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Structural and optical investigation of non-polar (1-100) GaN grown by the

ammonothermal method

D. Gogova,"® P. P. Petrov," M. Buegler,® M. R. Wagner,>> C. Nenstiel,>* G. Callsen,?

M. Schmidbauer," R. Kucharski,® M. Zajac,® R. Dwilinski,® M. R. Phillips,* A. Hoffmann,?
and R. Fornari'

'Leibniz Institute for Crystal Growth, Max-Born-Str. 2, 12 489 Berlin, Germany

2Institut fiir Festkorperphysik, Technische Universitit Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
3Catalan Institute of Nanotechnology, 08193 Bellaterra (Barcelona), Spain

“Department of Physics and Advanced Materials, UT Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
SAmmono S.A., 2131 Czerwonego Krzyza Str., 00-377 Warsaw, Poland

(Received 4 April 2013; accepted 8 May 2013; published online 29 May 2013)

We studied the structural and optical properties of state-of-the-art non-polar bulk GaN grown by
the ammonothermal method. The investigated samples have an extremely low dislocation density
(DD) of less than 5 x 10%*cm 2, which results in very narrow high-resolution x-ray rocking
curves. The a and c lattice parameters of these stress-free GaN samples were precisely determined
by using an x-ray diffraction technique based on the modified Bond method. The obtained values
are compared to the lattice parameters of free-standing GaN from different methods and sources.
The observed differences are discussed in terms of free-electron concentrations, point defects, and
DD. Micro Raman spectroscopy revealed a very narrow phonon linewidth and negligible built-in
strain in accordance with the high-resolution x-ray diffraction data. The optical transitions were
investigated by cathodoluminescence measurements. The analysis of the experimental data clearly
demonstrates the excellent crystalline perfection of ammonothermal GaN material and its
potential for fabrication of non-polar substrates for homoepitaxial growth of GaN based device

structures. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807581]

. INTRODUCTION

There is currently a great demand in the computer and
telecommunication industries as well as in multimedia appli-
cations for multicolor light emitting displays as well as for
high data-storage capacities in communication and recording
systems. The III-nitrides are highly suitable for such applica-
tions due to their unique electronic and optical properties.
Efficient short-wavelength laser diodes (LDs) emitting in the
blue and ultraviolet regions have already been fabricated on
the basis of Ill-nitrides and will be employed to achieve
high-storage capacities for the next generation of multimedia
systems. The future of full-color flat panel displays, green
lasers, and optical communication is expected to largely
depend on Il-nitrides components.'*

A crucial prerequisite for the effective employment of
III-nitrides in device applications is the availability of high-
quality crystals with low concentrations of electrically and
optically active defects. Heteroepitaxially grown GaN crys-
tals usually suffer from considerable strain and high disloca-
tion density (DD) (107—109 cm72) due to thermal and lattice
mismatch with all known hetero-substrates. Such high DDs,
however, constitute a serious limitation for the electron mo-
bility and the efficiency of radiative recombinations, and
may reduce device performance and operating lifetime. A
decrease of the DD in the 10" cm ™2 range can be achieved
by sophisticated techniques such as epitaxial lateral
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overgrowth (ELO)** and pendeoepitaxy,” which have been
developed in the last decade. In order to improve the device
performance and increase its lifetime, a further reduction of
the DD is desirable. This can in principle be achieved by
homoepitaxial growth of GaN, supposed that cost-effective
GaN substrates with very low dislocation density are avail-
able. Furthermore, the availability of GaN substrates will
eliminate the need for buffer layers in the growth of device
structures and will provide significant advantages like verti-
cal conduction, heat dissipation, and cleavability.

High-quality bulk GaN is therefore needed as substrate
material to promote large-scale production of different elec-
tronic and optoelectronic devices with a high yield from the
total wafer area. During the last ten years, the nitride com-
munity has paid special attention to the development of bulk
crystal growth methods.®’ Bulk growth of GaN single crys-
tals has been attempted by using several techniques, such as
the high-pressure solution growth (HPSG) method,'® the
ammonothermal method, the sodium flux method,&9 and ha-
lide vapor phase epitaxy (HVPE).' -4 Crystal platelets with
superior crystalline quality (DD in the order of 10*cm ?)
have been prepared using HPSG but their maximum size of
roughly 1 cm? hinders the mass application.'”

The quasi-bulk HVPE method has reached a DD limit of
10°cm 2" In comparison, state-of-the-art ammonother-
mal GaN exhibits DDs down to 10°-10*cm™" for 2 in.
wafers.'” Another advantage of ammonothermal GaN con-
sists in the very large curvature radius of more than 100 m,
compared to about 10 m for HVPE GaN.'" This is the lowest
curvature ever reported in the literature for GaN wafers and

© 2013 AIP Publishing LLC
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opens new possibilities for fabrication of III-N devices of
superior quality.

The device technology developed on non-polar GaN
overcomes many of the fundamental limitations of those
based on the conventional c-plane GaN such as the con-
straints of device performance caused by quantum confined
Stark effect due to strong internal piezoelectric field.'® Non-
polar GaN offers the potential for improved electrical effi-
ciency, reduced electrical resistance, elimination of color
shifting of light-emitting diodes (LEDs) and LDs with vary-
ing operating current, and reduced device sizes. These fac-
tors lead to markedly increased manufacturing yields, higher
device lifetimes, and superior performance compared to the
conventional c-plane (polar) GaN technology.

Fundamental properties of semiconductor materials,
such as the electronic band structure, band gap energies, dy-
namical and elastic properties, are directly related to lattice
parameters. However, due to the very different strain condi-
tions in bulk GaN grown by different methods, it is difficult
to determine the intrinsic unstrained values,17 as reflected by
a number of scattered values reported in the literature.

In this work, we present a thorough study of the struc-
tural and optical properties of state-of-the-art non-polar
ammonothermal GaN substrates by high resolution x-ray dif-
fraction (HR-XRD), Raman spectroscopy, and low-
temperature power-dependent cathodoluminescence (CL)
spectroscopy. These techniques provide detailed and com-
plementary information about the purity of the grown crys-
tals, donor and acceptor states, residual doping, and mobility
of carriers. Carrier concentration and effects of point defects
are analyzed by longitudinal-optical phonon-plasmon cou-
pling in Raman spectroscopy as well as by the saturation
behavior of defect related luminescence in CL. The extraor-
dinary crystalline quality is demonstrated by the low full
width of half maximum values of Bragg reflections in HR-
XRD and Raman spectroscopy. Furthermore, XRD is uti-
lized to determine the lattice parameters of bulk ammono-
thermal GaN.

Il. EXPERIMENTAL
A. Crystal growth and wafer preparation

The ammonothermal method is a kind of solvothermal
process that uses dissolution of polycrystalline III-nitride nu-
trient feedstock in supercritical ammonia under high pressure
by utilizing a solubilizing agent or mineralizer. The dis-
solved nutrient is then transported to the region of crystalli-
zation, where it crystallizes on self-nucleated or pre-existing
seed crystals. The chemical nature of the mineralizer
employed determines the type of the ammonothermal
approach. Mineralizers are generally divided into three
groups: (i) basic mineralizers, which introduce NH, ™~ ions to
the solution; (ii) acidic, which introduce NH, " ions; and (iii)
neutral, which do not introduce either of them. Dissolution
of III-nitrides using potassium azide (KN3) or potassium am-
ide (KNH,) ammonothermal-basic solutions'®!” has been
suggested to occur through formation of soluble intermediate
compounds, which subsequently decompose at higher tem-
perature. In this study, we investigated m-plane substrates
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grown in ammonobasic environment at AMMONO S.A.,
where alkali metals or their amides (LiNH,, NaNH,, or
KNH,) are used as mineralizers. The details about the
method can be found elsewhere.'” Substrates with dimen-
sions of 9 x 13 mm and thickness of 325 um were sliced
from bulk GaN crystals. One side of the substrate was
mechanically polished up to reaching an optical finishing
while the back-side was roughly polished.

B. Characterization methods

For the high resolution x-ray diffraction experiment, a
triple-axis setup is employed. The x-rays emitted from a
sealed copper anode are pre-collimated by a parabolic multi-
layer mirror and then pass a four-bounce Bartels monochro-
mator using the 220 Bragg reflections of two highly perfect
germanium channel cut crystals. The x-ray beam is colli-
mated down to the intrinsic Darwin width of the Ge 220
Bragg reflection of about Afp =11 arc sec while the Cu K
(4 =1.54059 A) line is selected within a wavelength band of
AJJA=1.28 x 10~*. In front of a single channel scintillation
detector, a two-bounce 220 germanium channel cut crystal
analyser is mounted, which measures the direction (20) of
the diffracted beam with an accuracy of 11arc sec. The
temperature during the measurements was fixed to T = (20
* 0.5) °C and the mechanical stability of the monochromator
was checked at regular intervals by measuring the intensity
of the primary beam. During the entire measurement period,
we did not observe any long-term drift in the Xx-ray
wavelength.

A detailed description of the technique can be found in
Ref. 20. By using an analyser crystal both the rocking angle
w of the sample as well as the scattering angle 260 can be
used to evaluate the Bragg angles of various Bragg reflec-
tions. This eliminates any peak broadening caused by any
microscopic (broadening by dislocations or micrograins) or
macroscopic (e.g., bending) sample imperfections or any
sample misalignment (e.g., non-excentricity) and enables a
precise determination of the lattice parameters of single crys-
tals with an accuracy of the order of 10>,

Micro-Raman spectroscopy is performed in different
geometries at room temperature using a laser excitation of
532nm with a power of 50mW and focusing the beam
through a 100 x microscope objective. CL measurements are
performed with an FEI Quanta 200 ESEM with Gatan
CF302 continuous flow liquid helium cold stage and an
Ocean Optics QE65000 scientific-grade spectrometer (spec-
tral range of 200-950 nm, 8 nm resolution). The excitation
power dependent cathodoluminescence measurements are
recorded at T=12K, 10kV and with currents between
0.1nA and 100 nA (with a spot size of approx. 10 nm at low
currents).

lll. RESULTS AND DISCUSSION
A. Structural study

The crystalline perfection of the non-polar (1-100) GaN
was studied by means of various structural characterization
methods. A variety of different Bragg reflections have been
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studied. Fig. 1 exemplarily illustrates the measured x-ray
rocking curves (w-scan) at 4 different reflections. The crys-
tals exhibited very narrow rocking curves with full widths at
half maximum (FWHM) values close to the resolution limit
of the diffractometer (Aw=0.003°), thus indicating very
high crystalline perfection. These values are among the best
ever reported in the literature for bulk GaN. Here, it should
be mentioned that even a lower FWHM value of 15 arc sec
for the symmetrical (1-100) reflection® of m-plane ammo-
nothermal substrates have been achieved. This difference
could originate from the “optically polished” surface of the
specimens used in this study, in which a damaged subsurface
layer (about 500 nm in thickness) generated by mechanical
polishing can be present.

A detailed knowledge of the lattice mismatch between
the substrate and different epitaxial layers is essential in
order to tune the strain state in coherently grown III-N epi-
taxial layers on GaN. The accurate evaluation of strains in
layers grown on substrates again requires a precise knowl-
edge of the substrate lattice parameters. Therefore, the a and
c lattice parameters of the highly perfect ammonothermal
GaN single crystals were determined with very high preci-
sion by employing a sophisticated HR-XRD technique,
which is based on the modified Bond method.”® For this

TABLE I. Experimental values of lattice spacings dyy for various Bragg
reflections (hkl). Values in brackets are the errors in the last digits.

h k 1 dia (A)

1 —1 0 2.76185(10)
2 -2 0 1.38091(4)
3 -3 0 0.92062(2)
2 -2 3 1.07886(2)
2 -2 2 1.21881(4)
2 ) 1 1.33440(4)

® (degrees)

purpose, a variety of different independent Bragg reflexes
(hkl) has been investigated, and the corresponding lattice
spacings, dyy, are displayed in Table 1.

The a and c lattice parameters can be determined from
the dy-values in Table I by using the following relationship
for hexagonal crystals:

1 \/4(/12 + K2+ hk) P X
dhkl a 302 + 62. ( )
The lattice parameters were determined using an iterative
refinement procedure as described in Ref. 20. The results
obtained are summarized in Table II. For comparison, litera-
ture values for a and c lattice parameters of HVPE and
HPSG GaN materials'? are also listed.

In principle, the lattice parameters of GaN could be
affected by incorporation of impurities or native point
defects (e.g., vacancies). At the concentrations typical for
ammonothermal material, these defects are, however,
expected to have a minor influence on the lattice parameters.
Varying internal strain caused by structural defects like dis-
locations, on the contrary, could have a significant impact.
At sufficiently high dislocation densities, the inhomogeneous
strain field around individual dislocations leads to a broaden-
ing of the x-ray rocking curves, which depends on the

TABLE II. Experimental @ and ¢ lattice parameters for ammonothermal,
HPSG, and HVPE GaN. Values in brackets are the errors in the last digits.

Material a (A) c (/&)

Ammonothermal 3.18908(10) 5.18517(10)
HVPE!! 3.1880(20) 5.1868(15)
HVPE (Sumitomo) 3.1892(2) 5.18542(2)

HPSG (Unipress) 3.1881-3.1890
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relative orientation of the Burger’s vector with respect to the
scattering vector. If the dislocation density exceeds a certain
threshold, the strain fields of adjacent dislocations may over-
lap which may cause a change of lattice parameters. For our
ammonothermal samples, the x-ray rocking curve width is of
the same order of magnitude of the experimental resolution.
This implies a comparatively low DD, i.e., the distance
between adjacent dislocations is sufficiently large so that the
strain fields between neighbouring dislocations cannot over-
lap. As a result of missing overlapping, the mean lattice pa-
rameters, as measured by XRD, remain unchanged. It may
be concluded that in this case, the few residual dislocations
have a negligible impact on the (mean) lattice parameters in
our sample.

In contrast, larger x-ray rocking curve widths were
found for homoepitaxial HVPE and metalorganic chemical
vapor deposition (MOCVD) samples with much larger dislo-
cation densities.?? Here, we expect a remarkable impact of
dislocations on the lattice parameters.

High-pressure solution grown GaN bulk crystals exhibit
a lattice parameter a between 3.1881 and 3.1890 A. This ma-
terial has been shown to be unintentionally doped with oxy-
gen; it indeed exhibits a n-type conductivity consistent with
a donor concentration around 10°° cm . The effects on the
lattice parameters due to incorporation of oxygen impurities
in GaN were evaluated by Van de Walle*® using first-
principles pseudopotential-density-functional calculations. It
was estimated that such an oxygen concentration will lead to
an expansion of the lattice and will increase a by 0.0008 A.
We suggest that the lattice parameters measured on ammo-
nothermal GaN in the present study can be used as standard
parameters for stress-free GaN.

B. Optical properties

The micro-Raman spectra recorded in backscattering
configuration are shown in Fig. 2 for parallel and crossed
polarization in the case of c-plane and m-plane surfaces. The
Raman modes provide, in contrast to the XRD measure-
ments, information on the local short range ordering of the
atoms in the crystal, on the strain state of the lattice, as well
as on the electric properties of the material. According to the
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y(m-axis)
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~ FGaN,T=300K | |
& '
5
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FIG. 2. p-Raman spectra for different configurations of the incident and
scattered light and its polarization in the range of the LPP~, A(TO),
E(TO), and E,(high) modes.
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Raman selection rules for wurtzite materials, the A;(TO),
E (TO), E,(high), and E,(LO) modes can be observed in the
different orientations. Instead of the commonly observed
A(LO) mode, coupled longitudinal-optical phonon-plasmon
modes (LPP) were observed.>* The energetic position of the
non-polar E,(high) mode at 566.6(3) cm ! indicates a strain-
free (relaxed) crystal.25*27 The very narrow full width at half
maximum of I' =2.8 cm ™' further proves the excellent struc-
tural quality in agreement with the XRD data. This width
equals the narrowest reported line width in GaN substrates.”*
This usually indicates exclusively homogeneous broadening.
The line width is mainly governed by the phonon lifetime
whereas broadening due to anharmonic decay and defect
scattering is negligible. The positions of the Raman modes
and their line width are listed in Table III. The position of
the observed LPP™ mode indicates a free carrier concentra-
tion in the range of 2 x 10'? cm 324282

Fig. 3(a) shows the low-temperature CL spectra, which
were recorded for different excitation power densities at a
temperature of 10K. The prominent features in the spectra
are the bound exciton emission (BX) at 3.45eV, the donor-
acceptor-pair (DAP) luminescence at 3.29 eV, and two broad
bands in the blue and green spectral regions. The lumines-
cence at 3.20 eV with a distance of approximately 90 meV to
the DAP is the first LO phonon sideband of the DAP zero-
phonon line. The spectra were normalized for the excitonic
luminescence (BX). In addition, a high resolution measure-
ment of the excitonic luminescence is depicted showing only
one distinct bound exciton.

With increasing excitation power, a second replica (DAP-
2L0) positioned at 3.11eV becomes visible. Apparently nei-
ther the DAP nor the BX emission exhibits a pronounced
energy shift as function of the excitation power. In the case of
the bound exciton emission, this can be explained by the com-
pensating effects of bandgap renormalization and carrier
screening in GaN as reported by Reynolds e al.>*? The ab-
sence of the typical blue shift of the DAP with increasing ex-
citation power due to a reduced mean distance of ionized
donors and acceptors shows that no potential fluctuations
within the band structure occur.”® In comparison to the BX
emission, the DAP as well as the defect related blue and green
luminescence bands show a reduced intensity increase with
increasing excitation power, indicating saturation of those
processes in the high excitation regime (cf. Fig. 3(b)).

The presence of the BL peak may be associated with the
slight compensation of non-intentional donors by acceptors
in this sample. These transitions are also common in other

TABLE III. Peak positions and full width at the half maximum values for
the observed Raman modes at 300 K. Values in brackets are the errors in the
last digit.

Raman shift (cm ") FWHM (cm ™)
LPP 497.5(2) 61(8)
A(TO) 531.0(3) 14.7(2)
E(TO) 558.0(3) 12.1(2)
Es(high) 566.6(3) 2.6(1)
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wurtzite wide band gap semiconductors, such as, e.g., ZnO,
where optical emission lines caused by basal plane stacking
faults®* and excitons bound to extended structural defects™
were recently identified.

The observed DAP luminescence in the samples is likely
linked to the incorporation of contaminants from the ammo-
nothermal growth process. Together with other point defects,
these contaminants may be responsible for the observed blue
and green luminescence bands.3° However, for substrate
applications the very high crystalline perfection in terms of
low DDs is of paramount importance and a high purity of the
overgrown device heterostructures can be achieved employ-
ing MOCVD or MBE growth methods enabling very low im-
purity incorporation levels (such as oxygen and silicon).

IV. CONCLUSION

The structural and optical properties of state-of-the-art
m-plane bulk GaN grown by the ammonothermal process
were investigated. The structural analysis by HR-XRD and
Raman spectroscopy proves the excellent crystalline quality
of the material. The lattice parameters of strain-free GaN
were accurately determined by XRD. From the very narrow
Bragg reflexes, it can be argued that this material has a very
good long range ordering, whereas the narrow line width of
the E,(high) Raman mode confirms the very good short
range ordering. The position of the E,(high) mode indicates
a relaxed lattice. The extremely high curvature radius, to-
gether with the very high crystalline perfection, proves the
great potential of such ammonothermal GaN crystals as sub-
strates for manufacturing of GaN-based devices.
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