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Abstract

Algorithm selection (AS) tasks are dedicated to find the optimal algorithm for an unseen problem instance. With the knowledge
of problem instances’ meta-features and algorithms’ landmark performances, Machine Learning (ML) approaches are applied
to solve AS problems. However, the standard training process of benchmark ML approaches in AS either needs to train the
models specifically for every algorithm or relies on the sparse one-hot encoding as the algorithms’ representation. To escape
these intermediate steps and form the mapping function directly, we borrow the learning to rank framework from Recommender
System (RS) and embed the bi-linear factorization to model the algorithms’ performances in AS. This Bi-linear Learning to
Rank (BLR) has proven to work with competence in some AS scenarios and thus is also proposed as a benchmark approach.
Thinking from the evaluation perspective in the modern AS challenges, precisely predicting the performance is usually the
measuring goal. Though approaches’ inference time also needs to be counted for the running time cost calculation, it’s always
overlooked in the evaluation process. The multi-objective evaluation metric Adjusted Ratio of Root Ratios (A3R) is therefore
advocated in this paper to balance the trade-off between the accuracy and inference time in AS. Concerning A3R, BLR
outperforms other benchmarks when expanding the candidates range to 7' O P 3. The better effect of this candidates expansion
results from the cumulative optimum performance during the AS process. We take the further step in the experimentation to
represent the advantage of such 70 P K expansion, and illustrate that such expansion can be considered as the supplement
for the convention of 7O P1 selection during the evaluation process.

Keywords Algorithm selection - Bi-linear Learning to Rank - Multi-object evaluation - Candidates expansion

1 Introduction year. In a specific scenario, the performance of an algo-

rithm on different problem instances varies a lot, and thus

In the Algorithm Selection domain, for scenarios like com-
putational complexity and machine learning, the number of
problem instances can be infinite, while a bunch of new
algorithms are created for solving problem instances every
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correctly foretell the performances of algorithms on prob-
lem instances is critical for finding the good algorithm. The
research problem of how to effectively select a good algo-
rithm given a specific problem instance has been raised since
year 1975 by Rice [1]. A per-instance Algorithm Selection
(AS) problem can be formulated as A x I — R, where
set A = {Aq, Az, ..., A,} represents the set of all available
algorithms in a scenario, and / denotes a specific problem
instance in this scenario. Overall performances algorithms
behave on a problem instance are embedded in the space R.
Using brute force to traverse all the algorithms tells the exact
performance and helps select the best algorithm precisely,
whereas it is often time consuming. In order to speed up the
algorithm selection process in the formulated problem, AS
approaches need to sacrifice the chance of only giving back
the absolute perfect algorithm and yet strive to find as close
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as possible to that of the perfect algorithms on instance set /
[2].

Single Best or Average Rank makes use of the landmark
features, i.e., performance values of algorithms on the prob-
lem instances [3,4]. They pick only one well-performed
algorithm as the suggestion for all the problem instances in
a scenario. However, choosing a single algorithm for all the
unseen problem instances is not always a good ways; it’s pos-
sible that one algorithm performs better on many problem
instances, but dramatically worse on other minor instances
[5]. For the sake of increasing the coverage of the well solved
instances, the per-instance algorithm selection has been pro-
posed. It creates the possibility that every problem instance is
treated individually and obtains their own optimal algorithm,
thereby increasing the selection effect. Take an example,
Propositional Satisfiability Problem (SAT) has been com-
monly solved by Machine Learning (ML) approaches. It is
one of the most fundamental problems in computer science,
and many other NP-complete problems can be converted into
SAT and be solved by SAT solvers [5]. Thus algorithm com-
petitions toward SAT problems are held every year in the
community!. The frequent winner SATzilla in the com-
petition uses ML to build an empirical hardness model to
serve as the basis for an algorithm portfolio. The model
forms a computationally inexpensive predictor based on the
features of the instance and algorithm’s past performances
[5,6]. The strategy of running the algorithm portfolio can be
either sequential or parallel or the combination of the two
[5,7]. Though the running time is sacrificed especially in the
sequential cases, the solved ratio has been increased.

When formulating AS problem from the view of ML, itcan
be abstracted in different models [8—10]. More specifically:
SATzilla* applies pair-wise performance prediction from
random forest classifiers [5,6], LLAM A creates the multi-
class classification model to attribute a problem instance with
meta features to an algorithm class [11], ISAC aggregates
the similar training instances as a subset via clustering or k-
NN and find the best algorithm on set basis for a new problem
instance [12,13]. Facing multiple ML-based AS approaches,
Auto-Folio realized the process of locating the best AS
approach in the combined searching space [14,15]. Simi-
larly, in the ML scenarios, automatically selecting proper
algorithms and their hyper parameter configuration for algo-
rithm on a specific dataset is the main purpose. AutoML tools
like AutoWeka [16] and AutoSklearn [17] are quite popular
for the algorithms and hyper-parameter space search.

A typical AS problem can be represented as Fig. 1. Meta
features of problem instances are fully given as the full matrix
on left-hand side, while performances of solvers (algorithms)
applied on known problem instances form the performance
matrix on the right hand side. The mapping function from

! http://www.satcompetition.org/
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meta features to the performances is expected to be learned.
Given a new problem instance, the performance prediction
fully relies on the meta-features vector. This full reliance
makes the prediction task in AS similar as cold start condition
in Recommender System (RS). When looking at the blocks
with stars in Fig. 1, standing from the view of RS, the prob-
lem instance meta-feature input can be understood as usual
user profiling features like age, working field, preference cat-
egory etc. And the performance matrix can be associated
with user rating or implicit feedback matrix RS. Therefore,
the approaches used in RS are also applicable in AS prob-
lem. The terminologies used in AS, ML and RS occasionally
overlap, and we distinguish these terminologies in Table 5 in
“Appendix A.1” to avoid misunderstanding. The Examples
inside the table mainly come from the definitions in the work
with TSP Solvers by Bao et al. [18].

When applying RS approaches in the AS problems, we
need to note that the recorded algorithms’ performances on
problem instances are usually in much smaller size. Thence
the state-of-the-art deep learning and transaction embedding
techniques in the large-scale session-based RS [19,20] are
not suitable for AS scenarios. On the contrary, shallow ML
approaches from RS are more adaptable. Since 2010, Stern
et al. have applied Bi-linear Matrix Factorization (originally
designed for RS) in AS scenarios and got some good results
[21,22]. Thereafter, many researchers tried the approaches
from RS to solve AS tasks. Misir and Sebag created Alors AS
system, which utilized random forest to map meta-features
of problem instances onto the latent feature space. Based
on these latent features, their Collaborative Filtering (CF) is
designed to make algorithm recommendation [9,23]. Yang
et al. proposed Principal Component Analysis to decompose
the performance matrix actively to solve the sparse perfor-
mance entries problem for the new problem instances [24].

Learning to Rank (L2R) as a famous RS framework has
been proposed to learn the prediction model from the ranking
of the recommended list [25-27] and is also applicable in AS.
As summarized in [28], L2R methods are usually divided into
three groups: point-wise, pair-wise and list-wise. Point-wise
L2R is designed for the labeled ranks, and thus multi-classes
classification ML models can be used. Pair-wise L2R works
well for the recommendation with large amount of candi-
date items. Owing to the pairs sampling from the lengthy
candidates list, time cost can be saved during learning. List-
wise L2R creates the loss function through the cross entropy
between the ground truth list and the predicted list. In [29],
authors utilized the sigmoid function as ranking surrogate to
tell the algorithms’ pair-wise performance order. The sur-
rogate embeds the polynomial scoring model function to
produce the probability. However, the pair-wise L2R costs
extra during the pair-wise sampling phase and list-wise L2R
is more preferable for the shorter candidates list. To model the
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Fig.1 Algorithm Selection as
Recommendation System: we
need to learn a model which
maps the given meta features
matrix (which size is M x L) to
the performance matrix (whose
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uncertainty of the performance ranking, we apply list-wise
L2R framework to the proposed model solving AS problems.

As the exchange for speeding up the algorithm selection
process, AS approaches need to sacrifice the performance
prediction accuracy to some extent. For every AS scenario,
an Oracle or Virtual Best Solver (VBS) is assumed to
know the best performed algorithm for all the instances.
Reducing the gap between a proposed AS approach and the
VBS is one of the evaluation goals while assessing a new
AS approach. In this paper, we mainly deal with the AS
problem in computational complexity scenarios like SAT,
Maximum Satisfiability Problem (MAXSAT), Constraint
Satisfaction Problems (CSP), Quantified Boolean Formula
(QBF) and Answer Set Programming (ASP) [30-33]. In
these scenarios, run time is the performance indicator for all
candidate algorithms. The additional runtime cost and solved
ratio of the predicted optimal algorithm are the main effect
measurements for AS approaches [34-37]. Aside from the
accuracy-oriented evaluation metrics, the inference time of
AS approaches can span in many magnitudes thus also needs
to be taken as a trade-off factor in the evaluation. Neverthe-
less, inference time is usually overlooked in the algorithm
evaluation.

From the view of modeling, evaluation, and candidates
selection while applying RS approaches in AS problems,

[09] as[s5a] 07 77 ][ 00] == [ [ 2] 2] 2][2]7]2]2] %

Apply the mapping ~
to predict the
performances

~—
Which one should be ranked as optimal
algorithm with top1 performance?

there are still some open research questions: (1) if both prob-
lem meta-features and algorithms performance information
are utilized for modeling, multi-models training or one-hot
encoding is usually unavoidable in benchmark approaches,
whether a model can skip these intermediate step and cre-
ate the mapping directly? (2) During the evaluation process,
the inference time from a specific AS approach is usually
ignored. When both prediction accuracy and inference time
are taken into account, how to balance the AS effect? (3)
In most AS challenges [37,38], only the predicted optimal
algorithm is chosen for the evaluation. It narrows the range
of candidate set and reduces the chance of finding the actual
optimal algorithm, whether a proper expansion on the candi-
dates set can benefit the AS effect with the cumulative optimal
algorithm? In order to address the research problems, we con-
struct the following studies in this paper:

(1) We propose Bi-linear Learning to Rank (BLR) to include
both problem instance meta-features and performance
matrix in one L2R framework. The mapping matrix W
and V in the model creates the mapping from meta-
features to the performance matrix in a straightforward
way. It avoids multi-models training or algorithms one-
hot encoding as what other benchmark approaches do.
And the probabilistic assumption on the ranking solves
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the randomness modeling of the performance value in the
algorithm-problem instance interaction matrix. We illus-
trate the good performance of BLR compared with other
benchmark AS approaches in the experiments.

(2) Adjusted Ratio of Root Ratios (A3R) was proposed as a
ranking measure for the algorithms in ML meta-learning;
it incorporates both accuracy-oriented metric and time
cost metric into one evaluation measurement. We apply
A3R as the evaluation metric for the general AS tasks,
in order to balance the accuracy and inference time for
measuring AS approaches. Being measured with A3R,
BLR outperforms other approaches in terms of this trade-
off.

(3) While observing the cumulative optimal performance,
we find that AS approaches usually converge to a good
performance when K setting goes from 1 to 3 or 5.
Though 7 O P1 candidate selection is still used in many
AS challenges, we advocate expanding the this candi-
dates selection spectrum from TOP1 to TOPK (K
depends on the concrete computational power). The error
decrease effect detected in the experiment confirms the
benefits of such expansion.

The rest of the paper is structured as follows: basic method-
ologies, benchmark approaches and concrete modeling steps
of BLR are introduced in Sect. 2. In Sect. 3, we first list
the evaluation metrics frequently used in AS tasks and then
introduce A3R as the trade-off metric for accuracy and infer-
ence time. Section 4 presents the experiments design and the
results. Finally, Sect. 5 draws the conclusion and gives an
outlook to the future work.

2 Methodologies

In AS, regarding one problem instance, the predicting tar-
gets are the performances of multiple algorithms, instead of a
single label or a numerical value. In order to solve the multi-
targets prediction task, there are three ways to design AS
approaches: (1) relying on statistics of algorithms’ historical
performances; (2) algorithm performances separation: build-
ing the predicting model for each algorithm individually, run
the fitted models for all algorithms during the inference;
(3) algorithm indicators’ one-hot conversion: horizontally
concatenate the problem instance meta-feature matrix and
algorithm appearance one-hot matrix to form the input matrix
as the input for the general prediction function. In this sec-
tion, we first introduce the benchmark approaches which
follow these three ways of design. Subsequently, we propose
our own approach Bi-linear Learning to Rank (BLR), which
doesn’t need multi-models training and one-hot conversion
to complete the AS model creation.

@ Springer

2.1 Benchmark approaches

Targeting diverse AS scenarios, some well-performed bench-
mark approaches have already been proposed.> We separate
these benchmark approaches into three groups according to
the data transformation ways mentioned above.

2.1.1 Performances’ statistics

Virtual Best Selector and Single Best are two traditional
benchmark approaches in AS. They don’t rely on any
Machine Learning (ML) model assumption of meta-features,
but come from the performance statistics instead.

— Virtual Best Selector is the ground truth of the algorithms
performances. The ranking of algorithms in VBS is the
true rank used to compare with the predicted list. The
evaluation of the VBS list is the upper bound for all other
AS approaches.

— Single Best is the most classical algorithm selection
baseline approach. It selects the algorithm whose mean
performance is the best through all the problem instances
in the training set.

2.1.2 Algorithm-based separated learning

The algorithm-based separated learning process is explained
in Fig. 2. For each algorithm, a single prediction model is
trained based on problem instances’ meta-features and the
algorithm’s performances. When a new problem instance
shows up, N prediction models are used to infer the per-
formances for the N algorithms separately. The following
AS approaches adopt the algorithm-based separated learn-
ing process. In spite of the model specialty for this group of
approaches, long inference time is its main disadvantage.

— Separated Linear Regressors train linear regressors for
candidate algorithms separately. When a new problem
instance must be handled, the performance prediction on
all algorithms depends on all the fitted linear models.

— Separated Random Forest Regressors fit Random For-
est (RF) models for a designated algorithm. During the
inference phase, N RF are called separately to generate
predictions for N algorithm individually.

— Separated Gradient Boosted Regression Trees (XGBoost)
uses gradient boosted trees to learn the performance
predictor, every individual algorithm owns a XGBoost
model and infer the new performance value based on its
own XGBoost model.

2 http://coseal.github.io/aslib-r/scenario-pages/
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Fig. 2 Algorithm-Based Separated Learning: for each algorithm a,,
targeting on its performances s. , (n;, column in performance matrix
S), we learn the mapping function f,, (X,;) = S, which infers the
meta-feature vectors in X to s.,. N mapping functions are learned
regarding N algorithms. Under cold start condition (described at the

2.1.3 Algorithms one-hot conversion

Another group of AS approaches apply the one-hot conver-
sion of the algorithms appearance indicator to form the new
AS input. Targeting on a new problem instance, concatenated
vector of problem instance meta-feature and the algorithm
indicator vector forms the input for the prediction model.
Figure 3 represents the conversion process. Though the sin-
gle model brings in the simplicity, one-hot conversion creates
extra sparsity for the data. The AS approaches following this
conversion rules include:

— One-hot Linear Regressor trains one linear predict-
ing model with the flattened representation from the
combination of problem instance meta-features and algo-
rithms appearance indicators. Only one linear model is
applied during the inference process for the new problem
instances.

One-hot RF Regressor has each entry in the performance
matrix as the regression target, with the L + N dimen-
sional features, only RF is needed to fit the model. The
model can infer any algorithm’s performance with its
one-hot encoded appearance indicator.

One-hot XGBoost fitasingle XGBoost model with M x N
training samples, this XGBoost model is applicable for
the performances inference for all the algorithms.

Predicted performance vector, generated by
separate prediction functions.
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bottom dashed box), for new problem instance m, we need to apply
N mapping functions fy, (X,) on N algorithms separately. The rec-
ommended algorithm list is ordered according to the predicted scores.

2.2 Bi-linear L2R

There are two matrices with known entries in AS scenar-
ios. One is the problem instance meta-feature matrix X,
and the other is the algorithm problem instance performance
matrix S. The benchmark approaches mentioned in the above
subsection solve the mapping from X to S via either multi-
models training (time consuming) or algorithms’ indicators’
one-hot conversion (can sparsify the dataset). In order to
avoid the multi-models training and features one-hot con-
version, we propose Bi-linear Learning to Rank (BLR) to
create the AS strategies. Given the bi-linear assumption, the
factorization process of the mapping from X to S is repre-
sented in Fig. 4. The performance inference on new problem
instances is depicted in Fig. 5. With the help of the two map-
ping latent matrices W and V, an entry in the performance
matrix s,, , can be calculated through X,,, . - W - V. ;. There-
fore, the model parameters to be learned are matrices W and
V. There is no need to train specific models individually for
different algorithms. Owing to the indices exact mapping,
the latent dense matrix is enough to directly contribute to the
entries in the performance matrix, thus the sparse one-hot
encoding is not needed during the inference time.

In algorithms’ performances, uncertainty always exists.
For computational complexity problem, like SAT and Trav-
eling Salesman Problem (TSP), the algorithm’s runtime
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stacked training input features with dimension ((M x N), (L + N)) (as
shown in the dashed box on the left-hand side). The rows in the per-
formance matrix are transposed and stacked to form the performance
column as the predicting target (shown inside the dashed box in the
middle).
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L / M l I Intermediate
AL d Matrix
L
K
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Left latent matrix U on
M problem instances

Fig.4 Bi-linear factorization graph given the known matrices (problem
instance meta-feature matrix X and performance matrix S in blue). W
(in yellow) is supposed as the weighted mapping matrix for input X,
to project X onto the intermediate left latent matrix U with K latent
dimensions for M problem instances. The dot product of intermedi-

performance can be different when altering the specific
running environment. For ML-based problems, the accu-
racy measured can also be different when cross-validation
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Performance matrix, on M algorithms and
N problem instances
Matrix with known entries

ate left latent matrix U and right latent matrix V (in yellow) yields
the performance matrix S (in blue, known entries in the training set).
Aside from the known matrices and intermediate matrices, the unknown
matrices W and V in yellow are what to be estimated during the training
process

setting changes. With the performance Bi-linear factoriza-
tion assumption, we model the ranking of algorithms w.r.t.
a specific problem instance in a probabilistic fashion. We
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Fig. 5 Algorithm selection as a cold start problem under bi-linear
Decomposition. W and V are the decomposed matrices after bi-linear
factorization from problem instance meta-feature matrix and perfor-
mance matrix. When a problem instance is introduced into a scenario
with only its own meta-feature vector (on the left in blue), yet with-

assume the probability an algorithm ranked 7O P1 for a
problem instance is proportional to its performance (or pre-
dicted performance) among all the algorithms. The cross
entropy between the ground truth 7O P1 probability vec-
tor Py, (rm,,) and the predicted 7O P1 probability vector
P (Fm.n) (where r is the converted value of a performance
value s) defines the loss and influence the optimization strat-
egy.

Embedding bi-linear factorization in L2R framework, this
is the full idea of BLR. We refine the notations for BLR
in Table 6 in “Appendix A.2”. The modeling and learn-
ing of BLR is structured as four steps: (1) Performance
scoring model function and corresponding rating converting
function; (2) loss function considering the ranking loss; (3)
gradient function for corresponding weights; and (4) updat-
ing rule of the weights according to the specific optimization
approach. The first two steps are introduced as follows in
this section, while gradient function and updating rules are
explained in the “Appendix A.3.1 and A.3.2” separately.

2.3 Model function

In BLR, given the problem instance m and algorithm n, we
predict the performance score as Sy, , in the Eq. (1). The
preferred sorting order on performance values depends on
the choice of target performance. For example, if runtime
is performance metric, the lower value is better. However,
if accuracy is the targeted performance metric, the higher
performance is preferred. For the simplicity of calculating the
list-wise ranking loss, we set a converting function r = f(s)
to make descending order preferable for all the rating values
r. And the converted rating value r is the optimization unit
in the ranking loss function. In this paper, we simply define
f(s) as Eq. (2).

out any algorithm performance record. The continuous dot product on
this meta-feature vector and the learned matrices W, V yields the full
performance (on the right in green) vector regarding this new problem
instance

T

Sm,n = Um * V¥

=X, X W-v]

K
Z Uk * me,z WLk ey
k=1

=1

f(s) ()

s higher performance value is preferred
—s lower performance value is preferred

2.4 List-wise loss function

Assuming that the performances scores of all algorithms
on specific problem instance are with measuring noises, we
model the probability that an algorithm being ranked top-one
proportional to its normalized measured performance value.
This normalized top-one probability representation has been
proposed in L2R domain to model the list-wise ranking loss
[28]. Regarding a single problem instance, the top-one prob-
ability for the same algorithm is different between the ground
truth performances list and the predicted performances list.
As defined in Eq. (3), for a problem instance m, with the rat-
ing vector r,, (converted version of the performance vector),
the top-one probability for each algorithm » is normalized in
the form of Pr,,.

(p(rm,n)

Pr,(rmn) = ————
Zflv:l ©(rm.n)

3

For the sake of making probability distribution more gath-
ered around the position of the largest input values, the
exponential function is applied as the concrete form for
monotonically increasing function ¢ in Eq. (3). Thus P,
can be represented as Eq. (4), which is in the same shape of
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Softmax function representation.

Pl‘m = ;Xp(rm’n) (4)
> =1 €Xp(Fm.n)

To represent the list-wise ranking loss per problem
instance, the cross entropy is calculated between the top-one
probability from the predicted rating list r,, and the ground
truth rating value list r,,. For each problem instance m, the
point-wise loss for algorithm #n is formulated as Eq. (5). Con-
sidering the probabilities normalization is calculated under
the same scale for a problem instance m, the per instance
list-wise loss L,, is defined as the summation of the point-
wise loss inside this list, as shown in Eq. (6). Here L,, is
the list-wise ranking loss between the ground truth list and
the predicted list. The total loss on the whole m problem
instances is defined in Eq. (7), in which L2 regularization is
applied to avoid over-fitting.

Lm,n = _Prm (rm,n) In Pf‘m (fm,n) 5)
N
Lm == Pe,(rmn) 0 Ps, (Fn.n) (6)
n=1
U A
L= Lo+5 (W +1VI}) )
m=1

The concrete gradient calculation for the loss definition
and the updating rule based on the gradient can be found in
the “Appendix A.3.1 and A.3.2” separately.

3 Evaluation metrics

We measure the AS effect of different approaches with the
evaluation metrics Success Rate (SUCC), Mis-Classification
Penalty (MCP), Penalized Average Runtime Score (PAR10)
and Mean Average Precision (MAP). In addition to these
performance prediction accuracy-oriented metrics, A3R is
also applied to solve the trade-off between prediction effect
and inference time.

3.1 Accuracy-oriented evaluation metrics

SUCC, PAR10 and MCP are the standard evaluation met-
rics from AS community. SUCC cares only whether the
selected algorithms are solvable. Yet for question, how close
does the predicted best algorithm perform to the actual best
algorithm? It is the most concern in PAR10 and MCP. Addi-
tionally, MAP is included as a representative of ranking
measurement. Obeying the conventional candidate selection
criteria, the selection range of algorithms is limitedto 7O P 1
from the predicted list. The chance of finding the optimal
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algorithm is actually limited to this specific choice. In this
paper, we propose expand the algorithm candidate selection
range to T O PK on the predicted list to gain the evaluation
bonus. The four evaluation metrics with their 7 O P K under-
standing are explained below.

SUCC stands for the average solved ratio of the selected
algorithm per problem instances across the test set.
For T O P1 selection criteria, the solved ratio is only
calculated w.r.t. the algorithm with best predicted
performance. Yet for the case of SUCC@K, the
average calculation is applied over the best K algo-
rithms.

PAR10 is the penalty version for the actual runtime of
the selected algorithm. If the selected algorithm is
actually timeout, its runtime will be penalized by
multiplying 10 to the timeout runtime. Otherwise,
the actual runtime is directly used. With TOP1
selection criteria, the penalty is only applied on
the best ranked algorithm in the predicted list. For
PAR10@XK, the penalty will be applied on the algo-
rithm with the shortest actual runtime inthe T O P K
algorithms of the predicted list.

compares the time cost difference between the actual
runtime of the predicted best algorithm and the VBS.
The algorithm with the lowest actual runtime in the
T O PK predicted list is chosen as the comparison
with the runtime of VBS. The algorithm selected by
VBS always has the MCP value as zero.

measures the mean average precision of the TO P K
predicted algorithms vs. the T O PK ranked algo-
rithms with the ground truth performance. MAP for
T O PK algorithms in the predicted list is calculated
in the same way as MAP@K (average of the preci-
sion rate which has a hit indicator).

MCP

MAP

Among the above evaluation metrics, accuracy-oriented
ones SUCC and MAP comply with the rule the higher the
better, while for the time cost-oriented metrics like MCP and
MAP, the lower the better.

3.2 Multi-objective evaluation metrics

The standard AS evaluation metrics are aimed at the accuracy
of the performance prediction. However, inference time on
the unknown problem instances also deserves our attention.
Multi-objective evaluation metric Adjusted Ratio of Root
Ratios (A3R) involves both accuracy and inference time into
the evaluation and brings in the trade-off between the two
factors.

Abdulrahman, Salisu et al. introduced A3R in AutoML
[39,40]. A3R is treated as the ranking basis for algorithms
w.r.t. adataset AutoML scenario. A3R balances the precision
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and the runtime of the selected algorithm. As Eq. (8) shows,
when applying algorithm a, on dataset d;, S R‘ai; stands for

the success rate and Tfpi represents the time cost. A refer-
ence algorithm a, is chosen, to standardize the success rate

across all the algorithms as ratio § Rg; /S Rg; . The equivalent

ratio for time cost is represented as T,fﬁ / Eff;. The combined
metric takes success rate ratio as advantage, while the time
ratio as disadvantage. Since the time cost ratio ranges across
more magnitudes than the success rate does, N;j; root on the
denominator of Eg. 8 enables the re-scaling of the running
time ratio and turns the A3R to a reasonable value range.
A3R is used to measure the comprehensive quality running
an algorithm on the dataset.

d; d;
SR /SR
A3R, = —“f’d/ Z‘* (8)
VT Tk
ACCY JACC)
A3R(ACO)} , = ACCq)/ACCq, ©)

Si Si
N

' MTCal T Cd,
A3R(TC)Si | = 4 — (10)

4rfq N/ Si jpsi
TS

In this paper, we borrow the idea of A3R from AutoML
and apply it as the ranking basis for the approaches in AS
scenario. We replace d; with s; (the iy, scenario), keep a but
note as approach in Eq. (11). For accuracy-based metrics like
SUCC and MAP, we apply their values ACC to substitute
SR in the Eq. (8). While for run time cost based metrics
T C, lower values denote higher accuracy, the inverse ratio
TC;:; / TCZ",, is instead used in the numerator. Since the run
time cost spans several magnitudes, M;;, root is used on the
numerator for re-scaling. In the following experiments, we
utilize Eqgs. 11 and 12 to evaluate the combined AS effect.

4 Experiments

We design the experiments to study: (1) The algorithm selec-
tion effect of the proposed BLR approach compared with
other benchmark approaches; (2) AS effect when taking both
accuracy and inference time into consideration; (3) the ben-
efits of expanding the candidates set selection range.

4.1 Datasets

In this paper, we focus on typical AS problems in com-
putational complexity domain. The Algorithm Selection
Library (ASLib) released by COnfiguration and SElec-

tion of ALgorithms (COSEAL) 3 research group provides
the most complete and standardized dataset over such
tasks. In our experiments, we fetch the following scenar-
ios from ASLib: ASP-POTASSCO, BNSL-2016, CPMP-
2015, CSP-2010, CSP-MZN-2013, CSP-Minizinc-Obj-2016,
GRAPHS-2015, MAXSATI12-PMS, MAXSAT15-PMS-INDU,
PROTEUS-2014, QBF-2011, QBF-2014, SATII-HAND,
SAT11-INDU, SATII-RAND, SATI2-ALL, SATI2-HAND,
SATI2-INDU, SAT12-RAND, SAT15-INDU and TSP-LION
2015. In all of these computational complex AS scenarios,
runtime is the main performance metric. In each scenario,
the dataset comprises algorithms’ performances on problem
instances, problem instances meta-features run status, and
feature values. The standardized datasets make the experi-
ments evaluation results among many scenarios comparable.

In each AS scenario from the ASLib, we split the dataset
into 10 folds and apply cross-validation on the 9 folds to find
the best hyper-parameter setting for each approach. With the
best selected hyper parameters, all approaches are trained
again on the whole 9-fold dataset and the fitted models are
acquired. These models are used to do the inference on the
last fold (test set) to be evaluated.

4.2 Performance of Bi-linear L2R approach

We compare the AS effect of BLR with other benchmark
approaches under the four evaluation metrics introduced in
the last section. For BLR model, latent dimension K, learning
rate 7, regularizer A are the hyper parameters to be tuned
during cross validation. Since the optimization target of BLR
decomposition is not convex, the trained model is sensitive
to the initialization of the entries in the latent matrices. Thus
the best initialization state is also determined in the cross-
validation phase. To speed up the convergence of the BLR, we
use Stochastic Gradient Descent instead of Gradient Descent
as optimization method. Given the vibrated loss value on
Stochastic Gradient Descent, we tell the convergence of BLR
model with at least 5 successive increases on the loss detected
during the optimization.

4.2.1 BLR performance with TOP1 candidates selection

First we apply the conventional 7O P 1 candidates selection
in the evaluation and observe under what circumstances BLR
performs better. In Table 1, AS scenario and evaluation metric
combination are listed per row. These are the cases BLR is
ranked among the best 3 compared with other benchmark
approaches. More specifically, in CSP-Mininzic-Obj-2016
and SATI5-INDU regarding success rate, in PROTEUS-
2014 concerning MCP and PARIO0, in TSP-LION2015 in
terms of MAP, BLR is ranked as topl. These competitive

3 https://www.coseal.net/
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Table 1 Scenarios and evaluation metric under which Bi-linear L2R
is measured as top 3 among all the benchmark approaches, when the
candidate set size is set to ONE

Scenario name Evaluation metric Rank
CSP-Mininzic-Obj-2016 SuCC 1
GRAPHS-2015 SuccC 3
PROTEUS-2014 MCP 1
PROTEUS-2014 PARI10 1
SAT11-INDU SuccC 2
SAT12-RAND MAP 2
SAT15-INDU SucCcC 1
SAT15-INDU MCP 2
SAT15-INDU PAR10 3
TSP-LION2015 MAP 1

performances verify that BLR can also be considered as a
benchmark approach in some AS scenarios.

4.2.2 Cumulative performance in TOPK expansion

If parallel processing on the candidate algorithms is con-
sidered, we can broaden the range of candidates selection
to increase the chance of finding the best algorithm with-
out extra time consumption. Thus if the cumulative best
performances of approaches decrease drastically at first sev-
eral predicted positions, it’s proper to consider TOPK
expansion for the predicted list. We first observe the cumu-
lative best performance along the 7O PK position elapse
in some scenarios. For SAT11-HAND, PROTEUS-2014 and
MAXSATI12-PMS, we visualize the cumulative minimum
mean runtime for all approaches’ predicting lists in Fig. 6.
On the left hand side, in scenario SAT11-HAND, though BLR
(plotted with bold green yellow line) gives the worst rec-
ommendation at the topl position, it reaches the optimal

performance as one hot random forest does at position 4.
Conversely, in scenario PROTEUS-2014, as plotted in the
middle subplot, BLR finds the algorithm with shortest run-
time at position 4 and beats all other approaches, while loses
its dominant role gradually from position 3. Approaches like
single best, separated xgboost and separated random forest
take over the dominant positions from position 3. In scenario
MAXSATI12-PMS, similar as in scenario SATI1-HAND, the
recommendation from blr reaches best at top position 3, in
spite of the worst average run time of its predicted algorithms
list at position 1.

4.2.3 BLR performance with expanded candidates selection

The cumulative best performance varies a lot even consid-
ering single AS approach, thus the rank of approaches also
changes when considering different expansion degrees. For
BLR, aside from the conventional 7 O P 1 candidates selec-
tion criteria, we observe its rankings under 7' O P3 selection.
In Table 2, we list the conditions (combinations of scenario
and evaluation metric) where BLR is evaluated as compet-
itive (ranked in top 3). BLR can still perform well in some
specific scenarios. When being compared with Table 2, only
in scenarios GRAPHS-2015 and TSP-LION2015, BLR shows
competitive role in both TOP1 and T O P3. The advanc-
ing performances of BLR doesn’t hold consistent between
TOP1 and T O P3 candidates selection in most scenarios.

4.3 Accuracy and inference time trade-off

With evaluation metrics SUCC, MAP, MCP and PAR10, the
accuracy of AS approaches can be assessed. Nevertheless,
shorter inference time is also preferred for an AS approach.
As introduced in Sect. 3, A3R is a good metric for measur-
ing the combining effect of accuracy and time. We take this
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Fig.6 Cumulative minimum runtime (average across all the predicted
problem instances) for scenarios SAT11-HAND, PROTEUS-2014 and
MAXSATI2-PMS. In every scenario, for all the problem instances in the
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test set, the algorithms are sorted by their predicted performances. The
average cumulative minimum of their actual performance in the sorted
list is drawn at each TopK elapsed step
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Table 2 Scenarios and evaluation metric under which Bi-linear L2R
is measured as top 3 among all the benchmark approaches, when the
candidate set size is set to THREE

Scenario name Evaluation metric Rank
CPMP-2015 MAP 3
CSP-2010 SuccC 2
CSP-2010 MAP 2
GRAPHS-2015 MCP 3
MAXSAT12-PMS MCP 3
MAXSAT12-PMS PAR10 2
PROTEUS-2014 MAP 3
SAT11-HAND MCP 3
SAT11-HAND PAR10 3
TSP-LION2015 MAP 1

metric to make the combining effect evaluation for the AS
approaches in this experiment. To make the accuracy/time
ratio comparable across all scenarios, one hot random forest
regressor (the approach wins in most scenarios) is taken as
reference approach (a, ) in the evaluation equation. It’s drawn
as the pink bar in the following figures, and the A3R value of
this referred algorithm is always 1. All the accuracy metric
values are from 7 O P3 candidates setting.

ACC; JACCY
A3R(ACC Zipaq - %
V Ta,/Ta,

As to precision oriented accuracy metrics ((SUCC and
MAP), the accuracy ratio is proportional to the metric value
of the selected approach. Thus ACC value of a, (referenced
approach) is set as the denominator in the ratio formula
ACCZ; JAC Cﬁ;q in Eq. (11). Considering that inference time
of different AS approaches span in 3 to 4 magnitudes, param-
eter for root N is set as 30 in the experiment to limit A3R
in a reasonable range. As Fig. 7 shows, when evaluating the
approaches regarding both MAP and inference time using
A3R, BLR (in light blue bar) outperforms all other bench-
mark approaches. Thus BLR reaches the balance of model
complexity and inference simplicity.

vrcs Ty,

AZR(TC)S =+ ©
apaq N TSi Si
\V aP/Taq

For time cost-oriented accuracy metrics (MCP and PAR10),
their values are negatively correlated with prediction accu-
racy. The accuracy ratio TCgl /T Cy, therefore takes the
metric value TCZ; as the denominator. In addition, since the
MCP and PAR10 metric value among approaches varies a lot

(1)

12)
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Fig. 7 Approaches’ Average A3R score across all the scenarios. A3R
in terms of MAP and inference time
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Fig. 8 Approaches’ average A3R score across all the scenarios. A3R
in terms of MCP and inference time

even concerning magnitude, root parameter M is involved for
this accuracy ratio as well to transform the ratio to a read-
able range. As Fig. 8 shows, with the setting of M = 3 and
N = 30, BLR (represented as light blue bar) again wins other
benchmark approaches.

The excellent performance on A3R which cares both
precision oriented and time cost-oriented accuracy metrics
verifies that BLR can be a good option when the balance
between accuracy and inference time needs to be taken into
account.

4.4 Benefit of expanding the candidate selection
range from Top1 to TopK

As discussed in the former subsections, if we enlarge the
algorithm candidates range from 7O P1to T O PK, we can
expect the algorithm selected from the wider spectrum yield
better optimal selected algorithm. In this experiment, we
tentatively set K = 3, and observe the difference on the
cumulative evaluation result difference between the condi-
tions K = 1 and K = 3. For every AS scenario, we
list the approach with the largest performance difference
caused by TOP1 and T O P3 selection criteria and thus
illustrate the benefit of the 7O P K expansion. We choose
time cost-oriented metrics MCP and PAR10 to represent the
performance difference, considering their straightforward
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Table3 Improvement on MCP evaluation caused by 7 op3 expansion from Top1 selection , the decrease percentage over 90% have been highlighted

in the bold boxes.

Scenario name Approach name MCP@1 MCP@3 MCP@3 - MCP@1 Difference in %
ASP-POTASSCO One hot random forest 22.06 1.51 —20.55 —93.16
BNSL-2016 Separated xgboost 217.94 27.88 —190.06 —87.21
CPMP-2015 One hot random forest 120.11 0.41 —119.69 —99.66
CSP-2010 Bilinear 12r 535.44 0.00 —535.44 —100.—0
CSP-MZN-2013 Separated random forest 68.78 8.36 —60.42 —87.84
CSP-Minizinc-Obj-2016 Separated xgboost 216.13 95.57 —120.55 —55.78
GRAPHS-2015 One hot xgboost 3,774,156.34 125,048.31  —3,649,108.03 —96.69
MAXSAT12-PMS Separated random forest 34.24 0.04 —34.20 —99.88
MAXSAT15-PMS-INDU One hot random forest 77.08 5.47 —71.61 -929
PROTEUS-2014 Single best selector 1023.12 39.61 —983.51 -96.13
QBF-2011 One hot random forest 72.31 0.00 —72.31 —100.0
QBF-2014 Separated xgboost 65.52 9.49 —56.03 —85.52
SAT11-HAND Bilinear 12r 1206.79 235.06 —-971.74 —80.52
SAT11-INDU Separated random forest 582.31 75.73 —506.58 —86.99
SAT11-RAND Separated linear 456.10 16.44 —439.66 —96.4
SAT12-ALL Separated xgboost 213.24 59.09 —154.15 —72.29
SAT12-INDU One hot random forest 91.93 22.33 —69.59 =757
SAT12-RAND One hot random forest 69.13 11.11 —58.02 —83.93
SAT15-INDU Separated linear 689.23 148.96 —540.28 —78.39
TSP-LION2015 Separated linear 76.95 4.24 —72.71 —-94.5

cumulative performance decrease along the 70O PK posi-
tions.

Mis-Classification Penalty (MCP) calculates the time cost
difference between the selected algorithm and the actual best
algorithm. The lower the MCP value, the better effect the
AS approach possesses. Seen from Table 3, 7' O P3 selection
criteria leads to the decreasing effect on MCP significantly.
We highlight the decrease percentage higher than 90.00% in
bold boxes in the table. The decrease percentage ranges from
55.78% to 100%. It demonstrates that enlarging the TO PK
candidates selection range can boost finding the algorithm
runtime closer to the ground truth best.

The evaluation metric PAR10 gives 10 times penalty on
the most recommended algorithm which is actually timeout.
We list the decrease percentage caused by 7' O P3 candidates
expansion in Table 4. This decrease percentage falls in the
interval 19.47% to 95.72%. The cases, in that the percentage
values are higher than 90.00%, have been highlighted in the
bold boxes. This decrease percentage indicates the reduction
of the possibility that selected algorithm runs in a timeout.

Expanding the 7O P1 candidate set to the case 7O P3,
the observation of the significant decrease on the time cost
metrics MCP and PAR10 confirms the benefit of the expan-
sion. In AS, under the parallel testing environment, the test
on the 70O PK candidates stops at the runtime of the opti-
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mal algorithm in the candidates set. Thus the test time is also
saved owing to the expansion. The selection of K depends
on the computational power and environmental limit. Though
T O P1 setting is required in most AS challenges, we would
like suggest the expansion of this candidates selection range.

4.5 Discussion

The experiments in this section unveil several interesting
points: (1) BLR possesses the chance outperforming other
benchmark AS approaches in some scenarios; (2) on eval-
uation metric A3R, BLR shows the power of balancing
prediction accuracy and inference time; (3) 7O PK expan-
sion on candidates set brings benefit for finding the optimal
algorithm.

5 Conclusion and future work

In this paper, we propose Bi-linear Learning to Rank (BLR)
to solve AS problem. BLR is inspired from the collabora-
tive filtering in RS. With the list-wise 70 P1 probability
assumption, it models the uncertainty in the algorithm perfor-
mance. The learning process of BLR averts the problems like
multi-models training and algorithms’ one-hot conversion in
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Table4 Improvementon PAR10 evaluation caused by T'op3 expansion from T op1 selection, the decrease percentage over 90% has been highlighted

in the bold boxes.

Scenario name Approach name PAR10@1 PAR10@3 PAR10@3 PAR10@1 Difference in %
ASP-POTASSCO Bilinear 12r 1526.22 863.64 —662.58 —43.41
BNSL-2016 Separated xgboost 2089.12 251.60 —1837.52 —87.96
CPMP-2015 Separated random forest 5920.68 346.61 —5574.07 —94.15
CSP-2010 Bilinear 12r 11032.73 6285.47 —4747.26 —43.03
CSP-MZN-2013 Single best selector 9029.44 5538.58 —3490.86 —38.66
CSP-Minizinc-Obj-2016 One hot random forest 2520.38 360.37 —2160.01 —85.7
GRAPHS-2015 Separated linear 73,415,561.38  24,868,328.87 —48,547,232.51 —66.13
MAXSAT12-PMS Bilinear 12r 7056.63 5611.30 —1445.33 —20.48
MAXSAT15-PMS-INDU Bilinear 12r 4846.02 3018.59 —1827.43 —37.71
PROTEUS-2014 Single best selector 9851.49 421.98 —9429.51 —95.72
QBF-2011 Single best selector 15,699.44 10,371.48 —5327.96 —33.94
QBF-2014 One hot xgboost 3696.26 2536.14 —1160.12 —31.39
SAT11-HAND Bilinear 12r 29,375.15 19,093.06 —10,282.08 —35.0
SAT11-INDU One hot xgboost 17,012.79 13,700.37 —3312.42 —19.47
SAT11-RAND One hot linear 23,445.32 9225.72 —14,219.60 —60.65
SAT12-ALL Bilinear 12r 6318.53 2676.89 —3641.64 —57.63
SAT12-INDU One hot xgboost 3698.78 2656.96 —1041.82 —28.17
SAT12-RAND Separated xgboost 3843.91 3058.80 —1785.11 —20.42
SAT15-INDU Separated linear 3143.63 443.36 —2700.28 —85.9
TSP-LION2015 Separated random forest 255.34 25.21 —230.13 -90.13

traditional AS benchmark approaches. Being compared with
the benchmark approaches, selection effects of BLR have
proven to perform well in some AS scenarios. Considering
the balance of the trade-off between the accuracy and infer-
ence time in the evaluation, we propose using A3R as the
evaluation’s protocol. BLR performs especially well on this
new trade-off metric A3R. Finally, we affirm the benefit of
expanding the selection range of candidate approaches from
TOPI1toT O PK regarding the cumulative optimal demand
of AS evaluation.

Given the work so far, there is much to do for the future.
For BLR, since it’s a model with non-convex loss defini-
tion, the convergence criteria can be adjusted to tune better
parameters setting. In the current experimental settings, we
only investigate 21 AS scenarios. Extending the experiments
to additional scenarios can give a stronger confidence on the
experimental results. Though we set K in TOPK expan-
sion as 3, and illustrate the expansion benefit, more thorough
study can be done on how to choose K to meet the balance
of performance gain and computational power.
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A Appendix
A.1 Terminologies declaration

See Table 5.
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Table 5 Terminologies and explanations

Term

Meaning

Scenario

Problem Instance

Meta-features

Algorithm

Solver

Solution

Approach

Predictor

Selector

Algorithm Candidate Set

Performance

Evaluation Metric

To solve one specific type of
problem (e.g., TSP in
computational complexity
domain), some problem instances
(e.g., several complete graphs in
a TSP problem), their descriptive
meta-features(e.g., number of
edges, number of nodes, etc.) and
some algorithms (e.g., generic
algorithm, the nearest neighbor
algorithm) performances on
these problem instances
comprise a scenario

A concrete instance to be solved in
a scenario w.r.t. the problem in
this scenario, e.g., a complete
graph in TSP problem

Some descriptive features of a
specific problem instance, like
the number of edges, the number
of nodes, etc., in a complete
graph for TSP problem

Algorithm or heuristic (e.g.,
generic algorithm in TSP) which
can successfully solve some of
the problem instances in the
designate scenario

The alias for algorithm in some
problems like SAT

The solving result settings by an
algorithm (or solver) on a
problem instance

The method used to select the
potential optimal algorithms
candidates set for problem
instances in a specific scenario

The method that predicts the
performance of algorithms on a
problem instance

The method used to select the
potential optimal algorithms
based on their predicted
performances

A set of algorithms selected as the
most possible optimal algorithms
for a specific problem instance
inferred from an
approach/selector

The measurement representing
how an algorithm solves a
problem instance, e.g., runtime

The evaluation criteria to measure
the selection effect of an
approach in a scenario, e.g.,
SUCC, MCP
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A.2 Notations of Bi-linear L2R

See Table6.

Table 6 Notations of Model Bi-linear Learning to Rank

M Number of problem instances in the training set

N Number of algorithms in the training set

L Number of meta-features calculated for each
problem instance

K Dimension number of the latent factor

SyxN The performance matrix for N algorithms on M
problem instances

Sm.n The performance value of algorithm n on
problem instance m

S MxN The predicted performance matrix for N
algorithms on M problem instances

Smon The predicted performance value of algorithm n
on problem instance m

XuxrL Values of L meta-features on M problem
instances

Xm,l The I;, meta-feature of problem instance m

Wik Bi-linear weight matrix which maps from L

problem meta-features to k-dimensional latent
feature space

Wy k The mapping factor for the /;;, meta-feature on
the k;j, latent factor

Upmxk Matrix of K-dimensional latent vector for M
problem instances

U k The k;j, latent factor of problem instance m

ViNxk Matrix of K-dimensional latent vector for N
algorithms

Uk The k;j, latent factor of algorithm n

Ryxn Matrix of performance ratings of N algorithms

on M problem instances (A converted
representation of Sy x n, which assign better
performed algorithms a higher value)

Tm,n The converted rating value of algorithm n on
problem instance m

R Matrix of estimated performance ratings of N
algorithms on M problem instances

Tm,n The estimated converted rating value of
algorithm n on problem instance m

Py, (rm,n) Given the actual performance rating vector Iy,
the probability that algorithm » is ranked at top
1 regarding the m,;, problem instance

P, (Fm.n) Given the estimated rating vector t,, the

probability that algorithm 7 is ranked at top 1
regarding the m;; problem instance
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A.3 Gradient and updating rules in Bi-linear L2R

In BLR model, for approximating the weighting matrix W
and latent matrix V to minimize the loss function defined in
the Sect. 2, we calculate the gradient for loss function and use
the updating rule as described in the following subsections.

A.3.1 Gradient calculation

Having known the loss function L, to use gradient descent as
the optimizer, the gradient concerning meta-features map-
ping weight matrix W and algorithm latent vectors matrix
V should be provided accordingly. Since the loss function
is defined layer by layer through model function, converter
function, top-one probability function and cross entropy
function, we use chain rule to calculate the gradient corre-
spondingly. For L, its partial differential over wy ; and v, x
can be factorized in the similar way as Eqgs. (13) and (14)
separately.

M N A ~ A~
oL _ Z OLy.n apf'm (Fm.n) Fmn Sm,n
awl,k 1 n=1 an-m (fmn) afm,n a§m,n awl,k
AW k (13)
M N A N N
oL . Z Z aLm,n an'm (rm,n) arm,n Sm.,n
avn,k 1 ne1 an‘m (;m,n) a;m,n 8:S:m,n avn,k
+ Avns (14)

For each L, ,, the intermediate calculation steps for devi-
ation according to chain rule can be derived as following for
each L, ,:

ILmn 1

P (Fn) ————
3P, (Fiun) N Py (Fun)

0P, (Fmpn) 9 eXp P, n
fm,n 8i;m,n Z;VZI exXp fm,n
_ exp(’:m,n) _ exp(fm,n)2
Zy]zv:l exp(;m,n) (Zr]zv:l exp(’ﬁm,n))2

97

i (15)
0Sm.n
93

P Uk (16)
owy k
35 L

m,n

— = Xm, I WL,k (a7

avn,k ; "

For the last step, which returns the partial differential s,,,
over wy x and v, x, we can broadcast it in the vectorized way

like Egs. (18) and (19):

as

8:;’,” =X ®Vy (18)
23

S x W (19)
av,

A.3.2 Updating rule

Having known the partial differential of the chain rule, we
can update the weight matrix W and algorithm latent matrix
V by the following updating rule Egs. (20) and (21) , where
n is the learning rate.

W =w-— na—L (20)
IW!—1
aL
=1
vy =viol - T 1)

Since the loss is list-wise, which means for each problem
instance, there is a loss schema based on the corresponding
top one probability. If we would like to update the weights in
a stochastic way, the updating unit should be a list based on
problem instance m, rather than each rating point. Therefore,
the stochastic updating rule is like Eqgs. (22) and (23):

oL
t _ wit—1 m
w A% ~ Wil
N
oL
_ t—1 m,n
=W - Z (77 gWi—1 ) 22)
n=1
JL
- | m
Vy = Vn — T’IW (23)
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