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Abstract

Reduced order modeling aims to approximate large and complex dy-
namical systems with smaller ones to reduce simulation costs in the
design or control processes of these systems. Standard linear mode-
based model order reduction (MOR) can fail for transport dominated
fluid systems (TDFS), because the underlying transport is often inher-
ently non-linear. However, given that, in case of TDFS, the transported
quantity changes slowly with respect to the advection speed, only few
degrees of freedom (DOF) are required if the system is parametrized
in a reference frame that moves with the transported quantity. This
thesis aims to improve MOR of TDFS by implementing well adapted
non-linear coordinate transformations that take the transport of the
systems into account. The first part of this thesis addresses non-linear
adaptive wavelet-filtering of flow systems to adjust the computational
resources to the co-moving reference frame, already when generating
the data. To enable MOR with the utilized adaptive data structure, a
wavelet-based adaptive version of the proper orthogonal decomposition
(POD) is proposed that balances error contributions of wavelet com-
pression and POD truncation. The second part addresses non-linear
reduction methods that compensate the transport by a shift or with
help of an auxiliary field parametrizing the transport. Compared to the
POD, the new methods allow for efficient decomposition of TDFS with
only few DOF, while providing better physical insight into the system
compared to neural autoencoder networks. The presented methodology
enables the decomposition of reactive systems with topologically chang-
ing front structure, such as splitting or merging reaction fronts, that
pose difficulties for many non-linear reduction methods. The last part
studies the ability of the non-linear reduction methods to predict new
system states using intrusive and non-intrusive reduced order models.
In the case of the latter, manifold Galerkin projections with a tailored
hyper-reduction strategy are utilized, enabling rapid simulations of re-
active flows. Given that reactive systems are considered challenging for
classical MOR applications, this contribution is an essential building
block for future applications.
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Zusammenfassung

Um bei der Steuerung oder Optimierung von großen dynamischen Sys-
temen Simulationskosten zu reduzieren, zielt die Modellreduktion da-
rauf ab, diese durch kleine Systeme zu ersetzen. Herkömmliche, lin-
eare moden-basierte Modellreduktionsmethoden sind jedoch nicht in
der Lage transport-dominierte Fluidsysteme (TDFS) ausreichend zu
reduzieren, da diese inherent nichtlinear sind. Dennoch lassen sich
TDFS hinreichend gut reduzieren, wenn die transportierten Strukturen
in einem mitbewegten Koordinatensystem approximiert werden. Das
Ziel dieser Arbeit ist es daher, nichtlinearen Koordinatentransforma-
tionen zu implementieren, welche den Transport der Strömung explizit
berücksichtigen. Im ersten Teil werden nichtlineare adaptive Wavelet-
filter auf Strömungssysteme angewendet, um die benötigten Rechenre-
sourcen schon während der Datengeneration zu verringern. Die adap-
tive Datenstruktur erfordert eine gesonderte Behandlung während der
weiteren Datenreduktion. Deshalb wurde eine wavelet adaptive Version
der Hauptkomponentenanalyse (engl. POD) entwickelt, welche Ab-
schneidefehler der Waveletkompression und Hauptkomponentenanalyse
ausbalanciert. Der zweite Teil der Arbeit beschäftigt sich mit nicht-
linearen Reduktionsmethoden, welche den Transport durch eine Ver-
schiebungstransformation oder ein zusätzliches Hilfsfeld berücksichti-
gen. Im Gegensatz zu Methoden wie der POD erlaubt diese neue
Methodik eine genauere Darstellung von TDFS mit weniger Freiheits-
graden. Darüber hinaus gibt die Methodik besseren Einblick in das
analysierte System als herkömmliche nichtlineare Ansätze wie neu-
ronale Autoencoder Netzwerke. Als besonderen Beitrag kann die niedrig
dimensionale Zerlegung von reaktiven Strömungen mit topologischen
Änderungen der Frontstruktur gesehen werden, da diese Zerlegungen
als besonders anspruchsvoll gelten. Im letzten Teil der Arbeit werden
die niedrig dimensionalen und nichtlinearen Beschreibungen der TDFS
im Hinblick auf ihre Effizienz bei der Vorhersage neuer Systemzustände
getestet. Dabei werden intrusive und nicht-intrusive Methoden verwen-
det. Für letztere wird eine spezielle Hyperreduktionsstrategie einge-
führt, die speziell auf reaktive Strömungen mit komplexen Frontstruk-
turen zugeschnitten ist.
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1 Introduction

Modern mathematical models of real-life fluid systems yield large dy-
namical systems that are expensive to simulate. In order to reduce the
simulation costs, model order reduction (MOR) aims to approximate
these systems with smaller ones, while sacrificing little accuracy. Un-
fortunately, standard mode-based model order reduction often fails for
transport dominated fluid systems (TDFS), such as propagating flame
kernels, fluid-structure interaction of moving objects, and acoustic or
moving shock waves. The goal of this thesis is to improve and de-
velop new techniques to address these shortcomings using non-linear
reduction methods.

In the design and control of flow machines one is often interested in
studying the evolution of fluid dynamic quantities q(x, t;µ), such as
pressure, velocity or density, over a range of different parameters µ in
space x and time t. Examples of these parameters can be viscosity of
the fluid, reaction rate of burning fuel quantity, parameters describing
the profile of an airfoil or the motion of a moving object immersed in a
flow field. In computational fluid dynamics (CFD), these systems are
discretized partial differential equations (PDEs) describing the conser-
vation laws of fluid motion, specifically, conservation of mass, linear
momentum, species and energy, which typically require billions of de-
grees of freedom (DOF). Simulating these systems is costly since com-
putational resources scale with the number of unknowns (DOF). In the
case of TDFS, particularly high dimensional systems are required since
small scale quantities, described locally, are transported in time by an
underlying velocity field v(x, t), yielding a large number of DOF (see
illustration in Fig. 1.1a). Therefore, model order reduction is inevitable
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to reduce the number of unknowns in the system.

(a) time-independent basis (b) time-dependent basis

Figure 1.1: Quantity q(x, t) of a TDFS, which is represented
by a local time-independent basis ψi(x) (a) and local time-
dependent basis ψi(x, t) (b). The quantity is transported by
an underlying flow field v(x, t) indicated by the arrows.

Most commonly, parametric model order reduction is set up in a two-
stage offline-online procedure (for a review see [4]). In the offline stage,
the equations of motion are simulated for a small number of param-
eters. These simulations are costly because the discretized equations,
referred to as full order model (FOM), are represented in a high di-
mensional space. Assuming that the gathered FOM-data represents
the underlying dynamics, it can be used to generate a reduced map-
ping that represents the data on a low dimensional reduced system.
In the second stage, the so-called online stage, the reduced description
can be used to approximate new system states of the FOM over a range
of different parameters. Since the online dynamics are evaluated only
for the reduced set of variables, this can be done rapidly. The reduced
set of equations is referred to as reduced order model (ROM).

For the full and reduced order model, the efficiency of the numerical
simulation crucially depends on the chosen representation. In the sim-
plest case, one chooses a representation in the offline and online stage,
in which the degrees of freedom are represented in a predefined time-
independent basis {ψi(x)}i=1,...,DOF to describe the quantity of interest

q(x, t;µ) ≈
DOF∑︂
i=1

q̂i(t;µ)ψi(x) . (1.1)
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For example, in the offline stage, the FOM may be represented in a
finite element basis ψi ∈ V FEM, using so called shape functions [112] or
a spectral basis ψn(x) ∼ eix·kn [20] if the domain is periodic. Similar
approaches hold for the reduced model that is usually constructed with
the proper orthogonal decomposition (POD), which was introduced by
Sirovich in [127]. In contrast to the basis used for simulating the FOM,
the POD-basis ψi ∈ V POD is data-dependent, as it is usually computed
by a singular value decomposition (SVD) of snapshots collected in the
offline stage. However, since the reduced representation of the POD-
ROM needs much fewer degrees of freedom ∼ O (10) than the FOM
∼ O

(︁
106)︁, it enables efficient simulations. Since time and parameter

dependencies are treated in a similar way, we omit the µ-dependency
in the following.

Unfortunately, if transport of jumps and kinks dominate the dynamics,
which is often the case in fluid flows, the ansatz in Eq. (1.1) to seperate
space from time and parameters performs poorly, since many degrees of
freedom are needed to describe the system. For reduced order models,
this was numerically investigated for reactive flows in [74] and theo-
retically quantified with help of the Kolmogorov n-width in [108, 63].
The development of efficient representations for TDFS is the main goal
of this thesis. In the subsequent sections, we will discuss the state of
current research and its limitations, which motivate the contributions
of this thesis.

1.1 State of the Art
As the quantity of interest is transported or shifted by the underly-
ing fluid motion, it is necessary to account for the transport within the
description of the flow quantity. The reference frame or coordinate sys-
tem moving with the flow quantity, as illustrated in Fig. 1.1b, is called
co-moving or Lagrangian frame of reference. For optimal efficiency, the
basis elements need to be adapted to the co-moving reference frame over
time. This affects both the simulation and representation of the FOM
and ROM systems, which is addressed in the following subsections.
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Adaptive Methods for Simulation of TDFS
Simulating transport dominated quantities efficiently requires a basis
in a co-moving reference frame. Unfortunately, in the most general
case, it is not possible to set up a co-moving basis a priori without
physical or engineering insights into the system. Picture a complex
reacting flame front that splits and merges within time or a deflagra-
tion to detonation transition that suddenly changes the propagation
velocity from sub- to supersonic inside a combustion chamber. One
common solution to this is to use highly resolved equidistant or adap-
tive meshes. Here, on the one hand, adaptation is advantageous for
transport dominated systems, because it distributes computational ef-
forts to places where relevant information is located. On the other
hand, adaptivity comes with additional costs for data management
and processing. Thus, for the same amount of data, adaptive methods
are more complex and computationally demanding compared to non-
adaptive equivalents. For example, [31] claim computational overheads
of up to 31 percent per iteration and DOF, while the overall compu-
tational efforts concerning memory and CPU-time are reduced. From
a point of view of the underlying structure of representation, one may
divide the current adaptive methods loosely into two groups:

1) Eulerian methods, like most adaptive multiresolution methods (for
a review see [36, 103]) or adaptive mesh refinement (for a review see
[106]), are based on an Eulerian description of the flow. These methods
usually rely on a high dimensional representation, similar to Eq. (1.1):

q(x, t) ≈
DOF∑︂
i=1
Sϵ(q̂i(t))ψi(x) , (1.2)

where a local error estimator Sϵ is controlled by a threshold ϵ that
determines whether a basis element needs to be taken into account.
Therefore, the number of possible DOF is large but the full state space
is usually only partially exploited by the numerical scheme. In CFD,
adaptive multiresolution or mesh refinement methods have become a
popular tool. The idea is to refine the grid in areas where it is re-
quired by the precision of the solution and coarsen it whenever possible.
This guarantees scalability and versatility with controlled errors. Eule-
rian methods have been successfully applied to various fluid dynamical
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problems like combustion systems [30], compressible flows [116], incom-
pressible flows with moving geometries [46], reactive and non-reactive
Euler equations with moving boundaries [71], shock and detonation
waves [32, 93].

2) In contrast, Lagrangian methods like the characteristic mapping
method [99], Lagrangian particle-wavelet method [7] or moving mesh
method (see review [75]) build on the idea of the Lagrangian description
of the flow:

q(x, t) ≈
DOF∑︂
i=1

q̂i(t)ψi(X(x, t)), (1.3)

where the underlying mesh X (represented by Eq. (1.1)) is transported
by the flow. For example, the characteristic map X(·, t) evolves the
initial position x0 of a flow quantity along characteristic curves that
are determined by the underlying velocity field v(x, t). The method
assumes divergence-free velocity fields and is therefore only applicable
to incompressible flows [143]. Another possibility is to evolve q by
virtual particle positions that are carried by the flow and interpolated
back on a multiresolution mesh [7] or the moving mesh method, where
the Lagrangian frame is the solution of an optimization problem that
includes error estimates and geometric considerations [75].

Comparing the different methods and representations regarding their
efficiency is a complicated task. Multiple criteria, such as data-com-
pression, conservation of physical properties, approximation error vs
CPU-time, scalability and many others have to be considered and
weighted against each other, depending on the problem at hand. How-
ever, since Lagrangian methods are often difficult to treat in a generic
context, most fluid systems are studied using adaptive multiresolution
and mesh refinement. For two-dimensional (2D) Euler equations, a
quantitative comparison of both methods can be found in [31]. This
comparison shows that adaptive multiresolution methods benefit from
the sparse representation using wavelets, regarding data compression
and overall CPU-time.
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Non-linear Dimension Reduction Methods for TDFS
To obtain information about the fluid system, data are generated by
simulating the FOM and then stored as snapshots of the flow at differ-
ent time or parameter instances. The reduced order model is built from
the snapshot data using special dimension reduction methods. These
methods aim to approximate the flow field with only a few variables
by exploiting the intrinsic structure or symmetries of the data. For
one-dimensional (1D) transport, this intrinsic structure is usually one
or multiple parameter or time-dependent shifts x ↦→ x−∆k(t), for ex-
ample caused by expanding shock waves, acoustic waves or parameter-
time-dependent moving structures in the flow.

To account for transport, the authors [115, 117, 12, 141] use shift trans-
formations T −∆k : q(x + ∆k(t), t) ↦→ q(x, t) in order to align the data
onto a co-moving reference frame. In this reference frame, the wave is
stationary and can be described by few spatial basis functions deter-
mined with help of the POD. For example in [115], the shifted proper
orthogonal decomposition (sPOD) was introduced, describing the flow
by a superposition of co-moving fields {qk(x, t)}k=1,...,f :

q(x, t) ≈
f∑︂

k=1
T ∆kqk(x, t) (1.4)

where qk(x, t) =
rk∑︂

i=1
q̂k

i (t)ψk
i (x) , (1.5)

using a shift transformation. It builds on the idea that traveling waves
or moving localized structures qk can be perfectly described by their
wave profile and a time-dependent transformation, usually a shift op-
eration. Since the wave profile is only slowly changing over time, the
resulting co-moving structures are of low-rank and therefore the to-
tal number of DOF = ∑︁f

k=1 rk is small. A similar representation was
used in [117] building on the idea of symmetry reduction [120, 119]. In
fact, [10] showed that the sPOD and the symmetry reduction frame-
work [120, 9] are equivalent, if for a single reference frame approxi-
mation (f = 1) the continuous differentiable transformations form a
group that commutes with the right hand side of the PDE. Under
these assumptions, symmetry reduction and sPOD use the symmetry
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group of translation to transform the data into the Lagrangian frame
of reference. Therefore, Eq. (1.4) can be seen as a reduced version of
Eq. (1.3). Similarly, other authors use more general mappings [104]
to align steady-state parameter dependent shocks [104] or domains
[107, 79].

Another common dimension reduction method uses artificial neural
networks. Although the specific implementations differ, most authors
[52, 89, 53, 81] rely on a so-called autoencoder (AE) structure. This
structure is a composition of affine linear and non-linear functions
that squeezes the input data through a small informational bottleneck,
which is thereafter mapped back to its input dimension by a decoder.
After the network has been trained to approximate its input data, the
decoder can be used for model order reduction. However, in contrast
to the methods outlined above, AE based dimension reduction does
not make explicit use of the underlying transport. It is therefore more
general in the sense that transport can also be handled where no one-
to-one mapping exists to align the transported quantities. Examples
are systems that feature topological changes like splitting and merging
flame fronts or multi-phase flows. Unfortunately, the resulting AE de-
scriptions lack structural insights and interpretability. For example, the
POD representation Eq. (1.1) attributes the most relevant structures
of the flow to spatial basis functions, called modes. These modes are
L2 optimal in the sense that they describe the data better than any
other representation with the same number of basis functions. Fur-
thermore, they enable rich interpretation in fluid dynamics in terms
of coherent structures [72]. In contrast, it is not clear which struc-
tures or features are identified by an AE. Existing feature importance
interpretation methods are usually based on first-order linear approxi-
mations around a given input. However, they may fail if the inputs are
perturbed [58, 60, 132].

Reduced Order TDFS
While non-linear reduced order mappings enable the efficient reduction
of TDFS, they pose additional challenges when attempting to predict
new system states. New methods addressing this have been developed,
which can be categorized as intrusive [89, 10] or non-intrusive [53, 52,
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87, 123, 54, 111] reduced order models. Intrusive predictions are based
on the initial system of equations, whereas non-intrusive models are
equation-free. Therefore, non-intrusive models are purely data-driven
and often based on additional model assumptions, such as smoothness
in the reduced parameter space or conservation of physical properties.

Intrusive models project the original equation system on the tangent
space of the manifold created by the reduced map, which is non-linear
for transport dominated systems. These projections are called manifold
Galerkin-projections. They were first implemented for neural networks
in [89] and later for dynamical transformed modes in [10]. However,
projection-based non-linear systems are not online efficient, since they
require the evaluation of the dynamics of the full space. Therefore, spe-
cial hyper-reduction schemes are required to gain speedups in the re-
sulting ROM. Examples of these schemes are the extended Energy Con-
serving Sampling and Weighting (ESCW) scheme proposed by [78], the
gappy-POD based Gauss–Newton with approximated tensors (GNAT)
procedure [21] first introduced for non-linear manifolds in [81] or the
shifted discrete empirical interpolation (DEIM) algorithm in [11]. The
idea of all of these methods is to evaluate the non-linear dynamics of
the underlying system for a small number of points to determine the
evolution of the parameters in the reduced space.

In contrast, non-intrusive models do not need to evaluate the system
from which they originate. However, their applicability is problem de-
pendent. For example, the Fourier-Koopman framework [87] proposes
an approximation of the reduced dynamics assuming that the model
is quasi-periodic. Other methods, such as sparse identification of non-
linear dynamics (SINDy) [54, 111], assume that the reduced dynamics
can be approximated by a sparse dictionary of operators or a linear
system in case of the dynamic mode decomposition (DMD) [123].

1.2 Contributions
This thesis contributes the following three developments:

1. Adaptive multiresolution methods for simulating and reducing
transport dominated fluid systems,
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2. Transport compensation for efficient reduced order models, and

3. Time-parameter predictions for non-linear reduced order models .

The individual contributions to these fields are discussed in the follow-
ing:

1.) Compared to other methods, adaptive multiresolution schemes ben-
efit from their sparse representation of the data using wavelets. Here,
the nature of wavelets combined with multiresolution analysis [96] al-
lows for the identification and compression of localized moving struc-
tures, while keeping control over introduced compression errors. The
novelty of the presented results lies in that these properties are utilized
in the creation of flow data and whilst reducing the dimension using
POD. The basic adaptation method grounds on the idea of [37] and the
recent works [151],[46]. Here, a block-based adaptive grid is refined or
coarsened using biorthogonal wavelets. The non-linear approximation
[35] of the flow data due to thresholding of the wavelet coefficients yields
sparse and efficient representations to reduce memory and CPU-time
requirements. Moreover, the implemented framework uses a locally
uniform Cartesian grid structure for each block, which allows for the
comparison and application of our methods to other 2D/3D equidistant
equivalents. For example, a direct comparison of the wavelet adaptive
proper orthogonal decomposition (wPOD) and the randomized singular
value decomposition (rSVD) will be presented. While the randomized
SVD requires several passes over the data when the singular values
decay slowly [68], this can be circumvented by using a sparse wavelet
representation. How to balance compression errors with other errors
(such as the POD-truncation error, errors originating from the utilized
PDE discretization scheme) constitutes a key challenge that will be ad-
dressed in this thesis. The developed software framework called WABBIT
is publicly available at [129] and implemented in a multi-processing
MPI environment to cope with large flow data.

2.) Secondly, this thesis addresses the slow decay of the Kolmogorov
n-width, which manifests in a slow decay of the approximation errors,
when reducing TDFS with the POD. To improve the convergence of
the POD, two different methods are used:

• Shifted POD: The sPOD is used to improve the convergence of
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the decomposition if transports along one-dimensional paths with
multiple co-moving frames are expected. Multiple gradient-based
optimization algorithms for the sPOD already exist in the liter-
ature [115, 12, 114]. However, these formulations of the sPOD
have disadvantages, both in practice and theory, which are ad-
dressed in the thesis. Based on the work [114], two new sPOD
algorithms are presented. The first algorithm minimizes

J2 = 1
2

f∑︂
k=1

m∑︂
j=rk+1

(σk
j )2, (1.6)

the sum of the squares of the truncated singular values σk
j ≥ 0

in each co-moving frame k = 1, . . . , f . The developed algorithm
delivers a solution to the optimization by redistributing the trun-
cation error in each frame exactly. This avoids the need for a
constraint-projection-step since the constraint Eq. (1.4) is always
satisfied. Additionally, we regularize the total variation of the
time amplitudes to obtain a unique decomposition at time in-
stances where two traveling waves intersect. The additional con-
straint improves the convergence of the algorithm and is a key
feature for non-intrusive model order reduction. Furthermore,
since the computational complexity of the algorithm is reduced
to the complexity of the SVD and the total variation operator,
the application to 2D flow data is enabled. However, as already
pointed out by [114], the optimization based on J2 is not optimal,
since the rank rk of the co-moving data frame in Eq. (1.5) has
to be chosen beforehand. For complicated systems, this choice is
often arbitrary. For example, if more co-moving frames or modes
are used in the decomposition than necessary, these additional
DOF are not automatically zero. This is why the second sPOD
algorithm presented in this thesis is formulated as a convex op-
timization problem, based on minimizing the one-norm over the
set of all singular values in the co-moving frames:

J1 =
f∑︂

k=1

m∑︂
j=1

σk
j . (1.7)

The J1 objective function avoids the selection of co-moving ranks,
by promoting sparsity over the set of singular values, i.e. the
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DOF. Therefore, associated frames or modes that are unneces-
sary in the decomposition are removed during the optimization.
Unfortunately, it was reported in [114] that the J1 optimization
based on a gradient descent method converges very slowly. To
tackle this problem, we use the Alternating Direction Method of
Multipliers (ADM, for a review see [15]) with proximal operators
for minimizing one-norms. Moreover, the ADM based formula-
tion allows to generalize the sPOD decomposition to incorporate
additional constraints. We will demonstrate this by adding an ex-
tra term to the decomposition, which aims to capture noise. The
resulting algorithm is shown to be more robust against interpo-
lation noise, corrupted measurements or numerical artifacts and
can be seen as a shifted version of the robust principal component
analysis (rPCA).

• Front transport reduction: Unfortunately, the shifted POD
can only be applied if the shifts due to the underlying flow are
parametrizable, easily traceable and the resulting transforma-
tions are invertible. These properties limit the applicability, espe-
cially if topological changes in the flow pattern occur. Examples
of such problems are multi-phase and reactive flows, where the
contour line separating two flow regions may split or merge. This
problem is tackled using a more direct approach, named front
transport reduction (FTR). The basic ansatz assumes that the
original flow field can be reconstructed by a front shape function
f and a level set function ϕ:

q(x, t) ≈ f(ϕ(x, t)) s.t. ϕ(x, t) =
DOF∑︂
i=1

ϕ̂i(t)ψi(x) (1.8)

The level set function is used to generate a local coordinate, which
parametrizes the distance to the front. In this way, a local 1D
representation is applied to describe complex 2D front dynamics
with merging or splitting fronts, while seeking a low-rank de-
scription of the level set field ϕ. The ability of the new ansatz is
demonstrated for 2D propagating flames. The ansatz can handle
merging or splitting fronts because fronts are embedded as D− 1
dimensional levels of a D dimensional level set function. Due
to the non-linearly activated linear space created by the span of
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{ψk(x)}k=1,...,DOF, this approach shows many parallels to neural
networks. It can be viewed as the decoder part of a shallow au-
toencoder structure. While shallow autoencoders have been used
in previous studies [81], we are explicitly incorporating the un-
derlying physical assumptions and thereby obtain interpretable
results of the reduced variables.

3.) Lastly, we address time-parameter predictions to test the quality
of the non-linear reduced mappings generated in 2.). In order to do so,
non-intrusive and intrusive reduced order models are implemented and
compared. Non-intrusive reduced order models are generated from the
parameter-time coefficients that are sampled during the offline stage. In
particular, we make use of the Fourier-Koopman forecasting introduced
by [87]. Intrusive reduced order models are generated and tested for an
advection-reaction-diffusion (ARD) equation with moving fronts using
[89, 110]. For the specific problem of moving fronts, we obtain speedups
by introducing a novel hyper-reduction scheme for these systems, based
on the reduced integration domain (RID) method [122].

1.3 Outline
The outline of the thesis is as follows:

Chapter 2 introduces the full order model as a discretized PDE sys-
tem on a block-based adaptive grid. In this chapter, the specifics of
the underlying wavelet adaptation scheme are explained and the effi-
ciency regarding CPU-time is compared to non-adaptive schemes, for
two specific TDFS.

Next, dimension reduction using linear and non-linear mappings is dis-
cussed. For dimension reduction on linear subspaces, we study the
wavelet adaptive version of the snapshot POD in Chapter 3, which
is based on the adaptation algorithm presented in Chapter 2. The
wavelet adaptive POD (wPOD) allows for the decomposition of large-
scale flows on adaptive and non-adaptive grids. We test its ability to
reduce large-scale flows for systems with slow and fast decaying POD
eigenvalues and compare it to the randomized SVD regarding memory
efficiency and accuracy.
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Chapter 4 deals with dimension reduction on non-linear manifolds.
The chapter introduces the implemented non-linear dimension reduc-
tion methods to reduce TDFS. Among state of the art AE networks,
two new sPOD-algorithms and a novel methodology to reduce mov-
ing fronts with topological changes, called front transport reduction
(FTR), will be presented. The application regime of the methods will
be discussed and illustrated by the 2D examples introduced in Chap-
ter 2.

To test the FTR in the online stage, we examine non-intrusive and
intrusive reduced order models in Chapter 5 for complex moving re-
action fronts. A purely data-driven approach using Fourier-Koopman
forecasting combined with the FTR is tested on a Bunsen-flame. Fur-
thermore, we use manifold Galerkin projections and a tailored hyper-
reduction strategy to evaluate the FTR when predicting new system
states of an advection-reaction-diffusion system with topological changes.

Finally, a conclusion and outlook is presented in Chapter 6. The main
achievements and limitations of the presented findings will be discussed
and areas for further research based on these insights are outlined.

1.4 Notation
In the following, the notational conventions that are used throughout
this thesis are declared.

Matrices are denoted in capital letters with straight, bold font A ∈
RK×K and vectors are denoted in bold font a ∈ RK . The transpose of
a matrix A or vector a is denoted by A⊤ and a⊤. For multi-indexing
of vector components a = (a1, . . . , aK) we use the following notation
ak ··= a[k1, . . . , kd] for kl ∈ [0,Kl − 1], where k = ∑︁d

l=1

(︂∏︁l−1
m=1Km

)︂
kl

is in lexicographic order and K ··=
∏︁d

m=1Km.

Furthermore, we denote q(x, t,µ) ∈ R as the solution of a scalar, evo-
lutionary PDE that is solved in (x, t) ∈ D × R+,D ⊂ RD for a prede-
fined parameter vector µ ∈ P ⊂ Rk. Its ordinary differential equation
(ODE) counterpart q : R+ × P → RM is defined on a discrete space
that is associated with a grid Ω = {xk ∈ D, k = 1, . . . ,M} ⊂ D of M
grid points. The ODE state vector contains the spatial values of the
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solution in its components:

q(t,µ) =

⎛⎜⎝ q(x1, t,µ)
...

q(xM , t,µ)

⎞⎟⎠ ∈ RM . (1.9)

If the PDEs solution is vector-valued q = (q1, . . . , qK)⊤ : D×R+×P →
RK its ODE counterpart q(t,µ) ∈ RKM is given by

q(t,µ) =

⎛⎜⎜⎝
q1(t,µ)

...
q

K
(t,µ)

⎞⎟⎟⎠ with q
k
(t,µ) =

⎛⎜⎝ qk(x1, t,µ)
...

qk(xM , t,µ)

⎞⎟⎠ . (1.10)

We define the snapshot matrix Q as a matrix that contains samples of
a trajectory with initial condition q(t0,µ) as ODE-state vectors in its
columns:

Q(µ) = [q(t0,µ), q(t1,µ), . . . , q(tN ,µ)] ∈ RKM×Nt . (1.11)

If multiple trajectories are sampled for different parameter vectors
{µ1, . . . ,µN} ⊂ P, they are concatenated and we write:

Q = [Q(µ1),Q(µ2), . . . ,Q(µN )] ∈ RKM×NtN . (1.12)

Partial derivatives in space and time are denoted by ∂x = ∂
∂x , ∂t =

∂
∂t , ∂xx = ∂2

∂x2 and q̇ = ∂q
∂t . Moreover, for a D-dimensional cartesian

coordinate system (x1, . . . , xD), we define the nabla operator:

∇ =
(︃
∂

∂x1
, . . . ,

∂

∂xD

)︃
(1.13)

and the Laplace operator:

∇2 = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
D

. (1.14)

The curl of a three-dimensional vector field v(x1, x2, x3) = v1e1+v2e2+
v3e3 is represented as:

∇× v =
(︃
∂v3

∂x2
− ∂v2

∂x3

)︃
e1 +

(︃
∂v1

∂x3
− ∂v3

∂x1

)︃
e2 +

(︃
∂v2

∂x1
− ∂v1

∂x2

)︃
e3 , (1.15)

where {e1, e2, e3} are the unit vectors in R3.



2 Simulating Transport Dominated Fluid
Systems

In this chapter, we present the adaptive multiresolution method used
to simulate transport dominated fluid systems (TDFS). Section 2.1 in-
troduces the concepts of the adaptation scheme, including block-based
wavelet adaptation (Section 2.1.1), safety zone concept used for time-
stepping (Section 2.1.2) and the volume penalization method for em-
bedding moving geometries (Section 2.1.4). Thereafter, we introduce
the specific case studies (Section 2.2) and compare the block-based
multiresolution framework for 2D and 3D transport dominated flows
with spectral and equidistant computations.

2.1 Adaptive Multiresolution Framework WABBIT
We use the open-source software framework "wavelet adaptive block-
based solver for interactions with turbulence" WABBIT [129], which was
in parts developed and improved in the context of this thesis. The
following sections are based on the publications [148, 151] and [46].

WABBIT is designed to solve initial boundary value problems (IBVP) for
large-scale non-linear evolution equations:{︄

∂tq(x, t) = N (q(x, t),x, t) for (x, t) ∈ D× R+

q(x, 0) = q0(x) for x ∈ D
(2.1)

on rectangular periodic domains D = ∏︁D
α=1[0, Lα] for D = 2, 3 spatial

dimensions (2D/3D). Complex shaped boundary conditions are usu-
ally embedded in the domain using the volume penalization method,

15
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as explained in Section 2.1.4. For efficient storing and handling of the
large-scale flow field q and the PDE right hand side (RHS), i. e. the
evaluated differential operator N , we use block-based wavelet adap-
tation, which is explained in the following. For ease of notation, we
consider only scalar evolutionary PDEs on two-dimensional domains
in this section. Generalizations towards three spatial dimensions and
vector-valued PDEs like the incompressible Navier-Stokes equations in
3D are mentioned in the text.

2.1.1 Block-Based Wavelet Adaptation
Our adaptation algorithm is block-based, meaning that the data are
stored on a block-structured grid.

Block Structured Grid

As illustrated in Fig. 2.1 for the 2D case, the computational grid Ω is
composed of blocks

Bj
p = {(xj

p, y
j
p) + (k1∆xj , k2∆yj) | k1 = 0, . . . , Bx − 1 ,

k2 = 0, . . . , By − 1}
(2.2)

of equal size Bx × By. The subdivision of the grid is controlled by
the tree level j = Jmin, Jmin + 1, . . . , Jmax. With increasing tree level
j → j+ 1 the lattice spacing of the block is divided by two, i.e. ∆xj =
2−jLx/(Bx − 1), ∆yj = 2−jLy/(By − 1). Here, Lx, Ly > 0 is the
size of the computational domain. Gradedness of the resulting grid is
enforced, meaning that adjacent blocks differ only by one tree level.
The level and location of a block are encoded in a unique tree code
as indicated in fig. 2.1. The computational grid Ω is the union of all
blocks,

Ω =
Jmax⋃︂

j=Jmin

⋃︂
p∈Λj

Bj
p, (2.3)

where Λj is the set of all block IDs on a given tree level j. The block
IDs p ∈ Λj are called tree code. The synchronization between blocks
is done by using an overlapping layer covering g > 0 points (light gray
area in Fig. 2.1). These additional points are called ghost nodes and
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they form the ghost node layer. The size of the ghost node layer is ad-
justed according to the spatial support of the chosen wavelet. In this
thesis, we use g = 6 for the wavelets defined in Table 2.1. If neighboring
blocks are not on the same tree level, we interpolate or downsample the
corresponding nodes when synchronizing the ghost nodes. Redundant
nodes on the boundary of adjacent blocks always belong to the block
with a higher tree level, i.e. finer lattice spacing. The block-based defi-
nition of the grid allows combining the advantages of unstructured grids
with the efficiency of structured grids. While the local block structure
can be tuned for optimal CPU and memory performance, the global
structure is flexible to adapt to the algorithm’s requirements. Further-
more, block-based multiresolution methods require less administrative
overhead compared to point-based like [118], at the cost of a reduced
compression rate.

x

y

2

00 01

02 03
1

3

interior node

redundant node

exterior/ghost node

interpolated ghost node

Ly

Lx

Figure 2.1: A 2D grid composed of seven blocks. A single
block (dark grey) consists of an odd number of interior grid
nodes Bx = By = 5. The block includes a ghost node layer
(light gray) which is synchronized with neighboring blocks. The
size of this layer depends on the support of the chosen wavelet.
Ghost nodes are interpolated or downsampled if the levels of the
neighboring blocks differ.
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Refinement and Coarsening

For the wavelet adaptation scheme, here illustrated for the 2D case,
we assume real-valued and continuous L2-functions q(x, y), such as
the pressure or velocity component of a flow field. The function is
sampled on a block-based multiresolution grid, as shown in Fig. 2.1,
with maximum tree level Jmax, block size Bx × By and a ghost node
layer of size g, needed for synchronization. The sampled values on a
block Bj

p are denoted by:

xj
p,k1

= xj
p + k1∆xj k1 = −g, . . . , Bx + g−1 (2.4)

yj
p,k2

= yj
p + k2∆yj k2 = −g, . . . , By + g−1 (2.5)

qj [p, k1, k2] ··= q(xj
p,k1

, yj
p,k2

) (2.6)

For a block refinement j → j + 1 the lattice spacings are divided by
two and dyadic points are added to the block by midpoint insertion, as
shown in Fig. 2.2. The values at the refined blocks can be obtained by

p0 p1

p2 p3

p

Bj
p (Bj+1

p0 ,Bj+1
p1 ,Bj+1

p2 ,Bj+1
p3 )

(xj
p, y

j
p)

refinement
coarsening

Figure 2.2: Dyadic grid refinement and coarsening of a single
block. Refinement: First the block Bj

p is refined by midpoint
insertion and then split into four new blocks (Bj

p0,B
j
p1,B

j
p2,B

j
p3).

Coarsening: After a low pass filter is applied all midpoints (open
symbols) are removed and merged into one block.
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the refinement relation:

qj+1[p, l1, l2] =
Bx+g−1∑︂
k1=−g

By+g−1∑︂
k2=−g

hl1−2k1hl2−2k2 q
j [p, k1, k2] , (2.7)

where hk denotes the weights of the one-dimensional interpolation
scheme:

φ(x) =
N∑︂

k=−N

hkφ(2x− k). (2.8)

The procedure of recursive dyadic refinement is known as interpola-
tory subdivision and was first introduced by Deslauriers and Dubuc
in [33, 34]. It was later shown by Donoho in [38] that the result-
ing interpolation or scaling functions φ can be used for constructing
a multiresolution analysis. In the following, we will refer to Eq. (2.7)
as the prediction operation Pj+1

j : qj ↦→ ˆ︁qj+1 as it was introduced for
point value multiresolution in [69]. Using Eq. (2.8) one can show that
Eq. (2.7) is equivalent to the continuous refinement relation:

ˆ︁q(p)(x, y) =
Bx+g−1∑︂
k1=−g

By+g−1∑︂
k2=−g

qj [p, k1, k2]φj
p,k1,k2

(x, y) , (2.9)

where φj
p,k1,k2

(x, y) = φ

⎛⎝x− xj
p,k1

∆xj

⎞⎠φ
⎛⎝y − yj

p,k2

∆yj

⎞⎠ (2.10)

is the two-dimensional tensor product of one-dimensional interpolating
scaling functions φ(x). The refinement relation Eq. (2.9) for j ∈ N can
be seen as the projection ˆ︁q(p) = projVj

q(p) of q ∈ L2(D) onto a subspace
Vj ⊂ L2(D) that is spanned by the Reisz basis of scaling functions
{φj

p,k1,k2
}. The relation between the scaling functions Eq. (2.8) ensures

that these spaces are nested Vj ⊂ Vj+1 and ⋃︁j>0 Vj+1 is dense in L2.
Thus, the sequence Vj forms a multiresolution analysis.

When a block is coarsened, the tree level is reduced by one: j + 1→ j
and every second grid point is removed. The values at the coarser level
are obtained by the coarsening relation:

qj−1[p, l1, l2] =
Bx+g−1∑︂
k1=−g

By+g−1∑︂
k2=−g

h̃2l1−k1 h̃2l2−k2 q
j [p, k1, k2] (2.11)
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In the notation of Harten [69] coarsening is called decimation and
Eq. (2.11) is denoted by Dj−1

j : qj ↦→ qj−1 in the following. After deci-
mation, the block will be merged with its neighboring blocks, as shown
in Fig. 2.2. Similar to the continuous refinement relation Eq. (2.9) there
is a continuous counterpart for coarsening: the dual scaling function φ̃,
which satisfies

φ̃(x) =
N∑︂

k=−N

h̃kφ̃(2x− k). (2.12)

In the same way as the scaling functions φj
p,k1,k2

, the dual scaling func-
tions φ̃j

p,k1,k2
form a basis Ṽj , that generates a dual multiresolution

analysis. The basis functions φj
p,k1,k2

∈ Vj , φ̃j
p,k1,k2

∈ Ṽj are biorthog-
onal. The filter coefficients that define the primal and dual scaling
functions hk, h̃k are listed in Table 2.1.

continuous k -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
φ̃ h̃k − 1

256 0 9
128 −

1
16 −

63
256

9
16

87
64

9
16 −

63
256 −

1
16

9
128 0 − 1

256

φ hk − 1
16 0 9

16 1 9
16 0 − 1

16

Table 2.1: Filter coefficients hk and dual filter coefficients h̃k

of the Cohen-Daubechies–Feauveau (CDF 4,4) wavelets applied
in the prediction/restriction operation [46, Appendix B].

Computing Wavelet Coefficients and Adaptation Criterion

With the definition in Eqs. (2.7) and (2.11) we have introduced a
biorthogonal multiresolution basis {φ̃j

p,k1,k2
, φj

p,k1,k2
}, which can ap-

proximate any continuous function q ∈ L2(D) arbitrarily close [26, 96].
This concept first introduced by S. Mallat in [96] is the main property
of a multiresolution analysis and can be used to relate and compare
samples at different resolutions, i.e. different scales. As illustrated in
Fig. 2.3, the difference between two consecutive approximations can be
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represented by wavelets ψj
µ,p,k1,k2

∈ Wj−1 ⊂ Vj :

∆j−1(x, y) = projVj
q(p)(x, y)− projVj−1 q

(p)(x, y) (2.13)

=
∑︂

k1,k2

3∑︂
µ=1

dj−1
µ [p, k1, k2]ψj−1

µ,p,k1,k2
(x, y) . (2.14)

Figure 2.3: Illustration of linear interpolating wavelets. The
linear approximation of the function q at level j (a,b) can be
represented by linear interpolation at a coarser level (c) and
additional details (d) that are the difference between two con-
secutive approximations. Depending on the absolute value of
the details and a given threshold ϵ (grey area in d)), one may
mark them as significant (blue) or insignificant (green).

The wavelet coefficients, known as wavelet details, are calculated by

dj−1
µ [p, k1, k2] =

⎧⎪⎪⎨⎪⎪⎩
∆j−1[p, 2k1 + 1, 2k2] for µ = 1
∆j−1[p, 2k1, 2k2 + 1] for µ = 2
∆j−1[p, 2k1 + 1, 2k2 + 1] for µ = 3 ,

(2.15)

where ∆j−1 = qj − Pj
j−1D

j−1
j qj . (2.16)

Here, Pj
j−1,D

j−1
j are computed using the prediction and coarsening

relation Eqs. (2.7) and (2.11).

The wavelets span the basis of Wj−1 ⊂ Vj , that is the complement of
Vj−1 in Vj , i.e. Vj = Vj−1 ⊕Wj−1. Consequently, the details comple-
ment the scaling function coefficients at the odd lattice sites, as illus-
trated for two spatial dimensions in Fig. 2.4. Similarly to the scaling
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µ = 1
µ

=
2

µ
=

3

∆j−1[p, 2k1, 2k2] ∆j−1[p, 2k1 + 1, 2k2]

∆j−1[p, 2k1, 2k2 + 1] ∆j−1[p, 2k1 + 1, 2k2 + 1]

Figure 2.4: Illustration of the wavelet details dj−1
µ [p, k1, k2]

defined in Eq. (2.15) for D = 2 spatial dimensions. The details
are represented by the difference ∆j−1 at the odd lattice sites
(marker ◦).

functions, the dual wavelets ψ̃j
µ,p,k1,k2 are biorthogonal to the wavelets

and complement Ṽj−1 in Ṽj . The exact representation of ψj
µ,p,k1,k2

and
ψ̃

j
µ,p,k1,k2 is not further needed to understand the adaptation criterion.

However, for the interested reader, we will give a detailed description
of the wavelet representation in the next subsection.

As shown in one space dimension by Unser in [135] for biorthogonal
wavelets the difference ∆j between two consecutive approximations is
bounded for sufficiently smooth L2 functions q. The bound depends on
the local regularity of q and the order N (here N = 4) of the scaling
function:⃦⃦⃦

∆j
⃦⃦⃦

2
=
⃦⃦⃦
q − projVj

(q)
⃦⃦⃦

2
≤ Cφ,φ̃(∆xj)N

⃦⃦⃦⃦
⃦ dN

dxN
q

⃦⃦⃦⃦
⃦

2
, (2.17)

where ∆xj ∼ 2−j is the lattice size, Cφ,φ̃ is a constant independent
of q. This result can be understood as an interpolation error of the
data Dj−1

j qj . From Eq. (2.17) we can thus conclude: since the approx-
imation error of the interpolation scheme depends on the smoothness
of the sampled function and the lattice spacing on the block, we can
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increase the local lattice spacing of the block for blocks where the func-
tion is smooth and keep the fine scales only for blocks where q(p) is not
smooth. This is achieved by coarsening the block, as decreasing the
tree level j increases the lattice spacing. For a desired approximation
error we therefore define the wavelet threshold ϵ ≥ 0 together with the
coarsening indicator iϵ(Bj

p):

iϵ(Bj
p) ··=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if max

µ=1,2,3
k1=0,...,Bx−1
k2=0,...,By−1

| dj−1
µ [p, k1, k2] |< ϵ

0 otherwise

(2.18)

which marks the block for coarsening. The described adaptation strat-
egy is illustrated in Fig. 2.3. In the green regions, the details are
insignificant and thus can be removed. The blue regions represent sig-
nificant details that are kept. However, for our block-based adaptation,
we group the detail coefficients in blocks, i.e. all details on the block
are kept if at least one detail is significant.

For vector-valued quantities q = (q1, . . . , qK), a block will be coarsened
only if all components indicate coarsening. The pseudo-code in Algo-
rithm 1 outlines the wavelet adaptation algorithm for vector-valued
quantities. For the sake of completeness, we will put this algorithm in
relation to the underlying wavelet representation.

Wavelet Representation in the Continuous Setting

For the completeness of this manuscript, we give a detailed description
of the underlying wavelet representation in a concise way. For the
interested reader we recommend Ref. [131] for a succinct introduction
to biorthogonal wavelets and to Refs. [97, 38, 33, 34] for a more detailed
description.

Assuming that we have sampled a continuous function q ∈ L2(D) inside
a domain D ⊂ R2 on an equidistant grid corresponding to refinement
level Jmax, we can block-decompose it in terms of Eq. (2.6). By choos-
ing j = Jmax in Eq. (2.9) and summing over all blocks p, we can thus
represent q using a basis of dilated and translated scaling functions
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Algorithm 1 Wavelet adaptation
Require: q : D → RK where D ⊂ RD defined in Eq. (2.3) and D ∈
{2, 3}, K ∈ N

Require: threshold ϵ ≥ 0 and minimal and maximum tree level
Jmin, Jmax

1: function adapt(q, ϵ, Jmin, Jmax)
2: set Nblocks = 0
3: while

⃓⃓⃓⋃︁
j Λj

⃓⃓⃓
̸= Nblocks do

4: ▷ coarsening is stopped if the number of blocks has not changed
5: Synchronize all ghost layers of the blocks
6: Count the number of active blocks Nblocks
7: for all p ∈

⋃︁
j Λj do ▷ loop over all active treecodes

8: Compute the refinement indicator of the block:
9: 1) normalize every state vector component:

10: (q(p))i ← (q(p))i/
⃦⃦⃦
(q(p))i

⃦⃦⃦
, i = 1, . . . ,K

11: 2) compute ˆ︁qj
p using Eqs. (2.7) and (2.11) in a restriction

12: and prediction step
13: 3) compute the detail coefficients of all
14: state vector components with Eq. (2.15)
15: if iϵ(Bp) = 1 and Jmin ≤ j − 1 then
16: tag the block Bp for coarsening
17: end if
18: end for
19: Remove coarsening tag from blocks,
20: if coarsening would result in a non graded grid.
21: Coarse all blocks marked for coarsening
22: end while
23: Balance the load between processors
24: return qϵ ▷ wavelet filtered field
25: end function
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{φj
p,k1,k2

}:

q(x, y) =
∑︂

p∈ΛJmax

q(p)(x, y) =
∑︂

λ∈ΛJmax

cJmax
λ φJmax

λ (x, y) . (2.19)

Here we have introduced a multi-index λ = (p, k1, k2) ∈ Λj ··= Λj ×
{−g, . . . , Bx + g−1} × {−g, . . . , By + g−1} for ease of notation. With
this notation, we can rewrite Eq. (2.19) in a wavelet series

q(x, y) =
∑︂

λ∈ΛJmin

cJmin
λ φJmin

λ (x, y) +
Jmax−1∑︂
j=Jmin

∑︂
λ∈Λj

3∑︂
µ=1

dj
µλψ

j
µ,λ(x, y) , (2.20)

where the interpolating scaling basis {φJmin
λ }

λ∈ΛJmin approximates q
at the coarsest scale Jmin and the wavelet basis {ψj

µ,λ}µ=1,2,3,λ∈Λj≥Jmin

contains all the additional information necessary to construct q.
In the biorthogonal setting we have biorthogonal scaling functions:

φj
λ(x, y) = φ

(︄
x− xj

λ

∆xj
p

)︄
φ

(︄
y − yj

λ

∆yj
p

)︄
, φ̃j

λ(x, y) = φ̃

(︄
x− xj

λ

∆xj
p

)︄
φ̃

(︄
y − yj

λ

∆yj
p

)︄
with ⟨φj

λ1
, φ̃j

λ2
⟩ = δλ1,λ2

and the associated three biorthogonal wavelets (in the D -dimensional
case we have 2D − 1 wavelets see [105, p.41]) in D = 2 spatial dimen-
sions:

ψj
1,λ(x, y) = ψ

(︄
x− xj

λ

∆xj
p

)︄
φ

(︄
y − yj

λ

∆yj
p

)︄
, ψ̃

j

1,λ(x, y) = ψ̃

(︄
x− xj

λ

∆xj
p

)︄
φ̃

(︄
y − yj

λ

∆yj
p

)︄

ψj
2,λ(x, y) = φ

(︄
x− xj

λ

∆xj
p

)︄
ψ

(︄
y − yj

λ

∆yj
p

)︄
, ψ̃

j

1,λ(x, y) = φ̃

(︄
x− xj

λ

∆xj
p

)︄
ψ̃

(︄
y − yj

λ

∆yj
p

)︄

ψj
3,λ(x, y) = ψ

(︄
x− xj

λ

∆xj
p

)︄
ψ

(︄
y − yj

λ

∆yj
p

)︄
, ψ̃

j

1,λ(x, y) = ψ̃

(︄
x− xj

λ

∆xj
p

)︄
ψ̃

(︄
y − yj

λ

∆yj
p

)︄
with ⟨ψj1

µ1,λ1
, ψ̃

j2
µ2,λ2

⟩ = δµ1,µ2δλ1,λ2δj1,j2

for the horizontal (µ = 1), vertical (µ = 2) and diagonal (µ = 3)
direction. The wavelet and its dual are defined by the same scaling
relations as φ and φ̃:

ψ(x) =
N∑︂

k=−N

gkψ(2x− k) and ψ̃(x) =
N∑︂

k=−N

g̃kψ̃(2x− k). (2.21)
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The filter coefficients are gk = (−1)1−kh̃1−k and g̃k = (−1)1−kh1−k

with hk, h̃k listed in Table 2.1. The components of the scaling and
wavelet coefficients (cj

λ and dj
µλ) are determined via component-wise

projection of Eq. (2.20) onto the dual basis {φ̃j
λ, ψ̃

j
µλ}:

cj
λ = ⟨q, φ̃j

λ⟩ , dj
µλ = ⟨q, ψ̃j

µλ⟩ , where λ = (p, k1, k2) (2.22)

assuming that ⟨φj
λ1
, ψ̃

j
λ2⟩ = ⟨ψj

λ1
, φ̃j

λ2
⟩ = 0 are orthogonal. Note that

⟨a, b⟩ =
∫︁
D a(x)b(x)dx denotes the L2-inner product.

Instead of using Deslauriers-Dubuc (DD) wavelets, as in the framework
of Harten [69], we use lifted Deslauriers-Dubuc wavelets, i.e. biorthog-
onal Cohen–Daubechies—Feauveau wavelets of fourth-order (CDF 4,4)
with filter coefficients hk and dual filter coefficients h̃k listed in Ta-
ble 2.1. CDF 4,4 wavelets allow a better scale separation and can be
easily implemented by replacing the loose down-sampling filter with a
low pass filter before coarsening the grid.

In most wavelet adaptation schemes, one truncates Eq. (2.20) such that
only detail coefficients are kept which carry significant information.
According to [124] “this can be expressed as a non-linear filter", which
acts as a cut-off for wavelet coefficients with small magnitude. The
cut-off is given by the threshold parameter ϵ > 0. However, in contrast
to these schemes, our block-based adaptation groups the detail coeffi-
cients in blocks, i.e. all details on the block are kept if at least one detail
carries important information. This seems to be less efficient at first
sight, because unnecessary information is kept, but grouping details
in blocks is reasonable, since the block-based adaptation is computa-
tionally efficient for MPI-distributed architectures. Moreover, groups
of significant details are often nearest neighbors, rather than a single
significant detail in a block. Therefore, we define the set of blocks

Ij
ϵ
··=

⎧⎪⎪⎪⎨⎪⎪⎪⎩p ∈ Λj | max
µ=1,2,3

k1=0,...,Bx−1
k2=0,...,By−1

⃓⃓⃓
dj

µ[p, k1, k2]
⃓⃓⃓
> ϵ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.23)

with significant details in the predefined tree level range Jmin ≤ j ≤
Jmax. In the spirit of our previous notation we thus define: I

j
ϵ
··=
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Ij
ϵ × {0, . . . , Bx−1} × {0, . . . , By−1} for the set of all significant detail

indices. The filtered block-based wavelet field in Eq. (2.20) can now be
written as follows:

qϵ =
∑︂

λ∈ΛJ
min

cJmin
λ φJmin

λ +
Jmax−1∑︂
j=Jmin

∑︂
λ∈I

j
ϵ

3∑︂
µ=0

dj
µ,λψ

j
µ,λ . (2.24)

In the following, we will denote all fields with an upper index ϵ, which
have been filtered with Algorithm 1 and can be thus expressed as
Eq. (2.24).

For an example we have computed the vorticity ωϵ = ∂xu
ϵ
2 − ∂yu

ϵ
1 of

a thresholded vector field qϵ = (uϵ
1, u

ϵ
2, p

ϵ) in Fig. 2.5 for various ϵ
(more details can be found in Section 3.3.2). Here, ϵ > 0 and ϵ = 0
correspond to a filtered and unfiltered field, respectively. For increasing
ϵ, fewer detail coefficients will be above the threshold and therefore
the number of blocks decreases. Taking the difference between the

Figure 2.5: Block-based adaptation of a flow past a cylinder
for different thresholds ϵ. Shown is the vorticity field ωϵ =
∂xu

ϵ
2−∂yu

ϵ
1, which is computed after having applied the wavelet

adaptation to the full state vector qϵ = (uϵ
1, u

ϵ
2, p

ϵ). Each block
represents Bx×By = 65× 17 points. More details can be found
in Section 3.3.2.

thresholded Eq. (2.24) and the original field Eq. (2.20) only details
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below the threshold are left. Hence the total error can be estimated
and yields:

∥q − qϵ∥ ≤
Jmax−1∑︂
j=Jmin

∑︂
λ∈I

j
ϵ

c

3∑︂
µ=0

⃓⃓⃓
dj

µ,λ

⃓⃓⃓ ⃦⃦⃦
ψj

µ,λ

⃦⃦⃦
. (2.25)

Because
⃦⃦⃦
ψj

µ,λ

⃦⃦⃦
∞

= 1 we finally get ∥q − qϵ∥∞ ≤ Cϵϵ for the total error
in the L∞-norm. Similarly one can normalize ψj

µ,λ in the L2-norm,
which corresponds to re-weighting the thresholding criterion

⃓⃓⃓
dj

µ,λ

⃓⃓⃓
<

ϵ with a level (j) and dimension (D) dependent threshold:
⃓⃓⃓
dj

µ,λ

⃓⃓⃓
<

2−D(j−Jmax)/2ϵ [118].

The compression errors and compression rate of the vorticity field
shown in Fig. 2.5 are further analyzed in Section 3.3.2.

2.1.2 Safety Zone and Time-stepping
The adaptation algorithm in Section 2.1.1 allows to represent large-
scale data fields with fewer degrees of freedom, while retaining a good
approximation. Unfortunately, the chosen representation is not co-
moving, which would be advantageous for transported quantities. There-
fore, additional detail coefficients are required to approximate the evo-
lution of the transported quantity. A concept to ensure a sufficient
approximation during time integration is called the adjacent or safety
zone, that was introduced in [90]. The concept is illustrated for the
block-based adaptive scheme in Fig. 2.6.

In the first step, the initial grid Ωn is refined by midpoint insertion.
The intermediate grid Ω̃n Therefore, contains additional grid points
associated with wavelet coefficients that can become significant dur-
ing the time evolution. Vasilyev reports in [136, p.157] that the ad-
jacent zone optimally includes only the nearest points of a signifi-
cant detail coefficient, which is in accordance with the CFL condi-
tion (Courant–Friedrichs–Lewy [29]) a necessary condition for stability,
which states that the time step size ∆t is limited by the duration a wave
requires to travel to adjacent grid points. Although only neighboring
details are preferred for the safety zone, our block structure requires
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(a) Linear transport (b) Non-linear transport

Figure 2.6: Illustration of the safety zone during time-stepping
(disregarding the CFL-condition) in the linear case (a) and non-
linear case (b).
The time-stepping procedure includes three steps:
1.) The initial grid Ωn is refined Ωn → Ω̃n by midpoint insertion.
2.) The solution q(tn) is evolved on the fine grid Ω̃n: q(tn) →
q(tn+1).
3.) The grid is adapted (Ω̃n → Ωn+1) to the significant details
of q(tn+1).



2.1. Adaptive Multiresolution Framework WABBIT 30

adding additional coefficients for the adjacent zone. In the second step,
the numerical solution q(tn) is evolved on the refined grid Ω̃n using ex-
plicit time integration. Usually, one time step is globally selected for
all blocks. For this, the CFL condition is evaluated on each block and
the smallest time step is chosen globally. In the third step, the grid is
adapted according to the details of the new system state q(tn+1) using
Algorithm 2. Note that after the grid has been changed the workload
has to be balanced among the CPUs. This issue is briefly discussed in
Section 3.2.1.

Usually, WABBIT is limited to a maximal refinement level Jmax during
a simulation. In the case a block is still on Jmax after the last step it
might be beneficial to apply a filter if viscous terms in the operator
do not stabilize the numerical scheme. To accomplish this filter we
choose to coarsen all blocks on Jmax, which is termed dealiasing in the
following. As the numerical studies in [46] indicate, dealiasing leads to
slightly reduced errors if non-linearities are present in the differential
operator N .

2.1.3 Stability of the Finite Difference Discretization
Although block-based wavelet adaptation combined with finite-differ-
ence methods promises efficient simulations of TDFS, it is not clear if
the outlined time-stepping (Section 2.1.2) leads to a stable numerical
scheme. In fact, Svärd and Nordström state in [130, abstract]: "High-
order [accurate multi-block] finite difference methods are efficient, easy
to program, scale well in multiple dimensions (. . . ). The main drawback
has been the complicated and sometimes mysterious stability treatment
at boundaries and interfaces required for a stable scheme." To tackle
this issue, [130] propose summation-by-parts simultaneous-approxima -
tion-term (SBP-SAT) finite difference schemes, which are however not
used here. Therefore, we investigate the stability of the wavelet adap-
tive block-based scheme in this section.

In the following we denote HCR
∆t as the explicit-time-evolution operator,

which evolves the discretized solution qn ∈ RM at time tn to tn+1 =
tn + ∆t:

qn+1 = HCR
∆t (qn) . (2.26)
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For stability analysis of HCR
∆t we make use of the matrix-method [50,

p.81], since it allows to analyze the total time evolution step (see Sec-
tion 2.1.2), including the refinement R, time evolution on the refined
gridH∆t and the adaptation/coarsening step C. For the stability analy-
sis, we approximate the right-hand side operator N , with central finite
differences of 4th-order accuracy. Furthermore, Φ denotes the time-
stepping scheme. With the introduced notation the non-linear time-
evolution operator can be written as:

HCR
∆t
··= C (12M + ∆tΦ)⏞ ⏟⏟ ⏞

H∆t

R , (2.27)

with 1K ∈ RK×K being the identity matrix. To simplify our analysis
we assume that the evolved solution qn+1 lies on the initial grid Ωn,
i.e. Ωn+1 = Ωn. Therefore, CR = 1M and the computed linearized
operator

[HCR
∆t ]ji =

[︄
lim
τ→0

HCR
∆t (qn + τei)−HCR

∆t (qn)
τ

]︄
j

(2.28)

is of size M ×M , if the initial grid has M grid points. According to
[50, p.81] for systems without non-normal transient growth, stability is
achieved if all eigenvalues λi of HCR

∆t satisfy |λi| ≤ 1, where eigenvalues
with |λi| = 1 are simple. This can be intuitively understood: since
HCR

∆t has distinct eigenvalues HCR
∆t is diagonalizable and thus every

disturbance vector ξ0 = ∑︁M
i=1 αivi ∈ RM can be represented in the

eigenbasis {v1, . . . ,vM} of HCR
∆t . Hence, after the nth iteration/time

step the error ξn is decreased:

⃦⃦⃦
ξn
⃦⃦⃦
≤
⃦⃦⃦
(HCR

∆t )nξ0
⃦⃦⃦

=
⃦⃦⃦⃦
⃦

M∑︂
i=1

αi(λi)nvi

⃦⃦⃦⃦
⃦ ≤ max

1≤i≤M
|λn

i |
⃦⃦⃦
ξ0
⃦⃦⃦

(2.29)

if |λi| ≤ 1, for all i = 1, . . . ,M . We note that for the special case
that CR = 1M this criterion is trivially fulfilled if ∆t = 0. For ex-
ample, in 2D we make use of the RHS N (q) = −u ·∇q + κ∇2q, u =

1√
2(1, 1), κ ≥ 0, (see Section 3.3). The three test meshes with block

size Bx × By = 13 × 13 and g = 6 ghost nodes are shown in Fig. 2.7.
The time-integration method Φ implements a classical Runge-Kutta of
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fourth order with time step size ∆t = min(hK1,CFL, h
2K2,CFL/κ) for

κ > 0 and ∆t = h for κ = 0, where h is the smallest lattice spacing
of the grid. The time steps are chosen according to the CFL condition
(K1,CFL ≤ 1, K2,CFL ≤ (2D)−1), necessary for a stable scheme with
equal lattice spacing h. Applying the stability criterion for the operator
HCR

∆t that includes the coarsening and refinement step and the operator
H∆t without coarsening and refinement, leads to the results listed in
Table 2.2. Some eigenvalues of H∆t are shown in Fig. 2.8. The results

H∆t HCR
∆t

equi 3-lvl 3-lvl-sym equi 3-lvl 3-lvl-sym

κ = 0 stable unstable stable stable stable stable
κ = 1 stable stable stable stable stable stable

Table 2.2: Operator stability analysis for the advection-
diffusion PDE N (q) = −u ·∇q + κ∇2q, u = 1√

2(1, 1), κ ≥ 0,
using the CFL condition ∆t = min(hK1,CFL, h

2K2,CFLκ) for
κ > 0 and ∆t = h for κ = 0, where h is the smallest lattice
spacing, K1,CFL = 1 and K2,CFL = (2D)−1. The operator H∆t

(no refinement and coarsening) and HCR
∆t are analyzed on three

different lattices "equi", "3-lvl", "3-lvl-sym" that are shown in
Fig. 2.7.

indicate that stability can vary for different mesh geometries if no ad-
ditional damping is introduced. However, if the evolution is dampened
by friction from a viscosity term κ∇2q or the numerical dissipation
stemming from a CDF 4,4-filter in the coarsening step, the operator is
stabilized. This observation also holds for higher-level differences not
shown in this thesis. In contrast to the SBP-SAT formulation [130],
the here presented method, does not guarantee global stability implied
by structural properties like energy conservation, which is a weakness
of the presented numerical scheme. However, we observe no instability
for the specific 2D example, if energy is dissipated by the wavelet filter
in the coarsening step C or due to viscosity κ > 0. This observation is
supported by the estimated 4th-order of convergence in the numerical
study of the advection-reaction-diffusion system in Section 3.3.
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(a) equi

(b) 3-lvl

(c) 3-lvl-sym

Figure 2.7: Three different grids used for the stability analysis:
a) equidistant mesh, b) asymmetric mesh with three different
grid levels, c) symmetric mesh with three different grid levels.
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Figure 2.8: Eigenvalues of H∆t in the complex plane. The
eigenvalues correspond to the meshes "equi", "3-lvl", "3-lvl-sym"
shown in Fig. 2.7. The grey shaded area marks the stable regime
for which |λi| ≤ 1. Not all eigenvalues are shown.

2.1.4 Volume Penalization for Moving Geometries
If a solid body is moving inside a flow, structures are created which
are advected by the movement of the body. Examples are the leading
edge vortex of a wingtip of a bumblebee (see Fig. 3.12), the tip vortex
of a wind turbine, or the vortex shedding created by the undulatory
swimming motion of fishes. To study such systems, we shortly discuss
the implementation of non-slip boundary conditions for moving solids.

Often the computational grid is fit to the boundary of an obstacle Ds,
using body-fit grids. Especially for complex moving geometries, like
insects or deforming bodies, these methods maybe not be applicable or
require costly remeshing in each time step. Instead, volume penaliza-
tion [3, 18, 13, 24] embeds the solid obstacle by extending the computa-
tional domain D to the interior of the obstacle Ds ⊂ D, where additional
penalization terms are added to the set of equations to account for the
boundary conditions on the solid-fluid interface ∂Ds. Hence, the IBVP
Eq. (2.1) with initial condition q(x, 0) = q0(x), x ∈ D can be reformu-
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lated in the following way:{︄
∂tq = N (q,x, t) for (x, t) ∈ D× R+

q = qref for (x, t) ∈ ∂Ds × R+ (2.30)
⏐⏐⏐⏐↓penalized

∂tq = N (q,x, t)− χDs

Cχ
(q − qref)⏞ ⏟⏟ ⏞

penalization term

for (x, t) ∈ D× R+ . (2.31)

In the volume penalized equation system Eq. (2.31), the shape of the
solid body is represented by a mask function χDs : D × R+ → [0, 1],
which is usually time-dependent if the structure is moving. As illus-
trated in Fig. 2.9, the mask function is χDs = 1 inside and χDs = 0
outside of Ds. Hence, outside Ds one recovers the unpenalized equation

Ds

∂Ds
D

∂D

χDs = 0

χDs = 1

Figure 2.9: Illustration of the computational domain D with
an obstacle Ds drawn in gray. The fluid-solid boundary ∂Ds is
indicated with a dashed line. Periodic boundaries are imposed
at ∂D. The values of the mask function χDs inside and outside
the domain are displayed.

system. Whereas inside Ds, the additional term forces the state q to
converge towards the reference value qref. The strength of the penaliza-
tion term is regulated by the so-called porosity parameter 0 < Cχ ≪ 1.
Thus for decreasing porosity Cχ → 0 the difference (q− qref) converges
to zero. Furthermore, it has been shown for incompressible flows that
the penalized solution qCχ [3] converges towards the exact solution q
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as:
Epenal =

⃦⃦
q − qCχ

⃦⃦
2 = O

(︂
C1/2

χ

)︂
. (2.32)

Hence, a small Cχ seems to be desirable. However, Cχ limits the possi-
ble time step size to ∆t ≤ Cχ for stability reasons and as reported for
incompressible flows in [43, 44] a Cχ that is too small results in a loss
of regularity with increasing discretization errors. To balance modeling
and discretization errors, [43, 44] propose to choose

Cχ = (K2
χ/ν)h2 , (2.33)

depending on the lattice spacing h, the viscosity of the fluid ν and a
discretization dependent constant Kχ > 0. The resulting penalisation
error Eq. (2.32) thus becomes Epenal = O (h).

Note that usually additional boundary conditions are imposed at the
domain boundaries ∂D. In this thesis we continue the domain periodi-
cally, although inflow and outflow conditions are imposed close to ∂D
using volume penalization (see Section 2.2.3).

2.1.5 Error Estimation
For the here presented results all spatial differential operators in N
are approximated by central finite differences of fourth-order. Hence,
the expected discretization error of the numerical scheme is Ediff(h) =
O
(︁
h4)︁, assuming equal lattice spacing h > 0 in all directions and suf-

ficient regularity of the solution. Furthermore, we use Runge-Kutta
fourth-order time integration with truncation error ET (∆t) = O

(︁
∆t4

)︁
assuming enough regularity in time. Disregarding penalization, the
resulting approximation qϵ,∆t,h of the exact solution q yields:

EWABBIT(h,∆t, ϵ) ··=
⃦⃦⃦
qn − qϵ,∆t,h

n

⃦⃦⃦
2
≤ ET (∆t) + Ediff(h)

+ ∥qn − qϵ
n∥2 (2.34)

using the triangle inequality. Here, the lower index qn = q(·, tn) denotes
the nth time step and the upper indices the corresponding truncation
parameters affecting the solution. The last term in Eq. (2.34) is dis-
cussed in [27, 28]. It quantifies the error introduced by the cumulation
of compression errors in each time step. Assuming exact integration in
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time, no truncation errors of the differential operators inN , same initial
condition and the numerical scheme to be contractive (see Assumption
4.1 in [28]), the worst-case error introduced during time-stepping is the
accumulation of the thresholding error Eq. (2.25) in each time step.
Thus, the conservative error estimate yields

∥qn − qϵ
n∥2 ≤ nC̃ϵϵ (2.35)

after n time steps. We want to emphasize here, that Eq. (2.35) implies
that the evolution operator is represented on a grid that is fine enough,
such that no additional errors larger than O (ϵ) are introduced when
representing N . This is achieved using the safety zone concept, intro-
duced in Section 2.1.2. Nevertheless, according to [27] the safety zone
concept gives excellent practical results but is only a heuristic that has
not rigorously been proven. As [27, 46] suggests Eq. (2.35) should be
balanced with the truncation error of the differential operators. Assum-
ing a CFL time stepping n = T/∆t = O

(︁
h−1)︁ with h = ∆xJmax being

the lattice spacing on the finest scale, we conclude to set ϵ = O
(︁
h5)︁

in order to balance the adaptation errors with Ediff. However, as the
numerical experiments in Section 2.2 show, this estimate is much too
conservative.

2.2 Numerical Results
In the following, we provide numerical test cases of transport dominated
fluid systems, which we address throughout this thesis. If not otherwise
stated we use CDF 4,4 wavelets that are normalized in L∞. All perfor-
mance tests have been performed on 11th Gen Intel(R) Core(TM)
i7-11850H CPUs (8 processing units), if not stated otherwise. The
listed CPU-times are the accumulation of the total CPU usage. Addi-
tionally to the CFD-simulation, the CPU-time includes input/output
operations and MPI synchronization.

2.2.1 Advection Equation
The first test case implements the advection of a disk in a circle in
two spatial dimensions. We introduce the two-dimensional advection
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equation{︄
∂tq(x, t) = v(t) ·∇q(x, t) for (x, t) ∈ [0, L]2 × [0, T ]
q(x, 0) = q0(x) for x ∈ [0, L]2

(2.36)

with analytic solution

q(x, t) = q0(x−∆(t)) with ∆(t) =
∫︂ t

0
v(τ)dτ . (2.37)

For the advected disk example specifically we have

q(x, t) = f(∥x−∆(t)∥2 −R) with (2.38)

∆(t) = L

(︄
0.5 + 1/4 cos(2πt)
0.5 + 1/4 sin(2πt)

)︄
, v(t) = Lπ

2

(︄
− sin(2πt)
cos(2πt)

)︄
, (2.39)

using f(x) = (1 + tanh(x/λ))/2, with λ = 0.005L and R = 0.15L, T =
1, L = 1. For the test case, we run simulations solving Eq. (2.36)
with block size Bx × By = 17 × 17 for various Jmax = 2, 3, . . . , 8 and
ϵ = 100, 10−1, . . . , 10−10. Since the operator is linear we do not use
dealiasing here. Time steps are selected according to a CFL condition.
The smallest time step ∆tj = KCFL∆xj/c,KCFL = 1, c = ∥v∥2 = Lπ

2
of all active levels j of the current mesh is chosen. First, we show a
typical block distribution at the end of the simulation t = 1 in Fig. 2.10.
Most blocks are located at the outer radius of the disc, where the deriva-
tive of q is large and many detail coefficients are required to represent
the solution. Due to the special structures of the IBVP, the number of
DOFs stays approximately constant as indicated by Fig. 2.10b.

Next, we investigate the impact of the adaptation algorithm on the
utilized discretization scheme. Therefore, we plot the relative error of
the numerical solution in Fig. 2.11. The errors are calculated after the
simulation has ended at t = T . For all our obtained results we refine
the grid onto the finest lattice spacing (Jmax = 7) and compare it to
its initial condition. First of all, notice that with decreasing wavelet
threshold ϵ the errors in Fig. 2.11a decrease linearly until they saturate
to a minimal error that is dependent on the finest lattice spacing Jmax.
This error is reached when the discretization errors become dominant
over the thresholding errors. To show that the numerical accuracy is



2.2. Numerical Results 39

(a) Snapshot

0 0.2 0.4 0.6 0.8 1

400
410
420
430
440
450

time t

N
um

be
r

of
B

lo
ck

s

(b) Number of blocks used during the
simulation.

Figure 2.10: Block distribution of the solution during the sim-
ulation using Jmax = 7 and ϵ = 10−6. a) Block distribution at
t = 1 and b) Number of blocks during the simulation.

kept, Engels et. al suggest in [46] to balance wavelet and discretization
errors and compare them to the equidistant simulations, as shown in
Fig. 2.11b. The balance point ϵopt(Jmax) can be estimated for a given
maximal refinement as the intersection of the vertical lower bound of
the error with the sloped dashed line in Fig. 2.11a. The overlapping
curves in Fig. 2.11b indicate that the precision of the differential scheme
is preserved at the balance point. Note, that the experimental order of
convergence (EOC) is dependent on the initial condition. In the regime
of large lattice spacings h ⪆ λ = 5× 10−3, the expected 4th-order
convergence rate is not achieved, since the initial condition becomes
non-smooth.

Although wavelet compression and discretization errors are balanced,
a performance gain over the equidistant equivalent method might not
always be achieved. For optimal performance, the costs for evaluat-
ing the operator N need to exceed the additional costs created by the
wavelet adaptation (wavelet filtering, data management and synchro-
nization). Depending on the application, this is not always feasible.
However, increasing the block size (Bx × By) of the grid will increase
the costs for evaluation of N in favor of additional data manipulation
stemming from the wavelet adaptation. This is especially true in three
spatial dimensions since computational costs scale with the volume.
Nevertheless, for the present example adaptivity has a benefit, as the
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Figure 2.11: Relative error of the adaptive and equidistant
simulation, calculated at t = T . a) Impact of the wavelet
threshold ϵ on the overall error. b) Error of the equidistant com-
putation and the adaptive computation with balanced wavelet
threshold ϵopt(Jmax). The threshold ϵopt(Jmax) corresponds to
the intersection of the vertical colored lines with the dashed
black line in a).
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CPU-times tCPU in Table 2.3 show.

adaptive equidistant
Jmax DOF rel. error tCPU (s) DOF rel. error tCPU (s)

2 4096 1.4e-01 7 4096 9.0e-02 1
3 12133 8.5e-02 14 16384 4.5e-02 5
4 39585 3.3e-02 45 65536 1.6e-02 32
5 114885 4.9e-03 190 262144 3.3e-03 232
6 265159 3.6e-04 827 1048576 2.9e-04 2076
7 1234660 1.4e-05 7694 4194304 1.2e-05 16930
8 5622661 4.1e-07 83266 16777216 3.9e-07 135584

Table 2.3: Adaptive ϵopt(Jmax) and equidistant results of the
moving disk example. Listed are the maximal degrees of freedom
(DOF) used during the simulation, relative errors at simulation
time t = T and the CPU-time tCPU for the total simulation.
The equidistant simulations have been computed with WABBIT.
Therefore, the CPU-time of the equidistant simulation includes
block synchronization, but not the adaptation of the computa-
tional grid.

2.2.2 Advection-Reaction-Diffusion with a KPP non-linearity
In this subsection we compute the numerical solution of the advection-
reaction-diffusion (ARD) equation with a Kolmogorov-Petrovsky-
Piskunov (KPP) non-linearity [83]{︄

∂tq = −u ·∇q + κ∇2q − γq2(q − 1)
q(x, 0) = q0(x)

, (2.40)

in (t,x) ∈ [0, T ]× [0, L]2 with periodic boundary conditions. All simu-
lation parameters are listed in Table 2.4.

For our test case we choose a velocity field inspired by the vortex pair
example in [113]. Therefore, u = ∇ × ω is expressed in terms of the
vorticity

ω(x, t) = ω0e
−t2/τ2(e−r2

1(t)/r2
0 + e−r2

2(t)/r2
0 ) , (2.41)

which parametrizes a moving vortex pair with ri(t) = ∥x− xi(t)∥2,
x1 = L(0.6 − ct, 0.49), x2 = L(0.6 − ct, 0.51), that decays slowly in
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Name Value
Simulation time T = 3
Domain size L = 1
Block size Bx = By = 17
Diffusion constant κ = 10−4

Reaction constant γ = 10
Advection of vortex pair c = 10
Decay constant τ = 3T
Vortex amplitude ω0 = 103

Vortex size r0 = 5× 10−4

Table 2.4: Parameters of the 2D ARD simulation.

time. The initial distribution of the reactant q is given by:

q0(x) = f(∥x− (0.4L, 0.5L)⊤∥2 − 0.2L) (2.42)

with f(x) = (1+tanh(x/λ))/2 and λ = 0.005L, as before. The velocity
field and initial distribution are tuned to mimic a flame kernel inter-
acting with a vortex pair, which is a usual phenomenon in turbulence
flame interactions. The time evolution of the simulation is visualized
for t = 0.0, 0.5, 1 in Fig. 2.12. During the simulation, the prescribed

Figure 2.12: Visualization of the reactant q for t = 0, 0.5, 1
from left to right. The white lines indicate the block bound-
aries of the computational grid. The simulation corresponds to
Jmax = 7 with ϵ = 10−6.

vortex pair Eq. (2.41) moves towards burning gas and mixes unburned
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(q = 1) with burned gas (q = 0), such that a small island of unburned
gas detaches into the burned area, creating a topology change in the
contour line of the moving front.

We compare our results to a 2D pseudo spectral (PS) simulation (for
an introduction to PS methods we refer to [51]). The PS simulation
with a resolution of 2048 × 2048 Fourier modes can be considered
highly accurate since all spatial operators can be approximated up
to machine precision. In fact, we make sure that the Fourier spectra
E(|k|) = 1

2
∫︁ |k|+∆k

|k|−∆k |F [q](k)|d |k| ,∆k = 10−10 of the solution q decays
to machine precision for all time instances. The spectra is shown in
Fig. 2.13. Furthermore, we use an explicit Runge-Kutta method of or-
der 5 with adaptive time stepping to control the errors based on the
Dormand Prince method [40]. The relative error is set to 10−12. Hence,
the results of the PS simulation are taken as a reference.
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Figure 2.13: Radial Fourier spectra E(|k|) =
1
2
∫︁ |k|+∆k

|k|−∆k |F [q](k)| d |k| of the Fourier transformed snap-
shots F [q](k). The color gradient of the lines indicates the time
instance from dark blue t = 0 to bright blue at t = 1.

Similar to the analysis in Section 2.2.1 we perform adaptive and equidis-
tant simulations for variable maximal refinement level Jmax = 2, 3, 4, 5, 6,
where the adaptive simulations have been performed for different wavelet
thresholds ϵ = 100, 10−1, . . . , 10−10. Time-stepping is done using the
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CFL condition:

∆t = min
(︄
h
K1,CFL
∥u∥2

, h2K2,CFL
κ

)︄
(2.43)

with K1,CFL = K2,CFL = (2D)−1, D = 2 assuming that the reaction
is mainly driven by the diffusion of the reactant or advection speed.
The error of the solution is measured at the last snapshot t = 1 and
is shown in Fig. 2.14. As before we define the optimal threshold ϵopt

for a given Jmax as the balance point between the compression and fi-
nite difference truncation error. Furthermore, we perform simulations
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Figure 2.14: Numerical error of the solution at t = 1 vs.
wavelet threshold ϵ without dealiasing. The dashed horizontal
lines indicate the error of the equidistant computations.

using the dealiasing strategy outlined in Section 2.1.2. Note that for
dealiasing we evaluate the right-hand side (N ) at Jmax + 1, but after
the evolution, the blocks at Jmax + 1 are coarsened to Jmax. The final
errors of the computations at ϵopt are listed in Table 2.5 together with
the CPU-time and the maximal number of degrees of freedom. From
the direct comparisons of equidistant and adaptive simulations, it is
evident that the adaptive simulations become beneficial in the high-
precision regime. In this regime, the adaptation scheme distributes
most workload at the position of the front, where most information is
captured (as seen in Fig. 2.12). It should be further mentioned that
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adaptive dealias equidistant dealias
Jmax DOF rel. error tcpu (s) DOF rel. error tcpu (s)

2 16384 3.6e-02 81 16384 3.9e-02 95
3 35378 1.3e-02 181 65536 3.9e-03 291
4 116014 2.9e-04 537 262144 2.1e-04 1093
5 316997 9.3e-06 2167 1048576 8.2e-06 6654
6 855818 1.1e-06 11465 4194304 7.4e-07 54501

adaptive equidistant
Jmax DOF rel. error tcpu (s) DOF rel. error tcpu (s)

2 4096 4.8e-02 28 4096 4.8e-02 30
3 16384 1.7e-02 87 16384 3.1e-03 71
4 60862 3.0e-04 288 65536 2.0e-04 241
5 163318 2.2e-05 742 262144 1.8e-05 907
6 424480 1.3e-06 2954 1048576 1.3e-06 5641

Table 2.5: Adaptive ϵopt(Jmax) and equidistant results of the
ARD example Eq. (2.40). Listed are the maximal degrees of
freedom (DOF) used during the simulation, relative errors at
simulation time t = T and the CPU-time tCPU for the total
simulation. The upper table indicates the results using dealias-
ing and the lower table the results without dealiasing.
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for Jmax < 4 the equidistant DOF is equal to the maximal number
of DOF during the adaptive simulations, which shows that no wavelet
compression was achieved or at least not for all time steps in the evolu-
tion. Comparing the CPU-time tCPU and DOF in Table 2.5 shows that
simulations at Jmax with dealiasing require almost the same computa-
tional effort as the ones without dealiasing at Jmax + 1, while gaining
only little precision (see also Fig. 2.15). Dealiasing is therefore only
recommended if the simulation needs stabilization.
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Figure 2.15: Spatial convergence of the numerical error using
equidistant and adaptive simulations with and without dealias-
ing for the ARD example Eq. (2.40). The black solid line cor-
responds to the expected 4th-order scaling of the error when
decreasing the lattice spacing.

2.2.3 Artificial Compressibility for Incompressible Flows
In this subsection, we introduce the vortex street, which is a prominent
test case in fluid dynamics. In this test case, a uniform flow passes
a cylinder and creates vortex shedding with a periodic pattern. To
simulate this phenomenon, we closely follow the approach of [46] which
combines volume penalization with wavelet adaptation for large-scale
incompressible flows. In this study the artificial compressibility method
(ACM)[25, 109, 64] is used, that approximates incompressible Navier-
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Stokes (ICN) equations with constant density ρ

∂tu+ (u ·∇)u+ ∇p− ν∇2u = 0 , (2.44)
∇ · u = 0 , (2.45)

velocity u = û/ρ , pressure p = p̂/ρ, (2.46)
kinematic viscosity ν = µ/ρ (2.47)

by introducing an artificial speed of sound c0 ≫ ∥u∥2 that makes the
fluid weakly compressible and thus avoids solving a Poisson equation in
each time step. In the ACM model, the pressure p becomes a dynamic
quantity and the incompressibility condition Eq. (2.45) is replaced by

1
c2

0
∂tp+ ∇ · u = 0 . (2.48)

The resulting model Eqs. (2.44) and (2.48) converge towards the incom-
pressible Navier-Stokes equations Eqs. (2.44) and (2.45) when c0 →
∞. The modelling error ∥qACM − qICN∥2 of the respective solutions
q = (u, p) converges with O

(︂
c−2

0

)︂
, which is numerically investigated

in [46]. However, practically c0 is chosen to be large enough such that
c0 ≫ ∥u∥2 is fulfilled and small enough to allow a sufficiently large time
step size, when evaluating the CFL condition. Thus, for computational
convenience, we choose c0 = 20 in this study.
The values of the non-slip boundary conditions at the in- and out-
flow boundaries q∞ = (u∞, p∞), as well as the values of the boundary
conditions at the cylinder us are implemented with volume penaliza-
tion. Therefore, we add additional penalisation terms to the Eqs. (2.44)
and (2.48):

∂tu+ (u ·∇)u+ ∇p− ν∇2u+ χ

Cχ
(u− us) + χsp

Csp
(u− u∞) = 0 (2.49)

∂tp+ c2
0∇ · u+ χsp

Csp
(p− p∞) = 0 , (2.50)

where the mask functions χ, χsp parametrize the penalized volumes and
Cχ, Csp > 0 are the porosity parameters, as explained in Section 2.1.4.
In our simulation domain (shown in Fig. 2.17) we distinguish between
a so-called sponge region (Dsp) and a solid (Ds) region, at which we set
up different boundary conditions. In the solid region, we set us = ∆̇(t)
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Name Value
simulation time T = 1000
domain size D = [0, 64]× [0, 16]
viscosity ν = 10−2

artificial speed of sound c0 = 20
thickness of sponge Lsp = 1
porosity sponge Csp = 2.5 · 10−3

inflow speed u∞ = 0.925
cylinder radius R = 1
wavelet threshold ϵ = 10−4

Block data (Jmax, Bx, By, g) = (5, 65, 17, 6)

Table 2.6: Parameters of the fixed cylinder simulation at Re =
185.

if ∆(t) ∈ R2 defines the time-dependent shift of the solid body. The
penalization strength Cχ is calculated with Eq. (2.33) using Kχ = 0.365
as suggested by [46]. Note, that according to [46] the order of the
numerical scheme is reduced to O

(︁
h2)︁ for the penalized system. The

sponge region implements non-reflecting boundary conditions. They
are used to remove the wake caused by the cylinders and create a
constant inflow with u∞ in the x-direction. The sponge region is set
up as suggested by [46]. For all simulations we make use of the CFL
condition:

∆t = KCFL min

⎛⎝ h

∥u∥2 +
√︂
∥u∥22 + c2

0

, Cχ, Csp,
h2

2νD

⎞⎠ (2.51)

with KCFL = 1. A characteristic quantity for incompressible flows is
the Reynolds number defined in terms of the cylinder diameter 2R:

Re = 2Ru∞
ν

. (2.52)

Fixed Cylinder at Re = 185

In the first example, we compute the solution for a single fixed cylinder
placed at x0, y0 = (8, 8) in a rectangular domain D = [0, 64] × [0, 16].
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The vortex shedding (shown in Fig. 2.5) causes a periodic oscillation
in the lift and drag forces of the cylinder, which are well studied in the
literature. Lift and drag coefficients CL, CD are defined as

(CD, CL) ··=
2(F1, F2)
ρu2

∞l
with F = C−1

χ

∫︂
D
χρ(u−∆̇(µ)) d3x . (2.53)

Here l = 2R, ρ = 1 are the diameter of cylinder and density of the fluid.
The formula for the aero-dynamic forces F = (F1(x, t, µ), F2(x, t, µ)) is
taken from [44]. The evolution of the lift and drag coefficients is shown
for 0 ≤ t ≤ 500 in Fig. 2.16a. From the lift and drag coefficients we
calculate the mean drag

CD = 1
t2 − t1

∫︂ t2

t1
CD(t)dt , (2.54)

root mean square (RMS) of the lift

ĈL =
√︄

1
t2 − t1

∫︂ t2

t1
(CL(t))2dt (2.55)

and Strouhal number
St = lf0

u∞
, (2.56)

as the dimensionless frequency of the vortex shedding. We calculate St
from the time evolution of the lift. With help of its Fourier spectra,
shown in Fig. 2.16b, we determine St from the frequency with the
highest amplitude. For the statistics we are using all time samples
t1 ≤ t ≤ t2 with t1 = 3T/10, t2 = T in the oscillatory stage. The
results are compared to literature values in Tables 2.7 and 2.8.

Path Optimization of a Moving Cylinder at Re = 200

In the last part of this section, we introduce a typical fluid dynamic ap-
plication of a TDFS, which will be revisited in Chapters 4 and 5. In the
simulations, two cylinders of radius R are placed inside a rectangular
domain D = [0, L]2, L = 64R shown in Fig. 2.17.

The cylinder closest to the inflow is called the leader and the cylinder
placed further downstream is called chaser in the following. This setup
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Figure 2.16: Statistical quantities (CD, ĈL,St defined in
Eqs. (2.54) to (2.56)) of a fixed cylinder at Re = 185 computed
with ϵ = 10−4.

CD ˆ︂CL St
Lu et. al [94] 1.31 0.422 0.195
Liu et. al [92] 1.289 0.451 0.197
Guilmineau et. al [65] 1.287 0.443 0.195
Experimental results [65] 1.28 0.19
Khalili et. al [80] 1.282 0.431 0.191
literature average 1.29(1) 0.44(1) 0.194(3)
present study ϵ = 10−4 1.64 0.55 0.21
present study equi 1.63 0.54 0.21

Table 2.7: Comparison of the statistical values for the drag
and lift defined in Eqs. (2.54) and (2.55) and Strouhal number
defined in Eq. (2.56).
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Figure 2.17: Simulation of the two moving cylinders:
a) Simulation domain with penalized volumes drawn in grey.
The penalized volumes are the sponge region Dsp at the outer
edges of the domain and the solid region Ds that implements
the cylinders. In the setup we have a fixed cylinder located
at (x, y) = (L/4, L/2) and a moving cylinder at (x2, y2) =
(L/2, L/2 + ∆cyl(t;µ)).
b) Wavelet adapted vorticity field ω = ∂xu2−∂yu1 of the veloc-
ity u = (u1, u2) during the simulation.
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adaptive equidistant
Jmax DOF tCPU (s) DOF tCPU (s) speedup
6 974848 7.6e+06 4194304 2.0e+07 2.6

Table 2.8: CPU-time comparison using Intel(R) Xeon(R)
CPU E5-26090 CPUs.

is inspired by biolocomotion, where the leader is followed by a chaser in
a free stream flow of uniform velocity u∞. Specifically, in biolocomotion
the interaction between animals in close proximity is studied to under-
stand the swarm behavior of animals, like fish or birds [137, 70]. One
may ask if there is a physics understanding, like energy minimization
or a biological reason (breeding, defense, etc.) for this behavior. To
investigate this from a physics standpoint, a leading cylinder is placed
at a fixed position (x1, y1) = (L/4, L/2) in a uniform flow at Re = 200
and the chaser further downstream (x2, y2) = (L/2, L/2 + ∆cyl(t;µ))
is shifted along a vertical path ∆cyl(t;µ) that is time-dependent. One
can parametrize the path for instance in a sine series :

∆cyl(t;µ) =
Nµ∑︂
k=1

µk sin(2πfkt), with µ = (µ1, . . . , µNµ) (2.57)

For simplicity, we aim to find an optimized path ∆opt(t) = ∆(t;µopt)
such that the mean drag CD of the second cylinder is minimized.
For this simple showcase study we choose Nµ = 1, i.e. ∆cyl(t;µ) =
µ sin(2πf1t) and f1 = 10fwake = 0.2 × 10−2s−1, where fwake is cal-
culated from the Strouhal number Eq. (2.56) of the leading cylinder.
We sample the drag Eq. (2.53) in every time step over one period
T = 500 = 1/f1 in an interval [3T, 4T ] for seven different trajectories
with amplitude µ = {−8, 0, 1, 2, 4, 6, 8}. The evolution of the drag is
shown in Fig. 2.18 together with the calculated mean CD (Fig. 2.18b).
Trivially, in this example, the drag is minimal if the chaser stays con-
stant behind the leader (µ = 0), because of the wind shadow zone with
reduced vertical velocity. However, for increasing µ, the drag will in-
crease until it saturates because the maximal drag is achieved in the
free stream flow. Note that the mean drag is symmetric in µ because
of the symmetry in the system.
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Figure 2.18: Drag evolution (a) and mean drag (b) for different
maximal amplitudes µ of the vertical displacement ∆cyl(t;µ) =
µ sin(2πf1t).

Since the simulations of multiple trajectories can become very costly
when trying to optimize ∆cyl(t;µ), especially for a larger parameter
space µ ∈ P ⊂ RNµ with Nµ > 1, it is desirable to have a reduced
system that is cheap to evaluate and can approximate the dynamics
well to predict new system states. The generation of such a reduced
order model is addressed in the following chapters.

2.3 Summary
In this chapter, we have introduced a block-based adaptive simula-
tion software for transport-dominated flows. The method combines
multiresolution (MR) analysis using CDF 4,4 wavelets with a fourth-
order finite difference scheme. The MR allow us to represent transport
dominated flow fields in a sparse way while controlling the introduced
compression errors. The adaptive method we employ allows us to solve
transport-dominated systems more efficiently compared to equidistant
finite difference methods. This was numerically investigated for the
pure advection of a disc, reacting fronts, and incompressible vortex
shedding with moving objects. For the representative examples, if com-
pression and finite difference truncation errors are balanced, the relative
errors in space scale with O

(︁
h4)︁ of the smallest possible lattice spacing

h. Therefore, the convergence of the utilized numerical finite difference
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scheme is preserved. The comparison to a non-adaptive scheme on the
finest level shows that, for the same precision, required resources both
in memory and CPU-time are reduced.

However, the presented approach has some weaknesses, which should
be addressed in future research. As investigated in Section 2.1.3, the
stability of the resulting numerical scheme cannot be guaranteed from
a theoretical standpoint. Based on this we recommend combining the
method with summation-by-parts finite difference methods [130] that
enable stability by conservation properties. Another opportunity for
improvement is the precision of the solution in the presence of volume
penalized boundary conditions. As shown by the numerical studies of
the ACM equations in Section 2.2.3, drag and lift coefficients seem to
disagree with common literature values and the overall convergence of
the numerical scheme is reduced toO

(︁
h2)︁. The latter may be addressed

in a similar fashion as proposed in [56] for the time-dependent Maxwell
equation. Here the convergence is improved by constructing a penalty
term that is a continuous extension of the electrical field.

Although the numerical scheme delivers savings in computing time,
these savings are not sufficient for extensive parameter studies includ-
ing millions of trajectory evaluations. Therefore, we extend the existing
framework to include model order reduction techniques. Here the intro-
duced block-based data structure poses challenges for classical model
order reduction. This issue is addressed in Chapter 3.

In addition to classical model order reduction procedures, we further
present non-linear model order reduction techniques tailored for trans-
port dominated systems in Chapter 4 for the numerical examples pre-
sented in this section.



3 Dimension Reduction on Linear Sub-
spaces

As seen in the previous section numerical simulations of fluid flows yield
high dimensional data sets, which need to be pre-processed to a lower
dimensional manifold, in which the essential information is captured
and can be used for prediction and optimization (see Chapter 5). Most
commonly in fluid dynamics the data is reduced to a low dimensional
linear subspace using proper orthogonal decomposition (POD). In this
chapter we therefore review and compare three techniques, which can
be used to compute the POD for very large data: The singular value
decomposition, its randomized version and the wavelet adaptive POD
(wPOD). The methods will be the core technique of the non-linear
dimension reduction methods explained in Chapter 4. The results pre-
sented here are taken from [148].

3.1 Proper Orthogonal Decomposition (POD)
The proper orthogonal decomposition is a powerful tool to find a lower-
dimensional approximation of a flow field q. For this chapter, we
assume that the flow field is a continuous vector-valued L2-function
q(x, t) ∈ RK , K > 0 that has been sampled for different time instances
{ti}Nt

i=1. The samples are called snapshots and are in the following in-
dexed by qi(x) = q(x, ti). In MOR, the snapshot data are collected
from a simulation of an evolutionary or parametrized PDE, as for ex-
ample the Von Kármán Vortex Street, that has been studied in previous
Section 2.2.3. From the collected snapshot data, POD aims to find a
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low dimensional description by approximating the snapshots in terms
of a few orthogonal basis functions ψk(x) ∈ RK :

q(x, ti) ≈ q̃i(x) ··=
r∑︂

k=1
ak(ti)ψk(x) r ≪ Nt . (3.1)

These basis functions are usually called modes. Note, that in contrast to
the wavelet representation introduced in Section 2.1.1, which uses local
basis functions, the POD-basis functions are global basis functions,
reflecting the dynamics of the flow. They are thus problem specific
because they have to be determined from data. Since this chapter
makes no explicit use of the wavelet representation, it should be further
noted that we use the same symbol for the POD-basis functions as for
the wavelet basis. The POD-modes are defined as the solution of the
optimization problem

min
{ψk}

Nt∑︂
i=1

⃦⃦⃦⃦
⃦qi −

r∑︂
k=1
⟨qi,ψk⟩ψk

⃦⃦⃦⃦
⃦

2

2

, such that ⟨ψk,ψl⟩ = δkl , (3.2)

with the L2 inner product ⟨·, ·⟩ and associated norm ∥·∥2 =
√︁
⟨·, ·⟩. In

fluid dynamics Eq. (3.2) is usually solved with the method of snapshots
or strobes [127] since for data where the spatial resolution is much
larger then the number of snapshots Nt, Eq. (3.2) is reduced to a small
eigenvalue problem of size Nt ×Nt ∼ O (100)

Cvk = λkvk for k = 1, . . . , r , (3.3)

for the correlation matrix

Cij = 1
NtV

⟨qi, qj⟩ , (3.4)

together with the relation:

ψk = 1√
λkNt

Nt∑︂
i=1

(vk)iqi k = 1, . . . , r . (3.5)

The method of snapshots is strongly connected to the singular value
decomposition (SVD) [138], because left singular vectors correspond to
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the solution of Eq. (3.2) and right singular vectors to vk, when assuming
Euclidean space [138]. Respectively, the eigenvalues λk = σ2

k ≥ 0
are squares of the singular values. Furthermore, it is known from the
Eckart-Young-Mirsky theorem [42] that the resulting approximation
error in the Frobenius norm, when truncating after the rth mode, is
given by the sum ∑︁Nt

k=r+1 σ
2
k of the remaining singular values.

However, caution must be taken when using this method instead of the
SVD, because the condition number κ(Q) ··= σmax(Q)/σmin(Q) of the
associated snapshot matrix Q is squared: κ(Q⊤Q) = κ(Q)2. This can
lead to inaccuracy of POD modes with small singular values (see the
famous example of Lächli [88]). Nevertheless, one is often willing to
accept this potential error in favor of a smaller problem size.

Another way of reducing the problem size, without squaring the con-
dition number, is using a randomized singular value decomposition
(rSVD) algorithm, which is outlined in [68]. Here, a matrix Q̂ ∈ RM×l,
l≪ Nt is formed with l orthogonal columns, that approximates the col-
umn space of Q ≈ Q̂B. With its help, a singular value decomposition
of the small l ×Nt matrix B = Q̂⊤Q is computed and the left singu-
lar vectors ψB

k are projected back onto the full space via: ψk = Q̂ψB
k .

Usually, the M× l orthogonal matrix is formed by a QR decomposition
taking l random samples of the column space of Q. For a target num-
ber of r modes one usually oversamples l = r + n by taking n = 5 or
n = 10 additional random samples [68]. However, if the singular values
decay slowly, Q̂ may not represent Q well enough and costly tricks,
like Power Iterations using additional passes over the data, have to be
applied [68]. Moreover, as pointed out in [68] for very large matrices Q
the data cannot be loaded into fast memory and therefore the transfer
from the slow memory typically dominates the arithmetic. In contrast,
the wPOD algorithm presented in the next section seeks to avoid these
problems by reducing the relevant information of each single snapshot
to fit it into the fast memory.
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3.2 POD on Wavelet Adaptive Grids

3.2.1 Technical Preliminaries
In the following, we discuss the numerical methods that are used in
the wPOD algorithm and give detailed insight into its implementation,
when handling multiple block-based adaptive grids. The basic wavelet
adaptation technique used for our algorithm has been already discussed
in Section 2.1.1. We hence limit the presentation here to changes spe-
cific to our algorithm. In the interest of readability, we will assume
two-dimensional data (D = 2).

Block Structured Grid and Implementation

Multiresolution representations require a dedicated data structure. Here,
spatial data is divided into a set of nested blocks, which are organized
in a tree. We use a collection of trees, which we call a forest, to store
multiple snapshots together with their designated tree simultaneously.

Forest Composed of Multiple Trees: For the administration of all
blocks in the forest, we use a multi-tree structure illustrated in Fig. 3.1.
Here each tree Ti holds a collection of blocks Bp and block values q(p)

Ti = {(Bp, q
(p)(x)) | x ∈ Bp, p ∈ Λj

i , j = Jmin, . . . , Jmax} , (3.6)

where a block is a leaf at the end of a branch, which can be uniquely
identified by a tree code p ∈ Λj

i and a tree ID i. The tree ID identifies
the corresponding grid Ωi and the tree code determines the topology,
such as block position and lattice spacing. In the following, the collec-
tion of trees is called forest, given by

F = {Ti | i = 1, . . . , Ntree} . (3.7)

In Section 3.2.2 we will use F to hold multiple spatial fields as time or
parameter samples of the wPOD algorithm.

Light and Heavy Data Storage: To distinguish between adminis-
trative and physical information, we separate our data structures into
light and heavy data.
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Figure 3.1: A forest of two trees and their associated grids
Ωi. The top part visualizes the tree structure for tree i = 1, 2.
Colored leaves at the end of a branch correspond to blocks on
the grid as shown in the bottom part. The block color encodes
the processor that holds the block. The blocks are distributed
among processors using space-filling curves (dashed lines).
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The light data (lgt_n, lgt_active, lgt_block) is the minimal infor-
mation necessary to organize the topology of our grids. From the light
data, we can determine neighbor relations between the blocks and keep
track of the processors holding the block. It is therefore synchronized
among all processing units. Figure A.2 in Appendix A.3 illustrates an
example of light data in the case of the tree structure shown in Fig. 3.1.
All light data are stored in the lgt_block array. Each row holds the
necessary information of one block, such as tree ID, grid refinement
level, tree code and refinement status/coarsening indicator (see Ap-
pendix A.3). The row index is called light-ID (lgt_id). It is ordered
lexicographically in the process-ID: lgt_id = (iproc−1)Nblocks+j, with
j = 1, . . . , Nblocks. In this way, we relate the position of the block with
the process-ID iproc. During the execution of the algorithm, blocks
can be created or deleted. To avoid expensive memory allocation, we
set a block inactive by marking the rows in lgt_block with -1. From
lgt_block we compute active block lists (lgt_active) for each tree.
In this way, we can manipulate blocks on different grids efficiently, by
only looping over the active lists of a given tree specified by its tree_id
(compare with Fig. A.2).

Besides the light administrative structure, we have to store large data
fields with the physical information of the state vector quantity and all
neighbor relations of the blocks. These data are called heavy data and
they are equally distributed among the processors using the index of
the space-filling curve (Hilbert/Z-curve) [145]. The index can be easily
calculated from the tree code. In Fig. 3.1 the Hilbert-curve is visualized
with the dashed line passing through the lattice and the processors-IDs
are encoded with the color of the block.

Using space filling curves has two major advantages for our algorithm.
Firstly, due to the locality properties of the space-filling curve, the
communication between adjacent blocks which do not share the same
processors is kept at a minimum. Secondly, the uniqueness of the curve
ensures that trees with the same tree structure (i.e. same grid Ωi) have
identical processor distribution. This is advantageous when performing
pointwise operations between trees.
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The Weighted Inner Product and Pointwise Tree Operations

In the wPOD algorithm, we follow the same approach as in the method
of snapshots explained in the previous section (Section 3.1). However,
we use the sparsity of our wavelet block-based data representation to
allow for a memory-efficient computation of the POD basis. In contrast
to the representation in terms of the snapshot matrix, as used by the
SVD, our data is represented in terms of a forest F or a collection
of trees (see Section 3.2.1). Here each snapshot qi(x) ··= q(x, ti) is
associated with a tree Ti on a hierarchical structured multiresolution
grid Ωi, i = 1, . . . , Nt. The leaves of the tree correspond to blocks,
where each block p stores coefficients {qj [p, k1, k2]}k1,k2 (see def. in
Eq. (2.6)) of the underlying basis {ϕj

p,k1,k2
}k1,k2 at tree level j. The

interpolating basis allows to represent the data in a continuous form,
when summing over all blocks p ∈ Λj

i of each tree level j:

qi(x) =
Jmax∑︂
j=1

∑︂
p∈Λj

i

q
(p)
i (x) for i = 1, . . . , Nt (3.8)

Here the components of q(p)
i are interpolated on the block p using

Eq. (2.9). We can now introduce the snapshot set:

Q = {q(x, t1), . . . , q(x, tNt) | x ∈ D} , (3.9)

as the continuous counterpart of the snapshot matrix Q. As mentioned
earlier, our algorithm is capable of handling 2D and 3D data fields on
a rectangular domain D ⊂ RD, D ∈ {2, 3}. Note that with the new
data representation in terms of functions in the L2 Hilbert space, the
inner product in the POD formulation has changed to

⟨qi, qj⟩ ··=
∫︂
D
q⊤

i (x)qj(x) dx . (3.10)

However, for inner products or any pointwise operation (+,-) between
snapshots qi,qj , represented on locally different grids Ωi,Ωj , it is re-
quired that both coefficient vectors q

i
, q

j
are of the same length, i.e.

expressed in the same basis. In contrast to the discussed FEM methods
[134, 62], this can be achieved very efficiently because the hierarchical
grid definition allows merging two grids by the union Ωij = Ωi ∪Ωj for
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the two snapshots involved. Figure 3.2 visualizes the grid merging pro-
cedure. In Fig. 3.2a, the initial grids Ωi and Ωj are displayed together
with their processor distribution. In this example, both trees have
fundamentally different tree structures and processor distributions. In
areas where Ωi has large details, Ωj does not and vice versa. The
union of both grids aims to merge them, such that no detail of both
trees gets lost. This implies that merging both trees only involves re-
finement operations, which are cheap when using wavelet up-sampling.
As explained in Section 3.2.1 trees with identical tree structure have
identical processor distribution because of our load-balancing strategy
by space-filling curves. The hvy-data, i.e. grid quantities of Ωi and
Ωj are therefore on the same processor (see Fig. 3.2b) after unification.
The unification enables us to calculate the inner product in Eq. (3.10)

(a) qi(Ωi) and qj(Ωj) (b) qi(Ωij) and qj(Ωij) (c) (qi × qj)(Ωij)

Figure 3.2: Visualization of pointwise operations on multires-
olution grids Ωi and Ωj . On the top row the scalar fields qi and
qj are shown, where blue colors represent 1 and white colors 0.
Below each field the corresponding processor distribution grid
is displayed. Each color of the processing grid represents one
of the four processing units. Initial trees (Figure 3.2a), unified
tree structures (Figure 3.2b) and the processed field (Fig. 3.2c).

as a weighted inner product

⟨qi, qj⟩ = ⟨q
i
, q

j
⟩Mmass = q⊤

i
Mmassqj

, (3.11)

where q
i

represent the vectorized entries of tree i and Mmass is a posi-
tive definite and symmetric matrix (explicitly given in Appendix A.1).
In FEM literature this matrix is often called mass matrix and has been
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used by [134, 62] in a similar approach. With Eq. (3.11) we can cal-
culate the inner product and the associated norm of our block-based
multiresolution fields. Replacing the L2 inner products by weighted
inner products therefore generalizes the POD minimization problem
in Eq. (3.2) to multiresolution fields. With this intermediate result,
we can go one step further to combine wavelet adaptation and POD
truncation.

3.2.2 The wPOD Algorithm
The wPOD algorithm proceeds in the following steps:

1. Read and Coarsen Data qϵ
i ← adapt(qi, ϵ, Jmin, Jmax)

In the first step of the algorithm, we read all block decomposed
snapshots in Q and coarsen them for a given threshold ϵ using
the wavelet adaptation scheme, if the input fields are not already
adapted. The adapted fields are denoted by qϵ. This part of
the algorithm is essential because it allows keeping only the most
relevant information (see Section 2.1.1) of the input data using
wavelet compression and therefore makes handling of large data
feasible (see Section 3.3).

2. Computation of Correlation Matrix (C)ϵ
ij = 1

NtV ⟨q
ϵ
i , q

ϵ
j⟩

The main computational effort of the algorithm is the construc-
tion of all elements of the correlation matrix Cϵ ∈ RNt×Nt , for
which the inner product of locally different resolved snapshots
needs to be computed. For any pairwise operation (+,−, ⟨·, ·⟩),
we refine to a union of both grids as shown in Fig. 3.2. After
the operations (+,-) the resulting field is adapted again to the
predefined threshold ϵ.

3. Solving the Eigenvalue Problem Cϵvϵ
k = λϵ

kv
ϵ
k

After the correlation matrix Cϵ is constructed, we diagonalize
it with Jacobi’s method for real symmetric matrices DSYEV im-
plemented in LAPACK [2]. As described in [2] sec. 8, the chosen
method computes all the eigenvalues and eigenvectors close to
machine precision. We therefore neglect errors made during the
diagonalization. In contrast to the construction of Cϵ, that scales
with the average number of grid points M , the computational ef-
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fort needed for diagonalization of Cϵ is relatively small, since
it scales with O (Nt) , Nt ≪ M (see CPU-time comparison in
Fig. A.3).

4. Construction of POD Modes ψϵ
k = 1√

λϵ
jNt

∑︁Nt
i=1(vϵ

k)iq
ϵ
i

The elements of the correlation matrix are the inner products
between two snapshots, i.e. the i-th row/column contains the co-
efficients of qi represented by a linear combination of all snapshots
inQ. Diagonalizing Cϵ means finding a basis of coefficient vectors
vϵ

k ∈ RNt which generate an optimal representation of Q. The
representation in terms of orthonormal modes {ψϵ

k} is computed
according to Eq. (3.5). The summation in Eq. (3.5) proceeds in
multiple steps. In the first step we copy ψϵ

k ← (vϵ
k)1q

ϵ
1, after

which we iteratively sum up ψϵ
k ← ψϵ

k + (vϵ
k)iq

ϵ
i for i = 2, . . . , Nt

in the second step and divide by the normalization factor.

5. Computation of POD Mode Coefficients aϵ
ki = 1

V ⟨ψ
ϵ
k, q

ϵ
i⟩

The computation of the mode coefficients involves again a com-
putation of the inner product between the orthonormal modes
ψϵ

k and the snapshots qϵ
i . In most cases, this step needs fewer

evaluations of the scalar product, since the number of modes r
should be small, r ≪ Nt.

In summary, our algorithm generates sparse modes ψϵ
k, k = 1, . . . , r,

with amplitudes aϵ
ki to approximate any of the snapshots qi ∈ Q in

terms of a linear subspace

qi(x) ≈ q̃ϵ
i(x) =

r∑︂
k=1

aϵ
kiψ

ϵ
k(x) for i = 1, . . . , Nt . (3.12)

In this notation, the upper index ϵ denotes the quantities, which are
indirectly affected by the wavelet threshold (e.g. aϵ

ki, C
ϵ
ij) or directly

expressed as a truncated wavelet series (e.g. q̃ϵ
i(x),ψϵ

k(x)). Further-
more, q̃ denotes the truncation after the r-th mode.

3.2.3 Error Estimation
Here, we discuss the dependency of the approximation error on the
wavelet threshold ϵ and the truncation rank r. Additionally, we explain
how to choose both values to obtain a given accuracy.
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To do so, we provide an error estimate of the approximation q̃ϵ
i in

Eq. (3.12). The approximation projects our data Q = {q1, . . . , qNt
}

onto a linear subspace spanned by a set of modes {ψϵ
k}k=1,...,r. The

sparsity of the modes is determined by the wavelet threshold ϵ (see Sec-
tion 2.1.1) and the dimension of the subspace r shall be much smaller
than the number of snapshots: r ≪ Nt. For given r, ϵ we define the
relative error of our approximation in the L2-norm,

EwPOD(r, ϵ) ··=
∑︁Nt

i=1 ∥qi(x)− q̃ϵ
i(x)∥22∑︁Nt

i=1 ∥qi(x)∥22
(3.13)

which can be split into two contributions, i.e. compression and trun-
cation errors. We thus have,

Nt∑︂
i=1
∥qi(x)− q̃ϵ

i(x)∥22 =
Nt∑︂
i=1
∥qi(x)− qϵ

i(x) + qϵ
i(x)− q̃ϵ

i(x)∥22 (3.14)

≤
Nt∑︂
i=1
∥qi(x)− qϵ

i(x)∥22⏞ ⏟⏟ ⏞
compression error

+
Nt∑︂
i=1
∥qϵ

i(x)− q̃ϵ
i(x)∥22⏞ ⏟⏟ ⏞

POD truncation error

.

(3.15)

Here, the relative error arising from thresholding details is (see Sec-
tion 2.1.1):

Ewavelet(ϵ) ··=
∥qi(x)− qϵ

i(x)∥2
∥qi(x)∥2

≤ ϵ (3.16)

and the relative error due to the truncation after the r-th POD mode
in Eq. (3.12) is:

EPOD(ϵ, r) ··=
∑︁Nt

i=1 ∥qϵ
i(x)− q̃ϵ

i(x)∥22∑︁Nt
i=1 ∥qϵ

i(x)∥22
=
∑︁Nt

k=r+1 λ
ϵ
k∑︁Nt

k=1 λ
ϵ
k

(3.17)

Using Eqs. (3.15) to (3.17) one obtains for the total relative error of
the wPOD (see Appendix A.2):

EwPOD(ϵ, r) ≤ EPOD(0, r) +Mrϵ+ ϵ2 ≈ EPOD(0, r) + ϵ2 , (3.18)

where Mr =
∑︁Nt

k=r+1 lk∑︁Nt
k=1 λk

, (3.19)
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when assuming perturbed eigenvalues λϵ
k = λk + lkϵ, with perturbation

lk ∈ R. An error bound for the perturbation of the eigenvalues is given
for a simplified correlation matrix in [22]. Mr is often small, in which
case it can be neglected. This is further discussed in the numerical
example section. Note that in the limit ϵ → 0 the wPOD error yields
exactly the POD error. In the limit r → ∞ the POD error vanishes
and we are left with the wavelet compression error. These limits are
visualized for our numerical studies in Figs. 3.6, 3.11 and 3.13.

In most applications, the wavelet threshold ϵ will be chosen accord-
ing to the available memory of the hardware. If memory limitations
are not an issue, it is advantageous to balance the wavelet and POD
truncation error for better efficiency. Assuming that the approxima-
tion in Eq. (3.18) holds EPOD(ϵ, r) ≈ EPOD(0, r) (i.e. Mr ≤ ϵ), we
can treat the two errors Ewavelet, EPOD independently. For a predefined
error E∗, we first fix the compression error choosing ϵ∗ ≤

√︁
E∗/2 and

adjust the truncation error by err= E∗ − (ϵ∗)2. The truncation rank
r∗ is then chosen to compensate for the additional error introduced by
the wavelet compression. In the case whenMr is expected to be larger
than ϵ, the errors cannot be balanced without having an estimate of the
POD eigenvalues. Eigenvalues λϵ

k, which are smaller than the compres-
sion error are not reliable. Therefore we recommend the conservative
setting, choosing ϵ∗ < E∗, for a first estimate.

3.3 Numerical Results
In this section, we test the wPOD algorithm, outlined in Section 3.2.2,
on 2D and 3D numerical data and assess its efficiency and precision.
The algorithm is integrated into the open source software package
WABBIT [129] and can be called as a post-processing routine.

Remark. The post-processing routine can be called as follows:
wabbit-post --POD --nmodes=<rank> --error=<err> --memory=<RAM> --adapt=

<eps> --components=<K> --list=<CompList1> · · · --list=<CompListK>

The number of modes rank or the truncation error err can be spec-
ified. For the latter, the rank is automatically chosen from the error
criterion given in Section 3.2.2. The algorithm requires specifying the
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number of components K together with K lists of files that store the
snapshots of each component in an HDF5 format. Furthermore, the
memory and adaptation level should be chosen in accordance with the
given resources.

We provide two types of case studies: A synthetic test case (see Sec-
tion 3.3.1) in 2D, which is used to benchmark our code. We also
compare it to the randomized singular value decomposition (rSVD),
outlined in Section 3.1, and case studies for 2D and 3D data obtained
by numerical simulation of the incompressible Navier-Stokes equations
in Section 3.3.2.

3.3.1 Synthetic Test Case
For the synthetic test case we define a combination of dyadic structures,
inspired by [98]:

q(x, y, t) =
R∑︂

k=1
ak(t)Ψk(x, y) ,

of R = 152 orthogonal modes Ψk : [0, 30]2 → R and temporal am-
plitudes ak : [0, 2π] → R. The modes are smooth, two-dimensional
bumps

Ψm+15n+1(x, y) = b(
√︂

(x− xm)2 + (y − yn)2) (3.20)

b(x) =

⎧⎨⎩exp
(︂
− 1

1−x2

)︂
, x ∈ (−1, 1)

0, otherwise
(3.21)

placed at (xm, yn) = (1+2m, 1+2n), n,m = 0, . . . , 14 in a checkerboard
pattern. Note that the modes are orthogonal because of their non-
overlapping support. Furthermore, we choose oscillating amplitudes:

ak(t) = e−k/∆λ sin(πfkt) for k = 1, . . . , 152 (3.22)

with randomly shuffled frequencies fk ∈ {1, . . . , 152} and moderate
decrease in magnitude: ∆λ = 3. We choose Nt = 27 equally spaced
snapshots on a Nx×Ny = 1024× 1024 initial grid. Before starting the
algorithm the initial grid has to be partitioned into blocks. This is done
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using a python routine available in the WABBIT software package [45].
In our studies, we block-decompose the initial grid in three different
configurations to compare the effect of different block sizes. The sizes of
the blocks are Bx = By = Nx/2Jmax +1 = 17, 33, 65 with Jmax = 6, 5, 4,
respectively.

Wavelet Compression

First, we examine the compression of the data with varying block sizes
and thresholds ϵ with 10−15 ≤ ϵ ≤ 10. Figure 3.3 shows the adaptation
of a single snapshot for ϵ = 1.0, 2.2× 10−2, 1.0× 10−5. For larger ϵ
the number of blocks decreases, leading to stronger compression of the
data and increasing compression errors.

Figure 3.3: Block-based adaptation of qϵ(x, y, t) at t = 42∆t
for ϵ = 1.0, 2.2× 10−2, 1.0× 10−5 (from left to right) and with
Bx = By = 17.

This behavior is quantified for varying block size Bx × By and ϵ in
Fig. 3.4. Here we plot the relative compression error Ewavelet and com-
pression factor Cf ≤ 1, i.e. the fraction between the number of blocks
at a given threshold and the total number of blocks available needed for
the full grid. As can be seen from Fig. 3.4, a higher maximal refinement
level Jmax, i.e. smaller blocks, corresponds to a smaller overall compres-
sion factor, while the compression error Ewavelet is approximately the
same. This observation is expected because smaller blocks enable bet-
ter resolution of local structures, however increase the data handling
effort. For all the compression curves in the numerical examples in
Figs. 3.4 and 3.9 we see the classical saddle-shaped error curve: with
rapid error decay for small Cf ≲ 0.05 (i.e. large ϵ ≳ 10−2) until a
plateau is reached with a saddle point from which it begins to decay
again. Regardless of the final error of our algorithm, it is recommended
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to set ϵ at the onset of the plateau, since after the plateau is reached
only a little gain in precision is achieved. The saddle point behavior
is an expected structure if an unknown signal with white noise is de-
composed into a basis. For example in Fig. 3.11c, we see a similar
behavior for the truncation error of the POD. The onset of the plateau
may denote the transition from structures that are well presented in
a given basis to those that represent noise. Studies of this transition
point can be found for SVD and wavelets in the works of Donoho et al.
in [57, 39].

Figure 3.4: Compression error Ewavelet (left) defined in
Eq. (3.16) and compression factor Cf (right) of the bump test
case using different block sizes Bx = By = Nx/2Jmax + 1, with
maximal refinement levels Jmax = 4, 5, 6. The compression fac-
tor is the fraction between the sparse and dense number of grid
points/blocks.

Furthermore, we emphasize that the compression error scales linearly
in ϵ, independent from the chosen block size, which is an important
property for the error control of our algorithm. The sudden drop of
the error for Jmax = 4 is due to the fact, that after ϵ ≲ 10−11 the blocks
are refined to the maximal level.

POD Truncation

Next we study the impact of the wavelet compression on the computed
POD modes and the overall approximation error. For ϵ = 10−5, Fig. 3.5
visualizes the first three modes and the corresponding amplitudes ob-
tained with the wPOD algorithm. Note that the modes and amplitudes
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of the POD problem Eq. (3.2) are unique up to an orthogonal transfor-
mation. Hence the initial input structures Ψk, ak, defined in Eqs. (3.20)
and (3.22), are not exactly recovered by the wPOD. However, we see
that the magnitude of the amplitudes decreases and its frequency in-
creases with increasing mode number. Moreover one observes that the
computational grid is nicely adapted to the structure of the modes.

Figure 3.5: First three modes Ψϵ
k and their amplitudes aϵ

k(ti),
k = 1, 2, 3, for ϵ = 10−5. Blocks are of size Bx = By = 17.

Additionally, we estimate the truncation error EPOD(ϵ, r) and the total
error EwPOD(ϵ, r) in the L2-norm, as defined in Eq. (3.13). We compare
the errors for 10−5 ≤ ϵ ≤ 1.0, r ≤ 30 in Fig. 3.6. In these plots, the
impact of the wavelet adaptation, corresponding to blue lines with ϵ >
0, is visualized and compared to the classical snapshot POD procedure
corresponding to ϵ = 0, which is drawn in black. The exponential
decay of the eigenvalue spectra, given by the magnitude of the input
modes |ak| ∼ exp(k/∆λ), is nicely recovered in the ϵ = 0 case up to
values r ≲ 60 below machine precision. For increasing ϵ we see that
the eigenvalues become increasingly distorted, as expected. However,
the eigenvalue distortion does not influence the overall approximation
error if epsilon is chosen with care (see Section 3.2.3). In fact, the
total approximation error converges approximately with ϵ2 to the exact
values as the difference in Fig. 3.6 (bottom) shows. The presented
results are independent of the chosen block size Bx×By, although only
Bx = By = 17 is used in the shown figures.
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Figure 3.6: Relative errors EPOD (top, left) (see definition in
Eq. (3.17)) and EwPOD (top, right) (see definition in Eq. (3.13))
as a function of the truncation rank r and the wavelet threshold
ϵ. Difference between classical POD and wPOD compared to
the compression error defined in Eq. (3.13) (bottom). The er-
ror bars indicate the minimal and maximal value of ∆E(r, ϵ) =
|EPOD(r, 0)− EwPOD(r, ϵ)| for all ranks 1 ≤ r ≤ 30 and the mark-
ers the mean ∆E(ϵ) = 1/30∑︁30

r=1 ∆E(r, ϵ). The colors vary from
bright blue at ϵ = 1.0 to black at ϵ = 0.0. Blocks are of size
Bx = By = 17.
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Comparison to Randomized SVD

The overall purpose of our method is to be able to fit the snapshot data
into the fast memory by tuning ϵ, in order to compute the POD with-
out having to address the slow memory again after the data has been
compressed. This enables us to cope with large data sets. Therefore, a
comparison to other methods suited for large data like the randomized
SVD suggests itself. We follow the algorithm outlined in Section 3.1
taken from [68]. For a fair comparison, we refrain from power iterations,
which would need additional passes over the slow memory and we use
n = 5 extra random samples as suggested in [68]. Hence for a target
rank of r∗ = 30 we take l = 35 random samples of our snapshot matrix
Q ∈ RM×Nt , M = 10242, Nt = 27 to compute an orthogonal matrix
Q̂ ∈ RM×l, which approximates the column rank of Q. The compu-
tation of Q̂, however, is only feasible if the random samples fit in the
fast memory. Therefore, the minimum amount of memory needed by
the rSVD is given by SrSVD = Ml in units of the floating-point arith-
metic. In contrast the wPODs memory requirements in units of the
floating-point arithmetic: SwPOD = N tot

blocksBxBy depend on the total
number of blocks N tot

blocks in the snapshot set. Nevertheless SwPOD is
tunable with ϵ, but increasing ϵ also increases the compression error.
To compare both methods we estimate EwPOD(r, ϵ) as before in a range
from 10−5 ≤ ϵ ≤ 1 and r up to r∗ = 30 together with the relative error

E(r)SVD(r) =
⃦⃦⃦
Q− Ψ̃Σ̃Ṽ⊤⃦⃦⃦

F
/ ∥Q∥F (3.23)

of the truncated (r)SVD in the Frobenius norm. Here Ψ̃ ∈ RM×r, Ṽ ∈
RNt×r are matrices, with columns composed of all spatial modes as
orthonormal vectors ψk ∈ RM and the corresponding temporal coef-
ficients vk ∈ RNt and Σ̃ ∈ Rr×r contain the POD eigenvalues λk as
singular values σk =

√
λk on the diagonals. A direct comparison of

the total approximation errors E(r)SVD, EwPOD defined in Eqs. (3.13)
and (3.23), respectively, is shown in the left of Fig. 3.7. In both figures
the wPOD was set up with ϵ = 3.6 × 10−5 and Jmax = 5, such that
SwPOD ≈ SrSVD.

One important aspect of this comparison has to be highlighted first.
The performance of the rSVD and wPOD strongly depends on the
data. The wPOD will always benefit from data with localized smooth
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Figure 3.7: Comparison of the total approximation errors
E(r)SVD, EwPOD for ∆λ = 3 (left) and ∆λ = 100 (right). As a
reference we plot the exact values exp(−k/3) and exp(−k/100)
indicated by a black line. The rSVD is computed with 35 ran-
dom samples of Q and the wPOD set up with ϵ = 6× 10−3 and
Jmax = 5, to ensure approximately the same memory consump-
tion. The inset shows a zoom.

structures, but it will be less efficient than the rSVD for cases that
are distorted by random noise. In our studies the oscillating bump
structures are very localized, therefore the wPOD has an advantage
over the rSVD. In fact, wPOD needs less memory than the rSVD to
achieve the same overall error as shown in the studied parameter range,
see Fig. 3.8.

A very interesting case, that cannot be efficiently dealt with by the
rSVD, is the case of slowly decaying singular values. Here, random
sampling can hardly capture the column rank of Q, since all columns
are nearly equally important. Note that also the SVD algorithm imple-
mented in python’s numpy package (using LAPACK, the implicit zero-
shift QR algorithm after reducing Q to bi-diagonal form) exhibits nu-
merical instabilities due to round-off errors. These errors occur, when
the distance between the singular values gets close to their absolute
value, which is especially visible in the case of slowly decaying singular
values (see Fig. 3.7). This is not the case for the wavelet POD, as shown
in Fig. 3.7. However, small deviations from the expected error decay
∼ exp(−k/100) are visible. For this case we have chosen all parame-
ters as before, except that the magnitude of the modes in Eq. (3.22)
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Figure 3.8: Memory consumption vs. deviation from the exact
POD values. Comparison between rSVD and wPOD. On the left
we show the test case with ∆λ = 3 and on the right ∆λ = 100.
The horizontal dashed lines mark the difference between the
rSVD and the SVD using l = 35 random samples.

decays much slower with ∆λ = 100. This result demonstrates that
our method can be used in the combination with large model order
reduction problems, which suffer under slowly decaying eigenvalues or
singular values. We would like to highlight that, especially in large
transport dominated systems, as they often occur in fluid dynamics,
MOR is negatively impacted by slowly decaying singular values as re-
ported in [108]. Therefore, our method is very useful in the treatment
of such problems. We will come back to this in Section 3.3.2, where we
compute a POD of a bumblebee in forward flight.

3.3.2 Application to 2D and 3D Numerical Flow Data
In this section, we compute a sparse POD basis of 2D and 3D flow data,
computed with WABBIT. In the first study, we use data from a numerical
simulation with an equidistant grid of a 2D flow past a cylinder. In the
second application, we apply the algorithm to highly resolved 3D data
of a flapping flight simulation of a bumblebee [46].

2D Case - Von Kármán Vortex Street

In this first example, our dataset Q results from a 2D simulation of
an incompressible flow past a cylinder using the artificial compressibil-
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ity method computed with WABBIT. Details about the software can be
found in Section 2.1. For this study the block structured grid of WABBIT
is fixed at the resolution Jmax = 6, with (Bx, By) = (65, 17) and do-
main size D ··= [0, 64] × [0, 16]. This is equivalent to an equidistant
grid of 4096×1024 grid points. Each snapshot has three components
q = (u, p), where u = (u1, u2) denotes the velocity and p the pressure.
For this case study, we chose the vortex street for a Reynolds number
Re = 200, because it is known to have fast decaying POD truncation
errors. The Reynolds number Re = 2v∞R/ν is based on the cylinder
radius R = 1, the freestream velocity u∞ = 1 and the kinematic vis-
cosity ν = 0.01. The simulation was run until a stable Kármán Vortex
shedding was achieved. From this point onwards, we sample the so-
lution in the time interval 500 ≤ t ≤ 612 with ∆t = 0.5, resulting in
Nt = 225 snapshots. The relevant parameters for our algorithm are
summarized in Table 3.1. For a concise overview we only show the
scalar-valued vorticity ω = ∂xu2 − ∂yu1 computed from the velocity
components of the state vector in Figs. 2.5 and 3.10 and the curl of the
two velocity components of the POD-basis in Fig. A.4.

Table 3.1: Parameters of Von Kármán Vortex Street test case.

Parameter Value
Number Snapshots Nt 225
Resolution Nx ×Ny 4096×1024
Domain size Lx × Ly 64 ×16
Reynolds Number Re 200

Wavelet Compression

As in the synthetic test case in Section 3.3.1, we first study the com-
pression of the flow data. To this end, we sample Ewavelet(ϵ) of one rep-
resentative snapshot q at t = 550 with different ϵ ∈ {10−8, 10−7, . . . , 1}.
In Fig. 3.9 we plot the relative compression error Ewavelet against the
wavelet threshold ϵ (left) and against the compression factor Cf (right).
In contrast to the scalar field in the synthetic example, the thresh-
olded quantity is vector-valued. Therefore, we normalize each state
vector component before thresholding. All norms in the plots are vec-



3.3. Numerical Results 76

tor norms. Note, that for the threshold ϵ = 0.1 the grid is on the
coarsest resolution (j = 1) with 4 blocks only (corresponding blocks
are shown in Fig. 2.5). This explains why the compression errors be-
yond ϵ = 0.1 do not differ. Similarly ϵ = 1× 10−8 corresponds to the
finest resolution at grid level j = Jmax and the error in Fig. 3.9 drops
to zero. However, as mentioned earlier, for maximal performance the
wavelet threshold ϵ should be located at the onset of the plateau, which
is reached at ∼ 1× 10−2 (i.e. Cf ∼ 0.035). Comparing this observation
with the block distribution in Fig. 2.5, one observes that smaller values
of ϵ produce denser grids, with only little gain in precision. It is re-
markable that according to Fig. 3.9 less than 3.5% of the actual data is
needed to represent the full data with an L2-error less than 0.5h. At
this compression level, we have compressed the full data with 225 snap-
shots from ∼ 24GB to ∼ 0.84GB, which makes it easily manageable
for most laptops.

Figure 3.9: Compression error and compression factor Cf of
the vortex street. Left: The compression error in the L2-norm
is bounded by ϵ, drawn with a dashed line ( ). Right: Rel-
ative error in the L2-norm vs. compression factor. For direct
comparison the vertical axis limits of both figures are identical.

POD Truncation

We will now study the error behavior of the wPOD numerically for
fixed threshold ϵ. To this end, we compute EPOD(ϵ, r), EwPOD(ϵ, r) for
ϵ ∈ {10−8, 10−7, . . . , 1}. Three calculated modes and their temporal
coefficients are visualized with the corresponding block structure in
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Appendix A.3, Fig. A.4. Furthermore, we compare the reconstruction
q̃ϵ in Fig. 3.10 for the dense case with ϵ = 0 (right column) and one
adaptive case ϵ = 10−2 (left column) using r = 2, 6, 10 modes. The
comparison shows that with an increasing number of modes the typical
vortex structure is recovered. No qualitative differences, except local
changes in resolution, can be seen, when comparing the adaptive and
non-adaptive results. For quantitative analysis, we have plotted the

Figure 3.10: Direct comparison between sparse reconstruction
q̃ϵ with ϵ = 10−2 (left) and dense reconstruction with ϵ = 0.0
(right) using r = 2, 6, 10 modes (from top to bottom). In both
columns we display the vorticity ω̃ϵ = ∂xũ

ϵ
2− ∂yũ

ϵ
1 of the recon-

structed velocity components (ũϵ
1, ũ

ϵ
2).

total L2-error and the truncation error in Fig. 3.11. In both plots, the
impact of the wavelet adaption (corresponding to ϵ > 0, blue lines) is
visualized and compared to the results of the classical POD procedure
(corresponding to ϵ = 0, black line). The numerical data show the
behavior stated in Section 3.2.3: With the wavelet adaption of the
snapshots, errors are introduced, which lead to the distortion of the
POD eigenvalue problem and compression errors in the POD basis.

The perturbation lk of the eigenvalues is especially visible in EPOD
(Fig. 3.11c) for the low energy modes (r > 30), corresponding to small
eigenvalues. In this regime the distorted eigenvalues λϵ

r = λr + lrϵ
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(a) Relative error with error control (b) Relative error without error con-
trol

(c) Relative truncation error (d) Influence of the wavelet thresh-
old.

Figure 3.11: Relative errors EwPOD for the vortex street with-
out error control (a) and with conservative error control (b). (c):
The relative errors of the POD (EPOD) and the absolute differ-
ence between the POD results and the wPOD with conservative
error control (d): ∆E(r, ϵ) = |EPOD(r, 0)− EwPOD(r, ϵ)|. Note,
that the difference remains below ϵ in the conservative error set-
ting. In all plots, we vary the colors from a bright blue at ϵ = 1
to black at ϵ = 0.
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fluctuate around the exact value λr (black markers). For the small-
est eigenvalues, the relative fluctuation can lead to a total failure of
the algorithm, with even negative eigenvalues. This regime, however,
can be ignored, since the total error EwPOD, will be dominated by the
compression effects for large r.

Figure 3.11a shows that the error behavior of EwPOD is dominated
by the truncation error EPOD for a small number of modes r. With
increasing r the truncation error decreases, while the error introduced
by the compression remains constant. This leads to a saturation of
the total error, as soon as the truncation error is smaller than the
error due to compression. This saturation effect is not a special case of
the chosen wavelet compression scheme, as it appears in finite element
schemes as well, see for instance [134, 61]. However, the wavelet basis
has a major advantage over finite element schemes in this setting, since
the grids are hierarchically structured, which is easier to handle and
computationally efficient. In fact, no additional computations for "(i)
collision detection, (ii) mesh intersection (detect intersection interface)
and (iii) integration of complex polyhedra" [61, p.9] or special vertex
bisection triangulation, as discussed in [134], are needed.

If we choose the conservative error setting ϵ∗ < E∗, recommended in
Section 3.2.3, with for example ϵ∗ = 0.1E∗ and truncate all modes for
which EPOD(ϵ∗, r) ≤ E∗ we obtain the results shown in Fig. 3.11b. This
is essentially the same information as shown in Fig. 3.11a, but all points
are excluded which do not fulfill the conservative error criterion. With
the help of the conservative error setting, we are able to control the
errors introduced by the perturbation of the eigenvalues. Therefore,
the difference |EwPOD(ϵ, r) − EPOD(0, r)|, shown in Fig. 3.11d, stays
below ϵ.

3D Case - Insect Flight

The data come from a three-dimensional, highly resolved block-based
adaptive simulation of a bumblebee in forward flight using WABBIT [129].
A summary of relevant parameters is given in Table 3.2. Additional
details of the adaptive flight simulation can be found in [46].

One representative snapshot is shown in Fig. 3.12a together with the
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Table 3.2: Parameters of the bumblebee test case. Here ϵ∞ is
the wavelet threshold with CDF4,4 wavelets being normalized
in L∞.

Parameter Value
Number snapshots Nt 41
Maximal refinement Jmax 7
Block size Bx ×By ×Bz 23× 23× 23
Wavelet threshold ϵ∞ 0.01
Domain D [0, 8]3
Reynolds Number Re 2000

reconstruction of our algorithm using either 5 (Fig. 3.12b) or 15 modes
(Fig. 3.12c). Additionally we plot some selected modes in Fig. 3.14.
The wPOD algorithm is applied to the vorticity vector w = ∇ ×
u, which is computed from the velocity u. Two isosurfaces of the
magnitude of the vorticity, 50 and 100, are shown in Figs. 3.12 and 3.14.

The moving wing geometry causes large gradients of the flow field at
the interfaces of the object. These large gradients move with the flap-
ping wing and cause major problems to the POD, like staircase effects
(see Fig. 3.12b) of the reconstructed field with slowly decaying energy
error (see Fig. 3.13). This drawback of the POD is known for trans-
port dominated fields with large gradients and is theoretically studied
in [108, 63] with help of the Kolmogorov n-width. A method to ac-
count for parametric moving discontinuities is discussed in Section 4.3.
However, wavelet adaptation reduces the amount of computational re-
sources needed in favor of additional accuracy, like the increased num-
ber of modes. In fact, for the data presented here (Jmax = 7, Bx =
By = Bz = 23, ϵ∞ = 0.01, Nblocks ≤ 8000) the factor in memory sav-
ings in comparison to the dense grid (Nblocks = 23Jmax = 2097152) is
larger than 260. This factor can be further increased when increasing
ϵ. A full POD would be prohibitive because of its tremendous memory
demand of approximately 31 TB (Nb = 23JmaxNt Blocks with 0.4 MB
each). It should be further noted that, all previous results in the liter-
ature including [134, 62, 61, 47, 22, 79] have been only applied to 1D
or 2D cases.



3.3. Numerical Results 81

(a) Reference snapshot (b) Reconstruction with 5 modes

(c) Reconstruction with 15 modes

Figure 3.12: Comparison between a bumblebee snapshot at
time ti, i = 13 a) and its POD reconstruction q̃ϵ

i using 5 modes
b) and 15 modes c) with ϵ = 0.01. Shown are two isosurfaces
of the magnitude of vorticity, i.e., ∥∇ × u∥2 = 50 and 100.
The rigid body of the bumblebee is displayed in gray. The grid
structure is indicated behind. Staircase effects at the wings are
indicated in Fig. 3.12b. These artifacts appear when POD is
applied to sharp structures or discontinuities which move.
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The statements about the error made in Section 3.2.3 also hold for the
adaptive data: Here the slowly decaying eigenvalues are rather large
compared to their perturbation. Hence, Mr is negligible and the total
error behavior is mainly dominated by EPOD(r, 0) and Ewavelet(ϵ) (see
Fig. 3.13, left). For the case of ϵ = 1.0, it can be nicely seen that
the truncation error dominates the total error after it falls below the
compression error plateau Ewavelet(ϵ)2 at r ≥ 20. In Fig. 3.13 (right)
the difference between the total error EwPOD and the POD truncation
error EPOD is shown. Note that for adaptive input data of the bumble-
bee EPOD(0, r) can be only assessed approximately since wavelet details
have been already discarded during the generation of the data. Hence
for the adaptive case EPOD(0, r) means that no additional compres-
sion errors were introduced during the wPOD algorithm. The differ-
ence scales quadratically with the compression error Ewavelet(ϵ)2 ∼ ϵ2,
drawn as dashed line in Fig. 3.13 (right). From these results, we thus

Figure 3.13: Total relative error, EwPOD, of the wPOD
(left) and difference of the wPOD and POD error, ∆E(r, ϵ) =
|EPOD(r, 0)− EwPOD(r, ϵ)| (right). The error bars in the right
figure indicate the minimal and maximal value of ∆E for all
ranks 1 ≤ r ≤ 30 and the markers the mean ∆E(ϵ) =
1/30∑︁30

r=1 ∆E(r, ϵ).

can conclude that our algorithm can reproduce the POD eigenvalue
spectra of the original data, even for larger thresholds ϵ > 0.01 within
a predefined precision given by the squared wavelet compression error.
As shown in our synthetic test case, this would be a challenge for the
randomized SVD, since the eigenvalues decay slowly.
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Figure 3.14: Bumblebee modes ψϵ
i , with i = 1, 9, 18, 27 and

ϵ = 1× 10−4 in row-major order. The modes are visualized as
isosurfaces of the magnitude ∥ψϵ

i∥2 = 10, 20 with colors green
and orange, respectively. For reference, the rigid body of the
insect is shown in gray. The adaptive grid is only indicated on
the left of each figure.
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3.4 Summary
In this chapter, we have discussed a traditional dimension reduction
method, the proper orthogonal decomposition (POD), and its general-
ization for two or three-dimensional block-based adaptive grids. The
wavelet-adaptive POD (wPOD) algorithm endows the method of snap-
shots, proposed by Sirovich [127], with a non-linear approximation to
efficiently compute the POD. The method uses wavelet compression
on block-based grids to spatially adapt vector fields and thus generate
sparse POD modes.

The introduced compression errors of the POD basis are well controlled
using non-linear approximation employing wavelet thresholding. While
the compression error depends linearly on the chosen threshold ϵ, the
total energy error of the wPOD procedure scales with ϵ2 if the POD
eigenvalues decay rapidly. The wavelet compression and POD trunca-
tion errors can thus be balanced, assuming that the perturbation of
the eigenvalues remains sufficiently small. In comparison to the clas-
sical POD, the compression results in overall savings in memory and
computational resources, while obtaining approximately the same er-
ror. As a consequence, data from highly resolved 3D direct numerical
simulations computed on massively parallel platforms can be processed
on much smaller systems.

However, these savings in terms of computational effort are accom-
panied by additional overhead for handling the tree-like data struc-
ture. Hence, the wPOD cannot yet compete with equivalent random-
ized techniques [144, 68] in terms of CPU-time if the memory is not a
limiting factor. Nevertheless, we were able to show that our method
can handle data efficiently when the singular values decay slowly. In
this case, the proposed wPOD does indeed outperform the rSVD. Fur-
thermore, our method expresses the correlation matrix in terms of the
underlying wavelet basis, similar to what has been implemented for
finite elements in [61]. However, using the scaling relations of wavelets
allows us to express the inner products (Eq. (3.10)) effectively and thus
avoid many problems associated with finite element schemes, cf. the
listed caveats in [61, p.6].

The proposed method is not capable of handling transport dominated
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flows efficiently, as pointed out for the bumblebee test case at the end
of Section 3.3.2. Here the strong convection of the flow at the moving
wings leads to slowly decaying truncation errors, which are especially
visible as staircase effects in Fig. 3.12b. This is expected, since the
transports do not challenge the calculation of the POD, but they pose
difficulties for an approximation generated by the linear decomposition
ansatz [108]. To capture the translation of the wings, a large number of
modes are required, which results in an inefficient reduced-order model.
To incorporate the transport, non-linear mappings are required, which
are investigated in the following chapter.



4 Dimension Reduction using Non-Linear
Mappings

In this chapter, three different non-linear dimension reduction meth-
ods are explored, that can be used to overcome the shortcomings of
linear dimensional reduction for transport dominated fluid systems. In
the first section (Section 4.1), neural networks (NN) are reviewed in
the context of model order reduction of transport dominated flows.
Due to the general approximation strength of NNs, they are used as a
common tool in contexts where linear dimension reduction converges
slowly. Second, a closely related approach, called front transport re-
duction (FTR) is introduced in Section 4.2, which has a similar struc-
ture as NNs, but yields better insight into the underlying transport.
Lastly, a new formulation of the shifted Proper Orthogonal Decomposi-
tion (sPOD) is presented in Section 4.3, which can be used for systems
where the transport is parametrizable along a one-dimensional path.
This chapter closely follows [147, 150, 149].

Some numerical examples of the specific application regimes will be
given in Sections 4.2.5 and 4.3.6 for the introduced methods.

Finally, Section 4.4 will summarize the methods and provide practical
guidance for dimension reduction in the context of transport dominated
flows.

86
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4.1 General Purpose Neural Autoencoder Networks
In this section, we briefly explain the basic concept and give a short
literature overview in the context of MOR for transport dominated
systems with AE. Neural networks and especially autoencoder (AE)
networks have become a common tool in dimension reduction [95]. A
general introduction to autoencoder networks can be found in [59].

An autoencoder tries to reproduce the input data while squeezing it
through an informational bottleneck. It consists of two parts, the

Encoder genc : RM → Rr, q ↦→ a = genc(q), mapping the input data
q onto points a in a learned lower dimensional latent space and
the

Decoder gdec : Rr → RM ,a ↦→ gdec(a) = q̃, mapping the latent rep-
resentation back to the input space.

The composition of both parts

q̃ = gdec(genc(q))

defines the autoencoder. The task of the optimization procedure is
to determine gdec, genc, such that the reconstruction error over some
training data Q = [q1, . . . , qNt

] ∈ RM×Nt :

LAE =
Nt∑︂
i=1
∥q

i
− q̃

i
∥2F =

Nt∑︂
i=1
∥q

i
− gdec(genc(qi

))∥2F

is minimized. After the network has been trained, the reduction is
achieved as the dimension r ≪M of the latent variables ai = genc(qi

) ∈
Rr is much smaller than the input dimensionM . Therefore, the decoder
q

i
≈ gdec(ai) represents a reduced map of the high dimensional data

contained in the columns of Q.

In the training procedure, the functions genc, gdec are determined by
trainable parameters of the network, called weights and biases. The
networks are constructed by a composition of layers genc = L1 ◦ L2 ◦
· · · ◦ LN . Usually, the layers of the network Ln : Ri → Ro are given by
an affine linear mapping x ↦→ hn(Wnx+ bn), with weights Wn ∈ Ro,i

and biases bn ∈ Ro together with a predefined non-linear function hn.
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The choice of the input and output dimension i, o ∈ N in each layer,
the activation function and the number of layers is called architecture
of the network. The specific architecture for the general AE network
that is used in this thesis can be found in Appendix B.1. All results
with this architecture are abbreviated with NN in the following.

Autoencoder networks of symmetrical decoder and encoder size have
been used successfully in the context of dimension reduction for TDFS
in [89, 81, 53]. Although the implementation details differ, results of
these studies show that the accuracy of the reduced representation de-
cays rapidly if the latent space dimension (i.e DOF) r is larger or equal
to the intrinsic dimension of the sampled solution manifold. This fact
is also observed in our numerical results. Theoretical considerations
towards the approximation accuracy of a network in the context of
parametric MOR of PDEs can be found in [85].

4.2 Dimension Reduction for Complex Moving Fronts
In the following section, we motivate why special non-linear reduction
methods are beneficial when decomposing advection-reaction-diffusion
(ARD) systems and we introduce the front transport reduction as an it-
erative thresholding algorithm in Section 4.2.3 and 1-layer autoencoder
networks in Section 4.2.4.

4.2.1 The Need for a Non-Linear Decomposition Approach
To motivate our decomposition approach, we consider ARD systems of
the form:

∂q

∂t
= u ·∇q + κ∇2q +R(q) . (4.1)

These systems describe how a quantity or reactant q(x, t) spreads in
space x ∈ D ⊂ RD, D > 0 over time t ∈ [0, T ]. This spread can be
caused by the advection with velocity u ∈ RD or an interplay between
diffusion ∆q and reaction processes R(q). For the sake of simplicity we
focus on the reaction-diffusion described by a non-linear Kolmogorov–
Petrovsky–Piskunov (KPP) reaction term R(q) = γqα(q − 1) with ex-
ponent α > 0 and reaction rate γ > 0. These systems exhibit traveling
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or pulsating fronts [66, 5, 6, 49], which are assumed to be locally one-
dimensional near the front.

Remark. Formally, this approach makes use of the assumption that
the spatial variable x = (x1, x2 . . . , xd) of the reactant q can be trans-
formed to x′ = (ϕ′, x′

2, . . . , x
′
d), where x′

2, · · · , x′
d are on a hyperplane

tangential to the front of the traveling wave. On this hyperplane, all
gradients in the equation vanish relative to the terms that are nor-
mal to the traveling wave. Therefore, the flow can be described by a
one-dimensional equation in the variable ϕ′ and we simply can rewrite
q(x′, t) = q(ϕ′, t) (see [142, p.5] for details).

Therefore, the solution of Eq. (4.1) can be transformed into a co-moving
frame

q(x, t) = f(ϕ(x, t)) , (4.2)

where the front profile of the traveling wave is described by f and
ϕ(x, t) = (x −∆(x, t)) · ev, the location of the front with respect to
the direction ev = v/ ∥v∥ of the wave speed v. For a one-dimensional
traveling wave, this is illustrated in Fig. 4.2a. The profile of the wave
f can be approximated with help of perturbation theory after trans-
forming Eq. (4.1) into the co-moving frame (see for example [126]) or
by fitting the front profile, as done in [150]. However, the wave speed
v is the most complex part in typical applications, since it is coupled
to an outer transport/velocity field u in Eq. (4.1) and an additional
constant propagation speed c∗ of the reacting wave which depends on
R(q) (i.e., minimal propagation speed c∗ ≥ 2

√︁
κR′(0) for KPP non-

linearities [66, 5, 6]).

The dimensional analysis yields a definition of the propagating front’s
thickness in terms of the fraction of the diffusion and propagation
speed:

lf = κ/c∗ ≤ 0.5
√︂
κ/R′(0) . (4.3)

This characteristic length scale of the system is shown in Fig. 4.1. In a
linear projection-based MOR approach, lf plays an essential role, be-
cause its length is directly related to the success of the approximation.
As already pointed out by [63, 108] for transport systems with vanish-
ing front width (lf → 0), every front position is linearly independent of
the others and therefore equally important when defining a projection
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basis. Therefore, the typical exponential decay ∥q − q̃n∥ ∼ e−βn of the
approximation error is reduced to ∼ n− 1

2 , when increasing the dimen-
sion of the ROM-basis n. Since the authors [63, 108] give no general
results for lf > 0, we quantify the decay of the approximation errors
numerically in Fig. 4.1. It can be seen from Fig. 4.1b that the error de-
cay rate per POD mode diminishes if the traveling distance L becomes
large relative to the front width lf , making a linear MOR approach
impractical. In order to compensate the transport, many authors use
one-to-one mappings [115, 12, 114, 48, 121], which however cannot be
used in our case, since reacting fronts may split or merge.

q = f(x− ct)

lf

L

x

q

(a) Front width lf .

10−3 10−2 10−1 100

10−2

10−1

100

lf /L

de
ca

y
ra

te
β

(b) Error decay rate per mode.

Figure 4.1: A wavefront f(x) = sigmoid(xlf ) shown in
Fig. 4.1a travels a distance L. The decay rate ∥q − q̃n∥ ∼ e−βn

as a function of the relative front width lf/L is shown in
Fig. 4.1b when approximating q with n POD-modes.

Hence, for ARD systems we follow a more direct approach, which uses
the underlying physical structure Eq. (4.2) of these systems. For given
snapshot data Q ∈ RM×Nt with Qij = q(xi, tj) ∈ [0, 1] and front
function f : R→ [0, 1], the approach decomposes the data with help of
the non-linear mapping

q(x, t) ≈ q̃(x, t) = f(ϕr(x, t)) s.t. (4.4)

ϕr(x, t) =
r∑︂

k=1
ak(t)ψk(x) , r ≪ Nt (4.5)

and a low-rank field ϕr(x, t), that allows to embed the local one-
dimensional front movement into a D-dimensional transport. Usually,
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the low-rank field is computed with help of a truncated SVD of a snap-
shot matrix Φ ∈ RM×Nt , with Φij = ϕ(xi, tj). The idea is visualized
in Fig. 4.2. Since the transport is only parametrized locally, changes in
the topology of the front surface can be captured. The decomposition
goal is formulated as an optimization problem.

Problem 4.2.1. Front Transport Reduction For a given snapshot ma-
trix Q ∈ RM×Nt with Qij = q(xi, tj) ∈ [0, 1] and non-linear smooth
monotone increasing function f : R → [0, 1], find a rank r matrix
Φ ∈ RM×Nt , such that the error

⃦⃦⃦
Q− Q̃

⃦⃦⃦2

F
for Q̃ij = f(Φij) is mini-

mized.

0

1

q
(x

,t
)
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0

x

ϕ
(x

,t
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q
=
f

(ϕ
)

t→∞

(a) Transported quantities

0 5 10 15 20

10−10

100

rank r

re
la

ti
ve

er
ro

r

∥Q − Q̃POD∥2
F

∥Φ − Φ̃POD∥2
F

(b) Relative POD approximation er-
rors

Figure 4.2: Illustration of the basic idea of the front transport
reduction method. Figure 4.2a: The FTR replaces the sharp
traveling front structure q (blue curves), by a level set function
ϕ (orange lines) and a non-linear mapping f (indicated by the
red arrow). Both quantities share locally the same transport.
However, the level set field ϕ(x, t) = x−∆(t) is of low dimension
and can therefore be parametrized with only few POD basis
functions (here: {x, 1}). Figure 4.2b: The generated snapshot
data Φij = ϕ(xi, tj) can be approximated efficiently with the
POD, compared to Qij = q(xi, tj).

Three possible algorithms that address Problem 4.2.1 are provided in
the following sections.
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4.2.2 FTR via Signed Distance Functions - Introductory Ex-
ample

A first heuristic algorithm that addresses Problem 4.2.1 was published
in [150]. The introduced algorithm does not solve Problem 4.2.1 exactly
in an optimization procedure, but constructs the level set field ϕ from
a signed distance function

ϕ(x, t) =
{︄

dist(x, Cp(t)) right of Cp(t)
−dist(x, Cp(t)) left of Cp(t) ,

(4.6)

dist(x, Cp(t)) = inf
y∈Cp(t)

∥x− y∥2 . (4.7)

In this approach we use scikit-fmm [55] to calculate the signed dis-
tance function, which is based on the fast marching method (FMM)
[125]. The FMM is convenient for our purpose, since it allows to cal-
culate the signed distance function ϕ(x, tj) very efficiently for a large
number of snapshots j = 1, . . . , Nt, based on the p-level set contour
line Cp(tj) = {x ∈ D | q(x, tj) − p = 0}, p ∈ R of our data field
q. At this point, a value of ϕ and q is available at every grid point
from which the front shape function f is to be determined such that
q = f(ϕ). This is complicated by the fact that such a relation is ap-
proximate and only discrete values are available. From the computed
signed distance function we choose all grid points ϕ̂l = ϕ(xil

, yjl
, til

)
with

⃓⃓⃓
ϕ̂l

⃓⃓⃓
≤ ∆ϕ and the corresponding samples q̂l = q(xil

, yjl
, til

). The
sample vectors (ϕ̂l, q̂l) are then interpolated on a predefined support
set ϕsup

i = i∆ϕ/S, i = 1, . . . , S with corresponding interpolation val-
ues f1, . . . , fS , such that fi = f(ϕsup

i ). In this way, the front profile f
can be approximated by cubic splines, assuming that the front profile
is sufficiently smooth. Alternatively, one can use more complex rep-
resentations like fully connected neural networks to approximate the
front profile. Note that in contrast to the decoder gdec (Section 4.1),
mapping a low input space Rr onto a high output space RM , the neural
network of the front profile would only approximate a scalar quantity
f : R → R and is therefore shallow and cheap to evaluate. In contrast
to the AE network, dimension reduction is achieved by the low-rank
description of ϕ, with help of the POD: ϕr(x, t) = ∑︁r

k=1 ak(t)ψk(x),
r ≪ Nt .
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Although the front transport reduction signed distance (FTR-SD) ap-
proach generates the desired results for the 1D traveling front that is
shown in Fig. 4.2, the choice of ϕ as a signed distance function is likely
to be sub-optimal, since it is not guaranteed that ϕ can be represented
well by only few basis functions. For instance in the moving disk exam-
ple Eq. (2.38), the signed distance function ϕ(x, t) = ∥x−∆(t)∥2 −R
(shown in Fig. 4.3) together with f(x) = 1

2(1+tanh(x/λ)) parametrizes
the solution of the advected disc. However, if we choose a paraboloid
φ(x, t) = 1

2R ∥x−∆(t)∥22 − R2 (shown in Fig. 4.3) instead, the trans-
port can be parametrized with only three basis functions as shown in
Fig. 4.3. Although the signed distance function might not be optimal
for the example of the traveling disc, it is superior to the POD as can
be seen from the comparison in Fig. 4.3.

The ability of the FTR-SD method is demonstrated for a more complex
example in [150], where it was tested on a 2D propagating flame that
interacts with a vortex pair. In this data set, 40 snapshots have been
derived from 2D simulations of the reactive Navier-Stokes equations
implemented in [128]. In this example, the data were restricted to
the normalized mass fraction of hydrogen YH2 . The simulation was
tuned such that a vortex pair moves towards burning H2 and mixes
unburned (YH2 = 1) with burned gas (YH2 = 0), so that a small bubble
of unburned gas detaches into the burned area. The time evolution is
visualized for some selected snapshots on the left side of Fig. 4.5a.

As can be seen from Fig. 4.5a, the YH2 snapshots contain a very in-
teresting structure, in which the front changes along its contour line
and even the topology of the line changes splitting from one curve at
t/∆t = 24 into two curves t/∆t = 29 and then back to a single curve at
t/∆t = 34. After computing the signed distance function using Cp(t)
with p = 0.14 for all 40 snapshots, we compute f using the interpola-
tion procedure described above. One representative snapshot and its
signed distance function is shown in Fig. 4.4. The approximation qual-
ity when we truncate ϕ using r degrees of freedom is compared to the
POD in Fig. 4.5. For this specific data, we can decrease the relative
errors up to a factor of three compared to the POD, until the overall
approximation limit ∆f is reached (see Fig. 4.5b). More importantly,
by construction the FTR preserves the physical range of the normal-
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Figure 4.3: Visualization of the FTR decomposition in the
case of the moving disk example introduced in Section 2.2.1
using a signed distance function (left) or a paraboloid (right).
In the upper row, we compare the relative errors to the results
of the POD when reconstructing the solution using r degrees of
freedom (DOF). In the bottom row, one snapshot is depicted
using 10 DOF for the representation of ϕ and 3 DOF for φ.
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Figure 4.4: Signed distance function ϕ(x, t) and resulting ap-
proximation q(x, t) of the propagating flame example. The zero-
level contour line parametrizes the location of the reacting front.

ized reactant 0 ≤ YH2 ≤ 1 and the front structure of the solution. In
contrast, the POD overshoots and undershoots (black and red region
in Fig. 4.5a) the physical range and shows staircase behavior.

From the ansatz q ≈ f(ϕr) we can deduce two different errors con-
tributing to the total error:

∥q − f(ϕr)∥ ≤ ∥q − f(ϕ)∥⏞ ⏟⏟ ⏞
∆f

+
⃦⃦
f ′(ϕ)R

⃦⃦
+O

(︂⃦⃦⃦
R2
⃦⃦⃦)︂

. (4.8)

The truncation error of the SVD is R = ϕ−ϕr and the approximation
error of the data without truncation is ∆f . Consequently, for vanishing
approximation error, the truncation error ∥f ′(ϕ)R∥ ≤ ∥f ′(ϕ)∥σn+1
bounds the total error in the spectral norm. Therefore, the total error
scales with the decaying singular values of ϕ. This behavior can be
seen in Fig. 4.3 and Fig. 4.5b. While for the signed distance function
in the translated disk example ∆f = 0 the relative truncation error
aligns with the total error, the error of the paraboloid φ in the right
plot is dominated by the approximation error ∆f ≈ 10−3, similarly for
Fig. 4.5b.

The above examples illustrate the basic concept of the FTR-optimization
Problem 4.2.1, where a local 1D description of the front movement is
embedded into a higher dimensional front structure. In contrast to ar-
eas close to the front, where f ′(ϕ) ̸= 0 and the field ϕ has to mimic a
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(a) Snapshots t/∆t = 21, 26, 31
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Figure 4.5: Comparison of the POD and the FTR for a 2D
propagating flame:
a) Direct comparison of the snapshots t/∆t = 21, 26, 31 with
q plotted in the first row, the approximations f(ϕr), qr in the
second row with r = 10 modes and the difference between the
data and its approximation in the last row. Note that the images
in the lower rows contain only the fractions of the full snapshot
that are relevant for our comparison.
b) Relative reconstruction error in the Euclidean norm.
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signed distance function, ϕ can be chosen to minimize the truncation
error far away from the zero level where f ′(ϕ) ≈ 0. Moreover, the opti-
mization procedure relaxes the assumption of constant front width as
ϕ is chosen by minimizing ∆f close to the zero level.

4.2.3 FTR via Iterative Thresholding
A simple iterative algorithm to determine the auxiliary field Φ ∈
RM×Nt of the front transport reduction Problem 4.2.1 is presented in
Algorithm 2.

Algorithm 2 FTR as iterative thresholding
Require: Q ∈ RM×Nt data Qij = q(xi, tj), τ step size, r rank

1: initialize Φk = 0
2: while not converged do
3: residual ∆f = f(Φk)−Q
4: Φk+1/2 = Φk − τ∆f
5: decompose and truncate
6: Φk+1 = svd(Φk+1/2, r)
7: k ← k + 1
8: end while
9: return Φk

Our algorithm is constructed by combining a gradient descent step (line
4) to minimize

⃦⃦⃦
Q− Q̃

⃦⃦⃦2

F
, together with a rank-r projection step of Φ

(line 6). In the gradient descent step, the FTR residual

LFTR(Φ) = 1
2
⃦⃦⃦
Q− Q̃

⃦⃦⃦2

F
with Q̃ = f(Φ) (4.9)

is minimized in the direction of the gradient DΦLFTR(Φ) = f ′(Φ) ⊙
(f(Φ) − Q). Here, f ′(Φ), f(Φ) are element-wise operations of f, f ′

on Φ. Since f is monotonically increasing, it is sufficient to replace
DΦLFTR by ∆f = f(Φ)−Q in line 4. Neglecting f ′(Φ) in the gradient
prevents a vanishing gradient for points where f ′(Φ)→ 0, i.e. |Φij | ≫
0. Note, replacing the simple gradient descent step with a quasi-Newton
method or a line search does not affect the convergence rate, since it
is followed by a projection step (line 6), which is likely to destroy the
possible larger step of a more sophisticated method.
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The computational costs of Algorithm 2 scale with the complexity of
the SVD. Thus, for large systems it can be advantageous to approxi-
mate the SVD with a randomized SVD or the wavelet adaptive POD
outlined in Chapter 3.

4.2.4 FTR via Neural Autoencoder Networks
Another way to solve the optimization Problem 4.2.1 is with the help
of autoencoder networks. The special architecture used for the FTR-
autoencoder neural network (FTR-NN) is illustrated in Fig. 4.6. As the
FTR-NN should implement the structure motivated in Problem 4.2.1,
we choose an architecture, which consists of a single-layer decoder,
without bias

q̃ = gdec(a) = f(Ψa) , Ψ ∈ RM×r ,

which is activated by the physics-dependent front function f . Here, the
images of the linear part ϕi = Ψai, with respect to ai = genc(qi

) corre-
spond to the columns of the discrete transport field Φ = [ϕ1, . . . ,ϕNt

].
Since the image of the linear part is represented by Ψ ∈ RM×r, r ≪M
the resulting matrix is at most of rank r.

As shown in Fig. 4.6, the encoder network consists of four convolutional
layers, each followed by an exponential linear unit (ELU) and a batch
normalization layer [76]. We apply a stride of two in all convolutional
layers after the first convolutional layer, to downsample the spatial
resolution of the input data. The output of the convolutional layers
is reshaped to a large vector, that is the input of a fully connected
network. The fully connected network is followed by two linear layers,
where the first one is activated by an ELU activation and a batch
normalization layer. Further details of the architecture and training
procedure can be found in Appendix B.1.

For the training of the FTR-NN, an additional smoothness constraint
is added to the optimization goal LFTR, which penalizes the non-
smoothness of the columns ψn of Ψ ∈ RM×r

Lsmooth = λsmooth

r∑︂
n=1

∥D+ψn∥2F
∥ψn∥2F

. (4.10)
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Here, D+ ∈ RM×M denotes the coefficient matrix of a forward finite
difference, which is implemented as a convolution operation over the
columns of Ψ. For the examples in this manuscript, λsmooth = 10−7 was
found to yield the best results. The additional smoothness constraint
allows for faster convergence of the network in the validation phase.
The constraint is reasonable, since the columns represent the transport
field Φij = ϕ(xi, tj), which is assumed to be smooth.

4.2.5 Numerical Results
In the following section, we will compare the different FTR methods
to neural autoencoder networks and the POD.

Linear Advection of a Disk

The first synthetic example revisits the advected disk introduced in
Section 2.2.1. It illustrates the idea of the FTR in the pure advection
case without any topological change. The example parametrizes a disk
of radius R = 0.15L, which is moving in a circle:autoencoder

q(x, t) = f(ϕ(x, t)) and ϕ(x, t) = 1
2R (∥x− x0(t)∥22 −R

2) (4.11)

where x0(t) = L

(︄
0.5 + 1/4 cos(2πt)
0.5 + 1/4 sin(2πt)

)︄
. (4.12)

The snapshot data q(x, t) is generated from a level set field ϕ(x, t),
which is zero at the outer radius of the disk, i.e. location of the front.
The front is generated with help of the function f(x) = (tanh(x/λ) +
1)/2, λ = 0.1. One representative snapshot of the data is shown
together with its approximation using the POD in Fig. 4.7. As it
was already pointed out in Section 4.2.2, for this example ϕ(x, t) =∑︁3

k=1 ψk(x)ak(t) can be parametrized by only three functions and is
therefore of low-rank, even if the field q(x, t) itself is not. The basis
functions ψ1, ψ2, ψ3 are shown in the top row of Fig. 4.8a. They can be
interpreted as a quadratic basis function ψ1(x, y) = (x− 0.5L)2 + (y−
0.5L)2 +R2 +L2/4 that represents the initial shape of the contour line
with constant time amplitude a1(t) = a1 ∈ R, and the linear transport
functions ψ2(x, y) = x, ψ3(x, y) = y for the shift in x/y-direction with
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data q(x, t)

0.0 0.5 1.0

POD q̃(x, t)

0.5 1.0

Figure 4.7: Data at time t = 0.11 and its approximation
with the Proper Orthogonal Decomposition (POD) using r = 3
modes.

a2(t) ∼ cos(2πt), a3(t) ∼ sin(2πt). Note that the arrows in Fig. 4.8a
indicate ∇ψ2(x, y), ∇ψ3(x, y) the direction of the shift.

To illustrate that the singular value thresholding Algorithm 2 (FTR)
and the neural network approach Section 4.2.4 (FTR-NN) can find a
similar basis set, we generate 200 equally spaced snapshots from q in
the time interval 0 < t ≤ 1, discretized with 129 × 129 grid points
in the rectangular domain [0, L]2. The data were split into a training
and test set, where every second sample is a test sample. After train-
ing the neural network on the training samples, it is compared to the
results of the POD and the thresholding Algorithm 2 using the test
samples. The results are visualized in Figs. 4.8 and 4.9. In Fig. 4.9
we compare the results of both FTR-algorithms (FTR, FTR-NN) and
a simple symmetrical autoencoder structure, labeled with NN (for de-
tails see Appendix B.1). The relative errors in the Frobenius norm
are shown in Fig. 4.9a. The quantitative errors of FTR-NN and the
FTR show a significant drop using r = 3 degrees of freedom (FTR
basis functions/latent space dimension), which is in accordance with
the proposed level set field. In contrast, the POD is showing a much
slower convergence of the relative error. Comparing the two networks
NN and FTR-NN regarding the quantitative errors shows that the ad-
ditional depth of the NN-decoder compared to the one-layer decoder
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(a) spatial modes

0.0 0.5 1.0

−200

0

200

time t

ã
i
(t

)

i = 1
i = 2
i = 3

(b) time coefficients

Figure 4.8: Visualization of the FTR transport field ϕ(x, t) ≈∑︁3
i=0 ai(t)ψi(x, y) for the disk moving in a circle (see Eqs. (4.11)

and (4.12)). Displayed are the expected spatial modes ψi

(a), their temporal amplitudes ai (b) and FTR approximation
ψ̃i, ãi, i = 1, 2, 3. The arrows in Fig. 4.8a indicate the direc-
tion of the shift. They are computed from the spatial mean
of ∇ψ2(x, y), ∇ψ3(x, y). The corresponding amplitudes a2, a3
parametrize the circular movement in time.
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(a) Quantitative error

(b) Qualitative error r = 3 degrees of freedom

Figure 4.9: Comparison of POD, FTR, FTR-NN and the sym-
metrical autoencoder structure labeled with NN. Fig. 4.9a com-
pares the relative errors in the Frobenius norm for different de-
grees of freedom. Fig. 4.9b visualizes the level set field ϕ to-
gether with the approximation of the data q̃ = f(ϕ) and the
deviation from the exact data q − q̃ for one selected snapshot.
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in FTR-NN does not influence the minimal relative error. This leads
us to conclude that additional depth is not needed for a better repre-
sentation. However, note that the NN needs fewer degrees of freedom
to converge to its minimal relative error, which is due to the higher
expressivity of a deeper network. Furthermore, it is important to note
that the FTR-thresholding algorithm outperforms both networks for
this special example, when increasing the number of degrees of free-
dom. For qualitative comparison, Fig. 4.9b shows the approximation
of one snapshot before and after activation (first and second column),
together with the difference in the last column. Comparing the POD
in Fig. 4.7 to the FTR results shows that the typical staircase be-
havior (which becomes a blurring of the sharp structures for many
snapshots as used here) of the POD can be overcome with the FTR
ansatz that recaptures the sharp front. We observe that both qualita-
tive and quantitative errors of the FTR-NN and iterative thresholding
approach yield similar results. In this study, we use λsmooth = 10−7 for
regularizing the smoothness of ϕ at the output of the FTR-NN and NN
decoder. As visualized in Appendix B.1 Fig. B.1, for larger smooth-
ness parameter λsmooth > 10−7 the transport field of the FTR-NN is
smoothly continued at areas of no information (no transport), but the
additional constraint Eq. (4.10) can cause a larger overall approxima-
tion error. However, the level set fields of the iterative thresholding
approach and NN are almost identical inside areas where fronts have
been transported. This is due to the special choice of the encoder.

Figure 4.8 compares the fields ψ1, ψ2, ψ3 to the first three modes of
ϕ. Similar to the proposed functions, the auxiliary field can be split
into a mode (ψ̃1) responsible for the shape of the disk and two modes
that parametrize the transport (ψ̃2, ψ̃3). As expected for this special
case, ã1 is constant and ã2, ã3 ∼ cos(2πt + θ), with θ ∈ R depends
on the alignment (indicated as arrows in Fig. 4.8a) of the two shifting
functions ψ̃2, ψ̃3. The modes ψ̃2, ψ̃3 only have meaningful values along
the trajectories of the front because the algorithm cannot reconstruct
ϕ in areas of no transport. This explains that the modes in Fig. 4.8 are
zero outside the circle.
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Advection with Topology Change

In this example, we show that our approach is capable of handling
transport with topological changes. Therefore, we introduce the syn-
thetic snapshot data q(x, t) = f(ϕ(x, t)) build from the level set field

φ(x, t) =
3∑︂

k=1
−Ake

−skpk − t, pk = ∥x− xk∥2 , (4.13)

which we try to approximate. The front is given by f(x) = (tanh(x/λ)+
1)/2, λ = 0.1. The level set field is sampled equidistantly using 256×
265 grid points in [0, 10]2, with (A1, A2, A3) = (1, 1.4, 1.2), (s1, s2, s3) =
(0.1, 0.3, 0.5) and x1 = (7.5, 3.5),x2 = (2.5, 5.0), x3 = (5.0, 7.6). Fur-
thermore, 101 equally spaced snapshots with 0 ≤ t ≤ 0.5 are con-
structed from Eq. (4.13). As above, we split the samples into training
and test set, where every second sample is used for testing the au-
toencoders. After training the networks, they are compared to the
reconstruction errors of the POD and FTR using the test samples.
The level set fields for t = 0 and t = 0.4 are visualized as a surface plot
in Fig. 4.10, together with the resulting snapshots of q as a color plot.
The intersection of ϕ with the zero plane parametrizes the surface of
the front. For increasing t, the level set function is shifted vertically
and produces an expanding surface of the front, which is merged from
three independent contours into one single front contour. The merging
of the fronts allows no smooth bijective mapping between the contour
lines of the front at time t = 0 to t = 0.4. In these circumstances, other
non-linear reduction methods like the sPOD [115], the low-rank regis-
tration based manifolds [101, 100], the registration-based data compres-
sion method [133] or transformed snapshot interpolation [140] that rely
on one-to-one mappings between different time or parameter instances
are not applicable.

As presented in Fig. 4.11, the FTR approximates the dynamics within
two dyadic pairs with an error smaller than 0.2%, which is expected
from the two-term dyadic structure in Eq. (4.13). The network ap-
proximation errors behave similarly to the ones of the moving disk.
The FTR-NN gives similar results as the FTR, but with a larger min-
imal relative error. Due to the additional depth, the NN only needs
one degree of freedom to converge towards its minimal error. Topol-
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(a) data t = 0 (b) data t = 0.4

(c) FTR t = 0, rank r = 2 (d) FTR t = 0.4, rank r = 2

Figure 4.10: Graph of the auxiliary field ϕ (Eq. (4.13) in a)-b)
and its FTR approximation in c)-d). The resulting snapshots
q = f(ϕ) are shown as color plot in the xy plane. The intersec-
tion with the zero level is visualized.
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ogy changes of the zero level set are nicely recovered as illustrated in
Figs. 4.10c and 4.10d, since the FTR approach can recover the initial
auxiliary field ϕ in the regions of transport.
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Figure 4.11: Comparison of the relative errors for the advec-
tion example with topology change using the Proper Orthogo-
nal Decomposition (POD), the FTR iterative thresholding algo-
rithm (FTR), the FTR autoencoder structure (FTR-NN) and a
standard autoencoder (NN).

Advection-reaction-diffusion Systems

To motivate the FTR approach for more complex examples, we apply it
to the advection-diffusion-reaction PDE with a Kolmogorov-Petrovsky-
Piskunov [83] reaction term introduced in Section 2.2.2. In the follow-
ing, we refer to the discretized system as the full order model (FOM).
All parameters relevant for the reduced order model are listed in Ta-
ble 4.1.

The results of the three different algorithms are compared with the
POD in Fig. 4.12. Similar to Section 4.2.5, the FTR iterative thresh-
olding algorithm outperforms the neural networks and the POD. Fur-
thermore, the time evolution of the FOM is visualized in the top row
of Fig. 4.13. In the second and third row, the FTR and POD are
compared using r = 6 degrees of freedom. The POD approximation
shows the typical staircase behavior as oscillations occur before and
after the contour line of the front. These oscillations violate the initial
range of values 0 ≤ q ≤ 1, depicted as red and black areas in Fig. 4.13.
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Name Value
ROM - parameters
Number of snapshots Nt = 200
Front function f(x) = sigmoid(x)
Number of FTR iterations 5000
Number of FTR step size τ = 1
Smoothness parameter λsmooth = 10−7

Table 4.1: Parameters of the 2D ARD simulation of Sec-
tion 4.2.5.
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Figure 4.12: Comparison of the relative errors for the 2D ARD
system using the Proper Orthogonal Decomposition (POD), the
FTR iterative thresholding algorithm (FTR), the FTR signed
distance method (FTR-SD), the FTR autoencoder structure
(FTR-NN) and a standard autoencoder (NN).
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Therefore, preservation of physical structure cannot be expected.

Figure 4.13: Qualitative comparison of the reconstruction er-
rors of the 2D ARD system Eq. (2.40) at three different time in-
stances t = 0.0, 0.4, 0.8 (respectively left, middle, right column).
The plot shows the FOM data (top row) and its reconstructions
using the POD (middle row) and FTR (bottom row). For the
FTR and POD, r = 6 degrees of freedom are used. The color
bar is chosen such that values outside the initial range of values
0 ≤ q ≤ 1 are highlighted in black or red.

Here, the FTR approach gives much better results, restricting the ap-
proximation to the initial range of values due to the range of the sigmoid
function f(x) ∈ [0, 1].

4.3 Dimension Reduction along Parametrizable Paths
Another common idea for dimension reduction of transport dominated
fluid systems (TDFS) is to align the moving localized structure via spa-
tial transformations onto a fixed reference frame at which the moving
structure is changing slowly in time and can be decomposed efficiently
with the POD (see illustration Fig. 4.14).
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In this section, we build on this idea using the shifted proper orthogo-
nal decomposition (sPOD) [115], which allows decomposing TDFS with
multiple transports. Based on [114], a new formulation is developed
that allows iteratively solving the associated optimization problem for
large-scale data sets and addresses additional issues like robustness
against corrupted data and smoothness of the reduced space. There-
fore, Section 4.3.1 introduces the utilized transformations, which are
used in the subsequent sections. Sections 4.3.2 and 4.3.5 derive two
new sPOD optimization algorithms. Since we here assume that the dis-
continuities move along parametrizable paths, we restrict the following
section to one spatial dimensional (D = 1) and highlight generaliza-
tions needed for higher spatial dimensions.
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(a) x-t-diagram and SVD truncation
error of the data
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(b) x-t-diagram and SVD truncation
error of the shifted data

Figure 4.14: Data of a traveling wave structure and its ap-
proximation errors (a) compared to a traveling wave shifted to
a reference frame (b).

4.3.1 Shifting into Co-Moving Frames
The shifted POD uses coordinate transformations that shift a data
field q(x, t) in a reference frame, in which the moving structures or
waves are stationary. The transformations are invertible mappings G,
that are illustrated in Fig. 4.15. We call (x, t) ∈ D× [0, T ] the reference
system defined on the simulation domain D and the transformed system
(x̃, t) = G−1(x, t) ∈ D̃ × [0, T ] the co-moving system defined on the



4.3. Dimension Reduction along Parametrizable Paths 111

Figure 4.15: Illustration of the time-dependent grid transfor-
mations G and G−1 with periodic boundaries. The left domain,
denoted by D, represents the reference system with dashed co-
ordinate lines. The right domain, denoted by D̃, represents the
co-moving reference system with solid blue lines. If a wave trav-
els along the blue lines in the reference frame, it is stationary in
the co-moving frame.

transformed domain D̃. In the case of periodic boundary conditions
the domain remains unchanged, i.e. D̃ = D.

In this work, we focus on translations G : D̃× [0, T ]→ D× [0, T ]:

G(x, t) = (x+ ∆(t), t) and G−1(x, t) = (x−∆(t), t) (4.14)

where ∆(t) ∈ R is a time-dependent shift. However, more general
bijective mappings are possible, for example, combinations of rotations
and translations as done in [146].

If a field is transformed into a different system, we write T G : q(x, t) ↦→
q(G(x, t)), where T G is called transport operator. Since our snapshot
data Q = [q(xi, tj)]ij is assumed to be the solution of a discretized
PDE on a rectangular domain D with equally spaced grid points, we
introduce the discrete version of the transport operator TG : RM×Nt →
RM×Nt , Q ↦→ TGQ, which is given by TGQ = [q(G(xi, tj))]ij +EG. As
the transformed coordinates G(xi, tj) do not necessarily lie on a sam-
pled grid point, we have to interpolate q(G(xi, tj)) from the sampled
points Q ∈ RM×Nt . In this work, we use Lagrange polynomials for
the approximation of TG (see Appendix C.1). The error with respect
to the exact transformation QG = [q(G(xi, tj))]ij is therefore given by
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(see Appendix C.1):

EG ··= QG − TGQ (4.15)⃦⃦⃦
EG
⃦⃦⃦

∞
≤ max

(ξ,t)∈D×[0,T ]

⃓⃓⃓
∂

(n+1)
ξ q(ξ, t)

⃓⃓⃓
(n+ 1)! max

∆p∈[0,1]
|w(∆p)| (4.16)

with

max
∆p∈[0,1]

|w(∆p)| =

⎧⎪⎪⎨⎪⎪⎩
1
4h

2 for n = 1
9
16h

4 for n = 3
225
64 h

6 for n = 5 .
(4.17)

The error Eq. (4.15) and its error bound Eq. (4.16) are shown in
Fig. 4.16 for a simple traveling wave q(x, t) = exp(−((x−x0)−ct)2/σ2)
with (x, t) ∈ [0, 1] × [0, 0.5] and σ = 0.015, c = 1, x0 = 0.1. The data
are transformed using the transformation G(x, t) = x+ ct. The initial
data Q and the reference field QG are shown in Fig. 4.17. Note that the
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Figure 4.16: Convergence study of the discrete transformation
operators TG using Lagrange polynomials of nth order. The
lattice spacing is given by h = 1/(M − 1), where M is the
spatial resolution.

error bound is reached only in the asymptotic regime. In this regime,
the interpolation order of n = 5 shows the fastest convergence of O

(︁
h6)︁

for the lattice spacing h→ 0. Furthermore, it should be noted that for
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shifts that are multiples of the lattice spacing, ∆p = 0 and therefore
the error Eq. (4.16) is zero, since w(∆p) = 0.
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(a) Reference field q(x, t)
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(b) Transformed field q(G(x, t))

Figure 4.17: Traveling wave q(x, t) = exp(−(x−x0)−ct)2/σ2)
evaluated in its reference frame (a) and co-moving frame (b).

In the pure advection case, the bound Eq. (4.16) can be calculated from
the initial condition q(x, 0) = q0(x), since the derivative with respect
to the spatial variable is unchanged. This fact should be acknowl-
edged when simulating the FOM, since the interpolation error limits
the overall precision of the ROM as will be shown in Section 4.3.2. In
the general case, the initial condition can still be a good approximation
for the overall interpolation error.

Note that to perform rotations or translations on non-periodic grids, we
redefine our rectangular domain D to contain all coordinates in the co-
moving system G(x, t). Therefore the snapshot data has to be padded
with additional data, which will be explained in Section 4.3.4.

4.3.2 Optimization Goals of the sPOD

Let {T Gk}k=1,...,f be a set of predefined operators with transformations
Gk as defined in Section 4.3.1 and {TGk}k=1,...,f the discrete counter-
parts of T Gk . Each transformation Gk maps the coordinate system
from a co-moving frame to a reference frame. For simplicity we will
write T k := T Gk , T −k := T G−1

k and T k := TGk , T−k := TG−1
k . For a

given data field Q = [q(xi, tj)]ij ∈ RM×Nt we seek for approximations
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of the form:

q(x, t) ≈ q̃(x, t) ··=
f∑︂

k=1
T kqk(x, t) , (continuous) (4.18)

Q ≈ Q̃ ··=
f∑︂

k=1
T kQk , (discrete) (4.19)

where the co-moving fields {Qk}k=1,...,f (i.e. {qk}k=1,...,f ) need to be
determined. One example of such decomposition is shown for multiple
traveling waves in Fig. 4.18. Each co-moving field qk is approximated

Q Q̃ T 1Q1 T 2Q2

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Figure 4.18: Decomposition Eq. (4.19) for multiple travel-
ing waves using the sPOD-J2 formulation. In this example
we use two frames: Q̃ = T 1Q1 + T 2Q2 with corresponding
shifts ∆1(t) = −0.25 sin(7πt) and ∆2(t) = −t, t ∈ [0, 0.5].
Shown is the input snapshot matrix Q = [q(xi, tj)]i,j and the
resulting approximation Q̃ with the shifted snapshot matrices
T 1(Q1), T 2(Q1). The co-moving ranks are (r1, r2) = (4, 1). The
input data are parametrized as follows: q(x, t) = exp(−(x −
(∆2(t) + 0.2))2/δ2) +∑︁4

r=1 sin(4πrt) exp(−(x− (∆1(t) + 0.25 +
0.1r))2/δ2) for x ∈ [0, 1], δ = 0.0125.

with rk POD modes {ψk
i (x)}i=1,...,rk

:

qk(x, t) =
rk∑︂

i=1
ak

i (t)ψk
i (x) and ak

i (t) = ⟨qk(x, t), ψk
i (x)⟩ . (4.20)

In the discrete setting, the POD modes are computed by an SVD of
the co-moving data field Qk ∈ RM×Nt :

Qk = ΨkΣk(Vk)⊤ k = 1, . . . , f . (4.21)
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Here, Σk = diag (σk
1 , . . . , σ

k
m), m = min(M,Nt) is a diagonal matrix

containing the singular values σk
1 ≥ σk

2 ≥ . . . σk
m and Ψk ∈ RM×m,

Vk ∈ RNt×m are orthogonal matrices containing the left and right
singular vectors. The POD modes are contained in the first rk columns
of Ψk = [ψk

j (xi)]ij ∈ RM×m. For maximal efficiency we aim for a small
number of modes r = ∑︁f

k=1 rk ≪ Nt. Note that in contrast to the POD
(see Section 3.1) the linear subspace created by Eqs. (4.18) and (4.19)
changes with time, if any mapping Gk is time-dependent. Therefore,
Eq. (4.18) is a non-linear mapping. In the following, we will focus on
the discrete notation and only go back to the continuous representation
if needed.

The individual optimization goals that lead to a low-rank decomposi-
tion of Eq. (4.19) can vary depending on the application. In this thesis,
we focus on the optimization goals that have been first presented in
[114]:

J2[{Qk}k] =
f∑︂

k=1

1
2

⃦⃦⃦⃦
Qk −

⌊︂
Qk
⌋︂

rk

⃦⃦⃦⃦2

F
= 1

2

f∑︂
k=1

m∑︂
j=rk+1

(σk
j )2 (4.22)

J1[{Qk}k] =
f∑︂

k=1

⃦⃦⃦
Qk
⃦⃦⃦

∗
=

f∑︂
k=1

m∑︂
j=1

σk
j (4.23)

subject to the constraint Eq. (4.19). In Eq. (4.22)
⌊︂
Qk
⌋︂

rk

denotes the
rank rk approximation of the matrix Qk.

The optimization goal J2 aims to find a set of co-moving fields {Qk}k
that minimize the difference with their rank rk approximation, i.e. it
minimizes the truncated singular values in each frame. Therefore, the
co-moving ranks rk have to be chosen a priori. For complicated sys-
tems, this choice is often unclear but critical for the quality of the
decomposition. For this reason, J1 is preferred, since it is convex [114]
and the truncation rank is a result of the one-norm minimization over
the set of all singular values {σk

j }j,k. J1 serves as a heuristic mea-
sure of the singular value decay. Although optimizing J1 leads to fast
decaying singular values of the co-moving fields Qk, they must not
be strictly low-rank. Unfortunately, J1 is difficult to optimize in a
gradient-based procedure as pointed out by [114]. Hence, a formu-
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lation based on the alternating direction method is introduced, which
alleviates this difficulty by introducing proximal operators to efficiently
minimize one-norms in Section 4.3.5. Furthermore, Section 4.3.3 de-
rives an alternative formulation to the gradient-based procedure of the
J2 optimization goal, that was presented in [114]. The new formulation
is more efficient as it only requires recursive applications of truncated
singular value decompositions.

4.3.3 Optimization of J2 via Iterative Thresholding

Given a matrix Q ∈ RM×Nt and a set of transport operators T k and
ranks rk, k = 1, . . . , f . The sequence given by the iterations of Algo-
rithm 3 converges to a solution of the J2-sPOD approximation problem

min
{Qk}f

k

f∑︂
k=1

1
2

⃦⃦⃦⃦
Qk −

⌊︂
Qk
⌋︂

rk

⃦⃦⃦⃦2

F
s.t. Q =

f∑︂
k=1

T kQk . (4.24)

First, note that according to the Eckart-Young Theorem [42] the mini-

mum of the individual terms
⃦⃦⃦⃦
Qk −

⌊︂
Qk
⌋︂

rk

⃦⃦⃦⃦2

F
of J2 is given by the trun-

cated SVD: svd(Qk, rk) = Ψk
rk

Σk
rk

(Vk
rk

)⊤, where Ψk
rk
∈ RM×rk , Vk

rk
∈

RNt×rk contain the rk singular vectors corresponding to the rk largest
singular values contained in Σk

rk
∈ Rrk×rk . After the SVD truncation

of Qk in line 7 of Algorithm 3, the constraint Q = ∑︁f
k=1 T

kQk is usu-
ally not satisfied. In order to incorporate the constraint, we use the
redistribution identity

Q̂k = Qk + αkT
−kR with 1 =

f∑︂
k=1

αk , (4.25)

where R = Q − Q̃, with Q̃ = ∑︁N
k=1 T

k(Qk). Note that after redistri-
bution, the Q̂k fulfill the constraint for any choice {(α1, . . . , αf ) ∈ Rf

+ |
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1 = ∑︁f
k=1 αk}, since:

f∑︂
k=1

T kQ̂k =
f∑︂

k=1
T k(Qk + αkT

−kR) (4.26)

= Q̃ +
f∑︂

k=1
αk T

kT−k⏞ ⏟⏟ ⏞
≈1

(Q−
f∑︂

p=1
T pQp)) (4.27)

= Q̃ +
(︂
Q− Q̃

)︂ f∑︂
k=1

αk = Q . (4.28)

Remark. As stated in Eq. (4.15), the shift transformations are not ex-
act because of interpolation errors and thus T kT−k ≈ 1 in Eq. (4.27) is
only approximate. However, an iterative redistribution using Eq. (4.25)
will still converge to machine precision, since the introduced interpola-
tion errors will be always split among the contributing frames.

Usually, the residual R is redistributed equally by setting ak = 1/f for
all k, as done in Algorithm 3. Therefore, by iteratively distributing the
residual R = Q− Q̃ over the individual frames Qk using Eq. (4.25) we
always fulfill the constraint, while minimizing the individual terms in
J2 using the truncated SVD.

Algorithm 3 shifted POD J2 optimization
Require: Q ∈ RM×Nt , {Gk}k=1,...,f , {rk}k=1,...,f

1: init Qk = 0, Q̃ = 0
2: while not converged do
3: residual R = Q− Q̃
4: for frame k = 1, . . . , f do
5: compute shifted residuum Rk = T−k(R)
6: add residuum to frame Qk ← Qk + Rk/f
7: decompose and truncate Qk ← svd(Qk, rk)
8: end for
9: update approximation Q̃ = ∑︁f

k=1 T
k(Qk)

10: end while
11: return {Qk}
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Stopping Criteria

The decomposition into co-moving frames yields two different kinds of
errors, which limit the convergence ∥Ri∥F → 0 of the residual (line 3
in Algorithm 3) for an increasing number of iterations i → ∞. The
first error is caused by the truncation of the co-moving frames, in case
the exact co-moving ranks are larger than the truncation rank of the
algorithm. The second error is due to the interpolation error of the
transport operators (see Section 4.3.1). Algorithm 3 should terminate
if either of the two errors dominates. This is why we introduce the
following two stopping criteria:

Criterion 1 Algorithm 3 is stopped at iteration i if the sequence of
residuals (R0,R1,R2, . . . ) fulfills

∥Ri∥F − ∥Ri−∆i∥F
∥Ri∥F

≤ Rtol (4.29)

for some ∆i ∈ N and i ≥ ∆i. The criterion Eq. (4.29) is satisfied if the
residuals norm relative to its current value has not changed more than
Rtol > 0 during ∆i iterations.

Criterion 2 As stated in Section 4.3.1, the overall error of the de-
composition is limited by the interpolation error of the shift operators.
Therefore, it may serve as a stopping criterion for the presented algo-
rithms. The interpolation error can be calculated from the error bound
Eq. (4.16) if the maximum of the (n+ 1)th order derivatives is known.
Alternatively, we propose to use:

∥Ri∥F
∥Q∥F

≤ E∗ with E∗ = max
k=1,...,f

⃦⃦⃦
Q− T kT−kQ

⃦⃦⃦
F

2 ∥Q∥F
(4.30)

as a stopping criterion. The stopping criterion is visualized for the
convergence of Algorithm 3 in Fig. 4.19 for different lattice spacings h
(Fig. 4.19a) and interpolation order of the operators (Fig. 4.19b). A
nice property of the presented algorithm (Algorithm 3) is that for the
backward transformation T−k a lower interpolation order as the for-
ward transformation T k can be used since the redistribution compen-
sates the additional error. This is numerically investigated in Fig. 4.19b
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Figure 4.19: Convergence of the shifted POD J2 optimization
(Algorithm 3) for the example shown in Fig. 4.18. For all opti-
mizations we use the exact truncation ranks (r1, r2) = (4, 1) in
the co-moving frames. In a) the convergence of the algorithm
is studied for different lattice spacings h. The stopping crite-
rion E∗ is marked as a straight line of the same line style with a
grey background. Figure b) shows the convergence of the algo-
rithm for h = 0.005 using lower accuracy interpolation for the
backward or/and forward transform.
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for the example shown in Fig. 4.18. In Fig. 4.19b we compare the con-
vergence of the algorithm using different combinations of 5th and 1st
order interpolation for T k and T−k.

Note that criterion 1 is already sufficient for terminating Algorithm 3.
However, criterion 2 is necessary to avoid that the interpolation errors
are captured as noise in additional modes of the co-moving fields.

Total Variation Algorithm 3 generates low-rank fields by project-
ing Qk ∈ RM×Nt onto the manifold of rank(Qk) = rk matrices in
each frame k = 1, . . . , f . However, low rankness of the resulting
fields qk(x, t) = ∑︁rk

i=1 a
k
i (t)ψ(x) does not imply that the time am-

plitudes ak
i (t) of the decomposition are a smooth function in time.

But smoothness in the parameter space is necessary for an interpo-
latory data-driven model. Consequently, we include a total variation
(TV) minimization in Algorithm 5 to smoothen the time amplitudes
Vk = [ak

j (ti)]i,j in each frame k. The TV minimization is based on a
primal-dual algorithm (see Algorithm 4 taken from [23, p.55]) for the
TV-L1 discrete denoising model:

min
Ṽ∈RNt×r

⃦⃦⃦
D+Ṽ

⃦⃦⃦
F

+ λTV
⃦⃦⃦
Ṽ−V

⃦⃦⃦
F
, (4.31)

where

(D+V)i,j =
{︄
Vi+1,j − Vi,j for i < Nt

0 for i = Nt

(4.32)

is the forward derivative on the columns of V = [Vi,j ] ∈ RNt×r. The
primal-dual algorithm (Algorithm 4) makes use of the operators:

proj(x) = x

max (|x| , 1) , (4.33)

Sf
τ (x) =

⎧⎪⎪⎨⎪⎪⎩
x− τ x > f + τ

x+ τ x < f − τ
f |x− f | ≤ τ .

(4.34)

The operators are evaluated element-wise on the input matrices in Al-
gorithm 4. For the convenience of the reader, we show the soft thresh-
olding operator Sf

τ in Fig. 4.20.
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−τ f τ
x

f

Sf
τ (x)

Figure 4.20: Soft thresholding operator Sf
τ defined in

Eq. (4.34).

Algorithm 4 total variation minimization TV(V, λTV, NTV) [23]
Require: V ∈ RNt×r, NTV, λTV

1: init P = D+V
2: init normalized ˆ︁V = proj(V)
3: init τ = 0.02, l2 = 8, σ = (l2τ)−1

4: for k = 1, . . . , NTV do
5: project element-wise P← proj(P + σD+V)
6: shrink element-wise Ṽ← S ˆ︁VλTVτ (V− τ(D+)⊤P)
7: update V← 2Ṽ−V
8: end for
9: return V
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The J2 shifted POD algorithm with total variation minimization listed
in Algorithm 5, was tested on the two frames example shown in Fig. 4.18.
The results are shown in Fig. 4.21. Figure 4.21a indicates that the to-
tal variation sub-steps in Algorithm 5 improve the convergence of the
overall algorithm, while Fig. 4.21b shows that the resulting time am-
plitudes are smooth. The TV-minimization in line 8 is comparatively
cheap to the computation of the SVD (line 7), since it is only applied
to the columns of a small matrix Vk ∈ RNt×rk .

Algorithm 5 optimization shifted POD J2 with total variation
Require: Q ∈ RM×Nt , {Gk}k=1,...,f , {rk}k=1,...,f , NTV

1: init Qk = 0, Q̃ = 0, λTV = 1
2: while not converged do
3: residual R = Q− Q̃
4: for frame k = 1, . . . , f do
5: compute shifted residuum Rk = T−k(R)
6: add residuum to frame Qk ← Qk + Rk/f
7: decompose and truncate Ψk

rk
Σk

rk
(Vk

rk
)⊤ = svd(Qk, rk)

8: minimize total time variation Vk
rk
← TV(Vk

rk
, λTV, NTV)

9: compute frame field Qk ← Ψk
rk

Σk
rk

(Vk
rk

)⊤

10: end for
11: update approximation Q̃ = ∑︁f

k=1 T
k(Qk)

12: end while
13: return {Qk}k=1,...,f

4.3.4 J2 Optimization on Non-Periodic Domains
For completeness, we include the treatment of non-periodic boundaries,
although they are not used in this thesis. In the presence of non-
periodic boundary conditions, transformations G−1(·, t) : D → D̃ of
the the form Eq. (4.14) map points inside the domain D onto grid
points D̃, which may not be included in D. As suggested in [114], we
therefore extend the original domain D by Dext = D ∩ D̃ and relax the
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Figure 4.21: Convergence of the shifted POD J2 optimization
(Algorithm 5) for the example shown in Fig. 4.18. For all opti-
mizations we use the exact truncation ranks (r1, r2) = (4, 1) in
the co-moving frames. In a) the convergence of the algorithm
is studied for different numbers of iterations NTV in the total
variation optimization. Figure b) compares the first frame T 1Q1

and its time amplitudes a1
k(t), k = 1, . . . , 4 with total variation

optimization and without. The insets show a zoom into the
wave structure.
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constraint Eq. (4.18) to

w(x, t)

⎛⎝q(x, t)− f∑︂
k=1
T kqk(x, t)

⎞⎠ = 0 , w(x, t) =
{︄

1 x ∈ D
0 x ∈ Dext .

(4.35)
The relaxed constraint Eq. (4.35) is implemented in Algorithm 6 by
replacing the residual R ∈ R ˆ︁M×Nt by R = W ⊙ ( ˆ︁Q − Q̃). Here
W = [w(xi, tj)] ∈ R ˆ︁M×Nt defines the weights and ˆ︁Q ∈ R ˆ︁M×Nt with
entries

ˆ︁Qij =
{︄
q(xi, tj) xi ∈ D
0 xi ∈ Dext i = 1, . . . , ˆ︂M, j = 1, . . . , Nt (4.36)

the zero-padded data field with ˆ︂M being the total number of grid points
in D ∪ Dext. The generalized procedure is listed in Algorithm 6.

Algorithm 6 Shifted POD J2 algorithm for non-periodic domains
Require: Q ∈ RM×Nt , {Gk}k=1,...,f , {rk}k=1,...,f

1: init Qk, Q̃, ˆ︁Q,W ∈ R ˆ︁M×Nt with Qk = Q̃ = ˆ︁Q = W = 0
2: set ˆ︁Qˆ︁mn = Qmn for all ˆ︁m,n with xˆ︁m = xm ∈ D
3: set Wˆ︁mn = 1 for all ˆ︁m,n with xˆ︁m ∈ D
4:
5: while not converged do
6: residual R = W⊙ ( ˆ︁Q− Q̃)
7: for frame k = 1, . . . , f do
8: compute shifted residuum Rk = T−k(R)
9: add residuum to frame Qk ← Qk + Rk/f

10: decompose and truncate Qk ← svd(Qk, rk)
11: end for
12: update approximation Q̃ = ∑︁f

k=1 T
k(Qk)

13: end while
14: return {Qk}k=1,...,f
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4.3.5 Optimization of J1 and the Shifted Robust Principal
Component Analysis

Instead of minimizing J2, one can minimize the Schatten 1-norm
⃦⃦⃦
Qk
⃦⃦⃦

∗
=∑︁

i σ
k
i for each frame k. The optimization problem can be stated as fol-

lows: For given transformations {T k}k=1,...,f and Q ∈ RM×Nt ,M > Nt

with Q = [q(xi, tj)]i,j find {Qk ∈ RM×Nt}k=1,...,f

min
Qk

f∑︂
k=1

⃦⃦⃦
Qk
⃦⃦⃦

∗
s.t. Q =

f∑︂
k=1

T k(Qk) . (4.37)

This J1 optimization problem has two major advantages over optimiz-
ing J2: 1.) It avoids the choice of the individual ranks rk in each frame
k that is required by the J2 optimization. The choice of rk is often
arbitrary, although it crucially determines the accuracy of the overall
decomposition. 2.) As already pointed out in Section 4.3.2, in contrast
to J1, J2 is not known to be convex. Therefore, it is not guaranteed
that the J2 optimization results in a global minimum. However, the
slow convergence of J1, which was observed in [114], made it unfeasible
for realistic applications.

Therefore, in this work we use an alternative formulation to the one
presented in [114], based on an augmented Lagrangian with multiplier
Y ∈ RM×Nt [8, 91]:

L({Qk}k,Y) =
f∑︂

k=1

⃦⃦⃦
Qk
⃦⃦⃦

∗
+ η

2

⃦⃦⃦⃦
⃦⃦Q− f∑︂

k=1
T k(Qk)

⃦⃦⃦⃦
⃦⃦

2

+ ⟨Y,Q−
f∑︂

k=1
T k(Qk)⟩ .

(4.38)

With the new formulation, we can employ the alternating direction
method (ADM) [8], which allows a rapid minimization of J1 with help
of the singular value thresholding operator [17, 67]:

svt(A, τ) = US0
τ (Σ)V∗ (4.39)

= arg min
Ã

τ
⃦⃦⃦
Ã
⃦⃦⃦

∗
+ 1

2
⃦⃦⃦
Ã−A

⃦⃦⃦2

F
, (4.40)



4.3. Dimension Reduction along Parametrizable Paths 126

which technically boils down to a singular value decomposition of the
matrix A = UΣV∗ with a soft thresholding operator S0

τ defined in
Eq. (4.34). The thresholding operator Sf

τ is displayed in Fig. 4.20.

In ADM we minimize L({Qk}k,Y) iteratively in every direction Qp ∈
RM×Nt , p = 1, . . . , f after which we update the multiplier matrix Y←
Y + η(Q−∑︁k T

k(Qk)). To minimize L w.r.t. Qp we first reformulate
Eq. (4.38):

arg min
Qp

L = arg min
Qp

1
η
∥Qp∥∗ +

⃦⃦⃦⃦
⃦⃦Q− f∑︂

k=1
T k(Qk) + 1

η
Y

⃦⃦⃦⃦
⃦⃦

2

F

. (4.41)

Note that since T−p leaves the Frobenius norm unaltered we can re-
write⃦⃦⃦⃦
⃦⃦Q− f∑︂

k=1
T k(Qk) + 1

η
Y

⃦⃦⃦⃦
⃦⃦

F

=

⃦⃦⃦⃦
⃦⃦T−p(Q−

f∑︂
k=1

T k(Qk) + 1
η

Y)

⃦⃦⃦⃦
⃦⃦

F

(4.42)

=

⃦⃦⃦⃦
⃦⃦⃦⃦Qp − T−p(Q−

f∑︂
k=1
k ̸=p

T k(Qk) + 1
η

Y)

⃦⃦⃦⃦
⃦⃦⃦⃦

F

.

(4.43)

Remark. T−p leaves the Frobenius norm unaltered up to interpolation
errors, but the interpolation errors only contribute as an offset in the
overall minimum.

Using Eq. (4.43) for the second term in Eq. (4.41) and comparing it
to Eq. (4.40), we see that arg minQp L is given by svt(Q̃p

, η−1) with
matrix Q̃p = T −p(Q −∑︁f

k=1,k ̸=p T k(Qk) + 1
η Y). With this result, we

can formulate the ADM in Algorithm 7. Note that according to [91]
the algorithm outlined in Algorithm 7 is not exact, since we only apply
a single step in the direction Qp before updating the multiplier.

Compared to Algorithm 3 the J1 optimization (Algorithm 7) replaces
the co-moving ranks rk by a new parameter η, that chooses rk by
truncating singular values that are smaller then η−1. We call the pa-
rameter η stiffness, analogous to the stiffness of a spring, which is mo-
tivated by the quadratic term in the minimization Eq. (4.41). When
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Algorithm 7 ADM for shifted POD J1 minimization
Require: Q ∈ Rm×n, {T k}k=1,...,f , η

1: init Qk = 0 ∀ k, Q̃ = 0,Y = 0
2: while not converged do
3: for frame p = 1, . . . , f do
4: compute Qp = T−p(Q−∑︁f

k=1,k ̸=p T
k(Qk) + 1

η Y)
5: apply singular value thresholding Qp ← svt(Qp, η−1)
6: end for
7: update multiplier Y← Y + η(Q−∑︁k T

k(Qk))
8: end while
9: return {Qk}

re-scaling Eq. (4.41) by η and Ŷ = Y
η , one can interpret the second

term V(Qk) = η
⃦⃦⃦
Q−

∑︁f
k=1 T

k(Qk) + Ŷ
⃦⃦⃦2

F
as a spring potential, that

is preloaded by Ŷ to match the constraint.

Hence, the parameter η regulates the stiffness of the optimization. If
the stiffness is too large (η →∞) the problem becomes ill-conditioned
and no minimum is found. In fact, it is proven in [91, Theorem 3] for
a similar problem that increasing η rapidly during the iterations may
result in a loss of convergence. On the other hand, if the stiffness is
too small (η → 0) the constraint will not be matched. Specifically for
the J1 problem Eq. (4.37), this can be observed in Fig. 4.22. For small
η, all singular values are truncated and the constraint is not matched
or converges very slowly (compare the η = 10−4η0 curve in Fig. 4.22b).
In contrast, if η is too large the co-moving ranks will be too large (η ⪆
10η0). Thus, depending on the choice of η, different convergence results
are expected. But usually the suggestion η = η0 = MNt/(4 ∥Q∥1) of
[19] for a similar problem gives a good starting value for choosing η. As
proposed by [19], we keep η fixed during the iterations in Algorithm 7.
Based on our studies we suggest choosing 10−4 ≤ η/η0 ≤ 1. Z. Lin et
al. propose in [91] to slowly increase the stiffness ηk in every iteration
step k to remove the dependence on η. However, as already pointed out
in [91], the choice of {ηk} should be made judicious as to minimize the
number of total SVDs, since η−1 controls the step size of the method.



4.3. Dimension Reduction along Parametrizable Paths 128

We note that Algorithm 7 will not converge to the exact co-moving
ranks if the data are distorted by any noise. This noise is usually caused
by the interpolation errors of the transformation operators (see Sec-
tion 4.3.1) or artifacts in the data. Therefore, the example in Fig. 4.22a
was tuned such that the shift transformations do not cause any inter-
polation errors (i.e. the shift is a multiple of the lattice spacing).
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Figure 4.22: Convergence results for the J1- and J2-
minimization Algorithms 3 and 7. a) Convergence of the co-
moving ranks to the exact numerical ranks (r1, r2) = (4, 2).
The input snapshot matrix Q = [q(xi, tj)]ij ∈ R400,200

with q(x, t) = ∑︁r1
k=1 sin(ktπ) exp(−(x − 0.1k + ∆1(t))2/δ2) +∑︁r2

k=1 cos(ktπ) exp(−(x + 0.2 + 0.1k + ∆2(t))2/δ2), δ =
0.0125,∆1/2(t) = ±t, (x, t) ∈ [0.5,−0.5] × [0, 0.5] is shown as
an inset. b) Comparison of the relative error convergence for
different parameters η sampled around η0 = MNt/(4 ∥Q∥1).
The co-moving ranks at iteration 500 are assigned to the corre-
sponding curves.

To predict the right co-moving ranks in the presence of noise, we make
the algorithm robust against noise. In the spirit of [91] we therefore
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decompose: Q = Q̃+E in a low-rank part Q̃ = ∑︁
k T

k(Qk) and sparse
component E that captures the noise:

min
Qk,E

f∑︂
k=1

⃦⃦⃦
Qk
⃦⃦⃦

∗
+ ς ∥E∥1 s.t. Q =

f∑︂
k=1

T k(Qk) + E . (4.44)

Here, ς ≥ 0 and ∥E∥1 = ∑︁
ij |Eij | is not the usual matrix 1-norm, but

the vector 1-norm of a long vector E ∈ RM×Nt .

The corresponding augmented Lagrange function of (4.44) is given by:

LE({Qk}k,E,Y) = η

2

⃦⃦⃦⃦
⃦⃦Q− f∑︂

k=1
T k(Qk)−E

⃦⃦⃦⃦
⃦⃦

2

F

+ ⟨Y,Q−
f∑︂

k=1
T k(Qk)−E⟩+ ς ∥E∥1 +

f∑︂
k=1

⃦⃦⃦
Qk
⃦⃦⃦

∗
.

(4.45)

Analogous to the derivation in [91], we use the soft thresholding oper-
ator to minimize the 1-norm:

S0
τ (A) = arg min

Ã
τ
⃦⃦⃦
Ã
⃦⃦⃦

1
+
⃦⃦⃦
Ã−A

⃦⃦⃦2

F
. (4.46)

In the robust version of the J1 algorithm (Algorithm 8) we therefore
add another line to minimize with respect to E:

arg min
E

LE = arg min
E

ς

η
∥E∥1 +

⃦⃦⃦⃦
⃦E− (

f∑︂
k=1

T k(Qk) + 1
η

Y−Q)
⃦⃦⃦⃦
⃦

2

F

. (4.47)

The numerical results in Fig. 4.23 indicate that Algorithm 8 is more ro-
bust against interpolation noise of the shift operators, corrupted mea-
surements or numerical artifacts. It can be interpreted as a shifted
version of the robust Principle Component Analysis (shifted rPCA). Its
performance scales with the complexity of the singular value decom-
position, which can be further accelerated by randomized- or wavelet
techniques (see Chapter 3).

As suggested in [19], we choose ς = 1/
√︁

min(M,Nt) for the noise
penalty and η = MNt/(4 ∥Q∥1) for the stiffness parameter in Algo-
rithm 8. For the initial example Fig. 4.18 we show in Fig. 4.23 that
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Figure 4.23: Convergence results for the J1- and shifted robust
J1 Algorithms 7 and 8 for the same example shown in Fig. 4.18
but with noise. The noise is computed by randomly setting
12.5% of the input entries of Q to 1. a) Shown is the input
data Q and its decompostion into a low-rank part Q̃ = T 1Q1 +
T 2Q2 and the noise matrix E . b) Convergence of the co-

moving ranks to the exact numerical ranks (r1, r2) = (4, 1). The
robust algorithm (Algorithm 8) computes the correct numerical
ranks of the co-moving frames within 4 iterations. Algorithm 7
without the robustness term overestimates the numerical rank.
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Algorithm 8 ADM for shifted rPCA
Require: Q ∈ RM×Nt , {T k}k=1,...,f , η, ς

1: init Qk = 0 ∀ k, Q̃ = E = Y = 0
2: while not converged do
3: for frame p = 1, . . . , f do
4: compute Qp = T−p(Q−∑︁f

k=1,k ̸=p T
k(Qk) + 1

η Y)
5: apply singular value thresholding Qp ← svt(Qp, η−1)
6: end for
7: update noise matrix E = S0

ςη−1(Q−∑︁k T
k(Qk) + 1

η Y)
8: update multiplier Y← Y + η(Q−∑︁k T

k(Qk)−E)
9: end while

10: return {Qk}k=1,...,f

even for 12.5% of corrupted or noisy data, the exact ranks can be re-
covered.

4.3.6 Numerical Results: Two Cylinder Wake Flow
In this section, we revisit the two cylinders example introduced in Sec-
tion 2.2.3 to study the ability of the sPOD methods for a realistic
TDFS. The snapshot set is built from the trajectory corresponding to
the path ∆cyl(t, µ) µ = 8 of the second cylinder, sampled with ∆t = 1
in time, resulting in 500 snapshots on a 512× 512 grid. The presented
analysis is based on two test cases. The first case (decoupled system)
is a synthetic test case, in which both cylinders have been simulated
separately and added synthetically, to analyze the performance of the
sPOD algorithms. In the second test case (coupled system), we ana-
lyze the flow with the sPOD when both cylinders are immersed in a
flow field at the same time. The test cases will allow us to isolate and
understand the effects of the interaction between the two cylinders.

Decoupled System

First, we study the decoupled system in which we simulate the leading
cylinder (q1 = (u1

1, u
1
2, p

1) labeled with superscript 1) and chaser (qch =
(uch

1 , u
ch
2 , p

ch)) separately.
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To reduce the data with help of the shifted POD, we introduce the
shift transformations. For the leading cylinder, T 1(q1) = q1 no shift
transformation is needed since the cylinder is stationary. For the second
cylinder, we introduce two types of shift transformations:

T 2
n(q)(x, y, t) = q(x, y + ∆cyl, t) (naive transf.) (4.48)

T 2
wc(q)(x, y, t) =

{︄
q(x, y + ∆cyl(t), t) for x < x2 +R

q(x, y + ∆cyl(x−x2
u∞
− t), t) for x ≥ x2 +R

(4.49)

(wake corrected transf.) .

The two different shifts are visualized for one snapshot in Fig. 4.24. The
corresponding interpolation errors of the transformations are stated in
Table 4.2.

u1 u2 p

interp. err. naive 8.8e-05 1.0e-03 4.7e-03
interp. err. wake corr. 1.3e-04 1.3e-03 5.2e-03
stiffness parameter η/η0 5.0e-03 4.0e-04 1.0e-03

Table 4.2: Relative interpolation error E∗ defined in Eq. (4.30)
and stiffness parameter relative to η0 = MNt/(4 ∥Q∥1) of Algo-
rithm 7 listed for the different flow quantities of the decoupled
system.

Note that for the decoupled system we do not need to separate the two
frames for each cylinder because they have been simulated separately.
Therefore, Algorithms 3 and 5 are not needed. However, compensating
the movement of the chaser by applying the time-dependent trans-
formations q2 ··= T −2

n (qch) and q2 ··= T −2
wc (qch) on the second cylinder

enables a better singular value decay as shown in Fig. 4.25 for the pres-
sure field. Similar observations hold for both velocity components (see
Fig. C.2). For all components, we observe that the singular values with
the wake-corrected shift decay faster than the ones with a naive shift
at the cylinder position. Unfortunately, even for the wake-corrected
shift the singular values that correspond to the second cylinder exhibit
significantly slower decay. This can be explained by the additional
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Figure 4.24: Shift transformations for the two-cylinder test
case here visualized for the combined vorticity field ω1 + ωch.
The black dashed line indicates the symmetry axis at L/2. The
blue solid line is the x, t dependent shift.
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fluctuations in the wake pattern due to the sinusoidal movement of the
second cylinder. The first three modes of the chaser cylinder in its

0 20 40 60

10−2

10−1

100

k

σ
k

/
σ

0
Q2 naive shift

Q2 wake corrected shift

Q2 no shift

Q1 first cylinder

Figure 4.25: Comparison of the singular values of the pres-
sure snapshot matrix for the decoupled system using the wake
corrected shift (Eq. (4.49)), naive shift (Eq. (4.48)) and no shift
for the second cylinder (chaser). Compare also to Fig. 4.24.

co-moving reference frame are shown in the top row of Fig. 4.31.

To test our algorithm, we add up the separately simulated cylinders
q1 = (u1

1, u
1
2, p

1) and qch = (uch
1 , u

ch
2 , p

ch) in the following way:

qdc =

⎛⎜⎝ u1
1+uch

2
2

u1
2 + uch

2
p1

2 + pch

⎞⎟⎠ (4.50)

and try to decompose the decoupled system, such that

qdc ≈ q̃dc = T 1(qdc,1) + T 2(qdc,2) (4.51)

with the help of two algorithms: sPOD-J1 algorithm (Algorithm 7)
and sPOD-J2 algorithm (Algorithm 5) with 20 total variation steps.
Here, we use the shift transformations T 1 (no shift) and T 2 = T 2

wc
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as stated in Eq. (4.49). The algorithms are applied to the individual
components of the state vector.

To compare the different methods we use the following strategy:
First, we run the sPOD-J1 algorithm (Algorithm 7) until the relative
error gets below the interpolation error E∗ defined in Eq. (4.30) or if
the value of the residual does not change over four consecutive itera-
tions by more then Rtol = 10−3 of its current value (stopping criteria
defined in Eq. (4.29)). The relative interpolation errors and tuning
parameters of Algorithm 7 are stated for the individual components in
Table 4.2. For computational convenience, we choose the stiffness of all
quantities on the lower limit of the interval 10−4 ≤ η/η0 ≤ 1 suggested
in Section 4.3.5. The sPOD-J1 algorithm calculates the two co-moving
reference fields {qdc,k}k=1,2 with their corresponding truncation rank
{r∗

k}k=1,2. Second, we truncate the {qdc,k}k=1,2 for all possible rank
combinations (r1, r2) ∈ {1, . . . , r∗

1} × {1, . . . , r∗
2} and select the pairs

(r1, r2) for which the ROM with r = r1 + r2 degrees of freedom (DOF)
has the smallest truncation error. In the third step, we run the sPOD-
J2 algorithm (Algorithm 5) with 20 total variation steps on the exact
same pairs (r1, r2) determined from the previous step. To compare
sPOD-J2 with sPOD-J1, we use the same stopping criterion as for the
sPOD-J1 algorithm.

The relative approximation error of the decomposition is stated for all
three state vector components in the left column of Fig. 4.26. Note
that since T 1 is the identity, any pair (r1, r2) with r2 = 0 falls back to
the POD. Therefore, the smallest approximation errors of the sPOD
for any r can never be higher than the ones of the POD using r number
of modes.

As shown in Fig. 4.26, the approximation errors are similar for both
algorithms. Here it should be pointed out that in contrast to the sPOD-
J1 algorithm, the sPOD-J2 algorithm requires a separate run of the
algorithm for every data point shown in Fig. 4.26. This is because
Algorithm 5 optimizes qdc,1, qdc,2 for a fixed rank. However, this does
not imply that the optimized co-moving fields have a fast singular value
decay. This fact is investigated in Figs. 4.27 and 4.28. Here, Figs. 4.27
and 4.28 compare the exact singular values of q1, q2 (marker +) with
the ones qdc,1, qdc,2 (marker ) determined with Algorithms 5 and 7.
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Figure 4.26: Relative reconstruction error in the Frobenius
norm vs. the number of degrees of freedom (DOF) for the de-
coupled and coupled system. The DOF are determined from the
truncation rank of the POD and as the sum of the co-moving
ranks DOF = r1 + r2 in the case of the sPOD-J2 Algorithm 5
and sPOD-J1 Algorithm 7.
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Although both algorithms cannot exactly recover the singular value
spectra in each frame, the sPOD-J1 gives much better results than the
sPOD-J2 algorithm.

Coupled System

In the coupled system, the flow pattern is a combination of the free-
stream flow (labeled by qfs) that can be determined from the decoupled
system and interactions (labeled by qi) when the chaser hits the wake
of the leading cylinder:

q = qfs + qi (4.52)

Therefore it is reasonable that the singular value decay in the co-moving
systems and the overall approximation error will decay slower than ex-
pected from the decoupled system. This is confirmed by the compari-
son of the approximation error for the coupled and decoupled system
in Fig. 4.26 and the singular values shown in Figs. 4.27 and 4.28. For
the coupled system we apply the same strategy to compare both algo-
rithms as outlined for the decoupled system. All relevant parameters
are listed in Table 4.3.

u1 u2 p

interp. err. wake corr. 3.1e-04 1.6e-03 5.1e-03
stiffness parameter η/η0 5.0e-03 4.0e-04 1.0e-03

Table 4.3: Relative interpolation error E∗ defined in Eq. (4.30)
and stiffness parameter relative to η0 = MNt/(4 ∥Q∥1) of Al-
gorithm 7 listed for the different flow quantities of the coupled
system.

Furthermore, we visualize the separation of the two cylinders using
sPOD-J1 and sPOD-J2 in Fig. 4.28 for the vorticity field. The sPOD-
J2 is not able to separate the two cylinders if for the chosen co-moving
ranks the algorithm decides to combine structures from both cylinders.
In contrast, the sPOD-J1 requires a rapid decay of the singular values
in each frame, which is only achieved when the cylinders are separated
in the frames.
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Figure 4.27: Singular values of uf
1 , u

f
2 , p

f (top to bottom) in
the wake-corrected co-moving reference frames f = 1, 2 (left to
right). Shown are the singular values of the separate system (+)
in the shifted frame, the decoupled system where the individual
components have been added ( ) and the coupled system ( ).
The singular values corresponding to and have been com-
puted with the sPOD-J1 Algorithm 7. Compare to sPOD-J2 in
Fig. 4.28.
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Figure 4.28: Singular values of uf
1 , u

f
2 , p

f (top to bottom) in
the wake-corrected co-moving reference frames f = 1, 2 (left to
right). Shown are the singular values of the separate system (+)
in the shifted frame, the decoupled system where the individual
components have been added ( ) and the coupled system ( ).
The singular values corresponding to and have been com-
puted with the sPOD-J2 Algorithm 5. Compare to sPOD-J1 in
Fig. 4.27.
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Figure 4.29: Separation of the two moving cylinders. Shown is
the vorticity field ω = ∂xu2 − ∂yu1 calculated from the coupled
cylinder pair and the reconstructed vorticity field ω̃ = ω1 +
ω2, with ωi = ∂xT

iui
2 − ∂yT

iui
1, i = 1, 2. Here ui

1, u
i
2 have

been calculated with Algorithm 7 (shifted POD-J1, first row)
and Algorithm 5 (shifted POD, second row). The co-moving
ranks that are estimated by the shifted POD-J1 and used as an
input in the shifted POD-J2 algorithm are (r1, r2) = (50, 53) for
(u1

1, u
2
1) and (r1, r2) = (95, 96) for (u1

2, u
2
2).
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Since Algorithm 7 allows us to separate both physical structures nicely
into the two co-moving frames:

q = T 1(q1) + T 2(q2), (4.53)

we can go one step further in studying the interacting and free-stream-
flow of the second cylinder (chaser) in its co-moving frame:

q2 = qi,2 + qfs,2 . (4.54)

To identify the structures that correspond to the free-stream flow, we
can project q2 onto the POD modes of the chasing cylinder in the
decoupled system, labeled by Ψdc = [ψdc,2

1 (x, y), . . . ,ψdc,2
Nt

(x, y)] in the
following:

qfs,2 ··=
Nt∑︂

k=1
⟨ψdc,2

k , q2⟩ψdc,2
k . (4.55)

After projecting q2 onto its free-stream part, we can compute the struc-
tures responsible for the interaction:

qi,2 = q2 − qfs,2 . (4.56)

The first three modes that correspond to

qi,2(x, y, t) ≈ qi,2
l (x, y, t) ··=

l∑︂
n=1

αi,2
n (t) ψi,2

n (x, y) (4.57)

qfs,2(x, y, t) ≈ qfs,2
k (x, y, t) ··=

k∑︂
n=1

αfs,2
n (t)ψfs,2

n (x, y) (4.58)

are visualized as vorticity in Fig. 4.31 together with the first three
modes of the decoupled system. Furthermore, we visualize the energy
contribution to the overall co-moving field q2

Etot(k, l) ··=

⃦⃦⃦
qi,2

l + qfs,2
k

⃦⃦⃦2

∥q2∥2
≤

⃦⃦⃦
qi,2

l

⃦⃦⃦2

∥q2∥2⏞ ⏟⏟ ⏞
··=E i(l)

+

⃦⃦⃦
qfs,2

k

⃦⃦⃦2

∥q2∥2⏞ ⏟⏟ ⏞
··=Efs(k)

(4.59)

in Fig. 4.30. Figure 4.30 indicates that in the first three free-stream
and interaction modes more than 99 percent of the energy is contained.
However, the contribution of the interaction is very small as the orange
portion in Fig. 4.30 indicates.
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Figure 4.30: Energy contribution of the interacting and free-
stream modes defined in Eq. (4.59).

4.4 Summary
Non-Linear reduction methods can help to improve the approximation
of transport-dominated fluid systems (TDFS), when trying to reduce
their dimensionality. However, the presented methods, namely:

• neural autoencoder networks (AE)

• front transport reduction (FTR)

• shifted proper orthogonal decomposition (sPOD)

have limitations and specific application regimes. Based on these regimes,
we propose the strategy outlined in Fig. 4.32. Starting from the snap-
shot matrix Q = [q(t1), . . . , q(tNt)] that collects samples of the FOM
ODE-state q ∈ RM , the aim is to find a reduced mapping that can re-
produce the samples on a lower dimensional manifold. In most cases, a
linear subspace created by the proper orthogonal decomposition (POD)
is sufficiently accurate for building a reduced system. As suggested in
the flow chart Fig. 4.32, the overall quality of this approximation can
be estimated by the decay of the singular values, i.e. the square root
of the POD eigenvalues of Q (see Eq. (3.17)). However, for TDFS the
singular values decay slowly and a large linear subspace might be re-
quired. Under these circumstances the proposed non-linear methods
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Figure 4.32: Flow chart of the basic strategy for TDFS di-
mension reduction.

might be beneficial.

If the system is complex and allows no, or little, physical insight, au-
toencoder (AE) networks can be used, as their expressivity enables us
to identify low dynamical structures without additional guidance or
assumptions on the complexity of the flow system. Unfortunately, AE
allows only limited interpretability and is often difficult to set up for the
specific case at hand. Therefore, this thesis proposes two non-linear re-
duction methods that provide better insight into the system. However,
the additional insight comes at the cost of general applicability:
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If the transport of the flow quantity is simply given by a shift or simple
parametrizable transformation, the shifted proper orthogonal decompo-
sition (sPOD) is advantageous, since it does not require any assump-
tions regarding the shape of the moving quantity. The sPOD was
already introduced in [115] as a heuristic algorithm, but has been re-
formulated in [114]. It shifts the data field in a so-called co-moving
reference frame, in which the moving structure can be decomposed
efficiently with the POD. The contribution of this thesis is based on
the optimization goals given in [114]. The presented algorithms en-
able the application of the sPOD to high dimensional data, since they
avoid gradient-based optimization, as done in [114]. For example, the
shifted robust principal component analysis (srPCA) (Algorithm 8)
or the total variation diminishing sPOD algorithm (Algorithm 5) use
non-smooth high dimensional optimization techniques. As the sPOD
allows us to split physical systems that are not interacting, it can be
used to decouple and study flows around moving objects, as presented
in Section 4.3.6.

The front transport reduction (FTR) is a method to decompose complex
moving fronts. The decomposition parametrizes moving fronts with the
help of a transport-dependent auxiliary field ϕ ∈ RM and a front func-
tion f to approximate the front profile. Three different decomposition
algorithms have been proposed, which construct ϕ using signed dis-
tance function Section 4.2.2, singular value thresholding (Algorithm 2)
or artificial neural networks (Section 4.2.4). The resulting approxima-
tions q(t, µ) ≈ f(ϕ(t, µ)) are well suited for model order reduction of
reacting fronts, since ϕ(t, µ) = Ψa(t, µ) ∈ RM can be represented by a
few r ≪M spatial modes collected in Ψ ∈ RM×r. We emphasize that
the utilized front-structure is inherent for advection-reaction-diffusion
(ARD) systems (see for example [66, 5, 6, 49]). Regarding AE networks,
the FTR is similar in the sense that it uses a linear layer activated by a
problem-dependent non-linear front function as a decoder. Other stud-
ies [81, 89] use multiple non-linear activated layers, resulting in costly
evaluations of the networks themselves. This can limit the overall per-
formance of the ROM when evaluating the additional non-linearities.
Similar to AE networks, the FTR can approximate topological changes
in the evolution of the contour line of the front, since it does not make
explicit assumptions about the mapping. Here methods like the shifted
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POD, previously applied to similar problems in [11], cannot be used,
since they assume one-to-one mappings to align the front. In order to
parametrize complex transports with topological changes, a combina-
tion of the sPOD and FTR would be desirable, as this would enable
the decomposition of multiple traveling wave systems with topological
changes. Furthermore, it would be interesting to see whether the FTR
approach can be applied to multi-phase flows, as they inherit a similar
front structure separating the fluids.



5 Dynamic ROM - Predictions of Trans-
port Dominated Systems

In the previous sections, we have addressed the so-called offline stage
of a model order reduction procedure, in which data is collected and
its dimension is reduced. The reduced models generated by the neural
autoencoder network, sPOD or FTR algorithm are non-linear, which
poses additional challenges for the online stage, to predict and inter-
polate new system states. This chapter is therefore dedicated to on-
line prediction methods. In Section 5.1 we use a non-intrusive, i.e.
equation-free, approach of [87] and in Section 5.2 we introduce an in-
trusive approach, the hyper-reduced Galerkin method for 1D and 2D
ARD systems. Since non-linear Galerkin methods have been studied
for the shifted POD in [10, 11] and for neural networks in [89], we
restrict our studies to the FTR in this chapter. The chapter closely
follows the work presented in [147].

5.1 Data-Driven Methods
With the rise of data-driven methods in model order reduction, non-
intrusive prediction methods of the reduced system, e.g. POD-DL-
ROM [52], SINDy [54, 111] or Fourier-Koopman forecasting [87], have
become prominent. Although the methods make specific assumptions
about the system at hand, they can be useful, since they allow rapid
evaluation of the reduced variables with good accuracy. This is es-
pecially beneficial if the reduced map parametrizes a non-linear mani-
fold, which makes any Galerkin-projection approach more complex and

147
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costly, as is shown in the next section.

Following the approach of [87], we can derive new system states and ex-
trapolate in time with help of the Fourier-Koopman framework imple-
mented in [86]. Under the assumption that the reduced state a(t) ∈ Rr

is quasi-periodic in t, it can be parametrized by:

a(t) = AΩ(t) with Ω(t) =
(︄

cos(ωt)
sin(ωt)

)︄
. (5.1)

Here, A ∈ Rr×p and ω ∈ Rp/2 are determined by solving the optimiza-
tion problem:

min
ω,A

N−1∑︂
n=0
∥a(tn)−AΩ(tn)∥22 , (5.2)

in an efficient way [87]. Since the dynamical system presented in Sec-
tion 4.2.5 is quasi-periodic, we can apply the method to the FTR de-
composition

q(t) ≈ q̃(t) = f(Ψa(t)) (5.3)

using the basis functions Ψ = [ψ̃1, ψ̃2, ψ̃3], shown in Fig. 4.8 together
with the amplitudes a(t) = (a1(t), a2(t), a3(t)) at the sampled time
points {tn = n∆t | n = 0, . . . , N − 1}. From the sampled data we
compute A,ω. The resulting model q̃(t) = f(ΨAΩ(t)) is evaluated at
tn+1/2 = (n+1/2)∆t for n = 0, . . . , 2N−1. Similarly, we can derive an
approximation with the POD. Both results are compared in Fig. 5.1.
Furthermore, the online-prediction error is stated for r = 2, 4, . . . , 12, 15
in Table 5.1.

Remark. The systems dynamics can be further reduced by rewriting
f(Ψa(t)) = f(Ψ̃ã(t)+b), b ∈ RM , ã ∈ Rr−1, Ψ̃ ∈ RM×(r−1). The offset
vector b then contains the time-independent part of the decomposition
shown as a constant line in Fig. 5.1. This can be done similarly for
the POD.

Note that after solving Eq. (5.2) in the offline stage, the computa-
tional effort is reduced to the evaluation of q̃(t) = f(ΨAΩ(t)), which
only takes milliseconds. A similar approach has been used in [146]
that time-forecasts system states using the shifted POD-J2 algorithm
Algorithm 3 in combination with deep forward networks. Instead of
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Figure 5.1: Predictions using Fourier-Koopman forecasting
with three POD modes (a) and three FTR modes (b). The
black circles () in the upper row indicate the predictions of
the amplitudes a(t) = (a1(t), a2(t), a3(t))ˆ︁= ( , , ) and the
colored crosses mark the training samples. In the lower row,
we show the corresponding snapshots at selected time instances
t = 0.2, 0.4, 0.6, 0.8.
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the system Eq. (5.2) the authors use feedforward neural networks to
circumvent the restriction to quasi-periodic systems.

For a realistic test case, we apply the FTR-Fourier-Koopman proce-
dure to the methane mass fraction YCH4 of one flame of a multi-slit
Bunsen burner simulation analyzed and studied in [84, 77]. The snap-
shots are generated with a customized, weakly compressible version of
rhoReactionFOAM from the OpenFOAM software package (see [139, 77]).
In the simulation, a flame is periodically excited by an incoming veloc-
ity pulse. The acceleration of the fuel detaches a burning pocket shown
in Fig. 5.2. The data set consists of 200 snapshots, with M = 128×430
grid points, sampled in a time interval t ∈ [0.01, 0.05] in which the
Bunsen flame is quasi-periodic. Again, we split the data into train-
ing (tn = 2∆tn) and test samples tn+1/2 = (2n + 1)∆t. While we
use the training samples to generate the reduced model, the test sam-
ples are used to calculate the relative errors stated in Table 5.1. The
flame pinch-off is not a special case in combustion systems, but it poses
challenges to model order reduction methods, as described above. Fig-
ure 5.2 shows that for the FTR the structure of the solution is well
captured and the physical bound 0 ≤ YCH4 ≤ 1 is preserved.

Moving Disc Bunsen Flame
rank r FTR POD FTR POD

2 2.7e-01 3.0e-01 4.2e-01 3.1e-01
4 7.4e-03 2.0e-01 1.4e-01 3.1e-01
6 2.2e-03 1.5e-01 1.1e-01 2.3e-01
8 1.6e-03 1.2e-01 7.6e-02 1.8e-01
10 2.2e-03 1.0e-01 8.1e-02 1.6e-01
12 2.0e-03 8.8e-02 7.1e-02 1.5e-01
15 1.2e-03 7.4e-02 6.9e-02 1.4e-01

Table 5.1: Relative error ∑︁2N−1
n=0 ∥q(tn+1/2) −

q̃(tn+1/2)∥22/
∑︁2N−1

n=0 ∥q(tn+1/2)∥22 for the FTR-Fourier-
Koopman predictions using the moving disk and Bunsen
flame data.
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Figure 5.2: Online predictions of the Bunsen flame example.
Fig. a) compares the test data in the top row with the FTR-
Koopman and POD-Koopman results using r = 8 degrees of
freedom for t = 0.01 and 0.04. The snapshots show how a
burning fuel pocket is detached from the flame at t = 0.04
causing a change in the topology of the contour line of the
front. Fig. b) visualizes the Fourier-Koopman predictions ()
for a(t) = (a1(t), a2(t), a3(t))ˆ︁= ( , , ).
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5.2 Manifold Galerkin Methods

After discretizing the ARD system Eq. (4.1) in space, we obtain an
ODE system of the form

(FOM)
{︄
q̇(t,µ) = N(q, t,µ)
q(0,µ) = q0(µ) .

(5.4)

Here, the parameters µ ∈ P contain diffusion or reaction constants
κ, γ. After discretizing the re-scaled system it yields the FOM-RHS

N(q, t,µ) = L(t)q + F (q,µ) (5.5)

with a linear operator L : [0, T ] → RM×M and a non-linear operator
F : RM × P → RM . Using a reduced mapping

g : Rr → RM : a ↦→ g(a), with Jacobian Jg(a) =
[︄
∂gi

∂aj
(a)
]︄

i=1,...,M
j=1,...,r

(5.6)
as approximation q ≈ q̃ = g(a) of the data and plugging it into
Eq. (5.4) yields a reduced model:

(ROM)

⎧⎪⎪⎨⎪⎪⎩
ȧ(t,µ) = arg min

ȧ∈Rr
∥Jg(a)ȧ(t,µ)−N(g(a), t,µ)∥22

a(0,µ) = arg min
a∈Rr

∥q0(µ)− g(a)∥22 .

(5.7)

(5.8)

Minimizing the continuous time residual Eq. (5.7), yields the optimality
condition:

0 = d
dȧ ∥Jg(a)ȧ−N(g(a), t,µ)∥22 (5.9)

= 2Jg(a)⊤Jg(a)ȧ− 2Jg(a)⊤N(g(a), t,µ) , (5.10)

which is uniquely solved by

ȧ = J+
g (a)N(g(a), t,µ) , (5.11)

if the Jacobin has full column rank [89]. Here, J+
g is the Moore-Penrose

pseudo inverse of Jg. Note, that for the common POD-Galerkin ap-
proach orthogonal mappings g(a) = Ura, with Ur ∈ RM×r and U⊤

r Ur =
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I are used. Therefore, Eq. (5.11) and Eq. (5.10) are identical. When
neglecting F (q,µ) in Eq. (5.5) for the time being, we obtain a small
r-dimensional system:

ȧ = Lr(t)a with Lr(t) = U⊤
r L(t)Ur ∈ Rr×r , (5.12)

which can be solved efficiently, when Lr(t) is precomputed. For exam-
ple in the case of pure advection:

q̇(x, t) = u ·∇q =
d∑︂

k=1
uk(t)∂xk

q(x, t) , (5.13)

the spatial derivative has the form L(t) = ∑︁d
k=1 uk(t)L(k) and therefore

Lr(t) =
d∑︂

k=1
uk(t)U⊤

r L(k)Ur ∈ Rr×r (5.14)

can be precomputed and is much smaller than the operator L(t) ∈
RM×M , r ≪ M of the FOM. Although POD-Galerkin enables solv-
ing Eq. (5.12) efficiently, this approach cannot be used for advection
dominated systems, because of its slow decaying approximation errors.
Here, non-linear methods like artificial neural networks can acceler-
ate the convergence of the overall online and offline error. However,
any non-linear reduction method will imply that even linear systems
like Eq. (5.13) become non-linear, causing additional effort for eval-
uating non-linearities. At least in the special case of an advection
system, this can be avoided with the FTR approach. Due to its special
structure q̃(x, t) = f(ϕ(x, t)), we can rewrite the advection equation
∂tq − u ·∇q = 0 into the form

f ′(ϕ)(∂tϕ− u ·∇ϕ) = 0 . (5.15)

The prefactor f ′(ϕ) can be dropped, when assuming that ϕ features
the same transport then q and thus the non-linear manifold Galerkin
system (5.11) can be simplified to a linear Galerkin system for ϕ(t) =
Ψa(t):

ȧ = ΨL(t)Ψa ≈ Lr(t)a . (5.16)
Since the operator Lr can be precomputed in the same fashion as for
the POD-Galerkin approach, the resulting ROM complexity is reduced
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and the online/offline error is compensated due to the additional non-
linearity f to retain q = f(Ψa). However, these findings need to be
interpreted with caution. One might expect that a pure transport of q
implies a pure transport of ϕ. However, if f ′ becomes (approximately)
zero, ϕ might locally change its value without changing q, so that q is
transported everywhere, while ϕ is not. If, however, this cancellation is
justified, it can speed up the calculation considerably. The advection
of fronts according to a given transport field u(t) within milliseconds
is impressively shown for a 1D advection example in Fig. 5.3. In this
example, only two trajectories of constant advection speed (u(t) =
±2) are used for building the reduced system. Thereafter, almost any
parametrization of u(t) can be computed with the ROM.

The relative error and speedup for the test trajectory are shown in
the lower part of Fig. 5.4 and are plotted together with the POD-
Galerkin results. We see that the errors are reduced compared to the
results of the POD. Further details about the simulation are reported in
Appendix B.2. The results apply similarly to higher spatial dimension
D > 1, for example in the case of the moving disk (Section 4.2.5). Note,
that the path simulated in the online phase is limited to areas where the
transport field is initialized. These are the areas where any front has
traveled during the offline phase as shown in Fig. 4.8. This restriction is,
however, shared with classical linear methods. The dynamics that are
not covered in the ansatz space created from the initial set of snapshots
are usually not covered by the ROM.

The success of the heuristic approach Eq. (5.16) is somewhat obvi-
ous since the level set function ϕ parametrizes the transport (see Sec-
tion 4.2.5), which implies it to be a good basis for the advection opera-
tor. The idea to use transport capturing level set functions to accelerate
simulations for advection laws is not new. For example it is intensively
used by the characteristic mapping method (CMM) [99], which evolves
the initial condition q0(x) of a PDE along characteristic curvesX(x, t),
such that q(x, t) = q0(X(x, t)). Nevertheless, in [99] the authors use an
invertible mapping X(x, t), which hinders the applicability for systems
with topological changes. Intentionally, this is not done here, since we
aim for systems, where topological changes are possible. However, it
would be interesting to see if snapshots of the characteristic map can
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Figure 5.3: The 1D advection test case for moving fronts. In
the upper row, the two training samples computed with the full
order model (FOM) are shown. They are used to build the
snapshot matrix Q ∈ R1000×202 for the FTR decomposition. In
the lower row, the trajectory of the FOM and the FTR-ROM
Eq. (5.16) (r = 4) are compared.



5.2. Manifold Galerkin Methods 156

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1000

2000

degrees of freedom r

sp
ee

du
p

POD Galerkin
FTR Galerkin

(a) Speedup comparison

2 4 6 8 10 12 14 16
10−4

10−3

10−2

10−1

100

degrees of freedom r

re
la

tiv
e

er
ro

r

FTR offline
FTR Galerkin
FTR manifold Galerkin
POD offline
POD Galerkin

(b) Relative error in the Frobenius norm

Figure 5.4: Relative error (a) and speedup (b) for r = 2, . . . , 15
using the FTR- and POD-Galerkin approach. The error and
speedup are measured using the testing data shown in Fig. 5.3.
The FTR/POD offline errors mark the reconstruction error of
the training data, which is collected in the offline phase (snap-
shots are shown in the upper row of Fig. 5.3). All FTR Galerkin
results are computed using Eq. (5.16) (snapshots are shown in
the lower right of Fig. 5.3). Accordingly, the POD Galerkin
results are computed using Eq. (5.12). The FTR manifold
Galerkin results are computed using Eq. (5.11) directly.



5.2. Manifold Galerkin Methods 157

be similarly utilized for MOR as the snapshots of the auxiliary field Φ
inside the FTR.

Nevertheless, it should be noted that the procedure proposed for the ad-
vection equation cannot be generalized to advection-reaction-diffusion
equations and therefore special hyper-reduction methods are needed
for an efficient ROM.

5.2.1 Hyper-Reduction for Moving Fronts
Apart from the slow decaying POD approximation errors, advection-
reaction-diffusion systems pose another difficulty for model order re-
duction. The dynamics of advection-reaction-diffusion systems take
place at a characteristic length scale lf defined in Eq. (4.3). This
characteristic scale is usually much smaller than the size of the do-
main or the traveling distance of the front. Hence, the FOM-RHS
Eq. (5.5) and its gradient posses only a few spatial grid points with
non-vanishing support per time step. Therefore, the hyper-reduction
methods for non-linear manifolds [81, 78] cannot be applied. For exam-
ple, the extended-ECSW scheme proposed by [78], or the gappy-POD
based GNAT procedure [21] first introduced for non-linear manifolds
in [81] cannot be used here, since they preselect a set of sample points,
which is fixed for every time step and all µ ∈ P.

In contrast, the FTR-hyper-reduction approach can help to identify
the locations of the front to reduce computational complexity, while
sustaining an accurate solution. Here, we propose an idea that is sim-
ilar to the reduced integration domain (RID) method [122] for finite
elements. By imposing a threshold criterion on each finite element,
RID is choosing a reduced number of elements to describe a balance
condition, i.e. to minimize the residual between internal and external
forces. Similar to RID, we choose a selected number of Mp sampled/s-
elected points to minimize the error of the projected right hand side
(i.e. external/internal force):

0 = d
dȧ ∥Jg(a)ȧ−N(g(a), t,µ)∥2P2

a
= 2Jg(a)⊤P⊤

aPaJg(a)ȧ

−2Jg(a)⊤P⊤
aPaN(g(a), t,µ) .

(5.17)

Each of the Mp selected sample points corresponds to an index 0 ≤
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i ≤ M , which is represented as the ith standard basis vector ei ∈ RM

inside the rows of the selection matrix Pa ∈ RMp×M . Thus, the hyper-
reduced Jacobian and right hand side PaJg,PaN are only computed
at Mp sample points. Note that the stencil size of our finite differ-
ence scheme requires to compute f(ϕ) on additional supporting mesh
points, contained in P̂a ∈ RM̂p×M . In practice, P̂af(ϕ),PaJg,PaN
are not computed as matrix products, but as pointwise evaluations of
f(ϕ),Jg,N at the corresponding sample points.

In contrast to RID, the selection matrix Pa : Rr → RMp×M is de-
pendent on the state a(t,µ), which evolves over time (see Fig. 5.5).
However, similar to what RID does for external forces, we have to add
nodes, i.e. sample points, at which the RHS does not vanish. Since
for the FTR N is non-vanishing at the locations of the front, i.e. at
the roots of the level set function, we can perform time-dependent
adaptive thresholding which defines Pa. The threshold search selects
the Mp smallest values of the level set function ϕ = Ψa ∈ RM at
which we evaluate P̂af(ϕ),PaJg,PaN . For two time instances, the
sample points are visualized in Fig. 5.5 for the 2D ARD-system of
Section 4.2.5. To reduce the costs of the threshold search, one might
recompute the sample points only after a fraction of the characteristic
time scale tf = lf/c

∗, where lf is defined in Eq. (4.3). Note, that the
threshold search is a heuristic to perform a cheap minimization of the
residual Eq. (5.17).

Further, it should be noted that in this work we are using explicit time
integration schemes. Therefore, the aforementioned methods [81, 78]
are not comparable in speedup, since they compare the ROM with
implicit time integration schemes used in the offline stage. Never-
theless, applying implicit integration schemes during the online phase
may benefit the stability of the resulting ROM. A promising and ef-
ficient method for explicit time integration schemes was proposed by
[11] for reaction-diffusion systems in one spatial dimension. Although
the framework cannot cope with topological changes since it relies on a
smooth parametrization of the transport, the authors claim speedups
of up to a factor of 130.

In the following, we will present some numerical examples utilizing the
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Figure 5.5: Color plot of the RHS N(q, t, µ) of the 2D
advection-reaction-diffusion system Eq. (2.40) for two different
time instances t = 0.07 (left) and t = 2.85 (right) and the cor-
responding sample points for a sample fraction of Mp/M = 0.1.
The inset in the right color plot shows a close up of the location
of the front.

hyper-reduction approach.

5.2.2 Numerical Examples
In this section, we numerically investigate the applicability of our frame-
work. Therefore, we define the offline and online errors:

offline/online err =

⃦⃦⃦
Qtrain/test − Q̃train/test⃦⃦⃦

F⃦⃦
Qtrain/test

⃦⃦
F

. (5.18)

Here, Q ∈ RM×(NtNP ) is the snapshot matrix containing all snapshots
for the Nt time and NP parameter instances µ ∈ P in its columns. The
superscript "train" ("test") belongs to the snapshots µ ∈ Ptrain (Ptest)
computed during the offline (online) phase.

The approximation Q̃train is therefore either the reconstruction of the
training data using the FTR-ansatz (Algorithm 2) or, in case of the
POD, the projection onto the first r left singular vectors of Qtrain con-
tained in Ur ∈ RM×r, i.e. Q̃train = U⊤

r UrQtrain.

Q̃test refers to the results evaluating the ROM Eq. (5.7) for the given
time interval and parameters µ ∈ Ptest using the reduced mapping
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g : Rr → RM . Specifically, in the case of the POD, the dynamical
ROM predictions use g(a) = Ura as a reduced mapping, whereas
g(a) = f(Ψa) for the FTR.

Furthermore, we define the projection error (called manifold projection
error in [16]):

proj. err =

⃦⃦⃦
Qtest − Q̃test

∗

⃦⃦⃦
F

∥Qtest∥F
(5.19)

where Q̃test
∗ is the best fit of Qtest with help of our the mapping g.

Reaction-Diffusion System in 1D

First, we test our approach on an 1D reaction-diffusion system that
was taken and modified from [82]. The test case is based on a one-
dimensional scalar non-linear reaction-diffusion equation

∂tq = ∂xxq + 8
µ2 q

2(q − 1) (t, x) ∈ [0, 1]× [−15, 15] (5.20)

with corresponding analytical solution

q(x, t, µ) = f

(︃ |x| − 2t/µ− 2
µ

)︃
, (5.21)

given that f(x) = sigmoid(2x). We follow an offline-online procedure.
First, we solve the FOM and set up a reduced map. In the second
step, we simulate the projected and hyper-reduced system and compare
the predictions to the FOM. First compute the numerical solution by
discretizing Eq. (5.20) with M = 4000 grid points and solving it for
µ ∈ Ptrain = {0.2, 1} (further details can be found in Appendix B.2).
The training data consists of 202 samples, including 101 samples of
each training parameter. The training data is visualized as color plot in
Fig. 5.6 together with the ROM prediction of the FTR using r = 3 and
µ = µtest = 0.3 in Eq. (5.20). The FTR algorithm (Algorithm 2) is run
for 8000 steps using τ = 4 and different truncation ranks 1 < r < 10.
After we have computed the reduced mapping q(t, µ) = f(Ψa(t, µ))
from the training set, we can compute the starting values a(0, µ), µ ∈
Ptest to test the ROM Eq. (5.7) by minimizing the initial condition of
the ROM Eq. (5.8), using Gauss-Newton iterations [102]. As an initial
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Figure 5.6: Training and test data of the reaction-diffusion
system Eq. (5.20) with the ROM using r = 3 degrees of freedom.
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guess for the minimization, we use the set of initial points {(µ,a(0, µ)) |
µ ∈ Ptrain} and interpolate them for any given test parameter µ ∈
Ptest. Thereafter, the ROM-solution for all test parameters µ ∈ Ptest is
compared to the analytical solution Eq. (5.21). The results are reported
as online errors in Table 5.2 together with the offline and projection
errors. The online and projection errors are stated for the cumulated
snapshots including the time interval [0, 1] and all parameters µ ∈
Ptest = {0.3, 0.4, . . . , 0.9}. Table 5.2 also compares the results with the
POD-Galerkin approach. The starting values for the POD-Galerkin-
ROM are simply given by the orthogonal projection of q(0, µ) onto the
POD modes. It is remarkable to see that the FTR outperforms the
POD by two orders of magnitude.

Next, we are interested in whether the gain in precision can be trans-
lated to speedups. Therefore, we study the performance of the hyper-
reduced FTR-ROM explained in Section 5.2.1. Fig. 5.7 compares CPU-
time and error for Mp = 0.1M, 0.2M, 0.5M and M number of grid
points, i.e. the dimension of the FOM. The figure indicates that even
without hyper-reduction, speedups can be achieved compared to the
FOM, due to larger time steps in the reduced coordinates. Comparing
the hyper-reduced FTR with a sample fraction of Mp/M = 0.2 to 1,
we see another speedup in CPU-time. For a reduction below 0.1M grid
points, the solution is unstable and can lead to additional time steps,
making the overall simulation slower.

FTR POD

DOF offline error online error proj. error online error proj. error

2 8.2e-03 1.4e-02 3.0e-03 3.6e-01 2.7e-01
3 2.6e-03 2.1e-02 6.6e-03 2.8e-01 2.0e-01
4 6.2e-04 2.7e-03 5.3e-04 2.4e-01 1.4e-01
5 5.3e-04 3.2e-03 7.2e-04 2.3e-01 1.1e-01
6 5.4e-04 2.5e-03 3.7e-04 2.5e-01 9.0e-02
7 5.0e-04 2.6e-03 2.7e-04 3.4e-01 7.3e-02
8 4.4e-04 2.1e-03 1.6e-04 2.7e-01 6.0e-02
9 2.0e-04 1.9e-03 2.2e-04 2.0e-01 5.0e-02

Table 5.2: Offline, online and projection errors for FTR and
POD. The errors are reported for the cumulated snapshot data
of the training and test parameters used in Section 5.2.2.
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Figure 5.7: Error vs. CPU-time for the accumulated parame-
ter range µ ∈ Ptest. Different ranks r are indicated as (r) above
or below the markers. The dashed line indicates the CPU-time
needed for solving the FOM. The sampled fraction Mp/M in
the hyper-reduced ROM is given in terms of the size M of the
FOM.

Advection-Reaction-Diffusion System in 2D

Finally, we test the online performance of the hyper-reduced FTR-
ROM on the advection-reaction-diffusion example of Eq. (2.40), in-
troduced in Section 4.2.5. We build the training/test data Qtrain

from 101 equally spaced snapshots (visualized in Fig. 4.13) with t ∈
[0, 3], γ ∈ Ptrain = {10, 30, 50, 70, 100} and respectively γ ∈ Ptest =
{20, 40, 60, 80, 90}. The online, offline, and projection errors of the test
case are shown in Fig. 5.8 together with the speedup generated by the
hyper-reduction scheme. It is visible that the FTR outperforms the
POD concerning offline and online errors. Furthermore, the utilized
hyper-reduction strategy results in speedups with moderate online er-
rors. Note that reducing the integration domain to about 10% of its
original size (see sample points in Fig. 5.5) does not affect the on-
line error, as can be seen from Fig. 5.8 (a). Fig. 5.8 (b) shows, that
for small r, the additional costs (O(rM)) for the matrix multiplica-
tion ϕ(t, µ) = Ψa(t, µ) are negligible, compared to the evaluation of
N . However, as soon as r becomes large, the speedups of the hyper-
reduction scheme are compensated by the computation of ϕ inside the
threshold search. The balance point at which the additional costs com-
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pensate the costs of the RHS is problem-dependent, but computing
the sample points from ϕ is a bottleneck of this method. Neverthe-
less, when aiming for more complex examples like combustion systems
or 3D ARD systems, the outlined hyper-reduction approach will ben-
efit from a more computationally complex RHS, which will shift the
balance point towards a higher number of modes.
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Figure 5.8: Hyper-reduced FTR results: (a) relative errors
defined in Eqs. (5.18) and (5.19) for Ptest/train using POD and
FTR decomposition. (b) Speedup vs. degrees of freedom for
the cumulated parameter range γ ∈ Ptest. The speedups are
compared for different numbers of sampled grid points Mp ≤M .
The CPU-time of the full order model (FOM) using M = 5122

grid points is marked with a dashed line.



5.3. Summary 165

5.3 Summary
The ability of the FTR to predict new system states has been demon-
strated for non-intrusive (Section 5.1) and intrusive (Section 5.2) ROMs.
Since the FTR gives additional insights into the underlying structure
(transport field ϕ), it allows us to use this information when predict-
ing new system states. As an example, we heuristically reduced the
integration domain during the online evaluation of the Galerkin pro-
jected ODE system, using the knowledge of ϕ. This can be seen as
an adaptive version of the reduced integration domain method [122].
Other non-linear hyper-reduction methods preselect a set of sample
points, on which the dynamics are evaluated. Since only sample points
close to the front are relevant for the dynamics of the studied sys-
tems, such hyper-reduction methods may fail. Although the outlined
hyper-reduction procedure yields speedups in CPU-time, it needs a
substantially larger number of sample points Mp than required by the
dimensions of the ROM r ≪Mp ≪M . Therefore, the construction of
more efficient hyper-reduction schemes is left open for future research.



6 Conclusion and Outlook

This thesis contributes to methodical developments in the field of nu-
merical analysis of fluid flows with an emphasis on model order reduc-
tion (MOR) for transport dominated fluid systems (TDFS).

TDFS are systems for which the transported quantity changes slowly
with respect to the advection speed and therefore only require a few
degrees of freedom (DOF) if the system is parametrized in a reference
frame that moves with the transported quantity. Therefore, this thesis
exploits adaptive and spatial coordinate transformations to accelerate
simulations in the offline and online stage. These transformations can
be implemented in any classical MOR approach.

To summarize, the major contributions of this thesis are

1. combining adaptive multiresolution methods to simulate and re-
duce TDFS;

2. transport compensation in dimensionality reduction; and

3. time-parametric non-linear reduced order models (ROM).

1. In various numerical studies we observe that spatial adaptivity can
alleviate costs during simulation and reduction of TDFS while balanc-
ing the additional errors introduced by the adaptation scheme. Specif-
ically, the employed block-based wavelet adaptation scheme allows for
efficient storage and simulation of transport dominated flows. Accel-
eration up to a factor of three and memory savings up to a factor of
260 can be achieved for highly resolved 2D and 3D TDFS. The de-
vised methodology provides a powerful tool to simulate and reduce
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high-resolution data of TDFS.

Nevertheless, future work should address some of the limitations dis-
cussed in the following. The stability of the discretization scheme
is not guaranteed on a block-based grid. One way to address this
shortcoming is the combination of summation-by-parts simultaneous-
approximation-term (SBP-SAT) discretization methods (for review [130])
with conservative wavelet methods (similar to [41, 1]), which guarantee
stability by conservation properties. Furthermore, to improve the con-
tribution of the compression errors (O (ϵ)) in the wavelet adaptive POD
(wPOD) algorithm, the implemented biorthogonal wavelets should be
substituted by orthogonal ones to ensure that the additional error in-
troduced by the compression scales with O

(︁
ϵ2
)︁
.

2. The main contribution of this thesis is the reduction of TDFS by
compensating the transport with help of non-linear methods. The non-
linear methods (autoencoder networks (AE), the shifted POD (sPOD)
and front transport reduction (FTR)) show an improvement in reduc-
tion capability compared to dimensionality reduction on a linear sub-
space. Hence, significantly fewer degrees of freedom are required when
approximating the input data, in contrast to the linear subspace cre-
ated by standard ROM techniques, in particular the POD. Although
FTR and sPOD have specific application regimes, they usually outper-
form the reduction capability of the general purpose AE. The developed
FTR method can reduce TDFS with topological changing front struc-
ture, such as splitting or merging reaction fronts. As reactive systems
were considered to be challenging [73] for classical MOR applications,
the FTR can become an essential building block in future applica-
tions. Therefore, this contribution can be seen as the most important
part of this thesis. Furthermore, we have improved the existing sPOD
algorithms that have been presented in [114]. The newly developed
algorithms allow for efficient, non-smooth optimization of high dimen-
sional flow data. The new decomposition procedure enables the use of
multiple constraints, which is an essential feature for further develop-
ment.

Given that the FTR and sPOD are based on multiple evaluations of the
SVD, they are much more computationally expensive than the POD.
Similar costs are required for training a neural AE network. Therefore,
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future work should combine sPOD and FTR with the wPOD to enable
the applicability of these methods for highly resolved fluid systems.
Furthermore, the generalization of FTR and sPOD for more complex
fluid systems would be required. Finally, this would allow for the de-
coupling of physical systems in their co-moving reference frames so as
to study their interactions, as presented for the two cylinder wake flow
in Section 4.3.6.

3. Lastly, the newly developed FTR reduction method has been studied
in the context of time parametric predictions for reactive flow systems.
As the method is non-linear, manifold Galerkin projections have been
used, which enable projecting the system dynamics onto the non-linear
manifold created by the FTR mapping. Although the online prediction
error can be significantly improved, speedups are comparably small.
This is because the method requires a special hyper-reduction strategy
that needs to select grid points close to the moving front at which the
right-hand side is evaluated in every time step. These additional costs
for the online selection of grid points limit the overall speedup. As an
alternative, we propose the use of equation-free data-driven models.
Given that such models need not evaluate the original dynamics, the
computational costs are mainly limited by the evaluation of the non-
linear reduced mapping.

Future work on the presented FTR-Galerkin approach should address
the hyper-reduction strategy, as this is key to improving the speedup
and stability of the resulting ROM. For example, a hyper-reduction
strategy similar to the one presented in this work could be used in com-
bination with the energy-conserving sampling and weighting (ECSW)
method [78]. In the context of a multiresolution architecture, the joint
application of the wavelet thresholding criterion and the selection of
sample points could provide a promising framework.



A Appendix: Wavelet POD

A.1 L2 Inner Products Expressed in the Wavelet
Basis

The L2 inner product is computed as a weighted sum of two fields q
and v with K vector-components. To obtain this, we first refine both
fields onto a unified grid with identical treecodes Λj , as explained in
Section 3.2.1. Then we are able to compute Eq. (3.11) as a weighted
sum over all blocks:

⟨q,v⟩ =
Jmax∑︂
j=1

∑︂
p∈Λj

⟨q(p),v(p)⟩ (A.1)

=
Jmax∑︂
j=1

∑︂
p∈Λj

⟨q(p),v(p)⟩IK⊗W⊗W∆xp∆yp (A.2)

with weights: (W)lm = ⟨φj
l , φ

j
m⟩ , (A.3)

Note that this quadrature rule is exact for ϵ = 0. We denote by
IK⊗W⊗W the Kronecker product between the weight matrix W and
the identity matrix IK ∈ RK,K . The weight matrix is pre-computed
by Eq. (A.3) and its non vanishing values (W)ik = wi−k are shown
in Table A.1. The listed matrix elements are the discrete values of
the autocorrelation function between two compactly supported scaling
functions φ, see Fig. A.1. Therefore W is sparse, symmetric and cir-
culant. Since W is also strictly diagonal dominant and all diagonal
entries are positive, W and the Kronecker product of such matrices is
also positive definite.
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|k| (Order) 0 1 2 3 4 5

wk (N = 2) 2/3 1/6

wk (N = 4) 0.8001 0.1370 -0.0402 0.0028 -7.6×10−5 -1.5×10−7

Table A.1: Values of the autocorrelation function wk =
∫︁
φ(x−

k)φ(x)dx of Deslauriers Dubuc interpolating functions of order
N = 2 and N = 4 in the interior of the block. The values for
DD4 are rounded.

Figure A.1: Autocorrelation functions of Deslauriers inter-
polating scaling functions φ of order two (left) and order four
(right).
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A.2 Derivation of the Error Estimation given in
eq. (23)

Using Eq. (3.15) the total error in Eq. (3.13) becomes

EwPOD ≤
∑︁Nt

i=1 ∥qi − qϵ
i∥

2
2∑︁Nt

i=1 ∥qi∥
2
2

+
∑︁Nt

i=1 ∥qϵ
i − q̃ϵ

i∥
2
2∑︁Nt

i=1 ∥qi∥
2
2

. (A.4)

Furthermore, we can simplify the first term with Eq. (3.16) inserting
∥qi − qϵ

i∥2 ≤ ϵ ∥qi∥2 into the nominator:∑︁Nt
i=1 ∥qi − qϵ

i∥
2
2∑︁Nt

i=1 ∥qi∥
2
2

=
∑︁Nt

i=1(ϵ ∥qi∥2)2∑︁Nt
i=1 ∥qi∥

2
2

= ϵ2 .

The second term in Eq. (A.4) can be expressed with the help of the
eigenvalues of the correlation matrix.
We use the identities: ∑︁Nt

i=1 ∥qϵ
i − q̃ϵ

i∥
2
2 = ∑︁Nt

k=r+1 λ
ϵ
k for perturbed

eigenvalues λϵ
k = λk + lkϵ and ∑︁Nt

i=1 ∥qi∥
2
2 = ∑︁Nt

k=1 λk, yielding
∑︁Nt

i=1 ∥qϵ
i − q̃ϵ

i∥
2
2∑︁Nt

i=1 ∥qi∥
2
2

=
∑︁Nt

k=r+1(λk + ϵlk)∑︁Nt
k=1 λk

= EPOD(r, 0) +Mrϵ . (A.5)

Here, Mr = ∑︁Nt
k=r+1 lk/

∑︁Nt
k=1 λk is the perturbation coefficient of the

total error. Note that the perturbations lk are caused by the non van-
ishing mixed terms ⟨φj

λ, ψ
j
µ,λ⟩ (see also [22]), when computing the corre-

lation matrix from thresholded snapshots uϵ
i . For orthogonal wavelets,

the first order perturbations would vanish. For slowly decaying eigen-
values λk, the perturbation coefficientMr is typically very small, since
the sum of perturbations lk is small compared to the total energy. In
this case it is reasonable to neglect the second term in Eq. (A.5):

EwPOD ≲ EPOD(r, 0) + ϵ2 . (A.6)

However, in general Mr does not vanish and we only have linear con-
vergence in ϵ:

EwPOD ≤ EPOD(r, 0) +Mrϵ+O(ϵ2) . (A.7)
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Note that Mr does not depend on ϵ, as all epsilon dependence has
been removed. Hence, it is asymptotically a first order scheme in ϵ
only. For a certain range, we can observe the second order, if Mr is
sufficiently small. Eventually, for sufficiently small ϵ, the first order
term will dominate.
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A.3 Technical Details and Supplementary Mate-
rial

tree_id⎡⎢⎢⎢⎢⎢⎢⎣
1
2
3
...

Ntree

⎤⎥⎥⎥⎥⎥⎥⎦

lgt_active(1:lgt_n(1),1)

= [1, 2, 5, . . . , 19]

lgt_active(1:lgt_n(2),2)

= [3, 4, . . . , 20]

lgt_block(lgt_id,lgt_property) =
lgt_id tree code level ref.ind tree id⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 1 0 1
2 2 1 0 1
3 0 1 0 2
4 20 2 0 2
5 30 2 0 1
... −1 · · · · · · −1

Nblocks + 1 22 2 0 2
2Nblocks 313 3 0 1

... −1 · · · · · · −1
(Nprocs − 1)Nblocks + 1 21 2 0 2

... ∗ ∗ ∗ · · · · · · ∗ ∗ ∗
NprocsNblocks 1 1 0 2

Figure A.2: Example of the light data structure in WABBIT,
to be compared with Fig. 3.1. For each tree, lgt_active stores
a light-ID list of all active blocks. With the blocks light-ID
(lgt_id) all parameters in the forest (tree code, tree-ID, tree
level, refinement status) can be accessed, from the corresponding
row in lgt_block. Note that the order of the light-ID depends
on the process rank.



A.3. Technical Details and Supplementary Material 174

Figure A.3: CPU-time required for the individual steps of the
wPOD algorithm described in Section 3.2.2. The CPU-time is
shown for three different cases: 1.) the synthetic test case from
Section 3.3.1 computed with Jmax = 5 and ϵ = 1.3 × 10−4 on
a Intel Core i5-7200U cpu (blue), 2.) the flow past a cylinder
data Section 3.3.2 computed with ϵ = 1.3× 10−4 on Intel Xeon
E5645 cpus (orange) and 3.) the bumblebee data of Section 3.3.2
with ϵ = 1.3 × 10−4 using Intel Xeon Gold 6142 cpus (green).
The comparison of the individual cases should be conducted
with care, since they have been computed on different hard-
ware and the data-structure (number of snaphots, blocks, block
size, spatial dimension etc.) is different. Therefore, the compu-
tational costs of MPI communication overhead, block adminis-
tration may vary. However, the overall proportions between the
individual steps of the algorithm are comparable among the test
cases.
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Figure A.4: First, three sparse modes ψϵ
k (k = 1 upper left,

k = 2 upper right, k = 3 bottom left) with their corresponding
amplitudes aϵ

k(ti) computed with ϵ = 1.0× 10−2 and one dense
(ϵ = 0) mode ψϵ

3 for comparison (bottom, right). Each figure
shows the modes “vorticity" (labeled by ∇×v), computed from
the two velocity components of the modes, and the pressure
component (labeled by p). Note that the first mode represents
the base flow, which is non oscillating, whereas the other modes
always have an oscillating structure, with a frequency increasing
with the mode number. When comparing the dense mode ψϵ

3
of the non-adaptive case in the lower right of Fig. A.4 with the
adapted modes on the lower left, no qualitative differences can
be observed, except the local changes in the resolution.



B Appendix: Front Transport Reduction

B.1 Details on the Autoencoders Network Archi-
tecture and Training Hyperparameters

In this section, we provide detailed information on the architecture and
training hyperparameters for the autoencoder networks. For both au-
toencoder variants (NN and FTR-NN), the encoder architecture genc :
RM → Rr is the same. Its task is to encode the spatial field q ∈ RM

into a latent space a ∈ Rr. It consists of four convolutional layers, each
followed by a ELU activation and a batch normalization layer. After
flattening the output, two fully connected layers follow, with another
ELU activation and batch normalization layer in between. The output
of the second fully connected layer represents the latent space with r
degrees of freedom and it is not activated. A summary of the encoder
architecture is listed in Table B.1. The decoder, gdec : Rr → RM maps
the latent representation back to the spatial domain.

There are two different decoders used in this thesis labeled NN and
FTR-NN autoencoder. The NN decoder mirrors the encoder archi-
tecture, using transposed convolutional layers instead of convolutional
layers. The FTR-NN decoder consists of only a single fully connected
layer with no bias with M (number of grid points) output channels.
It applies a simple Matrix multiplication Wa, where a is the vector
with the latent representations and W is the learnable weight matrix
of the layer. Next, the resulting output ϕ = Wa is reshaped into the
spatial domain. In analogy to the FTR ansatz q ≈ q̃ = f(ϕ), both
networks are activated with the physics dependent front function f in
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the output layer. The layer details for both decoder networks are listed
in Table B.2.

After splitting the data into a training and a test set, each network was
trained using the ADAM optimizer with a learning rate of 0.0025 for
up to 2 ·104 iterations, using all training samples as input batch. Every
500 iterations, the performance is tested on the test set. The network
parameters that yield the best test results are saved.

F
T

R
-N

N

λsmooth = 10−3 λsmooth = 10−6 λsmooth = 10−9

0

100

200

N
N

−50

0

Figure B.1: Color plot of one snapshot of the FTR-NN and
NN level set field ϕ using three degrees of freedom and dif-
ferent smoothness strength λsmooth. The smoothness parame-
ter λsmooth controls the strength of the smoothness constraint
Eq. (4.10).
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Layer Details
Input Output Kernel

channels channels Size Stride

Input of q (M grid points) 1
2D Convolution 1 8 5 1
ELU + 2D BatchNorm
2D Convolution 8 16 5 2
ELU + 2D BatchNorm
2D Convolution 16 32 5 2
ELU + 2D BatchNorm
2D Convolution 32 16 5 2
ELU + 2D BatchNorm
Flatten Spatialy

Fully Connected 16 · M̃ 512
ELU + 1D BatchNorm
Fully Connected 512 r
Output of latent representation a r

Table B.1: Encoder network details. M̃ describes the number
of remaining spatial grid points after all convolutional layers are
applied. Each convolutional layer reduces the spatial resolution
in each spatial direction by Nout = (Nin − kernel size) /stride+1

.
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Layer Details
Input Output Kernel

channels channels Size Stride

Input of latent representation a r
Fully Connected r 512
ELU + 1D BatchNorm
Fully Connected 512 16 · M̃
ELU
Unflatten Spatialy 16

2D BatchNorm
2D Transposed Convolution 16 32 5 2
ELU + 2D BatchNorm
2D Transposed Convolution 32 16 5 2
ELU + 2D BatchNorm
2D Transposed Convolution 16 8 5 2
ELU + 2D BatchNorm
2D Transposed Convolution 8 1 5 1
Output of ϕ (M grid points)

Table B.2: NN decoder network details

B.2 Simulation Details of the 1D Advection and
Reaction-Diffusion PDE

In this section, we give additional details on the two PDE-examples
with analytical solution. Namely, the PDE-example for

advection
{︄

0 = ∂tq − u(t)∂xq

q(x, t) = f(|x− u(t)| − 2)
, (B.1)

shown in Fig. 5.3 and

reaction-diffusion

⎧⎨⎩0 = ∂tq − ∂xxq + 8
µ2 q

2(q − 1)
q(x, t) = f( |x|−2−t/µ

µ )
. (B.2)

In both examples, we use central finite difference of 6th order with
periodic boundary conditions and an explicit Runge-Kutta integra-
tion method of 5th(4th) order for adaptive time stepping of the FOM
and ROM ODE-system [40]. The numerical parameters for the FTR-
decomposition and discretization are stated in Table B.3.
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property advection reaction-diffusion
FOM- parameters
Simulation time T 2.5 1
Domain D [−20, 20] [−15, 15]
Grid resolution M 1000 4000
ROM- parameters
Number of snapshots 202 202
FTR iterations 3000 8000
FTR step width τ 1 4
front function f(x) 0.5(1− tanh(2.5x)) 0.5(1− tanh(x))

Table B.3: Parameters of the 1D advection and reaction-
diffusion simulations and the decomposition procedure (Algo-
rithm 2)



C Appendix: Shifted POD

C.1 Shift Transformations

The discrete transformation (TGQ)ij = q(G(xi, tj)) is realized with
help of the snapshot matrix:

Q =
[︂
q(t1), . . . , q(tNt)

]︂
∈ RM×Nt , with

q(t) = [q(x1, t), . . . , q(xM , t)]⊤ ∈ RM .

We assume an equidistant, periodic grid with lattice spacing h and use
the shorthand notation qi = q((i − 1)h, t). For optimal performance
of the sPOD algorithm TGQ = [TG(·,t1)q(t1), . . . , TG(·,tNt )q(tNt)] is im-
plemented as Nt sparse matrix multiplications, on the columns of Q.
The Nt matrices are set up prior to the algorithm.

In the co-moving frame, the transformed field at the position xi cor-
responds to x̃ = G(xi, t) in the reference frame. As x̃ can lie between
sampled grid points (see Fig. C.1), we have to interpolate them. There-

10-1 2
qpqp−1 qp+1 qp+2

G(xi, t)

∆p

Figure C.1: Interpolation of the transformed grid values
G(xi, t) with polynomial order n = 3.
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fore, we make use of the Lagrangian basis polynomials:

Lj =
(n+1)/2∏︂

k=(1−n)/2,
k ̸=j

∆p− k
j − k

∆p = x̃

h
− p (C.1)

with p =
⌊︂

x̃
h

⌋︂
. The interpolated value at the new position is therefore:

Inq(G(xi, t)) =
(n+1)/2∑︂

j=(1−n)/2
qp+jLj . (C.2)

The most simple case of a shift transformation G(xi, t) = (xi +∆x(t), t)
results in the index p =

⌊︂
xi+∆x

h

⌋︂
= (i− 1) +

⌊︂
∆x
h

⌋︂
. The corresponding

transformation matrix T∆x ∈ RM×M for n = 3 is therefore:

T
∆x =

1
⌊︁

∆x
h

⌋︁
M⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Note that the lower diagonals are the result of the periodic continuation
of the lattice. In two spatial dimensions G(x, y, t) = (x + ∆x(t), y +
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∆y(t), t), the shift matrix is a Kronecker product of T∆x and T∆y :

TG(q) = T∆x ⊗ T∆y ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qk
1,1
...

qk
Mx,1
qk

1,2
...

qMx,My

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ζ. (C.3)

Here qk
ij = qk((i − 1)h, (j − 1)h, t), i = 1, . . . ,Mx, j = 1, . . . ,My is a

2D field in a rectangular domain, with equal lattice spacing h and ζ
is the error term. In one spatial dimension, the ith component of the
interpolation error vector ζ is given by [14]

ζi = q(x̃, t)− [T∆xq]i =
∂

(n+1)
ξ q(ξ, t)
(n+ 1)!

(n+1)/2∏︂
j=(1−n)/2

(∆p− j)h

⏞ ⏟⏟ ⏞
w(∆p)··=

(C.4)

for some ξ ∈ h[p − n−1
2 , p + n+1

2 ] at the shifted position x̃ = G(xi, t).
Here, we use the shorthand notation ∂(k)

ξ q = ∂kq
∂ξk for the partial deriva-

tive of order k. Hence, for the maximums norm of the error vector at
time instance t, we obtain

⃦⃦⃦
ζ
⃦⃦⃦

∞
≤ max

ξ∈D

⃓⃓⃓
∂

(n+1)
ξ q(ξ, t)

⃓⃓⃓
(n+ 1)! max

∆p∈[0,1]
|w(∆p)| (C.5)

and correspondingly for the whole shifted snapshot set QG = [q(G(xi, tj))]ij :

E ··= QG − TGQ (C.6)

∥E∥∞ ≤ max
(ξ,t)∈D×[0,T ]

⃓⃓⃓
∂

(n+1)
ξ q(ξ, t)

⃓⃓⃓
(n+ 1)! max

∆p∈[0,1]
|w(∆p)| (C.7)

with

max
∆p∈[0,1]

|w(∆p)| =

⎧⎪⎪⎨⎪⎪⎩
1
4h

2 for n = 1
9
16h

4 for n = 3
225
64 h

6 for n = 5 .
(C.8)
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Figure C.2: Singular values of the u1 and u2 snapshot matrix
of the decoupled two cylinder system.
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Reduced order modeling aims to approximate large and complex dy-
namical systems with smaller ones to reduce simulation costs in the
design or control processes of these systems. Standard linear mode-
based model order reduction (MOR) can fail for transport dominated
fluid systems (TDFS), because the underlying transport is often inher-
ently non-linear. However, given that, in case of TDFS, the transported
quantity changes slowly with respect to the advection speed, only few
degrees of freedom (DOF) are required if the system is parametrized in
a reference frame that moves with the transported quantity. This the-
sis aims to improve MOR of TDFS by implementing well adapted non-
linear coordinate transformations that take the transport of the systems
into account. The first part of this thesis addresses non-linear adaptive
wavelet-filtering of flow systems to adjust the computational resources
to the co-moving reference frame, already when generating the data.
To enable MOR with the utilized adaptive data structure, a wavelet-
based adaptive version of the proper orthogonal decomposition (POD)
is proposed that balances error contributions of wavelet compression
and POD truncation. The second part addresses non-linear reduction
methods that compensate the transport by a shift or with help of an
auxiliary field parametrizing the transport. Compared to the POD, the
new methods allow for efficient decomposition of TDFS with only few
DOF, while providing better physical insight into the system compared
to neural autoencoder networks. The presented methodology enables
the decomposition of reactive systems with topologically changing front
structure, such as splitting or merging reaction fronts, that pose diffi-
culties for many non-linear reduction methods. The last part studies
the ability of the non-linear reduction methods to predict new system
states using intrusive and non-intrusive reduced order models. In the
case of the latter, manifold Galerkin projections with a tailored hyper-
reduction strategy are utilized, enabling rapid simulations of reactive
flows. Given that reactive systems are considered challenging for clas-
sical MOR applications, this contribution is an essential building block
for future applications.
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