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ABSTRACT
Thermoacoustic oscillations in axisymmetric annular com-

bustors are generally coupled by degenerate azimuthal modes,
which can be of standing or spinning nature. Symmetry breaking
due to the presence of a mean azimuthal flow splits the degen-
erate thermoacoustic eigenvalues, resulting in pairs of counter-
spinning modes with close but distinct frequencies and growth
rates. In the present study, experiments have been performed us-
ing an annular system where the thermoacoustic feedback due to
the flames is mimicked by twelve identical electroacoustic feed-
back loops. The mean azimuthal flow is generated by fans. We
investigate the standing/spinning nature of the oscillations as
a function of the azimuthal Mach number for two types of ini-
tial states, and how the stability of the system is affected by the
mean azimuthal flow. It is found that spinning, standing or mixed
modes can be encountered at very low Mach number, but increas-
ing the mean velocity promotes one spinning direction. At suffi-
ciently high Mach number, only spinning modes are observed in
the limit cycle oscillations. In some cases, the initial conditions
have a significant impact on the final state of the system. It is
found that the presence of a mean azimuthal flow increases the
acoustic damping. This has a beneficial effect on stability: it of-
ten reduces the amplitude of the self-sustained oscillations, and
can even suppress them in some cases. However, we observe that
the suppression of a mode due to the mean flow may destabilize
another one. We discuss our findings in relation with an existing
low-order model.
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NOMENCLATURE

Roman
AAA, a j,k Acoustic frequency response matrix and its component
BBB, b j,m Modal basis matrix and its component
c Speed of sound
CCC, cm, j Modal response matrix and its component
DDD, EEE, FFF State-space model matrices
f Frequency
h Coefficient of the power-law velocity profile
III Identity matrix
i Imaginary unit

√
−1

j Tube index
M Mach number
m Azimuthal mode number
N Number of tubes
n Flame model gain
ppp Pressure vector
qqq Flame model output vector
r Radial coordinate
R Mean radius of the annular cavity
Rin Radius of the inner annulus
Rout Radius of the outer annulus
Re Reynolds number
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s Laplace variable
uθ Mean azimuthal velocity
uuu RTC output/loudspeakers input vector
t Time
x Damped harmonic oscillator variable
yyy Microphone output voltage vector
z Axial coordinate

Greek
α Damping coefficient
δ Saturation limit
ζ Linear damping factor
θ Angular coordinate
σ Growth rate
τ Flame model time delay
ω Angular frequency
∆ω Width of the resonant peak

Superscripts
ˆ(·) Fourier transform
˙(·) First time derivative
¨(·) Second time derivative
(·)± Co- and counter-swirl component

Abbreviations
EAF Electroacoustic feedback
FTF Flame transfer function
IC Initial condition
LES Large eddy simulations
RTC Real-time controller

INTRODUCTION
The use of lean-premixed combustion technology in gas tur-

bine combustors, aimed at reducing the NOx emissions, often
leads to thermoacoustic instabilities that arise from the construc-
tive interaction between the acoustics of the combustor and the
fluctuating heat release rate from the flame. The resulting self-
sustained oscillations can lead to unwanted phenomena, such as
structural damage and flame flashback or blow-off. Therefore,
their avoidance should be a priority from the design stage. To
this end, thermoacoustic phenomena have been studied intensely
in the context of gas turbine combustion [1, 2]. In axisymmetric
annular combustors, where multiple burners are connected to a
single ring-shaped cavity, thermoacoustic instabilities are gener-
ally associated with degenerate azimuthal modes. They can be
described in the linear regime by pairs of standing or counter-
spinning modes that share the same frequency and that grow ex-
ponentially at the same rate. When the oscillations reach a fi-
nite amplitude level, they start to be affected by the nonlinear
flame response, which makes both modes interact and compete.
When a degenerate pair of modes is linearly unstable, the ratio of
their respective amplitudes is conserved during the whole linear

regime. Therefore the ratio of the amplitudes of both components
is equal to the initial amplitude ratio when nonlinear effects ap-
pear. This is generally close to unity if the initial state contains
only broadband noise. It is then the nonlinear flame response
that determines whether the modal competition scenario leads to
periodic oscillations of standing, spinning or mixed nature.

However, the symmetry can be broken for various reasons.
For example, it has been shown numerically [3, 4] and exper-
imentally [5–7] that an axisymmetric arrangement of multiple
co-swirling injectors produces a non-zero azimuthal bulk flow
in the annular cavity. This breaks the reflection symmetry be-
tween the co-swirl spinning mode and the counter-swirl spinning
mode, i.e. the spinning modes that propagate with and against the
flow, respectively. Theoretical studies demonstrate that this splits
the degenerate thermoacoustic eigenvalues, resulting in pairs of
counter-rotating modes with close but distinct frequencies and
growth rates [8–10]. Experimental evidence of acoustic eigen-
value splitting due to an azimuthal flow is provided in [11] for
a ring cavity, while in the field of thermoacoustics, eigenvalue
splitting of the first transverse acoustic mode due to the presence
of swirl has been observed in a cylindrical flame tube in a cold
experiment [12].

Eigenvalue splitting is a linear mechanism that has conse-
quences on the final state of thermoacoustic oscillations. In par-
ticular, the standing/spinning nature of the modes in a system
with azimuthal mean flow is generally different from the zero-
Mach-number configuration. For example, it is observed in the
large eddy simulations (LES) of [3] that the two counter-spinning
modes coexist, but the mode which spins in the direction of the
bulk flow dominates. On the other hand, in the study of [4],
the dominant mode is a standing mode that slowly rotates at the
mean flow speed, but occasional switching to spinning modes
appears. Nevertheless, a general challenge associated with the
short physical simulation times in LES is that it does not provide
any general conclusion about the mode nature that predominates
out of these operating conditions. From the experimental side,
a closer look at the mean velocity profile generated by multiple
swirlers in [6] indicates that the mean azimuthal flow direction
depends on the radial coordinate. It is found that it is the mean
flow direction at the location of the heat release peak that drives
the mode nature: if the peak of heat release is encountered in the
central region, where the mean flow approaches zero, a stand-
ing mode is observed; on the contrary, if the peak is encountered
in a region close to the inner or outer wall, where the mean az-
imuthal flow is not negligible, a spinning mode is encountered.
Its propagation direction follows the mean flow direction in that
region [6]. One can then expect that in the presence of a uni-
directional mean azimuthal flow, the dominant mode should be
spinning in the mean flow direction. In contrast to these obser-
vations, it has recently been shown analytically, under simplify-
ing assumptions and considering a cubic saturation model, that
a uniform mean flow should promote the counter-swirl spinning
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mode [10], even though both counter-spinning modes are found
to be stable solutions below a critical Mach number value.

In the present experimental study, we investigate the effect
of a mean azimuthal flow on self-sustained oscillations in an
annular system with electroacoustic feedback (EAF), presented
in [13]. The setup incorporates the EAF concept, first introduced
for a single cavity in [14, 15], into the annular rig of [16–18]. In
each tube, the thermoacoustic feedback of a flame is mimicked
by delaying and filtering the fluctuating pressure signal and send-
ing the resulting signal to a loudspeaker that acts as an acous-
tic source. This allows us to study self-excited oscillations in
a well-defined, low-noise environment, comparable to systems
with combustion. Furthermore, the flame model parameters and
the mean flow velocity can be varied in a precise and flexible
manner. The absence of heat sources allows us to close the outlet
of the annular cavity with a hard wall, thus producing a realis-
tic downstream acoustic boundary condition, similar to that of a
choked outlet. The azimuthal mean flow is generated by com-
puter fans, similarly to [11].

In this study, we first present the effect of an azimuthal mean
flow on the acoustics and on the stability of the self-sustained os-
cillations. Then, we address the standing/spinning mode nature
that is promoted by an azimuthal flow. We compare our experi-
mental results with theoretical predictions from [10].

1 EXPERIMENTAL SETUP AND MODELING
The experimental setup is presented in Fig. 1. It consists

of an annular cavity, closed at the top, connected to N = 12
tubes mimicking the burners, open at the bottom. A microphone
(GRAS 40BP), which measures the pressure fluctuations, and
a loudspeaker (Monacor KU516, 160-6500Hz) are attached to
each tube. The EAF is produced in each tube via a real-time con-
troller (RTC: dSPACE1103) by passing the pressure signal to a
transfer function and saturating its output. The RTC output signal
is amplified (t-Amp E4-130) and sent to a loudspeaker that gen-
erates acoustic waves. A sampling frequency of 10 kHz is used
for the recording of the microphone signals and for the EAF. The
microphones and the loudspeakers have been calibrated relative
to each other to achieve 12 nominally identical EAF loops.

To introduce symmetry breaking due to azimuthal mean flow
effects, we use twelve fans (San Ace 60) located in the annular
chamber between each pair of annulus–duct connections, thus
preserving the discrete rotational symmetry of the system. The
reflection symmetry is also preserved when the fans are off. A
calibration linking the bulk Mach number to the total power sent
to the fans has been performed using a Pitot tube at 6 axial lo-
cations, placed at the middle between the inner and the outer
annulus (r = R = (Rin +Rout)/2). The radial profile of the mean
azimuthal velocity is assumed to follow a 1/h power law [19].
An integration over the radial coordinate at a given axial location

FIGURE 1: Experimental setup. Left: the annular setup with
fans. Right: details on the EAF loop. An identical feedback loop
is present in each tube.

z leads to

1
Rout−Rin

∫ Rout

Rin

uθ (z,r)dr =
h

h+1
uθ (z,R) (1)

and h is estimated by h≈ 1.5log10(Re)−1.5, where Re is the
Reynolds number. Knowing the mean flow velocity at 6 axial lo-
cations allows us to estimate the bulk flow velocity over a whole
cross section. The bulk flow velocity obtained at the maximum
fan power is about 9 m/s. The mean azimuthal velocity profile is
not uniform in the axial direction. uθ (x) is within an interval of
±21% around the bulk flow velocity.

The system can be thought of as composed of two compo-
nents: one is the acoustics of our setup, in which we also include
the response of the microphones, the loudspeakers and their re-
spective amplifiers; the other is the flame model that is imposed
by the RTC. The microphone amplifier includes a second order
low-pass filter with a cut-off frequency of 2 kHz, allowing to se-
lect the range of frequencies of interest for the study of azimuthal
modes.

1.1 Acoustic modal frequency response
In order to assess the effects of an azimuthal mean flow on

the acoustic modes, we propose to characterize experimentally
the acoustics of our setup at various Mach number values. We
first need to build the N×N acoustic response matrix that links
the output vector yyy, collecting the voltage signals y j ( j = 1 . . .N)
from the microphones, to the input vector uuu comprised of the
voltage signals u j sent by the RTC output channels to the loud-
speakers. We start by determining the acoustic frequency re-
sponse vector AAA1(iω), with components a j,1, which links in the
frequency domain the output ŷ j to the signal sent to the loud-
speaker of tube 1, û1, via

a j,1(iω)≡
ŷ j(iω)

û1(iω)
=

Ŝy ju1

Ŝu1u1

(2)
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where Ŝv1v2 is the cross power spectral density between the scalar
variables v1 and v2. This is obtained experimentally by sending
a chirp signal with a linearly increasing frequency from 160 to
700 Hz. Given the rotational symmetry of the system, we assume
that an excitation signal in the tube j leads to a response in the
tube j+ k that is identical to the response in the tube k+1 to an
excitation in the tube 1. In other words, the response matrix AAA is
assumed to be circulant [17,18]. Therefore, the knowledge of AAA1,
which constitutes the first column of AAA, is sufficient to construct
the entire acoustic response matrix. The column j is obtained by
shifting the components of AAA1 by j−1 rows, as follows:

AAA =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

=


a1,1 aN,1 · · · a2,1
a2,1 a1,1 · · · a3,1

...
...

. . .
...

aN,1 aN−1,1 · · · a1,1

 (3)

In order to identify the effect of the flow on each mode, it is
appropriate to isolate each modal response from the other ones.
To this end, the modal response matrix CCC is obtained by project-
ing AAA on the spinning modal basis [16] by means of the operation

CCC = BBB−1AAA, (4)

where the components b j,m of BBB take the form [16]:

b j,m = e−imθ j , (5)

where m is the azimuthal mode number (m=−5 . . .6 in our case)
and θ j ≡ 2( j− 1) π

N , where j is the index associated to the con-
sidered tube. With these definitions, the components cm, j of CCC
correspond to the response in the tube j to an excitation pattern
of the form e−imθ . Notice that the knowledge of one column of
CCC is sufficient to characterize the system since the components of
the column j can be expressed as a function of the component of
the first column as cm, j = cm,1e−imθ j . From now on, each com-
ponent cm,1 is denoted by cm for simplicity and is referred to as
the modal frequency response of the mode m.

1.2 Acoustic eigenvalue identification
The knowledge of the modal frequency responses at various

Mach number values is sufficient for a qualitative assessment of
the effects of an azimuthal flow on the acoustic modes. Now
we propose to quantify these effects, by determining how much
the acoustic eigenvalues are affected as a function of the Mach
number. Therefore, in this paragraph we present two methods
that allow to extract the eigenvalues from the modal frequency
responses.

Method 1: Analysis of the resonant peaks. The eigenfre-
quencies can be identified as the frequency of the resonant peaks
of the modal frequency responses. For the identification of the
acoustic growth rate, we associate to each peak of the modal fre-
quency responses a linear, second order damped oscillator of the
form:

ẍ+2ζ ω0ẋ+ω
2
0 x = 0 (6)

where ω0 is the eigenfrequency of the undamped system and ζ is
the linear damping factor. For such a system, ζ can be estimated
by the formula ζ = ∆ω

2ω0
[20],where ∆ω is the width of the reso-

nant peak of |x̂(iω)| at half-height of the peak. Since the growth
rate is σ =−ζ ω0, it can be estimated as

σ =−∆ω

2
(7)

where ∆ω is determined from experimental data.

Method 2: Pole relocation technique. Another way of deter-
mining the eigenvalues of cm(iω) is to fit a scalar state space
model of the form DDD(sIII−EEE)−1FFF onto each cm, using a pole re-
location technique [21]. Here, s is the Laplace variable where
σ ≡ ℜ(s) and ω ≡ ℑ(s). The determination of the poles allows
to find the acoustic eigenvalues associated with each azimuthal
order m. Note that various eigenvalues associated with the same
azimuthal mode order can be found. They correspond to distinct
longitudinal mode orders. For each azimuthal mode number, we
choose a number of poles which is twice the number of resonant
peaks of the modal response.

1.3 Flame model for the electroacoustic feedback
At low-amplitude excitation levels, flames respond linearly

to upstream acoustic perturbations. The n–τ model [22] typi-
cally reproduces the delayed nature of the linear flame response.
Therefore we adopt this model by delaying each input yi of the
RTC by a characteristic time τ and amplifying it by a factor n.
The effect of an azimuthal mean flow on the flame response is
neglected. Therefore, the chosen flame model is independent of
the Mach number.

At finite amplitude levels, nonlinear effects make the oscil-
lations saturate and the flame response becomes amplitude de-
pendent. A saturation limit of the form [23]:

u j(q j(t)) =
{

q j if |q j|< δ

δ sgn(q j) otherwise (8)

is used in order to model the nonlinear flame response and, from
a practical point of view, to prevent the pressure oscillation am-
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plitude to reach a damaging level. All the EAF experiments pre-
sented in §3.2 and §3.3 are performed with the same value of
saturation limit (δ = 0.2 V).

2 ACOUSTIC WAVE PROPAGATION IN A 1D RING
Before investigating experimentally the effect of an az-

imuthal mean flow on the acoustic modes of our setup, we shall
introduce the convective effect of an incompressible azimuthal
mean flow on the acoustic eigenvalues by considering the planar
acoustic wave propagation in the simplified case of a 1D ring of
radius R (assuming that the radial and axial lengths are small with
respect to the perimeter) with a uniform and constant azimuthal
mean flow velocity uθ . This will aid us in interpreting the exper-
imental observations. The acoustic fluctuations are assumed to
be small. Assuming a damping term of the form α

∂ p
∂ t (where α

is constant), the wave equation in a 1D ring in cylindrical coordi-
nates, in the presence of a low Mach number (M� 1), uniform,
azimuthal mean flow is

∂ 2 p
∂ t2 +2

uθ

R
∂ 2 p

∂ t∂θ
+α

∂ p
∂ t
− c2

R2
∂ 2 p
∂θ 2 = 0. (9)

For the derivation of this equation we refer to [10]. This simple
1D model contains several approximations, discussed later, but is
nonetheless useful in understanding the effect of the mean flow
on the eigenvalues.

Let the spatial and temporal dependence of the pressure fluc-
tuation be represented by p(θ , t) = ∑ p̂e−imθ+st , where m > 0
(m+) and m < 0 (m−) refer to spinning waves traveling in the
mean flow direction and against it, respectively. Substituting this
expression in Eq. 9 yields an eigenvalue problem in s ≡ σ + iω
for each m. Solving for s and recalling that M � 1, we found
that the angular frequency and the acoustic growth rate of the
spinning mode that propagates with and against the mean flow
direction are respectively

ω
± ≈ ω0d (1±M) (10)

where ω0d = ω0

√
1− α2

4ω2
0
≈ ω0 is the frequency of the damped

system without mean flow, ω0 ≡ |m±|c/R is the angular fre-
quency of the undamped system at vanishing Mach number, and

σ
± ≈−α

2
(1±M). (11)

These solutions show the typical splitting of the eigenfrequen-
cies [8–10], and predict that the co-swirl mode should be more
damped than the counter-swirl mode when the mean flow effect

is only convective. The forms taken by the solutions indicate that
both counter-spinning modes decay by the same amount in one
oscillation period, σ±2π

ω± =− απ

ω0d
. However, since they have dis-

tinct periods at non-zero Mach number, 2π

ω0d (1±M) , the mode with

the shortest oscillation period, i.e. co-swirl, decays faster.

3 RESULTS

In this section we present our experimental results. First, we
use acoustic forcing to assess the effects of an azimuthal mean
flow on the acoustic modes (§3.1). Then, we address its im-
pact on the self-sustained oscillations, by performing EAF ex-
periments: the damping effect is discussed in §3.2 and the effect
on the standing/spinning mode nature is presented in §3.3.

3.1 Effect of an azimuthal flow on the acoustics
The method from §1.1 is applied in order to character-

ize the acoustic response of our setup at various values of the
Mach number and, thus, to investigate the effects of an az-
imuthal mean flow on the acoustics. The forcing is applied in
open loop. The acoustic modes that we study are described
throughout this manuscript by their azimuthal mode order m.
m = 0 corresponds to a longitudinal mode. The eigenfrequen-
cies of the acoustic modes m = [0,2,3,4,5,6] for M = 0 are
f0 = [402,316,440,514,531,536] Hz. The m = 1 mode is not
presented because its eigenfrequency (160 Hz) is too close to
the lowest limit of the loudspeaker operating range. At this fre-
quency, the loudspeaker response has a low amplitude and is af-
fected by internal nonlinear effects (which are absent from the
other modal responses). The axial pressure distribution of all the
modes is a priori unknown since all 12 microphones are at the
same axial location. Due to presence of the tubes, one should not
necessarily think that the modes of order m 6= 0 are the ”pure”
azimuthal mode of the annular duct. A discussion about the
mode structures is provided later in this section. Figure 2 shows
the gain of the modal acoustic responses associated with the az-
imuthal mode numbers m = 3 and m = 4, at various values of the
Mach number. The splitting of the eigenvalues can be observed
by comparing the response of the co-swirl spinning mode (m+)
with that of the counter-swirl spinning mode (m−).

Notice that at zero Mach number one would expect both
counter spinning modes to have the same acoustic response due
to the presumed degenerate nature of the eigenvalues. However,
a mismatch can be observed between the black solid and dashed
lines, suggesting that the zero-Mach number configuration is not
perfectly symmetric. This can be attributed to an imperfect posi-
tioning of the fans, to the nominal asymmetry of the fan blades,
and to imperfections of the annulus and tubes. Nevertheless, the
small difference between the frequencies of the counter-spinning
modes indicates that the degree of asymmetry remains small.
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FIGURE 2: Modal acoustic responses. The colors represent dif-
ferent values of the Mach number. The solid and dashed lines
represent the co-swirl and counter-swirl spinning components,
respectively.

At non-zero mean flow velocity, the frequency gap increases
with the Mach number. For both azimuthal mode numbers the
frequency of the co-swirl spinning mode increases, as predicted
by Eq. 10. A difference between the m = 3 and m = 4 modes
can be noticed regarding the behavior of the frequency of the
counter-swirl spinning mode: for m = 3 it decreases, as expected
from Eq. 10, while for m = 4 it remains almost constant. One
can notice that, for m = 3, the frequency at M = 0 is close
to the theoretical value of the 3rd pure azimuthal mode of the
chamber ( 3c

R ≈ 458 Hz), and that the frequency splitting follows
ω+−ω−

ω0d
≈ 2M which is in agreement with eq. 10. On the contrary,

the frequency of the mode m = 4 is not close to the theoretical
value of the pure azimuthal eigenfrequency 4c

R , and the splitting
ω+−ω−

ω0d
is much smaller than the theory. These two different be-

haviors suggest that the mode m = 3 can be thought of as the 3rd

azimuthal mode of the chamber, weakly coupled with the tubes,
while m = 4 should be, on the contrary, thought of as a fully cou-
pled mode of the entire geometry. The frequency splitting behav-
ior of the modes that are not shown in fig. 2 is the following. The
mode m = 2, whose eigenfrequency is close to the theoretical
value of 305 Hz has a behavior close to that of m = 3. Therefore
it can be thought of as the 2nd azimuthal mode of the chamber
weakly coupled with the tubes. The mode m = 5 has a behav-
ior which is qualitatively similar to that of mode m = 4, with an

even smaller splitting (the splitting at M = 0.025 is only 2 Hz),
suggesting that it is also a fully coupled mode of the entire ge-
ometry. The modes m = 0 and m = 6, which are not degenerate,
have eigenfrequencies which are respectively close and not close
to the theoretical values of the pure chamber modes. It suggests
that m = 0 is the half-wave mode of the chamber weakly coupled
with the tubes and that the mode m = 6 is a fully coupled mode.
Considering the fully coupled modes of the entire geometry, one
may attempt to associate the degree of coupling to the deviation
of the actual frequency of the mode m with respect to the the-
oretical eigenfrequency of the pure mth azimuthal mode of the
chamber. In this respect, one may identify m = 6 as the mode
with the highest degree of coupling.

For the study of thermoacoustic instabilities, we are inter-
ested in knowing the acoustic growth rate, which can be esti-
mated using both methods described in §1.2. We normalize the
acoustic growth rate σ of the considered mode by the mean value
at zero Mach number σM=0 = (σ+

M=0 + σ
−
M=0)/2. Given this

normalization, an increase of σ/σM=0, which is always positive,
indicates a decrease of σ , which is always negative, reflecting
an increase of the damping. The results are presented in Fig. 3
for 6 of the 7 azimuthal mode numbers detectable in our annular
setup. Note also that Method 1 is not used for the co-swirl spin-
ning mode of m = 5 because of the presence of a second peak
close to the resonant peak considered.

The results obtained with both methods show that from
m= 0 to m= 5 an increase of the Mach number tends to decrease
the acoustic growth rate (increase the acoustic damping), while
for m = 6 it remains almost constant. Moreover, we observe that
the modes that should be degenerate in the vanishing Mach num-
ber limit (m = 2..5) have, in practice, distinct acoustic growth
rates at M = 0. The growth rate trends of these modes show
that the Mach number affects the acoustic growth rate of the two
counter-spinning modes differently. This behavior is expected
from the eigenvalue splitting predicted by the theory (Eq. 11).
We have shown in §2 that, for a 1D ring with uniform mean
flow and constant damping, the co-swirl and counter-swirl com-
ponents for M > 0 should have respectively an acoustic damping
rate which is higher and lower than in the zero-Mach number
configuration. This is not observed in the experiments, and the
normalized growth rate difference is higher than the predicted
value, (σ+−σ−)/σM=0 = 2M. For example, at M = 0.025 the
growth rate splitting of the mode 5 is four times greater than the
above value. However, for the mode m = 5 we indeed observe
that the co-swirl component should be more damped than the
counter-swirl one, and that the growth rate difference should in-
crease linearly with the Mach number. For m = 3 and m = 4,
at low Mach numbers the co-swirl spinning mode damping rate
is enhanced by the azimuthal mean flow to a greater extent than
the one of the counter-swirl mode, but increasing the Mach num-
ber leads to the opposite behavior for m = 4, which makes the
acoustic growth rates of the two counter-spinning modes becom-
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FIGURE 3: Ratio of acoustic growth rates as a function of the
Mach number. The growth rates are normalized by the mean
growth rate at zero Mach number σM=0 =

1
2 (σ

+
M=0+σ

−
M=0). The

red and black symbols are obtained with Method 1 and Method 2
(see §1.2), respectively. The crosses and the diamonds represent
the co-swirl and the counter-swirl spinning waves, respectively,
which do not exist at m = 0 and m = 6. The frequencies f0 refer
to the M = 0 condition.

ing close to each other at high Mach number values. For m = 3,
at non-small Mach number values, the growth rate difference is
almost constant. The growth rate trend of m = 2 shows a behav-
ior opposite to the theory, with a counter-swirl mode that is more
damped by an increase of M than the co-swirl mode.

Evidently, results based on the one-dimensional Helmholtz
equation with uniform mean flow and constant damping do not
hold in most of the cases presented. In the case of a straight
duct, it is shown in [24] that when the viscous sub-layer thick-
ness becomes comparable to or smaller than the acoustic bound-
ary layer thickness, turbulent damping becomes significant be-
cause the turbulence interacts with the acoustic boundary layer.
This is observed for high turbulence levels and low frequencies.
We estimate, using a result from [24], that for m = [2,3,4,5,6]
the viscous sub-layer thickness becomes smaller than the acous-
tic boundary layer thickness when the Mach number becomes
respectively M ≥ [0.0064,0.0081,0.0093,0.011,0.012], so the
turbulent damping should start coming into play from these val-
ues of the Mach number. To estimate the wall shear stress, re-
quired to estimate the ratio of the acoustic boundary layer and
the viscous sub-layer thickness formulated in [24], we used the
Blasius formula for the friction factor [25], which uses the as-
sumption of a fully developed turbulent flow in a straight smooth
pipe. Notice that this is a very rough estimate and these val-

ues are given only as an order of magnitude estimation, since
the geometry is different from that of [24] and the assumption
of fully developed flow is questionable, due, for example, to the
presence of the fans in the annulus. In addition, in the plane
where the annulus/tube connection is, the presence of the tubes
prevent the boundary layer to be fully developed. Therefore the
use of Blasius formula may lead to overestimate the viscous sub-
layer thickness and, consequently, to overestimate the value of
Mach number at which turbulent damping becomes significant.
However, the conclusion from [24] is qualitatively consistent
with the higher sensitivity to an azimuthal flow at low frequen-
cies ( f ≤ 440 Hz) than at higher frequencies ( f ≥ 514 Hz) in the
cases presented in Fig. 3, so we suggest that the mismatch can be
attributed, at least partially, to turbulent damping.

In [12], for the case of a flame tube, it is demonstrated that
the presence of swirl damps the counter-swirl transverse mode
stronger than the co-swirl transverse mode. The given explana-
tion is that the wave which travels against the flow encounters
more resistance than the wave which travels in the mean flow di-
rection, the interaction between acoustic waves and shear zones
being decreased and amplified for the co-swirl and counter-
swirl modes, respectively. This intuitive explanation may, in the
present study, help understanding the cause for the growth rate
splitting of the mode m = 2 to be opposite to the splitting be-
havior predicted by the one-dimensional convective Helmholtz
equation. However, the different behavior at various azimuthal
mode orders suggest that a single phenomenon is not sufficient
to explain all the splitting patterns. This is a combined effect of
the mean flow convection that damps the co-swirl mode stronger,
the acoustic–shear zone interaction, and the turbulent damping.
Also, the presence of the fans at the center of the cavity could
create coherent structures that may affect both counter-spinning
modes in a different way.

In addition to the combination of the multiple effects de-
scribed above, the degree of coupling between the chamber mode
and tube mode needs to be considered. Since the mean flow is
located in the chamber, the Mach number has an effect on the
pure chamber modes and not in the pure tube modes. Therefore,
a chamber mode weakly coupled with a tube mode will be more
sensitive to the azimuthal mean flow than a fully coupled mode
of the entire geometry. This would explain why the mode m = 6,
which has the strongest coupling with the tubes, has an acoustic
growth rate that is almost insensitive to the Mach number.

3.2 Damping of self-sustained oscillations due to an
azimuthal mean flow

Given the results of §3.1 on the increase of the acoustic
damping due to a mean azimuthal flow, one can expect that a
mean azimuthal flow is beneficial for the linear stability of annu-
lar thermoacoustic systems. Therefore, the effect of a mean az-
imuthal flow on the self-sustained oscillations is assessed in our
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setup with EAF. Experiments are performed at various values of
the Mach number by varying the fan input power, for two differ-
ent initial conditions. The first is an initial state without oscilla-
tions: the EAF is initially switched off and then promptly turned
on. This is repeated at various values of mean flow velocity. It
facilitates studying the effect of the mean flow on linear stability
and the resulting impact on the final state. In the second set of
experiments, instead, we track the amplitude of the limit cycle
oscillations in a quasi-continuous fashion, by slowly increasing
the Mach number from 0 to 0.025. The process is then reversed,
with the input power decreased towards 0, to study hysteresis
effects. The instantaneous value of each complex modal com-
ponent is obtained by computing the discrete Fourier transform
with respect to the azimuthal coordinate at each instant. For each
mode, the amplitude curve is then obtained by finding the local
maxima of the modal component gain evolution. In this section,
no distinction is made between both counter-spinning waves of
a given azimuthal order. The linear growth rates are obtained by
fitting an exponential envelope proportional to eσt to the modal
amplitude curve in the linear regime.

3.2.1 Full suppression of self-sustained oscilla-
tions due to an azimuthal mean flow. In the first case
that we present, the flame model parameters are set to n = 13
and τ = 2.5 ms. We recall that our definition of n does not cor-
respond directly to a gain from acoustic perturbations to acoustic
fluctuations, but it is an amplification factor from voltage (y j)
to voltage (q j). This value of n should therefore not be thought
as high with respect to typical flame gains. The calculation of
the overall gain from microphone pressure fluctuations to acous-
tic fluctuations produced by the loudspeakers would require to
multiply n by the conversion factor from pressure fluctuations to
microphone voltage signal (5.7×10−5 V/Pa) and by the conver-
sion factor from the RTC voltage output to acoustic fluctuations
produced by the loudspeaker, which has however not been mea-
sured.

The modal amplitude of the periodic oscillations obtained
for both types of initial conditions and the experimental linear
growth rates as a function of the Mach number are presented in
Fig. 4. The only unstable mode is m = 3. Its frequency in the
absence of azimuthal mean flow is 444 Hz. Figure 4b shows that
increasing the Mach number makes the linear growth rate de-
crease, so that from a Mach number value close to M = 0.0042,
the system becomes linearly stable. Consequently, no oscil-
lations are observed in Fig. 4a for M ≥ 0.0042 from a zero-
amplitude initial condition. The results obtained with the con-
tinuation of limit cycle confirm that an azimuthal mean flow can
suppress the oscillations. It is observed that when the Mach num-
ber is increased from M = 0, a full suppression of the oscilla-
tions is obtained at M = 0.0048 rather than M = 0.0042. This
means that between M = 0.0042 and M = 0.0048 the limit cy-
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FIGURE 4: Modal pressure amplitude and linear growth rate as
a function of the Mach number for n = 13 and τ = 2.5 ms. The
unstable mode is m = 3.

cle corresponding to periodic oscillations of the mode m = 3
is still a stable solution, and coexists with the fixed point so-
lution, and that the former becomes unstable or disappears for
M ≥ 0.0048. When the Mach number is slowly decreased, one
can observe that until M = 0.0042, no oscillations are observed,
and that from M = 0.0039 to M = 0, oscillations are again ob-
served. It is in agreement with the results obtained with the zero-
amplitude initial condition. In the lower range of Mach numbers
(M < 0.0039), the oscillation amplitude follows the same route
for the first type of initial condition and for the second type with
increasing and with decreasing Mach number.

Consistent with the results of §3.1, this case illustrates the
damping effect of an azimuthal mean flow on the self-sustained
oscillations. We show that this stabilizing effect can be observed
even at low Mach number values.

3.2.2 Mode change due to an azimuthal mean
flow. The flame model parameters are now changed to
n = 3.15 and τ = 2.0 ms. Contrary to the previous case, two
modes are linearly unstable: m = 4 and m = 5 whose eigenfre-
quencies are 513 Hz and 529 Hz, respectively. We observe that,
when the Mach number is increased, the frequency of each mode
decreases only slightly. For both modes, the maximum shift with
respect to the M = 0 configuration is 0.6 Hz. This behavior
is similar to the counter swirl component of the acoustic mode
m = 4 (fig. 2 in dashed lines). As each frequency does not vary
significantly, the frequency gap between the mode m = 4 and
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FIGURE 5: Modal pressure amplitude and linear growth rates as a function of the Mach number for n = 3.15 and τ = 2.0 ms. The green
lines with the circles correspond to m = 4, and the red lines with triangles correspond to m = 5. (a)–(c) show results obtained with an
initial state without oscillations. (d) shows results obtained with a continuation of the limit cycle.

m = 5 remains almost constant (∼ 16 Hz). The results obtained
with the zero-amplitude initial condition and with the continua-
tion of limit cycle are shown in Fig. 5.

The results obtained with the first type of initial condition
indicate that, at low Mach number, the linear growth rate of the
mode m = 4 is significantly higher than that of the mode m = 5
(Fig. 5c). Consequently, when nonlinear effects start to affect the
oscillations, the amplitude of the mode m= 4 is much higher than
that of the mode m = 5 (Fig. 5a). Finally, we observe periodic
oscillations of the 4th-order azimuthal mode (Fig. 5a-b). It is
noticed that both the linear growth rates of the mode m = 4 and
of the mode m = 5 decrease when the Mach number increases,
and that the former undergoes the sharpest drop. At M = 0.0054,
the growth rate of the mode m = 4 becomes smaller than that
of the mode m = 5. However, when the nonlinear effects start,
the mode m = 5 decays while the amplitude of the mode m = 4
keeps increasing (Fig. 5a in bold lines). This modal competition
scenario leads again to periodic oscillations of the mode m= 4. A
similar trend, obtained without mean flow, is discussed in [26]. In
this case, as well as in other cases where the two growth rates are
similar, a transient beating is observed. This is due to the close
frequencies of the two mode and the close amplitudes during the
exponential growth.

A radical change is observed at higher values of the Mach
number. From M = 0.0056 on, the mode m = 5 is the only one

active in the final state, promoted by a favorable growth rate dif-
ference that increases with the Mach number. From M = 0.0096
on, the mode m = 4 becomes linearly stable, while the linear
growth rate of the mode m = 5 is close to zero at M = 0.025.
Therefore, for the latter value, no oscillations are observed for a
zero-amplitude initial condition.

The effect of initial conditions is assessed in Fig. 5d by per-
forming a continuation of the limit cycle. The experiment starts
at zero Mach number. Under this condition, a stable limit cycle
oscillation of the mode m = 4 is reached. A slow increase of the
Mach number until M = 0.0085 lowers the oscillation amplitude
without changing the mode type. Then, a slight increase of the
Mach number (M = 0.0090) suppresses the oscillations of the
mode 4, giving way to periodic oscillations of the mode m = 5.
Afterwards, an increase in the Mach number until M = 0.025
makes the amplitude of the mode 5 significantly decrease but
without suppressing the oscillations. Later, slowly decreasing the
Mach number until M = 0.0041 leads to an increase of the ampli-
tude without changing the mode number, while a further decrease
(M = 0.0024) leads to periodic oscillations of the mode 4.

By comparing the final state for various initial conditions,
we show that at low Mach number (M ≤ 0.0024) only one stable
solution is found experimentally, while in an intermediate range
of Mach numbers (0.0041 < M < 0.0084) both periodic oscilla-
tions of m = 4 and m = 5 are stable solutions. The mode that is
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actually observed depends on the initial conditions. On the con-
trary, in the range 0.0090 < M < 0.024, a limit cycle correspond-
ing to periodic oscillations of the mode m = 5 is the only stable
solution, due to the fact that the mode m = 4 is linearly stable.
For M = 0.025, the linear growth rate of the mode m = 5 being
close to zero, no oscillations are observed for a zero-amplitude
initial condition, while the oscillations present in the continua-
tion of limit cycles are not suppressed. It is a manifestation of
the fact that, in the limit of σ = 0, the amplitude remains un-
changed, by definition.

This case confirms that an azimuthal mean flow has a sta-
bilizing effect on the self-sustained oscillations. In addition, we
demonstrate that when multiple modes are linearly unstable, the
modal competition scenario can be radically changed by the pres-
ence of an azimuthal mean flow with respect to the vanishing
Mach number condition. Therefore, for a reliable prediction of
the frequency and amplitude of the self-sustained oscillations,
one should account for the effects of an azimuthal mean flow.

3.3 Effect of an azimuthal mean flow on the spin-
ning/standing nature of thermoacoustic modes

In §3.2, for each azimuthal mode number, no distinction was
made between the two counter-spinning waves. However, it was
shown in §3.1 that the mean flow does not have the same effect on
both counter-spinning acoustic modes. Therefore, we investigate
in this section the effect of an azimuthal mean flow on the spin-
ning/standing nature of thermoacoustic modes. Three cases ob-
tained with different flame model parameters are presented. Both
types of initial conditions presented earlier are used. The am-
plitudes of both counter-spinning components of the dominant
azimuthal mode are extracted by projecting the complex pres-
sure profile, obtained from the Hilbert transform of the pressure
signal from each microphone, on the spinning wave basis [16].
Their values in the final state are compared in Fig. 6. In what
follows, for each case (a, b and c), we refer to the numbers la-
beled in Fig. 6 to describe the main steps of the continuation of
limit cycles. The linear growth rates are not shown but, in these
cases, for the zero-amplitude initial condition, the mode with the
highest linear growth rate is dominant in the final state.

In case (a) the flame model parameters are set to n = 13 and
τ = 2.3 ms. The dominant mode is m = 3. For the first type
of initial condition (no oscillation in the initial state), it can be
seen that at low Mach number, the counter-swirl mode domi-
nates in the final state while for M ≥ 0.0041 the co-swirl spin-
ning mode becomes dominant. When performing a continuation
of limit cycles, these observations still stand at low Mach num-
ber values (M < 0.002) and in a higher range of Mach numbers
(M > 0.011), but the modal amplitude behavior is more com-
plex in an intermediate range of mean flow velocities due to the
presence of hysteresis. Given the counter-swirl spinning nature
of the mode at low Mach number (point (1) in Fig. 6 case (a)),

increasing the Mach number up to 0.01 (2) is not sufficient to
change the spinning direction. Then, a further increase in Mach
number leads to a co-swirl spinning mode (3), and this mode na-
ture is conserved at higher Mach number values (4). Afterwards,
when decreasing the Mach number from (4), the dominant mode
remains co-swirl spinning until M = 0.0027 (6) while a further
decrease leads again to a counter-swirl spinning mode (7). The
fact that the mean flow promotes the co-swirl spinning mode is
not expected from acoustic growth rate results shown in Fig. 3.
However, knowing that the mean flow splits the acoustic eigen-
frequencies, one can expect that, for a given acoustic growth rate,
when the thermoacoustic feedback of a flame (EAF in our case)
is introduced, the two acoustic poles will not be moved the same
way by the flame transfer function. In other words, the mode
that has the highest thermoacoustic growth rate is not necessarily
found to be the one that has the largest acoustic growth rate.

In case (b) the flame model parameters are changed to n= 13
and τ = 0.3 ms. The unstable mode is m = 4. Both types of ini-
tial conditions lead to the same results, without hysteresis phe-
nomenon. At very low Mach number (M ≤ 0.0024) the modes
are dominantly standing. Two nodal lines are aligned with the
tubes. Increasing the Mach number leads to a dominant counter-
swirl mode. This is consistent with the acoustic growth rate be-
havior shown in Fig. 3. However, from Fig. 3, one could have
expected to observe also a dominantly ”counter-swirl” mode at
M = 0. Here we do not observe the presence of a stable co-swirl
spinning solution at any value of M, but its absence is not proved.

In case (c), n = 3.15 and τ = 1.9 ms, the unstable mode is
m = 5. The results obtained with the zero-amplitude initial con-
dition indicate that at low Mach number, the dominant mode is
co-swirl spinning. At intermediate Mach number values we ob-
serve cases for which the co-swirl and counter-swirl component
have similar amplitudes. At M = 0.0061, the oscillations result
from the superposition of various modes of different but very
close frequencies. Since the two main components have a fre-
quency spacing of 0.3 Hz, beating oscillations with an amplitude
modulation is observed. At M = 0.0076 we observe only one
frequency of oscillations; it corresponds to a dominantly stand-
ing mode. One nodal line passes at the middle between tubes.
For higher Mach number values, the spinning mode propagating
against the mean flow dominates. The preference for the counter-
swirl mode is consistent with the Mach number dependence of
the acoustic growth rates shown in Fig. 3. However, perform-
ing the continuation of limit cycles starting with a dominant co-
swirl spinning mode at M = 0 (1), when the Mach number is
slowly increased until M = 0.025 (2), the mode nature is not af-
fected. Then, the operation is reversed, by starting the EAF at
M = 0.025, leading to a dominant counter-swirl mode (3). De-
creasing the Mach number until M = 0.0078 does not change the
spinning direction, while at M = 0.0067 a standing mode with
a nodal line passing at the middle between tubes is observed;
a further decrease leads to a dominant co-swirl spinning mode.

10 Copyright c© 2020 by ASME



0

100

200

300

400

A
m

p
li

tu
d

e[
P

a]

Total amplitude

Co-swirl wave

Counter-swirl wave

0

100

200

300

400

0

500

1000

1500

0.002 0.004 0.006 0.008 0.01 0.012
M

0

100

200

300

400

A
m

p
li

tu
d

e[
P

a]

0 0.005 0.01 0.015 0.02
M

0

100

200

300

400

0 0.005 0.01 0.015 0.02
M

0

500

1000

1500

0 200 400

Counter-swirl wave amplitude [Pa]

0

100

200

300

400

C
o

-s
w

ir
l 

w
av

e 
am

p
li

tu
d

e 
[P

a]

0 100 200 300

Counter-swirl wave amplitude [Pa]

0

100

200

300

Continuation

Zero-amplitude IC

0 500 1000 1500

Counter-swirl wave amplitude [Pa]

0

500

1000

1500

(a) (b) (c)

1; 7

2

3;

5 4

6

1; 7
2

46

6

3; 5
4

2

3; 5

1; 3

1; 3

2

2

1; 3

2

1; 4

1; 4

3

2

3

2

2

3

1; 4

1; 7

FIGURE 6: Influence of the Mach number on the mode nature in the final state. The first two rows show the co-swirl and counter-swirl
spinning components and the total amplitude as a function of M, for the zero-amplitude initial condition (top) and for the continuation of
the limit cycle (middle). Bottom row: Final state for both types of initial conditions. Left (a): n = 13, τ = 2.3 ms (mode m = 3), middle
(b): n = 13, τ = 0.3 ms (mode m = 4), right (c): n = 3.15, τ = 1.9 ms (mode m = 5).

This behavior illustrates the presence of hysteresis, as in case (a)
but on a wider range of Mach numbers, in which both counter-
spinning modes are stable solutions. The Mach number that de-
fines the upper limit of the hysteresis is larger than M = 0.025.
Therefore it cannot be determined experimentally with the fans
used in this study.

We discuss these results in view of the theoretical model
of [10] based on a low-order wave-based representation of the
thermoacoustic interaction in a perfectly axisymmetric 1D an-
nulus with a continuous distribution of flames, with a uniform
azimuthal mean flow, and with a cubic saturation term. In [10],
at low Mach number and with an axisymmetric distribution of
flames, the only stable solutions predicted by the model are the
two counter-spinning modes. On the contrary, at higher Mach
number values only the counter-spinning mode is predicted to be
stable, favored by a larger linear growth rate due to convective ef-
fects. However, in the vanishing Mach number limit our results

do not all confirm this prediction: we find spinning, standing and
mixed modes. This difference may be attributed to an imperfect
symmetry and/or to different nonlinear saturation mechanisms.
Moreover, we found cases at non-zero Mach numbers for which
the two counter-spinning modes have similar amplitudes: it can
be a dominantly standing mode (b and c) or a combination of
modes of distinct but close frequencies (c). In an intermediate
range of Mach numbers in case (a) and (c) we indeed find two
stable solutions, close to spinning, whereas for case (b) only one
solution is observed (counter-swirl spinning mode), but this does
not necessarily imply that the co-swirl spinning mode is not a
stable solution. The fact that in a higher range of Mach numbers
only one spinning solution is predicted to be stable is consistent
with cases (a) and (b). For case (c), we cannot reach a conclu-
sion on the uniqueness of a stable solution because, at full fan
power, two stable solutions still exist, but considering the results
obtained with the continuation of limit cycles, one can imagine
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that only the counter-swirl mode remains stable from a critical
Mach number that would determine the upper end of the hys-
teresis region. Nevertheless, in contrast to [10], we found that
the spinning direction promoted by the azimuthal mean flow is
not necessarily counter-swirl spinning. As previously discussed
this may be due to the effects of turbulent damping and acoustic–
shear zone interaction, not taken into account in the model, and
to the fact that it is not necessarily the mode with the largest
acoustic growth rate that has the highest thermoacoustic growth
rate, as the frequency splitting may have a significant effect on
stability of each mode independently. We conclude noting that
also the difference in the geometry (so in the complexity of the
modes) and in the nonlinear model (saturation limit in this study
and cubic saturation in [10]) may explain some discrepancies.

CONCLUSION
This article addresses the effects of an azimuthal mean flow

on the acoustic modes and on the self-sustained oscillations in
an annular setup with electroacoustic feedback. The flexibility
of the electroacoustic feedback allows to choose flame model
parameters that lead to characteristics of interest while the elec-
trically powered fans allow to continuously vary the mean az-
imuthal flow in a wide and realistic range of Mach numbers.

We confirmed experimentally that an azimuthal mean flow
splits the acoustic – and consequently thermoacoustic – eigen-
values, and demonstrated that it increases the acoustic damp-
ing. The azimuthal flow effects on acoustic and thermoacous-
tic modes include convective effects due to the bulk flow, turbu-
lence effects and acoustic–shear zone interaction. Their effects
depend on the mode frequency and on the propagation direc-
tion. Convective effects damp more the co-swirl spinning wave
while acoustic–shear zone interactions presumably damp more
the counter-swirl component. Turbulent damping has a greater
effect at low frequencies [24]. Moreover, these effects, located
in the chamber, affect the fully coupled modes of the entire ge-
ometry to a lower extent than the chamber modes weakly cou-
pled with the tube modes. The diversity of the observed splitting
patterns may be attributed to the combination of these various
damping effects and to the degree of coupling between the cham-
ber and tube modes.

We demonstrated that a mean azimuthal flow has a stabiliz-
ing effect on the self-sustained oscillations, even at low Mach
numbers. We envisage that this may lead to new ideas in the de-
sign of thermoacoustically stable industrial annular combustors.
We point out that, when multiple modes are linearly unstable, an
azimuthal mean flow plays a major role in the modal competition.
Therefore, a reliable prediction of the frequency and amplitude
of the self-sustained oscillations requires to take the azimuthal
mean flow into account.

It was demonstrated that an azimuthal mean flow promotes
spinning modes, or mixed-modes close to spinning at sufficiently

high Mach number values, while in a narrow range of Mach num-
bers standing modes may also be encountered. Moreover, due to
the frequency splitting caused by the mean flow, a beating behav-
ior has been observed. No general conclusion about the preferred
spinning direction could be drawn, first of all because not all the
acoustic modes are affected by the mean flow in the same man-
ner. We also suggest that the acoustic growth rate gap between
both counter-spinning modes is not necessarily the only respon-
sible for the difference of thermoacoustic growth rates. We con-
jecture that the frequency splitting may also have a significant
effect on the thermoacoustic growth rate.
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