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Abstract

This thesis investigates optimal control problems related to Navier-Stokes
equations. We investigate two control problems related to the aerodynamic
optimization of flows around airfoils in high-lift configurations.

The first issue is the steady state maximization of lift subject to restric-
tions on the drag. This leads to a Dirichlet boundary control problem for
the stationary Navier-Stokes equations with constrained control functions be-
longing to L2 under an integral state constraint. The control space L2 makes
it necessary to deal with very weak solutions of the Navier-Stokes equations
and because of the low regularity of control and state, we reformulate the cost
functional and the integral state constraint. We derive first-order necessary
and second-order sufficient optimality conditions and treat the problem nu-
merically by direct solution of the associated nonsmooth optimality system
and additionally by an SQP-method, which convergence we proved.

The second part is based on a k-ω-Wilcox98 turbulence model, describ-
ing the nonstationary behavior of the fluid closer to the reality. To deal with
the curse of dimension, we discuss a reduced-order model (ROM) by adapting
a small system of ODEs to solutions computed with the full model. Based
on this ROM, we investigate an optimal control problem theoretically and
numerically.
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Chapter 1

Introduction

In this thesis, we study optimal control problems related to Navier-Stokes
equations, describing the motion of fluid. We investigate minimizations of
functionals subject to state equations. The objective functionals depend on
the velocity field u, the pressure p and the control function g.

Our main concern is maximization the lift of an airplane, while drag
remains beyond a given threshold. Therefore, we consider an objective func-
tional J(u, p, g) characterizing the lift, the Navier-Stokes equations as state
equations and a constraint on the drag.

In given literature, there are two different approaches to get influence on
the flow around a body. The first one is the possibility of passive control.

There are several possibilities of passive control, e.g. passive blowing,
roughness and shaping. Passive noise control devices include shields of rigid
and compliant walls, mufflers, silencers, resonators and absorbent materials,
see [43] for more details. The idea behind most of them is to reduce vortices
and make the airstream around the wing smoother.

The second ansatz is active flow control, which was investigated in partic-
ular by the SFB 557 ’Control of complex turbulent shear flows’. Here, little
slits are installed on a part of the wing, where suction and blowing of air is
possible to reduce vortices.

Generally, flow control is a research field gaining a lot of interest in both
academic research and industry. It is researched by engineers (experimen-
tal and computation fluid dynamics), mathematicians (control theory and
optimization) and physicists.

In this work, the following optimal flow control problem is considered: ac-
tive control of the flow of a fluid around an aircraft by means of suction and
blowing on the wing to influence the resulting lift and drag. The associated
background of applications in fluid mechanics, active separation control, was
the subject of various papers written from an engineering point of view and
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CHAPTER 1. INTRODUCTION

has been proven to be effective in experiments as well as simulations. We
only mention [17, 19, 87, 88, 89, 112], whose considerations are close to our
setting, see Chapter 7 to 9.

The first part of this thesis deals with the steady-state problem. Here, we
assume a low Reynolds number so that we avoid the discussion of turbulence.
Furthermore, we consider a simplified control model, which is composed of
the cost functional, the steady-state Navier-Stokes equations, and constraints
on the control function as well as the state, for a mathematical investigation.
First, the steady-state Navier-Stokes equations, describing the motion of the
fluid around the wing, are investigated and we clarify the following questions.

1. What is the best (suitable) definition of a solution of the state equation
for the formulated problem?

2. What are the requirements such that a (unique) solution for the state
equations exists?

3. What preliminary results can be found in the existing literature?

4. What regularity assumptions are needed?

5. What are the requirements such that a solution for the stated opti-
mization problem exists?

6. How are the necessary and sufficient optimality conditions formulated?

7. What is an appropriate numerical optimization method and does it
converge?

We will characterize optimality of control strategies for our setting by
necessary and sufficient optimality conditions.

Let us now describe the setting of our optimization problem in detail.
Here, Ω is an open bounded domain of Rn, n = 2, 3 with boundary Γ, which
is assumed to be sufficiently smooth, more details later. The velocity field of
the fluid is denoted by u and the pressure by p. The control is a boundary
velocity field denoted by g and the viscosity parameter ν = 1/Re is a positive
number. Let us denote the surface measure by ds(x) or short ds. The
term ∇ denotes the gradient and ∆ the Laplace operator, which is applied
componentwise. The resulting force of the fluid on the wing embedded in the
fluid in direction ~e is given as the boundary integral

F~e =

∫
Γw

(
ν
∂y

∂nw
− pnw

)
· ~e ds, (1.0.1)
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where Γw is the boundary of the wing with its outer normal nw. Since nw
points into the fluid, the normal nw is the negative of the outer normal of the
fluid domain Ω, nw = −n. Let the vectors ~el and ~ed indicate the directions
of lift and drag. Then, we are able to calculate the lift and the drag with
the boundary integral (1.0.1) where ~el or ~ed have to be inserted instead of ~e.
Here, ~ed is the normalized vector directed opposite to the gravity, and ~el is
the normalized vector in the direction opposing the main flow field.

The optimization problem is then formulated as follows: Find a control
u in L2(Γ)n that maximizes the lift

−
∫

Γw

(
ν
∂u

∂n
− pn

)
· ~el ds (1.0.2)

subject to the steady state Navier-Stokes equations describing the motion of
the fluid

−ν∆u+ (u · ∇)u+∇p = 0 in Ω

div u = 0 in Ω

u = g on Γc,

u = 0 on Γ \ Γc,

(1.0.3)

the convex control constraints

g(x) ∈ G a.e. on Γc, (1.0.4)

and the maximal drag constraint

−
∫

Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds ≤ D0. (1.0.5)

The boundary Γw is a curve satisfying∫
Γw

n ds = 0. (1.0.6)

As shown later, the pressure is only unique up to a constant. The constraint
(1.0.6) avoids that this constant changes the objective functional arbitrar-
ily. The control acts on a part of the boundary of the body Γc ⊂ Γw and
homogeneous Dirichlet boundary conditions are prescribed on the boundary
Γ \ Γc.

The set of admissible controls G is a bounded, convex, closed, and non-
empty subset of Rn. Furthermore, we assume 0 ∈ G, which gives us the
option to turn off the control admissible in the optimization problem. For a
more detailed discussion of such convex control constraints, we refer to [110].

3



CHAPTER 1. INTRODUCTION

Let us shortly review available literature on analysis of optimal control
problems for the Navier-Stokes equations. Starting with Abergel and Temam
[2] there is an ever growing list of contributions. Let us only mention the work
by Gunzburger, Hou, and Svobodny [51], Gunzburger and Manservisi [52],
Hinze and Kunisch [54, 55], Kunisch and de los Reyes [28], de los Reyes and
Yousept [30], de los Reyes and Tröltzsch [29], Abergel and Casas [1], Casas
[24, 23], Tröltzsch and Roubiček [84] and Wachsmuth [103]. Finite-element
error estimates can be found in the work of Casas, Mateos and Raymond
[20]. Optimal flow control problems with state constraints were studied by
Griesse and Reyes [50], Reyes and Kunisch [80].

The novelty of the first part of this thesis is that it combines the use of very
low regular boundary controls, i.e. in L2(Γ), and integral state constraints.
There are only a few contributions to optimal control theory using Dirichlet
controls in L2, see for instance Kunisch and Vexler [61] and Casas, Mateos and
Raymond [20]. In the context of steady-state Navier-Stokes equations this
is a new and promising approach, since the use of L2-controls yields localiz-
able optimality conditions, whereas the use of, for instance, H1/2(Γ)-controls
yields optimality conditions containing non-local boundary operators.

In view of the low L2-regularity of the controls, the boundary integrals
(1.0.2) and (1.0.5) are no longer well-defined, since the velocity field u is not
regular enough to admit traces on the boundary. Therefore, we transform the
boundary integrals into volume integrals leading in case of the drag constraint
to a non-standard mixed control-state constraint, see Section 3.2 below.

As it is well-known, the steady-state Navier-Stokes equations are solvable
in suitable spaces. If the data and/or the Reynolds number 1/ν are small
enough then the solution will be unique. To judge whether this condition is
fulfilled in a concrete application is a delicate issue in particular in the case of
inhomogeneous boundary conditions, see the discussion in the monograph of
Galdi [44]. Hence, instead of assuming smallness of the data, we assume non-
singularity at the optimal control, which is equivalent to unique solvability
of a certain linearized equation, see Section 2.4.2.

By assuming the existence of a linearized Slater point to the state con-
straint (1.0.5), we are able to prove first-order necessary optimality condi-
tions, see Section 4.1. For the special case of smooth controls, the resulting
optimality system simplifies considerably, see Section 4.3. Furthermore, we
state a second-order sufficient optimality condition for the problem under
consideration. The first part of this thesis is complemented by numerical
experiments on a high-lift configuration. One numerical approach was to
solve the associated nonsmooth first-order optimality system of two coupled
Navier-Stokes equations. At the end of this topic, we also implemented an
SQP method with a penalty term in the cost functional to handle the integral
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state constraint and proved its convergence.

Afterwards, the second part of the paper deals with a nonstationary prob-
lem, considering a model closer to a real setting, that accounts also for turbu-
lence. Here, the flow is computed on the basis of a k − ω Wilcox98 turbu-
lence model, see (7.0.2), including the nonstationary Navier-Stokes equations
and high Reynolds numbers. There are many approaches of turbulence mod-
eling. Let us just mention Reynolds-averaged Navier-Stokes (RANS) based
models, one equation models and also two equation models, for instance the
k − ε model and the k − ω models. For every group, one can find many
variations, see for instance [114].

The curse of dimension and the inherent nonlinearity leads to very large
computing times so that a mathematical optimization analogous to the sta-
tionary case is fairly unrealistic. In [19], a generic high-lift configuration was
investigated and one forward solution of the turbulence model took about
48 hours. In the case of the SCCH configuration, which we consider here,
the computation time was nearly twice that number. We think that model
reduction is a method of choice to avoid such extremely long computation
times. To this aim, many authors have considered proper orthogonal decom-
position (POD), see e.g. [4, 62, 63, 111]. The problem is that, in this case,
we have to insert the POD basis as a Galerkin basis in the full turbulence
model, which is a time consuming task. Thus, we decided to follow an alter-
native approach by Luchtenburg, Noack et al. [66, 74] of building a low-order
dynamical system based on uniform oscillation by parameter identification.

The original full optimization problem consists of the cost functional,
calculating the lift, the nonstationary Navier-Stokes equations, the associated
k−ω Wilcox98 turbulence model and of constraints on the control. In the
nonstationary part, we discard for simplicity constraints on the drag. The
control function is considered as a periodic function t 7→ g,

g = B cos(ωt),

where B is the actuation amplitude and ω is the actuation frequency. In
our problem, we consider only the actuation amplitude B as the optimiza-
tion parameter. For further work, the actuation amplitude is one possible
additional optimization parameter.

In Chapter 7, we consider our optimization problem in detail with the
turbulence model and introduce the standard POD method.

Unfortunately, the POD method does not identify clear frequencies and
amplitudes. Thus, in Chapter 8 we filter the POD mode coefficients in a
way that we neglect fluctuations of frequencies and amplitudes to get clear
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CHAPTER 1. INTRODUCTION

structures and to calculate the associating modes. With the help of these
coefficients, we build a reduced-order model (ROM), similar to Luchtenburg
et al. [66], consisting only of four ODEs describing uniform oscillations.
We identify the inherent parameters. Based on the results of the ROM, a
formula for the lift calculation is created and so we are able to establish
an optimization problem based on this new lift formula and the low-order
dynamical system.

In Chapter 9, we establish an optimality system, consisting of an objec-
tive cost functional, calculating the lift of the aircraft based on the POD
coefficients, the dynamical system of 4 ODEs as state equations and con-
straints on the control, to investigate the optimization problem numerically
. We need only a fraction of time for one solution of the state equations
compared to the full system while the optimal actuation amplitude is almost
the same.

The main results of the stationary part, except the SQP-method and its
convergence, have been published partially word for word in a joint work with
D. Wachsmuth [58], while Chapter 8 is published partially word for word in
a joint work with B.R. Noack, M. Schlegel, F. Tröltzsch and D. Wachsmuth
[57].
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Chapter 2

The steady-state Navier-Stokes
equation

The Navier-Stokes equations are a mathematical model to describe the mo-
tion of fluid flow. Claude Louis Marie Henri Navier (b10. February 1785 in
Dijon; d21. August 1836 in Paris) was a French mathematician and physicist
and Sir George Gabriel Stokes (b13. August 1819 in Skreen, County Sligo;
d1. February 1903 in Cambridge) was an Irish mathematician and physicist.
They were the first trying to derive equations of motions for fluid.

The nonlinear incompressible steady state Navier-Stokes system with in-
homogeneous Dirichlet boundary condition is given in its dimensionless form
as follows

−ν∆u+ (u · ∇)u+∇p = f in Ω

div u = 0 in Ω

u = g on Γc,

u = 0 on Γ \ Γc.

(2.0.1)

Here, the velocity field is denoted by u and the pressure by p. In this section,
we investigate the steady-state Navier-Stokes equations mathematically, this
includes the spaces for the solutions. After that, we have to clarify in what
sense the solutions are defined.

2.1 Function spaces
Let us first define the spaces of p-integrable functions and summarize some of
their basic properties. The functions are defined on a domain Ω ⊂ Rn with
boundary Γ, which is assumed to be sufficiently smooth, I’ll explain later.

Definition 2.1. Let Ω be an open subset of Rn and 1 ≤ p <∞. The set of

7



CHAPTER 2. THE STEADY-STATE NAVIER-STOKES EQUATION

p-integrable functions is defined as

Lp(Ω) = {u : Ω→ R;u is measurable and
∫
Ω

|u|pdx <∞},

endowed with the norm

‖u‖Lp = {
∫
Ω

|u(x)|pdx}1/p.

For p =∞, we define

L∞(Ω) = {u : Ω→ R; u is measurable and |u(x)| ≤ C a.e. in Ω, C > 0}

and introduce the norm

‖u‖L∞ = inf{C : |u(x)| ≤ C a.e. in Ω}.

We will provide some basic inequalities to deal with Lebesgue integrable
functions. At first, we have the well-known theorem:

Theorem 2.2 (Hölder). Let u ∈ Lp(Ω) and v ∈ Lq(Ω) with 1 < p, q < ∞
and

1

p
+

1

q
= 1.

Then uv ∈ L1(Ω) and

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

The spaces Lp(Ω) are Banach spaces for 1 ≤ p ≤ ∞ and reflexive for
1 < p <∞. In L2(Ω), a scalar product can be defined by

(u, v)L2(Ω) =

∫
Ω

uv dx

and a Hilbert space structure is also obtained. The space of infinitely dif-
ferentiable functions with compact support is denoted by D(Ω) and its dual,
the distributions space, by D′(Ω).

The Sobolev space Wm,p(Ω) is the space of Lp(Ω) functions whose weak
derivative up to order m is also in Lp(Ω): For these spaces a norm is intro-
duced in the following way:

|u|Wm,p :=

∑
|j|<m

‖Dju‖pLp

1/p

.

8



2.1. FUNCTION SPACES

In the case p = 2, the space Hm(Ω) := Wm,2(Ω) is a Hilbert space with scalar
product

(u, v)Hm =
∑
|j|≤m

(Dju,Djv)L2 .

The closure of D(Ω) in the Wm,p(Ω) norm is denoted by Wm,p
0 (Ω). For more

details of Sobolev spaces and a proof for the two following Sobolev imbedding
Theorems, we refer to [3].

Theorem 2.3 (Sobolev imbedding Theorem). Let Ω be a domain in Rn with
the cone property. Then the imbeddings

Wm,p(Ω) ↪→ Lq(Ω), for mp < n and 1 ≤ q <
np

n−mp
,

Wm,p(Ω) ↪→ Lq(Ω), for mp = n and 1 ≤ q <∞,
Wm,p(Ω) ↪→ C(Ω̄) , for mp > n

are continuous.

In the two-dimensional case the imbeddings H1(Ω) ↪→ Lq(Ω) for 1 ≤ q <
∞ and W 1,p(Ω) ↪→ C(Ω̄) for p > 2 are continuous.

Theorem 2.4. Let Ω be a domain in Rn with C1-boundary.

1. Suppose mp < n and n−mp < n. This leads to

W j+m,p(Ω) ↪→ Wm,q(Ω)

for p ≤ q ≤ np/(n−mp).

2. Suppose mp = n. Then, we obtain

W j+m,p(Ω) ↪→ W j,q(Ω)

for p ≤ q <∞.

Inhomogeneous boundary values will be defined by the trace of W k,p(Ω)
on the boundary.

Theorem 2.5. Let Ω be a bounded Lipschitz-domain and 1 ≤ p ≤ ∞. Then
there exists a linear and continuous mapping τ : W 1,p(Ω)→ Lp(Γ) with

(τu)(x) = u(x) a.e. on Γ

for all u ∈ W 1,p(Ω) ∩ C(Ω̄).

9



CHAPTER 2. THE STEADY-STATE NAVIER-STOKES EQUATION

For a proof of this theorem and the next two, we refer to [3].

Definition 2.6. The element τu is defined by the trace of u on Γ and the
mapping is called the trace operator.

Theorem 2.7. Let m ≥ 1, m ∈ Z and Γ of class Cm−1,1. Then, we obtain
that the trace operator τ is for mp < n continuous from Wm,p(Ω) to Lr(Γ),

if 1 ≤ r ≤ (n− 1)p

n−mp
. For mp = n, we get that τ is continuous for all

1 ≤ r <∞.

Another statement of [3] is:

Theorem 2.8. Let Ω be of class Cm, m ≥ 1, k ∈ Z, and 1 < p <∞. Then
the trace operator τ is continuous from Wm,p(Ω) to Wm−1/p,p(Γ).

Because we have to deal with functions satisfying div u = 0, we introduce
the space

V := {u ∈ D(Ω)n : div u = 0}

The closure of V in theH1
0-norm is denoted by V and if Ω is an open bounded

Lipschitz set, it can be characterized as

V = {u ∈ H1
0(Ω) : div u = 0}.

We assume that the boundary of Ω is in C2. The outer unit normal on Γ
is denoted by n. The boundary Γ is the union of m connected components,
Γ =

⋃m
j=1 Γj.

Furthermore, we define the following spaces on Ω and Γ:

Hs(Ω) = {v ∈ Hs(Ω)n : div v = 0 on Ω, 〈u · n, 1〉H−1/2(Γj),H1/2(Γj) = 0

∀j ∈ {1, . . . ,m}}, s ≥ 0,

Hs
0(Ω) = {v ∈ Hs(Ω)n : div v = 0 on Ω, u = 0 on Γ}, s ≥ 1/2,

Hs(Γ) = {v ∈ Hs(Γ) :
∫

Γj
u · n = 0 ∀ j = 1 . . .m}, s ≥ 0,

Lp(Ω) = {v ∈ Lp(Ω)n : div v = 0}, p ≥ 1,

Lp(Γ) = Lp(Γ)n, p ≥ 1,

H−s(Γ) = (Hs(Γ))′, s ≥ 0,

H−s(Ω) = (Hs(Ω) ∩H1
0(Ω))′, s ≥ 1

Wm,p(Ω) = Wm,p(Ω)n,

Wm,p(Γ) = Wm,p(Γ)n,

10



2.2. THE STOKES EQUATIONS

and the differential operators for vector-valued functions u and scalar-valued
functions p:

∆u ∈ Rn : (∆u)i = ∆ui, i = 1, . . . , n,

∇p ∈ Rn : (∇p)i =
∂

∂xi
p, i = 1, . . . , n,

∂

∂n
u = n∇u ∈ Rn : (

∂

∂n
u)i =

∂

∂n
ui, i = 1, . . . , n,

(u · ∇)u ∈ Rn : ((u · ∇)u)i =
n∑
j=1

uj
∂ui
∂xj

, i = 1, . . . , n.

Remark 2.9. As mentioned later, the terms 〈u · n, 1〉H−1/2(Γj),H1/2(Γj) =
0 ∀j ∈ {1, . . . ,m} are important to obtain the existence of very weak solutions
for arbitrary large data. The trace operator is only defined for s ≥ 1/2.

Before considering the solvability of the Navier-Stokes equations, we want
to have a look on the Stokes equations.

2.2 The Stokes equations
The Stokes equations are similar to the Navier-Stokes ones, but without the
nonlinear term. They are given by

−ν∆u+∇p = f in Ω

div u = 0 in Ω

u = g on Γc,

u = 0 on Γ \ Γc.

(2.2.1)

Let us define the bilinear form a(u, v) := ν(∇u,∇v). Then we call u a weak
solution of (2.2.1), if

a(u, v) = (f, v) ∀v ∈ V
is satisfied. The next theorem guarantees existence and uniqueness of solu-
tions for (2.2.1) and we refer to [27, 47, 97] for the theory.

Theorem 2.10. For every f ∈ H−1(Ω) and g ∈ H1/2(Γ) with∫
Γc

g · n ds = 0

the Stokes equation (2.2.1) has a unique solution (u, p) ∈ H1(Ω) × L2(Ω),
where p is unique up to a constant.

11
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The next theorem,see [44, Vol. 1, Thm. IV.6.1], shows that the solution
(u, p) is more regular if the data (f, g) is more regular.

Theorem 2.11. Let u be a solution of the Stokes problem (2.2.1) on a
bounded domain Ω ⊂ Rn, n ≥ 2 of class Cm+2, m ≥ 0 corresponding to

f ∈Wm,q(Ω), g ∈Wm+2−1/q,q(Γ).

Then, we obtain
u ∈Wm+2,q(Ω), p ∈ Wm+1,q(Ω).

Moreover, the following estimate holds

‖u‖Wm+2,q(Ω) + ‖p‖Wm+1,q(Ω) ≤ c(‖f‖Wm,q(Ω) + ‖g‖Wm+2−1/q,q(Γ)) (2.2.2)

with a constant c = c(m,n, q,Ω).

Corollary 2.12. The special case q = 2 and m = 0: For f ∈ L2(Ω) and
g ∈ H3/2(Γ), we obtain u ∈ H2(Ω) and p ∈ H1(Ω) as solutions for the Stokes
equations (2.2.1). Let us define the associated control-to-state operators

G : H3/2(Γ)→ H2(Ω), g 7→ u

with f = 0 and
S : L2(Ω)→ H2(Ω), f 7→ u

with g = 0.

We even get the following theorem, see [26, Vol. 6, Thm. 1.11].

Theorem 2.13. Let Ω be an open bounded set of Rn, n = 2, 3, of class Cr,
r = max{m+ 2, 2}, m ≥ −1, m ∈ Z. Let

f ∈Wm,q(Ω) g ∈Wm+1,q(Γ)

satisfy the compatibility condition∫
Γc

g · n ds = 0.

Then there exists a unique solution

(u, p) ∈Wm+2,q(Ω)×Wm+1,q(Ω)

of the Stokes problem (2.2.1) (p is unique up to a additive constant), satisfying
(2.2.2).

Let us specify, in what sense we want to solve the Navier-Stokes equations.
The first and standard way is to consider weak solutions.

12
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2.3 Weak formulation
See [44] for more details on weak solutions of (1.0.3). For simplicity, we
define some functions b : H1(Ω)×H1(Ω)×H1(Ω)→ R

b(u, v, w) := ((u · ∇)v, w)L2(Ω) (2.3.1)

and B : H1(Ω) 7→ (H1(Ω))′ for u, v ∈ H1(Ω)

〈B(u), v〉(H1(Ω))′,H1(Ω) := b(u, u, v). (2.3.2)

Due to to the quadratic character of B, its differentiability is easily to see.
The first Fréchet derivative B′(ū)u of B with respect to ū is a functional of
(H1(Ω))′ and has the following form

〈B′(ū)u, v〉(H1(Ω))′,H1(Ω) = b(ū, u, v) + b(u, ū, v)

with v ∈ H1(Ω). The second Fréchet derivative B′′(ū)[ũ, û] is given by

〈B′′(ū)[ũ, û], v〉(H1(Ω))′,H1(Ω) = b(ũ, û, v) + b(û, ũ, v).

Additionally, we get the following properties for the nonlinearity b and B,
see [55],

Lemma 2.14. The nonlinear term b and B fulfills

1. |b(u, v, w)| ≤ c‖u‖1/2

L2(Ω)
‖u‖1/2

H2(Ω)
‖v‖H1(Ω)‖w‖L2(Ω), ∀u ∈ H2(Ω), v ∈

H1(Ω), w ∈ L2(Ω),

2. |b(u, v, w)| ≤ c‖u‖H1(Ω)‖v‖H1(Ω)‖w‖H1(Ω), ∀u, v, w ∈ H1(Ω),

3. 〈B′′(ū)[ũ, û], v〉(H1(Ω))′,H1(Ω) = 〈B′(ũ)û, v〉(H1(Ω))′,H1(Ω)

4.
1

2
〈B′′(ū)[u, u], v〉(H1(Ω))′,H1(Ω) = 〈B(u), v〉(H1(Ω))′,H1(Ω) for u = ũ = û

with a constant c ∈ R.

Multiplying (1.0.3) by test functions (v, q) ∈ V × L2(Ω), we obtain by
partial integration the following weak formulation

a(u, v) + b(u, u, v) = 〈f, v〉V ′,V in Ω (2.3.3)
τu = g on Γc (2.3.4)

where τ : H1 :→ H
1
2 (Γc) is the trace operator.

13
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Theorem 2.15. Let Ω ∈ Rn be a bounded locally Lipschitz domain of Rn, n =
2, 3 with Γ := ∂Ω constituted by m + 1 connected components Γ1, . . . ,Γm+1,
m ≥ 0,

f ∈ H−1(Ω) and g ∈ H1/2(Γc)

with ∫
Γc

g · n ds = 0.

Then, there exists under additional assumptions, see [44, Vol. 2, Thm. VIII.4.1,
Thm. VIII.4.2], at least one solution (u, p) ∈ H1(Ω)×L2(Ω) for (2.0.1) sat-
isfying the estimate

‖p‖L2(Ω) ≤ c(‖f‖H−1(Ω) + ‖u‖2
H1(Ω) + ν‖u‖H1(Ω)).

Furthermore, there exists c1 = c1(n,Ω) such that if

‖g‖1/2,2(Γ) ≤ c1ν/2,

u verifies

‖u‖H1(Ω) ≤ c2(‖f‖H−1(Ω) + ‖g‖2

H
1
2 (Γ)

+ (1 + ν)‖g‖
H

1
2 (Γ)

).

with c2 = c2(n,Ω). If

‖f‖H−1(Ω) + ‖g‖2

H
1
2 (Γ)

+ (1 + ν)‖g‖
H

1
2 (Γ)

< c3ν
2

is additionally satisfied with c3 = min{c1, 1/c2k}, then u is unique and p is
unique up to a constant.

Proof. For the proof and the additional assumptions, we refer to [44, Vol. 2,
Thm. VIII.4.1, Thm. VIII.4.2].

We can obtain some extra regularity of the solution (u, p), if the right
hand side is smooth enough, see [44, Vol. 2, Thm. VIII.5.2]:

Theorem 2.16. Let Ω be a bounded domain of Rn, n ≥ 2, of class C2. Let

u ∈W1,2(Ω) ∩ Ln(Ω)

be divergence-free, satisfying (2.3.3) for some p ∈ L2(Ω) and for all v ∈
C∞0 (Ω). Then, if

f ∈ Lq(Ω), g ∈W2−1/q,q(Γc)

with
q ∈ (1,∞), if n = 2,

14



2.4. VERY WEAK FORMULATION

while
q ∈ (2n/(n+ 2),∞), if n > 2,

it follows that
(u, p) ∈W2,q(Ω)×W 1,q(Ω).

Moreover, if Ω is of class Cm+2 and

f ∈Wm,q(Ω), g ∈Wm+2−1/q,q(Γc)

with m ≥ 1 and
q ∈ (1,∞), if n = 2,

while
q ∈ (n/2,∞), if n > 2,

then
(u, p) ∈Wm+2,q(Ω)×Wm+1,q(Ω).

We obtain by Theorem 2.16 with q = 2:

Corollary 2.17. Let f ∈ L2(Ω) and g ∈ H3/2(Γc) . Then, it follows that
(u, p) ∈ H2(Ω)×H1(Ω).

2.4 Very weak formulation

Here, we have to resort to the notation of very weak solutions, since in general
weak solutions in u ∈ H1(Ω) do not exist due to the desired low regularity
L2(Γc) of boundary data. The theory in this section is based on [69, 40, 39].

Definition 2.18. Let g ∈ H0(Γ) be given. Then we call u ∈ L2n/(n−1)(Ω)
a very weak solution of the state equation (2.0.1) if for all test functions
v ∈ H2

0(Ω), π ∈ H1(Ω) it holds∫
Ω

(u · (−ν∆v)− (u · ∇)vu) dx+

∫
Γ

g · ν ∂v
∂n

ds = 〈f, v〉H−1(Ω),H1(Ω) (2.4.1a)

and ∫
Ω

∇π · u dx−
∫

Γ

(g · n)π ds = 0. (2.4.1b)

15
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Here, the first equation is obtained by partially integrating the Navier-
Stokes equations twice and using the equation:∫

Ω

(u · ∇)u · v dx =
n∑

i,j=1

∫
Ω

ui
∂uj
∂xi

vj dx

=
n∑

i,j=1

−
∫

Ω

ui
∂vj
∂xi

uj +
∂ui
∂xi

vjuj dx+

∫
Γ

uiujnivj ds

= −
∫

Ω

(u · ∇)v · u+ u · v div u dx+

∫
Γ

(u · n)u · v ds

Then, we can reformulate the first equation of (2.0.1) to (2.4.1a) by∫
Ω

(−ν∆u+ (u · ∇)u+∇p)v dx− 〈f, v〉H−1(Ω),H1(Ω)

=

∫
Ω

ν∇u · ∇v − (u · ∇)v · u+ u · v div u+ p · div v dx

+

∫
Γ

(u · n)u · v − ν ∂u
∂n
v ds− 〈f, v〉H−1(Ω),H1(Ω)

=

∫
Ω

u · (−ν∆v)− (u · ∇)v · u dx+

∫
Γ

g · ν ∂v
∂n

ds− 〈f, v〉H−1(Ω),H1(Ω).

The second equation (2.4.1b) is the weak formulation of div u = 0:∫
Ω

div uπdx = −
∫

Ω

u · ∇πdx+

∫
Γ

(u · n)π ds

= −
∫

Ω

u · ∇πdx+

∫
Γc

(g · n)π ds.

Moreover as discussed in [40], it incorporates the Dirichlet boundary condi-
tion for the normal component of u, since the term

∫
Γ
g · ν ∂v

∂n
ds acts only

on tangential components. For example, let n = 3 and and v be a smooth
function. Then it holds ∂v

∂n
(curlv)×n, which implies that ∂v

∂n
is orthogonal to

the outer normal, and thus the product
∫

Γ
u · ν ∂v

∂n
ds in (2.4.1a) acts only on

the tangential component of u.
The existence of very weak solutions with inhomogeneous Dirichlet bound-

ary conditions is discussed in [39, 40, 45, 69]. We remark that it is essential
to have

∫
Γi
g · n ds = 0 for all connected components of Γ to obtain existence

of solutions for arbitrary large data. For boundary data in H0(Γ) it holds
the following.

Remark 2.19. If the data are regular and the problem has a variational
solution (u, p) ∈ H1(Ω) × L2(Ω), then it is easy to see that the variational
solution is also a very weak solution.
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2.4. VERY WEAK FORMULATION

In the next theorem, we investigate the linearized state equation, see [69,
Theorem 3].

Theorem 2.20. Let g ∈ L2(Γc) and z ∈ L2n/(n−1)(Ω)2. Then the linearized
problem

−ν∆u+ (z · ∇)u+∇p = f in Ω

div u = 0 in Ω

u = g on Γc

has a unique very weak solution u ∈ L2n/(n−1)(Ω) and additionally, we obtain

‖u‖L2n/(n−1)(Ω) < c(1 + ‖z‖L2n/(n−1)(Ω))‖g‖L2(Γc).

Let us now formulate the main result of this section.

Theorem 2.21. For every f ∈ H−1(Ω) and g ∈ H0(Γ), there exists a very
weak solution u ∈ L2n/(n−1)(Ω) of (2.0.1). In the two-dimensional case, this
solution belongs to H1/2(Ω).

The existence proof and a discussion of the smallness assumption of the
data and/or the Reynolds number Re = 1/ν can be found in [69]. The
H1/2-regularity for the 2d-case result can be proven following the lines of
[69]. Unique solvability with respect to less regular data, i.e. in W−1/q,q(Γ)
is investigated in the articles by Farwig, Galdi, Sohr [39, 40, 45]. Once
existence of a solution is proven, the pressure field p can be reconstructed by
means of De Rham’s Lemma, see for instance [97].

One can find in [69] that there exists a distribution p ∈ W−1,2n/(n−1) such
that

−∆u− (u · ∇)u+∇p = 0

holds in the sense of distributions.
In view of the existence result, let us define for abbreviation the state

space
U := L2n/(n−1)(Ω).

2.4.1 More regular solutions

Let us briefly show that more regular boundary data in Lp(Γ) yields more
regular solutions. In the following considerations, we will split the state
u in two parts, u = u0 + u1. The function u0 is defined as the unique very
weak solution to the Stokes equation with inhomogeneous Dirichlet boundary
conditions

−ν∆u0 +∇p0 = 0 in Ω

div u0 = 0 in Ω

u0 = g on Γ.

(2.4.2)
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Then u1 = u − u0 solves the following equation subject to homogeneous
Dirichlet boundary conditions

−ν∆u1 + (u · ∇)u1 +∇p1 = −(u · ∇)u0 in Ω

div u1 = 0 in Ω

u1 = 0 on Γ.

(2.4.3)

As one can easily see, both systems are uniquely solvable. At first, let us
prove higher regularity of u0.

Lemma 2.22. Let g ∈ Lp(Γ)∩H0(Γ), p ≥ 2, be given. Then the solution of
(2.4.2) satisfies u0 ∈ Lq(Ω), where q is given by

q =

{
np
n−1

if 2 ≤ p <∞,
+∞ if p =∞, n = 3.

(2.4.4)

Proof. The mapping g 7→ u0 is linear and continuous from W−1/p,p(Γ) to
Lp(Ω) and from W1−1/p,p(Γ) to W1,p(Ω), see e.g. [12, 25]. By interpola-
tion arguments, we have continuity of this solution mapping from Lp(Γ) to
W1/p,p(Ω). The claim follows by the imbedding argument W1/p,p(Ω) ↪→
Lq(Ω), see Theorem 2.3. The result for p = ∞, n = 3 can be found in
[91].

Applying this result, we can prove higher regularity of the function u1

and in consequence of the solution u of the nonlinear system.

Lemma 2.23. If the boundary data g is in Lp(Γ)∩H0(Γ), p ≥ 2 (n = 2) or
p ≥ 4 (n = 3), then u belongs to Lq(Ω) with q given by (2.4.4).

Proof. Let us first consider the 2d-case, n = 2. Then we have by Theo-
rem 2.21 u ∈ L4(Ω). This implies (u · ∇)u ∈ H−1(Ω), hence u1 = u − u0

solves
−ν∆u1 +∇p1 = −(u · ∇)u in Ω

div u1 = 0 in Ω

u1 = 0 on Γ,

(2.4.5)

and we have u1 ∈ H1
0(Ω) ↪→ Lt(Ω) for all 0 < t <∞.

In the 3d-case, n = 3, Theorem 2.21 gives u ∈ L3(Ω). Since p ≥ 4 by
assumption, Lemma 2.22 yields u0 ∈ L3p/2(Ω) ⊂ L6(Ω). Taking v ∈ H1

0(Ω),
we find after integration by parts

|
∫

Ω

(u · ∇)u0v dx| = | −
∫

Ω

(u · ∇)vu0 dx| ≤ c‖∇v‖L2(Ω)‖u0‖L6(Ω)‖u‖L3(Ω).
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Then (u · ∇)u0 belongs to H−1(Ω), and the solution u1 = u − u0 of (2.4.3)
belongs to H1

0(Ω) ↪→ L6(Ω). Hence u = u0 + u1 is in L6(Ω) as well. This in
turn gives (u · ∇)u ∈ W−1,r(Ω), r = 6p

p+4
≥ 4 with the following argument:

|
∫

Ω

(u · ∇)u0v dx| ≤ c‖∇v‖Lr′ (Ω)‖u0‖L3p/2(Ω)‖u‖L6(Ω).

By [25], the function u1 as solution of (2.4.5) belongs then to W1,4(Ω) ↪→
L∞(Ω).

In both cases, (n = 2, 3), the function u1 is as regular as u0, hence the
solution u belongs to the space Lq(Ω) with q as in (2.4.4).

2.4.2 Regularity assumption

It is well known that the stationary Navier-Stokes equations are uniquely
solvable if the data/the control function g is small, see for example [69,
Theorem 4].

Hence, if we want to have a unique response u to each control g we would
have to impose restrictions on the control to enforce uniqueness of solutions.
This technique is widely employed in optimal control of the stationary Navier-
Stokes equations, see e.g. [50, 80, 81, 84, 103]. We will however proceed
without a smallness assumption and therefore with non-uniqueness of the
solutions. Since we allow multiple solutions of the state equation, we have
to clarify the meaning of optimality.

Definition 2.24. A pair (ū, ḡ) is called locally optimal, if there exist ρu, ρg >
0 such that J(ū, ḡ) ≤ J(u, g) holds for all admissible pairs (u, g) with ‖u −
ū‖U < ρu and ‖g − ḡ‖L2(Γc) < ρg.

Here, a pair (u, g) is admissible if it satisfies the constraints (1.0.3)–
(1.0.5).

Instead of enforcing uniqueness of solutions for all controls, we will impose
the following regularity condition on an optimal state. A similar assumption
is used to derive error estimates for distributed control in [20].

Definition 2.25. A pair (ū, ḡ) ∈ U × H0(Γ) is called non-singular, if the
linearized Navier-Stokes equation

−ν∆u+B′(ū)u+∇p = f in Ω

div u = 0 in Ω

u = g on Γ,

(2.4.6)
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admits a unique very weak solution u ∈ U for all g ∈ H0(Γ) and f ∈ H−1(Ω).
Moreover, we assume that the solution mapping g 7→ u for f = 0 is linear
and continuous from H0(Γ) to H1/2(Ω), and the mapping f 7→ u for g = 0
is linear and continuous from H−1(Ω) to H1

0(Ω).

This condition is fulfilled, if the state ū is small enough [79, Lemma
B.1]. The assumption of non-singularity implies that the state equation can
be solved uniquely in a neighborhood of the reference/optimal control and
state, confer [20, Theorem 2.5] for a proof using an implicit function theorem.

Theorem 2.26. Let (ū, ḡ) ∈ U×H0(Γ) be a non-singular solution of (1.0.3).
Then there exist an open neighborhood O(ḡ) of ḡ in H0(Γ), an open neigh-
borhood O(ū) of ū in U, and a mapping S from O(ḡ) ⊂ H0(Γ) to O(ū) ⊂
U = L2n/(n−1)(Ω) of class C2 such that, for all g ∈ O(ḡ), S(g) = u is the
unique very weak solution in O(ū) of (1.0.4).

Furthermore, the action of the first Fréchet derivative u = S ′(ḡ)g is given
by the unique very weak solution of the linearized equation (2.4.6).
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Chapter 3

The optimal control problem

Since we will work with very weak solutions u ∈ U = L2n/(n−1)(Ω), we have
to clarify the meaning of the boundary integrals in the objective functional
(1.0.2) and the state constraint (1.0.3). These would be well-defined if the
regularity ∂u

∂n
∈ L1(Γ) could be guaranteed. This is not fulfilled for very weak

solutions from H1/2(Ω) or U. We will thus extend the linear functionals
in (1.0.2) and (1.0.3) to the larger space U. The idea of reformulating the
functionals in this way arises by reading the paper of Braack and Richter
[18].

In the first section of this chapter, we introduce reformulated boundary
integrals for (1.0.2) and (1.0.3) with once partial integration. They are well-
defined for u ∈ H1(Ω) and we need them in Section 4.3. Here, we consider
g ∈ G and the associated state u ∈ U. Therefore, we have to reformulate
(1.0.2) and (1.0.3) again with partially integrating twice in the second section.

3.1 Reformulation of the boundary integrals

Let us assume for a while that u, p ∈ C1(Ω)n are classical solutions of (1.0.4)
to the control g. Multiplying the state equations (1.0.4) with a function
ϕi ∈ H1(Ω), we obtain by partial integration

0 = (−ν∆u+ (u · ∇)u+∇p, ϕi)

=

∫
Ω

(ν∇u · ∇ϕi + (u · ∇)uϕi) dx−
∫

Γ

(
ν
∂u

∂n
− pn

)
ϕi ds.

In order to represent the functionals in (1.0.2), (1.0.3), let us introduce func-
tions ϕi, i ∈ {d, l}, that take suitable chosen boundary values. Let ϕi denote
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the weak solutions of the Stokes equations

−∆ϕi +∇πi = 0 in Ω

divϕi = 0 in Ω
(3.1.1)

with boundary values

ϕl =

{
~el on Γw

0 on Γ\Γw
, ϕd =

{
~ed on Γw

0 on Γ\Γw
.

Using the transformation above, we can write for i ∈ {d, l}.

−
∫

Γw

(
ν
∂u

∂n
− pn

)
~ei ds = −

∫
Γ

(
ν
∂u

∂n
− pn

)
ϕi ds

=

∫
Ω

(ν∇u · ∇ϕi + (u · ∇)uϕi) dx.

Taking the right-hand side of this expression, we define the functional

F̂~ei(u) =

∫
Ω

(ν∇u · ∇ϕi + (u · ∇)uϕi) dx (3.1.2)

for i ∈ {d, l}. This function is well-defined for u ∈ H1(Ω), but for u ∈ U we
have to reformulate the boundary integrals once again.

3.2 Further reformulation of the boundary in-
tegrals

Let us now assume that u ∈ C2(Ω)n, p ∈ C1(Ω)n are a classical solution of
(1.0.4) to g. Multiplying the state equation (1.0.4) with ϕi ∈ H2(Ω), we
obtain by partially integrating twice

0 = (−ν∆u+ (u · ∇)u+∇p, ϕi)

=

∫
Ω

(ν∇u · ∇ϕi + (u · ∇)uϕi) dx−
∫

Γ

(
ν
∂u

∂n
− pn

)
ϕids

=

∫
Ω

(−νu ·∆ϕi − (u · ∇)ϕiu) dx

+

∫
Γ

(
νu
∂ϕi
∂n

+ (u · n)(ϕi · u)

)
ds −

∫
Γ

(
ν
∂u

∂n
− pn

)
ϕi ds,
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INTEGRALS

where ϕi, i ∈ {d, l} are defined as in the section before. Here, we need
ϕi ∈ H2(Ω), i ∈ {d, l}. Using the transformation above, we can write for
i ∈ {d, l}.

−
∫

Γw

(
ν
∂u

∂n
− pn

)
· ~ei ds = −

∫
Γ

(
ν
∂u

∂n
− pn

)
ϕi ds

=

∫
Ω

(νu ·∆ϕi + (u · ∇)ϕiu) dx

−
∫

Γ

(
νu
∂ϕi
∂n

+ (u · n)(ϕi · u)

)
ds.

Taking the right-hand side of this expression, we define the functional

F̃i(u) =

∫
Ω

(νu ·∆ϕi + (u · ∇)ϕiu) dx−
∫

Γ

(
νu
∂ϕi
∂n

+ (u · n)(ϕi · u)

)
ds.

This function is well-defined for u ∈ Hs(Ω), s > 1/2, but not for u ∈ U. To
handle this problem, we substitute the state u by the control function u = g
on the boundary. This yields

F̃~ei(u, g) =

∫
Ω

(νu ·∆ϕi + (u · ∇)ϕiu) dx−
∫
Γ

(
νg
∂ϕi
∂n

+ (g · n)(ϕi · g)

)
ds.

(3.2.1)
In contrast to (1.0.2) and (1.0.3), the function F̃~ei , i ∈ {d, l}, is well-defined
for states u ∈ U and controls g ∈ H0(Γ), since the functions ϕ are very
regular in comparison to the very weak solutions inU. Their boundary values
are in fact a constant vector, thus, the regularity of ϕi is only influenced by
the regularity of the boundary Γ. But we have to note that the control now
appears nonlinearly in the functionals which leads to additional difficulties
for the optimal control problem, see Subsection 3.3.1.

The following result can be deduced from Theorem 2.11:

Lemma 3.1. The functions ϕi, i ∈ {d, l}, belong to H2(Ω)∩W2,p(Ω) for all
p <∞.

Then we can prove a continuity and differentiability statement for fi.

Lemma 3.2. The functions F̃~ei are continuous and twice Fréchet- differen-
tiable from U×H0(Γ) to R. Moreover, for given u ∈ Lq(Ω) and g ∈ Lp(Γ),
p, q ∈ (1,+∞), it holds F̃ ′ei,u(u, g) ∈ Lq(Ω) and F̃ ′ei,g(u, g) ∈ Lp(Ω).

Proof. We get the continuity and the Fréchet-derivatives by standard argu-
ments. Because of Lemma 3.1, ϕi, i ∈ {d, l} possesses enough regularity to
give F̃ ′ei,u(u, g) ∈ Lq(Ω) and F̃ ′ei,g(u, g) ∈ Lp(Ω).
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3.3 The optimal control problem
Now, we are able to reformulate the original optimal control problem (1.0.2)–
(1.0.5) using the very weak solutions and the extended functionals F̃~el , F̃~ed
(3.2.1). Let us denote the following optimal control problem (3.3.1)–(3.3.4)
by (P): Minimize

J(u, g) := −F̃~el(u, g) +
α

2
‖g‖2

L2(Γc)
(3.3.1)

subject to the very weak form of

−ν∆u+ (u · ∇)u+∇p = f in Ω

div u = 0 in Ω

u = g on Γc,

u = 0 on Γ \ Γc,

(3.3.2)

the control constraints

g ∈ Gad := {v ∈ H0(Γc) : (ga)i(x) ≤ vi(x) ≤ (gb)i(x)

a.e. on Γc, ∀i ∈ {1, . . . , n}}, (3.3.3)

and the integral control-state constraint

F̃~ed(u, g) ≤ D0. (3.3.4)

The functions ga and gb are elements of L∞(Γc) with (ga)i ≤ (gb)i for
all i ∈ {1, . . . , n} a.e. on Γc and we assume 0 ∈ Gad. Here, we introduced
an additional regularization term α

2
‖g‖2

L2(Γc)
, where α is called the Tichonov

parameter, which measures the cost of the control and is important for the
optimality system, see Chapter 4. The parameter α is supposed to be posi-
tive.

3.3.1 Existence of solutions

After introducing the optimality problem, we would like to prove the exis-
tence of solutions of problem (P). Unfortunately, we can not prove that the
objective functional is bounded from below. This is due to the absence of a
uniqueness result for the state equation for large data. Moreover, bounds on
the state of the kind ‖u‖U ≤ C‖g‖L2(Γc) can only be derived for small data.
This is different to the distributed control problems for Navier-Stokes equa-
tions, where we can test the state equation with the state itself and obtain
an a-priori bound without smallness assumptions.
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Due to the fact that we are not able to prove the existence of solutions
for the problem (P), we will introduce a modification. Let us consider the
minimization of

J̃(u, g) := ψ(−F̃~el(u, g)) +
α̃

2
‖u‖2

H1/2(Ω)
+
α

2
‖g‖2

L2(Γc)
. (3.3.5)

Here, α̃ and α are positive and small parameters. The function ψ : R→ R is
assumed to be continuous, monotone increasing and bounded from below; e.g.
ψ(r) ≥ ψmin for all r ∈ R. For example, one can choose the function ψ(r) =
− log(L0 − r) with L0 ∈ R. This function additionally forbids situations
where the lift is too small; that is, smaller than a prescribed value L0, because
(L0 − r) ∈ R+ has to be fulfilled.

It appears that the functionals F̃~ei are not weakly continuous with respect
to g ∈ H0(Γc). In order to overcome this difficulty, we will impose the
following control constraint, where G̃ad is a closed and convex set such that

G̃ad ⊂
{
g ∈ Gad :

∫
Γw

(g · n)(ϕi · g) ds = 0, i ∈ {d, l}
}
. (3.3.6)

If the control boundary is not part of the observation boundary, i.e. Γc∩Γw =
∅, one can choose G̃ad = Gad. This choice is also valid in the case of pure
tangential controls g · n = 0.

Let us denote the modified minimization problem (3.3.5)–(3.3.6) by (P̃).

Theorem 3.3. If there is an admissible pair (u0, g0) ∈ H1/2(Ω)× G̃ad, which
satisfies (3.3.2)–(3.3.4) and the control constraint (3.3.6), then the problem
(P̃) admits at least one solution.

Proof. The objective functional J̃ is bounded from below by construction.
We can restrict the optimization problem to the set of all admissible pairs
(u, g) with J̃(u, g) ≤ J̃(u0, g0) without changing the set of global minimizers.
Let us take such an admissible pair. We then obtain

α̃

2
‖u‖2

H1/2(Ω)
+
α

2
‖g‖2

L2(Γc)
≤ −ψ(−F̃~el(u, g)) + J(u0, g0)

≤ −ψmin + J(u0, g0),
(3.3.7)

which implies that the set of admissible pairs with smaller value of the ob-
jective than J(u0, g0) is bounded.

Since J̃ is bounded from below, there exists a minimizing sequence
(un, gn) ∈ H1/2(Ω)×H0(Γ). In view of (3.3.7), this sequence is bounded and
we can extract a weakly converging subsequence, which is again denoted by
(un, gn), i.e. un ⇀ ū in H1/2(Ω) and gn ⇀ ḡ in H0(Γ).
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By compact embeddings, we have un → u in Lp(Ω)n for all p < 3 after
extracting another subsequence, see [3, Theorem 6.2].

The set G̃ad is weakly closed by construction, G̃ad is defined as closed and
convex, which implies ḡ ∈ G̃ad. Together with the control constraint gn ∈
G̃ad, this allows us to pass to the limit in the functions F̃~ei , lim F̃~ei(un, gn) =
F̃~ei(ū, ḡ).

Passing to the limit in the very weak solution is straight-forward, which
implies that ū is a very weak solution to ḡ. Now, standard arguments using
lower semi-continuity of norms conclude the proof.

Let us summarize the difficulties in proving the existence of solutions:

1. The functional (3.3.1) is not bounded from below, since there is no
a-priori boundary ‖u‖U ≤ C‖g‖L2(Γc).

2. If a minimizing sequence would exist, the sequence un is not necessarily
bounded in U.

3. The functions F̃~ei are not weakly continuous on U×H0(Γ).

Therefore the modification of the objective and the control constraint were
made to cope with these points.

1. The function ψ guarantees that the objective function is bounded from
below.

2. The regularization term ‖u‖2
H1/2(Ω)

gives boundedness of un inH1/2(Ω).
By compact embeddings, it allows furthermore to pass to the limit in
the part of F̃~ei that involves the state u.

3. The control constraint
∫

Γ
(g · n)(ϕi · g)ds = 0 permits to pass to the

limit in the non-linear part of F̃~ei that involves the control.

Of course, there are several other possibilities to enforce existence of solu-
tions. For instance, one could add regularization with respect to stronger
norms in g. This would, however, lead to different first-order necessary op-
timality conditions, which are more challenging to solve numerically; see the
comments below.

Another popular change would be to explicitly impose a smallness con-
dition on the controls. However, known smallness conditions are difficult to
verify, especially in the case of non-homogenous Dirichlet boundary condi-
tions when Γ consists of more than one connected component, see [44]. But
this is the case in the application we have in mind. Moreover, the smallness
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condition on 1/ν = Re is expected to be violated for concrete applications,
where typically 1/ν = Re is large.

In the following, we consider the original problem without the function

ψ and the term
α̃

2
‖u‖H1,2(Ω). These modifications, particularly the term

with the norm of H1,2(Ω), would generate problems with the variational
inequality, for example in the Subsection 4.4, where we consider the second-
order sufficient optimality conditions.
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Chapter 4

Optimality conditions

In this chapter, we will establish the first-order necessary and the second-
order sufficient optimality conditions. These conditions are very important
for the numerical solution methods in the next chapter. First, we will inves-
tigate the first-order necessary optimality condition for the solution in the
very weak sense. We will also introduce a new space for the control function,
fitting better to the numerical investigation.

4.1 First order necessary optimality conditions

Let us return to problem (P) stated at the beginning of Section 3.3. We
will now derive necessary optimality conditions to characterize local optimal
solutions. Here, we will follow the presentation in [102, Section 6.1.2] of the
regularity theory of [115]. Let now (ū, ḡ) ∈ U × Gad be a non-singular and
locally optimal pair for (P). and we define the operator

G = (G1, G2) : O(ū)×O(ḡ)→ U× R

(u, g) 7→
(

S(g)− u
F̃~ed(u, g)−D0

)
(4.1.1)

and the cone
K = {0} × (−∞, 0] ⊂ U× R.

Here, D0 denotes the drag constraint (1.0.5) andK induces a partial ordering
<K on U× R by: x <K 0⇔ x ∈ K. It is easy to show using Theorem 2.26
that the mapping G is twice Fréchet differentiable. Then, (ū, ḡ) is a local
solution of the minimization problem

min
u∈O(ū),g∈O(ḡ)

J(u, g) subject to G(u, g) <K 0, u ∈ Gad.
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Let us define the Lagrangian associated with this optimization problem

L(u, g; θ, ξ) = J(u, g) + 〈S(g)−u, θ〉U′,U + ξ(F̃~ed(u, g)−D0), θ ∈ U′, ξ ∈ R.

To show existence of Lagrange multipliers, we will assume the following reg-
ularity condition: there exists g̃ ∈ Gad ∩ O(ḡ) and the associated state
ũ ∈ O(ū) such that

G′1(ū, ḡ)(ũ, g̃) = 0, G2(ū, ḡ) +G′2(ū, ḡ)(ũ− ū, g̃ − ḡ) < 0. (4.1.2)

This condition is sufficient for the Zowe-Kurcyusz regularity assumption
[115], see e.g. [99]. Now, we are able to establish the necessary first-order
optimality conditions for (P).

The optimality system

Under these assumptions, the existence of Lagrange multipliers follows by
known results, see e.g. [99, 102, 115].

Theorem 4.1. Let (ū, ḡ) a non-singular local optimal solution for (P ). Let
us assume that there are g̃ ∈ Gad ∩ O(ḡ) and the associating state ũ ∈ O(ū)
such that the linearized Slater condition (4.1.2) is satisfied. Then there exists
θ ∈ U′ and ξ ≥ 0 such that the equation

θ = −F̃ ′~el,u(ū, ḡ) + ξF̃ ′~ed,u(ū, ḡ), (4.1.3a)

the variational inequality

(αḡ−F̃ ′~el,g(ū, ḡ)+ξF̃ ′~ed,g(ū, ḡ)+S ′(ḡ)∗θ, g− ḡ)L2(Γc) ≥ 0 ∀g ∈ Gad, (4.1.3b)

and the complementarity condition

ξ(F̃~ed(ū, ḡ)−D0) = 0, ξ ≥ 0, F̃~ed(ū, ḡ) ≤ D0 (4.1.3c)

hold.

Here, the adjoint operator S ′(ḡ)∗ : U′ → H0(Γ)′ appears with

U′ = L(2n/(n−1))′(Ω) = L2n/(n+1)(Ω).

The dual space of Lp(Ω) can be identified with the space Lp′(Ω), where p′ is
defined by p′ := p/(p−1). It is related to the solution of the so-called adjoint
equation. In fact, it holds [79]:
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Theorem 4.2. The action of S ′(ḡ)∗ can be characterized as follows: for
given θ ∈ U′ it holds

S ′(ḡ)∗θ = −
(
ν
∂λ

∂n
− πn

)∣∣∣
Γc
, (4.1.4)

where λ ∈ H1
0(Ω)∩W 2,r(Ω)n is the unique solution of the equation in a weak

sense ∫
Ω

(ν∇λ · ∇v − (ū · ∇)λv − (v · ∇)λū) dx = 〈θ, v〉H−1,H1 (4.1.5)

for all v ∈ H1
0(Ω) and π ∈ W 1,r(Ω) the associated pressure field for all

r ∈ [2,∞).

Proof. The representation of S ′(ḡ)∗ is proven for instance in [79]. It remains
to investigate the regularity of λ. The right-hand side 〈θ, v〉H−1,H1 is given
according to the previous Theorem 4.2 by

〈θ, v〉H−1,H1 =

∫
Ω

(−ν∆ϕ̃v − (v · ∇)ϕ̃ū− (ū · ∇)ϕ̃v)dx,

where we used the notation ϕ̃ = −ϕl + ξϕd. By assumption, Gad is a subset
of L∞(Γ), hence ḡ ∈ L∞(Γ) and ū ∈ Lq(Ω), 2 ≤ q <∞ for n = 2, 2 ≤ q ≤ ∞
for n = 3, cf. (2.4.4). Due to the high regularity of ϕ̃, compare Lemma 3.1,
we can estimate with some p̃ > n such that W2,p̃(Ω) ↪→W1,∞(Ω)

|〈θ, v〉H−1,H1| ≤ c(1 + ‖ū‖Lq)‖ϕ̃‖W2,p̃‖v‖Lr

with 1/q + 1/p̃ + 1/r = 1. Since q and p̃ can be chosen arbitrarily large
(but not equal to ∞), we obtain θ ∈ Lq(Ω)n, for all q ∈ (2,∞). Let us now
estimate the addend on the left-hand side of (4.1.5) that comes from the
nonlinearity of the state equation:∣∣∣∣∫

Ω

((ū · ∇)λv + (v · ∇)λū) dx
∣∣∣∣ ≤ c‖ȳ‖Lq‖∇λ‖Lp‖v‖Lr (4.1.6)

with 1/q + 1/p+ 1/r = 1, 2 ≤ q <∞.
Since (ū, ḡ) is non-singular, the equation (4.1.5) is uniquely solvable with

solution λ ∈ H1
0(Ω). That is, estimate (4.1.6) holds with p = 2. We can

interprete the adjoint state as the weak solution of a Stokes equation, where
the terms in (4.1.6) are put on the right-hand side. This allows to apply
known regularity results for the Stokes equation.

With p = 2 the estimate (4.1.6) holds for all r > 2, hence the functional in
(4.1.6) is in Lr

′
(Ω) for all r′ < 2. The regularity result by Galdi [44, Lemma
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IV.6.1] gives in a first step the regularities λ ∈ W2,r′(Ω) and π ∈ W 1,r′(Ω)
for all r′ < 2.

By embedding arguments, we have then ∇λ ∈ Lp(Ω)n,n, where p depends
on n: p ∈ (2,∞) for n = 2; p ∈ (2, 6) for n = 3.

In the 2d-case, (4.1.6) is valid for all p < ∞, which allows us to chose r
arbitrary small with r > 1. That is, the functional involving ȳ and ∇λ is
in Lq(Ω) for all q < ∞. Again applying the regularity result for the Stokes
equation, we find λ ∈W2,q(Ω) and π ∈ W 1,q(Ω) for all q <∞.

For the three-dimensional case, we obtain similarly λ ∈W2,q(Ω) and π ∈
W 1,q(Ω) for all q < 6. By continuous imbeddings, ∇λ ∈ L∞(Ω)n,n follows,
which gives after applying again Galdi’s regularity result λ ∈ W2,q(Ω) and
π ∈ W 1,q(Ω) for all q <∞.

The adjoint pressure π is only determined up to constant. This fact is
usually circumvented by requiring

∫
Ω
π dx = 0. Here, it is not necessary to

fix the constant, since the constant does not change the variational inequality
due to the construction of H0(Γ)

(πn, v)L2(Γc) = ((π + c)n, v)L2(Γc) ∀c ∈ R, v ∈ H0(Γ).

Furthermore, the variational inequality (4.1.3b) can be written as a non-
smooth equation.

Corollary 4.3. Let the assumptions of the previous theorem be fulfilled.
Then the variational inequality (4.1.3b) is equivalent to the following con-
dition.

For each connected component Γj ∈ Γ with Γj ∩ Γc 6= ∅ there is ηj ∈ R
such that the following pointwise representation holds for a.a. x ∈ Γc

ḡ(x) = PGad{−
1

α
(−(ν

∂λ

∂n
− πn)(x)− F̃ ′~el,g(ū, ḡ)(x)

+ ξF̃ ′~ed,g(ū, ḡ)(x) + ηjn(x))} (4.1.7)

for x ∈ Γc ∩ Γj and the zero net-mass conditions∫
Γc∩Γj

ḡ · n ds = 0 ∀j : Γj ∩ Γc 6= ∅

are satisfied. Here, PG : Rn → Rn denotes the Euclidean projection in Rn

onto the set G.

Proof. At first, the variational inequality (4.1.3b) is equivalent to

ḡ = PGad

{
− 1

α

(
−
(
ν
∂λ

∂n
− πn

)
− F̃ ′~el,g(ū, ḡ) + ξF̃ ′~ed,g(ū, ḡ)

)}
,
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where PGad : L2(Γ)→ H0(Γ) is the projection with respect to the L2(Γ)-norm
on Gad. That is, ḡ solves the minimization problem

min
1

2

∥∥∥∥g +
1

α

(
−
(
ν
∂λ

∂n
− πn

)
− F̃ ′~el,g(ū, ḡ) + ξF̃ ′~ed,g(ū, ḡ)

)∥∥∥∥2

L2(Γ)

subject to ∫
Γc∩Γj

g · n ds = 0, ∀j : Γj ∩ Γc 6= ∅,

g(x) ∈ Gad a.e. on Γc.

Then there exist Lagrange multipliers ηj associated to the integral constraints
in this auxiliary problem, and the variational inequalityαḡ − (ν ∂λ

∂n
− πn

)
− F̃ ′~el,g(ū, ḡ) + ξF̃ ′~ed,g(ū, ḡ) +

(∑
j

ηjχj
)
n, g − ḡ

 ≥ 0

(4.1.8)
holds for all g ∈ L2(Γ) satisfying g(x) ∈ Gad a.e. on Γc. By standard
arguments [102], it can be proven that this variational inequality is equivalent
to the projection representation as claimed.

Remark 4.4. The derivative of F̃~ei, i ∈ {d, l} with respect to g is

F̃ ′~ei,g(u(x), g(x)) = −
∫

Γ

νg(x)
∂ϕi
∂n

(x) + (g(x) · n(x))(ϕi(x) · g(x)) ds.

Unfortunately, the argument −F̃ ′~el,g(ū, ḡ) + ξF̃ ′~ed,g(ū, ḡ) of the projection
depends on the control itself. This term involves no smoothing operation.
Hence, we cannot conclude higher regularity of optimal controls from the
projection representation, such that ū has the same regularity as ν ∂λ

∂n
− πn.

Moreover, the non-smooth formulation of the variational inequality is not
suitable for semi-smooth Newton methods.

To handle this difficulty, we will consider in the section after the next an
optimal control problem allowing more regular control functions. The idea
behind this is to consider a finite-dimensional control space and the once
reformulated functionals F̂~ei , i ∈ {d, l}, see Chapter 3.

4.2 Second-order sufficient optimality condition
The presentation of second-order sufficient optimality conditions in this sub-
section follows [21, 22, 48, 103, 109].
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Let (ū, p̄, ḡ) be a fixed admissible pair that fulfills the first-order necessary
optimality condition of Theorem 4.1 together with the adjoint state λ̄ and
the Lagrange multipliers ξ̄, η̄ and let us define for simplification

j := αḡ −
(
ν
∂λ̄

∂n
− π̄n

)
− F̃ ′~el,g(ū, ḡ) + ξF̃ ′~ed,g(ū, ḡ) +

(∑
j

η̄jχj

)
n. (4.2.1)

For ε > 0, we define by

Γε,i := {x ∈ Γ : |ji(x)| > ε}

the set of strongly active control constraints for ḡ.

Remark 4.5. Note that the variational inequality (4.1.8) determines the
optimal control ḡ uniquely on Γε,i. We obtain

ḡi(x) = ga,i(x), if ji(x) ≥ ε

and
ḡi(x) = gb,i(x), if ji(x) < −ε.

Following Casas, Tröltzsch and Unger [22], based on Maurer and Zowe
[70], the linearized cone L(ū, p̄, ḡ) is made up of all (z, µ, h) ∈ U×W−1,2n/(n−1)×
L2(Γ) satisfying the following conditions (4.2.2)-(4.2.4):

−ν∆z + (ū · ∇)z + (z · ∇)ū+∇µ = 0 in Ω

div z = 0 in Ω

z = h on Γc,

z = 0 on Γ \ Γc,

(4.2.2)

F̃ ′~ed(ū, p̄, ḡ)(z, µ, h) ≤ 0, (4.2.3)

h = g − ḡ, g ∈ Gad. (4.2.4)

Let us denote by

Pε : L2(Γc)→ L2(Γc), g 7→ χΓ\Γεg

the projection operator. That means

(Pεg)(x) =

{
g(x) on Γ \ Γε

0 on Γε
.
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Then, we split for all v ∈ L(v̄) the control function g into g1 = (g −
Pεg) and g2 = (Pεg). The solutions (ui, pi), i = 1, 2, of the linearized state
equations (4.2.2) are associated to gi, i = 1, 2. This means

v = v1 + v2 = (u1, p1, g1) + (u2, p2, g2). (4.2.5)

We assume that v̄ = (ū, p̄, ḡ) fulfills with the Lagrange multipliers l̄ =
(λ̄, π̄, ξ̄, η̄) the following coercivity assumption L′′(v̄, l̄) called (SSC):

(SSC)


There exist ε > 0 and δ > 0 such that
Lvv(v̄, l̄)[(u2, p2, g2)2] ≥ δ‖g2‖2

L2(Γc)

holds for all pairs (u2, p2, g2) constructed by (4.2.5).

Theorem 4.6. Let (v̄) be an admissible non-singular point for the optimal
control problem and fulfill the first-order necessary optimality condition of
Theorem 4.11 with associated λ, ξ. Assume furthermore that the coercivity
assumption (SSC) is satisfied. Then there exist α > 0 and τ > 0 such that

J(v) ≥ J(v̄) + α‖g − ḡ‖2
L2(Γc)

holds for all admissible pairs v with ‖g − ḡ‖L∞(Γc) ≤ τ .

To prove this theorem, we establish the following two lemma.

Lemma 4.7. For all g ∈ Gad there holds∫
Γc

(j) (g − ḡ)dx ≥ ε‖g − ḡ‖2
L1(Γε)

. (4.2.6)

Proof. Let g ∈ Gad and because (v̄, λ̄, π̄, η̄, ξ̄) with v̄ = (ū, p̄, ḡ) fulfill the
first-order necessary optimality condition (4.11), we have

(ji(x)) (gi(x)− ḡi(x)) ≥ 0 (4.2.7)

for almost all x ∈ Γc, i = 1, . . . , n. Integrating (4.2.7) over Γc leads with the
definition of Γε,i to ∫

Γc

(ji(x)) (gi(x)− ḡi(x))dx

≥
∫

Γε,i

(ji(x)) (gi(x)− ḡi(x))dx

=

∫
Γε,i

|ji(x)||gi(x)− ḡi(x)|dx

≥ ε

∫
Γε,i

|gi(x)− ḡi(x)|dx
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and the sum of i = 1, 2 to the statement of the theorem.

Lemma 4.8. For all v = v1 + v2 defined as in (4.2.5) in the linearized cone
L(v̄) there holds

Lvv(v̄, l̄)[v1, v2] ≤ c‖g1‖L2(Γc)‖g2‖L2(Γc).

Proof. We get

Lvv(v̄, l̄)[v1, v2] =

∫
Ω

−(u1 · ∇)λ̄u2)− (u2 · ∇)λ̄u1) dx

+

∫
Ω

(u1 · ∇)ϕlu2 + (u2 · ∇)ϕlu1 dx

+

∫
Ω

(u1 · ∇)ϕdu2 + (u2 · ∇)ϕdu1 dx

+

∫
Γ

(g1 · n)(ϕl · g2) + (g2 · n)(ϕl · g1) ds

+

∫
Γ

(g1 · n)(ϕd · g2) + (g2 · n)(ϕd · g1) ds+ α(g1, g2)L2(Γc)

≤ c(‖u1‖U‖u2‖U + ‖g1‖L2(Γc)‖g2‖L2(Γc)).

Because (ū, ḡ) is non-singular and ui, i = 1, 2, are the solutions of the lin-
earized Navier-Stokes equations, we obtain

Lvv(v̄, l̄)[v1, v2] ≤ c‖g1‖L2(Γc)‖g2‖L2(Γc).

Now, we are able to proof Theorem 4.6. This proof is based on [22, 109].

Proof of Theorem 4.6. We assume that (ū, p̄, ḡ) fulfill the assumptions of the
theorem and let (u, p, g) ∈ O(ū) ×O(p̄) ×O(ḡ) be another admissible pair.
Then we have with v = (u, p, g) and l̄ = (λ̄, π̄, ξ̄, η̄)

J(v̄) = L(v̄, l̄)− ξ̄(F~ed(v̄)−D0) = L(v̄, l̄),

J(v) = L(v, l̄)− ξ̄(F~ed(v)−D0) ≥ L(v, l̄)

due to the complementary condition. This yields

J(v)− J(v̄) ≥ L(v, l̄)− L(v̄, l̄).

A Taylor-expansion of the Lagrangian L yields the following equality:

L(v, l̄) = L(v̄, l̄) +
∂L

∂(u, p)
(v̄, l̄)(u− ū, p− p̄)

+
∂L
∂g

(v̄, l̄)(g − ḡ) +
1

2
Lvv(v̄, l̄)[(v − v̄)]2.

(4.2.8)
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Due to the quadratic nature of the nonlinear term, the remainder vanishes
and because the first-order necessary optimality conditions are satisfied at v̄
with the corresponding Lagrange multipliers l̄, the second term of (4.2.8) is
equal to zero. For the third term we have the inequality

∂L
∂g

(v̄, l̄)(g − ḡ) =

∫
Γc

(j) (g − ḡ)dx ≥ ε‖g − ḡ‖2
L1(Γε)

see Lemma 4.7. This leads to

J(v) = J(v̄) +
∂L

∂(u, p)
(v̄, l̄)(u− ū, p− p̄)

+
∂L
∂g

(v̄, l̄)(g − ḡ) +
1

2
Lvv(v̄, λ̄, π̄, ξ̄)[(v − v̄)]2

≥ J(v̄) + ε‖g − ḡ‖2
L1(Γε)

+
1

2
Lvv(v̄, l̄)[(v − v̄)]2.

Analogous to Casas, Tröltzsch and Unger [22, Section 7.2, proof of Theorem
4.2], we approximate v− v̄ by vl = (ul, pl, gl) of the linearized cone L(v̄) and
the remainder term e1 = (v − v̄)− vl satisfies the estimate

‖e1‖ ≤ c‖g − ḡ‖2
L2(Γc)

.

Let us now take ul + e1 instead of u− ū, then we derive

∂2L
∂(u, p)2

(v̄, l̄)[u− ū, p− p̄]2 =
∂2L

∂(u, p)2
(v̄, l̄)[ul, pl]

2

+ 2
∂2L

∂(u, p)2
(v̄, l̄)[ul, pl, e1]

+
∂2L

∂(u, p)2
(v̄, l̄)[e1]2

=
∂2L

∂(u, p)2
(v̄, l̄)[ul, pl]

2 + e2,

with the remainder e2 estimated due to the non-singularity of (ū, ḡ) by

|e2| ≤ c(‖ul‖U + ‖pl‖W−1,2n/(n−1) + ‖e1‖U)‖e1‖U ≤ c(‖gl‖L2(Γc) + ‖e1‖U)‖e1‖U

and fulfilling
|e2|

‖gl‖2
L2(Γc)

→ 0, for ‖gl‖L2(Γc) → 0.
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Summarized, we obtain

J(v)− J(v̄) ≥ 1

2
Lvv(v̄, l̄)[ul, pl, gl]2 + ε‖g − ḡ‖2

L2(Γε)
+ e2. (4.2.9)

Now, as in (4.2.5), we split vl = (ul, pl, gl) into

ul = u1 + u2, pl = p1 + p2, gl = g1 + g2,

where (u1, p1) and (u2, p2) are the solutions of

−ν∆u1 + (ū · ∇)u1 + (u1 · ∇)ū+∇p = 0 in Ω

div u1 = 0 in Ω

u1 = g1 on Γ.

and
−ν∆u2 + (ū · ∇)u1 + (u1 · ∇)ū+∇p = 0 in Ω

div u2 = 0 in Ω

u2 = g2 on Γ.

respectively, and (u2, p2, g2) fulfill (u2, p2, g2) ∈ L(v̄) and (g2)i = 0 on Γε,i,
i = 1, 2. Thus, (SSC) applies to Lvv(v̄, l̄)(u2, g2).

Considering the first term of the right-hand side of (4.2.9)

Lvv(v̄, l̄)[(ul, gl)]2 = Lvv(v̄, l̄)[v1]2

+ 2Lvv(v̄, l̄)[v1, v2]

+ Lvv(v̄, l̄)[v2]2,

(4.2.10)

we are able to use (SSC) and obtain

Lvv(v̄, l̄)[(v2)]2 ≥ δ‖g2‖2
L2(Γc)

. (4.2.11)

Lemma 4.8 leads to

Lvv(v̄, l̄)[v1, v2] ≤ c‖g1‖L2(Γc)‖g2‖L2(Γc).

We estimate Lvv(v̄, l̄)[v1]2 analogously to Lemma 4.8 by

Lvv(v̄, l̄)[v1, v2] ≤ c‖g1‖2
L2(Γc)

.

Then, we obtain

|2Lvv(v̄, l̄)[v1, v2] + Lvv(v̄, l̄)[v2]2|
≥ −c‖g1‖L2(Γc)

(‖g1‖L2(Γc)
+ ‖g2‖L2(Γc)

)

≥ −δ
2
‖g2‖2L2(Γc)

− c‖g1‖2L2(Γc)
,

(4.2.12)
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because of Lemma 4.8 and the Lipschitz continuity of the solution mapping

of the linearized system. Considering the relation ‖g2‖2
L2(Γc)

≥ 1

2
‖gl‖2

L2(Γc)
−

‖g1‖2
L2(Γc)

, (4.2.10), (4.2.11) and (4.2.12), we get

Lvv(v̄, l̄)[(vl)]2 ≥
δ

2
‖g2‖2

L2(Γc)
− c‖g1‖2

L2(Γc)
≥ δ

4
‖gl‖2

L2(Γc)
− c‖g1‖2

L2(Γc)

=
δ

4
‖g − ḡ‖2

L2(Γc)
− c‖g − ḡ‖2

L2(Γε)
.

Now, we proved

J(v)− J(v̄) ≥ δ

8
‖g − ḡ‖2

L2(Γc)
+ ε‖g − ḡ‖L1(Γε) − c‖g − ḡ‖

2
L2(Γε)

+ e2.

Furthermore, we obtain

J(v)− J(v̄) ≥ δ

8
‖g − ḡ‖2

L2(Γc)
+ (ε− c‖g − ḡ‖L∞(Γε))‖g − ḡ‖L1(Γε) + e2.

Choosing τ sufficiently small, it holds

J(v)− J(v̄) ≥ δ

16
‖g − ḡ‖2

L2(Γc)
.

4.3 Finite-dimensional control set

We will now consider a regularized version of the optimal control problem
(3.3.1)–(3.3.4). In particular, the controls will now be taken from H1/2(Γ),
which leads to higher regularity of the associated states. ForH1/2(Γ)-controls
one has the following regularity result, see Theorem 2.15 or [44, Theorem
VIII.4.1].

Lemma 4.9. For every g ∈ H1/2(Γ) the very weak solution u belongs to
H1(Ω), and the trace of u coincides with the control g on the boundary Γ.

Because in this case the state u is of the space H1(Ω), we are able to use
for the boundary integrals (1.0.2) and (1.0.3) the reformulation

F̂~ei(u) := −
∫

Ω

(ν∇u · ∇ϕi + (u · ∇)yϕi) dx, i ∈ {d, l},
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see (3.1.2), instead of F̃~ei , i = d, l. Then F̂~ei , i = d, l is twice continuously
Fréchet differentiable from H1(Ω) to R. And it holds

F̂~ei(u) =

∫
Γ

(
ν
∂u

∂n
− pn

)
ϕids = F̃~ei(u, g), i ∈ {d, l},

for smooth states u associated to controls g. Then, we have to redefine
G2(u, g) in (4.1.1) by

G2(u, g) = (F̂~ed(u)−D0).

.
Additionally, let us introduce a finite-dimensional control space. Let ei,

i = 1 . . . l, be linearly independent functions from H1/2(Γ) with support on
Γc. Let Qad ∈ Rl be the set of admissible coefficients

Qad := {q ∈ Rl : qa,i ≤ qi ≤ qb,i}, qa, qb ∈ Rl.

Then, we define the set of admissible controls as

Ĝad,Q :=

{
g ∈ H1/2(Γ) : g =

l∑
j=1

qjej, q ∈ Qad

}
.

The idea behind this space is that in many applications only a few param-
eters can be optimized. For example, in [89] the actuation in a separation
control investigation consists of a loudspeaker, where the free optimization
parameters were frequency and amplitude. So, only two parameters appear.

Instead of this construction, we could have added a penalization term like
β‖g‖H1/2 to the cost functional. However, this additional term is not justi-
fied physically. Moreover, the optimality system would involve a variational
inequality with a non-local differential operator on Γc.

Now, we are considering the following optimization problem, henceforth
called (Pl): Minimize

J(u, g) := −F̂~el(u) +
α

2
‖g‖2

L2(Γc)

subject to the very weak form of

−ν∆u+ (u · ∇)u+∇p = 0 in Ω

div u = 0 in Ω

u = g on Γc,

u = 0 on Γ \ Γc,
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the control constraints
g ∈ Ĝad,Q

and the integral state constraint

F̂~ed(u) ≤ D0.

This means

g(x) =
l∑

j=1

qjej(x), q ∈ Qad

and
F̂~ed(u) = −

∫
Ω

(ν∇u · ∇ϕi + (u · ∇)uϕi) dx ≤ D0.

Due to the same reasons as above, existence of solutions cannot be proven
directly. Here, we would have to work with similar modifications to (Pl) as in
Section 3.3.1 above. Rather, we would like to derive a first-order optimality
system. To this end, let us assume that (ū, ḡ) is a non-singular and locally
optimal solution of (Pl). Moreover, let us assume that a linearized Slater
point for the state constraint exists, similarly defined as in (4.1.2)

Then one can argue as above to obtain:

Theorem 4.10. Let (ū, ḡ) be a non-singular local optimal solution for (Pl).
Let us assume that there are g̃ ∈ Gad,Q ∩ O(ḡ) and the associated ũ ∈ O(ū)
such that the linearized Slater condition (4.1.2) is satisfied. Then there exists
a multiplier ξ ≥ 0, an adjoint state λ ∈ H1

0(Ω) ∩W 2,r(Ω)n, and an adjoint
pressure π ∈ W 1,r(Ω), r ∈ [2,∞), such that (λ, π) is the weak solution of

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = (∇ū)T (ϕl − ξϕd)− ν∆(ϕl − ξϕd)
− (ū · ∇)(ϕl − ξϕd) in Ω

div λ = 0 in Ω

λ = 0 on Γ,
(4.3.1a)

and such that the variational inequality(
αḡ −

(
ν
∂λ

∂n
− πn

)
, g − ḡ

)
L2(Γc)

≥ 0 ∀g ∈ Ĝad,Q, (4.3.1b)

and the complementarity condition

ξ(F̂~ed(ū)−D0) = 0, ξ ≥ 0, F̂~ed(ū) ≤ D0 (4.3.1c)

are satisfied.
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Here, the mapping ḡ 7→ (ν
∂λ

∂n
− πn) is differentiable from L2(Γc) to

L∞(Γc). Thus, we are able to apply the semi smooth Newton method to
the system of Theorem 4.10. This was not possible for the system in The-
orem 4.1 due to the lack of smoothing in the argument of the projection
(4.1.7).

The variational inequality (4.3.1b) can be written equivalently as a vari-
ational inequality for the coefficients q̄ of ḡ. Let us define the mass matrix
M and a vector D as:

M ∈ Rl,l, Mi,j =

∫
Γc

eiej ds, D ∈ Rl, Di =

∫
Γc

(
ν
∂λ

∂n
− πn

)
ei ds.

Then (4.3.1b) is equivalent to

(αMq̄ −D)T (q − q̄) ≥ 0 ∀q ∈ Qad, (4.3.2)

which is the necessary and sufficient optimality condition of the quadratic
programming problem

min
q∈Qad

α

2
qTMq −DT q.

Under some additional assumptions, we can simplify the system (4.3.1)
even more. Here, we will replace the functions ϕl and ϕd with differently de-
fined functions. Let us assume that there exists functions (ϕi, πi) ∈ H2(Ω)×
H1(Ω), i ∈ {d, l}, such that it holds

divϕi = 0 on Ω

ϕi = ei on Γw

ϕi = 0 on Γ \ Γw

ν
∂ϕi
∂n
− πin = 0 on Γc.

(4.3.3)

The main advantage will be that that we need not calculate ϕl and ϕd in the
numerical investigation. Of course, the ϕi cannot be chosen as solutions of a
Stokes system, since the above conditions represent over-determined bound-
ary conditions. With this choice of auxiliary functions, all result remain
valid, since we have never used that (ϕi, πi) should be solutions of a Stokes
equation. Introducing a new adjoint state as the difference of ϕl − ξϕd and
the adjoint state given by Theorem 4.10, we obtain

Theorem 4.11. Let the assumptions of Theorem 4.10 be satisfied. Assume
there exists (ϕi, πi) ∈ H2(Ω)×H1(Ω), i ∈ {d, l}, such that (4.3.3) is satisfied.
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4.3. FINITE-DIMENSIONAL CONTROL SET

Then there exists a multiplier ξ ≥ 0, an adjoint state λ ∈ H1(Ω) ∩W2,r(Ω),
and an adjoint pressure π ∈ W 1,r(Ω), r ∈ [2,∞), such that (λ, π) is the weak
solution of

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = 0 in Ω

div λ = 0 in Ω

λ = ~el − ξ~ed on Γw

λ = 0 on Γ \ Γw,

(4.3.4a)

and such that the variational inequality(
αḡ −

(
ν
∂λ

∂n
− πn + (ū · n)λ

)
, g − ḡ

)
L2(Γc)

≥ 0 ∀g ∈ Ĝad,Q, (4.3.4b)

and the complementarity condition

ξ(F̂~ed(ū)−D0) = 0, ξ ≥ 0, F̂~ed(ū) ≤ D0 (4.3.4c)

are satisfied.

The additional term (ū · n)λ in (4.3.4b) appears because of λ ∈ H1(Ω) ∩
W2,r(Ω) instead of H1

0(Ω) ∩W2,r(Ω), r ∈ [2,∞), see e.g. Section 5.2.1 for a
formal Lagrange approach.

Please note that this system does not involve the functions ϕi in the
adjoint equation and in the variational inequality, which was the case for the
optimality systems obtained in Theorems 4.1, 4.2, and 4.10. This makes this
system favorable for computations, and it is used for the solution algorithm
that we employed in our numerical experiments.

The optimality system (4.3.4a)-(4.3.4c) of the previous theorem can also
be obtained formally with the help of the Lagrangian. Let us define the La-
grange functional L as the sum of the cost functional, Navier-Stokes equation
tested with (λ, π), and state constraint

L(u, p, g, λ, π, ξ) = −
∫
Γw

(
ν
∂u

∂nw
− pnw

)
· ~el ds+

α

2

∫
Γc

|g|2ds

−
∫
Ω

λ(−ν∆u+ (u · ∇)u+∇p)dx

+

∫
Γc

(g − u)λ2ds+

∫
Γc

uλ3ds

+ξ

−∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds−D0

 .
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Then, (4.3.4a) is equivalent to

Lu(ū, p̄, ḡ, λ, π, ξ)v = 0, ∀v ∈ H1(Ω),

Lp(ū, p̄, ḡ, λ, π, ξ)q = 0, ∀q ∈ L2(Ω)

and (4.3.4b) can be obtained formally by

Lg(ū, p̄, ḡ, λ, π, ξ)(g − ḡ) ≥ 0, ∀g ∈ Ĝad,Q.

In order to obtain (4.3.4b) in a rigorous way, we had to use regular controls
and to suppose the existence of ϕi satisfying (4.3.3).

We have chosen

Ĝad,Q :=

{
g ∈ H1/2(Γ) : g =

l∑
j=1

qjej, q ∈ Qad

}

with ei ∈ H1/2(Γ). Let us consider for simplicity in the following chapters

Gad,Q :=

{
g ∈ H3/2(Γ) : g =

l∑
j=1

qjej, q ∈ Qad

}
(4.3.5)

with ei ∈ H3/2(Γ) and qa, qb ∈ Rl.
Based on this set of admissible controls Gad,Q, we get u ∈ H2(Ω), see

Theorem 2.17.
Depending on the respective situation in the following, we will decide

to apply one of the two equivalent notations (4.3.2) or (4.3.1b) with Gad,Q

instead of Ĝad,Q.
Now, we are also able to use F~ei(u) in (4.3.4c) and the cost functional

instead of F̂~ei(u), i ∈ {d, l}. Additionally, we have to redefine G2(u, g) in
(4.1.1) by

G2(u, g) = (F~ed(u)−D0).

.
Furthermore, we have to redefine the definition of non-singularity and

Theorem 2.26 with (ū, ḡ) ∈ H2(Ω)×H3/2(Γc) or (ū, q̄) ∈ H2(Ω)×Rl, respec-
tively.

4.4 Second-order sufficient optimality conditions
for the finite-dimensional case

Almost analogously to the infinite-dimensional case, we are able to consider
the second-order sufficient optimality conditions with the control space Qad.
We refer also to [31] for this case.
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Let us therefore define d := (αMq̄−D)T , similar to (4.3.2), with the mass
matrix M and a vector D

M ∈ Rl,l, Mi,j =

∫
Γc

eiej ds, D ∈ Rl, Di =

∫
Γc

(
ν
∂λ

∂n
− πn + (ū · n)λ

)
ei ds.

Then (4.3.4b) is equivalent to

(αMq̄ −D)T (q − q̄) ≥ 0 ∀q ∈ Qad, (4.4.1)

which is the necessary and sufficient optimality condition of the quadratic
programming problem

min
q∈Qad

α

2
qTMq −DT q.

Additionally, we introduce A+ := {i : di > 0}, A− := {i : di < 0} and
A := A+ ∪ A− and the critical cone associated with q̄

Cq̄ := {h ∈ Rl : hi = 0 ∀i ∈ A satisfying (4.4.2)− (4.4.4)}

−ν∆z + (ū · ∇)z + (z · ∇)ū+∇µ = 0 in Ω

div z = 0 in Ω

z(x) =
l∑

j=1

ej(x)hj on Γc,

z = 0 on Γ \ Γc,

(4.4.2)

{
F ′~ed(ū)(z) = 0, if F~ed(ū) = D0 and ξ > 0

F ′~ed(ū)(z) ≤ 0, if F~ed(ū) = D0 and ξ = 0,
, (4.4.3)

hi =

{
≥ 0 if q̄i = qa,i

≤ 0 if q̄i = qb,i
. (4.4.4)

Then, we define the coercivity assumption (SSC ′):

(SSC ′)


The inequality
hTLqq(q̄, ξ̄)h > 0

holds for all h ∈ Cq̄ \ {0}.

and derive the following theorem

Theorem 4.12. Let (ū, ḡ) be an admissible non-singular point for the opti-
mal control problem and fulfill the first-order necessary optimality condition
of Theorem 4.11 including the variational inequality (4.3.2) with associated
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λ, ξ. Assume furthermore that the coercivity assumption (SSC’) is satisfied.
Then there exist δ > 0 and τ > 0 such that

J(v) ≥ J(v̄) + δ|q − q̄|2

holds for all admissible pairs (u, g) with |q − q̄| ≤ τ.
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Chapter 5

Numerical investigations

In this chapter, we want to provide numerical results for the problem under
consideration. We handle the optimal control problem above numerically by
direct solution of the optimality system that follows from Theorem 4.11 and
is stated below. We follow a method suggested by Neitzel et al. [73].

Afterwards, we consider an SQP-method, whose convergence is proved in
Chapter 6.

5.1 One-shot approach

Here, we consider a slightly different problem. We have an inflow g∞ acting
as an inhomogeneous Dirichlet boundary condition on the inflow boundary
Γin. The control boundary Γc was modelled by a nonhomogeneous Dirichlet
condition, where the limited suction and/or blowing occurs on small slot on
the flap. A no-slip boundary condition, i.e. homogeneous Dirichlet condition,
was used for the remaining airfoil Γw and the wall boundaries Γwall. At the
outflow Γout, we applied a so called ’do-nothing’-condition:

ν
∂u

∂n
− pn = 0.

For more details of the configuration see the technical report [19].
These do-nothing conditions have similar properties as Neumann bound-

ary conditions for scalar elliptic equations. Let us briefly comment on avail-
able results for Navier-Stokes equations with mixed boundary conditions of
Dirichlet and Neumann type. For the Navier-Stokes system with mixed
boundary conditions, existence and uniqueness of solutions u ∈ H1(Ω) for
Dirichlet data g ∈ H1/2(Γc) were proven in [72], Theorem 5.2, and [71]. We
can show, similar to Theorem 2.17, that we obatin a solution u ∈ H2(Ω) for
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g ∈ H3/2(Γc). Due to the ’do-nothing’ boundary condition on the outflow
boundary, the pressure p ∈ L2(Ω) is unique. To the best of our knowledge,
similar results for low-regularity Dirichlet data in L2(Γc) are still missing. If
one carries out the formal procedure as described at the end of the finite-
dimensional part or see (5.2.5), one finds that the adjoint equation for the
problem with ’do-nothing’ outflow condition is given by

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = 0 in Ω

div u = 0 in Ω

λ = ~el − ξ~ed on Γw

λ = 0 on Γ \ (Γw ∪ Γout)

ν
∂λ

∂n
− πn + (ū · n)λ = 0 on Γout.

This adjoint system is analogously to the one of Theorem 4.11.

As already mentioned above, we solved the optimality system given anal-
ogously to Theorem 4.11. Due to the presence of the ’do-nothing’ boundary
condition, we can drop the constraint

∫
Γj
g ·n ds = 0, which was incorporated

to guarantee existence of divergence-free solutions. With this simplification,
the variational inequality and the complementarity condition in the optimal-
ity system given by Theorem 4.11 are equivalent to

ḡ = PG
{

1

α
(ν
∂λ

∂n
− πn+ (ū · n)λ)

}
a.e. in Γc

and

ξ = max (0, ξ + F~ed(ū)−D0).

This enables us to eliminate the control variable by means of the projection.
Then we want to solve the following system consisting of the state equa-
tion with control eliminated by the projection formula, the equation for the
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Lagrange multiplier ξ and the associated adjoint equation, see also [19]:

−ν∆u+ (u · ∇)u+∇p = 0 in Ω

div u = 0 in Ω

u = PG{
1

α
(ν
∂λ

∂n
− πn+ (u · n)λ)} on Γc

u = 0 on Γwall ∪ Γw \ Γc

u = g∞ on Γin

ν
∂u

∂n
− pn = 0 on Γout

−ν∆λ+ (∇u)Tλ− (u · ∇)λ+∇π = 0 in Ω

div λ = 0 in Ω

λ = ~el − ξ~ed on Γw

λ = 0 on Γin ∪ Γwall

ν
∂λ

∂n
− πn+ (u · n)λ = 0 on Γout

and
ξ = max (0, ξ + F~ed(u)−D0). (5.1.1)

5.1.1 Numerical results

The computational domain, depicted in Figure 5.1, is a 2D generic high-lift
configuration consists of a NACA4412 main airfoil at 8◦ angle of attack and
a NACA4415 flap with a deflection angle of 37◦. The Reynolds number was
given as Re = 85 based on the chord length Lref = 1.275 and the free stream
velocity g∞ = 1.

We used the commercial FEM-solver COMSOLMultiphysics with a build-
in damped Newton method for the nonlinear system. The partial differential
equations were discretized using Taylor-Hood finite elements, i.e. piecewise
quadratic polynomials for the velocity and piecewise linear polynomials for
the pressure.

The equation for ξ is in this form not solvable, because on the one hand
we only can define variables on the whole area Ω and on the other hand
COMSOL does not allow variables in R. Therefore, we choose the following
algorithm. In the first step, we solve the optimal control problem without the
state constraint. If for the computed solution the state constraint is satisfied
then this solution solves also the state-constrained problem. Otherwise, we
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Figure 5.1: The domain

have to consider the state constraint∫
Γw

ν
∂u

∂n
− pn · ~ed ds = D0.

Integral terms in the system and COMSOL Multiphysics don’t fit together.
To handle this problem, we consider an augmented Lagrangian method for
this problem, see [13, 46, 78]. This algorithm is related to the Penalty prob-
lem. The difference is that we here reduce the risk of ill-conditioned sub-
problems, because now we introduce Lagrange multiplier estimates at each
step to the cost functional. The penalty term does not guarantee

F~ed(u, p) = D0. (5.1.2)

It only leads to

(F~ed(ū, p̄)−D0) = −1

c
ξ, (5.1.3)

see [78], (17.45). So, we see (5.1.2) is theoretical fulfilled for c→∞, but we
probably get ill conditioned and numerical problems for big values of c.

Let us ignore for a while the Navier-Stokes equations and just consider
the cost functional, which we want to minimize, subject to the integral state
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constraint. Then the problem is

(P1) min
g∈Gad,Q

J(u, p, g) subject to F~ed(u, p) = D0

with the optimality system

∇J(ū, p̄) + ξF ′~ed(ū, p̄) = 0. (5.1.4)

The associated Penalty problem reads as

(P2) min
g∈Gad,q

J(u, p, g) + c(F~ed(u, p)−D0)2

with the optimality system

∇J(ū, p̄) + 2cF ′~ed(ū, p̄)(F~ed(ū, p̄)−D0) = 0 (5.1.5)

The augmented Lagrangian function LA(u, g, ξ) avoids the problem that
we need very big penalty parameter c by an estimation for the Lagrange-
multiplier ξ for the integral state constraint. The augment Lagrangian
LA(u, g, ξ) consists of the original cost functional J(u, g), the penalty term
and the term involving the multiplier ξ:

LA(u, g, ξ) := J(u, g)− ξ (F~ed(u, p)−D0) + c (F~ed(u, p)−D0)2 .

Considering LA(u, g, ξ) as the new cost functional, we obtain the optimality
system

∇(u,p)J(u, g)− F ′~ed(ū, p̄)(ξ − 2c (F~ed(ū, p̄)−D0)) = 0. (5.1.6)

Now, we fix the penalty parameter c and the Lagrangian multiplier ξ in
each step by c and ξk, respectively. The optimality systems (5.1.4), (5.1.5)
and (5.1.6) leads to

ξ ≈ ξk − 2c (F~ed(ū, p̄)−D0) (5.1.7)

which is equivalent to

(F~ed(ū, p̄)−D0) ≈ 1

2c
(ξk − ξ) (5.1.8)

and we see that if ξk is close to the original Lagrange multiplier ξ, (5.1.8) is
closer to F~ed(ū, p̄) = D0 than (5.1.3). From (5.1.7), we get also the prescript
to calculate the new Lagrange multiplier in the k + 1th step by

ξk+1 = ξk − 2c (F~ed(ū, p̄)−D0) .
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Arada, Raymond and Tröltzsch proved in [13] the convergence of the aug-
mented Lagrangian method for a class of problems.

If the integral state constraint is fulfilled, then we are able to reduce the
associated Lagrange-multiplier ξ. Or otherwise, we have to increase the mul-
tiplier.

For the uncontrolled problem, we obtained a lift of CA = FA
0.5g2∞Lref

= 1.562

and a drag of CD = DA
0.5g2∞Lref

= 0.817, where FA is the resulting lift force,
DA the drag force and Lref = 1.275 is the reference length of the wing, see
Figure 5.2 for a streamline plot of the velocity field, and Figure 5.4 for a plot
of the absolute values of the uncontrolled velocity field and Figure 5.5 for the
pressure field.

Figure 5.2: Uncontrolled case: velocity field.
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Figure 5.3: Uncontrolled case: velocity field with zoom on the wing.

Figure 5.4: Uncontrolled case: absolute value of velocity field (left).
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Figure 5.5: Uncontrolled case: absolute value of pressure field (right).

Now let us report about the result of the optimization. Here, we choose
the control cost parameter α = 0.1 and the control constraints as box con-
straints G = [−1,+1].

At first, we compute the solution for the case without any drag constraint.
The optimal control is given by the maximal possible suction, which is natural
from a physical point of view. The obtained optimized lift is CA = 1.5823 and
the drag is CD = 0.8340, which is a lift gain of 1.3%. The controlled velocity
field can be seen in Figure 5.6. The adjoint velocity field and pressure are
plotted in Figures 5.8 and 5.9.
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Figure 5.6: Controlled case: velocity field.

Figure 5.7: Controlled case: velocity field with zoom on the wing.
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Figure 5.8: Controlled case: adjoint velocity field

Figure 5.9: Controlled case: absolute value of adjoint velocity field (left).
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Figure 5.10: Controlled case: image of the slit.

The box constraint G = [−0.5,+0.5] leads to a lift coefficient of CA =
1.572 and a drag coefficient of CD = 0.825, which amounts to a lift gain of
about 0.65%.

In the next step, we choose D0 = 0.5240 as upper bound for the drag.
This equates to an constraint coefficient of CD0 = 0.8220. Hence, we expect
that this constraint will be active at the solution. In fact, for the com-
puted solution we obtain CD = 0.8215. Moreover, due to this restriction the
computed lift is CA = 1.571, which is less than for the case without state
constraints, but which is still better than in the uncontrolled situation. An
upper bound for the drag of D0 = 0.5230, CD0 = 0.820 leads to Cd = 0.820.
and Ca = 1.570.

An upper bound for the drag of D0 = 0.5190, CD0 = 0.814 leads to
Cd = 0.814. and Ca = 1.559.

5.2 SQP-method

In addition to the last section, where we solved the optimality system at
once, we will now solve the problem by an iterative method. A widely-used
method is the SQP-method.
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5.2.1 The SQP-method for our problem

In this case, we do not solve the original problem. The idea is to solve a
slightly different problem PI , where the integral state constraint is added as
penalty term in the cost functional. We do this, because we want to avoid
the integral equation for the Lagrange multiplier ξ, see (5.1.1).

Analogously to the one-shot approach, we first solve the problem without
a state constraint, this means in this case without the penalty term, and if
the state constraint is satisfied for the computed solution then this solution
also solves the state-constraint problem. Otherwise, it is sufficient to consider
the state constraint as an equality∫

Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds = D0.

So, we can avoid the penalty term c

(∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds−D0

)2

+

, where

(s)+ := max{0, s}, s ∈ R, denotes the positive part. The problem is that
this term is not twice continuously Fréchet-differentiable.

In this case, we introduce the penalty term to the cost functional and
regard the following problem: Minimize

J I(u, g) :=

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~el ds

+ c

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds−D0

2

+
α

2
‖g‖2

L2(Γc)

(5.2.1)

subject to

−ν∆u+ (u · ∇)u+∇p = 0 in Ω

div u = 0 in Ω

u = g on Γc

u = 0 on Γwall ∪ Γw \ Γc

u = g∞ on Γin

ν
∂u

∂n
− pn = 0 on Γout

(5.2.2)

the control constraints
g ∈ Gad,Q (5.2.3)
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where c ∈ R is the penalty constant and g∞ ∈ R the inflow. The solution
u is defined in a (very) weak sense. We have shown in Section 2, Theorem
2.17, that we get for every g ∈ H3/2(Γc) a solution u ∈ H2(Ω) for the state
equation (5.2.2). The optimality system could be derived very similar to the
problem with the integral state constraint. The Lagrangian looks as follows:

L(u, p, g, λ) =

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~el ds+

α

2

∫
Γc

|g|2ds

+ c

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds−D0

2

+

∫
Ω

(−ν∆u+ (u · ∇)u)λ+∇pλdx−
∫
Ω

π div udx+

∫
Γc

(u− g)λ2ds

+

∫
Γwall

uλ3 ds+

∫
Γin

(u− g∞)λ4 ds+

∫
Γout

(
ν
∂u

∂n
− pn

)
λ5 ds.

with∫
Ω

(u · ∇)u · λ dx = −
∫
Ω

(u · ∇)λ · u+ u · λ div u dx+

∫
Γ

u · nu · λ dγ.

The necessary condition ∂L
∂(u,p)

(ū, p̄)(u, p) = 0 leads to

∂L
∂(u, p)

(ū, p̄)(u, p) =

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~el ds

+ 2c

∫
Γw

(
ν
∂ū

∂n
− p̄n

)
· ~ed ds−D0


︸ ︷︷ ︸

:=K(ū,p̄))

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds



+

∫
Ω

−ν∆uλ− (ū · ∇)λ · u− (u · ∇)λ · ū− ū · λdiv u+∇pλdx

(5.2.4)

−
∫
Ω

π div u dx+

∫
Γc

uλ2 ds+

∫
Γwall

uλ3 ds+

∫
Γ∞

uλ4 ds

+

∫
Γout

(
ν
∂u

∂n
− pn

)
λ5 ds+

∫
Γc∪Γout

ū · nu · λ+ u · nū · λ ds = 0.
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This is with partial integration and

K(ū, p̄) = 2c

∫
Γw

(
ν
∂ū

∂n
− p̄n

)
· ~ed ds−D0



equivalent to

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~el ds+K(ū, p̄)

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds

−
∫
Ω

(ν∇u · ∇λ− (ū · ∇)λ · u− (u · ∇)λ · ū

+ ū · λ div u− p div λ+ u · ∇π) dx

+

∫
Γc

(
−ν ∂u

∂n
λ+ pnλ− πnu+ unλ2

)
ds

+

∫
Γwall

(
−ν ∂u

∂n
λ+ pnλ− πnu+ unλ3

)
ds

+

∫
Γin

(
−ν ∂u

∂n
λ+ pnλ− πnu+ unλ4

)
ds

+

∫
Γout

(
−ν ∂u

∂n
(λ− λ5) + pn(λ− λ5) + πnu

)
ds

+

∫
Γc∪Γout

ū · nu · λ+ u · nū · λ ds = 0.

The equality

−
∫
Ω

((u · ∇)λ · ū+ ū · λ div u) dx+

∫
Γc∪Γout

(u · n)(ū · λ) ds

=

∫
Ω

(∇ū)Tλ · u dx
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and another partial integration lead to

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~el ds+K(ū, p̄)

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds

−
∫
Ω

(
−ν∆λ+ (ū · ∇)λ+ (∇ū)Tλ+∇π

)
u dx−

∫
Ω

p div λ dx

−
∫
Γc

(
ν
∂λ

∂n
u− ν ∂u

∂n
λ+ pnλ− πnu+ unλ2 + ū · nu · λ

)
ds

−
∫

Γwall

(
ν
∂λ

∂n
u− ν ∂u

∂n
λ+ pnλ− πnu+ unλ3

)
ds

−
∫

Γin

(
ν
∂λ

∂n
u− ν ∂u

∂n
λ+ pnλ− πnu+ unλ4

)
ds

−
∫

Γout

(
ν
∂λ

∂n
u− ν ∂u

∂n
(λ− λ5) + pn(λ− λ5) + πnu+ ū · nu · λ

)
ds

= 0.

Taking (u, p) ∈ H2
0(Ω)×H1(Ω), we obtain

∫
Ω

(
−ν∆λ+ (ū · ∇)λ+ (∇ū)Tλ+∇π

)
u dx−

∫
Ω

p div λ dx

+

∫
Γw

(~el +K(ū, p̄)~ed − λ)(ν
∂u

∂n
− pn) ds+

∫
Γwall

λ(ν
∂u

∂n
− pn) ds

+

∫
Γin

λ(ν
∂u

∂n
− pn) ds+

∫
Γout

(λ− λ5)(ν
∂u

∂n
− pn) ds = 0

so that λ and π are the weak solutions of

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = 0 in Ω

div λ = 0 in Ω

λ = ~el +K(ū, p̄)~ed on Γw

λ = 0 on Γin ∪ Γwall

λ = λ5 on Γout.

(5.2.5)
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Taking (u, p) ∈ H2(Ω)×H1(Ω), we obtain∫
Γw

(
ν
∂λ

∂n
u− πnu+ unλ2 + ū · nu · λ

)
ds = 0,

∫
Γwall

(
ν
∂λ

∂n
u− πnu+ unλ3

)
ds = 0,

∫
Γin

(
ν
∂λ

∂n
u− πnu+ unλ4

)
ds = 0,

∫
Γout

(
ν
∂λ

∂n
u− πnu+ ū · nu · λ

)
ds = 0,

which implies

λ2n = −(ν
∂λ

∂n
− πn + (ū · n)λ) on Γw, (5.2.6)

λ3n = −(ν
∂λ

∂n
− πn) on Γwall,

λ4n = −(ν
∂λ

∂n
− πn) on Γin,

0 = −(ν
∂λ

∂n
− πn + (ū · n)λ) on Γout.

Now, we are able to substitute the last equation of (5.2.5) with ν ∂λ
∂n

+ πn +
ν ∂λ
∂n

+ πn + ū · nu · λ = 0 on Γout.
The other necessary condition ∂L

∂g
(ḡ)(g− ḡ) ≥ 0 for all g ∈ Gad,Q leads to

∂L
∂g

(ḡ)(g − ḡ) =

∫
Γc

αḡ(g − ḡ)− (g − ḡ)λ2 ds ≥ 0 ∀g ∈ Gad,Q

which with (5.2.6) is equivalent to∫
Γc

(
αḡ − (ν

∂λ

∂n
− πn + (ū · n)λ)

)
(g − ḡ) ds ≥ 0 ∀g ∈ Gad,Q. (5.2.7)

Altogether, we derive the adjoint system

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = 0 in Ω

div λ = 0 in Ω

λ = ~el +K(ū, p̄)~ed on Γw

λ = 0 on Γin ∪ Γwall

ν
∂λ

∂n
+ πn + ū · nu · λ = 0 on Γout

(5.2.8)
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withK(ū, p̄) = 2c

(∫
Γw

(
ν ∂ū
∂n
− p̄n

)
· ~ed ds−D0

)
and the variational inequal-

ity ∫
Γc

(
αḡ − (ν

∂λ

∂n
− πn + (ū · n)λ)

)
(g − ḡ) ds ≥ 0 ∀g ∈ Gad,Q. (5.2.9)

Let (ū, ḡ, λ̄) satisfy the optimality system, consisting of the Navier-Stokes
equations (5.2.2), the control constraint (5.2.3), the adjoint system (5.2.8)
and the variational inequality (5.2.9).

First, we consider the problem without any restrictions to the control
function g that means Gad,Q = {v ∈ H3/2(Γc) : v(x) =

∑l
i=1 ei(x)qi, q ∈ Rl}

or Qad = Rl and instead of the variational inequality (5.2.9), we have the
equation αḡ− (ν ∂λ

∂n
+ πn+ (ū · n)λ) = 0. So, the optimality systems reads as

(5.2.2),(5.2.3),(5.2.8) and

αḡ −
(
ν
∂λ

∂n
− πn + (ū · n)λ

)
= 0 ∀g ∈ Gad,Q.

This nonlinear system for (u, g, λ) can be solved with the Newton-method,
see for instance [32]. Let us briefly sketch this method: consider the opti-
mization problem

min f(u) u ∈ Rn

with f ∈ C2(Rn).
Then, we want to solve the optimality system

f ′(ū) = 0.

Solving this system with the Newton-method means that we get un+1 as the
solution of

f ′(un) + f ′′(un)(u− un) = 0

When we transfer this idea to our problem, we obtain the following Newton-
method.

Algorithm 5.1 (NM).

1. Choose an initial value z0 = (u0, g0, λ0) and set k = 0.
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2. Determine z = (u, g, λ) by the Navier-Stokes system linearized at zk

−ν∆u+ (u · ∇)uk + (uk · ∇)u+∇p = −(uk · ∇)uk in Ω

div u = 0 in Ω

u = g on Γc

u = 0 on Γwall ∪ Γw \ Γc

u = g∞ on Γin

ν
∂u

∂n
− pn = 0 on Γout,

(5.2.10a)

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = −(∇(ū− uk))Tλk

+ ((ū− uk) · ∇)λk in Ω

div λ = 0 in Ω

λ = ~el +K(ū, p̄)~ed on Γw

λ = 0 on Γin ∪ Γwall

ν
∂λ

∂n
− πn+ (ū · n)λ = 0 on Γout.

(5.2.10b)
and

αḡ −
(
ν
∂λ

∂n
− πn + (ū · n)λ

)
= 0 (5.2.10c)

3. Set k = k + 1 and zk = z. Goto 2.

The equations (5.2.10) are equivalent to solving the quadratic problem

min Jk(u, g) := ∇J(uk, gk)(u− uk, g − gk)

+
1

2
Lzz(uk, gk, λk)[(u− uk, g − gk)]2

(5.2.11)

subject to the linearized Navier-Stokes equation

−ν∆u+ (u · ∇)uk + (uk · ∇)u+∇p = −(uk · ∇)uk in Ω

div u = 0 in Ω

u = g on Γc

u = 0 on Γwall ∪ Γw \ Γc

u = g∞ on Γin

ν
∂u

∂n
− pn = 0 on Γout.

(5.2.12)
So, we can also solve this system instead of (5.2.10). In contrast to the
system above, the system (5.2.10) cannot be transformed to the case with
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g ∈ Gad,Q.
Instead, we have to solve in the n-th step (QPn):

min Jk(u, g) :=∇J(uk, gk)(u− uk, g − gk)

+
1

2
Lzz(uk, gk, λk)[(u− uk, g − gk)]2

−ν∆u+ (u · ∇)uk − (uk · ∇)u+∇p = −(uk · ∇)uk in Ω

div u = 0 in Ω

u = g on Γc

u = 0 on Γwall ∪ Γw \ Γc

u = g∞ on Γin

ν
∂u

∂n
− pn = 0 on Γout

g ∈ Gad,Q.

The cost functional, solved in the k-th step, Jk differs only by the term

1

2
Lzz(uk, gk, λk)[(u− uk, g − gk)]2 =(((u− uk) · ∇)(u− uk), λk)L2(Ω)

+ 2c(ν
∂(u− uk)

∂n
− (p− pk)n, ~el)L2(Ω)

from the original cost functional J . Our idea is to solve the linear subprob-
lems (QPn) with the gradient-projection method.

Remark 5.2. We know that it is not the best method; we solve the whole
problem with the (fast) SQP-method and the subproblems with the (slow)
gradient-projection method. A more appropriate choice would be for instance
the active-set method. In this case, we would have to handle the integral term
K(u, p) = 2c

(∫
Γw

(
ν ∂u
∂n
− pn

)
· ~ed ds−D0

)
. But, we decided to solve our

problems numerically with COMSOL Multiphysics. As mentioned before, this
does not fit together. Therefore, we consider the gradient-projection method
to calculate K(ū, p̄) after solving the state equation.

5.2.2 Gradient-projection method

Let us briefly formulate the principle of this method for an optimization
problem in a Hilbert space U,

min
u∈Uad

f(u),

where Uad ⊂ U is a non-empty, bounded, convex and closed set and f : U →
R is a Gâteaux-differentiable functional.
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The iteration steps u1, ..., un are finished so that un is the current solution.
Then the algorithm look as follows:

S1 (Direction search) Choose the anti-gradient as descent-direction

vn := −f ′(un).

S2 (Stepsize) Choose a step size sn, so that the equation

f(P[ua,ub]{un + snvn}) = min
s>0

f(P[ua,ub]{un + svn})

is fulfilled, which guarantees the admissibility of the solution.

S3 Set un+1 = un + snvn, n = n+ 1 and goto S1.

For the optimization subproblems (QPn) the algorithm reads as follows

S1 Calculate (un, pn) as the solution of (5.2.10a).

S2 Calculate the adjoint (λn, πn) from (5.2.10b).

S3 The updated descent direction is

vn := αgn − (ν
∂λ

∂n
+ πn + (ū · n)λ)

S4 Calculate the step size sn from

min
s>0

f(P[ga(x),gb(x)]{gn + svn}).

S5 The updated control gn+1 is

gn+1 := P[ga(x),gb(x)]{gn + snvn}.

set n:=n+1 and goto S1.

5.2.3 Example

Let us now consider the same example as for the one-shot approach with

ga(x) ≡ −0.5, gb(x) ≡ 0.5 and a Reynolds number Re =
1

ν
Lref = 85.

With a drag constraint of D0 = 0.5240 which is equal to a coefficient
CD0 = 0.822 and a penalty parameter of c = 50, we obtain CA = 1.571 and
CD = 0.8215 . The results are presented in the Figures 5.11 and 5.12.
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An upper constraint of D0 = 0.5190, CD0 = 0.814 for the drag coefficient
leads to CD = 0.814 and CA = 1.559.

We recognize that we get the same results for the SQP-method than for
the one-shot approach.

Figure 5.11: Streamlines for the optimal velocity field with an integral state
constraint D0 = 0.5240.
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Figure 5.12: Streamlines for the optimal velocity field with an integral state
constraint D0 = 0.5240 an a zoom on the slit.
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Chapter 6

Convergence of the SQP-method

In this chapter, we want to prove the convergence of the SQP-method, men-
tioned in Section 5.2. Our approach is mainly based on the theses of A.
Unger [104] and D. Wachsmuth [109]. Additionally, we refer to [84].

We want to prove the convergence of the SQP-method for the following
problem with penalty term: Minimize

J I(u, q) :=

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~el ds+

α

2
‖g‖2

L2(Γc)

+ c

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds−D0

2

subject to the very weak form of the nonhomogenous Navier-Stokes equations

−ν∆u+ (u · ∇)u+∇p = 0 in Ω

div u = 0 in Ω

u =
l∑

i=1

eiqi on Γc

u = 0 on Γ \ Γc

and the control constraints

q ∈ Qad,

where c ∈ R is the penalty constant.
The associated optimality system consists analogously to (5.2.2), (5.2.8)
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and (5.2.9) of the state equations

−ν∆u+ (u · ∇)u+∇p = 0 in Ω

div u = 0 in Ω

u = g =
l∑

i=1

eiqi on Γc

u = 0 on Γ \ Γc

the adjoint system

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = 0 in Ω

div λ = 0 in Ω

λ = ~el +K(ū, p̄)~ed on Γw

λ = 0 on Γ \ Γw

and the variational inequality∫
Γc

(
αḡ − (ν

∂λ

∂n
− πn + (ū · n)λ)

)
(g − ḡ) ds ≥ 0 ∀g ∈ Gad,Q

or equivalent
(αMq̄ −D)T (q − q̄) ds ≥ 0 ∀q ∈ Qad

with

M ∈ Rl,l, Mi,j =

∫
Γc

eiej ds, D ∈ Rl, Di =

∫
Γc

(
ν
∂λ

∂n
− πn + (ū · n)λ

)
ei ds.

Consider with d := (αMq̄ −D)T , see (4.4.1), the sets A+ := {i : di > 0},
A− := {i : di < 0}, A := A+ ∪ A− and the critical cone associated with q̄

Cq̄ := {h ∈ Rl : hi = 0 ∀i ∈ A satisfying (6.0.2)}

hi =

{
≥ 0 if q̄i = qa,i

≤ 0 if q̄i = qb,i
. (6.0.2)

Then, we define the coercivity assumption (SSC ′′):

(SSC ′′)


The inequality
hTLqq(q̄)h > 0

holds for all h ∈ Cq̄ \ {0}.
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There are several problems in handling the optimality system, especially
the nonlinearity of the state equation and the control. The Newton-method
is very popular to solve nonlinear systems of the form

0 = f(x),

because of the fast local convergence. Due to the variational inequality,
we are not able to use it in the classical form. A loophole are generalized
equations. Therefore, we have first to introduce generalized equations.

6.1 Generalized equations
Let the normal cone given by

NC(u) := {z ∈ Rn : zT (v − u) ≤ 0 ∀v ∈ C},

and
G̃c : H3/2(Γc)→ H2(Ω), g 7→ u,

Gw : H3/2(Γw)→ H2(Ω), g 7→ u

and
S : L2(Ω)→ H2(Ω), f 7→ u

denote the control-to-solution operators of the Stokes equations, see Corollary
2.12. Let us furthermore define the operators

Hc : Rl → H3/2(Γc), q 7→
l∑

i=1

ei(x)qi

and
Gc := G̃c ◦Hc : Rl → H2(Ω), q 7→ u.

Let us recall

K(ū, p̄) = 2c

∫
Γw

(
ν
∂ū

∂n
− p̄n

)
· ~ed ds−D0


and we denote the derivative by

K̃(u, p) :=
∂

∂(u, p)
K(ū, p̄)(u, p) = 2c

∫
Γw

(
ν
∂u

∂n
− pn

)
· ~ed ds

 .
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Then, we reformulate the optimality system (6.0.1)-(6.0.1) at z̄ = (ū, p̄, q̄, λ̄, π̄)
to

−ū+ S(−(ū · ∇)ū) +Gc(q̄) = 0

−λ̄+ S(−(∇ū)Tλ+ (ū · ∇)λ) +Gw(~el +K(ū, p̄)~ed) = 0

−(αMq̄ −D)T ∈ NQad(q̄)
and the equivalent formulation

0 ∈ {−ū+ S(−(ū · ∇)ū) +Gc(q̄)}+ {0}
0 ∈ {−λ̄+ S(−(∇ū)Tλ+ (ū · ∇)λ) +Gw(~el +K(ū, p̄)~ed)}+ {0}
0 ∈ {(αMq̄ −D)T}+NQad(q̄).

We write for short

Z := H2(Ω)× Rl ×H2(Ω) and W̃ := H2(Ω)×H2(Ω)× Rl

and define F : Z → W̃ and T : Z → 2W̃ as follows

F (z) = F (u, q, λ) =

 −u+ S(−(u · ∇)u) +Gc(q)

−λ+ S(−(∇ū)Tλ+ (ū · ∇)λ) +Gw(~el +K(u, p)~ed)

(αMq −D)T


(6.1.1)

for the differentiable part and

T (z) = T (u, q, λ) =

 {0}
{0}

NQad(q)

 (6.1.2)

for the set-valued part in the generalized equation. Now, we can formulate
the optimality system as

0 ∈ F (z̄) + T (z̄). (6.1.3)

The equation (6.1.3) is a generalized equation. For more details see Alt
[5, 8, 9] Dontchev [33, 35, 36, 37], Goldberg and Tröltzsch [48] and Josephy
[60].

The classical Newton-method is not applicable to this kind of system.
The generalized Newton-method is mentioned in the works above and reads
as

Algorithm 6.1 (GNM).

1. Choose an initial value z0 and set k = 0
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2. Determine z by the linearized generalized equation

0 ∈ F (zk) + F ′(zk)(z − zk) + T (z) (6.1.4)

3. Set k = k + 1 and zk = z. Goto 2.

Similar to the theory of the classical Newton-method, we need further
assumptions to show the convergence of this generalized Newton-method,
which is closely related to the notion of strong regularity of (6.1.3) and based
on Robinson [82].

Definition 6.2 (Strong regularity). Let z̃ = (ũ, q̃, λ̃) ∈ Z. The generalized
equation (6.1.3) is said to be strongly regular at z̃, if there exist open balls
Br1(0) in W̃ and Br2(z̃) in Z, with positive constants r1 > 0, r2 > 0 and
cL > 0 such that for all perturbations e ∈ Br1(0) the linearized equation

e ∈ F (z̃) + F ′(z̃)(z − z̃) + T (z)

admits a unique solution z = z(e) in Br2(z̃) and the Lipschitz property

‖z(e1)− z(e2)‖Z ≤ cL‖e1 − e2‖W̃
holds for all e1, e2 ∈ Br1(0).

In the original paper of Robinson [83], it was assumed that T has a
closed graph. Dontchev has shown in [35] that this assumption is not needed.
The next theorem provides the possibility to transfer stability results for the
perturbed linearized equation to the perturbed nonlinear equation.

Theorem 6.3. Let z̄ ∈ Z be a solution of the generalized equation (6.1.3)
such that this equation is strongly regular at z̄. Then there exist open balls
Br1(0) and Br2(z̄) such that, for all e ∈ Br1(0), the perturbed equation

e ∈ F (z̄) + T (z̄)

has a unique solution z = z(e) in Br2(z̄) and the solution mapping e 7→ z(e)
is Lipschitz-continuous from Br1(0) to Br2(z̄).

Based on the strong regularity, the next theorem states the convergence
of the SQP-method.

Theorem 6.4. Let z̄ = (ū, p̄, q̄, λ̄, π̄) be a solution of (6.1.3) and additionally
let this generalized equation be strongly regular at z̄. Then there exists an
open ball Br2(z̄) such that for every starting point z1 in Br2(z̄) the generalized
Newton method generates a unique sequence {zk}∞k=1, where zk stays in Br2(z̄)
and we obtain

‖zk+1 − z̄‖Z ≤ cG‖zk − z̄‖2
Z .

with cG independent of k.

73



CHAPTER 6. CONVERGENCE OF THE SQP-METHOD

For a proof, we refer to [5, 36].
This theorem means that the linearized generalized equation is uniquely

solvable under the suitable assumptions. The sequence of solutions, gen-
erated by the generalized Newton-method, converges quadratically to the
solution of the generalized equation (6.1.3). In the next part we investigate
the solvability of the linearized generalized equation and the relation to the
SQP-method.
Let us consider the linearized equation

0 ∈ F (zi) + F ′(zi)(z − zi) + T (z).

This means that we have due to the linearity of K

0 ∈ −u+ S((ui · ∇)ui − (ui · ∇)u− (u · ∇)ui) +Gc(q) + {0}
0 ∈ −λ+ S(−(∇u)Tλi + (u · ∇)λi − (∇ui)Tλ+ (ui · ∇)λ

+ (∇ui)Tλi − (ui · ∇)λi) +Gw(el + K̃(u, p)ed) + {0}
0 ∈ (αMq −D(zi)−D′(zi)(z − zi))T +NQad(q).

(6.1.5)

The first relation of (6.1.5) is equivalent to the boundary value problem

−ν∆u+ (ui · ∇)u+ (u · ∇)ui +∇p = (ui · ∇)ui in Ω

div u = 0 in Ω

u =
l∑

i=1

eiqi on Γc,

u = 0 on Γ \ Γc

(6.1.6)

and the second to the problem

−ν∆λ+∇π = −(∇u)Tλi − (∇ui)T (λ− λi)
+ (ui · ∇)(λ− λi) + (u · ∇)λi in Ω

div λ = 0 in Ω

λ = ~el + K̃(u, p)~ed on Γw

λ = 0 on Γ \ Γwall.

(6.1.7)

Considering NQad(q), we additionally get

(αMq −D(zi)−D′(zi)(z − zi))T (q̃ − q) ≥ 0 ∀q̃ ∈ Qad. (6.1.8)

We see that the linearized generalized equation (6.1.4) is equivalent to (6.1.6)-
(6.1.8) which is similar to the first-order necessary optimality system, see
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(6.1.9). In reality, this is the necessary optimality system for the linear-
quadratic problem of the SQP-method, mentioned above. The cost functional
of the linear-quadratic problem was defined by

Jk(u, q) = ∇J(uk, qk)(u− uk, q − qk) +
1

2
Lzz(uk, qk, λk)[(u− uk, q − qk)]2.

After expanding, it is with g = Hc(q) =
∑l

i=1 eiqi equal to

Jk(u, q) =

∫
Γw

(
ν
∂(u− uk)

∂n
− (p− pk)n

)
· ~el ds

+K(uk, pk)

∫
Γw

(
ν
∂(u− uk)

∂n
− (p− pk)n

)
· ~ed ds


+ α

∫
Γc

gk(g − gk) ds+ b(u− uk, u− uk, λk)

+ K̃(u− uk, p− pk)

∫
Γw

(
ν
∂(u− uk)

∂n
− (p− pk)n

)
· ~ed ds


=

∫
Γw

(
ν
∂(u− uk)

∂n
− (p− pk)n

)
· ~el ds

+K(u, p)

∫
Γw

(
ν
∂(u− uk)

∂n
− (p− pk)n

)
· ~ed ds


+ α

∫
Γc

gk(g − gk) ds+ b(u− uk, u− uk, λk).

Now, we have shown the connection between the generalized Newton-method
and the SQP-method. The SQP-method is a kind of a generalized Newton-
method to solve the optimality system

−ν∆u+ (u · ∇)u+∇p = f in Ω

div u = 0 in Ω

u =
l∑

i=1

eiqi on Γc,

u = 0 on Γ \ Γc.

(6.1.9a)
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−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = 0 in Ω

div λ = 0 in Ω

λ = ~el +K(ū, p̄)~ed on Γw

λ = 0 on Γ \ Γw,

(6.1.9b)

(αMq̄ −D)T (q − q̄) ≥ 0 ∀q ∈ Qad (6.1.9c)

obtained analogously to (4.3.4a)-(4.3.4c).
The optimality system of the linear-quadratic system is equivalent to the

linearized generalized system (6.1.4). For the finite-dimensional case, one can
find an example in [42] and for the case of infinite-dimensional optimization,
see [6] and [33]. In the next sections, we want to prove the convergence of
the SQP-method based on Theorem 6.4. That means that we have to show
the assumptions in this theorem.

6.2 Perturbed optimization problem
There is a lot of literature about convergence of the SQP-method. Alt [6, 7],
Alt and Malanowski [10, 11], Malanowski [68, 67] and Dontchev et. al. [34]
proved convergence for optimal control problems subject to ODEs. Optimal
control problems related to PDEs were investigated in Hinze and Hinter-
müller [53], Goldberg and Tröltzsch [48], Kupfer and Sachs [64], Tröltzsch
[100, 101], and Volkwein [107].
In the last section, we have shown that the SQP-method for the optimal
boundary control problem is a variation of the generalized Newton-method
for solving the first-order necessary optimality conditions. In this section of
this thesis, we follow the work of Unger [104] and Wachsmuth [109].

In the next step, we want to verify continuous differentiability of F , Lip-
schitz continuity of F ′, and strong regularity of the optimality system to use
Theorem 6.4 and to show convergence of the SQP-method.

Theorem 6.5. The function F defined by (6.1.1) is continuous differentiable
and the derivative B′(u) is Lipschitz continuous.

The proof is analogous to [109], Corollary 5.2.
Now, let us come to the more complex assumption of strong regular-

ity. Therefore, we want to consider the pertubed linearized at z̄ generalized
equation

e ∈ F (z̄) + F ′(z̄)(z − z̄) + T (z) (6.2.1)

as an optimality system of another optimal control problem. Let
z̄ = (ū, p̄, q̄, λ̄, π̄) fulfill the the first-order necessary optimality conditions of
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(PI) and because of this be a solution of the generalized equation (6.1.3).
The perturbed equation (6.2.1) with e = (ẽu, ẽλ, ẽq) ∈ Ŵ at z̄ is equivalent
to

0 ∈ −ẽu − u+ S(−(ū · ∇)u− (u · ∇)ū+ (ū · ∇)ū) +Gc(q) + {0}
0 ∈ −ẽλ − λ+ S(−(∇u)T λ̄+ (u · ∇)λ̄− (∇ū)Tλ+ (ū · ∇)λ

+ (∇ū)T λ̄− (ū · ∇)λ̄) +Gw(el + K̃(u, p)ed) + {0}
0 ∈ (−ẽq + αMq −D(z̄)−D′(z̄)(z − z̄))T +NQad(q),

with û = u+ ẽu, p̂ = p, q̂ = q, λ̂ = λ+ ẽλ and π̂ = π equivalent to

0 ∈ −û+ S(−(ū · ∇)(û− ẽu)− ((û− ẽu) · ∇)ū+ (ū · ∇)ū) +Gc(q̂) + {0}
0 ∈ −λ̂+ S(−(∇(û− ẽu))T λ̄+ ((û− ẽu) · ∇)λ̄+ (∇ū)T λ̄− (ū · ∇)λ̄

− (∇ū)T (λ̂− ẽλ) + (ū · ∇)(λ̂− ẽλ))
+Gw(~el + K̃(û− ẽu, p)~ed) + {0}

0 ∈ (−ẽq + αMq̂ −D(z̄)−D′(z̄)((û− ẽu, p̂, q̂, λ̂− ẽλ, π̂)− z̄))T +NQad(q).

The last system is with

eu = (ū · ∇)ẽu + (ẽu · ∇)ū,

e1
λ = (∇ẽu)T λ̄− (ẽu · ∇)λ̄+ (∇ū)T ẽλ − (ū · ∇)ẽλ,

e2
λ = −K(ẽu, 0),

Neq = −ẽq − D̃

(6.2.2)

and
D̃i =

∫
Γc

(ν
∂ẽλ
∂n

+ (ū · n)ẽλ + (ẽu · n)λ̄+ (ū · n)λ̄) ei ds,

D̂i =

∫
Γc

(ν
∂λ̂

∂n
− π̂n + (ū · n)λ̂+ (û · n)λ̄) ei ds

N ∈ Nl, Ni =

∫
Γc

ei ds

for i = 1, . . . , l equivalent to

0 ∈ −û+ S(−(ū · ∇)û− (û · ∇)ū+ (ū · ∇)ū) +Gc(q̂) + S(eu) + {0}
0 ∈ −λ̂+ S(e1

λ) +Gw(e2
λ) +Gw(~el + K̃(û, p)~ed) + {0}

+ S(−(∇û)T λ̄+ (û · ∇)λ̄− (∇ū)T λ̂+ (ū · ∇)λ̂+ (∇ū)T λ̄− (ū · ∇)λ̄)

0 ∈ (Neq + αMq̂ − D̂)T +NQad(q).
(6.2.3)
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The system (6.2.3) corresponds to the following system of the perturbed
state equation

−ν∆û+ (ū · ∇)û+ (û · ∇)ū+∇p = (ū · ∇)ū+ eu in Ω

div û = 0 in Ω

û =
l∑

i=1

eiq̂i on Γc,

û = 0 on Γ \ Γc,

(6.2.4)

the perturbed adjoint equation

−ν∆λ̂+ (∇ū)T λ̂− (ū · ∇)λ̂+∇π = −(∇û)T λ̄+ (û · ∇)λ̄+ e1
λ

+ (∇ū)T λ̄− (ū · ∇)λ̄ in Ω

div λ = 0 in Ω

λ = ~el + K̃(û, p)~ed + e2
λ on Γw

λ = 0 on Γ \ Γw
(6.2.5)

and the associated variational inequality

(αMq̂ − D̂ +Neq)
T (q − q̄) ≥ 0 ∀q ∈ Qad. (6.2.6)

Now, we see that this is the optimality problem of the following pertubated
linear-quadratic optimization problem (Pe), where we write (u, p, q, λ, π) =
(û, p̂, q̂, λ̂, π̂) for simplicity:

min Je(u, q) :=

∫
Γw

(
∂u

∂n
− pn

)
· ~el ds+

c

2

∫
Γw

(
∂u

∂n
− pn

)
· ~ed ds−D0

2

+

∫
Γc

|Hc(q)|2 ds+

∫
Ω

euu+ e1
λλ dx+

∫
Γc

eqHc(q) ds

+

∫
Γw

e2
λλ ds+ b(u− ū, u− ū, λ̄)

subject to the pertubated Navier-Stokes equations

−ν∆u+ (ū · ∇)u+ (u · ∇)ū+∇p = (ū · ∇)ū+ eu in Ω

div u = 0 in Ω

u =
l∑

i=1

eiqi on Γc,

u = 0 on Γ \ Γc,

(6.2.7)
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and the control constraints
q ∈ Qad.

Let us now consider e := (eu, e
1
λ, e

2
λ, eq) ∈ W := H2(Ω) ×H2(Ω) × R × Rl.

Then, we obtain due to (6.2.2)

‖e‖W ≤ C‖ẽ‖W̃

with
‖e‖W = ‖eu‖H2(Ω) + ‖e1

λ‖H2(Ω) + |e2
λ|+ |eq|,

‖e‖W = ‖ẽu‖H2(Ω) + ‖ẽλ‖H2(Ω) + |ẽq|.

6.3 A modified problem
Because there is no convexity of the cost functional Je in directions not
included in (SSC), we need

Q̃ad := {q̃ ∈ Qad : q̃ = q̄ on A}

to not allow changes of the control function q on the active sets. Let us
denote the new problem by (P̃e) consisting of the cost functional Je, the
state equation (6.2.7) and the control constraint q ∈ Q̃ad. Finding a solution
for the problem (P̃e) is equivalent to finding a solution for the linearized and
perturbed generalized equation (6.2.1), with

T (z) = ({0}, {0},NQ̃ad(q))
T .

First, we investigate the existence of a solution for the perturbed linear-
quadratic optimal control problem (P̃e). Then, we want to prove that the
optimal control of (P̃e) is Lipschitz-continuous with respect to the perturba-
tion e. The idea is to investigate strong regularity of the generalized equation

e ∈ F (z) + (0, 0,NQ̃ad(q)) (6.3.1)

and then transfer the result to the original problem.

6.3.1 Existence of a solution

The next theorem proves the solvability of (P̃e).

Theorem 6.6. Assume that z̄ = (ū, p̄, q̄, λ̄, π̄) satisfy the optimality system
and the coercivity condition (SSC ′′) at the begin of this chapter. Then (P̃e)
admits a unique optimal control ūe.
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Proof. Let c ∈ R be a generic constant. Denoting the Lagrangian belonging
to (P̃e) by Le, we derive

Leqq(q) = Lqq(q̄) (6.3.2)
for all q, because the perturbation appears only linear.

Taking q1, q2 ∈ Q̃ad with associating u1, u2 of (6.2.7), the pair (u1−u2, q1−
q2) fits to the assumption of (SSC ′′) and we obtain

(q1 − q2)Leqq(q)(q1 − q2) = (q1 − q2)Lqq(q̄)(q1 − q2) > 0.

for q1 6= q2. Because of this, the problem (P̃e) is convex on Q̃ad. Thus, (P̃e)
is uniquely solvable as a linear-quadratic optimization problem with strongly
convex cost functional with modifications described in Section 3.3. We denote
the unique solution by ūe.

For more details, see [104].

6.3.2 Lipschitz stability

We still need to prove the Lipschitz-continuity of the perturbation to solution
mapping e 7→ (ue, ge, λe) of (P̃e) to show strong regularity.

Theorem 6.7. Let (z̄) fulfill the coercivity condition (SSC ′′). Then the
solution mapping e := (eu, e

1
λ, e

2
λ, eq) 7→ ze = (ue, pe, qe, λe, πe) is Lipschitz-

continuous from W to Z.

Proof. Let z1, z2 be two elements of Z and qi, i = 1, 2 be the optimal control
functions of the optimization problem (P̃e) with the associated states ui and
adjoints λi. Let us furthermore define the differences z := z1−z2, q := q1−q2,
u := u1 − u2 and λ := λ1 − λ2.

So, the variational inequality with the constraint qi ∈ Q̃ad looks as

(αMqi − D̂(ui, λi, πi)−Neq,i)T (q − qi) ≥ 0, ∀q ∈ Q̃ad. (6.3.3)

Testing this inequality with q2 for i = 1 and q1 for i = 2 and adding both,
we derive

D̂(u, λ, π)T q + (Neq)
T q ≥ (αMq)T q. (6.3.4)

The difference u is the weak solution of the state equation

−ν∆u+ (ū · ∇)u+ (u · ∇)ū+∇p = eu in Ω

div u = 0 in Ω

u = g :=
l∑

j=1

ejqj on Γc,

u = 0 on Γ \ Γc,

(6.3.5)
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Testing (6.3.5) with (λ, π) = (λ1 − λ2, π1 − π2), we obtain

a(u, λ)− (ν
∂u

∂n
− pn, λ)L2(Γ) + (p, div λ)L2(Ω)

+〈(ū · ∇)u+ (u · ∇)ū, λ〉(H1(Ω))′,H1(Ω) = (eu, λ)L2(Ω)

(div u, π)L2(Ω) = 0

τΓcu = g

(6.3.6)

and testing the adjoint

−ν∆λ+ (∇ū)Tλ− (ū · ∇)λ+∇π = −(∇u)T λ̄+ (u · ∇)λ̄+ e1
λ in Ω

div λ = 0 in Ω

λ = ~el + K̃(u, p)~ed + e2
λ on Γw

λ = 0 on Γ \ Γw
(6.3.7)

with (u, p) = (u1 − u2, p1 − p2), we get

a(λ, u)− (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, u)L2(Γ)

+ 〈(∇ū)Tλ− (ū · ∇)λ, u〉(H1(Ω))′,H1(Ω)

+ 〈(∇u)T λ̄− (u · ∇)λ̄, u〉(H1(Ω))′,H1(Ω) + (π, div u)L2(Ω) = (e1
λ, u)L2(Ω)

(6.3.8a)
(div λ, p)L2(Ω) = 0 (6.3.8b)

τΓwλ = ~el + K̃(u, p)~ed + e2
λ. (6.3.8c)

The systems (6.3.6) and (6.3.8) are equivalent to

a(u, λ)− ν(
∂u

∂n
− pn, ~el + K̃(u, p)~ed + e2

λ)L2(Γw)

+ 〈(ū · ∇)u+ (u · ∇)ū, λ〉(H1(Ω))′,H1(Ω) = (eu, λ)L2(Ω)

and

a(λ, u)− ν(
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc)

+ 〈(ū · ∇)u+ (u · ∇)ū, λ〉(H1(Ω))′,H1(Ω)

+ 〈(∇u)T λ̄− (u · ∇)λ̄, u〉(H1(Ω))′,H1(Ω) = (e1
λ, u)L2(Ω).

Considering them with

〈(∇u)T λ̄− (u · ∇)λ̄, u〉(H1(Ω))′,H1(Ω) = 〈(u · ∇)u, λ̄〉(H1(Ω))′,H1(Ω)
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we obtain the equality

(eu, λ)L2(Ω)+(ν
∂u

∂n
− pn, ~el + K̃(u, p)~ed + e2

λ)L2(Γw)

= (e1
λ, u)L2(Ω) − 〈(u · ∇)u, λ̄〉(H1(Ω))′,H1(Ω)

+ (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc)

or equivalent

〈(u · ∇)u, λ̄〉(H1(Ω))′,H1(Ω) − K̃(u, p)(ν
∂u

∂n
− pn, ~ed)L2(Γw)

= (e1
λ, u)L2(Ω) − (eu, λ)L2(Ω) − (ν

∂u

∂n
− pn, e2

λ)L2(Γw)

+ (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc)

− (ν
∂u

∂n
− pn, ~el)L2(Γw).

(6.3.9)

Let us additionally consider ũ as a weak solution of (6.3.5) with q = 0. Thus,
(u − ũ, q) fits to the assumption of the coercivity condition (SSC ′′), due to
qi = (qe)1,i − (qe)2,i = (q̄e)i − (q̄e)i = 0 on A by (qe)1, (qe)2 ∈ Q̃ad and (u− ũ)
is the solution of the associated at q̄ linearized state equation.

Furthermore, we obtain

0 < Lvv(z̄)[u− ũ, q]2

= Lqq(z̄)[q]2︸ ︷︷ ︸
∗1

+Luu(z̄)[u]2︸ ︷︷ ︸
∗2

−2Luu(z̄)[u, ũ]2︸ ︷︷ ︸
∗3

+Luu(z̄)[ũ]2︸ ︷︷ ︸
∗4

. (6.3.10)

Adding the terms ∗1 and ∗2 leads to

Lqq(z̄)[q]2 + Luu(z̄)[u]2 = α‖g‖2
L2(Γc)

− 〈(u · ∇)u, λ̄〉(H1(Ω))′,H1(Ω)

+ K̃(u, p)(ν
∂u

∂n
− pn, ~ed)L2(Γw)

and with (6.3.9) and ‖g‖L2(Γc) = (Mq)T q to

Lqq(z̄)[q]2 + Luu(z̄)[u]2 = α(Mq)T q + (eu, λ)L2(Ω) − (e1
λ, u)L2(Ω)

+ (ν
∂u

∂n
− pn, e2

λ + ~el)L2(Γw)

− (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc).
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The inequality (6.3.4) leads to

Lqq(z̄)[q]2 + Luu(z̄)[u]2 ≤ (eu, λ)L2(Ω) − (e1
λ, u)L2(Ω) + (Neg)

T q

+ (ν
∂u

∂n
− pn, e2

λ + ~el)L2(Γw) + D̂(u, λ, π)T q

− (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc)

≤ ‖e1
λ‖L2(Ω)‖u‖L2(Ω) + ‖eu‖L2(Ω)‖λ‖L2(Ω) + (Neg)

T q

+ ‖ν ∂u
∂n
− pn‖L2(Γc)

(‖e2
λ‖L2(Γc)

+ ‖~el‖L2(Γc)
)

− (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc)

+ (ν
∂λ

∂n
− πn + (ū · n)λ+ (u · n)λ̄, g)L2(Γc)

≤ ‖e‖W (‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖λ‖H2(Ω)) + (Neg)
T q.

(6.3.11)
We get

‖ũ‖H2(Ω) + ‖p̃‖H1(Ω) ≤ c‖eu‖H2(Ω) ≤ c‖e‖W

because ũ is the weak solution of the at (ū, ḡ) linearized Navier-Stokes equa-
tions, similar to the regularity Assumption of non-singularity 2.25. Another
assertion is that we obtain by Theorem 2.11 that if (u, p) is the solution of the
nonhomogenous Stokes system (2.2.1) with a sufficiently smooth boundary,
then we get

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ c(‖f‖L2(Ω) + ‖g‖H3/2(Γc)
).

Transfering this over to the linearized Navier-Stokes equations (6.3.5) with
g = 0, we obtain

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ c(‖ − (ū · ∇)u− (u · ∇)ū+ eu‖L2(Ω))

≤ c(‖(ū · ∇)u+ (u · ∇)ū‖L2(Ω) + ‖eu‖L2(Ω))

≤ c(‖u‖H2(Ω) + ‖eu‖L2(Ω))

≤ c(‖eu‖L2(Ω))

and this also leads to

‖ũ‖H2(Ω) + ‖p̃‖H1(Ω) ≤ c‖e‖W .
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Adding the terms ∗3 and ∗4 of (6.3.10), we obtain

|2Luu(z̄)[u, ũ]2|+ |Luu(z̄)[ũ]2| ≤ 2|〈(u · ∇)ũ+ (ũ · ∇)u, λ̄〉(H1(Ω))′,H1(Ω)|
+ |〈2(ũ · ∇)ũ, λ̄〉(H1(Ω))′,H1(Ω)|

+ K̃(ũ, p̃)(K̃(ũ, p̃) + K̃(u, p))

≤ 2‖u‖1/2L2(Ω)
‖u‖1/2H2(Ω)

‖ũ‖H1(Ω)‖λ̄‖L2(Ω)

+ c‖ũ‖H2(Ω)‖~ed‖L2(Ω) + c‖p̃‖H2(Ω)‖~ed‖L2(Ω)

+ ‖ũ‖1/2L2(Ω)
‖ũ‖1/2H2(Ω)

‖ũ‖H1(Ω)‖λ̄‖L2(Ω)

+ (‖u‖H2(Ω) + ‖p‖H1(Ω))(‖ũ‖H2(Ω) + ‖p̃‖H1(Ω))

+ (‖ũ‖H2(Ω) + ‖p̃‖H1(Ω))(‖ũ‖H2(Ω) + ‖p̃‖H1(Ω))

(6.3.12)
with similar arguments to Lemma 2.14. Furthermore, this leads to

|2Luu(z̄)[u, ũ]2|+ |Luu(z̄)[ũ]2| ≤ c((‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖e‖W )‖e‖W + ‖e‖W )

≤ c‖e‖W (‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖e‖W + 1).

(6.3.13)
Let us now summarize (6.3.10)-(6.3.13) to:

0 < c‖e‖W (‖e‖W + ‖u‖H2(Ω) + ‖p‖H1(Ω)

+ ‖λ‖H2(Ω) + ‖π‖H1(Ω)) + (Neq)
T q.

(6.3.14)

Because (6.3.5) and (6.3.7) are at (ū, ḡ) linearized Navier-Stokes equations,
we obtain from the non-singularity assumption, similar to the Definition 2.25:

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ c(‖g‖L2(Γc)
+ ‖e‖W ) ≤ c(|q|+ ‖e‖W ),

‖λ‖H2(Ω) + ‖π‖H1(Ω) ≤ c(‖~el + K̃(u, p)~ed + e2
λ‖L2(Γw) + ‖u‖H2(Ω) + ‖e1

λ‖L2(Ω))

≤ c(‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖e1
λ‖L2(Ω) + +‖e2

λ‖L2(Γw))

≤ c(‖g‖L2(Γc)
+ ‖e‖W ) ≤ c(|q|+ ‖e‖W ).

(6.3.15)
The inequality (6.3.14) yields to

0 < c‖e‖W (‖e‖W + ‖g‖L2(Γc))

≤ c‖e‖2
W +

δ

2
‖g‖2

L2(Γc)
≤ c(|q|+ ‖e‖W )

and proves Lipschitz-continuity of e 7→ q from W to Rl. All this leads to a
Lipschitz continuity of e 7→ (u, q, λ) fromW to Z = H2(Ω)×Rl×H2(Ω).

84



6.4. STRONG REGULARITY OF THE ORIGINAL PERTURBED
PROBLEM

6.4 Strong regularity of the original perturbed
problem

Now, we return to the original perturbed problem (Pe). To prove strong reg-
ularity of the generalized equation (6.1.3), we have to search for a solution
qe = q(e) in Qad. The first idea is to take qe ∈ Q̃ad, solving (P̃e). We will
show in this section that qe is also a solution of (Pe) for a sufficiently small
perturbation e ∈ W . Therefore, we have to investigate the optimal control
qe on the active set A. In this section, we closely follow again Wachsmuth
and want to refer to [109, Chapter 5, Section 4], for the ideas of the proofs
of the following theorems.

Lemma 6.8. Let z̄ = (ū, p̄, q̄, λ̄, π̄) fulfill the coercivity condition (SSC ′′) and
let qa, qb ∈ Rl. Then exists ρe > 0 and σ > 0 such that the optimal control
function qe of (P̃e) is active for all e ∈ W with ‖e‖W ≤ ρe. This means

(αMqe − D̂ +Neq)
T
i >

σ

2
on A+,

(αMqe − D̂ +Neq)
T
i < −

σ

2
on A−

(6.4.1)

and sign(αMq − D̂ +Neq)
T
i = sign(αMq̄ − D̂)Ti on A.

Proof. Theorem 6.7 garantuees that the mapping e 7→ (ue, pe, qe, λe, πe) is
Lipschitz continuous fromW to Z. Furthermore, it is easy to see that D̂(z) =∫

Γc
(ν∂λ/∂n − πn + (ū · n)λ + (u · n)λ̄) ei ds is Lipschitz continuous from

L2(Ω) × L2(Ω) × Rl × L2(Ω) × L2(Ω) to Rl. Due to qe ∈ Rl, there exists a
σ > 0 with

|αMq̄ − D̂(z)| > σ.

Considering i ∈ A+, we obtain

σ < (αMq̄ − D̂(z))Ti

= (αMq̄ − D̂(z))Ti − (αMq̄ − D̂(z) +Neq)
T
i + (αMq̄ − D̂(z) +Neq)

T
i

≤ c‖e‖W + (αMq̄ − D̂(z) +Neq)
T
i .

Taking ρe sufficiently small yields

(αMq̄ − D̂(z) +Neq)
T
i >

σ

2

Analogously leads i ∈ A− to

(αMq̄ − D̂(z) +Neq)
T
i < −

σ

2
.

85



CHAPTER 6. CONVERGENCE OF THE SQP-METHOD

An important consequence is that the control function qe even satisfies
the variational inequality based on the admissible set Qad and not only for
Q̃ad ⊂ Qad.

Lemma 6.9. With the assumptions and ρe as in the last Lemma 6.8, the
control function qe associated to a perturbation e, fulfilling ‖e‖W ≤ ρe, satis-
fies

(αMqe − D̂ +Neq)
T (q − qe) ≥ 0 ∀q ∈ Qad.

Proof. Let q ∈ Qad. Then we are able to split (αMqe − D̂ + Neq)
T (q − qe)

into

(αMqe − D̂ +Neq)
T (q − qe) =

∑
i∈A+

(αMqe − D̂ +Neq)
T
i (q − qe)i

+
∑
i∈A−

(αMqe − D̂ +Neq)
T
i (q − qe)i

+
∑
i/∈A

(αMqe − D̂ +Neq)
T
i (q − qe)i

with qe ∈ Q̃ad. The third sum is nonnegative due to the fact that it is part
of the optimality system of (P̃e).

Additionally, we have

qe = q̄ = qa on A+,

qe = q̄ = qb on A−.

Because of ‖e‖W ≤ ρe, Lemma 6.8 leads to

(αMqe − D̂ +Neq)
T
i >

σ

2
on A+,

(αMqe − D̂ +Neq)
T
i < −

σ

2
on A−.

Thus, we obtain

(αMqe − D̂ +Neq)
T (q − qe) ≥ 0 ∀q ∈ Qad.

Remark 6.10. The triple (ue, ge, λe) of Theorem 6.9 fulfills the optimality
system of the optimization perturbed problem (Pe) which is equivalent to the
linearized and perturbed generalized equation (6.2.1).

The next theorem shows with the help of the equality (6.3.2) that (ue, qe, λe)
minimizes the optimization problem (Pe).
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Theorem 6.11. Under the same assumptions as in the two last lemma, there
exist ρe, ρq > 0 such that the control qe belonging to a perturbation e ∈ W
satisfying ‖e‖W ≤ ρe is locally optimal for the optimal control problem (Pe)
and fulfills

Je(ue, qe) ≤ Je(u, q)

for all q ∈ Qad fulfilling |q − qe| ≤ ρq, where u and ue are the weak solutions
of (6.2.4) associated to q and qe, respectively.

The proof is very similar to [109, Theorem 5.15].
Now, we have shown the existence of a solution of the linearized and

perturbed equation (6.2.1).
Theorem 6.11 shows that qe is the unique optimal solution of Problem

(Pe) in Bρq(q̄) with perturbations e in Bρe(0). By Theorem 6.7 uq and λq
are in Bcuρe(ū) and Bcλρe(λ̄) with the Lipschitz-constants cu and cλ given by
Theorem 6.7. This leads to the unique solvability of (6.2.1) in Bcuρe(ū) ×
Bρq(q̄)× Bcλρe(λ̄) for perturbations e in Bρe(0).

This yields the strong regularity of the generalized equation (6.1.3).
The investigations of this chapter have shown that we only find a local

solution of the linearized subproblems of the SQP-method in a neighborhood
of the reference solution v̄ = (ū, q̄). The idea is now to modify Qad to

Qρ
ad := Qad ∩ {h ∈ Rl : |h− q̄| ≤ ρ}

to have the solution of the linearized subproblems in a close neighborhood of
the reference solution. See [104] for more details.

Altogether, it follows the local convergence of the SQP-method, see The-
orem 6.4.

Theorem 6.12. Let z̄ ∈ Z fulfill the coercivity condition (SSC ′′). Then
exist ρ > 0 such that the SQP-method with control constraint Qρ

ad generates
a uniquely determined sequence (uk, qk, λk), qk ∈ Qρ

ad for every starting point
(u0, q0, λ0), with q0 ∈ Qρ

ad and we obtain

‖uk+1 − ū‖H2(Ω) + |qk+1 − q̄|+ ‖λk+1 − λ̄‖H2(Ω)

≤ c(‖uk+1 − ū‖2
H2(Ω) + |qk+1 − q̄|2 + ‖λk+1 − λ̄‖2

H2(Ω)).
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Chapter 7

The nonstationary case

After investigating the steady-state problem, we want to focus in this chap-
ter on the optimization problem subject to the nonstationary Navier-Stokes
equations. A simplified model, similar to the stationary case, could look as
follows. We want to minimize the negative lift

min
u,g

J(u, g) := −
∫∫
Σ

(
ν
∂u

∂n
− pn

)
· ~el dxdt+

α

2
‖g‖L2(Σ)

subject to the nonstationary Navier-Stokes equations describing the motion
of the fluid around the body

ut + ν∆u+ (u · ∇)u+∇p = f on Q,
div u = 0 on Q,

u = g on Σ,

u(0) = u0 on Ω

and the control constraint

g ∈ Gad,

where Q := Ω × (0, T ) with its boundary Σ := ∂Q = Γ × (0, T ) with a
fixed time T . But in contrast to the stationary case, we allow high Reynolds
numbers in the nonstationary situation hand consider a problem closer to
the real setting of the high-lift configuration, see e.g. [19, 89, 98].

In this situation, we have to deal with turbulence’s, which we simulated
by a k-ω-Wilcox98 model, see [113], where the equations for k and ω are
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given by:

u
∂u

∂x
+ v

∂u

∂y
=

∂

∂y
[(ν + νT )

∂u

∂y
]

u
∂k

∂x
+ v

∂k

∂y
= νT (

∂u

∂y
)2 − β∗ωk +

∂

∂y
[(ν + σ∗νT )

∂k

∂y
]

u
∂ω

∂x
+ v

∂ω

∂y
= α

ω

k
νT (

∂u

∂y
)2 − βω2 +

∂

∂y
[(ν + σ∗νT )

∂ω

∂y
]

νT = α∗
k

ω
,

(7.0.2)

where u and v are velocity components in the streamwise x and normal y
directions, ν is the kinematic molecular viscosity, νT is the kinematic eddy
viscosity and β, β∗, σ, σ∗ are parameters, which are defined in [113].

Due to the high dimension of the discretized equations, the computing
times for any forward solution of the model are extremely large so that a
mathematical optimization of the periodic actuation is fairly unrealistic. In
[19], a generic high-lift configuration was investigated and one forward so-
lution took about 48 hours. In the case of the SCCH configuration, the
computation time was nearly twice that number.

Let us mention that in this nonstationary case, we want to consider a
special example with the following setting.

Setting 7.1. We consider the incompressible two-dimensional flow over the
swept constant chord half (SCCH) high-lift configuration, see Figure 7.1. The
chord length c is denoted by Lref = 1.275 and the inflow by u∞ = 1. The
chord length is the length of the wing in the flow direction. The Reynolds
number is Re = u∞c/ν, where ν is the kinematic viscosity of the fluid. The
leading edge slat deflection angle is 26.5°, the flap deflection is 37°and the
angle of attack of the wing is 6°. The periodic actuation is introduced by a
zero-net-mass-flux actuator on a small slit on the flap, where the flow fully
separates. The actuation velocity is

g(t) = B cos(Ωat), (7.0.3)

where Ωa = 2πSta is the angular actuation frequency, B the actuation ampli-
tude, Sta = fac/u∞ the Strouhal number and fa is the actuation frequency.
Analogously, we define Stn = fnc/u∞ with the vortex-shedding frequency fn.
The actuation intensity is characterized by the dimensionless coefficient

Cµ =
H

c

(
B

u∞

)2
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with the slot width H = 0.001238cfl and the relative chord length cfl = 0.254c.
The full k − ω Wilcox98 model was solved by unsteady Reynolds-averaged
Navier-Stokes (URANS) equations with the ELAN code1. The with cfl non-
dimensionalized natural Strouhal number is Stnfl = fncfl/u∞ = 0.32. The
actuation is described by a momentum coefficient of Cµ = 405× 10−5 and an
actuation frequency of Stafl = 0.6.

Figure 7.1: The SCCH high-lift configuration, where the periodic excitation
is implemented on the flap.

We think that a model reduction is advisable, because of the reasons
above. Our goal is to establish a reduced-order model (ROM) as a basis for
our optimization problem.

7.1 Model reduction
The topic of model reduction is currently in great demand by engineers. A
widely used method is POD [4, 56, 62, 63, 111]. In the case of the high-lift
configuration, the application of standard POD does not align to the target
of robust dynamical least-order models for the real flow. To establish the

1Developed at the Computational Fluid Dynamics and Aeroacoustics Group (Professor
F. Thiele) at the TU Berlin.
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reduced-order model (ROM), the computed POD basis has to be inserted as
a Galerkin basis in the full Wilcox98 model, see (7.0.2). The associated
implementation would be a time consuming task.

There were several approaches to deal with these problems, e.g. an ex-
tension of POD to data compression of multiple operation points, see [59]
for sequential POD or [93] for DPOD. We follow an alternative approach
suggested in [66, 74] of a canonical reduction with parameter identification.
Here, a very small system of nonlinear ODEs is adapted to the previously
computed flows in the actuated and nonactuated case. This small system is
easily tractable by optimization.

In the next chapter, we will go into details of this technique, present
our modification and report about first experiences in the simplified two-
dimensional Setting 7.1. Our numerical results are promising for future op-
timization tasks.

We also refer to [96] for a similar approach.
Let us first briefly introduce the proper orthogonal decomposition (POD),

which we will need to establish the reduced-order model.

7.2 Proper orthogonal decomposition POD

This section is based on the theory in [105, 106, 108, 107, 111]. In this section,
we want to introduce the proper orthogonal decomposition (POD) and the
way to calculate the POD basis by minimizing a least-square error formula.

There are two cases, the infinite-dimensional and the finite-dimensional
one, of the POD basis. We will consider the finite-dimensional one, because
we want to concentrate on real computations and there we don’t have the
whole trajectory u(t). Therefore, we get an ensemble of snapshots. After-
wards, it is possible to prove that the POD basis is the best orthogonal
system in the ensemble capturing more kinetic energy than any other one
having the same basis number.

So, let û(ti) ∈ V be the N snapshots computed by the full dynamical
system with the Setting 7.1 at given times ti with i = 1, . . . , N , 0 = t1 ≤
t2 ≤ . . . ≤ tN−1 ≤ tN = T and N ∈ N and at least one snapshot has to be
non-zero. In the next chapter, we apply the POD method for both cases, the
natural and the actuated one. Let us just explain the method for one case.
We define ûi := û(ti), i = 1, . . . , N .

Furthermore, we define VN as the span of the N snapshots

VN := span{û(t1), . . . , û(tN)}
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with 1 ≤ dimVN ≤ N .
Let {Φk}Nk=1 denotes an orthonormal basis for VN , which has still to be

computed, then each snapshot û(ti), i = 1, . . . , N , can be expressed by

û(ti) =
N∑
k=1

〈û(ti),Φk〉V Φk for i = 1, . . . , N.

The idea is to expect that only some of the orthonormal basis func-
tions {Φk}Nk=1 keep most of the kinetic energy so that they can represent
the structure of the snapshots as good as possible. Let thereforeM ∈ R with
0 < M ≤ N be given.

Mathematically, we can formulate the problem of finding the orthonormal
system {Φk}Mk=1 by

min
Φk

N∑
j=1

αj‖û(tj)−
M∑
k=1

〈û(tj),Φk〉Φk‖2
V

subject to 〈Φi,Φj〉V = δij, 1 ≤ i, j ≤M

(7.2.1)

where αi’s stand for the trapezoidal weights

α1 =
t2 − t1

2
, αi =

ti+1 − ti−1

2
for 2 ≤ i ≤ N − 1, αn =

tN − tN−1

2
.

For the next remark, see [111] Chapter 3.

Remark 7.2.

• The trapezoidal approximation for the integral

I(u) =

T∫
0

‖û(t)−
M∑
k=1

〈û(t),Φk〉Φk‖2
V dt

is

In(u) =
N∑
j=1

αj‖û(tj)−
M∑
k=1

〈û(tj),Φk〉Φk‖2
V

for all u ∈ C([0, T ], V ) and it follows that lim
n→∞

In(u) = I(u).

• The least-square problem is equivalent to the largest mean square pro-
jection of the snapshot, namely

max
Φk

N∑
j=1

αj

N∑
k=1

|〈û(tj),Φk〉V |2

subject to 〈Φi,Φj〉V = δij, 1 ≤ i, j ≤M.
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Consider the linear mapping FN : RN → VN , ek 7→ ûk := û(tk), where
ek denotes the k− th canonical basis vector of RN and ûk are the snapshots.
Considering the following proposition, we can see that RN corresponds with
V and VN with W . For a proof of the following singular value decomposition
(SVD), we refer for instance to [105].

Proposition 7.3. Let F : V → W be a linear operator, where V and W
denote two finite-dimensional real Hilbert spaces with inner products 〈·, ·〉V
and 〈·, ·〉W and dimV = m and dimW = n with m ≥ n. Then there exist
real numbers σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 and orthonormal bases {vk}nk=1 of V
and {wk}nk=1 of W , such that

F (vk) = σkwk, F
∗(wk) = σkvk,

for k = 1, · · · , n, where the adjoint operator F ∗ of F is defined by the follow-
ing definition.

Definition 7.4. Let {V, 〈·, ·〉V } and {W, 〈·, ·〉W} be real Hilbert spaces and
F : V → W a linear operator. We call F ∗ the adjoint operator of F if

〈w,Fv〉W = 〈F ∗w, v〉V

for all w ∈ W and all v ∈ V . F is called self-adjoint, if

F ∗ = F.

Then, we obtain with 〈v, w〉RN =
N∑
j=1

αkvkwk for all v ∈ RN

FN(v) =
N∑
j=1

αj〈v, ej〉RNFN(ej) =
N∑
j=1

αj〈v, ej〉RN ûj. (7.2.2)

Assuming F∗N as the adjoint of FN , then follows

〈FN(v),Φ〉V = 〈
N∑
k=1

αk〈v, ek〉RN ûk,Φ〉V

=
N∑
k=1

αk〈ûk,Φ〉V 〈ek, v〉RN =
N∑
k=1

αk〈ûk,Φ〉V vk

= 〈

 〈û1,Φ〉V
...

〈ûN ,Φ〉V

 , v〉RN
94



7.2. PROPER ORTHOGONAL DECOMPOSITION POD

for all Φ ∈ VN and so, we can interpretate the adjoint operator as

F∗NΦ =

 〈û1,Φ〉V
...

〈ûN ,Φ〉V

 (7.2.3)

for all Φ ∈ VN . The idea is now to define RN := FNF∗N and KN :=
F∗NFN . Together with (7.2.2) and (7.2.3), we derive with 〈ûk,FN(·)〉V =

〈

 〈ûk, û1〉V
...

〈ûk, ûN〉V

 , ·〉RN and the following remark, see also [111], page 25,

RN =
N∑
j=1

αj〈ûj, ·〉V ûj

KN =

 〈û1,FN(·)〉V
...

〈ûN ,FN(·)〉V

 .
Remark 7.5.

• The operator RN is bounded, self-adjoint and non-negative.

• By Hilbert-Schmidt theory exists an orthonormal basis {Φk}Nk=1 and
non-negative real numbers {λk}Nk=1 such that

RNΦi = λiΦi and λ1 ≥ λ2 ≥ . . . ≥ λN .

By the Lagrangian theory it follows that the first-order optimality condi-
tion for the least-square problem (7.2.1) is

RNΦi = λiΦi and λ1 ≥ λ2 ≥ . . . ≥ λN . (7.2.4)

For more details, see [106]. We are able to obtain the orthonormal basis
{Φk}Nk=1 by solving (7.2.4), the solution of (7.2.1).

Additionally, we have the following theorem to solve (7.2.1) by choosing
a fixed M .

Theorem 7.6. Let λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 be the non-negative eigenvalues
and {Φk}Nk=1 the associating eigenvectors of RN . Let M � N , then {Φk}Nk=1

is orthonormal with rank M and (7.2.1) satisfies
N∑
j=1

αj‖û(tj)−
M∑
k=1

〈û(tj),Φk〉Φk‖2
V =

N∑
j=M+1

λj.
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For a proof, we refer to [111].
We see by Proposition 7.3 that the two orthonormal systems of the finite-

dimensional spaces can be transformed into the other one by a linear mapping
or its adjoint, if they are known.

Additionally, we find an orthonormal basis {vk}Nk=1 in RN such that for
k = 1, . . . , N

KN(vk) = λkvk.

Now, we are able to determine the optimal orthonormal basis {Φk}Mk=1 of
(7.2.1) in VN by the linear mapping FN

FN(vk) =
√
λkΦk, i.e. Φk =

1√
λk
FN(vk)

for a fixed M , k = 1, . . . ,M .
In the following, we consider the problem of finding the so-called ’modes’

{ui(x)}Mi=0 so that the Galerkin approximations, which are defined with the
corresponding mean flows u0(x) = 1/N

∑N
i=1 ûi(x) by

u[M ](x, t) :=
M∑
i=0

ai(t)ui(x),

with a0 ≡ 1 and ai(t) := (u− u0, ui)Ω , minimizes the energy-related error

χu :=
1

N

N∑
i=1

‖ûi(·)− u[M ](·, ti)‖L2(Ω)

compared to all other bases {wi(x)}Mi=1 and corresponding Galerkin approx-
imations, i.e.

χu ≤ χw.

For a homogeneous fluid and an incompressible flow, the flow velocities
u(x, t), having components ui in the xi coordinate direction, can be split-
ted into a mean part u(x) and a fluctuating part u′(x, t) using the so-called
Reynolds decomposition:

ui = ui + u′i.

Now, u0(x) represents the the mean part u(x) and
∑M

i=1 ai(t)ui(x) without
u0(x) the fluctuation part u′(x, t) of the Reynolds decomposition.

This theory leads to the following algorithm to calculate the POD modes
and coefficients.

Algorithm 7.7.
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1. Compute the averaged (mean) flow

u0(x) :=
1

N

N∑
i=1

ûi(x).

We denote by ũ = u− u0 the fluctuation of u from this mean flow.

2. Compute the correlation matrix C ∈ RN×N

Ci,j =
1

N
(ũi, ũj).

3. Compute the eigenvalues λi and the set of normalized eigenvectors ~vi,
i = 1, . . . , N of C with :

C~vi = λi~vi. (7.2.5)

4. Compute the POD modes

ui :=
1√
Mλi

N∑
i=1

~viũi.

5. Compute the Fourier coefficients

ai(tj) := (ũj, ui)Ω.

For the theory in the infinite-dimensional case and the optimality of the
pod basis system, we refer to [106, 111].

Let us now present the POD modes for the Setting 7.1.
First, for the unactuated system, N = 567 snapshots ûni (x) := ûn(x, ti)

were determined at equidistant discrete times ti, i = 1, · · · , N , covering
6 convective time units. Analogously, N snapshots ûai (x) := ûa(x, ti), i =
1, · · · , N , are computed for the actuated system by a URANS simulation with
a Wilcox98 turbulence k-ω-model and a Reynolds number of 1.756 · 106.

We chose a fairly large actuation amplitude B for the actuated case to get
significant differences between the frequencies of the operating conditions.

The POD method for our Setting 7.1 yields the eigenvalues in Figure 7.2,
where the typical pairs of eigenvalues are demonstrated. In Figure 7.2, one
can also see that the first pair of modes contains the most energy. Due to
this reason, we consider only the first pair in the next chapter to introduce
the reduced-order model.

The mean flows is presented in Figure 7.3, the first mode in Figure 7.4
and the second mode is presented in Figure 7.5.
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Figure 7.2: Eigenvalues of the natural (top) and the actuated (bottom) flow.
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7.2. PROPER ORTHOGONAL DECOMPOSITION POD

Figure 7.3: Mean flow of the natural un0 = (un0 v
n
0 )T (un0 : top left, vn0 : bottom

left) and the actuated ua0 = (ua0 v
a
0)T (ua0: top right, va0 : bottom right) case.
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Figure 7.4: The first mode of the natural un1 = (un1 vn1 )T (un1 : top left, vn1 :
bottom left) and the actuated ua1 = (ua1 v

a
1)T (ua1: top right, va1 : bottom right)

case.
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Figure 7.5: The second mode of the natural un2 = (un2 vn2 )T (un2 : top left,
vn2 : bottom left) and the actuated ua2 = (ua2 v

a
2)T (ua2: top right, va2 : bottom

right) case.
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Chapter 8

Reduced-order model (ROM)

As mentioned in the last chapter, we want to introduce a low-order model
describing the lift-increasing effect of high-frequency forcing.

In this chapter, we outline the approach of some engineers, see [66, 74], to
set up a reduced-order model without a complete and detailed mathematical
reflection. This procedure is based on many observations and is adapted to
the given problem related to Navier-Stokes equations and high-lift configu-
rations.

After a comprehensible explanation for the design of the reduced-order
model, adopted almost as it stands from [66, Section 3], we will present in
Section 8.1 a summary of the core statements of developing the ROM more
detailed, adopted almost as it stands from [66, Section 4 and 5]. In section
8.2 and 8.3, we present our modifications on their dynamical system and a lift
formula based only on the Fourier coefficients. Numerical results to compare
this reduced-order model with the full turbulence model are considered at
the end of this chapter. The Sections 8.2-8.4 are published by John, Noack,
Schlegel, Tröltzsch and Wachsmuth in [57]. Based on this ROM, we will
establish in Chapter 9 a reduced optimization problem.

The dynamical system should reflect the following behavior of the un-
steady Reynolds-averaged Navier-Stokes (URANS) simulation:

(i) von Kármán vortex shedding without actuation: a vortex street is a phe-
nomenon of fluid mechanics for a repeating pattern of swirling vortices
behind a bluff body caused by the unsteady separation of fluid flow. It
is named after the engineer, Theodore von Kármán (1881-1963),

(ii) lock-in shear-layer shedding under high-frequency forcing: a shear-layer
is the transition region between two parallel fluid flows and a shear-
layer shedding means that a boundary-layer fixed to a body separates
from the body surface,
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(iii) a transient behavior from the natural case (i) to the actuated one under
forcing (ii): this means that the system should describe the transition
from the natural flow to the actuated flow and

(iv) a transient behavior from the actuated case (ii) to the natural case (i)
when forcing is turned off.

Due to the periodic actuation, we have to consider oscillatory flows, which
are characterized by an amplitude A and a phase α, i.e. the argument of
sinusoidal functions, if they are linear in time. We can consider them as
polar coordinates of the phase-space (a1, a2) = A[cosα, sinα].

First, we are searching for a system describing the natural flow. Noack [74]
described the self-amplified amplitude-limited behavior of vortex shedding
by the following Landau-equation (8.0.1). Let therefore, the superscript n
stand for the unactuated natural case, σn for the positive growth rate, σn,n
for the positive Landau constant and An =

√
a2

1 + a2
2 for the amplitude. For

simplicity, we assume the frequency ωn as a constant.

ȧ1 = σ̃na1 − ωna2

ȧ2 = ωna1 + σ̃na2

σ̃n = σn − σn,n(An)2,

(8.0.1)

The superscript a stands in the following for the actuated case.
The shear-layer dynamics is stimulated by high-frequency forcing g(t) =

B cos(β) with an amplitude B, a phase β and the frequency β̇ = ωa. The
shear layer denotes in fluid mechanics the transition area between two parallel
streams with different velocities in contrast to wall-bounded boundary layers.
The phase difference of the actuation with respect to the oscillation of the
flow is denoted by θ. That means that the oscillation flow has the phase
θ + β. The behavior is most easily modeled by a linear damped oscillator
with a periodic forcing at the eigenfrequency. Here is σa a negative growth
rate and g3, g4 ∈ R are parameters to describe the gain of actuation. In
contrast to the natural case(8.0.1), we use in the actuated case the indices 3
and 4 instead of 1 and 2. Thus, the actuated flow is described by the system:

ȧ3 = σaa3 − ωaa4 + g3B cos(θ + β),

ȧ4 = ωaa3 + σaa4 + g4B sin(θ + β).
(8.0.2)

In reality, every flow ũ with actuation g̃ consists of a superposition of
several frequencies ω̃1, . . . , ω̃N , N ∈ N, such that its energy E(g̃) is the sum
of energies associated to the frequencies Ei(g̃), i = 1, . . . , N :

E(g̃) =
N∑
i=1

Ei(g̃).
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Notice that we assume in both the natural flow, gn = 0, and the actuated flow,
ga = Ba cos(ωat), a constant frequency ωn and ωa, respectively, such that the
associated energies E(gn) and E(ga) are related to the only frequencies ωn
and ωa. Thus, we characterize the energies in the natural and the actuated
flow by the squares of the amplitudes (An)2 and (Aa)2, respectively:

E(gn) := (An)2 and E(ga) := (Aa)2.

Let us analogously denote by (Aig̃)
2 the energy of the flow with actuation g̃

associated to the frequency ωi :

(Aig̃)
2 := Ei(g̃). (8.0.3)

Now, we comprise both oscillations in a four-dimensional phase space
[a1 a2 a3 a4]. With B = 0, i.e. a3 = a4 = 0, this system describes the natural
flow, according to (i). To obey (ii), the oscillation at the natural frequency
has to vanish with increasing actuation amplitude B > 0. To achieve this,
we decrease the growth rate of the natural case σn with the help of the
growth of the high-frequency amplitude Aa =

√
a2

3 + a2
4. Analogously to the

damping term −σn,n(An)2 in the Landau system, we add additionally the
term −σn,a(Aa)2 and we get

σ̃n = σn − σn,n(An)2 − σn,a(Aa)2.

We see that the energy in the natural case decreases with increasing
energy in the actuated case and vice versa. This guarantees a1 = a2 = 0 at
the forced state, according to (ii). We substitude the terms g3B cos(θ + β)
and g4B sin(θ + β) in (8.0.2) by g31g + g32ġ and g41g + g42ġ, respectively, to
guarantee more flexibility by calibrating this system to original results, see
Section 8.2.

Thus, we introduced a low-order dynamical system of two coupled os-
cillators describing the observed behavior of the natural and the actuated
flows as well as a transient behavior between them, according to the desired
properties (i)− (iv):

ȧ1 = σ̃na1 − ωna2

ȧ2 = ωna1 + σ̃na2

ȧ3 = σ̃aa3 − ωaa4 + g31g + g32ġ

ȧ4 = ωaa3 + σ̃aa4 + g41g + g42ġ

σ̃n = σn − β1(An)2 − β2(Aa)2

σ̃a = σa

(8.0.4)
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with An =
√
a2

1 + a2
2, Aa =

√
a2

3 + a2
4. The ai’s, i = 1, . . . , 4 can be inter-

preted as the coefficients to the in Chapter 7 calculated POD modes. With
the steady base flow u0, this leads to

u(x, t) ≈ u0(x) +
4∑
i=1

ai(t)ui(x).

If u is a velocity field without actuation, a3 and a4 are almost equal to
zero. Thus, u is approximated by the modes of the natural case u(x, t) ≈
u0(x) + a1(t)u1(x) + a2(t)u2(x). Otherwise, u is described by modes of the
actuated case and a1 and a2 are near to zero. One can see in the system
(8.0.4) that more actuation, e.g. for instance a higher actuation amplitude
B, leads to a higher weighting of the modes of the actuated case in contrast
to the ones of the natural case.

Here, we see a low-order model with the control function g(t). This model
replace the Navier-Stokes equations in our reduced optimization problem, see
Chapter 9.

After a more detailed discussion for the reduced-order model (ROM) in
Section 8.1, adopted from [66], we explain in the following sections our mod-
ifications on this model (Section 8.2), introduce a lift-formula only based on
the mode coefficients {ai}4

i=1 (Section 8.3) and give a numerical example to
demonstrate that the ROM reproduces the nonlinear behavior of the system
sufficiently well for our optimization ansatz (Section 8.4).

8.1 A generalized model

This section, where we consider the structure of the dynamical system (8.0.4)
more detailed, is based on [66, Section 4 and 5].

8.1.1 Mean-field theory

We consider a computational domain Ω ⊂ R2 with x = (x, y) ∈ Ω. The
x-axis is aligned with the flow and the y-axis with the orthogonal direction.
The velocity field is denoted by u = (u, v), where the components u and v
are aligned with the x- and y-direction. This model will demonstrate the
role of mean-field dynamics in stabilizing an attractor and as a commitment
between the actuated and the natural (unactuated) case. An attractor is a
set towards which a dynamical system evolves over time1. For the mean-field

1Wikipedia
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theory, we refer to [74, 75, 94, 95]. In addition to the L2-scalar product of
vector fields

(f, g)Ω =

∫
Ω

f · g dx,

let us define inner product for matrix-valued fields by

(A,B)Ω :=

∫
Ω

A : B dx, with A : B :=
2∑

i,j=1

AijBji

and the instantaneous kinetic energy of a velocity field u is given by

K :=
‖u‖2

Ω

2
.

We consider the incompressible

div u = 0

non-stationary Navier-Stokes equation

ut − ν∆u+ (u · ∇)u+∇p = 0 (8.1.1)

and the unsteady boundary condition

u = g

with boundary actuation g. Additionally to the boundary actuation, we
consider a time periodic and space dependent volume force ga. We denote
the so-called ensemble average by u with its approximation

u(t) :=
1

T

∫ T/2

−T/2
u(t+ τ) dτ,

where T > 0 is a set length of a time window. Next, we are formulating some
assumptions. The first one is based on observed phenomenology.

(A.1) (A generalized Krylov-Bogoliubov ansatz) The velocity field u
is dominated by the sum of a slowly varying base flow ub and two
oscillatory components which are nearly pure harmonics at the natural
un and the actuation ua frequency. Other temporal harmonics are
considered as negligible. Thus, we obtain

u(x, t) = ub(x, t) + un(x, t) + ua(x, t), (8.1.2)

where ub satisfies the steady, inhomogeneous boundary condition g(t),
un the homogenized version and ua accounts for the residual to the
unsteady boundary condition g(t)− g(t).
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Due to the fact that the base flow is almost time-independent, we assume

ub = ub.

Furthermore, we recognize that the ensemble averages of the fluctuations un
and ua vanishes

un = 0, ua = 0

where ub, un and ua are averaged over the associated time intervals.
The ansatz of Dušek et. al. [38] was to establish a small parameter ε� 1

and slowly varying amplitude functions ub0, uni and uai , i = 1, 2, such that

ub(x, t) = ub0(x, εt),

un(x, t) = un1 (x, εt) cos(Ωnt) + un2 (x, εt) sin(Ωnt),

ua(x, t) = ua1(x, εt) cos(Ωat) + ua2(x, εt) sin(Ωat),

expresses the assumed slow variation of the mean flow, the oscillation ampli-
tudes, the frequencies and the phase shifts.

This ansatz implies that time derivatives of the amplitude functions are
of order O(ε), which we want to neglect.

The second assumption is called by engineers ’a non-commensurability
ansatz’:

(A.2) (A non-commensurability ansatz) There is no direct interaction
between un and ua through the nonlinear term (u·∇)u, i.e. (un ·∇)ua =
(ua · ∇)un = 0.

This assumption is based on the numerically observed fact that the activity
regions of these fluctuations rarely overlap. So, on each of the two attractors,
we neglect fluctuations in the other frequency.

Substituting the Assumption (A.1) into the Navier-Stokes equations (8.1.1)
and re-arranging the terms by the zeroth and the first harmonics at frequen-
cies Stn and Sta, respectively, leads to

0 = −ν∆ub + (ub · ∇)ub + (un · ∇)un + (ua · ∇)ua +∇pb, (8.1.3)
unt = ν∆un − (un · ∇)ub − (ub · ∇)un −∇pn, (8.1.4)
uat = ν∆ua − (ua · ∇)ub − (ub · ∇)ua −∇pa + ga. (8.1.5)

The temporal behavior of the terms (uk · ∇)uk, k = b, n, a, is specified by
the 0th and second harmonics of the frequencies Stn and Sta and they are
eliminated in (8.1.4) and (8.1.5) by Assumption (A.1). The mean-field model
in the next subsection is based on the system (8.1.3)-(8.1.5).
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For a homogeneous fluid and an incompressible flow, the flow velocities
u(x, t), having components ui in the xi coordinate direction, can be splitted
into a mean part u(x) and a fluctuating part u′(x, t) using the so-called
Reynolds decomposition:

ui = ui + u′i.

The Reynolds stress tensor τ ′ is then defined by τ ′ij = u′iu
′
j and describes the

degree of nonlinearity. The term ∇τ ′ denotes the force pushing the mean
flow away from the steady flow. If the Reynolds stress would be zero, then
the mean flow would coincide with the steady flow.

The next and last assumption guarantees a linear relation between the
Reynolds stresses τ ′ and the mean-field correction term uh. Let therefore, us
be the associating solution of the steady Navier-Stokes equations

−∆us + (us · ∇)us +∇p = 0 in Ω

div us = 0 in Ω

us = g(t) on Γ.

(8.1.6)

(A.3) (Linearized Reynolds equation) Let us assume that (8.1.3) is lin-
earizable at the steady solution us and

ub = us + uh. (8.1.7)

The linearized Reynolds equation for the mean-field correction uh is
obtained by substituting (8.1.7) in (8.1.3)

0 = −ν∆(us + uh) + ((us + uh) · ∇)(us + uh)

+ (un · ∇)un + (ua · ∇)ua +∇(ps + ph)

subtracting the steady Navier-Stokes equation

0 = −ν∆uh + (us · ∇)uh + (uh · ∇)us +∇ph

− ν∆us + (us · ∇)us +∇ps − (−ν∆us + (us · ∇)us +∇ps)
+ (un · ∇)un + (ua · ∇)ua + (uh · ∇)uh

and neglecting quadratic terms in uh:

0 = −ν∆uh + (us · ∇)uh + (uh · ∇)us

+ (un · ∇)un + (ua · ∇)ua +∇ph.
(8.1.8)
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8.1.2 Mean-field Galerkin model

Let us now transform the mean-field model over to the least-order Galerkin
model. For the theory of the Galerkin method, we refer to to Fletcher [41],
Holmes et. al. [56] and Ladyzhenskaya [65]. Let u0 denote the steady base
flow, then the Galerkin method is based on the Galerkin expansion

u(x, t) =
M∑
i=0

ai(t)ui(x). (8.1.9)

The time dependency is described by the Fourier coefficients ai, i = 1, . . . ,M
with a0 = 1. We describe the Galerkin approximation in the section Least-
order Galerkin approximation after next.

Galerkin method

Replacing the flow u in the Navier-Stokes equations (8.1.1) with ga = 0 by the
Galerkin expansion (8.1.9) and projecting them onto the subspace spanned
by the expansion modes:

(ut − ν∆u+ (u · ∇)u+∇p, ui)Ω = 0 for i = 1, . . . ,M,

we obtain with Γ := ∂Ω

1. (
∂

∂t

(
M∑
j=0

aj(t)uj(x)

)
, ui(x)

)
Ω

=

(
M∑
j=0

∂aj
∂t

uj, ui

)
Ω

=
M∑
j=1

(
∂aj
∂t

uj, ui

)
Ω

=
M∑
j=1

∂aj
∂t

(uj, ui)Ω =
M∑
j=1

∂aj
∂t

δij =
∂ai
∂t
,

2.

ν

(
∆

(
M∑
j=0

aj(t)uj(x)

)
, ui(x)

)
Ω

= ν

M∑
j=0

(∆(ajuj), ui)Ω

= ν

M∑
j=0

aj (∆uj, ui)Ω︸ ︷︷ ︸
=:lij

= ν

M∑
j=0

lijaj,
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3. (((
M∑
j=0

aj(t)uj(x)

)
· ∇

)(
M∑
k=0

ak(t)uk(x)

)
, ui(x)

)
Ω

=
M∑
j=0

M∑
k=0

(((ajuj) · ∇)(akuk), ui)Ω

=
M∑
j=0

M∑
k=0

ajak ((uj · ∇)uk, ui)Ω︸ ︷︷ ︸
=:quijk

=
M∑

j,k=0

ajakq
u
ijk,

4. By Noack et. al. [76], we obtain a pressure expansion ∇p(x, t) =

p[0...M ](x, t) =
M∑
j=0

M∑
k=0

pjk(x)aj(t)ak(t). This leads to

(∇p(x, t), ui(x))Ω =
(
p[0...M ](x, t), ui(x)

)
Γ

=

(
M∑
j=0

M∑
k=0

pjk(x)aj(t)ak(t), ui(x)

)
Γ

=
M∑
j=0

M∑
k=0

ajak (pjk, ui)Γ︸ ︷︷ ︸
=:qpijk

=
M∑

j,k=0

qpijkajak.

Summarized, this leads with qijk := quijk + qpijk to a simplified ordinary differ-
ential equation system

∂ai
∂t

= ν
M∑
j=0

lijaj +
M∑

j,k=0

qijkajak

i = 1, ...,M , to define the Fourier coefficients ai(t). Together with

(M(a, a))i :=
M∑

j,k=1

qijkajak, (F(a))i :=
M∑
j=1

(νlij + qi0j + qij0)aj,

(C)i := νli0 + qi00

and a0 = 1, we obtain the system

∂a

∂t
=M(a, a) + F(a) + C. (8.1.10)

We have the following difficulty: by a standard POD method, boundary
values is prescribed by the dynamical system and can not be installed as a
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actuation command. The problem is that boundary actuation is generally
not derivable from the Galerkin projection, because the Galerkin projection
is composed to ignore boundary perturbations defined over a set of measure
zero. But it is possible to simulate boundary effects by additional actuation
modes, see for instance [16, 49, 77].

Instead, we decided to add an control term to the system (8.1.10) that is
state dependent and includes the control command and its time derivative.
We consider an oscillatory control with slowly varying periodic characteris-
tics.

Then the influence on the flow can be modelled by an actuation term
B~g(t) with actuation command ~g(t) and a matrix B, see [85, 86, 92]. As
mentioned in (7.0.3), we consider a periodic actuation g(t) = B cos(β(t)),
fulfilling ∂β(t)/∂t = −Ωa with an actuation amplitude B and a phase shift
of β(t)− Ωat. The acceleration is ∂g(t)/∂t = −ΩaB sin(β(t)).

We combine the actuation command and its derivative with respect to t
to

~g = [g, ġ]T = B[cos(β), −Ωasin(β)]T

and obtain the Galerkin system with actuation

∂a

∂t
=M(a, a) + F(a) + C + B~g. (8.1.11)

The term B~g(t) replaces the boundary actuator in the Navier-Stokes equa-
tions, because we have no boundary terms in the dynamical system (8.1.11).

Considering the system (8.0.4), we have to define B by

B =


0 0
0 0
0 0
0 0
g31 g32

g41 g42

 .

Let us consider in the next section the Galerkin approximation for our
problem.

Least-order Galerkin approximation

The least-order Galerkin approximation is based on Assumption (A.1); we
are interested in modes resolving un, ua and ub in (8.1.2). Let therefore uni
and uai , i = 1, 2, be the two dominant POD modes of the natural and the
actuated attractors. The modes un1 and un2 are orthonormal and un1 and un2
are orthonormal by construction.
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Considering the computed POD mode pairs, see Figure 7.3-7.5, we rec-
ognize that the actuated modes ua1 and ua2 have their main fluctuations over
and near the airfoil, whereas the fluctuations of the natural POD modes un1
and un2 are concentrated further downstream. This fact and the different
wavelengths shows that POD mode pairs are nearly orthogonal. This ob-
servations supported by very small values (un1 , u

a
1)Ω, (un1 , u

a
2)Ω, (un2 , u

a
1)Ω and

(un2 , u
a
2)Ω.

Thus, we merge them into an orthonormal basis, using the Gram-Schmidt
normalization and obtain (u1, u2, u3, u4) associated to (un1 , u

n
2 , u

a
1, u

a
2) and we

shall maintain the approximation of the fluctuations un and ua by

un =
2∑
i=1

ai(t)ui(x), and ua =
4∑
i=3

ai(t)ui(x).

Now, we are looking for a representation for ub. Let us be the steady
solution of (8.1.6), un0 is the mean flow of the natural attractor and x ∝ y
means that x is proportional to y. Then, following [74], the effect of the
Reynolds stress due to the natural oscillations is described by a shift-mode
un∆ ∝ un0 − us,. Analogously, we define ua∆.

Assume that u5 and u6 are obtained by a Gram-Schmidt orthogonal-
ization from un∆ and ua∆, removing any projections over u1, · · · , u4. Thus,
u1, . . . , u6 are orthonormal. In [74], they approximate the time-varying base
flow ub(x, t) = us(x) + uh(x, t), see Assumption (A.3), with the two shift-
modes u5 and u6 corresponding to the two attractors of the natural and the
actuated case

ub(x, t) = us(x) + uh(x, t) = us(x) + a5(t)u5(x) + a6(t)u6(x), (8.1.12)

This means that the fluctuations u1, . . . , u4 are negligible to approximate the
mean-field correction uh and the base flow ub.

A transient describes the crossing behavior into another attractor without
reaching him. Then, the mean flows un0 and ua0 are approximated by the
associated initial and final values of the base flow ub trajectory in transients
connecting the two attractors and we obtain with u∆ := (un0−ua0)/‖un0−ua0‖Ω

the approximation

ub(x, t) = un0 (x) + a∆(t)u∆(x). (8.1.13)

See Figure 8.1 for a visual description of the relation between the steady
solution us and the mean flows un0 and ua0.
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Figure 8.1: The relation between the steady solution us and the mean flows
un0 and ua0, see [66] Figure 5.

Considering (8.1.13) instead of (8.1.12), the velocity field of the URANS
data was approximated by

u(x, t) = un0 (x) + a∆(t)u∆(x) +
4∑
i=1

ai(t)ui(x). (8.1.14)

Thus, we do not have to extract a steady solution us.
In (8.1.14), we approximated the system of the natural flow, the actuated

flow and the states between them by the two mean flows un0 and ua0, the
associated shift mode u∆ with Fourier coefficient a∆, as transition between
them, the two modes u1, u2 of the natural and the two modes u3, u4 of the
actuated flow, with associated Fourier coefficients a1, ..., a4.

However, in the next section, we use (8.1.12) to obtain the equivalent
Galerkin expansion

u(x, t) = us(x) +
6∑
i=1

ai(t)ui(x). (8.1.15)

This approximation will be used in the Galerkin system (8.1.16)-(8.1.18).
The main advantages of (8.1.15) in contrast to (8.1.14) appear by cali-

brating the Galerkin system parameter with empirical data, see [66] for more
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details. The advantage of (8.1.14) was that we do not have to calculate the
steady solution us.

Least-order Galerkin system

Inserting the equation (8.1.15) into the mean-field Navier-Stokes equations
(8.1.4), (8.1.5) and (8.1.8), followed by the Galerkin projection of these equa-
tions on the expansion modes lead to the least-order Galerkin system, con-
sisting of the Fourier coefficients ai. Subsequently, we have to enforce a
Galerkin projection of these equations on the expansion modes {ui}6

i=1.
The Galerkin system, associated to the projection of (8.1.4), is

∂ai
∂t︸︷︷︸

=̂ ∂tun

=
2∑
j=1

6∑
k=5

qijkajak︸ ︷︷ ︸
=̂ −(un·∇)ub

+
6∑
j=5

2∑
k=1

qijkajak︸ ︷︷ ︸
=̂ −(ub·∇)un

+ ν

2∑
j=1

lijaj︸ ︷︷ ︸
=̂ ν∆un

+ 0︸︷︷︸
=̂ ∇pn

,

i ∈ {1, 2}. For a proof, see the derivation of(8.1.10). The other equations
follow analogously.

Let ei be the unit-vector of RM , then we get with

an = a1e1 + a2 + e2, a
a = a3e3 + a4e4, and ab = a5e5 + a6e6

the full Galerkin system by

∂an

∂t
=M(ab, an) +M(an, ab) + F(an), (8.1.16)

∂aa

∂t
=M(ab, aa) +M(aa, ab) + F(aa) + B~g, (8.1.17)

0 =M(an, an) +M(aa, aa) + F(ab). (8.1.18)

In [66, Appendix B], it is shown that the Galerkin system has the following
equivalent form

∂

∂t


a1

a2

a3

a4

 =


σ̃n −ω̃n 0 0
ω̃n σ̃n 0 0
0 0 σ̃a −ω̃a
0 0 ω̃a σ̃a



a1

a2

a3

a4

+


0 0

0 0

κ −η
η κ

~g, (8.1.19)

with
σ̃n = σn − σn,n(An)2 − σn,a(Aa)2,

ω̃n = ωn + ωn,n(An)2 + ωn,a(Aa)2,

σ̃a = σa − σa,n(An)2 − σa,a(Aa)2,

ω̃a = ωa + ωa,n(An)2 + ωa,a(Aa)2,

(8.1.20)
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where An = ‖an‖, Aa = ‖aa‖ are the respective oscillation amplitudes. The
Assumption (A.3) avoids a Taylor series in (An)2 and (Aa)2.

The parameter σn,n describes the decreasing growth rate of the natural
attractor with increasing energy in the natural attractor and σn,a the de-
creasing growth rate of the natural attractor with increasing energy in the
actuated attractor. The parameter σa,n and σa,a can be interpreted analo-
gously.

The parameters ωn,n, ωn,a, ωa,n and ωa,a describe the changes of the amplitude-
dependent frequency. The equation (8.1.18) leads to a linear dependence of ab
on an and aa. Consequences of this dependency are that the system (8.1.19)
only consists of a1, . . . , a4 and the equations (8.1.20), for more details see [66,
Appendix B].

Let us have a closer look at (8.1.19) and (8.1.20) to identify some pa-
rameters. A first ansatz is that we assume for reasons of simplifications
that the oscillation frequencies are independent of An and Aa and a constant
frequency for the natural and the actuated flow, which yields

ωn,n = ωn,a = ωa,a = ωa,n = 0

and consequently
ω̃n = ωn = Ωn,

ω̃a = ωa = Ωa,

see [66, Section 5.4] for more details. In [66, Section 5.5] is the simplifi-
cation

σ̃a = σa,

described that means σa,n = σa,a = 0.
Finally, this leads to the following dynamical system

ȧ1 = σ̃na1 − Ωna2

ȧ2 = Ωna1 + σ̃na2

ȧ3 = σ̃aa3 − Ωaa4 + κg − ηġ
ȧ4 = Ωaa3 + σ̃aa4 + ηg + κġ

σ̃n = σn − σn,n(An)2 − σn,a(Aa)2

σ̃a = σa

(8.1.21)

and one has to calibrate the remaining parameters to the numerical data,
i.e. the preliminarily calculated snapshots.

Similar to the least-order Galerkin model (8.1.19) and (8.1.20), we want
to establish a new reduced-order model (ROM) calibrated with our numerical
data. In the next section, we present our modifications.
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8.2 Modifications on the reduced-order model
In this section, we want to demonstrate our modifications and calibrations
on the reduced-order model to handle the optimization problem (PN) in the
next chapter.

Similarly to POD, see Section 7.2, all snapshots are processed. For this
purpose, we consider only the velocity field u = (u, v) in a certain reference
domain, where the actuation has the main influence on velocity and lift, see
Figure 7.1. Therefore, the snapshot velocity data are weighted by the size of
their area. We select the first two POD modes of the actuated (ua1, u

a
2) and

non-actuated (un1 , u
n
2 ) system, carrying the highest energy.

But in contrast to the ansatz in the last Section 8.1; we filter the POD
modes and the associated mode coefficients by eliminating certain fluctua-
tions to emphasize the dominant harmonic structure, see the following sub-
section for more details.

8.2.1 Filtering of the POD modes and coefficients

The snapshots ûni and ûai are given on a time interval [0, T ]. Due to the fact
that the natural flow and the actuated flow have different wavelengths, we
search for the maximal ka, kn ∈ N such that the times

T n = 2πkn/Ωn and T a = 2πka/Ωa

fulfill T n < T and T a < T . Therefore, the time T has to be big enough such
that T > 2π/Ωn and T > 2π/Ωa.

Let (an1 (t), an2 (t)) and (aa1(t), aa2(t)) are the first POD mode coefficient
pairs of the natural and the actuated case, respectively. We recognize that
they are very similar to trigonometric functions or oscillations and so, we
want to approximate them as well as possible by oscillations. Therefore, we
calculate the phases ϕn(t), ϕa(t) and radii r̃n(t), r̃a(t) by

an1 (t) + ian2 (t) = r̃n(t)eiϕ
n(t),

aa1(t) + iaa2(t) = r̃a(t)eiϕ
a(t).

To extract the dominant harmonic oscillations from these POD coefficients,
we smooth in (8.2.1) perturbations of both, the radii r̃n(t), r̃a(t) and the
phases ϕn(t), ϕa(t), in anticipation of a small deformation of the correspond-
ing modes. This holds, because the POD method does not extract pure
frequencies and radii, but ’deformed’ modes with the highest energy.

With the average values

rn = r̃n(t) := 1/T n
∫ Tn/2
−Tn/2 r̃

n(t) dt, ra = r̃a(t),

ωn = ∂tϕn(t), ωa = ∂tϕa(t),
(8.2.1)
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we approximate our filtered coefficients

a1(t) + ia2(t) = rneiω
nt,

a3(t) + ia4(t) = raeiω
at.

Let un0 and ua0 are the mean flows

un0 (x) = 1/N
N∑
i=1

ûni (x)

in the unactuated and

ua0(x) = 1/N
N∑
i=1

ûai (x)

in the actuated case.
Then, the associated filtered modes are determined by the Fourier ansatz

ui(x) =

(
ûn(x, ·)− un0 ,

1

rn
ai(·)

)
Tn

:=
1

T n

Tn/2∫
−Tn/2

(ûn(x, t)− un0 (x))
1

rn
ai(t) dt,

for i = 1, 2 and

ui(x) =

(
ûa(x, ·)− ua0,

1

ra
ai(·)

)
Ta

=
1

T a

Ta/2∫
−Ta/2

(ûa(x, t)− ua0(x))
1

ra
ai(t) dt,

for i = 3, 4. The coefficients an1 and an2 are orthonormal and aa1 and aa2 are
orthonormal by construction. But the coefficients ani are not necessarily or-
thonormal to aai for i = 1, 2. Thus, we finally orthonormalize these frequence-
filtered modes ui, i = 1, . . . , 4 by Gram-Schmidt and denote the orthonormal
modes for simplicity by ui, i = 1, . . . , 4.

The Figures 8.6 and 8.7 show the associated filtered mode coefficients a1,
i = 1, . . . , 4 in contrast to the original ones.

In the Figures 8.2 and 8.3, we present the filtered modes u1 and u2 of the
natural flow and in 8.4 and 8.5, we present the filtered modes u3 and u4 of
the actuated flow in comparison to the original POD modes. We see that the
filtered modes of the actuated case u3 and u4 have their main fluctuations
over and near the airfoil, whereas the fluctuations of the filtered modes of
the natural case u1 and u2 are concentrated further downstream. Because we
approximated the mode coefficients a1, i = 1, . . . , 4 to almost pure trigono-
metric functions, we see that some original modes are smoother than the
filtered ones.
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Figure 8.2: The first filtered mode u1 = (u1 v1)T (u1: top left, v1: bottom
left) and the original first mode un1 = (un1 vn1 ) (un1 : top right, vn1 : bottom
right) of the natural case.
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Figure 8.3: The second filtered mode u2 = (u2 v2)T (u2: top left, v2: bottom
left) and the original first mode un2 = (un2 vn2 ) (un2 : top right, vn2 : bottom
right) of the natural case.
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Figure 8.4: The first filtered mode u3 = (u3 v3)T (u3: top left, v3: bottom
left) and the original first mode ua1 = (ua1 va1) (ua1: top right, va1 : bottom
right) of the actuated case.
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Figure 8.5: The second filtered mode u4 = (u4 v4)T (u4: top left, v4: bottom
left) and the original first mode ua2 = (ua2 va2) (ua2: top right, va2 : bottom
right) of the actuated case.
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Figure 8.6: The filtered mode coefficients (natural case a1: top left, actuated
case a3: bottom left) and the original mode coefficients (natural case an1 : top
right, actuated case aa1: bottom right) of the associated first mode over the
snapshots.
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Figure 8.7: The filtered mode coefficients (natural case a2: top left, actuated
case a4: bottom left) and the original mode coefficients (natural case an2 : top
right, actuated case aa2: bottom right) of the associated second mode over
the snapshots.

8.2.2 Parameter calibration

The filtered modes (u1, . . . u4) contain significant information gained from
the URANS solution by the k-ω-model. Considering the dynamical system
(8.1.21), we redefined β1 := σn,n and β2 := σn,a and decided to replace κ and
ν by g31, g42 and g32, g41, respectively, to have more degrees of freedom to
calibrate the reduced-order model to the original URANS data.
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This leads to the following reduced-order model:

ȧ1 = σ̃na1 − ωna2

ȧ2 = ωna1 + σ̃na2

ȧ3 = σ̃aa3 − ωaa4 + g31g + g32ġ

ȧ4 = ωaa3 + σ̃aa4 + g41g + g42ġ

σ̃n = σn − β1(An)2 − β2(Aa)2

σ̃a = σa,

(8.2.2)

with An =
√
a2

1 + a2
2, Aa =

√
a2

3 + a2
4 and g = B cos(ωat), where B is the

amplitude of the actuation signal and ωa is the associated angular frequency.
Our snapshots contain no data or information about the transient behav-

ior, because the snapshots are taken while the natural flow and the actuated
one, respectively. Because of this reason, we have to select the amplification
rates σn, σa as follows by empirical values:

• σn = 0.15 is an empirical value, if the cord-length of the wing is 1.
Because the flap is the active part of the configuration, we choose σn =
0.15U∞

cfl
.

• σa = − 1
Tcon

where Tcon is the time that one vortex needs to pass the
flap-length cfl. We read off this value from the snapshots.

Now, we want to calibrate the parameters β1 and β2 of the system (8.2.2).
They are determining the growth rates of both oscillations. That means that
they are responsible for the increasing or decreasing rate of the energies in
both oscillations with decreasing or increasing energy in the other one. If
the fluid flow is in the unactuated state, then no energy should be in the
coefficients a3, a4, i.e. a3 = a4 = 0, hence Aa = 0. Moreover, we require that

σ̃n = σn − β1(An)2 = 0

holds for unactuated flow dynamics. This expresses the fact that there is no
additional energy contribution to the natural oscillatory behavior of a1, a2.
Thus β1 can be determined by

β1 = σn
1

(An)2
= σn

1

(rn)2
.

There are many possibilities to calibrate β2. For instance, we can determine
β2 analogously to β1 by

β2 = σn
1

(Aa)2
= σn

1

(ra)2
.
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The problem of this ansatz is that the energy belonging to the natural fre-
quency Anga , see (8.0.3), does not vanish completely in the actuated case.
That means Anga > 0.

Let us assume that the energy in the whole system is constant over all
actuation amplitudes B :

σn = β1(An)2 + β2(Aa)2. (8.2.3)

Then, another possibility is to determine β2 by

β2 =
σn − β1(An)2

(Aa)2
.

We decided to follow an alternative approach. Let us consider for example
the actuation amplitude B̃ with associated flow ũ. Till now, we assumed a
constant frequency in both the natural and the actuated flow. To determine
the parameters β1 and β2, we ignore this. Instead, we assume that every flow
consists of a combination of the natural and the actuation frequency. Thus,
the energy in this flow ũ is the sum of the energies associated to the two
frequencies. Then, we denote analogously to (8.0.3) by (An

B̃
)2 and (Aa

B̃
)2 the

energies associated to the natural and the actuation frequency.
Let Ba be the actuation amplitude related to the actuated flow ua. Con-

sidering the to the natural and the actuated flow associated energies (An0 )2,
(Aa0)2, (AnBa)

2 and (AaBa)
2, we are able to draw the energies over the actuation

amplitude B, see Figure 8.8.
Considering Figure 8.8, we only obtain a linear relation without con-

straints between the energies of the natural ωn and the actuation frequency
ωa, respectively, over the actuation amplitude B. But, this does not corre-
spond to reality. Therefore, we need an additional set of snapshots with a
small actuation amplitude B∗ to identify the parameters β1 and β2 in the
system (8.2.2). We select B∗ such that the associated energy belonging to
the natural frequency (AnB∗)

2 should be significant greater than zero. For
this actuation amplitude, we compute the filtered coefficients {a∗i }4

i=1 and
the associated energies (AnB∗)

2 and (AaB∗)
2.

We draw the results in Figure 8.9 and assume that (AnBa)
2 is the lower

bound for the energy of the natural frequency ωn and (Aa)2 is the upper
bound for the energy associated with the actuation frequency ωa.

Then, we determine the parameters β1 and β2 by assuming that the energy
in the whole system remains constant over all amplitudes B (8.2.3) by the
system

β1(An0 )2 + β2(Aa0)2 = σn,

β1(AnB∗)
2 + β2(AaB∗)

2 = σn.
(8.2.4)
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Figure 8.8: Energies (An)2 (continuous lines) and (Aa)2 (dashed lines) over
the actuation amplitude B. Here, we calculated the energies only for B = 0
and the actuation amplitude Ba.

The reduced-order model (8.2.2) contains additionally free parameters
g31, g32, g41 and g42 to calibrate the selected actuation to the dynamical
system. Recall therefore that the actuation g and its derivative ġ are g =
B cos(ωat) and ġ = −Bωa sin(ωat), where the actuation amplitude B is our
optimization variable.

Therefore, we multiply the third and fourth equation of (8.2.2) by g and
ġ, respectively, and integrate over [0, T a]. This eliminates g32, g42 and g31,
g41, respectively. For instance

(ȧ3, g)Ta = σa(a3, g)Ta − ωa(a4, g)Ta + g31(g, g)Ta

leads to

g31 =
(
(ȧ3, g)Ta − σa(a3, g)Ta + ωa(a4, g)Ta

)
/(g, g)Ta . (8.2.5)

Note that (ġ, g)Ta vanishes in the long term average.
An example of the phase portraits for the coefficients a1, · · · , a4 of the

system (8.2.2) is presented in Figure 8.10. This figure presents the solution of
(8.2.2) starting on the natural attractor with actuation. We see in this figure
on the left side in the phase portrait of the first oscillator (a1, a2), describing
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Figure 8.9: Energies (An)2 (continuous lines) and (Aa)2 (dashed lines) over
the actuation amplitude B. Here, we calculated the energies for B = 0, B∗

and the actuation amplitude Ba.

the natural flow, that the energy vanishes and transfers over to the phase
portrait of the second oscillator (a3, a4), describing the actuated flow.

Figure 8.10: Phase portraits of (a1, a2) (left) and (a3, a4) (right) of the system
(8.2.2) with full actuation, starting with (a1, a2) on the natural limit cycle
and (a3, a4) = (0, 0) with actuation.
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The next Figure 8.11 presents (a1, . . . , a4) obtained by the dynamical system
(8.2.2). We start without actuation and switched on the actuation after
10 seconds. First, we see a1 and a2 reaching the natural attractor. After
switching on the actuation, a1 and a2 decrease to zero and a3 and a4 arises
to the actuated attractor.

Figure 8.11: The state a (a1: top left, a2: top right, a3: bottom left and a4:
bottom right) gained by the dynamical system (8.2.2), starting without an
actuation. After 10 seconds, we switched on the actuation.

This figure shows that the dynamical system 8.2.2 represents the behavior
of the natural and the actuated flow as expected.

8.3 Computation of lift
Based on the dynamical system (ȧi)i (8.2.2), we calculate the lift by the
following ansatz with unknown coefficients cij

CL(a1, a2, a3, a4) = c00 +
4∑
i=1

c1iai + c20(An)2 + c40(An)4. (8.3.1)

There is no limitation on the energy Aa of the actuated case with respect
to increasing B, hence Aa is not included in (8.3.1). The ansatz (8.3.1) is
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motivated by a global momentum balance equation and the constant and
linear terms in (8.3.1) are related to this equation. The lift effect of base-
flow variation can be lumped in c20(An)2 +c40(An)4 assuming slow transients,
see [90]. We obtain the parameters cij by a least-squares fit of CL((ani )) and
CL((aai )) to the original lift values of the URANS simulation. The (ani )
are the filtered coefficients of the unactuated case and (aai ) are the filtered
coefficients of the actuated case. Our goal is to fit the parameters in the
sense that the simulated lift values are reproduced by the lift formula (8.3.1)
in the unactuated case CLU based on (ani ) as well as the lift values in the
actuated case CLA based on (aai ). This leads to the problem

min
cij

F (cij) = ‖CLA(·)− CL(cij)((a
a
i (·)))‖2 + ‖CLN(·)− CL(cij)((a

n
i (·)))‖2.

Finally, after the coefficients cij have been determined the optimization prob-
lem is formulated as

max
B>0

CL(a1, a2, a3, a4) (8.3.2)

subject to the ODE system (8.0.4).
Figure 8.12 presents the original mean lift by the URANS simulation

(continuous lines) compared with the calculated mean lift by (8.3.1) (dashed
lines).

8.4 Numerical investigation

We consider in this section a high-lift configuration with observation region
Ω presented in Figure 7.1, see Setting 7.1 and [66] for more details.

The actuation amplitude to determine the set of the actuated snap-
shots was B = 3.5888 and we worked with the parameters σn = 0.5906,
σa = −2.0042, ωn = 5.5407 and ωa = 14.8412. Analogously to (8.2.5), we
calculated g31 = 0.0284, g32 = 0.0000, g41 = 0.0000 and g42 = −0.0019. The
parameters β1 = 14.75 and β2 = 654.0806 are calculated by (8.2.4) with an
actuation amplitude of B∗ = 1.19.

Calibrating the parameters cij of the lift formula (8.3.1) to this data, we
get c10 = 2.2238, c11 = 0.2295, c12 = −0.6858, c13 = 1.6717, c14 = −0.2963,
c20 = −8.3606, c40 = 39.7410. Figure 8.13 shows the agreement of CL(ai)
with the lift-values of the URANS simulation, where the ai are the filtered
coefficients.

The mean values differ in both cases, the unactuated and the actuated
one, between the original lift values and the values calculated with CL not
more than 0.5%, see Figure 8.12. This is negligible, because in contrast to our
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Figure 8.12: Comparison of the original mean lift values by the URANS
simulation (continuous lines) and the mean lift computed by (8.3.1) (dashed
lines).

Figure 8.13: Comparison of the lift values of the URANS simulation (contin-
uous lines) with those obtained by the lift formula based on the filtered co-
efficients a1, · · · , a4 (dashed lines): Natural flow (left), actuated flow (right).

stationary case without turbulence, we achieve a lift gain of more than 14% in
the full problem with an actuation in contrast to the case without actuation.
Evaluating CL with the ai’s as the solutions of the dynamical system, once
computed with B = 0 and once with the full actuation B = 3.5888, we get
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mean values of around 1.96 respectively 2.24 and the results presented in
Figure 8.14.

Figure 8.14: Comparison of the lift values of the URANS simulation (contin-
uous lines) with those obtained by the lift formula based on a1, · · · , a4 of the
dynamical system (dashed lines): Natural flow (left), actuated flow (right).

Solving this dynamical system with several actuation amplitudes B = 0
to B = 3.6, we resolve the average lift values presented in Figure 8.15; for
B = 0 an average lift of 1.96 and for B = 3.5888 an average lift of 2.22.
The optimization problem (8.3.2) yields a lift gain of more than 13%. The
maximal lift is achieved at an actuation amplitude of around Bopt = 2.4,
agreeing with the results of the URANS simulation.

132



8.4. NUMERICAL INVESTIGATION

Figure 8.15: Comparison of the lift coefficients calculated by CL (continuous
lines) with those obtained by the URANS simulation (dashed lines) with the
Wilcox98 k− ω−turbulence model for some chosen actuation amplitudes B.
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Chapter 9

The optimal control problem

In this chapter, we want to investigate an optimal control problem (PN) based
on the optimization problem (8.3.2) of the last chapter. Our goal is to reach
as much lift as possible where the actuation amplitude B is the optimization
parameter.

Let B̂ ∈ R denote an upper bound and 0 the natural lower bound for the
actuation amplitude B, a10, a20, a30, a40 the initial values for the state a(t),
T∆ = Te − Ta and g(t) = B cos(ωat). Then the optimization problem (PN)
looks with a(t) = (a1(t), a2(t), a3(t), a4(t)) as follows:

min JN(a(t), B) :=
1

T∆

Te∫
Ta

−CL(a1(t), a2(t), a3(t), a4(t)) dt+
αN
2
B2

subject to the reduced order model

ȧ1(t) = σ̃na1(t)− ωna2(t)

ȧ2(t) = ωna1(1) + σ̃na2(t)

ȧ3(t) = σ̃aa3(1)− ωaa4(t) + g31g(t) + g32ġ(t)

ȧ4(t) = ωaa3(t) + σ̃aa4(t) + g41g(t) + g42ġ(t)

a1(0) = a10

a2(0) = a20

a3(0) = a30

a4(0) = a40

(9.0.1)

with the amplifier rates

σ̃n(t) = σn − β1(An(t))2 − β2(Aa(t))2

σ̃a(t) = σa,
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the control constraint

B ∈ Bad := {B ∈ R : 0 ≤ B ≤ B̂}.

Note that it seems as if this system is linear, but it is nonlinear due to σ̃n
with An(t) =

√
a2

1(t) + a2
2(t) and Aa(t) =

√
a2

3(t) + a2
4(t).

In the next section, we introduce the first-order optimality system, which
we will need for the numerical investigation.

9.1 First-order necessary optimality conditions
We directly apply the formal Langrange technique to this problem (PN) to
derive the first-order necessary optimality conditions. We do this in a formal
way without considering the exact function spaces providing the background
of this theory.

Following the Lagrange technique, we want to substitute the ODEs in
(9.0.1) by Lagrange multiplication functions λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t))
while the box constraint B ∈ Bad for the control parameter and the initial
values are not eliminated.

Then, we obtain the Lagrange-functional LN(a(t), B, λ(t)) with the state
variable a(t), the adjoint state λ(t) and the actuation amplitude B:

LN(a,B, λ) :=
1

T∆

Te∫
Ta

−CL(a) dt+
αN
2
B2 −

Te∫
Ta

(ȧ1 − σ̃na1 + ωna2)λ1dt

− 1

T∆

Te∫
Ta

(ȧ2 − ωna1 − σ̃na2)λ2dt

− 1

T∆

Te∫
Ta

(ȧ3 − σaa3 + ωaa4 − g31g − g32ġ)λ3dt

− 1

T∆

Te∫
Ta

(ȧ4(t− ωaa3 − σaa4 − g41g − g42ġ)λ4dt.

Following the Lagrange principle, the optimal control B̄ together with
the associating optimal state ā(t) has to fulfill the necessary first-order opti-
mality condition of the problem including the minimization of the Lagrange
functional LN with respect to a(t), B and the box constraint B ∈ Bad for the
control but without the state equations (9.0.1).
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Thus, the Lagrange-functional LN has to fulfill

∂LN
∂a

(ā, B̄, λ)h = 0 for all possible h(·) with h(0) = 0 (9.1.1)

and with respect to the control parameter B the variational inequality

∂LN
∂B

(ā, B̄, λ)(B − B̄) ≥ 0 for all B ∈ Bad. (9.1.2)

The equality (9.1.1) is with h = (h1, h2, h3, h4) equivalent to

∂LN
∂a

(ā, B̄, λ)(h) =

Te∫
Ta

(
4∑
i=1

(c1ihi) + 2c20a1h1 + 2c20a2h2 + 4c40(An)2a1h1

+ 4c40(An)2a2h2) dt

−
Te∫

Ta

(ḣ1 − 2(β1a1h1 + β1a2h2 + β2a3h3 + β2a4h4)a1

− σnh1 + ωnh2 − (β1a
2
2 + β2a

2
3 + β2a

2
4)h1)λ1 dt

−
Te∫

Ta

(ḣ2 − 2(β1a1h1 + β1a2h2 + β2a3h3 + β2a4h4)a2

− ωnh1 − σnh2 − (β1a
2
1 + β2a

2
3 + β2a

2
4)h2)λ2 dt

−
Te∫

Ta

(ḣ3 − σ̃ah3 + ωah4)λ3 dt

−
Te∫

Ta

(ḣ4 − ωah3 − σ̃ah4)λ4 dt
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and after integration by parts, we derive

∂LN
∂a

(ā, B̄, λ)(h) =

Te∫
Ta

((c11 + 2c20a1 + 4c40(An)2a1)h1 + (c13)h3

+ (c12 + 2c20a2 + 4c40(An)2a2)h2 + (c14)h4) dt

−
Te∫

Ta

((−λ̇1 − σn − 2(β1a1λ1 + β1a1λ2)a1

− (β1a
2
2 + β2a

2
3 + β2a

2
4) + ωnλ2)h1) dt

−
Te∫

Ta

((−λ̇2 − ωnλ1 − σn − 2(β1a2λ1 + β1a2h2)a2

− (β1a
2
1 + β2a

2
3 + β2a

2
4))h2) dt

−
Te∫

Ta

((−λ̇3 + β2a3(λ1 + λ2)− σ̃aλ3 + ωaλ4)h3) dt

−
Te∫

Ta

((−λ̇4 + β2a4(λ1 + λ2)− ωaλ3 − σ̃aλ4)h4) dt

−
Te∫

Ta

(h1(T )λ1(T ) + h2(T )λ2(T ) + h3(T )λ3(T )

+ h4(T )λ4(T ))dt.

Since h(T ) and h(·) can be arbitrarily, λ = (λ1, λ2, λ3, λ4) is the weak solution
of
−λ̇1 − σn − 2(β1a1λ1 + β1a1λ2)a1 + ωnλ2 − (β1a

2
2 + β2a

2
3 + β2a

2
4) = f1

−λ̇2 − ωnλ1 − σn − 2(β1a2λ1 + β1a2λ2)a2 − (β1a
2
1 + β2a

2
3 + β2a

2
4) = f2

−λ̇3 + β2a3(λ1 + λ2)− σ̃aλ3 + ωaλ4 = f3

−λ̇4 + β2a4(λ1 + λ2)− ωaλ3 − σ̃aλ4 = f4

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = 0

(9.1.3)

with
f1 = c11 + 2c20a1 + 4c40(An)2a1

f2 = c12 + 2c20a2 + 4c40(An)2a2

f3 = c13

f4 = c14
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which we define as the adjoint system. The solution is the adjoint state λ.
The second requirement (9.1.2) leads to the variational inequality

∂LN
∂B

(B − B̄) = αN B̄(B − B̄) +
1

T∆

Te∫
Ta

[(g31 cos(ωat)− g32ω
a sin(ωat))λ3

+ (g41 cos(ωat)− g42ω
a sin(ωat)λ4)](B − B̄) dt ≥ 0

for all B̂ ≥ B ≥ 0. The pointwise analysis of this inequality leads to the
standard projection formula

B̄ = P[0,B̂]{
1

αNT∆

Te∫
Ta

(g31 cos(ωat)− g32ω
a sin(ωat))λ3

+ (g41 cos(ωat)− g42ω
a sin(ωat)λ4) dt}.

(9.1.4)

9.2 Numerical investigation
Now, let us research the optimization problem (PN) numerically based on the
optimality system. In this case, we decided to use the gradient-projection
method, see 5.2.2, because, as mentioned before, COMSOL and the integral
term (9.1.4) don’t fit together. One can see at the end of this chapter that
we need about 5 iterations to get the optimal actuation amplitude. That
means that we have to solve both the nonlinear state equations (9.0.1) and
the linear adjoint system (9.1.3) 5 times. To approximate the optimal the
optimal actuation amplitude B̄ by just solving the state equation with dif-
ferent amplitudes would take probably more iterations of the nonlinear state
equation, due to the fact that the upper bound B̂ is free to select. For our
optimization problem (PN) the algorithm reads as follows with given Bn:

S1 Calculate an = ((a1)n, (a2)n, (a3)n, (a4)n) as the solution of (9.0.1)
with the current control Bn.

S2 Calculate the adjoint λn = ((λ1)n, (λ2)n, (λ3)n, (λ4)n) from (9.1.3)
with the current state an.

S3 The updated descent direction is

Dn = αNBn +

T∫
0

(g31 cos(ωat)− g32ω
a sin(ωat))λ3

+ (g41 cos(ωat)− g42ω
a sin(ωat)λ4)dt ∈ R.
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S4 Calculate the stepsize sn from

min
s>0

f(P[0,B̂]{Bn + sDn}).

S5 The updated control Bn+1 is

Bn+1 := P[0,B̂]{Bn + snDn}.

Set n:=n+1and goto S1.
Let us now investigate the Setting 7.1 on page 90 with the parameters

σn, σa, ωn, ωa, g31, g32, g41, g42, β1, β2, c10, c11, c12, c13, , c14, c20

and c40 as selected Section in 8.4 numerically. Therefore, we chose αN =
0.1 and we decide to optimize this problem in the time interval [Ta, Te] =
[56.8612, 75.8150].

The first reason of this interval is that we want to optimize the lift and
not the transient oscillation, so we select Ta 6= 0. Additionally, we have to
choose Ta and Te in the way that they are multiples of both wavelengths, the
natural and the actuated one.

We started the gradient-projection method with initial values
((a1)0, (a2)0, (a3)0, (a4)0) = (rn, 0, 0, 0), where rn denotes the radius of the
natural attractor, B0 = 0.5 and a mesh size of 0.0132 in the time direction.

The optimal calculated actuation amplitude is Bopt = 2.2573 with an
associated averaged lift coefficient of

1

T∆

Te∫
Ta

CL((a1)opt, (a2)opt, (a3)opt, (a4)opt) dt = 2.2238,

see Figure 9.1, and JN(aopt, Bopt) = −1.9690 as the value of the cost func-
tional. The calculated optimal actuation amplitude Bopt differs slightly from
the optimal value in Figure 8.15, due to the term

αN
2
B2 in the cost func-

tional. The Figure 9.1 presents the optimal lift coefficient over the time
interval [Ta, Te] and the Figures 9.2 and 9.3 the optimal states (a1, · · · , a4)
and the associating adjoint (λ1, · · · , λ4), respectively.

Unfortunately, we have no simulations of the full k−ω turbulence system
with our optimal actuation amplitudeBopt. The simulation with an amplitude
nearest to Bopt we have is a simulation with an actuation amplitude of 2.39.
The results of the lift values are compared in Figure 9.5.
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Figure 9.1: The lift coefficient CL of the calculated optimal state over the
interval [Ta, Te].

Figure 9.2: The calculated optimal state (a1: top left, a2: top right, a3:
bottom left, a4: bottom right).
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Figure 9.3: The calculated adjoint state (λ1: top left, λ2: top right, λ3:
bottom left, λ4: bottom right).

Figure 9.4: The cost functional JN over the number of iterations.
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Figure 9.5: The cost functional JN over the number of iterations.
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Chapter 10

Conclusion

In this thesis, we considered two settings of optimal control problems for
high-lift configurations. In the case of steady-state Navier-Stokes equations
with low Reynolds number, we established first-order necessary optimality
conditions for a problem with an integral state constraint on the drag. The
main theoretical difficulty was the appearance of low regularity controls in
a Dirichlet boundary condition. Afterwards, we considered the second-order
sufficient optimality conditions for the infinite and a finite-dimensional con-
trol space. The optimal control is obtained by direct numerical solution of
the established optimality system and by an SQP-method, where the integral
state constraint was handled by a Penalty term in the cost functional.

An associated nonstationary case with high Reynolds number was inves-
tigated with a WILCOX98 turbulence model. To handle the problem of the
high dimension, a robust reduced order model (ROM) was established fitting
best to the snapshots computed by the full system in the natural and the
actuated state. The ROM reproduces the nonlinear behavior of the system
sufficiently well so that the subsequently optimization problem of periodic
actuation leads to reasonable results. We are now able to solve our optimal
control problem in about 20 minutes by 5 iterations and 4 minutes for one
forward and adjoint system together. Without the model reduction, just one
forward iterations would take about 4 days.

In particular, the application of trust-region proper orthogonal decompo-
sition (TRPOD) could be considered to develop an improved reduced-order
model. In [15] a ROM was used to minimize the total mean drag for a circu-
lar cylinder wake flow by updating the ROM during a (TRPOD) approach,
we refer also to [14].
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Chapter 11

Zusammenfassung

In dieser Arbeit haben wir zwei Optimalsteuerungsprobleme für Hochauftrieb-
skonfigurationen untersucht.

Im ersten Fall, der stationären Navier-Stokes Gleichungen mit Kontroll-,
integralen Zustandsbeschränkungen und kleinen Reynolds-Zahlen, haben wir
zunächst die notwendigen Optmalitätsbedingungen erster Ordnung aufgestellt
um das Problem numerisch zu untersuchen. Dabei war die gewünschte
niedrige Regularität der Dirichlet-Randsteuerungen das größte theoretische
Problem. Anschliessend haben wir die hinreichenden Optimalitätsbedingun-
gen zweiter Ordnung für unendlich und endlich dimensionale Steuerungen
aufgestellt. Numerisch haben wir das Problem einerseits als direkte Lösung
des Optimalitätssystems und andererseits mit Hilfe der SQP-Methode un-
tersucht. Zum Abschluss dieses Themenbereichs wurde noch die Konvergenz
der SQP-Methode bewiesen.

Der instationäre Fall wurde mit grossen Reynolds-Zahlen und zugehöri-
gen Turbulenzen betrachtet. Die Turbulenzen wurden durch das WILCOX98
Modell beschrieben, was zu einem riesigen Rechenaufand führt. Alleine eine
Vorwärtsrechnung der Zustandsgleichung hat bei vergleichbaren Problemen
mehr als 4 Tage gedauert. Zur Lösung dieses Problems haben wir eine Mod-
ellreduktion durchgeführt und ein reduced-order model (ROM) aufgestellt,
welches am besten zu vorher berechneten Snapshots passt. Wir haben es
geschafft, dass dieses ROM die nichtlineare Struktur des Systems hinreichend
gut widerspiegelt, so dass eine Optimierung auf dessen Basis möglich ist
und sinnvolle Resultate liefert. Desweiteren gelang es uns das Optimals-
teuerungsproblem innerhalb von etwa 20 Minuten zu lösen, bei 5 Iterationen
und 4 Minuten Dauer für eine Vorwärts- und eine adjungierte Gleichung.
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