. Extensible Resource Identifier (XRI) Syntax V2.0.
https://www.oasis-open.org/committees/download.php/15377. Accessed:
3.6.2017. 2005.

[208] G. Wachob, D Reed, L Chasen, W Tan, and S Churchill. Extensible Resource
Identifier (XRI) Resolution Version 2.0. http://docs.oasis-open.org/xri/2.
0/specs/xri-resolution-V2.0.html. Accessed: 2.6.2017. 2008.

https://developers.facebook.com/docs/graph-api/reference/v2.9/
https://developers.facebook.com/docs/graph-api/reference/v2.9/
https://www.w3.org/TR/activitystreams-vocabulary/
https://www.w3.org/TR/activitystreams-vocabulary/
https://en.facebookbrand.com/assets/newsfeed
https://en.facebookbrand.com/assets/newsfeed
https://www.tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc6122
http://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
http://dvcs.w3.org/hg/WebID/raw-file/tip/spec/identity-respec.html
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/auth-webid/
https://www.w3.org/TR/auth-webid/
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
https://www.oasis-open.org/committees/download.php/15377
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html

210 Bibliography

[209] D. Recordon and D. Reed. “OpenID 2.0: A Platform for User-Centric
Identity Management”. In: Proceedings of the Second ACM Workshop on
Digital Identity Management. DIM ’06. Alexandria, Virginia, USA, 2006,
pp. 11–16. isbn: 1-59593-547-9.

[210] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URNNamespace. http://tools.ietf.org/html/rfc4122. Accessed: 5.6.2017.
2005.

[211] B. Demir. Twitter Snowflake. https : / / github . com / twitter / snowflake.
Accessed: 12.2.2017. 2010.

[212] D. Gardner and L. Vasconcelos. Cruftflake. https : / / github . com /

davegardnerisme/cruftflake. Accessed: 12.2.2017. 2015.
[213] D. Featherston, S. Debnath, T. Nyman, A. Veres-Szentkirályi, and M.

Countryman. Boundaryflake. https : / / github . com / boundary / flake.
Accessed: 12.2.2017. 2015.

[214] M Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).
Tech. rep. http://www.ietf.org/rfc/rfc2251.txt. Accessed: 23.8.2017.
IETF, 1997.

[215] K. Zeilenga. Lightweight Directory Access Protocol (LDAP) Transactions. Tech.
rep. http://tools.ietf.org/html/rfc5805. Accessed: 23.8.2017. IETF,
2010.

[216] J. Sermersheim. Lightweight Directory Access Protocol (LDAP) The Protocol.
Tech. rep. http://tools.ietf.org/html/rfc4511. Accessed: 23.8.2017.
IETF, 2006.

[217] X.500: Information technology - Open Systems Interconnection - The Directory:
Overview of concepts, models and services. Tech. rep. http : / / www . itu .

int / rec / T - REC - X . 500 / en. Accessed: 23.8.2017. International
Telecommunication Union (ITU-T), 2012.

[218] P. Mockapetris. Domain Names - Implementation and Specification. Tech.
rep. https://tools.ietf.org/html/rfc1035. Accessed: 23.8.2017. IETF,
1987.

[219] A. Oram et al. “Peer-to-Peer: Harnessing the Benefits of a Distruptive
Technology”. In: O’Reilly & Associate Inc. (2001), pp. 67–72.

[220] C. Douligeris and A. Mitrokotsa. “DDoS Attacks and Defense
Mechanisms: Classification and State-of-the-Art”. In: Computer
Networks 44.5 (2004), pp. 643–666.

[221] X. Yue, X. Qiu, Y. Ji, and C. Zhang. “P2P Attack Taxonomy and
Relationship Analysis”. In: 11th International Conference on Advanced
Communication Technology (ICACT). Vol. 2. IEEE. 2009, pp. 1207–1210.

[222] J. Frankel and T Pepper. Gnutella Protocol Specification v0.4. http://web.
stanford . edu / class / cs244b / gnutella _ protocol _ 0 . 4 . pdf Accessed:
4.5.2017. 2007.

[223] J Liang, R Kumar, and K Ross. “Understanding KaZaA”. In: (2004).

http://tools.ietf.org/html/rfc4122
https://github.com/twitter/snowflake
https://github.com/davegardnerisme/cruftflake
https://github.com/davegardnerisme/cruftflake
https://github.com/boundary/flake
http://www.ietf.org/rfc/rfc2251.txt
http://tools.ietf.org/html/rfc5805
http://tools.ietf.org/html/rfc4511
http://www.itu.int/rec/T-REC-X.500/en
http://www.itu.int/rec/T-REC-X.500/en
https://tools.ietf.org/html/rfc1035
http://web.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf
http://web.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf

Bibliography 211

[224] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. Vol. 31. 4. ACM, 2001.

[225] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications”. In: ACM SIGCOMM Computer Communication Review 31.4
(2001), pp. 149–160.

[226] A. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems”. In:
IFIP/ACM International Conference on Distributed Systems Platforms and Open
Distributed Processing. Springer. 2001, pp. 329–350.

[227] P. Maymounkov and D. Mazières. “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric”. In: Revised Papers from the
First International Workshop on Peer-to-Peer Systems. IPTPS ’01. London,
UK, UK: Springer-Verlag, 2002, pp. 53–65. isbn: 3-540-44179-4.

[228] V. Ramasubramanian and E. G. Sirer. “Beehive: O(1) Lookup Performance
for Power-Law Query Distributions in Peer-to-Peer Overlays”.
In: Proceedings of the 1st Symposium on Networked Systems Design and
Implementation. Vol. 4. 2004, pp. 8–8.

[229] V. Ramasubramanian and E. G. Sirer. “Beehive: Exploiting Power Law
Query Distributions for O(1) Lookup Performance in Peer to Peer
Overlays”. In: Proceedings of the 1st SymposiumonNetworked SystemsDesign
and Implementation. 2004.

[230] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson.
“Profiling a Million User DHT”. In: Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement. ACM. 2007, pp. 129–134.

[231] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,
and J. Hellerstein. “A Case Study in Building Layered DHT Applications”.
In: Proceedings of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. SIGCOMM ’05.
New York, NY, USA: ACM, 2005, pp. 97–108. isbn: 1-59593-009-4. doi:
10.1145/1080091.1080104.

[232] V. Ramasubramanian and E. G. Sirer. “The Design and Implementation
of a Next Generation Name Service for the Internet”. In: ACM SIGCOMM
Computer Communication Review 34.4 (2004), pp. 331–342.

[233] R. Cox, A. Muthitacharoen, and R. T. Morris. “Serving DNS using a
peer-to-peer lookup service”. In: International Workshop on Peer-To-Peer
Systems. Springer. 2002, pp. 155–165.

[234] V. Pappas, D. Massey, A. Terzis, and L. Zhang. “A Comparative Study
of the DNS Design with DHT-Based Alternatives”. In: Proceedings of the
25th IEEE Conference on Computer Communications (INFOCOM). IEEE. 2006,
pp. 1–13.

[235] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF.
https://tools.ietf.org/html/rfc5234. Accessed: 21.7.2017. 2008.

https://doi.org/10.1145/1080091.1080104
https://tools.ietf.org/html/rfc5234

212 Bibliography

[236] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). Tech. rep.
http://tools.ietf.org/html/rfc7519. Accessed: 23.6.2017. IETF, 2015.

[237] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. Tech. rep.
https://tools.ietf.org/html/rfc4648. Accessed: 1.8.2017. IETF, 2006.

[238] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polkk.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. https : / / tools . ietf . org / html / rfc5280. Accessed:
5.6.2017. 2008.

[239] A. K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes,
and P. Leyland. “Factoring Estimates for a 1024-bit RSA Modulus”. In:
Asiacrypt. Vol. 2894. Springer. 2003, pp. 55–74.

[240] Patarin, J and Montreuil, A. Benes and Butterfly Schemes Revisited.
Cryptology ePrint Archive, Report 2005/004. 2005.

[241] N. Farrington and A. Andreyev. “Facebook’s Data Center Network
Architecture”. In: Optical Interconnects Conference, 2013 IEEE. IEEE. 2013,
pp. 49–50.

[242] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. “Inside the
Social Network’s (Datacenter) Network”. In: ACM SIGCOMM Computer
Communication Review. Vol. 45. 4. ACM. 2015, pp. 123–137.

[243] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, et al. “TAO: Facebook’s
Distributed Data Store for the Social Graph”. In: USENIX Annual Technical
Conference. 2013, pp. 49–60.

[244] D. Austin, A. Barbir, C. Ferris, and S. Garg. Web Services Architecture
Requirements. Tech. rep. http : / / www . w3 . org / TR / wsa - reqs. Accessed:
29.7.2017. W3C, Nov. 2002.

[245] I. G. Alonso et al. Future Internet Design Principles. Tech. rep. http://www.
future-internet.eu/uploads/media/FIArch_Design_Principles_V1.0.pdf.
Accessed: 4.8.2017. Future Internet Architecture (FIArch) Group, 2012.

[246] A. De Salve, B. Guidi, and L. Ricci. “An Analysis of Ego Network
Communities and Temporal a Affinity for Online Social Networks”. In:
International Conference on Smart Objects and Technologies for Social Good.
Springer. 2016, pp. 135–144.

[247] H. Haas and A. Brown. Web Services Glossary. Tech. rep. https://www.w3.
org/TR/ws-gloss/. Accessed: 29.7.2017. W3C, Feb. 2004.

[248] M. Richards. Software Architecture Patterns. O’Reilly Media, 2015. isbn:
9781491925409.

[249] A. Pathak, G. Rosca, V. Issarny, M. Decat, and B. Lagaisse. “Privacy
and Access Control in Federated Social Networks”. In: Engineering Secure
Future Internet Services and Systems. Springer, 2014, pp. 160–179.

[250] R. Sandhu, D. Ferraiolo, and R. Kuhn. “The NIST Model for Role-Based
Access Control: Towards a Unified Standard”. In: ACM Workshop on
Role-based Access Control. Vol. 2000. 2000, pp. 1–11.

http://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc5280
http://www.w3.org/TR/wsa-reqs
http://www.future-internet.eu/uploads/media/FIArch_Design_Principles_V1.0.pdf
http://www.future-internet.eu/uploads/media/FIArch_Design_Principles_V1.0.pdf
https://www.w3.org/TR/ws-gloss/
https://www.w3.org/TR/ws-gloss/

Bibliography 213

[251] J. Martin. Managing the Data Base Environment. A James Martin book.
Pearson Education, Limited, 1983. isbn: 9780135505823.

[252] R. T. Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. https : / / www . ics . uci . edu / ~fielding / pubs /
dissertation / fielding _ dissertation . pdf. Accessed: 22.7.2017. PhD
thesis. University of California, Irvine, 2000.

[253] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. Tech. rep. https://tools.ietf.org/html/rfc7231. Accessed:
4.8.2017. IETF, 2014.

[254] A. Tanenbaum. Computer Networks. 5th. Pearson, 2012. isbn:
978-3868941371.

[255] R. Daigneau. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley, 2011.

[256] J. E. White. A High-Level Framework for Network-Based Resource Sharing
(RFC 707). https://tools.ietf.org/html/rfc707. Accessed: 23.6.2017.
1976.

[257] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A.
Karmarkar, and Y. Lafon. SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition). Tech. rep. http : / / www . w3 . org / TR / soap12 - part1/.
Accessed: 4.8.2017. W3C, 2007.

[258] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition). Tech. rep. http://
www.w3.org/TR/xml/. Accessed: 31.7.2017. W3C, 2008.

[259] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. Tech. rep. https://tools.ietf.org/html/rfc7230.
Accessed: 4.8.2017. IETF, 2014.

[260] S. Tilkov, M. Eigenbrodt, S. Schreier, and O. Wolf. REST und HTTP. 3rd ed.
dpunkt.verlag, 2015. isbn: 978-3-86490-120-1.

[261] B. Mulloy. Web API Design - Crafting Interfaces that Developers Love. Tech.
rep. https://apigee.com/about/cp/api-design-best-practices. Accessed:
22.7.2017. Apigee, 2013.

[262] T. Espinha, A. Zaidman, and H.-G. Gross. “Web API Growing Pains:
Loosely Coupled yet Strongly Tied”. In: Journal of Systems and Software
100 (2015), pp. 27 –43. issn: 0164-1212. doi: http://dx.doi.org/10.1016/
j.jss.2014.10.014.

[263] S. Faulkner, A. Eicholz, T. Leithead, A. Danilo, and S. Moon. HTML 5.2.
Tech. rep. https://www.w3.org/TR/html52/. Accessed: 3.8.2017. W3C, Aug.
2017.

[264] S. McCarron and M. Ishikawa. XHTML 1.1 - Module-based XHTML - Second
Edition. Tech. rep. http://www.w3.org/TR/xhtml11/. Accessed: 3.8.2017.
W3C, 2010.

[265] K. Bals. Extensible Stylesheet Language (XSL) Requirements Version 2.0. Tech.
rep. http://www.w3.org/TR/xslfo20-req/. Accessed: 3.8.2017. W3C, 2008.

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc707
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
https://tools.ietf.org/html/rfc7230
https://apigee.com/about/cp/api-design-best-practices
https://doi.org/http://dx.doi.org/10.1016/j.jss.2014.10.014
https://doi.org/http://dx.doi.org/10.1016/j.jss.2014.10.014
https://www.w3.org/TR/html52/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xslfo20-req/

214 Bibliography

[266] M. Kay. XSL Transformations (XSLT) Version 3.0. Tech. rep. https://www.w3.
org/TR/xslt-30/. Accessed: 3.8.2017. W3C, 2017.

[267] J. Robie, M. Dyck, and J. Spiegel. XMLPath Language (XPath) 3.1. Tech. rep.
https://www.w3.org/TR/xpath-31/. Accessed: 3.8.2017. W3C, 2017.

[268] ECMA-404: The JSON Data Interchange Format. Tech. rep. https : / / www .
ecma-international.org/publications/standards/Ecma-404.htm. Accessed:
9.7.2017. ECMA, 2013.

[269] T. Bray. The JavaScript Object Notation (JSON)Data Interchange Format. Tech.
rep. https://buildbot.tools.ietf.org/html/rfc7158. Accessed: 9.7.2017.
IETF, 2013.

[270] A. Wright and H. Andrews. JSON Schema: A Media Type for Describing JSON
Documents draft-wright-json-schema-01. Tech. rep. http://json-schema.
org/latest/json-schema-core.html. Accessed: 9.7.2017. IETF, 2017.

[271] T. Berners-Lee. Linked Data. July 27, 2006. url: https://www.w3.org/
DesignIssues/LinkedData.html (visited on 08/01/2017).

[272] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström.
JSON-LD: A JSON-based Serialization for Linked Data. Tech. rep. https://
www.w3.org/TR/json-ld/. Accessed: 1.6.2017. 2014.

[273] P. Siriwardena. “JWT, JWS, and JWE”. In: Advanced API Security: Securing
APIs with OAuth 2.0, OpenID Connect, JWS, and JWE. Berkeley, CA: Apress,
2014, pp. 201–220. isbn: 978-1-4302-6817-8.

[274] M. Jones, J. Bradley, and N. Sakimura. JSON Web Signature (JWS). Tech.
rep. http://tools.ietf.org/html/rfc7515. Accessed: 1.8.2017. IETF, 2015.

[275] M. Jones and J. Hildebrand. JSON Web Encryption (JWE). Tech. rep. http:
//tools.ietf.org/html/rfc7516. Accessed: 1.8.2017. IETF, 2015.

[276] S. Perreault. vCard Format Specification. Tech. rep. https://tools.ietf.
org/html/rfc6350. Accessed: 3.8.2017. IETF, 2011.

[277] P. Kewisch. jCard: The JSON Format for vCard. Tech. rep. https://tools.
ietf.org/html/rfc7095. Accessed: 3.8.2017. IETF, 2014.

[278] S. Perreault. xCard: vCard XML Representation. Tech. rep. https://tools.
ietf.org/html/rfc6351. Accessed: 3.8.2017. IETF, 2011.

[279] J. Smarr. Portable Contacts 1.0 Draft C. 2008.
[280] OWL Working Group. OWL 2 Web Ontology Language Document Overview

(Second Edition). Tech. rep. https : / / www . w3 . org / TR / owl2 - overview/.
Accessed: 1.8.2017. W3C, 2012.

[281] T. Çelik, M. Mullenweg, and E. Meyer. Xhtml Friends Network. Tech. rep.
http://www.gmpg.org/xfn/11. Accessed: 13.7.2017. GMPG, 2003.

[282] Facebook. The Open Graph Protocol. http://ogp.me/. Accessed: 3.1.2017.
2010.

[283] Dublin CoreMetadata Element Set, Version 1.1. Tech. rep. http://dublincore.
org / documents / 2006 / 12 / 18 / dces/. Accessed: 2.8.2017. Dublin Core
Metadata Initiative, 2006.

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xpath-31/
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://buildbot.tools.ietf.org/html/rfc7158
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
http://tools.ietf.org/html/rfc7515
http://tools.ietf.org/html/rfc7516
http://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc6350
https://tools.ietf.org/html/rfc6350
https://tools.ietf.org/html/rfc7095
https://tools.ietf.org/html/rfc7095
https://tools.ietf.org/html/rfc6351
https://tools.ietf.org/html/rfc6351
https://www.w3.org/TR/owl2-overview/
http://www.gmpg.org/xfn/11
http://ogp.me/
http://dublincore.org/documents/2006/12/18/dces/
http://dublincore.org/documents/2006/12/18/dces/

Bibliography 215

[284] B. Adida, M. Birbeck, S. McCarron, and I. Herman. RDFa Core 1.1 - Third
Edition. Syntax and Processing Rules for Embedding RDF Through Attributes.
Tech. rep. http://www.w3.org/TR/rdfa-core/. Accessed: 2.8.2017. W3C,
2015.

[285] Facebook Developers. OpenGraph. https://developers.facebook.com/docs/
opengraph/. Accessed: 12.6.2017. 2013.

[286] J. Snell. Atom Threading Extensions. Tech. rep. https://tools.ietf.org/
html/rfc4685. Accessed: 4.6.2017. IETF, 2006.

[287] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence. http://tools.ietf.org/html/rfc6121. Accessed:
31.7.2017. 2011.

[288] P. Saint-Andre. XEP-0045: Multi-User Chat. Tech. rep. https : / / xmpp .
org / extensions / xep - 0045 . html. Accessed: 1.8.2017. XMPP Standards
Foundation, 2016.

[289] P. Millard, P. Saint-Andre, and I. Paterson. XEP-0020: FeatureNegotiation.
Tech. rep. https : / / xmpp . org / extensions / xep - 0020 . html. Accessed:
1.8.2017. XMPP Standards Foundation, 2006.

[290] P. Saint-Andre and J. Hildebrand. XEP-0184: Message Delivery Receipts.
Tech. rep. https : / / xmpp . org / extensions / xep - 0184 . html. Accessed:
1.8.2017. XMPP Standards Foundation, 2011.

[291] Matrix Specification. Tech. rep. https://matrix.org/docs/spec/. Accessed:
1.8.2017. Matrix.org, 2017.

[292] Matrix FAQ. Tech. rep. https : / / matrix . org / docs / guides / faq . html.
Accessed: 1.8.2017. Matrix.org, 2017.

[293] J. Genestoux, A. Parecki, B. Fitzpatrick, B. Slatkin, andM. Atkins.WebSub.
Tech. rep. https://www.w3.org/TR/websub/. Accessed: 1.8.2017. W3C, 2017.

[294] M. N. Ko, G. P. Cheek, M. Shehab, and R. Sandhu. “Social-Networks
Connect Services”. In: Computer 43.8 (2010), pp. 37–43.

[295] Google. Google+ API. https://developers.google.com/+/web/api/rest/.
Accessed: 17.6.2017. 2017.

[296] D. Hardt. The OAuth 2.0 Authorization Framework. Tech. rep. https : / /

tools.ietf.org/html/rfc6749. Accessed: 23.6.2017. 2012.
[297] G. Papadakis, K. Tserpes, E. Sardis, M. Kardara, A. Papaoikonomou, and

F. Aisopos. “Social Media Meta-API: Leveraging the Content of Social
Networks”. In: Proceedings of the 21st International Conference onWorldWide
Web. ACM. 2012, pp. 271–274.

[298] M. Mostarda, D. Palmisano, F. Zani, and S. Tripodi. “Towards an
OpenID-Based Solution to the Social Network Interoperability Problem”.
In: W3C Workshop on the Future of Social Networking. 2009, pp. 15–16.

[299] G. Gouriten and P. Senellart. “API Blender: A Uniform Interface to Social
Platform APIs”. In: International World Wide Web Conference (WWW). Lyon,
France, 2012.

http://www.w3.org/TR/rdfa-core/
https://developers.facebook.com/docs/opengraph/
https://developers.facebook.com/docs/opengraph/
https://tools.ietf.org/html/rfc4685
https://tools.ietf.org/html/rfc4685
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0020.html
https://xmpp.org/extensions/xep-0184.html
https://matrix.org/docs/spec/
https://matrix.org/docs/guides/faq.html
https://www.w3.org/TR/websub/
https://developers.google.com/+/web/api/rest/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

216 Bibliography

[300] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. Tech. rep. https://tools.ietf.org/
html/rfc3447. Accessed: 4.6.2017. IETF, 2003.

[301] M. Bellare and P. Rogaway. “The Exact Security of Digital Signatures
- How to Sign with RSA and Rabin”. In: International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 1996,
pp. 399–416.

[302] D. J. Bernstein. RSA Signatures and Rabin-Williams Signatures: The State of
the Art. https://cr.yp.to/papers.html#rwsota. 2008.

[303] J. Postel and J. Reynolds. File Transfer Protocol (FTP). Tech. rep. https:
//tools.ietf.org/html/rfc959. Accessed: 26.8.2017. IETF, 1985.

[304] P. Hethmon and R. Elz. Feature Negotiation Mechanism for the File Transfer
Protocol. Tech. rep. https: // tools. ietf. org/ html/ rfc2389. Accessed:
26.8.2017. IETF, 1998.

[305] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol
(DCCP). Tech. rep. https : / / tools . ietf . org / html / rfc4340. Accessed:
26.8.2017. IETF, 2006.

[306] A. Paro. ElasticSearch Cookbook. Packt Publishing Ltd, 2015.
[307] L. Masinter. The "data" URL Scheme. Tech. rep. https://www.ietf.org/rfc/

rfc2397.txt. Accessed: 21.7.2017. IETF, 1998.
[308] D. Calhoun. When to Base64 Encode Images (andwhen not to). Aug. 28, 2011.

url: http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-
when-not-to/ (visited on 07/21/2017).

[309] P. Deutsch. GZIP File Format Specification Version 4.3. Tech. rep. https://
tools.ietf.org/html/rfc1952. Accessed: 21.7.2017. IETF, 1998.

[310] D. Longley, M. Sporny, S. McCarron, and C. Allen. Linked Data Signatures
1.0. Tech. rep. https://w3c-dvcg.github.io/ld-signatures/. Accessed:
10.10.2017. W3C, 2017.

[311] T. Bocek. TomP2P - A Distributed Multi Map. 2009.
[312] Jason Evans. TheHipHopVirtualMachine. https://www.facebook.com/notes/

facebook-engineering/the-hiphop-virtual-machine/10150415177928920/,
Accessed: 16.1.2017. 2011.

[313] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns:
Abstraction and Reuse of Object-Oriented Design”. In: European
Conference on Object-Oriented Programming. Springer. 1993, pp. 406–431.

[314] S. M. H. Sharhan. “Design and Implementation of Sonic Compliant
Online Social Network Platform for Home Servers”. MA thesis.
Technische Universität Berlin, 2017.

[315] S. Buchegger and A. Datta. “A Case for P2P Infrastructure for Social
Networks - Opportunities & Challenges”. In: Sixth International Conference
on Wireless On-Demand Network Systems and Services, 2009. WONS 2009.
IEEE. 2009, pp. 161–168.

https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
https://cr.yp.to/papers.html#rwsota
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc2389
https://tools.ietf.org/html/rfc4340
https://www.ietf.org/rfc/rfc2397.txt
https://www.ietf.org/rfc/rfc2397.txt
http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to/
http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to/
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://w3c-dvcg.github.io/ld-signatures/
https://www.facebook.com/notes/facebook-engineering/the-hiphop-virtual-machine/10150415177928920/
https://www.facebook.com/notes/facebook-engineering/the-hiphop-virtual-machine/10150415177928920/

Bibliography 217

[316] B. Carpenter. Architectural Principles of the Internet. Tech. rep. https://
tools.ietf.org/html/rfc1958. Accessed: 23.8.2017. IETF, 1996.

[317] R. Braden. Requirements for Internet Hosts - Communication Layers. Tech.
rep. https://tools.ietf.org/html/rfc1122. Accessed: 23.8.2017. IETF,
1989.

[318] ISO/IEC 27000:2016: Information Technology — Security Techniques —
Information Security Management Systems—Overview and Vocabulary. Tech.
rep. ISO/IEC, Feb. 2016.

[319] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2016–2021. Tech. rep. https : / / www . cisco . com / c / en / us / solutions /
collateral / service - provider / visual - networking - index - vni / mobile -

white-paper-c11-520862.pdf. Accessed: 28.8.2017. Cisco, Feb. 2017.
[320] R. Darwish and K. Ghazinour. “A Novel Approach for Studying Privacy

Behavior in Social Media”. In: Proceedings of the 4th Annual Conference on
Computational Science & Computational Intelligence (CSCI). ACSE. 2017.

[321] A. Koopmans. “Decentralized Social Networking Site”. Bachelor Thesis.
Universiteit van Amsterdam, 2015.

[322] D. Koll, D. Lechler, and X. Fu. “SocialGate: Managing Large-Scale Social
Data on Home Gateways”. In: 2017 IEEE 25th International Conference on
Network Protocols (ICNP). IEEE. 2017, pp. 1–6.

[323] H. Hebbo. “Integration of the Sonic Protocol into Existing Online Social
Networks to Facilitate Seamless Inter-Platform Communication”. MA
thesis. Technische Universität Berlin, 2015.

[324] M. Beckmann. “Design and Implementation of a Protocol for Feature
Negotiation between Platforms with Different Featuresets in the Sonic
Online Social Network Federation”. MA thesis. Technische Universität
Berlin, 2016.

https://tools.ietf.org/html/rfc1958
https://tools.ietf.org/html/rfc1958
https://tools.ietf.org/html/rfc1122
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

	Titlepage
	A Bill of Rights for Users of the Social Web
	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	1 Introduction
	1.1 The Social Web
	1.2 The Social Graph
	1.3 Locked into Walled Gardens
	1.4 Motivation
	1.5 Problem Statement
	1.5.1 Challenges
	1.5.2 European Law Perspective

	1.6 Research Questions
	1.7 SOcial Network InterConnect
	1.7.1 The Sonic Vision

	1.8 Contribution
	1.8.1 Definition of a Core Featureset of OSN Platforms
	1.8.2 Privacy Preserving OSN Architecture
	1.8.3 APIs and Data Formats for Seamless OSN Interoperability
	1.8.4 Global User and Object Identification
	1.8.5 Data Portability for User Accounts

	1.9 Research Methodology and Outline

	2 Related Work
	2.1 Online Social Networks
	2.1.1 Definition
	2.1.2 Classification

	2.2 OSN Services
	2.2.1 DOSN Services
	P2P DOSN Services
	Federated DOSN Services
	Hybrid DOSN Services

	2.3 Connecting Microblogging Services
	2.4 Cross-platform Interoperability

	3 Concept and Design
	3.1 Definitions
	3.2 Use Cases
	3.2.1 Use Case 1: Signing Up
	3.2.2 Use Case 2: Multiple Social Profiles
	3.2.3 Use Case 3: Inconsistencies with Posting and Commenting
	3.2.4 Use Case 4: Event Management
	3.2.5 Use Case 5: Data Portability

	3.3 Requirements
	3.4 A Taxonomy of Featuresets of Online Social Networks
	3.4.1 Related Work
	3.4.2 OSN Features
	3.4.3 Analyzed OSN Services
	Facebook
	Google+
	VKontakte
	RenRen
	Twitter
	Linkedin
	Xing
	Diaspora
	Friendica
	Mastodon
	Instagram
	Pinterest

	3.4.4 OSN Feature Taxonomy
	Social Profile
	Link
	Conversation
	Poke
	Like
	Reaction
	Collection
	Image
	Video
	Live Video
	Comment
	Voice Call
	Video Call
	Stream & Activity
	Tag
	Event Management
	Vote
	File
	Document
	Review
	Group
	Page
	Check-In
	Music & Playlist
	Gift
	Offer
	Endorsement

	3.4.5 Sonic Core Featureset

	3.5 User Identification
	3.5.1 Related Work
	Directory Services

	3.5.2 Global User Identification
	The Social Record Dataset
	Security Considerations

	3.5.3 Global Social Lookup System
	GSLS API

	3.5.4 Profile Migration

	3.6 Architecture
	3.6.1 Related work
	3.6.2 Sonic Architecture
	Sonic OSN Architecture

	3.6.3 Relationship Model
	3.6.4 Content Model
	Sonic URLs
	Unique Object Identifiers (UOID)
	Content Model
	Content Ownership
	Roles

	3.6.5 Access Control Model

	3.7 The Sonic Protocol
	3.7.1 Related work
	Data Formats
	Data Formats for Social Information
	OpenSocial
	Protocols for Social Information Exchange
	Protocols and APIs of OSN services
	Other Approaches

	3.7.2 The Sonic Protocol
	Protocol Context
	Request-Response Pattern

	3.7.3 Platform API
	FEATURE
	MIGRATION
	SEARCH

	3.7.4 Profile API
	LINK
	PROFILE
	ACTIVITY
	COMMENT
	LIKE
	TAG
	CONVERSATION
	IMAGE
	Supporting data formats

	4 Implementation
	4.1 GSLS
	4.1.1 Functionality
	4.1.2 Implementation
	Build
	Run
	Configuration

	4.2 Sonic SDK
	4.2.1 Functionality
	AccessControl
	Identity
	Model
	Crypt
	Request
	API
	Date
	Config

	4.2.2 Implementation
	4.2.3 Configuration
	Setup

	4.3 Sonic OSN
	4.3.1 Implementation
	4.3.2 SonicPi

	5 Evaluation
	5.1 Qualitative Assessment of Requirements and Challenges
	5.1.1 Core Features and Extensibility
	5.1.2 Openness
	5.1.3 Independence & distributed control
	5.1.4 Data portability
	5.1.5 Global Identity
	5.1.6 Interoperability
	5.1.7 Transparency and Integration
	5.1.8 Privacy
	5.1.9 Relations
	5.1.10 Availability
	5.1.11 Mobile support
	5.1.12 Third Party Support
	5.1.13 Performance & Scalability
	5.1.14 Discussion

	5.2 Comparison
	5.2.1 Architecture
	5.2.2 Interoperability
	5.2.3 User Identification
	5.2.4 Data Privacy
	5.2.5 Discussion

	5.3 Performance Evaluation of the GSLS
	5.4 Integration
	5.4.1 Friendica
	5.4.2 Feature Extensions
	5.4.3 Sonic App
	5.4.4 ReThink

	6 Conclusion
	6.1 Summary of Results
	6.2 Addressed Research Questions
	6.3 Future Work

	A Projects
	A.1 Sonic
	A.2 ReThink

	Bibliography

