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Abstract
Perceptual quality is one of the key aspects of modern multimedia communication systems.

Nevertheless, the questions of how to reliably assess quality as perceived by humans, how to

computationally estimate perceived quality and how to incorporate computational models

of quality in multimedia systems can still not be answered satisfactorily, despite decades of

research. However, these problems are connected, because multimedia systems are typically

evaluated in quality assessment studies, the outcome of quality assessment studies informs

the design of computational quality models and computational quality models are in turn

used for the optimization of multimedia systems.

This dissertation contributes to the current state of research in several ways. First, a novel

neural network-based end-to-end optimized model for image quality estimation is proposed.

The proposed method achieves prediction performance that is superior to the state-of-the-art

for no-reference as well as for full-reference quality estimation.

The second contribution is a formal definition of distortion sensitivity that leads to the deriva-

tion of a computationally graceful, perception-based adaptation that can be applied to any

given quality model. The proposed framework relates the functional psychometric outcome

of quality assessment to a local weighting that can be used to improve the accuracy of quality

estimation. A neural network-based method for estimating local weights is proposed and

evaluated for the estimation of image quality.

In a third contribution, the concept of distortion sensitivity is transferred to rate-distortion

theory for lossy compression. A perceptual bit allocation scheme for block-based video com-

pression is derived and experimentally evaluated for compression of still images. Significant

bit rate savings are achieved compared to the state of the art, at identical perceptual quality .

However, the results suggest that the performance of data-driven quality models crucially

depends on the availability of labeled training data. It is shown that, for generating such

data, conventional psychophysical assessment of perceived quality inherently suffers from

several flaws. Thus, in a fourth contribution, a neurophysiological quality assessment method

based on steady-state visual evoked potentials is proposed. The proposed assessment method

achieves significant correlations to conventionally obtained quality scores. Extracted neural

markers of quality are statistically equivalent to MOS values in a linear prediction model. This

paves the way towards novel neurophysiological methods for reliable assessment of visual

quality.
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Zusammenfassung

Wahrgenommene Qualität ist ein Schlüsselaspekt moderner Multimediakommunikationssys-

teme. Jedoch sind die Fragen, wie man zu verlässlichen Qualitätsurteilen kommt, wie man

Qualität der menschlichen Wahrnehmung entsprechend computergestützt schätzen kann,

und wie man computergestützte Modelle für Qualität in Multimediasystemen verwenden

kann trotz langjähriger Forschung nicht zufriedenstellen geklärt. Die genannten Fragestel-

lungen sind eng miteinander verknüpft, denn typischerweise werden Multimediasysteme

auf der Basis von Qualitätsbewertungen durch Menschen evaluiert, die Ergebnisse solcher

Qualitätsuntersuchungen werden für den Entwurf rechnergestützter Qualitätsmodelle genutzt

und diese rechnergestützten Qualitätsmodelle dienen schließlich wiederum der Optimierung

von Multimediasystemen.

Diese Dissertation trägt in mehrfacher Hinsicht zur aktuellen Forschung bei. Der erste Beitrag

dieser Arbeit ist der Entwurf eines neuen, auf einem neuronalen Netz basierenden und Ende-

zu-Ende optimierten rechnergestützten Models zur Bildqualitätsschätzung. Die Vorhersage-

genauigkeit der vorgeschlagenen Methode übertrifft die anderer, dem Stand der Technik

entsprechender Methoden, dies sowohl in Kenntnis als auch in Unkenntnis des Referenz-

bildes. Der zweite Beitrag der Arbeit ist die formale Definition von Störungsempfindlichkeit,

die zur Herleitung eines rechnerisch vorteilhaften Qualitätsmodells führt. Der vorgeschla-

gene konzeptionelle Rahmen verknüpft die funktional-psychometrische Beschreibung von

Qualitätswahrnehmung mit einer lokalen Gewichtung zur perzeptuellen Anpassung von

gegebenen Qualitätsmodellen. Zur Schätzung lokaler Gewichte für die Qualitätsvorhersage

wird eine auf einem neuronalen Netz basierende Methode vorgestellt und untersucht.

In einem dritten Beitrag wird das Konzept der Störungssensitivität auf die Rate-Verzerrungs-

Theorie der verlustbehafteten Kompression übertragen. Ein Schema zur perzeptuellen Bital-

lokation in blockbasierter Videokompression wird hergeleitet und am Beispiel der Stand-

bildkompression experimentell untersucht. Bei gleicher perzeptueller Qualität werden im

Vergleich zum Stand der Technik deutliche Bitratengewinne gezeigt.

Dennoch legen die Ergebnisse nahe, dass die Leistungsfähigkeit von datengetriebenen Qual-

itätsmodellen maßgeblich von der Verfügbarkeit annotierter Trainingsdaten abhängt. Es

wird jedoch gezeigt, dass konventionelle psychophysikalische Qualitätsbewertungsmetho-

den inhärente Nachteile aufweisen. Deshalb wird in einem vierten Beitrag eine elektroen-

zephalographische Qualitätsbewertungsmethode entwickelt, die auf zustandsstabilen visuell

evozierten Potentialen beruht. Die vorgestellte Methode zeigt signifikante Korrelationen zu

konventionell ermittelten Qualitätsurteilen. Extrahierte neurale Marker wahrgenommener

ix



Qualität sind in einem einfachen linearen Prädiktionsmodell statistisch nicht von MOS-Werten

zu unterscheiden. Dies zeigt einen Weg zu neuartigen neurophysiologischen Methoden für

die Beurteilung von visueller Qualität auf.
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1 Introduction

1.1 Overview

Multimedia services are an integral part of modern society and digital communication shapes

the way we learn and teach, work and entertain, interact and cooperate. Services and applica-

tions such as video streaming, video conferencing, social media, and connected devices such

as smart phones and tablets are ubiquitous, and emerging technologies, such as virtual reality

(VR) and augmented reality (AR) are becoming more and more important. Video is a core

modality of all of these multimedia applications and the amount of visual signals captured,

stored, transmitted and consumed is tremendous: In 2013, about 660 billion pictures were

taken, and this number almost doubled to 1.2 trillion pictures in 2017 and is predicted to grow

even further [Statistica, 2017]; in 2016, images and videos accounted for 74% of all consumer

internet traffic, and, with a growth of 31%, is predicted to rise to 82% of all consumer internet

traffic [Cisco, 2017].

Because multimedia signals are consumed mostly by humans, visual quality is crucial to

overall user satisfaction. However, for transmission and storage at bit rates suitable for to-

day’s channels and memory devices, these signals are digitized and potentially compressed.

Compression algorithms achieve bitrate reduction by redundancy reduction and irrelevance

reduction. While the former exploits statistical structures in the visual signal and is losslessly

reversible by the receiver, the latter removes actual information from the signal, that cannot

be recovered by the receiver. The information loss introduces distortions to the signal. If the

removed information is in fact not irrelevant, these distortions become visible to humans. To

efficiently control the trade-off between bit rate and distortion, it is crucial to measure the

perceived impairments [Wiegand and Schwarz, 2016].

The measurement of perceived impairments, or, reversely termed: perceived quality, is not

only essential for the operation of compression algorithms, but also for benchmarking and

monitoring the performance of multimedia systems or parts thereof [Wang, 2011].

However, the seemingly easy problem of measuring perceived quality can present astonish-

ingly difficult challenges. While individual humans are very fast and typically very confident
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about their subjective quality judgment, the reliable and robust assessment of quality holds

many pitfalls and computational estimation of quality as perceived by humans is surprisingly

challenging. Despite decades of research on the topic, assessment methods are still debated,

prediction approaches are far from being satisfactory and a definite quantitative model for

quality is not forthcoming.

In this thesis, perceptual quality is investigated from three complementary perspectives

and 1. novel data-driven methods for computational quality estimation are developed, 2. a

new psychophysiological approach to quality assessment is proposed, and 3. a data-driven

computational quality model is applied to perceptually optimized image compression. Under

the premise that quality in multimedia is nothing more than perceptual quality, if not stated

differently, the term quality will always denote perceptual quality.

1.2 Outline of the Thesis

The thesis is structured as follows:

Chapter 2 introduces the concept of quality in multimedia, describes psychophysical quality

assessment and discusses its shortcomings. After a short introduction to psychophysiology,

several measurement methods are introduced and motivated as a solution for overcoming

these shortcomings.

Chapter 3 discusses computational approaches to the estimation of quality, introduces the

concept of end-to-end data-driven quality assessment, and reviews the state-of-the-art quality

estimation method. Image quality databases and performance metrics are presented.

Chapter 4 proposes novel end-to-end trained methods for full-reference (FR) and no-reference

(NR) image quality prediction. The performance of the methods are improved by incorporating

a jointly optimized spatially weighted pooling strategy. The superior performance of the

proposed methods is benchmarked and compared to other state-of-the-art methods.

Chapter 5 introduces the concept of distortion sensitivity in quality estimation, derives a

functional psychometrical definition and proposes a data-driven approach for its estimation.

The resulting method for quality estimation is evaluated. Moreover, it is shown how the

concept bridges from the psychometrical description of quality to perceptually efficient bit

allocation in image and video compression. The superior performance of the proposed bit

allocation scheme is shown in an image compression context.

Chapter 6 studies the use of steady-state visual evoked potential (SSVEP) for neurophysiologi-

cal image quality assessment. For unsupervised extraction of meaningful spatial components

from the electroencephalography (EEG) data, spatio-spectral decomposition (SSD) is reformu-

lated in the frequency domain to allow for direct application to SSVEPs. A statistical screening

method for rejecting unreliable subjects is proposed. The proposed methods show comparable

results to psychophysical quality assessment.
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Chapter 7 concludes the thesis with a summary and discussion of the presented results and

gives an outlook on future work.

1.3 Publications

The following list contains all contributions broadly related to this thesis made by the author

to the scientific literature in the fields of image and video compression, quality estimation and

quality assessment.

Journal Articles

Bosse, S., Becker, S., Müller, K.-R., Samek, W., and Wiegand, T. (2018d). Estimation of distortion

sensitivity for visual quality prediction using a convolutional neural network. Digital Signal

Processing, submitted

Bosse, S., Arndt, S., Engelke, U., Martini, M., Ramzan, N., and Brunnström, K. (2018a). The

VQEG testplan for psychophysiological video quality assessment. Quality and User Experience,

submitted

Bosse, S., Maniry, D., Müller, K.-R., Wiegand, T., and Samek, W. (2018e). Deep neural networks

for no-reference and full-reference image quality assessment. IEEE Transactions on Image

Processing, 27(1):206–219

Reisenhofer, R., Bosse, S., Kutyniok, G., and Wiegand, T. (2018). A Haar wavelet-based percep-

tual similarity index for image quality assessment. Signal Processing: Image Communication,

61:33–43

Bosse, S., Acqualagna, L., Samek, W., Porbadnigk, A. K., Curio, G., Blankertz, B., Müller, K.-R.,

and Wiegand, T. (2017a). Assessing perceived image quality using steady-state visual evoked

potentials and spatio-spectral decomposition. IEEE Transactions on Circuits and Systems for

Video Technology, 8215(c):1–1

Engelke, U., Darcy, D., Mulliken, G., Bosse, S., Martini, M., Arndt, S., Antons, J.-N., Chan, K.,

Ramzan, N., and Brunnström, K. (2017). Psychophysiology-Based QoE Assessment: A Survey.

IEEE Journal of Selected Topics in Signal Processing, 11(1):6–21

Avarvand, F. S., Bosse, S., Müller, K.-R., Schäfer, R., Nolte, G., Wiegand, T., Curio, G., and Samek,

W. (2017a). Objective quality assessment of stereoscopic images with vertical disparity using

EEG. Journal of Neural Engineering, 14(4):046009

Acqualagna, L., Bosse, S., Porbadnigk, A. K., Curio, G., Müller, K.-R., Wiegand, T., and Blankertz,

B. (2015). EEG-based classification of video quality perception using steady state visual evoked
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potentials (SSVEPs). Journal of Neural Engineering, 12(2):026012 (Shared First Authorship)

Scholler, S., Bosse, S., Treder, M. S., Blankertz, B., Curio, G., Müller, K.-R., and Wiegand, T.

(2012). Toward a direct measure of video quality perception using EEG. IEEE Transactions on

Image Processing, 21(5):2619–29

Peer-Reviewed Contributions to Conferences

Bosse, S., Becker, S., Fisches, Z., Samek, W., and Wiegand, T. (2018c). Neural network-based

estimation of distortion sensitivity for image quality prediction. In Proceeding of the IEEE

International Conference on Image Processing (ICIP), accepted for publication

Bosse, S., Bagdasarian, M., Samek, W., Curio, G., and Wiegand, T. (2018b). On the stimulation

frequency in SSVEP-based image quality assessment. In 10th International Conference on

Quality of Multimedia Experience (QoMEX), accepted for publication

Bosse, S., Siekmann, M., Samek, W., and Wiegand, T. (2017c). A perceptually relevant shearlet-

based adaptation of the PSNR. In Proceedings of the IEEE International Conference on Image

Processing (ICIP), pages 315–319

Shahbazi, F., Bosse, S., Nolte, G., Wiegand, T., and Samek, W. (2017). Quality assessment of

3D visualizations with vertical disparity: An ERP approach. In Proceedings of the Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages

4391–94

Avarvand, F. S., Bosse, S., Nolte, G., Wiegand, T., and Samek, W. (2017b). Measuring the quality

of 3D visualizations using EEG: A time-frequency approach. In Proceedings of the 7th Graz

Brain-Computer Interface Conference, pages 441–446. Verlag der TU Graz

Bosse, S., Siekmann, M., Rasch, J., Wiegand, T., and Samek, W. (2016e). Quality assessment of

image patches distorted by image Compression using crowdsourcing. In Proceedings of the

IEEE International Conference on Multimedia and Expo (ICME), pages 1–6

Bosse, S., Maniry, D., Müller, K.-R. R., Wiegand, T., and Samek, W. (2016b). Neural network-

based full-reference image quality assessment. In Proceedings of the Picture Coding Symposium

(PCS), pages 1–5

Bosse, S., Chen, Q., Siekmann, M., Samek, W., and Wiegand, T. (2016a). Shearlet-based reduced

reference image quality assessment. In Proceeding of the IEEE International Conference on

Image Processing (ICIP), pages 2052–2056

Bosse, S., Maniry, D., Wiegand, T., and Samek, W. (2016c). A deep neural network for image

quality assessment. In Proceedings of the IEEE International Conference on Image Processing
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(ICIP), pages 3773–3777

Bosse, S., Müller, K.-R., Wiegand, T., and Samek, W. (2016d). Brain-computer interfacing for

multimedia quality assessment. In Proc. of the IEEE International Conference on Systems, Man,

and Cybernetics (SMC), pages 2834–2839

Dias, A. S., Siekmann, M., Bosse, S., Schwarz, H., Marpe, D., and Mrak, M. (2015b). Rate-

distortion optimised quantisation for HEVC using spatial just noticeable distortion. In Pro-

ceedings of the European Signal Processing Conference (EUSIPCO), pages 110–114

Dias, A., Schwarz, S., Siekmann, M., Bosse, S., Schwarz, H., Marpe, D., Zubrzycki, J., and Mrak,

M. (2015a). Perceptually Optimised Video Compression. In IEEE International Conference on

Multimedia and Expo Workshops (ICMEW), pages 1–4

Bosse, S., Acqualagna, L., Porbadnigk, A., Blankertz, B., Curio, G., Müller, K.-R., and Wiegand,

T. (2014). Neurally informed assessment of perceived natural texture image quality. In

Proceedings of IEEE International Conference on Image Processing (ICIP), pages 1987–1991

Other Contributions to Conferences

Bosse, S., Acqualagna, L., Porbadnigk, A. K., Curio, G., Müller, K.-R., Blankertz, B., and Wiegand,

T. (2015). Neurophysiological assessment of perceived image quality using steady-state visual

evoked potentials. In Applications of Digital Image Processing XXXVIII, volume 9599, pages

959914–959914

Contributions to Standardization

Bosse, S., Helmrich, C., Schwarz, H., Marpe, D., and Wiegand, T. (2017b). Perceptually opti-

mized QP adaptation and associated distortion measure. In Joint Video Exploration Team

(JVET) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-H0047, Macao, China

1.4 Additional Publications

For the sake of completeness, the following list contains additional contributions that are less

related to this thesis.

Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H.,

Merkle, P., Rhee, F. H., Tech, G., Winken, M., and Wiegand, T. (2013). 3D high-efficiency

video coding for multi-view video and depth data. IEEE Transactions on Image Processing,

22(9):3366–3378

Marpe, D., Schwarz, H., Bosse, S., Bross, B., Helle, P., Hinz, T., Kirchhoffer, H., Lakshman, H.,

Nguyen, T., Oudin, S., Siekmann, M., Suhring, K., Winken, M., and Wiegand, T. (2010b). Video
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compression using nested quadtree structures, leaf merging, and improved techniques for

motion representation and entropy coding. IEEE Transactions on Circuits and Systems for

Video Technology, 20(12):1676–1687

Peer-Reviewed Contributions to Conferences

Schwarz, H., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Müller, K.,

Rhee, H., Tech, G., Winken, M., Marpe, D., and Wiegand, T. (2012b). Extension of High Effi-

ciency Video Coding (HEVC) for multiview video and depth data. In Proceedings of the IEEE

International Conference on Image Processing (ICIP), pages 205–208

Schwarz, H., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Marpe, D., Merkle, P.,

Müller, K., Rhee, H., Tech, G., Winken, M., and Wiegand, T. (2012a). 3D video coding using

advanced prediction, depth modeling, and encoder control methods. In Picture Coding

Symposium (PCS), pages 1–4

Bosse, S., Schwarz, H., Hinz, T., and Wiegand, T. (2012). Encoder control for renderable regions

in high efficiency multiview video plus depth coding. In Picture Coding Symposium (PCS),

pages 129–132

Marpe, D., Schwarz, H., Wiegand, T., Bosse, S., Bross, B., Helle, P., Hinz, T., Kirchhoffer, H.,

Lakshman, H., Nguyen, T., Oudin, S., Siekmann, M., Sühring, K., and Winken, M. (2011).

Improved video compression technology and the emerging high efficiency video coding

standard. In Proc. of the IEEE International Conference on Consumer Electronics (ICCE), pages

52–56

Winken, M., Marpe, D., Schwarz, H., Wiegand, T., Boße, S., Bross, B., Helle, P., Hinz, T., Kirch-

hoffer, H., Lakshman, H., Nguyen, T., Oudin, S., Siekmann, M., and Sühring, K. (2011). Highly

efficient video coding based on quadtree structures, improved motion compensation, and

probability interval partitioning entropy coding. In Proc. of the ITG Conference on Electronic

Media Technology, CEMT

Siekmann, M., Bosse, S., Schwarz, H., and Wiegand, T. (2010). Separable Wiener filter based

adaptive in-loop filter for video coding. In Picture Coding Symposium (PCS), pages 70–73

Marpe, D., Schwarz, H., Bosse, S., Bross, B., Helle, P., Hinz, T., Kirchhoffer, H., Lakshman, H.,

Nguyen, T., Oudin, S., Siekmann, M., Sühring, K., Winken, M., and Wiegand, T. (2010a). Highly

efficient video compression using quadtree structures and improved techniques for motion

representation and entropy coding. In Picture Coding Symposium (PCS), pages 206–209

Contributions to Standardization

Albrecht, M., Bartnik, C., Bosse, S., Brandenburg, J., Bross, B., Erfurt, J., George, V., Haase, P.,

Helle, P., Helmrich, C., Henkel, A., Hinz, T., de Luxan Hernandes, S., Kaltenstadler, S., Keydel,
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P., Kirchhoffer, H., Lehmann, C., Lim, W.-Q., Ma, J., Maniry, D., Marpe, D., Merkle, P., Nguyen,

T., Pfaff, J., Rasch, J., Rischke, R., Rudat, C., Schaefer, M., Schierl, T., Schwarz, H., Siekmann, M.,

Skupin, R., Stallenberger, B., Stegemann, J., Suehring, K., Tech, G., Venugopal, G., Walter, S.,

Wieckowiski, A., Wiegand, T., and Winken, M. (2018). Description of SDR, HDR and 360° video

coding technology proposal by Fraunhofer HHI. In Joint Video Exploration Team (JVET) of

ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-J0014, San Diego, CA, USA

Schwarz, H., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Marpe, D., Merke, P.,

Müller, K., Rhee, H., Tech, G., Winken, M., and Wiegand, T. (2011a). Description of 3D video

coding technology proposal by Fraunhofer HHI (HEVC compatible configuration B). In MPEG

Meeting ISO/IEC JTC1/SC29/WG11, Doc. MPEG11/M22571, Geneva, Switzerland

Schwarz, H., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Marpe, D., Merke, P.,

Müller, K., Rhee, H., Tech, G., Winken, M., and Wiegand, T. (2011b). Description of 3D video

coding technology proposal by Fraunhofer HHI (HEVC compatible configuration A),. In MPEG

Meeting ISO/IEC JTC1/SC29/WG11, Doc. MPEG11/M22570, Geneva, Switzerland

Schwarz, H., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Marpe, D., Merke, P.,

Müller, K., Rhee, H., Tech, G., Winken, M., and Wiegand, T. (2011c). Description of 3D video

coding technology proposal by Fraunhofer HHI (MVC compatible). In MPEG Meeting ISO/IEC

JTC1/SC29/WG11, Doc. MPEG11/M22569, Geneva, Switzerland

Stefanoski, N., Espinosa, P., Wang, O., Lang, M., Smolic, A., Bosse, S., Farre, M., Müller, K.,

Schwarz, H., Winken, M., and Wiegand, T. (2011). Description of 3D video coding technol-

ogy proposal by Disney research Zurich and Fraunhofer HHI,. In MPEG Meeting - ISO/IEC

JTC1/SC29/WG11, Doc. MPEG11/M22668, Geneva, Switzerland

Merke, P., Jäger, F., Bosse, S., and Müller, K. (2011). HEVC Anchors and Target Bit Rates for 3DV

CfP. In MPEG Meeting - ISO/IEC JTC1/SC29/WG11, Doc. MPEG11/M21217, Turin, Italy

Winken, M., Bosse, S., Benjamin, B., Helle, P., Hinz, T., Kirchoffer, H., Lakshman, H., Marpe,

D., Oudin, S., Preiss, M., Schwarz, H., Siekmann, M., Sühring, K., and Wiegand, T. (2010).

Description of video coding technology proposal by Fraunhofer HHI. In Joint Collaborative

Team on Video Coding, JCTVC-A116, Dresden, Germany
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2 Perceptual Quality and Its Assessment

In most technical systems quality is typically and ultimately evaluated by humans. Hence, and

as opposed to computational quality estimation, human quality assessment constitutes the

ground truth of quality. This chapter discusses different aspects of quality assessment with

emphasis on visual quality and visual quality assessment. Following a definition of quality,

psychometric approaches of quality assessment are revisited; a critical discussion reveals

several conceptual flaws and practical problems of these conventional approaches. A brief

introduction into neurophysiology and EEG provides the foundation to survey the state of the

art in psychophysiological quality assessment.

Several thoughts, examples and arguments in this chapter have been published earlier in

Bosse, S., Müller, K.-R., Wiegand, T., and Samek, W. (2016d). Brain-computer interfacing for

multimedia quality assessment. In Proc. of the IEEE International Conference on Systems, Man,

and Cybernetics (SMC), pages 2834–2839 ©2016 IEEE

and

Engelke, U., Darcy, D., Mulliken, G., Bosse, S., Martini, M., Arndt, S., Antons, J.-N., Chan, K.,

Ramzan, N., and Brunnström, K. (2017). Psychophysiology-Based QoE Assessment: A Survey.

IEEE Journal of Selected Topics in Signal Processing, 11(1):6–21 ©2017 IEEE.

2.1 Perceptual Quality

The concept of quality is easy to understand but difficult to define1. In multimedia technology

it is typically used to capture one aspect of the performance of a system or service. A widely

used definition [Callet et al., 2012] specifies quality as ”[...] the outcome of an individual’s

comparison and judgment process [...] in terms of the evaluated excellence or goodness, of the

degree of need fulfillment, and in terms of a ’quality event’ ”, where a quality event is ”[a]n

observable occurance”, e.g. a multimedia signal. Factors driving this judgment process are

1”I know it when I see it”–Potter Stewart.
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manifold and not all of them, such as situational or socio-cultural contexts [Garcia et al., 2014],

can be controlled for by means of technology. However, other factors have a clear relation with

the quality event. For visual quality, e.g., resolution, frame rate or visibility and compression

artifacts play a crucial role [Garcia et al., 2014]. Quality of multimodal, e.g. audiovisual, signals

is strongly related to the independent qualities of the individual monomodal signals but less

so to factorial multimodal interactions [Hands, 2004, You et al., 2010]. The outcome of this

judgment process is not binary, as humans can conceive of quality as a gradual quantity (the

goodness of the previously quoted definition) and differentiate different levels of quality.

Obviously, quality is a perceptual quantity [Garcia et al., 2014], and the outcome of sensorial,

perceptual and cognitive processes. These comprise low-level and high-level processing,

such as contrast sensitivity or attention for visual signals [Palmer, 1999]. However, quality

perception is a conscious experience made on the basis of these preceding sensorial and

cognitive processes and that results in a judgment on a signal. With the exception of extreme

cases where impairments might destroy semantic information, this judgment does not carry

any information about the content of the signal itself and in natural viewing situations quality

is typically not explicitly attended to. The precise interactions between different perceptual

processes are still unclear [Palmer, 1999] and it is even more unknown how exactly these

processes lead to the perception of quality in the case of multimodal stimuli. Moreover, the

internal reference used for comparison when arriving at a quality judgement is still unknown.

However, despite these conceptual difficulties, quality needs to be quantified for the evaluation

of technical systems or services. The next section outlines psychophysical approaches to

quality assessment that are widely used.

2.2 Psychophysical Assessment of Perceptual Quality

Due to the lack of satisfactory models for perception and quality formation the reliable assess-

ment of perceptual quality builds on psychophysical judgement tests. In these tests a human

observer is presented with a signal and is asked to give an overt judgement response based

on the quality of the presented signal. The stimulus conditions presented in quality tests are

defined by the types of impairment, the magnitude of impairment and the source reference

signal. The magnitude of impairment is typically controlled for by an objective parameter,

such as e.g. the quantization parameter (QP), the bitrate or the peak signal-to-noise ratio

(PSNR) for the evaluation of video compression schemes.

In order to allow for meaningful and reproducible test results, procedures for psychophysical

quality assessment are defined by various recommendations of the International Telecommu-

nication Union (ITU) for different signal modalities and systems. Two prominent and widely

referenced examples of these recommendations are are concerned with the assessment of

visual quality [ITU-R Rec. BT.500-13, 2012, ITU-T Rec. P.910, 2008]. These recommendations

prescribe viewing conditions (comprising objective parameters such as background chro-

maticity, ratios of between the luminance of the inactive screen and signal’s peak luminance,

and viewing distance), test methods and data processing for psychophysical quality tests.
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2.2. Psychophysical Assessment of Perceptual Quality

2.2.1 Test Procedures

'A
' 
o
n
 g

ra
y
 s

c
re

e
n

~
1
s

'B
' 
o
n
 g

ra
y
 s

c
re

e
n

~
1
s

X
, 

R
e
fe

re
n
c
e

~
1
0
s

X
, 

C
o
n
d
it
io

n
 i

~
1
0
s

V
o
ti
n
g
 

~
1
0
s

'A
' 
o
n
 g

ra
y
 s

c
re

e
n

~
1
s

'B
' 
o
n
 g

ra
y
 s

c
re

e
n

~
1
s

Y
, 

R
e
fe

re
n
c
e

~
1
0
s

Y
, 

C
o
n
d
it
io

n
 j

~
1
0
s

V
o
ti
n
g
 

~
1
0
s

Time

Figure 2.1 – Temporal structure of the DCR test procedure for stimulus X under condition i

and stimulus Y under condition j .

Regardless of the test procedure used, psychophysical quality assessment tests should not take

more than 30 minutes per participant in order to avoid increasing unreliability of the assessors

due to increasing weariness [ITU-R Rec. BT.500-13, 2012]. The first conditions presented to

the observer should be chosen to be representative of the test material in order to make the

participant familiar with rating scale, task and range of distortions. Ratings collected during

this training/calibration phase are not considered for further analysis.

Generally, two categories of assessment procedures, namely double stimulus assessment and

single stimulus assessment, can be distinguished. In double stimulus assessment, such as

Degradation Category Rating (DCR) [ITU-T Rec. P.910, 2008] (also known as Double Stimu-

lus Impairment Scale (DSIS) [ITU-R Rec. BT.500-13, 2012]) or Double Stimulus Continuous

Quality Scale (DSCQS) [ITU-R Rec. BT.500-13, 2012], the participant is presented with a test

condition (e.g. a distorted version of reference video or image) in relation to its reference

condition. Reference and test conditions can be presented consecutively or side by side, the

latter referred to as Simultaneous Presentation (SP).

In the DCR case, see Fig. 2.1 for a sketch of the temporal structure, the test participant is

informed about which of conditions is the test and which is the reference condition and is

asked to report their quality judgement after both conditions were presented. Observers report

their judgment in terms of impairment of the test condition with respect to the reference

condition on a categorical scale that is semantically annotated as 1-Very annoying, 2-Annoying,

3-Slightly annoying, 4-Perceptible but not annoying and 5-Imperceptible. In the DSCQS case

the presentation order (or left/right hand sided position on screen for SP) of reference and test

condition is randomized and an assessor is asked for a quality judgment for both stimuli on

a continuous rating scale. In contrast to ratings given in DCR, not the absolute value of the

ratings, but difference between them is of interest and used for further processing.

In single stimulus assessment methods, e.g. Single Stimulus (SS) [ITU-R Rec. BT.500-13, 2012]

or Absolute Cateogry Rating (ACR) [ITU-T Rec. P.910, 2008], the quality of the test condition is

assessed by the participant without comparison to a reference condition. In ACR, the opinion

scores are given with respect to the absolute quality and the rating scale carries semantic anno-

tations as 1-Bad, 2-Poor, 3-Fair, 4-Good and 5-Excellent. In order to allow the test participants

to report their judgments with finer granularity, categorical grades are sometimes scaled to 9

points [ITU-T Rec. P.910, 2008]; grades 2, 4, 6, 8 are not assigned semantic annotations then.
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However, studies show that differences between finer and coarser gradings are insignificant

[Huynh-Thu et al., 2011]. Double and single stimulus assessment can be conducted with or

without presenting a Hidden Reference (HR) as a test condition in order to detect inconsisten-

cies or to allow for the calculation of differential quality scores (see Section 2.2.2).

More exhaustive methods ask the participant for comparative ratings of all possible pair-wise

combinations of conditions. This is referred to as Paired Comparison (PC). For some appli-

cations, such as surveillance or medical systems, also utility or performance-based grading

schemes are studied and defined [Knoche et al., 1999, ITU-T Rec. P.912, 2016].

Despite the efforts of (pre-)standardization bodies such as ITU-T Study Group (SG) 9 and SG 12,

ITU-R SG 6, and the Video Quality Expert Group (VQEG) to provide rational guidelines for psy-

chophysiological quality assessment we will see in in Chapter 3 that these recommendations

are not as widely acted on in detail as one would hope for.

2.2.2 Data Analysis

In order to arrive at a statistically robust and reliable quantification of perceptual quality,

ratings need to be collected for more than one subject. Recommendations on the number of

participants in psychophysical quality studies vary within quite a large range of 6 to 40 [ITU-T

Rec. P.911, 1998]. At least 15 observers are recommended by [ITU-R Rec. BT.500-13, 2012], but

in a cross-lab study [Pinson et al., 2012] a number of 24 test participants is determined for

achieving statistical consistency across different labs. Collected quality ratings are screened in

order to identify unreliable subjects that are rejected based on a ’hard’ outlier detection [ITU-R

Rec. BT.500-13, 2012]. More sophisticated methods that are better able to model subjects

biases and inconsistencies are currently under investigation [Li and Bampis, 2017].

The final quality value assigned to each condition identified by its source reference k and

distortion type/level j is then reported as the (in)famous mean opinion score (MOS) [ITU-R

Rec. BT.500-13, 2012]

MOSk j =
1

I

I−1∑

i=0

OSi k j , (2.1)

the average over the subject- and condition-wise individual opinion scores OSi k j of all I

subjects after screening. Typically, the reliability of the MOS is quantified based on the 95%

confidence interval assuming Gaussianity of the subject-wise ratings per condition,

CIk j = 1.96
σk jp

I
(2.2)

with σk j being the standard deviation of the condition denoted by k and j across all subjects.

If ratings for the reference conditions are available as well, e.g. in an HR setup, instead of the
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2.2. Psychophysical Assessment of Perceptual Quality

MOS the differential mean opinion scores (DMOS) may be reported

DMOSk j = MOSk,r e f −MOSk j (2.3)

2.2.3 Critical Acclaim

Psychophysical test procedures are relatively easy to implement and to conduct and are there-

fore widely used. The MOS is the de-facto metric for the quantification of perceptual quality

of multimedia signals and the outcome of psychophysical tests is considered as ground truth

when it comes to evaluation, validation or benchmarking of multimedia systems or services

[Streijl et al., 2016].

Despite its popularity and common usage, psychophysical tests in general and the MOS in

particular suffer from several inherent flaws. Most fundamentally, psychophysical assessment

methods, rely on assessors’ subjective introspection, judgement process and subsequent overt

conscious responses; hence, they provide only limited, if any, insight into the internal percep-

tual and cognitive processing underlying the decision making in quality perception. Another

conceptual issue is that the explicit task of giving a judgement response has a disrupting effect

because it, as a matter of principle, interferes with natural viewing behaviour, and as such, with

natural viewing experience (informally sometimes referred to as ”Schrödinger’s cat of quality

assessment”). This challenges the conclusions that can be drawn from psychophysical quality

tests for real-world applications, in which, as discussed previously, quality is typically attended

to only latently. In immersive media, e.g. VR this mismatch between quality assessment and

application may even be more severe as the question ’are you immersed?’ potentially breaks

immersiveness [Slater, 2004].

Another limitation of psychophysical approaches to multimedia quality assessment is the

restriction to supra-threshold stimuli (consciously detectable stimuli) and the insensitivity

to sub-threshold stimuli (consciously undetectable stimuli). This is critical when it comes to

short-term assessment of non-instantaneously perceivable phenomena such as visual fatigue

or nausea [Urvoy et al., 2013].

In addition to these considerations concerning psychophysical assessment in general, there

are several specific problems with the use of MOS as a measure for perceptual quality. Quality

ratings are collected per subject and condition employing Likert-type rating scales [Likert,

1932]. However, these rating scales do not conform to the laws of fundamental measurements

as known from natural sciences [Riskey, 1986]. Thus, Likert-type categorical rating scales do

not quantify absolute metrics but are influenced by situational and contextual factors, such

as the range of stimuli, the stimulus frequency, or the number of categories [Riskey, 1986].

Moreover, responses from categorical rating scales should be considered as ordinal data, not

interval data [Stevens, 1946]. Therefore it is doubtful that the used scale intervals coincide

with the corresponding semantic intervals [Knoche et al., 1999]. This is even less clear across

language or cultural boarders.

Critically for the MOS, typically reported summary statistics such as the mean and the standard
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deviation are inappropriate for ordinal data [Stevens, 1946]. This might compromise the

validity of conclusions drawn from psychophysical quality tests reporting the MOS and/or

Standard Deviation of Opinion Scores (SOS) [Hoßfeld et al., 2011].

Even pragmatically accepting this conceptual dubiousness of the MOS for the quantification

of perceptual quality, the experimenter is left with several practical complications. The vari-

ance of quality judgements across subjects requires the recruitment of sufficient participants

to achieve adequately small confidence intervals of the MOS. The variance stems from the

label noise introduced by inconsistencies of the subjects ratings. These inconsistency might

occur between subjects, e.g. due to different expectations, decision strategies, experiences or

differences in attentiveness, [Pinson et al., 2012, Janowski and Pinson, 2015, Li and Bampis,

2017] but also for individual subjects, e.g. due to a general lack of attentiveness or weariness

increasing over the course of the assessment session [Janowski and Pinson, 2015]. Further,

the variance does not only depend on the participants, but also on the content of the source

reference material considered in the test [Winkler, 2014]. In order to cope with this variance,

at least 15 participants are prescribed for visual quality assessment [ITU-R Rec. BT.500-13,

2012] (other authors recommend 24 participants [Pinson et al., 2012]), but the precise number

depends on the target confidence interval and is usually not known a-priori [Winkler, 2014].

Another problem is the time limitation of psychophysical assessment: ”Look at a stimulus

— form a quality rating — report it — repeat" is a surprisingly exhausting exercise. In order

to prevent subjects from reporting (overly) unreliable quality judgements due to weariness

(and by this to further increase the variance of the ratings), psychophysical tests should not

take longer than 30 minutes [ITU-R Rec. BT.500-13, 2012]. This time constraint severely limits

the number of conditions that can be presented as the process of reporting an overt response

consumes time as well. A third problem for the experimenter employing the MOS is related to

previously discussed mismatch between quality assessment and real-world media reception:

Individual quality ratings are typically reported after the presentation of a stimulus. With

regard to time, a given rating thus does not represent a differential, but rather an integral

quantity. This renders the MOS unfeasible for assessing momentary values of quality. Note

that a simplistic solution such as a continuously operated quality slider [Garcia Freitas et al.,

2015] would aggravate the antagonism between the task of quality assessment and a natural

viewing experience.

Quality focussed design of technical systems brings another perspective on practical limi-

tations of psychophysical quality assessment: For benchmarking, evaluating or comparing

multimedia systems or services, psychophysical methods are cumbersome, tedious and ex-

pensive. For designing systems psychophysical quality assessment does not provide models

of quality that are actionable. This becomes even more critical when an optimization criterion

is moved to the heart of an algorithm, as it is the case for bit allocation in image or video

coding [Wiegand and Schwarz, 2016]. Psychophysical (and also in the next section discussed

psychophysiological) quality assessment is of no help here, even if a human were somehow

integrated into any process of in-loop optimization the judgement response would just be too

slow. Computational and potentially real-time capable approaches to quality estimation will
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be discussed in Chapter 3.

2.3 Psychophysiological Quality Assessment

In order to overcome the previously discussed limitations of psychophysical quality assess-

ment and to objectify quality assessment, researchers started to study the application of meth-

ods from psychophysiology for quality assessment. This section gives a brief introduction into

the fields of psychophysiology and EEG and surveys the state of the art of psychophysiological

quality assessment.

2.3.1 Psychophysiology Background

Psychophysiology is concerned with the identification and measurement of physiological

bases and correlates of psychological processes and subjective experiences [Cacioppo et al.,

2016]. Some psychophysiological measurements can be directly or indirectly interpreted with

regard to processes underlying the perception of quality and relevant signals may be related

to the central nervous system (CNS), autonomous nervous system (ANS) or eye movements

[Cacioppo et al., 2016]. The sympathetic division of the ANS and its ’fight or flight’ response

[Jansen et al., 1995] can be quantified by using e.g. electrocardiography (ECG) (relating to

excitement or fatigue [Cacioppo et al., 2016]), galvanic skin response (GSR) (relating to arousal

[Cacioppo et al., 2016]) and pupil diameter. Pupil diameter also belongs to the class of eye

measurements that were shown to have a relationship to cognition [Cacioppo et al., 2016]. Eye

movements, for instance, provide valuable insight into overt visual attention [Yarbus, 1967],

eye blink rates relate to visual fatigue [Bang et al., 2014], and pupil dilation to cognitive load

[Hess and Polt, 1964] and long-term memory processes [Kafkas, 2012]. Neurophysiological

methods are targeted specifically to the CNS and provide insight into the neural underpinnings

of sensorial, perceptual and cognitive processing in the brain. Inner psychophysics as a neural

foundation of outer psychophysics were postulated already 1907 by Gustav Theodor Fechner

[Fechner, 1907]. While the neural code and its underlying computational mechanisms are

not yet well understood, many features encoded at different levels of the sensory pathway

have been mapped out with increasing detail. For instance, neuronal ensembles at ascending

levels of the visual pathway are tuned to progressively larger and more complex visual features

[Palmer, 1999, Wandell, 1995]. Neural correlates of perceptual decision-making, attention and

features thereof have been researched and identified in various experiments [Dmochowski

and Norcia, 2015, Kohler et al., 2018].

Many of these well-established neurophysiological signatures are particularly promising

among psychophysiological signals for assessing quality, as most multimedia signals interface

directly with the sensory pathway. Ultimately, neurophysiological approaches could enable

researchers and engineers to directly read out the quality related neural response, be it sensory,

perceptual or cognitive, of an individual to a multimedia signal as a quantifiable metric. As

sketched in Fig. 2.2, such a measurement would avoid many of the problems of psychophysical
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Imperceptible

Perceptible,
but not annoying

Slightly annoying

Annoying

Very annoying

Mmh, I see it..., 
but does it annoy me?

Figure 2.2 – Rating scales do not necessarily reflect internal experience. Neurophysiological
measurements such as EEG could bypass the need for overt categorical responses. ©2016 IEEE

assessment methods outlined in the previous section by bypassing the need of an overt

response.

Figure 2.3 – Comparison of temporal and spatial resolution and acquisition costs of selected
neuroimaging methods. Red shadings denote invasive methods, blue indicates non-invasive
methods.

Different means of measuring neurophysiological signals are available exploiting different

physiological mechanisms. Ethical and proportionality considerations rule out the use of

invasive methods such as electrocorticography (ECoG) or local field potential (LFP). The same

holds for positron emission tomography (PET), that, although being non-invasive, involves

exposure to ionizing radiation. Near-infrared spectroscopy (NIRS), functional magnetic reso-

nance imaging (fMRI) and PETmeasure the hemodynamic response, changes in blood flow in

active brain areas. Although providing a comparably high spatial resolution, hemodynamic

measures are limited in terms of temporal resolution. Note that especially fMRI and PET are

also very costly in acquisition and operation. EEG andmagnetoencephalography (MEG) pick

up changes in voltage potentials or changes in the magnetic fields, respectively, on the skull,

resulting from displacement of electrical charges in neural populations due to neural activity.

While EEG and MEG provide excellent temporal resolution, its spatial resolution is limited.
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Although MEG has some advantages over EEG [Lopes da Silva, 2013], until recently [Boto et al.,

2018], its operation required a magnetically shielded room and devices are bulky, stationary

and costly. A comparative summary of different neurophysiological measurements in terms

of invasiveness, spatial and temporal resolution and cost is shown in Fig. 2.3. Due to its low

level of invasiveness, its relative modest cost in acquisition and operation, its adequately

high temporal resolution and recent advances in non-invasive EEG-based brain computer

interfacing (BCI) [Lee et al., 2015, Müller et al., 2008] EEG is practically the most appropriate

and promising method for psychophysiological quality assessment.

2.3.2 Electroencephalography

2.3.2.1 Physiological and Psychological Processes Underlying the EEG

The brain contains around 86 billion neurons [Herculano-Houzel, 2009]. Neurons are electri-

cally excitable cells, consisting of the cell body called soma, cellular input extensions called

dendrites, a cable-like output extension called axon, and endings of the axon connecting to

the dendrites of other cells called axon terminals [Blum and Rutkove, 2007]. Neurons com-

municate by neurotransmission. A typical neuron has a resting potential of approximately

−70 mV across the cell membrane [Blum and Rutkove, 2007]. Voltage-gated ion channels

control the exchange of ions with the extracellular milieu. If the excitatory drive integrated

over the dendrites sufficiently depolarizes the membrane potential over a threshold of around

−55 mV, sodium ion channels open and sodium ions flow into the cell. This nonlinear process

produces a rapid rise and fall in the membrane potential, called an action potential [Blum and

Rutkove, 2007]. The action potential travels along the neuron’s axon and contributes to the

depolarization of subsequent neuron’s membrane potential, potentially triggering the rise

of another action potential [Blum and Rutkove, 2007]. At the synaptic junction in the axon

terminals, positively or negatively charged ions travel into the post- or presynaptic terminal,

resulting in excitatory or inhibitory postynaptic potential (EPSP or IPSP), respectively [Nunez

and Srinivasan, 2006]. EPSP and IPSP induce an extracellular current into the opposing direc-

tion. If strong enough, the temporal and spatial accumulation of EPSP and IPSP currents give

rise to potential differences between two locations on the scalp that can be measured over

time as the electroencephalographic signal [Nunez and Srinivasan, 2006].

Electrophysiological measurements have been studied for many decades with Hans Berger

credited as the first to record EEG in humans, starting in 1924 [Berger, 1933]. While the precise

links between EEG and psychological phenomena are still only incompletely understood,

several relations are widely accepted. For example, power modulations in different frequency

bands of the EEG signal covary with cognitive states, e.g. the θ-band (4 Hz to 8 Hz) is associated

to attention and drowsiness, and the α-band (8 Hz to 12 Hz) is related to alertness, relaxation

and fatigue [Ward, 2003]. α-waves were also among the first oscillations reported [Berger,

1933].

Whereas neural oscillations are temporally rather non-localized, event-related potentials
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(ERPs) are large scale electrical events that consist of stereotypic changes in electrical activity

that are time-locked with sensory stimuli and related cognitive events [Luck, 2014]. The rela-

tions of ERPs to high- and low-level sensory and cognitive processing have been thoroughly

characterised [Handy, 2005, Luck, 2014]. They are characterized by their time-dependent

amplitude according to a common nomenclature, with the first letter referring to the polarity

of a particular component and subsequent number(s) indicating latency (in ms) or relative

position in the order of components [Luck, 2014]. I.e. the well-known P300 component ex-

hibits a positive peak around 300 ms after stimulus onset [Polich, 2012], but the latency can

be significantly higher and reach more than 300 ms. The amplitude and delay of its subcom-

ponent P3b is known to increase with decreased expectation of a stimulus, thus indicating

the novelty of a task related stimulus. The amplitude P3a is related to attentional shifts and

task unrelated novelty [Polich, 2009]. Other ERPs have been shown to be involved with object

representation and memory operations in a variety of task behaviours [Handy, 2005, Luck

and Kappenman, 2011]. ERPs are analysed in the time-domain and characterized by peak

amplitude and latency. Given its temporal isolation and the need for a baseline reference, in

ERP studies stimuli are separated from each other by relatively long interstimulus intervals

[Luck, 2014].

Another type of neurophysiological response to temporally isolated visual stimuli is the SSVEP

[Regan, 1977, Norcia et al., 2015]. While transient ERPs are typically observed in response to

surprising or novel stimuli, SSVEPs are observed in response to sustained, periodic stimuli.

Periodic stimulation results in increased narrowband EEG spectral power at the stimulation

frequency and its harmonics (integer multiples of the stimulation frequency) [Regan and Re-

gan, 1988], and can be, as suggested by the name, very stable in amplitude and phase [Regan,

1966]. SSVEPs are typically defined by their amplitude, phase and spatial channel distribution

for the tagged frequency and its associated harmonics [Norcia et al., 2015]. This makes it

natural to analyse SSVEP in the frequency domain rather than in the time domain [Regan and

Regan, 1988]. While the amplitude of the SSVEP is related to the magnitude of the perceptual

response, the phase is related to processing delays [Norcia et al., 2015]. As the signal is only

contained in the response components harmonically related to the stimulation frequency, the

noise in a recording can be easily estimated by the amplitude of the response component in

the frequency bins neighbored to harmonics of the stimulation frequency [Meigen and Bach,

1999]. Responses in real EEG recordings are contaminated by noise. However, the fact that

the response itself is narrowband, while noise sources are broadband explains the reported

high signal-to-noise-ratio (SNR) of SSVEP recordings, relative to broadband ERP-responses

[Norcia et al., 2015, Meigen and Bach, 1999]. While traditionally the SSVEP was considered to

be related to sensory processes and low-level vision [Regan, 1989], it can also be used to study

visual processes of higher level, i.e. motion [Ales and Norcia, 2009], face [Alonso-Prieto et al.,

2013], object [Farzin et al., 2012] perception or multi-sensory integration [Regan et al., 1995]

and can be used for BCI [Won et al., 2015, Kwak et al., 2015, Müller-Putz et al., 2006].

The signal-to-noise ratio (SNR) of EEG signals is typically very low. Amplitudes of evoked po-

tentials are very small laying in the range of several microvolts, buried in the EEG background

activity with an amplitude range of tens of microvolts making single trial quality assessment

18



2.3. Psychophysiological Quality Assessment

difficult. As evoked potentials are time locked with the stimulus onset they can be resolved

against the background activity and other types of non-phase locked noise by averaging the

recorded signals across several trials [Handy, 2005, Blankertz et al., 2011].
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Figure 2.4 – Electrode locations in the scalp as specified by the international 10-20 system
[Sharbrough et al., 1991]. Odd numbers denote electrodes on the left hemisphere, even num-
bers denote electrodes on the right hemisphere. Underlying cortical regions are represented
by the prefix of the electrode names: F is frontal, P is parietal, O is occipital, T is temporal, C is
central.

EEG signals are typically recorded simultaneously at different scalp locations. Fig. 2.4 shows

electrode position for a 64 channel 10-20 system [Sharbrough et al., 1991]. The interpretation

of the EEG signal with regard to the involvement of neural populations of different cortical

regions is usually based on the spatial distribution of the activity of the recorded signal. For

computational reasons, the dimensionality of recorded EEG data is commonly reduced for

further analysis or processing of the EEG signal. A still widely used approach for dimensionality

reduction is the selection of specific subset of channels. However, this approach has the

disadvantage that it assumes relevant information only in the vicinity of the selected channel.

Channel selection moreover neglects subject-wise differences in anatomy and recording-wise

differences in channel positions (i.e. due to slight cap misalignments). Further, it relies on

explicit neuroanatomical assumptions.

More recent methods from the field of BCI apply a combined analysis of signals measured

at different scalp locations using spatial filters. These filters project the recorded data from

the sensor-space to a subspace of reduced dimensionality determined by an optimization

criterion that enhances signal recovery [Blankertz et al., 2011, Haufe et al., 2014b]. Linear

filters also improve the interpretability of spatial activity distributions [Haufe et al., 2014a] and

extracted components serve as rationally ’selected’ channels.
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2.3.3 State of the Art

As the previous section showed, the type of desired EEG responses and the investigated signal

modality will invariably guide experimental design and data analysis.

Audio Quality Audio signals were among the first modalities studied in the context of EEG-

based quality assessment with ERPs being used as a quantitative measure for perceived quality

of audio signals [Porbadnigk et al., 2010, Antons et al., 2010]. As stimulus, a phoneme /a/ at

varying quality levels was presented to the subjects for 160 ms. In an oddball paradigm it is

shown that with decreasing quality of the stimulus the latency of the P300 is decreasing while

its amplitude is increasing. By applying a classifier based on shrinkage linear discriminant

analysis (LDA) [Blankertz et al., 2011, Blankertz et al., 2008], distortions below the threshold

of conscious perception are detected for 2 out of 11 subjects [Porbadnigk et al., 2010]. This

work is extended to longer and more realistic auditory stimuli of lengths of 200, 1200 and

8000 ms (phoneme, word, sentence) subject to transmission distortions and similar effects

as for phoneme length stimuli are found [Antons et al., 2012b]. Due to the low SNR of EEG

signals, commonly a lot of trials have to be collected. Single trial methods were explored for

the analysis of neural correlates of speech quality and the detection of perceived distortions

[Porbadnigk et al., 2013]. It is shown that for auditory stimuli components reflecting the

perception of distortions are assessable in early components already. Further, by combining

behavioral and neural data, the sensitivity of the experiment is significantly increased. The

influence of low-quality audio signals on fatigue was studied [Antons et al., 2012a], where α-

and θ-activity is shown to be increased for audio signals subject to distortions introduced by

bandwidth limitations in transmission systems.

Similar approaches to those in speech quality have been studied for video quality assessment.

The brain response to JPEG compression artifacts in images was studied based on an oddball

paradigm [Lindemann and Magnor, 2011]. As shown for speech signals, the elicited ERP

component is reduced in latency and increased in amplitude for decreasing visual quality.

In follow-up studies, similar results are reported for different kinds of artifacts in video clips

[Mustafa et al., 2012b]. Using principal component analysis (PCA) for dimensionality reduction

and support vector machine (SVM), a classification accuracy of 76.5% for the most obvious and

of 73.5% for the less obvious distortions is reported for trials correctly detected behaviorally

[Lindemann et al., 2011]. For different types of distortion, mean single-trials classification

accuracy of up to 85% for distorted vs. undistorted images is achieved in [Mustafa et al., 2012a]

using a wavelet-based approach. Neural correlates of coding distortions are studied in an

oddball paradigm [Scholler et al., 2012], where recorded EEG data is filtered by an LDA filter

[Blankertz et al., 2011, Blankertz et al., 2008]. Filter weights are obtained based on signed

biserial correlation coefficients between trials with highest distortion and no distortion. For

distortion magnitudes above the behavioral perception threshold, an area under the curve

(AUC) close to 1 is obtained. Although the classifications accuracies in most studies [Scholler

et al., 2012, Mustafa et al., 2012a, Lindemann et al., 2011] refer only to trials correctly classified
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behaviorally, also classification accuracies above chance are reported for trials with a quality

degradation below the behavioral perception threshold [Scholler et al., 2012]. As for speech

signals [Porbadnigk et al., 2010], this suggests the potential of EEG to assess also subconscious

processing of distortions in multimedia signals.

Similar results are reported for degradations introduced as changes in color saturation and

changes in maximum luminance values of images [He et al., 2016].

Moon et al. [Moon and Lee, 2015] investigated the perception of high dynamic range (HDR)

and standard dynamic range (SDR) videos and showed a significant power difference in the γ

band. Viewing HDR content results in an increased correlation of power in the α band with

the median luminance than viewing SDR content [Darcy et al., 2016]. The authors conclude a

higher level of engagement towards HDR content.

Stereoscopy adds further quality related components to visual signals, as the perceived quality

may be affected by crosstalk, misalignment of stereo image pairs, or the accommodation-

vergence conflict [Urvoy et al., 2013]. The neural workload imposed to the viewer may result

in visual discomfort or fatigue that might not become conscious within an instant [Urvoy

et al., 2013]. The relation between the power in different oscillatory neural bands and MOS

values for 3D videos subject to compression artifacts at two quality level was studied in a single

channel analysis with reported correlations of |r | ≈ 0.25 [Kroupi et al., 2014]. EEG recordings

showed high frontal asymmetry in the α band, which reflected emotional affect towards the

two different quality levels. Exploratory studies on the visual discomfort show a relation to

changes in band power [Chen et al., 2013, Chen et al., 2014] and ERP [Li et al., 2008, Cho et al.,

2012]. Using ERPs and spatial filters for feature extraction and shrinkage LDA for classification,

a mean classification accuracy of 63.3% is reported for the neural classification of comfort

zone in 3D viewing positions [Frey et al., 2015]. Other authors [Avarvand et al., 2017a] show

a relation between the amplitude of the P1 component and vertical misalignment of stereo

images. The influence of the shutter frequency of shutter glasses on the neural workload of

the viewer is evaluated in [Wenzel et al., 2016]. Neural correlates of the flicker introduced by

the opening and closing of the shutter glasses could be identified up to a frequency of 67.2

Hz, well above the behaviorally estimated flicker fusion threshold at 47.4 Hz. It is concluded

that the risk of reduction in quality of experience and usability can be reduced by using higher

frequencies for shutter glasses. Note that this study is conceptually different from the others,

as no neural correlate of quality, but neural markers of flicker fusion are studied.

Multimodal Quality Donley et al. [Donley et al., 2015] studied the impact of various levels

of synchrony of wind, vibration and light on audio-visual sequences. P300 amplitude and

audiovisual quality were shown to be significantly correlated [Arndt et al., 2014a]. In an

investigation of the effect of changes in audio and video quality using EEG and eye tracking

parameters and conclude that α activity was correlated to video quality [Arndt et al., 2014b].

In summary, previous studies show promising results for the assessment of quality using

EEG. Given the novelty of neurophysiological approaches for quality assessment, most of

the work is exploratory, mainly reporting experimental designs and resulting correlations
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between neural signals and behavioral responses. It is not clear yet how to interpret neural

signals quantitatively in terms of acceptability of an impairment; prediction models have

not been proposed nor evaluated yet. Rational methods for selecting and/or extracting

the quality-related signal from the EEG channels [Blankertz et al., 2008, Müller et al., 2008]

were studied and used only by few authors [Scholler et al., 2012, Porbadnigk et al., 2013,

Porbadnigk et al., 2011]. Approaches studied so far do not use identical stimuli (even if the

same modality is studied) making it hard to compare different methods, thus studies stand

mostly for themselves. This is especially unfortunate as the space of experimental parameters,

including experimental paradigm, temporal and spatial filtering, dimensionality reduction,

outlier rejection, choice of recording, is large and difficult to sample without comparable

stimuli. However, the Psychophysiological Quality Assessment (PsyPhyQA) project of VQEG,

chaired by the author of this thesis, is developing a testplan comprising a publicly available

set of defined stimuli in order to overcome this problem.

2.4 Lessons Learned

• The formation process of quality judgments is still unknown.

• Reliable quantification of perceived quality in multimedia relies on assessment by

humans.

• Psychophysical quality assessment does not provide insights into the internal processes

of quality formation.

• Psychophysical quality assessment is flawed by several factors such as subjective and

contextual biases, lacking objectiveness and conceptual inconsistencies between indi-

vidual ratings and pooled quantification of quality.

• Modern neuroimaging techniques are able to reveal and objectify the neural underpin-

nings of subjective experiences; for the field of quality assessment, EEG is an appropriate

technique.

• ERPs and spectral power of EEG have been studied exploratory for quality assessment.

• Rational channel selection and feature extraction methods are not well studied for

psychophysiological quality assessment.

• Lack of a common set of stimuli renders comparison of approaches difficult.
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3 Computational Estimation of Visual

Quality

The ultimately decisive criterion for evaluating the quality of a signal or a system is the judg-

ment of a human. However, as discussed in the previous chapter, human quality assessment

is cumbersome, expensive and in many application scenarios not accessible. Computational

approaches aim at bypassing these problems by estimating the quality of signals without the

direct involvement of humans.

This chapter reviews the most relevant computational methods for quality estimation, sum-

marizes different databases of quality annotated images these methods are benchmarked on,

and briefly recapitulates the metrics used for performance evaluation.

3.1 Computational Models for Image Quality Estimation

Depending on the information about the reference image available to the algorithm image

quality measures (IQMs) correspond to one of three categories each of which has different

challenges and application scopes: While FR approaches have access to the full reference

image, only the distorted image is available to NR approaches. Reduced-reference (RR) IQMs

live in the middle of this spectrum as only a small set of features from the reference image is

used for quality estimation [Lin and Kuo, 2011]. Unconstrained NR quality estimation has the

notion of being the holy grail of quality estimation as it (ideally) replicates human capabilities.

NR approaches are considered to have the broadest scope of applications, but due to the

constrained information available the design of reliable models is very difficult. However,

conceptually NR is not a feasible approach for some applications. An important example is the

encoder control in video compression [Wiegand and Schwarz, 2016]. An unreferenced rate-

distortion optimization would steer the encoder towards coding decisions that remove any

type of noise or artifact. In some videos, however, noise and artifacts are artistic components

that are intentionally introduced in order to evoke a certain emotional response in the viewer.

Two popular movies exemplify this: Imagine a video encoder that removes film grain from

the Quentin Tarantino movie The Hateful Eight or blur and camera shakes form the movie

The Blair Witch Project due to the use of a NR distortion measure penalizing ”noisy” coding

decisions. Such an encoder would undermine the filmmakers’ artistic intent and thus might
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(a) Model-based image quality estimation
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(b) End-to-end data driven image quality estimation

Figure 3.1 – Quality estimation is based on feature extraction, feature fusion, spatial pooling
and regression. Information about the reference image (dashed lines) is not available for no
reference image quality estimation. Traditional quality estimation employs explicit domain
knowledge in the first three stages. Parameters of sigmoidal regression from computational
quality scores to perceptual quality estimates are typically trained based on quality annotated
images (dotted line). End-to-end data-driven quality estimation does not rely on explicit
domain knowledge; all stages of the quality model are trained/learned within one framework.
Note that some data-driven quality models apply preprocessing prior to feature extraction.

devalue the viewing experience.
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3.1. Computational Models for Image Quality Estimation

3.1.1 Full-Reference Models

The simplest FR IQM is the mean squared error (MSE) between reference image and distorted

image. For having convenient features, it is probably also the widest used IQM , as it a) is of

low computational complexity, b) is memoryless, c) qualifies mathematically as a distance

metric in RN d) has a clear physical interpretation as the energy of the error signal e) features

convexity, symmetry and differentiability, allowing for simple optimization procedures, and

f ) is additive [Wang and Bovik, 2009]. Despite all these advantageous properties the MSE has

one crucial disadvantage: As a quality estimator it does not correlate well with visual quality

as perceived by humans [Girod, 1993].

This lack of agreement with human perception led scientists and quality engineers to build

quality estimators around explicit models that incorporate feature extraction, feature fusion,

and/or spatial pooling stages as sketched in Fig. 3.1a. Early approaches exploit processing

mechanisms of the human visual system (HVS) or components thereof, such as contrast sensi-

tivity and detection mechanisms [Daly, 1992], different types of masking [Watson et al., 1997],

or just noticeable difference (JND) models [Lubin, 1997]. The mean absolute difference (MAD)

[Larson and Chandler, 2010] distinguishes between supra- and near-threshold distortions to

account for different domains of human quality perception. From an information-theoretic

point of view these approaches aim at modelling the receiver of visual signals. Although a

complete and precise simulation of the HVS most certainly would lead to accurate quality

estimators following the receiver modelling line of thinking, the complexity of the architecture

of the perceptual system, the non-linearities of its components and the intricacy of its interac-

tions render such a simulation extremely challenging. Note that, as indicated in Chapter 2,

also the HVS might encode stimulus features that you the observer is not consciously aware

of, which may or may not influence quality, depending on the feature and the definition of

quality.

This led researchers in quality estimation to instead model the transmitter of visual signals.

There, general and in some cases hypothesized abstract properties of the HVS and its functions

are assumed in order to identify quality-related features of an image from a signal processing

perspective. While in previous receiver model based approaches features from reference and

distorted images were mostly fused as feature differences, many of these transmitter model

based approaches employ a multiplicative combination of maps of different features.

S(x, y) =
∏

i

2 fr,i (x, y) fd ,i (x, y)

f 2
r,i (x, y)+ f 2

d ,i
(x, y)

. (3.1)

These feature maps fr,i (x, y), fd ,i (x, y) are extracted from the reference image and the distorted

image, respectively, with i indexing different feature types. Typically, S(x, y) is pooled spatially

as the arithmetic mean over all sample positions x, y . This similarity structure was introduced

with the structural similarity index (SSIM) [Wang et al., 2004]. The SSIM aims at considering the

sensitivity of the human visual system towards structural information and pools the luminance

similarity (measured by the local luminance), the contrast similarity (measured by the local

variance), and the structural similarity (measured as the local covariance between reference
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and distorted image) according to Eq. 3.1. Although being heavily criticized [Dosselmann

and Yang, 2009] the SSIM is among the most popular IQMs. A multiscale extension led to

the multiscale structural similarity index measure (MS-SSIM) [Wang et al., 2003]. Following

the similarity framework, the feature similarity index (FSIM) [Zhang et al., 2011] pools two

feature maps that are derived from phase coherence and from local gradients. Local gradients

and local luminance are used in combination with a contrast masking model [Liu et al., 2012].

The FSIM is significantly simplified and at the same time improved in performance by the

Haar wavelet-based perceptual similarity index (HaarPSI) [Reisenhofer et al., 2018]. The visual

saliency induced index (VSI) [Zhang et al., 2014b] pools the similarities in gradient magnitude

and in estimated visual saliency according to Eq. 3.1 and extends the framework by a local

saliency based weighting scheme (see Section 3.1.3). Using an information-theoretic approach

to estimate quality it is shown that the mutual information of the wavelet coefficients based

on a Gaussian scale mixture model is correlated to perceived quality [Wang et al., 2004].

In all these approaches feature extraction, feature fusion and spatial pooling are informed

by rather rigid models based on prior knowledge or assumptions. The regression module

however is typically data-driven in a very basic form as the regression parameters for mapping

the computational quality scores into the perceptual domain are estimated based on quality

annotated ground truth data (see Fig. 3.1a). To account for psychophysical saturation effects,

scalar regression is typically implemented by a parameterized sigmoidal function. In Chapter 5

we will discuss this scalar regression process in detail. Multivariate regression combining a

set of selected hand-crafted IQMs can improve the performance as shown by using neural

network-based regression [Lukin et al., 2015] and support vector regression (SVR) [Lin et al.,

2014, Pei and Chen, 2015]1. In [Pei and Chen, 2015] the output of the multivariate regression is

input to a subsequent (and traditional) scalar sigmoid regression.

DeepSim [Gao et al., 2017] extracts feature maps from different layers of a deep convolutional

neural network (CNN) that was pre-trained for recognition and employs these feature maps in

a similarity framework according to Eq. 3.1. Despite these efforts to apply learning approaches

to feature extraction and/or regression consistent end-to-end training as sketched in Fig. 3.1b

was not proposed for FR quality estimation.

Novel FR quality models employing end-to-end learning will be proposed in Chapter 4 and

Chapter 5.

3.1.2 No-Reference Models

NR image quality estimation predominantly follows the transmitter model approach. In a

widely used framework, a parametric statistical image model is assumed and features are

extracted from the test image as parameters. Parametric deviations from the underlying

statistical model are regressed to quality estimates. As these parameters and their deviations

may depend on the distortion type, in a first step the DIIVINE framework [Moorthy and

Bovik, 2011] identifies the distortion type affecting an image and employs a distortion-specific

1The work of [Lin et al., 2014] was popularized by Netflix under the name video multi-method assessment
fusion (VMAF).
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regression scheme to estimate the perceived quality in a second step. The statistical features

are calculated based on an oriented subband decomposition. BLIINDS-II [Saad et al., 2012]

uses a generalized Gaussian density function to model block DCT coefficients of images.

BRISQUE [Mittal et al., 2012] proposes a NR quality estimation approach that utilizes an

asymmetric generalized Gaussian distribution to model images in the spatial domain. The

modeled image features here are differences of spatially neighbored, mean subtracted and

contrast normalized image samples. NIQE [Mittal et al., 2013] extracts features based on a

multivariate Gaussian model and relates them to perceived quality in an unsupervised manner

abandoning explicitly trained regression. In order to cope with more complex and authentic

(see Section 3.2.1) distortion types FRIQUEE [Ghadiyaram and Bovik, 2017] employs a deep

belief network of 4 layers trained to classify bins of 10 different distortion ranges. Input to the

network is a set of handcrafted feature maps. The feature representation on the last hidden

layer is extracted to be input to SVR for quality prediction.

Relying on global statistics of full images or full image feature maps these NR approaches

do not output spatially localized quality estimates and spatial pooling is done implicitly.

However, all these models are still structured based on domain-specific assumption, while the

parameters of the models are learned, moving them small steps away from being model-based

towards being data-driven.

CORNIA [Ye et al., 2012] relaxes explicit model assumptions and can be considered one of the

first purely data-driven NR quality estimators. Here, a codebook is constructed by k-means

clustering of luminance and contrast normalized image patches. Soft-encoded distances

between visual code-words and patches extracted from distorted images are used as features

that are pooled and regressed by SVR for estimating image quality. This approach is extended

in the semantic obviousness metric (SOM) [Zhang et al., 2015], where object-like regions are

detected and the patches extracted from these regions are input to CORNIA. Like CORNIA, QAF

[Zhang et al., 2014a] constructs a codebook, but applies sparse filter learning on patch-wise

log-Gabor responses in addition to the contrast and luminance normalized pixel values. As

log-Gabor responses are often considered a low-level model of the HVS, conceptually, QAF

inherently applies a receiver model. Although these approaches employ much more general

models for feature extraction, feature extraction and regression are still treated independently

rather than jointly in an end-to-end fashion as sketched in Fig. 3.1b. Motivated by the recent

success of CNNs for classification and detection tasks and the notion that the connectivity

patterns in these networks resemble those of the ventral stream in the primate visual cortex

[Lecun et al., 2015], a shallow CNN consisting of 1 convolutional layer, 1 pooling layer and

2 fully-connected layers, that combines feature extraction and regression is used for quality

estimation [Kang et al., 2014]. Quality is estimated on contrast normalized image patches

and patch-wise quality is pooled to image-wise quality by simple arithmetic averaging. In

order to deal with the scarcity of training data in the form of quality annotated images due

to the intricacy of quality assessment, an approach for data augmentation is proposed as

BIECON [Kim and Lee, 2017]. CNN-based NR quality estimation is tackled in 2 steps: First,

local patch-wise quality is estimated based on normalized image patches employing a CNN

of 2 convolutional, 2 pooling and 5 fully-connected layers. This network is trained in order
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to replicate a conventional FR IQM such as SSIM or GMSD within a NR framework. Second,

mean values and the standard deviations of the extracted patch-wise features are regressed

to an image-wise quality estimate employing a perceptron with one hidden layer. Since a FR

IQM serves as a proxy, BIECON is not trained in an end-to-end fashion.

Chapter 4 will present novel data-driven NR quality models employing an end-to-end training

scheme.

3.1.3 Sensitivity, Saliency and Attention for Image Quality Estimation

Most FR and some NR quality estimators embody a spatially localized representation of quality

estimates2 qi or local regions i (pixels or patches) that are pooled to a global image-wise quality

estimate Q. A classical and widely used method is spatially uniform Minkowski pooling, the lp

norm of the quality estimate maps (or perceptual error estimate map, respectively), where p is

typically equal to p = 1 or p = 2 [Wang and Shang, 2006].

Quality perception is not necessarily spatially uniform and it is intuitively reasonable to assign

higher influence to regions a) affected by stronger distortions, b) of higher saliency, and as

such more likely to be attended to, or c) carrying scene information, such as objects [Wang and

Li, 2011]. A simple and straight-forward method to implement such a spatial non-uniformity

is a linear weighting scheme

Q =
∑

i wi qi∑
i wi

, (3.2)

where the weight wi represents the local influence based on a certain model of saliency, atten-

tion, scene understanding [Zhang et al., 2016] or distortion magnitude [Wang and Li, 2011].

Despite this intuition and although humans are able to localize visual quality degradation

with relative fine spatial granularity, it is so far poorly understood how human observers pool

this local judgments to form a global image-wise quality rating (see Section 2.1). For distortion

magnitude-based weighting wi = w(qi ) is often proposed to be a function of qi itself [Wang

and Li, 2011]. By employing a cascade of weighting schemes it is in principle possible to

combine different models well.

However, spatial pooling, be it based on saliency, distortion magnitude or any other process,

is typically informed by explicit models either transferred from other contexts [Zhang et al.,

2016] or based on assumed mechanisms [Wang and Li, 2011]. So far, little work has been done

on (end-to-end) data-driven weighting schemes in the context of quality estimation. Saliency

models incorporated in IQMs were mostly developed to predict how viewers attend to distinct

regions of an image, but not to predict perceived quality explicitly in a joint optimization

approach.

Local weights have usually been extracted from the reference image and, as for VSI (see Sec-

tion 3.1.1), in some cases additionally from the distorted image. Employing saliency-based

pooling estimated from the reference image shifts NR quality estimation to the RR domain.

2For simplicity we drop the typically used hat symbol for the denotion of estimates q̂ , Q̂ in this section.
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In Chapter 4 and Chapter 5 patch-wise weighting will be incorporated into data-driven FR

and NR quality models and trained in an end-to-end fashion.

3.2 Performance Evaluation

3.2.1 Image Quality Databases

Quality estimators are benchmarked and potentially trained on quality annotated images.

There exists a number of publicly available databases of images with quality labels collected

in psychometric assessments. Unfortunately, not all databases are compiled according to the

relevant recommendations (cf. Section 2.2). This makes the comparison of quality scores

from different databases difficult. Note that image quality databases are relatively small in

comparison to databases used for object recognition such as ImageNet [Deng et al., 2009].

Furthermore, images in existing databases are mostly of relative low resolution compared to

modern image acquisition and display systems.

LIVE Image Quality Database

The LIVE Image Quality Database (LIVE) [Sheikh et al., 2006] database comprises 779 quality

annotated images based on 29 source reference images that are subject to 5 different types of

distortions at different distortion levels. Most images have a resolution of 768×512 pixels and

were upsampled using bicubic interpolation to be presented on 1024×768 screen resolution.

Distortion types are JP2K compression, JPEG compression, additive white Gaussian noise,

Gaussian blur and a simulated fast fading Rayleigh channel. Quality ratings were collected

using a single-stimulus methodology with a hidden, scores from different test sessions were

aligned. Resulting DMOS quality ratings lie in the range of [0, 100], where a lower score

indicates better visual image quality.

Tampere Image Database 2013

The Tampere Image Quality Database 2013 (TID2013) [Ponomarenko et al., 2013] is an exten-

sion of the earlier published Tampere Image Quality Database 2008 (TID2008) [Ponomarenko

et al., 2009] containing 3000 quality annotated images based on 25 source reference images

distorted by 24 different distortion types at 5 distortion levels each. The distortion types cover

a wide range from simple Gaussian noise or blur over compression distortions such as JPEG to

more exotic distortion types such as non-eccentricity pattern noise. This makes the TID2013 a

more challenging database for the evaluation of quality estimators, although the reference

images are a subset of those contained in LIVE. The rating procedure differs from the one

used for the construction of LIVE, as it employed a competition-like tri-stimulus procedure

during which the observers were presented with a reference image and two distorted versions

simultaneously. The observer was asked to choose the image of higher visual quality. The

chosen image won one point and points assigned to each image were accumulated to the

final quality score. Each distorted image was presented in nine comparisons, so the obtained

quality scores (named MOS although not complying to the definition of MOS, cf. Section 2.3)
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lie in the range [0, 9], where larger values indicate better visual quality. Note that viewing

conditions during quality assessment were fairly uncontrolled.

Categorical Subjective Image Quality Database

The Categorical Subjective Image Quality Database (CSIQ) database contains 866 quality

annotated images. 30 reference images disjoint to the one in LIVE and TID2013 are distorted

by JPEG compression, JP2K compression, Gaussian blur, Gaussian white noise, Gaussian pink

noise or contrast change. Image resolution is 512×512 pixels. For quality assessment, subjects

were asked to position distorted images horizontally on a monitor array according to their

visual quality. After alignment and normalization resulting DMOS values span the range [0, 1],

where a lower value indicates better visual quality.

LIVE in the Wild Image Quality Challenge Database

The LIVE In the Wild Image Quality Challenge Database (CLIVE) [Ghadiyaram and Bovik,

2015, Ghadiyaram and Bovik, 2016] comprises 1162 images taken under real life conditions

with a large variety of objects and scenes captured under varying luminance conditions using

different consumer-grade cameras. In that sense the images are authentically distorted with

impairments being the result of a mixture of different distortions, such as over- or under-

exposure, blur, grain, or compression. As such, no undistorted reference images are available.

Being unreferenced, quality might be of more general aesthetic notion that is beyond the

scope of this thesis. All images are of the resolution 500×500 pixel. Quality annotations were

obtained in the form of MOS in a crowdsourced online study. MOS values lie in the range

[0, 100], a higher value indicates higher quality.

3.2.2 Performance Metrics

Quality estimators are typically benchmarked by their prediction accuracy and their prediction

monotonicity, where the former is quantified as Pearson Linear Correlation Coefficient (PLCC)

and the latter as Spearman rank order coefficient (SROCC) [VQEG, 2004]. The PLCC rP between

datasets x and y is defined as

rP =
∑N−1

i=0 (xi − x̄)(yi − ȳ)
√∑N−1

i=0 (xi − x̄)2
∑N−1

i=0 (yi − ȳ)2
(3.3)

The SROCC rS between datasets x and y is defined as the PLCC of the ranked variables.

Note that in contrast to the PLCC the absolute value of the SROCC is not affected by a strictly

monotonic mapping such as sigmoid regression functions. For benchmarking both correlation

metrics indicate highest performance by an absolute value of 1 and lowest performance by a

value of 0.
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3.3 Lessons Learned

• The computationally simplest quality estimator is the MSE. It does not correlate well

with human perception of visual quality.

• A whole zoo of more sophisticated model-based quality estimators were proposed.

• Little work has been done on end-to-end trained quality estimators.

• Weighted average pooling schemes can be used to improve performance of spatially

localized quality estimators.

• Little work has been done on (end-to-end) data-driven pooling schemes

• Publicly available quality annotated image databases are relatively small, rendering

data-driven approaches to quality estimation challenging.
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4 Data-Driven Estimation of Image

Quality

This chapter is based on

Bosse, S., Maniry, D., Müller, K.-R., Wiegand, T., and Samek, W. (2018e). Deep neural networks

for no-reference and full-reference image quality assessment. IEEE Transactions on Image

Processing, 27(1):206–219 ©2018 IEEE

4.1 Introduction

Until recently, computer vision has tackeled problems such as image classification and object

detection in two steps: (1) designing appropriate features and (2) designing learning algo-

rithms for regression or classification. Although the extracted features were used as input to

the learning algorithm, the two steps were mostly independent of each other. More recently,

CNNs have outperformed these traditional approaches. One reason is that they allow for joint

end-to-end learning of features and regression/classification based on the raw input data,

avoiding any hand-engineering [LeCun et al., 1998]. It was further shown that in classification

tasks deep CNNs with more layers outperform shallow network architectures [Simonyan and

Zisserman, 2014].

This chapter studies the use of a deep CNN in a general quality estimation setting. The CNN is

largely inspired by the organization of primate visual cortex, and comprises 10 convolutional

layers and 5 pooling layers for feature extraction, and 2 fully connected layers for regression. It

is shown that network depth has a significant impact on performance. We start with address-

ing the problem of FR quality estimation in an end-to-end optimization framework. For that,

the concept of Siamese networks known from classification tasks [Bromley et al., 1993, Chopra

et al., 2005] is adapted by introducing a feature fusion stage that allows for a joint regression

of the features extracted from the reference and the distorted image. Different feature fusion

strategies are discussed and evaluated.

As the number of parameters to be trained in deep networks is usually very large, the number

of data samples in the training set must be sufficiently large in order to avoid overfitting. The

problem of data scarcity discussed in Section 3.2.1 is addressed by artificially augmenting the
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datasets, i.e., the network is trained on randomly sampled patches of the quality annotated

images. For that, image patches are assigned quality labels from the corresponding annotated

images. Unlike most other data-driven quality estimation approaches, patches input to the

network are not normalized, which makes the proposed method robust to distortions intro-

duced by luminance and contrast changes. To this end, global image quality is derived by

pooling local patch qualities simply by averaging and, for convenience, this method is referred

to as Deep Image QuAlity Measure for FR (DIQaM-FR).

As discussed in Section 3.1.3, local quality is not uniformly distributed over an image, and

individual image locations vary in how strongly they influence global image quality. This

leads to a high amount of label noise in the augmented datasets. Thus, a patch-wise relative

weight is assigned to account for the contribution of each image location to the global quality

estimate. This is implemented as a simple change to the network architecture that adds two

fully connected layers running in parallel to the quality regression layers, combined with a

modification of the training strategy. This method is referred to as Weighted Average Deep

Image QuAlity Measure for FR (WaDIQaM-FR). This approach allows for a joint optimization

of local quality estimation and pooling from local to global quality, formally within the classical

framework of saliency weighted distortion pooling.

After establishing our approach within a FR context, one of the feature extraction paths in

the Siamese network is abolished. This adaptation allows to apply the network within a NR

context as well. Depending on the spatial pooling strategy used, we refer to the NR models as

Deep Image QuAlity Measure for NR (DIQaM-NR) and Weighted Average Deep Image QuAlity

Measure for NR (WaDIQaM-NR).

Interestingly, by starting with a FR model, our approach facilitates systematic reduction of the

amount of information from the reference image necessary for accurate quality prediction.

Thus, it helps to close the gap between FR and NR quality estimation. This means that the

space of RR quality estimation can be explored from a given FR model without retraining.

The performance of the models trained with the proposed methods are benchmarked on the

relevant image quality databases introduced in Section 3.2.1. Because the performance of

data-driven approaches depends largely on what data is used for training we evaluate the

generalization ability of the proposed methods in cross-database experiments.

This chapter is structured as follows: Section 4.2 develops and details the proposed methods

for deep neural network-based FR and NR quality estimation with different patch aggregation

methods. In Section 4.3 the presented approaches are evaluated and compared to the state

of the art (cf. Section 3.1). Further, weighted average patch aggregation, network depth, and

reference reduction are analyzed. The chapter concludes with a discussion and an outlook to

future work in Section 4.4.
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Figure 4.1 – Deep neural network model for FR quality estimation. Features fr
i

, fd
i

are extracted

from reference and distorted patches P r
i

,P d
i

by a CNN and fused as difference, concatenation
or concatenation supplementary with the difference vector to fi . The fused feature vector
is regressed to a patch-wise quality estimate q̂i . The dashed-boxed branch of the network
indicates an optional regression of the feature vector to a patch-wise weight estimate wi

that allows for pooling by weighted average patch aggregation. The output is the image-wise
quality estimate Q̂.

4.2 Deep Neural Networks for Image Quality Estimation

4.2.1 Neural network-based FR Quality Estimation

Siamese networks have been used to learn similarity relations between two inputs by process-

ing the inputs in parallel using two networks that share synaptic connection weights. This

approach has been applied to signature [Bromley et al., 1993] and face verification [Chopra

et al., 2005] tasks, where the inputs are binarily classified as belonging or not belonging to

the same category. For FR quality estimation we perform feature extraction with a Siamese

network. In order to use the extracted features for the regression problem of quality estimation,

feature extraction is followed by a feature fusion step. The fused features are then input to

the regression part of the network. The architecture of the proposed network is sketched in

Fig. 4.1 and will be further detailed in the following.

Motivated by its superior performance in the 2014 ILSRVC classification challenge [Rus-

sakovsky et al., 2015] and its successful adaptation for various computer vision tasks [Girshick,

2015, Long et al., 2015], VGGnet [Simonyan and Zisserman, 2014] was chosen as a basis for the

proposed networks. VGGnet has a straight-forward, but deep CNN architecture and was the

first neural network to employ cascaded convolutions kernels small as 3×3. The input of the

VGG network are images of the size 224×224 pixels. To allow smaller input sizes such as 32×32

pixel-sizes patches, we extend the network by 3 layers (conv3-32, conv3-32, maxpool) placed

in front of the original architecture. Our proposed VGGnet-inspired CNN thus comprises 12

weight layers that are organized in a feature extraction module and a regression module. The

features are extracted in a series of conv3-32, conv3-32, maxpool, conv3-64, conv3-64, max-

pool, conv3-128, conv3-128, maxpool, conv3-256, conv3-256, maxpool, conv3-512, conv3-512,
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maxpool layers1. The fused features (see Section 4.2.2) are regressed by a sequence of one

FC-512 and one FC-1 layer. With 3×3 pixel-size convolution kernels, this produces about 5

million trainable network parameters, 5.2 million if the weight estimates are also included. All

convolutional layers are activated through a rectified linear unit (ReLU) activation function

g = max(0,
∑

i wi ai ), where g , wi and ai denote the output, the weight and the input of the

ReLU, respectively [Nair and Hinton, 2010]. To obtain an output of the same size as the input,

convolutions are applied with zero-padding. All max-pool layers have 2×2 pixel-sized kernels.

Dropout regularization with a ratio of 0.5 is applied to the fully-connected layers in order to

prevent overfitting [Srivastava et al., 2014].

For our quality estimation approach, reference and distorted images are subdivided into

32×32 sized collocated patches P r
i

,P d
i

that are input to the neural network. Local patch-wise

quality estimates q̂i are pooled into a global image-wise quality estimate Q̂ by simple or

weighted average patch aggregation. The strategy for spatial pooling affects the training of the

network and will be explained in more detail in Section 4.2.3.

For convenience we refer to the resulting models as Deep Image QuAlity Measure for FR

(DIQaM-FR) and Weighted Average Deep Image QuAlity Measure for FR (WaDIQaM-FR).

4.2.2 Feature Fusion

In order to serve as input to the regression part of the network, the extracted feature vectors

fr
i

and fd
i

are combined in a feature fusion step. In the FR framework, concatenating fr
i

and

fd
i

to concat(fr
i

, fd
i

) without any further modifications is the simplest way of feature fusion.

fr
i

and fd
i

are of identical structure, which renders the difference fr
i
− fd

i
to be a meaningful

representation for distance in feature space. Although the regression module should be able

to learn fr
i
− fd

i
by itself, the explicit formulation might ease the actual regression task. This

allows for two other simple feature fusion strategies, namely the difference fr
i
− fd

i
, and the

concatenation of feature vectors and difference concat(fr
i

, fd
i

, fr
i
− fd

i
).

4.2.3 Spatial Pooling

4.2.3.1 Pooling by Simple Averaging

The simplest way to pool locally estimated visual qualities q̂i to a global image-wise quality es-

timate Q̂ is to assume identical relative importance of every image region, or, more specifically,

of every image patch Pi as

Q̂ =
1

Np

Np∑

i

q̂i , (4.1)

1Notation is borrowed from [Simonyan and Zisserman, 2014] where conv〈receptive field size〉-〈number of
channels〉 denotes a convolutional layer and FC〈number of channels〉 a fully-connected layer
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where Np denotes the number of patches sampled from the image. For regression tasks,

commonly the MSE is used as minimization criterion. However, as simple average quality

pooling implicitly assigns the locally perceived quality to be identical to the globally perceived

quality Qp this approach introduces a certain degree of label noise into the training data.

Optimization with respect to mean absolute error (MAE) puts less emphasis on outliers and

reduces their influence. As our estimation problem is a regression task, we choose MAE as a

less outlier sensitive alternative to MSE. The loss function to be minimized is then

Esi mpl e =
1

Np

Np∑

i

|q̂i −Qp |. (4.2)

In principle, the number of patches Np can be chosen arbitrarily. A complete set of all non-

overlapping patches would ensure all pixels of the image to be considered and, given the same

trained CNN model, be mapped to reproducible scores.

4.2.3.2 Pooling by weighted average patch aggregation

As discussed in Section 3.1.3, the perceived quality in a local region of an image does not

necessarily correspond to the global image-wise perceived quality, due to effects such as

spatially non-uniformly distributed distortion, summation or saliency effects or combinations

thereof. In the pooling-by-average approach described above this is accounted for only

very roughly by employing a less outlier-sensitive loss function. However, spatial pooling

by averaging local quality estimates does not consider the effect of spatial variability in the

perceptual relevance of local quality.

We address this spatial variability of relative image quality by integrating a second branch into

the regression module of the network that runs in parallel to the patch-wise quality regression

branch (see Fig. 4.1) and shares the same dimensionality. This branch outputs an w∗
i

for a

patch Pi . By activating w∗
i

through a ReLU and adding a small stability term ǫ

wi = max(0, w∗
i )+ǫ (4.3)

it is guarantied to result in local weights wi > 0 that can be used to weight the estimated quality

q̂i of the respective patch Pi .

With the normalized weights

vi =
wi

∑Np

j
w j

. (4.4)

the global image quality estimate Q̂ can be calculated as

Q̂ =
Np∑

i

pi q̂i =
∑Np

i
wi q̂i

∑Np

i
wi

. (4.5)
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As in Eq. 4.2, the number of patches Np can be set arbitrarily. Comparing Eq. 4.5 to Eq. 3.2

shows that the proposed pooling method implements a weighting technique formally equiva-

lent to the framework of linear saliency weighting as described in Section 3.1.3.

For joint end-to-end training the loss function to be minimized is then

Ewei g hted =|Q̂ −Qp |. (4.6)

4.2.4 Network Adaptations for NR Quality Estimation

Weighted Averaging

Feature Extraction
(CNN)

Weight Estimation
(FC NN)

Regression
(FC NN)

Pooling
P d

i fi

wi

w0 wN−1

. . .

q̂0 q̂N−1

. . .
q̂i

Q̂

Figure 4.2 – Deep neural network for NR quality estimation. Features are extracted from
the distorted patch P d

i
by a CNN. The feature vector fi is regressed to a patch-wise quality

estimate q̂i . Patch-wise estimates are aggregated to the global image quality estimate Q̂. The
dashed-boxed branch of the network indicates an optional regression of the feature vector to a
patch-wise weight estimate wi that allows for pooling by weighted average patch aggregation.

The proposed deep network can also be used in a NR quality estimation context, by simply

abolishing the branch that extracts features from the reference patch using a Siamese network.

As features from the reference patch are no longer available, no feature pooling is necessary.

However, both spatial pooling methods detailed in Section 4.2.3 are applicable for NR quality

estimation as well. The resulting approaches are referred to as Deep Image QuAlity Measure for

NR (DIQaM-NR) and Weighted Average Deep Image QuAlity Measure for NR (WaDIQaM-NR)

and are subject to the same loss functions as for the FR case. The resulting architecture of the

neural network adapted for NR quality estimation is illustrated in Fig. 4.2.

4.2.5 Training

The proposed networks are trained iteratively by backpropagation [LeCun et al., 1998, LeCun

et al., 2012] over a number of epochs, where an epoch is defined as a period during which

(parts of) each image from the training set has been used once. In each epoch, the training set

is divided into mini-batches for batch-wise optimization. Although it is possible to treat each

image patch as a separate sample in the case of simple average pooling, for weighting average
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pooling image patches of the same image can not be distributed over different mini-batches,

as their output is combined when the normalized weights are combined in the last layer.

To make the training approach as similar as possible across all methods, each mini-batch

contains 4 images, each represented by 32 randomly sampled image patches which leads

to the effective batch size of 128 patches. The backpropagated error is the average loss over

all images in a mini-batch. For training the FR quality estimation networks, the respective

reference patches are included in the mini-batch. Patches are randomly sampled in every

epoch to ensure that as many different image patches as possible are used in training.

The learning rate for the batch-wise optimization is controlled per parameter adaptively using

the ADAM method [Kingma and Ba, 2014] based on the variance of the gradient. Parameters of

ADAM are chosen as recommended in [Kingma and Ba, 2014] as β1 = 0.9, β2 = 0.999, ǫ= 10−8

and α = 10−4. The mean loss over all images during validation is computed in evaluation

mode (i.e. dropout is replaced with scaling) after each epoch. The 32 random patches for each

validation image are only sampled once at the beginning of training in order to avoid noise in

the validation loss. The final model used for evaluation is the one with the best validation loss.

This amounts to early stopping (see [Prechelt, 2012] for a review), a regularization technique

to prevent overfitting.

Note that the two regression branches estimating patch weight and patch quality do not have

identical weights, as the update of the network weights is calculated based on gradients with

respect to different parameters.

4.3 Experiments and Results

4.3.1 Experimental Setup

For evaluation per database networks are trained and tested either on LIVE, TID2013 or (in the

NR case) CLIVE. For cross-validation, databases are randomly split by reference image. This

guarantees that no distorted or undistorted version of an image used in testing or validation

has been seen by the network during training. For LIVE, the training set is based on 17 reference

images, validation and test set on 6 reference images each. TID2013 is split analogously in 15

training, 5 validation and 5 test images. CLIVE does not contain versions of different quality

levels of the same image, therefore splitting in sets can be done straightforward on the full

set of distorted images. Training set size for CLIVE is 698 images, validation and test set sizes

232 images each. Results reported are based on 10 random splits. Models are trained for 3000

epochs. Even though some models converge after less than 1000 epochs a high number is

used to ensure convergence for all models. After training the network has seen ∼48M patches

in the case of LIVE, ∼178M patches in the case of TID2013, and ∼67M in the case of CLIVE.

To assess the generalization ability of the proposed methods the CSIQ image database is used

for cross-dataset evaluating the models trained either on LIVE or on TID2013. For training the

model on LIVE, the dataset is split into 23 reference images for training and 6 for validation;

analogously, for training the model on TID2013, the dataset is split into 20 training images and

5 validation images. LIVE and TID2013 share a lot of reference images, thus, tests between
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these two are unsuitable for evaluating generalization for unseen images. For cross-distortion

evaluation, models trained on LIVE are tested on TID2013 in order to determine how well a

model deals with distortions that have not been seen during training and in order to evaluate

whether a method is truly non-distortion or just many-distortion specific.

Note that, in contrast to many studies in the literature, we use the full TID2013 database

and do not ignore any specific distortion type. To make errors and gradients comparable for

different databases, the MOS values of TID2013 and CLIVE and the DMOS values of CSIQ

have been linearly mapped to the same range as the DMOS values in LIVE. Note that by this

mapping high values of q̂i visualized in Section 4.3.3 represent high local distortion, rather

than high quality.

4.3.2 Performance Evaluation

Evaluations presented in this subsection are based on image quality estimation considering

NP = 32 patches. Other values of Np will be discussed in Section 4.3.5. Performances of the FR

models are reported for features fused by concat(fr
i

, fd
i

, fr
i
− fd

i
); the influence of the different

feature fusion schemes are examined in Section 4.3.6.

Table 4.1 – Performance comparison on LIVE and TID2013 databases ©2018 IEEE

LIVE TID2013
IQM LCC SROCC LCC SROCC

F
u

ll
-R

ef
er

en
ce

PSNR 0.872 0.876 0.675 0.687
SSIM [Wang et al., 2004] 0.945 0.948 0.790 0.742
FSIMC [Zhang et al., 2011] 0.960 0.963 0.877 0.851
GMSD [Xue et al., 2014] 0.956 0.958 - -
DOG-SSIM [Pei and Chen, 2015] 0.963 0.961 0.919 0.907
DeepSim [Gao et al., 2017] 0.968 0.974 0.872 0.846
DIQaM-FR (proposed) 0.977 0.966 0.880 0.859
WaDIQaM-FR (proposed) 0.980 0.970 0.946 0.940

N
o

-R
ef

er
en

ce

BLIINDS-II[Saad et al., 2012] 0.916 0.912 0.628 0.536
DIIVINE [Moorthy and Bovik, 2011] 0.923 0.925 0.654 0.549
BRISQUE [Mittal et al., 2012] 0.942 0.939 0.651 0.573
NIQE [Mittal et al., 2013] 0.915 0.914 0.426 0.317
BIECON [Kim and Lee, 2017] 0.962 0.961 - -
FRIQUEE [Ghadiyaram and Bovik, 2017] 0.930 0.950 - -
CORNIA [Ye et al., 2012] 0.935 0.942 0.613 0.549
CNN [Kang et al., 2014] 0.956 0.956 - -
SOM [Zhang et al., 2015] 0.962 0.964 - -
DIQaM-NR (proposed) 0.972 0.960 0.855 0.835

WaDIQaM-NR (proposed) 0.963 0.954 0.787 0.761
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Table 4.2 – Performance comparison for different subsets of TID2013 ©2018 IEEE

Noise Actual Simple Exotic New Color

PSNR 0.822 0.825 0.913 0.597 0.618 0.535
SSIM [Wang et al., 2004] 0.757 0.788 0.837 0.632 0.579 0.505
FSIMC [Zhang et al., 2011] 0.902 0.915 0.947 0.841 0.788 0.775
DOG-SSIM [Pei and Chen, 2015] 0.922 0.933 0.959 0.889 0.908 0.911
DIQaM-FR (proposed) 0.938 0.923 0.885 0.771 0.911 0.899
WaDIQaM-FR (proposed) 0.969 0.970 0.971 0.925 0.941 0.934

4.3.2.1 Full-Reference Image Quality Estimation

The upper part of Table 4.1 summarizes the performance of the proposed FR models in

comparison to other state-of-the-art methods on the full LIVE and full TID2013 database

in terms of PLCC and SROCC. With any of the two presented spatial pooling methods, the

proposed approach obtains superior performance to state-of-the-art on LIVE, except for

DeepSim evaluated by SROCC. On TID2013 DIQaM-FR performs better than most evaluated

state-of-the-art methods, but is outperformed by DOG-SSIM2. Here, employing weighted

average patch aggregation clearly improves the performance and WaDIQaM-FR performs

better than any other evaluated IQM. This effect can be observed as well in Table 4.2 for

the groups of different distortion of TID2013 defined in [Ponomarenko et al., 2013]. While

DIQaM-FR performs comparable to state-of-the-art methods, on some groups better, on some

worse, WaDIQaM-FR shows superior performance for all grouped distortion types.

4.3.2.2 No-Reference Image Quality Estimation

Table 4.3 – Performance evaluation for NR quality estimation on CLIVE ©2018 IEEE

PLCC SROCC

FRIQUEE [Ghadiyaram and Bovik, 2017] 0.706 0.682

BRISQUE [Mittal et al., 2012] 0.610 0.602
DIIVINE [Moorthy and Bovik, 2011] 0.557 0.509
BLIINDS-II [Saad et al., 2012] 0.449 0.404
NIQE [Mittal et al., 2013] 0.477 0.421
DIQaM-NR (proposed) 0.601 0.606
WaDIQaM-NR (proposed) 0.680 0.671

Performances of the NR IQMs are compared to other state-of-the-art NR quality estimation

methods in the lower part of Table 4.1. The proposed model employing simple average pooling

(DIQaM-NR) performs best in terms of PLCC among all methods evaluated, and in terms of

SROCC performs slightly worse than SOM. Evaluated on TID2013, DIQaM-NR performs supe-

rior among all other methods in terms of LCC and SRCC2. Although no results were reported

2Unfortunately, for many state-of-the-art FR and NR quality estimation methods no results are reported on
TID2013.
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Table 4.4 – PLCC on selected distortion of TID2013 ©2018 IEEE

GB JEPG J2K LBDDI

DIQaM-FR 0.884 0.965 0.900 0.634
WaDIQaM-FR 0.963 0.978 0.975 0.683

DIQaM-NR 0.872 0.946 0.872 0.479
WaDIQaM-NR 0.618 0.726 0.816 0.664

for BIECON [Kim and Lee, 2017] on the TID2013 dataset, this method achieves a relatively

high SROCC=0.923 on the older TID2008 database when 5 distortion types (non-eccentricity

pattern noise, local block-wise distortions, mean shift, contrast change) are excluded from the

analysis. Future investigations will show how BIECON performs on the challenging TID2013

database with all distortions included. In contrast to our FR models in the NR case the

weighted average patch aggregation pooling decreases the prediction performance when

evaluated on full databases.

A comparison of performances for the CLIVE database is shown in Table 4.3. Quality esti-

mation on CLIVE is much more difficult than on LIVE or TID2013, thus performances of all

methods evaluated are much worse than for the legacy databases. WaDIQaM-NR shows pre-

diction performance superior to most other models, but is clearly outperformed by FRIQUEE.

Interestingly and contrasting to the results on LIVE and TID2013, on CLIVE WaDIQaM-NR

performs clearly better than DIQaM-NR.

In order to analyze these apparent contradictory results a little deeper, Table 4.4 shows the

performance of (Wa)DIQaM-FR and (Wa)DIQaM-NR for four selected distortion types from

TID2013 (Gaussian blur, JPEG compression, JP2K compression and local block-wise distor-

tions of different intensity). While for (WA)DIQaM-FR we see the same behavior on single

distortion types as on aggregated distortion types, in the NR case weighted patch aggregation

pooling decreases performance for GB, JPEG and JP2K, but increases performance for local

block-wise distortions of different intensity (LBDDI). We conjecture that for most distortions

information from the reference image is crucial to assign local weights for pooling, but if

distortions are strongly inhomogeneous as it is the case for LBDDI, the distorted image is

sufficient to steer weighting. One of the reasons for CLIVE being so challenging for quality

estimation is that distortions and scenes are spatially much more inhomogeneous than in LIVE

or TID2013, which the weighted patch aggregation can compensate for. This also explains the

huge increase in performance by weighted patch aggregation pooling for the exotic subset of

the TID2013 in Table 4.4 as this subset contains a larger amount of inhomogeneous distortion

types. The resulting local weights will be examined more closely in the next section.

4.3.3 Local Weights

The previous sections showed that the weighted average patch aggregation scheme employed

in WaDIQaM-FR/NR has an influence that depends on the distortion type and the availability

of a reference.
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Fig. 4.3 shows the local quality estimates q̂i and weights wi for an image subject to JP2K

compression from TID2013. The MOS value of the distorted image is 34; the relation between

prediction accuracies of the four different models are as expected from the previous evalua-

tions (DIQaM-FR: 54, WaDIQaM-FR: 42, DIQaM-NR:60, WaDIQaM-NR: 70). The left column

shows the quality estimate and weight maps computed by the proposed FR models, the right

column the maps from the NR models. The DIQaM-FR/NR assign higher distortion values to

the background of the image than to the two foreground objects (Figs. 4.3b and 4.3c). In the FR

case, the local weights provide some rough image segmentation as higher weights are assigned

to image regions containing objects (Fig. 4.3f). This fails in the NR case (Fig. 4.3g), which

explains the performance drop from DIQaM-NR to WaDIQaM-NR observed in Section 4.3.2.2.

The local quality estimate and weight maps resulting from an image subject to spatially highly

variant distortions, in this example LBDDI from TID2013, is shown in Fig. 4.4. Here, for

WaDIQaM-FR as well as for WaDIQaM-NR the network is able to assign higher weights to the

distorted image regions and by that improve prediction accuracy compared to the models

employing simple average pooling. Note that, as in Fig. 4.3, WaDIQaM-FR is again able to

roughly segment the image, whereas WaDIQaM-NR again fails at segmentation. However, for

this extreme distortion type the general structure of the image is of less importance.

In Section 4.3.2.2 we conjectured that one reason for WaDIQaM-NR to improve prediction

performance over DIQaM-NR for CLIVE, but to decrease performance on LIVE and TID2013 is

the higher amount of spatial variance in CLIVE. Fig. 4.5 exemplifies this effect for two images

from CLIVE.

The left-most column shows the test images, where the top one (Fig. 4.5a) suffers spatially

rather uniformly from underexposure, rendering identification of a certain area of higher im-

pairment difficult, while the bottom one (Fig. 4.5b) contains clear regions of interest that are

rather easy to identify against the black background. The lower rows show the corresponding

(a) Distorted Image

(b) q̂i , DIQaM-FR

(c) q̂i , DIQaM-NR

(d) q̂i , WaDIQaM-FR

(e) q̂i , WaDIQaM-NR

(f) wi , WaDIQaM-FR

(g) wi , WaDIQaM-NR

Figure 4.3 – Local quality estimates q̂i and weights wi for a JP2K distorted image from TID2013.
Blue indicates low, yellow high values of local distortions and weights, respectively. The MOS
value is 34, predicted qualities are 54 by DIQaM-FR, 42 by WaDIQAM-FR, 60 by DIQaM-NR,
and 70 by WaDIQam-NR. ©2018 IEEE
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(a) Distorted Image

(b) q̂i , DIQaM-FR

(c) q̂i , DIQaM-NR

(d) q̂i , WaDIQaM-FR

(e) q̂i , WaDIQaM-NR

(f) wi , WaDIQaM-FR

(g) wi , WaDIQaM-NR

Figure 4.4 – Local quality estimates q̂i and weights wi for a LBDDI distorted image from
TID2013. Blue indicates low, yellow high values of local distortions and weights, respectively.
The MOS value is 59, predicted qualities are 30 by DIQaM-FR, 51 by WaDIQAM-FR, 27 by
DIQaM-NR, and 53 by WaDIQam-NR. ©2018 IEEE

(a) Input Image

(b) Input Image

(c) q̂i , DIQaM-NR

(d) q̂i , DIQaM-NR

(e) q̂i , WaDIQaM-NR

(f) q̂i , WaDIQaM-NR

(g) wi , WaDIQaM-NR

(h) wi , WaDIQaM-NR

Figure 4.5 – Local quality estimates q̂i and weight maps wi for two image from CLIVE. Top

row: MOS value is 43, predicted qualities are 42 by DIQaM-NR, 34 by WaDIQam-NR. Bottom

row: MOS value is 73, predicted qualities are 56 by DIQaM-NR, 66 by WaDIQam-NR. ©2018
IEEE

quality estimate and weight maps. Fig. 4.5h shows that for this spatially highly concentrated

scene, WaDIQaM-NR is able to identify the patches contributing the most to the overall image

structure. However, as Fig. 4.5g shows, it fails to do so for the homogeneously impaired image.

Another important observation from Fig. 4.3, Fig. 4.4 and Fig. 4.5 is that weighted average patch

aggregation has an influence also on the quality estimate maps. Thus, the joint optimization
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introduces an interaction between q̂i and wi that is adaptive to the specific distortion.

4.3.4 Cross-Database Evaluation

4.3.4.1 Full-Reference Image Quality Estimation

Table 4.5 – SROCC comparison in cross-database evaluation. All models are trained on full
LIVE or TID2013, respectively, and tested on either CSIQ, LIVE or TID2013. ©2018 IEEE

Trained on: LIVE TID2013

Tested on: TID2013 CSIQ CSIQ LIVE

DOG-SSIM [Pei and Chen, 2015] 0.751 0.914 0.925 0.948

DIQaM-FR (proposed) 0.437 0.660 0.863 0.796
WaDIQaM-FR (proposed) 0.751 0.909 0.931 0.936

Table 4.5 shows the results for models trained on LIVE and tested on TID2013 and CSIQ, and

for models trained on TID2013 and tested on LIVE and CSIQ. Results are compared to DOG-

SSIM, as most other FR quality estimation methods compared to do not rely on training. In all

combinations of training and test set the DIQaM-FR model shows insufficient generalization

capabilities, while WaDIQaM-FR performs best among the two proposed spatial pooling

schemes and comparable to DOG-SSIM. The superior results of the model trained on TID2013

over the model trained on LIVE when tested on CISQ indicate that a larger training set may

lead to better generalization.

4.3.4.2 No-Reference Image Quality Estimation

Table 4.6 – SROCC in cross-database evaluation. All models are trained on the full LIVE
database and evaluated on CSIQ and TID2013. The subsets of CSIQ and TID2013 contain only
the 4 distortions shared with LIVE. ©2018 IEEE

subset full
CSIQ TID2013 CSIQ TID2013

DIIVINE [Moorthy and Bovik, 2011] - - 0.596 0.355
BLIINDS-II [Saad et al., 2012] - - 0.577 0.393
BRISQUE [Mittal et al., 2012] 0.899 0.882 0.557 0.367
CORNIA [Ye et al., 2012] 0.899 0.892 0.663 0.429
QAF [Zhang et al., 2014a] - - 0.701 0.440
CNN [Kang et al., 2014] - 0.920 - -
SOM [Zhang et al., 2015] - 0.923 - -
DIQaM-NR (proposed) 0.908 0.867 0.681 0.392
WaDIQaM-FR (proposed) 0.866 0.872 0.704 0.462

To evaluate the generalization ability of the proposed NR quality estimation models, we extend

cross-database experiments from the literature [Zhang et al., 2014a] with our results. For
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Table 4.7 – SROCC comparison in cross-database evaluation. All models are trained on the full
TID2013 database and evaluated on CSIQ. ©2018 IEEE

Method CSIQ full

DIIVINE [Moorthy and Bovik, 2011] 0.146
BLIINDS-II [Saad et al., 2012] 0.456
BRISQUE [Mittal et al., 2012] 0.639
CORNIA [Ye et al., 2012] 0.656
DIQaM-NR (proposed) 0.717
WaDIQaM-NR (proposed) 0.733

that, a model trained on the full LIVE database is evaluated on subsets of CSIQ and TID2013,

containing only the four distortions types shared between the three databases (JPEG, JP2K,

Gaussian blur and white noise). Results are shown in Table 4.6. While DIQaM-NR shows

superior performance compared to BRISQUE and CORNIA on the CISQ subset, the proposed

models are outperformed by the other state-of-the-art methods when cross-evaluated on

the subset of TID2013. As for the full CSIQ database, the two unseen distortions (i.e. pink

additive noise and contrast change) are considerably different in their visual appearance and

statistical structure compared to the ones seen during training. Thus, it is not surprising that

all compared methods perform worse in this setting. Despite performing worse on the single

database experiments, WaDIQaM-NR seems to be able to adapt better to unseen distortions

than DIQaM-NR. This is in line with the results on CLIVE – for CLIVE the specific mixture of

distortions of a given image is less likely to be in the training set than e.g. for LIVE. Although

being a vague comparison as TID2008 contains less distorted images per distortion type, it is

worth noting that BIECON obtains a SROCC=0.923 in a similar experiment (trained on LIVE,

tested on the 4 distortions types of the smaller TID2008 and excluding one image).

Given the relatively wide variety of distortions types in TID2013 and with only 4 out of 24

distortions being contained in the training set, a model trained on LIVE can be expected

to perform worse if tested on TID2013 than if tested on CSIQ. Unsurprisingly, none of the

learning-based methods available for comparison is able to achieve a SROCC over 0.5. These

results suggest that learning a truly non-distortion-specific quality estimator using only the

examples in the LIVE database is hard or even impossible. Nevertheless, the proposed methods

obtain competitive, but still very unsatisfactory results.

Table 4.7 shows the performance in terms of SROCC for models trained on full TID2013 and

tested on full CSIQ. Performance of DIIVINE, BLIINDS-II and CORNIA trained on TID2013

is decreased compared to being trained on LIVE, despite TID2013 being the larger and more

diverse training set, while BRISQUE and the proposed models are able to make use of the

larger training set size. This illustrates the notion that deep neural networks can use larger and

more diverse training sets to improve their generalization abilities, while shallow networks

cannot.

Even though the proposed methods outperform comparable methods, a SROCC of 0.733 on

the CSIQ dataset is still far from being satisfactory. Despite having more images in total and
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more distortions than LIVE, the TID2013 has 4 reference images fewer. Thus, training on

TID2013 has the same short-comings as training on LIVE when it comes to adapting to unseen

images.

Note that for the evaluation of learning-based quality estimation methods databases are split

into training, testing and (for some approaches) validation sets. Models are then trained

and evaluated for a number of different random splits and the performances on these splits

need to be pooled for comparison. This renders evaluation a random process. Performances

of different models as reported in the literature are obtained based on different split ratios,

different numbers of splits and different ways of pooling. This may have a slight influence on

the comparison of competing methods.

4.3.5 Convergence Evaluation

Results presented in the previous sections were obtained when Np = 32 patches are considered

for quality estimation. However, the prediction performance and accuracy depends on the

number of patches used. This subsection examines the influence of Np and justifies the choice

of Np = 32.

4.3.5.1 Full-Reference Image Quality Estimation

(a) LIVE (b) TID2013

Figure 4.6 – SROCC of the proposed CNN for FR quality estimation in dependence of the
number of randomly sampled patches evaluated on LIVE and TID2013. ©2018 IEEE

Fig. 4.6 plots the performance for the models trained and tested on LIVE and TID2013 with

varying Np in terms of SROCC and shows a monotonic increase in performance towards

saturation with larger Np . As noted before, weighted average patch aggregation improves the

prediction performance over simple averaging, here we see that this holds when the number of

patches large enough, e.g. Np > 8. The WaDIQaM-FR saturates at the maximum performance
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with Np ≈ 32, whereas the DIQaM-FR saturates already at Np ≈ 16 in all three evaluation

metrics.

4.3.5.2 No-Reference Image Quality Estimation

(a) LIVE (b) TID2013

Figure 4.7 – SROCC of the proposed CNN for NR IQA in dependence of the number of randomly
sampled patches evaluated on LIVE and TID2013. ©2018 IEEE
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Figure 4.8 – Loss in training, validation and testing vs. number of epochs in training for
DIQaM-NR and WaDIQaM-NR. ©2018 IEEE

The influence of the number of patches Np on the prediction performance of DIQaM-NR and

WaDIQaM-NR is plotted in Fig. 4.7. For both pooling methods and on both databases SROCC

improves monotonically with increasing number of patches Np until saturation.

On LIVE, for DIQaM-NR saturation sets in at about Np ≈ 16 to reach its maximal performance,
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whereas WaDIQaM-NR reaches its maximal performance at Np ≈ 256. Over the whole range of

Np the performance of average patch aggregation is superior to the performance of weighted

average patch aggregation and the difference is largest for small numbers Np . This is because

the weighted average acts as a filter that ignores patches with lower weights and thereby

reduces the number of patches considered in quality estimation. Qualitatively the same

results are obtained on TID2013.

Fig. 4.8 shows the course of optimization loss (effectively the MAE) during training, validation

and testing in dependence of the number of epochs of training exemplified for DIQaM-NR

and WaDIQaM-NR, one random split each, trained on LIVE. For both spatial pooling methods,

the loss shows the typical behavior for iterative gradient descent minimization. Interestingly,

WaDIQaM-NR achieves a lower loss than DIQaM-NR during training, while losses during

validation and testing are approximately equal.

4.3.6 Feature Fusion

Table 4.8 – PLCC Comparison for different feature fusion schemes ©2018 IEEE

Dataset Method fd
i
− fr

i

concat concat

(fr
i

, fd
i

) (fr
i

, fd
i

, fd
i
− fr

i
)

LIVE
DIQaM-FR 0.976 0.974 0.976
WaDIQaM-FR 0.982 0.977 0.982

TID2013
DIQaM-FR 0.908 0.893 0.908
WaDIQaM-FR 0.962 0.958 0.965

Results presented for the FR models in the previous subsections were obtained employing

concat(fr
i

, fd
i

, fd
i
− fr

i
) as feature fusion scheme. The performances of the three feature fusion

schemes are reported for LIVE and TID2013 in Table 4.8. Mere concatenation of both feature

vectors does not fail but consistently performs worse than both of the fusion schemes exploit-

ing the explicit difference of both feature vectors. This suggests that while the model is able to

learn the relation between the two feature vectors, explicitly providing the relation improves

performance. The results do not provide enough evidence for preferring one over the other

feature fusion methods, but it appears that adding the original feature vectors explicitly to the

representation does not add useful information. Note that the feature fusion scheme might

affect the learned features as well, thus, other things equal, it is not guaranteed the extracted

features fr
i

and fd
i

are equal for different fusion methods.

4.3.7 Network Depth

Comparing the proposed NR approach to CNN-based approaches employing fewer layers

[Kang et al., 2014] (see Table 4.1) suggests that the performance of a neural network-based

IQM can be increased by making the network deeper. In order to evaluate this observation in

a FR context as well, the architecture of the WaDIQaM-FR network was modified by removing

several layers and by reducing the intermediate feature vector dimensionality from 512 to 256.
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Figure 4.9 – Average performance on TID2013 for patch-wise dimensionality reduced
(Wa)DIQaM-FR in terms of SROCC in dependence of the number of principal components of
the reference patch feature vector. (Np = 32) ©2018 IEEE

This amounts to the architecture conv3-32, conv3-32, maxpool, conv3-64, maxpool, conv3-

128, maxpool, conv3-256, maxpool, FC-256, FC-1 with in total ∼790k parameters instead

of ∼5.2M parameters in the original architecture. When tested on the LIVE database, the

smaller model achieves a linear correlation of 0.980, whereas the original architecture achieves

0.984. The same experiment on TID2013 shows a similar result as the shallow model obtains a

linear correlation of 0.949, compared to 0.953 obtained by the deeper model. To test whether

the decrease in model complexity leads to less overfitting and better generalization, the

models trained on TID2013 are additionally tested on CSIQ. The smaller model achieves a

SROCC of 0.911, and is outperformed by the original architecture with a SROCC of 0.927.

The differences are rather small, but indicate that the deeper and more complex model does

lead to a more accurate prediction. However, when computational efficiency is important,

small improvements might not justify the five-fold increase in the number of parameters and

computations.

4.3.8 Bridging from Full- to No-Reference Image Quality Estimation

If argued strictly, the (Wa)DIQaM-FR as used here is not a FR, but a RR IQM, as only Np = 32

32×32 patches but not the full image is used for quality estimation. As shown in Fig. 4.6,

reference information could be reduced even further by reducing the number of patches Np

considered. This can be done without re-training the model. In the proposed architecture the

feature vector extracted from one reference patch is 512-dimensional.

The information available from the reference patch can not only be controlled by steering

Np , but also by reducing the dimensionality of the extracted feature vector. A straight for-

ward approach to do so would be to systematically change the network architecture from

(Wa)DIQaM-FR to (Wa)DIQaM-NR by reducing the dimensionality of the number of neurons
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in the last layer of reference branch of the feature extraction module. However, this approach

would result in a multitude of models, each trained for a specific patch-wise feature dimen-

sionality.

Another approach is to start with a trained FR model and to linearly reduce the dimensionality

of the reference patch feature vector fr
i

using PCA [Hotelling, 1933]. That way, a network

trained for FR quality estimation could be used as a NR quality estimation method. In this

extreme case the reference feature vector fr
i

is reduced to the mean of the reference feature

vectors observed in the training data.

PCA is estimated based on the feature vectors of 4000 reference patches sampled from the

training set and used for patch-wise dimensionality reduction of fr
i

during testing. Fig. 4.9

shows the performance of this RR IQM on one TID2013 test split for increasing dimensionality

of the reference patch feature vectors. While the dimensionality reduced version of DIQaM-FR

is still able to make useful predictions even without any reference information, this is not the

case for the dimensionality reduced version of WaDIQaM-FR method. This corroborates the

previous conjecture that weighted average patch aggregation, i.e. the reliable estimation of

the weights, is more dependent on information from the reference image, at least for homoge-

neous distortions. However, 3 principal components (dimensions) are enough to recover the

approximate performance obtained with the 512-dimensional original feature vector, for both

DIQaM-FR and WaDIQaM-FR. Note that this is the patch-wise, not the image-wise feature

dimensionality.

Although there are studies analyzing the influence of the feature dimensionality on the per-

formance of RR IQM systematically [Soundararajan and Bovik, 2012], we are not aware of

any unified framework to study NR to FR approaches. However, albeit being a promising

framework, a fair comparison, e.g. to the RRED indices [Soundararajan and Bovik, 2012] would

require an analysis of the interaction between patch-wise feature dimensionality and number

of patches Np considered.

4.4 Discussion

This chapter presented a neural network-based approach to FR and NR quality estimation that

allows for joint feature and regression learning in an end-to-end framework. To achieve this,

novel network architectures were presented, incorporating an optional joint optimization of

weighted average patch aggregation that implements a simple yet efficient method for linear

pooling of local patch quality estimates to a global image quality estimate. To allow for FR

image quality estimation, different feature fusion strategies were studied. The experimental

results show that the proposed methods outperform other state-of-the-art approaches for NR

as well as for FR quality estimation and achieve generalization capabilities that can compete

with state-of-the-art data-driven approaches. However, as for all current data-driven methods

generalization performance offers considerable room for improvement. A principle problem

for data-driven quality estimation is the relative lack of data. Until larger databases become

available networks could undergo unsupervised pre-training by optimizing on reproducing
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the quality prediction of a FR IQM, and a pre-trained network employing patch-wise weighting

could be refined by end-to-end training.

Even though a relatively generic neural network can achieve high prediction performance,

incorporating task specific adaptations to the architecture may lead to further improvements.

Our results show that there is room for optimization in terms of feature dimensionality and

balancing the ratio between network parameters. Here it is important to study prediction

performance and generalization ability. In this work, we optimized based on MAE. However,

quality estimation is commonly evaluated in terms of correlation and a different loss function

might be beneficial. We sketched how the proposed framework could be used in the RR case.

We did not present a full-fledged solution, but believe that the results indicate an interesting

starting point.

Local weighting of distortion is not a new concept. Classical approaches usually compute

the local weights based on a saliency model from the reference image [Zhang et al., 2016], or

the reference and the distorted image [Zhang et al., 2014b]. Selecting an appropriate saliency

model is crucial for the success of this strategy and models that excel at predicting saliency

are not necessarily best for quality estimation [Zhang et al., 2016]. The proposed weighted

average patch aggregation method allows for a joint, end-to-end optimization of local quality

estimation and weight assignment.

The equivalence of our weighting scheme to Eq. 3.2 allows us to interpret the two learned

maps as a weighting map and a quality estimate map. Thus, formal equivalence with the

classical approach of linear distortion weighting suggests that local weights capture local

saliency. However, this is not necessarily true, as the optimization criterion is not saliency, but

image quality. In fact, we showed that the local weights not only depend on the structural (and

potentially semantical) organization of the reference image, but also on the distortion type and

the spatial distribution of the distortion. This is a fundamental problem for quality estimation

(and as well as for quality assessment) and future work should address the conceptual similarity

between the learned weights and saliency models in greater detail.

The proposed network could be adapted for end-to-end learning local weights alone to be

used in a weighting scheme used to improve the prediction performance of any given IQM

(cf. Section 3.1.3). This could be directly combined with signal-based adaptation to the

conventional regression scheme [Bosse et al., 2017c] and will be studied in detail in Chapter 5.

Explanation methods [Bach et al., 2015, Montavon et al., 2018] can be applied to better

understand what features were actually learned by the network. From an application-oriented

perspective the proposed method may be adapted and evaluated for quality estimation of 3D

images and 2D and 3D videos.

Although there are still many obstacles and challenges for purely data-driven approaches,

the performance of the presented approach, considering its relative simplicity and the fact

that no domain knowledge is required, suggests that neural networks used for visual quality

estimation have lots of potential and are here to stay.
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4.5 Lessons Learned

• Deep CNNs are a feasible tool for FR and NR image quality estimation allowing for joint

end-to-end learning of features and regression.

• Linear pooling can be efficiently integrated into CNN quality estimation and for joint

optimization.

• For most distortion types the information relevant for linear pooling is contained in the

reference image.

• Distorted image carry pooling relevant information for spatially inhomogeneous dis-

tributed distortions.

• Deep CNNs show higher quality prediction accuracy than shallow CNNs.

• CNN-based quality estimation allows study the RR space between FR and NR quality

estimation systematically.

• Larger databases are necessary to train reliable models.

53





5 Perceptual Distortion Sensitivity for

Quality Estimation

This chapter is based on

Bosse, S., Becker, S., Müller, K.-R., Samek, W., and Wiegand, T. (2018d). Estimation of distortion

sensitivity for visual quality prediction using a convolutional neural network. Digital Signal

Processing, submitted

Bosse, S., Becker, S., Fisches, Z., Samek, W., and Wiegand, T. (2018c). Neural network-based

estimation of distortion sensitivity for image quality prediction. In Proceeding of the IEEE

International Conference on Image Processing (ICIP), accepted for publication ©2018 IEEE

Bosse, S., Siekmann, M., Samek, W., and Wiegand, T. (2017c). A perceptually relevant shearlet-

based adaptation of the PSNR. In Proceedings of the IEEE International Conference on Image

Processing (ICIP), pages 315–319 ©2017 IEEE

Bosse, S., Helmrich, C., Schwarz, H., Marpe, D., and Wiegand, T. (2017b). Perceptually opti-

mized QP adaptation and associated distortion measure. In Joint Video Exploration Team

(JVET) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-H0047, Macao, China

5.1 Introduction

The previous chapter proposed a fully data-driven, end-to-end trained approach to NR and

FR image quality estimation and it was shown that the accuracy of quality estimation benefits

from a spatially weighted pooling scheme. This weighting scheme was optimized jointly with

the local patch-wise quality estimation.

Also in general FR IQMs benefit from adaptation to the specific content of the images to be

tested [Ortiz-Jaramillo et al., 2015], and this adaption is mostly implemented as a formally

equivalent weighting scheme. Different models for this weighting have been proposed, e.g. by

considering HVS models such as saliency [Zhang et al., 2016] or scale-wise divisive normaliza-

tion [Laparra et al., 2016], information content [Wang and Li, 2011], conditional probability

[Hu et al., 2015] or shearlet-based measurements of local activity [Bosse et al., 2017c]. These
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weighing schemes model different aspects of the HVS but relate to the same concept of distor-

tion sensitivity, suggesting that distortions measured by a given quality model are more (or

less) visible in one image area than in another and that, thus, this image area is more (or less)

distortion sensitive than another.

Chapter 4 proposed an end-to-end optimized neural network-based approach to image qual-

ity. Although superior prediction performances were achieved, the computational complexity

of this approach (as of many other approaches in the literature) render its use infeasible for

many time-critical applications.

In this chapter, the concept of distortion sensitivity is introduced to bridge from psychophysi-

cal quality assessment over computational quality estimation to perceptually relevant encoder

control for image and video compression. Distortion sensitivity is modelled as a feature of the

reference image. This is particularly appealing as in combination with a low complex quality

model, i.e. the MSE or PSNR, computationally complex processing could be restricted to the

reference image only. For time-critical applications such as block-based hybrid video coding,

where during mode decision the block-wise distortion is evaluated for every coding mode

considered [Wiegand and Schwarz, 2016], this is a crucial property, as complex processing

would be gracefully taken out of the search loop of mode decision.

In Section 5.2, a functional definition of distortion sensitivity is derived based on a conceptual

and statistical discussion of the parameters of the regression function mapping from the com-

putational to the perceptual domain (cf. Section 3.1). Exemplified for the PSNR, it is shown

how a full image-wise compensation of distortion sensitivity significantly improves prediction

accuracy and the limits of improvement are explored based on the LIVE database [Sheikh et al.,

2006] in an exploration setup. The concept of distortion sensitivity is adapted from a global to a

local scale, and in Section 5.3 a neural network-based approach for estimating local distortion

sensitivity in an end-to-end trained image quality prediction framework is presented. The

performance of the presented approach for neural network-based compensation for distortion

sensitivity is evaluated and compared to other relevant approaches on the LIVE [Sheikh et al.,

2006] and the TID2013 [Ponomarenko et al., 2013] databases in Section 5.4. In Section 5.5, a

short introduction into image and video compression is given in order to derive a distortion

sensitivity bit allocation scheme that is evaluated and compared in an image compression

framework. Section 5.6 concludes the chapter with a summary and discussion.

5.2 Distortion Sensitivity

5.2.1 Psychometric Relation between Computational and Perceptual Quality

Due to saturation effects in the extreme cases of imperceptible quality loss or strong impair-

ments, subjective image quality ratings typically do not relate linearly to many computational

quality measures. As discussed in Section 3.1 and shown in Fig. 3.1a, the relation is commonly

linearized by a nonlinear mapping from the computational to the perceptual domain. A widely

used function is the 4-parameter generalized logistic function [VQEG, 2004]
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Figure 5.1 – Relation between Qc , Qp and Q̂. Left: Mapping of Qc to Qp for the LIVE database.
Red circles indicate Qc vs. Qp for individual images, the black curve shows the resulting
regression function for the full set. Right: Resulting quality predictions Q̂p vs. true quality
values Qp .

Qp = f (Qc ;β)

=β0 +
β1 −β0

1+e−β2·(Qc−β3)
. (5.1)

Parameters β= (β0,β1,β2,β3) are estimated as β̂ based on image-wise pairs of computational

quality values Qc , output of a computational quality model, and perceptual quality values

Qp , output of a quality assessment, e.g. a psychophysical test. Resulting estimates of the

regression parameters are then used to predict perceptual quality values from computational

quality values as

Q̂p = f (Qc ; β̂). (5.2)

Regression parameters1 β are not valid globally, but dependent on the quality assessment

procedure used to obtain Qp and the quality model computing Qc , where the consistency of

the relation between Qp and Qc relies on the goodness of the computational quality model.

In practice, regression parameters can only be estimated on a limited number of images that

need to be sufficiently representative in order to ensure generalization of the prediction to

1In order to simplify notation, the ̂-sign is dropped from now on and estimated regression parameters β̂ are
referred to as as β.
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unseen images.

Fig. 5.1 exemplifies a typical regression based on Eq. 5.1 from computational to perceptual

quality (left) and the resulting prediction of perceptual quality from computational quality

(right) with Qc calculated as PSNR and β estimated on the full LIVE database [Sheikh et al.,

2006] (see Section 3.2.1). Red circles denote pairs of (Qp ,Qc ) or (Qp ,Q̂p ) respectively, for

individual images. The black line represents the estimated regression function from Qc to Q̂p .

Although estimation of regression parameters is typically data-driven, β0 and β1 relate directly

to the lower and upper bounds of the perceptual quality values. As such, β0 and β1 are mainly

determined by the range of the perceptual quality scale and, thus, defined by the experimental

design of the subjective test and therefore in principle known a-priori. Regression parameter

β3 denotes a horizontal shift of the regression function with respect to Qc . The slope of

the regression, which, with a value of
∂Q̂p

∂Qc
(Qc = β3) = β1−β0

4 ·β2, is steepest at Qc = β3, is

controlled by β2 and scaled by the range of β0 to β1. Disregarding this scaling, β2 and β3 are

not depending on the quality scale, but on the relation between the values of a specific quality

measure and the ground-truth quality scores for the image set used to estimate the regression

parameters. Hence, β0,β1 in Eq. 5.1 can be fixed to the lower and upper bound of the rating

scale a and b and β can be reduced to β= (β2,β3).

5.2.2 Distortion Sensitivity as an Image Property

Regression parameters are commonly estimated over a set of images based on an ensemble of

reference images that are subject to different distortion types at different distortion magni-

tudes. However, given enough samples, i.e., impairment levels, regression parameters βi,d

can also be found per reference image i and distortion type d. Note that in practice this

would result in the loss of any generalization ability.

Such a reference image specific estimation of β is shown in Fig. 5.2 for JPEG-distorted images

from the LIVE database [Sheikh et al., 2006] with Qc measured as PSNR. The database provides

Qc as DMOS, high values of DMOS denote low subjective quality. Circles denote (Qc ,Qp ) pairs

of distorted images and are colored according to the base reference image. Colored dashed

curves represent the regression functions estimated for the different reference images, the

black curve represents the regression function estimated for the full ensemble. Reference-

specific regression curves are widely dispersed around the ensemble-wide regression. This

gives raise to the notion of distortion sensitivity, as for a given PSNR distorted versions of some

reference images exhibit a rather high perceptual quality, while others are reported to appear

highly distorted. This is indicated for the extreme cases by vertical black arrows; with regard to

the PSNR, the relatively flat image of the sailing boat, represented by green, is perceptually

more sensitive towards JPEG distortions than the highly textured image, represented by orange.

Based on the previous interpretation of the regression parameters β (and as such βi,d) and

the insight that β0,β1 are only dependent on the experimental setup for quality assessment,

distortion sensitivity can be functionally captured by β2 and β3. Hypothetical compensation

for the shifting parameter β3 is sketched for two reference images by dashed black horizontal
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Figure 5.2 – PSNR vs. DMOS for the JPEG-subset of the LIVE database [Sheikh et al., 2006]. High
values of DMOS denote low subjective quality. Colored dashed curves and circles indicate
regressed and measured DMOS values for individual reference images. The thick black curve
shows regressed DMOS values for the whole ensemble. Examples images are given for the two
extreme cases of distortion sensitivity.

arrows in Fig. 5.2.

With a functional quantification (for simplicity neglecting different distortion types for the

moment) of distortion sensitivity si0 and s
i

1 of a reference image i such a compensation can

be used to adapt a computational quality value Qc as

Qac = s0 · (Qc −s1). (5.3)

Assuming a regression according to Eq. 5.1, βi

2 and βi

3 are optimal predictors of s0 and s1.

With β0 and β1 being the upper and lower bounds a and b of the rating scale, Eq. 5.2 can be

rewritten as

Q̂p =a +
b −a

1+e−s0·(Qc−s1)

=a +
b −a

1+e−Qac
. (5.4)

Although βi

2 and βi

3 are generally not available in practice, assuming their availability helps to
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analyse the influence and limits of full image-wise distortion sensitivity-based compensation

in quality estimation. For this we distinguish four different cases in which we assume available

a) no reference image-specific information: s0 =β2,s1 =β3; b) optimal estimation of s0 only:

s0 =βi

2 ,s1 =β3; c) optimal estimation of s1 only: s0 =β2,s1 =βi

3 ; and d) optimal estimation

of s0 and s1: s0 = βi

2 ,s1 = βi

3 , where β(·), in contrast to βi

(·), denotes a parameter estimation

over the full ensemble of reference images. Note that, with regard to correlations between

Qp and Qac , s0 = β2,s1 = β3 and s0 = 1,s1 = 0 are equivalent, but not with regard to the

Pearson correlations between Qp and Q̂p . Hence, for simplified, yet consistent notation the

no adaptation case is represented as s0 =β2,s1 =β3.
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Figure 5.3 – Influence of compensating the PSNR for distortion sensitivity on JPEG subset
of LIVE database. Top: Adapted PSNR vs. ground truth DMOS. Bottom: Estimated DMOS
compensated for distortion sensitivity vs. ground truth DMOS.

Table 5.1 – Correlations between PSNR compensated for distortion sensitivity and ground
truth DMOS (Qac vs. Qp ), and predicted DMOS compensated for distortion sensitivity and
ground truth DMOS (Q̂p vs. Qp ). All correlations are calculated on the JPEG subset of the LIVE
database.

Qac vs. Qp Q̂p vs. Qp

ρP ρS ρP ρS

s0 =β2, s1 =β3 -0.88 -0.9 0.9 0.9
s0 =βi

2 , s1 =β3 -0.71 -0.72 0.73 0.72
s0 =β2, s1 =βi

3 -0.96 -0.98 0.98 0.98
s0 =βi

2 , s1 =βi

3 -0.96 -0.99 0.99 0.99

The effect of compensating the PSNR for distortion sensitivity is shown in Fig. 5.3 for JPEG

compressed images from the LIVE database: The top row shows the adapted PSNR (Eq. 5.3)
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vs. the ground truth DMOS , the bottom row the predicted DMOS (Eq. 5.4) vs. the true DMOS

for previously defined assumptions, i.e. the left hand sided column (Fig. 5.3a and Fig. 5.3e)

is equivalent to no adaptation. Fig. 5.3b and Fig. 5.3f suggest that image-wise compensation

for the slope disperses the quality estimates even further, while compensating image-wise for

the offset (Fig. 5.3b and Fig. 5.3f) and even more a joint compensation for slope and offset

(Fig. 5.3d and Fig. 5.3h) achieves a clean alignment of quality estimates.

Corresponding correlations are summarized in Table 5.1 and corroborate this observation. It

is noteworthy that a joint compensation for slope and offset achieves only small additional

improvement over offset-only compensation.

5.2.3 Distortion Sensitivity and Different Distortion Types

The previous subsection discussed reference image-specific distortion sensitivity subject to a

specific distortion type and exemplified this by JPEG distortion. However, different distortion

types affect different statistical properties of natural images, hence, also the distortion type

may have an influence on distortion sensitivity. This can be accounted for by extending previ-

ous considerations and modelling distortion sensitivity not only as a property of a reference

image i with respect to a given computational quality measure, but also in dependency of a

specific distortion type d.
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Figure 5.4 – Influence of considering distortion sensitivity on the adapted PSNR for different
distortion types. Top, from left to right: Distortion type-agnostic consideration of s0 only, s1

only, and s0,s1 jointly. Bottom, from left to right: Distortion type-specific consideration of s0

only, s1 only, and s0,s1 jointly.

Fig. 5.4 plots the relation between the estimated quality Q̂p and the ground truth quality Qp
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Table 5.2 – Correlation between adapted PSNR and true DMOS (Qac vs. Qp ) and predicted
DMOS and true DMOS (Q̂p vs. Qp ) for different adaptions of Qc by considering neither s0 nor
s0, only s0, only s1, both s0,s1 when accounting for specific distortion types d or over the set
of all distortion types D.

Qac vs. Qp Q̂p vs. Qp

ρP ρS ρP ρS

d

ag
n

o
st

ic s0 =β2, s1 =β3 -0.84 -0.87 0.86 0.87
s0 =βi

2 , s1 =β3 -0.80 -0.83 0.81 0.83
s0 =β2, s1 =βi

3 -0.88 -0.93 0.90 0.93
s0 =βi

2 , s1 =βi

3 -0.88 -0.94 0.91 0.94

d

sp
ec

ifi
c s0 =βi,d

2 , s1 =β3 -0.52 -0.50 0.77 0.77

s0 =β2, s1 =βi,d
3 -0.93 -0.96 0.98 0.99

s0 =βi,d
2 , s1 =βi,d

3 -0.96 -0.99 0.99 0.99

for different distortion sensitivity compensation schemes, where again β(·) (without super-

script) denotes a parameter estimated over the full dataset, βi

(·) denotes a reference image-wise

estimation over all distortion types in the database, and βd,i
(·) denotes parameter estimation

per reference image i and distortion type d. Clearly, a joint compensation of distortion type

d and reference image i can improve the prediction accuracy. Corresponding correlations

are summarized in Table 5.2. Interestingly, as observed previously in Table 5.1 for the single

distortion case, a compensation solely based on the slope parameter decreases prediction

accuracy also in the multi-distortion case, be it estimated per reference image over all dis-

tortions type (s0 =βi

2 ,s1 =β3) or per reference image and distortion type (s0 =βd,i
2 ,s1 =β3).

Compensation for the offset over all distortions per reference image (s0 =β2,s1 =βi

3) improves

prediction accuracy, also considering the distortion type (s0 =β2,s1 =βd,i
3 ) further improves

the quality estimation. However, a joint consideration of slope and offset (s0 =βi

2 ,s1 =βi

3 and

s0 =βd,i
2 ,s1 =βd,i

3 ) achieves only little additional improvement.

The discussion and findings presented in this section suggest distortion sensitivity can be

efficiently modelled as a feature of a reference image and functionally captured based on

the shifting parameter of the 4-parameter generalized logistic function. Additional image-

wise compensation for the slope parameter achieves only little further improvements in

prediction accuracy. Hence, in the following only the shifting parameter will be considered as

a functional representation of distortion sensitivity. For simplified notation β2 is replaced by c .

This modifies Eq. 5.3 and Eq. 5.4 to

Qac =Qc −s. (5.5)

62



5.2. Distortion Sensitivity

and

Q̂p =a +
b −a

1+e−c·(Qc−s)

=a +
b −a

1+e−cQac
, (5.6)

where c is estimated over full datasets and distortion sensitivity is denoted as s.

5.2.4 Localized Distortion Sensitivity

Previous considerations studied distortion sensitivity as a full image feature. However, statis-

tics of natural images are locally structured and spatially highly non-stationary [Ruderman,

1994, Bell and Sejnowski, 1997] so that distortion sensitivity not only varies globally across

different images, but also spatially within a given image.

Although in principle applicable to any computation distortion measure, the PSNR allows for a

very simple consideration of local distortion sensitivity. According to Eq. 5.5 the PSNR is com-

pensated for distortion sensitivity and the perceptually imagewise adapted PSNR (paPSNRI )

written as

paPSNRI = PSNR−sI (5.7)

= 10 · log10
C 2

10
sI
10 MSE

,

with sI denoting the image-wise distortion sensitivity and C the maximum (peak) sample

value of the given signal class, e.g. for 8-bit SDR images C = 255. While PSNR and paPSNRI do

not allow for a direct local weighting, the MSE can be adopted image-wise to the perceptually

adapted MSE (paMSEI )

paMSEI = 10
sI
10 ·MSE. (5.8)

By localizing distortion sensitivity to a pixel position (x, y) as s(x, y), with s(x, y) being the

reference and s̃(x, y) the distorted image samples, we define the perceptually adapted MSE

(paMSE) as

paMSE =
1

M ·N

M−1∑
x=0

N−1∑
y=0

10
s(x,y)

10 (s(x, y)− s̃(x, y))2 (5.9)

leading directly to a perceptually adapted PSNR (paPSNR)

paPSNR = 10 · log10
C 2

paMSE
. (5.10)

Note that when distortion sensitivity is available only globally for a full image, with s(x, y) = sI

then Eq. 5.10 simplifies to Eq. 5.7.

63



Chapter 5. Perceptual Distortion Sensitivity for Quality Estimation

The resulting compensation for local distortion sensitivity is very similar to the weighting

scheme introduced in Chapter 4, but does not employ a image-wise normalization of the

weights (see also Section 3.1.3).

Due to the scarcity of samples, i.e. distortion levels per reference image, no performance limits

can be derived for the local compensation of distortion sensitivity.

5.3 Estimating of Distortion Sensitivity using Neural Networks

CNN

MSE
Calculation

P r
i

P d
i

Pooling
PSNR

Mapping

si

MSEi

s0 sN−1

. . .

MSE0 MSEN−1

. . .

Perceptual
Mapping

paMSE paPSNR Q̂p

a,b c

Figure 5.5 – CNN-based compensation of the PSNR for distortion sensitivity. Distortion
sensitivity si is estimated by the CNN from the reference patch P r

i
. The image-wise paPSNR

is calculated from the sensitivity-weighted MSE of all image patches and mapped into the
perceptual domain on the quality estimate Q̂p .

The neural network used for end-to-end trained image quality estimation in Chapter 4 is

re-used for the estimation of patch-wise distortion sensitivity. Input to the network are 32×32

pixel-sized patches of the gray-scale converted reference image. The proposed CNN comprises

12 weight layers that are used to estimate the distortion sensitivity si of a given reference image

patch P r
i

. The network is organized as a series of conv3-32, conv3-32, maxpool, conv3-64,

conv3- 64, maxpool, conv3-128, conv3-128, maxpool, conv3-256,conv3-256, maxpool, conv3-

512, conv3-512, maxpool layers, followed by FC-512, FC-1 layers. Convolutional layers are

activated through a Leaky Rectified Linear Unit (LReLU) activation function [He et al., 2015]

with a leakyness of 0.2.

To allow for the estimation of distortion sensitivity for patch sizes other than 32×32 pixels, the

network architecture is adapted for the processing of patches of a) 8×8 pixels by removing

the first two pooling layers; b) 16×16 pixels by removing the first pooling layer; c) 64×64

pixels by introducing an additional pooling layer succeeding the 7th convolution layer; and

d) 128×128 pixels by introducing two additional pooling layers succeeding the 7th and the

9th convolution layer.

Analogous to Section 5.2.4, the distortion sensitivity estimate si output of the network is

used to weight the patch-wise MSEi , measured between a reference image patch P r
i

and the

collocated image patch P d
i

from the distorted image. The resulting image-wise paMSE from

Eq. 5.9 leads with Eq. 5.10 directly to the image-wise paPSNR. The image-wise paPSNR is

64



5.4. Experiments and Results

mapped into the perceptual domain by Eq. 5.6. Based on previous considerations, parameters

a,b are fixed as the lower and upper value of the quality scale used in the psychophysical

quality assessment; an additional parallel branch consisting of only 1 weight with a constant

input of 1 is used for estimating a global value of c. The overall architecture is sketched in

Fig. 5.5.

As in Chapter 4, the network is optimized by minimizing the MAE between reported and

predicted perceptual quality

E = |Q̂p −Qp |. (5.11)

5.4 Experiments and Results

5.4.1 Experimental Setup

As in Chapter 4, for single database-evaluation networks are trained and tested either on LIVE,

TID2013, or CSIQ, cf. Section 3.2.1. Databases are randomly split in training, validation and

test set. To guarantee that no distorted or undistorted version of an image used in testing or

validation has been seen by the network during training, the datasets are split by reference

image. For each database validation and test set each contain 6 reference images, whereas the

training set consists of 17, 13 and 18 reference images for LIVE, TID2013 and CSIQ. Results

are reported as the average over 30 random splits. Models are trained for 150 epochs after

which the model with the lowest validation loss is selected and tested; this amounts to early

stopping [Prechelt, 2012]. Training and validation of models with an input patch size of 32×32

pixels is based on 32 patches, randomly sampled from the images in each iteration. To keep

the amount of data seen by the neural network in each training iteration constant for different

patch sizes, the number of sampled patches per image is scaled inversely proportionally with

the square of the patch size, i.e. 512 patches of 8×8 pixel, 128 patches of 16×16 pixels, 8

patches of 64×64 pixels and 2 patches of 128×128 pixels. Different to Chapter 4, patches are

densely sampled, i.e. the full image is considered, for testing.

To assess the generalization ability of the proposed methods the CSIQ image database is used

for cross-dataset evaluating the models trained either on LIVE or on TID2013 and models

trained for single database evaluation were reused. LIVE and TID2013 share a lot of reference

images, thus, tests between these two are unsuitable for evaluating generalization for unseen

images. For cross-distortion evaluation, models trained on LIVE are tested on TID2013 in order

to determine how well a model deals with distortions that have not been seen during training

and in order to evaluate whether a method is truly non-distortion or just many-distortion

specific.

Note that, in contrast to many results reported in the literature, if not explicitly stated differ-

ently, we use the full TID2013 database and do not ignore any specific distortion type.
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FULL AWGN GB JP2K JPEG
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Figure 5.6 – Influence of the patch-size on the prediction performance measured as SROCC on
LIVE, TID2013 and CSIQ evaluated for selected distortion types (Gaussian blur, white Gaussian
noise, JP2K and JPEG compression) and over the full databases.

5.4.2 Influence of Patch Size

In a first evaluation, the influence of the patch size is investigated for distortion types that are

shared among LIVE, TID2013 and CSIQ and for the full databases. SROCC obtained with the

proposed method is plotted with regard to the patch-size on which distortion sensitivity is

estimated in Fig. 5.6. The prediction monotonicity is surprisingly little affected by the size

of the patch on which distortion sensitivity is estimated. In accordance with the patch size

used in Chapter 4, further results in this section are achieved based on distortion sensitivity

estimation on 32×32 pixel sized patches.

5.4.3 Performance Evaluation

The performance of the presented paPSNR-based quality estimation is summarized and com-

pared to related methods for selected distortion types on LIVE, TID2013 and CSIQ in terms

of SROCC in Table 5.3. The proposed method clearly outperforms the PSNR for almost all

distortion types and databases. An exception that is observable in all databases is additive

white Gaussian noise (AWGN), for which the original PSNR is already a very good predictor

and thus difficult to improve. Although applying complex processing on the reference image

only, the SROCC of the proposed method is in general close to methods that perform complex

processing on the distorted image as well.

Table 5.5 presents a comparison of the proposed method to state-of-the-art methods, evalu-

ated on the full LIVE and TID2013 databases. Although the proposed method (paPSNRγ=1)

outperforms the PSNR on LIVE, its prediction accuracy is clearly inferior to all other ap-

proaches. Here, the distinction of the proposed approach from methods employing complex

processing on the distorted image is important to note; the computational advantage of the

proposed approach will be discussed in detail in later. In contrast to the single distortion

results shown in Table 5.5, on TID2013 the proposed approach not only performs inferior to

other sophisticated state-of-the-art approaches, but even worse as compared to the PSNR.

This can be explained by the distortion type dependency of distortion sensitivity analyzed in
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Table 5.3 – Average SROCC over 20 runs of the proposed method for the distortion types of LIVE
and CSIQ databases and the actual subset of TID2013 in comparison to PSNR, SSIM [Wang
et al., 2004], MS-SSIM [Wang et al., 2003], FSIM [Zhang et al., 2011] and HaarPSI [Reisenhofer
et al., 2018].

PSNR SSIM MS-SSIM FSIM HaarPSI paPSNR

LIVE

JP2K 0.895 0.961 0.962 0.972 0.968 0.949
JPEG 0.881 0.976 0.981 0.984 0.983 0.963

AWGN 0.985 0.969 0.973 0.972 0.985 0.981
GB 0.782 0.952 0.954 0.971 0.967 0.929
FF 0.891 0.956 0.947 0.952 0.951 0.941

TID2013

AWGN 0.929 0.865 0.865 0.91 0.937 0.94
SCN 0.92 0.852 0.854 0.89 0.931 0.944
MN 0.832 0.777 0.807 0.809 0.786 0.856
HFN 0.914 0.863 0.86 0.904 0.907 0.948

IN 0.897 0.75 0.763 0.825 0.867 0.916
GB 0.915 0.967 0.967 0.955 0.912 0.967

DEN 0.948 0.925 0.927 0.933 0.947 0.943
JPEG 0.919 0.92 0.927 0.934 0.951 0.952
JP2K 0.884 0.947 0.95 0.959 0.97 0.965
MGN 0.891 0.78 0.779 0.857 0.89 0.934
LCNI 0.915 0.906 0.907 0.949 0.962 0.963

CSIQ

AWGN 0.936 0.897 0.947 0.936 0.967 0.943
JPEG 0.888 0.955 0.963 0.966 0.97 0.954
JP2K 0.936 0.961 0.968 0.97 0.982 0.961
GPN 0.934 0.892 0.933 0.937 0.954 0.939
GB 0.929 0.961 0.971 0.973 0.978 0.969

CTRST 0.862 0.792 0.952 0.944 0.945 0.901

Section 5.2.3.

This distortion type dependency can be effectively approximated by simple linear scaling of s

with a distortion type-specific factor γ [Bosse et al., 2017c]. The scaling is incorporated as an

additional trainable parameter into the sensitivity estimation described in Section 5.3 and γ is

distortion type-specific jointly optimized with all other distortion type-agnostic parameters of

the network. The resulting performance over the full dataset is referred to as paPSNRγ=γ∗ in

Table 5.5. Note that this evaluation relies on the (for most applications reasonable) assumption

that the distortion type by which the test image is affected is known. As Table 5.5, considering

distortion type dependency increases the prediction performance substantially, especially

when tested on TID2013 containing a multitude of different distortion types.

5.4.4 Local Weights

The spatial distribution of patch-wise estimated distortion sensitivity si and the resulting

distortion sensitive MSE is exemplified in Fig. 5.7 for two reference images and two distortion
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Table 5.4 – Comparison of the proposed method to the state-of-the-art FR image quality
estimation models based on the LIVE and TID2013 databases. The highest PLCC and SROCC
are set in bold. The reported correlation are achieved on the test sets of 30 random train-test
splits.

Table 5.5 – Performance Comparison on LIVE and TID2013 Databases

LIVE TID2013
LCC SROCC LCC SROCC

C
o

m
p

le
x

p
ro

ce
ss

in
g

o
n

d
is

to
rt

ed
im

ag
e

Ye
s

SSIM [Wang et al., 2004] 0.945 0.948 0.790 0.742
FSIMC [Zhang et al., 2011] 0.960 0.963 0.877 0.851
GMSD [Xue et al., 2014] 0.956 0.958 - -
DOG-SSIM [Pei and Chen, 2015] 0.963 0.961 0.919 0.907
DeepSim [Gao et al., 2017] 0.968 0.974 0.872 0.846
HaarPSI [Reisenhofer et al., 2018] 0.967 0.900 0.87 0.863
DIQaM-FR (cf. Chapter 4) 0.977 0.966 0.88 0.859
WaDIQaM-FR (cf. Chapter 4) 0.980 0.97 0.946 0.940

N
o

PSNR 0.872 0.876 0.675 0.687
paPSNRγ=1 (proposed) 0.904 0.925 0.588 0.65
paPSNRγ=γ∗ (proposed) 0.938 0.943 0.863 0.876

types, namely JPEG compression and additive white Gaussian noise. Original images are

presented in Fig. 5.7a and Fig. 5.7h, corresponding sensitivity maps for JPEG compression

distorions in Fig. 5.7b and Fig. 5.7i and those for AWGN in Fig. 5.7c and Fig. 5.7j. Examples for

patch-wise MSE maps are visualized in the second from right column, resulting paMSE maps

in the right column of Fig. 5.7. Distortion sensitivity maps are presented in the same color

scale representing values of si from 21 to 34, thus are directly comparable. Local distortion

sensitivities values lie in a range expected from Fig. 5.2. Color scales differ between the

visualizations of different MSE and paMSE maps in order to use full ranges for each map.

Comparing the distortion sensitivity maps shows that for the case of JPEG distortions, local

distortion sensitivity varies largely within the images. While low values of sensitivity are

assigned to textured regions of the images, high values of sensitivity are estimated for rather

flat areas, e.g. the sky in Fig. 5.7a and Fig. 5.7h. This is expected as distortions in textured

regions are subject to masking effects, whereas JPEG-specific distortions such as blocking are

highly visible in flat areas.

For the case of additive white Gaussian noise, local values of si do not show this wide range of

variation, but are relatively uniformly distributed over image. This suggests that, disregarding

a global shift, the (unadapted) PSNR already is a good quality predictor for images affected

by additive white Gaussian noise. This is in line with the numerical results presented in

Section 5.4.3.
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(a) Original

(b) si , JPEG

(c) si , AWGN

(d) MSEi , JPEG

(e) MSEi , AWGN

(f) paMSEi , JPEG

(g) paMSEi , AWGN

(h) Original

(i) si , JPEG

(j) si , AWGN

(k) MSEi , JPEG

(l) MSEi , AWGN

(m) paMSEi , JPEG

(n) paMSEi , AWGN

Figure 5.7 – Examples of local distortion sensitivity for two reference images and two distortion
types. The left-most column show the reference images from which patch-wise distortion
sensitivity is estimated. The second from left column shows the resulting maps of distortion
sensitivity for JPEG compression and AWGN distortions. In the second from right column
the patch-wise MSE is shown, the perceptually adapted MSE resulting from patch-wise MSE
and patch-wise distortion sensitivity is shown in the right-most column. Low values are
represented by blue, high values by yellow. For comparability, colors are aligned for the
distortion sensitivity maps.

Table 5.6 – Average SROCC over 100 runs of paPSNR trained and tested on different databases
for selected distortion types and over full databases.

Trained on LIVE TID2013

Tested on TID2013 CSIQ LIVE CSIQ

JP2K 0.96 0.962 0.945 0.956
JPEG 0.923 0.958 0.949 0.935
AWGN 0.932 0.95 0.983 0.932
GB 0.906 0.97 0.893 0.959
FULL 0.637 0.815 0.897 0.815

69



Chapter 5. Perceptual Distortion Sensitivity for Quality Estimation

5.4.5 Cross-Database Evaluation

The generalization ability of the neural network-based adaptation of the PSNR is studied in a

cross-database evaluation for selected distortions and over full databases. For cross-database

evaluation on the full database, no knowledge about the distortion type is assumed, i.e. γ= 1.

The results are presented in terms of SROCC in Table 5.6.

High generalization ability is achieved for the single distortion case. Given the large amount

of reference images shared between LIVE and TID2013, this is not surprising. For single

distortions the approach also generalizes well for images unseen during training in CSIQ.

Cross-database evaluation over full image databases results in low prediction accuracies. As

shown in Section 5.4.3, the proposed method does not perform well without consideration

of the distortion type; hence, high accuracies can neither be expected for distortion-type

agnostic cross-database evaluation.

5.4.6 Weight Estimation on Distorted Images

Table 5.7 – Performance comparison on LIVE and TID2013 databases with models trained on
the distorted image instead of the reference image.

LIVE TID2013
LCC SROCC LCC SROCC

paPSNRdst
γ=1 0.971 0.971 0.739 0.741

paPSNRdst
γ∗ 0.972 0.971 0.898 0.902

Although it does not follow the previously derived concept of distortion sensitivity and gives

away the advantage of graceful distribution of complex processing to the reference image

only, local weights can in principle also be estimated from the distorted image. The resulting

prediction performance is presented in Table 5.7. The results show that adaptation of the PSNR

based on the distorted image achieves higher prediction accuracy compared to adaptation

based on the reference image both in terms of Pearson linear correlation coefficient (LCC) and

SROCC. From the perspective of distortion sensitivity this is very surprising. However, it was

shown in Chapter 4 that a neural network can learn to extract quality related information from

the distorted image only; such an information is not available from a reference image. Further,

the distorted image contains information about the distortion type [Moorthy and Bovik, 2011]

that can be exploited by the network to improve prediction accuracy.

It can be hypothesised that a network trained on the distorted image in fact learns a different

representation compared to a network trained on the references. The inferior performance

obtained by predicting ’distortion sensitivity’ from a undistorted image by a network trained

on distorted images (LCC: 0.877, SROCC: 0.921) and predicting ’distortion sensitivity’ from

an distorted image by a network trained on undistorted images (LCC: 0.79, SROCC: 0.807)

corroborates this conjecture.
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5.5 Perceptually Distortion Sensitive Video Compression

Lossy data compression builds on two principles: Redundancy reduction and irrelevance

reduction [Wiegand and Schwarz, 2016]. While redundancy reduction exploits the statistical

regularities of a signal for compact representation and is inherently lossless, irrelevance reduc-

tion takes advantage of the limited capacity of the information sink and removes information

that is irrelevant, e.g. imperceptible, for the receiver in order to reduce the amount of data.

Removed information is generally not recoverable, thus irrelevance reduction is a lossy tech-

nique. Hence, a reliable and accurate measure of irrelevance is crucial. Although perceptual

models are widely used to guide irrelevance reduction in audio and speech compression

[Brandenburg et al., 2013], only few perceptual properties are successfully exploited in image

or video compression, e.g. by chroma subsampling [Wiegand and Schwarz, 2016].

The previous sections showed how the concept of distortion sensitivity significantly improves

the perceptual relevance of a simple quality measure such as the PSNR. This section shows

how distortion sensitivity can be directly used to guide the irrelevance reduction and by that

the bit allocation in video compression.

5.5.1 Block-Based Hybrid Video Coding

In block-based hybrid video coding algorithms such as H.264|MPEG-4 AVC [Wiegand et al.,

2003] or H.265|MPEG-H HEVC [Sullivan et al., 2012], spatial and temporal redundancies are

exploited by block-based prediction from spatially or temporally correlated blocks.

With sk and ŝk being the original and the predicted signal of an image block2 Bk the resulting

prediction error signal (or residual signal) calculates as

uk = sk − ŝk , (5.12)

that is transformed by T (·) to the transform coefficients

ck = T (uk ). (5.13)

Transform coefficients ck are mapped to quantization indices that are entropy coded and

sent to the receiver [Wiegand and Schwarz, 2016]. After entropy decoding, quantization

indices are mapped to the quantized transform coefficients c̃k . Quantization is a lossy process,

thus generally ck 6= c̃k ; irrelevance reduction takes place here. Inverse transform gives the

reconstructed residual signals

ũk = T −1(c̃k ), (5.14)

2Note the conceptual similarity to the previously used term patch. Here, the difference is only that blocks are
always non-overlapping and densely sampled. In the following this is indicated by the use of Bk instead of Pi .
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leading to the reconstructed signal

s̃k = ũk + ŝk . (5.15)

5.5.1.1 Encoder Control by Lagrangian Optimization

Modern codecs such as H.265|MPEG-H HEVC [Sullivan et al., 2012] provide a multitude of

tools and corresponding coding parameters, such as block subdivision parameters, reference

picture indexes, motion data, quantization parameters, and transform coefficient levels. Based

on the available tools and their parameters, the encoder has to determine the set of coding

parameters p to encode a video such that the distortion D(s, s̃(p)) between the original video

signal s and the reconstructed video signal s̃(p) is minimized, while the required number of

bits R(p) does not exceed a bit budget RB . The resulting constrained optimization

min
p

D(p) subject to R(p) ≤ RB . (5.16)

can be transformed, based on the concept of Lagrangian multipliers, into an unconstrained

optimization problem

min
p

D(p)+λ ·R(p), (5.17)

with λ≥ 0 being the Lagrange multiplier.

Lagrangian optimization can be applied to the allocation of restricted resources among multi-

ple entities [Everett, 1963], such as the allocation of bits among different blocks. The optimal

coding decisions {p0,p1, . . .} = {pk } over a set of blocks {B0,B1, . . .} = {Bk } that form a picture

are

min
{pk }

Dpi c ({pk })+λ ·Rpi c ({pk }), (5.18)

and with a block-wise additive distortion measure D , simplified to

min
{pk }

∑

∀k

Dk ({pk })+λ ·
∑

∀k

Rk ({pk }). (5.19)

If we ignore the influence of the current coding decision on future decisions, the optimal

solution of this minimization can also be found by k separate minimizations [Everett, 1963]

∀k min
pk

Dk (pk )+λ ·Rk (pk ), (5.20)

where Rk (pk ) represents the bitrate required to transmit all coding parameters pk for a block

Bk and Dk (pk ) denotes the resulting distortion for the block Bk . The Lagrange multiplier λ is

typically constant over all blocks of a frame.

The sum of squared errors (SSE) is a block-wise additive distortion measure Dk = DSSE
k

that,
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with the exception of motion estimation, is widely used in video coding. This means that the

encoder is basically optimized with respect to the MSE3.

5.5.1.2 Quantization

Quantization determines the quantization indexes qk that approximate the residual signal

uk in the transform domain. Note that the distortion of the reconstructed signal s̃ = ũ+ ŝ is

equal to the distortion of the reconstructed residual ũ. If a l2-norm based distortion measure

such as SSE is used and the inverse transform is unitary, the distortion DSSE
k

in a block Bk can

conveniently be calculated in the transform domain as

DSSE =
∑

i , j

(ck (i , j )− c̃k (i , j ))2 (5.21)

with i , j denoting the positions of the coefficients in the transform block.

In general, the encoder could choose any set of transform coefficient levels qk for a block Bk .

In the simplest case, in practical video coding standards such as H.264|MPEG-4 AVC [Wiegand

et al., 2003] or H.265|MPEG-H HEVC [Sullivan et al., 2012], uniform reconstruction quantizers

are used with the inverse quantizer mapping

c̃k (i , j ) =∆ ·ck (i , j ), (5.22)

where the quantization step size ∆ is determined by the QP, with the approximate relationship4

∆∝ 2
QP
6 . (5.23)

Given a quantization step size ∆, rounding the transform coefficients to the nearest integer

according to

q(i , j ) = sgn
(
c
(
i , j

))⌊ |c(i , j )|
∆

+
1

2

⌋
(5.24)

minimizes the distortion D(q). Note that for conceptual simplicity we disregard rate distortion

optimized quantization (RDOQ) [Wiegand and Schwarz, 2016] here.

Although conceptually the operational point of an encoder is determined by λ, and the

quantization parameter QPk of a block Bk can be considered as an element of its coding

parameter vector pk , for speed reasons practical encoders are controlled by setting QPk to a

pre-selected frame-wise value QP [Wiegand and Schwarz, 2016].

Using high-rate approximations [Wiegand and Schwarz, 2016] for the SSE distortion and the

operational rate-distortion curve of a block, the relationship between the Lagrange multiplier

3Due to the typical process of standardization one could further argue that actually whole compression algo-
rithms are optimized with regard to the MSE

4Note that for conceptual simplicity, we disregard any scaling here.

73



Chapter 5. Perceptual Distortion Sensitivity for Quality Estimation

λ and the associated quantization step size ∆ can be derived as

λ∝∆
2. (5.25)

Plugging Eq. 5.23 into Eq. 5.25 yields the relation between QP and λ

QP−3log2λ= const. (5.26)

5.5.2 Distortion Sensitive Lagrangian Bit Allocation

The concept of distortion sensitivity allows for direct perceptual adaptation of the Lagrangian

bit allocation scheme.

For a simplified notation we define a local weight wk = 10
sk
10 and write the perceptually adapted

SSE of a full picture as

paSSEpi c =
∑

k

paSSEk (5.27)

=
∑

k

wk ·SSEk . (5.28)

For the conventional SSE distortion measure DSSE
k

= SSEk , the coding decision for each block

is

min
pk

DSSE
k (pk )+λpi c ·Rk (pk ). (5.29)

If the perceptually adapted distortion measure paSSE is used, the minimization changes to

min
pk

wk DSSE
k (pk )+λpi c ·Rk (pk ), (5.30)

which is equivalent to

min
pk

DSSE
k (pk )+λk ·Rk (pk ), with λk =

λpi c

wk
. (5.31)

Consequently, for each block Bk , we have the same optimization problem as with the conven-

tional SSE distortion, but only the Lagrange multiplier λk is perceptually modified on a block

basis in dependence of its distortion sensitivity.

Conceptually, this perceptual adaption technique directly follows from the functional notion

of distortion sensitivity introduced in the beginning of this chapter. Practically, this approach

is particularly attractive for video encoder control as it preserves the advantages of the SSE

distortion, such as direct calculation in the transform domain, straightforward quantization

and low complexity, as the increase of complexity inherent to the calculation of wk is outside

the mode decision loop.
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5.5.2.1 Distortion Sensitive Adapted QP-Selection

Distortion sensitivity can be directly incorporated into the approximate relation between QP

and λ. The picture-wise relation between QP and λ is given by Eq. 5.26 and can be refined for

a block Bk as

QPk −3log2λk = const.

QPk −3log2λwk = const.

QPk +3log2 wk −3log2λ= const. (5.32)

where the comparison of Eq. 5.26 and Eq. 5.32 yields the perceptual QP assignment

QPk = QPpi c −3log2 wk (5.33)

5.5.3 Experiments

5.5.3.1 Perceptual Image Compression

(a) BQTerrace (b) Cactus (c) Kimono

(d) MarketPlace (e) ParkScene (f) Wisley

Figure 5.8 – Originals of images used in test.

Distortion sensitive bit allocation is evaluated experimentally for still image coding using High

Efficiency Video Coding (HEVC) using intra only settings as defined in the JCT-VC common

test conditions [Bossen, 2013]. Bit allocation is controlled by CTU-wise adaptation of the

Lagrangian multiplier λ and the QP according to Eq. 5.31 and Eq. 5.33.

Local weights wk are estimated based on the reference image by a neural network trained

for a block size of 64×64 pixels (cf. Section 5.3). Given the lack of quality annotated HEVC

compressed images or videos, the model was trained on the JPEG-subset of the LIVE database
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Table 5.8 – MOS gains and bit rate savings for different bit allocation schemes.

NN-based QPA σ-based QPA
∆Q ∆R[%] CI[%] ∆Q ∆R[%] CI[%]

BQTerrace 0.42 [-0.17; 1.01] -28.0 [19.9; -50.4] 74.6 0.31 [-0.31; 0.91] -21.2 [19.9; -47.3] 73.3
Cactus -0.13 [-0.73; 0.47] 7.4 [24.4; -19.2] 92.8 0.03 [-0.53; 0.56] 1.2 [24.4; -22.4] 93.1
Kimono 0.16 [-0.45; 0.77] -9.1 [35.8; -31.8] 100.0 -0.03 [-0.67; 0.61] 1.3 [35.8; -25.9] 100.0
MarketPlace 0.13 [-0.44; 0.70] -9.0 [37.1; -36.5] 93.8 0.03 [-0.52; 0.58] -2.3 [37.1; -32.6] 92.8
ParkScene 0.55 [-0.08; 1.18] -33.9 [39.9; -55.6] 81.2 0.22 [-0.40; 0.83] -14.9 [39.9; -44.3] 82.0
Wisley 0.34 [-0.23; 0.95] -22.4 [12.8; -46.0] 94.9 0.20 [-0.35; 0.77] -15.5 [12.8; -39.0] 96.4
Overall 0.24 [-0.35; 0.85] -15.9 [28.3; -39.9] 89.6 0.12 [-0.47; 0.71] -8.6 [28.3; -35.2] 89.6

[Sheikh et al., 2006].

The compression performance of neural network-based estimation of distortion sensitivity is

compared to a standard deviation-based approach presented in [Bosse et al., 2017b]. Both

approaches are referenced to a conventional constant QP bit allocation scheme.

Evaluation is based on four rate points and 6 reference images, shown in Fig. 5.8. QPs for

adaptive approaches are selected reference image-specific in order to achieve bit rates closest

to the ones obtained by conventional compression at QP ∈ [27,32,37,42].

5.5.3.2 Quality Assessment

Quality is assessed in a psychometric test, employing a DCR procedure as described in Sec-

tion 2.2 using a 5-grade rating scale. Stimuli were presented on a Sony KD-65XE9305 UHD

television set side-by-side in original resolution with the reference shown on the left-hand

side and the distorted image shown on the right-hand side. The non-active area of the display

was set to black. The 48 pixel wide area between the images was set to 50%-mid gray. In accor-

dance with the recommendations [ITU-T Rec. P.910, 2008], observers were seated at a distance

of 3 · H (H being the active screen height) in front of the screen. Up to three participants,

seated side-by-side, assessed the images simultaneously in one session. Pairs of reference

and processed images were presented in random order for 10 s. Two hidden references were

injected randomly. After each presentation, observers were asked to note down the quality

rating on a piece of paper. The first 3 image pairs presented were chosen to represent the

quality range in order to make the observers familiar with the task and the quality range. The

ratings thereof are not considered for further analysis. 22 subjects (4 female, 18 male, average

age: 31.1±4.43 years) participated in the experiment. Most of the participants reported to

have experience in the field of video compression.

5.5.4 Results

Responses given to the presentation of the hidden references were used for a simple screening;

ratings of one subject were discarded for further analysis as the average rating given to the

hidden references was below 4. MOSs were calculated from the data of the remaining 21

subjects according to Eq. 2.1.

The quality of the compressed images is shown over the bit rate in Fig. 5.9 for the three different
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(a) BQTerrace (b) Cactus

(c) Kimono (d) MarketPlace

(e) ParkScene (f) Wisley

Figure 5.9 – Compression performance for different bit allocation schemes. Vertical bars
indicate the 95% confidence intervall. Asterisks denote statistical significant differences (*:
0.05 ≤ p < 0.1, **: p < 0.05) between NN-based QPA and constant QP (blue asterisks) and
between NN-based QPA and σ-based QPA.

bit allocation schemes a) constant QP, b) neural network-based QP adaptation, and c) standard

deviation-based QP adaptation. Vertical bars indicate the 95%-confidence interval for the

MOS. Statistical significance (tested using a pair-wise Student’s t-test [Howell, 2013]) of the

differences in subjective ratings between the proposed neural network-based QP adaptation

scheme and constant QP are denoted by blue asterisks, statistical significance between neural

network-based QP adaptation and standard deviation-based QP adaptation by green asterisks

respectively; * indicates a significance level of 0.05≤ p < 0.01 and ** indicates a significance

level of p < 0.05. Note that, as it is difficult to encode images at identical bit rates, the rate

points at which statistical significance is tested are are not exactly identical.
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For all images, except Cactus, both QP adaptions achieve superior or at least comparable qual-

ity scores over the full bit rate range, with the neural network-based adaptation performing

mostly better compared to the standard deviation-based. For Cactus the standard deviation-

based approach performs significantly better than the neural network-based approach for

the two lower rate points. For most images, significant quality gains are achieved by the QP

adaptation schemes only at bit rates below the saturation of quality. This can be expected

as lossy image compression with a bit budget that is already large enough for high visual

quality (high rate points) cannot benefit significantly from an improved bit allocation scheme.

Although typically not relevant for applications, it would be interesting to evaluate statistical

significance in bit rate regimes closer to the saturation at the lower end of the quality scale.

In Table 5.8 the compression performance with regard to the MOS is summarized in a psy-

chophysical adaptation of the Bjøntjegaard model [Hanhart and Ebrahimi, 2014]. As, in

contrast to the PSNR, the MOS is a statistical measurement, not only the mean estimates

of the gains in MOS (∆Q) and bit rate reductions (∆R) of the two adaptation schemes over

constant QP assignment are reported, but also the minimal and maximal estimates based on

the 95%-confidence interval. The confidence interval (CI) attempts to quantify if the qual-

ity range is sufficiently covered for comparison [Hanhart and Ebrahimi, 2014]. Again, with

exception of Cactus, the proposed neural network-based QP adaptation scheme shows to

be clearly superior over the standard deviation-based scheme. The reason for the inferior

performance of the proposed method (as well as of the standard deviation-based method) for

Cactus is probably the presence of letters and numbers in the image; these these high-level

semantics are not captured by the distortion sensitivity models. However, the averaged over

all test images (Overall), the performance of the proposed method is clearly superior to the

standard deviation-based QP adaption scheme.

5.6 Discussion

Based on an analysis of the non-linear mapping of computational quality values Qc to sub-

jective quality scores Qp and a discussion of the parameters of this mapping function this

chapter derived a concept of distortion sensitivity and showed that the shift parameter in

the psychometric mapping function can serve efficiently as functional definition thereof.

Distortion sensitivity was modelled as a distortion type-dependent property of an image, and

it was shown that compensating for it can efficiently improve the prediction performance of a

given computational quality model. Limits of such approaches were explored quantitatively.

A neural network-based method for patch-wise estimation of distortion sensitivity within an

image quality estimation framework was presented that significantly improves the quality

estimation accuracy of the base quality model, i.e. the PSNR.

The derivation of a distortion sensitive PSNR led to a local weighting scheme for a percep-

tual adaptation of the MSE. This weighting scheme was incorporated into the bit allocation

in hybrid block-based video compression. The perceptually superior performance of the

resulting bit allocation scheme was experimentally validated for image compression in an
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psychophysical quality assessment study. Hence, this chapter bridged from psychometric

properties to bit allocation for perceptual image compression.

The presented definition of distortion sensitivity and the proposed framework for estimation

thereof can be easily adapted to other quality models than the PSNR and extended to other

signal modalities such as videos, assuming the availability of quality annotated data.

The neural network-based patch-wise compensation for distortion sensitivity significantly

improves the performance of the PSNR. However, comparing the achieved performance with

the limits determined by (hypothetical) optimal image-wise compensation shows that the

method still has further potential for improvement. The sub-optimality indicates that there

is some room for improving the generalization ability of the model with regard to unseen

images.

Weights used for spatial pooling are commonly normalized (cf. Section 3.1.3)). Different to

the weighted average patch aggregation in Chapter 4, the weighting scheme derived from

distortion sensitivity does not comprise any normalization. This also explains the indepen-

dence of the SROCC from patch-size as non-normalized weights are capable of capturing a

global image property (cf. Section 5.2.2). Imagine one image of high and spatially uniform

distortion sensitivity and another image of low and spatially uniform distortion sensitivity.

While a non-normalized weighting scheme could differentiate between high and low sen-

sitivity, this information would be lost by normalization of the weights. However, in future

work, differences between normalized and non-normalized weighting can be studied within

the presented framework. This potentially also brings better understanding on how humans

spatially pool perceptual visual quality.

The proposed method works better if local weights are estimated from the distorted images

rather than from the reference images. This does not follow the concept of distortion sensitiv-

ity that was presented as a property of the reference image and, thus, appears surprising. It is

however not unexpected, since neural networks, as shown in Chapter 4, are able to predict

quality relatively accurately from the distorted image alone as well. More insight into the

nature of distortion sensitivity and relevant features driving distortion perception might be

gained by investigating differences in the internal representations in networks trained based

on the original and distorted images using explaining methods [Bach et al., 2015, Montavon

et al., 2017, Montavon et al., 2018]. Also note that the reference image-based models were

trained on a smaller sample size regarding the input signal compared to the distortion image-

based models, while the number of quality labels is identical. At this point it is not clear how

this imbalance impacts the training. However, although achieving higher prediction accuracy,

estimating quality based on weights extracted from the distorted image forfeits the crucial

advantage of performing complex computations on the reference image only.

The discussion of the limits of the proposed shows that, as concluded previously for the

approach presented in Chapter 4, the availability of quality annotated images and videos is

crucial for the success of data-driven approaches to quality assessment. This is especially

important for an application such as distortion sensitive bit allocation as most databases do

not consider modern compression algorithms such as HEVC as a distortion type and typically
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only contain images and videos of resolutions that are practically not of highest relevance

any more. Given the flaws of conventional approaches (cf. Chapter 2) the next chapter will

investigate a novel approach to psychophysiological image quality assessment. However,

the main advantage and technical motivation of the proposed distortion sensitive quality

assessment is not a remarkable high accuracy, but the allocation of computational complex

processing to the reference image only. Hence, until larger database are available, the method

could be trained on images annotated by quality models that are computationally less graceful,

but more accurate.

Incorporating the proposed approach into a distortion sensitive bit allocations scheme ob-

tained superior coding gains compared to an explicit model-based state-of-the-art method.

This is especially promising, as the data-driven approach was trained for JPEG distortions on

images of a resolution in the order of about 600×600 pixels, but tested in a HEVC context on

HD content. Even better results might be achievable with models trained on more appropriate

data. Future work should evaluate if the proposed approach works as efficiently on videos as

well. For this, distortion sensitive bit allocation could also directly employ models trained on

video data.

Distortion sensitive adaptation of the block-wise QP was controlled on a CTU-level (64×64).

HEVC allows for QP adaptation on smaller block sizes as well; this might offer potential for

higher perceptual compression gains.

5.7 Lessons Learned

• Distortion sensitivity can be modelled as a distortion type-dependent property of an

image.

• The shift parameter of the psychometric function that maps the output of computational

quality models into the perceptual domain represents an efficient functional definition

of distortion sensitivity.

• Compensating a given quality model for distortion sensitivity increases its quality esti-

mation accuracy.

• Local distortion sensitivity can be estimated within a quality estimation framework by a

neural network.

• The concept of distortion sensitivity can be directly incorporated into a perceptually

improved bit allocation scheme for image and video compression.

• The performance of data-driven estimation of distortion sensitivity and its application

for image and video compression is limited by the scarcity of training data.
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6 Image Quality Assessment Using

Steady-State Visual Evoked Potentials

This chapter is based on

Bosse, S., Acqualagna, L., Samek, W., Porbadnigk, A. K., Curio, G., Blankertz, B., Müller, K.-R.,

and Wiegand, T. (2017a). Assessing perceived image quality using steady-state visual evoked

potentials and spatio-spectral decomposition. IEEE Transactions on Circuits and Systems for

Video Technology, 8215(c):1–1 ©2017 IEEE

6.1 Introduction

Chapter 4 and Chapter 5 investigated two different approaches to end-to-end trained data-

driven image quality estimation; results showed that in order to train models that achieve

satisfactory generalization ability, databases larger than the currently available are necessary.

For obtaining more efficient models for bit allocation as described in Section 5.5 quality an-

notated images and videos of more relevant resolutions and distortion types are beneficial.

Therefore, this chapter shifts the perspective on visual quality from its estimation to its assess-

ment. Driven by the insights from the discussion on the limitations of psychophysical quality

assessment in Section 2.2, a novel neurophysiological approach to image quality assessment

based on SSVEPs (cf. Section 2.3.2.1) is investigated.

The data corpus this chapter works with was used earlier to study the neurally informed detec-

tion of quality degradations in images using EEG [Acqualagna et al., 2015]. In this work, the

neural signal was classified according to the presentation of distorted or undistorted images,

disregarding any information about the distortion magnitude and, as such, neglecting any

quantification of image quality, e.g. represented as MOS. For spatial dimensionality reduction,

the common spatial pattern (CSP) technique [Blankertz et al., 2008] was employed and it

was shown that classification accuracy depends on distortion magnitude. While the study

provides strong evidence for the general feasibility of SSVEP-based image quality assessment,

it does not allow for the assessment of perceived quality because different image quality levels

were not preserved in the analysis. Moreover, CSP is a supervised dimensionality reduction
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method that requires labeled training data as it maximizes the variance ratio between two

known classes. In quality assessment, quality ratings are typically not given a-priori, but rather

the outcome of the experiment and can thus not be used as labels. This makes unsupervised

preferable over supervised methods in quality assessment studies.

This chapter addresses the limitations of the previous study by evaluating the correlation

between brain responses and MOS values using SSD [Nikulin et al., 2011] for dimensionality

reduction, extending previous work on SSVEP-based image quality assessment (IQA) [Bosse

et al., 2014, Bosse et al., 2015]. SSD is an unsupervised method that aims at finding a spatial

filter that maximizes SNR assuming disjoint spectral distributions of signal and noise. The

SNR properties of the SSVEP (cf. Section 2.3.2.1) makes SSD a natural choice for channel

decomposition and dimensionality reduction. Thus, in this chapter SSD is re-formulated in

the frequency domain, rendering it particularly suited for the SSVEP framework. In contrast to

most previous work on psychophysiological quality assessment (cf. Section 2.2), SSD provides

a tool for rational channel selection that does not rely on neuroanatomical knowledge nor

labeled data. This advantage means that neural components extracted from the EEG-signal

will reflect the sensory processing underlying image quality perception so that significant

correlations between these extracted neural features and MOS can be achieved. A simple

screening method, based on the angular distribution of the extracted SSD components, is

proposed for rejecting those subjects for which SSD fails. Finally, the feasibility of the proposed

approach is shown by predicting the MOS from the neural responses on subject-level, leading

to prediction accuracies comparable to psychophysical methods.

The chapter starts with a description of the experimental setup. Section 6.3 details the signal

processing methods for data analysis and re-formulates SSD in the frequency domain. Results

are presented in Section 6.4. Section 6.5 concludes the chapter with a discussion.

6.2 Experimental Setup

6.2.1 Stimuli

In order to reduce the influence of visual saliency and to make the measurement less de-

pendent on nuisance factors such as local variances in image statistics and the current gaze

position, six spatio-statistically roughly stationary gray-level texture images, shown in Fig. 6.1,

were chosen from two texture image databases [Ojala et al., 2002, Kylberg, 2011] as the basis

for stimulus generation. The images have a size of 512×512 pixel and were shifted to equal

values of mean luminance.

Visual quality of the base images was degraded to six different quality levels. Distortions

were introduced as compression artifacts by coding the original images using the HM10.0 test

model [JCT-VC, 2014] of the High Efficiency Video Coding standard (HEVC) [Sullivan et al.,

2012] using intra only settings as defined in the JCTVC common test conditions [Bossen, 2013].

HEVC offers a flexible quad-tree structure for prediction and transform. Statistical redundan-

cies are exploited by block-wise temporal (for video signals) and spatial linear prediction. The

residual signal is transformed block-wise, and coefficients are quantized in the transform
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(a) Blanket (b) GrayFlakes (c) GrayRubber

(d) Oatmeal (e) Scarf (f) Stone

Figure 6.1 – Texture images used in experiment from Kylberg Texture dataset [Kylberg, 2011]
and Outex dataset [Ojala et al., 2002]. ©2017 IEEE

(a) QP=14, MOS=8.5 (b) QP=43, MOS=3.8 (c) QP=51, MOS=1.5

Figure 6.2 – Perceptual quality of distorted images in experiment exemplified for texture
Oatmeal. ©2017 IEEE

domain. Coding artifacts, which are perceived by the human observer as a loss of visual qual-

ity, are introduced by the quantization of the transform coefficients [Wiegand and Schwarz,
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2016]. Quantization step-size is controlled by the QP [Sullivan et al., 2012]. Distortion levels,

mediated by the QP, have been estimated in a pilot study in order to correspond to roughly

similar perceptual qualities with two conditions per texture above the assumed perception

threshold at MOS ≈ 8, one condition per texture close to the perception threshold and three

conditions per texture distributed below the perception threshold. Fig. 6.2 gives an impression

of the resulting quality of the stimuli, exemplified for the image GrayFlakes.

6.2.2 Participants

Sixteen participants (seven females and nine males, in the age group 21-46) took part in

the experiment. All had normal or corrected-to-normal vision and none of them had a

history of neurological diseases. They were all native German speakers or at least with a

level of German comprehension of five, on the six level scale of competence laid down by the

Common European Framework of reference for Languages [Little, 2007]. All of them were

naïve in respect of visual quality assessment studies and were paid for their participation.

Each subject was briefed individually about the purpose of the experiment. The study was

performed in accordance with the declaration of Helsinki [WMA General Assembly, 2013] and

all participants gave written informed consent.

6.2.3 EEG Data Acquisition

EEG was recorded with a sampling frequency of 1000 Hz using BrainAmp amplifiers and an

ActiCap active electrode system with 64 sensors (both by Brain Products, Munich, Germany).

Electrodes were positioned at Fp1,2, AF3,4,7,8, Fz, F1-10, FCz, FC1-6, FT7,8, Cz, C1-6, T7, CPz,

CP1-6, TP7,8, Pz, P1-10, POz, PO3,4,7,8, Oz, O1,2. The electrode that in the standard EEG

montage, see Fig. 2.4, is placed at T8 was replaced under the right eye and used to measure

eye movements. All electrodes were referenced to the left mastoid, using a forehead ground.

For offline analyses, electrodes were re-referenced to linked mastoids. All impedances were

kept below 10 kΩ.

6.2.4 Stimulus Presentation

As outlined in Section 2.2 and Section 2.3, conventional psychophysical quality assessment

and neurophysiological assessment each use highly distinct stimulus presentation regimes.

However, the general setup for stimulus presentation was identical for both types of assess-

ment in the experiment: Stimuli were shown on a 23" screen (Dell U2311H) with a native

resolution of 1920×1080 pixels at a refresh rate of 60 Hz. The screen was normalized according

to the recommended values [ITU-R Rec. BT.500-13, 2012]. Stimuli were presented without

scaling or interpolation at native resolution. The inactive part of the screen was set to mid

grey. Viewing distance was set to 110 cm in compliance with the recommendations [ITU-T

Rec. P.910, 2008], with a stimulus resolution of 512×512 pixels (128×128 mm) leading each
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image to span a visual angle of approximately 6.6°. Subjects sat in front of the display in a

dimly lit room. Between the two parts of the experiment, subjects had a short rest and were

provided small snacks and drinks.

6.2.4.1 Behavioral Part

In the psychophysical assessment part of the experiment, participants evaluated the perceived

quality of the images following a Degradation Category Rating (DCR) procedure with Simulta-

neous Presentation (SP) [ITU-R Rec. BT.500-13, 2012] (cf. Section 2.2). Each image pair was

presented for 10 s. Quality ratings were given by the participants following stimulus presenta-

tion using a mouse-controlled slider on a nine-grade degradation scale (cf. Section 2.2). In

this scale, grade 8 is considered as to approximate psychophysical perception threshold of the

impairment [ITU-T Rec. P.910, 2008]. Each stimulus pair was presented 3 times in order to ob-

tain reliable measurements. To reduce learning effects, the psychophysical assessment started

with the presentation of 12 training stimuli that were not included in the further analysis.

6.2.4.2 Neurophysiological Part

In the neurophysiological assessment part of the experiment stimuli were presented in trials

consisting of 6 consecutive texture groups. Each texture group was based on one of the texture

images shown in Fig. 6.1, and each texture group started with the presentation of an undis-

torted texture for 8/3 s, which served as a base image. After presentation of the undistorted

base image, distorted and undistorted images were presented periodically alternating at a

constant rate of 3Hz, corresponding to a stimulation frequency (equivalent to full cycles per

second) of fst i m = 1.5Hz, in distortion level-wise blocks. 4 alternations from distorted to undis-

torted image were presented per distortion level. With 6 distortion levels (cf. Section 6.2.1) this

results in a total presentation duration of 18 2/3 s per texture block. Six texture groups were

presented in each trial, with six distortion levels for each group. In order to avoid memory

or adaptation effects, both the order of texture groups for each base image and the order of

distortion levels presented for each texture group was permuted randomly. An example of the

temporal structure of one trial is visualized in Fig. 6.3.

A fixation cross was presented in the beginning of each trial. EEG data was recorded in 3

blocks, consisting of 20, 15, and 16, respectively, trials. This amounts to 51 trials per condition.

The 3 blocks were divided by short breaks of about 10min during which participants were

provided drinks and small snacks.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Figure 6.3 – Temporal structure of one trial of stimulus presentation during EEG recording
exemplified for 3 base image groups. Stimulus presentation is grouped by base image. Each
base image group is introduced with the presentation of the corresponding undistorted image
for 8/3 s. Distorted and undistorted images are presented periodically alternating at a constant
rate of 3 Hz (amounting to a stimulation frequency fst i m = 1.5Hz). For each impairment 4
cycles were presented. The presentation order of the 6 impairment levels is randomized
for each base image group. Also the presentation order with respect to the base image is
randomized. For further processing, recorded EEG-data is epoched condition-wise, neglecting
the first alternation cycle as indicated by the light gray shadings.

6.3 Methods and Data Analysis

6.3.1 Analysis of Psychophysical Data

In psychophysical tests, some observers might give inconsistent responses that can distort the

result of the test, cf. Section 2.2.2. Those observers are identified by screening and excluded

from further analysis following the recommendations [ITU-R Rec. BT.500-13, 2012]. MOS

are obtained by averaging condition-wise over the ratings reported by individual observers
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according to Eq. 2.1.

6.3.2 Preprocessing of EEG Data

EEG signal is bandpass filtered from 0.5 Hz to 40 Hz using a zero-phase Chebyshev filter

of order 8 (3 dB of ripple in the passband and 40 dB of attenuation in the stopbands) and

downsampled to 90 Hz. After eye-movement regression, the EEG is re-referenced to the

common average of all electrodes.

6.3.2.1 Eye-Movement Regression

Let xk (t) denote the EEG signal recorded at sensor k and x(t) ∈RK the recorded signal of K

sensors at a time point t . Horizontal eye movements are captured by the difference signal of

the sensors F9 and F10 xhor (t) = xF 9(t)− xF 10(t), vertical eye movements and blinks by the

difference between signals measured at electrodes Fp2 and EOG xver (t ) = xF p2(t )−xEOG (t ). By

combining xhor (t ) and xver (t ) to xe ye (t ) = [xhor (t ), xver (t )]T we define Σe ye as the covariance

matrix of xe ye (t), Σx as the covariance matrix of x(t) and Σx,e ye as the cross-covariance of

xe ye (t ) and x(t ). This leads to a backward model relating the sensor activity to the underlying

originating sources W =Σ
−1
x Σx,e ye [Haufe et al., 2014b]. The forward model, relating the source

activity to the observed sensor activities is then given as A = Σx WΣ
−1
e ye [Haufe et al., 2014b],

where Σx and Σ
−1
x (from W) cancel out. Interferences of eye motion can now be regressed out

from the recorded signal as x̃(t ) = x(t )−AA#x(t ) [Parra et al., 2005, Müller et al., 2003], where #

denotes the pseudo-inverse of a matrix. For further processing and analysis, data recorded at

EOG is neglected.

For the sake of readability, although eye artifacts are regressed out, in the following recorded

data x(t ) is assumed to be free of eye movement artifacts. Therefore, x̃(t ) is denoted as x(t ).

6.3.2.2 Epoching

EEG data recorded for each subject is subdivided into epochs of 2 s length from 2
3 s to 2 2

3 s

relative to the beginning of a texture/distortion level-wise block as denoted by the shadings in

Fig. 6.3. Hence, the epoched EEG data relates to the presentation of 3 cycles of alternations

from distorted to undistorted images. Neglecting the first cycle reduces potential influence of

transient components to the stimulus onset.

6.3.2.3 Artifact Rejection

EEG epochs that contained a large percentage (more than 20%) of data samples exceeding a

threshold of 25µV are excluded as artifacts. Typically, these epochs are associated with strong

eye movements, blinks or other body movement that could not be regressed out.
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6.3.3 Feature Extraction

Fourier transform is applied epoch-wise to the recorded EEG data. As the sampling frequency

( fs = 90Hz) is an integer multiple of the stimulation frequency ( fst i m = 1.5Hz) and the epoch

length of 2s allows for an integer number of stimulation periods per epoch (in this case 3

periods), no windowing is applied to the data in order to avoid side-bands [Bach and Meigen,

1999].

6.3.4 Dimensionality Reduction

A common method for analysing EEG data and dimensionality reduction is to find a spatial

filter W that projects the sensor-wise measurement x(t) to a new subspace containing the

spatial components y(t) = W⊤x(t) [Haufe et al., 2014b, Haufe et al., 2014a]. W is found

by optimizing y(t), given x(t), with regard to a specific criterion. The column wi ∈ RK of

W ∈RK×K contains the filter that project x(t) onto the components i of the subspace. Thus,

the time course of the i th spatial component is calculated as yi (t) = w⊤
i

x(t). Accordingly,

with A =
(
W−1

)⊤
, the column ai ∈RK of A ∈RK×K contains the spatial activity patterns1of the

respective component i [Haufe et al., 2014b].

If the signal and noise components xs(t) and xn(t) of an EEG recording are assumed to be

spectrally disjoint, the SNR can be used as an optimization criterion for finding W [Nikulin

et al., 2011]. For this, SSD extracts components of neural oscillations by maximizing the power

in one frequency band and, simultaneously, minimizing the power in another frequency band.

For a sensor i the SNR is defined as

SNR(xi ) =
Ps,i

Pn,i
, (6.1)

where Ps,i and Pn,i are the power contained in xs,i (t) and xn,i (t), respectively. Signal and

noise components xs(t ) and xn(t ) are obtained by bandpass filtering the recorded signal x(t )

according to the assumed disjoint frequency bands of signal and noise.

With a spatial filter W and the projection y(t ) = W⊤x(t ), the SNR of the component yi (t ) can

be found as

SNR(yi ) =SNR(w⊤
i xi ) (6.2)

=
w⊤

i
Σs wi

w⊤
i
Σnwi

(6.3)

with Σs and Σn being the covariance matrices of the bandpass filtered signals xs(t ) and xn(t ).

Considering all components, maximizing the SNR for W leads to the generalized eigenvalue

1Note that A =
(
W−1)⊤

only holds in the square case. Generally, A =ΣxWΣy [Haufe et al., 2014b].
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problem

Σs W = DΣnW, (6.4)

where the entries of D contain the generalized eigenvalues and can be interpreted as the

amount of SNR projected to a specific component.

The narrowband property of SSVEP (cf. Section 2.3.2.1) can be directly utilized for SNR op-

timization and a reformulation of SSD allows for convenient application in the frequency

domain. As the signal of SSVEP is confined to the frequency bins centered at the harmonic

frequencies n · fst i m of the stimulation frequency fst i m , its noise is typically estimated as a

linear approximation from the content in the spectrally neighbored frequency bins centered

at n · fst i m ±∆ f , with ∆ f denoting the frequency resolution. This leads to a sensor-wise

estimation of the SNR per frequency bin centered at frequency f as

SNR( f ) =
Ps( f )

Pn( f )
≈

P ( f )

0.5
(
P ( f −∆ f )+P ( f +∆ f )

) , (6.5)

where P ( f ) denotes the power of the spectral component at f and P ( f ±∆ f ) denotes the

power of the spectrally neighbored components.

Exploiting the unitary property of the Fourier transform, with Xk ( f ;e) being the Fourier

transform of the EEG signal within an epoch e at a sensor position k and with K sensors in

total, we find the covariance matrices in Eq. 6.4 as

Σs =




C s
0,0 C s

0,1 · · · C s
0,K−1

C s
1,0 C s

1,1 · · ·
...

...
...

. . .
...

C s
K−1,0 · · · · · · C s

K−1,K−1




and Σn =




C n
0,0 C n

0,1 · · · C n
0,K−1

C n
1,0 C n

1,1 · · ·
...

...
...

. . .
...

C n
K−1,0 · · · · · · C n

K−1,K−1




(6.6)

with

C s
i , j =

∑
e

Xi ( f ;e)X ∗
j ( f ;e) +Xi (− f ;e)X ∗

j (− f ;e) (6.7)

C n
i , j =

∑
e

Xi ( f −∆ f ;e)X ∗
j ( f −∆ f ;e) +Xi (− f +∆ f ;e)X ∗

j (− f +∆ f ;e) (6.8)

+Xi ( f +∆ f ;e)X ∗
j ( f +∆ f ;e) +Xi (− f −∆ f ;e)X ∗

j (− f −∆ f ;e).

A spatial filter W can be found for every harmonic component with f = n · fst i m . After solving

Eq. 6.4 W is normalized column-wise.
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6.4 Results

6.4.1 Behavioral Data
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Figure 6.4 – MOS values obtained in the behavioral part of the experiment for all 6 textures.
The commonly assumed distortion perception threshold around MOS = 8 is indicated by the
horizontal black line. Vertical errorbars denote 95% confidence intervals of MOS values of the
specific condition. ©2017 IEEE

Based on screening of the behavioral data, cf. Section 2.2.2, no participant had to be rejected.

Fig. 6.4 shows the resulting MOS in dependence of QP. Vertical bars represent the 95% con-

fidence interval of the MOS. Solid lines show interpolated values based on a 3-parameter

logistic function MOS(QP) = β1

1+e−β2 ·(QP−β3) . The horizontal black line indicates the commonly

assumed perception threshold at MOS ≈ 8 [ITU-R Rec. BT.500-13, 2012]. The two highest

quality levels are above the perception threshold for each texture.

As intended, quality levels can be considered as being perceptually approximately equal for

different texture images; the resulting MOS are mostly very close and the confidence levels

overlap for most instances of equal quality levels. However, the maximal QP in HEVC is QP=51,

therefore the quality of Scarf could not be reduced any further. Note the extreme cases of

images Scarf and GrayRubber: The horizontally and vertically oriented structure of Scarf

allows for a relatively good representation by separable DCT and the high contrast is able

to mask quantization noise while the rather flat diagonal structure of GrayRubber can not

be captured by the DCT and structure vanishes due to quantization [Wiegand and Schwarz,

2016].

6.4.2 Neurophysiological Data

An example for the neural response during stimulus presentation is shown in Fig. 6.5 for

subject VPik. The plots show the time course and the amplitude spectra measured at Oz

for different distortion levels averaged over all trials and textures. An increase of distortion
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Figure 6.5 – Epoched neural signals of participant VPik, measured at electrode Oz and averaged
over all textures and trials at different distortion levels. Top/second from bottom: Amplitude
time courses averaged over trials, gray shadings indicate the presentation of a distorted image.
Second from top/bottom: Amplitude spectra of trial-wise averaged time course. ©2017 IEEE

magnitude triggers a concomitant increase in neural processing at fst i m and its harmonics.

Thus, as shown by the time courses in Fig. 6.5, the EEG signal becomes increasingly modulated.

This modulation can be quantified directly in the spectral domain, where the modulation is

represented by increased amplitudes of the spectral components in the frequency bins at the

harmonics of fst i m . Although we would expect to see this effect at all harmonics, for the signal

recorded at Oz this behavior is most evident at the even harmonics 2 fst i m = 3Hz and 4 fst i m =
6Hz. Note that it becomes less conclusive for 6 fst i m = 9Hz, likely because the SSVEP is buried
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in the alpha band of the EEG. Although SSVEPs are expected to be elicited predominantly at

electrode positions covering the visual cortex, brain anatomy varies among individuals and

cap positions can not be perfectly aligned between experiments. Thus, optimal (and among

subjects comparable) electrode positions are generally unknown for each measurement. This

will be addressed in the next subsection.

6.4.3 Spatio-Spectral Decomposition

In order to reduce the spatial dimensionality of the EEG data and to overcome the problem of

channel selection, SSD [Nikulin et al., 2011] is used to find a linear combination of sensors that

maximizes the SNR . The set of neural sources processing distortion-relevant visual properties

is assumed to be dependent on the distortion type (in the experiment HEVC compression),

the subject, and the spectral harmonic of the stimulation frequency, but not on distortion

magnitude or reference image. Spatial filters are estimated per subject and harmonic over all

textures and distortion levels; the first 4 harmonics are considered.

Epoching EEG data to segments of length of 2000ms yields a frequency resolution of ∆ f =
0.5Hz. The resulting SNR is exemplified for subject VPih and distortion level IV in Fig. 6.6,

where the SNR at electrode position Oz is compared to the SNR in the first components of the

SSD optimized to different harmonics. Spatial filtering increases the SNR significantly over

the SNR at Oz. Surprisingly, the increase of SNR can not only be observed at the harmonic for

which the SSD was optimized on (e.g. 3 Hz in Fig. 6.6c, or 4.5 Hz in Fig. 6.6d), but also at other

harmonics (1.5 Hz,3 Hz and 6 Hz in Fig. 6.6d). Note that this general increase in SNR cannot

be observed for the spectral components buried in the alpha band.

The resulting activation pattern (the 1st component of the SSD optimized for one of the

first 4 harmonics) are given in Fig. 6.7 for the subjects VPid and VPih. Note that the signs

of the eigenvectors of a matrix are ambiguous, causing different, (approximately) opposing

directions of a1(3 fst i m) and a1(4 fst i m) for VPid and VPih. However, the activation pattern show

the neurophysiological plausibility of the obtained filters as the highest activation is found in

the area covering the visual cortex, most pronounced around electrode Oz, but also stretching

to other electrode locations. The activity on the even harmonics occur more concentrated

at occipital channel positions, while on the odd harmonics activity also appears at parietal

channel locations. This might be explained by different neural mechanisms sensitive to the

presented stimuli and was reported for the 1st and 2nd harmonic previously [Norcia et al.,

2014]. However, it is surprising that different neural sources processing symmetric (even

harmonics) and asymmetric (odd harmonics) responses do not lead to more distinct spectral

profiles of the SNR in Fig. 6.6 for SSD optimized on even vs. odd harmonics.

6.4.4 Relating Neurophysiological to Behavioral Data

The relation between the amplitudes of coherently averaged SSVEP responses and the MOS is

shown for the first 4 harmonics in Fig. 6.8 in terms of PLCC for individual subjects (VPal-VPir)

and for the grand average (GA) over all subjects. Considered neural signals are a) amplitude
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Figure 6.6 – Influence of SSD on SNR for subject VPih: (a) SNR measured at Oz. (b) SNR mea-
sured at 1st SSD component optimized on 1 fst i m . (c) SNR measured at 2nd SSD component
optimized on 2 fst i m . (d) SNR measured at 3rd SSD component optimized on 3 fst i m . (e) SNR
measured at 4th SSD component optimized on 4 fst i m . ©2017 IEEE

of SSVEP response at Oz (Oz); b) amplitude of SSVEP response in 1st SSD component (SSD1);

and c) mean of amplitudes of SSVEP responses in 1st and 2nd SSD components (SSD1 +SSD2);

Significant correlations (p < 0.05) are denoted by a filled, non-significant correlations by an

empty square. For even harmonics, correlations obtained from the response at Oz (Fig. 6.8b

and Fig. 6.8d) are significant for all subjects. For most subjects, the correlation is increased2

2In absolute values.
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(a) a1(1 fst i m ), VPid (b) a1(2 fst i m ), VPid (c) a1(3 fst i m ), VPid (d) a1(4 fst i m ), VPid

(e) a1(1 fst i m ), VPih (f) a1(2 fst i m ), VPih (g) a1(3 fst i m ), VPih (h) a1(4 fst i m ), VPih

Figure 6.7 – Activation patterns of the 1st SSD components optimized on the first four harmon-
ics (from left to right). Top: For subject VPid. Bottom: For subject VPih. ©2017 IEEE

on the 1st SSD component, for some subjects (VPia and VPig on 2 fst i m and VPir on 4 fst i m),

however, correlations decrease and significance is lost. The statistical significance of the

increase in correlation (with regard to the correlation obtained from Oz) is tested using

Steiger’s Z-test [Howell, 2013]. Significant differences in correlation are denoted by symbol ×
(p < 0.05) above the subject codes in Fig. 6.8. For 12 out of 16 subjects for the 2nd harmonic

and 10 out of 16 for the 4th harmonic the increase in correlation by SSD is significant. While

for both even harmonics the correlation of the grand average (GA) on the 1st SSD component

as well as on the sum of the first two SSD components is increased, this increase is statistically

significant only on the 2nd harmonic, but not on the 4th harmonic.

Correlations obtained at the odd harmonics on Oz are in general lower as compared to the

correlations on the even harmonics (Fig. 6.8a and Fig. 6.8c) and for fewer subjects significant.

Also, SSD is less efficient in increasing the correlation from the one obtained on Oz for single

subjects. For the grand average, however, SSD obtains significantly higher correlations on the

odd harmonics with gains much higher than on the even harmonics.

6.4.5 Differences between Subjects

The results (e.g. for subjects VPie and VPiq on 1 fst i m , VPia and VPig on 2 fst i m , VPie and VPif

on 3 fst i m , and VPig and VPir on 4 fst i m) in Fig. 6.8 show that SSD, is not always successful in

extracting the spatial components related to perceived quality. An important reason for this

is that SSD is inherently unsupervised. Cases like that are to be expected as they reflect the

biological variance among participants. For some subjects (e.g. VPie on 1 fst i m , VPia on 2 fst i m ,

or VPig on 4 fst i m) the correlation can be re-increased by taking the 2nd SSD component

into account as well. Activation patterns for some subjects for that SSD fails are shown in

Fig. 6.9. Evidently and in contrast to the results shown in Fig. 6.7, the activation patterns

of the 1st component do not focus on the activation in the visual cortex (see e.g. Fig. 6.9a,

Fig. 6.9c Fig. 6.9e, Fig. 6.9i, Fig. 6.9m, Fig. 6.9o). This explains the drop in correlation when the
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(a) PLCC at 1 fst i m

(b) PLCC at 2 fst i m

(c) PLCC at 3 fst i m

(d) PLCC at 4 fst i m

Figure 6.8 – Correlations between MOS values and texture-wise averaged neural signal for all
subjects (VPal-VPir), averaged over all subjects (GA) and averaged over all remaining subjects
after screening by thresholding (tGA). Significant correlations are indicated by a filled square.
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(a) a1(1 f ), VPiq
failed

(b) a2(1 f ), VPiq
failed

(c) a1(1 f ), VPie
failed

(d) a2(1 f ), VPie
recovered

(e) a1(2 f ), VPia
failed

(f) a2(2 f ), VPia
recovered

(g) a1(2 f ), VPig
failed

(h) a2(2 f ), VPig
failed

(i) a1(3 f ), VPie
failed

(j) a2(3 f ), VPie
failed

(k) a1(3 f ), VPid
recovered

(l) a2(3 f ), VPid
failed

(m) a1(4 f ), VPig
failed

(n) a2(4 f ), VPig
failed

(o) a1(4 f ), VPir
failed

(p) a2(4 f ), VPir
failed

Figure 6.9 – Examples of failing SSD on different harmonics. ©2017 IEEE

amplitude of the SSD components are used as a neural marker of quality. For some subjects,

e.g. VPie on 1 fst i m (Fig. 6.9d) or VPia on 2 fst i m (Fig. 6.9f), activity in the visual cortex appears

to be captured by the 2nd component. This explains the improved correlation achieved by

taking into account the 2nd SSD component as well that can be observed for these subjects

(see Fig. 6.8). For other subjects, e.g. VPiq on 1 fst i m (Fig. 6.9b), VPie on 3 fst i m (Fig. 6.9j),

or VPir on 4 fst i m (Fig. 6.9p), also the 2nd SSD component fails at extracting physiologically

meaningful components and its consideration cannot improve the prediction performance.

Note that e.g. for VPig on 2 fst i m extracted activity appears plausible, but SSD fails in terms of

correlation to MOS. As e.g. VPid on 3 fst i m shows (Fig. 6.9j) considering the amplitude of the

2nd SSD component can render the success obtained with the 1st component void. Thus, as

also observable in Fig. 6.8, it is not advisable to generally use the 2nd SSD component.

As shown in Fig. 6.7 and Fig. 6.9, in many cases activation pattern resulting from successful

SSD differ from those resulting from failing SSD. Previously, an outlier detection based on

the power contained in the SSD components was proposed for the 4th harmonic [Bosse et al.,
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2017a]. However, this approach misses many failing SSD on the first 3 harmonics. A more

efficient harmonic-wise outlier detection method is based on the angle between the activation

pattern of the 1st SSD components of different subjects: For each harmonic 2 prototypical

SSD activation pattern are selected as angular inliers [Harmeling et al., 2006, Krauledat et al.,

2008]; for each subject and harmonic, the minimal angular distance to these prototypes is

calculated. This allows to define a simple statistical measure for screening subjects with regard

to successful SSD, employing a variation of the upper outer fence based on the interquartile

range [Tukey, 1977]: With the threshold τ= 3 · (Q75% +Q25%) and Q75% and Q25% being the first

and third quartile of all subject’s minimal angular prototype distance, we reject subjects for

which the minimal angular prototype distance exceeds τ. Excluding these subjects from the

calculation of the grand average further increases the correlation on the 1st and 4th harmonic,

as shown in Fig. 6.8 with the outlier-excluded grand average denoted as tGA. In contrast to

the correlation obtained on the grand average when considering all subjects, the increase of

correlation for the screened grand average is statistically significant with p < 0.05 also on the

4th harmonic.

6.4.6 Predicting the MOS from the Neural Signal

As discussed in Section 2.3.3, correlations between neural responses and MOS are reported

in several studies on psychophysiological quality assessment. However, for moving towards

applicability of neurophysiological methods in quality assessment it is crucial to investigate

the predictive power of neurophysiological approaches.

In order to account for subject-wise differences in amplitude ranges [Strasburger et al., 1988],

caused e.g. by anatomical differences among the subjects, the amplitudes of the neural signals

are normalized subject-wise over all source images and distortion levels to a range between 0

and 1.

We evaluate the prediction performance subject-wise based on a linear model

y =
[
β0 · · · βN

]
·




1
...

xN−1


+ǫR (6.9)

with x = [1 · · ·xN−1]⊤ denoting the features extracted from the EEG signal, y being MOS values,

β= [β0 · · ·βN ] the regression coefficients and ǫR the prediction error.

For subject Si prediction model parameters βi are estimated based on the MOS j 6=i , obtained

by pooling over the ratings of all subjects except Si , and the EEG features from all subjects

except Si . Obtained parametersβi are used to predict the MOS as �MOSi from the EEG features

of subject Si .

Prediction is evaluated and compared for 6 different sets of features: 1. the subject-wise aver-

aged amplitude at the 1st harmonic (only 1 feature), 2. the subject-wise averaged amplitude at

the 2nd harmonic (only 1 feature), 3. the subject-wise averaged amplitude at the 3rd harmonic

(only 1 feature), 4. the subject-wise averaged amplitude at the 4th harmonic (only 1 feature),
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Figure 6.10 – Comparison of accuracies of predictions of the MOS from self-reported behavioral
responses (ǫb) and from different sets of SSVEPs (ǫn). Each circle represents the MAD between
prediction and true MOS for one subject.

5. subject-wise averaged amplitudes at first 4 harmonics (4 features), 6. subject-wise averaged

amplitudes at first 4 harmonics and their multiplicative interactions (10 features).

Prediction performance is quantified subject-wise as the MAD between true value and pre-

diction ǫn
i
= |MOS− �MOSi |. For comparison and as behavioral counterpart, the prediction

performance of the individual subjects condition-wise rating OSi for the MOS is quantified as

ǫb
i
= |MOS−OSi |.

Fig. 6.10 scatters the performances of the two prediction schemes for the different sets of

neural features. Each circle represents the prediction performances of one subject over all

conditions, the dashed line indicates identity of prediction performances. The mean of ǫb
i

over

all subjects is 0.75. Prediction solely based on the amplitude of one of the first 3 harmonics

(upper row in Fig. 6.10) is clearly inferior to prediction from behavioral responses. Predicting

the MOS solely from the amplitude on the 4th harmonic, a MAD over all subjects of 0.95 is

achieved. Although the MAD from the neural prediction is higher than the MAD from the

behavioral prediction (also visible as most points are located slightly below the dashed line,

and by that suggesting slightly higher accuracy of the behavioral approach), assuming Gaus-

sian distributed ǫn and ǫb and employing a t-test [Howell, 2013] reveals that the means of ǫn
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and ǫb are statistically equal (p < 0.05). Dropping the assumption of Gaussianity, signed-rank

testing [Howell, 2013] also shows statistical equality of the medians of ǫn and ǫb (p < 0.05).

Joint prediction from amplitudes of all first 4 harmonics obtains a higher prediction accuracy

(MAD over subjects: 0.83), additionally considering the multiplicative interactions as well

(MAD over subjects: 0.8) further increases accuracy of the prediction from the EEG signal.

6.5 Discussion

This chapter presented a neurophysiological approach to image quality assessment based on

SSVEP. SSVEP were elicited by visual stimulation with periodic alternation between reference

image and distorted image at a cycle rate of fst i m = 1.5. Dimensionality of the recorded EEG

data was reduced using SSD. For that, SSD was specifically adapted to be used in the frequency

domain. This allows for a direct application to SSVEP as SSVEP are naturally represented in the

frequency domain. It was shown that for most subjects SSD is able to extract physiologically

meaningful components from EEG data recorded in an image quality assessment setup. The

neural signal in the extracted components shows a significantly higher correlation to perceived

quality than the signal recorded at Oz. Using the first SSD component as a neural marker for

quality overcomes the problem of channel selection in SSVEP-based image quality assessment.

This is especially favorable as the optimal channel might be different for different subject (due

to anatomical variance), different test sessions (due to deviations in electrode positions) and

the harmonic component of the SSVEP studied. This chapter did not present a final solution

for objective and reliable assessment of video quality, but showed that with the presented

method high correlations of the extracted neural signal with MOS values are achieved and

that, using a linear model, the proposed method is feasible to predict MOS values from single

subject responses with an accuracy comparable to behavioral approaches.

The SSVEP approach is able to achieve a significantly higher SNR than ERP-based approaches

[Norcia et al., 2015], and also the number of trials collected per time is much higher compared

to ERP-based approaches as no stimulation-free interstimulus period is required. However, as

discussed in Section 2.3, no common stimulus dataset for benchmarking neurophysiological

quality assessment is available and, thus, studies evaluating SSVEP and ERP for image quality

assessment have used different sets of stimuli; this renders a final conclusion difficult. To

understand the differences of the two paradigms, it will be important to establish a similar

set of stimuli and then conduct further experiments to allow for a precise comparison and

identify strengths and weaknesses of the two approaches.

In order to arrive at a real-world solution to quality assessment, this paper is limited in follow-

ing respects and raises several challenges for future work:

Most important, subjects sensitive to photonic flicker might suffer not only from headache,

but even seizures could in principle be evoked by the presentation of a flickering stimulus if the

subject is suffering from epilepsy [Fisher et al., 2005]. In an SSVEP-based quality assessment

study this must be prevented by identifying and excluding affected subjects from experiments.

Eliciting SSVEPs relies on temporally highly precise and alternating stimulus presentation.
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This is a clear limitation of the proposed approach and renders SSVEP-based quality assess-

ment ’in the wild’ a very hard challenge. However, controlled in-lab studies, e.g. aiming at

building huge databases of quality annotated images for testing, designing or training mod-

els for quality estimation (cf. Chapter 4 and Chapter 5), are not affected by this conceptual

drawback. Here, the linear prediction model was estimated on the data of all other subjects.

However, for application scenarios it would be beneficial to identify a subject-wise model

that does not rely on other subjects’ responses to predict MOS values directly from individual

neural responses.

As for all ERP-based approaches as well, the presented SSVEP focuses on the perception of

quality change (introduced by the alternation between undistorted and distorted images)

rather than quality perception per se. This bounds the approach to the full reference domain

and might limit its applicability to only certain real-world applications.

Although our results indicate clear feasibility of the proposed approach, future work should

consider to systematically study the influence of low level image statistics such as luminance

or contrast on the prediction performance.

In this study presented in this chapter, subjects for which only a low correlation between

neural signal and MOS values was obtained (e.g. VPif, see Fig. 6.8) were not identified by

conventional screening [ITU-R Rec. BT.500-13, 2012] based on overtly reported quality ratings.

Different to psychophysical quality assessment in psychophysiological quality assessment

also the neuroanatomy influences the recorded quality related signal. On the recorded data, a

simple screening method based on interquartile ranges [Tukey, 1977] was shown to be useful

for identifying subjects for which SSD failed. By that the performance of the proposed method

in terms of PLCC is statistically significantly increased. Replicability of this screening approach

will have to be evaluated on other recordings, other subjects and for paradigms other than

SSVEP. Thus, in order to allow for applications of neurophysiological quality assessment meth-

ods, analogously to psychophysical methods, appropriate screening techniques will need to

be studied further. Identifying and excluding people for which BCI methods fail [Suk et al.,

2014, Blankertz et al., 2010, Hammer et al., 2012] is able to boost performance of neurophysio-

logical methods. As an example, [Acqualagna et al., 2015] shows a negative relation between

EEG-based distortion detection and the power in the α-band (7.5 Hz to 12.5 Hz) and argues

that the α-activity interferes with the processing of the visual information, while a state of

high cortical excitability is reflected by decreased α-activity. For future work, this observation

can serve as a starting point to study screening methods for EEG-based quality assessment.

Also, identifying ’high performing’ subjects may reduce the number of subjects necessary for

EEG-based quality assessment studies.

Results presented in this study are based on averages across trials. Besides identifying the

number of subjects, for real world applications it is crucial to identify the number of trials

necessary for reliable quality assessment studies and in the optimal case allow for single trial

quality assessment. The question regarding the number of subjects and the number of trials

can be treated analogously to psychophysical approaches [ITU-R Rec. BT.500-13, 2012, Pinson

et al., 2012].

However, in order to move towards applying the proposed method generically in image quality
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assessment studies, parameters of the experimental design need to be optimized. Also here a

common dataset allowing for comparable results would be beneficial. For assessment studies

based on SSVEP, these factors potentially driving the performance of the approach include the

stimulation frequency used for eliciting the SSVEP and the dimensionality reduction method.

In the presented study, the stimulation frequency was set to fst i m = 1.5Hz. It is known that

for specific cognitive tasks there are optimal stimulation frequencies [Alonso-Prieto et al.,

2013, Won et al., 2015]. Future work should evaluate if such an optimal stimulation frequency

also exists for image quality assessment. By using an optimal stimulation frequency, the

duration of the experiments might be shortened as the SNR might be increased as less tri-

als may be necessary or due to the presentation of more trials in the same time if a higher

stimulation frequency is used. First investigations study the relation between the SNR as a

proxy for prediction accuracy or correlation and the stimulation frequency in image quality

assessment [Bosse et al., 2018b]. It is not clear, however, if the SNR really translates into higher

correlations with perceived quality.

It was shown that different harmonic components represent different neural processing [Liu-

Shuang et al., 2015, Norcia et al., 2014]. Activation pattern obtained by SSD indicate that

distinct neural mechanisms underlying the processing of distorted images are captured by

odd and even harmonics. A deeper understanding of the neural sources driving quality per-

ception might help to improve the experimental design.

For some subjects, SSD failed to increase the correlation to behavioral responses and to ex-

tract neurophysiological plausible components. One reason for that (in contrast to CSP in

[Acqualagna et al., 2015]) is that SSD is an unsupervised channel decomposition technique.

Although a strategy for identifying subjects for which SSD fails was proposed, it would be

beneficial to enhance the robustness of dimensionality reduction methods e.g. by divergence

methods that allow a higher resistance to outlier trials or other noise contamination [Samek

et al., 2014].

Future studies may aim at distortion levels close to the perception threshold as this is a desir-

able operational point for image communication systems. Here, a neurally informed quality

assessment procedure might help to complement conventional behavioral methods, taking

into account the heteroskedastic noise characteristics at the edge of perception [Porbadnigk

et al., 2015].

The scope of this chapter is the assessment of image quality and for facilitating the experi-

mental setup, source reference content was restricted to texture images. Conceptually there is

no reason to limit the proposed approach to this class of stimuli. Thus, it will be interesting

to study experimentally whether the proposed approach is also a feasible method to assess

perceived quality of complex natural images. SSVEPs have also been used to assess motion

perception [Norcia et al., 2015]. Following this line, the feasibility of SSVEP to assess video

quality could be evaluated in an extension of the presented experimental setup.

The extra preparation time (≈ 1
2 h) required for the setup of the EEG system might eliminate

the benefits of EEG measurements, but a new generation of dry electrode-based EEG caps has

the potential to shorten the preparation time drastically. It is recommended for psychophys-

ical experiments not to last longer than 30 minutes, in order to prevent the subjects from
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becoming unreliable in their behavioral responses due to fatigue or boredom (cf. Section 2.2.

In EEG-based experiments in contrast, no response has to be given by the subjects and it is

not known yet what the limits in terms of duration are; in cognitive neuroscience length of

EEG-based experiments can range between 2-3 hours.

We evaluated and quantified quality related neural correlates based on an SSVEP paradigm.

Clearly, several aspects of the presented method need further evaluations and improvements,

but we showed that neural signals that significantly correlate to perceived quality are elicited

and that spatial filtering using SSD increases the correlation for most of the subjects. By this,

potentially a less biased and more objective measure of quality perception than obtained with

conventional behavioral methods can be established.

6.6 Lessons Learned

• SSVEP elicited at a stimulation frequency of fst i m = 1.5Hz show a high correlation with

overtly reported quality perception.

• SSD can be reformulated in the Fourier domain and efficiently applied to natively

represented SSVEP.

• The first SSD component is neurophysiologically plausible and extracts a quality related

neural signal from the SSVEP.

• The angular distance between the activity patterns obtained by SSD can be used to

detect subjects for which SSVEP-based quality assessment fails.

• An individual subject’s neural signal is a reliable predictor for overtly reported quality of

a disjoint population.
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Perceptual signal quality is a central aspect of modern multimedia technology. In this the-

sis, quality was explored from the perspective of estimation, from the perspective of video

compression and from the perspective of assessment.

7.1 Where are we now?

Two novel data-driven approaches to image quality estimation were presented. In Chapter 4,

an end-to-end trained deep neural network-based method for NR and FR image quality es-

timation was presented. To efficiently address the problem of scarcity of quality annotated

images, this neural network was designed to estimate local patch-wise qualities that were

averaged to a global, image-wise quality estimate. The trained model achieved prediction

performance comparable or superior to state-of-the-art methods. A spatially weighted av-

erage aggregation scheme was proposed in order to account for label noise that is inherent

to the image-wise quality labels and increased by assuming global image-wise quality labels

as proxies for local patch-wise quality. Local weight and quality estimation were optimized

jointly, in a purely data-driven manner. For FR image quality assessment, this locally weighted

pooling further increased prediction performance.

In order to reduce the computational complexity of quality models, Chapter 4 derived a func-

tional definition of distortion sensitivity and showed how this concept leads to a weighted

pooling scheme that is very similar to the one introduced in Chapter 5. Distortion sensitivity

was modelled as a distortion type-dependent property of the reference image and it was shown

(exemplified for the PSNR) that an image-wise consideration of distortion sensitivity drasti-

cally improves the prediction accuracy of computational quality models if knowledge about

the type of distortion is available. After these conceptual discussions, a neural network was

trained to estimate distortion sensitivity patch-wise in an image quality assessment framework

based on the PSNR. The achieved prediction performance improved over the PSNR, although

the conceptually derived limits could not be reached.

While localizing distortion sensitivity for the PSNR is straight forward and conveniently leads

to a weighting scheme for the MSE, as a pitfall for other more sophisticated quality models, a
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local distortion sensitive adaptation might be much more difficult to realize.

The crucial advantage of the distortion sensitive PSNR in time critical systems such as video

encoding is the restriction of complex processing to the reference image only. Hence, the con-

cept of distortion sensitivity was transferred to rate-distortion theory and a distortion sensitive

bit allocation scheme for block-based video coding was proposed. The proposed approach

was evaluated in an image compression experiment and significant bit rate savings at identical

perceptual quality were achieved. The concept of distortion sensitivity, with its functional

definition based on the psychometric regression function, thus bridges directly from quality

assessment over (data-driven) quality estimation to perceptual video compression.

The success of data-data driven quality estimation and its application in compression crucially

depends on the availability of training data, as Chapter 4 and Chapter 5 suggest. Considering

the flaws of conventional psychophysical quality assessment discussed in Chapter 2, as a

potential remedy Chapter 6 proposed a novel neurophysiological method for image quality

estimation. Subjects were presented with periodic alternations between distorted and undis-

torted images. The amplitude of the elicited SSVEP were shown to be highly correlated with

perceived visual quality of the distorted images. A reformulation of SSD in the frequency

domain permitted a convenient dimensionality reduction that can be applied to native repre-

sentations of the SSVEP. This provided a rational criterion for extracting quality related spatial

components. Based on a simple linear model, the proposed method accurately predicted

behaviorally reported quality.

It is important to note that SSVEP quality assessment is inherently bound to the full reference

domain. The same holds for ERP-based approaches (cf. Chapter 2). This makes an applica-

tion in a general assessment of quality of experience challenging, if not impossible. Hence,

these approaches might be limited to applications excluding real-world and real-time quality

assessment in natural viewing environments.

7.2 Outlook

Data-driven quality estimation and neurophysiological quality assessment are new topics in

multimedia technology. Several important aspects that were not covered by this dissertation

should be investigated in future research.

As already indicated, a crucial factor for robust data-driven quality models is the availability of

larger databases of quality annotated images and videos. When creating these databases, it

would be beneficial to concentrate on distortion types and resolutions that are of practical

relevance. Until such databases are available, machine learning approaches to quality estima-

tion could be studied by using proxy labels, e.g. output of existing and sufficiently trustworthy

quality models. Such labels could also be used for pre-training data-driven models, that are

then fine-tuned based on real labels.

The data-driven approaches presented can directly be applied to other media types as well,

particularly interesting is the application to video signals. Also the extension of spatial distor-

tion sensitivity to spatio-temporal distortion sensitivity is promising.
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Models that are optimized on more relevant resolutions and distortion types also present a

promising avenue for improving perceptual compression schemes. Beyond that, it is impor-

tant to study the extent to which models that have been proposed and evaluated for image

compression can be generalized to video compression and, eventually, to guide bit allocation

using future models that take spatio-temporal distortion sensitivity into account.

The concept of distortion sensitivity may be captured directly in psychophysiological quality

assessment with sweep SSVEPs, that have been used previously e.g. to measure thresholds of

face detection [Ales et al., 2012]. Open questions for the SSVEP-based assessment of image

quality include the identification of a potentially optimal stimulation frequency, more reliable

feature extraction and dimensionality reduction methods, and the adaptation and evaluation

of the proposed method for video signals.

Currently, one of the biggest obstacles in neurophysiological quality assessment is the lack

of comparability of different approaches due to the use of different stimulus material. An

important first step towards solving this problem has been taken by the VQEG by publishing a

test plan for psychophysiological quality assessment [Bosse et al., 2018a] comprising a dataset

of distorted videos available to other researchers.
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