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Zusammenfassung

Mit der Einführung von Automation sollen Leistungsvorteile erzielt, eine Erhöh-

ung der Systemsicherheit und Effizienz erreicht und Kosten reduziert werden. Lei-

der ist sie oft auch von negativen Effekten wie complacency und automation bias,

Verlust des Situationsbewusstseins und Fertigkeitsverlusten begleitet. Automa-

tisierung ist keine Alles-oder-Nichts Entscheidung, und der Grad der Automa-

tisierung beeinflusst sowohl die Vorteile als auch die Nachteile. Während Leis-

tungsvorteile sich besonders bei hohen Automationsstufen zeigen, gibt es keine so

klaren Ergebnisse darüber, welche Automationsstufe die optimale ist, um negative

Automatisierungsfolgen zu vermeiden.

In dieser Arbeit wurde in einer ersten Studie der Einfluss des Automations-

grades (degree of automation, DOA) auf die Leistung bei zuverlässiger Automa-

tionsunterstützung wie auch bei Automationsversagen untersucht. Die Ergebnisse

zeigen, dass sowohl Primär- und Sekundäraufgabenleistung als auch workload von

der Automationsunterstützung profitieren. Die Leistungsvorteile waren höher bei

höherer DOA. Allerdings wurden bei der höchsten DOA auch Fertigkeitsverluste

gefunden, wenn wieder ohne Unterstützung der Automation gearbeitet werden

musste. Es wurde kein Einfluss von DOA auf automation bias gefunden.

In einer zweiten Studie wurde der Einfluss der Systemerfahrung untersucht. Die

Erfahrung von Automationsfehlern führte zu einem drastischen Einbruch des Ver-

trauens und einer stärkeren Überprüfung der Automation. Frühe Fehlererfahrung

reduzierte das Risiko von complacency und automation bias, konnte es aber nicht



komplett verhindern. Desweiteren wurden in der Studie drei mögliche Ursachen

von commission errors identifiziert:

a) die Automation wird unvollständig überprüft,

b) die Automation wird vollständig überprüft, aber widersprechende Informa-

tion nicht bewusst verarbeitet,

c) widersprechende Information wird bei der Entscheidung nicht berücksichtigt.

In der dritten Studie wurden Effekte von Bedienerzustand und DOA unter-

sucht. Mit Unterstützung höherer Automation konnte die Leistung während der

Nacht besser erhalten werden. Allerdings waren die Leistungseinbußen bei Ausfall

der Automation stärker als bei niedrigerem Automationsgrad. Die Automation

wurde nachts mehr überprüft als tagsüber, und das Risiko eines commission error

war nachts geringer.



Abstract

Introducing automation intends to yield performance benefits, increase system

safety and efficiency, and decrease costs. However, the intended benefits are of-

ten offset by negative effects such as complacency and automation bias, loss of

situation awareness, and skill degradation. Automating systems is not an all-or-

none decision, and degree of automation (DOA) has been shown to influence both

intended performance benefits as well as performance decrements. While perfor-

mance benefits more from higher automation, results about the optimal degree of

automation in terms of preventing negative effects are not so clear-cut.

In a first study, we investigated effects of degree of automation on routine per-

formance and failure performance using a simulated process control task. Results

show that primary and secondary task performance as well as workload benefit

from providing automation, and performance gains were higher for higher DOA.

However, skill degradation was observed for the highest DOA when returning to

manual performance. Regarding automation bias, there was no effect of DOA.

The second study focused on the effects of system experience. Failure experi-

ence led to a strong decrease in trust, also reflected in more intense automation

verification. Early failure experience reduced the risk of complacency and automa-

tion bias but did not prevent it completely. Moreover, we identified three possible

causes of commission errors:

a) incomplete automation verification,

b) complete automation verification without attentive processing of contradic-

tory information, analogous to a looking-but-not-seeing effect,



c) discounting of contradictory system information.

The third study looked into effects of operator functional state and DOA.

Higher DOA could better protect performance after extended wakefulness, but

return-to-manual performance suffered more. More information was sampled for

automation verification during the night, and the risk of commission errors was

lower compared to daytime performance.
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Chapter 1

Introduction

In the past decades, automation support in complex work environments has in-

creased consistently. Especially operation of systems that support decision making,

such as cockpit warning systems in aviation, navigation systems in automobiles,

image-based assistance systems in medicine, or diagnostic support systems in pro-

cess control, has proliferated.

Moray, Inagaki, and Itoh (2000, p. 44) define automation as “any sensing, de-

tection, information-processing, decision-making, or control action that could be

performed by humans but is actually performed by machine”. Parasuraman and

Riley (1997) define automation as “the execution by a machine agent (usually a

computer) of a function that was previously carried out by a human” (Parasura-

man & Riley, 1997, p. 231). There are different reasons for automating tasks that

could be performed by humans or have been performed by humans in the past.

Some tasks are dangerous or difficult to perform, others are extremely monotonous

and repetitive. Some task are automated just because it is technically feasible. Au-

tomating tasks is intended to increase efficiency and reduce costs, increase system

11



reliability and performance, and to decrease the operator’s workload. However, au-

tomation might not only lead to the intended benefits but possible benefits might

be offset by unwanted performance consequences (Bainbridge, 1983; Endsley &

Kiris, 1995; Sarter, Woods, & Billings, 1997).

Automation does not only reduce the human’s work but changes the nature

of the work. An executive task becomes a supervisory control task (Sheridan &

Verplank, 1978; Sheridan, 1992). The human operator supervises the automation

when it works reliably, has to detect errors of the automation and take over manual

control in case of malfunctions. Early on, Bainbridge (1983) reported on possible

adverse effects of automation. The operator can loose manual skills needed to

perform the automated functions as he only takes over manual control when the

automation fails, but during normal operation merely supervises the automation.

However, during abnormal operation or automation failure the operator has to take

appropriate action instantly. This is aggravated by the fact that system errors are

often obscured by the automation’s attempt to handle the error, so the error might

become apparent only late in the process when it is already hardly controllable.

Other possible performance consequences include overreliance on the automa-

tion. In the context of supervisory control, overreliance behaviorally shows in

inappropriate monitoring of automated functions, a phenomenon which has been

referred to as automation-induced complacency (Parasuraman, Molloy, & Singh,

1993). Complacency can lead to loss of situation awareness and loss of skills

(Endsley & Kiris, 1995; Parasuraman et al., 1993). In the context of automated

decision aids, overreliance is associated with automation bias (Mosier & Skitka,

1996). Automation bias can lead to omission and commission errors.

Decisions about automating tasks are not all-or-none decisions. Not only can

12



different subtasks be automated while others are not, also those automated sub-

tasks can be automated to different degrees. Benefits and costs of automation

depend on function allocation. The key criteria for evaluating automation design

should be the human performance consequences for specific degrees of automation

(Parasuraman, Sheridan, & Wickens, 2000; Parasuraman, 2000). Those perfor-

mance consequences include workload, situation awareness, complacency, and skill

degradation. Secondary evaluative criteria include, among others, automation re-

liability, costs of action outcomes, implementation costs, and liability.

Stressors like noise or sleep deprivation affect the interaction with automation.

Under stress, operators show a preference for higher levels of automation (Sauer,

Kao, Wastell, & Nickel, 2011; Sauer, Nickel, &Wastell, 2013). Automation support

can help reduce the negative effects of stressors like noise on performance and

workload (Sauer et al., 2011; 2013). For sleep-deprived operators in supervisory

control tasks, a shift towards less demanding system management strategies has

been shown (Hockey, Wastell, & Sauer, 1998; Sauer, Wastell, Hockey, & Earle,

2003). In highly automated workplaces a lot of accidents happened during night

shifts when operators are sleepy (Folkard, Lombardi, & Tucker, 2005). Despite

its practical relevance, there is only little research on the moderating effects of

operator functional state on human performance in interaction with automation,

with effects of stress and fatigue being the most important in this respect.

In the following sections the related work is reviewed. In chapter 2 the simula-

tion of a supervisory control task that was used in the experiments is introduced.

The three experiments that were conducted are presented in chapters 3 - 5. A

general discussion of the findings follows in chapter 6.
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1.1 Function Allocation & Operator Performance

How should tasks be allocated to human or automation? Which functions should

be automated, which tasks should be worked on by humans? After deciding which

subtasks should be automated, it has to be decided to which degree it should

be automated, ranging from manual to fully automated. There are different ap-

proaches to allocate functions to human or automation. Performance benefits and

costs of automation depend on function allocation.

1.1.1 Function Allocation

The technology-centered approach focuses the technical feasibility, technical relia-

bility and costs. Functions are automated if cost reducing technical solutions can

be built, other functions are left to the human. Obviously, this approach will not

always provide the best solution. Related subtasks are split up between human

and automation if one can be automated and one cannot.

In competence-centered views like Fitts MABA MABA lists (Fitts, 1951) tasks

are allocated to this part of the human-machine system that is better able to

master a task. Tasks that a machine can do more efficiently are allocated to the

machine, tasks humans are better at are left to the human. Problematic with

this approach is that it might not be clearly decided which part of the system is

better able to do a certain task; also abilities might change over time, especially

technology constantly becomes more capable. In addition, the human-machine

interaction is disregarded, but a lot of problems occur in the interaction between

human and machine.

Human-centered automation (Billings, 1997) intends to support the human op-
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erator, keep the human engaged and informed about the system state and ongoing

activities, and regards human and machine as part of one system.

Decisions about automation are not all-or-none decisions. Some subtasks might

be automated while others are not, and those automated subtasks can be auto-

mated to different degrees. Benefits and costs of automation depend on how func-

tions are allocated to human or machine. The primary evaluation criteria should

be the human performance consequences for specific degrees of automation (Para-

suraman et al., 2000; Parasuraman, 2000). Probability and costs of automation

failure should play an important role in the decision about automation (Sheridan

& Parasuraman, 2000).

Different models of human-automation interaction have been proposed in the

past (e.g., Sheridan & Verplank, 1978; Endsley & Kaber 1999; Parasuraman et

al., 2000; Wandke, 2005). In an early seminal work, Sheridan & Verplank (1978)

proposed a 10-level model of human-automation interaction, with 10 levels of au-

tomation ranging from manual performance to full automation. The 10-level model

is shown in Table 1.1, in an adaptation by Parasuraman et al., (2000). Since they

did not only rephrase the original list but slightly changed the meaning, the orig-

inal wording from Sheridan & Verplank (1978) can be found in appendix A.

Endsley and Kaber (1999) presented a level of automation taxonomy assigning

four functions to either human or machine. Those four functions are (1) monitoring

display information to perceive system status, (2) generating options or strategies

for achieving goals, (3) selecting an option or strategy, and (4) implementing the

chosen option. The 10 levels are shown in Table 1.2. Endsley and Kaber (1999)

note that the order is not necessarily ordinal.

Parasuraman et al. (2000) took this idea one step further and presented a
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Table 1.1: The 10-Level Model of Human-Automation Interaction (Sheridan &
Verplank, 1978), adapted from Parasuraman, Sheridan, & Wickens (2000, p. 287).
For original wording from Sheridan & Verplank (1978), see appendix A.

LOW 1 The computer offers no assistance: human must take all
decision and actions.

2 The computer offers a complete set of decision/action al-
ternatives, or

3 narrows the selection down to a few, or
4 suggests one alternative
5 executes that suggestion if the human approves, or
6 allows the human a restricted time to veto before auto-

matic execution, or
7 executes automatically, then necessarily informs humans,

and
8 informs the human only if asked, or
9 informs the human only if it, the computer, decides to.

HIGH 10 The computer decides everything and acts autonomously,
ignoring the human.

model that distinguish four types of functions, and each function can be auto-

mated to a different level (see Figure 1.1). The four types of functions that can be

automated, corresponding to a four-stage model of human information processing,

are (1) information acquisition, (2) information analysis, (3) decision & action se-

lection, and (4) action implementation. Examples of resulting automation profiles

are depicted in Figure 1.1. In system A, information acquisition and information

analysis are highly automated while decision & action selection and action imple-

mentation are manual. Such a system could be an alarm system that acquires

information via sensors, analyzes them, and raises an alarm when certain values

are below or above a predefined threshold. Another system B could additionally

have a highly automated action implementation while decision & action selection

is automated on a low level. Such a system would implement the actions after the
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Table 1.2: Level of Automation Taxonomy, adapted from Endsley & Kaber (1999,
p. 466).

LOA Monitoring Generating Selecting Implementing
Manual Control Human Human Human Human
Action Support H/C Human Human H/C
Batch Processing H/C Human Human Computer
Shared Control H/C H/C Human H/C
Decision Support H/C H/C Human Computer
Blended Decision Support H/C H/C H/C Computer
Rigid System H/C Computer Human Computer
Automated Decision Making H/C H/C Computer Computer
Supervisory Control H/C Computer Computer Computer
Full Automation Computer Computer Computer Computer

Note. H/C: Human/Computer

operator selected an action.

Wickens, Li, Santamaria, Sebok, & Sarter (2010) suggested that a higher de-

gree of automation (DOA) can be reached by automating a later stage and / or

implementing a higher level of automation within one stage. So system B from the

example in Figure 1.1 would have a higher degree of automation than system A.

Onnasch, Wickens, Li, & Manzey (2014) differentiate four cases of varying DOA,

pure level, pure stage, aggregation, and confound. They argue that in the first

three cases it can clearly be said which of two automated systems is automated to

a higher degree. For example, in the pure level case, two systems are automated

at the same stage at different levels. The system automated at a higher level has

a higher DOA. The forth case, the confound case, compares a system in which an

early stage is automated at a high level with a system in which a later stage is

automated at a lower level. In this case, it cannot clearly be decided which system

17



High

Low
Information 
Acquisition

Information 
Analysis

Desicion & 
Action Selection

Action 
Implementation

System A

System B

Le
ve

l o
f A

ut
om

at
io

n

Figure 1.1: Types and Levels of Automation, adapted from Parasuraman, Sheri-
dan, & Wickens (2000, p. 288), and examples with different automation profiles.

has a higher DOA.

Since the effect of automation on human performance and joint human-system

performance is different when automation works reliably versus when the automa-

tion fails, it is important to look at both routine performance and failure per-

formance. Figure 1.2 displays the hypothesized routine-failure trade-off, the rela-

tionship between degree of automation, routine performance, failure performance,

workload and situation awareness proposed by Wickens and colleagues (Wickens

et al., 2010; Onnasch et al., 2014). The figure shows that routine performance and

workload benefit from higher degrees of automation while situation awareness and

failure performance decline with increasing degree of automation. If failure perfor-

mance starts decreasing only at the DOA marked at point (A) in the graph, this

would be the optimal DOA with the best routine performance combined with the

lowest possible workload, just before detrimental effects on failure performance

come into effect. However, Wickens et al. (2010) remark that the form of the
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curves is hypothetical as there is not yet sufficient empirical evidence.

Failure Performance

Degree of Automation

Routine PerformanceLoss of Situation Awareness

A

Workload

Figure 1.2: Trade-off of Routine and Failure Performance, Workload and SA, with
Degree of Automation, adapted from Wickens, Li, Santamaria, Sebok, & Sarter
(2010, p. 390)

1.1.2 Degree of Automation and Operator Performance

A number of studies examined the influence of degree of automation on perfor-

mance benefits and costs of automation. While performance benefits increase with

increasing degree of automation, findings on performance costs are more ambigu-

ous. Some studies found benefits of medium DOA for situation awareness and

manual skills, others found favorable effects of higher DOA. Note that in most
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studies the term level of automation (LOA) was used, not the term degree of

automation (DOA). As a higher level of automation also represents a higher de-

gree of automation, we use both terms in this work. Both terms imply increased

automation at a higher level or degree of automation.

Endsley and Kiris (1995) investigated effects of level of automation on situation

awareness and decision performance in an automobile navigation task that was as-

sisted by an expert system. Participants were presented a problem description and

three possible actions to choose from. Five levels of automation were compared.

In the manual condition, participants were only shown the possible actions. In the

decision support condition, they were additionally presented the system’s assigned

probabilities for each alternative that this was the correct solution for the problem.

In the consensual AI condition, the system preselected one option that the partic-

ipant could confirm or select another option. In the monitored AI condition, the

participant could only veto the preselected option within 30 seconds. In the full

automation condition the participants merely monitored the automation. After

automation breakdown, participants had to make all decisions manually. Results

show that decision accuracy remained at a very high level also after automation

failure, but decision time was longer immediately after automation breakdown.

Participants with prior full automation had longer decision times and poorer sit-

uation awareness. Participants with prior medium levels of automation showed

medium levels of situation awareness.

In another study by Endsley and colleagues (Endsley & Kaber, 1999), the ten

levels of automation (LOA) from the automation taxonomy described earlier were

studied. In a complex control task involving object collision avoidance, participants

either worked manually or with the support of one of nine automations ranging
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from action support to full automation. Performance under reliable automation

was better in the supported groups than the manual group. Participants profited

most from implementation assistance. Performance was worse when generating

options was shared than when it was done solely by the human or the machine.

Automation failure performance was not different from performance of the manual

group, except for some levels on different performance measures, but no general

trend was observed favoring a certain level. Time to recovery was better for LOA

that required human action in the implementation. Higher LOA for which the

selecting function was allocated to the machine or was shared by human and

machine was associated with better situation awareness and lower workload.

Extending this line of research, Kaber & Endsley (2004) studied the object col-

lision avoidance task with participants additionally performing a secondary mon-

itoring task. Manual and automation supported phases alternated. LOA had no

effect on primary or secondary task performance, situation awareness or workload

in manual trials. In automated trials, low and intermediate automation were as-

sociated with better performance, intermediate LOA supported higher situation

awareness.

In a study by Sarter & Schroeder (2001) pilots were provided with an automated

decision aid for in-flight icing events. Two decision aids of different degrees of

automation were compared. The lower automated aid provided information about

icing events but left the action selection to the pilot, reflecting an automation

support at the stage of information acquisition and analysis (Parasuraman et al.,

2000). The higher automated aid provided support for decision making and action

selection in addition to providing information about icing conditions. Both aids

increased the number of correct decisions about icing events compared to a baseline
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condition without an automated aid, given the aid provided correct information.

However, pilots also followed the aid’s recommendation if it was wrong, which led

to performance decrements compared to the baseline condition in case the aid’s

information was inaccurate. This adverse effect was even stronger for the higher

automated aid.

Rovira, McGarry, & Parasuraman (2007) studied the influence of degree of au-

tomation of an automated aid on the performance in a command and control task

using an information automation and three levels of decision automation. They

found that reaction times decreased compared to manual condition when the au-

tomation provided correct information but increased when it provided inaccurate

information. Decision-making accuracy was also impaired by inaccurate automa-

tion advice. The performance costs were greater for the higher DOA decision aids

than the information automation when the overall automation reliability was high

(80%). When overall automation reliability was lower (60%), performance suf-

fered in both information and decision automation when the automation provided

inaccurate advice.

Performance benefits of higher DOA in case of automation failure were found by

Lorenz and colleagues (Lorenz, Di Nocera, Roettger, & Parasuraman, 2002). They

studied degree of automation effects in a simulated process control task, comparing

three automated aids that supported fault identification and management. The

first aid was a fault finding guide, the second aid automatically provided diagnoses

and action recommendations for a given system fault, the third aid additionally

implemented the appropriate actions if not vetoed by the operator. Benefits in

diagnostic accuracy and fault identification time were higher for medium and high

DOA with reliable automation support. Return-to-manual performance after an
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automation failure was better for the higher automated aid. Analysis of the veri-

fication behavior of the operators showed that in the higher automated condition,

operators sampled more information which helped them keep up system awareness.

However, time pressure differed between the conditions: operators in the veto con-

dition were shown a countdown until the fault management implementation would

automatically start. A sensible way to use this waiting time was to cross-check

other system information.

Metaanalyses by Wickens et al. (2010) and Onnasch et al. (2014) which

aggregated data from 14 (Wickens et al., 2010) and 18 studies (Onnasch et al.,

2014), respectively, (some of which were described earlier in this work) show that an

increasing degree of automation benefits routine performance, but on the downside

failure performance suffers. Effects on workload are not so clear-cut, but several

studies show that higher DOA decreases workload. Onnasch et al. (2014) suggest

that the human operator should be kept actively involved in the decision making

process as that supports situation awareness and leaves the operator less vulnerable

to the negative effects on performance when the automation fails.

1.2 Trust, Distrust, and Overtrust in Automa-

tion

The reliability of a system is one of the most important factors influencing trust

in automation (Sheridan, 1988; Moray et al., 2000). Other important factors

are robustness, familiarity, understandability, usefulness, dependability, trust in

one’s own capabilities, and individual differences in attitude towards technology
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(Sheridan, 1988; Lee & Moray, 1992, 1994).

Trust only changes slowly as long as the automation works reliably and no

errors occur (Moray et al., 2000). However, when an automation failure occurs,

trust decreases instantly and only recovers slowly (Lee, 1991; Lee & Moray, 1992;

Moray et al., 2000).

In the ideal case, trust in automation is appropriately calibrated (Lee & See,

2004). Appropriate trust is a prerequisite for appropriate use and monitoring

of automation in accordance with the automation’s characteristic features like

reliability. Presenting dynamic system confidence information can help calibrate

trust appropriately and enhance performance (McGuirl & Sarter, 2006).

On the other hand, trust can be too low which can lead to disuse of an au-

tomation, or it can be too high which can lead to misuse of an automation (Para-

suraman & Riley, 1997; Lee & See, 2004). Both cases of inappropriate reliance on

automation can lead to adverse effects in the human-automation interaction.

Distrust often develops when the reliability of an automation is underestimated

after the experience of automation errors, especially when the automation makes

errors while performing an easy task (Madhavan, Wiegmann, & Lacson, 2006) or

when the perceived or real costs of automation errors are high. If automation errors

can be explained and are predictable, they have less effect on trust (Dzindolet,

Peterson, Pomranky, Pierce, & Beck, 2003).

Distrust and disuse of automation is often seen in relation with warning sys-

tems. A fatal accident happened at a railway crossing when a driver ignored the

warning about an approaching train and did not stop at the crossing. Prior to the

accident, the driver repeatedly experienced an alarm warning about an approach-

ing train, but there was no train coming (S. R. Dixon, personal communication).
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Warning systems are often used in contexts where the consequences of missing

a critical situation are associated with high costs. Accordingly, thresholds are set

low in order to not miss critical states. High sensitivity, however, also leads to

high false alarm rates. When at the same time the base rate of system errors or

critical states is low, as it is in highly reliable technical systems, the probability

that a critical state is present when a warning systems indicates so, is very low

(Parasuraman, Hancock, & Olofinboba, 1997). The repeated experience of alarms

emerging in situations with no underlying critical system state can lead to a slowed

reaction or a complete disregard of alarms. This phenomenon is known as the cry

wolf effect (Breznitz, 1983).

As a consequence of distrust and disuse of automation the intended support of

the operator and reduction of workload may not be achieved. This may also have

adverse effects on system safety.

Just as distrust in automation, overtrust can have adverse effects. The operator

fails to recognize the system’s limitations and relies on the automation more than

system capabilities would justify. The operator monitors and controls the automa-

tion insufficiently or uses the automation as a decision heuristic (Parasuraman &

Riley, 1997). This can compromise system safety.

Overtrust may develop in interaction with systems that have a high and con-

stant reliability (Parasuraman et al., 1993), when operators have a positive at-

titude towards technology (Singh, Molloy, & Parasuraman, 1993a, b), or under

multiple-task conditions when the operator’s workload is high (Parasuraman et

al., 1993).
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1.3 Complacency & Automation Bias

1.3.1 Complacency

Complacency has been identified as an issue in cockpit automation, and it has

been a contributing factor to a number of incidents and accidents in aviation

(Billings, Lauber, Funkhouser, Lyman, & Huff, 1976; Wiener, 1981; Funk et al.,

1999). Complacency is related to overtrust in an automated system, behaviorally

shows in insufficient monitoring of an automation, and can result in problems such

as missing or delayed reaction to automation failures, loss of situation awareness,

and loss of skills (Parasuraman et al., 1993; Moray & Inagaki, 2000; Moray, 2003;

Parasuraman & Manzey, 2010).

Previous research suggests that complacency depends on a number of factors of

the automation, the situation, and the person, such as reliability and consistency

of the automation, demands of the operator’s concurrent tasks (Parasuraman et

al., 1993; Molloy & Parasuraman, 1996; Singh, Molloy, & Parasuraman, 1997),

complexity of the monitoring task itself (Thackray & Touchstone, 1989; Bailey

& Scerbo, 2007; Kerstholt, Passenier, Houttuir, & Schuffel, 1996), training and

failure experience (Manzey, Bahner, & Hüper, 2006; Bahner, Hüper, & Manzey,

2008; Bahner, Elepfandt, & Manzey, 2008; Aust, Moehlenbrink, & Jipp, 2011),

and characteristics of the individual (Prinzel, DeVries, Freeman, & Mikulka, 2001;

Szalma & Taylor, 2011).

Parasuraman et al. (1993) studied the effects of automation reliability and

task characteristics. They found no difference between high and low reliability

systems, but complacency was lower under variable reliability than under constant

reliability, with a higher probability of detecting an automation failure when the
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system’s reliability was changing. However, complacency was not found when

the operator’s only task was a monitoring task, it was only found under multiple

task conditions. Similar results were found by Molloy & Parasuraman (1996)

and Singh et al. (1997) working with similar tasks (MAT battery). When an

automation failure occurred late in the simulation, more participants missed the

error than when it occurred early in the simulation, again only under multiple

task conditions (Molloy & Parasuraman, 1996). In the Singh et al. (1997) study,

the automated task that had to be supervised was centrally located on the screen

instead of peripheral. Central location did not prevent complacency.

Similar results were found with a simulated driving task with automated steer-

ing and lateral control (de Waard, van der Hulst, Hoedemaeker & Brookhuis,

1999). A single automation failure at the end of the simulation was not detected

by most participants, or detected too late to take over manual control in time to

prevent a collision.

While the previously mentioned studies (Parasuraman et al., 1993; Molloy &

Parasuraman, 1996; Singh et al., 1997) measured complacency as detection rate

of automation failure, Moray and colleagues suggest that complacency should be

measured by examining monitoring behavior, not detection rate (Moray & Inagaki,

2000; Moray, 2003). In a gedankenexperiment they demonstrate that even a perfect

observer can miss a signal if he has to monitor two screens with only one screen

being visible at a time. If a signal occurs on both screens at the same time, he can

only see one and will miss one signal. Another problem with using detection rate

for measuring complacency is that, in case of a multiple task scenario, an operator

might notice an automation failure but be too busy with the concurrent tasks or

find them to be more important than dealing with the automation failure. So
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missing an automation failure does not necessarily indicate insufficient monitoring

of an operator, and not reacting to an automation failure does not necessarily

mean it was not detected. Payoffs and importance of different tasks must be

explicit to the operator. According to Moray (Moray & Inagaki, 2000; Moray,

2003), a complacent operator is an operator who samples less information than

would be optimal. As a consequence, optimal sampling needs to be defined when

examining complacency. Depending on the task, this might not always be possible.

Bagheri & Jamieson (2004a) replicated the Parasuraman et al. (1993) study

and in addition tracked eye movements to allow studying monitoring behavior.

They found that in the condition with constant high reliability, participants looked

at the monitoring zone only rarely – and detection performance was poor. Also,

monitoring and detection rate was lower when the participant’s trust in the au-

tomation was higher. In a second study, Bagheri & Jamieson (2004b) explicitly

informed the participants about the automation’s reliability. When provided with

this additional context information, participants fixated the monitoring zone more

often and longer. Allocating more attention to the monitoring task led to improved

detection rates without compromising secondary task performance.

In a study with air traffic controllers, eye movement was recorded in addition

to conflict detection (Metzger & Parasuraman, 2005). Controllers who detected

an automation failure (missing to signal a potential conflict) in the manual and

automation supported condition showed no difference in fixations of the radar

display. In contrast, controllers who missed the automation failure and did not

detect the conflict had fewer fixations in the automated condition than in the

manual condition.

Manzey and colleagues (Manzey et al., 2006; Bahner, Hüper et al., 2008) stud-
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ied the effects of experiencing an automation failure as opposed to merely being

informed about the possibility of automation failures. In addition to measuring de-

tection of automation failure, they measured automation verification in accordance

with a predefined normative model of information sampling, following Moray’s

criticism (Moray & Inagaki, 2000; Moray, 2003). This allowed quantifying com-

placency independent of possible performance consequences in case of automation

failure. They found that the experience group was less complacent than the in-

formation group; the experience group spent more time on fault identification and

sampled more relevant information. However, they followed the wrong diagnosis

just as often, there was no difference between experience and information group

with respect to commission errors. Contrasting those participants who followed

the aid’s wrong diagnosis (commission error) with those participants who did not

(no commission error) showed that participants with commission error were more

complacent already in the preceding trials with correct diagnosis, spending less

time on fault identification and sampling less relevant information. In addition,

they had a weaker secondary task performance (simple reaction time task) when

a system error was present and they had to validate the proposed diagnosis. Sec-

ondary task performance (simple reaction time task) did not suffer in the group

of participants with no commission error. This suggests that the effect cannot be

explained as a tradeoff between primary and secondary task performance.

Other studies showed that failure experience can affect detection rate. Pilots

inspecting flight plans detected more errors if they had experienced erroneous flight

plans repeatedly than if they had only encountered error free plans before (Aust

et al., 2011).

The effects of error experience can be very specific, as Bahner and colleagues

29



showed (Bahner, Elepfand, et al., 2008; Manzey et al., 2006; Bahner, Hüper et al.,

2008). In one study already described before (Manzey et al., 2006; Bahner, Hüper

et al., 2008) the alerting function of the aid worked properly, but the diagnostic

function failed. This only affected the sampling behavior when system errors where

present and a potential commission error. It did not affect sampling behavior in

fault-free states. In another study (Bahner, Elepfand et al., 2008), the alerting

function of the automated aid failed, so participants were not warned about a

system error that had occurred. The diagnostic function of the aid worked properly.

The experience of the fallible aid led to increased sampling in error-free phases

and less omission errors. It did not affect validation of the aid’s diagnosis and

commission errors. During training, participants were either informed about the

possibility of automation misses or they experienced the automation failing to

indicate a system error. During the experiment, the automation failed. This was

the first failure experience for the information group. 80% of the information

group did not detect the failure or detected it only very late, whereas in the

experience group, 18% of the participants failed to detect the error. When a second

automation failure occurred, the performance of the information group was similar

to that of the experience group. At the end of the simulation, the diagnostic

function of the aid failed and the aid provided a wrong diagnosis. 74% of the

participants followed the wrong recommendation, making an error of commission,

independent of their previous training experience. Out of the participants who

made an error of commission, 82% showed varying degrees of complacency, having

checked none or only part of the necessary parameters to validate a diagnosis. The

remaining 18% followed the aid’s advice despite full validation of other system

information which contradicted the aid’s diagnosis. Participants who committed
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an error of omission were not more likely to commit an error of commission.

Also other factors such as the complexity of the monitoring task itself has been

found to influence complacency. Thackray and Touchstone (1989) showed that

monitoring and detection of critical signals degraded when multiple information

sources had to be integrated. Bailey and Scerbo (2007) compared three monitoring

tasks that varied in complexity. They found that operator performance decreased

with increasing complexity. In a study by Bahner (2008; Bahner, Hüper et al.,

2008), 79% of the participants detected an automation failure when it was easy to

detect. In this case, checking one parameter was sufficient to realize that the aid

provided a wrong diagnosis. In a second experiment (Bahner, 2008; Bahner, Elep-

fand et al., 2008), the validation procedure was more complex and also involved

time-consuming control actions. Only 26% of the participants detected the failure

in this case.

1.3.2 Automation Bias

In the context of automated decision aids that support operators with detection

and diagnosis of critical systems states, Mosier and Skitka (1996) described another

possible consequence of overtrust, namely automation bias. They define automa-

tion bias as “the tendency to use automated cues as a heuristic replacement for

vigilant information seeking and processing” (Mosier & Skitka, 1996, p. 205).

Performance consequences of automation bias are errors of omission and errors

of commission. Omission errors can happen during seemingly uncritical phases

when the warning aid does not notify about malfunctions or critical system states.

Trusting the warning aid, the system is not monitored sufficiently during “uncrit-
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ical” system state, and a system error or malfunction can be missed or detected

too late if not indicated by the aid. On the other hand, commission errors can

happen during seemingly critical system states when the aid warns about a system

error and proposes a diagnosis. The proposed diagnosis and instructions for deal-

ing with the error are accepted and followed uncritically without examining other

available sources of information that could verify or falsify the aid’s diagnosis, or

despite contradictory information from other sources. In case the aid’s diagnosis

is wrong, the operator follows a wrong diagnosis and recommendation.

Factors contributing to the occurrence of automation bias are the tendency to

minimize cognitive effort in decision making (the cognitive miser hypothesis, Fiske

& Taylor, 1991), diffusion of responsibility or social loafing (Domeinski, Wagner,

Schoebel, & Manzey, 2007), and trust in automation (Lee & See, 2004) which

might lead to an overestimation of the automation’s capabilities.

According to the cognitive miser hypothesis (Fiske & Taylor, 1991) humans

tend to use cognitive resources economically and prefer strategies that save time

and effort in decision making, using simple heuristics (Tversky & Kahneman, 1974;

Kahneman, Slovic, & Tversky, 1982; Gigerenzer & Todd, 1999) instead of an ef-

fortful analysis of all available information to make a decision. Mosier and Skitka

(1996) proposed that automated cues are used as heuristics in place of more de-

manding information processing.

When sharing responsibility for a task with another human or automation,

humans tend to reduce their effort on tasks that are worked on redundantly (Karau

& Williams, 1993; Domeinski et al., 2007). The perceived competence of the

partner influences the performance. When the partnering automation is believed

to be more competent, the own performance suffers whereas performance increases
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when the partnering automation is believed to be less competent (Domeinski et

al., 2007).

Humans are often positively biased and tend to trust automation. Capabilities

of automation are often overestimated and performance is believed to be superior.

Participants in a study by Dzindolet et al. (2003) believed the automation would

show a good performance even with little information about the automation.

Galletta, Durcikova, Everard, & Jones (2005) examined the influence of an

automatic spell checker when editing documents. Results show that the spell

checker improved performance when it worked correctly but gave rise to omission

and commission errors when it failed to mark typing or grammar errors or falsely

marked correct typing as errors. Participants trusted the spell checker more than

their own abilities, they overlooked more errors and left more errors uncorrected

than when spellchecking a document unaided. The authors attribute the effect

to a) the software’s credibility (analogous to the trust in automation (Lee & See,

2004) explanation of automation bias), b) to a tendency to avoid effort (analogous

to the cognitive miser hypothesis (Fiske & Taylor, 1991), and c) to yielding the

responsibility for finding errors to the aid (diffusion of responsibility).

In the area of computer-aided detection (CAD) in radiology, Alberdi and col-

leagues found evidence for omission and commission errors (Alberdi, Povyakalo,

Strigini, & Ayton, 2004; Alberdi, Povyakalo, Strigini, Ayton, & Given-Wilson,

2008; Alberdi, Povyakalo, Strigini, & Ayton, 2009). CAD tools highlight areas

on digitized mammograms that the radiologist should attend to more closely. It

is thought of as a detection aid that presents radiologists an attention cue, but

in reality they are also used as diagnostic cues (Alberdi et al., 2009). More cases

were falsely categorized as cancerous if the automation marked a non-pathological
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mammogram compared to unaided performance (Alberdi et al., 2008). Detection

rates for breast cancer dropped in cases when the automation did not mark mam-

mograms that actually contained signs for cancer or marked it at a wrong position

(Alberdi et al., 2004, 2008; Taplin, Rutter, & Lehman, 2006; Zheng et al., 2004).

Mosier, Palmer, & Degani (1992) studied professional pilots’ decision making

in an engine fire situation in a flight simulator. When the automation falsely

recommended to shut down an engine that caught fire, 75% of the participants

followed the recommendation when they worked with an automated electronic

checklist. In addition, less information was taken into account when making the

decision. When working with standard paper checklists, only 25% followed the

wrong recommendation.

Also other studies found high rates of omission and commission errors. Mosier,

Skitka, Heers, & Burdick (1998) studied omission and commission errors with pro-

fessional pilots in a part-task flight simulation. The rate of omission errors was

related to the importance of the task. Safety-critical errors were more likely to be

detected, but there was still a very high omission error rate: almost half of the

pilots did not detect the automation error. A communications-related automation

error was undetected by 71% of the pilots. When pilots were confronted with an

erroneous engine fire warning, all participants followed the wrong recommendation

and shut down the engine, despite contradictory information from other cockpit

instruments (normal engine parameters, no aural warnings or warning lights). In a

debriefing interview 67% of the participants reported seeing cues indicative of the

warning proposed by the automation which actually were not there, a phenomenon

Mosier et al. (1998) termed “phantom memory”. Participants remembering phan-

tom cues were also reported by Mosier, Skitka, Dunbar, & McDonnel (2001).
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Skitka, Mosier, Burdick, & Rosenblatt (2000) investigated if specific automa-

tion bias training or working in teams vs. working solo could prevent automation

bias. They found that participants made less commission errors after explicitly

being informed about the problem of automation bias during training. However,

the training had no effect on omission errors. Working in teams did not reduce

automation bias. In a follow up study with professional pilot crews (Mosier et al.,

2001), the automation bias training did not effect omission or commission errors.

As in the study before, working in teams did not reduce automation bias and

associated errors.

Effects of social accountability on automation verification and automation bias

when using an automated monitoring aid were studied by Skitka, Mosier and Bur-

dick (2000). They found that making participants socially more accountable led

to an increased rate of automation verification and a decreased rate of automation

bias. Also Mosier et al. (1998) found that pilots who felt accountable for their per-

formance were more likely to check other information to validate the automation

and were less prone to errors.

Presenting confidence levels could also help lower automation bias. In a study

by McGuirl & Sarter (2006), pilots were provided with an automated decision

aid for in-flight icing events. Along with the information about icing condition

and action recommendations, the automated aid presented dynamically updated

information about its level of confidence that its decision is correct. This extra

information about level of system confidence led to less deterioration of pilot per-

formance in case of a false recommendations.
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1.3.3 Integrated Model of Complacency and Automation

Bias

Automation bias as described by Skitka and colleagues (Mosier & Skitka, 1996;

Skitka, Mosier, & Burdick, 1999) can partly be seen as a decision bias. If informa-

tion from different sources are available to judge a situation, computer-generated

cues are trusted more and the decision is biased towards the information obtained

from the automation. If, however, commission errors occur as a “result of not

seeking out confirmatory or disconfirmatory information” (Skitka et al., 1999, p.

993), this is parallel to complacency in supervisory control tasks (Parasuraman et

al., 1993; Moray & Inagaki, 2000). The automation is overtrusted, attention is

reallocated to other concurrent tasks, and the automation is not validated against

other sources of information. Also, omission errors can happen when monitoring

is insufficient given a high but not perfect reliability of an automation. System

errors or malfunctions can be missed or detected too late if not indicated by the

aid.

Based on a model of complacency by Bahner and Manzey (Bahner & Manzey,

2004; Manzey & Bahner, 2005), Bahner (2008) presented an integrated model

of complacency and automation bias. Both the model of complacency and the

integration of complacency and automation bias are shown in the Appendix B.

Bahner’s (2008) model was further developed by Parasuraman &Manzey (2010).

The Parasuraman & Manzey (2010) model is depicted in Figure 1.3. It points

to the central role of attentional factors contributing to complacency and some

forms of automation bias. Two aspects of complacency and automation bias are

differentiated, complacency potential and attentional bias in information process-
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ing. Complacency potential is the tendency to over-rely on an automation. It

is assumed to be affected by characteristics of the individual (technology-related

attitudes, self-efficacy, personality traits) and the system (reliability, consistency,

degree of automation), and by the experience the operator gained with the specific

automation. By itself, complacency potential is not necessarily manifested in an

attentional bias in information processing. Aspects of the task context (concurrent

tasks, workload) and operator state contribute to a reallocation of attention and

selective information processing. This less attentive information processing results

in a loss of situation awareness. During normal automation operation there are

no performance consequences. However, when the automation fails, it can lead to

omission and commission errors. Complacency and automation bias are conceived

to be dynamic and adaptive, and develop in accordance with the experience the

operator made with the specific automation. This is modeled through two feedback

loops. The positive feedback loop promotes an increase in complacency potential

over time, as in highly reliable systems negative performance consequences will

only rarely be experienced. However, if automation failure and resulting perfor-

mance consequences are experienced, complacency potential decreases, triggered

by a negative feedback loop. The drastic effect of failures has been shown in re-

search on trust in automation (e.g., Moray et al., 2000; Lee, 1991; Lee & Moray,

1992).
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Figure 1.3: Integrated Model of Complacency and Automation Bias, adapted from
Parasuraman & Manzey (2010, p. 404)
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1.4 Loss of Situation Awareness & Loss of Man-

ual Skills

Situation Awareness

Endsley (1988, 1995) defines situation awareness (SA) as “the perception of the

elements in the environment within a volume of time and space, the comprehension

of their meaning, and the projection of their status in the near future.” (Endsley,

1995, p. 36 ) Level 1 SA comprises perception of relevant information and is the

basis for level 2 and level 3 SA. Depending on goals and objectives, attention is

directed to different cues. Level 2 SA is about comprehending the current situation;

perceived information is interpreted and integrated to understand the situation.

With knowledge of the critical elements and understanding of the situation, level

3 SA can be achieved, the elements’ future status can be predicted.

Automation can influence situation awareness through changes in vigilance

and complacency, a shift from active to passive information processing and system

control, and altered feedback provided to the operator (Endsley, 1996). Lack of

situation awareness can cause out-of-the-loop performance problems. Carmody

& Gluckman (1993) found detrimental effects on level 2 SA (understanding the

situation) when tasks were automated. Also Endsley & Kiris (1995) found negative

effects on level 2 SA under full automation but no effect on level 1 SA. They

attribute this effect to a shift from active to passive information processing.
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Loss of Manual Skills

Automating manual or cognitive functions can lead to degradation or loss of those

skills in the human operator. However, the human operator has to be able to

step in whenever the automation fails, so skills have to be preserved. Endsley

& Kiris (1995) found that loss of skills is smaller when the operator is kept in

the loop, when automation is lower. On the other hand, Lorenz et al. (2002)

showed that even with highly automated support, skills can be preserved when

the operator mentally follows the automated functions. Loss of skill might be

difficult to show in laboratory experimentation because it usually covers only short

time spans. Bahner, Hüper et al. (2008) found no decrease of fault identification

performance after working with an automated aid that provided diagnoses for

system faults for some hours. Sauer, Hockey, & Wastell (2000) reported that in a

test session eight months after an extensive training on the task no performance

decrement was found. To counteract loss of skill, automated functions can be

executed manually on a regular basis, like pilots do in simulator flights, or, in the

context of adaptive automation, functions are allocated to the human or machine

depending on situational needs.

1.5 Automation and Operator Functional State

Sleepiness is often involved in incidents and accidents (Dinges, 1995). Increased

risk of incidents and accidents caused by sleepiness have been reported in car driv-

ing (Horne, & Reyner, 1999), railway traffic (Härmä, Sallinen, Ranta, Mutanen,

& Müller, 2002), aviation (Samel, Wegmann, & Vejvoda, 1995), medicine (Rogers,

Hwang, Scott, Aiken, & Dinges, 2004), and industry (Philip, & Akerstedt, 2006).
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Increased risk of fatal occupational accidents is associated with difficulties in sleep-

ing and non-daytime work (Akerstedt, Fredlund, Gillberg, & Jansson, 2002). A

number of infamous accidents at highly automated workplaces happened during

night shifts, such as Three Mile Island, Exxon Valdez, Bhopal, and the Estonia

ferry accident (Folkard et al., 2005).

Despite its relevance for automation design, so far only few studies focused on

the influence of the operator functional state on performance consequences of au-

tomation. The operator functional state can be defined as “the variable capacity

of the operator for effective task performance in response to task and environmen-

tal demands, and under the constraints imposed by cognitive and physiological

processes that control and energise behaviour” (Hockey, 2003a, p.3).

Under conditions of stress, fatigue or high workload, one would expect perfor-

mance to decrease. However, if decrements are found, they are small and affect

less important tasks (Hockey, 1997; Hockey, 2003b). Navon and Gopher (1979)

talk about “graceful degradation” in this context.

In the compensatory control model, Hockey (1997, 2003b) postulates an adap-

tive regulatory process that aims at keeping up performance in high priority tasks,

but at the expense of detrimental effects on lower priority tasks. Primary task per-

formance may not give rise to concerns that the operator is at his limits because,

as part of a compensatory process, resources may be reallocated to protect the

primary task performance. Thus, no performance problems are apparent. How-

ever, decrements show in less important secondary tasks, effort and workload are

increased, and psychophysiological activation is elevated. Control strategy shifts

are made towards less demanding cognitive operations, reduction in redundancy,

reduction of working memory load, and increased selectivity. The operator may
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only be able to manage routine tasks, and performance can break down in case

of unpredictable events. In the long run, it may have negative effects on the

operator’s health (Hockey, 1997; Hockey, 2003b).

Adaptive mechanisms are used in response to stress, noise, sleep deprivation

and shift work (Hockey, 2003a). Sauer and colleagues studied the influence of

noise as a stressor and the effect of different levels of adaptive and adaptable

automation. (Sauer et al., 2011; Sauer, Kao, & Wastell, 2012; Sauer et al., 2013).

Participants worked with AutoCAMS (for a detailed description see the following

chapter) under different levels of noise. They found that noise exposure caused

performance decrements and increased workload. Automation support reduced

the negative effects of noise. Participants preferred higher DOA support under

noise (Sauer et al., 2011; 2013). Adaptable automation showed advantages over

adaptive automation (Sauer et al., 2012; 2013).

Effects of sleep deprivation on fault management in a supervisory control task

were studied by Hockey and colleagues (Hockey et al., 1998; Sauer et al., 2003).

Participants in the first study (Hockey et al., 1998) worked with CAMS after nor-

mal sleep and after one night of sleep loss. In the human-centered condition, they

had access to the system raw data at all times. In the machine-centered condition,

they could only access system parameters in case of system malfunctions. No effect

on primary task performance under sleep deprivation was found, but slower reac-

tion times in the secondary task (albeit only in the machine-centered condition),

increased effort and a shift in system management strategies towards less moni-

toring. Sauer et al. (2003) also had participants work with CAMS in a day and a

night shift. Again, they found no decrease in primary task performance after sleep

deprivation but slower reaction times in the secondary task. Also, participants re-
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ported increased perceived mental load and use of simplified strategies after sleep

deprivation. The results of those studies are explained within the framework of the

compensatory control model proposed by Hockey (1997). Under stress and high

workload, attentional resources are allocated to what is perceived as the primary

task in order to protect primary task performance. This can result in decreased

secondary task performance, use of less demanding problem solving strategies, and

increased effort and fatigue (Hockey, 1997; Hockey, 2003b).

1.6 Current Research

As part of this research, three studies were conducted examining the impact of

degree of automation, system experience and operator functional state on human

performance in interaction with automated aids.

In the first study, we examine the influence of degree of automation on human-

automation interaction. Three automation supported groups and a manually work-

ing group are compared. We expect advantages of automation support compared

to manual performance during routine performance. Differences between differ-

ent degrees of automation are studied, with reliable automation support as well as

when automation fails and operators have to return to manual performance. Com-

placency and automation bias are examined during reliable automation support

and in case of automation failure. Following Moray’s criticism (Moray & Inagaki,

2000; Moray, 2003), we not only measure detection rate of automation failure in

our studies but also monitoring behavior, with optimal sampling predefined.

The second study focuses on the performance consequences of system experi-

ence. Effect of failure experience and duration of failure-free automation support
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on trust and automation bias are studied. In addition, we analyze possible causes

of commission errors in more detail.

The third study addresses the impact of operator functional state and DOA

on human-automation interaction. Performance during the day is compared with

performance during the night after prolonged wakefulness, simulating a first night

shift. We look at how automation can help protect performance in sleep-deprived

operators and how automation use affects complacency and automation bias and

return to manual performance in case of automation failure.

In all three studies, we use a simulated supervisory control task, AutoCAMS.

The same experimental task was used in the studies by Bahner and colleagues

(Bahner, 2008; Manzey et al., 2006; Bahner, Hüper et al., 2008; Bahner, Elepfandt

et al., 2008). However, some changes were made to get more detailed information

about verification sampling behavior. AutoCAMS as well as the improvements

made for the current studies are described in detail in the following chapter.
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Chapter 2

AutoCAMS 2.0

A revised version of AutoCAMS (Hockey et al., 1998; Lorenz et al., 2002) was

used for the experiments (AutoCAMS 2.0; Manzey, Bleil et al., 2008). This task

was developed as a small-scale simulation of a typical supervisory control task of

control room operators. It simulates an autonomously running life-support system

consisting of five subsystems that are critical to maintain atmospheric conditions

in a remote space capsule: oxygen, nitrogen (needed to maintain stable cabin pres-

sure), carbon dioxide, temperature, and humidity. During nominal operation, all

parameters are automatically kept within target range. However, due to malfunc-

tions in the system, parameters can go out of range. A total of nine malfunctions

can occur in either the oxygen or the nitrogen subsystem, including a blockage of a

valve, a leak of a valve, a stuck-open valve, a defective sensor, or a defective mixer

valve. The system faults are described in detail in Section 2.5. The user interface

of AutoCAMS 2.0 is shown in Figure 2.1.
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Figure 2.1: AutoCAMS 2.0 User Interface with activated Action Implementation
Support. The figure shows the following elements of the AutoCAMS 2.0 User
Interface: (a) monitors / history graphs for each subsystem, (b) O2 and N2 tank
level readings, (c) O2, N2 and mixer valve flow readings, (d) standard flow rates, (e)
input field for CO2 readings (secondary task), (f) connection check icon (secondary
task), (g) menu for manual control of each parameter, (h) menu for repair orders,
(i) master alarm, (k) repair order information, (m) automated aid (Automated
Fault Identification and Recovery Agent, AFIRA).

46



2.1 Operator Primary Task

The primary task of the operator involves supervisory control of the subsystems,

including diagnosis and management of system faults. Whenever a fault is detected

in the system, a master alarm turns on (Figure 2.1 i), and a time counter starts

displaying how much time has elapsed since the fault occurred.

To have the malfunction fixed, its specific cause has to be identified, and an

appropriate repair order has to be selected from a maintenance menu (Figure 2.1

h). The repair itself takes 60 seconds. During this time, the operator is required to

control the affected subsystem manually. For this purpose, a manual control menu

can be activated that allows for manual control of the different system parameters

(Figure 2.1 g). If the repair order sent was correct, the warning signal turns green

and all subsystems run autonomously again. In case of a wrong repair order,

the warning light stays red and the operator is required to manually control the

system by selecting appropriate actions from the control menu until a correct repair

is initiated and completed.

2.2 Concurrent Tasks

In addition to the primary task, two concurrent secondary tasks have to be per-

formed. The first one is a prospective memory task, which requires participants to

check and record the carbon dioxide values every 60 seconds (Figure 2.1 e). The

other secondary task is a simple probe reaction time task. This task is introduced

to the participants as a check of a proper connection with the spacecraft. Par-

ticipants have to click on a “communication link” icon (Figure 2.1 f) as fast as
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possible. This icon appears in random intervals roughly twice per minute.

2.3 Automation Support

Depending on the specific version of AutoCAMS 2.0, participants have to perform

fault diagnosis and management manually (manual control) or with the support of

an automated aid (Automated Fault Identification and Recovery Agent AFIRA;

Figure 2.2). There are three degrees of automation, Information Analysis Sup-

port, Action Selection Support, and Action Implementation Support. In case of

Information Analysis Support (Figure 2.2b), the master alarm is accompanied by a

message providing a specific diagnosis for the given system fault. However, action

planning and implementation is left to the operator. In case of Action Selec-

tion Support (Figure 2.2c), the diagnosis is supplemented by a list of appropriate

actions that the operator has to implement manually. In case of Action Implemen-

tation Support (Figure 2.2d), AFIRA does not only display a diagnosis and a list

of necessary actions but also implements all steps autonomously if confirmed by

the operator. In case of manual control (Figure 2.2a), the AFIRA message field

merely shows the time that has elapsed since the error occurred.

2.4 Access to Raw Data

To be able to identify faults in the manual condition or verify proposed diagnoses

in conditions with automation support, operators have independent access to all

important parameters (see Figure 2.1 a, b, c, d). These include relevant system

parameters and a history graph for each of the five subsystems. However, this
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Figure 2.2: Automated Fault Identification and Recovery Agent AFIRA. Error
messages for a) Manual Diagnosis, b) Information Analysis Support, c) Action
Selection Support, and d) Action Implementation Support
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information is not always visible but has to be activated for a 10-seconds view

by a mouse click on the tank, flow meter, or history graph, respectively. Every

system malfunction has specific symptoms such that it is possible for the operator

to identify the malfunction or to verify the diagnosis provided by AFIRA by ac-

cessing two to four specific parameters, depending on the complexity of the fault.

Identifying most complex faults unambiguously additionally requires interventions

in the system. For each malfunction, there is one or more other system faults that

has some symptoms in common, so the operator has to check all necessary param-

eters to be able to disambiguate the diagnosis. For details, see the description of

system faults below.

2.5 System Faults, Diagnosis, and Recovery

The following system faults can occur in either the nitrogen or oxygen system:

blockage of a valve, leak of a valve, stuck-open valve, defective sensor. In addi-

tion, there can be a defective mixer valve. For each malfunction, there is one or

more other system faults that have some symptoms in common, so the operator

has to check all necessary parameters to be able to disambiguate the diagnosis.

In addition to the necessary parameters, there are relevant parameters that are

useful to check but not necessary for unambiguous diagnosis. Without checking

necessary information, it is not possible to diagnose a malfunction unambiguously.

Necessary and relevant parameters were predefined for each malfunction according

to a normative model, and accessed parameters were compared to the normative

model. Participants were trained to check all necessary and relevant parameters.

Table 2.1 lists all necessary and relevant parameters for each system malfunction,
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the distinctive symptoms, and similar malfunctions that have to be ruled out.
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Table 2.1: AutoCAMS 2.0. Necessary and Relevant Parameters to Identify System Malfunctions

System Malfunction Necessary Parameters Relevant Parameters Symptoms Similar Malfunction

O2 Valve Leak O2 Monitor O2 level is falling below the lower boundary O2 Valve Blockage
O2 Tank
O2 Valve Flow tank level (t2) - tank level (t1) > O2 flow

O2 Valve Blockage O2 Monitor O2 level is falling below the lower boundary O2 Valve Leak
Pressure Monitor Mixer Valve Blockage

O2 Tank
O2 Valve Flow O2 flow is reduced compared to standard flow rates
N2 Valve Flow
Standard Flow Rates

N2 Valve Leak Pressure Monitor pressure is falling below the lower boundary N2 Valve Blockage
N2 Tank
N2 Valve Flow tank level (t2) - tank level (t1) > N2 flow

N2 Valve Blockage Pressure Monitor pressure is falling below the lower boundary N2 Valve Leak
O2 Monitor Mixer Valve Blockage

N2 Tank
N2 Valve Flow N2 flow is reduced compared to standard flow rates
O2 Valve Flow
Standard Flow Rates

Mixer Valve Blockage O2 Monitor O2 level is falling below the lower boundary O2 Valve Blockage
Pressure Monitor pressure level is falling below the lower boundary N2 Valve Block

O2 Valve Flow O2 flow is reduced compared to standard flow rates
N2 Valve Flow N2 flow is reduced compared to standard flow rates
Standard Flow Rates

Defective O2 Sensor O2 Monitor O2 level is falling below the lower boundary
(oxygen falling) O2 Valve Flow O2 flow = 0

Defective O2 Sensor O2 Monitor O2 level is rising above the upper boundary O2 Valve Stuck Open
(oxygen rising) Turn O2 Flow Off Manually

O2 Monitor O2 level is falling back to normal
Turn O2 Flow Control Back To Automatic

O2 Monitor O2 level keeps falling
O2 Valve Flow O2 flow = 0

O2 Valve Stuck Open O2 Monitor O2 level is rising above the upper boundary Defective O2 Sensor
Turn O2 Flow Off Manually
O2 Monitor O2 level is falling back to normal
Turn O2 Flow Control Back To Automatic

O2 Monitor O2 level is rising
O2 Valve Flow O2 flow > 0

Defective Pressure Sensor Pressure Monitor pressure is rising above the upper boundary N2 Valve Stuck Open
(pressure rising) O2 Monitor O2 decreases

N2 Valve Stuck Open Pressure Monitor pressure oscillates just below the upper boundary Defective Pressure Sensor
O2 Monitor O2 decreases
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2.5.1 Decreasing Oxygen Level: Leak of an Oxygen Valve

versus Blockage of an Oxygen Valve versus Mixer

Valve Blockage

Leak of an O2 valve, blockage of an O2 valve, and a defective mixer valve are

system faults that lead to a reduced flow of oxygen. The decreasing oxygen level

can be seen in the oxygen monitor.

In case of an O2 valve leak, the amount of oxygen that flows from the tank

is bigger than the amount that flows through the valve. In case of an O2 valve

blockage, the amount of oxygen that flows from the tank is reduced, thus also the

amount that flows through the valve is reduced compared to standard flow rates.

However, in contrast to an O2 valve leak, the amount of oxygen that flows from the

tank is the exact same amount that flows through the valve. In case of a blocked

mixer valve, both oxygen and nitrogen flows are reduced compared to standard

flow rates. The amounts of oxygen and nitrogen that flow from the tanks are the

exact same amount that flow through the O2 valve and N2 valve, respectively. The

decision tree is shown in Figure 2.3.

Fault management for a leak or blockage of the oxygen valve requires the oper-

ator to set oxygen flow from “standard” to “high”. This way enough oxygens flows

into the cabin even though a part of the oxygen is lost. In case of a defective mixer

valve, both oxygen and nitrogen flow are to be set from “standard” to “high” so

enough oxygen and nitrogen can flow into the cabin. After the repair is completed

(60 seconds after sending the correct repair order), the flow is automatically set

back to “standard”.
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2.5.2 Decreasing Pressure: Leak of a Nitrogen Valve ver-

sus Blockage of a Nitrogen Valve versus Defective

Mixer Valve

Leak of anN2 valve, blockage of anN2 valve, and a defective mixer valve are system

faults that lead to a reduced flow of nitrogen. The decreasing cabin pressure can

be seen in the pressure/nitrogen monitor. Diagnosis and fault management are

equivalent to these faults in the oxygen system, see detailed description in the

preceding section. The decision tree is shown in Figure 2.4.

2.5.3 Increasing Oxygen Level: Stuck-open Oxygen Valve

versus Defective Oxygen Sensor

A stuck-open O2 valve and a defective O2 sensor are system faults that lead to

an increased oxygen level. The increasing oxygen level can be seen in the oxygen

monitor.

In case of an stuck-open O2 valve, the valve cannot be closed which leads to a

continuous flow of oxygen into the cabin and a resulting high oxygen concentration

in the cabin. Also cabin pressure increases to the upper limit, a drain valve prevents

pressure from going above the upper limit. The same symptoms are seen in case

of a defective O2 sensor when the fault occurs while oxygen is rising. The oxygen

level rises above the upper limit, the automation does not stop oxygen flow as the

sensor fails to signal that the upper limit has been reached.

In order to disambiguate the two system faults, oxygen flow has to be stopped

manually. After the oxygen level has reached target range again, control of oxygen
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flow is given back to the automation. Next, the oxygen flow has to be checked:

in case of an stuck-open O2 valve, oxygen flows again. In case of a defective O2

sensor, oxygen does not flow, the oxygen flow reading is zero. The decision tree is

shown in Figure 2.5.

If the defective O2 sensor error occurs while oxygen is falling, O2 keeps falling

below the lower limit. The O2 flow reading is zero. No further checking is needed

as in the case of a defective O2 sensor while oxygen is rising. The complexity of

the verification procedure is comparable to that of an oxygen leak.

Fault management of both system malfunctions requires the operator to man-

ually control oxygen flow until the repair is completed.

2.5.4 Increasing Pressure: Stuck-open Nitrogen Valve ver-

sus Defective Pressure Sensor

A stuck-open N2 valve and a defective pressure sensor are system faults that lead

to increased cabin pressure. The increasing cabin pressure can be seen in the

pressure / nitrogen monitor.

In case of a stuck-open N2 valve, the valve cannot be closed which leads to a

continuous flow of nitrogen into the cabin and a resulting high pressure in the cabin.

Cabin pressure increases to the upper limit and oscillates just below the upper

limit, a drain valve prevents pressure from going above the upper limit. Oxygen

level decreases which can be seen in the oxygen monitor. Similar symptoms are

seen in case of a defective pressure sensor. However, in case of a defective pressure

sensor, pressure rises above the upper limit, the automation does not stop nitrogen

flow as the sensor fails to signal that the upper limit has been reached. The drain
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valve stays closed. Oxygen level decreases which can be seen in the oxygen monitor.

Fault management of both errors requires the operator to manually control

nitrogen flow until the repair is completed.

2.5.5 Methodological Improvements

Previous studies by Bahner and colleagues (Bahner, 2008; Manzey et al., 2006;

Bahner, Hüper et al., 2008; Bahner, Elepfandt et al., 2008) used an older ver-

sion of AutoCAMS. In the current studies, the newer version AutoCAMS 2.0 was

used which implemented some changes to get more detailed information about

verification sampling behavior as described earlier in this chapter.

In Bahner’s (2008) studies, only one button had to be pressed to display all tank

level and flow information at the same time. This way, it could not be distinguished

which of the 5 different pieces of information (tank level oxygen and nitrogen,

gas flow through oxygen, nitrogen, and mixer valve) a participant was actually

requesting and looking at. For the current studies we improved this methodology

and implemented a separate access to each parameter by clicking directly on the

requested parameter. This way, participants could access information only by

clicking on the desired item, so we could see which information they actually

sought. This approach allowed a more detailed analysis of information sampling

behavior.

A further improvement was the distinction between relevant and necessary pa-

rameters. Relevant parameters include system information that helps identify a

system fault, but diagnosis is also possible without this information. Necessary pa-

rameters are essential for diagnosis, unambiguous diagnosis is not possible without
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checking all necessary parameters.

In addition, the system fault and proposed diagnosis in case of a false diagnosis

were altered such that a false diagnosis was not obvious after sampling one piece

of information. In Bahner’s study (Bahner, Hüper, et al., 2008) the automated aid

AFIRA suggested an oxygen blockage when the actual system fault was an oxygen

valve stuck open. The same system (oxygen) was affected, but the effect on the

oxygen concentration that is displayed in the oxygen monitor was opposite. In case

of an oxygen blockage, the oxygen concentration falls while for an oxygen valve

stuck open, the oxygen concentration rises. Thus, the participant only needed to

check the oxygen monitor to detect that the aid provided a wrong diagnosis. (The

oxygen monitor is often the first thing to check to get an overview of the situation

before checking details of flow in the different valves. In fact, all the participants

that committed a commission error in Bahner’s study (5 out of 24) did check

the oxygen monitor but followed the wrong diagnosis despite the contradicting

information from the oxygen monitor.) That means that even a participant who is

complacent in the sense that he does not check all the necessary information could

easily detect that the aid provided a wrong diagnosis. After seeing that the trend

in the oxygen monitor was opposite to what had to be expected according to the

aid’s suggestion, he could already conclude that the aid erred and only had to find

the real underlying system fault. In addition, the errors were not parallel in the

sense that the same system raw data had to be sampled to see that the automated

aid provided a wrong diagnosis. For oxygen blockage, the oxygen monitor, actual

gas flow and standard gas flow had to be checked. For oxygen valve stuck open,

the oxygen monitor was the only parameter to be checked that both errors shared;

the oxygen valve stuck open error would then have to be disambiguated against

57



a defective sensor by controlling the oxygen flow (turning off automatic control,

turning automatic control back on).
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Figure 2.3: Decision Tree in Case of Decreasing Oxygen Level
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Chapter 3

Study I: The Impact of Degree of

Automation

In the first study we explored the effects of degree of automation on human perfor-

mance in interaction with an automated aid in a simulated process control task.

We compared three automated aids that offered varying degrees of support for

fault diagnosis and management (Information Analysis Support, Action Selection

Support, and Action Implementation Support; for details see previous chapter on

AutoCAMS). A manual condition in which participants diagnosed and managed

system faults unaided served as a control condition. We looked into intended pos-

itive effects on routine performance and workload as well as failure performance.

Negative performance effects studied included return to manual performance after

automation breakdown as well as effects of complacency and automation bias.

During reliable automation support we expected performance benefits reflected

in better primary and secondary task performance, and decreased workload com-

pared to manual performance. With increasing degree of automation, performance
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benefits were expected to increase and workload was expected to decrease. Previ-

ous research results are not clear about which DOA could best prevent performance

losses during automation failure.

As higher DOA has been shown to support information sampling for automa-

tion verification (Lorenz et al., 2002) we expected more information sampling in

higher DOA conditions, preventing commission errors in case of a false diagnosis

provided by the automated aid.

Information sampling was expected to decrease with increasing complexity of

the verification procedure. We used three levels of complexity with varying num-

bers of parameters that were necessary to verify a given diagnosis unambiguously.

3.1 Methodology

3.1.1 Participants

In the first experiment, 56 engineering students (40 male, 16 female) participated,

ranging in age from 20 to 31 years (M = 24.2). None of them had prior experience

with the simulated process control task used in the study. Participants were paid

70 Euro for completing the study.

3.1.2 Apparatus: AutoCAMS 2.0

AutoCAMS 2.0 was used for this experiment. For a detailed description see chapter

2 AutoCAMS 2.0.
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3.1.3 Design

The study used a 4 (Degree of Automation, DOA) x 5 (Block) design with DOA

(Manual Control, Information Analysis (IA) Support, Action Selection (AS) Sup-

port, Action Implementation (AI) Support) defined as between-subjects factor and

block defined as within-subjects factor. The study design is illustrated in Figure

3.1. During the first block, all participants worked manually, without the assistance

of AFIRA. During Blocks 2, 3, and 4, the three AFIRA groups were supported

by AFIRA, whereas the manual control group continued working without automa-

tion support. In Block 5, participants of all experimental groups had to return to

manual performance, i.e., diagnose and manage all system faults manually again

without automation support.

In each block, six system faults occurred. Faults in all blocks were matched with

respect to type and complexity. Thus, it was ensured that the fault identification

and management procedures were equivalent for all blocks. All groups worked

with the same set and distribution of faults (see Table 3.1). In the AFIRA groups,

the six faults in Blocks 2, 3, and 4 were all correctly indicated and diagnosed by

the automated aid. However, in Block 4, an additional seventh fault occurred

for which AFIRA provided a wrong diagnosis (AFIRA proposed an Oxygen Valve

Blockage when the actual system malfunction was an Oxygen Valve Leak). This

failure of AFIRA was implemented to simulate a “first automation failure effect”.
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Figure 3.1: Study I. Experimental Design. The figure shows the distribution of
system faults and automation failures across blocks, and the available automation
support for each block. Each column represents one system fault. The red column
represents the critical automation failure at the end of Block 4.
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Table 3.1: Study I. Distribution and Timing of System Faults Across Blocks

Block Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Block 1 Valve Leak Defective Sensor Valve Blockage Defective Sensor Valve Stuck Open Valve Blockage
N2 N2 Mixer O2 (falling) O2 O2

142s 462s 841s 1253s 1629s 2014s

Block 2 Defective Sensor Valve Blockage Valve Stuck Open Valve Blockage Valve Leak Valve Leak
O2 (rising) O2 N2 N2 O2 N2

89s 486s 858s 1238s 1624s 2052s

Block 3 Valve Blockage Defective Sensor Valve Blockage Valve Leak Valve Stuck Open Valve Leak
N2 N2 O2 N2 O2 O2

124s 479s 863s 1224s 1610s 2049s

Block 4 Valve Leak Valve Blockage Valve Leak Valve Stuck Open Valve Blockage Defective Sensor Valve Leak
N2 O2 O2 N2 N2 O2 (rising) O2

102s 414s 742s 1087s 1474s 1820s 2151s

Block 5 Valve Leak Defective Sensor Valve Blockage Defective Sensor Valve Stuck Open Valve Blockage
N2 N2 Mixer O2 (falling) O2 O2

142s 462s 841s 1253s 1629s 2014s

Note. Fault 7 in Block 4 (O2 Valve Leak) was falsely diagnosed by AFIRA as O2 Valve Blockage.

66



3.1.4 Procedure

The study comprised two 4.5 hours sessions distributed across 2 days. The first

session included a familiarization and practice session with the AutoCAMS 2.0

system. Participants were introduced to the different subsystems and trained to

manually identify and manage all possible system faults that could occur either in

the oxygen or nitrogen subsystem. The training was concluded by a questionnaire-

based test which served to assess the participants’ acquired knowledge about sys-

tem fault identification and fault management procedures. All participants passed

this proficiency test successfully and were accepted for the experiment. The train-

ing material can be found in Appendix C.

On the second day, participants were randomly assigned to one of four ex-

perimental groups. Participants of the automation supported groups were intro-

duced to their automated aid and practiced using it for several trials. During this

training, AFIRA always provided correct diagnoses. However, participants were

informed that its reliability is high but not perfect and were warned explicitly to

check the proposed diagnoses before initiating a repair. To keep the amount of

training the same for all groups, participants of the manual control group per-

formed the same practice trials with AutoCAMS 2.0 but without any automation

support. The experiment started after this training session. Participants worked

with AutoCAMS for five blocks of 40 minutes each. Subjective ratings of workload

were collected during short breaks between blocks and after the last block.
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3.1.5 Dependent Measures

Dependent measures were derived from questionnaires and from data that were

logged during the experiment, including participants’ mouse-clicks and AutoCAMS

system dynamics. For all measures, Fault 7 in Block 4 (wrong diagnosis is proposed

by decision aid) was analyzed separately.

Three primary task performance measures were calculated for each block:

(a) Percentage of correct diagnoses was the percentage of the six faults occur-

ring per block for which the first repair order sent was correct, a measure of quality

of fault identification performance.

(b) Fault identification time was defined as time (in seconds) from appearance

of the master alarm until the correct repair order was issued. This measure was

used to assess speed of fault identification performance.

(c) Out-of-target error was defined as the time (in seconds) the most criti-

cal system parameter (oxygen) was out of target range when a system fault was

present, a measure of quality of fault management performance.

Secondary task performance was assessed by two measures:

(a) Simple Reaction Time defined as mean response time (in milliseconds) to

the appearance of the “communication link” icon (”connection check” task) and

(b) Prospective Memory Performance defined as proportion of entries of carbon

dioxide records that were provided within the correct time interval (at every full

minute with a tolerance of 5 seconds).

Only performance during periods when a participant had to deal with a system

fault was considered for secondary task performance.

Subjective workload was assessed by the NASA Task Load Index (NASA-
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TLX; Hart & Staveland, 1988) and was defined as the mean of the ratings provided

for the six subscales.

Measures used to assess the effort invested in automation verification in-

cluded

(a) Automation Verification Time (AVT), defined as the time interval (in sec-

onds) from the appearance of the master alarm until sending a first repair order,

regardless of whether this repair order was correct or wrong.

(b) Automation Verification Information Sampling of Relevant System Param-

eters (AVIS-R), defined as the proportion of all system parameters accessed that

were considered useful (relevant) to verify the automatically generated diagnosis

for a given malfunction.

(c)Automation Verification Information Sampling of Necessary System Param-

eters (AVIS-N), defined as the proportion of all system parameters accessed that

were necessary to verify a given diagnosis unambiguously. Note that necessary

parameters are a subset of relevant parameters.

Necessary and relevant parameters were determined by means of a task analysis

that was conducted to define a normative model of eutactic operator information

sampling (Moray & Inagaki, 2000). For relevant and necessary parameters for each

system fault, see Table 2.1. The number of necessary parameters that were needed

to verify a given diagnosis unambiguously varied as a function of the complexity of

a given system fault and included two parameters (low complexity), three to four

parameters (medium complexity), or two parameters combined with two additional

active interventions in the system (high complexity). The number of parameters

actually accessed and interventions correctly performed when needed was then

related to this normative model. Only parameters accessed between the occurrence
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of the master alarm and sending the first repair order were considered for this

measure. This approach to operationally define the level of complacency has first

been described and used by Bahner and colleagues (Manzey et al., 2006; Bahner

et al., 2008).

Automation bias was analyzed by the proportion of participants committing

a commission error, defined as percentage of participants who followed the diag-

nosis of the automated decision aid for Fault 7 in Block 4 although it was wrong.

As a control measure, it was assessed how many participants of the manual control

group provided a wrong diagnosis for this fault.

Return-to-manual performance was assessed for the automation supported

groups by comparing performance in Block 1 and Block 5, based on primary and

secondary task performance measures as defined above.

3.2 Results

3.2.1 Primary Task Performance

Analysis of primary task performance measures was based on a 4 (DOA) x 5

(Block) ANOVA.

For percentage of correct diagnoses, a significant Block effect was found, F(4,

208) = 25.09, p < .01, moderated by a significant DOA x Block interaction, F(12,

208) = 1.95, p < .03. Already in Block 1, general level of performance was compar-

atively high for all experimental groups (Manual Control: 87%; IA Support: 86%;

AS Support: 81%; AI Support: 86% correct diagnoses). As expected, providing

automated support in Blocks 2 - 4 improved performance to about 100% correct
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diagnoses in all automation supported groups, whereas the manual control group

showed only slight improvement across blocks (M = 91%).

For fault identification time, the DOA effect, F(3, 52) = 3.45, p < .03, the

Block effect, F(4, 208) = 48.25, p < .01, and the DOA x Block interaction, F(12,

208) = 2.68, p < .01, were significant. This is illustrated in Figure 3.2. As becomes

evident, fault identification times profited considerably from providing automated

aids in Blocks 2 - 4 compared with manual performance in Blocks 1 and 5, as well

as compared with the performance of participants in the manual control group.

In addition, mean fault identification time in blocks with automation support

(Blocks 2-4) differed between the automation supported groups. Fault identifica-

tion time was shorter for AI Support (M = 20.9 s) than for the two groups with

lower automation support (IA Support: M = 28.3 s; AS Support: M = 28.5 s).

This effect was confirmed by a separate 3 (DOA) x 3 (Block) ANOVA comparing

fault identification times for the three automation supported groups in Blocks 2 -

4, which showed a significant main effect of DOA, F(2, 39) = 4.98, p < .02, and

post hoc contrasts (Bonferroni), both contrasts p < .05.

Similar results were found for the quality of fault management performance as

reflected in out-of-target error. Effects of out-of-target error are displayed in Figure

3.3. One participant of the Information Analysis group and three participants of

the Action Selection group were excluded from the analysis. They had the oxygen

level drop down to zero or close to zero after one system fault. Once the oxygen

level is extremely low, it takes some minutes until it reaches the normal range

again, so we excluded those extreme outliers from the analysis.

For out-of-target error, the DOA effect, F(3, 48) = 3.60, p < .03, the Block

effect, F(4, 192) = 62.27, p < .01, and the DOA x Block interaction, F(12, 192)
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= 2.48, p < .01 were significant. For all experimental groups, fault management

performance was better in automation supported blocks (Blocks 2 - 4) than in

the manual Blocks 1 and 5. Improvements developed over time but in different

ways for the different groups. The smallest improvements are observed in the

Manual group. The most highly automated aid (AI Support) yielded the highest

improvement, right from the first automation supported block (Block 2). The two

groups with less automated aids showed less improvement.

Contrasting the three automation-supported groups in Blocks 2 - 4, perfor-

mance in the AI group (M = 103.10 s) was better than in the IA (M = 142.51 s)

and AS group (M = 137.59 s). This was also indicated by a separate 3 (DOA) x 3

(Block) ANOVA contrasting the performance in the three automation-supported

groups in Blocks 2 - 4 which yielded a main effect of DOA, F(2, 37) = 4.37, p

< .03. Post hoc contrasts (Bonferroni) showed that the AI Support group was

significantly better than the IA Support group, p < .03, and tended to be better

than the AS Support group, p < .07.

3.2.2 Secondary Task Performance

Performance in both secondary tasks was analyzed by a 4 (DOA) x 5 (Block)

ANOVA.

No significant effects emerged for simple reaction times in the connection check

task.

A significant Block effect, F(4, 208) = 21.17, p < .01, and a DOA x Block

interaction, F(12, 208) = 2.94, p < .01, were found for prospective memory per-

formance. As becomes evident from Figure 3.4, prospective memory performance
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Figure 3.2: * Study I. Primary Task Performance: Fault Identification Time

improved immediately with the introduction of automation support (Blocks 2 -

4) for participants supported by the most highly automated aid (AI Support).

Performance improvements were also found for IA and AS Support, but they de-

veloped slowly across the automation supported blocks. No performance changes

across blocks were found for the Manual group.

3.2.3 Subjective Workload

Analysis of subjective workload was based on a 4 (DOA) x 5 (Block) ANOVA.

A significant Block effect, F(4, 208) = 24.99, p < .01, was found, moderated

by a significant DOA x Block interaction, F(12, 208) = 2.33, p < .01. This
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Figure 3.3: * Study I. Primary Task Performance: Out-Of-Target Error

effect is illustrated in Figure 3.5. All groups started at about the same level in

Block 1. While in Blocks 2 - 4, workload decreased for all groups, it decreased

the most for the AI group. In Block 5, which demanded manual control again,

subjective workload increased for the automation supported groups, with the most

pronounced increase in the AI group.

3.2.4 Return-to-Manual Performance

Assessment of return-to-manual performance for automation supported groups was

based on a contrast of performance in Blocks 1 and 5 by a 3 (DOA) x 2 (Block)

ANOVA.
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Figure 3.4: * Study I. Secondary Task Performance: Prospective Memory Perfor-
mance

Whereas no significant effects were found for percentage of correct diagnoses,

fault identification time improved across blocks, F(1, 39) = 6.24, p < .02, probably

reflecting effects of practice.

With respect to secondary task performance, no significant effects emerged

for simple reaction time. Prospective memory performance showed a significant

improvement across blocks only (Block 1: 54.5% correct entries; Block 5: 64.1%),

F(1, 39) = 7.23, p < .01.

Some indications of DOA effects on return-to-manual performance emerged

for the out-of-target error, reflecting fault management performance. Whereas
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Figure 3.5: * Study I. Subjective Workload

manual performance of the participants in the IA group and the AS group improved

considerably from Block 1 to Block 5, a slight performance decrement was observed

for the AI group. This effect was evaluated by aggregating the data of the IA

and AS groups that did not have any automation support for fault management

implementation, contrasting it with the AI group. A 2 (DOA: IA & AS vs. AI) x

2 (Block) ANOVA revealed a significant DOA x Block effect, F(1, 38) = 4.46, p <

.05. This effect is illustrated in Figure 3.6.
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Figure 3.6: * Study I. Return to Manual Performance: Out-of-Target Error

3.2.5 Automation Verification During Reliable Automa-

tion Support

Automation verification behavior was analyzed by a 3 (DOA) x 3 (Block) ANOVA

for the automation supported groups in Blocks 2, 3, and 4.

Analysis of the time spent to verify the recommendation of the aid (AVT)

revealed a significant effect of DOA, F(2, 39) = 4.32, p < .02. Post hoc analysis

revealed that the group supported by the highest DOA aid (AI Support) invested

significantly less time to verify the automatically provided diagnosis than did the

group working with the least automated aid (IA support), p < .03. Neither the
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Block effect nor the interaction were significant. This is surprising as the aid’s

support in diagnosing the system fault is the same in all three DOA groups. In each

case the automation provides a diagnosis which the operator is trained to validate

before accepting it. Only the support for error management differs between the

DOA groups. Thus, we further analyzed the verification behavior.

The total number of diagnostic clicks decreased significantly across blocks, F(2,

78) = 6.55, p < 0.01, but there was no difference between DOA, F(2, 39) = 1.17.

In contrast, regarding regulatory control clicks needed for error management and

for disambiguating two high complexity errors, the DOA effect was significant,

F(2, 39) = 10.53, p<0.01. The highest DOA aid (AI Support) performed less

regulatory clicks than the other two DOA groups (IA Support and AS Support).

For parameters that were relevant for verifying a diagnosis (AVIS-R), we found

a significant Block effect, F(2, 78) = 9.43, p < .01. The DOA effect was not

significant. Sampling of relevant parameters decreased over time, independent of

DOA. However, this seemed to be an optimization of information sampling since

relevant parameters included parameters that were useful but not necessary for

diagnosis. When only regarding sampling of those parameters that were necessary

for verifying the automatically generated diagnoses of the aid (AVIS-N), it showed

that information sampling stayed at a constantly high but not quite perfect level

(M = 93.5%) across blocks, independent of DOA. Neither the DOA effect nor the

Block effect nor the DOA x Block interaction were significant. These results are

depicted in Figure 3.7.

The effect of complexity of fault diagnosis on automation verification was an-

alyzed by a 3 (DOA) x 3 (Block) x 3 (Complexity) ANOVA for AVIS-N. Two

parameters were necessary for verification of low complexity errors, four parame-
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Figure 3.7: Study I. Automation Verification During Reliable Automation Sup-
port: Relevant and Necessary Parameters

ters were necessary for medium complexity errors. Verification of high complexity

errors demanded accessing two parameters and in addition, the participant had to

implement two control actions to be able to disambiguate two possible diagnoses

(defective oxygen sensor versus stuck open oxygen valve).

For verification of necessary parameters, we found a significant main effect of

Complexity, F(2, 78) = 7.50, p < .01, and a significant Complexity x DOA inter-

action, F(4, 78) = 3.92, p < .01. This effect is illustrated in Figure 3.8. While

verification was almost complete for low complexity errors (M = 97.6%), it de-

creased for medium complexity errors (M = 93.1%) and high complexity errors
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(M = 91.1%). Most interestingly, the extent of verification for low and medium

complexity errors did not differ between the three DOA groups. However, for

high complexity errors, which also demanded implementing control actions as part

of the verification procedure, the Action Implementation group completed signifi-

cantly less verification steps than did the Information Analysis or Action Selection

group. One-way ANOVAs contrasting the automation verification behavior for

the complexity levels separately revealed a significant effect of DOA only for high

complexity errors, F(2, 39) = 3.74, p < .05. There were no significant effects for

low and medium complexity errors. When looking at which part of the verification

procedure is omitted, it is noticeable that only participants who were supported

by the most highly automated aid (AI Support) omitted control actions that were

needed to disambiguate two possible diagnoses. However, they did access the two

necessary system parameters.

3.2.6 Automation Bias and Automation Verification in Case

of Automation Failure

Clear evidence for automation bias leading to a commission error was found in

all automation supported groups by analyzing fault identification performance for

Fault 7 in Block 4 when the automation provided a false diagnosis. Up to half of

the participants in the automation supported groups followed the automatically

generated diagnosis for this fault even though it was wrong. However, no significant

difference was found for the different degrees of automation support (IA: 42.9%;

AS: 50%; AI: 35.7%), F < 1.0. In contrast, 13 out of 14 participants in the manual

control group (92.9%) working on the same fault identified this fault correctly and
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Figure 3.8: * Study I. Automation Verification During Reliable Automation Sup-
port: Effect of Complexity

sent a correct repair order.

In order to investigate whether the observed automation bias was due to a

lack of automation verification or to a discounting of contradictory information

from other available sources, we contrasted the information sampling behavior

of participants who committed an error of commission with that of participants

who did not. A 3 (DOA) x 2 (Commission Error: aid’s false diagnosis detected

vs. not detected) ANOVA revealed no significant effects for sampling of necessary

information (AVIS-N).

For the automation failure, the proposed diagnosis was an oxygen valve block-
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Figure 3.9: Study I. Automation Bias

age while the true system fault was an oxygen leak. To verify the aid’s diagnosis,

it was necessary to cross-check four parameters (oxygen tank level, oxygen flow,

nitrogen flow, standard flow rates). Two of those parameters contained contra-

dictory information (oxygen tank level and oxygen flow) that falsified the aid and

should have led the operator to disagree with the aid’s proposed diagnosis, and

that enabled the operator to diagnose the true system malfunction. If those two

pieces of information were not attended to, it was not possible to find the aid’s

diagnosis to be wrong and identify the true underlying system fault.

A detailed analysis of information sampling within the group of participants

who committed a commission error revealed that out of the 18 participants who
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followed the wrong recommendation, 11 had checked all necessary information

before making a decision, i.e, they accessed all system parameters needed to detect

the contradiction between the automatically generated diagnosis and the actual

system state. Seven participants were complacent in the sense of an incomplete

verification before sending the repair order. Only two of those participants did not

check the information that falsified the aid and thus were not able to detect the

wrong diagnosis.

A significant difference emerged between participants who did and did not

detect the automation failure when we additionally contrasted the time spent per

accessed system parameter. This time was significantly shorter for participants

committing a commission error, F(1, 35) = 12.13, p < .01. To see whether this

difference was already present in the preceding blocks with reliable automation

support, we contrasted the verification behavior of participants who committed

a commission error with that of participants who did not. A 4 (Block: 2, 3, 4,

False Diagnosis) x 2 (Commission Error: aid’s wrong diagnosis detected vs. not

detected) ANOVA revealed a significant Block effect, F(3, 117) = 4.40, p < .01,

and a significant Block x Commission Error interaction, F(3, 117) = 11.36, p <

.01, for time spent per parameter. Figure 3.10 shows this effect. With reliable

automation, there was no difference between the two groups. However, when the

automated decision aid provided a false diagnosis, participants who did not detect

the false diagnosis spent the same amount of time per parameter as in normal

operation trials whereas participants who detected the false diagnosis invested

more time per parameter to inspect the system. Although both groups sampled

the same number of parameters, they differed considerably with respect to the

time spent dealing with the sampled information in case it contradicted the aid’s
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Figure 3.10: * Study I. Automation Bias: Time Spent Per Parameter for Blocks
2, 3, 4, and False Diagnosis

proposed diagnosis.

3.3 Discussion

3.3.1 Performance Benefits

Participants made use of the provided automation support for fault identification

and management, and it clearly benefited routine performance. As expected, qual-

ity and speed of fault identification as well as fault management performance was

better with the aid than without the aid. Improved primary task performance did
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not come at the expense of secondary task performance, on the contrary, secondary

task performance improved as well. Prospective memory performance was better

in automation supported groups than in the manual group. Likewise, subjective

workload decreased with the introduction of an automated aid. As expected, per-

formance benefits depended on degree of automation.

3.3.2 Effects of Degree of Automation on Routine Perfor-

mance

The most highly automated aid yielded the greatest benefits in most performance

measures. Fault management performance was the best in the Action Implementa-

tion Support group, participants had shorter out-of-target times than the manual

control group and the other two automation supported groups. This reflects the

automated, optimal fault management that started as soon as the participants

confirmed the proposed diagnosis. Participants in the AI Support group had short

fault identification times so the optimal fault management was implemented only

shortly after the onset of a system fault.

Fault identification times were the shortest for AI Support in the automation

supported blocks. (Note that fault identification time and automation verification

time are the same in case the automation support works reliably and the correctly

proposed diagnosis is accepted.) This result is surprising since the support for

diagnosing the system fault was the same for all automation supported groups. In

all three groups the automation proposed a diagnosis that the participants were

trained to verify before accepting it. Only the support for error management

differed between the automation supported groups. However, the procedure for
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sending an appropriate repair order differed slightly between the DOA groups.

The AI Support group had to press a button when they agreed with the proposed

diagnosis. This issued a repair order and started the fault management immedi-

ately. In contrast, the IA Support group as well as the AS Support group had

to open the repair order catalogue, select the appropriate repair order and then

press a button to send the repair order. The AI group had to do less steps to issue

the repair order and could save some time with this easier confirmation procedure.

Unfortunately, it was not possible to analyze the time saved because the log file

data only contained information about when the repair order was sent (clicking the

button “Send repair order” or “OK”) but not when the repair menu was opened.

However, this difference in the confirmation procedure cannot solely account for

the eight second difference in fault identification time between the highest DOA

group and the two lower DOA groups. So what else could have led to shorter

automation verification times? Did the AI Support group sample less information

to verify a given diagnosis?

Analysis of the automation verification behavior showed that the AI Support

group carried out the same number of diagnostic clicks as the other groups, but

they performed significantly fewer regulatory control actions. Regulatory control

actions were needed for system stabilization. Participants of the IA and AS Sup-

port group probably started with regulatory control actions already before sending

a repair order in order to stabilize the system. For the AI group this was not sen-

sible to do because their aid stabilized the system automatically as soon as the

repair order was issued. In addition, regulatory control actions were needed for the

diagnosis of one system fault per block (defective oxygen sensor or oxygen valve

stuck open). The AI Support group also omitted those time-consuming control
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actions that were necessary to verify the proposed diagnosis. Note that the AI

group is the only group that is supported with the fault management implemen-

tation and never has to implement control actions after sending a repair order.

This seems to generalize to their verification behavior during the diagnostic phase

before sending a repair order. This finding is in contrast with Lorenz et al. (2002).

They found that operators in the higher automated condition sampled more in-

formation. However, in their study, the most highly automated aid presented a

diagnosis and in addition a countdown; fault management would automatically

start after the countdown if not vetoed by the operator. This setup did not af-

ford rapid confirmation if the suggested diagnosis was found to be correct but

offered more time to cross-check other system information. This was different in

the present study. Fault management was not started until the proposed diagnosis

was confirmed. So the earlier the proposed diagnosis was confirmed, the earlier

fault management started.

Secondary task performance and subjective workload profited from providing

an automated aid as well. Prospective memory task improvements emerged in

all automation supported groups compared to manual performance. The group

with the highest automated aid (AI Support) showed the most improvements, and

improvements manifested right away when automation support was first provided.

In contrast, the two lower automation groups (IA and AS Support) showed im-

provements only later in time. This probably reflects the higher memory load

that those two groups had compared with the AI Support group. While in the AI

Support group fault management was implemented automatically, the IA Support

group had to remember the appropriate fault management procedure for each sys-

tem fault, implement it manually and check if the system reacts as expected. The
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AS Support group was provided with a list of appropriate actions but still had to

remember how to implement them manually and check the system’s reaction.

The highest automated aid was also associated with the highest decrease of

subjective workload. On the downside, however, it also led to the sharpest increase

of workload when returning to manual performance.

3.3.3 Effects of Degree of Automation on Failure Perfor-

mance

Unwanted side effects of automation support often show when the automation fails

and operators have to return to manual performance. Also in this study, we found

some performance decrements when the automation failed and operators resumed

manual performance.

Fault management performance decreased for the group with the highest DOA

aid (AI Support) when comparing the first and the last block. The other two

automation supported groups improved their fault management performance. Re-

member that the highest automated aid (AI Support) supported fault manage-

ment, participants in this group never had to implement fault management manu-

ally. This lack of training shows in Block 5 when they have to go back to manual

fault identification and implementation.

Fault identification was not negatively affected by use of automation support,

in contrast, performance improved compared to the first manual block. Even with

the diagnostic aid, participants were required to validate the proposed diagnosis,

so they still had to access the system raw data and check if the automation’s sug-

gestion was correct. So even when they did not have to diagnose the underlying
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system fault without assistance, they were still kept in the loop and practiced the

diagnostic procedures. Similar results were found by Endsley and Kiris (1995)

who investigated effects of level of automation on decision performance in an au-

tomobile navigation task. Decision accuracy remained at a very high level even

after automation failure, but decision time increased immediately after automation

breakdown. In the present study, fault identification was slower after automation

failure than with reliable automation support but improved compared to manual

performance in the first block. The continuing practice prevented the loss of skills

needed for fault diagnosis. Even if diagnosing system faults was supported and

the participants merely had to validate an automatically proposed diagnosis, this

was enough to stay involved and keep up or even enhance system knowledge and

diagnostic capabilities.

3.3.4 Automation Verification and Automation Bias

Automation verification time differed between automation groups. The group with

the highest automation support (AI support) spent less time with verification.

This results is consistent with results about the fault identification time. Note

that fault identification time and automation verification time are the same in

case the automation support works reliably and the correctly proposed diagnosis

is accepted.

Information sampling decreased over time, independent of DOA. This sup-

ports earlier results by Bahner et al. (2008) who found a decrease in sampling

of relevant information. However, Bahner et al. (2008) only considered relevant

parameters, in constrast, in this study, we looked at both relevant and necessary
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parameters. It is noteworthy that in this study this effect only shows when relevant

parameters are considered, but it is not found for necessary parameters. Relevant

parameters contain necessary parameters and in addition useful parameters. Use-

ful parameters can make diagnosis easier, but diagnosis is possible without them.

Only necessary parameters are absolutely essential for diagnosis, it is not possible

to find a correct diagnosis or verify a proposed diagnosis without them. When

considering the necessary parameters, which are only a subset of the relevant pa-

rameters, this effect of decreased sampling over time disappears. Instead, it shows

that necessary parameters are sampled at a constantly high although not quite

perfect level across all blocks. Reducing the sampling of optional, useful informa-

tion while keeping the sampling of necessary information at a very high level can

be seen as an optimization of the information sampling effort. Only those param-

eters are sampled that are absolutely essential and required for an unambiguous

diagnosis. Additional information that can be useful but is not necessary for di-

agnosis is disregarded more and more over time. Participants learned to focus on

the necessary parameters, thus they could reduce the effort needed to verify the

aid’s diagnosis. This can be seen as a strategy to reduce effort and workload while

preserving the diagnostic performance.

The complexity of the verification process affected the verification of diagnos-

tic advice. While verification was almost complete for low complexity errors, it

decreased for medium complexity errors and high complexity errors. Most inter-

estingly, verification for low and medium complexity errors did not differ between

the three DOA groups. However, for high complexity errors, which required the

implementation of control actions as part of the verification procedure, the AI

Support group completed significantly less verification steps than the IA and AS
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Support groups. When looking at which part of the verification is not completed,

it is noticeable that only participants in the AI Support group omitted control

actions. Remember, the AI Support group is the only group that is supported

with the fault management implementation and never had to implement control

actions after sending a repair order. This seemed to generalize to their verification

behavior during the diagnostic phase before sending a repair order.

Despite sampling a high portion of necessary parameters, up to half of the

participants made a commission error when the automated aid provided a false

diagnosis, regardless of DOA. Surprisingly, even participants who checked all nec-

essary information to verify the aid’s diagnosis and thus were not complacent in the

sense of incomplete information sampling, made a commission error and followed

the aid’s wrong advice.

Out of the 18 participants who committed a commission error and followed the

aid’s wrong advice, 11 participants did so despite a complete verification. They

should have been able to detect the aid’s failure. Complacency in the sense of

incomplete verification was not the underlying cause of the commission error in

these cases. Did those participants discount contradictory information, suggest-

ing a decision bias, or did they not attentively process the accessed information,

suggesting an attentional bias? Seven participants who followed the wrong rec-

ommendation had not completely verified the suggested diagnosis and would be

classified as complacent in a sense of incomplete verification. The automatically

proposed diagnosis required checking four parameters. Two of these parameters

contained information that contradicted the proposed diagnosis. Out of the seven

complacent participants, two had not checked the information that falsified the

aid. Only those two participants were definitely not able to recognize that the aid
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suggested a wrong diagnosis and find the true underlying system fault. The other

five participants could have detected that the aid erred.

This resembles findings of Bahner and colleagues (Bahner, 2008; Bahner, Hüper,

et al., 2008). In their study, participants did not sample all relevant information,

but all the participants who made a commission error did sample the one piece

of falsifying information. They could have detected the aid’s false diagnosis but

instead followed the wrong recommendation.

So in addition to incomplete verification there seems to be an active discount-

ing or an inattentive processing of contradictory information that can lead to

commission errors.

When comparing the sampling behavior of participants who committed a com-

mission error and participants who did not, no difference was found for the number

of parameters accessed. However, participants who did not commit a commission

error spent more time per parameter they checked when the automation provided

a false diagnosis. There was no difference in time spent per parameter in the pre-

ceding trials with reliable automation, so they did not spend more time examining

parameters in general. This suggests that they realized that there was an incon-

sistency between the aid’s advice and the system’s raw data, hence they looked

more closely and spent more time with the evaluation of the data. Similar results

were found by Schriver, Morrow, Wickens, & Talleur (2008). In a simulated flight,

expert pilots payed more attention to cues indicative of failures when a failure was

present, and their decision accuracy and speed were better than that of novices.

Schriver et al. (2008) suggest that differences in attentional strategies affect the

decision outcome.

Participants who did not detect the false diagnosis, on the other hand, spent
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the same amount of time per parameter they checked regardless of whether the

diagnosis was correct or wrong, even if they sampled system information that

contradicted the aid’s proposed diagnosis. This points to an inattentive processing

rather than discounting of contradictory information.

So in addition to an incomplete verification that can lead to commission er-

rors, there seems to be a sort of “looking but not seeing effect” that can cause

commission errors. Information that is looked at is not processed, analogous to

“inattentional blindness”, the “inability to perceive [...] caused by the fact that

subjects were not attending to the stimulus but instead were attending to some-

thing else” (Mack & Rock, 1998, p.12). Even if fixated, information is not perceived

if attention is on another object.

These findings are in line with results from Sarter, Mumaw, and Wickens (2007)

who studied professional pilot’s monitoring strategies. They found that even if pi-

lots fixated flight mode annunciations (FMAs) they did not detect an inappropriate

mode annunciation after an unexpected mode transition. Only one pilot detected

the inappropriate mode annunciation; he fixated FMAs more often and longer.

To further explore this effect, a second study was conducted. In addition

to underlying causes of commission errors we investigated the effect of system

experience and failure experience on trust development and commission errors.
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Chapter 4

Study II: The Impact of System

Experience

Study I showed that commission errors cannot only result from incomplete automa-

tion verification but can also occur despite complete verification. Study II explores

to what extent attentional processes play a role. As in study I, we analyzed the

information that was accessed, and in addition, we analyzed to what extent par-

ticipants were aware of the information they accessed. Right after the automation

provided a wrong diagnosis and participants sent a repair order, the trial stopped

and participants were asked to answer the Automation Verification Questionnaire.

The questionnaire asked about which system parameters they accessed in order

to validate a given diagnosis, and what the critical relations between the accessed

parameters were. Based on this information, commission errors were attributed to

three possible causes: incomplete automation verification, complete automation

verification without awareness, or discounting of contradictory information.

Additionally, we explored the influence of system experience and especially
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failure experience on trust development and risk of commission errors. Trust is

calibrated according to the experience made with an automation (Lee & See, 2004;

Merritt & Illgen, 2008; Seong & Bisantz, 2008), and automation failure has been

shown to influence trust in automation (de Vries, Midden, & Bouwhuis, 2003;

Dzindolet et al., 2003; Lee & Moray, 1992, 1994; Madhavan et al., 2006). Even

a single automation failure can cause a decrease in trust, and trust recovers only

slowly (Lee & Moray, 1992). In monitoring tasks, detection of early failure is better

than detection of late failure, if additional tasks have to be performed concurrently

(Molloy & Parasuraman, 1996). The experience of automation failures has also

been shown to affect automation verification (Manzey et al., 2006; Bahner, Hüper

et al., 2008; Bahner, Elepfand et al., 2008).

In the second study, we investigated how experience of reliable automation

(positive experience) and automation failure (negative experience) affect trust de-

velopment, automation verification, and the risk of commission errors. It was

expected that trust would increase with increasing experience of reliable automa-

tion. Automation failure was expected to cause a decrease in trust, with following

experience of reliable automation leading to a slow recovery in trust. Automation

verification was expected to increase after automation failure experience, leading

to a reduced risk of commission error when the automation would fail a second

time. It is an open question if the effects of an early failure experience diminish

after a long period of fault-free automation.

In Study II, a methodological improvement was made concerning the false

diagnosis. The proposed diagnosis and the true underlying system fault in case of

a false diagnosis were altered such that all necessary parameters had to be checked

in order to detect the false diagnosis and identify the true system fault. Actual
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system fault and proposed diagnosis required the same set of parameters to be

checked. There was no subset of falsifying information that could have led the

operator to detect the false diagnosis without complete automation verification.

4.1 Methodology

4.1.1 Participants

88 engineering students (65 male, 23 female; mean age 24.1 years) participated.

Participants were paid 70 Euro for completing the study.

4.1.2 Apparatus: AutoCAMS 2.0

The same simulation of a supervisory process control task was used as in the

first experiment. However, only the most highly automated decision aid (Action

Implementation Support) was used for this study.

4.1.3 Design

The study involved four experimental groups that differed with respect to how long

participants worked with the aid until an automation failure eventually occurred

and whether this automation failure was the first or second failure the participants

experienced. The study design is shown in Figure 4.1.

Participants of the first experimental group worked with the aid for one 35-

minute block before a first automation failure occurred. During this time, AFIRA

provided correct diagnoses for five system faults in a row before it eventually failed

and provided a false diagnosis.
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The second experimental group experienced a false diagnosis right in the be-

ginning of the experimental trial. The remaining part of the trial was identical to

Group 1 with five correct diagnosis and one false diagnosis at the end of the block.

Thus, the automation failure at the end of the session was the second automation

failure experience for Group 2.

A similar variation was realized for Experimental Groups 3 and 4. However,

participants of these groups worked for a considerably longer period of time (four

blocks of 35 minutes each, with a total of 20 system faults) with the system before

the critical automation failure at the end of the session occurred. For Group 3 this

was the first automation failure, for Group 4 it was the second automation failure

after a first automation failure at the beginning of Block 1.

In order to keep the experience of system faults the same, Groups 1 and 3 were

presented a correctly diagnosed malfunction when Groups 2 and 4 experienced

a false diagnosis. In all groups, the diagnosis was Defective Oxygen Sensor. For

Groups 1 and 3, this was the true system fault, for Groups 2 and 4, the true system

fault was Oxygen Valve Stuck Open. The same verification procedure is required

to disambiguate those two system faults. This first fault was not included in the

further analysis. Also, the proposed diagnosis for the first fault (Defective Oxygen

Sensor) never occurred again during the experiment.

Analyses of the relative impact of negative and positive experience on trust and

automation verification behavior over time were based on Groups 3 and 4. The

analysis of time-related and experience-related effects on automation bias involved

all four groups.

Experienced reliability defined as number of correct diagnosis divided by total

number of diagnosis is depicted in Figure 4.2. Distribution and timing of systems
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fault are shown in Table 4.1.

Group 1

Group 2

Block 1
35 min

Group 4

Block 2
35 min

Block 3
35 min

Block 4
35 min

Group 3

Figure 4.1: Study II. Experimental Design. The figure shows the distribution
of system faults and automation failures across blocks for the four experimental
groups. Each column represents one system fault. As part of the experimental
treatment, the first system fault was either correctly diagnosed by AFIRA, repre-
sented by a dotted column, or AFIRA provided a wrong diagnosis, represented by
a dark red column. The light red column represents the critical automation failure
at the end of the session.
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Table 4.1: Study II. Distribution and Timing of System Faults Across Blocks

Block Fault X Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

Block 1 Defective Sensor Valve Blockage Valve Leak Valve Blockage Valve Stuck Open Valve Leak Valve Blockage
O2 N2 O2 N2 / O2 O2 N2 Mixer
156s 550s 800s 1071s 1353s 1629s 1967s

Block 2 Valve Leak Valve Blockage Valve Stuck Open Valve Blockage Valve Leak
O2 N2 O2 O2 N2

230s 662s 971s 1373s 1829s

Block 3 Valve Blockage Valve Leak Valve Blockage Valve Leak Valve Stuck Open
N2 N2 N2 O2 O2

252s 682s 931s 1473s 1888s

Block 4 Valve Blockage Valve Leak Valve Blockage Valve Stuck Open Valve Leak Valve Blockage
N2 O2 O2 O2 N2 Mixer
190s 462s 789s 1153s 1409s 1707s

Note. For Groups 2 and 4, Fault X actually was an O2 Valve Stuck Open but was falsely diagnosed by AFIRA
as Defective O2 Sensor, so all groups faced the same diagnosis. Fault 6 in Block 1 or 4, respectively, (Mixer Valve
Blockage) was falsely diagnosed by AFIRA as O2 Valve Blockage for all groups.
If Fault 6 occurred in Block 4 (Groups 3 and 4), Fault 3 in Block 1 was an N2 valve blockage. If Fault 6 occurred in
Block 1 (Groups 1 and 2), Fault 3 in Block 1 was an O2 valve blockage. Thus, the 5 faults before the late automation
failure (Fault 6 in Block 1 for Groups 1 and 2, Fault 6 in Block 4 for Groups 3 and 4) were identical for all groups.
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4.1.4 Procedure

The experiment consisted of two familiarization and practice sessions and one

experimental session distributed across three days. The practice session on the

first day lasted approximately four hours and included familiarization and practice

with the AutoCAMS system. Participants were trained to identify and manage all

possible system faults manually, without automation support.

On the second day, all participants had to perform a 45-minutes test trial which

served to test their acquired skills according to a predefined criterion. Only those

participants who passed this test were accepted for the experiment.

The experimental session on the third day started with an introduction to

AFIRA. This familiarization included a description of the aid’s function as well as

a short practice trial. During this practice trial AFIRA always provided correct

diagnoses and recommendations. However, participants were informed that the

aid’s reliability is high but not perfect. They were cautioned to always cross-check

the proposed diagnoses before confirming it.

After this introduction the experimental run started. Participants were ran-

domly assigned to one of the four experimental groups. Independent of the specific

experimental group and the length of the experimental session (one 35-min block

for Groups 1 and 2, four 35-min blocks for Groups 3 and 4), all participants were

instructed that the whole experiment would include a total of five 35-minutes

blocks. This instruction was given to assure that all participants worked with the

same attitude and expectation and were not able to anticipate the real ending of

the experiment. For Groups 3 and 4, the blocks were separated by short breaks of

about 3 minutes.
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Figure 4.2: Study II. Experienced Reliability. This figure shows the reliabilty an
operator experiences over time in interaction with the automation. The reliability
for the four groups results from the distribution of system faults and the aid’s
correct diagnoses and failures as shown in figure 4.1

After the automation failure at the end of the session (first failure for Groups

1 and 3, second failure for Groups 2 and 4), the simulation stopped as soon as the

participant decided to either follow the aid’s advice or disagreed with AFIRA’s

diagnosis. Participants were then asked about their approach of automation ver-

ification by means of the Automation Verification Questionnaire (for details see

dependent measures below). Ratings of subjective trust in the components of the

AutoCAMS 2.0 system (e.g., oxygen, nitrogen, carbon dioxide subsystems) and

AFIRA as well as reliability ratings were collected after each block. Trust ratings
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were additionally collected before the first block.

4.1.5 Dependent Measures

Dependent measures were derived from questionnaires and from data that were

logged during the experiment, including participants’ mouse-clicks and AutoCAMS

system dynamics.

Subjective trust in the diagnostic function of AFIRA was assessed by asking

the participants how trustworthy they thought AFIRA was (How much did you

trust the assistance system AFIRA?). Respondents answered on a 10-point Likert-

type scale ranging from not at all to absolutely.

Subjective reliability rating of the diagnostic function of AFIRA was as-

sessed by asking the participants to rate reliability ranging from 0 to 100 % relia-

bility (Please rate the reliability of the individual subsystems: AFIRA diagnosis).

To avoid any demand characteristics, the specific questions relevant for the

study were part of a larger questionnaire consisting of 18 questions that asked for

subjective ratings of confidence in own performance and performance estimates,

trust and estimated reliabilities not only for AFIRA but for all subsystems of

AutoCAMS (e.g., oxygen and nitrogen subsystems). The questionnaire can be

found in Appendix D.3.

Measures used to assess the effort invested in automation verification in-

cluded

(a) Automation Verification Time (AVT), defined as the time interval (in sec-

onds) from the appearance of the master alarm until sending a first repair order,

regardless of whether this repair order was correct or wrong.
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(b)Automation Verification Information Sampling of Necessary System Param-

eters (AVIS-N), defined as the proportion of all system parameters accessed that

were necessary to verify a given diagnosis unambiguously.

Performance consequences of a possible automation bias in terms of commis-

sion error were analyzed by the proportion of participants who followed the aid’s

advice when the automation failed and provided a wrong diagnosis at the end of

the experiment (first failure for Groups 1 and 3, second failure for Groups 2 and

4).

In addition, the underlying determinants of commission errors were analyzed.

For this purpose, the simulation was stopped as soon as a participant had decided

to either follow the aid’s wrong advice or disagree with it, and participants were

then asked questions about their approach of automation verification by means of

a standardized Automation Verification Questionnaire (AVQ). Specifically, they

had to provide information about (a) which diagnosis was proposed by AFIRA,

(b) which parameters they had sampled to verify the aid’s diagnosis, and (c) what

the critical relations were between the parameters accessed (the relation between

parameters provides the critical information needed to disambiguate similar system

faults). This questioning was done in order to check to what extent the participants

were aware of the steps they had performed and the system information they

had accessed. Based on the AVQ results, we assessed how many participants

committing a commission error made this error because of

(a) an incomplete automation verification, that is, the proportion of all system

parameters accessed that were necessary to cross-check a given diagnosis unam-

biguously (AVIS-N) was less than 100 percent

(b) a complete automation verification without awareness, that is, participants
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looked at all information needed to verify the aid’s diagnosis (AVIS-N = 100%)

but were not able to report what they had seen

(c) a discounting of contradictory information, that is, participants looked at all

necessary parameters (AVIS-N = 100%) and were able to report the contradictory

information but nevertheless followed the aid’s wrong diagnosis.

4.2 Results

4.2.1 Perceived Reliability and Subjective Trust in Au-

tomation

Effects of positive and negative experience with AFIRA on perceived reliability

and subjective trust were explored on the basis of data from Experimental Groups

3 and 4.

A 2 (Group) x 5 (Block) ANOVA revealed significant main effects of Group,

F(1, 41) = 4.62, p < .04, and Block, F(4, 164) = 10.43, p < .001, as well as a

significant Group x Block interaction, F(4, 164) = 5.56, p < .001. Trust devel-

opment is shown in Figure 4.3. As expected, trust development depended on the

experience the participants made with the aid. After familiarization with AFIRA

during training, both groups started with a relatively high level of initial trust.

Trust further increased for participants of Group 3 who experienced a reliable au-

tomation. At the end of Block 4, they experienced the first automation failure.

Trust dropped down to a level lower than the initial trust. Participants of Group 4

experienced a first automation failure already in the beginning of Block 1. A sharp

decrease of trust can be seen at the end of Block 1, even though the automation
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failure was followed by five correct diagnosis before the trust rating after Block 1.

Trust increased again in the following blocks with correct automation advice, but

it never reached the trust level of Group 3. Trust decreased again after the second

failure in Block 4, yet less steep than after the first failure.

Trust development parallels development of subjective and objective reliability.

As becomes evident from Figure 4.4, trust development reflects the development

of the perceived reliability and the objective, experienced reliability. Note that

participants were asked for reliability ratings only after each block, not before the

first block, so Figure 4.4 shows no pre-test ratings as included for trust in Figure

4.3.

Reliability ratings are consistently underestimating objective reliability but

reflect the trend of objective reliability. Subjective reliability was higher for Group

3 than for Group 4. It increased with increasing objective reliability and decreased

when objective reliability decreased. A 2 (Group) x 4 (Block) ANOVA showed a

significant effect of Group, F(1, 41) = 14.71, p < .001, Block, F(3, 123) = 11.05,

p < .001, and a significant Group x Block interaction, F(3, 123) = 5.87, p < .001,

for subjective reliability ratings of AFIRA’s diagnostic performance.

4.2.2 Automation Verification During Reliable Automa-

tion Support

To explore whether the effects seen in subjective trust ratings would also be re-

flected in differences in automation verification behavior, we compared to what

extent participants of Groups 3 and 4 sampled necessary parameters before con-

firming the proposed diagnosis. Only system faults for which AFIRA provided
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Figure 4.3: * Study II. Subjective Trust in Automation. Trust ratings after famil-
iarization with AFIRA during training and after Blocks 1-4.

a correct diagnosis were considered for this analysis. A 2 (Group) x 4 (Block)

ANOVA revealed a significant Group effect, F(1, 42) = 6.82, p < .02. Neither the

Block effect, F(3, 126) = 1.11, nor the Group x Block interaction, F(3, 126) < 1,

were significant. The effects are shown in Figure 4.5. The experience of an automa-

tion failure early in the experiment (Group 4) led to an increase in automation

verification. Participants with early failure experience sampled more necessary

parameters (M = 97.4%) than participants without early failure experience (M =

92.0%). This difference persisted throughout the experiment.

There was no difference in automation verification time between groups, F <
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Figure 4.4: Study II. Objective Reliability and Subjective Reliability Rating

1.

4.2.3 Automation Bias and Automation Verification in Case

of Automation Failure

The false diagnosis at the end of the experimental session was the first false diagno-

sis for half of the participants, for the other half it was the second false diagnosis

they experienced. A significant difference was found between participants who

had experienced a false diagnosis before, and participants with no prior failure

experience, χ2(1) = 5.10, p < .03. The risk of a commission error was higher for
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Figure 4.5: * Study II. Automation Verification During Reliable Automation Sup-
port

participants with no prior failure experience. Whereas 9 out of 44 (20.5%) partic-

ipants followed AFIRA’s diagnosis even though it was wrong when it was the first

false diagnosis, only 2 (4.5%) participants followed AFIRA’s false diagnosis when

it was the second false diagnosis they experienced.

The number of correct diagnoses prior to the automation failure did not have

any significant effects on risk of commission errors, χ2 < 1. Table 4.2 shows the

number of participants who committed a commission error when AFIRA provided

a false diagnosis at the end of the experimental session.
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Table 4.2: Study II. Participants Committing a Commission Error by Following
the False Diagnosis at the End of the Experiment

No of correct diagnosis
prior to false diagnosis

Prior failure experience 5 20 Total

No 6 3 9
Yes 0 2 2

Total 6 5 11

4.2.4 Microanalysis of Commission Errors

For the early automation failure, the proposed diagnosis was a defective oxygen

sensor while the true system fault was a stuck-open oxygen valve. A defective

oxygen sensor did not occur again during the trials.

For the late automation failure, the proposed diagnosis was an oxygen blockage

while the true system fault was a defective mixer valve. To verify the aid’s diag-

nosis, it was necessary to cross-check four parameters (oxygen tank level, oxygen

flow, nitrogen flow, standard flow rates).

Out of the eleven participants who followed the wrong automation advice at

the end of the experiment, only six would be classified as complacent as they did

not check all the information that was necessary to verify the aid’s diagnosis.

The other five participants followed the wrong automation advice despite hav-

ing checked all parameters that were necessary to realize that the automatically

generated diagnosis was wrong. Four of these participants seemed to have con-

ducted these cross-checkings without or with less attention. This finding was

revealed by the results of the AVQ questionnaire that was administered after they

109



had confirmed the aid’s false diagnosis. Although all five participants in fact had

checked all necessary system information to verify the aid’s diagnosis, four of them

were not able to recall correctly what they had seen. Three of these participants

stated that the nitrogen flow was on standard level - which is an indicator for

the system fault that was wrongly proposed by the aid - although it was actually

much lower, replicating the phantom memory phenomenon reported by Mosier et

al. (1998, 2001). Another participant could only report the relation between two

parameters that is necessary to exclude one similar system fault but failed to re-

port the other relation that is necessary to exclude a second similar system fault

and thus arrive at an unambiguous diagnosis.

Only one of the eleven participants committed a commission error despite being

aware of all the contradictory system information. He checked all the parameters

that were necessary to verify the diagnosis and stated all necessary relations cor-

rectly. In addition, he noted that the automated aid was helpful but to make

sure he always checked the system information. Despite this, he followed the aid’s

wrong advice.

In contrast, out of the 77 participants who had correctly identified the aid’s

wrong diagnosis, only four were not able to recall all necessary parameters that

they had sampled before.

4.3 Discussion

The experience of an early automation failure led to decreased trust and increased

automation verification information sampling. It could reduce the risk of commis-

sion errors but did not prevent it completely.
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Participants were rather conservative in their reliability ratings, they consis-

tently underestimated the objective reliability, Group 4 with early failure expe-

rience even more so. However, subjective reliability ratings did reflect the trend

of objective reliability. Participants were able to calibrate their trust pretty good

in accordance with the objective reliability. Development of subjective trust par-

alleled the development of objective reliability. Early failure experience caused a

sharp decline in trust that recovered only slowly over time. In fact, the trust level

of Group 4, who experienced an automation failure early on, never reached the

trust level of Group 3, who experienced 100 % reliability of the aid before the aid

failed at the end of Block 4. Trust declined again after a second failure experience,

but this decline was less sharp. This reflects the development of objective reliabil-

ity. Objective reliability (defined as number of correct diagnosis / total number of

diagnosis) was lower for Group 4 than Group 3 throughout the experiment. Thus,

it comes at no surprise that subjective trust ratings of Group 4 stayed at a lower

level than trust ratings of Group 3 participants. For Group 3 the automated aid

provided over 95% correct diagnosis. A single automation failure after more than

two hours experience of a reliably working aid caused a sharp decrease in trust.

These results are in accordance with findings about trust development reported

by Lee & Moray (1992).

Trust decrease after the first failure in Group 3 at the end of the session was

even sharper than trust decrease after the first failure in Group 4 in the beginning

of the experiment. This is surprising since objective reliability drops from 100 %

(100 % correct diagnosis during training session with AFIRA) down to 83% (5/6

correct diagnosis by the end of the first block, training experience excluded) for

Group 4, while for Group 3 objective reliability drops from 100% down to 95%
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(21/22 correct diagnosis by the end of Block 4). The even sharper decline of trust

in Group 3 compared to the first trust decrease in Group 4 might be attributed to

the timely proximity of failure experience and trust rating. Group 3 experienced

the failure right before the trust rating while Group 4 experienced the failure

followed by five correct diagnosis before the trust rating.

Which influence does timing of automation failure have on trust and automa-

tion use? Of course, automation failure cannot be predicted or even timed in

real-world scenarios. But timing of automation failures can be relevant in training

design. It has been shown in other research and in this study that failure expe-

rience leads to decreased trust and increased automation verification (Bahner et

al., 2008; Smith, 2012), and can reduce the risk of commission errors. This study

showed that trust decrease was stronger after a late first failure compared with

trust decrease after an early first failure. Since our experiment ended after the late

failure, we have no information about the further development of automation ver-

ification. It would be interesting to see if not only trust decreases relatively more

but if automation verification would also increase relatively more. This would sug-

gest that failure experience should be integrated in training after a longer period

of working with reliable automation support. This remains an open question and

needs further research.

With the distribution of correct diagnosis and automation failures in this study,

we could not realize identical experienced overall reliability of the automation. It

would be interesting to see if participants who have experienced automation with

the identical objective reliability but a different timing of automation failures show

comparable trust and automation bias. Figures 4.6 and 4.7 illustrate the idea of

identical experienced reliability with different timing of automation failures.
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Figure 4.6: Possible failure distribution to realize identical experienced reliabilities
at different points in time.

With a low number of events, as in this experiment, one automation failure has

a dramatic effect on objective reliability. It is not clear if the same drastic effects in

trust and perceived reliability would be found if more events could be studied such

that one failure causes only a slight decrease in reliability (e.g., 1 false diagnosis in

1000 events, i.e., 99.9% reliability). It is not feasible to study such a high number

of events resulting in very high reliability rates using AutoCAMS. With a similar

timing of system faults (one fault in about 6 minutes), it would take 100 hours to

experience 1000 system faults and AFIRA diagnoses. This is not only a problem
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Figure 4.7: Experienced reliability for the failure distribution shown in Figure 4.6

with the current study. Due to time constraints in a laboratory experiment, in a

lot of studies reliability rates are rather low compared to reliability rates that are

acceptable in industry, medicine, aviation, or other areas.

Early failure experience did not only reduce trust but also led to a higher

sampling rate. In contrast to trust, which recovered slowly over time, the sampling

rate stayed at a very high level. This replicates results from Bahner, Hüper, et

al. (2008). Early failure experience was also associated with reduced risk of

commission errors. However, it could not prevent it completely. Similar results

are reported by Bahner, Elepfand, et al. (2008) who found a decreased risk of

omission errors after failure experience.
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The duration of failure-free automation experience (half an hour with 5 cor-

rectly diagnosed system faults versus more than two hours with 20 correctly diag-

nosed system faults) did not affect automation bias in terms of commission errors.

This contrasts results found by Molloy and Parasuraman (1996). In a simple vi-

sual discrimination task as well as in a multitask scenario with system monitoring,

tracking, and fuel management, they found higher detection rates for early failures

than for late failures. However, in their study early failures occurred within the

first ten minutes, late failures in the last ten minutes of a 30-minutes trial. In the

present study, the automation failure occurred after 30 minutes or two hours.

In the present study, long positive experience with an automation did not di-

minish the effects of an early failure experience. However, the total study duration

was only about two hours. It is unclear if automation verification would decrease

and risk of commission errors would increase again after a longer period of positive

experience with the automation.

The results of this study support the proposed feedback loops. Failure experi-

ence reduced trust and led to more complete verification. This in turn reduced the

risk of automation bias and commission errors. The results further indicate that

the negative feedback loop in case of an automation failure has a stronger effect

than the positive feedback loop in case of reliable automation. The effect of a single

automation failure on trust could hardly be compensated by 20 correct diagnosis

of the aid. Trust was offset so much that it never reached the level of trust that

participants developed who had no prior failure experience. The effect of a second

failure on trust was not as grave but still reduced trust. This development of trust

reflects the development of the objective reliability, suggesting that participants

were able to calibrate their trust according to the automation’s reliability.
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The effect was even more persistent on the behavioral level. Automation ver-

ification stayed on a very high level over the entire time of the experiment even

when trust was regained.

Eleven out of 88 participants (12.5%) followed the wrong recommendation of

the automated aid at the end of the experimental session. This is a rather low

number compared to the high commission error rates of up to 50% in study I. In

study I, all participants experienced only one automation failure after 18 correct

diagnosis (almost 95% correct diagnosis). In study II, half of the participants

experienced an automation failure right at the beginning of the experimental ses-

sion. When we consider only those participants without prior automation failure

experience (Groups 1 and 3), the commission error rate is 20.5% (9 out of 44).

This is still lower that in study I, but it is comparable to the numbers reported by

Bahner, Hüper, et al. (2008).

After the participants either approved the aid’s diagnosis or sent an alterna-

tive repair order, the simulation stopped and participants were asked to answer

the Automation Verification Questionnaire. Participants were asked to provide

information about the last diagnosis, the parameters they sampled to verify the

diagnosis, and the critical relations between the checked parameters. They did not

have to give exact values of flow meters or tank levels but only had to indicate if

the flow was on standard value, lower or higher, and if it matched the outflow from

the tanks. The exact values were not necessary to detect that the aid provided a

wrong diagnosis, the relations were sufficient.

With the information from the AVQ in combination with the logfile data about

information sampling we identified three different causes for committing a com-

mission error: incomplete automation verification, complete verification without
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awareness, and discounting of contradictory information. Six participants sampled

only a part of the necessary information. They committed the commission error

due to an incomplete automation verification. Five participants committed the er-

ror despite sampling all necessary information. Four of them could not recall what

they had just seen. One participant could not recall the critical relation between

two parameters he checked. Three participants stated that nitrogen flow was on

standard when it actually was much lower. A standard nitrogen flow was to be

expected given the aid’s diagnosis. This indicates that participants remembered

what they expected to see given the aid’s proposed diagnosis. Mosier et al. (1998,

2001) called this the phantom memory phenomenon.

One participant was aware of the contradictory system information but decided

to follow the aid’s recommendation anyway. He could not give a clear reason why

he followed the wrong advice. In this case, we attribute the commission error to

an active discounting of contradictory information.

In contrast, only 5% of the participants who had correctly identified the aid’s

wrong diagnosis were not able to recall all necessary parameters that they had

sampled before.

This finding supports the looking-but-not seeing hypothesis derived from the

results of the first experiment.
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Chapter 5

Study III: The Impact of

Operator Functional State

In the third experiment we studied the influence of operator functional state and

degree of automation on operator performance in interaction with a decision aid.

Participants worked with AutoCAMS during the day and after prolonged wake-

fulness during the night.

Following the compensatory control model (Hockey, 1997; Hockey, 2003b) we

expected that primary task performance can be protected during normal operation

even after prolonged wakefulness, i.e., diagnostic performance and fault manage-

ment performance were expected to be stable. This would come at the cost of

secondary task performance decrements and increased effort and workload. Re-

turn to manual performance was expected to suffer.

Automation support has been shown to reduce negative effects of stressors,

and operators preferred higher DOA support when under stress (Sauer et al.,

2011; 2013). We expected that higher DOA support can help protect performance
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of sleep-deprived operators better than lower DOA support.

Effects on complacency and automation bias are difficult to predict based on

previous research. In the context of supervisory control tasks, the use of simplified

strategies and a shift towards less monitoring after one night of sleep deprivation

are reported (Hockey et al., 1998; Sauer et al., 2003). Accordingly, we would

expect participants to reduce verification effort and sample less information to

validate the automated aid’s diagnoses. As a consequence, the risk of commission

errors would be higher during the night after prolonged wakefulness.

Other research suggests that the propensity to take risks is reduced after sleep

deprivation (Chaumet et al., 2009; Killgore, 2007). However, other studies showed

the opposite, risk taking behavior was increased after sleep deprivation (Killgore,

Balkin, & Wesensten, 2006; for a review see Womack, Hook, Reyna, & Ramos,

2013). Sleep-deprived participants might be more careful in the interaction with

the automated aid and invest more effort in automation verification in order to

prevent overlooking failures. In this case, we would expect higher information

sampling and lower risk of commission errors.

5.1 Methodology

5.1.1 Participants

32 engineering students (25 male, 7 female) ranging in age from 19 to 32 years (M

= 24.9) participated in the study. Based on results in a Morningness-Eveningness

Questionnaire (Griefahn, Kuenemund, Broede, & Mehnert, 2001) extreme evening

types were excluded from the experiment. Participants were paid 150 Euro for
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completing the study.

5.1.2 Apparatus: AutoCAMS 2.0

The same simulation of a supervisory process control task, AutoCAMS 2.0, was

used as in the first and second experiment. The automated aid provided Informa-

tion Analysis Support and Action Implementation Support.

5.1.3 Design

The study used a 2 (Time of Day: Day vs. Night) x 5 (Block) x 2 (DOA: IA

Support vs. AI Support) design with DOA defined as between-subjects factor,

and Time of Day and Block defined as within-subject factors. Participants were

randomly assigned to one of the two DOA groups. Half of the participants (n =

16) worked with IA Support, the other half with AI Support. The sequence of day

and night session was balanced within each experimental group. The study design

is illustrated in Figure 5.1.

During Blocks 1 and 5, participants had to perform fault identification and

management manually, during Blocks 2, 3, and 4 they were supported by the

automated aid. During the first session (“Day” for half of the participants, “Night”

for the other half), six system faults occurred in each block which were all correctly

indicated and diagnosed by the automated aid. The second session was identical to

the first session, with one exception. During the second session an additional 7th

fault occurred at the end of Block 4 for which AFIRA provided a wrong diagnosis

(AFIRA proposed an Oxygen Valve Block when the actual system malfunction

was a Mixer Valve Block). This failure of AFIRA was implemented to simulate a
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“first automation failure effect”. Because the failure always occurred during the

second experimental session, those participants who started the experiment with

the day session experienced this failure at night. The other half of the participants

experienced it during the day session.

Faults in all blocks were matched with respect to type and complexity. Thus, it

was ensured that the fault identification and management procedures were equiv-

alent for all blocks. Both groups worked with the same set and distribution of

faults (see Table 5.1).
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Figure 5.1: Study III. Experimental Design. The figure shows the distribution of
system faults and automation failures across blocks, and the available automation
support for each block. Each column represents one system fault. The red column
represents the critical automation failure at the end of Block 4 in the second session
of the experiment.
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Table 5.1: Study III. Distribution and Timing of System Faults Across Blocks

Block Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Session 1 Valve Blockage Valve Leak Valve Stuck Open Valve Leak Valve Blockage Defective Sensor
Block 1 N2 O2 O2 N2 O2 O2

142s 462s 841s 1253s 1629s 2014s

Session 1 Defective Sensor Valve Blockage Valve Leak Valve Blockage Valve Stuck Open Valve Leak
Block 2 O2 O2 O2 N2 O2 N2

89s 486s 858s 1238s 1624s 2052s

Session 1 Valve Leak Valve Stuck Open Valve Leak Valve Blockage Defective Sensor Valve Blockage
Block 3 N2 O2 O2 O2 O2 N2

124s 479s 863s 1224s 1610s 2049s

Session 1 Valve Leak Valve Blockage Defective Sensor Valve Blockage Valve Leak Valve Stuck Open
Block 4 N2 O2 O2 N2 O2 O2

102s 459s 828s 1227s 1574s 2060s

Session 1 Valve Blockage Valve Leak Valve Stuck Open Valve Leak Valve Blockage Defective Sensor
Block 5 N2 O2 O2 N2 O2 O2

142s 462s 841s 1253s 1629s 2014s

Session 2 Valve Leak Valve Blockage Defective Sensor Valve Blockage Valve Leak Valve Stuck Open Valve Blockage
Block 4 N2 O2 O2 N2 O2 O2 Mixer

102s 414s 742s 1087s 1474s 1820s 2191s

Note. Blocks 1, 2, 3, and 5 were identical in Session 1 and 2. Fault distribution in Block 4 was identical in Session
1 and 2, but timing differed due to the additional Fault 7. Fault 7 in Block 4 in Session 2 (Mixer Valve Blockage)
was falsely diagnosed by AFIRA as O2 Valve Blockage.
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5.1.4 Procedure

The experiment consisted of two practice sessions and two experimental sessions

distributed across four days. The first practice session lasted four hours and in-

cluded familiarization with the AutoCAMS system. Participants were introduced

to the different subsystems and trained to manually identify and manage all possi-

ble system faults. On the second day, all participants had to perform a 45-minutes

test trial which served to test their acquired performance skills according to a

predefined criterion. All participants passed this test successfully.

On the third day, the first experimental session took place. For half of the

participants, this session was scheduled during the day (10:00 a.m. - 2:00 p.m.), for

the other half it was scheduled after 20+ hours of continuous wakefulness, during

the night at the nadir of the circadian system (4:00 a.m. - 8:00 a.m.). Before

the session started, participants were assigned to one of the two experimental

groups (Information Analysis Support or Action Implementation Support) and

familiarized with their aid. During this trial all recommendations provided by

AFIRA were correct. However, participants were informed that the aid’s reliability

is high but not perfect, and cautioned to validate the proposed diagnoses before

initiating a repair. After this introduction, the first session of the experiment

started, consisting of five blocks of 40 minutes each. During Blocks 1 and 5 all

participants worked manually without the assistance of AFIRA. During Blocks 2,

3, and 4 they were supported by AFIRA.

The second experimental session took place one week later. The second session

was identical to the first session, with the only difference that a first automation

failure occurred at the end of Block 4.
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Participants were instructed to get up at 8:00 a.m. on experimental days which

was controlled by an actiwatch. During both day and night session, sleepiness and

workload ratings were collected. The Psychomotor Vigilance Task (PVT; Wilkin-

son & Houghton, 1982; Dinges & Powell, 1985; Mueller, 2007) was administered

before the first block started. Subjective sleepiness was assessed before the first

block and after each single block. Subjective workload was assessed after each

block.

5.1.5 Dependent Measures

Dependent measures were derived from questionnaires and from data that were

logged during the experiment, including participants’ mouse-clicks and AutoCAMS

system dynamics.

Three primary task performance measures were calculated for each block:

(a) Percentage of correct diagnoses was the percentage of the six faults occur-

ring per block for which the first repair order sent was correct, a measure of quality

of fault identification performance.

(b) Fault identification time was defined as time (in seconds) from appearance

of the master alarm until the correct repair order was issued. This measure was

used to assess speed of fault identification performance.

(c) Out-of-target error was defined as the time (in seconds) the most criti-

cal system parameter (oxygen) was out of target range when a system fault was

present, a measure of quality of fault management performance.

Secondary task performance was assessed by two measures:

(a) Simple Reaction Time defined as mean response time (in milliseconds) to
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the appearance of the “communication link” icon (”connection check” task) and

(b) Prospective Memory Performance defined as proportion of entries of carbon

dioxide records that were provided within the correct time interval (at every full

minute with a tolerance of 5 seconds).

Only performance during periods when a participant had to deal with a system

fault was considered for secondary task performance.

Subjective workload was assessed by the NASA Task Load Index (NASA-

TLX; Hart & Staveland, 1988) and was defined as the mean of the ratings provided

for the six subscales.

Sleepiness measures included subjective measures and performance measures:

(a) Subjective sleepiness was assessed by the Stanford Sleepiness Scale (SSS;

Hoddes, Dement, & Zacone, 1972).

(b) Performance indicators of sleepiness were derived from the Psychomotor

Vigilance Task (PVT; Wilkinson & Houghton, 1982; Dinges & Powell, 1985). PVT

is a short-term simple visual reaction time task which was developed to evaluate

effects of arousal-related stress on performance. In this study we used the PEBL

PVT (Mueller, 2007). Measures included the overall mean of reaction times and

the mean of the 10% slowest reaction times.

Measures used to assess the effort invested in automation verification in-

cluded

(a) Automation Verification Time (AVT), defined as the time interval (in sec-

onds) from the appearance of the master alarm until sending a first repair order,

regardless of whether this repair order was correct or wrong.

(b)Automation Verification Information Sampling of Necessary System Param-

eters (AVIS-N), defined as the proportion of all system parameters accessed that
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were necessary to verify a given diagnosis unambiguously.

Automation bias was analyzed by the proportion of participants commit-

ting a commission error, defined as percentage of participants who followed the

diagnosis of the automated decision aid for Fault 7 in Block 4 during the second

experimental session although it was wrong.

5.2 Results

5.2.1 Sleepiness

Effects on subjective sleepiness were analyzed by a 2 (Time of Day) x 6 (Block) x

2( DOA) ANOVA. A significant main effect of Time of Day, F(1, 30) = 184.21, p

< .01, a significant Block effect, F(5, 150) = 10.65, p < .01, and a Time of Day

x Block interaction, F(5, 150) = 2.61, p < .03, were found. On a scale ranging

from 1 (“feeling active and vital, alert, wide awake”) to 7 (“almost in reverie,

sleep onset soon, lost struggle to remain awake”), subjective sleepiness was rated

higher during the night (M = 4.67) than during the day (M = 2.44). During the

night session sleepiness increased considerably across blocks whereas during the

day session it stayed on a low level. Subjective sleepiness is illustrated in Figure

5.2.

The PVT results were analyzed by a t-test. Mean response times were longer

after extended wakefulness (M = 309 ms) than during the day session (M = 293

ms), t(31) = 4.22, p < .01. A similar effect emerged for the 10% slowest reactions

(Ms = 446 ms and 417 ms), t(31) = 2.15, p < .05.
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Figure 5.2: Study III. Subjective Sleepiness

5.2.2 Primary Task Performance

Primary task performance measures were analyzed by a 2 (Time of Day) x 5

(Blocks) x 2 (DOA) ANOVA. Because of the operational relevance of performance

decrements in impaired functional states, the following report of effects involving

the Time of Day factor will not be limited to significant effects (p < .05) but also

consider effects which approach the conventional level of significance (.05 < p <

.10).

Percentage of correct fault identifications varied across blocks, F(4, 120) =

12.87, p < .01. On average 91.9% and 96.1% of faults were correctly identified in

the two manual blocks (Block 1 and 5). With automation support in Blocks 2 - 4
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this already high level of performance increased to an almost perfect performance,

more than 98% of all faults were correctly identified in Blocks 2 - 4. No effects of

Time of Day or DOA were found but a complex three-way interaction, F(4, 120)

= 2.70, p < .04, which, however, did not reveal any meaningful pattern of effects.

Fault identification time also profited considerably from automation support

in Blocks 2 - 4 compared to manual performance in Blocks 1 and 5, F(4, 120)

= 43.59, p < .01. Fault identification times tended to be shorter during the day

than during the night session, F(1, 30) = 3.87, p < .06. No main effect of DOA

emerged, F(1, 30) = 1.20, This pattern of effects was moderated by a significant

Time of Day x Block interaction, F(4, 120) = 2.97, p < .03, and a Time of Day x

Block x DOA interaction, F(4, 120) = 2.41, p = .05. This is illustrated in Figure

5.3.

Participants working with the less automated aid (IA Support) initially were

less able than the AI Support group to protect performance at night compared

to daytime performance but improved over time. They did not show any greater

difficulties of return-to-manual performance during the night than during the day.

In contrast, participants working with AI Support were able to perfectly main-

tain performance even in a state of sleep loss if automation support was available

(Blocks 2 - 4). However, they showed considerably greater difficulties of return-

to-manual performance during the night than during the day, reflected in the

day-to-night performance difference in Block 5.

A similar pattern of effects was found for fault management performance. Qual-

ity of fault management performance as reflected in out-of-target error improved

when participants were supported by the automated aid. In blocks with automa-

tion support, participants had shorter out-of-target times compared to manual

129



 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 3 4 5

F
au

lt
 I

d
en

ti
fi

ca
ti

o
n
 T

im
e 

[s
]

Block

IA Support - Day
IA Support - Night

AI Support - Day
AI Support - Night

Figure 5.3: * Study III. Primary Task Performance: Fault Identification Time

performance, F(4, 120) = 13.47, p < .01. As expected, participants with AI

Support showed better fault management performance than participants with IA

Support, F(1, 30) = 6.22, p < .02. Performance was better during the day than

during the night, F(1, 30) = 8.55, p < .01. Interactions approached significance,

Block x DOA, F(4, 120) = 2.31, p = .06, Time of Day x Block x DOA, F(4, 120)

= 2.13, p = .08. This is illustrated in Figure 5.4.

5.2.3 Secondary Task Performance

Performance of both secondary tasks was analyzed by a 2 (Time of Day) x 5

(Block) x 2 (DOA) ANOVA. A significant main effect of Time of Day, F(1, 30) =

130



 80

 100

 120

 140

 160

 180

 200

1 2 3 4 5

O
u
t-

o
f-

T
ar

g
et

 E
rr

o
r 

[s
]

Block

IA Support - Day
IA Support - Night

AI Support - Day
AI Support - Night

Figure 5.4: * Study III. Primary Task Performance: Out-of-Target Error

8.45, p < .01, and a significant Time of Day x Block interaction, F(4, 120) = 3.14,

p < .02, were found for reaction times in the connection check task. No effect of

DOA emerged for this measure. See Figure 5.5 for illustration. During the day,

an automation benefit was observed with faster response times during automation

supported blocks than during manual blocks. At night, secondary task response

times increased over time, even in the automation supported blocks.

For the prospective memory task (entry of CO2 levels), a significant Block effect

was found, F(4, 120) = 21.52, p< .01. Participants were better able to make timely

entries in blocks with automation support compared to manual performance. No

other effects were found.
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Figure 5.5: * Study III. Secondary Task Performance: Simple Reaction Time

5.2.4 Subjective Workload

Subjective workload was analyzed by a 2 (Time of Day) x 5 (Block) x 2 (DOA)

ANOVA. Results are depicted in Figure 5.6 and 5.7.

Analysis of subjective workload revealed a significant main effect of Time of

Day, F(1, 30) = 8.45, p < .01, and a significant Block effect, F(4, 120) = 3.17, p

< .02. Participants showed higher workload ratings during the night than during

the day. In addition, subjective workload was higher in the first block of each

session compared to all other blocks. Neither the main effect of DOA nor any of

the interaction effects were significant.

A separate analysis for the Effort scale of the NASA TLX revealed a main effect
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Figure 5.6: Study III. Subjective Workload

of Time of Day, F(1, 30) = 20.04, p < .01, and a Time of Day x Block interaction,

F(4, 120)= 2.92, p < .03. As expected, effort was rated higher during the night

than during the day. Also, during the night a sharp increase in subjective effort

ratings was observed after Block 4 in which the automation failure occurred.

5.2.5 Automation Verification During Reliable Automa-

tion Support

Automation verification behavior was analyzed by a 2 (Time of Day) x 3 (Block)

x 2 (DOA) ANOVA.
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Figure 5.7: Study III. Subjective Workload: Effort

For automation verification time, a significant Time of Day effect emerged, F(1,

30) = 6.37, p < .02. Participants spent significantly more time with automation

verification during the night (M = 22.7 s) than during the day (M = 19.6 s). For

information sampling, the main effect of Time of Day was significant, F(1, 30) =

4.34, p < .05. Participants sampled a higher portion of necessary parameters to

verify a given diagnosis during the night (M = 97%) than during the day (M =

92%). There was no effect of DOA or Block for either AVT or AVIS-N.

The effect of complexity of fault diagnosis on automation verification was an-

alyzed by a 2 (Time of Day) x 3 (Block) x 2 (DOA) x 3 (Complexity) ANOVA.

It was necessary to check two parameters for verification of low complexity errors,
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Figure 5.8: Study III. Automation Verification During Reliable Automation Sup-
port: Effect of Complexity

four parameters were necessary for medium complexity errors, and four steps were

necessary for verification of high complexity errors, two of them were regulatory

control actions the participants had to implement to be able to disambiguate two

possible diagnoses. A marginally significant effect of Time of Day, F(1, 30) = 3.98,

p = .055 and a significant effect of Complexity F(2, 60) = 12.20, p < .01 emerged.

The effects are depicted in Figure 5.8. More parameters were sampled during the

night. While low complexity errors were checked almost completely (M = 98.6%),

only 91.9% of the necessary parameters of medium complexity errors were checked.

For high complexity errors 95.1% of the necessary parameters were checked.
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5.2.6 Automation Bias and Automation Verification in Case

of Automation Failure

Clear evidence for automation bias leading to a commission error was found by

analyzing the fault identification performance for Fault 7 in Block 4 of the second

experimental session when the automated aid failed for the first time and provided

a wrong diagnosis. The strength of this effect was moderated by the operator

functional state. Whereas seven of the 16 participants (43.8%) who experienced

the automation failure during the day followed the diagnosis even though it was

wrong, only one of the 16 participants (6.3%) who experienced the automation

failure during the night committed a commission error. A 2 (Time of Day) x 2

(DOA) ANOVA revealed a significant Time of Day effect, F(1, 28) = 6.63, p <

.02. No effect of DOA was found.

In order to investigate whether the information sampling behavior of partici-

pants who committed a commission error differed from the verification behavior

of participants who detected the automation failure, an additional 2 (Commission

Error) x 4 (Block) ANOVA was run, contrasting the extent to which both groups

of participants verified the diagnoses of the automated aid for the 18 system faults

in Blocks 2 - 4 for which AFIRA provided a correct diagnosis as well as the critical

Fault 7 in Block 4 for which the diagnosis was wrong. Only those 16 partici-

pants who were confronted with the false diagnosis during the day session were

considered in this analysis.

For automation verification time, a significant Block effect, F(3, 42) = 11.05, p

< .001, Commission Error effect F(1, 14) = 7.01, p < .02, and Commission Error

x Block interaction, F(3, 42) = 12.46, p < .001, were found. Automation verifica-
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Figure 5.9: Study III. Automation Bias: Automation Verification Time for Blocks
2, 3, and 4 and the False Diagnosis.

tion time was slightly higher for participants not committing a commission error

when the automated aid provided correct diagnoses compared to participants who

committed a commission error. When AFIRA provided a false diagnosis, automa-

tion verification time stayed at the same level for participants who committed a

commission error while it sharply increased for participants who detected that the

diagnosis was wrong. The effects are depicted in figure 5.9.

For AVIS-N, a main effect of Commission Error, F(1, 14) = 5.36, p < .04, and

a Commission Error x Block interaction, F(3, 42) = 3.22, p < .04, were found.

The participants who committed a commission error during the day checked less
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Figure 5.10: * Study III. Automation Bias: Automation Verification Information
Sampling of Necessary System Parameters for Blocks 2, 3, and 4 and the False
Diagnosis.

necessary parameters (M = 75.5%) than the participants who did not commit a

commission error (M = 94.9%). Furthermore, participants committing a commis-

sion error reduced their automation verification effort over time while the sampling

rate stayed at a very high level for the other participants. For the critical system

Fault 7 in Block 4 participants committing a commission error on average cross-

checked only 61.5% of the necessary parameters, whereas participants who detected

the wrong diagnosis fully (M = 100%) verified the aid’s diagnosis. These effects

are illustrated in Figure 5.10.

A detailed analysis of information sampling behavior of participants who com-
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mitted a commission error during the day session revealed that out of the seven

participants who followed the aid’s false diagnosis, three did so despite having ac-

cessed all necessary parameters. The other four participants accessed only a part

(n = 3) or none (n = 1) of the necessary parameters.

To check the aid’s diagnosis (Oxygen Valve Block), it was necessary to sample

four parameters (Oxygen Tank Level, Oxygen Flow, Nitrogen Flow, Standard

Flow Rates). The Oxygen Tank Level and Oxygen Flow readings confirmed the

proposed diagnosis. These two parameters were accesses by all participants except

the one that sampled no parameters at all. It was necessary to additionally access

Nitrogen Flow and Standard Flow Rates to falsify the proposed diagnosis and

identify the true system malfunction (Mixer Valve Block). All four participants

who did not sample all necessary information omitted Standard Flow Rates, three

of them additionally omitted Nitrogen Flow.

The participant who committed a commission error during the night also failed

to check Nitrogen Flow and Standard Flow Rates. Fault 7 in Block 4 was the first

time that he did not check all necessary parameters when the aid proposed an

Oxygen Valve Block. In all preceding blocks, he sampled 100% of the necessary

parameters when the aid proposed an Oxygen Valve Block, which occurred once

per block. There were three cases in which he did not sample 100% of the necessary

parameters, all of them during his second experimental session at night: oxygen

sensor in Block 2, nitrogen valve block in Block 3, and nitrogen valve block in

Block 4.
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5.3 Discussion

5.3.1 Effects of Operator State and DOA on Routine and

Failure Performance

In study III, performance after prolonged wakefulness was studied, simulating a

first night shift. The control variable Subjective Sleepiness confirmed that par-

ticipants were sleepier during the night session than during the day session. This

was further substantiated by the Psychomotor Vigilance Task performance which

was better during the day than during the night, as reflected in the mean response

time as well as the 10% slowest reactions.

Providing automation support benefitted routine performance and could help

operators protect their performance even after prolonged wakefulness. Accuracy of

diagnostic performance, which was already high in manual blocks, further increased

when automation support was provided. Speed of diagnostic performance also

improved with the introduction of an automated aid, moderated by DOA and Time

of Day. Participants working with the higher DOA aid (AI Support) were better

able to protect performance during the night compared to day time performance

when the aid worked reliably. Participants working with the lower DOA aid (IA

Support) were less able to protect performance in the beginning but improved

over time. On the other hand, participant of the IA Support group showed no

greater performance decrements when returning to manual performance during

the night than during the day, while the AI Support group showed rather poor

manual performance during the night compared to daytime performance.

A similar pattern of effects was found for fault management performance. Also
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for fault management, performance improved when automation support was pro-

vided. Performance was better during the night than during the day. The AI

Support group profited even more than the IA Support group, replicating results

of study I. The automated aid started the fault management as soon as participants

approved, so the fault management performance of the AI Support group shows

the optimal fault management implemented by the automation. However, just as

for speed of diagnostic performance, when returning to manual performance, fault

management performance suffered more during the night in the higher DOA group

(AI Support) than the lower DOA group (IA Support).

During the day session, secondary task performance improved when automa-

tion support was provided. However, during the night session, secondary task

performance could not be protected, response times increased over time even with

automation support.

As expected, subjective workload was higher during the night than during the

day. Effort was not only higher during the night than during the day. It also

showed a sharp increase after Block 4 in which the automation failure occurred.

These findings suggests that participants tried to protect their primary task

performance (diagnosis and fault management), and in large parts they were able

to do so even after prolonged wakefulness. However, protecting primary task

performance was only possible at the expense of secondary task performance and

increased subjective workload and effort. These results are in line with earlier

results from Hockey et al. (1998) and support Hockey’s compensatory control

model (Hockey, 1997; Hockey, 2003b).

Providing higher automation support could better help participants keep a

high level of performance even when sleep-deprived. However, higher automation
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support seemed to amplify performance decrements when returning to manual per-

formance. So while high automation support can help protect performance after

sleep deprivation when the aid works reliably, it can have detrimental effects on

performance when the aid fails and the operator has to return to manual per-

formance. This supports earlier findings by Endsley & Kiris (1995) suggesting

that risks of out-of-the-loop unfamiliarity and related issues of return-to-manual

performance increase with higher levels of automation.

Lower automation support was less able to protect performance in sleep-deprived

operators. However, decrements when returning to manual performance were far

less severe than with higher DOA support.

When decisions about providing automation are to be made, this has to be

kept in mind. When the likelihood of an automation failure and the costs associ-

ated with an automation failure are low, higher DOA support should be preferred

as it is better able to protect routine performance even in sleep-deprived oper-

ators. However, if automation failure is likely or associated costs are high, and

operators are expected to return to manual performance also during night shifts,

lower DOA support might be the better choice. Even if routine performance after

prolonged wakefulness is weaker with lower DOA support, manual performance

after automation break down suffers far less with lower DOA than higher DOA

support.

5.3.2 Automation Verification and Automation Bias

Interestingly, we did not find evidence that the risk of complacency and automation

bias might be elevated after sleep deprivation. In this study, we found participants
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to spend more time verifying the aid’s proposed diagnosis and sample more nec-

essary parameters before confirming a diagnosis during the night than during the

day.

This finding is in contrast with earlier findings by Hockey et al. (1998). Al-

though they found protection of primary task performance at the expense of sec-

ondary task performance and effort, as was found in this study, they found a

decrease in system monitoring. In contrast, in the current study, participants in-

creased verification time and sampling rate during the night. This might have

been an attempt to keep themselves involved and awake. The task did not offer a

lot to do, so sampling information might have served as a means to get themselves

involved and fight sleepiness. However, participants reduced sampling of relevant

information even at night, so fighting off sleepiness might not be the sole reason

for a higher sampling rate of necessary information at night.

Participants might have been aware of the elevated risk of missing an automa-

tion failure when they are sleepy, and as a countermeasure, they sampled more

necessary information to make sure the aid’s proposed diagnosis was correct. This

is in accordance with results from Chaumet et al. (2009) and Killgore (2007) who

showed a reduced propensity to take risks after sleep deprivation. Sleepy operators

might be more careful and attentive in interaction with an automation and invest

more effort in verifying its recommendation before accepting it, thus reducing the

risk of missing automation failures. This would also fit results from a simulator

study with anesthesiologists which showed that monitoring performance degraded

after sleep deprivation, however, monitoring efficiency for short periods in alarm

situations did not degrade (Beatty, Ahern, & Katz, 1977).

The higher information sampling rate during the night led to lower commis-
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sion error rates. During the night session, only one participant followed the aid’s

wrong recommendation, whereas during the day session, seven participants made

a commission error. This effect was directly related to the automation verification

behavior. During the night session, automation verification time and automation

verification information sampling was high in all blocks. However, participants

who committed a commission error during the day session sampled less necessary

parameters in preceding blocks and reduced sampling over time. This replicates

earlier findings by Manzey and colleagues (Manzey et al., 2006; Bahner, Hüper et

al., 2008). When the automation failed, verification time was at the same level as

in the preceding blocks, and information sampling was incomplete. In contrast,

for participants who realized that the aid’s advice was wrong, information sam-

pling was complete and automation verification time increased drastically when

the automation provided a wrong diagnosis. Participants realized that there was

an inconsistency between the aid’s diagnosis and the system’s parameters, so they

invested more time in checking the system raw data before they finally did not

accept the proposed diagnosis and instead sent an alternative repair order. This

replicates results from study I.

Out of the eight participants who followed the aid’s wrong advice, three did so

despite complete information sampling. One participant accessed no information

at all. The other four participants sampled a part of the necessary information.

Interestingly, they accessed those parameters that confirmed the proposed diag-

nosis but omitted the falsifying information that would have enabled them to

identify the true system malfunction. This replicates results from study I and II

and shows yet again that incomplete automation verification is but one possible

cause of commission errors.
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Chapter 6

General Discussion

The present work intended to examine performance benefits and performance

decrements in interaction with an automated decision aid. In three laboratory

experiments, we studied the effects of degree of automation, system experience,

and operator functional state on routine performance and failure performance as

well as complacency and automation bias.

A simulated process control task served as an experimental task. Fault diag-

nosis and management was either performed manually or with the support of an

automated aid. Analyzing information sampling in relation to a predefined optimal

sampling allowed us to study complacency independent of possible performance

consequences such as commission errors.

Results show that routine performance benefits from providing automation

support. Accuracy and speed of diagnostic performance increased, fault manage-

ment performance and secondary task performance improved, subjective workload

decreased. On the downside, we found complacency and automation bias, skill

degradation, and increased workload when returning to manual performance. De-
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gree of automation, system experience, and operator functional state affected rou-

tine performance and failure performance as well as complacency and automation

bias.

6.1 Effects of Degree of Automation

In study I, the best diagnostic and fault management performance and the lowest

workload was found for the highest DOA support. Also secondary task perfor-

mance benefited the most from the highest DOA. However, the highest DOA was

also associated with increased workload and performance decrements when return-

ing to manual performance: fault management performance decreased compared

to manual performance before automation support. However, performance losses

are not seen in the diagnostic performance. During training, participants were

instructed to always check the automatically proposed diagnoses. Even with au-

tomation support, participants went through the diagnostic process to validate

the proposed diagnosis. However, implementation of fault management steps was

done automatically in the highest DOA condition, so there was no further practice

of fault management. This resulted in a loss of skills needed to perform fault man-

agement manually. Freeing operators in the highest DOA condition from manual

fault management led to an unexpected effect during the diagnostic process. Op-

erators also omitted control actions that were needed in the diagnostic process.

For low and medium complexity errors that did not need control actions for verifi-

cation, there was no difference between DOA groups. In study III, this effect was

not found. Verification did not differ between low and high DOA. Complexity of

verification affected information sampling rate.
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Risk of commission errors was independent of DOA, as results from study I

and III showed.

6.2 Effects of Operator Functional State

Results from study III confirmed that providing automation could help protect

performance even after prolonged wakefulness. High DOA support proved to

be especially helpful during reliable automation support. However, performance

decrements were manifest when returning to manual performance during the night.

Lower DOA support could reduce the performance costs when returning to manual

performance during the night. On the other hand, lower DOA was less able to

help protect routine performance after sleep-deprivation.

These results suggest that desicions about automation should take into account

the risk of automation failure and the cost of automation failure. While higher

DOA can better support routine performance, even in sleep-deprived operators,

detrimental effects on failure performance are increased. When automation is very

unlikely to fail, or failure costs are tolerable, higher DOA can improve total human-

automation performance more than lower DOA. However, if automation failure is

likely, or costs are unacceptable, then lower DOA is preferable over higher DOA,

as failure performance costs are less severe.

Protecting primary task performance was only possible at the expense of sec-

ondary task performance and increased subjective workload and especially effort,

supporting the compensatory control model (Hockey, 1997; 2003b). In contrast

to earlier findings (Hockey et al., 1998), operators did not adopt simpler moni-

toring strategies, instead automation verification was increased during the night.

147



This might have served as a strategy to keep involved and awake. However, to-

tal information sampling was not increased but specifically sampling of necessary

information. Participants seemed to be aware of the elevated risks at night and

invested more effort in information sampling in order to not miss an automation

failure. This more attentive sampling payed off when the automation failed, only

one participant followed a wrong automation advice at night, whereas during the

day, commission error rate was rather high.

6.3 Effects of System Experience

Results of study II showed that early failure experience did not only reduce trust

but also led to a higher information sampling rate and reduced the risk of com-

mission errors. This suggests that automation failure experience can reduce au-

tomation bias effects. However, it can not prevent them completely.

Trust recovered slowly when the automation worked reliably again. Trust de-

crease after a second automation failure was not as sharp as after a first automation

failure. This shows that participants were able to calibrate their trust according

to the automation’s reliability. However, experiencing an automation failure after

a longer time of working with a perfectly reliable automation lead to a sharper

trust decrease than early failure experience, which would not be expected based

on the objective reliability.

The effect of failure experience on information sampling behavior was more en-

during. Unlike trust which increased again with increasing reliability, information

sampling stayed at a very high level throughout the experiment. This lead to a

reduced risk of commission errors but did not prevent them completely.
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It would be of great value for training design to know if late failure experience

also brings about even stronger effects in information sampling just as it did in

trust ratings. Since study II ended right after the late false diagnosis, we have no

data about the further development of sampling behavior, so this remains an open

question.

The number of correct diagnosis that were experienced prior to an automation

failure did not affect the risk of commission errors. This is positive as is shows that

the risk of commission errors did not increase even after a longer time of working

with the aid. However, the total time of working with the aid and the number of

diagnosis during this time was low compared to real-world systems. Based on this

data it is difficult to predict how the risk might change if an operator works with

an aid for a much longer time.

6.4 Complacency and Automation Bias

Sampling of relevant information decreased over time while sampling of necessary

information stayed on a high level. This suggests that automation verification was

optimized, saving resources while still controlling the automation. However, the

more complex the validation procedure was, the less parameters were checked.

Despite high automation verification, a high portion of the participants com-

mitted a commission error, following a wrong automation advice. Results of study

I and III show that participants committing a commission error spent about the

same amount of time checking system information in preceding trial with reliable

automation as participants who overrode the automation. However, when the

automation’s suggested diagnosis was wrong, verification time sharply increased
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for participants who detected the false diagnosis. In contrast to participants who

followed the wrong diagnosis, they not only sampled the information but realized

that the system information did not match the suggested diagnosis and invested

more time in checking the system’s raw data.

A high portion of commission errors were made despite complete automation

verification in all three studies. Information sampling data and questionnaire data

from study II suggest that there are three possible causes that can lead to com-

mission errors: a) Incomplete automation verification. Attention is withdrawn

from the automated task, and automation is not sufficiently verified any more.

b) Complete automation verification without attentive processing of contradictory

information, analogous to a “looking-but-not-seeing” effect. System information

is reported that is to be expected given the diagnosis, replicating the “phantom

memory phenomenon” reported by Mosier et al. (1998, 2001). c) Discounting of

contradictory information. Only one participant in study II was aware of contra-

dictory system information and followed the automation advice anyway.

6.5 Attention Allocation Strategies & Overall Sys-

tem Performance

Given that most participants in our studies fall into group a) or b), commis-

sion errors seem to be more of a problem of attention bias than decision bias.

Operators focus on unsupported tasks and pay less attention to the automated

tasks. This way they can improve performance in unsupported tasks. With lim-

ited mental resources it can be an effective coping strategy to allocate attention to
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non-automated tasks and rely on the automation to deal with the tasks allocated

to the automation. Considering the demands of concurrent tasks, it can lead to

short-term advantages in the overall human-automation system performance to

be complacent. As long as the automation works reliably, overall performance

benefits.

Issues can arise when the automation fails and automation advice is wrong, or

when the automation support breaks down completely and the operator has to re-

sume manual performance. After experiencing an automation failure, participants

focus more on automation verification. This reduces the risk of commission errors

but comes at the expense of secondary task performance decrements. Depending

on the frequency of automation failure and the costs associated with missing or

delayed detection of automation failures, it can still be beneficial for the combined

human-automation system performance to invest more in unsupported tasks and

shift attention away from automation verification.

Inattentive processing of system information seems to be a greater problem

than incomplete verification. Incomplete verification could be detected even in

real-time, given that optimal information sampling can be predefined. Actual

operator sampling behavior can be compared with the optimal sampling, and if

sampling is incomplete, operators can be reminded to check all necessary informa-

tion before accepting automation advice. However, a high portion of commission

errors happened despite complete verification. Sampling all necessary system in-

formation does not guarantee that this information is attentively processed. Thus,

monitoring the operator’s information sampling behavior could only prevent a

small portion of commission errors.

Even if the accessed parameters were not attentively processed, which was
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shown by the AVQ in study II, it still seems to help to do the necessary diagnostic

procedure in automation supported blocks. After automation break down and

returning to manual performance, diagnosis of system faults was fast and correct.

Fault identification times improved compared to the first manual block (study I and

III). Even if diagnosing system faults was supported by the aid and participants

only had to validate the proposed diagnosis, this was enough to stay involved in the

diagnostic process and keep up or even enhance system knowledge and diagnostic

capabilities. In study III, fault identification times were lower already in Block

1 compared to performance in study I. In study III, there was an additional 45-

minutes test session after the 4-hours training session, that was used to examine

the acquired performance skills. So participants in study III had more practice in

manual diagnosis than study I participants.

6.6 Practical Conclusions

High degrees of automation can highly benefit performance when the automation

works reliably. However, as an automation can fail, countermeasures should be

taken in order to prevent possible negative effects which were especially noticeable

with high DOA support. Lower DOA support did not bring about the same perfor-

mance advantages, but performance decrements in case of automation break down

were also less severe. Practicing cognitive or manual skills that are not needed

with automation support on a regular basis can help prevent skill degradation.

This can be done in separate training sessions in a safe surrounding like a sim-

ulator. Another way could be adaptive automation that gives tasks back to the

operator when workload is low and supports the operator when workload is high.
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A problem here might be determining workload in real-time.

When automation fails, failure should be salient. When the operator has other

tasks to work on, he will take attention away from the automated tasks and con-

centrate more on non-assisted tasks. When the automation is not sure about a

decision because values the decision is based on are close to a decision criterion, or

system information is unclear or ambiguous, or environmental information is clut-

tered, it should be made clear to the operator that the automated decision should

be cross-checked as failure is possible or even highly probable. However, when the

automation is sure based on the information that is available for a decision, vali-

dation should not be expected. Automatic procedures that check if the operator

has fulfilled his trained validation procedures will necessarily fail as operators can

check information without attentively processing it.

Experience of automation failure can decrease the risk of complacency and

automation bias. This should be considered in training of operators. However, it

is important to also keep in mind that experiencing automation failure in training

cannot fully prevent complacency and automation bias.

Automation should be built with the limitations of operators in mind, and

some operators will be complacent. Operators will rely on the automation when

automation is in place, and they will not always fully and attentively cross-check

the automation. As complacency and automation bias cannot fully be prevented,

countermeasures should be implemented in automated systems that can fail. This

is especially important if automation failure is associated with high costs.

If an automation can inform the operator about how sure it is about a decision,

the operator should have access to this information. In addition to a diagnosis,

a level of certainty could be indicated. This way, an operator could concentrate
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on automation verification and check system information to back up the automa-

tion’s advice in case the automation is not certain about its decision. In case an

automation decision is clear, there is no need to seek backup information, instead

the operator can continue working on unsupported tasks. In the context of au-

tomated driving this has beed shown to be a promising approach. Drivers who

received information about system uncertainty took over manual control faster

when needed, and could perform tasks not related to driving without compromis-

ing safety (Helldin, Falkman, Riveiro, & Davidsson, 2013). Situation awareness

and automation acceptance also benefit from providing uncertainty information

(Beller, Heesen, & Vollrath, 2013). Also in the context of aviation, presenting

levels of confidence could protect performance in case of false recommendations

(McGuirl & Sarter, 2006).

When system failure is highly unlikely and failure costs are low, it may be

beneficial to be complacent even if that can lead to omission and commission

errors. For example, in a traffic situation during rush hour in town it may be safer

to pay more attention to the traffic and blindly follow the recommendations of

an navigational aid even if the aid might suggest a suboptimal route. However,

if failure costs are high, as is the case in safety critical domains like aviation or

medicine, complacency and automation bias and the associated errors in case of

automation failure can be a serious threat to safety. This needs to be taken into

account when designing automation.
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6.7 Limitations

In all three studies, automation reliability was high, but compared to automation

reliabilities found in real systems, it was still rather low. With the low number of

events that can be realized in an experiment using a simulation such as AutoCAMS,

one automation failure has a dramatic effect on reliability. It would need a lot more

events to realize reliability rates that would be acceptable in industry, aviation, or

medicine.

Although the simulated process control task used in the experiments is a rather

complex experimental task, it is still simple compared to real-world process control

tasks. Furthermore, the experiments lasted only a few hours. Operators use

automation for years. While we already found effects in these short-term human-

automation interaction scenarios, some performance consequences might only show

in the long run, or might be more or less severe than we found in these studies.

In our studies, we had no access to real process control systems or operators

of such systems. Inviting only students with a background in engineering was the

best compromise. Students with no technical background or understanding proved

to be unsuitable already in the pilot studies. Psychology students were often not

able to diagnose system faults manually after four hours of training.
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Appendix A

The 10-Level Model of

Human-Automation Interaction

Table A.1: The 10-Level Model of Human-Automation Interaction, adapted from
Sheridan & Verplank, 1978, pp. 8-17 – 8-19 (Levels of Automation in Man-
Computer Decision-Making)

1 human does the whole job up to the point of turning over to the computer
to implement

2 computer helps by determining the options
3 computer helps determine options and suggests one, which human need

not follow
4 computer selects action and human may or may not do it
5 computer selects action and implements it if human approves
6 computer selects action, informs human in plenty of time to stop it
7 computer does the whole job and necessarily tell human what it did
8 computer does whole job and tells human what it did only if human ex-

plicitly asks
9 computer does whole job and tells human what it did and it, the computer,

decides he should be told
10 computer does whole job if it decides it should be done, and if so tell

human, it it decides he should be told
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Appendix B

Models of Complacency and

Automation Bias
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Appendix C

Material Study I

The material can be found on the enclosed CD.

C.1 Training Material Day 1

Training Day 1 (power point presentation)

Handout Necessary Parameters

Handout Flow Chart and Control Panel

Questions for Oral Repetition of Diagnosis

Group Proficiency Test

Individual Proficiency Test
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C.2 Training Material Day 2

Training Day 2 for Manual Group (power point presentation)

Training Day 2 for Information Analysis Support Group (power point presenta-

tion)

Training Day 2 for Action Selection Support Group (power point presentation)

Training Day 2 for Action Implementation Support Group (power point presenta-

tion)

Questions for Oral Repetition of Diagnosis

C.3 Distribution and Timing of System Faults

During Training
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Table C.1: Training Study I. Distribution and Timing of System Faults

Block Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

Training Day 1 Defective Sensor Valve Blockage Defective Sensor Valve Stuck Open Valve Leak Valve Blockage
O2 O2 N2 O2 N2 Mixer
98s 466s 845s 1198s 1602s 1988s
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Appendix D

Material Study II

The material can be found on the enclosed CD.

D.1 Training Material Day 1

Training Day 1 (power point presentation)

Handout Necessary Parameters

Handout Flow Chart and Control Panel

Questions for Oral Repetition of Diagnosis

Group Proficiency Test

Individual Proficiency Test
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D.2 Proficiency Test Day 2

Questions for Oral Repetition of Diagnosis

Proficiency Test AutoCAMS (power point presentation)

Proficiency Test Decision Tree

D.3 Material Day 3

Training Day 3 for Groups 1 - 4 (power point presentation)

Questions for Oral Repetition of Diagnosis

Automation Verification Questionnaire

Reliability Questionnaire

D.4 Distribution and Timing of System Faults

During Training and Proficiency Test
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Table D.1: Training Study I. Distribution and Timing of System Faults

Block Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Training Day 1 Valve Stuck Open Valve Blockage Valve Leak Valve Blockage Valve Leak Defective Sensor Valve Blockage
O2 N2 O2 O2 N2 O2 Mixer
104s 476s 878s 1221s 1614s 1999s 2398s

Training Day 2: Valve Leak Defective Sensor Valve Blockage Valve Stuck Open Valve Blockage Valve Leak Valve Blockage
Proficiency Test O2 O2 N2 O2 Mixer N2 O2

98s 466s 845s 1198s 1602s 1988s 2378s
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Appendix E

Material Study III

The material can be found on the enclosed CD.

E.1 Training Material Day 1

Training Day 1 (power point presentation)

Handout Necessary Parameters

Handout Flow Chart and Control Panel

Questions for Oral Repetition of Diagnosis

Group Proficiency Test

Individual Proficiency Test
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E.2 Proficiency Test Day 2

Questions for Oral Repetition of Diagnosis

Proficiency Test AutoCAMS (power point presentation)

Proficiency Test Decision Tree

E.3 Material Day 3

Training Day 3 for Information Analysis Support Group (power point presenta-

tion)

Training Day 3 for Action Implementation Support Group (power point presenta-

tion)

Questions for Oral Repetition of Diagnosis

E.4 Material Day 4

Training Day 4 for Information Analysis Support Group (power point presenta-

tion)

Training Day 4 for Action Implementation Support Group (power point presenta-

tion)

Questions for Oral Repetition of Diagnosis
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E.5 Distribution and Timing of System Faults

During Training and Proficiency Test
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Table E.1: Training Study I. Distribution and Timing of System Faults

Block Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Training Day 1 Valve Stuck Open Valve Blockage Valve Leak Valve Blockage Valve Leak Defective Sensor Valve Blockage
O2 N2 O2 O2 N2 O2 Mixer
104s 476s 878s 1221s 1614s 1999s 2398s

Training Day 2: Valve Leak Defective Sensor Valve Blockage Valve Stuck Open Valve Blockage Valve Leak Valve Blockage
Proficiency Test O2 O2 N2 O2 Mixer N2 O2

98s 466s 845s 1198s 1602s 1988s 2378s

186


	Zusammenfassung
	Abstract
	Table Of Contents
	1 Introduction
	1.1 Function Allocation & Operator Performance
	1.1.1 Function Allocation
	1.1.2 Degree of Automation and Operator Performance

	1.2 Trust, Distrust, and Overtrust in Automation
	1.3 Complacency & Automation Bias
	1.3.1 Complacency
	1.3.2 Automation Bias
	1.3.3 Integrated Model of Complacency and Automation Bias

	1.4 Loss of Situation Awareness & Loss of Manual Skills
	1.5 Automation and Operator Functional State
	1.6 Current Research

	2 AutoCAMS 2.0
	2.1 Operator Primary Task
	2.2 Concurrent Tasks
	2.3 Automation Support
	2.4 Access to Raw Data
	2.5 System Faults, Diagnosis, and Recovery
	2.5.1 Decreasing Oxygen Level: Leak of an Oxygen Valve versus Blockage of an Oxygen Valve versus Mixer Valve Blockage
	2.5.2 Decreasing Pressure: Leak of a Nitrogen Valve versus Blockage of a Nitrogen Valve versus Defective Mixer Valve
	2.5.3 Increasing Oxygen Level: Stuck-open Oxygen Valve versus Defective Oxygen Sensor
	2.5.4 Increasing Pressure: Stuck-open Nitrogen Valve versus Defective Pressure Sensor
	2.5.5 Methodological Improvements


	3 Study I: The Impact of Degree of Automation
	3.1 Methodology
	3.1.1 Participants
	3.1.2 Apparatus: AutoCAMS 2.0
	3.1.3 Design
	3.1.4 Procedure
	3.1.5 Dependent Measures

	3.2 Results
	3.2.1 Primary Task Performance
	3.2.2 Secondary Task Performance
	3.2.3 Subjective Workload
	3.2.4 Return-to-Manual Performance
	3.2.5 Automation Verification During Reliable Automation Support
	3.2.6 Automation Bias and Automation Verification in Case of Automation Failure

	3.3 Discussion
	3.3.1 Performance Benefits
	3.3.2 Effects of Degree of Automation on Routine Performance
	3.3.3 Effects of Degree of Automation on Failure Performance
	3.3.4 Automation Verification and Automation Bias


	4 Study II: The Impact of System Experience
	4.1 Methodology
	4.1.1 Participants
	4.1.2 Apparatus: AutoCAMS 2.0
	4.1.3 Design
	4.1.4 Procedure
	4.1.5 Dependent Measures

	4.2 Results
	4.2.1 Perceived Reliability and Subjective Trust in Automation
	4.2.2 Automation Verification During Reliable Automation Support
	4.2.3 Automation Bias and Automation Verification in Case of Automation Failure
	4.2.4 Microanalysis of Commission Errors

	4.3 Discussion

	5 Study III: The Impact of Operator Functional State 
	5.1 Methodology
	5.1.1 Participants
	5.1.2 Apparatus: AutoCAMS 2.0
	5.1.3 Design
	5.1.4 Procedure
	5.1.5 Dependent Measures

	5.2 Results
	5.2.1 Sleepiness
	5.2.2 Primary Task Performance
	5.2.3 Secondary Task Performance
	5.2.4 Subjective Workload
	5.2.5 Automation Verification During Reliable Automation Support
	5.2.6 Automation Bias and Automation Verification in Case of Automation Failure

	5.3 Discussion
	5.3.1 Effects of Operator State and DOA on Routine and Failure Performance
	5.3.2 Automation Verification and Automation Bias


	6 General Discussion
	6.1 Effects of Degree of Automation
	6.2 Effects of Operator Functional State
	6.3 Effects of System Experience
	6.4 Complacency and Automation Bias
	6.5 Attention Allocation Strategies & Overall System Performance
	6.6 Practical Conclusions
	6.7 Limitations

	References
	A The 10-Level Model of Human-Automation Interaction
	B Models of Complacency and Automation Bias 
	C Material Study I
	C.1 Training Material Day 1
	C.2 Training Material Day 2
	C.3 Distribution and Timing of System Faults During Training

	D Material Study II
	D.1 Training Material Day 1
	D.2 Proficiency Test Day 2
	D.3 Material Day 3
	D.4 Distribution and Timing of System Faults During Training and Proficiency Test

	E Material Study III
	E.1 Training Material Day 1
	E.2 Proficiency Test Day 2
	E.3 Material Day 3
	E.4 Material Day 4
	E.5 Distribution and Timing of System Faults During Training and Proficiency Test


