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Zusammenfassung

In dieser Arbeit stellen wir einen theoretischen und algorithmischen Rahmen für die Gewährleistug
von Min-Max-Fairness und Optimierung der gewichteten Summenperformanz in einem Ein-Hop-
Netzwerk mit Interferenz. Die Haupteigenschaft der vorgestellten analytischen Resultate und Al-
gorithme ist ihre, im zweierlei Sinne, groÿe Allgemeinheit. Erstens, sie sind anwendbar auf alle
Netzwerke die eine Beschreibung der Interferenz durch eine nichtnegative Matrix zulassen. Zweit-
ens, sie sind anwendbar auf alle QoS-Funktionen der einzelnen Links die monotone Funktionen des
entsprechenden Link-SIR darstellen.

Die SIR-Funktion des Links und die Interferenzmatrix, die paarweise Interferenz zwischen den
Links beschreibt, stellen die Schlüsselelemente der Resultate dieser Arbeit dar (Netzwerkmodell im
Kapitel 2). Im Kapitel 2 wird gezeigt, dass die konvex-analytischen Eigenschaften der QoS-Funktion
des Links, als Funktion des entsprechenden Link-SIR, einen entscheidenden Ein�uss auf die Existenz
von lokalen/ globalen Lösungen des Leistungsallokationsproblems haben. Ebenfalls charakterisieren
wir die Relation zwischen den Eigenschaften der QoS-Funktion des Links und den Eigenschaften der
QoS-/ Performanzregion, de�niert als die Menge aller erreichbaren Tupel von QoS-Funktionswerten
der Links.

Die im Kapitel 3 vorgestellten Algorithmen berechnen eine Leistungsallokation die die (gewichtete)
Summenperformanz des Netzwerkes optimiert und basieren auf konvex-analytischen Eigenschaften
der QoS-Region. Der Hauptvorteil beider Algorithmen, die entsprechend für die Fälle der Sum-
menleistungsbeschränkung und Leistungsbeschränkungen pro Link entwickelt wurden, ist ein nach
unserer Ansicht günstiger Abtausch zwischen Rechenkomplexität und Konvergenzverhalten.

Die Algorithmen und Feedback-Schemata im Kapitel 4 sind gemeinsam mit dem Ziel entwickelt
worden, eine verteilte Berechnung einer Leistungsallokation die die Summenperformanz optimiert zu
gewährleisten. Ein spezi�sches Feedback-Schema das die Interferenz schätzt is hierbei das Hauptele-
ment, das die dezentralisierte Berechnung ermöglicht. Die dazugehörigen algorithmischen Konzepte
zielen auf eine bestmögliche Ausnutzung des Feedback-Schemas, im Sinne der ermöglichten dezen-
tralisierten Berechnung, einer niedrigen Rechenkomplexität und eines guten Konvergenzverhaltens.
Die Algorithmen basieren auf dem Konzept einer nichtlinearen, bzw. verallgemeinerten, Lagrange-
Funktion und auf einem spezi�schen Ansatz der Aufspaltung von Variablen.

Wegen erhöhter potentieller Performanz die unter Verwendung von mehreren Antennen pro
Link erreichbar ist, gilt ein spezielles Interesse dem Problem der räumlichen Leistungsallokation
in MIMO-Netzwerken (Multiple-Input Multiple-Output). Im Kapitel 5 beschäftigen wir uns mit
einem speziellen Problem der räumlichen Leistungsallokation die die gewichtete Summenperfor-
manz im MIMO-Vielfachzugri�skanal optimiert. Das betrachtete Problem entspricht der Berech-
nung der sogenannten Stabilitätsoptimalen Strategie, bestehend aus räumlicher Leistungsallokation
und SIC-Reihenfolge (Successive Interference Cancellation). Basierend auf konvex-analytischen
Eigenschaften der QoS-Region (in dem speziellen Fall, der Kapazitätsregion), charakterisieren wir
einige nützliche Eigenschaften der Stabilitätsoptimalen Strategie. Der entsprechende Algorithmus
der die Strategie berechnet benutzt einen Ansatz der Aufspaltung des ursprünglichen Problems in
ein Ensemble von gekoppelten Ein-Link Problemen.

ix



x Zusammenfassung

Das Problem der Charakterisierung und Berechnung einer min-max-fairen Leistungsallokation
wird im Kapitel 6 behandelt. Dort beweisen wir, dass der Abtausch zwischen Min-Max-Fairness
und Optimalität der gewichteten Summenperformanz als ein Sattelpunkt der Summenperformanz,
als Funktion der Link-Gewichte und Link-Leistungen, aufgefasst werden kann. Im Kapitel 6 erhal-
ten wir ebenfalls Einsichten in die Relation zwischen Gewährleistung der Min-Max-Fairness und
einem gegensätzlichen Ansatz der maximalen Degradation des besten Wertes der QoS-Funktion
des Links. Wir zeigen die generelle Verschiedenheit beider Ansätze und ihre Abhängigkeit von
kombinatorischen und spektralen Eigenschaften der Interferenzmatrix.



Abstract

The contribution of this work is an analytic and algorithmic framework for achieving min-max fair-
ness and optimization of weighted aggregated performance in single-hop networks with interference.
The key feature of the analytic results and algorithms within the framework is their great generality
in the two-fold sense. First, they apply to any network which allows the description of the inter-
ference in the form of a nonnegative matrix. Second, they apply to any link QoS function being a
monotone function of the corresponding link SIR.

The key ingredients of all results of the work are the link SIR function and the interference
matrix, which describes the pairwise interference across the links (network model in Chapter 2). The
convex-analytic properties of the link QoS function, understood as a function of the corresponding
link SIR, are shown in Chapter 2 to have crucial in�uence on the existence of local/ global solutions
to the power allocation problem. We also characterize a relation between properties of the QoS
function and the properties of the QoS/ performance region, which is understood as the set of all
achievable tuples of link QoS values.

The algorithms proposed in Chapter 3 compute a power allocation optimizing the (weighted)
aggregated performance of the network and rely strongly on the convex-analytic properties of the
QoS region. The key advantage of the two algorithms, proposed for the cases of sum-power con-
straint and per-link power constraints, respectively, is an in our view advantageous trade-o� of
computational complexity and convergence behavior.

The algorithms and feedback schemes in Chapter 4 are designed jointly for the purpose of
distributed computation of a power allocation optimizing the aggregated performance. The key
ingredient allowing for decentralized conduction is hereby a speci�c feedback scheme estimating
the interference. The corresponding algorithmic concepts aim at best possible utilization of the
scheme in the sense of ensured decentralized conduction, low computational complexity and good
convergence behavior. The algorithms rely on the concept of nonlinear, or generalized, Lagrangean
function and on a speci�c approach of variable splitting.

Due to increased performance potential achieved under incorporation of multiple antennas per
link, particular interest is in the problem of spatial power allocation in MIMO (Multiple-Input
Multiple-Output) networks. In Chapter 5 we deal with a particular problem of spatial power al-
location optimizing weighted aggregated performance in the MIMO multiple access channel. The
considered problem corresponds precisely to �nding the so-called stability-optimal policy consist-
ing of spatial power allocation and order of Successive Interference Cancellation (SIC). Relying on
convex-analytic features of the QoS region (in this particular case, the capacity region), we provide
several useful characterizations of the stability-optimal policy. The corresponding algorithm com-
puting the policy makes use of the splitting of the original problem into a set of coupled single-link
problems.

The problem of characterization and computation of a min-max fair power allocation is ad-
dressed in Chapter 6. We prove that the trade-o� of min-max fairness and optimality of weighted
aggregated performance has the interpretation of a saddle point of the weighted aggregated perfor-
mance regarded as a function of link weights and link powers. In Chapter 6 we also obtain insights

xi
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in the relation between the approach of ensuring min-max fairness and an opposite approach of
maximally degrading the best link QoS. We show the general nonequivalence of both approaches
and their dependence on the combinatorial and spectral properties of the interference matrix.
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1
Introduction

In the year 1956 in Sweden, the Ericsson company set up the system of telephony MTA (Mobile
Telephone system A), the worlds �rst autonomous system of wireless telephony for public use. This
date can be seen as the formal origin of the world-wide proliferation of wireless communications
services. The �rst non-voice wireless digital services came to their own in the 1990s with the
expansion of the second-generation mobile telephony systems GSM (Groupe Spécial Mobile), IS-
136, iDEN, IS-95 and the introduction of the �rst Wireless LAN (Local Area Network) standard
802.11 b [1]. In currently existing heterogeneous wireless networks, di�erent kinds of wideband
services are the dominating tra�c part. Moreover, further improvement of availability and quality
of wideband real-time services is one of the key issues in standardization work for future wireless
communications systems.

1.1 State of the art and related works
The heterogeneity of the wideband tra�c in current and future networks in combination with the
time-variant and unreliable nature of wireless communications channels enforce a need for increased
e�ciency and improved adaptivity of resource allocation algorithms. Such need for better algorithms
for the allocation of power, bandwidth, time and antennas initiated a lively research.

The pioneering contributions were concerned with the power-e�cient operation of a cellular
network with �xed per-link requirements on the value of some Quality of Service (QoS) function,
such as delay or rate, see [2], [3], [4], [5] for the deterministic view and [6] for the incorporation of
stochasticity of wireless channels. In the interesting case of achievable per-link requirements with
respect to a given QoS function, a power allocation e�cient in the above sense represents so-called
min-max fair power allocation [7] (in the references called rather a max-min fair power allocation).
Further development of the framework of min-max fair power allocation was pursued e.g. in [8]
[9]. In [10] the authors developed further the stochastic view from [6], while in [11] the aspects
of computational e�ciency of min-max fair power allocation were addressed. More specialized
theory and algorithms for min-max fair power allocation in CDMA (Code Division Multiple Access)
networks can be found e.g. in [12], [13], [14], [15].

The approach of power allocation optimizing the (weighted) aggregated performance/ QoS of
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the entire network was adapted from the wired network context [16], [17] and occurred in later
works as an alternative to min-max fair power allocation. A great deal of the corresponding works
is concerned with the optimization of (weighted) network throughput, understood as the (weighted)
sum of link capacities, under single antenna or multiple antennas per link, see e.g. [18], [19] [20],
[21] and references therein. A more general algorithmic theory not restricted to link capacity as
a QoS function can be found e.g. in [22], [23], [24] (see also references therein), where in the two
latter works an attractive game-theoretic view of the power allocation problem is utilized.

Currently, the research on algorithmic power and bandwidth allocation, both in the sense of
min-max fairness and optimization of aggregated performance, incorporates usually the cross-layer
view of network layers and aims at the extension of the algorithmic concepts towards multi-hop ad
hoc networks [25], [26], [27]. Particularly interesting appear here the approaches utilizing a speci�c
splitting of the multi-hop power and bandwidth allocation problem relying on Lagrangean duality
[28], [29], [30]. Certain interest is also in the redesign/ adaption of the algorithms to arising new
network topologies, such as mesh(ed) networks, and their improvement in terms of scalability [31],
[32].

1.2 The scope of the work
The contribution of this work is an analytic and algorithmic framework for achieving min-max
fairness and optimization of weighted aggregated performance, in the sense described above, in
single-hop networks with interference. The key feature of the provided framework is its two-fold
generality.

First, the provided analytic results and algorithms are applicable to arbitrary networks with in-
terfering links as long as the pairwise interference across the links can be described by a nonnegative
matrix. Due to this feature, all results of the work are applicable, in particular, to networks with
multiple antennas at either link transmitter or link receiver, or to CDMA networks provided that
the channels are �at fading and the link receivers are linear. The provided framework covers also
the typical case of single-hop communication within a multi-hop ad hoc network, that is, the case
of separated links sharing the same resource (bandwidth slot, time slot, spreading sequence, etc.).

Second, the results of this work are general in the sense that, except monotonicity in link
SIR (Signal-to-Interference-and-noise-Ratio), no further assumptions on the link QoS function are
required. Thus, the provided results are applicable, in particular, when link capacity, link symbol
error rate or link MMSE (Minimum Mean Square Error) is the link QoS function of interest.

The generality of the results of this work stands, in our view, in contrast to numerous works
referenced above, which are restricted to particular physical layer designs (e.g. single-antenna per
link) and/ or particular medium access policies (e.g. CDMA) and/ or particular link QoS functions
(usually link capacity).

The key ingredients of all results of the work are the link SIR function and the interference
matrix, which describes the pairwise interference across the links (network model in Chapter 2). The
convex-analytic properties of the link QoS function, understood as a function of the corresponding
link SIR, are shown in Chapter 2 to have crucial in�uence on the existence of local/ global solutions
to the power allocation problem. We also characterize a relation between properties of the QoS
function and the properties of the QoS/ performance region, which is understood as the set of all
achievable tuples of link QoS values (the capacity region is a prominent example of a QoS region
when link capacity is taken as link QoS function [21], [19]).

The algorithms proposed in Chapter 3 compute a power allocation optimizing the (weighted)
aggregated performance of the network and rely strongly on the convex-analytic properties of the
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QoS region. The key advantage of the two algorithms, proposed for the cases of sum-power con-
straint and per-link power constraints, respectively, is an in our view advantageous trade-o� of
computational complexity and convergence behavior.

While we suggest centralized conduction of the algorithms from Chapter 3, the algorithms and
feedback schemes in Chapter 4 are designed jointly for the purpose of distributed computation
of a power allocation optimizing the aggregated performance. The key ingredient allowing for
decentralized conduction is hereby a speci�c feedback scheme estimating the interference. The
corresponding algorithmic concepts aim at best possible utilization of the scheme in the sense of
ensured decentralized conduction, low computational complexity and good convergence behavior.
The algorithms rely on the concept of nonlinear, or generalized, Lagrangean function and on a
speci�c approach of variable splitting.

Due to increased performance potential achieved under incorporation of multiple antennas per
link, particular interest is in the problem of spatial power allocation in MIMO (Multiple-Input
Multiple-Output) networks. In Chapter 5 we deal with a particular problem of spatial power al-
location optimizing weighted aggregated performance in the MIMO multiple access channel. The
considered problem corresponds precisely to �nding the so-called stability-optimal policy consist-
ing of spatial power allocation and order of Successive Interference Cancellation (SIC). Relying on
convex-analytic features of the QoS region (in this particular case, the capacity region), we provide
several useful characterizations of the stability-optimal policy. The corresponding algorithm com-
puting the policy makes use of the splitting of the original problem into a set of coupled single-link
problems.

The problem of characterization and computation of a min-max fair power allocation is ad-
dressed in Chapter 6. We prove that the trade-o� of min-max fairness and optimality of weighted
aggregated performance has the interpretation of a saddle point of the weighted aggregated perfor-
mance regarded as a function of link weights and link powers. In Chapter 6 we also obtain insights
in the relation between the approach of ensuring min-max fairness and an opposite approach of
maximally degrading the best link QoS. We show the general nonequivalence of both approaches,
both in terms of optimum power allocation and achieved link QoS, and their dependence on the
combinatorial and spectral properties of the interference matrix.

Appendix A includes specialized notions and concepts (from nonnegative matrix theory, opti-
mization theory, convex analysis and geometry), which the reader might be not familiar with and
which are used in the results of the work. On the other side, some notions/ concepts in the appendix
are fundamental and well-established, but are included in the appendix due to their frequent use
and importance.

1.3 Notation
Any vector is understood as a column vector and ′ denotes the transpose of a vector/ matrix. We
denote vectors of dimension N ∈ N by small-type bold letters, e.g. a = (a1, . . . , aN ), and matrices
of dimension N ×M , N,M ∈ N, by capital bold letters, e.g.

A =




A11 · · · A1M
... . . . ...

AN1 · · · ANM


 .

Such matrix is sometimes written simply as A = (Akl). We de�ne (A)kl = Akl and (a)k = ak,
1 ≤ k,≤ N , 1 ≤ l ≤M . If the dimension of a vector/ matrix is not given explicitly, then it always
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follows from the context with no ambiguity. If the dimension N ∈ N of a vector a is clear, then
we sometimes simplify the notation by writing a ≥ 0 instead a ∈ RN+ or a > 0 instead a ∈ RN++.
Similarly, if the dimension N ∈ N of a Hermitian matrix A is clear, we write simply A º 0 instead
of A ∈ SN+ or A ¹ 0 instead of −A ∈ SN+ . Complying with the convention, if A−B ∈ SN+ , we write
simply A º B instead.

The logarithm function and exponential function de�ned on vectorial domain are understood as
componentwise logarithm and componentwise exponential function, respectively; given a ∈ RN+ we
have log a = (log a1, . . . , log aN ) and ea = (ea1 , . . . , eaN ). Hereby, we de�ne log 0 = −∞ complying
with the convention.

In functional expressions we identify, without introducing ambiguity, vector pairs, say (a, b) ∈
RN × RM , with stacked column vectors (a′ b′)′ ∈ RN+M . Thus, the operator ∇(a,b)· is equivalent
to ∇(a′ b′)′ · and represents the gradient with respect to (a, b) (precisely, (a′ b′)′). Similarly, when
c ∈ RL, the operator ∇2

(a,b),c· is equivalent to ∇2
(a′ b′)′,c· and is de�ned as (∇2

(a,b),c·)km = ∂2

∂ak∂cm
·,

for 1 ≤ k ≤ N , 1 ≤ m ≤ L, and (∇2
(a,b),c·)lm = ∂2

∂bl∂cm
·, for N + 1 ≤ l ≤ N +M , 1 ≤ m ≤ L. In

the case of an iterate argument, say a(n) ∈ RN , n ∈ N, we simplify the notation of a derivative
by writing ∂

∂ak
f(a(n)) instead of ∂

∂ak
f(a)|a=a(n), for any Frechet-di�erentiable function a 7→ f(a),

a ∈ RN (and analogously for the second derivative under twice Frechet-di�erentiable function f).
Using a bar sign, we sometimes implicitly distinguish a particular argument of f , say ā ∈ RN
(resp., a ∈ RN ), from a general argument a ∈ RN (resp., ā ∈ RN ) from the domain of f , so that
∂
∂ak

f(ā) = ∂
∂ak

f(a)|a=ā (resp., ∂
∂āk

f(a) = ∂
∂āk

f(ā)|ā=a).
Given a ∈ RN , we denote by S(a) = Sε(a) an ε-neighborhood of a, where ε > 0 is assumed to

be chosen appropriately small in each considered case.



2
Optimization of aggregated performance
and achieving min-max fairness in the view

of (log-) convexity

In this chapter we �rst introduce the network model in Section 2.1 and then state the optimiza-
tion problems considered in this work. The network model and notation introduced below is valid
throughout the work. The �rst problem of interest is the so-called optimization of weighted aggre-
gated performance and is introduced in Section 2.3. This problem is later in the focus of Chapters
3-5. In Section 2.3 we characterize the solvability of the problem of the aggregated performance op-
timization problem and propose possible problem reformulation and interpretation. The solvability
results exhibit the importance of the feature of log-convexity of the SIR function as a function of
the link performance value.

The second considered problem of achieving so-called min-max fairness is introduced in Section
2.4 and is later in the scope of Chapter 6.

Besides the model and problem introduction, in this chapter we also provide some general results
on convexity of the performance region of the network (Section 2.2), which originate from [33], [34],
[35]. Similarly to the solvability issues of the problem of aggregated performance optimization,
the convexity property of the performance region is in strong relation with the crucial feature of
log-convexity of the SIR function (as a function of the link performance value). Basic notions of
Lagrangian optimization theory and convex analysis used in this chapter are explained in Appendices
A.3, A.4.

2.1 Preliminaries on link power, SIR and link performance
We consider a network with the set of nonorthogonal links K = {1, . . . ,K}. The presented results
hold in particular for the cellular uplink (multiple access) and the cellular downlink (broadcast).
Link transmit powers pk, 1 ≤ k ≤ K, are grouped into the vector p = (p1, . . . , pK). We focus
mostly on two kinds of power constraints; individual (per-transmitter) transmit power limits p̂ =
(p1, . . . , pK), as in the uplink, and the limitation of the transmit sum-power budget by P , as in the

5



6
Optimization of aggregated performance and achieving min-max fairness in the

view of (log-) convexity

downlink. In the �rst case, the set of available power vectors, the power region, is

Pp̂ = {p ≥ 0 : p ≤ p̂}.

In the latter case, the power region takes the form

PP = {p ≥ 0 : 1′p ≤ P}.

We usually universally denote the power region as P ∈ {Pp̂,PP }.
We assume linear receivers for all links. We denote the SIR (Signal to (Noise and) Interference

Ratio) function of the k-th link as p 7→ γk(p), which can be written as (see also [36])

γk(p) =
pk∑K

l=1
l 6=k

Vklpl + σ2
k

, p ∈ P, 1 ≤ k ≤ K. (2.1)

Each interference coe�cient, or cross-talk coe�cient, Vkl models the interference in�uence of the
l-th link signal on the k-th receiver, k 6= l. By σ2

k ≥ 0 we denote the variance of Additive White
Gaussian Noise (AWGN) at the output of the k-th receiver. In the context of weighted aggregated
performance optimization (Chapters 3-5) we require σ2

k > 0, 1 ≤ k ≤ K, while for the analysis of
min-max fairness in Chapter 6 we set σ2

k = 0, 1 ≤ k ≤ K.
Independently of the network realization, each interference coe�cient Vkl depends on the coe�-

cient hkl of the channel from the l-th link transmitter to the k-th link receiver (throughout the work
all antenna-to-antenna channels are assumed to be reciprocal and �at-fading, and thus described
by scalar coe�cients [37]). In general, we set

Vkl =
|hkl|2
|hkk|2

, k 6= l,

Vkk = 0,
1 ≤ k, l ≤ K. (2.2)

In precise terms, the cross-talk coe�cients Vkl and the noise variances σ2
k depend additionally

on other factors depending on particular network realization, e.g. on aperiodic cross- and auto-
correlations of sequences in the CDMA (Code Division Multiple Access) case [36]. For simplicity
of presentation, this in�uence is assumed throughout the work to be included in the (squared
magnitudes of) channel coe�cients |hkl|2, 1 ≤ k, l ≤ K.

Writing all SIR expressions (2.1) in matrix form we get

(I − Γ(p)V )p = Γ(p)σ2, (2.3)

with the function p 7→ Γ(p) = diag(γ1(p), . . . , γK(p)), p ∈ P, vector σ2 = (σ2
1, . . . , σ

2
K) and the

nonnegative interference matrix, or cross-talk matrix, V , de�ned as

(V )kl = Vkl, 1 ≤ k, l ≤ K.

Throughout the work, we denote the left and right Perron-Frobenius eigenvectors (in short, PF
eigenvectors) of the nonnegative interference matrix as l = l(V ) and r = r(V ), respectively. We do
not assume here the normalization of the PF eigenvectors to ‖r‖2 = ‖l‖2 = 1 in general. Vectors l,
r are included in the left and right PF eigenmanifolds of the interference matrix, which we denote
as

L = L(V ) = {x 6= 0 : V ′x = ρ(V )x}
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and
R = R(V ) = {x 6= 0 : V x = ρ(V )x}

respectively, where L,R ⊆ RK+ is obvious from the nonnegativity of V and ρ(·) denotes the spectral
radius [38].

For presentation purposes (in particular, to comply with the framework of Perron-Frobenius
Theory applied widely in this work) it is sometimes useful to make the SIR a separate notion by
writing

γk = γk(p), 1 ≤ k ≤ K, and Γ = diag(γ1, . . . , γK) = Γ(p), p ∈ P. (2.4)
From the Perron-Frobenius Theory is known that the SIR matrix Γ is generated by the unique

nonnegative power vector
p = (I − ΓV )−1Γσ2 (2.5)

(that is, (2.3) is uniquely solvable for p ≥ 0) if and only if ρ(ΓV ) < 1 [39], [40]. In other words,
as long as the spectral radius of the matrix ΓV is smaller than unity, there exists a continuous
one-to-one mapping (2.5) from the space of SIR matrices to the space of power vectors.

Our interest is in functions characterizing the link quality in terms of the desired QoS (Quality-
of-Service) or simply some performance measurement. We group such link-speci�c QoS values qk
in the QoS/ performance vector q = (q1, . . . , qK). For each link 1 ≤ k ≤ K we assume a one-to-one
twice di�erentiable dependence qk 7→ Φ(qk) = γk, 1 ≤ k ≤ K. Thus, there exists an inverse mapping
Ψ = Φ−1 such that

γk 7→ Ψ(γk) = qk, γk ≥ 0, 1 ≤ k ≤ K.
Without loss of generality we assume throughout that Ψ is decreasing (if the interest is in some
increasing Ψ, it has to be used simply with negative sign). For instance, for the (negative) link
capacity in Gaussian channel we have

Ψ(γ) = − log(1 + γ), γ ≥ 0, (2.6)

and for the normalized symbol error rate averaged over realizations of the Rayleigh fading we have

Ψ(γ) = 1/γa, γ ≥ 0, (2.7)

with a > 0 as the diversity order.
In the context of min-max fairness issues in Chapter 6, we use also a modi�ed dependence of

the link performance on the corresponding link SIR of the form

γk 7→ F (
1
γk

) = qk, 0 ≤ γk <∞, 1 ≤ k ≤ K, (2.8)

so that the performance functions Ψ and F are related according to

Ψ(γ) = F (
1
γ

), 0 ≤ γ <∞. (2.9)

Consequently, function F follows to be twice di�erentiable and increasing. It is important to notice
that we assume the performance function F to be de�ned only for positive arguments (inverse SIR
values).

The introduced dependence (2.8) with increasing F is quite special, but applies to any QoS
function being a monotone function of the SIR. In particular, to obtain the link capacity (2.6) and
channel-averaged symbol error rate under Rayleigh fading (2.7) we have to set

F (y) = − log(1 + y−1), y > 0
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and
F (y) = ya, y > 0, a > 0,

respectively.
The componentwise extensions of Φ and Ψ to matrix-/ vector-valued functions are written as

q 7→ Φ(q) = Γ and Γ 7→ Ψ(Γ) = q, respectively. When concatenated with the mapping inverse to
(2.5), Ψ yields the QoS vector as a function of power vector,

p 7−→ Γ Ψ7−→ q, p ∈ P, (2.10)

which can be written explicitly as q = Ψ(Γ(p)), p ∈ P. From (2.10) arises the notion of the QoS/
performance region as the set of all performance vectors achievable with the vectors in the power
region. Precisely, in the case of sum-power constraint we have the QoS region

QP = {q = Ψ(Γ(p)) : p ∈ PP },

while the performance region under individual power constraints is

Qp̂ = {q = Ψ(Γ(p)) : p ∈ Pp̂}

Sometimes we use the more general notion Q = {q = Ψ(Γ(p)) : p ∈ P}. The inverse of the
dependence (2.10) is

q
Φ7−→ Γ 7−→ p, q ∈ Q, (2.11)

which can be written with (2.5) explicitly as p = (I −Φ(q)V )−1Φ(q)σ2, q ∈ Q. For completeness
we also de�ne the QoS region of power-unconstrained networks as Q∞ = {q = Ψ(Γ(p)) : p ≥ 0}.

2.1.1 Link power and link performance in multi-antenna channels
In Chapter 5 we use a network model with extended physical layer in the sense of multiple antenna,
that is, Multiple-Input Multiple-Output (MIMO), link channels. We also restrict us there to the case
of a multiple access channel in the particular form of a cellular uplink [41].

We consider a slotted multi-antenna multiple access channel, which means that the channel
parameters are observable, and can be in�uenced, only in the discrete-time pattern nT , n ∈ N.
Each link transmitter is equipped with nt transmit antennas and the common link receiver, the
base station, has nr receive antennas. However, all results from Chapter 5 can by straightforwardly
generalized to the case with di�erent number of transmit antennas per link. Slightly loosening
the assumption of time-invariant channels in the single-antenna case, we assume the channels to
remain constant within the slots [nT, (n+ 1)T ), n ∈ N, but allow them to take independent values
from some common distribution from slot to slot. Such assumption is commonly referred to as
iid (independently identically distributed) block fading [42], [20], [21]. It has to be noted that the
assumption of iid block fading is slightly too restrictive than necessary, but makes the results from
Chapter 5 more readable.

We denote the instantaneous value of a multi-antenna channel between the transmitter of link i
and the base station in slot n ∈ N as H i(n) ∈ Cnr×nt . We group the instantaneous channel values
of all links in H(n)={H i(n)}Ki=1, n ∈ N. In the multi-antenna case we require that the transmitters
know the instantaneous states of the corresponding channels. Thus, we assume su�ciently accurate
channel estimation at the base station and either a reliable delayless feedback channel or also a
su�ciently accurate channel estimation at all transmitters. The AWGN assumption is retained,
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and additionally we assume the noise to be spatially, that is, among receive antennas, uncorrelated,
so that the noise covariance matrix takes the form Iσ2 ∈ Rnr×nr .

Under multiple antennas per link, the link power is no more su�cient in describing the trans-
mitter. With xi(n) ∈ Cnt as the vector of transmit symbols of i-th link in n-th slot, we de�ne the
corresponding (instantaneous) transmit covariance matrix as

Qi(n) = E(xi(n)x′i(n)), 1 ≤ i ≤ K, n ∈ N.
We group the instantaneous transmit covariance matrices of all links in Q(n)={Qi(n)}Ki=1, n ∈ N.
The transmit covariance matrix of each link is by de�nition positive semide�nite, which we denote
as Qi º 0, 1 ≤ i ≤ K, or slightly generalizing as Q º 0. Clearly, the transmit power of i-th
multi-antenna link in n-th slot satis�es

pi(n) = tr(Qi(n)), 1 ≤ i ≤ K, n ∈ N,
so that the de�nition of the power region is intuitively extendable to the multi-antenna case as the
set of available transmit covariance matrices. Precisely, we have

Pp̂ = {Q = {Qi}Ki=1 º 0 : tr(Qi) ≤ p̂i, 1 ≤ i ≤ K}
in the uplink-typical case of individual (per-transmitter) power constraints p̂ = (p̂1, . . . , p̂K) and

PP = {Q = {Qi}Ki=1 º 0 :
K∑

i=1

tr(Qi) ≤ P}

under sum-power constrained by P .
We assume the use of Successive Interference Cancellation (SIC) in the MIMO multiple access

channel. SIC is known to be the optimal signal (post-) processing scheme in the multiple access
channel in terms of information theory. Precisely, by SIC and time sharing we can achieve the
boundary rate vectors in the capacity region of the MIMO multiple access channel [41], [43].

The (instantaneous) order of SIC of link signals in n-th slot is represented by a permutation
(i, n) 7→ πk(i, n), (i, n) ∈ K×N. The subscript, used only sometimes, labels hereby the permutation
(the SIC order) as the k-th one from the ordered set of K! possible permutations (SIC orders), say
ΠK . Given SIC order πk, we have precisely πk(1, n) as the last decoded link signal, ..., and πk(K,n)
as the �rst decoded link signal in n-th slot. Thus, πk denotes actually the inverse SIC order. In
�gures we also use a more intuitive notation of the SIC order in the form πk(n) = πk(1, n)← ...←
πk(K,n), n ∈ N.

The achievable (instantaneous) data rate function on i-th link in n-th slot takes the form

(Q(n),H(n), πk(n)) 7→ Ri(Q(n),H(n)), (Q(n), πk(n)) ∈ P ×ΠK , n ∈ N. (2.12)

The di�erences and similarities between the link data rate and link capacity are addressed later in
Section 5.2.3. We group the (values of) link data rates Ri(Q(n),H(n)) = Ri(n), in n-th slot in
the rate vector R(n) = (R1(n), . . . , RK(n)), n ∈ N. Intuitively, a pair (Q(n), πk(n)) ∈ P × ΠK ,
n ∈ N, can be referred to as a transmission policy of the multiple access channel in n-th slot since
it de�nes the instantaneous transmit and receive strategy in the multiple access channel. Clearly,
according to our model, a transmission policy in n-th slot is in general dependent on the parameters
observable up to time instant nT .

The system bandwidth is denoted asW . In the context of multi-antenna multiple access channel
in Chapter 5, we regard the link capacity and capacity region of the channel as the maximum
achievable rate in [bit/s] and the set of all achievable rate vectors in [bit/s], respectively.
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Since the results of Chapter 5 concern a one slot-view, the indication by (respectively, dependence
on) the slot index will be sometimes dropped (respectively, neglected) there.

It has to be noted that in the context of most multi-antenna considerations, and in particular
in Chapter 5, the dependence (2.12) assumes the role of the relation (2.10) in the general network
with interference (the de�nition of the transmission policy as the argument in (2.12) is here however
speci�c for the MIMO multiple access channel). This is caused by the dominant interest in the link
data rate and link capacity as QoS functions in multi-antenna networks, see e.g. the variety of works
[44], [45], [42], [20], [46] and references therein. Thus, in Chapter 5 we also concentrate on the rate
vector as the only QoS vector of interest. In contrast to the general relation of power vector and
QoS vector (2.10), the MIMO-speci�c relation (2.12) is usually not represented as a concatenation
of the SIR function and a QoS function (here, the data rate function). The lack of such structure
is caused by the simple fact that an established and meaningful notion of SIR function which gives
rise to useful QoS vectors according to (2.10) is nonexistent under multiple antennas per link.

2.2 Convexity of the performance region
Convexity of the QoS region is a desired property from the point of view of design of resource
allocation policies. For instance, for any two achievable QoS vectors q(1), q(2) (i.e. q(1), q(2) ∈ Q),
it is known in such case that any their convex combination q(t) = (1 − t)q(1) + tq(2), t ∈ (0, 1),
can be achieved by a power vector from the power region as well. Thus, if for some t ∈ (0, 1)
the combined QoS vector q(t) is favorable compared to q(1), q(2), known algorithms can be applied
to achieve the performance corresponding to q(t) (see e.g. [39] for the case q = Ψ(γ) = 1/γ in
CDMA networks). Furthermore, special algorithmic resource allocation schemes, relying strongly
on the convexity property of Q, are applicable when convexity of Q is ensured (see e.g. [28] for the
approach of optimization of aggregated QoS performance with Ψ(γ) = log(γ)).

In [39] and [40] the authors proved convexity of the QoS regions Qp̂ and Q∞ for some particular
QoS functions, such as q = Ψ(γ) = 1/γ. In [36], the following convexity condition for the downlink
performance region QP for general performance functions was provided.

Proposition 1 If Φ is log-convex, then the QoS region QP is a convex set.

As a new result, which parallels Proposition 1, we provide a similar convexity condition for the
uplink performance region Qp̂.

Proposition 2 If Φ is log-convex, then the QoS region Qp̂ is a convex set.

Proof Let function q 7→ Lα(q) = α′(I −Φ(q)V )−1Φ(q)σ2 be de�ned for q ∈ RK such that
ρ(Φ(q)V ) < 1. Utilizing the Neumann series expansion we can write further

Lα(q) =
∞∑

k=0

α′(Φ(q)V )kΦ(q)σ2, q ∈ RK such that ρ(Φ(q)V ) < 1.

Since, by assumption, Φ is log-convex and the product and the sum of log-convex functions are
log-convex [47], Lα is log-convex as well for α ≥ 0.

By (2.5) and (2.10), this implies that a linear combination of transmit powers, with nonnegative
weights, is a log-convex function of the QoS vector. By setting α = ek, for some k ∈ K, the same
holds for any single link transmit power. Choose now two power vectors p(1),p(2) ∈ Pp̂. Then,
for the corresponding vectors q(1), q(2) ∈ RK obtained from p(1),p(2) by (2.10), respectively, we
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have q(1), q(2) ∈ Qp̂. Let now a QoS vector q(t) = (1 − t)q(1) + tq(2), t ∈ (0, 1) be de�ned and
let p(t) = (p1(t), . . . , pK(t)) be the power vector associated with q(t) through (2.11). Now, by
the shown log-convexity of pk, k ∈ K, as a function of the QoS vector, we have (by de�nition of
log-convexity and power constraints)

pk(t) ≤ (p(1)
k )(1−t)(p(2)

k )t ≤ (p̂k)(1−t)(p̂k)t = p̂k, t ∈ (0, 1), k ∈ K. (2.13)

Thus, it is implied by (2.10) again that q(t) ∈ Qp̂, t ∈ (0, 1), which completes the proof. ¤
Fortunately, there is a number of useful QoS functions that correspond to log-convex QoS-SIR

dependences Φ and thus ensure convexity of the QoS region. Some examples are the following.

• q = Ψ(γ) = − log γ
1+γ as the logarithmically (e.g. in dB) expressed e�ective bandwidth for

linear MMSE (Minimum Mean Square Error) receivers. In fact, γ = Φ(q) = exp(−q)
1−exp(−q) is

log-convex.

• q = Ψ(γ) = 1
γa as the channel-averaged normalized symbol error rate (under receiver diversity

a > 0 and Rayleigh fading) or as the e�ective spreading factor in CDMA (a = 1). Then,
γ = Φ(q) = 1

q1/a is log-convex.

• q = Ψ(γ) = − log γ as the logarithmically (e.g. in dB) expressed SIR, or high-SIR approxi-
mation of the link capacity. In fact, γ = Φ(q) = exp(−q) is log-convex.

The following Lemma shows further that the log-convexity property of Φ is equivalent to con-
vexity of the function

x 7→ Ψe(x) = Ψ(ex), x ∈ R.
The latter characterization might sometimes appear to be favorable.

Lemma 1 An inverse performance function Φ = Ψ−1 is log-convex if and only if function Ψe is
convex.

Proof Let Φ(q) = Ψ−1(q), q ∈ R, be log-convex, which means

Φ(q1)(1−t)Φ(q2)t ≥ Φ((1− t)q1 + tq2), t ∈ (0, 1), q1, q2 ∈ R. (2.14)

Thus, by decreasingness of Φ (due to decreasingness of Ψ), we have by (2.14) also Ψ(Φ(q1)(1−t)Φ(q2)t) ≤
(1− t)q1 + tq2, t ∈ (0, 1), q1, q2 ∈ R. Consequently, by substituting

Φ(qi)=exi , i = 1, 2, (2.15)

and reformulating we yield

Ψ(e(1−t)x1+tx2) ≤ (1− t)Ψ(ex1) + tΨ(ex2), t ∈ (0, 1), x1, x2 ∈ R,

which is equivalent to convexity of Ψe(x), x ∈ R. The converse proof is a straightforward inversion,
using the same substitution (2.15), the decreasingness property of Ψe and the inverted order of
transformations. ¤
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2.3 Optimization of weighted aggregated performance
In this section, and later in Chapters 3-5, we focus on the weighted sum of performance functions

q 7→ α′q, q ∈ Q, or, equivalently p 7→
K∑

k=1

αkΨ(γk(p)), p ∈ P, (2.16)

with α ∈ A and
A = {α ≥ 0 : ‖α‖ = 1}, (2.17)

as the objective in the optimization of power allocation. It is intuitive to require the norm-constraint
in (2.17) to be the 1-norm constraint. However, there is no loss in generality when other norms are
taken, as is the case e.g. in Chapter 3.

The optimization of weighted aggregated performance given in (2.16) is the most common opti-
mization goal under best-e�ort, or elastic tra�c [16], [28], [23]. In analogy to the original de�nition
in [16] (for wired tra�c), best-e�ort tra�c comes from applications that are able to modify their
QoS according to the achievable limits within the network and tra�c priorities. Hereby, the link
weights αk, 1 ≤ k ≤ K, in (2.16) are usually determined by the corresponding tra�c priorities.

With assumed decreasingness of Ψ, the problem of weighted aggregated performance optimiza-
tion takes the form

min
p∈P

K∑

k=1

αkΨ(γk(p)). (2.18)

From geometry it is known that the power allocation pα solving (2.18) generates the Pareto-optimal
QoS vector qα = Ψ(Γ(pα)), which is the vector at which the hyperplane with normal vector α
supports the set of all achievable QoS vectors, that is the performance region Q [47]. In other words,
any solution to the problem (2.18) is one-to-one associated, by mapping (2.10), with some solution
of the scalarized vector optimization of the form

min
q∈Q

α′q, (2.19)

Problem (2.19) and Pareto optimality is illustrated in Fig. 2.1.

2.3.1 Global optimizers
We can show that log-convexity of the QoS-SIR mapping ensures the existence of only global
optimizers of problem (2.18). The result is a consequence of convexity of the performance region.

Proposition 3 If Φ = Ψ−1 is log-convex, then any local minimizer of problem (2.18) is global as
well, and the Kuhn-Tucker conditions are necessary and su�cient optimality conditions, provided
that P satis�es constraint quali�cation.

Proof By (2.16), one can see that any solution to the problem (2.18) is one-to-one associated,
by mapping (2.10), with some solution to the problem

min
q∈Q

α′q,

which is convex due to convexity of Q, implied by log-convexity of Φ (Propositions 1, 2). By
contradiction, assume the existence of at least two distinct local minimizers p̃, p̌ ∈ P of (2.18), with
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Q

qα = arg minq̃∈Q
∑2

k=1 αkq̃k

−α

q1

q2

Figure 2.1: An exemplary QoS region in the two-link case with a Pareto-optimal QoS vector qα for
some weight vector α.

only one of them, say p̃, global. Let the distinct local minimizers of (2.19) uniquely associated with
p̃ and p̌ be q̃ ∈ Q and q̌ ∈ Q, respectively. By convexity of the problem (2.19), the local minimizers
q̃ and q̌ and all their convex combinations q(t) = (1− t)q̃ + tq̌, t ∈ (0, 1), are also global solutions
to (2.19) [48]. Thus, p̌ is a global minimizer of (2.18) as well, which contradicts the assumption
and proves that all local minimizers of (2.18) are also global. The necessity and su�ciency of the
Kuhn-Tucker conditions follows by the standard optimization theory due to satis�ed constraint
quali�cation [48]. ¤

Existence of only global minimizers of problem (2.18) implies that any locally converging opti-
mization routine �nds a globally optimal power allocation. Thus, Proposition 3 implies that adaptive
online power (re-) allocation according to (2.18) is signi�cantly facilitated for QoS functions with
log-convex QoS-SIR dependence.

2.3.2 Matrix characterization of the solution
The constraint inequalities determining the domain in (2.18) take the form−p ≤ 0,

∑K
k=1 pk−P ≤ 0

in the downlink case (PP ) and −p ≤ 0, p−p̂ ≤ 0 in the uplink case (Pp̂). With the Perron-Frobenius
Theory (Section 2.1), the vectorial nonnegativity constraint on the power allocation can be replaced
in both cases by the scalar inequality constraint ρ(Γ(p)V ) < 1. With this, the Lagrangian of
problem (2.18) can be written as

Lα(p, µ, ν) =
K∑

k=1

αkΨ(γk(p)) + µ(
K∑

k=1

pk − P ) + ν(ρ(Γ(p)V )− 1) (2.20)

in the case of sum-power constraint (e.g. downlink) and

Lα(p,µ, ν) =
K∑

k=1

αkΨ(γk(p)) +
K∑

k=1

µk(pk − p̂k) + ν(ρ(Γ(p)V )− 1) (2.21)
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in the case of individual power constraints (e.g. uplink), with µ, µ = (µ1, . . . , µK) and ν as the
Lagrangean multipliers. Since the complementary slackness condition ν(ρ(Γ(p)V ) − 1) = 0 is a
necessary optimality condition and we further have ρ(Γ(p)V )→ 1 only if p→∞, it follows that the
optimum value of the Lagrange multiplier ν is ν = 0 [49], [48]. This lets us state the Kuhn-Tucker
conditions ∇pLα(p, µ, 0) = 0 and ∇pLα(p,µ, 0) = 0 in the downlink and uplink, respectively, in a
nice compact form. Letting function p 7→ g = (g1(p), . . . , gK(p)), p ≥ 0, with

gk(p) = αkΨ′(γk(p))
γk(p)
pk

, 1 ≤ k ≤ K, (2.22)

we yield precisely
∇pLα(p, µ, 0) = g(p)− V ′Γ(p)g(p) + µ1 = 0

in the downlink case and

∇pLα(p,µ, 0) = g(p)− V ′Γ(p)g(p) + µ = 0,

in the uplink.
For QoS functions with log-convex QoS-SIR dependence, this yields with the remaining Kuhn-

Tucker conditions and Proposition 3 a necessary and su�cient matrix equation characterization of
the optimal power allocation in (2.18) (not that the constraint quali�cation is satis�ed in the cases
of PP and Pp̂).

Proposition 4 With Φ as a log-convex function, the power vector p generating the SIR matrix Γ
solves problem (2.18) if and only if it solves





p = (I − ΓV )−1Γσ2

g(p) = −(I − (ΓV )′)−1c,

ρ(ΓV ) < 1

(2.23)

with c = µ1 ≥ 0,
∑K

k=1 pk−P ≤ 0, µ(
∑K

k=1 pk−P ) = 0 under sum-power constraint and c = µ ≥ 0,
p− p̂ ≤ 0, µ′(p− p̂) = 0 under power constraints per link.

Obviously, under lack of log-convexity of Ψ, Proposition 4 provides a necessary and su�cient
matrix equation characterization of a local minimizer of (2.18). In some sense, the structural simi-
larity of the matrix equations in the optimality conditions (2.23) gives rise to e�cient decentralized
algorithmic solutions to problem (2.18) (Chapter 4).

2.3.3 Fairness of medium access
The links which are allocated zero transmit power are said to be idle. From the point of view
of fairness in the network it is desirable when αk > 0 implies pk > 0 under the optimality in
terms of (2.18), that is, when nonzero link priority implies a non-idle link under optimized weighted
aggregated performance. Such feature ensures medium access for any nonzero tra�c priority at the
optimum of weighted aggregated performance (a kind of medium access fairness). We can show
that the class of QoS functions with log-convex QoS-SIR dependence provides such kind of fairness
in medium access.

Proposition 5 Given α > 0 and a log-convex function Φ, any solution to (2.18) is positive.
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Proof We �rst prove the following crucial Lemma.
Lemma If Φ = Ψ−1 is log-convex, then Ψ′(0) = −∞.
By assumed decreasingness and di�erentiability of Φ, we have Ψ′(γ) < 0, γ ≥ 0. Then, by Lemma
1, Ψ has a log-convex inverse if and only if Ψe is convex. Obviously, Ψe is convex if and only if
Ψ′
e(x) = Ψ′(ex)ex is nondecreasing. Take a series {xn}n∈N ⊂ R, with limn→∞ xn = −∞ and assume

by contradiction Ψ′(0) = c > −∞. Then, limn→∞Ψ′
e(xn) = limn→∞Ψ′(exn)exn = c · 0 = 0, due

to the continuity of Ψ (implied by di�erentiability [50]). Further, we have Ψ′
e(xn) = Ψ′(exn)exn <

0, n ∈ N, due to Ψ′(γ) < 0, γ ≥ 0. Since this holds for any series {xn}n∈N ⊂ R such that
limn→∞ xn = −∞, we yield by separability of R that limx→−∞Ψ′

e(x) = 0 and Ψ′
e(x) < 0, x ∈ R.

But this contradicts nondecreasingness of Ψ′
e and completes the proof of the Lemma.

Let now a series of power vectors {pn}n∈N be convergent to p̃ ∈ P and let, by contradiction,
p̃ be a solution to (2.18) such that p̃k = 0, for some k ∈ K. Then, it is clear from (2.1) and the
assumption σ2

k > 0 that for the k-th SIR function we have limn→∞ γk(p(n)) = γk(p̃) = 0. Thus,
with the Lemma above we have then

lim
n→∞

K∑

k=1

αkΨ(γk(p(n))) =
K∑

k=1

αkΨ(γk(p̃)) =∞,

which contradicts the assumption that p̃ is a solution to (2.18) and completes the proof. ¤

2.3.4 Convex reformulation of the problem
We showed that for QoS functions with log-convex QoS-SIR dependence the online power (re-)
allocation is facilitated due to the existence of only global minimizers of problem (2.18). From the
point of view of online solvability of problem (2.18) an even more desirable, but more restrictive,
property is convexity of the problem statement (that is, convexity of the objective and the opti-
mization domain [47]). Under convexity of the problem, powerful tools of convex optimization, such
as interior point methods, can be used in the design of iterative optimization schemes. Convexity
of the problem statement ensures good global convergence behavior of applied iterative schemes.

We show that under log-convexity of Φ the optimization problem (2.18) can be translated into
an equivalent convex form by logarithmic transformation of the domain.

Proposition 6 Let Φ be log-convex and X = {x = log p : p ∈ P}. Then, the function

x 7→
K∑

k=1

αkΨ(γk(ex)), x ∈ X , (2.24)

is convex and the optimization problem

min
x∈X

K∑

k=1

αkΨ(γk(ex)) (2.25)

is a convex problem.

Proof With the de�nition of function Ψe, we can write for each addend in (2.24)

Ψ(γk(ex)) = Ψ(elog γk(ex)) = Ψe(log γk(ex)), 1 ≤ k ≤ K. (2.26)

By the assumption of log-convexity of Φ and by Lemma 1, Ψe is convex and decreasing (due
to assumed decreasingness of Ψ). Further, it is known from [10] that the function log γk(ex),
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1 ≤ k ≤ K, is concave. Thus, it follows by the standard result from convex analysis that the
concatenation Ψe(log γk(ex)), 1 ≤ k ≤ K, is a convex function [50]. Convexity of the objective
(2.24) as a sum of convex functions follows then immediately. With convexity of the set X (precisely,
sets XP and Xp̂), convexity of the optimization problem (2.25) is implied and the proof is completed.
¤

In the view of the power-QoS mapping (2.10), Proposition 6 implies that the map from loga-
rithmic power vectors to performance vectors

x
exp7−→ p 7−→ Γ Ψ7−→ q

is convex whenever Φ = Ψ−1 is log-convex.
In Fig. 2.2 a simulative comparison of convergence is provided for two di�erent QoS parameters

with log-convex QoS-SINR map. The advantage of convexity is mirrored in Fig. 2 by the fact that
the gradient method applied to the convex problem form performs as well as the more e�cient
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method applied to the nonconvex problem (2.18). In
contrast to the gradient method, the BFGS method utilizes approximative second-order information
[47].

It has to be underlined that the reformulation of aggregated performance optimization (2.18)
in the form (2.25) is allowable under much more general conditions than under log-convexity of the
QoS-SIR dependence. Precisely, the domain in problem (2.18) can be transformed logarithmically
when

p = arg min
p̃∈P

K∑

k=1

αkΨ(γk(p)) > 0

(note, that by Proposition 5 this is satis�ed in particular for QoS functions with log-convex QoS-
SIR dependence). In Chapter 4 however, we use the following slightly more restrictive condition
allowing us to work with problem form (2.25).

Condition 1 Any local minimizer p of problem (2.18) satis�es p > 0.

Finally, it has to be underlined that the convexity condition and convex problem form from
Proposition 6 are essentially di�erent (although similar at �rst glance) from the ones used e.g. in
[29] and relying on geometric programming approach. The reason is that in our case the QoS
parameter is a function of link SINR, while in the multi-hop context of [29] the QoS parameters are
dependent on source data-rates.

2.4 Achieving min-max fairness
The analysis of fairness issues in networks has its origin in the framework of wired networks [51],
[16], [17]. Although we are free to de�ne specialized notions of fairness, the fairness principle referred
to here as min-max fairness is best-established. Furthermore, min-max fairness gives rise to the
majority of related fairness notions applicable to di�erent network types (wired/ wireless), di�erent
network topologies (cellular/ ad-hoc networks) and di�erent QoS functions (e.g. the end-to-end
route delay in multi-hop ad-hoc networks or link capacity in cellular networks).

In general, the idea of min-max fairness consists in making the worst performance value (e.g.
of a route, link, etc.) as good as possible. In wired networks, the min-max fair equilibrium of
QoS values is the one at which no QoS valuer qi can be improved without the degradation of any
QoS value qj , j 6= i, which is already inferior to qi [16], [17], [52], [53], [54], [55], [56]. The same
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Figure 2.2: A comparison of convergence of di�erent optimization methods applied to problem (6) and
its convex form for two exemplary QoS parameters with log-convex QoS-SINR maps. The gradient method
applied to nonconvex problem (dotted line) provides the worst convergence performance. The convergence of
the gradient method applied to convex problem form (dashed line) is comparable with the convergence of the
BFGS method applied to nonconvex problem form (solid line), although the latter one uses approximative
second order information.

de�nition translates usually to the case of wireless multi-hop ad-hoc networks when the QoS values
are associated with routes [57], [58], [59].

The fairness principle referred in this work as min-max fairness is equivalent to the notion of max-
min fairness in the given references and in the majority of the literature on the topic. Nevertheless,
we prefer here a di�erent convention to comply with the fact that, as will be seen in Section 2.4.2,
the problem of ensuring this notion of fairness takes the min-max form. The min-max problem
form results from the assumption that the QoS function (2.8) is increasing in inverse SIR and thus,
is decreasing in the corresponding link transmit power. Consequently, it is desired to minimize
each QoS value and the worst QoS value is the maximal one. The di�erent convention in the most
references results from the increasingness of the QoS value as the function of the corresponding
resource (power, bandwidth) assumed there. Hence, the problem of ensuring the same notion of
fairness in the references is of max-min type.

2.4.1 Preliminaries on SIR with neglected noise
As announced in Section 2.1, we consider the problem of min-max fairness given the link SIR
function

γk(p) =
pk∑K

j=1 Vkjpj
=

pk
(V p)k

, p ∈ P, 1 ≤ k ≤ K, (2.27)

that is, (2.1) with σ2
k = 0, 1 ≤ k ≤ K. To exclude "pathological" cases of interference, we also

make a nonrestrictive assumption that
∑K

j=1 Vkjpj > 0, 1 ≤ k ≤ K, for some p ∈ P. The link SIR
function with neglected noise (2.27) can be considered to take the role of the actual SIR function
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in the case when the interference power
∑K

j=1 Vkjpj dominates the variance σ2
k of the Gaussian

noise perceived at the output of the link receiver, at each link receiver k ∈ K. Thus, the SIR
model (2.27) can correspond to an asymptotic model (2.1) in the regime of high received powers
(both, the received own link powers and the interference powers). On the other side, the use of
the SIR model (2.27) is justi�ed in networks which utilize transceivers with especially low noise
�gures, since then the received noise variance at each receiver output is likely to be low in relation
to the corresponding interference power. Low noise �gure can be expected in specialized transceiver
designs with high-end components. Finally, the use of SIR model (2.27) for network optimization
purposes might be suitable in the case when the noise variances σ2

k, 1 ≤ k ≤ K, (or the noise �gures
of all link receivers 1 ≤ k ≤ K) are not known to the optimizing instance, e.g. to the base station
in a cellular network. In such case the assumption σ2

k = 0, 1 ≤ k ≤ K, is one of the options how
the optimizing instance can handle the lack of the knowledge on noise. Results relying on the SIR
model (2.27) constitute a signi�cant part within the established theory of power control, see e.g.
[2], [10] and references therein.

The SIR function with neglected noise (2.27) is multiplicatively invariant in the sense that
γk(p) = γk(cp), c > 0. Thus, as long as the power region includes some neighborhood of the origin
0, the sets of achievable link SIR values do not di�er. Due to such feature, we can assume without
loss of generality the unconstrained power region

P = RK+ (2.28)
when the noise in the SIR function is neglected (in particular, in consideration of min-max fairness).

2.4.2 The problem of min-max fairness
In wired networks, the formulation of the problem of ensuring min-max fairness as an optimization
problem is prohibited by the network topology constraints, and precisely by the existence of so-
called bottleneck links [52], [53], [56]. Similarly, in considerations of end-to-end QoS in wireless
multi-hop ad-hoc networks such formulation is prohibited by the natural constraints on the routing
policy [59].

In the considered (single-hop) network with performance values associated with links and link
performance requirements qreq = (qreq1 , . . . , qreqK ), the problem of ensuring relative or weighted min-
max fairness (in short, the problem of relative or weighted min-max fairness) corresponds to the
optimization problem

inf
p∈P++

max
1≤k≤K

F ( 1
γk(p))

qreqk
= inf

p∈P++

max
1≤k≤K

F
(

(V p)k
pk

)

F ( 1
γreqk

)
, (2.29)

where we de�ned
P++ = P ∩ RK++,

and where γreqk = 1/F−1(qreqk ), 1 ≤ k ≤ K, denotes the link SIR requirement (see [40] for the special
case qk = 1

γk
). The fairness notion (2.29) is referred to as relative or weighted due to normalization

of absolute link QoS function by the corresponding prede�ned link QoS requirement.
The notion of unweighted min-max fairness neglects di�erences in link performance requirements

and corresponds to the case qreq = c1, c > 0. In the behavioral and economic science, the notion
of (unweighted) min-max fairness parallels ideal social fairness [60]. By (2.29), the problem of
min-max fairness, which is in the focus of Chapter 6, follows simply as

inf
p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
. (2.30)
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Note, that as a consequence of the assumption of an unconstrained power region (2.28), we have

P++ = RK++

in (2.30). Due to this feature one can easily show that the constraint quali�cation condition for
problem (2.30) is always satis�ed [48].
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3
Centralized algorithmic optimization of

weighted aggregated performance

In this chapter we propose two algorithmic solutions of the problem of (weighted) aggregated perfor-
mance optimization (2.18). The decentralized realization of the proposed algorithms in real-world
networks appears to require a signi�cant e�ort in signaling and feedback (to provide local knowledge
of parameters for each network link). Due to this reasons, we claim that the algorithms proposed in
this chapter are destined for centralized conduction, which is signi�cantly facilitated, in particular,
in a cellular network.

The algorithm proposed in Section 3.1 is applicable to networks with sum-power constraint, in
particular in a downlink, while the algorithm from Section 3.2 works in networks with per-link power
constraints, e.g. in the uplink. Both algorithmic solutions were proposed originally in [61], [62].
As we will show, both proposed solutions are attractive alternatives to the application of general
iterations (for the used notions of optimization theory see Appendix A.3).

3.1 Algorithmic solution under sum-power constraint

According to Propositions 3 and 6, under a log-convex performance-SIR dependence Φ, the solutions
to the problems (2.18), (2.25) can be computed by means of general locally convergent iterations,
such as the gradient iteration or the Newton iteration [47], [49]. However, specialized algorithms
designed for the problem (2.18) can provide certain advantages [28], [24]. Precisely, by making use
of the speci�c problem structure of (2.18), a better convergence rate or lower computational e�ort
can be obtained.

In this Section and in Section 3.2 we propose two algorithms, for sum-power constrained networks
(e.g. downlink) and networks with per-link power constraints (e.g. uplink), respectively, which solve
the problem (2.18). Our designs make use of some elements of the power-unconstrained optimization
algorithm proposed in [22]. In contrast to [22], we incorporate (di�erent kinds of) power constraints
into the design.

21
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3.1.1 Some preliminaries
We assume here that the norm-constraint in the de�nition (2.17) is the constraint on the 2-norm,
that is, all weight vectors have unit 2-norm. Taking (2.4) into account, we can rewrite the power-SIR
dependence (2.3) equivalently as ΓV p+Γσ2 = p. The sum-power constraint can then be expressed
by

1′p = 1′ΓV p + 1′Γσ2 ≤ P. (3.1)
It is clear that (3.1) is satis�ed with equality for any optimizer of the problem (2.18) (that is, the
sum-power constraint is tight at the optimum) [34]. We are free to scale the parameters V and σ2

in order to arrive at an equivalent problem form with P = 1. Both equations (2.3) and (3.1) can
then be written in joint matrix form

X(Γ)
(

p
1

)
=

(
p
1

)
, (3.2)

with matrix-valued function Γ 7→X(Γ) de�ned as

X(Γ) =
(

ΓV Γσ2

1′ΓV 1′Γσ2

)
, Γ = diag(γ1, . . . , γK) ≥ 0. (3.3)

We have a simple observation.

Lemma 2 A pair (p,Γ), with ρ(ΓV ) < 1, Γ = Γ(p), solves the equation (3.2) if and only if

ρ(X(Γ)) = 1. (3.4)

Proof Equation (3.2) is an eigenvalue equation for X(Γ). Condition ρ(ΓV ) < 1 implies, by
Proposition 1 and (2.5), that p ≥ 0 and thus, by (2.1), that X(Γ) is nonnegative. Let �rst (3.2)
and assume, by contradiction, that one of the sides of (3.2) is scaled by some c 6= 1, which means
that ρ(X(Γ)) 6= 1. Then, (2.3) is violated, which contradicts the assumption Γ = Γ(p) and thus,
implies (3.4).

Conversely, note that ρ(X(Γ)) = 1 implies X(Γ)r = r, for some eigenvector r ∈ RK . Assuming
by contradiction r 6= (p′ 1)′ implies the violation of (2.3) again and thus, contradicts Γ = Γ(p).
Thus, we must have r = (p′ 1)′ so that (3.2) follows and the proof is completed. ¤

By Lemma 2, the equations (3.2) and (3.4) are equivalent characterizations of the manifold of
SIR matrices {Γ = Γ(p) : 1′p = 1,p ≥ 0}, or equivalently {Γ = Γ(p) : 1′p = 1, ρ(ΓV ) < 1}.
With the bijectivity of Ψ (equivalently, Φ) and monotonicity of Ψ (equivalently, Φ), such manifold
determines uniquely the manifold

b(QP ) = {q = Ψ(Γ) : Γ = Γ(p),1′p = 1,p ≥ 0},

which represents the part of the boundary of the performance region QP which includes any min-
imizer of the problem (2.19). Thus, with Lemma 2 we can reformulate the problem (2.19) under
sum-power constraint in one of the forms

min
q∈b(QP )

α′q = min
q∈{q=Ψ(Γ) : ρ(X(Γ)=1}

α′q = min
q∈{q : ρ(X(Φ(q))=1}

α′q. (3.5)

None of the problems in (3.5) is convex, but under log-convexity of Φ their local optimizers are
all global due to the equivalence to (2.19) (Proposition 3). The last two problem forms in (3.5)
are especially convenient, since they represent equality-constrained problems with a single scalar
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constraint. The corresponding Kuhn-Tucker conditions are necessary and su�cient optimality con-
ditions under log-convexity of Φ (Proposition 3 and trivially satis�ed constraint quali�cation) and
can be easy shown to take the form [48]

α + ν∇ρ(X(Φ(q))) = 0, ν ≥ 0. (3.6)

The nonnegativity of ν follows from the fact that the equality constraint in (3.5) can be replaced by
the inequality constraint ρ(X(Φ(q))) ≤ 1, for which the associated Lagrange multiplier becomes
nonnegative [48] (in fact, the optimizer of (3.5) can not satisfy ρ(X(Φ(q))) < 1, since then, by
Lemma 2, the sum-power constraint is not tight). Condition (3.6) is equivalent to parallelism of
vectors α and −∇(X(Φ(q))).

3.1.2 The algorithm
We �rst state the pseudo-code of the algorithm and then provide its analysis. It is assumed that
some accuracy parameter ε > 0, some step-size s > 0 and some start power allocation p(0) ∈ PP
satisfying (3.1) with equality and P = 1 are given. By Section 3.1.1, the latter assumption implies
q(0) = Ψ(Γ(p(0))) ∈ b(QP ).

Algorithm 1
1: while | −α′∇ρ(X(Φ(q(n))))| ≥ (1− ε)‖∇ρ(X(Φ(q(n))))‖2 do
2: q∗(n) = q(n) + s(∇ρ(X(Φ(q(n))))− (α′∇ρ(X(Φ(q(n)))))α)
3: Γ∗(n) = Φ(q∗(n))
4: p∗(n) = (I − Γ∗(n)V )−1Γ∗(n)σ2

5: p(n) = 1
‖p∗(n)‖1 p∗(n)

6: n 7→ n+ 1
7: Γ(n) = Γ(p(n− 1))
8: q(n) = Ψ(Γ(n))
9: end while

The termination condition requires precisely that the vectors α and ∇ρ(X(Φ(q(n)))) are at
most by ε away from the parallelism, when parallelism is measured by the inner product value
(recall the assumption ‖α‖2 = 1). It is easy to see that Algorithm 1 is invariant with respect to
the logarithmic domain transformation, which can make the problem of aggregated performance
optimization convex (Proposition 6). Under logarithmic transformation, steps 4 and 5 have to be
replaced by the trivially equivalent step sequence

4': x∗(n) = log(I − Γ∗(n)V )−1Γ∗(n)σ2

5': x(n) = x∗(n)− log ‖ex∗(n)‖1, p(n) = ex(n).

In steps 1 and 2 of Algorithm 1 the computation of the gradient of the spectral radius is needed.
Due to the diagonality of the SIR matrix Φ(q), we can write for the gradient components

∂

∂qk
ρ(X(Φ(q))) = Φ′(qk)

∂

∂γk
ρ(X(Γ)) = Φ′(qk)

∂

∂γk
r′X(Γ)r, 1 ≤ k ≤ K, (3.7)

where r is a right Perron-Frobenius eigenvector of X(Γ). However, by Lemma 2 we know that
r = (p′ 1)′. Thus, after a simple calculation we yield

∂

∂qk
ρ(X(Φ(q))) = Φ′(qk)(pk + 1)((V p)k + σ2

k), 1 ≤ k ≤ K. (3.8)
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3.1.3 Analysis and convergence
Algorithm 1 generates a sequence of power vectors, such that the corresponding sequence of per-
formance vectors terminates at a vector q(N), for which the optimality condition of parallelism of
α and −∇ρ(X(Φ(q(N)))) is satis�ed up to some accuracy ε. In the steps 7 and 8 the value of the
mapping (2.10) for the given power vector iterate is computed. Step 2 is the actual update step, in
which the obtained performance vector iterate q(n) is added the update term

∆(n) = ∇ρ(X(n))− (α′∇ρ(X(n)))α (3.9)
scaled by the step-size. It can be easy seen, that due to assumption ‖α‖2 = 1 we have ∆′(n)α = 0,
so that the term −(α′∇ρ(X(Φ(q(n)))))α corresponds to the component of the negative gradient
−∇ρ(X(Φ(q(n)))) which is parallel to α. Consequently, the negative update term −∆(n) corre-
sponds to the component of −∇ρ(X(Φ(q(n)))) which is orthogonal to the weight vector α. Hence,
the update step 2 provides the updated iterate q∗(n) from a shift orthogonal to the direction α.

It is important to notice that the updated iterate q∗(n) in general does not pertain to the
manifold b(QP ) or, equivalently, to the manifold {q : ρ(X(Φ(q)) = 1}. Clearly, this is further
equivalent to the feature, that for the power vector p∗(n) such that q∗(n) = Ψ(Γ(p∗(n))) we do not
have, in general, tight sum-power constraint ‖p∗(n)‖1 = 1.

Steps 3 and 4 are complementary to the steps 7 and 8. They compute the value of the mapping
(2.11) for the updated performance vector iterate q∗(n). Finally, step 5 leads the power vector
iterate back to the manifold with tight sum-power constraint by a simple rescaling. This implies
that the performance vector iterate q(n) obtained in step 8 pertains, in contrast to the updated
iterate q∗(n), again to the manifold b(QP ).

In abstract terms, we can interpret the e�ect of the algorithm as a walk along the boundary part
b(QP ) of the performance region QP towards the point of parallelism of α and −∇ρ(X(Φ(q(n)))).
The visualization of Algorithm 1 for an exemplary two-link case is provided in Fig. 3.1.

For the convergence proof we need �rst the following simple Lemma.
Lemma 3 Let q ∈ b(QP ), such that α′q > minq̃∈QP

α′q̃. If Φ is log-convex, then for some s0 > 0
we have

q + s(∇ρ(X(Φ(q)))− (α′∇ρ(X(Φ(q))))α) ∈ QP \ b(QP ), 0 < s ≤ s0. (3.10)
Proof By the de�nition of the QoS region, the manifold b(QP ) follows to be a part of the

boundary of QP , where QP is convex due to log-convexity of Φ (Proposition 1). Since we can
write b(QP ) = {q ∈ RK : ρ(X(Φ(q)) = 1}, the negative gradient −∇ρ(X(Φ(q))) is orthogo-
nal to the tangent hyperplane (supporting hyperplane) of the set QP at the vector q ∈ QP [50]
(equivalently, −∇ρ(X(Φ(q))) is a normal vector of such hyperplane, see visualization in Fig. 2.1).
This further means that q minimizes the value of such tangent hyperplane function on QP , that is,
q = arg minq̃∈QP

hq(q̃), with

q̃ 7→ hq(q̃) =
K∑

k=1

∂

∂qk
ρ(X(Φ(q)))q̃k, q̃ ∈ RK .

Clearly, it follows that ∇hq(q̃) = ∇ρ(X(Φ(q))), q̃, q ∈ QP (note that the �rst gradient is with
respect to q̃ and the latter with respect to q). Thus, for particular setting q = q̃ we can write

∇hq(q)′(∇ρ(X(Φ(q)))− (α′∇ρ(X(Φ(q))))α) =
∇ρ(X(Φ(q)))′(∇ρ(X(Φ(q)))− (α′∇ρ(X(Φ(q))))α) =

‖∇ρ(X(Φ(q)))‖22 − (∇ρ(X(Φ(q)))′α)2 ≥
‖∇ρ(X(Φ(q)))‖22 − ‖∇ρ(X(Φ(q)))‖22‖α‖22 = 0, q ∈ QP ,

(3.11)
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Figure 3.1: Visualization of the n-th iteration of Algorithm 1 for two links.

due to ‖α‖2 = 1. Inequality (3.11) implies that vector ∇ρ(X(Φ(q)))−(α′∇ρ(X(Φ(q))))α pertains
to the cone of feasible directions, in the sense that for some s0 > 0 we have

q + s(∇ρ(X(Φ(q)))− (α′∇ρ(X(Φ(q))))α) ∈ QP , 0 < s ≤ s0
(see e.g. Remark 5.1.6 in [50]). Furthermore, one can easily see that inequality (3.11) is strict
whenever q ∈ QP is such that ∇ρ(X(Φ(q))) 6= 0 and the vectors α and −∇ρ(X(Φ(q))) are not
parallel. The �rst condition is satis�ed for any q ∈ QP due to (3.8) and decreasingness of Φ. The
latter condition corresponds to the negation of condition (3.6) which is, under log-convex Φ and
satisifed constraint quali�cation, a necessaray and su�cient optimality condition for problem (2.19).
Thus, it follows that inequality (3.11) is strict if and only if q ∈ QP satis�es

α′q > min
q̃∈QP

K∑

k=1

αkq̃k.

This implies further that q + s(∇ρ(X(Φ(q))) − (α′∇ρ(X(Φ(q))))α), with 0 < s ≤ s0, pertains
to the relative interior of the cone of feasible directions and, consequently, does not pertain to the
boundary of QP [50]. Thus, (3.10) is implied and the proof is completed. ¤

The Lemma implies, that for some step-size interval, the iterate q∗(n) obtained from the shift
in step 2 of Algorithm 1 does not lie on the boundary part b(QP ) of the performance region QP ,
but lies within QP , so that ‖p∗(n)‖1 < 1. From the proof of Lemma 3 one can easily see that the
result of the Lemma holds under the condition of log-convexity of Φ (ensuring convexity of QP )
loosened to merely local convexity of QP at/ around the performace vector q [50]. With Lemma 3,
Algorithm 1 can be shown to be monotonically convergent in the following Proposition.

Proposition 7 Under log-convex Φ and any 0 < s ≤ s0, with some s0 > 0, the iterate sequences
q(n),p(n), n ∈ N, generated by Algorithm 1 converge monotonically to the global minimizers of the
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problems (2.19), (2.18), respectively, in the sense that for any ε > 0 we have

| −α′∇ρ(X(Φ(q(N))))| < (1− ε)‖∇ρ(X(Φ(q(N))))‖2
for some N = N(ε), N ∈ N, and

α′q(n+ 1)−α′q(n) < 0, n ≤ N, n ∈ N. (3.12)

Proof The convergence of the algorithm is not in�uenced by the steps 3,4,7 and 8, since in
these steps the value of the iterate is only bijectively transformed according to (2.11) and (2.10).
By (3.9), the update step 2 can be written componentwise, for any n ∈ N, as

Ψ(γk(p∗(n))) = Ψ(γk(p(n− 1))) + s∆k(n), 1 ≤ k ≤ K. (3.13)

For the left-hand side of (3.13) we can further write with (2.1)

Ψ(γk(p∗(n))) = Ψ(
p∗k(n)∑K

j=1
j 6=k

Vkjp
∗
j (n) + σ2

k

) = Ψ(
p∗k(n)∑K

j=1
j 6=k

Vkjp
∗
j (n) + σ2

k

·

∑K
j=1
j 6=k

Vkjp
∗
j (n) + ‖p∗(n)‖1σ2

k

∑K
j=1
j 6=k

Vkjp
∗
j (n) + ‖p∗(n)‖1σ2

k

)

= Ψ(γk(p(n))

∑K
j=1
j 6=k

Vkjp
∗
j (n) + ‖p∗(n)‖1σ2

k

∑K
j=1
j 6=k

Vkjp
∗
j (n) + σ2

k

),

(3.14)

where p(n) represents the power vector obtained from p∗(n) in step 5. By (3.13), we yield after
weighted summation of both sides of (3.14) that

K∑

k=1

αkΨ(γk(p(n))δk(n)) =
K∑

k=1

αkΨ(γk(p(n− 1))) + s

K∑

k=1

αk∆k(n), 1 ≤ k ≤ K, (3.15)

where we de�ned

δk(n) =

∑K
j=1,j 6=k Vkjp

∗
j (n) + ‖p∗(n)‖1σ2

k∑K
j=1,j 6=k Vkjp

∗
j (n) + σ2

k

, 1 ≤ k ≤ K.

By the construction of Algorithm 1 (precisely, by the construction of step 2), we have for the last
sum in (3.15) that

∑K
k=1 αk∆k(n) = α′∆(n) = 0. By (2.11) and Lemma 3 follows further for steps

2,3,4 of Algorithm 1 that p∗(n) is in the interior of PP and thus, ‖p∗(n)‖1 < 1 whenever the step-
size s does not exceed a certain threshold s0 ≥ 0. Consequently, we have δk(n) < 1, 1 ≤ k ≤ K,
whenever 0 < s ≤ s0.

Thus, by (3.15) and decreasingness of Ψ we yield

K∑

k=1

αkΨ(γk(p(n)))−
K∑

k=1

Ψ(γk(p(n−1))) <
K∑

k=1

αkΨ(γk(p(n))δk)−
K∑

k=1

Ψ(γk(p(n−1))) = 0, (3.16)

whenever 0 < s ≤ s0, which proves (3.12). Since under log-convexity of Φ any minimizer of (2.19)
and (2.18) is global (Propositions 1, 3), inequality (3.16) implies monotone convergence of the
bijectively related iterate sequences q(n),p(n), n ∈ N, to the global minimizers of (2.19) and (2.18),
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Figure 3.2: Exemplary convergence of the aggregated performance under the application of Algorithm
1. The size of the network is �xed to K = 15, the step-size s is �xed and the used QoS function is
Ψ(γ) = − log(γ) (e.g., high-SIR link capacity approximation). The parameters p(0),V ,σ2,a are chosen
randomly from uniform distribution, for which we set E[Vkj ]/E[σ2

k] = 10 and P/E[Vkj ] = 1, 1 ≤ k, j ≤ K.

respectively. That is, given ε = 0, the convergence is to vectors q,p such that q = Ψ(p) and such
that α is parallel to −∇ρ(X(Φ(q))). Thus, due to continuity of the functionals on hand, for any
ε > 0 the termination condition in step 1 is satis�ed at some �nite N = N(ε), N ∈ N, and the proof
is completed. ¤

Since Lemma 3 was mentioned to hold under loosened conditions, the same is true in the case of
the resulting Proposition 7. Precisely, Algorithm 1 exhibits local convergence to some performance
vector (and the associated power vector) satisfying the Kuhn-Tucker conditions of problem (2.19),
if the performance region is locally convex at/ around this vector.

Exemplary simulative convergence results of Algorithm 1 under variation of network parameters
V and σ2 are presented in Fig. 3.2 and Fig. 3.3 for di�erent network sizes and di�erent performance
parameters. The results show that under no step-size adaptation, in moderate-size networks (10−15
links) a nearly-optimum is achieved after 20 − 30 iterations. This seems to show an attractive
convergence rate of the algorithm, which can be further improved by step-size adaptation. The
curves seem also to imply good robustness of the algorithm with respect to parameter variations.

3.2 Algorithmic solution under per-link power constraints

This Section parallels Section 3.1, in that it contains a construction and analysis of an algorithm
solving problem (2.18) under constraints on single link powers.
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Figure 3.3: Exemplary convergence of the aggregated performance under the application of Algorithm 1.
The size of the network is �xed to K = 10, the step-size s is �xed and the used QoS function is Ψ(γ) = 1/γ
(e.g., normalized channel-averaged symbol error rate under Rayleigh fading). The parameters p(0),V ,σ2,a
are chosen randomly from uniform distribution, for which we set E[Vkj ]/E[σ2

k] = 10 and P/E[Vkj ] = 1,
1 ≤ k, j ≤ K.

3.2.1 Some preliminaries
In the algorithm for networks with per-link power constraints, as e.g. in the uplink, we can not
utilize the concept of the spectral radius from Section 3.1.1. However, we show that the e�cient
algorithm mechanism of the walk on the boundary of the performance region can be retained under
power constraints per link.

The performance region Qp̂ and the power region Pp̂ are bijectively related by (2.10) and (2.11).
Taking account for (2.10) and (2.11), we can write problem (2.19) in either of the forms

min
q∈{q=Ψ(Γ(p)) : 0≤p≤p̂}

α′q = min
q∈{q : 0≤(I−Φ(q)V )−1Φ(q)σ2≤p̂}

α′q, (3.17)

where we focus on the latter form. The corresponding Kuhn-Tucker conditions can be easily shown
not to take the form of a parallelism condition. This is in contrast to the Kuhn-Tucker conditions of
the problem formulation under sum-power constraint (3.5). Let us de�ne an extended power region

P ′p̂ = {p : −
K∏

k=1

(p̂k − pk) ≤ 0},

for which we have obviously Pp̂ ⊂ P ′p̂, so that

inf
q∈{q : −QK

k=1(p̂k−((I−Φ(q)V )−1Φ(q)σ2)k)≤0}
α′q ≤ min

q∈{q : 0≤(I−Φ(q)V )−1Φ(q)σ2≤p̂}
α′q. (3.18)
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Thereby, the question if the in�mum on the left-hand side is achieved is not trivial, since the
extended power region is an unbounded set. An exemplary comparison of Pp̂ and P ′p̂ for two links
is depicted in Fig. 3.4.

It can be now easily deduced that the Kuhn-Tucker conditions of the problem (3.17) are equiv-
alent to the Kuhn-Tucker conditions of the problem on the left-hand side in (3.18) subject to the
additional restriction 0 ≤ (I−Φ(q)V )−1Φ(q)σ2 ≤ p̂. This means equivalently, that the stationary
points of the Lagrangian of problem (3.17) are precisely the stationary points of the Lagrangian of
the problem on the left-hand side in (3.18) which satisfy the additional restriction. For the case
of a log-convex QoS-SIR dependence, we have by Proposition 3, and by the satis�ed constraint
quali�cation for problem (3.17) [48], an immediate particular Lemma.

Lemma 4 Under log-convex function Φ, the conditions

−(I −Φ(q)V )−1Φ(q)σ2 ≤ 0

(I −Φ(q)V )−1Φ(q)σ2 − p̂ ≤ 0

α− ν∇
K∏

k=1

(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) = 0, ν ≥ 0.

(3.19)

are necessary and su�cient optimality conditions for problem (3.17).

Thus, by Lemma 4, we yield the formulation of optimality conditions of problem (3.17) as a
restricted parallelism condition of vectors α and ∇∏K

k=1(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k), which is
an analogy to the Kuhn-Tucker conditions (3.6) in the case of sum-power constraint. The equality
in (3.19), i.e. the actual parallelism, is the consequence of the feature that for any minimizer of
(3.17) some constraint on link power is always tight (satis�ed with equality).

If the requirement of log-convexity of Φ in Lemma 4 is dropped, then, clearly, conditions (3.19)
remain necessary optimality conditions for problem (3.17).

3.2.2 The algorithm
By the results of Section 3.2.1, it is suggested that an iteration principle similar to Algorithm 1 can
be applied also to �nd p ∈ Pp̂ and q ∈ Qp̂ which solve problems (2.18), (2.19), respectively, under
per-link power constraints. Assuming accuracy parameter ε > 0, step-size s > 0 and some start
power allocation p(0) ∈ Pp̂ such that

∏K
k=1(p̂k − pk(0)) = 0, the resulting algorithm is as follows.

Algorithm 2
1: while |α′∇∏

k∈K(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k)| >
(1− ε)‖∇∏

k∈K(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k)‖2 do
2: q∗(n) = q(n) + s((α′∇∏

k∈K(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k))α−
∇∏

k∈K(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k))
3: Γ∗(n) = Φ(q∗(n))
4: p∗(n) = (I − Γ∗(n)V )−1Γ∗(n)σ2

5: p(n) = mink∈K p̂k
p∗k(n)p

∗(n)
6: n 7→ n+ 1
7: Γ(n) = Γ(p(n− 1))
8: q(n) = Ψ(Γ(n))
9: end while
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Figure 3.4: Comparison of the extended power region P ′p̂ with the power region Pp̂ in an exemplary
two-link case.

Similarly to Algorithm 1, Algorithm 2 is invariant with respect to the logarithmic transformation
of the domain, which is necessary to obtain a convex problem form (Proposition 6). Algorithm 2
terminates when vectors α and ∇∏K

k=1(p̂k− ((I −Φ(q(n))V )−1Φ(q(n))σ2)k) are less than ε away
from parallelism, when parallelism is measured by the inner product value. From steps 7 and 8
follows that the performance vector iterate q(n) is the value of the mapping (2.10) for the argument
p(n− 1). Hence, in the termination condition and in step 2 we have the equivalence

∇
K∏

k=1

(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k) = ∇
K∏

k=1

(p̂k − pk(n− 1)), n ∈ N.

In order to compute the gradient components needed in the algorithm, we �rst use the property
∂
∂xk

A−1(x) = −A−1(x)( ∂
∂xk

A(x))A−1(x) to get after a simple derivation [63]

∂

∂qj
((I −Φ(q)V )−1Φ(q)σ2)k =

−e′k(Φ(q)−1 − V )−1(
∂

∂qj
Φ(q)−1)(Φ(q)−1 − V )−1σ2, 1 ≤ k, j ≤ K.
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Using the chain rule for product derivation this gives further

∂

∂qj

K∏

k=1

(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) =

K∑

k=1

e′k(Φ(q)−1 − V )−1(
∂

∂qj
Φ(q)−1)(Φ(q)−1 − V )−1σ2×

K∏

l=1
l 6=k

(p̂l − ((I −Φ(q)V )−1Φ(q)σ2)l), 1 ≤ k, j ≤ K.

(3.20)

Moreover, from Φ(q)−1 = Γ−1 = diag( 1
γ1
, . . . , 1

γK
) follows that the only one nonzero element of

∂
∂qj

Φ(q)−1 is its jj-th element, which is ∂
∂qj

1
Φ(qj)

= − 1
γ2

j
Φ′(qj).

3.2.3 Analysis and convergence
Algorithm 2 generates a sequence of power vectors and the corresponding sequence of performance
vectors terminating at a vector q(N), for which α and∇q

∏K
k=1(p̂k−((I −Φ(q(N))V )−1Φ(q(N))σ2)k)

are parallel up to some accuracy ε. In the steps 7 and 8 the performance vector is computed for the
given power vector iterate. In the update step 2, the performance vector iterate q(n) is shifted by an
update vector in the negative direction of the component of∇∏K

k=1(p̂k−((I −Φ(q(n))V )−1Φ(q(n))σ2)k)
which is orthogonal to α. The updated iterate q∗(n) in general does not pertain to the boundary of
the performance region Qp̂. This means that for the corresponding power vector p∗(n), obtained by
steps 3 and 4, in general there may exist no component, say j, for which we have a tight constraint
p∗j = p̂j . This implies further that for p∗(n) in general we do not have

∏K
k=1(p̂k − p∗k(n)) = 0.

Thus, the power vector corresponding to performance vector q∗(n), obtained in steps 3 and 4,
is lead back in step 5 to the manifold of power vectors satisfying some link power constraint with
equality. Clearly, any possible power vector p(n) from such manifold satis�es

∏K
k=1(p̂k−p∗k(n)) = 0.

Step 5 consists precisely in an orthogonal projection on the nearest boundary part of the power
region Pp̂.

For the convergence proof we need a Lemma analogous to Lemma 3.

Lemma 5 Let q ∈ Qp̂ ∩ {q ∈ RK :
∏K
k=1(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) = 0}, such that α and

∇∏K
k=1(p̂k − pk(q)) are not parallel, and such that ∇∏K

k=1(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) 6= 0.
Then, if Φ is log-convex, then for some s0 > 0 we have

q + s((α′∇
K∏

k=1

(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k))α−∇
K∏

k=1

(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k)) ∈

Qp̂ \ {q ∈ RK :
K∏

k=1

(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) = 0}, 0 < s ≤ s0.

(3.21)

Proof The proof goes along exactly the same lines as the proof of Lemma 3, so that we do not
duplicate it. Thereby, the role of the manifold b(QP ) = {q ∈ RK : ρ(X(Φ(q))) = 1} is now played
by the manifold {q ∈ RK :

∏K
k=1(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) = 0}.

(A di�erence between both proofs is that while the manifold {q ∈ RK : ρ(X(Φ(q))) = 1} was
precisely a boundary part of QP , the manifold {q ∈ RK :

∏K
k=1(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) =
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0} includes a boundary part of Qp̂ as a subset, but is not included in Qp̂ itself. Such di�erence
does not in�uence, however, the way of the proof, which is exactly the same.) ¤

Lemma 5 implies that for a su�ciently small step-size, the updated iterate q∗(n) from step 2
pertains to the performance region Qp̂ excluding each boundary part, which corresponds to some
tight constraint on link power. Equivalently, the power vector iterate p∗(n), associated with q∗(n),
satis�es 0 ≤ p∗(n) < p̂. Analogously to Lemma 3, the result of Lemma 5 holds if the requirement
of log-convexity of Φ (ensuring convexity of the performance region) is loosened to local convexity
of Qp̂ at/ around q. With Lemma 5, the monotone convergence is now easily proven given some
certain assumptions.

Proposition 8 Let q(n),p(n), n ∈ N, be the iterate sequences generated by Algorithm 2 and let
∇∏K

k=1(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k) 6= 0, n ∈ N. Then, under log-convex function Φ
and any 0 < s ≤ s0, with some s0 > 0, q(n),p(n), n ∈ N, converge monotonically to the global
minimizers of the problems (2.19), (2.18), respectively, in the sense that (3.12) is satis�ed and for
any ε > 0 we have

|α′∇
K∏

k=1

(p̂k − ((I −Φ(q(N))V )−1Φ(q(N))σ2)k)| ≤

(1− ε)‖∇
K∏

k=1

(p̂k − ((I −Φ(q(N))V )−1Φ(q(N))σ2)k)‖2

for some N = N(ε), N ∈ N. Furthermore, we have also 0 ≤ p(n) ≤ p̂, n ≤ N , n ∈ N.

Proof Except the last statement, the proof goes exactly along the same lines as the proof of
Proposition 7, so that we do not duplicate it here. Hereby, the role of the scaling factor ‖p∗(n)‖1 < 1
in now plyed by the factor 1/mink∈K p̂k/p∗k(n), for which we also have 1/mink∈K p̂k/p∗k(n) < 1, by
Lemma 5.

The additional feature 0 ≤ p(n) ≤ p̂, n ≤ N , is an immediate consequence of Lemma 5 and the
orthogonal projection step 5. ¤

By Lemma 5 remaining true under loosened conditions, the convergence result from Proposition
8 holds under loosened conditions as well. Precisely, Algorithm 2 exhibits local convergence to
some performance vector (and the associated power vector) satisfying the Kuhn-Tucker conditions
of problem (2.19), if Qp̂ is locally convex at/ around this vector.

One can see that in comparison with the convergence of Algorithm 1, the convergence of Algo-
rithm 2 needs an additional assumption of nonzero product gradient for the entire iterate sequence.
While in the case of sum-power constraint we had −∇qρ(X(Φ(q))) 6= 0, q ∈ b(QP ), the intri-
cacy of zero gradient ∇∏K

k=1(p̂k − ((I −Φ(q)V )−1Φ(q)σ2)k) = 0 is not prevented under power
constraints on single links. This is precisely the reason for the use of strict termination inequality
in Algorithm 2. Due to strict termination inequality, Algorithm 2 does not terminate at q(n) if
∇∏K

k=1(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k) = 0, although the zero vector formally satis�es the
parallelism condition with respect to α.

From (3.20) can be seen that ∇∏K
k=1(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k) = 0 is true when-

ever more than one power constraint is tight at the power vector iterate p(n) satisfying q(n) =
Ψ(Γ(p(n))). Precisely, we have zero gradient when p(n) is a vertex of Pp̂ [50]. In Algorithm
2, this occurs precisely when the power vector iterate p∗(n) corresponding to the updated iter-
ate q∗(n) in step 2 has at least two components 1 ≤ j, l ≤ K satisfying p̂j/p∗j (n) = p̂l/p

∗
l (n) =

min1≤k≤K p̂k/p∗k(n). To prevent such case one can add a su�ciently small correction/ perturbation



3.2 Algorithmic solution under per-link power constraints 33

term δ(n) = δ(q∗(n)) to the updated iterate q∗(n) which ensures that all components of p∗(n)
are di�erent. When treating the correction term as a noise sample, Algorithm 2 can be seen as
a stochastic approximation [64] (the theory of stochastic approxiations is addressed in some more
detail in the context of decentralized algorithmic solutions in Chapter 4).

Under some nonrestrictive assumptions and using the techniques from [64], it is possible to
prove the convergence with probability one of Algorithm 2 using the correction term. In practi-
cal applications, the occurrence of exact equality of components of the power vector iterate ap-
proaches zero, so that the correction term can be dropped. We however suggest the use of simple
step-size adaptation in the uplink algorithm to compensate for too small values of ‖∇∏K

k=1(p̂k −
((I −Φ(q(n))V )−1Φ(q(n))σ2)k)‖2.

The gradient norm becomes small whenever the power vector iterate happens to be near to
some vertex of Pp̂. In particular, such this may occur if the power vector of convergence of Algo-
rithm 2 is itself a vertex of the power region. In such case we have small values of ‖∇∏K

k=1(p̂k −
((I −Φ(q(n))V )−1Φ(q(n))σ2)k)‖2 for all performance vector iterates around the performance vec-
tor of convergence of Algorithm 2. As a consequence, the norm of the update vector ∆(n) in step 2
decreases with approaching the the vector of convergence not only due to increasing parallelism of
the vectors α and ∇∏K

k=1(p̂k − ((I −Φ(q(n))V )−1Φ(q(n))σ2)k), but also due to decreasing norm
of the latter vector.

Fortunately, the incorporation of step-size adaptation (e.g. in the simplest form of adaptive
upscaling of s) seems to prevent perceivable deterioration of convergence rate. This can be seen
from convergence results in Fig. 3.5, for which a heuristic adaptive upscaling of step-size was
utilized. The convergence rate and robustness properties of the uplink algorithm seem to be similar
to those of Algorithm 1.
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Figure 3.5: Exemplary convergence of the aggregated performance under the application of Algorithm
2. The size of the network is �xed to K = 10 and the QoS function is Ψ(γ) = − log(γ) (e.g., high-SIR link
capacity approximation). The parameters p(0),V ,σ2,a are chosen randomly from uniform distribution, for
which we set E[Vkj ]/E[σ2

k] = 10 and p̂k/E[Vkj ] = 1/10, 1 ≤ k, j ≤ K. A simple heuristic step-size adaptation
mechanism is applied.



4
Decentralized algorithmic optimization of

weighted aggregated performance

In this chapter we focus on concepts of decentralized optimization of (weighted) aggregated perfor-
mance (2.18). In terms of the wireless network model from Chapter 2, we understand a solution of a
network optimization problem as a decentralized, or distributed, one, if it consists of a (sequence of)
decoupled actions conducted separately for each link. Hereby, the local knowledge which is necessary
to conduct the separate per-link actions is provided by means of separate signaling and feedback
on each link and coarse synchronization among the links, which allows for the measurement of
interference on each link.

A decentralized routine of problem solution in a wireless network consists usually of an abstract
algorithm concept and a signaling and feedback scheme which are both adapted to each other in
a way which results in decentralization of actions. First, in Section 4.1, we present the signaling
and feedback concept relying on the idea of so-called adjoint network. It is shown that the concept
allows for distributed conduction of the general gradient iteration [49]. In Section 4.2, we propose
a concept of a speci�c generalized Lagrangean function and a related algorithm construction. In
combination with the feedback scheme from Section 4.1, the algorithm allows for decentralized
conduction with certain complexity and convergence advantages compared to the gradient iteration.
Finally, in Section 4.3, we propose a speci�c splitting of variables and a related algorithm concept,
which results (in combination with the feedback scheme from Section 4.1) in decentralized quadratic
convergence.

The decentralized optimization of aggregated performance (2.18) appears to be of interest in
association with separate constraints on link powers, which indicate a kind of physical decoupling of
links. Otherwise, under sum-power constraint, the existence of some central control unit managing
all the links is indicated, e.g. base station in the downlink, so that the application of decentralized
routines is not of highest importance. For this reason, the problem of aggregated performance
optimization (2.18) under per-link power constraints, that is P = Pp̂, is considered throughout this
chapter.

The results of this chapter were presented originally in [65], [66], [67], [68], [69], [70]. All notions
from Lagrangian optimization and the theory of numerical convergence used in this chapter are
introduced and explained in Appendix A.3.

35
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4.1 Decentralized feedback scheme and duality in aggregated
performance optimization

We propose a signaling and feedback scheme which is a key ingredient of decentralized conduction
of algorithms proposed later in Sections 4.2 and 4.3 (and of the general gradient iteration). A
duality-like relation, similar to Lagrangian duality, induced by the key concept of the scheme is
discussed as well.

4.1.1 The concept of adjoint network
The cross-talk matrix V characterizes the interference situation, or interference topology, of the
network under the given geometric network topology at hand. Let us account explicitly for network
interference topology by identifying a network having link set K and interference matrix V with a
pair (K,V ). We are interested in a speci�c network standing in the adjointness relationship with
the original network.

De�nition 1 Two networks (K,V ) and (J ,U) are said to be adjoint (to each other) if U = V ′.

Notice that an adjoint network pair is not unique. This is due to the fact that in general J 6= K.
In a pair of adjoint networks, the cross-talk factor describing the interference of j-th link at the
receiver of k-th link in one network is equal to the cross-talk factor describing the interference of
k-th link at the receiver of j-th link in the other network. The link SIR function in a network
(J ,V ′), adjoint to (K,V ), takes the form

γAk (p) =
pk∑

j∈J
j 6=k

Vjkpj + σ2A
k

, p ∈ P, k ∈ J . (4.1)

The issue of key importance is the fact that any given network (K,V ) can mimic the interference
topology of the adjoint network (K,V ′) by means of a speci�c transmission scheme.

Proposition 9 Given a network (K,V ), the adjoint network (K,V ′) can be obtained by
i.) link-�ow reversion, that is, replacing the roles of transmitters and receivers of each link k ∈ K,
ii.) utilizing zero-forcing channel predistortion, in the sense of division of transmit symbols by hkk−1,
at each link k ∈ K, with the predistortion units/ blocks regarded as parts of the resulting channels.

Proof Let p 7→ γrk(p), p ∈ RK+ , denote the SIR function under reversed �ow of link k ∈ K, that
is, when the k-th link transmitter assumes the role of the k-th link receiver and conversely. Since
�at-fading and reciprocal channels hkj , k, j ∈ K, are assumed throughout, for a network (K,V ),
with interference matrix given by (2.2), we can then write

γrk(p̃) =
|hkk|2p̃k∑

j∈K
j 6=k
|hjk|2p̃j + σ2r

k

, p̃ ∈ RK+ , k ∈ K, (4.2)

with σ2r
k as the noise variance at the receiver of link k ∈ K with reversed �ow (i.e., at the original

link transmitter). Under zero-forcing channel predistortion according to ii.), we have

p̃k =
pk

|hkk|2
, p ∈ P, k ∈ K, (4.3)

in (4.2), with p as the vector of input powers at the predistortion units/ blocks. Setting now (4.3)
into (4.2) yields with (2.2) and (4.1) that γrk(p) = γAk (p), p ∈ P, which completes the proof. ¤
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4.1.2 Duality in aggregated performance optimization
In the context of problem (2.18), we recall the notion of strong Lagrangean duality and compare it
with a related novel notion of network duality.

Global solvability and strong Lagrangean duality

Under general QoS functions Ψ, problem (2.18) has in general multiple local minimizers, with some
of them being not global. Simplifying, one can say that problem (2.18) is solvable only locally.
By Proposition 3, each local minimizer of (2.18) becomes global as well (problem (2.18) is globally
solvable) if function Φ = Ψ−1 has the log-convexity property. Then, problem (2.18) can be rewritten
in equivalent convex form (2.25) and, since constraint quali�cation is satis�ed for problems (2.18),
(2.25) with P ∈ {PP ,Pp̂}, we have

max
λ∈RK

+

min
x∈RK

L̄(x,λ) = min
x∈RK

sup
λ∈RK

+

L̄(x,λ) (4.4)

with (x,λ) 7→ L̄(x,λ), (x,λ) ∈ RK ×RK , as the linear Lagrangean function of problem (2.25) and
with λ ∈ RK as the Lagrangean multipliers associated with the constraints of domain X [48]. Here,
we assumed implicitly in (4.4) that the solution to (2.19) exist. The max-min min-max equality
(4.4) (which however does not in general imply a saddle point [71], [72], [73], [74], [75]), is referred
to as strong Lagrangean duality property of problem (2.19). With the known relation [76], [72]

min
x∈X

∑

k∈K
αkΨ(γk(ex)) = min

x∈RK
sup

λ∈RK
+

L̄(x,λ) (4.5)

and the de�nition
λ 7→ g(λ) = min

x∈RK
L̄(x,λ), λ ∈ RK+ ,

of the dual (Lagrangean) function, the strong Lagrangean duality (4.4) (for problem (2.25)) can be
equivalently written in a more known form

min
x∈X

∑

k∈K
αkΨ(γk(ex)) = max

λ∈RK
+

g(λ), (4.6)

with the optimization on the right-hand side known as the dual problem to problem (2.25).

Network duality

We focus now on a related duality notion, which is speci�c for problem (2.18) and its version (2.25)
under Condition 1, and is especially interesting from the network point of view. Given Condition
1, the presentation of this idea requires the restatement of problem (2.25) in an equivalent form

min
x,I

∑

k∈K
αkΨ(

exk

Ik
),

subject to





ex − p̂ ≤ 0∑
j∈K
j 6=k

Vkje
xj + σ2

k − Ik ≤ 0, k ∈ K,
(4.7)

where, without loss of generality, we assume α > 0. It implicitly assumed in (4.7) that Ψ is in�nite
in value outside its domain, as is the usual optimization theory convention [49], [47]. Reformulation
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(4.7) di�ers from (2.25) merely in the incorporation of the auxiliary variable I ∈ RK . It can be
easily seen from (4.7), that for any local minimizer the second constraint holds with equality for
k ∈ K. This yields the following obvious Lemma.

Lemma 6 Let Condition 1 be satis�ed. Then, given (x, I), x and p = ex as corresponding local
minimizers of problems (4.7), (2.25) and (2.18), respectively, we have

exk/Ik = γk(ex) = γk(p), k ∈ K.

Interestingly, by considering the so-called perturbation function one can show that problem (4.7)
looses the strong duality property of formulation (2.25) for log-convex functions Φ = Ψ−1 (see, e.g.,
[77] for a very general duality theory). However, (4.7) has the key feature that the Kuhn-Tucker
conditions with respect to the associated Lagrangean function

L(x, I,µ,λ) =
∑

k∈K
αkΨ(

exk

Ik
) +

∑

k∈K
λk(exk − p̂k)

+
∑

k∈K
µk(

∑

j∈K , j 6=k
Vkje

xj + σ2
k − Ik), (x, I,µ,λ) ∈ R4K ,

(4.8)

can be written in the form of explicit primal-dual relations. This leads directly to our network
duality result. For compact presentation, we make the dependence of the SIR functions (2.1),
(4.1) on noise variance explicit, by writing γk(p, σ2

k) and γAk (p, σ2A
k ), p ∈ P, σ2

k, σ
2A
k ≥ 0, k ∈ K,

respectively.

Proposition 10 A stationary point (x, I,µ,λ) ∈ R2K × R2K
+ of the Lagrangian (4.8), such that

(x, I) is a local minimizer of problem (4.7) represents an equilibrium of link SIR functions in the
pair of the adjoint networks (K,V ), (K,V ′) in the sense

γk(ex, σ2
k) = γAk (µ, λk), k ∈ K, (4.9)

with dual variables/ Lagrangean multipliers (µ,λ) determined by the primal variables according to
{

µk = −αkΨ′(exk/Ik)exk

I2k

λk = −e−xk ∂
∂xk

∑
j∈K αjΨ(γj(ex)),

k ∈ K. (4.10)

Proof Since problem (4.7) satis�es constraint quali�cation, which is shown straightforwardly
[48], any local minimizer satis�es the Kuhn-Tucker conditions together with some (µ,λ) [78]. The
Kuhn-Tucker condition ∇IL(x, I,µ,λ) = 0 corresponds, written componentwise, to the �rst equal-
ity in (4.10). By decreasingness of Ψ and the assumption α > 0 this also implies µ > 0. The
Kuhn-Tucker condition ∇xL(x, I,µ,λ) = 0 yields

−αkΨ
′(exk/Ik)
Ik

=
∑

j∈K,j 6=k
Vjkµj + λk, k ∈ K. (4.11)

Applying the already proven �rst equality in (4.10) to the left-hand side of (4.11) yields further

µk =
exk

Ik
(

∑

j∈K,j 6=k
Vjkµj + λk), k ∈ K. (4.12)
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Due to µ > 0 we can divide both sides of (4.12) by the positive expression in the brace which, by
(4.1) and Lemma 6, is equivalent to (4.9).

Further, note that incorporating the proved �rst equality in (4.10) into (4.11) yields

λk = −αkΨ
′(exk/Ik)
Ik

+
∑

j∈K,j 6=k
Vjk

αjΨ′(exj/Ij)e2xj

I2
j

, k ∈ K. (4.13)

At the same time, we have by Lemma 6 that x is a local minimizer of the problem version (2.25)
and we can write the partial derivative of the objective in (2.25) at x as

− ∂

∂xk

∑

j∈K
αjΨ(γj(ex)) = −αkΨ

′(exk/Ik)exk

Ik
+

∑

j∈K,j 6=k
Vjk

αjΨ′(exj/Ij)e2xj

I2
j

, k ∈ K. (4.14)

The second equality in (4.10) follows now immediately from (4.13) and (4.14) and the proof is
completed. ¤

In other words, Proposition 10 says that a power allocation locally optimizing the aggregated
performance is characterized by the pairwise equality of link SIR values in the original network
(K,V ) and the adjoint network (K,V ′), where the power allocation and noise in the adjoint network
is determined explicitly by (4.10). The economic interpretation of the Kuhn-Tucker conditions yields
an additional interpretation of the equilibrium (4.9). Precisely, in the optimal equilibrium (4.9), the
transmit power of k-th link in the adjoint network corresponds to the unit Lagrange price µk for
decrement of the interference power on k-th link in the original network [47]. Similarly, the noise
variance at the receiver of link k ∈ K in the adjoint network in the optimal equilibrium corresponds
to the unit Lagrange price λk for increment of the transmit power of link k ∈ K in the original
network.

The equilibrium property (4.9) is quite similar in its nature to the strong Lagrange duality (4.4).
Together with the feature that the power and noise of the adjoint network is determined in (4.9)
by dual variables, this suggests referring to (4.9) as to the network duality associated with problem
(4.7). Since (4.9) and (4.10) constitute the Kuhn-Tucker conditions of problem (4.7), the notion
of network duality is applicable whenever Condition 1 is satis�ed. Further, by Propositions 3, 5,
Condition 1 is satis�ed and all minimizers of (4.7) are global under log-convex inverse performance
function Φ = Ψ−1. Thus, in such particular case the equilibrium (4.9), given (4.10), is a necessary
and su�cient optimality condition for problem (4.7).

4.1.3 Algorithmic solution
We propose a (signaling and) feedback scheme, which realizes decentralized optimization according
to (2.18), when the gradient iteration is utilized. The idea of the scheme relies on the concept of
adjoint network from the last section.

Assuming Condition 1, it is convenient to focus here on the problem form (2.25). However, the
feedback scheme is straightforwardly extendable for the application to problem form (2.18).

Projected gradient method

The gradient projection iteration applied to (2.25) can be written as

x(n+ 1) = x(n)− s(n)P p̂∇
∑

k∈K
αkΨ(γk(ex(n))), n ∈ N,
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with P p̂ as the orthogonal projection matrix onto the polyhedral domain Xp̂ = {x = log p : p ∈ Pp̂}
and s(n) > 0 as the step-size in n-th iteration. The iteration is expressible equivalently in the simple
componentwise form

xk(n+ 1) = min{xk(n)− s(n)
∂

∂xk

∑

j∈K
αjΨ(γj(ex(n))), log p̂k}, k ∈ K. (4.15)

The gradient projection iteration (4.15) is known to be convergent to some local minimizer of (2.25)
under an appropriate step-size sequence, see e.g. Theorems 10.5.4 and 10.5.7 in [78]. Clearly, if the
inverse QoS function Φ = Ψ−1 is log-convex, then, by Proposition 3, the convergence is to a global
minimizer. In terms of complexity reduction in real-world network optimization, the case of �xed
step-size s(n) = s, n ∈ N, appears to be of interest. For such case the interval of step-size values
ensuring convergence of the projected gradient iteration can be easily characterized.

Proposition 11 Let s(n) = s > 0, n ∈ N. Then, iteration (4.15) is convergent to a local minimizer
x̃ ∈ Xp̂ of problem (2.25) if

0 < s <
2

ρ(∇′(P p̂∇
∑

k∈K αkΨ(γk(ex̃))))
. (4.16)

Proof Under �xed step-size s(n) = s, n ∈ N, we have the su�cient convergence condition
ρ(I − s∇′(P p̂∇

∑
k∈K αkΨ(γk(ex̃)))) < 1 for the projected gradient iteration (4.15), which follows

from Ostrowski's Theorem [79]. With symmetry of the matrix ∇′(P p̂∇
∑

k∈K αkΨ(γk(ex̃))) we
have Imλk(∇′(P p̂∇

∑
k∈K αkΨ(γk(ex̃)))) = 0, k ∈ K, so that the su�cient convergence condition

is equivalent to
1− sλk(∇′(P p̂∇

∑

k∈K
αkΨ(γk(ex̃)))) > −1, k ∈ K (4.17)

(the eigenvalue operator λk should not be confused here with a Lagrange multiplier). Since the
maximum magnitude of an eigenvalue corresponds to the spectral, (4.17) is equivalent to (4.16) and
the proof is completed. ¤

The convergence obtained by the projected gradient iteration (4.15) is linear in roots and quo-
tients, see Appendix A.3 (compare also with Section 4.2.3).

Lagrangean interpretation

Since the problem formulations (2.25) and (4.7) are equivalent, we can �nd the equivalence of the
gradient projection iteration applied to (2.25) with some type of iteration applied to the Lagrangean
function of (4.7).

Proposition 12 Let z = (I,µ,λ) ∈ R3K . The projected gradient iteration (4.15) is equivalent to
the conditional iteration

xk(n+ 1) = min{xk(n)− s(n)
∂

∂xk
L(x(n), z), log p̂k}, k ∈ K, (4.18)

with z solving 



Ik =
∑

j∈K,j 6=k Vkje
xj(n) + σ2

k

µk = −αkΨ′(exk(n)/Ik)exk(n)

I2k

λk = 0,

k ∈ K, n ∈ N. (4.19)
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Proof We have

∂

∂xk
L(x(n), z) =

αkΨ′(exk(n)/Ik)exk(n)

Ik
+ λke

xk(n) +
∑

j∈K,j 6=k
Vjkµje

xk(n), k ∈ K. (4.20)

Note that, by (2.1), the �rst equality in (4.19) is equivalent to exk(n)/Ik = γk(ex(n)), k ∈ K. Thus,
the partial derivative of the objective

∑
k∈K αkΨ(γk(ex(n))) can be written as

∂

∂xk

∑

j∈K
αjΨ(γj(ex(n))) =

αkΨ′(exk(n)/Ik)exk(n)

Ik
−

∑

j∈K,j 6=k
Vjk

αjΨ′(exj(n)/Ij)e2xj(n)

I2
j

, k ∈ K.

Thus, the incorporation of the second and third equality in (4.19) into (4.20) yields ∂
∂xk

L(x(n), z) =
∂
∂xk

∑
j∈K αjΨ(γj(ex(n))), whenever z solves (4.19). This shows that iterations (4.15) and (4.18)

are equivalent when (4.19) is satis�ed, and the proof is completed. ¤
The iteration from Proposition 12 is not a classical primal-dual method for solving problem

(4.7). It merely gives the link from (4.15) to the Lagrangian and the Kuhn-Tucker conditions of
problem (4.7).

Decentralized feedback scheme

Decentralized conduction of the gradient projection iteration is possible if the knowledge of the
gradient components in (4.15) can be provided to corresponding transmitters k ∈ K with no use
of signaling across the links. This means that no transmitter/ receiver of link k ∈ K is allowed to
exchange signaling information with transmitter/ receiver of link l ∈ K, l 6= k. The latter is the
case, for instance, under the use of a �ooding protocol, so that the �ooding protocol is, in our terms,
not a decentralized feedback scheme [28]. With (4.10) and a telescope argument we can write for
the partial derivatives in (4.15)

∂

∂xk

∑

j∈K
αjΨ(γj((ex(n)))) = −(

µk(n)
γk(x(n))

+µk(n))exk(n) +(µk(n)+
∑

j∈K,j 6=k
Vjkµj(n))exk(n), k ∈ K.

(4.21)
It can be seen that the expression in the �rst brace in (4.21) is obtainable separately at each link
transmitter k ∈ K through single feedback of the link SIR value from the corresponding receiver
k ∈ K. With De�nition 1 and Proposition 9 follows further that the second-brace expression
in (4.21) corresponds to the power received at the transmitter of link k ∈ K under concurrent
transmission in the adjoint network mode with link transmit powers µk(n), k ∈ K (according to
Proposition 9, measured at the inputs of predistortion units/ blocks). Hence, with the concept from
Proposition 9 and (coarse) synchronization among the links, the second-brace addend is obtainable
at the transmitter of each link k ∈ K in distributed manner as well.

Summarizing, the resulting feedback scheme realizing the projected gradient iteration (4.15)
can be stated as follows. We assume the existence of some abstract exist condition terminating the
iteration (4.15), global knowledge of the QoS function Ψ and the knowledge of weight αk at the
transmitter and receiver of the corresponding link k ∈ K (clearly, p̂k is known to the link transmitter
k ∈ K).

Algorithm 3 (adjoint network feedback scheme)
1: Concurrent transmission with power vector ex(n).
2: Receiver-side estimation of transmit powers exk(n) and SIR values γk(ex(n)), k ∈ K.
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3: Per-link feedback of the SIR values γk(ex(n)) to the corresponding transmitters k ∈ K.
4: Concurrent transmission of the adjoint network (Proposition 9) with transmit powers

µk(n) = −αkΨ′(γk(ex(n)))γ2
k(e

x(n))e−xk(n), k ∈ K.

5: Transmitter-side estimation of the received powers

µk(n) +
∑

j∈K,j 6=k
Vjkµj(n), k ∈ K

and computation of gradient components

∂

∂xk

∑

j∈K
αjΨ(γj((ex(n)))), k ∈ K

according to (4.21).
6: Transmit power updates according to (4.15) and n→ n+ 1 if exit condition not satis�ed.

We propose to terminate the scheme after a prede�ned number of iterations, since this retains
the decentralized manner of the scheme.

4.1.4 Stochastic approximation view
The adjoint network feedback scheme is a power estimation-based scheme. For the statement of the
adjoint network feedback scheme we assumed that the SIR values and the powers received under
adjoint network transmission are estimated with accuracy which allows for the treatment of the
algorithm in the framework of (deterministic) optimization theory. Clearly, such assumption is
unrealistic for the majority of real-world networks, since the estimation time is strongly limited by
virtue of the necessity of online operation. More abstractly, the estimation uncertainty which occurs
in steps 2 and 5 of the scheme can be seen as the price paid for the lack of cooperation and the lack
of signaling across the links. Under uncertainty, the proposed algorithm has to be analyzed in the
more general framework of stochastic approximation [64], [80], [81]. In this section we characterize
the behavior of the proposed feedback scheme in terms of key issues of such framework. For this
aim we slightly simplify the analysis by assuming

Condition 2 The uncertainty of the estimation of SIR values in step 2 is negligible compared to the
uncertainty of the estimation of received powers in step 5 of the adjoint network feedback scheme.

For the purposes of this section we can weaken the basic assumption on white Gaussian noise
from Chapter 2. Note however, that under noise process more general than AWGN, some widely-
used QoS functions, like e.g. the (negative) link capacity Ψ(γ) = − log(1 + γ), γ ≥ 0, loose their
applicability. It is required now merely that on the discrete-time scale l ∈ N of network observation
and control,

Condition 3 The receiver noise processes δNk(l), l ∈ N, are martingale-di�erences uncorrelated
with transmit symbols and have variances σ2

k <∞, k ∈ K.

Such martingale-di�erence property is equivalent to

δNk(l + 1) = Nk(l + 1)− E(Nk(l + 1)|Nk(i), i ≤ l), l ∈ N, k ∈ K,
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which is precisely the martingale property of the aggregated noise processes Nk(l) =
∑l−1

i=0 δNk(l),
k ∈ K [82], [83]. The time scale of network operation l ∈ N should not be confused here with the
larger time scale n ∈ N of iterations.

Assuming Conditions 2 and 3, the gradient components obtained in step 5 of the implementation
scheme are random variables of the form

∆k(n) =
∂

∂xk

∑

j∈K
αjΨ(γj(ex(n))) + δMk(n), n ∈ N, k ∈ K. (4.22)

The estimation noise processes δMk(n), k ∈ K, are dependent on the estimator type (in particular,
on estimation duration) and on the noise processes in the estimation interval, say ls ≤ l ≤ le,
ls, le ∈ N. The latter dependence corresponds formally to some dependence on the stopped processes
δNk(l− ls ∧ le− ls), k ∈ K [82]. We make a nonrestrictive assumption with respect to the estimator
type by requiring that

Condition 4 The estimation noise is zero-mean and exogenous, in the sense that δMk(n) is inde-
pendent of the iterate value x(n) for any n ∈ N, k ∈ K.

This is in particular ensured under the use of linear, unbiased estimators. Hence, with (4.22) and
Conditions 3, 4 we can write

δMk(n+ 1) = ∆k(n+ 1)− E(∆k(n+ 1)|x(0),∆k(m),m ≤ n), n ∈ N, k ∈ K,

with
E(∆k(n+ 1)|x(0),∆k(m),m ≤ n) =

∂

∂xk

∑

j∈K
αjΨ(γj(ex(n))), n ∈ N, k ∈ K,

and the martingale ∆k(n) =
∑n−1

m=0 δMk(m), k ∈ K. Simply said, under Conditions 3, 4, the
estimation noise processes δMk(n), n ∈ N, k ∈ K, have the martingale-di�erence property.

Almost sure convergence

Almost sure convergence (that is, convergence with probability one) means that the event that given
iteration parameters, with the start value x(0) as the most relevant one, prevent local convergence
has zero probability measure. Known necessary and su�cient conditions for almost sure convergence
of the projected gradient stochastic approximation

xk(n+ 1) = min{xk(n)− s(n)∆k(n), log p̂k}, n ∈ N, k ∈ K, (4.23)

with ∆k, k ∈ K, given in (4.22), are very technical conditions with respect to the processes [64]

n−1∑

m=0

s(m)δMk(m), n ∈ N, k ∈ K.

Regarding su�cient conditions for almost sure convergence of the stochastic approximation (4.23),
either of the following conditions ensures almost sure convergence under satis�ed Conditions 3, 4.

Condition 5 i.) There exists some even p ∈ N, such that
∑∞

n=0 s
p/2+1(n) <∞ and E(|∆k(n)|p) <

∞, n ∈ N, k ∈ K,
ii.) for each q > 0, we have

∑∞
n=0 e

−q/s(n) <∞.
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Thus, we can state the following convergence result.

Proposition 13 Let the step-size sequence be such that
∞∑

n=0

s(n) =∞, lim
n→∞ s(n) = 0, (4.24)

and let Conditions 3, 4, and either of the Conditions 5 i.), ii.) be satis�ed. Then, the stochastic
approximation (4.23) converges almost surely to (x,λ) ∈ RK ×RK+ which satis�es the Kuhn-Tucker
conditions of problem (2.25).

Proof By decreasingness of Ψ and by satis�ed Conditions 3, 4, 5 i.), it is implied that
E(|∆k(n)|) < ∞, k ∈ K, n ∈ N. With this, all conditions of Theorem 3.1 in Section 5 in [64]
are satis�ed. Since Theorem 3.1 implies almost sure convergence of the particular stochastic ap-
proximation (4.23) to a vector satisfying the Kuhn-Tucker conditions, the proof is completed. ¤

Note, that in opposition to the deterministic projected gradient iteration (4.15) we formally can
not exclude the convergence to a primal-dual tuple not corresponding to a local minimizer, see [64]
Section 5.8. Given Conditions 3, 4, it can be easily seen that when taking

s(n) = 1/(n+ 1), n ∈ N, (4.25)

Conditions 5 i.) and (4.24) are satis�ed. Thus, by Proposition 13, (4.25) is a particular step-size
sequence for which the stochastic approximation (4.23) is almost surely convergent.

Weak convergence

Almost sure convergence is an asymptotic convergence notion, which comes into its own under
n → ∞ and limn→∞ s(n) = 0 [64]. Hence, the almost sure convergence property has no value in
numerous real-world cases, when the iteration is truncated after some �nite number of steps and
the step-size sequence is bounded away from zero (in particular, the step-size is �xed positive). In
such cases, the interest is in the weakest notion of probabilistic convergence referred to as weak
convergence (convergence in distribution). The weak convergence property relies on the measure of
portion of time spent by the iterates in some neighborhood of the vector of convergence.

De�nition 2 The sequence of RK-valued random variables X(n), n ∈ N, is said converge weakly
to some random variable X, i� limn→∞E(g(X(n))) = E(g(X)) for any bounded and continuous
function g : RK → I ⊆ R.

For relative simplicity of formulation of the generally technical conditions, we state the weak
convergence result for the particular case of slowly changing step-size sequence (see e.g. [64]) for
the more general case).

Proposition 14 Let Conditions 3, 4 and (4.24) be satis�ed and assume that the step-size sequence
s(n), n ∈ N, is slowly changing in the sense that there exists some integer sequence a(n), n ∈ N,
such that limn→∞ a(n) =∞ and

lim
n→∞ sup

0≤i≤a(n)
|s(n+ 1)/s(n)− 1| = 0.

Then, the stochastic approximation (4.23) converges weakly to (x,λ) ∈ RK ×RK+ which satis�es the
Kuhn-Tucker conditions of problem (2.25).
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Proof Note that decreasingness of Ψ and satis�ed Conditions 3, 4 imply so-called uniform
integrability of the sequences ∆k(n), n ∈ N, k ∈ K (see [82]). With this, all conditions of Theorem
2.3 in Section 8 in [64] are satis�ed. Since Theorem 2.3 implies weak convergence of the particular
stochastic approximation (4.23) to a vector satisfying the Kuhn-Tucker conditions, the proof is
completed. ¤

Convergence rate and averaging

The measure of convergence rate of stochastic approximation (4.23) is the (trace of the) error
covariance matrix Σx = limn→∞E(ex(n)e′x(n)). Precisely, matrix Σx is de�ned as the limit of the
covariance matrix of the random vector

ex(n) = s(n)−1/2(x(n)− x̃), n ∈ N,

with x̃ as the vector of convergence of (4.23), which represents the error process. The error process
can be shown to be a Wiener process, so that the limit is a Gaussian and zero-mean random vector
[80]. Since we assumed decreasing QoS function Ψ, any local minimizer of problem (2.25) is included
in the boundary of the domain Xp̂. For this reason, the characterization of Σx is extremely intricate,
see e.g. [80] for an analysis approach.

To improve the convergence rate, that is, to decrease tr(Σx), we may utilize averaging of iterates
in parallel to the stochastic approximation (4.23), as was proposed in [81]. In general, the optimal
averaging by [81] in (4.23) results in an averaged iterate

xE(r) =
1

R(s(r))

r+R(s(r))−1∑
n=r

x(n), r ∈ N, (4.26)

with the (averaging) window-size sequence R(s(r)), r ∈ N, determined by the step-size sequence.
For instance, under s(r) = O(1/r) the sequence R(s(r)), r ∈ N increases sublinearly and under
�xed step-size the window size remains �xed as well [81]. The fundamental insight from [81] is, that
under step-size sequences s(n) = O(1/n), iterate averaging provides the optimal convergence rate
(that is, minimal trace of Σx), while for faster decreasing step-size sequences the gain from parallel
averaging is negligible. Parallel averaging proved to behave good in our simulations plotted in Fig.
4.1.

4.2 Algorithmic solution based on generalized Lagrangian
We propose an alternative construction of the Lagrangean function of the problem of aggregated
performance optimization. Our generalized Lagrangean function is inspired by the theory of mul-
tiplier techniques and nonlinear Lagrangians from [71], [74], [73], [72] and gives rise to an iteration
which e�ectively trades o� complexity against convergence properties. The proposed iteration is
realizable in decentralized manner in combination with the adjoint network feedback scheme and
has certain advantages in comparison to the projected gradient method discussed in Section 4.1.3.

4.2.1 Optimization under additional constraints
The algorithmic theory based on generalized Lagrangian allows for the treatment of an extended
problem of aggregated performance optimization. Precisely, we can account in the problem (2.18)
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Figure 4.1: Exemplary non-averaged (dashed) and averaged (solid) convergence of aggregated perfor-
mance obtained by stochastic approximation (4.23) with averaging (4.26). The parameter settings are K = 8
and Ψ(γ) = − log(γ) and s(n) = 0.88, n ∈ N and R(s(r)) = 8, r ∈ N and E(δMk(n)) = 0.175σ2

k, k ∈ K.

for additional constraints on some selected links. We distinguish some subclass B ⊆ K of constrained
links and consider general constraints of the form

gk(p)− ĝk ≤ 0, k ∈ B, (4.27)

with some twice Frechet-di�erentiable constraint metrics p 7→ gk(p), p ∈ RK+ and prede�ned values
ĝk. In particular, an established power control approach consists in considering B as the subclass
of QoS-critical links, with requirements on the values of some QoS function. If such a performance
function is again monotone function of the link SIR, say γk 7→ Φ(γk), γk ≥ 0, then the link
QoS constraints can be expressed as Φ(γk(p)) − Φ̂k ≤ 0, k ∈ B, with Φ̂k as the prede�ned QoS
requirements, where Φ can be in general di�erent from the link performance function incorporated
in (2.16) (again, we implicitly change the sign of increasing QoS functions). For instance, if the
links k ∈ B carry highly QoS-sensitive tra�c, such as a real-time stream, it is justi�ed to impose
requirements on, e.g., the provided link rate Φ(γk) = − log(1 + γk), γk ≥ 0, or its approximation
Φ(γk) = log(γk), γk ≥ 0, as explained above. By bijectivity of Φ, the link performance constraints
can be equivalently written as minimum constraints on link SIR according to (4.27) with

gk(p) = −γk(p), k ∈ B, (4.28)

and with −ĝk = Φ−1(Φ̂k) as the resulting link SIR requirements.
A di�erent particular kind of constraints are the constraints related to the limited power spectral

density. This kind of limitations appears to be of particular importance in mesh networks, where
the neighboring mesh access clusters may represent distinct systems which coexist in the same
bandwidth and area [32]. To mitigate the inter-system interference in such case, it is necessary to
adjust the link power constraints p̂ according to the topology of the mesh access clusters and provide
restrictions on maximum received power for links with critically located receivers. The subclass of
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such links is modeled by B ⊆ K and the corresponding received power constraints can be written
as (4.27) with

gk(p) = (V p)k + pk + σ2
k, k ∈ B. (4.29)

The values of ĝk, k ∈ B, represent now the received power constraints and are adjusted according to
the local power density limitations, wave propagation conditions, etc. While under received power
restrictions (4.29) and our assumptions from Chapter 2 problem (2.25) has always a solution, such
solution may not exist in the case of constraints on link SIR (4.28) under general values ĝk, k ∈ B
[40], [39], [15]. Thus, hereafter we shall implicitly assume that the problem is solvable also for
(4.28).

Summarizing, under Condition 1 (e.g., under log-convex inverse performance function Ψ−1), the
problem of aggregated performance optimization extended to account for constraints on selected
critical links is obtained from problem (2.25) as

min
x

∑

k∈K
αkΨ(γk(ex)),

subject to
{

ex − p̂ ≤ 0
gk(ex)− ĝk ≤ 0, k ∈ B.

(4.30)

Clearly, under setting B = ∅ (empty set of critical links), the extended problem form (4.30) reduces
to (2.25).

It is easy to see with Proposition 6, that if the inverse QoS function Ψ−1 is log-convex and the
functions x 7→ gk(ex), x ∈ X , k ∈ K, are convex, then the problem (4.30) is convex. The latter
condition is satis�ed in particular by the received power (4.29) [47], while constraints (4.28) can be
easily reformulated to yield a convex form as well.

4.2.2 Generalized Lagrangian construction
For notational simplicity in the following Sections, we use a uniform formulation of all constraints
in (4.30) as hk(x) ≤ 0, k ∈ L, with set L such that L = |L| = K+ |B|. Let the set of tight (satis�ed
with equality) constraints at x ∈ RK be denoted as

T (x) = {k ∈ L : hk(x) = 0}.

Complying with the optimization theory convention, we refer to x as feasible, if it satis�es all
constraint inequalities hk(x) ≤ 0, k ∈ L.

The main aim of our Lagrangian construction is the property of positive de�niteness of its Hes-
sian at its stationary points which are associated with points satisfying the Second Order Su�ciency
Conditions (SOSC). This property ensures (local) convergence of a surprisingly simple iteration we
propose (Section 4.2.3). The classical linear Lagrangean function does not, in general, have such
property on the points satisfying SOSC (in short, on SOSC points), so that the proposed iteration
is in general divergent in combination with the linear Lagrangian.

The �rst modi�cation of the Lagrangian with the desired positive semide�niteness property falls
into the framework of so-called multiplier methods and was proposed in [71]. The multiplier method
proposed in [71] is applicable to equality-constrained problems and was later generalized to account
for inequality constraints in [73]. More sophisticated nonlinear Lagrangians were proposed in [74]
and [72]. In the context of the considered problem (4.30), the concepts from [74], [72] are applicable
but their use seems to be of some intricacy. Thus, we prefer an own Lagrangian construction which
shares the most properties of the concepts in [74], [72].
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De�nition 3 For the optimization problem (4.30) we de�ne the Lagrangean function

L(x,µ, c) =
∑

k∈K
αkΨ(γk(ex)) +

∑

k∈L
ψ(φ(µk)hk(x) + c), (x,µ, c) ∈ RK × RL × R (4.31)

where the functions ψ : R→ I, I ⊆ R and φ : R→ R+ satisfy the following conditions.

Condition 6 Function ψ is twice di�erentiable and
i.) ψ′(y) > 0, y ∈ R (increasingness),
ii.) ψ′′(y) > 0, y ∈ R (strict convexity),
iii.) ψ′′(y)/(ψ′(y))2 is strictly monotone and unbounded from above.

Condition 7 Function φ is twice di�erentiable and
i.) φ(y) = φ(−y), y ∈ R (evenness),
ii.) φ(y) ≥ 0, y ∈ R (nonnegativity),
iii.) φ(y) = 0 i� φ′(y) = 0 i� y = 0, where φ′′(0) > 0 (has unique local extremum as a minimum
with value 0 at 0).

We sometimes group the arguments of the Lagrangian (4.31) according to z = (x,µ). One can
�nd numerous functions which satisfy Conditions 6 and 7. Prominent examples are

ψ(y) = ey and φ(y) = y2n, n ∈ N+.

The following Proposition characterizes a connection between vectors satisfying the Kuhn-Tucker
conditions (in short, Kuhn-Tucker points) of problem (4.30) and stationary points of Lagrangian
(4.31).

Proposition 15 Let ±µ ∈ RL denote any of the 2L vectors such that (±µ)k = µk or (±µ)k = −µk
independently for k ∈ L. If (x,λ) ∈ RK × RL is a Kuhn-Tucker point of problem (4.30), then
(x,±µ), with ±µ = ±µ(c) de�ned by

λk = ψ′(c)φ(±µk), k ∈ L, (4.32)

is a stationary point of Lagrangian (4.31) for any c ∈ R. Conversely, given any c ∈ R, if (x,±µ) ∈
RK × RL, with x feasible, is a stationary point of Lagrangian (4.31), then (x,λ), with λ given by
(4.32), is a Kuhn-Tucker point of problem (4.30).

Proof Let
L̄(x,λ) = F (ex) +

∑

k∈L
λkhk(x), (x,λ) ∈ RK × RL, (4.33)

be the linear Lagrangian of problem (4.30) and let (x,λ) ∈ RK × RL, where x is feasible, satisfy
the Kuhn-Tucker conditions of problem (4.30). Then, by the complementary slackness conditions,
we have

λk = 0, k ∈ L \ T (x), (4.34)

so that ∇xL̄(x,λ) = 0 yields

∇F (ex) +
∑

k∈T (x)

λk∇hk(x) = 0. (4.35)
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By (4.32) and by Conditions 6, 7, we have further

λk = 0 i� µk = 0 i� φ(µk) = 0 i� φ′(µk) = 0, k ∈ K, (4.36)

which implies by (4.34) and (4.35) that

∇xL(x,±µ, c) = ∇F (ex) +
∑

k∈L\T (x)

φ(±µk)ψ′(φ(±µk)hk(x) + c)∇hk(x)

+
∑

k∈T (x)

φ(±µk)ψ′(c)∇hk(x) = 0, c ∈ R.

Further, note that ∂
∂µ̃k

L(x̃, µ̃, c) = ψ′(φ(µ̃k)hk(x̃)+c)φ′(µ̃k)hk(x̃), (x̃, µ̃) ∈ RK×RL, k ∈ K. Thus,
we have ∂

∂µk
L(x,±µ, c) = 0, k ∈ T (x), by de�nition of T (x), and

∂

∂µk
L(x,±µ, c) = 0, k ∈ L \ T (x),

due to assumption (4.32) and (4.34), (4.36), which completes the proof of (x,±µ) as a stationary
point of (4.31).

Conversely, let (x,±µ), with x feasible, be a stationary point of Lagrangian (4.31) for any
c ∈ R. Then, the Kuhn-Tucker condition hk(x) ≤ 0, k ∈ K, is satis�ed by feasibility of x, and the
Kuhn-Tucker condition λ ≥ 0 holds due to (4.32) and Conditions 6, 7. By ∇x,µL(x,±µ, c) = 0 we
have also

∇F (ex) +
∑

k∈L
φ(±µk)ψ′(φ(±µk)hk(x) + c)∇hk(x) = 0,

ψ′(φ(±µk)hk(x) + c)φ′(±µk)hk(x) = 0, k ∈ L.
(4.37)

According to Condition 6, the latter equality is satis�ed if and only if either hk(x) = 0 or φ′(±µk) =
0, k ∈ L. Thus, by assumption (4.32) and (4.36), the second equality in (4.37) is equivalent
to λkhk(x) = 0, k ∈ L, which is the complementary slackness condition. Consequently, given
k /∈ T (x), the second equality in (4.37) is satis�ed if and only if φ′(±µk) = 0. Again, by assumption
(4.32) and (4.36), this implies that the �rst equality in (4.37) is equivalent to (4.35), which is the
Kuhn-Tucker condition ∇xL̄(x,λ) = 0. This completes the proof of (x,λ) as a vector satisfying
the Kuhn-Tucker conditions of problem (4.30). ¤

It can be seen that due to evenness of φ, a single vector satisfying the Kuhn-Tucker conditions
of problem (4.30) corresponds to 2L stationary points of (4.31), which are associated with the same
power vector. In terms of convergence of an algorithmic solution it is therefore not of interest which
of such vectors is the vector of attraction of the algorithm.

The next results concerns the key feature of the positive semide�niteness of the Hessian of (4.31)
at any vector satisfying the SOSC of problem (4.30).

Proposition 16 If (x,λ) ∈ RK × RL satis�es strict complementarity and is an SOSC point of
problem (4.30), then for the stationary point z = (x,µ) of Lagrangian (4.31), with µ = µ(c) given
by (4.32), there exists c0 = c0(z) ∈ R such that

∇2
xL(z, c) Â 0, c ≥ c0 or c ≤ c0. (4.38)

Conversely, if (4.38) is satis�ed at a stationary point z of Lagrangian (4.31) and x is feasible, then
(x,λ), with λ given by (4.32), is an SOSC of problem (4.30).
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Proof The Hessian matrix of the Lagrangian (4.31) can be written as

∇2
xL(z̃, c) = ∇2F (ex̃)+

∑

k∈L
φ2(µ̃k)ψ′′(φ(µ̃k)hk(x̃) + c)∇hk(x̃)∇′hk(x̃)+

∑

k∈L
φ(µ̃k)ψ′(φ(µ̃k)hk(x̃) + c)∇2hk(x̃), (z̃, c) ∈ RK+L × R.

(4.39)

By the complementary slackness condition satis�ed at (x,λ) (since (x,λ) is an SOSC point) and
by (4.32) we have λk = 0, k /∈ T (x), which gives with (4.33) that ∇2

xL̄(x,λ) = ∇2F (ex) +∑
k∈T (x) φ(µk)ψ′(c)∇2hk(x). Thus, evaluating the Hessian (4.39) for z̃ = z and noting that, by

(4.32) and Condition 6, λk = 0 i� φ(µk) = 0, we yield with (4.32) that

∇2
xL(z, c) = ∇2

xL̄(x,λ) +
∑

k∈T (x)

φ2(µk)ψ′′(c)∇hk(x)∇′hk(x)

= ∇2
xL̄(x,λ) +

∑

k∈T (x)

λ2
k

ψ′′(c)
(ψ′(c))2

∇hk(x)∇′hk(x), c ∈ R.
(4.40)

If T (x) = ∅ we have immediately by De�nition 17 ii.) that ∇2
xL̄(x,λ) Â 0, which gives by (4.40)

that ∇2
xL(z, c) Â 0 and completes the proof for T (x) = ∅. Thus, let now T (x) 6= ∅. Since

λk > 0, k ∈ T (x), by strict complementarity, we have by Debreu's Theorem [84] that there exists
some ψ0 = ψ0(z) ≥ 0 such that ∇2

xL̄(x,λ) +
∑

k∈T (x) λ
2
k
ψ′′(c)

(ψ′(c))2∇hk(x)∇′hk(x) Â 0 whenever
ψ′′(c)/(ψ′(c))2 ≥ ψ0. But function y 7→ ψ′′(y)/(ψ′(y))2, y ∈ R, is by assumption strictly monotone
and unbounded from above so that there exists some c0 = c0(ψ0) ∈ R such that ψ′′(c)/(ψ′(c))2 ≥ ψ0

for either c ≥ c0 or c ≤ c0, depending on whether ψ′′(y)/(ψ′(y))2, y ∈ R, is increasing or decreasing.
This completes the su�ciency proof.

For the converse, note that with (4.40) and the de�nition of semide�niteness, we obtain

y′∇2
xL̄(x,λ)y +

∑

k∈T (x)

φ2(µk)ψ′′(c)y′∇hk(x)(y′∇hk(x))′ > 0, y 6= 0, c ≥ c0 or c ≤ c0,

which implies the SOSC condition ii.) in De�nition 17. Since further, by assumption, z = (x,µ) is
a stationary point of Lagrangian (4.31) with x being feasible, the SOSC condition i.) in De�nition
17 is implied by Proposition 15 and the proof of necessity is completed. ¤

By the proof it is readily seen that the right inequality for c ∈ R is the one which allows
arbitrarily large values of ψ′′(c)/(ψ′(c))2, and thus depends on whether y 7→ ψ′′(y)/(ψ′(y))2, y ∈ R,
is increasing or decreasing. For instance, under ψ(y) = ey we have ψ′′(y)/(ψ′(y))2 = e−y, which
implies that local convexity according to (4.38) is ensured for c ≤ c0, for some c0 ∈ R.

With our Lagrangian construction, the following feature follows now by means of elementary
calculus.

Lemma 7 If z = (x,µ) is a stationary point of (4.31), with x feasible, then ∇2
µL(z, c) = diag(∇2

µL(z, c)),
with

(∇2
µL(z, c))

kk
=

{
0 k ∈ T (x)
ψ′(c)φ′′(0)hk(x) k /∈ T (x)

The following corollary of Proposition 16 and Lemma 7 shows the key saddle point property of the
Lagrangian (4.31).
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Corollary 1 Let z = (x,µ) ∈ RK ×RL be a stationary point of (4.31) such that (4.32) is satis�ed
for some λ ∈ RL+. If SOSC of problem (4.30) are satis�ed at (x,λ), then we have

∇2
µL(z, c) ¹ 0, c ≥ 0

and there exists some c0 <∞, such that

∇2
xL(z, c) Â 0, c ≥ c0 or c ≤ c0.

Equivalently, z is an isolated (local) saddle point of (4.31) for c ≥ c0 or c ≤ c0, that is, there exists
some neighborhood S(x) of x, such that

L(x, µ̄, c) ≤ L(z, c) < L(x̄,µ, c), (x̄, µ̄) ∈ S(x)× S(µ), c ≥ c0 or c ≤ c0.

By Corollary 1, any vector satisfying the SOSC of problem (4.30) translates one-to-one to a
saddle point of the generalized Lagrangian (4.31). The vector satisfying the SOSC itself is in
general not a saddle point of the classical linear Lagrangian [75], [85]. In fact, recalling Section
4.1.2, a stationary point of a linear Lagrangean function is a max-min point, but in general not a
saddle point of the linear Lagrangian.

4.2.3 Algorithm construction
We identify the SOSC with the property of a local minimizer, which can be done for a large class of
problems [74], i.e. for a large class of constraint metrics gk, k ∈ B, in (4.30). Thus, it follows from
Corollary 1 that solving the problem of aggregated performance optimization (4.30) locally consists
in �nding of a saddle point of the generalized Lagrangian (4.31). Clearly, if any local minimizer
of problem (4.30) is global as well, then �nding a saddle point of (4.31) is equivalent to �nding a
(global) solution to problem (4.30).

The iteration

The algorithm corresponds precisely to the primal-dual search of a saddle point of (4.31), based on
the gradient iteration. Given some �xed step-size s > 0, the n-th iteration step can be formulated
simply as

z(n+ 1) = z(n) + s

( −IK 0
0 IL

)
∇zL(z(n), c), n ∈ N, (4.41)

where IN denoted the identity matrix of size N ∈ N. In iteration (4.41), the primal steps (over the
logarithmic transmit powers x ∈ RK) and the dual steps (over the vector of dual variables µ ∈ RL)
are conducted concurrently. Interestingly, due to the Lagrangian construction (4.31) the iteration
is unconstrained, both with respect to the primal variable (power vector) and the dual variable.
This stands in contrast to conventional primal-dual iterations applied to the linear Lagrangian of
problem (4.30) [49]. Such iterations solve the dual problem, on the right-hand side of (4.6), which
is nonnegatively constrained according to λ ∈ RL+ [48]. Complying with the nature of primal-dual
iterations, the iteration (4.41) is locally convergent without requiring feasibility of the consecutive
primal iterates x(n), n ∈ N, which stands in contrast to the simple projected gradient iteration
(4.15). Thus, the proposed algorithm requires no steps or actions in addition to the iteration step
(4.41) at all. The convergence is proven in the following Proposition.
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Proposition 17 Let x ∈ RK be a local minimizer of problem (4.30) such that the strict comple-
mentarity condition and constraint quali�cation from Lemma 19 are satis�ed at (x,ν) for some
ν ∈ RL. Then, under step-size

0 < s < 2 min
1≤k≤K+L

|Reλk(diag(−IK , IL)∇2
zL(z, c))|

|λk(diag(−IK , IL)∇2
zL(z, c))|2 , (4.42)

with λk(·) denoting the k-th eigenvalue, z = (x,µ) is a point of attraction of iteration (4.41) for
c ≥ c0 or c ≤ c0, with some µ ∈ RL and some c0 ∈ R.

Proof By Proposition 15, if x ∈ RK is a local minimizer of Problem (4.30), then z = (x,µ) is
a stationary point of (4.31) for some µ ∈ RL. Since (4.41) is a gradient-based method applied to
(4.31), an equilibrium point of the map

z̃ 7→ G(z̃) = z̃ + s diag(−IK , IL)∇z̃L(z̃, c), z̃ ∈ RK+L, c ≥ 0 or c ≤ c0, (4.43)

can be only a stationary point of (4.31) [79]. The gradient of such map can be written as

∇G(z̃) = I + sdiag(−IK , IL)∇2
z̃L(z̃, c), (4.44)

where we can write explicitly

diag(−IK , IL)∇2
z̃L(z̃, c) =

(
−∇2

x̃L(z̃, c) −∇2
x̃,µ̃L(z̃, c)

∇′2x̃,µ̃L(z̃, c) ∇2
µ̃L(z̃, c)

)
, z̃ ∈ RK+L.

Hereby, we have∇′2x̃,µ̃L(z̃, c) = ∇2
µ̃,x̃L(z̃, c), z̃ ∈ RK+L, and the k-th row of the Hessian∇2

µ̃,x̃L(z̃, c)
can be easily shown to be of the form

(∇2
µ̃,x̃L(z̃, c))

k · =

{
ψ′(c)φ′(µ̃k)∇′hk(x̃), k ∈ T (x̃)
0, k /∈ T (x̃),

z̃ ∈ RK+L. (4.45)

By Ostrowski's Theorem [79], it is known that an equilibrium point z is a point of attraction of
iteration (4.41) if ρ(∇G(z)) = max1≤k≤K+L |λk(G(z))| < 1, with ρ(·) denoting the spectral radius,
which is by (4.44) equivalent to

2Reλk(diag(−IK , IL)∇2
z̃L(z, c)) + s|λk(diag(−IK , IL)∇2

z̃L(z, c))|2 < 0, k ∈ K. (4.46)

Now it is easy to see that given assumption (4.42), condition (4.46) is satis�ed if and only if
max1≤k≤K+LReλk(diag(−IK , IL)∇2

z̃L(z, c)) < 0. But due to block-skew-symmetry of the matrix
diag(−IK , IL)∇2

z̃L(z, c) we have [63]

Reλk(diag(−IK , IL)∇2
z̃L(z, c)) = Reu′kdiag(−IK , IL)∇2

z̃L(z, c)uk
= −Rev′k∇2

x̃L(z, c)vk + Rew′
k∇2

µ̃L(z, c)wk, 1 ≤ k ≤ K + L,

(4.47)

with uk = (vk,wk) ∈ RK+L as the k-th eigenvector of diag(−IK , IL)∇2
z̃L(z, c). Hence, with

Corollary 1 and the de�nition of semide�niteness, one obtains

max
1≤k≤K+L

Reλk(diag(−IK , IL)∇2
z̃L(z, c)) ≤ 0, c ≥ c0 or c ≤ c0,
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for some c0 ∈ R. Assume, by contradiction, Reλk(diag(−IK , IL)∇2
z̃L(z, c)) = 0, for c ≥ c0 or

c ≤ c0, for some 1 ≤ k ≤ K + L, which implies by (4.47) and uk 6= 0 (satis�ed by de�nition) that

Rediag(−IK , IL)∇2
z̃L(z, c)uk =

(
−∇2

x̃L(z, c)vk −∇2
x̃,µ̃L(z, c)wk

∇′2x̃,µ̃L(z, c)vk +∇2
µ̃L(z, c)wk

)
= 0, c ≥ c0 or c ≤ c0.

(4.48)
Since∇2

µ̃L(z, c) is a diagonal matrix speci�ed in Lemma 7, we can conclude by (4.47) that T (x) 6= ∅.
Further, since we have ∇2

x̃L(z, c) Â 0 for c ≥ c0 or c ≤ c0, by Corollary 1, it follows from (4.47)
and the de�nition of semide�niteness that vk = 0. Consequently, we must have wk 6= 0, so that
by (4.45) and the �rst row in (4.48), one has

∑
i∈T (x) ψ

′(c)φ′(µi)(wk)i∇hi(x) = 0, and there exists
some j ∈ T (x) such that ψ′(c)φ′(µj)(wk)j > 0 for c ≥ c0 or c ≤ c0. But this contradicts the
constraint quali�cation from Lemma 19, and therefore completes the proof. ¤

The constraint quali�cation condition from Lemma 19, required in Proposition 17, seems to be
nonrestrictive (see Appendix A.3 for details). Such condition is satis�ed at any local minimizer of
problem (4.30) under the very most "reasonably de�ned" constraint metrics gk, k ∈ K. In particular,
condition from Lemma 19 is satis�ed under constraints on received power (4.29).

Convergence behavior

Let us write iteration (4.41) in short operator form z(n+ 1) = G(z(n)). Consider �rst the conver-
gence in absolute errors, which is expressible by the root convergence factor (of p-th order, p ≥ 1)
Rp(I, z̃), with I as the set of all sequences of iterates convergent to a point of attraction z̃ of it-
eration (4.41) [79]. It is an immediate consequence from Ostrowski's Theorem (it follows also from
the proof of Proposition 17) that

R1(I, z̃) = ρ(∇G(z̃)) < 1, (4.49)

which is referred to as linear root convergence.
More interesting is the convergence of consecutive error ratios which is described by the quotient

convergence factor (of p-th order, p ≥ 1) Qp(I, z̃), with I as the set of all sequences of iterates
convergent to a point of attraction z̃ of iteration (4.41) (Qp(I, z̃) is de�ned only if z(n) 6= z̃ for all
but �nitely many n ∈ N [79]). For the quotient convergence factor we have the following (particular
version of a) standard result [79].

Lemma 8 ([79]) For any ε > 0 there exists a norm ‖ · ‖ on RK+L, such that for the iteration
(4.41) written as z(n+ 1) = G(z(n)), n ∈ N, with z̃ ∈ RK+L as its point of attraction, we have

Q1(I, z̃) ≤ ρ(∇G(z̃)) + ε.

Thus, similarly to the root convergence, due to ρ(∇G(z̃)) < 1 we have a linear quotient con-
vergence of (4.41). With Proposition 17, (4.49) and Lemma 8 we can summarize the convergence
behavior of iteration (4.41) as follows.

Proposition 18 Under any step-size satisfying (4.42), the convergence of iteration (4.41) to z̃ =
(x̃, µ̃) ∈ RK×RL such that x̃ is a local minimizer of problem (4.30) is linear in roots and quotients.

The convergence of iteration (4.41) is veri�ed in exemplary simulations in Section 4.2.5.
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4.2.4 Decentralized feedback scheme
The algorithmic solution (4.41) to the problem of aggregated performance optimization (4.30) was
shown in Section 4.2.3 to be unconstrained (that is, of lowered complexity) and linearly locally
convergent. Besides this, iteration (4.41) has the key advantage of being realizable in decentralized
manner by means of (a slightly extended) adjoint network feedback scheme (Algorithm 3).

Let the dual variable argument µ ∈ RL of the generalized Lagrangian (4.31) be partitioned as
µ = (ν,η), with ν = (ν1, . . . , νK) associated with power constraints exk − p̂k ≤ 0, k ∈ K, and with
η = (η1, . . . , η|B|) associated with constraints gk(x) − ĝk ≤ 0, k ∈ B. In such case, the generalized
Lagrangian (4.31) can be written as

L(x,ν,η, c) =
∑

k∈K
αkΨ(γk(ex)) +

∑

k∈K
ψ(φ(νk)(exk − p̂k) + c)

+
∑

k∈B
ψ(φ(ηk)(gk(ex)− ĝk) + c), (x,ν,η, c) ∈ RK × RK × R|B| × R,

with gk, k ∈ B, given by either of (4.28), (4.29). Recall that, for iterate x(n), n ∈ N, any gra-
dient component of the �rst Lagrangian term, i.e. ∂

∂xk

∑
j∈K αjΨ(γj(ex(n))), can be provided in

distributed manner to any link transmitter k ∈ K by establishing an adjoint network with allocated
powers

mk(n) = −αkΨ′(γk(ex(n)))γ2
k(e

x(n))e−xk(n), k ∈ K, (4.50)

as in Algorithm 3. A gradient component with respect to link power of the third term in Lagrangian
(4.31) is yielded by basic calculus, for any link k ∈ K, as

∂

∂xk

∑

j∈B
ψ(φ(ηj(n))(gj(ex)− ĝj) + c) = (sk(n) +

i.)︷ ︸︸ ︷
rk(n) +

∑

j∈B,j 6=k
Vjkrj(n))exk(n), (4.51)

where in the case of (4.28) we have

rk(n) = ψ′(φ(ηk(n))(gk(ex(n))− ĝk) + c)
g2
k(e

x(n))
exk(n)

φ(ηk(n)), k ∈ B, rk(n) = 0, k /∈ B,
(4.52)

and
sk(n) = rk(n)(

1
gk(ex(n))

− 1), k ∈ K, (4.53)

while under (4.29) the settings are

rk(n) = ψ′(φ(ηk(n))(gk(ex(n))− ĝk) + c)φ(ηk(n)), k ∈ B, rk(n) = 0, k /∈ B, (4.54)

and sk(n) = 0, k ∈ K. In either of the cases (4.52), (4.54) we have rk(n) ≥ 0, k ∈ K, due to
Conditions 6, 7. Under separate per-link receiver-side estimation of link SIR and per-link feedback
of sk(n), the knowledge of (4.53) is provided to the link transmitter k ∈ K, independently on any
link k ∈ K. The estimation of the received power term i.) in (4.51) can be made available to any
link transmitter k ∈ K by establishing, again, an adjoint network and allocation of transmit powers
given by (4.52) and (4.54) in the respective cases. The feedback of sk(n) and the allocation of
transmit powers (4.52) or (4.54) is possible under the knowledge of ηk(n) at the corresponding link
receiver k ∈ K.
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For the same iterate, the terms
∂

∂ηk

∑

j∈B
ψ(φ(ηj(n))(gj(ex(n))− ĝj) + c) =

ψ′(φ(ηk(n))(gk(ex(n))− ĝk) + c)φ′(ηk(n))(gk(ex(n))− ĝk)
(4.55)

and
∂

∂νk

∑

j∈K
ψ(φ(νj(n))(exj(n) − p̂j) + c) = ψ′(φ(ηk(n))(exk(n) − p̂k) + c)φ(ηk(n))exk(n) (4.56)

are known (can be computed) at the receiver of any link k ∈ B and the transmitter of any link k ∈ K,
respectively, provided the knowledge of iterates ηk(n) and νk(n), respectively. The discussed features
ensure decentralized conduction of (4.41) by an extension of the adjoint network feedback scheme
in the following form. Hereby, we assume the existence of some abstract exit condition terminating
iteration (4.41) and the knowledge of the functions Ψ, φ, ψ and the constant 0 < c <∞ at all link
transmitters and link receivers. Further, the knowledge of constants p̂k, ĝk is assumed, respectively,
at the transmitter of any link k ∈ K and the receiver of any critical link k ∈ B, while the knowledge
of weight αk is assumed at both the transmitter and receiver of any corresponding link k ∈ K.

Algorithm 4
1: Concurrent transmission of links k ∈ K using transmit powers ex(n).
2: Receiver-side estimation of transmit power exk(n), SIR γk(ex(n)) and received power exk(n)(1 +

1/γk(ex(n))) on any link k ∈ K.
3: Receiver-side computation of component (4.55) on any link k ∈ B and transmitter-side compu-

tation of component (4.56) on any link k ∈ K.
4: Per-link feedback of the SIR γk(ex(n)) on any link k ∈ K and, under link SIR constraints,

per-link feedback of component (4.53), given (4.52), on any link k ∈ B.
5: Concurrent transmission of the adjoint network using transmit powers (4.50).
6: Transmitter-side estimation of the received power mk(n)+

∑
j∈K,j 6=k Vjkmj(n) and transmitter-

side computation of component ∂
∂xk

∑
j∈K αjΨ(γj(ex(n))) on any link k ∈ K.

7: Concurrent transmission of the adjoint network using either transmit powers (4.52) under link
SIR constraints, or transmit powers (4.54) under received power constraints.

8: Transmitter-side estimation of the received power (4.51)-i.) and transmitter-side computation
of component (4.51) on any link k ∈ B.

9: Transmitter-side computation of ∂
∂xk

L(x(n),ν(n),η(n), c) and transmitter-side update

xk(n+ 1) = xk(n)− s ∂

∂xk
L(x(n),ν(n),η(n), c)

νk(n+ 1) = νk(n) + s
∂

∂νk
L(x(n),ν(n),η(n), c)

on any link k ∈ K, and receiver-side update

ηk(n+ 1) = ηk(n) + s
∂

∂ηk
L(x(n),ν(n),η(n), c)

on any link k ∈ B, and n→ n+ 1 if termination condition not satis�ed.
Clearly, the theory from Section 4.1.4 can be straightforwardly extended to the case of noisy

iterates in Algorithm 4.
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4.2.5 Simulation results
We apply the simulations to the case of link capacity Ψ(γk) = − log(1+γk), γk ≥ 0, and normalized
link MMSE Ψ(γk) = 1/(1 + γk), γk ≥ 0, as link QoS function. This results in nonconvex instances
of problem (4.30), which satisfy strict complementarity and constraint quali�cation condition from
Lemma 19 at any SOSC point. For the generalized Lagrangian we take ψ(y) = ey and φ(y) = y2,
y ∈ R.

Figures 4.2 and 4.3 show the convergence of exemplary iterate sequences obtained by the feedback
scheme from Algorithm 4 in an ad-hoc network with link SIR constraints. The value of c ∈ R which
ensures convergence does not pose numerical problems. Both �gures seem to imply that Algorithm
4 ensures reliable linear convergence even under quite rough estimates.

Note that the slight oscillation of the performance metric in the transient phase of convergence
is, besides the in�uence of noisy estimates, a result of the unconstrained update character: The
consecutive iterates z(n) = (x(n),µ(n)), n ∈ N, are allowed to be temporarily infeasible for several
n ∈ N before reaching the point of attraction. Thus, the weighted aggregate performance happens
to be superior to the actual optimal value at the point of attraction since the power vector and the
values of constraint metrics may temporarily exceed the nominal constraints p̂k, k ∈ K, and ĝk,
k ∈ B, respectively.

4.3 Algorithmic solution based on variable splitting
We propose a speci�c splitting of optimization variables in the problem of aggregated performance
optimization. The presented variable splitting is combined with a modi�ed Lagrangean function,
related to the framework from Section 4.2.2, in order to obtain an algorithm with convergence
properties improved in comparison to iteration (4.41). Similarly to iteration (4.41), the resulting
algorithm is shown to be realizable in decentralized manner by means of an extended adjoint network
feedback scheme from Algorithm 3.

4.3.1 Optimization under nonlinear interference
The approach of variable splitting allows for the treatment of an extended problem as well, but the
extension is of di�erent type than in Section 4.2. Precisely, in this section we rely on the generalized
de�nition of the SIR function of the form

γk(p) =
pk

Jk(p)
, p ∈ P, k ∈ K, (4.57)

with function p 7→ Jk(p), p ∈ P, satisfying
∂2

∂xk∂xj
Jk(ex) = (∇2Jk(ex))kj = 0, x ∈ X , j, k ∈ K, j 6= k. (4.58)

Condition (4.58) characterizes a class of receivers for which the interference power at their output
can be expressed as

Jk(p) =
∑

l∈K
jkl(pl) + c, p ∈ P, k ∈ K,

with a function p 7→ jkl(p), p ∈ I ⊆ R+, k, l ∈ K, and constant c ∈ R. Thus, by (4.57) and (4.58) we
extend the consideration of linear receivers, and the associated SIR functions (2.1), to receivers with
interference power expressible as a sum of, in general, nonlinear functions of link transmit powers
(plus a constant term). The possible nonlinearity of jkl, k, l ∈ K, can be a result of hardware-related
nonlinear e�ects in transceiver signal processing.
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Figure 4.2: Exemplary convergence of aggregated performance obtained by Algorithm 4 with averaging
(4.26). The settings are K = 15, |B| = 6, Ψ(γ) = − log(1 + γ), c = −7.5 and s(n) = 0.4, n ∈ N, and
R(s(r)) = 3, r ∈ N, and the variance of estimates in steps 2, 6, 8 is 0.3σ2

k, k ∈ K.
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Figure 4.3: Exemplary convergence of aggregated performance obtained by Algorithm 4 with averaging
(4.26). The settings are as in Figure 4.2 except that Ψ(γ) = 1/(1 + γ) and the variance of estimates in steps
2, 6, 8 is 0.15σ2

k, k ∈ K.
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4.3.2 Approach with modified Lagrangian
Assuming implicitly that Condition 1 is satis�ed, e.g. in the case when Φ = Ψ−1 is log-convex
(Proposition 5), we consider the version (2.25) of the problem of aggregated performance optimiza-
tion. We propose a splitting of the optimization variables as used for the characterization of network
duality in problem form (4.7), but using the notion of the generalized SIR function (4.57), (4.58).
Precisely, we reformulate (2.25) in the form

min
x

max
I

∑

k∈K
αkΨ(

exk

Ik
), subject to





ex − p̂ ≤ 0
Ik − tk ≤ 0
Jk(ex)− tk = 0, k ∈ K.

(4.59)

The purpose of using the telescope variable t = (t1, . . . , tK) ∈ RK is merely the separation of the
constraint inequalities for the minimization variables x and the maximization variables Ik, k ∈ K,
and thus the necessary separation of the corresponding constraint-related addends in the Lagrangian
function (see, e.g., [85], Section 4). In fact, it is readily seen that the constraint inequalities of the
problem are equivalent to ex − p̂ ≤ 0 and Ik − Jk(ex) ≤ 0, k ∈ K. Due to the assumption of
decreasing function Ψ, it is readily seen that the maximum in (4.59) is attained for the tuple of
largest Ik, k ∈ K, which satisfy the constraints in (4.59). Thus, for the solution of (4.59) it is
necessary that Ik = tk and thus Ik = Jk(ex), k ∈ K, which makes the equivalence of (4.59) and
(2.25), with (4.57) evident. Analogously to Section 4.2.2, we refer to x ∈ RK as feasible if it satis�es
the constraint inequalities in (4.59).

De�nition 4 Given problem (4.59), let the Lagrangian function

L(x, I,µ,λI ,λJ , t) =
∑

k∈K
αkΨ(

exk

Ik
) +

∑

k∈K
φ(µk)(exk − p̂k)

+
∑

k∈K
λJk (Jk(e

x)− tk)−
∑

k∈K
φ(λIk)(Ik − tk), (x, I,µ,λI ,λJ , t) ∈ R6K ,

(4.60)

where the function φ satis�es the following condition.

Condition 8 Function µ 7→ φ(µ), µ ∈ R, is twice di�erentiable and
i.) φ(µ) = φ(−µ), µ ∈ R (even),
ii.) φ(µ) ≥ 0, µ ∈ R (nonnegative),
iii.) φ′′(µ) > 0, µ ∈ R (strictly convex),
iv.) µ = 0 i� φ(µ) = 0 i� φ′(µ) = 0 (unique irregularity as a minimum with value 0 at 0).

Among numerous functions satisfying Condition 7, the simplest one appears to be, again, φ(µ) = µ2.
The following proposition is a straightforward consequence of Condition 8 and the de�nition of

the Kuhn-Tucker conditions (De�nition 14). When Condition 6 is replaced by Condition 8, then
Proposition 15 can be seen as a generalization of the following result to the case of Lagrangian
(4.31)).

Proposition 19 Let ±µ ∈ RK denote either (±µ)k = µk or (±µ)k = −µk independently for
k ∈ K. If (x, I,ν,η,λJ , t) ∈ R2K × R2K

+ × R2K is a Kuhn-Tucker point of problem (4.59), then
(x, I,±µ,±λI ,λJ , t), with

νk = φ(±µk), ηk = φ(±λIk) = λJk , k ∈ K, (4.61)
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is a stationary point of Lagrangian (4.60). Conversely, if (x, I,µ,λI ,λJ , t) ∈ R6K , with x feasible,
is a stationary point of Lagrangian (4.60), then (x, I,ν,η,λJ , t), with ν, η given by (4.61), is a
Kuhn-Tucker point of problem (4.59).

Proof Let (x, I,ν,η,λJ , t) ∈ R2K×R2K
+ ×R2K be a Kuhn-Tucker point of problem (4.59), let

(4.61) be satis�ed, and de�ne T (x̄) = {k ∈ K : ex̄k − p̂k = 0} and L(Ī, t̄) = {k ∈ K : Īk − t̄k = 0},
for (x̄, Ī, t̄) ∈ R3K . Then, it is evident from (4.60) and the classical linear Lagrangian

L̄(x, I,ν,η,λJ , t) =
∑

k∈K
αkΨ(

exk

Ik
) +

∑

k∈K
νk(exk − p̂k)

+
∑

k∈K
λJk (Jk(e

x)− tk)−
∑

k∈K
ηk(Ik − tk), (x, I,ν,η,λJ , t) ∈ R2K × R2K

+ × R2K .

(4.62)

that ∇(x̄,Ī,t̄)L̄(x, I,ν,η,λJ , t) = 0 implies ∇(x̄,Ī,t̄)L(±z) = 0, with ±z = (x, I,±µ,±λI ,λJ , t).
Further, by the second and fourth expression in (4.71) we have ∂

∂µ̄k
L(±z) = 0, k ∈ T (x), and

∂
∂λ̄I

k

L(±z) = 0, k ∈ L(I, t), by the de�nitions of T (x) and L(I, t), respectively. In parallel, the
second and fourth expression in (4.71) imply ∂

∂µ̄k
L(±z) = 0, k ∈ K \ T (x), and ∂

∂λ̄I
k

L(±z) = 0,
k ∈ K \ L(I, t), due to the complementary slackness conditions νk = 0, k ∈ K \ T (x), and ηk = 0,
k ∈ K \ T (I, t) and Condition 8 iv.). Finally, it is obvious by the constraints in (4.59) that
∇

λ̄
JL(±z) = 0, which completes the proof of ±z as a stationary point of (4.60).
Conversely, let z = (x, I,µ,λI ,λJ , t) ∈ R6K , with x feasible, be a stationary point of La-

grangian (4.60) and let (4.61) hold. We yield ν ≥ 0, η ≥ 0 immediately by Condition 8. Further,
∇

(µ̄,λ̄
I
)
L(z) = 0 yields with the second and fourth expression in (4.71) and Condition 8 iv.) that

νk(exk − p̂k) = 0, ηIk(Ik − tk) = 0, k ∈ K, (4.63)

which are the complementary slackness conditions. By ∇ĪL(z) = 0 and the third expression in
(4.71), it follows that φ(λIk) > 0, k ∈ K, since Ψ is decreasing and α > 0. This implies further
Ik − tk = 0, k ∈ K, due to (4.63). Also, ex − p̂ ≤ 0 is obvious from feasibility and Jk(ex)− tk = 0,
k ∈ K, is immediate from ∇

λ̄
JL(z) = 0. Finally, it is evident from (4.60), (4.62) and (4.61)

that ∇(x̄,Ī,t̄)L̄(x, I,ν,η,λJ , t) = 0 follows from ∇(x̄,Ī,t̄)L(z) = 0, which completes the proof of
(x, I,ν,η,λJ , t) as a Kuhn-Tucker point. ¤

By the Lagrangian construction, a stationary point of (4.60), associated by (4.61) with a Kuhn-
Tucker point, can be found by unconstrained iterations. This parallels the property of the general-
ized Lagrangian (4.31) and stands again in contrast to conventional primal-dual iterations, which
solve the nonnegatively constrained dual problem (right-hand side of (4.6)).

The Lagrangean duality theory, with key elements outlined in Section 4.1.2, is straightforwardly
extendable to the case of modi�ed Lagrangian (4.60) [48], [86]. Precisely, the interest is in �nding
a stationary point being a max-min and a min-max point, that is, satisfying

z̃ = arg max
(µ,λ)∈R2K

min
(x,I)∈S(x̃,Ĩ)

L(z), (4.64)

and
z̃ = arg min

(x,I)∈S(x̃,Ĩ)
sup

(µ,λ)∈R2K

L(z), (4.65)
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with S(y) as a (su�ciently small) neighborhood of y ∈ R2K . Analogously to the case of the classical
linear Lagrangean function [48], [86], it is easily shown that if z̃ = (x̃, Ĩ, µ̃, λ̃) ∈ R4K satis�es (4.64)
and (4.65), then it is a local minimizer of problem (4.59) (see also the discussion in [72]). For �nding
the desired stationary point of (4.60) we construct the iteration taking the form




(
x(n+ 1)
µ(n+ 1)

)
=

(
x(n)
µ(n)

)
− (∇2

(x,µ)L(z(n)))−1∇(x,µ)L(z(n))

∇(I,λI ,λJ ,t)L(z(n+ 1)) = 0,

z(n) ∈ R6K , n ∈ N. (4.66)

Iteration (4.66) consists in applying the Newton update with respect to variables (x,µ) ∈ R2K

and enforcing a stationary point of Lagrangian (4.60) with respect to the remaining variables
(I,λI ,λJ , t) ∈ R4K . Thus, it can be classi�ed as a conditional Newton iteration or Newton it-
eration under reduced dimensionality. By condition (4.58), it is readily seen that

∂2

∂xk∂xj
L(z) = 0,

∂2

∂µk∂µj
L(z) = 0,

∂2

∂µk∂xj
L(z) = 0, for k 6= j, k, j ∈ K, (4.67)

i.e. the blocks of the Hessian matrix in (4.66) have the crucial property of being diagonal. Since,
by the standard four-block inverse expression [87], we can write

(∇2
(x,µ)L(z))−1 =

(
(∇2

xL(z)−∇2
x,µL(z)(∇2

µL(z))−1∇′2x,µL(z))
−1

(∇′2x,µL(z)(∇2
xL(z))−1∇2

x,µL(z)−∇2
µL(z))

−1∇′2x,µL(z)(∇2
xL(z))−1

(∇2
xL(z))−1∇2

x,µL(z)(∇′2x,µL(z)(∇2
xL(z))−1∇2

x,µL(z)−∇2
µL(z))

−1

(∇2
µL(z)−∇′2x,µL(z)(∇2

xL(z))−1∇2
x,µL(z))

−1

)
,

(4.68)

it follows further that the inverse Hessian, if existent, has the same structure as the Hessian itself:
The two blocks on its block-diagonal and the two outer blocks are all diagonal matrices. Thus,
the Newton update term of any k-th component of x ∈ RK and µ ∈ RK in (4.66) is a linear
combination of two gradient components; (∇xL(z))k and (∇µL(z))k, k ∈ K. A further property
of (4.66) and Lagrangian (4.60) is that ∇(I,λI ,λJ ,t)L(z) = 0 can be expressed as an explicit map
yielding (I,λI ,λJ , t) ∈ R4K as a function of (x,µ) ∈ R2K . These features yield the following
reformulation of (4.66).

Lemma 9 For any n ∈ N, the power control iteration (4.66) can be written equivalently as




xk(n+ 1) = xk(n) + (exk(n)−p̂k)
sk(n) (φ′′(µk(n))(αkΨ′

e(log exk(n)

Ik(n) ) + φ(µk(n))exk(n)+∑
j∈K λ

J
j

∂
∂xk

Jj(ex(n)))− (φ′(µk(n)))2exk(n))

µk(n+ 1) = µk(n) + φ′(µk(n))
sk(n) ((exk(n) − p̂k)(αkΨ′′

e(log exk(n)

Ik(n) )+

φ(µk(n))exk(n) +
∑

j∈K λ
J
j
∂2

∂x2
k
Jj(ex(n)))−

exk(n)(αkΨ′
e(log exk(n)

Ik(n) ) + φ(µk(n))exk(n) +
∑

j∈K λ
J
j

∂
∂xk

Jj(ex(n))))

Ik(n+ 1) = Jk(ex(n+1))
λJk (n+ 1) = −αk

Ik
Ψ′
e(log exk(n+1)

Ik(n+1) ),

k ∈ K,

(4.69)
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where additionally φ(λIk(n+ 1)) = λJk (n+ 1), tk(n+ 1) = Ik(n+ 1), k ∈ K, and where we de�ned

sk(n) =(φ′(µk(n)))2e2xk(n) − φ′′(µk(n))(exk(n) − p̂k)(αkΨ′′
e(
exk(n)

Ik(n)
)+

φ(µk(n))exk(n) +
∑

j∈K
λJj

∂2

∂x2
k

Jj(ex(n))),
k ∈ K. (4.70)

Proof The Lemma is obtained by applying elementary calculus to (4.60), (4.66) and (4.68).
The main steps are the following. Given z = (x, I,µ,λI ,λJ , t) ∈ R6K , we have

(∇x̄L(z))k =
∂

∂x̄k
L(z) = αkΨ′

e(log
exk

Ik
) + φ(µk)exk +

∑

j∈K
λJj

∂

∂xk
Jj(ex)

(∇µ̄L(z))k =
∂

∂µ̄k
L(z) = φ′(µk)(exk − p̂k)

(∇ĪL(z))k =
∂

∂Īk
L(z) = −αkΨ′(

exk

Ik
)
exk

I2
k

− φ(λIk)

(∇
λ̄

IL(z))
k

=
∂

∂λ̄Ik
L(z) = φ′(λIk)(Ik − tk),

(∇
λ̄

JL(z))
k

=
∂

∂λ̄Jk
L(z) = Jk(ex)− tk, (∇t̄L(z))k =

∂

∂t̄k
L(z) = λJk − φ(λIk)

k ∈ K,

(4.71)

Making use of the property Ψ′′
e(y) = Ψ′′(ey)e2y + Ψ′(ey)ey, y ∈ R, and (4.58), we get (4.67) and

(∇2
x̄L(z))kk =

∂2

∂x̄2
k

L(z) = αkΨ′′
e(log

exk

Ik
) + φ(µk)exk +

∑

j∈K
λJj

∂2

∂x2
k

Jj(ex)

(∇2
µ̄L(z))

kk
=

∂2

∂µ̄2
k

L(z) = φ′′(µk)(exk − p̂k)

(∇2
x̄,µ̄L(z))

kk
=

∂2

∂x̄k∂µ̄k
L(z) = φ′(µk)exk ,

k ∈ K. (4.72)

¤

4.3.3 Local convergence and duality
We have the following general (local) quadratic convergence result. Quadratic convergence is the
fastest achievable one under the use of up to second-order characteristics of the problem in the
iteration.

Proposition 20 Let z = (x, I,µ,λI ,λJ , t) ∈ R6K be a stationary point of Lagrangian (4.60) which
corresponds through (4.61) to a Kuhn-Tucker point of problem (4.59) and is such that ∇2

(x̄,µ̄)L(z̄)
is continuous on some S(z) and nonsingular for z̄ = z. Then, z is a point of attraction of iteration
(4.66), and if additionally the maps Ψ′′ and x̄ 7→ ∂2

∂x̄2
k
Jj(ex̄), x̄ ∈ RK , k, j ∈ K, are continuous,

then we have quadratic quotient convergence in the sense that OQ(z) ≥ 2.

Proof Let z = (x, I,µ,λI ,λJ , t) ∈ R6K be a stationary point of (4.60) associated through
(4.61) with a Kuhn-Tucker point of problem (4.59) and let map ν 7→ ψ(ν), ν ∈ R+, be such
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that ψ(φ(µ)) = µ, for µ ∈ R+ (inverse map of the restriction of φ to R+). Further, de�ne maps
x̄ 7→ F (x̄) ∈ RK , and x̄ 7→ H(x̄) ∈ RK , x̄ ∈ RK , such that (F (x̄))k = Jk(ex̄) and (H(x̄))k =
−αkΨ′( ex̄k

Jk(ex̄))
ex̄k

J2
k(ex̄)

, k ∈ K. By (4.71) and Condition 7 it is now readily seen that the stationary
point ∇L(z) = 0 can be expressed as

z = z(x,µ) = (x, F (x),µ,±ψ(H(x)),H(x), F (x)). (4.73)

Now, let (x̄, µ̄) 7→ G(x̄, µ̄), (x̄, µ̄) ∈ R2K , be de�ned as

G(x̄, µ̄) = (x̄′ µ̄′)′−(∇2
(x̄,µ̄)L(x̄, F (x̄), µ̄,±ψ(H(x̄)),H(x̄), F (x̄)))−1×

∇(x̄,µ̄)L(x̄, F (x̄), µ̄,±ψ(H(x̄)),H(x̄), F (x̄)).

By the nonsingularity assumption and continuity of F and H, map G is well-de�ned for (x̄, µ̄) =
(x,µ) and continuous on some S(x,µ). Using the de�nitions and Lemma 9, precisely the last two
equalities in (4.69), the Newton update in iteration (4.66) can be formulated, for any n ∈ N, as

(x(n+ 1),µ(n+ 1)) = G(x(n),µ(n)), (4.74)

while the remaining iterates are obtained by maps

(I(n+1),λI(n+1),λJ(n+1), t(n+1)) = (F (x(n+1)),±ψ(H(x(n+1))), H(x(n+1)), F (x(n+1))).
(4.75)

By (4.73) and assumption ∇L(z) = 0 we have that (x,µ) is a �xed point of map G and also

∇(x̄,µ̄)G(x,µ) = I −∇(x̄,µ̄)(∇2
(x̄,µ̄)L(z))−1∇(x̄,µ̄)L(z)− (∇2

(x̄,µ̄)L(z))−1∇2
(x̄,µ̄)L(z) = 0.

((x,µ) is a stationary point of G). This implies with 10.1.6 in [79], that (x,µ) is a point of attraction
of (4.74), which is the Newton update in (4.66). Since the remaining iterates in (4.66) are obtainable
by the �xed map (4.75), it follows with (4.73) that z is a point of attraction of iteration (4.66).

From the formulation of iteration (4.66) as (4.74), (4.75) it is evident that the map (4.75) has no
in�uence on the quotient convergence (Appendix A.3.2). Thus, for the order of quotient convergence
of iteration (4.66) to z we have OQ(z) = OGQ(x,µ), where OGQ(x,µ) denotes the order of quotient
convergence of (4.74) to (x,µ). Iteration (4.74) is the conventional Newton iteration applied to the
function

(x̄, µ̄) 7→ L(x̄, µ̄) = (x̄, F (x̄), µ̄,±ψ(H(x̄)),H(x̄), F (x̄)), (x̄, µ̄) ∈ R2K . (4.76)

Under continuity of Ψ′′ and x̄ 7→ ∂2

∂x̄2
k
Jj(ex̄), x̄ ∈ RK , k, j ∈ K, it is evident from (4.60) and the

de�nitions of F and H that the Hessian of (4.76) is continuous as well, and thus, also Lipschitz
continuous on some S(x,µ) [88]. With the general Newton Attraction Theorem (10.2.2 in [79]) this
implies �nally OGQ(x,µ) ≥ 2, which completes the proof due to OQ(z) = OGQ(x,µ). ¤

Note that the unconstrained stationary point property is the central element of the proof of
Proposition 20, which underlines the role of the modi�ed Lagrangian (Proposition 19). An anal-
ogous application of iteration (4.66) to the conventional Lagrangian (4.62) would guarantee local
convergence only under additional mapping/ projection mechanisms and such convergence would
be no more quadratic, in general.

Algorithm (4.66) does not, in general, ensure a monotone descent of the aggregated performance
value. Monotone descent may be, however, enforced, under retained quadratic convergence, by
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introducing in the iteration over (x,µ) ∈ R2K in (4.66) a damping factor sequence a(n), n ∈ N,
such that for some n0 ∈ N we have a(n) = 1, n ≥ n0 (for details we refer to [79]).

In order to �nd a local minimizer

(x, I) = arg min
x̄∈S(x)

max
Ī∈S(I)

∑

k∈K
αkΨ(

ex̄k

Īk
), such that

{
ex − p̂ ≤ 0
Ik − Jk(ex) ≤ 0, k ∈ K, (4.77)

by means of (4.66), the point of attraction of (4.66) is desired to be a max-min and min-max point
satisfying (4.64), (4.65). This case is characterized in the following result.

Proposition 21 A stationary point (x, I,µ,λI ,λJ , t) ∈ R6K of Lagrangian (4.60) corresponds to
a local problem solution (4.77) if either Lagrangian (4.60) is a min-max function of x̄ ∈ RK , Ī ∈ RK
on some S(x, I) with feasible x, which is equivalent to

αkϕ
′′
e(log

exk

Ik
) ≥ −φ(µk)exk −

∑

j∈K
λJj

∂2

∂x̄2
k

Jj(ex), Ψ′′
e(log

exk

Ik
) + Ψ′

e(log
exk

Ik
) < 0, (4.78)

for feasible x, or Lagrangian (4.60) is a convex-concave function of x̄ ∈ RK , Ī ∈ RK on some
S(x, I) with feasible x, which is equivalent to

αkΨ′′
e(log

exk

Ik
) ≥ −φ(µk)exk −

∑

j∈K
λJj

∂2

∂x̄2
k

Jj(ex), Ψ′′
e(log

exk

Ik
) + Ψ′

e(log
exk

Ik
) ≤ 0, (4.79)

for feasible x, where we de�ned y 7→ ϕ′′e(y) = Ψ′′e (y)Ψ′e(y)
Ψ′′e (y)+Ψ′e(y)

if Ψ′′
e(y) + Ψ′

e(y) 6= 0 and ϕ′′e(y) = 0
otherwise, y ∈ R.

Proof Let z = (x, I,µ,λI ,λJ , t) ∈ R6K be a stationary point of Lagrangian (4.60) and
assume �rst by contradiction that (4.60) is either a min-max function or a convex-concave function
of x̄ ∈ RK , Ī ∈ RK on some S(x, I), with x feasible, but z does not correspond to a local solution
(4.77). The classical Lagrangian duality results extend straightforwardly to min-max problems (see
[85], Section 4) and to generalized Lagrangians (see, e.g. [74], [88], [73]): It is readily seen that z is
associated with a local solution (4.77) if and only if

z = arg min
x̄∈S(x)

max
Ī∈S(I)

sup
(µ̄,λ̄

J
)∈R2K

inf
λ̄

I∈RK

L(z̄). (4.80)

From the fourth expression in (4.71) and Condition 7 iii.) we have that ∇2

λ̄
IL(z̄) = 0 whenever

Ī− t̄ ≤ 0. Similarly, by the �fth expression in (4.71), the second expression in (4.72) and Condition
iii.) we yield ∇2

(µ̄,λ̄
J
)
L(z̄) ¹ 0, whenever x̄ is feasible. In particular, this implies with Appendix

A.4.1 that (4.60) is concave-convex in (µ̄, λ̄J) ∈ R2K , λ̄
I ∈ RK on some S(z), and thus, with the as-

sumptions, it is either a min-max-concave-convex function or a convex-concave-concave-convex func-
tion of x̄ ∈ RK , Ī ∈ RK , (µ̄, λ̄J) ∈ R2K , λ̄

I ∈ RK on some S(z). Thus, the application of Propo-
sitions 44 and 45 to the map (x̄, Ī, t̄) 7→ F (x̄, Ī, t̄) = sup

(µ̄,λ̄
J
)∈R2K inf

λ̄
I∈RK L(x̄, Ī, µ̄, λ̄I , λ̄J , t̄),

(x̄, Ī, t̄) ∈ R3K , and the property ∇(x̄,Ī)F (x, I, t) = 0 imply (4.80), which contradicts the assump-
tions. Additionally, the straightforward extension of Proposition 44 to (concatenated) min-max-
concave-convex or convex-concave-concave-convex functions shows that we have the saddle point
property at z, consisting in (4.80) and z = max

(µ̄,λ̄
J
)∈R2K min

λ̄
I∈RK minx̄∈S(x) maxĪ∈S(I) L(z̄).
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By De�nition 25, Lagrangian (4.60) is a min-max function of x̄ ∈ RK , Ī ∈ RK on some
(vanishingly small) S(x, I), if and only if

∇2
x̄L(z)−∇′2x̄,ĪL(z)(∇2

ĪL(z))−1∇2
x̄,ĪL(z) º 0, ∇2

ĪL(z) ≺ 0, (4.81)

where, using assumption (4.58) and Ψ′′
e(y) = Ψ′′(ey)e2y + Ψ′(ey)ey, y ∈ R, we can write

(∇2
ĪL(z̄))

kk
=

∂2

∂Ī2
k

L(z̄) =
αk
Ī2
k

(Ψ′′
e(log

ex̄k

Īk
) + Ψ′

e(log
ex̄k

Īk
))

(∇2
x̄,ĪL(z̄))

kk
=

∂2

∂x̄k∂Īk
L(z̄) = −αkΨ′′

e(log
ex̄k

Īk
),

k ∈ K, (4.82)

and ∂2

∂Īk∂Īl
L(z̄) = 0, ∂2

∂x̄k∂Īl
L(z̄) = 0, k 6= l, k, l ∈ K, for any z̄ = (x̄, Ī, µ̄, λ̄I , λ̄J , t̄) ∈ R6K . Thus,

with α > 0, the second inequality in (4.81) is equivalent to the second expression in (4.78). Together
with the �rst expression in (4.72), this lets us rewrite the �rst inequality in (4.81) as

(Ψ′′
e(log

ex̄k

Īk
)+Ψ′

e(log
ex̄k

Īk
))(φ(µ̄k)ex̄k +

∑

j∈K
λ̄Jj

∂2

∂x2
k

Jj(ex̄))+αkΨ′
e(log

ex̄k

Īk
)Ψ′′

e(log
ex̄k

Īk
) ≤ 0, k ∈ K,

so that the application of ϕ′′e yields now the �rst expression in (4.78).
By Appendix A.4.1, Lagrangian (4.60) is a convex-concave function of x̄ ∈ RK , Ī ∈ RK on a

vanishingly small S(x, I), if and only if ∇2
xL(z̄) º 0, ∇2

IL(z̄) ¹ 0. With this, (4.79) is yielded now
similarly by applying the �rst expressions from (4.72) and (4.82), which completes the proof. ¤

Propositions 20 and 21 make clear that if the iterates generated by (4.66) are attracted by a
particular stationary point of (4.60) which satis�es either (4.78) or (4.79), then the iteration solves
(4.59) locally. Furthermore, under continuity of second-order characteristics, the convergence to a
local solution is quadratic in quotients.

From the proof of Proposition 21 it is evident that a stationary point of (4.60) is a desired point
of attraction of iteration (4.66) if it represents a speci�c saddle point.

Corollary 2 A stationary point z = (x, I,µ,λI ,λJ , t) ∈ R6K of the Lagrangian (4.60) corresponds
to a local problem solution (4.77) if z is a saddle point of the type

z = arg min
x̄∈S(x)

max
Ī∈S(I)

sup
(µ̄,λ̄

J
)∈R2K

inf
λ̄I∈RK

L(z̄) = arg max
(µ̄,λ̄

J
)∈R2K

min
λ̄I∈RK

min
x̄∈S(x)

max
Ī∈S(I)

L(z̄). (4.83)

By the proof and theory of convex-concave and min-max functions, it is observed further that the
saddle point property (4.83) is equivalent to convex-concavity or min-max property of Lagrangian
(4.60) as a function of x̄ ∈ RK , Ī ∈ RK on some S(x, I), and concave-convexity of (4.60) as a
function of (µ̄, λ̄J) ∈ R2K , λ̄

I ∈ RK on some S(µ,λI ,λJ).
We verify the convergence of iteration (4.66) in exemplary simulations in Section 4.3.7.

4.3.4 The uniqueness case
The variety of desired and uninteresting points of attraction occurring in general motivates the
need for the characterization of functions Ψ and Jk, k ∈ K, for which any Kuhn-Tucker point
of problem (4.59) corresponds to a global problem solution, i.e. (4.77), with S(x, I) = R2K . By
Proposition 19, this is equivalent to having any stationary point of (4.60) with feasible x ∈ RK being
associated with a global problem solution. If such a property is o�ered by the link QoS function
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and link performance functions at hand, the proposed power allocation iteration accomplishes the
optimization (4.59) globally in the following sense: Any point of attraction of iteration (4.66) with
feasible x ∈ RK corresponds to a global problem solution (4.77), S(x, I) = R2K .

The characterization of a class of performance functions Ψ and interference functions Jk, k ∈ K,
which ensures such feature follows from Proposition 21.

Corollary 3 Any stationary point (x, I,µ,λI ,λJ , t) ∈ R6K of Lagrangian (4.60), with x feasible,
corresponds to a global problem solution (4.77), S(x, I) = R2K , if Lagrangian (4.60) is a convex-
concave function of x̄ ∈ RK , Ī ∈ RK for λ̄

J ≥ 0, Ī − t̄ ≤ 0, and feasible x̄, which is implied
by

Ψ′′
e(y) + Ψ′

e(y) ≤ 0, Ψ′′
e(y) ≥ 0, y ∈ R, (4.84)

and ∇2Jk(ex̄) º 0, x̄ ∈ RK , k ∈ K. Moreover, the global problem solution (4.77), S(x, I) = R2K ,
is unique if the second inequality in (4.84) is strict.

Proof Let z = (x, I,µ,λI ,λJ , t) ∈ R6K be a stationary point of (4.60) with feasible x. For the
proof of su�cient condition assume �rst, by contradiction, that z does not correspond to a global
solution (4.77), S(x, I) = R2K , while (4.60) is convex-concave in x̄, Ī for λ̄

J ≥ 0. Since ∇L(z) = 0,
α > 0 and Ψ is decreasing, we get by the third and sixth expression in (4.71) that λJ ≥ 0. As follows
from the proof of Proposition 21, (4.60) is concave-convex in (µ̄, λ̄J) ∈ R2K , λ̄

I ∈ RK whenever
Ī − t̄ ≤ 0 and x̄ is feasible so that, with the assumptions, (4.60) is convex-concave-concave-convex
in x̄ ∈ RK , Ī ∈ RK , (µ̄, λ̄J) ∈ R2K , λ̄

I ∈ RK whenever λ̄
J ≥ 0, Ī − t̄ ≤ 0 and λ̄

J ≥ 0. Thus,
by Proposition 44 (precisely, by its trivial extension to concatenated convex-concavity), for the
stationary point z follows

z = min
x̄∈RK :ex̄−p̂≤0

max
Ī∈RK :Ī−t̄≤0

sup
(µ̄,λ̄

J
)∈RK×RK

+

inf
λ̄

I∈RK

L(z̄), (4.85)

But (4.85) is easily veri�ed to imply (4.77), S(x, I) = R2K (extension of Lagrangian duality to
min-max problem and generalized Lagrangian, see [85], [74], [88], [73]), which contradicts the as-
sumptions.

With Condition 7 ii.), (4.84) and ∇Jk(ex̄) º 0, x̄ ∈ RK , k ∈ K, it is evident that (4.79) is
satis�ed for any (Ī, µ̄, λ̄J) ∈ R2K × RK+ and feasible x̄. With (the proof of) Proposition 21 this
further implies convex-concavity of (4.60) in x̄, Ī for λ̄

J ≥ 0 and feasible x̄. By (the proof of)
Proposition 21 it is further evident that the �rst inequality in (4.79) is equivalent to ∇2

x̄L(z) º 0.
Thus, when additionally Ψ′′

e(y) > 0, y ∈ R, the �rst inequality in (4.79) is strict and thus (4.60)
is strictly convex in x̄ ∈ RK whenever λ̄

J ≥ 0 and x̄ is feasible. Then, any stationary point z
of (4.60) is associated with a unique x ∈ RK , which further uniquely de�nes Ik = Jk(ex), k ∈ K,
via ∇L(z) = 0 and Condition 7 (see (4.71)). By Proposition 19, this shows that (x, I) ∈ R2K is
necessarily the unique solution to (4.59), which completes the proof. ¤

It can be veri�ed that the approximation of the link capacity Ψ(γ) = − log(γ), γ ≥ 0, or the
average normalized symbol error rate under Rayleigh fading Ψ(γ) = 1/γ, γ ≥ 0 (see Section 2.2),
satisfy together with the linear interference function

Jk(p) = (V p)k + σ2
k, p ∈ P, k ∈ K, (4.86)

the conditions in Corollary 3. Thus, such functions guarantee that (4.66) accomplishes the op-
timization (4.59) globally, according to the above. Moreover, for the link performance function
Ψ(γ) = 1/γ, γ ≥ 0, we have Ψ′′

e(y) > 0, y ∈ R. By Corollary 3, this implies additionally that the
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global solution to problem (4.59) is unique and the point of attraction of (4.66) with feasible x is
unique up to the component signs.

For any link QoS function satisfying (4.84) and any interference function such that x̄ 7→ Jk(ex̄),
x̄ ∈ RK , is convex, any stationary point of Lagrangian (4.60) with feasible x ∈ RK is a saddle point
of the type

z = arg min
x̄∈RK

max
Ī∈RK

sup
(µ̄,λ̄

J
)∈R2K

inf
λ̄

I∈RK

L(z̄) = arg max
(µ̄,λ̄

J
)∈R2K

min
λ̄

I∈RK

min
x̄∈RK

max
Ī∈RK

L(z̄), (4.87)

which is unique, up to the component signs, if the second inequality in (4.84) is strict. The global
saddle point property (4.87) is an analog of the well-known strong Lagrangian duality property of
a canonical minimization problem form and classical Lagrangian [49].

4.3.5 Another problem form

By Corollary 3, Lagrangian (4.60) is convex-concave in x ∈ RK , I ∈ RK whenever the link QoS
function satis�es (4.84) and function x 7→ Jk(ex), x ∈ RK , k ∈ K, is convex. Thus, with the central
property of convex-concave functions (Proposition 44) and Proposition 19 we have the following
result.

Corollary 4 If condition (4.84) is satis�ed and x 7→ Jk(ex), x ∈ RK , k ∈ K, is convex, then a
solution to problem (4.59) exists, if and only if the solution to the problem

max
I

min
x

∑

k∈K
αkΨ(

exk

Ik
), subject to

{
ex − p̂ ≤ 0
Ik − Jk(ex) ≤ 0, k ∈ K, (4.88)

exists, and the solutions to (4.59) and (4.88) are equal. Moreover, if the second inequality in (4.84)
is strict, the solutions to (4.59) and (4.88) are unique.

The result shows that under the conditions from Corollary 3 we dispose of an alternative expression
of the min-max power allocation problem (4.59) in the max-min form (4.88). By Corollaries 3 and
4, it is evident that the alternative form (4.88) is available concurrently with having all stationary
points of (4.60) associated with global solutions to (4.59). According to the preceding discussion, an
equivalent reformulation of the power control problem (4.59) in the form (4.88) is available under
(4.86) and (logarithmic) link capacity approximation or channel-averaged normalized symbol error
rate as link QoS function.

4.3.6 Decentralized feedback scheme

In this section we show that algorithm (4.66) can be realized in decentralized manner by means of a
modi�ed adjoint network feedback scheme (Algorithm 3), which is, besides quadratic convergence,
the second main feature of the approach of variable splitting. We characterize the realization scheme
under the assumption of linear receivers, i.e. we assume (4.86).
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We utilize the componentwise formulation (4.69) in a slightly more abstract version as




xk(n+ 1) = xk(n) + 1
sk(n)(

i.)︷ ︸︸ ︷
Ψ′
e(log

exk(n)

Ik(n)
)− δk(n)+

ii.)︷ ︸︸ ︷∑

j∈K
Vjkδj(n) + δk(n) +F 1(xk(n), µk(n), αk))

µk(n+ 1) = µk(n) + 1
sk(n)(F

2(xk(n), µk(n), αk, p̂k)(

i.)︷ ︸︸ ︷
Ψ′′
e(log

exk(n)

Ik(n)
)−Ψ′

e(log
exk(n)

Ik(n)
))+

F 3(µk(n), αk)(Ψ′′
e(log

exk(n)

Ik(n)
)− δk(n)

︸ ︷︷ ︸
i.)

+
∑

j∈K
Vjkδj(n) + δk(n)

︸ ︷︷ ︸
ii.)

))

k ∈ K,

(4.89){
Ik(n+ 1) =

∑
j∈K Vkje

xj(n+1) + σ2
k

δk(n+ 1) = −Ψ′
e(log exk(n+1)

Ik(n+1) ) e
xk(n+1)

Ik(n+1) ,
k ∈ K, (4.90)

where additionally φ(λIk(n+ 1)) = αk

exk(n+1) δk(n+ 1), tk(n+ 1) = Ik(n+ 1), k ∈ K, and

sk(n) = F 4(xk(n), µk(n), αk, p̂k) + δk(n)−Ψ′′
e(log

exk(n)

Ik(n)
)

︸ ︷︷ ︸
i.)

+
∑

j∈K
Vjkδj(n) + δk(n)

︸ ︷︷ ︸
ii.)

, k ∈ K, (4.91)

which is obtained by elementary (re-) grouping, setting δk(n) = exk(n)

αk
λJk (n), k ∈ K, and using the

property ∂
∂xk

Jj(ex) = ∂2

∂x2
k
Jj(ex), x ∈ RK , k, j ∈ K, of function (4.86). The functions F i, 1 ≤ i ≤ 4,

simply group several terms from (4.69), (4.70) and are easily deduced.
The �rst iterate in (4.90) represents the interference power on a k-th link receiver under the

power allocation ex(n+1) and the second one is a function of the resulting SIR on k-th link receiver.
Thus, iterates (4.90) can be made available independently to any link receiver k ∈ K by per-link
receiver-side estimation of the interference power and the link SIR. As a consequence, the terms
i.) in the iterates (4.89), (4.91) are provided independently to any k-th link transmitter by per-link
feedback of the link SIR estimated in the preceding iteration. Further, we observe that the term
ii.) occurring in (4.89) and (4.91) can be made available independently to any k-th link transmitter
when an adjoint network transmission is established, as in Algorithm 3, and link transmit powers
δk(n), k ∈ K are allocated. Finally, it is obvious from (4.89), (4.91) that the values of the functions
F i, 1 ≤ i ≤ 4, are computable at any k-th link transmitter, when the corresponding outdated iterate
values xk(n), µk(n) remain locally stored. This, in summary, ensures the decentralized computation
of iteration (4.69) by the following extension of the scheme from Algorithm 3. Analogously to Section
4.1.3, it is justi�ed to assume here that functions Ψ, φ are globally known by all transmitters and
receivers, any constraint p̂k is known by the corresponding link transmitter k ∈ K and weight αk > 0
is known to the link transmitter and link receiver k ∈ K.

Algorithm 5
1: Concurrent transmission with link transmit powers exk(n), k ∈ K.
2: Receiver-side estimation of interference power Ik(n) =

∑
j∈K Vkje

xj(n)+σ2
k and link SIR exk(n)/Ik(n),

and computation of δk(n) = −Ψ′
e(log exk(n)

Ik(n) ) e
xk(n)

Ik(n) on each link k ∈ K.
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3: Per-link feedback of link SIR exk(n)/Ik(n) to the corresponding link transmitter on each link
k ∈ K.

4: Transmitter-side computation of Ψ′
e(log exk(n)

Ik(n) ), Ψ′′
e(log exk(n)

Ik(n) ) and δk(n) on each link k ∈ K.
5: Concurrent transmission of the adjoint network with link transmit powers δk(n), k ∈ K.
6: Transmitter-side (i.e. adjoint network receiver-side) estimation of the received power

∑
j∈K Vjkδj(n)+

δk(n) on each link k ∈ K.
7: Transmitter-side update (4.89) on each link k ∈ K and n→ n+ 1 if termination condition not

satis�ed.

As in Algorithm 4, the results from Section 4.1.4 can be straightforwardly extended to apply to
the case of noisy iterates in Algorithm 5.

4.3.7 Simulation results
We evaluate the performance of iteration (4.66) and Algorithm 5 by simulations for the case of linear
interference function (4.86) and the link capacity approximation Ψ(γk) = − log γk, γk ≥ 0, and the
channel-averaged normalized symbol error rate Ψ(γk) = 1/γk, γk ≥ 0, as link QoS functions. Such
settings ensure that any point of attraction of (4.66), with feasible power allocation, corresponds to
the problem solution (Section 4.3.4). In Lagrangian (4.60) we take φ(µ) = µ2.

Figure 4.4 shows exemplary convergence of iteration (4.66) in two quite large networks. Such
convergence is compared with the convergence of the conventional gradient optimization method
applied to problem (4.59) [49]. The step-size of the gradient method is optimized here to achieve
the fastest possible descent. As in the case of iteration (4.41), the slight oscillation in the transient
phase of convergence of (4.66) is a result of the unconstrained character of the iteration, which allows
the iterates x(n), n ∈ N be temporarily superior to the actual optimum. As could be expected, the
quadratically convergent iteration (4.66) signi�cantly outperforms the (linearly convergent) gradient
method.

Figure 4.5 shows the convergence of exemplary iterate sequences obtained by the proposed
feedback scheme from Algorithm 5. It can be concluded that the feedback scheme o�ers good
robustness to estimation noise in the simulated realistic case of estimate variance.
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Figure 4.4: Comparison of exemplary convergence of iteration (4.66) (solid lines) with convergence of
the conventional gradient optimization method, with constant optimally chosen step-size, applied to problem
(4.59) (dashed lines). The settings are Ψ(γ) = − log(γ), γ > 0, K = 50 (left) and K = 100 (right).
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Figure 4.5: Convergence of exemplary iterate sequences generated by Algorithm 5, with no averaging
of iterates. The settings are Ψ(γ) = 1/γ, γ > 0, K = 50 (left) and K = 100 (right) and the variance of the
estimates in steps 2 and 6 is 0.1σ2

k for the interference power and received power estimates and 0.05σ2
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the transmit power estimates, k ∈ K.
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5
Particular instance of weighted

aggregated performance optimization

The scope of the preceding Chapters 2-4 was on the analysis and algorithmic solutions to the
general form of the problem of weighted aggregated performance (2.18), in a general network with
interference. In the current chapter we provide an in-depth discussion and propose an algorithmic
concept concerning a particular instance of the problem of aggregated performance optimization
in a particular network type. The instance of problem (2.18) considered in this chapter is the
problem of computation of so-called stability-optimal policy. In broad terms, one can describe a
stability-optimal policy as a policy of network operation which ensures stability of all link bu�er
occupancies for the densest possible tra�c arriving at the link bu�ers. The particular network type
considered in this chapter is the multiple access channel with multiple antennas per link [41], [89].
The corresponding model was presented in Section 2.1.1.

In Section 5.1, we �rst introduce basics and background on queuing networks. Fundamentals
of stability considerations in (Markovian) queuing networks follow then at the beginning of Section
5.2. Next, we provide a characterization of the stability-optimal policy of the MIMO multiple
access channel, which shows than the corresponding problem of policy computation is in fact an
instance of the problem of weighted aggregated performance optimization. The discussed mechanism
of the stability-optimal policy, and the intuition behind, is aided by exemplary simulations and
extensive interpretation in terms of geometry of the rate region of the multi-antenna multiple access
channel. The geometric view of the rate region and speci�c rate subregions aids the provided results
throughout the chapter. It proves to be useful in explaining the mechanisms governing the issues
such as stability-optimality of the SIC order or stability-optimality under idle queues, which are
addressed in the remainder of Section 5.2.

In Section 5.3 we extend the analysis by providing results based on Kuhn-Tucker conditions of
the considered problem. In this way we provide conditions for stability-optimality of link subset
transmission and prove a surprising feature of the SIC order, called universal stability-optimality,
which consists in a single SIC order becoming superior in terms of stability and capacity issues.
Finally, in Section 5.3.5, we propose an approach of splitting of the problem of computation of the
stability-optimal policy, which gives rise to an algorithmic solution.

The results of this chapter were presented originally in [90], [91], [92], [93], [27], [94], [95], [96].

71
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Conceptually related to the considered problem are also results from work [97]. This chapter uses
the combinatorial geometric notion of a polymatroid, which is explained in Appendix A.5.

5.1 Some notes and background on queuing networks

The notion of stability and the corresponding optimal operation is of interest in a queuing network,
i.e. a network in which an interaction of multiple queues takes place [98], [99]. The state of a
queuing network is described by the tuple of its instantaneous queue lengths, referred to as queue
system state. The policy of handling the reallocation of elements across queues and depletion of
queues (so that the queue elements leave the network) in a queuing network is referred usually as
the service policy.

The best developed theory framework is available for so-called Markovian queuing networks,
that is, networks with Markov property of either the counting process describing the service of
queues or the counting process associated with arrivals at queues (see [98], [99] for details). Better
suitable for modeling of real-world queuing networks is the latter case, which is characterizable
by the feature that new elements arrive at each queue at time instances independent over time.
The corresponding arrival process is referred to as Poisson arrival process [99]. Queuing networks
with Poisson arrivals allow for the application of powerful Markov chain methods in the analysis.
Basic ingredient of such methods are so-called drift conditions and the theory of test functions (or
Lyapunov functions), see [100], [101], [102] for the theory and [92], [103] for the application. The
considerations throughout the chapter are restricted to the case of Poisson arrivals.

The notion of stability and corresponding optimal operation was originally of interest mainly
in automation queuing networks [104]. The establishing of the philosophy of cross-layer design of
communications networks caused later a propagation of the view of a communications network as
a queuing network [25], [27]. The queue system state corresponds thereby to the tuple of bu�er
occupancies (queues), measured in [bit], at link transmitters. The service policy is identi�ed with
the transmission policy (Section 2.1.1)). Thus, the depletion of a queue and the depletion rate
in [bit/s] are identi�ed with the transmission on the link of the queue and the corresponding link
data rate, respectively. Furthermore, the arrival process is Poisson when the consecutive bits (or,
more generally, bursts) from higher layer processing arrive at any link bu�er at independent time
instances.

For wired communications networks, crucial insights into the issue of stability and stability-
optimal policy were provided in the milestone works [105], [106]. Further stability analysis of wired
networks can be found, e.g., in [107], [108] and references therein. One of pioneering general queuing-
and information-theoretic approaches to wireless communications can be found in [109]. One of �rst
works dealing with the particular stability-optimal policy in wireless networks was [103], where such
policy was considered in a broadcast channel. In [110], [111] the authors considered stability opti-
mality in a (single-antenna) multiple access channel. Particularly challenging remains the issue of
stability-optimal policy in a wireless random access network/ channel, or wireless collision network/
channel [112], [113]. In such network type, the general characterization of the stability region, see
De�nition below, is still open.
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5.2 Stability optimality in multi-antenna multiple access chan-
nel

At the beginning, note that in the entire chapter we do not distinguish stochastic processes (re-
spectively, random variables) and the corresponding particular process realizations (respectively,
variable realizations) in the notation. This is formally loose but introduces no ambiguity.

5.2.1 Stability and related notions in general queuing networks
There are numerous notions of stability of Markovian queuing networks. For instance, we have
nonevanescence as the weakest established stability principle, strong stability as a the strongest
widely used notion and weak stability as the mostly used principle [112], [113], [108], [107], [104].

De�nition 5 The queuing network with the set of queues K and its instantaneous queue system
states q(n), n ∈ N, is stable in the weak sense if the limit limn→∞ Pr(‖q(n)‖ > M), M > 0, is
well-de�ned (exists) and for any ε > 0 there exists some M = M(ε) > 0 such that

lim
n→∞Pr(‖q(n)‖ > M) < ε. (5.1)

See also [113] for an equivalent alternative formulation. For the de�nitions of nonevanescence and
strong stability we refer to [108], [100].

It is apparent from De�nition 5 that weak stability of a queuing network consists in weak
convergence of the sequence of probability distributions 1 − Pr(‖q(n)‖ > M), n ∈ N, to some
limit stationary distribution. One can say equivalently, that the sequence of random variables q(n),
n ∈ N, converges in distribution (or weakly) to some limit random variable, under which the queue
system state remains �nite with probability one [82].

An other stability notion, the most intuitive one, is referred to here as observation-based and is
de�ned as follows.

De�nition 6 A queuing network with the set of queues K and its instantaneous queue system states
q(n), n ∈ N, is stable in observation-based sense, if

lim
M→∞

hi(M) = 0, i ∈ K

where
hi(M) = limsup

t→∞
1
t

∫ t

0
1{qi(τ)≥M}, dτ,

with 1A denoting the indicator function of condition A, where we de�ne qi(τ) = qi(maxn∈N : nT≤τ n).

Thus, with slight simpli�cation one can say that the system is stable in observation-based sense if
the time spent by any queue length above some threshold tends to zero when the threshold increases.
One can already recognize from De�nitions 5, 6 that when the evolution of the queue system state
is ergodic, then it is weakly stable if and only if it is stable in the observation-based sense. Thus, for
most real-world cases, De�nition 6 provides an observable su�cient and necessary characterization
of a weakly stable queuing network. In the remainder of this chapter we implicitly assume ergodicity
of the queue system state evolution and refer to the notions of weak and observation-based stability
simply as to stability.

The notion of stability of a queuing network gives rise to the de�nition of its stability region.



74 Particular instance of weighted aggregated performance optimization

De�nition 7 The stability region D of a queuing network is the set of all vectors of arrival rates
such that there exists a service policy which achieves stability for any arrival rate vectors from the
interior of D.

Thus, under arrival rate vector from the interior of the stability region, the queuing network can
be kept stable by some (existing) service policy. If, however, an arrival rate vector from outside of
the interior of D is given, then there exists no service policy which ensures stability. If the arrival
rate vector happens to be included in the boundary of the stability region, then the marginal case
of so-called substability can occur, see [113], [112].

De�nition 8 The service policy achieving stability for any arrival rate vector from the interior of
D is referred to as stability-optimal.

Thus, a stability-optimal policy, if existing, is a service policy which ensures stability for the set
of arrival rate vectors which is equal to the entire stability region of the queuing network. In other
words, the stability-optimal policy is superior in the sense that whenever the queuing network can
be kept stable (by some service policy) under given arrival rate vector, then it is stable under the
use of the stability-optimal policy.

5.2.2 Stability optimality in the MIMO multiple access channel
According to our cross-layer model, the MIMO multiple access channel represents a special case of a
queuing network in which the service policy is identi�ed with the transmission policy. The stability-
optimal policy uses the past and instantaneous information on the queue system state (link layer
issue) and on the channels (physical layer issue), as �guratively depicted in Fig. 5.1

A general su�cient condition for the stability-optimal policy in Markovian network is well-
known and was studied, e.g., for automation networks/ lines in [104], [108], for wired networks in
[107], for wireless multi-hop networks in [105], [106], and for wireless single-hop/ cellular networks
in [112], [103], [110]. In numerous networks, such condition leads to the characterization of the
stability region of the network, as e.g. in [105], [103]. It has to be noted however, that for some
network types, as e.g. for the random access network of Aloha-type [112], the stability region is still
unknown.

In the case of the MIMO multiple access channel the general stability optimality condition and
the resulting stability region characterization take the following particular form.

Proposition 22 The transmission policy (Q(n), π(n)), n ∈ N, of the multi-antenna multiple access
channel with Poisson arrivals is stability-optimal if the sequence of rate vectors R(n) = R(Q(n), π(n)),
n ∈ N, satis�es

q′(n)R(n) = max
R∈C(H(n))

q′(n)R, n ∈ N, (5.2)

with C(H(n)) as the set of achievable (instantaneous) rate vectors in slot n ∈ N. The stability region
of the multi-antenna multiple access channel is equal to its ergodic capacity region, that is, the set
of all rate vectors achievable on average.

From Proposition 22 is now evident that the problem of computation of stability-optimal policy
in the multi-antenna multiple access channel is an instance of the weighted aggregated performance
optimization. According to condition (5.2), the queue system state assumes the role of the weight
vector and the rate vector corresponds to the QoS vector. At this point, recall from Section 2.1.1
that under multiple antennas per link the link data rate is regarded as a function of transmission
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Figure 5.1: The principle of computation of stability-optimal policy in the MIMO multiple access chan-
nel.

policy according to (2.12), due to nonexistence of a meaningful SIR notion. This stands in contrast
to the single-antenna considerations in Chapters 3-5, where we have a concatenated dependence
(2.10) including a general QoS function (in particular also link data rate function) as a function of
link SIR.

No explicit features of stability-optimal policy can be seen yet from the condition on the corre-
sponding rate vectors (5.2). Condition (5.2) exhibits the relevance of the set C(H(n)), n ∈ N, which
we refer to as the (instantaneous) rate region. Thus, the structure of the instantaneous rate region
is of interest in the context of stability-optimal policy.

The compact stability optimality condition (5.2) arises mainly due to the independence of ar-
rival times (Poisson property) in combination with the assumption of iid (independently identically
distributed) block fading. Under either of these conditions dropped, the validity of (5.2) is in gen-
eral lost [98]. The Markovian property of the network, resulting from Poisson arrivals and iid block
fading, allows for the application of drift criteria (e.g. Foster's Criteria) and Lyapunov functions
in the stability analysis [100], [98], [108]. Condition (5.2) is a result of application of Foster's
Criterion in combination with quadratic Lyapunov function [103], [100]. Since the application of
Lyapunov functions other than the quadratic one is thinkable, (5.2) is not a necessary condition for
the stability-optimal policy.

Note an important notational di�erence between the particular aggregated performance op-
timization (5.2) and the general framework from Chapter 2: In the problem of computation of
stability-optimal policy, the link weight (the queue length) is denoted by qk, k ∈ K, while this
symbol is reserved for the link QoS value in the introduced general framework. We prefer such
slightly di�ering convention in this chapter since it complies with the very most works on queuing
networks. Once such di�erence is noted, no ambiguity should occur in the context of the current
chapter.
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Evaluation and interpretation of queue system evolution

Given some slot n ∈ N, under a policy achieving the maximum in (5.2), the queues with larger
lengths are assigned larger rates than the queues of smaller lengths. Thus, the depletion of larger
queues in the subsequent slot n + 1 is faster (in [bit/s]) than the depletion of smaller queues and
leads to "more equalized" queues at the end of slot n+ 1. This can be seen as a simple balancing
mechanism enforcing permanent drift of excessive queue lengths towards moderate values. With
the fact that an instantaneous queue length can be regarded as an indicator of instability potential
of the queue (see De�nition 6, (5.1)), we get the intuition behind stability optimality of the rate
vector sequence (5.2).

In order to expose the queue system behavior under stability-optimal policy and the di�erences to
other transmission policies, we provide a simple simulative comparison in Fig. 5.2. The comparison
shows the discrete-time evolution of bu�er occupancies q(n), n ∈ N, that is, the behavior of sample-
paths of the corresponding stochastic discrete-time process. We consciously chose an arrival rate
vector which is in the interior of the stability region, but lies near the boundary of the stability
region. The �rst row of Fig. 5.2 corresponds to the simple case of so-called Best-User-Only policy
which consists in single-link transmission of the link with the best channel metric per slot. It is
well-known from [18], that in the single-antenna multiple access channel the Best-User-Only policy
is optimal in terms of the sum-rate (sum of all link rates). We chose the trace of the channel matrix
as the metric of channel quality for the Best-User-Only policy. The second row corresponds to the
sum-rate optimal policy, studied e.g. in [114] and [46], and �nally the third row corresponds to the
stability-optimal policy.

It can be observed that the Best-User-Only policy is overstrained with the arrivals. Fast in�nite
increase of the queue lengths can not be prevented by the policy and hence the queue system is
unstable. The sum-rate optimal policy does better, mainly due to the o�ered maximal achievable
sum-rate of the queue system depletion. However, due to the asymmetry of the arrival rate vector
chosen, it also leads to instability of the queue system. In contrast to this, the stability-optimal
policy ensures stability of the queue system and the process of queue system evolution approaches
a stochastic stationary state (De�nition 5). This exposes the essence of the stability-optimal policy.
Precisely, as can be seen from the right column in Fig. 5.2, stability is achieved here although the
o�ered average sum-rate is smaller than in the case of instable sum-rate optimal policy.

5.2.3 Capacity region and S-rate regions of the multi-antenna multiple
access channel

It is a fundamental result of information theory that channel capacity can be achieved only asymp-
totically under an optimal codebook of code-length tending to in�nity [41], [115]. For a single slot
n ∈ N, the capacity notion is therefore in general incompatible with our assumption of �niteness
of a slot. However, in the particular case of the considered MIMO multiple access channel, the
codebook disposes of additional spatial dimensions, so that the the code length can diverge to in�n-
ity nt-times faster than in the single-antenna multiple access channel. Due to such increased code
dimensionality, it is justi�able to assume nearly-in�nite coding per �nite slot for the considered
MIMO multiple access channel whenever the number of transmit and receive antennas is "suitably"
large. Similar approximation forms the basis of general capacity results for multi-antenna channels
e.g. in [21], [116] and references therein.

Under instantaneous channels H(n) in slot n ∈ N and the in�nite coding assumption, the
(instantaneous) rate region C(H(n)) of the MIMO multiple access channel can be, for the rest of
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Figure 5.2: Comparison of assigned rates and sample paths of the queue system evolution process under
Best-User-Only policy (upper row), sum-rate optimal policy (middle row), and stability-optimal policy (lower
row), in the MIMO multiple access channel with K = 3 links, nt = 2, nr = 2, individual power. The chosen
nonsymmetric bit arrival rate vector lies in the interior of the stability region near its boundary. Note the
smaller range of values in the plot corresponding to stability-optimal policy.

this chapter, identi�ed with the corresponding capacity region. The capacity region of a multi-
antenna multiple access channel is known to be a union of geometric structures called polymatroids
[117], [45], [118] (the capacity region of a single-antenna multiple access channel is known to be a
polymatroid itself [19]). The de�nition and fundamental features of polymatroids can be found in
Appendix A.5.

The fundamental capacity region

Let us de�ne and �x a set of transmit covariance matrices Q̂ with normalized traces, in the sense

tr(Q̂i) = 1, i ∈ K. (5.3)

The scaling of Q̂ according to
βiQ̂i, β ≤ p̂, i ∈ K, (5.4)

generates a set of transmit covariance matrices included in the power region Pp̂ (satisfying individual
power constraints p̂). The MIMO multiple access channel associated with �xed Q̂ and allowable
scaling according to (5.4) corresponds to the MIMO multiple access channel with so-called scalar
feedback, that is, a feedback which allows for the adjustment/ control of transmit power vector but
retains the spatial correlation properties of link signals �xed. The capacity region C(H, p̂, Q̂) of
such MIMO multiple access channel can be expressed as

C(H, p̂, Q̂) = {R ≥ 0 :
∑

i∈L
Ri ≤W log det(I +

1
Wσ2

∑

i∈L
p̂iH iQiH

′
i),L ⊆ K}. (5.5)



78 Particular instance of weighted aggregated performance optimization

From comparison of (5.5) and De�nition 27 we deduce the following result.

Lemma 10 The capacity region C(H,p, Q̂) is a polymatroid.

Proof According to the de�nition of the polymatroid (Appendix A.5), it has to be shown that
the characterization of the region C(H,p, Q̂) is of the type

C(H,p, Q̂) = {R ≥ 0 :
∑

i∈L
Ri ≤ RH,p,Q̂(L),L ⊆ K}, (5.6)

where L 7→ RH,p,Q̂(L), L ⊆ K, is a rank function. By comparison of (5.6) and the de�nition of
C(H,p, Q̂) in (5.5) follows that this is equivalent to showing that

L 7→ RH,p,Q̂(L) = log det(I +
1
σ2

∑

i∈L
piH iQ̂iH

′
i), L ⊆ K, (5.7)

is a rank function. By the result in [119], any rank function f on the power set of K can be written
in the form

f(L) = h(
∑

i∈L
wi), L ⊆ K, (5.8)

where w 7→ h(w) ≥ 0, w ≥ 0, is increasing concave and such that h(0) = 0, and where wi ≥ 0,
i ∈ L. More generally, it is straightforward to show that (5.8) is a formulation of a rank function as
well if w 7→ h(w) ≥ 0, w ∈ SK+ , and wi º 0, i ∈ L. Now, setting wi = piH iQ̂iH

′
i, i ∈ K, function

(5.7) can be written as RH,p,Q̂(L) = h(
∑

i∈Lwi), L ⊆ K, with h(w) = log det(I +w), w º 0. Since
such function h is increasing concave and such that h(0) = 0, the proof is completed [47]. ¤

By (A.12) and some simple linear algebra manipulations, the components of the vertex Rπk of
the capacity region polymatroid C(H, p̂, Q̂) can be written as

Rπk
i = W log det(IWσ2 +

i∑

j=1

p̂πk(j)Hπk(j)Q̂πk(j)H
′
πk(j))

−W log det(IWσ2 +
i−1∑

j=1

p̂πk(j)Hπk(j)Q̂πk(j)H
′
πk(j)), i ∈ K.

(5.9)

It can be recognized from (5.9) that Rπk represents a rate vector achieved under the use SIC
according to the (inverse) SIC order πk.

We de�ne K! subregions of the capacity region C(H, p̂, Q̂), with each one representing the set
of rate vectors achievable under the use of some �xed SIC order πk, 1 ≤ k ≤ K!. We refer to such
subregions as S-rate regions (with S underlining the spatial dimension of the SIC operation) and
denote them as Sπk

(H, p̂, Q̂), 1 ≤ k ≤ K!. We can express the S-rate-region associated with SIC
order πk as

Sπk
(H, p̂, Q̂) = cl{

⋃

0≤β≤p̂

{R ≥ 0 : Rπk(i) ≤

W log
det(IWσ2 +

∑i
j=1 βπk(j)Hπk(j)Q̂πk(j)H

′
πk(j))

det(IWσ2 +
∑i−1

j=1 βπk(j)Hπk(j)Q̂πk(j)H
′
πk(j))

, i ∈ K}}, 1 ≤ k ≤ K!,

(5.10)
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with cl as the closure operator, which ensures that the uncountable union of closed sets remains
closed.

The boundary rate vectors from the capacity region C(H, p̂, Q̂) are achievable by SIC and time
sharing among di�erent SIC-based transmission policies [41]. Thus, C(H, p̂, Q̂) is a convex hull of
all S-rate regions, that is,

C(H, p̂, Q̂) = conv(
⋃

1≤k≤K!

Sπk
(H, p̂, Q̂)), (5.11)

with convex hull operator conv corresponding to time sharing among di�erent SIC orders. The
boundaries of S-rate regions Sπk

(H, p̂, Q̂) and their arrangement within the capacity region C(H, p̂, Q̂)
require some more explanation. It is clear that a vertex rate vector Rπk , with components (5.9), is
included in the boundary of Sπk

(H, p̂, Q̂), 1 ≤ k ≤ K!. According to (5.9), a vertex rate vector has
a distinct position in terms of power consumption, since the use of maximum allowable transmit
power of each link is necessary for its achievement, that is, β = p̂. Furthermore, a vertex rate vector
Rπk lies at the junction of two boundary parts of Sπk

(H, p̂, Q̂) with di�erent properties. Precisely,
for �xed Q̂ and SIC order πk, consider �rst

Condition 9 We have βπk(1) = p̂πk(1) and βπk(i) < p̂πk(i), i ∈ K, i ≥ 2.

The rate vectors from the S-rate region Sπk
(H, p̂, Q̂) which satisfy Condition 9 constitute the �rst

of the two boundary parts of the S-rate region. Any such rate vector is included in the boundary
of the capacity region C(H, p̂, Q̂), since it ensures the maximum achievable rate of the last decoded
link πk(1) (recall from the SIC principle that the last decoded link does not su�er any interference).

Now, consider

Condition 10 We have βπk(K) = p̂πk(K) and βπk(i) < p̂πk(i), i ∈ K, i ≤ K − 1.

The rate vectors from the S-rate region Sπk
(H, p̂, Q̂) which satisfy Condition 9 constitute the second

mentioned boundary part of the S-rate region. In contrast to the boundary rate vectors satisfying
Condition 9, however, any rate vector from Sπk

(H, p̂, Q̂) which ful�lls Condition 10 is included in
the interior of the capacity region C(H, p̂, Q̂).

The structure of an exemplary capacity region and S-rate regions of the MIMO multiple access
channel with two links from Fig. 5.3 makes the boundary parts characterized by Conditions 9, 10
visible.

Individual Power Constraints

The capacity region of the MIMO multiple access channel under individual power constraints,
denoted by C(H, p̂), can be expressed by means of the fundamental capacity region C(H, p̂, Q̂)
and fundamental S-rate regions Sπk

(H, p̂, Q̂), 1 ≤ k ≤ K! (actually, this was the main motivation
for their introduction). Precisely, the capacity region C(H, p̂) is a union of all capacity regions
C(H, p̂, Q̂) associated with sets of transmit covariance matrices Q̂ satisfying (5.3). Thus, letting Q
satisfy Qi=p̂iQ̂i, i ∈ K, we can write

C(H, p̂) =cl{
⋃

Q̂º0

tr(Q̂i)≤1

C(H, p̂, Q̂)} =

cl{
⋃

Qº0
tr(Qi)≤p̂i

{R ≥ 0 :
∑

i∈L
Ri ≤W log det(I +

1
Wσ2

∑

i∈L
H iQiH

′
i),L ⊆ K}}.

(5.12)
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Figure 5.3: The structure of the capacity region C(H, p̂, Q̂) of an exemplary MIMO multiple access
channel with two links (Rayleigh fading realization, randomly chosen Q̂). The boundary of the S-rate region
Sπ1(H, p̂, Q̂), π1 = 2 ← 1, is dashed while the boundary of the S-rate region Sπ2(H, p̂, Q̂) is solid. The
convex hull part of the capacity region boundary is dotted. With thin lines of the corresponding types we
plot the capacity regions under smaller power constraints with vertex rate vectors satisfying Conditions 9,
10, respectively.

Analogously to the de�nition of the S-rate region Sπk
(H, p̂, Q̂), we can de�ne the S-rate region

Sπk
(H, p̂), 1 ≤ k ≤ K!, under individual power constraints. From construction (5.12) one can

conclude, that the S-rate region Sπk
(H, p̂), for some �xed 1 ≤ k ≤ K!, represents a union of all

S-rate regions Sπk
(H, p̂, Q̂) corresponding to sets of transmit covariance matrices Q̂ satisfying (5.3).

De�ning δi = βi

p̂i
, i ∈ K, so that we have βiQ̂i = δiQi, i ∈ K, we can write

Sπk
(H, p̂) = cl{

⋃

Q̂º0

tr(Q̂i)≤1

Sπk
(H, p̂, Q̂)} = cl{

⋃

Qº0
tr(Qi)≤p̂i

⋃

0≤δ≤1

{R ≥ 0 : Rπk(i) ≤

W log
det(IWσ2 +

∑i
j=1 δπk(j)Hπk(j)Qπk(j)H

′
πk(j))

det(IWσ2 +
∑i−1

j=1 δπk(j)Hπk(j)Qπk(j)H
′
πk(j))

, i ∈ K}}, 1 ≤ k ≤ K!.

(5.13)

Note, that since the fundamental S-rate region is in general a nonconvex set, the same holds for
the S-rate region Sπk

(H, p̂), 1 ≤ k ≤ K!, as a closed union of fundamental S-rate regions. Since the
capacity region C(H, p̂) and the S-rate regions Sπk

(H, p̂), 1 ≤ k ≤ K!, are in the same relationship
as the corresponding fundamental capacity and S-rate regions, the convex hull property

C(H, p̂) = conv(
⋃

1≤k≤K!

Sπk
(H, p̂)) (5.14)

holds also under individual power constraints in the MIMO multiple access channel.
The presented structure of the capacity region of the MIMO multiple access channel with in-

dividual power constraints is depicted in Fig. 5.4 for an exemplary case of two links. Similarly,
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Fig. 5.5 shows the presented structure of the S-rate regions for the same exemplary MIMO multiple
access channel.

Sum Power Constraints

A similar analysis as above can be applied to the capacity region of the MIMO multiple access
channel under sum-power constraint. Sum power constrain implies that the links can be allocated
arbitrary transmit powers as long as their sum does not exceed some maximal allowed value P .
Thus, the capacity region of the multi-antenna multiple access channel under sum-power constraint,
denoted as C(H, P ), is a union of all capacity regions C(H, p̂) corresponding to vectors of individual
power constraints p̂ satisfying p̂′1 ≤ P . Precisely,

C(H, P ) =cl{
⋃

p̂′1≤P
C(H, p̂)} = cl{

⋃

p̂′1≤P

⋃

Q̂º0

tr(Q̂i)≤1

C(H, p̂, Q̂)} =

cl{
⋃

p̂′1≤P

⋃

Qº0
tr(Qi)≤p̂i

{R ≥ 0 :
∑

i∈L
Ri ≤W log det(I +

1
Wσ2

∑

i∈L
H iQiH

′
i),L ⊆ K}}.

(5.15)

Analogously, the S-rate region Sπk
(H, P ), 1 ≤ k ≤ K!, represents a union of S-rate regions

Sπk
(H, p̂), that is,

Sπk
(H, P ) = cl{

⋃

p̂′1≤P
Sπk

(H, p̂)} = cl{
⋃

p̂′1≤P

⋃

Q̂º0

tr(Q̂i)≤1

Sπk
(H, p̂, Q̂)} = cl{

⋃

p̂′1≤P

⋃

Qº0
tr(Qi)≤p̂i

⋃

0≤β≤1

{R ≥ 0 : Rπk(i) ≤W log
det(IWσ2 +

∑i
j=1 βπk(j)Hπk(j)Qπk(j)H

′
πk(j))

det(IWσ2 +
∑i−1

j=1 βπk(j)Hπk(j)Qπk(j)H
′
πk(j))

, i ∈ K}}, 1 ≤ k ≤ K!.

(5.16)

Analogously to the case of individual power constraints, the S-rate region Sπk
(H, P ), 1 ≤ k ≤ K!,

is a union of (in general) nonconvex sets and thus, is in general nonconvex itself.
Further it is obvious that, analogously to the case of individual power constraints, the convex

hull property according to
C(H, P ) = conv(

⋃

1≤k≤K!

Sπk
(H, P )) (5.17)

is satis�ed for the multi-antenna multiple access channel with sum-power constraint as well. The
presented structure of the capacity region of the MIMO multiple access channel with sum-power
constraint is plotted in Fig. 5.6 for an exemplary case of two links. Fig. 5.7 shows the corresponding
structure of the S-rate regions for the same exemplary case.

5.2.4 Stability-optimal policy and its computation
The stability optimality condition from Proposition 22 is not su�cient for the characterization of
the stability-optimal policy (Q(n), π(n)), n ∈ N, which generates a rate vector sequence satisfying
(5.2). The current section addresses the problem of speci�cation of the stability-optimal policy (in
a one-slot view).
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Figure 5.4: The structure of the capacity region C(H, p̂) of an exemplary MIMO multiple access channel
with two links and individual power constraints p̂ = (p̂1, p̂2) (Rayleigh fading realization) as a union of
fundamental subregions C(H, p̂, Q̂). The boundary part of the capacity region which is included also in the
S-rate region Sπ1(H, p̂), π1 = 2 ← 1, is dashed while the boundary part of the capacity region which is
included also in the S-rate region Sπ2(H, p̂) is solid. The convex hull part of the capacity region boundary
is dotted.

Figure 5.5: The structure of the S-rate regions Sπk
(H, p̂), 1 ≤ k ≤ 2, of an exemplary MIMO multiple

access channel with two links and individual power constraints p̂ = (p̂1, p̂2) (Rayleigh fading realization).
The boundary of the S-rate region Sπ1(H, p̂), π1 = 2← 1, is dashed and represents a union of S-rate regions
Sπ1(H, p̂, Q̂) (thin dashed lines). The boundary of the S-rate region Sπ2(H, p̂) is solid and represents a union
of S-rate regions Sπ2(H, p̂, Q̂) (thin solid lines).
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Figure 5.6: The structure of the capacity region C(H, P ) of an exemplary MIMO multiple access channel
with two links and sum-power constraint P (Rayleigh fading realization) as a union of fundamental subregions
C(H, p̂, Q̂). The boundary part of the capacity region which is included also in the S-rate region Sπ1(H, P ),
π1 = 2 ← 1, is dashed while the boundary part of the capacity region which is included also in the S-rate
region Sπ2(H, P ) is solid. The convex hull part of the capacity region boundary is dotted.

Figure 5.7: The structure of the S-rate regions Sπk
(H, P ), 1 ≤ k ≤ 2, of an exemplary MIMO multiple

access channel with two links and sum-power constraint P (Rayleigh fading realization). The boundary of
the S-rate region Sπ1(H, P ), π1 = 2 ← 1, is dashed and represents a union of S-rate regions Sπ1(H, p̂, Q̂)
(thin dashed lines). The boundary of the S-rate region Sπ2(H, P ) is solid and represents a union of S-rate
regions Sπ2(H, p̂, Q̂) (thin solid lines).



84 Particular instance of weighted aggregated performance optimization

Transformation of the problem

Note, that the characterization of stability optimality from Proposition 22 is independent of the type
of power constraints in the multi-antenna multiple access channel. Thus, in related expressions which
are constraint type-independent as well, we denote the capacity region and the S-rate regions of the
MIMO multiple access channel universally as C(H) and Sπ(H), π ∈ ΠK , respectively, regardless of
the constraint type.

According to Proposition 22, the instantaneous stability-optimal rate vector solves the problem

max
R∈C(H)

q′R. (5.18)

Since the capacity region C(H) is a convex set and the objective in (5.18) is linear, the problem
(5.18) is convex. Consider �xing the SIC order to some π ∈ ΠK . Then, with the de�nition of S-rate
regions the problem (5.18) changes to

max
R∈Sπ(H)

q′R, (5.19)

and due to Sπ(H) ⊆ C(H) we have obviously

max
R∈Sπ(H)

q′R ≤ max
R∈C(H)

q′R. (5.20)

Clearly, for stability-suboptimal SIC orders we have strict inequality in (5.20). Furthermore, if the
stability-optimal policy does not require time sharing (is spatial), then we have equality in (5.20)
for a stability-optimal SIC order.

Under �xed SIC order it is now possible to transform the problem (5.19) of optimization of
rate vectors to the problem of optimization of (sets of) transmit covariance matrices. Precisely, by
(5.13) (respectively (5.16)) we can represent the objective R 7→ q′R, R ∈ Sπ(H), equivalently as a
function Q 7→ fq,π, Q ∈ P, of the form

fq,π(Q) =
K∑

i=1

qπ(i)(log det(IWσ2 +
i∑

j=1

Hπ(j)Qπ(j)H
′
π(j))− log det(IWσ2 +

i−1∑

j=1

Hπ(j)Qπ(j)H
′
π(j))),

(5.21)
so that we have the equivalence of problem (5.19) and problem

max
Q∈P

fq,π(Q) (5.22)

in the sense maxR∈Sπ(H)q
′R = maxQ∈Pfq,π(Q). The addends in the objective (5.21) represent

concave matrix functions [63], [120], so that the objective itself, as a di�erence of concave functions,
is in general nonconcave. Consequently, the problem (5.22) is in general a nonconvex optimization
problem. Note, that the same can be concluded from general nonconvexity of the S-rate region for
the problem form (5.19). As already mentioned in Section 2.3, a nonconvex optimization problem
is, as a rule, hard to handle in the sense that common locally convergent iterations, e.g. gradient
or Newton iteration, in general do not converge to a (global) solution. Further, given satis�ed
constraint quali�cation condition, the Kuhn-Tucker conditions are in general merely necessary op-
timality conditions [48].

Stability-Optimal SIC Order

The question of existence and characterization of the stability-optimal and spatial policy, and thus
the stability-optimal SIC order, is answered by the following proposition.
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Proposition 23 Given any queue system state q ∈ RK+ in the multi-antenna multiple access chan-
nel, we have

max
R∈C(H)

q′R = max
R∈Sπ(H)

q′R, (5.23)

for SIC order π ∈ ΠK satisfying

qπ(1) ≥ qπ(2) ≥ . . . ≥ qπ(K). (5.24)

Proof In Lemma 10 was shown that the capacity region C(H, p̂, Q̂) is a polymatroid. Further,
with Lemma 21 follows that, given q ∈ RK+ , the vertex rate vector Rπ, with components (5.9) for
π = πk ∈ ΠK , is a solution to the problem (5.18) if the permutation π orders the components of
q decreasingly. We know also, that a vertex Rπ of C(H, p̂, Q̂) is also a vertex of the S-rate region
Sπ(H, p̂, Q̂). Since further Sπ(H, p̂, Q̂) is included in C(H, p̂, Q̂), it is implied that

max
R∈C(H,p̂,Q̂)

q′R = max
R∈Sπ(H,p̂,Q̂)

q′R (5.25)

for any q ∈ RK+ and π ∈ ΠK such that qπ(1) ≥ . . . ≥ qπ(K).
Consider the case of individual power constraints. By (5.12), the capacity region C(H, p̂) is a

convex union of fundamental capacity regions C(H, p̂, Q̂). Thus, the optimization problem (5.18)
over C(H, p̂) can be split up according to

max
R∈C(H,p̂)

q′R = max
Qº0:

tr(Qi)≤1,i∈K
max

R∈C(H,p̂,Q)
q′R. (5.26)

Further, with (5.25) and the feature that the S-rate region Sπ(H, p̂) is, according to (5.13), a union
of S-rate regions Sπ(H, p̂, Q̂), we can write

max
R∈C(H,p̂)

q′R = max
Qº0:

tr(Qi)≤1,i∈K
max

R∈Sπ(H,p̂,Q)
q′R = max

R∈Sπ(H,p̂)
q′R (5.27)

for any q ∈ RK+ and π ∈ ΠK such that qπ(1) ≥ . . . ≥ qπ(K). This completes the proof for the MIMO
multiple access channel with individual power constraints.

By (5.15), the capacity region C(H, P ) is a convex union of capacity regions C(H, p̂). Thus, we
can similarly split the problem (5.18) over C(H, P ) as

max
R∈C(H,P )

q′R = max
p≥0:PK

i=1 pi≤P

max
R∈C(H,p)

q′R. (5.28)

With (5.27) and the feature that the S-rate region Sπ(H, P ) is, according to (5.16), a union of S-rate
regions Sπ(H, p̂) we can write

max
R∈C(H,P )

q′R = max
p≥0:PK

i=1 pi≤P

max
R∈Sπ(H,p)

q′R = max
R∈Sπ(H,P )

q′R (5.29)

for any q ∈ RK+ and π ∈ ΠK such that qπ(1) ≥ . . . ≥ qπ(K). This completes the proof. ¤
In other words, for any instantaneous state of the queue system in the MIMO multiple access

channel, there exists a stability-optimal policy which is spatial, whereby the corresponding stability-
optimal SIC order orders the queue lengths increasingly (since, according to (5.24) and our model,
the inverse SIC order orders them decreasingly).
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Proposition 23 is the basis of considerations in the remainder of this chapter. Since it implies
the existence of stability-optimal and spatial policy, the use of time sharing within a slot follows
to be super�uous in terms of stability optimality. Further, we observe that the stability optimality
condition (5.24) for an SIC order is determined solely by the queue system state and does not depend
on channel values. Note, that an SIC order remains stability-optimal throughout some slot sequence
whenever the queue system evolution does not violate the chain inequality (5.24) within such slot
sequence. This is likely to be the case when the queue system state changes "su�ciently" slowly,
that is, when the Poisson arrivals are su�ciently sparse and the assigned link rates are su�ciently
small.

With the stability optimality condition for the SIC order (5.24) and with problem (5.22), the
complete stability-optimal policy (set of transmit covariance matrices plus SIC order) can be deter-
mined. A simple regrouping of terms and change in the indices in (5.21) yields

fq,π(Q) =
K−1∑

i=1

(qπ(i) − qπ(i+1))W log det(IWσ2 +
i∑

j=1

Hπ(j)Qπ(j)H
′
π(j))+

qπ(K)W log det(IWσ2 +
K∑

j=1

Hπ(j)Qπ(j)H
′
π(j))− qπ(1)W log det(IWσ2).

(5.30)

The last term in (5.30) can be omitted in optimization, since it does not depend on Q.
When a stability-optimal SIC order π, satisfying (5.24), is incorporated in (5.30), then each

concave log det-function is multiplied with a nonnegative scalar. Thus, given (5.24), the objective
(5.30) is a concave function and we yeld the following corollary to Proposition 23.

Corollary 5 Given a stability-optimal SIC order π, satisfying (5.24), the problem (5.22) which
determines the set of stability-optimal transmit covariance matrices is convex and takes the form

max
Q∈P

(
K−1∑

i=1

(qπ(i) − qπ(i+1))W log det(IWσ2 +
i∑

j=1

Hπ(j)Qπ(j)H
′
π(j))+

qπ(K)W log det(IWσ2 +
K∑

j=1

Hπ(j)Qπ(j)H
′
π(j))).

(5.31)

According to the discussion in Section 2.3, convexity of the optimization problem (5.31) under
optimal SIC order is a signi�cant advantage in terms of its iterative solvability, that is, in terms
of algorithmic computation of the stability-optimal policy. Precisely, the set of stability-optimal
transmit covariance matrices can be computed by means of a variety of locally convergent iterations,
and in particular by means of powerful methods of convex optimization, such as interior point
methods [47]. Since the constraint quali�cation condition can be shown to be satis�ed for problem
(5.31), the Kuhn-Tucker conditions for (5.31) are necessary and su�cient optimality conditions.

Recall, that problem (5.31) can be one-to-one transformed into the problem form (5.19). Thus,
the convex optimization problem translates bijectively to the optimization with nonconvex opti-
mization domain Sπ(H). This apparent contradiction is cleared in the next section.

5.2.5 Stability-optimal policy and rates in the geometric view
In this section we use a geometric framework for the treatment of the capacity region and S-rate
regions of the multi-antenna multiple access channel. This should aid the understanding of the key
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Proposition 23, revised here, and allows us to attack some further questions related with stability
optimality and the structure of the rate regions.

First we provide a useful restatement of Proposition 23 in the view of geometry of the capacity
region and S-rate regions.

Corollary 6 (Geometric Restatement of Proposition 23) The boundary of the S-rate region
Sπ(H), π ∈ ΠK , coincides with the boundary of the capacity region C(H) on at least one rate vector
which is included in the hyperplane which supports the capacity region C(H) and has normal vector
q ∈ RK+ which satis�es (5.24). Equivalently, when π and q satisfy (5.24), then there exists

R̃ = arg max
R∈C(H)

q′R (5.32)

such that
R̃ ∈ δSπ(H) ∩ δC(H),

with δX denoting the boundary of set X .

A consequence of Corollary 6 is that the boundary part of the S-rate region Sπ(H), π ∈ ΠK ,
consisting of vectors which are supporting points of a hyperplane with normal vector satisfying
(5.24) is convex. This feature follows from convexity of the capacity region since, by Corollary 6,
the vectors which are supporting points of a hyperplane with normal vector satisfying (5.24) are
common to the boundaries of the S-rate region Sπ(H), π ∈ ΠK , and the capacity region. In other
words, the rate vectors which are stability-optimal for a queue system state satisfying (5.24) lie on
the convex boundary part of the S-rate region Sπ(H), π ∈ ΠK , which is included in the boundary of
the capacity region. The remaining boundary part of any S-rate region is in general nonconvex and
included in the interior of the capacity region. Thus, according to the stability optimality condition
(5.2), no rate vector included in such boundary part can be stability-optimal.

Relating the provided geometric insights to problems (5.19), (5.22), we conclude that both
problem forms are ensured to be convex under stability-optimality of the SIC order according
to (5.24). In such case, problem (5.22) takes the form (5.31) with nonnegative weights of each
addend and problem (5.19) is its one-to-one transformable version. If however condition (5.24) is
not satis�ed, both problems (5.19) and (5.22) are in general nonconvex, or, equivalently, negative
weights occur in the problem form (5.31).

The geometry described in Corollary 6 is illustrated in Fig. 5.8 for the capacity region of an
exemplary multi-antenna multiple access channel with two links and sum-power constraint.

Stability-optimal policy and rates for N < K busy queues

We refer to (instantaneously) empty queues as to idle queues, in contrast to busy queues. The
queues of links with sparse tra�c (that is, with low arrival rate) and/ or fast depletion rate, e.g.
due to good channel conditions, are likely to remain idle throughout several consecutive slots. In
any of such slots, queue system state satis�es

qi = 0, i ∈ L ⊂ K, qi > 0, i /∈ L, (5.33)

so that the (instantaneous) problem of computing a stability-optimal policy is restricted to a proper
subset of links with busy queues L ⊂ K. Clearly, there is interest in an e�cient utilization of
links associated with idle queues, although such links do not in�uence directly the problem of
computation of stability-optimal policy (5.31). A particular question of interest is, if, or in which
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Figure 5.8: Illustration of the geometry from Corollary 6 for the capacity region of an exemplary MIMO
multiple access channel with two links (Rayleigh fading realization).

case, the transmission of links associated with idle queues in�uences/ disturbs the stability-optimal
transmission policy of links associated with busy queues. If such in�uence were nonexistent, the links
of idle queues could be used for additional transmission of pilots, signaling and control information,
etc.

Depending on the type of power constraints, the problem (5.31) exhibits an essentially di�erent
behavior in terms of utilization of links of idle queues. First, consider the sum-power constrained
multi-antenna multiple access channel and the corresponding result.

Proposition 24 Let L ⊂ K be the subset of links of idle queues in the sum-power constrained
MIMO multiple access channel. For the stability-optimal rate vector R̃ given by (5.32), we have
R̃i = 0, i ∈ L.

Proof Since the constraint quali�cation condition for (5.31) can be easily shown to be satis�ed
and the problem is convex, the corresponding Kuhn-Tucker conditions are necessary and su�cient
optimality conditions. The Kuhn-Tucker condition corresponding to zeroing of the Lagrangian
derivative is, given sum-power constraint P = PP ,
K∑

j=i

(qπ(j) − qπ(j+1))H
′
π(i)(Iσ

2 +
j∑

k=1

Hπ(k)Qπ(k)H
′
π(k))

−1Hπ(i) = λI −Zπ(i), 1 ≤ i ≤ K. (5.34)

Thereby, λ ≥ 0 is the Lagrange multiplier associated with the sum-power constraint and Zi º 0,
1 ≤ i ≤ K, is the Lagrange multiplier associated with positive semide�niteness constraint on the
corresponding transmit covariance matrix. Clearly, under some idle queues corresponding to link
subset L ⊂ K, the queue system state q ∈ RK+ takes the form (5.33). Without loss of generality,
property (5.33) can be replaced in (5.31) by the assumption

qπ(i) = 0, K − |L| < i ≤ K (5.35)
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(since regardless of the position of links of idle queues k ∈ L, the links of busy queues k ∈ K \ L
have to be reordered analogously to (5.24)). Thus, letting (5.35) in (5.34) yields

K−|L|∑

j=i

(qπ(j) − qπ(j+1))H
′
π(i)(Iσ

2 +
j∑

k=1

Hπ(k)Qπ(k)H
′
π(k))

−1Hπ(i) = λI −Zπ(i), 1 ≤ i ≤ K − |L|

(5.36)
and

λI = Zπ(i), K − |L| < i ≤ K. (5.37)

Note now that taking λ = 0 in the optimality condition (5.37) leads to triviality in the optimality
condition (5.36). Precisely, in such case (5.36) is satis�ed only if both sides are zero (that is,
Qπ(i) = 0, 1 ≤ i ≤ K − |L|), since the left-hand side is a positive semide�nite matrix while the
right-hand side is a negative semide�nite one. Thus, we must have λ > 0 which implies with (5.37)
that Zπ(i), K−|L| < i ≤ K, is a positively scaled unit matrix. Consequently, applying (5.37) to the
complementary slackness condition tr(Zπ(i)Qπ(i)) = 0, 1 ≤ k ≤ K, yields immediately Qπ(i) = 0,
K − |L| < i ≤ K, which completes the proof. ¤

By Proposition 24, the additional transmission of any signals through links of idle queues is
not possible under stability-optimal policy (of links of busy queues) and sum-power constraint.
The plausibility proof of Proposition 24 is simple. In the sum-power constrained multi-antenna
multiple access channel we have a global power budget to be allocated among single links. The
use of any portion of the power budget for additional transmission through links of idle queues
automatically reduces the remaining power budget for busy queues and prevents the application of
stability-optimal policy to them.

Proposition 24 can be reformulated in terms of geometry of the capacity region. For the refor-
mulation, note that a hyperplane with normal vector q ∈ RK corresponds to an a�ne subspace
c + span(Vq), c ∈ RK , where Vq is an orthogonal (K − 1)-system of the form [121]

Vq = {vi}K−1
i=1 , such that vi ⊥ vj , vi ⊥ q, 1 ≤ i < j ≤ K − 1.

Thus, the hyperplane supporting the capacity region at a stability-optimal rate vector takes the
form arg maxR∈C(H) q′R + span(Vq).

Corollary 7 (Geometric Restatement of Proposition 24) Any rate vector included in the ca-
pacity region C(H, P ) and in the a�ne subspace arg maxR∈C(H,P ) q′R + span(Vq), with q ∈ RK+
satisfying (5.33), is included in the subspace span({ei}i∈K\L) as well. Equivalently, given q ∈ RK+
satisfying (5.33), if

R̃ ∈ C(H, P ) ∩ arg max
R∈C(H,P )

q′R + span(Vq)

then also
R̃ ∈ span({ei}i∈K\L).

Note that exemplary illustration of the geometry described in Corollary 7 is already provided in
Fig. 5.6 and 5.7.

Consider now the case of MIMO multiple access channel with individual power constraints. In
such case, the result paralleling Proposition 24 can be formulated as follows.

Proposition 25 Let L ⊂ K be the subset of links of idle queues in the MIMO multiple access
channel with individual power constraints. Then, the following is true.
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i.) If rate vector R̃ ∈ C(H, p̂) is stability-optimal in the sense of (5.32), then any rate vector
R ∈ C(H, p̂) such that Ri = R̃i, i ∈ K \ L, is stability-optimal (solves (5.19)) as well.
ii.) The capacity region available for the link subset L under stability-optimal policy for link subset
K\L corresponds to the capacity region of the MIMO multiple access channel (under given channels)
with noise covariance matrix

N = IWσ2 +
∑

i∈K\L
H iQiH

′
i, (5.38)

where Qi denotes the (stability-optimal) transmit covariance matrix of link i ∈ K \ L.

Proof Analogously to the proof of Proposition 24, consider the Kuhn-Tucker condition cor-
responding to zeroing of the Lagrangian derivative of problem (5.31), given now individual power
constraints P = Pp̂. Such condition takes now the form

K∑

j=i

(qπ(j)−qπ(j+1))H
′
π(i)(Iσ

2+
j∑

k=1

Hπ(k)Qπ(k)H
′
π(k))

−1Hπ(i) = λπ(i)I−Zπ(i), 1 ≤ i ≤ K, (5.39)

where λπ(i) ≥ 0 is the Lagrange multiplier associated with the corresponding link power constraint
and Zi º 0, 1 ≤ i ≤ K, is the Lagrange multiplier associated with positive semide�niteness
constraint on the corresponding transmit covariance matrix. Accounting for the set of links of idle
queues k ∈ L by (5.35), as in the proof of Proposition 24, we yield from (5.39)

K−|L|∑

j=i

(qπ(j)−qπ(j+1))H
′
π(i)(Iσ

2+
j∑

k=1

Hπ(k)Qπ(k)H
′
π(k))

−1Hπ(i) = λπ(i)I−Zπ(i), 1 ≤ i ≤ K−|L|,

(5.40)
and

λπ(i)I = Zπ(i), K − |L| < i ≤ K. (5.41)
By (5.41) and the complementary slackness conditions

{
tr(Qπ(i)Zπ(i)) = 0
λπ(i)(tr(Qπ(i))− pπ(i)) = 0,

1 ≤ i ≤ K, (5.42)

we get a necessary optimality condition as the equation system
{

λπ(i)tr(Qπ(i)) = 0
λπ(i)(tr(Qπ(i))− pπ(i)) = 0,

K − |L| < i ≤ K. (5.43)

However, by (5.40) can be seen that the variables tr(Qπ(i)), K − |L| < i ≤ K, occur only in the
Kuhn-Tucker condition (5.43) and the Kuhn-Tucker condition representing the individual power
constraints

0 ≤ tr(Qπ(i)) ≤ p̂π(i), K − |L| < i ≤ K. (5.44)
Thus, (5.43), (5.44) are necessary and su�cient optimality conditions with respect to variables
tr(Qπ(i)), K − |L| < i ≤ K.

Notice now that (5.43) is solved only under λπ(i) = 0, K − |L| < i ≤ K. But under such
condition (5.43) is solved regardless of tr(Qπ(i)), K − |L| < i ≤ K. Thus, we conclude that an
optimal value of tr(Qπ(i)), K−|L| < i ≤ K, is an arbitrary value satisfying (5.44), which completes
the proof. ¤
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From Proposition 25 follows that in the MIMO multiple access channel with individual power
constraints the links of idle queues are allowed to transmit additional signals with arbitrary available
rates, i.e. with arbitrary allowable transmit powers. Further, under stability-optimal policy (for
links of busy queues), the links of idle queues dispose of a capacity region with noise increased by
the interference from links of busy queues. From the proof of Proposition 25 can be concluded that
this feature is a consequence of decoding the links of possible idle queues before the links of busy
queues.

In broad terms, one can say that the features from Proposition 25 result from the decoupling of
link power budgets in the case of individual power constraints. In fact, one kind of decoupling is
provided at the (base station) receiver due to SIC, which decouples the link signals decoded later
from those decoded earlier in the SIC order. Individual power constraints in the MIMO multiple
access channel provide a kind of additional decoupling at the link transmitters.

Analogously to Proposition 25, Proposition 25 can be reformulated in terms of the geometry of
the capacity region. The reformulation uses the notion of exposed subset, understood as a connected
set consisting of points which are supporting points of the same hyperplane (a trivial exposed subset
is a simple boundary point) [122].

Corollary 8 (Geometric Restatement of Proposition 25) If vector q ∈ RK+ satis�es (5.33),
then the following is true.
i.) The rate vectors included in the a�ne subspace arg maxR∈C(H,p̂) q′R + span(Vq) and in the ca-
pacity region C(H, p̂) constitute a nontrivial exposed subset (of the capacity region C(H, p̂)). Equiv-
alently,

C(H, p̂) ∩ arg max
R∈C(H,p̂)

q′R + span(Vq) (5.45)

is an exposed subset (of the capacity region C(H, p̂)).
ii.) The exposed subset (5.45) of the capacity region C(H, p̂) has the (qualitative) geometric structure
of the capacity region C(H, p̂) itself under dimensionality reduced to |L|.

The geometry described by Corollary 8 is illustrated for the capacity region of an exemplary
MIMO multiple access channel with two links in Fig. 5.9.

Some notes on vertex rate vectors

Recall the multi-antenna multiple access channel with individual power constraints p̂ and �xed
spatial correlation properties of link signals described by Q̂, such that (5.3). In such case, a vertex
rate vector Rπ, π ∈ ΠK , of the corresponding capacity region C(H, p̂, Q̂) is achievable by an
extremely easy computable transmission policy. Such policy allocates maximum allowable transmit
power to each link and processes the link set by SIC according to the SIC order π, π ∈ ΠK . Such
nice computational properties of a vertex rate vector Rπ, π ∈ ΠK , imply interest in a rate vector
with analogous features in the capacity region of the MIMO multiple access channel with individual
power constraints. Such intuitive analogue is the rate vector which is achievable by some given SIC
order π ∈ ΠK and the set of single-link optimal transmit covariance matrices. Given SIC order
π ∈ ΠK , the single-link optimal transmit covariance matrix of link π(i) is hereby known to satisfy

Qπ(i) = arg max
Qº0:tr(Q)≤p̂π(i)

W log det(N i + Hπ(i)QH ′
π(i)), (5.46)

with noise covariance matrix

N i = IWσ2 +
i∑

j=1

Hπ(j)Qπ(j)H
′
π(j), 1 ≤ i ≤ K, (5.47)
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Figure 5.9: Illustration of the geometry from Corollary 8 for the capacity region of an exemplary MIMO
multiple access channel with two links and individual power constraints (Rayleigh fading realization). For
q1 = 0 the exposed subset representing the (trivial) capacity region of link 1 under given transmission of link
2 is a line segment. The two rate vectors achievable under iterative water�lling with SIC order π1 = 2← 1
and π2 = 1← 2 are denoted as E1 and E2, respectively, and are included in corresponding exposed subsets.

determined by the noise and interference from links decoded later in the SIC order. In other
words, the set of transmit covariance matrices (5.46) is computed by so-called iterative water�lling,
consisting in the sequence of water�llings sequentially adapted to the interference resulting under
prede�ned SIC order π ∈ ΠK [114].

We can describe the arrangement of rate vectors achievable by iterative water�lling in terms
of geometry of the capacity region C(H, p̂). Precisely, let CN (H, p̂) be the extended notation of
the capacity region of the multi-antenna multiple access channel which exhibits that the noise has
covariance matrix N º 0 (in these terms, we considered up to now the MIMO multiple access
channel with capacity region CIσ2(H, p̂)). Then, one easily deduces the following result.

Proposition 26 The rate vector R̃
π achieved by iterative water�lling under SIC order π ∈ ΠK

(i.e., by transmit covariance matrices (5.46)) is included in the a�ne subspaces

i∑

j=1

arg max
R∈CNj−1

(H,p̂)
e′jR + span({ej}j>i), 1 ≤ i ≤ K, (5.48)

with N i, 1 ≤ i ≤ K, de�ned in (5.47). More precisely, R̃
π represents the singleton intersection of

the subspaces (5.48).

The case of interest is stability optimality of the rate vector achievable by iterative water�lling.
Equivalently, the interest is in iterative water�lling as stability-optimal policy. Without formally
stating the corresponding result, we only mention here that under certain realistic conditions iter-
ative water�lling is a stability-optimal policy for certain nonsingleton sets of queue system states
(see [95] for details).
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The geometric arrangement of the rate vectors achieved under iterative water�lling is illustrated
for the capacity region of an exemplary MIMO multiple access channel with two links in Fig. 5.9.

5.3 Optimization-theoretic analysis of the stability-optimal pol-
icy

In the current Section we characterize further features of the stability-optimal policy. In contrast
to the basic results from Section 5.2, the results of the current section are based on the Lagrangean
approach to optimization problem (5.31). Precisely, the obtained characterizations, e.g. of stability
optimality of link subset transmission or stability optimality of the SIC order regardless of the
queue system state, rely mainly on the Lagrangean function of (5.31) and the associated Kuhn-
Tucker conditions.

5.3.1 Stability-optimal policy under SIC order restriction

The stability-optimal SIC order characterized in Proposition 23 can be in some cases not accessible.
This can occur, for instance, when some links have requirements on their position in the SIC order.
In particular, the existence of a high-priority link which requires to be decoded last is thinkable.
Depending on the queue system state, the computation of the corresponding (SIC order-) restricted
stability-optimal policy might consist in solving the problem (5.22) (equivalently, (5.31)) under
stability-suboptimal SIC order. In particular, the stability optimality condition (5.24) might be not
satis�ed, so that the problem (5.22) is in general nonconvex. With the results of Section 5.2.5 it
is then implied that the nonconvex parts of the boundaries of the S-rate regions become to be of
interest in terms of stability optimality.

For the arising nonconvex problem of computation of restricted stability-optimal policy it is at
least possible to gain insights in the issue of link power consumption (Proposition 27).

For comparison purposes consider �rst the problem (5.31) when the stability-optimal SIC order
satisfying (5.24) for the given queue system state is accessible. From the resulting nonnegativity of
weights in (5.31) and operator monotony of the log det-function on positive semide�nite matrices (see
[63]) follows that an increase of transmit power tr(Qi) of any link i ∈ K results in an increase of the
objective (5.30). This implies that under stability-optimal policy each link is allocated maximum
allowed power in the MIMO multiple access channel with individual power constraints, and the
entire sum-power is allocated among the links in the sum-power constrained MIMO multiple access
channel. The link power consumption under stability-optimal policy restricted to an SIC order
violating condition (5.24) has however di�erent features, which can be stated as follows.

Proposition 27 For the MIMO multiple access channel under some queue system state q ∈ RK+ ,
let a restricted stability-optimal policy (Q, π), such that the set of transmit covariance matrices Q
solves (5.22) but the SIC order π violates (5.24), be given. Then, the following is true.
i.) Under individual power constraints p̂, the link powers satisfy in general tr(Qi) ≤ p̂i, i ∈ K, and
tr(Qπ(K)) = p̂π(K).
ii.) Under sum-power constraint P , the link powers satisfy

∑
i∈K tr(Qi) = P .

Proof Given q ∈ RK+ and some SIC order π ∈ ΠK violating (5.24), some of the multipliers
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qπ(i) − qπ(i+1), 1 ≤ i ≤ K − 1, in the objective (5.30) are nonpositive. Thus, de�ne




dπ(i) = |qπ(i) − qπ(i+1)|
A={i ∈ K : dπ(i) ≥ 0}
B={i ∈ K : dπ(i) ≤ 0},

1 ≤ i ≤ K, (5.49)

where we set qπ(K+1)=0. Let now a generalization of the objective (5.30) as a function (α, Q̂) 7→
f̃q,π(α, Q̂) = fq,π({αiQ̂i}Ki=1), (α, Q̂) ∈ RK+ × Pp̂, p̂ = 1, be de�ned. Then, using (5.49), we can
rewrite the objective (5.30) according to

f({αiQ̂i}Ki=1) = f̃q,π(α, Q̂) =
∑

i∈A
dπ(i)W log det(IWσ2 +

i∑

j=1

απ(j)Hπ(j)Q̂π(j)H
′
π(j))

−
∑

i∈B
dπ(i)W log det(IWσ2 +

i∑

j=1

απ(j)Hπ(j)Q̂π(j)H
′
π(j)),

(5.50)

(α, Q̂) ∈ RK+ × Pp̂, p̂ = 1. With matrix di�erential calculus we can write the partial derivative of
(5.50) with respect to a link power as

∂

∂απ(k)
f̃q,π(α, Q̂) =

∑

i∈A
i≥k

dπ(i)Wtr((IWσ2 +
i∑

j=1

απ(j)Hπ(j)Q̂π(j)H
′
π(j))

−1Hπ(k)Q̂π(k)H
′
π(k))

−
∑

i∈B
i≥k

dπ(i)Wtr((IWσ2 +
i∑

j=1

απ(j)Hπ(j)Q̂π(j)H
′
π(j))

−1Hπ(k)Q̂π(k)H
′
π(k)),

(5.51)

1 ≤ k ≤ K. Since the matrices subject to the trace operators in (5.51) are positive semide�nite, for
any (α, Q̂) ∈ RK+ × Pp̂, p̂ = 1, we can always �nd a set of channel values H and a queue system
state q which yield ∂/(∂απ(k))f̃q,π(α, Q̂) < 0 for some 1 ≤ k ≤ K. Thus, we can �nd such H and
q in particular for α = p̂, which completes the proof of the inequality in part i.).

Note that by de�nitions (5.49) we have dπ(K) > 0, so that K ∈ A. Thus, απ(K) occurs in a
single addend in the nonnegative sum in (5.50) and it does not occur in the nonpositive sum in
(5.50). This implies by (5.51) that

∂

∂απ(K)
f̃q,π(α, Q̂) > 0, (α, Q̂) ∈ RK+ × Pp̂, p̂ = 1. (5.52)

Taking, in particular, {αiQ̂i}Ki=1 = Q in (5.52) implies that tr(Qπ(K)) = p̂π(K) under individual
power constraints and

∑K
i=1 tr(Qi) = P under sum-power constraint. This completes the proof of

part i.) and ii.). ¤
By Proposition 27, the restricted stability-optimal policy under violated condition (5.24) con-

sumes the entire sum-power in the sum-power constrained multi-antenna multiple access channel.
Interestingly, the analogous restricted stability-optimal policy does not assign maximum allowed
power to each link under individual power constraints. In the context of Section 5.2.5, the features
of power consumption from Proposition 27 are valid under any rate vector included in the nonconvex
boundary part of an S-rate region.
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The illustration to Proposition 27 i.) is provided in Fig. 5.10. It shows the S-rate regions of an
exemplary MIMO multiple access channel with two links and individual power constraints, with the
additionally marked path/ manifold of rate vectors achieved under allocation of maximum allowed
power to each link.

5.3.2 Kuhn-Tucker conditions of the problem

Since problem (5.31) is convex under given stability-optimal SIC order (5.24) and can be easily shown
to satisfy constraint quali�cation, the associated Kuhn-Tucker conditions are necessary and su�cient
optimality conditions [48], [47]. The conventional linear Lagrangean function of the problem (5.31)
in the minimization form can be written as

L(Q,Z,λ) =−
K∑

i=1

(qπ(i) − qπ(i+1))W log det(IWσ2 +
i∑

j=1

Hπ(j)Qπ(j)H
′
π(j))

−
K∑

i=1

tr(Zπ(i)Qπ(i)) +
K∑

i=1

λπ(i)(tr(Qπ(i))− pπ(i))

(5.53)

in the case of individual power constraints and

L(Q,Z, λ) =−
K∑

i=1

(qπ(i) − qπ(i+1))W log det(IWσ2 +
i∑

j=1

Hπ(j)Qπ(j)H
′
π(j))

−
K∑

i=1

tr(Zπ(i)Qπ(i)) + λ(
K∑

i=1

tr(Qπ(i))− P )

(5.54)

under sum-power constraint. The hermitian matrix Zi is the Lagrangean multiplier/ dual variable
associated with the constraint of positive semide�niteness on Qi, i ∈ K. The dual variables λi
and λ correspond to the power constraints, the i-th individual power constraint and the sum-power
constraint, respectively. The set of Kuhn-Tucker conditions of problem (5.31) under individual
power constraints takes the form





−Qπ(i) ¹ 0 (P1)
tr(Qπ(i))− pπ(i) ≤ 0 (P2)
Zπ(i) º 0 (D1)
λπ(i) ≥ 0 (D2)
tr(Qπ(i)Zπ(i)) = 0 (C1)
λπ(i)(tr(Qπ(i))− pπ(i)) = 0 (C2)∑K

j=i(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

∑j
k=1 Hπ(k)Qπ(k)H

′
π(k))

−1Hπ(i) = λπ(i)I −Zπ(i) (Z),
(5.55)

i ∈ K. Hereby, the primal constraints are denoted by (P), the dual constraints by (D), the com-
plementary slackness equalities by (C) and the partial derivative of the Lagrangean function set to
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Figure 5.10: The S-rate regions in the capacity region of an exemplary MIMO multiple access channel
with two links and individual power constraints p̂ = (p̂1, p̂2) (Rayleigh fading realization), plotted together
with the path of rate pairs achieved under SIC order π2 = 1 ← 2 and maximum link powers tr(Q1) = p̂1,
tr(Q2) = p̂2. The boundary of the S-rate region Sπ1(H, p̂), π1 = 2← 1 is dashed, the boundary of the S-rate
region Sπ2(H, p̂) is solid. The path lies in the interior of the corresponding S-rate region Sπ2(H, p̂).

zero by (Z). Under sum-power constraint, the set of Kuhn-Tucker conditions changes to




−Qπ(i) ¹ 0 (P1)∑K
i=1 tr(Qπ(i))− P ≤ 0 (P2)

Zπ(i) º 0 (D1)
λ ≥ 0 (D2)
tr(Qπ(i)Zπ(i)) = 0 (C1)
λ(

∑K
i=1 tr(Qπ(i))− P ) = 0 (C2)∑K

j=i(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

∑j
k=1 Hπ(k)Qπ(k)H

′
π(k))

−1Hπ(i) = λI −Zπ(i) (Z),
(5.56)

i ∈ K. Due to problem convexity, strong Lagrangean duality holds for problem (5.31), and addition-
ally the sets of Kuhn-Tucker conditions (5.55) and (5.56) describe saddle points of the Lagrangian
(5.53) and (5.54), respectively (recall from Section 4.1.2 that the saddle point property does not
hold in general for problems with strong duality which are nonconvex [75], [85]). Clearly, such
saddle point, say (Q̃, Z̃, λ̃) in the case of individual power constraints, is such that Q̃ is the (global)
solution to (5.31).

The (Z)-condition in both sets of Kuhn-Tucker conditions is not symmetric with respect to the
links i ∈ K and depends on link position in the SIC order. In the special case of symmetric queue
system state q = q1, q > 0, the sum in the (Z)-condition reduces to one term for each link i ∈ K.
For such case we know from [114], [46] that the conditions (5.55) and (5.56) characterize the iterative
water�lling solution without and with additional link power adaptation, respectively. As described
in Section 5.2.5, under iterative water�lling the transmit covariance matrix of link π(i), i ∈ K, is a
water�lling solution, optimal in terms of single-link capacity, under the perceived interference from
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links π(j), j < i. In this context it is evident that for the �rst decoded link π(K) the sums in the
(Z)-conditions in (5.55), (5.56) retain only one term, regardless of the queue system state. This
immediately implies the following feature.

Lemma 11 Let (Q, π) be the stability-optimal policy in the multi-antenna multiple access channel
with link set K. Then, the transmit covariance matrix Qπ(K) of the last decoded link π(K) corre-
sponds to the water�lling solution under the noise covariance matrix determined by the interference
from all links π(i), i < K, and given by (5.47) with i = K.

The intuition behind Lemma 11 is that the �rst decoded link π(K) has to adapt its transmit
covariance matrix to all other links π(i), i < K, since it perceives interference from all of them.
Thus, link π(K) contributes to the maximization of the weighted sum of rates (5.19) by maximizing
its own link capacity, which is actually done by the water�lling solution.

5.3.3 Stability optimality of N-link regimes
Relying on the Kuhn-Tucker conditions of the problem (5.31), one can formulate useful conditions
determining the set of active links, that is, links allocated nonzero transmit power by the stability-
optimal policy. The evaluation of such conditions before actual solution of the problem (5.31) can
reduce the dimension of the optimization problem by the number of links identi�ed as idle, that
is, not active. Thus, if such conditions can be evaluated with low e�ort, their evaluation might
pay o� in signi�cant reduction of computational complexity of the subsequent optimization. In the
following we refer to the case when links i ∈ N ⊆ K are active and links i ∈ K \ N are idle, where
|N | = N , as an N -link regime N .

Individual Power Constraints

For the MIMO multiple access channel with individual power constraints we have the following
result.

Proposition 28 Let (Q, π) be the stability-optimal policy in the MIMO multiple access channel
with link set K, queue system state q ∈ RK+ and individual power constraints p̂. Then, if link i ∈ K
is associated with a busy queue qi > 0, then we have tr(Qi) = p̂i.

Proof Let L ⊆ K be the subset of all links of busy queues qi > 0, i ∈ L, and assume, by
contradiction, that at any solution to (5.31) under individual power constraints only links from a
link subset N ⊂ L are allocated corresponding maximum allowed powers tr(Qi) = p̂i, i ∈ N (so
that tr(Qi) < p̂i, i ∈ L\N ). From the complementary slackness condition (5.55)-(C2) follows then
λi = 0, i ∈ L \ N . Thus, with qi = 0, i ∈ K \ L, and stability optimality of the SIC order π ∈ ΠK

in the sense of (5.24), the Kuhn-Tucker condition (5.55)-(Z) implies
|L|∑

j=i

(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

j∑

k=1,k∈L
Hπ(k)Qπ(k)H

′
π(k))

−1Hπ(i) = −Zπ(i), π(i) ∈ L \ N

(5.57)
(see also the corresponding discussion in the proof of Proposition 24, but account for di�erent
notation). By qπ(i) − qπ(i+1) ≥ 0, 1 ≤ i ≤ |L|, the left-hand side of (5.57) is positive semide�nite,
while the right-hand side is negative semide�nite due to (5.55)-(D1). Thus, (5.57) is satis�ed only
if both sides are zero matrices, that is, Zπ(i) = 0, π(i) ∈ L \ N , and either

qπ(j) = 0, 1 ≤ j ≤ |L|, (5.58)
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or
qπ(j) = qπ(i), 1 ≤ i, j ≤ |L|+ 1.

But since π(|L|+ 1) /∈ L by assumption, we have qπ(|L|+1) = 0 and thus, (5.58) must hold if (5.57)
is satis�ed. But this contradicts the de�nition of L as the set of links of all busy queues and thus,
proves that tr(Qi) = p̂i, i ∈ L. ¤

In other words, under stability-optimal policy in the MIMO multiple access channel with in-
dividual power constraints, any busy queue uses the power budget available to its link entirely.
Consequently, the dimension of the optimization problem (5.31) is under individual power con-
straints always equal to the number of busy queues and can not be reduced, irrespective of the
queue system state and channel values. For the case of individual power constraints recall in this
context from Proposition 25 i.), that any link i ∈ K of an idle queue qi = 0 can be allocated arbitrary
allowable power without disturbing the stability-optimal policy of links of busy queues.

Exemplary illustration of Proposition 28 in terms of the geometry of the capacity region is
already provided in Fig. 5.9.

Sum-Power Constraints

In contrast to the case of individual power constraints, stability optimality of an N -link regime,
N < K, is possible under sum-power constraint in the MIMO multiple access channel. The following
Proposition formulates a necessary and su�cient condition for stability-optimality of an N -link
regime.

Proposition 29 Let (Q, π) be the stability-optimal policy in the MIMO multiple access channel
with link set K, queue system state q ∈ RK++ and sum-power constraint P . Then, given N ⊆ K, we
have Qi 6= 0, i ∈ N , and Qi = 0, i ∈ K \ N , if and only if
{
λmax(

∑K
j=i(qπ(j) − qπ(j+1))WH ′

π(i)(IWσ2 +
∑j

k=1,π(k)∈N Hπ(k)Qπ(k)H
′
π(k))

−1Hπ(i)) = λ, π(i) ∈ N
λmax(

∑K
j=i(qπ(j) − qπ(j+1))WH ′

π(i)(IWσ2 +
∑j

k=1,π(k)∈N Hπ(k)Qπ(k)H
′
π(k))

−1Hπ(i)) ≤ λ, π(i) /∈ N ,
(5.59)

with λmax denoting the maximum eigenvalue of a hermitian matrix.

Proof We �rst prove the necessity. Stability optimality of N -link regime N implies Qπ(i) = 0,
π(i) /∈ N , which gives with the Kuhn-Tucker condition (5.56)-(Z)

K∑

j=i

(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

j∑

k=1,π(k)∈N
Hπ(k)Qπ(k)H

′
π(k))

−1Hπ(i) = λI −Zπ(i), i ∈ K

(5.60)
(due to convexity of problem (5.31) and satis�ed constraint quali�cation, the corresponding Kuhn-
Tucker conditions are necessary and su�cient optimality conditions). Any Qπ(i), π(i) ∈ N , has
some nonzero eigenvector u

(l)
π(i) associated with a positive eigenvalue µ(l)

π(i), 1 ≤ l ≤ M(π(i)), with
M(π(i)) as the rank of Qπ(i). Thus, the complementary slackness condition (5.56)-(C1) can be
rewritten as

tr(Qπ(i)Zπ(i)) = tr(
M(π(i))∑

l=1

µ
(l)
π(i)u

(l)
π(i)u

′(l)
π(i)Zπ(i)) =

M(π(i))∑

l=1

µ
(l)
π(i)u

′(l)
π(i)Zπ(i)u

(l)
π(i) = 0, π(i) ∈ N ,

(5.61)
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which further implies

u′(l)π(i)Zπ(i)u
(l)
π(i) = 0, 1 ≤ l ≤M(π(i)), π(i) ∈ N , (5.62)

due to positivity of the eigenvalues in the sum. Without loss of generality, we can normalize u
(l)
π(i)

so that ‖u(l)
π(i)‖2 = 1, 1 ≤ l ≤ M(π(i)), π(i) ∈ N . Now, multiply the equation (5.60) for π(i) ∈ N

on the left-hand side with u′(l)π(i) and on the right-hand side with u
(l)
π(i), for some 1 ≤ l ≤ M(π(i)).

Similarly, multiply the equation (5.60) for π(i) /∈ N with any vector u ∈ RK , ‖u‖2 = 1, in the same
way. This yields




u′(l)π(i)(
∑K

j=i(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

∑j
k=1,π(k)∈N Hπ(k)Qπ(k)H

′
π(k))

−1Hπ(i))u
(l)
π(i) =

u′(l)π(i)λIu
(l)
π(i), π(i) ∈ N

u′(
∑K

j=i(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

∑j
k=1,π(k)∈N Hπ(k)Qπ(k)H

′
π(k))−1Hπ(i))u =

u′(λI −Zπ(i))u, π(i) /∈ N .
(5.63)

Notice, that with the dual Kuhn-Tucker condition (5.56)-(D1) we have [63]

u′(l)π(i)λIu
(l)
π(i) = max

u∈RK :‖u‖2=1
u′(λI −Zπ(i))u, 1 ≤ l ≤M(π(i)), π(i) ∈ N .

This implies that the left-hand side of the �rst equation in (5.63) corresponds to the maximum
eigenvalue. Together with taking the maximum of both sides of the second equation over u ∈ RK ,
‖u‖2 = 1, this yields with (5.56)-(D1) �nally
{

λmax(
∑K

j=i(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

∑j
k=1,π(k)∈N Hπ(k)Qπ(k)H

′
π(k))−1Hπ(i)) = λ, π(i) ∈ N

λmax(
∑K

j=i(qπ(j) − qπ(j+1))WH ′
π(i)(IWσ2 +

∑j
k=1,π(k)∈N Hπ(k)Qπ(k)H

′
π(k))−1Hπ(i)) ≤ λ, π(i) /∈ N ,

(5.64)
which completes the proof of necessity.

For the proof of su�ciency, notice �rst that
∑

i∈K tr(Qi) = P . (The machinery for proving
this feature is analogous to the one used in the proof of Proposition 28: The assumption of strict
inequality in (5.56)-(P2) implies λ = 0 due to (5.56)-(C2), which further applied to (5.56)-(Z) yields
the contradiction qπ(j) = 0, j ∈ K.) Thus, the Kuhn-Tucker conditions (5.56)-(P2) and (5.56)-(C2)
are obviously satis�ed. Now, the equality in (5.59) follows by Weyl's Perturbation Theorem [63] to
be equivalent to
K∑

j=i

(qπ(j)− qπ(j+1))WH ′
π(i)(IWσ2 +

j∑

k=1,π(k)∈N
Hπ(k)Qπ(k)H

′
π(k))

−1Hπ(i) = λI−Z ′
π(i), π(i) ∈ N ,

(5.65)
for some matrices Z ′

π(i) º 0, π(i) ∈ N . This corresponds to the Kuhn-Tucker condition (5.56)-(Z)
for π(i) ∈ N . Further, the equality in (5.59), which is equivalent to (5.65), can be stated as the
�rst equality in (5.63). Thus, it follows that Z ′

π(i) satis�es the complementary slackness condition
(5.56)-(C1) for π(i) ∈ N . Since it is obvious that the remaining Kuhn-Tucker conditions (5.56)-
(P1) and (5.56)-(D2) are satis�ed as well, we have shown that (5.59) implies the ful�llment of the
Kuhn-Tucker condition set (5.56) by the set of transmit covariance matrices Q which corresponds
to an N -link regime N . Since (5.56) are necessary and su�cient optimality conditions for (5.31),
the proof is completed. ¤
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According to Proposition 29, a particular condition for stability optimality of a single-link regime
N = {j} with, say j = π(n), takes the form




λmax(qπ(n)WH ′
π(n)(IWσ2 + Hπ(n)Qπ(n)H

′
π(n))

−1Hπ(n)) = λ

λmax(qπ(n)WH ′
π(i)(IWσ2 + Hπ(n)Qπ(n)H

′
π(n))

−1Hπ(i) + 1
σ2 (qπ(i) − qπ(n))H ′

π(i)Hπ(i)) ≤ λ, i < n

λmax(qπ(i)WH ′
π(i)(IWσ2 + Hπ(n)Qπ(n)H

′
π(n))

−1Hπ(i)) ≤ λ, n < i ≤ K.
(5.66)

Notice, that the identi�cation of the set of active links N through condition (5.59) uses the notion
of link position in the SIC order. At �rst glance this may cause some interpretation problems,
since, e.g., in the single-link regime N = {π(n)} satisfying (5.66) the notion of SIC order is trivial.
However, due to stability optimality of the SIC order π, that is, due to satis�ed condition (5.24) for
the given queue system state, the SIC order is transformable to the order of queue lengths. In these
terms, (5.66) is the stability optimality condition for the single-link regime of the link associated
with the n-th largest queue.

It is evident that the veri�cation of condition (5.66) for any link j ∈ K requires the knowledge of
K single-link optimal transmit covariance matrices (water�lling solutions). Thus, if (5.66) happens
to be satis�ed for some link j ∈ K, the subsequent optimization (5.31) becomes super�uous, since
the optimal transmit covariance matrix, the water�lling solution Qj , is already on hand. In other
words, the per-link veri�cation of (5.66) allows for the exchange of the K-dimensional multi-link
optimization (5.31) with at most K-fold single-link water�lling and inequality evaluation. Clearly,
since condition (5.59) (in particular, (5.66)) can happen to be not satis�ed, the additional evaluation
of such condition may not pay o� in reduced complexity of computation of stability-optimal policy,
and even increase the computational e�ort. To prevent the possible computational e�ort increase,
it is reasonable to evaluate condition (5.59) in a real-world multiple access channel under some
other observations which indicate (5.59) "likely to be satis�ed". For instance, condition (5.66) is
worth evaluating if the largest queue length, say the one of link j ∈ K, in the queue system state is
"su�ciently" larger than any other queue length. In such case, stability optimality of the single-link
regime N = {j} appears to be likely.

The illustration to Proposition 29 in terms of the geometry of the capacity region is provided in
Fig. 5.11 for an exemplary multi-antenna multiple access channel with two links.

5.3.4 Universal stability optimality of an SIC order
Condition (5.24) was explained in Section 5.2.4 to be a su�cient stability optimality condition for
the SIC order. Since it is not a necessary stability optimality condition, there arises the question
of stability optimality of SIC orders violating ordering (5.24). A related problem of interest is the
existence, and the corresponding existence conditions, of an SIC order which is stability-optimal
irrespective of the queue system state. It is intuitive to refer to such SIC order as universally
stability-optimal. The use from the existence of a universally stability-optimal SIC order π ∈ ΠK

is immediate. In such case the slot-by-slot reordering of the SIC positions of links according to the
queue system evolution is not needed and the order can be kept �xed, equal π. This provides obvious
bene�ts in terms of e�ort of online computation of the stability-optimal policy. The corresponding
e�ort of determination of transmit covariance matrices from (5.31) remains however the same, since
the transmit covariance matrices depend on the (instantaneous) channel values.

Recall from Corollary 6, that any stability-optimal rate vector for a given queue system state
q ∈ RK+ is included in the boundary of the sets Sπ(H) and C(H), with π ∈ ΠK satisfying (5.24), and
represents a supporting point of the hyperplane with normal vector q. In this context it is evident
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Figure 5.11: Illustration to Proposition 29 in terms of geometry of the capacity region of an exemplary
MIMO multiple access channel with two links and sum-power constraint P . The boundary of the S-rate
region Sπ1(H, P ), π1 = 2 ← 1, is dashed, the boundary of the S-rate region Sπ2(H, P ) is solid. The convex
hull part of the boundary of the capacity region is dotted. Either of the rate pairs (Rmax

1 , 0), (0, Rmax
2 )

achieved under the two possible single-link regimes is a supporting point of some hyperplane with normal
vector q = (q1, q2) > 0. Thus, either of the single-link regimes can be is stability-optimal for some queue
system state q > 0.

that universal stability optimality of SIC order π is equivalent to the feature that all boundary rate
vectors of C(H) are also included in (the boundary of) Sπ(H) and conversely. Such feature is further
equivalent to the relation C(H) = Sπ(H), that is, to the achievability of all available rate vectors
under the use of a single universal SIC order π. From the above argument one can recognize the
importance of the issue of universal stability optimality of an SIC order also in terms of capacity
considerations in the MIMO multiple access channel [41].

Universal stability optimality subject to power constraints

Consider �rst the MIMO multiple access channel with individual power constraints. For this case
we have the following result.

Proposition 30 In the MIMO multiple access channel with link set K and individual power con-
straints, there exists no set of channel values H ∈ Cnr×nt , H i 6= 0, i ∈ K, such that an SIC order
π ∈ ΠK is stability-optimal (in the sense that (5.23) is satis�ed) for any queue system state q ∈ RK+ .

Proof Assume, by contradiction, π ∈ ΠK is universally stability-optimal in the sense that
(5.23) holds for q ∈ RK+ . Let now, for instance, π̃ ∈ ΠK an SIC order inverse to π, that is, such that

π(i) = π̃(K − i), i ∈ K, (5.67)

and consider the set of transmit covariance matrices Q̃ obtained by iterative water�lling under SIC
order π̃ [114]. By Proposition 26 is known that the rate vector, say Rπ̃, achieved by the set of
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transmit covariance matrices Q̃ and SIC order π̃ is a boundary rate vector of C(H, p̂) (it represents
the intersection of subspaces (5.48)). The inclusion of the rate vector Rπ̃ in the boundary and the
construction of Q̃ imply that Rπ̃ is achieved by no SIC order other than π̃, except that we have
H i = 0, for some i ∈ K. Let q ∈ RK+ satisfy qπ̃(1) ≥ . . . ≥ qπ̃(N) and q ˜π(j)

= 0 for some arbitrary
N < j ≤ K. Then, we conclude by Corollary 8 that Rπ̃ is included in the nontrivial exposed
subset of the capacity region C(H, p̂) which is given by (5.45). Then, by Corollary 8 we have that
any rate vector included in exposed subset (5.45) is stability-optimal for q, and by the structure of
such exposed subset (Proposition 25 ii.)) we have that no rate vector in (5.45) is achievable under
SIC order other than π̃. Thus, by (5.67), this contradicts stability optimality of SIC order π and
completes the proof. ¤

A simple conclusion from Proposition 30 is that, under individual power constraints, stability
optimality of the SIC order is always a queue system state dependent feature. Thus, the notion of
universal stability optimality is nonexistent/ obsolete in the MIMO multiple access channel with
individual power constraints. Consequently, no e�ort reduction in the online computation of the
stability-optimal policy in such case can be obtained. In terms of geometry of the capacity region,
Proposition 30 implies that under no conditions a single S-rate region can become equivalent to
the entire capacity region C(H, p̂), so that the latter one is always a proper union of S-rate regions
Sπ(H, p̂), π ∈ ΠK .

In the case of sum-power constrained MIMO multiple access channel, universal stability opti-
mality is not an obsolete feature. The following proposition provides a su�cient condition for the
universal stability optimality of the SIC order.

Proposition 31 Let the MIMO multiple access channel with links set K be sum-power constrained.
Then, an SIC order π ∈ ΠK is stability-optimal (in the sense that (5.23) is satis�ed) for any queue
system state q ∈ RK+ , if there exists some queue system state q̃ ∈ RK++ satisfying (5.24) such that
for any of the link subsets {π(i)}Ni=1, N ≤ K, the single-link regime of the link with the smallest
queue qπ(N) is stability-optimal. This condition is equivalent to
{
λmax(q̃π(N)WH ′

π(N)(IWσ2 + Hπ(N)Qπ(N)H
′
π(N))

−1Hπ(N)) = λ

λmax(q̃π(N)WH ′
π(i)(IWσ2 + Hπ(N)Qπ(N)H

′
π(N))

−1Hπ(i) + W
σ2 (q̃π(i) − q̃π(N))H ′

π(i)Hπ(i)) ≤ λ, 1 ≤ i < N,

(5.68)
1 ≤ N ≤ K, with Qπ(N) as the stability-optimal transmit covariance matrix in the single-link regime
N = {π(N)} (water�lling solution).

Proof Given queue system state q̃ ∈ RK+ , the equivalence of condition (5.68) and stability
optimality of single-link regime N = {π(N)} for any link subset {π(i)}Ni=1, N ≤ K, follows from
Proposition 29. Given �xed N ≤ K, it is apparent from Proposition 29, precisely from (5.59), that
condition (5.68) is further equivalent to stability optimality of the single-link regime N = {π(N)}
for any two-link subset (π(i), π(N)), i < N . Let a queue system state q ∈ RK+ violate (5.24)
for the given SIC order π. We can express any such queue system state as q = q̃ + δ, for some
δ = δ(q) ∈ RK , where q̃ ∈ RK+ is a �xed queue system state from condition (5.68). Without loss of
generality, we are free to down-/ up-scale q or q̃ to yield qπ(N) = q̃π(N) for any �xed N ≤ K. Let

IN = {π(i) : i < N, δπ(i) ≤ 0}, JN = {π(i)}Ni=1 \ IN , N ≤ K,

and consider �rst condition (5.68) for N = K. Note that IN consists of links associated with queues
qπ(i) which are smaller than q̃π(N) (i.e. links π(i) such that q̃π(i)+δπ(i) ≤ q̃π(N)). Clearly, JN includes
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all remaining links from the link subset {π(i)}Ni=1. Then, we have (qπ(i) − qπ(N)) ≤ (q̃π(i) − q̃π(N)),
π(i) ∈ IN , so that with (5.68) and Weyl's Inequalities follows [63]
{
λmax(qπ(N)WH ′

π(N)(IWσ2 + Hπ(N)Qπ(N)H
′
π(N))−1Hπ(N)) = λ

λmax(qπ(N)WH ′
π(i)(IWσ2 + Hπ(N)Qπ(N)H

′
π(N))−1Hπ(i) + W

σ2 (qπ(i) − qπ(N))H ′
π(i)Hπ(i)) ≤ λ, π(i) ∈ IN .

(5.69)
By Proposition 29, (5.69) means that any link π(i) ∈ IN is shut o� in the sense Qπ(i) = 0 when
stability-optimal policy is applied to a two-link subset (π(i), π(N)) under the queue system state q.
On the other side, considering the application of the stability-optimal policy to a two-link subset
(π(i), π(N)) for any link π(i) ∈ JN , we have then that π(i) is either shut o� as well or violates
the corresponding condition (5.69). Due to qπ(i) ≥ qπ(N), in the latter case it is implied that the
SIC order π satis�es the su�cient stability optimality condition (5.24)) for the two-link subset
(qπ(i), qπ(N)), i < N .

We now proceed in the above manner in evaluating of condition (5.68) under iterative mapping

max
π(i)∈JN

i+ 1 7→ N, 1 ≤ N < K. (5.70)

Thus, after �nishing at smallest possible N from (5.70) we have considered the stability-optimal
policy applied to any link pair (π(i), π(N)), i ≤ N , N ≤ K, in terms of condition (5.69). By
condition (5.69) follows then that SIC order π satis�es the su�cient stability optimality condition
(5.24) for any pair of active links among (π(i), π(N)), i ≤ N , N ≤ K, under queue system state
q. But this implies that SIC order π is stability-optimal for the entire set of active links among
1 ≤ i ≤ K under queue system state q. Further, since q was chosen arbitrarily, it follows that SIC
order π is stability optimal for any queue system state, which completes the proof. ¤

Proposition 31 implies that in the sum-power constrained MIMO multiple access channel the SIC
order may remain (universally) stability-optimal for any queue system state violating the su�cient
stability optimality condition (5.24). In terms of geometry, this is equivalent to the feature that
the corresponding capacity region C(H, P ) may become equivalent to a single S-rate-region Sπ(H),
precisely to the one associated with the universally stability-optimal SIC order π ∈ ΠK . In this
way, the universally stability-optimal SIC order becomes also the only SIC order of interest in terms
of capacity considerations in the MIMO multiple access channel.

The evaluation of condition for universal stability optimality (5.68) is of relatively low e�ort. It
requires at most K-fold computation of a single-link optimal transmit covariance matrix, that is,
at most K-fold water�lling.

The illustration of Proposition 31 in terms of geometry of the capacity region is presented in
Fig. 5.12 for the capacity region of an exemplary MIMO multiple access channel with two links.

Fig. 5.12 is a nice aid in understanding why some SIC order π ∈ ΠK is universally stability-
optimal, although it inevitably violates the su�cient stability optimality condition (5.24) for some
queue system states.

Irrespective of the universal stability optimality issue, we have from Corollary 6 that any hyper-
plane with normal vector satisfying (5.24) supports the capacity region C(H, P ) at some boundary
rate vector included in the S-rate region Sπ(H, P ) as well. Given now a universally stability-optimal
SIC order π ∈ ΠK , any hyperplane from the complementary class, with normal vector q ∈ RK+ vio-
lating (5.24), satis�es either of the following alternatives (see proof of Proposition 31). First, it can
support the capacity region at the unique rate vector achieved in the single-link regimeN = {π(K)}
of the link of the smallest queue in q. Second, it can support the capacity region in some smaller
dimensional orthant span({ei}i∈N ), |N | = N < K, in which the increasing order of queue lengths
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Figure 5.12: Illustration to Proposition 31 in terms of geometry of the capacity region of an exemplary
multi-antenna multiple access channel with two links and sum-power constraint P . The boundary of the
S-rate region Sπ1(H, P ), π1 = 2 ← 1, is dashed and the boundary of the S-rate region Sπ2(H, P ) is solid.
The convex hull part of the capacity region C(H, P ) is dotted. Any boundary rate vector of the capacity
region is a supporting point of some hyperplane with normal vector q = (q1, q2) satisfying q1 ≥ q2 ≥ 0
(i.e., all such vectors are included in the boundary of Sπ2(H, P )), while any hyperplane with normal vector
satisfying 0 ≤ q1 < q2 supports the capacity region at the rate vector (0, Rmax

2 ) corresponding to single-link
regime N = {2}. This shows that SIC order π2 = 1 ← 2 is (universally) stability-optimal regardless of the
queue system state.

qi, i ∈ N (i.e. those associated with active links), coincides with the (corresponding part of) SIC
order satisfying the su�cient stability optimality condition (5.24).

The above argument indicates that the existence of a universally stability-optimal SIC order can
be seen as a feature of the geometry of the capacity region C(H, P ).

5.3.5 Split optimization
It is obviously of great interest to dispose of an e�cient algorithm which conducts the optimiza-
tion (5.31) online, slot-by-slot. One of main algorithm design purposes is the optimal trade-o�
between computational e�ort and convergence behavior. According to the discussion in Section 2.3,
the convexity property of problem (5.31) is hereby of great help in terms of numerical solvability
and applicable converging iterations. Nevertheless, in this section we propose a further reformula-
tion of the convex multi-link problem (5.31) in the form of a set of K coupled convex single-link
problems. An analogous splitting approach was proposed originally in [114] in the context of the
problem of maximization of the sum-rate in the MIMO multiple access channel with individual
power constraints. We extend here the splitting idea from [114] to the problem of computation of
stability-optimal policy (5.31), and combine it additionally with the algorithmic concept from [46]
in order to cover the case of sum-power constrained MIMO multiple access channel. The resulting
splitting approach provides certain implementation advantages discussed at the end of the section.

At this point it has to be mentioned, that an e�cient alternative algorithmic design solving
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problem (5.31) was recently presented in [123]. The idea of the algorithm in [123] is completely
di�erent from the one presented here.

The splitting approach

Let the SIC order π ∈ ΠK satisfy the su�cient stability optimality condition (5.24) for a given
queue system state q ∈ RK+ . The single-link problem of computation of stability-optimal policy,
say for link π(i) ∈ K, arises by �xing the transmit covariance matrices Qπ(j), j ∈ K, j 6= i, in the
multi-link problem (5.31). The corresponding single-link objective function Q 7→ fq,π(i)(Q), Q º 0,
follows straightforwardly from (5.21) or (5.30) for any link π(i) ∈ K as

fq,π(i)(Qπ(i)) =
K∑

j=i

(qπ(j) − qπ(j+1))W log det(N (j)
π(i) + Hπ(i)Qπ(i)H

′
π(i))

−
i−1∑

j=1

(qπ(j) − qπ(j+1))W log det(N (j)
π(i)),

(5.71)

where the matrix N
(j)
π(i) is the corresponding value of a function Q 7→N

(j)
π(i)(Q), Q º 0, de�ned as

N
(j)
π(i)(Q)=IWσ2 +

j∑

k=1,k 6=i
Hπ(k)Qπ(k)H

′
π(k), j ∈ K. (5.72)

The arising single-link optimization problem takes the form

max
Q∈Pπ(i)(Q)

fq,π(i)(Q), (5.73)

with
Pπ(i)(Q) = {Q º 0 : tr(Q) ≤ p̂π(i)}, i ∈ K, (5.74)

in the MIMO multiple access channel with individual power constraints and

Pπ(i)(Q) = {Q º 0 : tr(Qπ(i)) ≤ P −
K∑

k=1,k 6=i
tr(Qπ(k))}, i ∈ K, (5.75)

in the case of sum-power constraint. Thus, when the set Q of transmit covariance matrices is
stability-optimal in the sense that it solves the multi-link problem (5.31), then the transmit covari-
ance matrix Qπ(i) of any link π(i) ∈ K necessarily solves the single-link problem (5.73). For any
link π(i) ∈ K, the second sum in the objective (5.71) can be neglected in the single-link optimiza-
tion problem (5.73) since, according to (5.72), it is independent of the optimization variable. At
this point, note a crucial di�erence between the solution of the single-link problem (5.73) and the
water�lling solution (5.46).

Since the single-link objective (5.71) is a concave function (see [63]) and both sets (5.74), (5.75)
are convex, the single-link optimization problem (5.73) is convex as well, regardless of the type of
power constraint and for any link π(i) ∈ K. Since further the corresponding constraint quali�cation
condition is easily shown to be satis�ed, the Kuhn-Tucker conditions for problem (5.73) are necessary
and su�cient optimality conditions [48].

The single-link problems (5.73), i ∈ K, remain pairwise coupled. One coupling is through
the interference, which is, given link π(i) ∈ K, mirrored in (5.73) by the dependence of any matrix
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(5.72) on the transmit covariance matrices of j other links π(k), k 6= i. In the sum-power constrained
MIMOmultiple access channel we have an additional kind of coupling through the shared sum-power
budget, evident from (5.75).

In the MIMO multiple access channel with individual power constraints, the set of transmit
covariance matrices with each matrix solving the single-link problem (5.73) for some link π(i) ∈ K,
corresponds to the set of transmit covariance matrices solving the multi-link problem (5.31) as
well. This is intuitive, but can be formally proved by showing that duality gaps of all single-link
problems equal zero imply zero duality gap of the multi-link problem (such proof goes exactly along
the same lines as the proof of the analogous result in [114], so that we omit its statement). In
the sum-power constrained multi-antenna multiple access channel, we have the same equivalence
between the solutions to problems (5.73), π(i) ∈ K, and (5.31), but provided that the set of the
power constraints in (5.75) is chosen optimally.

Iterative Solution

The following Lemma describes a feature of the multi-link objective (5.30) which is of key importance
for our algorithm concept. The lemma is a restatement of the corresponding result in [120] (see also
[46] for its further use).

Lemma 12 Let P̃ = {Q º 0 : tr(Qi) = 1, i ∈ K}, let q ∈ RK+ and π ∈ ΠK satisfy (5.24), and let a
function

(p,Q) 7→ f̃q,π(p,Q) = fq,π({piQi}Ki=1), (p,Q) ∈ RK+ × P̃,
be de�ned, with fq,π given by (5.30). Then, f̃q,π is concave for any �xed Q ∈ P̃.

As a straightforward consequence of Lemma 12 we have convexity of the problem

max
p∈PP

f̃q,π(p,Q), Q ∈ P̃, (5.76)

where set PP is understood as the set of power vectors introduced in Section 2.1. Note that problem
(5.76) corresponds precisely to optimization/ adjustment of link powers in the MIMOmultiple access
channel with �xed spatial correlation properties of any link i ∈ K (with the capacity region equal
to the fundamental capacity region from Section 5.2.3).

The features of the splitting approach of the multi-link problem (5.31) described above and
the concavity feature from Lemma 12 give rise to our algorithm concept. The concept consists
in sequential K-fold single-link optimization (5.73), similarly to the iterative water�lling algorithm
from [114], and in subsequent link power adjustment in the case of sum-power constraint, analogously
to the approach in [46]. Precisely, given a stability-optimal SIC order satisfying (5.24) for a given
queue system state q ∈ RK+ , the proposed algorithm conducts �rst the cycle of solutions to single-
link problems (5.73), 1 ≤ i ≤ K, subject to some value of the power constraint vector. The cycle
is repeated iteratively, until the corresponding solutions stabilize up to some prede�ned accuracy
with respect to, e.g., a norm on the di�erence of consecutive solutions. In the case of sum-power
constrained MIMO multiple access channel, the algorithm conducts subsequently the solution to
the problem of link power optimization under �xed spatial correlation properties of links i ∈ K
given by the set of (normalized) transmit covariance matrices obtained from the preceding step.
The computed solution is taken as the power constraint vector for the next iteration of the cycle of
single-link problem solutions, as described above.

The algorithm terminates when the solutions, both of the cycle of single-link problems and the
subsequent link power optimization, stabilize up to some prede�ned accuracy, e.g., with respect to
a norm on the di�erence of consecutive solutions.
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Assuming q ∈ RK+ , Q(1) ∈ P, p(1) ∈ PP (with PP understood as the set of power vectors from
Section 2.1), and accuracy constants ε, δ > 0, the algorithm can be stated as follows.

Algorithm 6
1: set (k, l) := (1, 1)
2: set π from (5.24)
3: for i = 1 to K do
4: for j = i+ 1 to K do
5: set N

(j),(k)
π(i) := N

(j)
π(i)(Q(k)) from (5.72)

6: end for
7: end for
8: if P = Pp̂ then
9: p(1) := p̂

10: end if
11: repeat {outer loop}
12: repeat {inner loop}
13: for i = 1 to K do
14: solve max

Qº0:tr(Q)≤p(l)
π(i)

fq,π(i)(Q)

15: Q
(k)
π(i) := arg max

Qº0:tr(Q)≤p(l)
π(i)

fq,π(i)(Q)

16: for j = i+ 1 to K do
17: update N

(j),(k)
π(i) := N

(j)
π(i)(Q(k)) from (5.72)

18: end for
19: end for
20: for i = 1 to K do
21: for j = i+ 1 to K do
22: (Q(k+1)

π(i) ,N
(j),(k+1)
π(i) ) := (Q(k)

π(i),N
(j),(k)
π(i) )

23: end for
24: end for
25: k := k + 1
26: until ∑K

i=1 |||Q(k)
π(i) −Q

(k−1)
π(i) ||| ≤ ε

27: if P = PP then
28: for i = 1 to K do
29: Q̃

(k)
π(i) := 1

tr(Q
(k)
π(i)

)
Q

(k)
π(i)

30: end for
31: solve maxp∈PP

f̃q,π(p, Q̃(k))
32: l := l + 1
33: p(l) := arg maxp∈PP

f̃q,π(p, Q̃(k))
34: end if
35: until ∑K

i=1 ‖p(l) − p(l−1)‖ ≤ δ

Due to convexity of the single-link problem (5.73) and the link power optimization problem
(5.76), one can apply e�cient methods of convex optimization, e.g. interior point methods [47], in
the steps 14 and 31 of Algorithm 6. In Algorithm 6 we chose the order of single-link optimization
steps in the inner loop complying with the SIC order π obtained in step 2. An arbitrary order in
the inner loop is however in general allowable.

Algorithm 6 can be shown to be globally convergent.
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Proposition 32 Given ε, δ = 0, let Q(k), k ∈ N, be the sequence of iterates obtained from Algorithm
6. Then, we have

lim
k→∞

Q(k) = Q̃,

with Q̃ ∈ P as a set of stability-optimal transmit covariance matrices solving problem (5.31).

Proof Given queue system state q ∈ RK+ and power constraints p̂, consider �rst only the inner
loop of Algorithm 6 and note that the SIC order π ∈ ΠK is chosen in step 2 to satisfy (5.24). Thus,
as already shown in Section 5.3.5, the cycle of single-link optimizations (5.73) in the inner loop is
equivalent to optimization of objective fq,π over all Q ∈ Pp̂, conducted sequentially with respect
to Qπ(i), i ∈ K. Since any single-link optimization problem (5.73) in the inner loop is convex,
after each single-link optimization conducted in the inner loop an increase in fq,π is obtained. It
is an obvious consequence of the features of the log det function that the set of solutions to any
problem (5.73) is compact (in particular, (5.73) has a unique solution) [47]. From convexity of
any problem (5.73) follows further, that |||∇fq,π(i)(Q

(k)
π(i))|||, i ∈ K, decrease with the number of

conducted cycles k ∈ N in the inner loop. By (5.30) and (5.71) it can be seen that this implies the
decrease of |||∇fq,π(Q(k))||| with the number of conducted cycles k ∈ N in the inner loop as well.
Thus, iterative conduction of the cycle of optimizations in the inner loop must converge to some
limk→∞Q(k) = Q̃ ∈ Pp̂. But, with compactness of the solution set to any problem (5.73) in the
inner loop, Q̃ must solve (5.31) for P = Pp̂.

The outer loop of Algorithm 6 consists of the cycle of single-link optimizations of the inner
loop and, in step 31, the optimization of the objective f̃q,π over all p ∈ PP under �xed set
{Q(k)

i /tr(Q̃
(k)
i )}i3K obtained from the preceding k-th conduction of the inner loop. Since the latter

problem is convex (by Lemma 12), the same argumentation as to the cycle of optimizations within
the inner loop applies to the entire inner loop together with the optimization in step 31. Thus,
along the same lines as above, the entire outer loop of Algorithm 6 follows to be convergent to some
limk→∞Q(k) = Q̃ ∈ PP , which is a solution to (5.31) for P = PP . This completes the proof. ¤

Additionally, we can provide a bound on the distance from the stability-optimal set of transmit
covariance matrices which is ensured by Algorithm 6 under termination after one cycle of the inner
loop. The distance is measured in terms of the value of the multi-link objective (5.30) and the
bound on the distance is obtained by the techniques of bounding of the duality gap presented in
[114].

Proposition 33 Let P = Pp̂ (MIMO multiple access channel with individual power constraints)
and Q(1) = {0}Ki=1 be given in Algorithm 6. Then, we have

0 ≤ fq,π(Q(2))− fq,π(Q̃) ≤
K∑

i=2

qπ(i)Wnr, (5.77)

with Q(2) as the set of transmit covariance matrices obtained after one cycle of the inner loop of
Algorithm 6 and with Q̂ as the set of stability-optimal transmit covariance matrices solving problem
(5.31).

Proof The result follows from upper-bounding of the duality gap, that is, the di�erence between
the primal and dual objective [48], [47], after one cycle of the inner loop of Algorithm 6. We shorten
the proof at some points which are easily derivable but their derivation is lengthy.

Under strong Lagrangean duality (in particular, under convexity of the problem), the duality
gap at the problem solution is zero, see Section 4.1.2 and [47]. In order to yield the dual problem
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to the single-link problem (5.73) for P = Pp̂, we have to rewrite the latter one in equivalent form
as

min
(Tπ(i),Qπ(i))∈Sπ(i)

−
K∑

j=i

(qπ(j) − qπ(j+1))W log det(T (j)
π(i)), (5.78)

with Tπ(i) = {T (j)
π(i)}Kj=i and with Sπ(i) as the set including all pairs (Tπ(i),Qπ(i)) satisfying





T
(j)
π(i) −N

(j)
π(i) −Hπ(i)Qπ(i)H

′
π(i) ¹ 0, i ≤ j ≤ K

−Qπ(i) ¹ 0
tr(Qπ(i))− p̂π(i) ≤ 0,

(5.79)

i ∈ K. The Lagrangian of the problem form (5.78) can be written as

Lπ(i)(Tπ(i),Qπ(i),Zπ(i),Fπ(i), λπ(i)) =−
K∑

j=i

(qπ(j) − qπ(j+1))W log det(T (j)
π(i))

+
K∑

j=i

tr(F (j)
π(i)(T

(j)
π(i) −N

(j)
π(i) −Hπ(i)Qπ(i)H

′
π(i)))

− tr(Zπ(i)Qπ(i)) + λπ(i)(tr(Qπ(i))− p̂π(i)),

(5.80)

i ∈ K, where the set of Lagrange multipliers/ dual variables Fπ(i) = {F (j)
π(i)}Kj=i is associated with

the �rst constraint in (5.79).
The objective function of the dual problem to (5.78) is a function de�ned as

(Zπ(i),Fπ(i), λπ(i)) 7→ gq,π(i)(Zπ(i),Fπ(i), λπ(i))

= min
Tπ(i),Qπ(i)

Lπ(i)(Tπ(i),Qπ(i),Zπ(i),Fπ(i), λπ(i)),

Fπ(i) º 0, Zπ(i) º 0, λπ(i) ≥ 0, i ∈ K, and can be obtained in explicit form by setting the partial
derivatives of the Lagrangian (5.80) with respect to Tπ(i) and Qπ(i) to zero. This yields precisely





(qπ(j) − qπ(j+1))W (T (j)
π(i))

−1 − F
(j)
π(i) = 0, j ∈ K

−∑K
j=i H

′
π(i)F

(j)
π(i)Hπ(i) −Zπ(i) + λπ(i)I = 0,

(5.81)

which incorporated in (5.80) gives

gq,π(i)(Fπ(i), λπ(i)) =
K∑

j=i

(qπ(j) − qπ(j+1))W log det(
1

(qπ(j) − qπ(j+1))W
F

(j)
π(i))−

K∑

j=i

tr(F (j)
π(i)N

(j)
π(i))− λπ(i)p̂π(i) + qπ(1)Wnr,

(5.82)

i ∈ K. The duality gap of the single-link problem (5.73) corresponds to the function

(Tπ(i),Qπ(i),Fπ(i), λπ(i)) 7→ γπ(i)(Tπ(i),Qπ(i),Fπ(i), λπ(i))

= fq,π(i)(Tπ(i))− gq,π(i)(Fπ(i), λπ(i)), Qπ(i) º 0, Fπ(i) º 0, λπ(i) ≥ 0,
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and can be written with (5.78), (5.81) and (5.82) as

γπ(i)(Tπ(i), λπ(i)) = λπ(i)p̂π(i) +
K∑

j=i

(qπ(j) − qπ(j+1))Wtr(T (j)
π(i)

−1
N

(j)
π(i))− qπ(i)Wnr, (5.83)

i ∈ K. Due to Zπ(i) º 0, i ∈ K, and the �rst equality in (5.81), the second equality in (5.81) can
be stated as

∑K
j=i(qπ(j) − qπ(j+1))WH ′

π(i)T
(j)−1
π(i) Hπ(i) ¹ λπ(i)I, which implies that we have

λmax(
K∑

j=i

(qπ(j) − qπ(j+1))WH ′
π(i)T

(j)
π(i)

−1
Hπ(i)) = λπ(i), (5.84)

at the solution of the dual problem maxFπ(i)º0,λπ(i)≥0 gq,π(i)(Fπ(i), λπ(i)), i ∈ K, since the dual
objective (5.82) is linear and decreasing in λπ(i). By reformulating the multi-link problem (5.31)
for P = Pp̂ similarly to (5.78) and proceeding along the same lines as above, we also yield the
expression for the objective (Z, F̃ , λ̃) 7→ gq,π(Z, F̃ , λ̃), Z º 0, F̃ º 0, λ̃ ≥ 0, of the dual problem
to (5.31) and the corresponding duality gap, which can be written as

γ(T , λ̃) =
K∑

i=1

λ̃π(i)p̂π(i) +
K∑

j=1

(qπ(j) − qπ(j+1))Wtr(σ2WT (j)−1
)− qπ(1)Wnr, λ̃ ≥ 0. (5.85)

Hereby, T = {T (j)}Kj=1 and λ̃ are the Lagrange multipliers/ dual variables of the multi-link problem
(5.31) and we have

T (j) ¹ IWσ2 +
j∑

l=1

Hπ(l)Qπ(l)H
′
π(l), j ∈ K. (5.86)

Analogously to (5.82), the objective qq,π of the dual problem to the multi-link problem (5.31) is
linearly decreasing in λ̃. Thus, with conditions corresponding to zeroing of the partial derivatives
of the Lagrangian (paralleling those in (5.81)), one can show that we have

λ̃π(i) = λmax(
K∑

j=i

(qπ(j+1) − qπ(j+1))WH ′
π(i)T

(j)−1
Hπ(i)), (5.87)

i ∈ K, at the solution of the dual problem maxF̃º0,λ̃≥0 gq,π(F̃ , λ̃).
When the order of the single-link problems (5.73) in the inner loop of Algorithm 6 complies with

π and when we set Q(1) = 0, the noise covariance matrices N
(j),(2)
π(i) after one cycle of the inner loop

can be written as

N
(j),(2)
π(i) = IWσ2 +

min{i,j}∑

l=1,l 6=i
Hπ(l)Q

(2)
π(l)H

′
π(l), j ∈ K, (5.88)

i ∈ K. At the and of one cycle of optimizations in the inner loop we yield γπ(i)(Tπ(i), λπ(i)) = 0,
i ∈ K, since each single-link problem (5.73) is then solved for the arising noise covariance matrices
(5.88) and strong Lagrangean duality holds for (5.73). Further, at a solution of version (5.78) of any
single-link problem (5.73), i ∈ K, the �rst constraint in (5.79) is an equality. This feature implies
together with (5.83) and (5.88) that
K∑

j=i

(qπ(j) − qπ(j+1))Wtr((IWσ2 +
min{i,j}∑

l=1

Hπ(l)Q
(2)
π(l)H

′
π(l))

−1(IWσ2 +
min{i,j}∑

l=1,l 6=i
Hπ(l)Q

(2)
π(l)H

′
π(l)))

+ λ
(2)
π(i)p̂π(i) = qπ(i)Wnr,

(5.89)
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i ∈ K, where λ(2)
π(i) denotes the Lagrange multiplier associated with the solution of π(i)-th single-

link problem (5.73) at the end of one cycle of optimizations in the inner loop. By summing up the
equalities (5.89) for i ∈ K we yield further
K∑

i=1

qπ(i)Wnr =
K∑

i=1

λ
(2)
π(i)p̂π(i)+

K∑

i=1

K∑

j=i

(qπ(j) − qπ(j+1))Wtr((IWσ2 +
min{i,j}∑

l=1

Hπ(l)Q
(2)
π(l)H

′
π(l))

−1(IWσ2 +
min{i,j}∑

l=1,l 6=i
Hπ(l)Q

(2)
π(l)H

′
π(l))).

(5.90)

We apply now the transmit covariance matrices Q(2) and noise covariance matrices (5.88) after one
cycle of the inner loop to the dual optimality conditions (5.84) and (5.87), to obtain the associated
Lagrange multipliers/ dual variables λ(2)

π(i) and λ̃
(2)
π(i), i ∈ K, in the single-link problem (5.73) and

the multi-link problem (5.31), respectively. Then, one can see that for 1 ≤ i ≤ K − 1 there are
additional positive semide�nite terms in the inverses in (5.87) compared to (5.84). Thus, with
Weyl's Inequalities we yield then [63]

{
λ̃

(2)
π(i) ≤ λ

(2)
π(i), 1 ≤ i ≤ K − 1

λ̃
(2)
π(K) = λ

(2)
π(K).

(5.91)

By (5.90) and (5.91) we then obtain after a straightforward but lengthy calculation

K∑

i=1

K∑

j=i

(qπ(j) − qπ(j+1))Wtr((IWσ2 +
min{i,j}∑

l=1

Hπ(l)Q
(2)
π(l)H

′
π(l))

−1(IWσ2 +
min{i,j}∑

l=1,l 6=i
Hπ(l)Q

(2)
π(l)H

′
π(l)))

≥
K∑

j=1

(qπ(j) − qπ(j+1))Wtr((IWσ2 +
j∑

l=1

Hπ(l)Q
(2)
π(l)H

′
π(l))

−1IWσ2).

(5.92)

By (5.85) can be now seen that, given Q(2), the set of matrices, say T (2), minimizing the duality
gap of the multi-link problem satis�es (5.86) with equality. Thus, by (5.85), (5.90) and (5.92) we
have

K∑

i=1

qπ(i)Wnr −
K∑

i=1

λ
(2)
π(i)p̂π(i) ≥ γ(T (2), λ̃

(2)
) + qπ(2)Wnr −

K∑

i=1

λ̃
(2)
π(i)p̂π(i), (5.93)

which further implies with (5.91)

γ(T (2), λ̃
(2)

) = fq,π(Q(2))− gq,π(F̃ (2), λ̃
(2)

) ≤
K∑

i=2

qπ(i)Wnr, (5.94)

where F̃ (2) are the associated Lagrange multipliers. Since strong Lagrangean duality holds for
problem (5.31), we have fq,π(Q̂) = gq,π(F̂ , λ̂), with (Q̂, F̂ , λ̂) as the solution to (5.31) and the
associated Lagrange multipliers. This gives �nally with duality gap de�nition and (5.94)

K∑

i=2

qπ(i)Wnr ≥ fq,π(Q(2))− gq,π(F̂ , λ̂) = fq,π(Q(2))− fq,π(Q̂) ≥ 0, (5.95)
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which completes the proof. ¤
Note, that the bound provided in Proposition 33 is speci�c for the order of single-link optimiza-

tion steps in the inner loop complying with stability-optimal SIC order satisfying (5.24).
Algorithm 6 is formally an extension of the iterative water�lling algorithm from [114] to the

problem of maximization of weighted sum of rates (5.19) and the case of sum-power constraint. It
is however incorrect to refer to it as extended/ generalized/ weighted iterative water�lling algorithm,
since, except the �rst decoded link π(K), the transmit covariance matrices computed in the inner
loop for links i ∈ K do not correspond to water�lling solutions (recall the di�erence between (5.46)
and the solution to (5.73)).

Some notes on realization issues

Algorithm 6 is based on the proposed splitting approach and thus lends itself to distribution of
the computational work in the MIMO multiple access channel. Precisely, the base station may
be exonerated from computational work by assigning the per-link optimization steps 14, 15 to the
corresponding link transmitters 1 ≤ i ≤ K. This is easily realizable in the sequential manner, if each
link transmitter π(i) ∈ K has up-to-date knowledge on the interference terms N

(j),(k)
π(i) , i ≤ j ≤ K,

e.g. due to reliable feedback from the base station after each per-link optimization step 14, 15 in
iteration k ∈ N. The detailed discussion on the implementation bene�ts/ detriments of the partly
distributed Algorithm 6, compared to a centralized algorithmic concept solving (5.31) is intricate
and shall not be pursued here.

It is evident from the single-link objective (5.71) that under partly distributed computation
of the stability-optimal policy, as is e.g. suitable to realize Algorithm 6, some kind of knowledge
of the entire instantaneous queue system state is needed at any link transmitter. Similarly, in
any centralized algorithmic solution to (5.31), the base station has to be informed on the entire
instantaneous queue system state as well. To decrease the e�ort of feedback which is necessary to
provide such knowledge, we can apply some heuristic simpli�cations. For instance, under centralized
algorithmic solution to (5.31), it is thinkable to track the evolution of all queues only on average if
the queue evolution process is stationary and ergodic [100], [98]. Precisely, the base station requires
the estimated mean number of bit arrivals per slot, say ai, on each link transmitter 1 ≤ i ≤ K to be
fed back once a longer time period. The evolution of each queue estimated/ predicted at the base
station for slot n+ 1 is then

qi(n+ 1) = (qi(n) + ai −Ri(n))+, 1 ≤ i ≤ K, n ∈ N,

where the rate Ri(n) is known immediately from the transmit strategy (Q(n), π(n)) computed for
slot n ∈ N.

A more rough simpli�cation is the assumption of symmetric queue system state throughout.
This however reduces the problem of computation of stability-optimal policy (5.31) to the well-
studied sum-rate maximization problem [114], [46] (which actually does not require queue system
state knowledge at all). As follows from Section 5.2.2 and Fig. 5.2, such rough simpli�cation is
likely to deteriorate the performance signi�cantly.



6
Min-max fairness, the fairness gap, and the

fairness-performance trade-off

The optimization of aggregated performance according to (2.18) was the concern of Chapters 3-5.
In this chapter we deal with achieving min-max fairness (2.30) as a di�erent, but equally important,
approach of network performance optimization. In broad terms, the presented results describe a
kind of incompatibility, or trade-o�, between the approaches of aggregated performance optimization
and ensuring fairness in the min-max sense. Further, the interesting relation between the notion of
min-max fairness and the notion of so-called max-min fairness is analyzed, which gives rise to the
idea of so-called fairness gap.

In Section 6.1 we introduce the concepts of min-max fairness and max-min fairness, standing
in a duality-like relation, and prove the related basic features. As a �rst problem, we deal with
the case of concurrent achievement of min-max fairness and optimum aggregated performance, the
fairness-performance trade-o�, in Sections 6.2, 6.3. By splitting the discussion into the case of so-
called entirely interference coupled networks and general networks, we characterize the relations of
power vector, weight vector and the performance value under the fairness-performance trade-o�. In
Section 6.4 we show that the trade-o� of min-max fairness and aggregated-performance optimality
has the interpretation of a saddle point of the aggregated performance, regarded as a function of
power vectors and weight vectors.

As a second separate problem, we focus on the duality-like relation of the concepts of min-max
fairness and max-min fairness. Precisely, in Section 6.5 we characterize the class of networks for
which the same link performance is achieved under both considered fairness notions. Further, we
succeed in describing the corresponding subclass of networks for which there exist power vectors
achieving both fairness notions concurrently.

For the statement of the results of this chapter recall the assumption of the SIR function with
neglected noise (2.27), the assumption of unconstrained power region (2.28) and the notation of PF
eigenvectors and eigenmanifolds of the interference matrix.

The results of this chapter were presented originally in [35], [124], [125]. The chapter makes
strong use of Perron-Frobenius Theory and combinatorial theory of nonnegative matrices, with the
basic notions explained in Appendices A.1, A.2.

113
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6.1 Min-max fairness, max-min fairness and the fairness-performance
trade-off

In the following Proposition we provide a simple extension of the Collatz-Wielandt min-max formula
for the Perron Root [38]. The Collatz-Wielandt formulae are two characterizations, in min-max and
max-min form, of the spectral radius of a nonnegative matrix (we refer here to [38], [126] for further
details). The proposition characterizes the min-max fair power vector (power allocation or, in
short, allocation), in the sense of a solution to the problem of min-max fairness (2.30). Thus, the
proposition is fundamental for the remainder of this chapter.

Proposition 34 For any interference matrix V and any performance function F , we have

inf
p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
= F (ρ(V )), (6.1)

where F
(

(V r)i
ri

)
= F (ρ(V )), 1 ≤ i ≤ K whenever r > 0.

Since Proposition 34 is essential for the considerations in Section 6.5, we defer the proof of it to
this Section.

As explained in Section 2.4, the problem of min-max fairness (2.30), (6.1) is interpretable as
improving the worst link performance/ QoS value as much as possible. In analogy, we can think of
an in some way complementary goal of degrading the best link QoS value as much as possible. The
corresponding fairness notion can be formulated as

sup
p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
, (6.2)

and can be intuitively referred to as max-min fairness, due to the underlying optimization problem
form. One is tempted to ask if, or when, the notions of min-max fairness and max-min fairness
coincide. This issue is addressed in Section 6.5.

The notion of max-min fairness introduced above must not be confused with the notion of max-
min fairness used in the references given in this chapter. As explained in Section 2.4, the notion of
max-min fairness in the references corresponds to the notion of min-max fairness in this work.

It may misleadingly appear that any solution to (6.1) is a min-max fair allocation. This is not
always the case. Precisely, the following subtlety has to be accounted for. By the de�nition of the
in�mum, it follows from (6.1) that for any accuracy ε > 0 there exists a power vector p(ε) > 0,
which is ε-near the solution. Precisely,

F

(
(V p(ε))k
pk(ε)

)
≤ F (ρ(V )) + ε.

If the accuracy is increased according to ε → 0, the existence of some link-subset L ⊂ K, such
that p(0) = limε→0 p(ε) = r with rk = 0, k ∈ L, can not be in general excluded. This means
that although the link SIR values γk(r), k ∈ L are positive at the solution r of (6.1), they in
fact represent the limits of ratios with numerator and denominator both approaching zero. In
other words, the links k ∈ L are practically shut o�, while their associated SIR values are formally
positive. Consequently, we can not speak of γk(r), 1 ≤ k ≤ K, as of an achieved tuple of SIR values
in the network. Thus, any allocation r with zero components can not be regarded as a valid, or
realizable, allocation in real-world networks. Due to this feature, in [35], [127] such tuple of SIR
values (2.27) given a not (strictly) positive power vector, is referred to as ine�ective.
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Clearly, when r > 0 exists, then no such di�culty is encountered and r is implied by (6.1) to
be valid and min-max fair. Hence, we can summarize as follows.

Observation 1 The in�mum in (6.1) is attained if and only if there exists some right PF eigen-
vector r > 0. In such case, r is a min-max fair allocation. Any right PF eigenvector r which does
not satisfy r > 0 is not a valid allocation.

It is important to notice that an allocation r > 0 is always valid, regardless how small its
elements are. This is a consequence of the multiplicative homogeneity of the SIR function (2.27)
(Section 2.4.1). Thus, an arbitrarily small allocation r > 0 is equivalent in terms of the SIR to a
suitably upscaled allocation cr > 0, c > 0. Consequently, merely the relations of link powers within
an allocation determine the min-max fair performance (6.1).

6.1.1 The fairness-performance trade-off
For particular wired networks, min-max fairness and aggregated performance optimality of band-
width sharing schemes were shown in [53], [55] and [128] to be incompatible goals. However, such
incompatibility is in general strongly topology-dependent. This is an insight from [56], where the
corresponding conditions for compatibility/ incompatibility were stated and some examples of min-
max fair schemes which achieve also optimal aggregated performance were constructed. A similar
kind of incompatibility was observed in [59] in the context of wireless multi-hop ad-hoc networks.

In Sections 6.2-6.4 we address the corresponding interplay of min-max fairness (2.30) and op-
timality of aggregated performance (2.18) for a wireless (single-hop) network from Chapter 2. For
clarity and compactness of notation, we refer to the abstract interplay between min-max fairness
and optimality of aggregated performance simply as the fairness-performance trade-o�. An alloca-
tion which is optimal in terms of aggregated performance, that is, a global minimizer of (2.18), is
referred to simply as performance-optimal. Further, for a given interference matrix V , we restrict
the analysis of the fairness-performance trade-o� to the class of QoS functions E(V ) de�ned as
follows.

De�nition 9 Given some interference matrix V , we have F ∈ E(V ) if and only if the problem
(2.18) is well-de�ned for any α ∈ A and any local minimizer of (2.18) is a global minimizer as well.

Thus, the class E(V ) contains all "well-behaved" performance functions, for which the problem of
aggregated performance optimization is globally solvable by locally convergent iterations [49]. Given
some V , a necessary and su�cient characterization of E(V ) is an open problem. However, from
Proposition 3, Lemma 1 and the relation of performance functions (2.9), a subclass of performance
functions from E(V ) can be deduced (note, that under (2.28) the constraint quali�cation for problem
(2.18) is satis�ed).

Corollary 9 For any interference matrix V we have F ∈ E(V ) if

q 7→ G(q) =
1

F−1(q)
, q ∈ R,

is log-convex, if and only if x 7→ Fe(x) = F (e−x), x <∞, is convex.

Clearly, examples of QoS functions that correspond to log-convex QoS-SIR dependence G can be
obtained by transform (2.9) from the examples given at the end of Section 2.2. These are precisely
the following.
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• q = F ( 1
γ ) = − log γ

1+γ (that is, F (y) = − log 1
1+y ) as the logarithmically (e.g. in dB) expressed

e�ective bandwidth for linear MMSE receivers. In fact, γ = G(q) = exp(−q)
1−exp(−q) is log-convex.

• q = F ( 1
γ ) = 1

γa (that is, F (y) = ya) as the channel-averaged symbol error rate (under receiver
diversity a > 0 and Rayleigh fading) or as the e�ective spreading factor in CDMA (a = 1).
Then, γ = G(q) = 1

q1/a is log-convex.

• q = F ( 1
γ ) = − log γ (that is, F (y) = log y) as the logarithmically (e.g. in dB) expressed SIR,

or high-SIR approximation of the link capacity. In fact, γ = G(q) = exp(−q) is log-convex.

6.2 Min-max fair and performance optimal allocation - the
uniqueness case

We �rst concentrate on so-called entirely interference-coupled (in short, entirely coupled) networks.
These are networks with a speci�c form of coupling of links by interference. The coupling of links is
in such case described by an irreducible interference matrix. Let the interference graph be de�ned
as a V -dependent directed graph on the graph node set K, which has an edge (i, j) whenever Vij > 0
[129]. Then, irreducibility of V is equivalent to the property that any pair of graph nodes in the
corresponding interference graph is joined by a path [127], [130], [129]. For the interpretation of
irreducibility in terms of the canonical form of V see Appendix A.1.

For an entirely coupled network there exists a unique power and weight allocation which com-
bines min-max fairness and aggregated performance optimality. This is shown in the following
Proposition.

Proposition 35 For an irreducible interference matrix V , let F ∈ E(V ) and w = (w1, . . . , wK),
wk : =rklk, 1 ≤ k ≤ K. Then the following is true.
i.) r, l > 0 and r, l are unique up to a scaling constant,
ii.) r = arg minp∈P++

∑K
k=1 αkF

(
(V p)k
pk

)
if and only if α = w,

iii.) the equality

min
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
= F (ρ(V )) (6.3)

is satis�ed if and only if α = w, with w unique in A.

Proof i.) Follows directly from the properties of nonnegative irreducible matrices [38]. ii.) With
F ∈ E(V ) (and satis�ed constraint quali�cation), a power vector solves (2.18) if and only if it satis�es
the Kuhn-Tucker conditions for (2.18). From our assumptions on P, the property γk(cp) = γk(p),
c > 0, and bijectivity of F follows minp∈P++

∑K
k=1 αkF

(
(V p)k
pk

)
= minp∈RK

+

∑K
k=1 αkF

(
(V p)k
pk

)
.

Hence, the Kuhn-Tucker conditions for (2.18) correspond simply to the gradient set to zero, which
yields

K∑

j=1
j 6=k

αjF
′
((V p)j

pj

)
Vjk
pj

= αkF
′
(

(V p)k
pk

)
(V p)k
p2
k

, 1 ≤ k ≤ K. (6.4)

With the de�nition β(α,p)=(α1
p1
, α2
p2
, . . . , αK

pK
) we can write (6.4) in an equivalent matrix form

(F ′(p)V )′β(α,p) = F ′(p)Γ−1(p)β(α,p), (6.5)
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with the function p 7→ F ′(p)=diag
(
F ′

(
(V p)1
p1

)
, . . . , F ′

(
(V p)K
pK

))
, p ∈ P. By the de�nition of the

right PF eigenvector we can write
rk

(V r)k
=

1
ρ(V )

, 1 ≤ k ≤ K. (6.6)

Hence, by the de�nition of F ′ and setting p = r in the optimality condition (6.5), we yield for (6.6)

V ′β(α, r) = ρ(V )β(α, r). (6.7)

This implies β(α, r) = l which, by the de�nition, is equivalent to α = w and completes the proof
of the if part of ii.). For the only if part assume by contradiction that r satis�es the Kuhn-Tucker
conditions for some α 6= w, α ∈ A. This means that (6.7) is satis�ed for some β(α, r) 6= l, which
is a contradiction and completes the proof of ii.). iii.) From part ii.), the feature ‖w‖1 = 1 (due to
w ∈ A) and (6.6), we have

min
p∈P

K∑

k=1

wkF

(
(V p)k
pk

)
=

K∑

k=1

wkF

(
(V r)k
rk

)
=

K∑

k=1

wkF (ρ(V )) = F (ρ(V )). (6.8)

The uniqueness of w in A follows directly from its de�nition and the uniqueness property i.). To
show that w is the only vector in A satisfying (6.8), assume by contradiction that (6.3) is satis�ed
for some α 6= w, α ∈ A. But by (6.6) and ‖α‖1 = 1 we have that r is still a minimizer. This
further yields with ii.) that α = w, which is a contradiction and completes the proof of iii.). ¤

The obvious part i.) of Proposition 35 means that for entirely coupled networks the min-max fair
allocation exists and is unique (up to a scaling constant, as explained in Section 6.1). Part ii.) says
that a min-max fair allocation is performance-optimal for the speci�c weight vector w corresponding
to componentwise product of PF eigenvectors of the interference matrix. Such weighting is unique
in the normalized class A due to the uniqueness of the PF eigenvectors of an irreducible matrix
[38]. Moreover, the min-max fair allocation is strictly performance-suboptimal for any other weight
vector. Precisely, we have from part ii.)

K∑

k=1

αkF

(
(V r)k
rk

)
> min

p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
, α 6= w. (6.9)

Up to here, we can summarize as follows.

Observation 2 Under entire interference coupling in the network, the power and weight allocation
(r,w) combines aggregated performance optimality and min-max fairness and any other power and
weight allocation in {v : ‖v‖1 = c} × A, for any c > 0, is either not min-max fair or performance-
suboptimal or both.

From the practical point of view, it has to be noted that the uniqueness of the min-max fair and
performance-optimal weight and power allocation in {v : ‖v‖1 = c} × A is a disadvantage. This
is because in order to achieve fairness and aggregated performance optimality at least approxima-
tively, it is necessary that the weights of links be determined by some vector in a su�ciently small
neighborhood of a speci�c unique vector w.

If there is a degree of freedom in choosing the weights for the links, and thus the optimization
over the weight vectors can be taken into account, Observation 2 becomes interesting from the view
of practical power and weight control. It implies that by certain adjustment of link powers and
link weights, min-max fairness and optimality in terms of aggregated performance can be achieved
concurrently.
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6.3 Min-max fair and performance-optimal allocation - the gen-
eral case

The characterization from Proposition 35 does not hold if the network is not entirely coupled. For
such case, even the existence of a min-max fair allocation is not ensured, since r̃ ∈ R, r̃ > 0, may not
exist (Observation 1) [38]. In a general network, not necessarily entirely coupled, the existence of
interference decoupled link pairs is allowed. Equivalently, the corresponding interference graph may
include some pair of graph nodes which is not joined by a path [130]. In terms of the representation
of V in the canonical form, this means that the network can be partitioned into two or more
subnetworks which are entirely coupled in itself and, in general, interfere with each other (see
Appendix A.1).

Characterization of the trade-o� of min-max fairness and aggregated performance optimality
which generalizes Proposition 35 to the case of arbitrary networks is as follows.

Proposition 36 Let F ∈ E(V ) and W = {ŵ = (ŵ1, . . . , ŵK) ∈ A : ŵk = r̂k l̂k, r̂ = (r̂1, . . . , r̂K) ∈
R, l̂ = (l̂1, . . . , l̂K) ∈ L}. Then, the following is true.
i.) For any r̃ ∈ R, r̃ = arg infp∈P++

∑K
k=1 αkF

(
(V p)k
pk

)
if and only if α ∈ W,

ii.) the equality

inf
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
= F (ρ(V )) (6.10)

is satis�ed if and only if α ∈ W.

Proof i.) The proof is a straightforward generalization of the proof of Proposition 35 ii.),
with r replaced by any r̃ ∈ R due to the nonuniqueness of PF eigenvectors for general matrices
V ∈ RK×K+ . ii.) Construct a matrix V ε = V + ε11′, ε > 0. From the construction follows that V ε

is irreducible for any ε > 0 (because it is positive for any ε > 0). Further, we have

(V εp)k
pk

=
(V p)k
pk

+ ε
‖p‖1
pk

, p ∈ P, 1 ≤ k ≤ K. (6.11)

From increasingness of F we have also F ((V εp)k/pk) ≥ F ((V p)k/pk), 1 ≤ k ≤ K. Let w̃(ε) ∈ A
denote an arbitrary vector parameterized by ε > 0. Since A is compact, there exist sequences
{εn}n∈N such that limn→∞ εn = 0 and

lim
n→∞ ‖w̃(εn)− w̃‖ = 0 (6.12)

for any w̃ ∈ A. Choose any such sequence {εn}n∈N. With continuity of the spectral radius as a
function of matrix elements, Proposition 35 iii.) and increasingness of F , it follows then

F (ρ(V )) = lim
n→∞F (ρ(V εn)) = lim

n→∞ inf
p∈P++

K∑

k=1

w̃k(εn)F
(

(V εnp)k
pk

)

≥ lim
n→∞ inf

p∈P++

K∑

k=1

w̃k(εn)F
(

(V p)k
pk

)
= inf

p∈P++

K∑

k=1

w̃kF

(
(V p)k
pk

)
.

(6.13)
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On the other side, we can also write

inf
p∈P++

K∑

k=1

w̃k(εn)F
(

(V εnp)k
pk

)
= inf

p∈P++

(
K∑

k=1

(w̃k(ε)− w̃k)F
(

(V εnp)k
pk

)
+

K∑

k=1

w̃k

(
F

(
(V εnp)k

pk

)
− F

(
(V p)k
pk

))
+

K∑

k=1

w̃kF

(
(V p)k
pk

))
.

(6.14)

The �rst two sums on the right-hand side of (6.14) can be upper bounded using the Cauchy-Schwarz
inequality and the bounds disappear with n→∞ due to (6.11) and (6.12). Hence, for the limit we
get

F (ρ(V )) = lim
n→∞ inf

p∈P++

K∑

k=1

w̃k(εn)F
(

(V εnp)k
pk

)
≤ inf

p∈P++

K∑

k=1

w̃kF

(
(V p)k
pk

)
. (6.15)

Inequalities (6.15) and (6.13) together imply now F (ρ(V )) = infp∈P++

∑K
k=1 w̃kF ((V p)k/pk) for

w̃ ∈ W. The if and only if property in ii.) parallels the if and only if property in Proposition
35 iii.). Thus, the proof of the if and only if property is analogous to the corresponding proof in
Proposition 35 iii.). ¤

From Proposition 36 one can conclude that the characterization of the trade-o� for entirely
coupled networks translates to the general network case except the uniqueness property. Thus,
Propositions 35 and 36 can be summarized as follows: Whenever a min-max fair allocation (i.e. a
PF eigenvector r̃ ∈ R, r̃ > 0) exists, then any such allocation remains performance-optimal for
speci�c weight vectors constituting setW. Moreover, for any weight vector not inW, any min-max
fair allocation, if existent, remains strictly performance-suboptimal, that is

K∑

k=1

αkF

(
(V r)k
rk

)
> inf

p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
, α /∈ W.

In the particular case of entire interference coupling, the sets W and {v : ‖v‖1 = c} ∩ R, c > 0,
become singletons, so that the min-max fair power and weight allocation exists and is unique on
{v : ‖v‖1 = c} ∩ A, c > 0.

Hence, together with Observation 1, we can extend Observation 2 as follows.

Observation 3 Any power and weight allocation (r̃, w̃) satisfying r̃ ∈ R ∩ RK++ and w̃ ∈ W
combines aggregated performance optimality and min-max fairness. Whenever r̂ ∈ R and r̂ /∈ RK++,
then (r̂, ŵ) is not a power and weight allocation. Whenever r̂ /∈ R or ŵ /∈ W, then the power and
weight allocation (r̂, ŵ) is either not min-max fair or performance-suboptimal or both.

The nonuniqueness of the power and weight allocation (r̂, ŵ) ∈ R∩RK++×W makes Observation
3 practically more relevant than Observation 2. Precisely, in the restricted case of entirely coupled
networks, fairness and aggregated performance optimality is approximatively achievable under a
power and weight allocation from a neighborhood of (r̂, ŵ), which is unique in {v : ‖v‖1 = c} × A
(Observation 2). As is implied by Observation 3, in the general case of interference coupling,
however, to achieve this goal it su�ces to choose a power and weight allocation from a neighborhood
of the entire set R∩ RK++ ×W. Thus, in the general case it is more likely that some weight vector
from the neighborhood of W is suitable for the link priorities on hand. If this is the case, the
choice of a power vector from the neighborhood of the set R ∩ RK++ allows for the approximative
achievement of min-max fairness and aggregated performance optimality concurrently.
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6.3.1 Existence of a min-max fair allocation
Recall from Section 6.2 that in entirely coupled networks, a min-max fair allocation exists and is
additionally unique. In this section we characterize the class of all networks, including in particular
the class of entirely coupled networks, for which a min-max fair allocation is existent. The charac-
terization is in terms of the canonical form of the interference matrix. The result is a straightforward
consequence of Theorem 3 in [127], which can be restated for our purposes in the following equiv-
alent form. In the remainder we denote by I and M the sets of isolated and maximal diagonal
blocks of an interference matrix (see Appendix A.1 for the de�nitions of isolation, maximality and
other issues related to the canonical form.)

Proposition 37 ([127]) Let {V (n)}n∈I and {V (m)}m∈M be the sets of isolated and maximal di-
agonal blocks in the canonical form of the interference matrix V , respectively. Matrix V has a right
PF eigenvector r̃ ∈ R satisfying r̃ > 0 if and only if I =M.

The isolation property of some diagonal block in V is equivalent to the isolation of the corre-
sponding subnetwork from the interference from other subnetworks (Appendix A.1). Analogously,
the nonisolated blocks correspond to subnetworks which include some links which perceive inter-
ference from some links in other subnetworks. Since the distinguished subnetworks are entirely
interference coupled in itself, we can interpret Proposition 37 as follows.

Observation 4 A min-max fair allocation exists for any network with interference matrix V such
that
i.) the interference matrix V (n) of each interference-isolated and entirely coupled subnetwork n ∈ I
satis�es ρ(V (n)) = ρ(V ),
ii.) the interference matrix V (m) of each entirely coupled subnetwork m ∈ K \ I perceiving interfer-
ence from some other entirely coupled subnetwork satis�es ρ(V (m)) < ρ(V ).
For any network violating either i.) or ii.), no min-max fair allocation exists.

It is worth pointing out an interesting relation between the min-max fair allocation for the entire
network and for its entirely coupled subnetworks. Denote the left and right eigenvectors of the n-th
diagonal block of the (canonical for of) interference matrix V as l(n) and r(n) respectively, and
notice that both are unique up to a scaling constant due to irreducibility of each diagonal block.
From the eigenvalue equation for the canonical form of V it is then easy to see that the eigenvectors
l(n), r(n) of any isolated and maximal diagonal block V (n) (if existent) correspond to the projections
of any l̃ ∈ L and r̃ ∈ R, respectively, on the subspace with dimensions restricted to the diagonal
block V (n). Precisely, we have

{
(r̃k1(n), r̃k1(n)+1, . . . , r̃kM (n)) = r(n), r̃ ∈ R
(l̃k1(n), l̃k1(n)+1, . . . , l̃kM (n)) = l(n), l̃ ∈ L, (6.16)

whenever the diagonal block of V (n) is isolated and maximal and corresponds to the components
k1(n),≤ l ≤ kM (n), with 1 ≤ k1(n), kM (n) ≤ K in the matrix V . We can interpret this property
as follows.

Observation 5 Let the network satisfy i.) and ii.) in Observation 4. Then, any min-max fair
allocation for an entirely coupled and interference-isolated subnetwork corresponds to the restriction
of the min-max fair allocation for the entire network to such subnetwork.

Clearly, the eigenvalue equation implies also that the projection property (6.16), and thus Ob-
servation 5, can not hold for nonisolated diagonal blocks of V .
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6.3.2 Existence of a positive weight allocation
The setW of performance-optimal and min-max fair weight allocations is in general not guaranteed
to include positive weight allocations. In fact, even for networks satisfying i.), ii.) in Observation
4, the existence of l̃ ∈ L, l̃ > 0, is not ensured, so that the construction of w̃ ∈ W such that
w̃ > 0 may be prevented. Therefore, the characterization of the class of networks for which a
positive performance-optimal and min-max fair weight allocation exists is here of interest. It is
clear from the construction of W that such class must be included in the class of networks having
some r̃ ∈ R, ˜ver > 0, which is characterized in Proposition 37. The corresponding characterization
follows straightforwardly from [130] or, equivalently, from Theorems 3 and 4 in [127].

Proposition 38 ([127]) Let {V (m)}m∈M be the set of maximal diagonal blocks in the canonical
form of the interference matrix V . Matrix V has right and left PF eigenvectors r̃ ∈ R, l̃ ∈ L
satisfying r̃, l̃ > 0 if and only if it is block-irreducible andM = {1, . . . , N}.

The existence of positive left and right PF eigenvectors following from Proposition 38 makes
the construction of a weight vector w̃ ∈ W ∩RK++ possible. Proposition 38 characterizes a subclass
of interference matrices from Proposition 37 for which I =M = {1, . . . , N}, that is, for which no
nonisolated diagonal blocks exist. We can interpret Proposition 38 as follows.

Observation 6 A positive performance-optimal and min-max fair weight allocation exists for any
network with interference matrix V such that
i.) the network consists of a number of entirely coupled and pairwise interference-isolated subnet-
works,
ii.) the interference matrix V (n) of each entirely coupled subnetwork satis�es ρ(V (n)) = ρ(V ).
For any network violating either i.) or ii.), no positive performance-optimal and min-max fair weight
allocation exists.

Obviously, the entirely interference coupled networks are the trivial case of networks satisfying
i.), ii.) in Observation 6, as they formally consist of one entirely interference coupled subnetwork.

The role of block irreducibility for aggregated performance optimization

The networks with properties characterized in Observation 6 (that is, with interference matrices
characterized in Proposition 38) play a speci�c role not only in terms of the trade-o� between
min-max fairness and aggregated performance optimality. Such networks have a speci�c property
of the QoS region, which we describe here in short. As a slight di�erence to Proposition 38 and
Observation 6, the discussion below concerns a weighted interference matrix ΓV , with Γ = Γ(p),
p ∈ P, as an SIR matrix (2.4).

From [127] is known that given the SIR function with neglected noise (2.27), the QoS region
can be represented as

Q = {q = (F (
1
γ1

), . . . , F (
1
γK

)) : ρ(ΓV ) ≤ 1, Γ = Γ(p), p ∈ P}. (6.17)

From the normal form of the interference matrix we have further

ρ(ΓV ) = max
1≤n≤N

ρ(Γ(n)V (n)), (6.18)
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with Γ(n) = diag(γk1(n), . . . , γkM (n)), with k1(n) ≤ l ≤ kM (n) as the interval of components corre-
sponding to the diagonal block V (n). Consequently, it follows that Q = Q(1) × . . .×Q(N), with

Q(n) = {q(n) = (F (
1

γk1(n)
), . . . , F (

1
γkM (n)

)) : ρ(Γ(n)V (n)) ≤ c(n)}, c(n) ≤ 1, 1 ≤ n ≤ N,

where the bound on constant c(n), 1 ≤ n ≤ N , is due to (6.17) and (6.18). In other words, the
QoS region of the network is the Cartesian product of QoS regions of entirely coupled subnetworks.
With this insight, we can also re�ne the aggregated performance optimization in the form (2.19),
by writing

min
q∈Q

α′q =
N∑

n=1

min
q(n)∈Q(n)

kM (n)∑

l=k1(n)

αlq
(n)
l , α ∈ A. (6.19)

Let α > 0 and notice that the minimum of the partial objective q(n) 7→ ∑kM (n)
l=k1(n) αlq

(n)
l is

achieved on the boundary of the QoS region Q(n), 1 ≤ n ≤ N . Consequently, whenever in n-th
subnetwork we have c(n) < 1, the corresponding partial objective achieves a value which is strictly
suboptimal compared to the case c(n) = 1. Consequently, the optimal values of partial objectives
q(n) 7→ ∑kM (n)

l=k1(n) αlq
(n)
l , 1 ≤ n ≤ N , and hence the minimum in (2.19), is achievable exactly in

the case when all weighted subnetwork interference matrices Γ(n)V (n), 1 ≤ n ≤ N , correspond to
maximal diagonal blocks of ΓV , that is,

ρ(Γ(n)V (n)) = 1, 1 ≤ n ≤ N. (6.20)

In other words, the "farthest" boundary part of the QoS region Q is achievable in the aggregated
performance optimization exactly when (6.20) is satis�ed.

6.4 The fairness-performance trade-off as a saddle point
In Section 6.3 we showed that a power and weight allocation of the form (r̃, w̃), r̃ ∈ R, w̃ ∈ W,
combines min-max fairness and aggregated performance optimality. In this section we assume that
the link weights are adjustable and study the problems of min-max and max-min form related with
the aggregated performance. This approach is followed in order to characterize the role of the power
and weight allocation combining fairness and aggregated performance optimality among all power
and weight allocations. In this way we characterize the mechanism of the trade-o� occurring under
combination of fairness and aggregated performance optimality. Precisely, we prove that such trade-
o� has the interpretation of a saddle point of the aggregated performance function as a function of
power and weight allocations.

6.4.1 The min-max problem
Consider �rst the problem of aggregated performance optimization for a worst-case weight vector.
In such case we have the following property.

Lemma 13 Let V be any interference matrix and let F ∈ E(V ). Then, we have

inf
p∈P++

max
α∈A

K∑

k=1

αkF

(
(V p)k
pk

)
= F (ρ(V )), (6.21)
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with r̃ = arg infp∈P++ maxα∈A
∑K

k=1 αkF
(

(V p)k
pk

)
, r̃ ∈ R. If V is irreducible, then r > 0 is the

unique (up to a scaling constant) vector satisfying r = arg minp∈P++ maxα∈A
∑K

k=1 αkF
(

(V p)k
pk

)
.

Proof It is clear that infp∈P++ maxα∈A
∑K

k=1 αkF
(

(V p)k
pk

)
= infp∈P++ max1≤k≤K F

(
(V p)k
pk

)
,

α ∈ A. With Proposition 34 it follows further that

inf
p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
= F

(
(V r̃)k
r̃k

)
= F (ρ(V )), r̃ ∈ R. (6.22)

By Proposition 35 i.), concerning the case of irreducible V ∈ RK×K+ , there is an up to a scaling
constant unique vector r > 0, and the proof is completed. ¤

Lemma 13 shows that a right PF eigenvector of V is a power vector which solves the problem
of aggregated performance optimization (2.18) for a worst-case vector of weights. Equivalently,
the min-max fair allocation r̃ ∈ R, r̃ > 0 (which exists whenever the interference matrix V
satis�es conditions i.), ii.) in Observation 4), is the performance-optimal allocation, when such a
weight vector in A is chosen which yields the largest value of the aggregated performance. For
entirely coupled networks, the lemma shows that given a worst-case weight vector the aggregated
performance is optimized under a min-max fair allocation and under no other allocation.

6.4.2 The max-min problem

In what follows we denote the aggregated performance function as a function of powers and weights
as

(p,α) 7→ U(p,α) =
K∑

k=1

αkF

(
(V p)k
pk

)
, (p,α) ∈ P ×A, (6.23)

and additionally

α 7→ Up(α)= min
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
, α ∈ A. (6.24)

For the aggregated performance function (6.24) we have �rst the following insight.

Lemma 14 Let V be any irreducible interference matrix and let F ∈ E(V ). Then, Up is strictly
concave.

Proof Function Up is concave by de�nition, due to the properties of the minimum function [47].
Assume now by contradiction that Up is not strictly concave. Then, there exist α(1),α(2) ∈ RK ,
α(1) 6= α(2), such that

Up((1− t)α(1) + tα(2)) = (1− t)Up(α(1)) + tUp(α(2)), for some t ∈ (0, 1). (6.25)

As a �rst case assume:
i.) If p(1) = arg minp∈P++

∑K
k=1 α

(1)
k F

(
(V p)k
pk

)
and p(2) = arg minp∈P++

∑K
k=1 α

(2)
k F

(
(V p)k
pk

)
,

then p(1) 6= p(2).
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Let p(t) = arg minp∈P++

∑K
k=1((1− t)α(1)

k + tα
(2)
k )F

(
(V p)k
pk

)
, t ∈ (0, 1). Then,

Up((1− t)α(1) + tα(2)) =
K∑

k=1

((1− t)α(1)
k + tα

(2)
k )F

(
(V p(t))k
pk(t)

)

= (1− t)
K∑

k=1

α
(1)
k F

(
(V p(t))k
pk(t)

)
+ t

K∑

k=1

α
(2)
k F

(
(V p(t))k
pk(t)

)
, t ∈ (0, 1).

(6.26)

Hence, (6.25) and (6.26) together imply that for some t ∈ (0, 1) we have p(t) = arg minp∈P++

∑K
k=1 α

(1)
k F

(
(V p)k
pk

)

and p(t) = arg minp∈P++

∑K
k=1 α

(2)
k F

(
(V p)k
pk

)
. This contradicts assumption i.) and hence, com-

pletes the proof under assumption i.).
Make now the opposite assumption:
ii.) There exists p̃ ∈ P, such that

p̃ = arg min
p∈P++

K∑

k=1

α
(1)
k F

(
(V p)k
pk

)
= arg min

p∈P++

K∑

k=1

α
(2)
k F

(
(V p)k
pk

)
.

With (2.27) and (2.8) and the assumption α(1) 6= α(2) it follows that assumption ii.) corresponds
to the vertex property of the vector q = (F ((V p̃)1/p̃1), . . . , F ((V p̃)K/p̃K)) ∈ Q, which is on the
boundary of the QoS region Q. This implies that the Frechet derivative is not de�ned at q [50].
Clearly, the boundary of Q can be bijectively mapped, by means of the inverse mapping F , onto
the boundary of the manifold {Γ(p) : p ∈ P}. With assumptions (2.27) and (2.28), such boundary
is known to be equivalent to the manifold {Γ = diag(γ1, . . . , γK) : ρ(ΓV ) = 1} [127]. Since the
spectral radius is a smooth function of matrix elements and F is continuously Frechet di�erentiable
by our assumptions, the boundary ofQmust be Frechet di�erentiable. This contradicts the existence
of a vertex on the boundary of the QoS region. Thus, assumption ii.) is never satis�ed and the
proof is completed. ¤

With Lemma 14 we can provide a max-min characterization which is complementary to the
min-max characterization from Lemma 13. For clarity, we split the presentation into the one for
entirely coupled networks only and its generalization to arbitrary networks.

Proposition 39 Let V be an irreducible interference matrix and let F ∈ E(V ). Then, we have

max
α∈A

min
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
= F (ρ(V )), (6.27)

and α̃ = arg maxα∈Aminp∈P++

∑K
k=1 αkF

(
(V p)k
pk

)
if and only if α̃ = w, with w = (w1, . . . , wK),

wk = lkrk, 1 ≤ k ≤ K, which is unique in A.

Proof It is clear that
∑K

k=1 αkF
(

(V p)k
pk

)
≤ max1≤k≤K F

(
(V p)k
pk

)
, p ∈ P, α ∈ A. This yields

with Proposition 34

min
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
≤ min

p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
= F (ρ(V )), (6.28)
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where we can write the minimum instead of the in�mum since r > 0 due to irreducibility of V .
Inequality (6.28) is further equivalent to

Up(α) ≤ F (ρ(V )), α ∈ A. (6.29)

By Lemma 14, function Up is strictly concave under irreducibility of V , and thus has a unique
maximum. Thus, with Proposition 35 iii.) and (6.29) it follows further

max
α∈A

Up(α) = max
α∈A

min
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
= min

p∈P++

K∑

k=1

α̃kF

(
(V p)k
pk

)
= F (ρ(V )) (6.30)

if and only if α̃ = w, with vector w = (w1, . . . , wK), wk = rklk, 1 ≤ k ≤ K, which is unique in A.
This completes the proof. ¤

The Proposition states that for entirely coupled networks the weight vector w, unique in A, is
the one for which the optimum value of aggregated performance is worst possible, that is, largest.
Moreover, for any other weight vector the optimum aggregated performance is smaller in value, that
is, the optimum aggregated performance is better.

Notice that the di�erence between the min-max and max-min problem in Lemma 13 and Propo-
sition 39, respectively, is subtle in notation but crucial in the sense. The min-max expression (6.21)
corresponds to optimum aggregated performance for worst-case weights, while the max-min expres-
sion (6.27) represents the maximally degraded optimum aggregated performance among all weight
vectors.

The generalization of Proposition 39 to arbitrary networks is as follows.

Proposition 40 Let V be any interference matrix and let F ∈ E(V ). Then, we have

max
α∈A

inf
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
= F (ρ(V )), (6.31)

with α̃ = arg maxα∈A infp∈P++

∑K
k=1 αkF

(
(V p)k
pk

)
if and only if α̃ ∈ W = {ŵ = (ŵ1, . . . , ŵK) ∈

A : ŵk = r̂k l̂k, r̂ = (r̂1, . . . , r̂K) ∈ R, l̂ = (l̂1, . . . , l̂K) ∈ L}.

Proof As in the proof of Proposition 36, we construct an irreducible (since positive) matrix
V ε = V + ε11′, ε > 0. Thus, (6.11) is satis�ed and implies with increasingness of F that

K∑

k=1

αkF

(
(V p)k
pk

)
≤

K∑

k=1

αkF

(
(V εp)k
pk

)
, α ∈ A, p ∈ P. (6.32)

This further implies with Proposition 39

max
α∈A

inf
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
≤ max

α∈A
inf

p∈P++

K∑

k=1

αkF

(
(V εp)k
pk

)
= F (ρ(V ε)). (6.33)

The left-hand side of (6.33) does not depend on ε. Thus, taking the limit of both sides of (6.33)
by letting ε → 0 yields with continuity of the spectral radius as a function of matrix elements the
inequality

max
α∈A

inf
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
≤ F (ρ(V )). (6.34)
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From Proposition 36 ii.) we further have maxα∈A infp∈P++

∑K
k=1 αkF

(
(V p)k
pk

)
≥ F (ρ(V )). Thus,

together with (6.34), we must have

max
α∈A

inf
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
= inf

p∈P++

K∑

k=1

α̃kF

(
(V p)k
pk

)
= F (ρ(V )) (6.35)

for some α̃ ∈ A. Again, by Proposition 36 ii.) follows that equality (6.35) holds if and only if
α̃ ∈ W, which completes the proof. ¤

The generalization of Proposition 39 in Proposition 40 is analogous to the generalization of
Proposition 35 in Proposition 36. It implies that for arbitrary networks any weight vector from
the speci�c set W, which is a singleton under irreducibility of the interference matrix, makes the
corresponding optimum value of aggregated performance the worst among all weight vectors in A.
The optimum value of aggregated performance achievable under any weight vector from outside of
set W is superior to the one achieved under any α̃ ∈ W.

6.4.3 The saddle point conclusion
From the min-max max-min characterization of a saddle point (Appendix A.4) it is now easily seen
that the min-max and max-min relations from Lemma 13 and Propositions 39, 40 jointly describe a
saddle point of the aggregated performance function as a function of weight and power allocations.
We can formulate the following Corollary.

Corollary 10 Let V be any interference matrix and let F ∈ E(V ). Then, any vector pair (r̃, w̃) ∈
S, with S = {(r̂, ŵ) ∈ P × A : r̂ ∈ R, ŵ ∈ W}, and with W de�ned as in Propositions 36 and 40,
is a saddle point of the aggregated performance function (6.23) and we have

inf
p∈P++

max
α∈A

K∑

k=1

αkF

(
(V p)k
pk

)
= F (ρ(V )) = max

α∈A
inf

p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
. (6.36)

If the interference matrix is irreducible, then S is a singleton corresponding to the unique saddle
point of (6.23).

A consequence of Corollary 10 and Observation 3 is that the set of min-max fair and performance-
optimal power and weight allocations corresponds to the subset S ∩ (RK++ ×A) of the set of saddle
points S. Recall that such subset is nonempty if and only if the network satis�es conditions i.), ii.)
in Observation 4.

The saddle point property is a compact interpretation of the trade-o� between min-max fairness
and aggregated performance optimality. It shows that the min-max fair allocation r̃ ∈ R, r̃ > 0
(if existent), solves the problem of aggregated performance optimization (2.18) under the penalty
that the worst possible weight vector from A is chosen. For any non-worst-case choice of the weight
vector, the optimum value of aggregated performance is better (smaller) than the one achieved by
min-max fair allocation. On the other side, any weight vector w̃ ∈ W corresponding to the weight
allocation achieving min-max fairness and aggregated performance optimality has the property of
yielding the worst-case aggregated performance among the performance optima achievable under
weight vectors from W. Thus, under any choice α /∈ W, the achieved optimal aggregated per-
formance performance is better than under the choice w̃ ∈ W. These features can be expressed
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compactly by the chain inequality

inf
p∈P++

K∑

k=1

αkF

(
(V p)k
pk

)
≤

K∑

k=1

αkF

(
(V r̃)k
r̃k

)
≤ inf

p∈P++

K∑

k=1

w̃kF

(
(V p)k
pk

)
=

K∑

k=1

w̃kF

(
(V r̃)k
r̃k

)
≤

K∑

k=1

w̃kF

(
(V p)k
pk

)
, (r̃, w̃) ∈ S,

(6.37)

which is equivalent to (6.36).
The chain inequality (6.37) contains the relation

∑K
k=1 αkF

(
(V r̃)k
r̃k

)
≤ ∑K

k=1 w̃kF
(

(V r̃)k
r̃k

)
≤

∑K
k=1 w̃kF

(
(V p)k
pk

)
, which is, by the saddle point de�nition (Appendix A.4) another veri�cation of

the saddle point property of any vector pair (r̃, w̃) ∈ S.
The saddle point property can be summarized as follows.

Observation 7 For any power and weight allocation (r̃, w̃) ∈ S, r̃ > 0, which combines aggregated
performance optimality and min-max fairness, the following is true.
i.) The min-max fair allocation r̃ ∈ R, r̃ > 0, yields the optimum value of aggregated performance
under the worst-case choice of the weight vector,
i'.) if the network is entirely coupled, then the min-max fair allocation r̃ is the unique (up to a
scaling constant) allocation yielding the optimum value of aggregated performance under the worst-
case choice of the weight vector,
ii.) under the weight vector w̃ ∈ W, the worst-case of the optimum value of aggregated performance
is yielded,
ii'.) if the network is entirely coupled, the weight vector w̃ is the unique weight vector in A under
which the worst-case of the optimum value of aggregated performance is yielded.

In Fig. 6.1 we illustrate the saddle point property of a min-max fair and performance-optimal
power and weight allocation. The visualization is �gurative since the power vector and the weight
vector are assumed to be one-dimensional.

6.5 The fairness gap
In Sections 6.2-6.4 the focus of our considerations was on the notion of fairness in the min-max
sense (2.30), which is interpretable as improving the worst link performance as much as possible.
An interesting question in this context is the relation to the problem of max-min fairness (6.2),
which can be interpreted as degrading the best link performance as much as possible.

From the interpretation of max-min fairness is apparent, that the applicability of this fairness
notion is in general limited. In fact, providing the maximum degradation of the best link QoS is
intuitively not a notion of optimality desired in the network (it is rather a notion of a worst-case).
However, the situation changes if the notions of min-max fairness and max-min fairness are related
by some known deterministic relation. In particular, there is interest in achieving max-min fairness
(6.2) if it coincides, in terms of the achieved link performance or even in terms of the optimizers,
with the notion of min-max fairness (2.30). In such case, max-min fairness (6.2) can be seen as
an alternative characterization of the notion of min-max fairness. This problem of coincidence is
addressed in this section.
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α ∈ A
p ∈ {p : ‖p‖1 = c}, c > 0

r

w

U(α, p) =
∑K

k=1 αkF
(

(V p)k
pk

)

Figure 6.1: Figurative visualization of the saddle point property of the min-max fair and performance-
optimal power and weight allocation. The two scalar dimensions represent the spaces of power allocations
and weight allocations, respectively. The visualized saddle point is unique, as would be the case for entirely
coupled networks.

From convex analysis follows that for any network, precisely for any interference matrix V , we
have

sup
p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
≤ inf

p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
. (6.38)

Inequality (6.38) suggests the following question. For which class of networks (that is, matrices V )
we have the property

Condition 11 The optimum values in problems (2.30) and (6.2) coincide.

However, even under equality of optimal values, the optimizers of (2.30) and (6.2) may not coincide.
Therefore we are also interested in the answer to the following related question. For which class of
networks we have the property

Condition 12 The optimum values in problems (2.30) and (6.2) coincide and there exists a power
allocation which solves both problems (2.30) and (6.2).

By complementarity to Condition 11, a question is also: For which class of networks we have the
property

Condition 13 The optimum value in problem (2.30) is larger than the optimum value in problem
(6.2).
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Assume for a while that a min-max fair allocation exists, that is, the network satis�es conditions
i.), ii.) in Observation 4. Then, the networks satisfying Condition 11 can be regarded as those having
no gap between the performance achieved under min-max fairness and max-min fairness, or simply
having no (or zero) fairness gap. Thus, in networks with zero fairness gap, the maximally degraded
best link QoS exactly meets the value of the maximally improved worst link QoS. For networks with
no fairness gap which satisfy the stronger Condition 12, we are additionally free to choose between
(2.30) and (6.2) as equivalent problem formulations. This provides an alternative in the design of
online optimization routines. Depending on hardware constraints, signaling constraints and protocol
type, the alternative formulation (6.2) may happen to be favorable in terms of implementation issues.

On the other side, networks satisfying Condition 13 can be interpreted as those with (nonzero)
fairness gap. Thus, for networks with fairness gap we know that the maximally degraded best link
performance is still superior to the maximally improved worst link performance. In such networks,
one can not resort to (6.2) as an equivalent formulation of the problem of min-max fairness for
implementation purposes.

6.5.1 Maximal degradation of the best link QoS
Consider for a while the problem of max-min fairness relying on the SIR function including noise
(2.1). Due to assumed increasingness of the performance function (2.8), it can be deduced that the
best link QoS is maximally degraded under the all-zero power allocation p = 0. When neglecting
the noise according to (2.27), this is, however, no longer the case. Precisely, let some parameterized
allocation p(ε) ∈ P converge to p(0) = limε→0 p(ε) = 0. Then, all SIR values converge to �nite
values, each one representing a ratio of two values approaching zero. This is the same mechanism as
the one described in Section 6.1 in the context of validity of allocations. Consequently, we deduce
that the optimal value in (6.2) is assumed by a max-min fair allocation which is in general not
all-zero. In comparison with the case of the SIR function (2.1), this feature slightly contradicts
the intuition. However, from the practical and algorithmic point of view such feature may provide
advantages. Precisely, given (2.27) and satis�ed Condition 12, the already described degree of
freedom occurs: the online optimization algorithms computing the min-max fair allocation can be
designed to solve either of the two problems (2.30) or (6.2). Such degree of freedom can not occur
if the notion of max-min fairness relies on (2.1).

6.5.2 The cases of zero and nonzero fairness gap
The �rst step towards the characterization of the network classes having zero and nonzero fairness
gap is a simple Lemma.

Lemma 15 For any interference matrix V , we have

inf
p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
≥ F (ρ(V )). (6.39)

Proof Construct �rst a positive matrix V ε = V + ε11′, ε > 0 and de�ne a function (X,p) 7→
f(X,p) = max1≤k≤K

(Xp)k
pk

, X ∈ RK×K+ , p ∈ P++. We have obviously f(V ε,p) ≥ (V εp)k
pk

,
1 ≤ k ≤ K, ε > 0, for any p ∈ P++. Thus, it follows also f(V ε,p)p ≥ V εp, ε > 0, p ∈ P++. Given
any p ∈ P, let lε = lε(p) be the left PF eigenvector of V ε scaled to satisfy l′ε(p)p = 1. Thus, we
have

f(V ε,p) = f(V ε,p)l′εp ≥ l′εV εp = ρ(V ε)l′εp = ρ(V ε), ε > 0, p ∈ P++. (6.40)
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Then, by the construction and nondecreasingness of the spectral radius as a function of matrix
elements it follows from (6.40) that

max
1≤k≤K

(
(V p)k
pk

+
(ε11′p)k

pk

)
≥ ρ(V ), ε > 0, p ∈ P++. (6.41)

Further, notice that F (max1≤k≤K xk) = max1≤k≤K F (xk), xk ≥ 0, 1 ≤ k ≤ K, due to increasingness
of F . Thus, applying the map F to both sides of (6.41) and taking in�mum over ε > 0 and p ∈ P++

of both sides of (6.41) yields infp∈P++ max1≤k≤K F
(

(V p)k
pk

)
≥ F (ρ(V )) and completes the proof.

¤
Lemma 15 speci�es a lower bound on the maximally improved worst link QoS. This bound

follows to be tight from Proposition 34, stated already in Section 6.1. At this point we can prove
Proposition 34 (recall from Section 6.1 that the proposition can be seen as a kind of extension of
the Collatz-Wieland characterization to the case of general nonnegative matrices [38]).

Proof (of Proposition 34) Let S(n) ⊂ K denote the set of row (equivalently, column) indices
corresponding to the n-th diagonal block V (n), 1 ≤ n ≤ N , in the normal form of V . Let p(λ) ∈ RK++

denote any power vector associated with λ > 0, where λ = λ(ε) is further a function of ε > 0. The
idea of the proof is the construction of a vector p(λ), which achieves max1≤k≤K F

(
(V p(λ))k
pk(λ)

)
=

F (ρ(V )). Together with Lemma 15 such equality yields the proof.
De�ne p(λ) = (p1(λ), . . . , pK(λ)), λ > 0, precisely as pk(λ) = λr

(n)
k , k ∈ S(n), whenever block

V (n) is maximal (r(n) is the right eigenvector of the block V (n) and we have r(n) > 0, 1 ≤ n ≤ N ,
due to irreducibility of the diagonal blocks). Then, from the construction of the normal form of V ,
we can write for any maximal block V (n)

(V p(λ))k
pk(λ)

=
(V (n)λr(n))k

λr
(n)
k

+
(
∑n−1

m=1 V (n,m)p(m)(λ))k
λr

(n)
k

, λ > 0, k ∈ S(n), (6.42)

where for any p ∈ RK++ vector p(n) is de�ned as a vector in R|S(n)|
+ with components corresponding to

pk, k ∈ S(n) (in unchanged order). De�ne now a map p 7→ t(n)(p) =
∑n−1

m=1 V (n,m)p(m), p ∈ RK++,
1 ≤ n ≤ N . Given any ε > 0, choose λ = λ(ε) such that t

(n)
k (p(λ))k

λr
(n)
k

≤ ε, k ∈ S(n), is satis�ed and

transform both sides of (6.42) by F . Then, due to maximality of block V (n) and increasingness of
F we yield

F

(
(V p(λ))k
pk(λ)

)
= F

(
ρ(V ) +

t
(n)
k (p(λ))

λr
(n)
k

)
≤ F (ρ(V )+ε), λ(ε) > 0, ε > 0, k ∈ S(n). (6.43)

Consider now nonmaximal blocks. For any nonmaximal block V (n) de�ne the corresponding
components of p(λ) as pk(λ) = r̃k, r̃ ∈ R, k ∈ S(n). Then, from the eigenvalue problem for the
normal form of V follows for any nonmaximal block V (n) that

ρ(V )p(n)(λ) = V (n)p(n)(λ) + t(n)(p(λ)), λ > 0. (6.44)
Due to ρ(V (n)) < ρ(V ) this gives p(n)(λ) = (ρ(V )I − V (n))−1t(n)(p(λ)), λ > 0. Since further
t(n)(p(λ)) ≥ 0, λ > 0, by de�nition, we have for any nonmaximal block V (n) that p(n)

k (λ) = r̃k > 0,
λ > 0, k ∈ S(n) (see [38]). Thus, from componentwise division of both sides of (6.44) by pk(λ) and
transformation by increasing function F we yield

F

(
(V p(λ))k
pk(λ)

)
= F

(
ρ(V )− t

(n)
k (p(λ))
pk(λ)

)
≤ F (ρ(V )), λ > 0, k ∈ S(n), (6.45)
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for any nonmaximal block V (n). Summarizing now (6.43) and (6.45) we have

max
1≤k≤K

F

(
(V p(λ))k
pk(λ)

)
≤ F (ρ(V ) + ε), λ(ε) > 0, ε > 0.

Hence, we must have limε→0 max1≤k≤K F
(

(V p(λ(ε)))k
pk(λ(ε))

)
≤ F (ρ(V )), which together with Lemma 15

implies

lim
ε→0

max
1≤k≤K

F

(
(V p(λ(ε)))k
pk(λ(ε))

)
= inf

p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
= F (ρ(V ))

due to assumption (2.28). This proves (6.1). Further, for maximal diagonal blocks V (n) we have
by the de�nition of p(λ) and irreducibility of the diagonal blocks in the normal form of V that
pk(λ(0)) = limε→0 pk(λ(ε)) = limε→0 λ(ε)r(n)

k > 0, k ∈ S(n). Similarly, for nonmaximal diagonal
blocks V (n) we have pk(0) = r̃k, k ∈ S(n). Thus, from the eigenvalue problem for the normal form
of V follows p(λ) ∈ R, λ > 0. Consequently, we have also p(λ(0)) > 0 and we can then write
F

(
(V p(0))i
pi(0)

)
= F (ρ(V )), 1 ≤ i ≤ K, whenever r̃k > 0, k ∈ S(n), for a nonmaximal block V (n).

The last condition is implied by r̃ ∈ R, r̃ > 0 (see Proposition 4), which completes the proof. ¤
As a consequence of inequality (6.38) and Proposition 34, we have the following result.

Corollary 11 For any interference matrix V , we have

sup
p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
≤ F (ρ(V )). (6.46)

To describe the network classes with zero and nonzero fairness gap it remains now to characterize
the case in which the bound F (ρ(V )) is achieved, respectively not achieved, in (6.46). Strict
inequality in (6.46) can be shown to hold for the following network class.

Lemma 16 Let {V (n)}n∈I and {V (m)}m∈M be the sets of isolated and maximal diagonal blocks in
the canonical form of the interference matrix V , respectively. If there exists some n ∈ I such that
n /∈M, then we have

sup
p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
< F (ρ(V )). (6.47)

Proof Let V (n) be such that n ∈ I and n /∈ M (isolated nonmaximal block). Then, from the
construction of the normal form of V follows (V (n)p)k

pk
= (V (n)p(n))k

p
(n)
k

, p ∈ RK++, k ∈ S(n), where S(n)

and p(n) are de�ned as in the proof of Proposition 34. Since any diagonal block is, by de�nition,
irreducible, it follows from the Collatz-Wielandt characterization and increasingness of F that [38],
[126]

F

(
sup

p∈RK
++

min
k∈S(n)

(V (n)p(n))k
p
(n)
k

)
= F (ρ(V (n))) < F (ρ(V )). (6.48)
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Obviously, we have min1≤k≤K
(V p)k
pk
≤ mink∈S(n)

(V (n)p(n))k

p
(n)
k

, p ∈ RK++, 1 ≤ n ≤ N , so that using
�ve times the increasingness of F we can write

sup
p∈RK

++

min
1≤k≤K

F

(
(V p)k
pk

)
= sup

p∈RK
++

F

(
min

1≤k≤K
(V p)k
pk

)
= F

(
sup

p∈RK
++

min
1≤k≤K

(V p)k
pk

)
≤

F

(
sup

p∈RK
++

min
k∈S(n)

(V p(n))k
p
(n)
k

)
= sup

p∈RK
++

F

(
min
k∈S(n)

(V p(n))k
p
(n)
k

)
= sup

p∈RK
++

min
k∈S(n)

F

(
(V p(n))k
p
(n)
k

)
.

(6.49)

The inequalities (6.48) and (6.49) and the assumption (2.28) give together supp∈P++
min1≤k≤K F

(
(V p)k
pk

)
<

F (ρ(V )), which completes the proof. ¤
We can interpret the condition in the Lemma 16 as the existence of some entirely coupled

subnetwork which is interference-isolated and its interference matrix, say V (n), satis�es ρ(V (n)) <
ρ(V ). By Lemma 16, networks having such property can not pertain to the class satisfying Condition
11 and hence can not pertain to its subclass satisfying Condition 12 as well.

An immediate consequence of Lemma 16 is the following.

Corollary 12 Let {V (n)}n∈I and {V (m)}m∈M be the sets of isolated and maximal diagonal blocks
in the canonical form of the interference matrix V , respectively. If for any increasing performance
function F we have

sup
p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
= F (ρ(V )), (6.50)

then I ⊆M.

By Proposition 34 and inequality (6.38) one can see that Corollary 12 formulates a necessary
condition for the inclusion of a network in the class satisfying Condition 11, and hence also in its
subclass satisfying Condition 12. This condition is precisely, that the interference matrix, say V (n),
of any entirely coupled and interference-isolated n-th subnetwork satis�es ρ(V (n)) = ρ(V ). The
following lemma shows even more.

Lemma 17 Let {V (n)}n∈I and {V (m)}m∈M be the sets of isolated and maximal diagonal blocks in
the canonical form of the interference matrix V , respectively. If I ⊆ M, then equality (6.50) is
satis�ed.

Proof Let S(n), 1 ≤ n ≤ N , and p(n) (for any p ∈ RK++) be de�ned as in the proof of
Proposition 34. Let p(λ) ∈ RK++ denote any power vector associated with λ > 0, where λ = λ(ε)
is further a function of ε > 0. As in the proof of Proposition 34, the idea of the proof is the
construction of a vector p(λ) which achieves equality (6.50).

Consider �rst V (n) be such that n ∈ I. De�ne p(λ) = (p1(λ), . . . , pK(λ)), λ > 0, as pk(λ) = r
(n)
k ,

k ∈ S(n), whenever n ∈ I (r(n) is the right eigenvector of the diagonal block V (n) and we have
r(n) > 0, 1 ≤ n ≤ N , due to irreducibility of diagonal blocks). From the construction of the normal
form of V and increasingness of F follows then

F

(
(V p(λ))k
pk(λ)

)
= F

(
(V (n)r(n))k

r
(n)
k

)
= F (ρ(V )), λ > 0, k ∈ S(n), n ∈ I, (6.51)
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since we have n ∈M by assumption.
Consider now blocks V (n) such that n /∈ I and additionally n ∈ M. De�ne the corresponding

components of p(λ) as pk(λ) = r
(n)
k , k ∈ S(n), whenever n /∈ I, n ∈ M, and de�ne also a function

p 7→ t(n)(p), p ∈ RK++, 1 ≤ n ≤ N , as in the proof of Proposition 34. Then, by the construction of
the normal form of V and increasingness of F we yield

F

(
(V p(λ))k
pk(λ)

)
= F

(
(V (n)r(n))k

r
(n)
k

+
t
(n)
k

pk(λ)

)

= F

(
ρ(V ) +

t
(n)
k

pk(λ)

)
≥ F (ρ(V )), λ > 0, k ∈ S(n), n /∈ I, n ∈M.

(6.52)

For the remaining case n /∈ I and n /∈ M de�ne the corresponding components of p(λ) as
pk(λ) = λr̃k, r̃ ∈ R, k ∈ S(n). Then, from the eigenvalue problem for the normal form of V follows

ρ(V )p(n)(λ) = V (n)p(n)(λ) + t(n)(p(λ)), λ > 0, n /∈ I, n /∈M. (6.53)

This yields further p(n)(λ) = (ρ(V )I − V (n))−1t(n)(p(λ)), which implies with n /∈ M (that is,
ρ(V (n)) < ρ(V )) and t(n)(p(λ)) ≥ 0, λ > 0, that p(n)

k (λ) = λr̃k > 0, λ > 0, r̃ ∈ R, k ∈ S(n) [38].
Given any ε > 0, choose now λ(ε) such that t

(n)
k (p(λ))k

λr̃k
≤ ε, k ∈ S(n), n /∈ I, n /∈ M. Then, the

componentwise division of both sides of (6.53) by pk(λ) and application of the increasing function
F to both sides yields

F

(
(V p(λ))k
pk(λ)

)
= F

(
ρ(V )− t

(n)
k (p(λ))
λr̃k

)

≥ F (ρ(V )− ε), λ(ε) > 0, ε > 0, k ∈ S(n), n /∈ I, n /∈M.

(6.54)

Summarizing (6.51), (6.52) and (6.54) we have min1≤k≤K F
(

(V p(λ(ε)))k
pk(λ(ε))

)
≥ F (ρ(V ) − ε), ε > 0.

Thus, we must have limε→0 min1≤k≤K F
(

(V p(λ(ε)))k
pk(λ(ε))

)
≥ F (ρ(V )), which together with Corollary

11 and assumption (2.28) implies

lim
ε→0

min
1≤k≤K

F

(
(V p(λ(ε)))k
pk(λ(ε))

)
= sup

p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
= F (ρ(V ))

This completes the proof. ¤
As a consequence of Corollary 12 and Lemma 17 we obtain the following necessary and su�cient

condition for a network to satisfy Condition 11.

Proposition 41 Let {V (n)}n∈I and {V (m)}m∈M be the sets of isolated and maximal diagonal
blocks in the canonical form of the interference matrix V , respectively. Then, the equality

sup
p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
= F (ρ(V )) = inf

p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
(6.55)

is satis�ed if and only if I ⊆M.
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Thus, for a network with interference matrix V , the condition that any isolated diagonal block
in the canonical form of V is maximal is a necessary and su�cient condition for the network to
satisfy Condition 11. Automatically we have also that the existence of an isolated diagonal block
which is not maximal in the canonical form of the interference matrix is a necessary and su�cient
condition for the corresponding network to satisfy Condition 13. Thus, the complete interpretation
of Proposition 41 is as follows.

Observation 8 For a network with interference matrix V , the following is true.
i.) The value of maximally degraded best link performance (performance under max-min fairness)
coincides with the value of maximally improved worst link performance (performance under min-
max fairness) exactly in the case when the interference matrix V (n) of any entirely coupled and
interference-isolated subnetwork n ∈ I satis�es ρ(V (n)) = ρ(V ).
ii.) The value of maximally degraded best link performance is smaller (that is, better) than the value
of maximally improved worst link performance exactly in the case when there exists some entirely
coupled and interference-isolated subnetwork with interference matrix V (n) satisfying ρ(V (n)) <
ρ(V ).

6.5.3 The case of common optimizers
It remains to answer the question on the network class satisfying Condition 12. It is precisely the
question of description of the subclass of networks with zero fairness gap for which some allocation
achieves both min-max fairness in the sense of (2.30) and max-min fairness in the sense of (6.2).
The following description of such class is possible with Proposition 34 and Lemma 17.

Proposition 42 Let {V (n)}n∈I and {V (m)}m∈M be the sets of isolated and maximal diagonal
blocks in the canonical form of the interference matrix V , respectively.
i.) There exists some vector p̃ > 0 satisfying

p̃ = arg inf
p∈P++

max
1≤k≤K

F

(
(V p)k
pk

)
= arg sup

p∈P++

min
1≤k≤K

F

(
(V p)k
pk

)
(6.56)

if and only if I =M.
ii.) Moreover, p̃ satis�es (6.56) if and only if p̃ ∈ R ∩ P++.

Proof We prove the statements i.) and ii.) of the Proposition in the circular manner. For
the proof of the if part of i.), assume that some p̃ ∈ P++ satisfying (6.56) exists. By (6.56) it is
implied that max1≤k≤K F

(
(V p̃)k
p̃k

)
= min1≤k≤K F

(
(V p̃)k
p̃k

)
, so that by (6.1) (or (6.50)) we have

also F
(

(V p̃)k
p̃k

)
= F (ρ(V )), 1 ≤ k ≤ K, and consequently p̃ ∈ R ∩ P++. By Proposition 41 and

(6.56) the existence of such p̃ is already known to imply I ⊆ M. Thus, assume by contradiction
I ⊂M, that is, there exists some nonisolated block V (n) of V such that ρ(V (n)) = ρ(V ). For such
block follows from the eigenvalue problem for the normal form of V that

ρ(V )p̃(n) = V (n)p̃(n) +
n−1∑

m=1

V (n,m)p̃(m), n ∈M, n /∈ I, (6.57)

where p(n) is de�ned, for any p ∈ RK++, as in the proof of Proposition 34. Due to n /∈ I, at least
one of the matrices V (n,m), 1 ≤ m ≤ n − 1 is nonzero. Thus, p̃ > 0 for (6.57) that there exists
some k ∈ S(n) such that ρ(V )p̃(n)

k > (V (n)p̃(n))k, which implies further ρ(V (n)) < ρ(V ). This is a
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contradiction and the if part of i.) is proven. The next step to prove is that I = M implies that
there exists some p̃ ∈ R∩P++. But this follows already from Proposition 37. The last step to show
is the only if part of ii.), precisely, that any p̃ ∈ R∩P++ satis�es (6.56). But with p̃ ∈ R∩P++ we
have (as above) max1≤k≤K F

(
(V p̃)k
p̃k

)
= min1≤k≤K F

(
(V p̃)k
p̃k

)
, which implies with (6.1) (or (6.50))

that (6.56) holds whenever p̃ ∈ R∩P++. With this, the circle of three if relations is completed and
i.), ii.) are proven. ¤

Thus, the class of networks for which min-max fairness and max-min fairness can be concurrently
achieved by some allocation consists of networks for which the isolated diagonal blocks coincide
with maximal diagonal blocks in the canonical form of their interference matrices. Consequently,
whenever some maximal diagonal block in the canonical form of the interference matrix is not
isolated, then there exists no allocation which is both min-max fair and max-min fair for the
corresponding network. Similarly, the min-max fair and max-min fair allocation does not exists in
the case when some isolated diagonal block is not maximal in the canonical form of the corresponding
interference matrix. In both cases, the network satis�es Condition 11, but do not satisfy Condition
12. This can be interpreted as follows.

Observation 9 For a network with interference matrix V , the following is true.
i.) An allocation which achieves both max-min fairness and min-max fairness exists, when any en-
tirely coupled subnetwork with interference matrix V (n) satis�es ρ(V (n)) = ρ(V ) exactly in the case
when it is interference-isolated.
ii.) Whenever there exists some not interference-isolated entirely coupled subnetwork with interfer-
ence matrix V (n) satisfying ρ(V (n)) = ρ(V ), then an allocation achieving both max-min fairness
and min-max fairness does not exist.
iii.) Whenever there exists some interference-isolated entirely coupled subnetwork with interference
matrix V (n) satisfying ρ(V (n)) < ρ(V ), then an allocation achieving both max-min fairness and
min-max fairness does not exist as well.

Finally, notice the subtlety that there may exist some vector p ∈ P which maximally improves
the worst link QoS according to (2.30) and at the same time maximally degrades the best link
QoS in the sense of (6.2), without being both a min-max fair and max-min fair allocation. From
the discussion in Section 6.1 we know that this is precisely the case when both (2.30) and (6.2)
are solved by a non-valid allocation, that is, when p has some zero components. Clearly, the class
of networks for which such allocation exists is included in the class satisfying Condition 11, and
includes the class satisfying Condition 12 itself.
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7
Conclusions and further work

7.1 Summary and conclusions

The goal of this work was the development of an analytic framework and design of specialized
algorithms for optimization of wireless single-hop networks with interference. We focused on the
optimization of weighted aggregated performance and achieving (relative) min-max fairness as the
optimization approaches of greatest interest. The �rst of the approaches corresponds to the opti-
mization of a weighted sum of QoS/ performance functions, each expressing the perceived perfor-
mance of the corresponding link (single-hop) or route (multi-hop) [29], [28], [22], [23], [131], [24].
Such approach proved to be suitable under nonstrict service requirements per link/ route or under
so-called elastic tra�c [34], [16]. The latter approach of achieving min-max fairness corresponds to
improving the worst link/ route QoS value as much as possible and proved to be suitable under
prede�ned strict link/ route performance requirements [4], [9], [10], [11], [6], [132], [57], [59].

In our view, the key feature making the developed framework useful is its general applicability.
First, it is general in the sense that it is applicable to arbitrary networks with interference as long
as the interference topology can be expressed by a nonnegative interference matrix. This is usually
the case under interfering links, �at fading channels and linear link receivers [12], [13]. Particular
network instances covered by our framework are networks with multiple antennas at link transmitter
or link receiver or CDMA networks [89], [7], [40], [39]. The framework is also applicable to networks
with a set of separated links sharing the same space/ code/ bandwidth resource, as is the case under
single-hop communication within a typical multi-hop ad hoc network [133]. Second, the generality
of the framework consists in its applicability to arbitrary monotonous link performance functions,
understood as functions of the corresponding link SIR. Due to such feature, the network performance
optimization with respect to link capacities, link symbol error rates or link MMSE, which are link
performance functions of typical interest, falls automatically into the proposed framework as a
special case.

The network model in Chapter 2 exhibits the SIR function and the description of interference
topology of the network by a nonnegative interference matrix as the key ingredients of the developed
framework. The introductory results in Chapter 2 show that the log-convexity property of the
SIR function as a function of the corresponding link performance value plays a crucial role in the

137



138 Conclusions and further work

optimization of aggregated performance. Such property ensures global solvability of the problem
by means of locally convergent methods and, consequently, makes it well-tractable by adaptive
online optimization routines in real-world networks. Further, the characterization of the interference
topology of the network by a nonnegative interference matrix makes the Perron-Frobenius Theory
applicable for our purposes [38], [126].

The application of some basic elements of Perron-Frobenius Theory gives rise to the design
of algorithms in Chapter 3. The two algorithms, applicable to networks with individual power
constraints and constrained sum-power budget, respectively, rely strongly on the structure of the
boundary of the performance region (see also [22]). In our view, they e�ciently trade-o� compu-
tational complexity with convergence rate and thus are an attractive alternative (realizable rather
in centralized manner), to algorithms based on conventional iterations, such as gradient iteration
[49], [79]. Clearly, under log-convexity of the QoS-SIR dependence both algorithms are globally
convergent.

Speci�c features of the interference matrix and the SIR function are also the key ingredients of
the algorithms and feedback schemes proposed in Chapter 4. The basic proposed feedback scheme,
the adjoint network feedback scheme, can be regarded as a decentralized interference estimation
scheme and makes use of some kind of symmetry, or reversibility, of the SIR function and the inter-
ference matrix [24]. It allows for decentralized realization of aggregated performance optimization
by means of the conventional projected gradient method [49]. The two specialized algorithms from
Chapter 5 are designed to utilize the advantage of ensured decentralized computation provided
by the adjoint network feedback scheme. The �rst of them makes use of a manipulation of the
Lagrangean function (see also [71], [73], [74], [72]), while the second utilizes a speci�c separation/
splitting of the optimization variables corresponding to power and interference at each link. In this
way the proposed algorithms obtain advantages in terms of computational complexity and conver-
gence behavior, respectively, compared to conventional iterations. Again, under log-convexity of
the QoS-SIR relation, the algorithms from Chapter 4 are globally convergent.

The case of a MIMO network is speci�c in the sense that a meaningful notion of link SIR function
is nonexistent and thus, the link QoS function can not be regarded as a function of link SIR [89]. In
Chapter 5 we considered a particular instance of weighted aggregated performance optimization in
the MIMO multiple access channel, in the form of the widely-studied problem of computation of the
stability-optimal policy [105], [106], [103], [111], [112]. In the context of such problem, particularly
interesting is the issue of optimality of the order of SIC. Such question suggests attacking the
considered problem within a geometric view of the capacity region of the MIMO multiple access
channel and its speci�c subregions. Such view nicely illustrates the cross-layer interplay between the
link layer issues, represented by bu�er occupancies, and physical layer issues, in the form of a vector
of physical link rates [25]. Relying on the geometric view, we provided, in particular, necessary and
su�cient conditions for optimality of the SIC order and link subset transmission. The proposed
algorithm computing the stability-optimal policy is based on the approach of splitting of the original
multi-link problem into a tuple of coupled single-link problems (see also [123]).

The results concerning the problem of achieving min-max fairness in Chapter 6 make strong
use of the Perron-Frobenius Theory, in particular from Collatz-Wielandt formulae, applied to the
interference matrix [126]. The resulting characterization of the min-max fair power allocation (and
a certain weight vector) as a saddle point of the weighted aggregated performance, understood as a
function of link weights and link powers, is an analytic interpretation of the incompatibility of min-
max fairness and optimality of aggregated performance [56]. Further, the analysis of combinatorial
and spectral properties of the so-called normal form of the interference matrix provides insights in
the mechanism of min-max fairness itself. It shows that the maximal improvement of the worst link
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performance is in general not equivalent to the maximal degradation of the best link performance.
However, a class of networks ensuring such equivalence exists and provides advantages in terms of
online computation of min-max fair power allocation in real-world networks.

7.2 Some notes on the extension to orthogonal networks
The parallel framework for optimization of networks with orthogonal links (in short, orthogonal
networks) suggests itself as an extension of the framework for networks with interference provided in
this work. In orthogonal networks, the analogous problems of aggregated performance optimization
and achieving min-max fairness become of combined combinatorial and real-valued nature. The
combinatorial part corresponds to the assignment of orthogonal (medium) resources, e.g. OFDMA
(Orthogonal Frequency Division Multiple Access) carriers or TDMA (Time Division Multiple Access)
slots, among the links [134], [135], [136], [137]. The allocation of link transmit power among the set
of resources assigned to each link represents the remaining real-valued part of the problem. Thus,
in broad terms, the problem of coupling of link performance functions by interference in networks
with interference is in orthogonal networks replaced by the problem of suitable partitioning of the
set of orthogonal resources among the links.

The arising dominating intricacy of performance optimization in orthogonal networks is the
computational intractability (NP-hardness/ NP-completeness) of the combinatorial problem part
in most problems of interest [138]. This is unfortunately the case in aggregated performance op-
timization under prede�ned number of assigned resources per link or under the requirement of
assigning some (at least one) resource per link. The problem of achieving min-max fairness with re-
spect to link performance aggregated over assigned resources (also under the constraint of prede�ned
number of resources per link) is intractable as well [138].

Due to occurring intractability, there is great interest in e�cient polynomial-time heuristics
solving the resource assignment problem part in orthogonal networks. Some particular heuristics
for the assignment of OFDMA carriers can be found in [134], [135] and references therein. One can
also resort to and adapt well-developed heuristic concepts from operations research and economic
science, see e.g. [139] and references therein.

When the research focus is on the design of heuristics to NP-hard/ NP-complete problems in
orthogonal networks, then the structure of the exact problem solution and the corresponding opti-
mality relations usually can not be recognized or deduced. For this reason, the works [140], [141]
address the problem of characterization of the exact solution by novel techniques relying on the con-
cept of so-called blocking and antiblocking systems [142], [143], [144], [145], [146], [147]. We provide
there numerous bounds and equality characterizations of the optimum aggregated performance and
performance achieved under min-max fairness. The bounds are dependent on certain subnetwork
classes, the blocking and antiblocking clutters and polyhedra, so that some key structural features
of the optimum resource assignments become recognizable.

The combinatorial nature of the resource assignment part of the performance optimization prob-
lems in orthogonal networks suggests its representation as a graph problem. Such view allows for
the application of the well-developed theory of graphs and graph-related algorithmic concepts to
the resource assignment problem [129]. In particular, the application of the concept of the (Lovasz)
Theta-function and the extension of the techniques used in [148], [149], [150] lead to a novel char-
acterization of the link performance achieved under min-max fairness [151]. The link performance
under min-max fairness is shown in [151] to be equivalent to the scaled Theta-function value of a
certain graph induced by the optimum resource assignment. The scaling constant is a function of
the optimum power allocation among all links and resources. Remarkably, the characterization from
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[151] applies also to some class of networks with interference when the performance optimization
is understood as joint optimization of power allocation and nonorthogonal resources, e.g. in the
form of link power allocation and spreading sequence design in CDMA networks. In such case, the
graph occurring in the characterization from [151] is induced by the interference topology of the
network. Such universality of the characterization from [151] pushes us to a very abstract conclusion
that the interference coupling of links in a network with interference and sharing of resources in an
orthogonal network represent the same mechanism in the view of min-max fairness.

The characterization through the Theta-function from [151] and the application of Szemeredi's
Regularity Lemma, a celebrated result in modern graph theory [129], give rise to some scaling laws
of the link performance under min-max fairness in large orthogonal networks [152]. Remarkably, the
scaling laws from [152] are applicable regardless of the correlation properties of channels across links
and resources (and hold also for the class of networks with interference which the Theta-function
characterization from [151] applies to).
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Appendices

A.1 Irreducibility and the normal form of a nonnegative ma-
trix

De�nition 10 ([38]) Matrix X ∈ RK×K+ is said to be reducible, if there exists a permutation
matrix P ∈ {0, 1}K×K such that

P ′XP =
(

A B
0 C

)
,

with A and C as square matrices. A matrix which is not reducible is said to be irreducible.

With any nonnegative matrix one can associate a speci�c directed graph [129].

De�nition 11 ([38]) For X = (xij) ∈ RK×K+ let the directed graph G(X) with vertex set K and
edge set E be such that

(i, j) ∈ E if and only if xij 6= 0, i, j ∈ K.
Usually, the following necessary and su�cient characterization of irreducibility in terms of graphs

is more useful than De�nition 10.

Lemma 18 ([38]) Matrix X ∈ RK×K+ is irreducible if and only if any pair of vertices in G(X) is
joined by a directed path.

Corollary 13 ([130]) If matrix X = (xij) ∈ RK×K+ satis�es

xij > 0, 1 ≤ i, j ≤ K, i 6= j, (A.1)

then it is irreducible.

It is known that the spectrum and the eigenmanifolds of a matrix are invariant with respect to
permutation of its rows and columns [130]. The permutation of rows and columns a�ects merely
the order of dimensions of the eigenmanifold. By such permutation, any nonnegative matrix V can
be represented in its canonical form (or normal form, or Frobenius normal form).
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De�nition 12 ([130]) For any matrix X ∈ RK×K+ there exist some permutation matrix P ∈
{0, 1}K×K , such that

P ′XP =




X(1) 0 · · · 0

X(2,1) X(2) . . . ...
... ... · · · 0
X(N,1) X(N,2) · · · X(N)



, (A.2)

where X(n), 1 ≤ n ≤ N , N ≤ K, are square irreducible matrices and are referred to as diagonal
blocks. Matrix (A.2) is referred to as the canonical form of X.

For the normal form we have

ρ(X) = max
1≤m≤N

ρ(X(m)). (A.3)

A diagonal block X(n), 1 ≤ n ≤ N , such that ρ(X(n)) = ρ(X) is referred to as maximal. Further,
we refer to a diagonal block X(n), 1 ≤ n ≤ N , as an isolated one if X(n,m) = 0, 1 ≤ m < n. If
X(n,m) = 0, 1 ≤ m < n, 1 ≤ n ≤ N , the matrix is referred to as block-irreducible. By De�nition 12
we have also that irreducibility is a special case of block-irreducibility with N = 1.

A.1.1 Interference interpretation of the canonical form
Let X = V be an interference matrix. Then, the diagonal blocks (by de�nition irreducible) in the
canonical form represent the interference matrices of entirely coupled link subsets, or subnetworks.
Clearly, N is then the maximal number of entirely coupled subnetworks into which the network can
be partitioned. The nondiagonal block V (n,m), 1 ≤ m < n ≤ N , contains interference coe�cients
expressing the interference from links in the n-th subnetwork perceived by the links in the m-th
subnetwork. The isolation of the diagonal block V (m) means that the m-th subnetwork does not
perceive interference from other subnetworks and hence can be referred to as interference-isolated.
Under block-irreducibility of V the network consists solely of interference-isolated subnetworks.

A.2 Particular results of Perron-Frobenius Theory
Theorem 1 ([38]) For any X ∈ RK×K+ and a > 0, the solution y ≥ 0,y 6= 0 of the equation

(aI −X)y = b

exists for any b ∈ RK++, if and only if a > ρ(X). In such case the solution p = (aI −X)−1b is
unique and such that p ∈ RK++.

A.3 Some general notions in optimization theory
A.3.1 Basics of Lagrangean optimization theory
Let an optimization problem

inf
x
F (x) subject to

{
fk(x) ≤ 0 k ∈ L
gk(x) = 0 k ∈ J , (A.4)

with arbitrary maps x 7→ F (x), x ∈ X ⊆ RK and x 7→ fk(x), x ∈ X , k ∈ L, be given, where
L = {1, . . . , L}, J = {1, . . . , J}.
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De�nition 13 Let the in�mum in problem (A.4) be bounded. Then, the problem is said to be
globally solvable if any local optimizer of (A.4) is also a global optimizer. If there exists some
local optimizer of (A.4) which is not a global optimizer, then problem (A.4) is referred to as locally
solvable.

Denoting λ = (λ1, . . . , λL), µ = (µ1, . . . , µJ), the Lagrangean function of problem (A.4) can be
written as [48], [49]

L(x,λ,µ) = F (x) +
∑

k∈L
λkfk(x) +

∑

k∈J
µkgk(x), (x,λ,µ) ∈ X × RL × RJ .

The variables λ ∈ RL, µ ∈ RJ are referred to as (vectors of) Lagrange multipliers or (Lagrange)
dual variables.

De�nition 14 ([48]) Given problem (A.4) with once di�erentiable maps F , fk, k ∈ L and gk,
k ∈ J , the set of inequalities

∇xL(x,λ,µ) = 0
fk(x) ≤ 0, k ∈ L
gk(x) = 0, k ∈ J

λkfk(x) = 0, k ∈ L
λ ≥ 0,

(A.5)

with (x,λ,µ) ∈ X × RL × RJ , is referred to as Kuhn-Tucker conditions, or Karush-Kuhn-Tucker
(KKT) conditions.

For the formulation of optimality conditions for x ∈ X relying on the Lagrangean function, it
is of crucial importance that the maps fk, k ∈ L, and gk, k ∈ J , satisfy a constraint quali�ca-
tion (condition) at x. For the general problem formulation (A.4) several nonequivalent versions of
constraint quali�cation are known, e.g. Kuhn-Tucker constraint quali�cation, weak (or modi�ed)
Arrow-Hurwicz-Urawa constraint quali�cation, or the best-known Slater's condition, which is, how-
ever, applicable only if fk, k ∈ L, are convex and {x ∈ X : gk(x) = 0, k ∈ J } is a convex set
[48].

De�nition 15 (Kuhn-Tucker constraint quali�cation [48]) Let problem (A.4) with once dif-
ferentiable maps fk, k ∈ L, and gk, k ∈ J , be given, and let L′(x) = {k ∈ L : fk(x) = 0}, where
x ∈ X satis�es the constraints in (A.4). Then, the Kuhn-Tucker constraint quali�cation is said to
be satis�ed at x if given

∇′fk(x)λ ≤ 0, ∇′gk(x)λ = 0 for some λ ∈ RK ,
there exists a map t 7→ h(t) ∈ X , t ∈ [0, 1], once di�erentiable at t = 0, such that h(t), t ∈ [0, 1],
satis�es the constraints in (A.4), h(0) = x and h′(0) = aλ for some a > 0.

There is a well-known su�cient condition for the constraint quali�cation for di�erentiable maps.
In some works it is even declared as the de�nition of constraint quali�cation [85].

Lemma 19 ([49]) Let x ∈ X satisfy the constraints in (A.4), let L′(x) = {k ∈ L : fk(x) = 0},
and let fk, k ∈ L, and gk, k ∈ J , be once di�erentiable. Then, constraint quali�cation is satis�ed
at x if ∇gk(x), k ∈ J , ∇fk(x), k ∈ L′(x), are pairwise independent.



144 Appendices

Lemma 20 (Kuhn-Tucker necessary and su�cient optimality theorem [48]) Let problem
(A.4) be globally solvable and maps F , fk, k ∈ L, and gk, k ∈ J , be once di�erentiable. Then, if
(x,λ,µ) ∈ X ×RL×RJ satis�es the Kuhn-Tucker conditions (A.5), then x is a global optimizer of
(A.4). If problem (A.4) is locally solvable and constraint quali�cation is satis�ed at a local optimizer
x ∈ X of (A.4), then x satis�es the Kuhn-Tucker conditions for some (λ,µ) ∈ RL × RJ .

Slightly simplifying, one says that x ∈ X satis�es the Kuhn-Tucker conditions (A.5), if x satis�es
(A.5) for some (λ,µ) ∈ RL × RJ .

A further interesting notion related to the Lagrangean function is the following.

De�nition 16 Let (x,λ,µ) ∈ X × RL × RJ satisfy the Kuhn-Tucker conditions (A.5) and let
L′(x) = {k ∈ L : fk(x) = 0}. We say that strict complementarity is satis�ed at (x,λ,µ) if λk > 0,
k ∈ L′(x).

Assume that problem (A.4) is perturbed in the sense that some k-th inequality constraint is
loosened in the sense fk(x) ≤ δ, k ∈ L, with δ > 0. The Lagrange price λk corresponds to the
sensitivity of the optimum value of such perturbed problem as a function of δ > 0 [47]. Thus, strict
complementarity at (x,λ,µ) ∈ X × RL × RJ means that inequality constraints which are tight at
(x,λ,µ) are relevant (or nontrivial) in the sense that their loosening provides an improvement in
the optimum value.

Besides the Kuhn-Tucker conditions, great interest is in the set of Second Order Su�ciency
Conditions (SOSC), which are su�cient conditions for the local minimizer property. In this work,
we make use of SOSC only for inequality constrained problems.

De�nition 17 ([49]) Let J = ∅ and de�ne L′(x) = {k ∈ L : fk(x) = 0}, x ∈ X . Then, the
Second Order Su�ciency Conditions (SOSC) are said to be satis�ed at a stationary point (x,λ) ∈
X × RL of the Lagrangian of problem (A.4) if and only if
i.) (x,λ) satis�es the Kuhn-Tucker conditions,
ii.) x′∇2

xL(x,λ)x > 0 for x 6= 0 satisfying
{
∇′fk(x)x = 0, k ∈ L′(x) ∩ {k ∈ L : λk > 0}
∇′fk(x)x ≤ 0, k ∈ L′(x) ∩ {k ∈ L : λk = 0}

SOSC are of immense importance in the development and analysis of locally convergent iterations
for nonconvex optimization problems. Precisely, they distinguish the local minimizers of the prob-
lem from other stationary points of the Lagrangian, as potential points of attraction of the given
iteration.

Note that under strict complementarity satis�ed at x ∈ X , k ∈ L′(x) implies λk 6= 0 so that the
last requirement in De�nition 17 ii.) is obsolete.

A.3.2 Characterization of numerical convergence
The rate of convergence of an iteration is usually characterized by the kind of convergence of roots
or quotients. The root and quotient convergence is measured by the norm-dependent convergence
factor and norm-independent convergence order.

De�nition 18 ([79]) Let an iteration x(n+1) = G(x(n)), n ∈ N, be given with I as the set of all
sequences of iterates convergent to a point of attraction x̃. Then, the p-th root convergence factor
is de�ned as

Rp(I, x̃) = sup
{x(n)}n∈I

lim sup
n→∞

‖x(n)− x̃‖ p
n , p ≥ 1,
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and the p-th quotient convergence factor takes the form

Qp(I, x̃) = sup
{x(n)}n∈I

lim sup
n→∞

‖x(n+ 1)− x̃‖
‖x(n)− x̃‖p , p ≥ 1, (A.6)

and is de�ned only if x(n) 6= x̃ for all but �nitely many n ∈ N.

Notice that Qp = 0 for p ∈ [1, p0), Qp = c < ∞ for p = p0 and Qp = ∞ for p ∈ (p0,∞) (and
similarly for Rp).

De�nition 19 ([79]) Let an iteration x(n+ 1) = G(x(n)), n ∈ N, be given with I = I(x̃) as the
set of all sequences of iterates convergent to a point of attraction x̃. Then, the root convergence
order is de�ned as

OR(I, x̃) = inf
p≥1:Rp(I,x̃)=∞

p, (A.7)

and the quotient convergence order takes the form

OQ(I, x̃) = inf
p≥1:Qp(I,x̃)=∞

p.

The description of convergence rate in terms of quotients is better-established than in terms of
roots, so that we focus on the �rst one. Based on the de�nition of quotient convergence order we
say that an iteration with an attraction point x̃ exhibits in any norm

linear quotient convergence if OQ(I, x̃) ≥ 1,
quadratic quotient convergence if OQ(I, x̃) ≥ 2.

(the notion of cubic quotient convergence exists as well, but is rarely used and hardly occurs in
practice). For instance, for gradient-related iterations we usually have linear quotient convergence,
while for the Newton iteration quadratic convergence can be achieved [49].

The notion of linear convergence can be re�ned for the certain metric/ norm considered [79].
Precisely, for an iteration with an attraction point x̃, we have for the certain norm in (A.6) [79]

superlinear quotient convergence if Q1(I, x̃) = 0,
sublinear quotient convergence if Q1(I, x̃) ≥ 1,

,

while the case 0 < Q1(I, x̃) < 1 is usually unchanged referred to as linear convergence. Note that by
the de�nitions of convergence factors and orders, the quadratic (norm-invariant) convergence implies
superlinear convergence in the particular norm considered. In an analogous way we can re�ne the
notion of quadratic convergence to norm-speci�c superquadratic and subquadratic convergence.

A.4 Some notions of convex analysis
De�nition 20 A set X ⊆ RK is said to be convex if

(1− t)x′ + tx′′ ∈ X , x′,x′′ ∈ X .

De�nition 21 A function x 7→ f(x), x ∈ X ⊆ RK , is said to be convex if

f(x(t)) ≤ (1− t)f(x′) + tf(x′′), x′,x′′ ∈ X , t ∈ (0, 1),

with x(t) = (1− t)x′ + tx′′.
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It is implied implicitly by De�nition (21) that a convex function is de�ned on a convex set.

De�nition 22 A function x 7→ f(x), x ∈ X ⊆ RK+ , is said to be log-convex if log f is a convex
function, that is,

f(x(t)) ≤ f(x′)(1−t)f(x′′)t, x′,x′′ ∈ X , t ∈ (0, 1),

with x(t) = (1− t)x′ + tx′′.

By the (weighted) geometric arithmetic mean inequality and De�nitions 21 and 22 follows that
log-convexity implies convexity but not conversely [121].

De�nition 23 ([74]) A vector pair (x̃, ỹ) ∈ X × Y is referred to as a saddle point of a function
(x,y) 7→ F (x,y), (x,y) ∈ X × Y, if F (x̃,y) ≤ F (x̃, ỹ) ≤ F (x, ỹ), x ∈ X , y ∈ Y.

Instead of verifying the pair of inequalities in De�nition 23, a saddle point can be identi�ed by
means of an equality, referred sometimes to as min-max max-min equality [153].

Proposition 43 ([153]) A vector pair (x̃, ỹ) ∈ X × Y is a saddle point of function (x,y) 7→
F (x,y), (x,y) ∈ X × Y, if and only if

inf
x∈X

sup
y∈Y

F (x,y) = sup
y∈Y

inf
x∈X

F (x,y),

and x̃ = arg min
x∈X

sup
y∈Y

F (x,y), and ỹ = arg max
y∈Y

inf
x∈X

F (x,y).

A.4.1 Min-max functions and convex-concave functions
Convex-concavity property is a straightforward composition of convexity and concavity [88].

De�nition 24 ([88]) We say that a function (x,y) 7→ F (x,y), (x,y) ∈ X ×Y, is convex-concave
in x,y (equivalently, as a function of x,y), if F is a convex function of x ∈ X and a concave
function of y ∈ Y.

Concave-convexity is de�ned analogously. Strict convex-concavity is an obvious extension of
De�nition 24. A twice Frechet-di�erentiable function (x,y) 7→ F (x,y), (x,y) ∈ X × Y is convex-
concave in x,y if and only if

∇2
xF (x,y) º 0, ∇2

yF (x,y) ¹ 0, (x,y) ∈ X × Y. (A.8)

Under strict convex-concavity, the inequalities (A.8) are strict and represent only a su�cient con-
dition [88].

The central property of a convex-concave function is the following.

Proposition 44 ([88]) If function (x,y) 7→ F (x,y), (x,y) ∈ X × Y, is convex-concave in x, y,
then it has either no stationary points or only saddle-points (ȳ, x̄) ∈ X × Y of the type [88]

(x̄, ȳ) = arg max
x∈X

min
y∈Y

F (x,y) = arg min
x∈X

max
y∈Y

F (x,y), (A.9)

and (x̄, ȳ) is unique if F is strictly convex-concave.
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The concept of a min-max function was introduced in [75] in order to e�ciently characterize
and classify min-max optimization problems and corresponding iterations.

De�nition 25 ([75]) We say that a function (x,y) 7→ F (x,y), (x,y) ∈ X × Y, is a min-max
function of x,y, if F is twice Frechet-di�erentiable and

∇2
xF (x,y)−∇′2x,yF (x,y)(∇2

yF (x,y))−1∇2
x,yF (x,y) º 0, ∇2

yF (x,y) ≺ 0, (x,y) ∈ X × Y.
A max-min function is de�ned analogously. The de�nition of a strict min-max function is a

straightforward extension of De�nition 25.
A min-max function has the following key property.

Proposition 45 ([75]) If (x,y) 7→ F (x,y), (x,y) ∈ X × Y, is a min-max function of x, y, then
it has either no stationary points or only min-max points (ȳ, x̄) ∈ X × Y such that [75]

(x̄, ȳ) = arg min
x∈X

max
y∈Y

F (x,y), (A.10)

and (x̄, ȳ) is unique if F is a strictly min-max function.

The class of min-max functions generalizes/ contains the class of twice Frechet-di�erentiable
convex-concave functions, for which the second inequality in (A.8) is strict (note that it does not
generalize the class of twice Frechet-di�erentiable convex-concave functions which are strictly convex
in x ∈ X [88]). Consequently, a min-max point (A.10) becomes a saddle point (A.9) if F is also
strictly convex-concave.

A.5 Some notes on polymatroids
De�nition 26 ([154]) A set function A 7→ f(A) ∈ RCard(E)

+ , A ⊆ E, with E = {1, . . . ,Card(E)}
is referred to as a rank function if
i.) f(∅) = 0 (f is normalized),
ii.) if A ⊆ B ⊆ E, then f(A) ≤ f(B) (f is increasing),
iii.) if A,B ⊆ E, then f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (f is submodular).

The de�nition of a polymatroid is the following.

De�nition 27 ([154]) A polymatroid is a polytope de�ned as

P(f) = {x ≥ 0 :
∑

i∈A
xi ≤ f(A), A ⊆ E}, (A.11)

with E = {1, . . . ,Card(E)} and a rank function A 7→ f(A) ∈ RCard(E)
+ , A ⊆ E.

For completeness it has to be noted that a polytope characterized by (A.11) but with reversed
inequality is sometimes referred to as a contra-polymatroid.

By De�nition 27, a polymatroid is a polytope representing an intersection of 2Card(E) − 1 half-
spaces and the nonnegative orthant RCard(E)

+ . Every polymatroid has Card(E)! vertices which lie
in the interior of the nonnegative orthant and each one of such vertices corresponds to a di�erent
permutation of elements in E. Precisely, given a permutation i 7→ πk(i), i ∈ E, 1 ≤ k ≤ Card(E)!,
the components of the corresponding vertex xπk = (xπk

1 , . . . , xπk

Card(E)) are

xπk
i = f({πk(j)}ij=1)− f({πk(j)}i−1

j=1), 1 ≤ i ≤ Card(E). (A.12)
We have a following interesting feature of linear programs de�ned on a polymatroid.
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Lemma 21 ([154]) Given any c ∈ RCard(E)
+ , the solution to the optimization problem

max
x∈P(f)

c′x,

where P(f) denotes the polymatroid determined by the rank function f , is the vertex xπk of P(f),
where πk orders the elements of c decreasingly, that is,

cπk(1) ≥ cπk(2) ≥ ... ≥ cπk(K).
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