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Abstract

One of the main problems in process optimization lies in the non-linearity, non-
convexity, and sheer size of existing process models. In this contribution, a sys-
tematic workflow for process systems engineers developing models suitable for
optimization purposes is presented. Hereby, three fundamentally different cases
are discussed: the availability of a complex, highly accurate model; the existence
of a simplifying, so called short-cut model; and the non-existence of a model
of any kind. Furthermore, a focus is lain on the systematic model reduction for
complex systems by means of linearization and convexification. Afterwards, two
case studies are presented showing how this workflow can be applied to a reac-
tive absorption system and to a multi-phase separation process. The presented
systematic leads to a successful implementation of process models applicable for
optimization, which are both reduced in size, non-linearity, and non-convexity.
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1. Introduction

“The solution of very large-scale nonlinear programming problems
still remains pretty much an art.” – Stratos Pistikopoulos, Interna-
tional Conference on Process Systems Engineering Asia - June 2013
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During the last few decades great advancements in solving large-scale non-linear
and other programming problems have been made. Despite the vast evolution of
the algorithms, a large portion of the actual success to solve a programming prob-
lem still depends upon the skill of the programmer or process systems engineer
preparing the model for optimization. In this contribution, the authors take a step
to systematize the model preparation and thus demystify this “art”.

1.1. Motivation
Applied online-optimization of industrial plants has become an increasingly

prominent topic. Several examples of successful implementation of model-based
optimization from the petro-industry such as (Sarabia et al., 2012) for hydrogen
networks, (Jalilova et al., 2008) and (Ramdial et al., 2009) for refineries, and
(Müller et al., 2012b) for the chemical industry are presently available. The suc-
cess of these model-based optimizers is due to the utilized models with two im-
portant characteristics: very high to reasonable accuracy regarding the process and
acceptable computational effort regarding the optimization calculation. In chemi-
cal engineering a multitude of applications ranging from distillation to reaction to
absorption exist. In many cases, a model of the system is desired, either for sim-
ulation, optimization, or advanced control purposes. Often, engineers will find
themselves in one of the following three situations:

• Deterministic models of systems are available, which describe the phenom-
ena, process units, or entire plants with high accuracy. Due to their non-
convexity, non-linearity, and sheer size in terms of equations and variables,
application of these models for optimization purposes is seldom seen.

• In contrast to these highly accurate models stands the availability of sim-
plified standard models, such as a continuously stirred tank reactor mod-
els consisting of integral mass and energy balances. What these models
make up for in computational time, they lack in accuracy. Their viability
for optimization can usually be guaranteed, but the results are scarcely ever
sensible.

• Finally, the possibility of a case with no model, no detailed kinetics, no or
inconsistent thermodynamic data, or simply a not so well known system has
to be taken into consideration.

Each situation requires its own particular strategy to formulate or rework the
model.
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1.2. Goal
The goal of this contribution is to present a systematic workflow for process

systems engineers developing models suitable for optimization purposes. Hence,
strategies are presented to reduce the size, non-convexities, and non-linearities in
exact, but too expensive models, to adjust rough models to real behavior regard-
ing phenomena or whole processes of actual plants, and to develop completely
new models for unknown, novel systems. Different paths and decisions are taken
into account, depending on the information available for the model development.
Furthermore, two examples are given on how this methodology can be applied.

2. Status Quo

Most optimization in process systems engineering is carried out with gradient-
based algorithms.1 First or second order Taylor polynomials on a Lagrange refor-
mulation of the optimization problem are used. The algorithms converge at the
fulfilled KKT conditions (Kuhn & Tucker, 1951). Due to the Lagrange reformu-
lation, the optimization algorithm is handed the entire scope of the model, at least
in case of simultaneous optimization. For all derivative free, stochastic, or swarm
theory based algorithms this is not true. In this contribution, the focus will lie on
the former, meaning that continuously differentiable models are to be preferred at
all times.

At the moment optimizers follow several different strategies to set-up and
solve optimization problems. Among these are the application of short-cut mod-
els, model derivations based on neural networks and support vector regression, as
well as the development of reduced-order models with help of principal compo-
nent analysis or principal orthogonal decomposition. The pros and cons of these
strategies will be discussed briefly in the following.

2.1. Classical Short-Cut Models
Short-cut models for process development in chemical engineering date back

as far as the early 1920s. Maybe the most well-known among them is the McCabe-
Thiele method for graphically designing distillation columns (Mccabe & Thiele,
1925), the basis of which were presented by Ponchon, Rodebush, and Savarit

1This can be seen from the statistics of the NEOS server http://www.neos-server.org/
neos/, which clearly show a predominance of gradient-based algorithms. Statistics were analyzed
on the 1st of August 2013.
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(Gomes, 2007) in 1921, 22, and 23 respectively. Whilst the authors of these short-
cut models claim a fast and accurate calculation, the actual offset to the real ap-
plication is usually quite big and the applicability rather small. A simple example
is, that McCabe-Thiele’s method is only valid for components with equal molar
heat of vaporization. Given their nature, the computational complexity of short-
cut models is quite low and convergence can usually be guaranteed. Transferring
a short-cut model for one application to a second often poses a challenge.

However, short-cut models are often a good starting point for a basic model
derivation for optimization purposes. By adapting to real plant data their low
accuracy might be rectified for a certain region of interest.

2.2. Neural Networks and Support Vector Regression
Nandi et al. (2004) focus on the development of empirical models for process

optimization looking at both artificial neural networks (ANN) and support vec-
tor regression (SVR). ANNs can be constructed based solely on process data, no
phenomenologic knowledge is required, and multivariate dependencies can easily
be described. The training of the ANN usually involves a highly non-linear and
non-convex objective function (e.g. minimization of the sum of least squares).
Therefore, a lot of effort has to be put into finding the global optimum, guaran-
teeing a close fit between data and model. SVRs are similarly exclusively based
on process data. The objective function is quadratic and allows for the direct cal-
culation of the global minimum. Both ANN and SVR models can directly be
used for optimization purposes, without reformulations required. However, dur-
ing the synthesis process of each model type neither smoothness, nor continuity,
nor differentiability can be enforced. Consequently, ANN’s and SVR’s can be
highly impractical for the application of gradient-based optimization algorithms.
Additionally, it has to be remarked, that for both model types the extrapolation
to regions, for which no process data was obtained, is inadvisable. Their deriva-
tion strategy allows no insight into how the models are going to perform in those
regions they were not trained in (Bishop, 1994).

2.3. Reduced Order Models
Up to now, optimization on expensive computational fluid dynamics (CFD)

models is scarcely ever performed. The main reason is the time required for each
simulation step. Lang et al. (2009) present an approach for applying principal
component analysis (PCA) to derive reduced order models (ROMs) for process
optimization. The great advantage of the derived model lies in the computational
time it takes to solve it, i.e. in general a few seconds instead of a couple of hours
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Figure 1: Systematic workflow for the development of models for optimization.

or even days for a CFD model. Given the structure of the PCA, or principal
orthogonal decomposition (POD) for dynamic systems, the points at which the
ROM is trained is accurately described. However, closer investigations by Lang
et al. (2009) showed that “there is considerable scope for future work in ROM
development” seeing as it is of the utmost importance how densely and widely the
ROM is fitted to the full-scale model, in this case the CFD. The hence developed
model can have the same issues as ANNs and SVRs regarding their accuracy in
interpolation and extrapolation.

3. Optimization Model Development

3.1. Workflow
The workflow to design a model suitable for optimization purposes is pre-

sented in Figure 1. Since several of the steps can be taken multiple times or left
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out for certain cases, each step is discussed individually as opposed to discussing
one linear path. Two certain paths are later shown in the case studies.

Before starting down the workflow, a definition of goals and model require-
ments is needed. As an example: A goal can be the exact description of a dynamic
system for the application of a real-time optimizer for advanced control strategies.
This means, an accurate, but computationally inexpensive, fast converging model
is desired. Hence, the model requirements are set: non-linearities as well as non-
convexities must be avoided wherever possible to prevent the frequent appearance
of local infeasibilities.

With these requirements in mind, a model has to be found. This leads to the
first step: a query for the existence of a model. If a model for the phenomena,
process unit, unit cluster, or entire process exists, then the next step is number 2.
Often, models can easily be generated by systematic investigation of the system of
interest. Several theoretical systematics, e.g. as discussed in (Marquardt, 1996),
(Rodrigues & Minceva, 2005), or (Heitzig et al., 2011) as well as programs such as
ModDev presented in (Jensen & Gani, 1999), exist. These aid the process systems
engineer in deriving the process models. Otherwise, if the phenomena has not yet
been described and the creation of a rigorous model is not possible, a model needs
to be generated empirically (step 6).

In step 2, the accuracy of the model has to be checked. In general, this means
that the outputs relevant for the optimization formulation need to be described as
accurately as possible. Such a validation can be performed based on measurement
data of the real application. If the accuracy of the model is sufficient, then the
convergence behavior has to be analyzed in step 3. Otherwise, the model has to
be further analyzed in step 5. Of assistance here can be a global sensitivity analysis
Homma & Saltelli (1996). The sensitivity of the model output with respect to the
values of the input variables can thus be checked.

In step 3, the convergence behavior of the model is analyzed. Possible meth-
ods for this analysis include the test of various initial conditions or data sets for
the optimization problem and the comparison of the respective number of itera-
tions, CPU times in NLP-evaluations and appearance of local infeasibilities. If
the behavior is satisfactory, then the model is ready for optimization (step 16).
Otherwise, a systematic simplification of the model is required (step 4). This step
is more extensive and will be discussed later on.

Step 5 analyses the existing model with respect to its display of trends shown
by the real application. In many cases, the absolute values of outputs are only of
limited relevance. Especially for optimization purposes the gradients, hence the
position of minima depending on the controls are more important. If the trends
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are displayed correctly, a further readjustment to the real application can lead to a
correct representation of the desired application. If the trends are off-target, then
step 6 should be faced.

In step 6, the existing, research project-specific data pool of experimental
knowledge has to be evaluated. Yet again, the extend of information on the outputs
with respect to all control variables is of importance. To allow for the derivation
of an exact empirical model based on experimental data, the values of all outputs
are required for a wide sampling over the input space. Sometimes, it is more
sensible to also chose additional intermediate outputs to limit the experimental ef-
fort. For example, if the information for fluid properties, such as viscosities, heat
capacities, etc., are already available, experiments to find those can be avoided
by incorporating those experimental data or existing correlations. Depending on
how extensive the existing sampling over the input space is, either steps 7 (further
experiments required) or 9 have to be pursued.

The planning and execution of experiments is done in step 7 and 8. In this con-
tribution, we refrain on giving details on experimental design and point the reader
to extensive literature such as (Anderson & Whitcomb, 2000) or (Montgomery,
2013). In general terms, however, the structure should be as follows: First of all, a
definition of the desired correlations or dependencies is required. At this point is
has to be decided, which state and control variables are of importance for the de-
scription of the system. This includes inputs as well as outputs. Lastly, the range
of and the density of the sampling over the space of influencing variables has to
be set. Obviously, respective steps known in design of experiments or optimal
experimental design can be taken.

No matter where the experimental data stems from, the development of the
describing correlations should preferably be done as follows: Seeing as humans
prefer to deal with two- or three-dimensional correlations, bivariate dependencies
of outputs on their inputs should be analyzed initially. Based on these dependen-
cies, fitting mathematical functions can be found. Further influences of additional
inputs can then be included as functions for the parameters in bivariate correla-
tions. If this approach fails for higher dimensions of the input space, alternative
strategies such as multivariate linear regression can be chosen. The correlations
should then be implemented into a first principle model in the form of mass bal-
ances.

Step 10 discusses the necessity for a refitting of an existing model to a larger
system, e.g. lab- to pilot plant-scale. In case the initial experiments or the initial
model derivation were already carried out based on the full-scale application, the
fitting can be skipped and step 2 needs to be revisited. Otherwise, step 11 is taken.
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Query 11 is highly dependent on the available experimental facilities. If a
real-sized plant is available, experiments should be planned to further adjust the
existing model to that system (see steps 12 to 14). If not, step 15 advises on how
to proceed.

Steps 12 and 13 are the equivalent to steps 8 and 7 with the basic difference in
the application size.

Based on the experiments in 12 and 13, step 14 foresees the adjustment of
the model to the larger scale. The larger size usually implies that equilibria are
not attained or heat loss occurs, and hence adjusting factors have to be introduced.
These are either constant or can be described using basic correlations. In any case,
the adjustments of the model have to be tested with respect to their accuracy and
convergence behavior returning to step 2.

In case no experimental facility is available for the larger scale, standard
heuristics for scale-up and numbering up can be applied instead. Since the ap-
plications for scale-up techniques are so numerous, that further considerations at
this point are omitted.

Once the derived or existing model fulfills both the requirements for accuracy
and convergence behavior, it is ready to be used for optimization purposes.

3.2. Systematic Model Simplification
To effectively perform a simplification of an existing model, the following

structural dissection is proposed. First of all, the model is separated into six dis-
tinct parts. These are mass and component balances (M), equilibria formulations
(E), summations (S), energy balances (H), momentum balances (I), and auxiliary
equations (Aux). In the following, these will be defined and discussed in detail.
For each part convergence problems and possible strategies to alleviate them are
presented.

Mass and Component Balances: In standard models, there are several differ-
ent types of mass and component balances, each with their distinct issues to the
complexity and convergence behavior of the model. Differentials in balances are
handled separately.

• The total mass balance is usually linear and therefore requires no simplifi-
cation.

• The total mole balance, on the other hand, may contain source terms through
e.g. reactions. The non-linearities normally lie within the reaction kinetics,
which will be dealt with in the auxiliary equations.
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• Component balances in terms of moles or mass may also include source
terms. Apart from dealing with the non-linearity of the kinetics separately,
they may completely be avoided by reformulation the component balances
as atom balances. In case of trace components, a differentiation between
vital and superfluous components should be done. The latter can simply be
left out, the former could be required for kinetic calculations and should
therefore be scaled manually to avoid singularities in the Jacobian. By
simply dividing these essential trace components by their initial or feed
amounts, the bad scaling is alleviated. Lastly, if mole or mass fractions
are employed for the formulation, the balances may be bilinear. This can be
compensated by using component mole flows etc. instead.

• Atom balances may also contain bilinear formulations. These can be dealt
with as above.

• The scaling of differentials, especially of order higher than one, is com-
monly quite challenging. As of yet no standard procedure for scaling sec-
ond order differential equations is known. One way forward is the separa-
tion of a differential equation into its basic phenomena, such as convective,
diffusive, dispersive, and reactive parts. In most cases, these phenomena
are simply to one another and can therefore be looked at separately. By
comparing the magnitude of each, their influence on the differential equa-
tion can be evaluated and those with low impact are simply left out. Of
course, these simplifications have to be done carefully, always keeping the
loss of accuracy in mind. This is especially important regarding the cou-
pling between differential equations and their boundary conditions, which
might also contain differential terms. On top of that, the differentials them-
selves need to be dealt with. Solving non-ordinary differential equations
systems is usually quite challenging. Furthermore, choosing an appropri-
ate discretization method depending on stiffness and size of the problem is
also of relevance. For optimization purposes collocation methods should be
preferred given their high accuracy and stability, as shown in (Arora et al.,
2006) and (Biegler, 2010).

Equilibria: Equilibria are a key part of most phenomena-based models in chem-
ical engineering. There are three fundamentally different types, which will be
discussed in turn:

• Chemical Equilibria - Phase Equilibria: Phase equilibria describing vapor-
liquid, solid-liquid, or gas-liquid combinations are in general non-linear.
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The strongest non-linearity therein stems from the correction terms for the
real fluid behavior. If the correction terms are close to one, they might as
well be fixed. Otherwise one might try fixing them to their current value.
It is important not to lose the real fluid behavior. If they cannot be fixed,
simplifications of the auxiliary equations should be considered.

• Switch Between Phase States: A critical point in modeling phase equilibria
are possible switches between types of equilibria. An example would be the
switch between a vapor-liquid equilibrium (VLE) and a vapor-liquid-liquid
equilibrium (VLLE). The main issue with this switch is of course, that it
implies a potential non-differentiability in the model. A possible relaxation
for these types of switches is the introduction of a sigmoid function which
deactivates non-appropriate model parts. For the VLE-VLLE example, the
condition would be the position within or without the two-phase region. To
avoid the appearance of singularities in the Jacobian through these deacti-
vated model parts, slack variables should be introduced, which ensure that
at least a single variable should be active.

• Chemical Equilibria - Reaction Equilibria: Almost without exception, re-
action equilibria are highly non-linear and mostly also non-convex. A first
step to tackle computational issues here could be the introduction of pseudo-
components to simplify and replace kinetics. Another challenge in reaction
equilibria is the appearance of singularities caused by trace components.
Manual scaling, e.g. dimensionless form, change of units, scaling by mag-
nitude, of the respective equations could ease this issue. Trace components
with a low impact on the kinetics can of course also be fixed to their mean
concentrations and their equations can be left out.

• Thermal Equilibria: Thermal equilibria are always linear and direct calcu-
lation should be possible.

• Mechanical Equilibria: Mechanical equilibria, implying the identity of pres-
sures is also usually linear and can also be directly calculated.

Summations:

• Summation of Fractions: By the summation of fractions, one usually un-
derstands the sum over all mass, volume, or mole fractions. Consequently,
the sum is always one and each variable also is tightly bounded between
zero and one. This may lead to a slow convergence, seeing as solvers might
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continuously violate those bounds. A simple replacement by the summa-
tion of absolute quantities might ease this issue, which will hence be further
discussed. A further problem that frequently appears in dynamic simula-
tions is the handling of empty hold-ups or non-flowing streams. This can be
avoided by following measures: First of all, liquid tanks are initialized with
an arbitrary gas component, e.g. nitrogen. Secondly, pipes are flushed with
an inert component.

• Summation of Absolute Quantities: Examples for absolute quantities are
component mole flows and component hold-ups and their analogues in terms
of volume and mass. Despite the wider bounds on the absolute values, one
downside exists to their summation. In case absolute quantities are poorly
scaled, meaning that some of them take comparatively small or large values,
singularities can appear in the Jacobian matrix. Therefore, selective manual
scaling of those outliers is advised.

Energy Balances: The energy balance can cause convergence problems due to it’s
possibly strong influence on the entire system. At this point, the energy balances
will be dealt with in four parts.

• Energy balance without source term: These balances usually describe stan-
dard heat exchange. The non-linearities which might appear through e.g. the
logarithmic temperature difference, can sometimes be dealt with through
linearization. Scaling can be assisted by selecting the right units for the
formulation.

• Energy balance with source term: Source terms usually come with appear-
ance of reactions, absorptions, adsorptions, or similar phase change phe-
nomena. For reactions the source term usually looks similar to Eq. 1.

n∑
i=1

ṙi · ∆Rhi (1)

The non-linearities pertained in the reaction rate of each reaction ṙi are dis-
cussed elsewhere (see auxiliary equations). To avoid the bilinearity of the
sums, the heats of the reactions ∆Rhi should be fixed to an average value
depending on the expected temperatures.

• Energy balance with enthalpy of formation: The challenge herein is the
fact, that the reference point for a mixture depends on the concentrations.
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Hence, additional non-linearities appear, when this formulation is chosen.
An alternative is always the use of a unifying source-term, e.g. using heat
of reactions or heat of absorptions instead.

• Energy balance with differentials: The same as for the mass balances with
differentials applies here.

Momentum Balances:

• Constant Pressure Problems: Pressure losses are often neglected, hereby no
issues should arise.

• Pressure Loss Correlations: At this point, a focus will be put upon pipe
flows. Therefore, three distinctly different regimes need to be taken into
regard. The standard equation for calculating the pressure loss for a given
density ρ, flow velocity w, pipe length L, and diameter d is given in Eq. 2

∆p = ζ ·
ρ

2
· w2 ·

L
d

(2)

For laminar flow, the friction factor ζ therein is calculated as:

ζ =
64
Re

(3)

Hence, the direct implementation of this correlation into Eq. 2 leads to a lin-
ear dependency of ∆p with respect to w. This linearity should therefore be
exploited. For the intermediate regime between laminar and fully turbulent
flow, the correlations become highly non-linear. A simple reformulation as
foreseen for the linear flow is not possible. A local linearization should be
considered instead. For fully turbulent flow, ζ is usually constant, the pres-
sure loss equation is therefore quadratic with respect to w, which is a nice
convex function despite its non-linearity. Switching between those regimes
can of course cause non-differentiabilities. If these switches are unavoid-
able, sigmoid functions can be used to create a smooth correlation for all
regions.

• Bernoulli Equation: The Bernoulli equation consists of three parts, which
are the inner energy, the kinetic, and the hydrostatic energy. In most cases,
the first term can be neglected, unless chemical reactions occur. Otherwise,
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the change in the inner energy between the two points the Bernoulli equation
is applied to needs to be investigated more closely.

du = cv · dT = dh − p · dv − v · dp = cp · dT − p · dv − v · dp, (4)

wherein cv and cp, the specific heat capacities at constant volume and pres-
sure respectively, are usually dependent on both temperature and compo-
sition. The key point here, is to identify which of the differentials are the
most influential in the decomposition given in Eq. 4 and to fix all the others
to zero or to a constant value.

The second part of the Bernoulli equation, the kinetic part, can often enough
be neglected, if the cross-sectional area of the pipe is constant, no change
in the density of the fluid appears, and the flow velocity stays constant.
Otherwise, this quadratic, convex term stays in the equation and should
not create any bigger issues. In case only the hydrostatic part remains, the
Bernoulli equation turns completely linear.

• Navier-Stokes Equation: For the solution of the Navier-Stokes equation in
its unabbreviated form extensive CFD simulations are required, which usu-
ally rule out any sensible form of optimization.

ρ ·

(
∂~w
∂t

+ ~w · ∇~w
)

= −∇p + η · ∇2~w + ρ · ~g (5)

Several simplifications of the Navier-Stokes equation given in Eq. 5 exist.
A selection of these will be revisited here.

For immobile systems, Navier-Stokes of course simply turns into the basic
description of the hydrostatic field caused by external forces, e.g. gravity.
This is usually a linear equation. For a vortex-free system, the Navier-
Stokes equation can be reduced to the Bernoulli equation as discussed above.
These deliberations should suffice at this point. For further simplifications,
other flow regimes, or correlations refer to literature such as (Acheson,
1990) or (Kundu et al., 2012).

Auxiliary Equations: The following part discusses all auxiliary correlations which
give additional information for the previously discussed sections.

• Fluid properties: For the calculation of surface tensions, viscosities, heat
capacities, as well as densities basic polynomial functions usually exist de-
scribing the pure components. The most common issues arising with these
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is their bad scaling and the non-linearity. These issues can of course be
overcome by manual scaling and linearization in the region of interest.

• Equations of State: A main challenge, when using equations of state, is
their non-linearity and the therein possible non-convexity in addition to the
non-linearity of their solution space, i.e. for all cubic equations of state.
In general, the more accurately an equation of state describes the real fluid
behavior, the more complex, non-linear, and non-convex it becomes. There-
fore, the first question that has to be asked is what accuracy is required to
model the regarded system. More simpler solutions should be preferred,
if their accuracy is sufficient. Often enough cubic equations of state are
implemented, which are able to describe both liquid and vapor phase with
a high accuracy. Equally often enough, only one of the two possible so-
lutions is actually required. In those cases, simpler solutions, such as the
Virial equation, which only describe the vapor or the liquid phase, should
be used instead. If, however, a cubic equation of state is unavoidable, in-
equality constraints to avoid the third root in the two-phase region should
be implemented, whereby details can be found in (Kamath et al., 2010).

• gE Models: Only in cases, where liquid phases appear, gE models are re-
quired. A possible strategy to decide how to cope with the inherent com-
plexity of gE models lies in analyzing the real fluid behavior by looking at
the value of the natural logarithm of the activity coefficients ln(γ).

For values close to 0, the gE model can of course simply be left out.

For moderate values larger or smaller than 0, which do not cause the ap-
pearance of homogeneous or heterogeneous azeotropes, a simpler gE model
might be preferable, such as Wilson’s or van Laar’s.

For stronger deviations from 0, whenever azeotropes appear, one might con-
sider choosing a less non-linear gE model which is still able to show the
same real fluid behavior, e.g. using NRTL instead of UNIQUAC. The for-
mer’s derivatives are a lot easier to compute than the latter’s.

• Reaction Kinetics: Reaction kinetics pose a number of challenges, some of
which can not easily be overcome. Among those are the appearance of reac-
tion relevant trace components in reaction rates, which naturally cause bad
scaling. Similarly, non-linearities are inevitable, unless the whole reaction
system can be fundamentally simplified as discussed in the reaction equi-
libria section above. There is however, a measure to simplify the existing
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non-linearities by strategically tackling the multivariate interdependencies
in reaction rate equation systems. Smaller, non-linear terms within each
reaction rate can be described by a newly introduced variable, which is de-
scribed in an additional auxiliary equation. This measure is shown in Eq. 6.
Of course, this increases the number of equations and variables, however,
the hightened sparsity of the Jacobian matrix is of advantage.

ṙ =

a︷              ︸︸              ︷
k0 · exp(−

EA

R · T
)

1 + Keq · exp(−
∆Had

R · T
) · cl︸                     ︷︷                     ︸

b

·

c︷︸︸︷
cm · cn =

a · c
1 + b

(6)

The simplifying steps laid out above are nowhere near complete. The problems in
chemical and process systems engineering are so complex, that not everything can
be considered herein. These steps are meant as a first thought-provoking impulse
and to initiate further discussions among chemical engineers.

4. Case Studies

In the following, two case studies are presented, which implement the work-
flow described above. Firstly, the amine-based absorption of CO2 is discussed
as an example for a system that is well investigated and has been modeled rig-
orously. Secondly, a model for the three-phase liquid separation dynamics of an
oil-water-surfactant system is empirically developed.

4.1. Amine-based Absorption of CO2

As part of the cluster of excellence ”Unifying Concepts in Catalysis” (Uni-
Cat) the oxidative coupling of methane (OCM) to ethylene (C2H4) is investigated.
Given the low yield (up to 25%) and comparatively low selectivity (50 to 90% de-
pending on the operation conditions) the purification of the product gas is highly
energy intensive. Hence, considerable effort has to be put into the synthesis and
subsequent or concurrent optimization of the whole process concept.

Among the many steps and options considered for the superstructure is an
amine-based absorption-desorption process. Including the absorption process into
any superstructure optimization is of course a challenge. A very extensively inves-
tigated process is the absorption of carbon dioxide (CO2) using monoethanolamine
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(MEA) solutions. The solubility of CO2 in aqueous solutions of MEA has been
measured for a wide range of operating conditions as published by e.g. Shen &
Li (1992) and Jou et al. (1995). The development of the respective kinetics began
as early as the 1960s by Clarke (1964) and Hikita et al. (1977). The currently
most extensive set of reaction rate equations for the reactive absorption has been
published by Aboudheira et al. (2003). Simulation studies on the absorption of
CO2 have been carried out using varying degrees of complexity. Examples are the
comparison with ammonia by Yeh & Bai (1999) and Freguia & Rochelle (2003),
who modeled the absorption rigorously and fitted their model to lab-scale and field
data.

Figure 2 shows a rough version of the flowsheet of the absorption desorption
process considered for the OCM process concept. The flowsheet also represents
an existing mini-plant at TU Berlin, which will be used for the CO2 removal. In

Figure 2: Rough flowsheet of the absorption desorption process for the removal of CO2 from OCM
product gas.

this case study, a model is available in step 1 of the schematic in Fig. 1. In a first
effort to find a fitting description for the existing mini-plant, rate-based simula-
tions were implemented in Aspen Plus using the E-NRTL package in combina-
tion with correlations for the mass and heat transfer of the used package material.
This simulation contained roughly 2000 state variables and showed a very difficult
convergence behavior. First of all, closing the recycle of scrubbing liquid proved
to be a challenge. It had to be done gradually, meaning slowly increasing the ac-
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tual amount of the recycled liquid and reducing the freshly supplied at the same
time. Secondly, moving to a second operation point seemed to be almost impos-
sible without having to resort to measures like reopening and reclosing the liquid
cycle. Otherwise the simulations kept running into infeasibilities for various sets
of initial values. On top of that, comparing the results of the Aspen simulations to
experimental data from the actual mini-plant showed a sizable offset for a larger
number of operation points, meaning deviations in energies required for the des-
orption and in the removal rate of CO2 greater than 10%. Hence, it was concluded,
that neither the convergence behavior nor the accuracy were satisfactory for the
envisioned superstructure optimization. Hence, in step 2, the accuracy is not at a
sufficient level.

Given the small diameters of both absorption and desorption columns, the off-
set between simulations and experiments can easily be explained by an invalidity
of the applied heat and mass transfer correlations. The offset could certainly be re-
duced by additional model fitting. The more inconvenient problem is the source of
the convergence issues. To further analyze this issue, an equilibrium-based model
for MEA was implemented in AMPL and solved using both SNOPT and IPOPT.
These solvers were preferred over classical NLE solvers as those scarcely ever al-
low for the implementation of upper and lower bounds on variables. In subsequent
simulation studies, it was thus discovered, that the frequent disappearance of some
ionic components such as OH− and H3O+, which are a vital part of the reaction
kinetics, causes frequent appearances of non-differentiabilities and singularities in
the kinetics, which are probably also the source of the infeasibilities already seen
in the Aspen simulations. Consequently, the trends of the Aspen model (step 5)
can be expected to be correct and a readjustment with an existing plant (steps 10
to 14) can be expected to be successful. Once the accuracy is achieved though
(step 2), the inadequate convergence will persist (step 3). This directly leads to
the simplification schematic in step 4, which will now be discussed.

Moving away from Aspen, the reduction of the size of the problem, 1200 in-
stead of 2000 states, does not seem to solve the convergence issues. Hence, it was
concluded that the source of the strong non-linearity should be tackled, which is
the complexity and bad scaling of the reaction kinetics. For optimization pur-
poses, it is not required to know about the exact make-up of all streams in a plant,
especially not the concentration of every single ion. Basic equilibrium data, which
shows how much CO2 is dissolved in a 30 wt.-% MEA solution at what tempera-
ture and pressure and what heat is generated during that process, is published by
Shen & Li (1992) and Kim & Svendsen (2007) respectively. Their data is plotted
and correlations are derived thereof. Figures 3 and 4 show the measurement and
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the fitted correlations. This relates to steps 6 to 9 in the systematic. The cor-

Figure 3: Solubility of CO2 in a 30 wt.-% MEA solution α depending on temperature T and the
partial pressure of CO2 pCO2 . The lines show the measurement data, the surface the developed
correlation.

relations were derived with respect to the form and structure of the measurement
data, which can easily be exploited in this three-dimensional view of the bivariate
dependency. The basic form of both correlations is given in Eq. 7 and 8, wherein
letters A to L represent the fitted parameters.

α(T, pCO2) = (A · T + B) · (pCO2)
C·T+D + E (7)

∆hA(T, α) = (F · T + G) · ((I · T + J) − α)K + L (8)

Based on these correlations, a new model is developed, which uses the pseudo-
components MEA and CO2 for the liquid phase. The model consists of mole
balances for water, MEA, CO2, and N2. The phase equilibrium of CO2 is de-
scribed using the correlations above. Antoine’s equation is implemented for the
calculation of the vapor pressure of water. The energy balance has three source
terms: the heat of evaporation of water, the heat of absorption of CO2, and the
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Figure 4: Heat of absorption of CO2 in a 30 wt.-% MEA solution ∆hA depending on temperature
T and the solubility of CO2 α. The lines show the measurement data, the surface the developed
correlation.
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heat loss to the outside. The latter is based on a basic U · A-correlation. Each set
of equations is formulated for all equilibrium stages of the absorption column. To
compensate for the constant loss of water and MEA especially in the desorption
column, the liquid recycle is formulated as a simple transfer of the CO2 load after
the desorption to fresh new MEA solution. The simplified new model consists
of 40 stages for the desorption column and a single one for the desorption. This
concludes both steps 4 and 9 and leads to additional readjustment step 10.

This newly derived model shows an exceptionally good behavior in terms of
computation time and convergence. To model the actual plant of course, further
modifications are required. Seeing as a plant is available (step 11), measurement
data can be generated (steps 12 to 14). For this purpose, experiments were carried
out in the mini-plant varying the absorption pressure between 5 and 32 bar, the
gas load factor between 0.25 and 0.42 Pa0.5, the feed concentrations of the carbon
dioxide between 0.14 and 0.26 mol/mol, the CO2 removal rate between 70 and
100%, as well as the flow of the scrubbing liquid from 10 to 60 kg/h. To com-
pensate for the fluid dynamics in both columns, efficiencies were introduced into
the CO2 solubility equations, the U · A-term is fitted, and the parameters A to E
are readjusted. It was found, that all parameters above can be set to constant val-
ues, while the efficiency for the desorption column can be described depending on
five characteristic variables: the absorption pressure, the gas load factor, the feed
concentration of CO2, the removal rate of CO2, and the scrubbing liquid flow.

The resulting, fitted model can represent all experimental points with a margin
of error of ± 3% with respect to the energy required per captured kilogram of
CO2. Optimization studies carried out with this model showed a fast and reliable
convergence from different starting points and usually converged within a second
on a 64bit AMD Athlon X2 Dual Core Processor 3800+. Hence, it is obvious that
both with respect to accuracy and computational time (steps 2 and 3), this model
is suitable for optimization purposes.

4.2. Dynamic Three-Phase Model
In this example, the development of a three phase separation model for a de-

canter in a hydroformylation miniplant is discussed.
Within the Collaborative Research Center SFB/TR 63 InPROMPT, a process

concept for the hydroformylation of higher alkenes micro-emulsions is being in-
vestigated. The reaction known as hydroformylation is the coincident addition
of hydrogen and carbon-monoxide to an alkene to produce an aldehyde (linear
or branched). In most cases, the linear aldehyde is desired. The general reac-
tion equation is displayed in Fig. 5. The production of short-chained aldehydes
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Figure 5: General hydroformylation reaction (Kupka, 2006).

from alkenes has been established as a standard industrial process. The appli-
cation to alkenes longer than C10 in a biphasic system with a rhodium catalyst
has not yet been established though. The concept currently under research at TU
Berlin is focused on hydroformylation of higher alkenes in micro emulsions. A
highly selective water-soluble rhodium catalyst2 is applied to react 1-dodecene to
1-tridecanal. Backbone of the process concept is the implementation of a surfac-
tant into the process. The surfactant facilitates the mixture of the two normally
immiscible liquids and thus allows a homogeneous reaction to be performed. Af-
terwards, the miscibility gap between the hydrophilic catalyst solution and hy-
drophobic alkene/aldehyde mixture is exploited. This enables the recycle of the
valuable rhodium catalyst and separation of an almost pure organic product phase.
The general concept for the hydroformylation in micro-emulsions is displayed in
Fig. 6 (Müller et al., 2012a). To test the viability of the concept, a mini-plant has
been built at TU Berlin (Müller et al., 2012a). The critical step, next to a success-
ful reaction, is the effective phase separation. Starting at step 1 in the workflow
presented in Fig. 1, the decision is made to develop a model, thus leading to step 6.
Since little to no consistent thermodynamic data on the system is available, an em-
pirical model for the phase separation must be developed and therefore continuing
on to step 7.

Firstly, the required correlation is defined. Since the phase separation is to take
place in a decanter, the height of each of the phases is relevant for the process. In
other words, a function has to be developed that determines the height of each of
the phases depending on the variables of interest. In general, these are temperature
T , separation time t, and the concentrations of each of the substances present in
the mixtures. The substances applied during the hydroformylation reaction are 1-
dodecene, the non-ionic surfactant Marlipal 24/70 (CAS: 68439-50-9), deionized
water, and the product 1-tridecanal. The combination of these substances leads to
three important values for describing the system:

2The catalyst applied is been sponsored by the company Unicore

21



CO, H2

Surfactant

Alkene

Phase 
separation

Reactor
H

CO
L

L

L
Rh

Product

Recycle stream

Figure 6: Process concept for the hydroformylation in micro-emulsions (Müller et al., 2012a).

• Oil-Water-Ratio:
α =

moil

moil + mwater
(9)

• Surfactant concentration:

γ =
msur f actant

moil + mwater + msur f actant
(10)

• Product concentration:

X =
m1−tridecanal

moil + mwater + msur f actant
(11)

Hereby, moil is the sum of m1−dodecene and the product m1−tridecanal. Furthermore,
a water soluble catalyst consisting of a rhodium-based precursor (CAS: 14874-
82-9) and the ligand Sulfoxantphos (sulfonated form of Xantphos, CAS: 161265-
03-8) are used. Thus, a total of six variables is to be implemented into the phase
separation function: h = f (γ, α, X, t,T, ccatalyst).

Next, the range of interest for each of the variables is defined. For this, the
starting point in terms of concentrations must be determined. The reaction step
of the hydroformylation process is started with an α value of 50%, a γ value of
8%, a precursor concentration of 300ppm, ligand concentration of 4500ppm, and
a product concentration X of 0% (Hamerla et al., 2013). The α value can vary
slightly, but tends to stay in the area of 50%. The decision is made to analyze
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the system within the bounds of 33 to 66%. The surfactant concentration γ is in
the range of 6 to 10%. Observations regarding the product concentration X during
batch reactions done by (Hamerla et al., 2013) show that a maximum value of 50%
is adequate. Preliminary investigations have shown, that the phase separation for
this system tend to be in the range of 80 to 95 ◦C. Finally, the separation time
needs to be kept at a low. The maximum time for the phase separation is set to 20
minutes.

Next up is step 8, the execution of the experiments. Hereby the region of
interest of the variables is divided appropriately, in order to keep the information
gain high, but amount of experiments low. For this purpose, an experimental set-
up discussed in (Müller et al., 2013) is designed to determine the phase heights
at various temperatures and time steps. An example of the experimental results is
displayed in (Müller et al., 2013).

One example for variation of parameters is displayed in Fig. 7. The surfactant
concentration γ is varied between 7, 8, and 9wt.% for a fixed α value of 50%,
Product concentration X of 50%, a precursor concentration of 298ppm, and ligand
concentration of 4500ppm. In Fig. 7 the relative height of the product phase at
various temperatures after 20 minutes of phase separation is displayed. A constant
shift of 5◦C towards higher temperatures can be observed, the lower the surfactant
concentration is. With similar experiments performed for various α and X values,
correlations for the phase separation can be determined (step 9). Firstly, the results
at 20 minutes are analyzed and bivariate dependencies determined. It is apparent
that a combination of sigmoid functions is capable of displaying the separation
zone. Thus, a function displayed in Eq. 12, is developed, whereby pi are to be
fitted parameters.

h(T ) =
p1

1 + p2 · ep3−T +
p4

1 + p5 · ep6−T (12)

Secondly, the separation is regarded over time. Also here, a sigmoid function is
adequate for describing the separation behavior.

h(t) =

(
100 −

p7

1 + p8 · ep9−t

)
(13)

In a third step, the influence of each of the concentrations, as presented in the
example in Fig. 7, is implemented into the parameters pi. An example is the linear
temperature shift for different γ values, which is implemented into the parameter
p3 and p6.

p3(γ) = p10 · γ + p11 p6(γ) = p12 · γ + p13 (14)
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Figure 7: Relative height of the product phase for different surfactant concentrations, α = 50%, X
= 50%, Rhodium precursor = 298ppm, Ligand = 4500ppm.

This systematic analyses of each of the dependencies aids in designing the sepa-
ration function. The phase separation function h(t,T, γ, α, X) is then transformed
to fit into a cylinder and implemented into a first principle model for the whole
decanter, the results of which are displayed and applied in (Müller et al., 2013).

In general, the accuracy of the model for application in the process is high
(average absolute error is ≤ 0,9% total height for each of the data points). A
validation with the decanter in the miniplant has been successful. Thus, the model
is ready for optimization and can easily be applied given its explicit structure.

5. Conclusions and Outlook

The purpose of this article is to present guidelines for process systems engi-
neers, who are facing the task of preparing their models for optimization. Hereby,
a systematic workflow is outlined to help develop, simplify, or modify models.
Main focus lies on the reduction of convergence challenges such as non-linearities
and non-convexities. Additionally, two case studies are discussed in which this
systematic has successfully been applied and have been used for optimization.

The authors realize that the field of chemical engineering is wide and there-
fore many special modeling solutions exist. This article does not claim to solve all
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uprising challenges, but is supposed to be a first step in the direction of systematiz-
ing the “art” of preparing models for solving large scale non-linear programming
problems. Additionally, parallel computing strategies have not been discussed in
this contribution. By analyzing the structure of equation systems, e.g. by the
Dulmage-Mendelsohn decomposition Dulmage & Mendelsohn (1963), blocks of
equations can be identified, which could be computed independently and in paral-
lel to other blocks. Thus, a significant decrease of the computation time is attain-
able. Among others, the treatment of inequality constraints and the formulation
of the objective functions need to be further discussed.

As a next step, this systematic will be implemented into the web-based model-
ing environment MOSAIC 3. MOSAIC, more closely described in (Kuntsche et al.,
2011), is a platform to facilitate the creation of, reuse of, and collaboration on
models and measurement data. The environment will be extended to support
measurement data evaluation and parameter identification. Furthermore, an as-
sessment of the model validity and accuracy is to be implemented. This will be
appended to each model as meta-information. Additionally, a forum will be set
up on the web-page, to allow for discussions on the systematic and how to further
extend it.

3www.mosaic-modeling.de
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Nomenclature

cp heat capacity at constant pressure kJ/kmol·K
cv heat capacity at constant volume kJ/kmol·K
d diameter m
g gravitational acceleration m/s2

h enthalpy kJ/mol
h relative height %
∆hA heat of absorption kJ/mol
∆Rhi heat of reaction for reaction i kJ/mol
L length m
m j mass of component j kg
∆p pressure difference/loss Pa
pk parameter number k –
Re Reynolds number –
ṙi reaction rate of reaction i mol/s
t time s
T temperature K
u inner energy kJ/mol
v specific/molar volume m3/mol
w flow velocity (empty pipe) m/s
X conversion g/g
Greek letters
α CO2 solubility mol CO2/mol MEA
α water oil ratio g/g
γ activity coefficient –
γ surfactant mass fraction g/g
ζ friction factor –
η dynamic viscosity Pa·s
% density kg/m3
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