
 
Model-based Testing  

of Real-Time Embedded Systems  
in the Automotive Domain 

 
 

vorgelegt von 
 

Dipl. Inform., Dipl. Ing. 
 Justyna Zander-Nowicka 

 
 

von der Fakultät IV – Elektrotechnik und Informatik 
der Technischen Universität Berlin 

zur Erlangung des akademischen Grades der 
 

Doktorin der Ingenieurwissenschaften 
 

– Dr.-Ing. –   
 
 

Genehmigte Dissertation 
 
 
 

 
 
Promotionsausschuss:  

Vorsitzender: Prof. Dr. –Ing. Clemens Gühmann 
Berichter: Prof. Dr. –Ing. Ina Schieferdecker 
Berichter: Prof. Dr. rer. nat. Ingolf Heiko Krüger 
 

Tag der wissenschaftlichen Aussprache: 19.12.2008 

 
Berlin, 2009 

D 83





 
Model-based Testing  

of Real-Time Embedded Systems  
in the Automotive Domain 

 
 

by 
 

M. Sc. 
Justyna Zander-Nowicka 

 
 
 

Faculty IV – Electrical Engineering and Computer Science 
Technical University Berlin 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

 
Doctor of Engineering Science 

 
– Eng. Sc. D. –   

 
                                                        Accredited Dissertation
 
 
 
Examination Board:  
Chairman: Prof. Eng. Sc. D. Clemens Gühmann
 
Supervisor: Prof. Eng. Sc. D. Ina Schieferdecker 
Technical University Berlin, Faculty of Electrical Engineering and Computer Science 

Supervisor: Prof. Dr. Ingolf Heiko Krüger 
University of California, San Diego, Department of Computer Science and Engineering 
 
Day of the Defense: December 19th, 2008  

 
 
 

       Berlin, 2009 
D 83 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my parents Ewa and Georg Zander. 





                                         iiii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Technical University Berlin 
Faculty IV – Electrical Engineering and Computer Science 
Department for Design and Testing of Telecommunications Systems  
Franklinstraße 28-29 
10587 Berlin, Germany  
http://www.iv.tu-berlin.de/ 
 
University of California, San Diego 
Department of Computer Science and Engineering 
UCSD CSE Building 
9500 Gilman Drive, Dept. 0404 
La Jolla, CA 92093-0404, U.S.A. 
https://sosa.ucsd.edu/ 



 
 
 

 

iii

Abstract 
 
Software aspects of embedded systems are expected to have the greatest impact on industry, 
market and everyday life in the near future. This motivates the investigation of this field. Fur-
thermore, the creation of consistent, reusable, and well-documented models becomes an impor-
tant stage in the development of embedded systems. Design decisions that used to be made at 
the code level are increasingly made at a higher level of abstraction. The relevance of models 
and the efficiency of model-based development have been demonstrated for software engineer-
ing. A comparable approach is applicable to quality-assurance activities including testing. The 
concept of model-based testing is emerging in its application for embedded systems. 
 
Nowadays, 44% of embedded system designs meet only 20% of functionality and performance 
expectations [Enc03, Hel+05]. This is partially attributed to the lack of an appropriate test ap-
proach for functional validation and verification. Hence, the problem addressed by this innova-
tion relates to quality-assurance processes at model level, when neither code nor hardware ex-
ists. A systematic, structured, and abstract test specification is in the primary focus of the inno-
vation. In addition, automation of the test process is targeted as it can considerably cut the ef-
forts and cost of development.  
 
The main contribution of this thesis applies to the software built into embedded systems. In par-
ticular, it refers to the software models from which systems are built. An approach to functional 
black-box testing based on the system models by providing a test model is developed. It is con-
trasted with the currently applied test methods that form dedicated solutions, usually specialized 
in a concrete testing context. The test framework proposed herewith, is realized in the MAT-
LAB®/Simulink®/Stateflow® [MathML, MathSL, MathSF] environment and is called Model-
in-the-Loop for Embedded System Test (MiLEST).  
 
The developed signal-feature – oriented paradigm allows the abstract description of signals 
and their properties. It addresses the problem of missing reference signal flows as well as the 
issue of systematic test data selection. Numerous signal features are identified. Furthermore, 
predefined test patterns help build hierarchical test specifications, which enables a construc-
tion of the test specification along modular divide-and-conquer principles. The processing of 
both discrete and continuous signals is possible, so that the hybrid behavior of embedded sys-
tems can be addressed.  
The testing with MiLEST starts in the requirements phase and goes down to the test execution 
level. The essential steps in this test process are automated, such as the test data generation and 
test evaluation to name the most important.  
 
Three case studies based on adaptive cruise control are presented. These examples correspond 
to component, component-in-the-loop, and integration level tests. Moreover, the quality of the 
test specification process, the test model, and the resulting test cases is investigated in depth. 
The resulting test quality metrics are applied during the test design and test execution phases so 
as to assess whether and how the proposed method is more effective than established tech-
niques. A quality gain of at least 20% has been estimated. 
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Zusammenfassung 
 

Die Forschung im Bereich Software-Aspekte von eingebetteten Systemen wird in naher Zu-
kunft entscheidenden Einfluss auf Industrie-, Markt- und Alltagsleben haben. Das regt die Un-
tersuchung dieses Anwendungsgebietes an. Weiterhin wird die Erstellung eines konsistenten, 
wiederverwendbaren und gut dokumentierten Modells die wichtigste Aufgabe bei der Entwick-
lung von eingebetteten Systemen. Designentscheidungen, die früher auf der Kodeebene be-
schlossen wurden, werden heute zunehmend auf einer höheren Abstraktionsebene getroffen. 
Außerdem, wenn die Debatte über die Relevanz von Modellen und modellbasierter Entwick-
lung für die Softwaretechnik zutreffend ist, dann besitzt sie auch Gültigkeit für Aktivitäten der 
Qualitätssicherung einschließlich Testen. Hiermit wird das Konzept des modellbasierten Tes-
tens entwickelt. 
Heutzutage erfüllen 44% der eingebetteten Systemdesigns 20% der Erwartungen an Funktiona-
lität und Leistung [Enc03, Hel+05]. Das liegt zum Teil daran, dass ein passender Testansatz für 
funktionale Validierung und Verifikation fehlt. Folglich bezieht sich das in dieser Dissertation 
besprochene Problem auf den Qualitätssicherungsprozess auf Modellebene, wenn weder Kode 
noch Hardware existiert. Eine systematische, strukturierte, wiederholbare und möglichst abs-
trakte Testspezifikation ist der Hauptschwerpunkt dieser Arbeit. Ein weiteres Ziel ist eine Au-
tomatisierung des Testprozesses, da diese den Arbeitsaufwand und die Kosten der Entwicklung 
beträchtlich senken kann. 
 
Der Hauptbeitrag dieser Dissertation gilt für Software der eingebetteten Systemen und bezieht 
sich die eigentliche Breite dieser Arbeit auf Modelle des Softwares, auf deren Grundlage folg-
lich die Systeme gebaut werden. Ein Ansatz für funktionale Black-Box Tests, die auf den Mo-
dellen basieren und die selbst auch ein Testmodell darstellen, wurde entwickelt. Dem stehen 
derzeit verwendete Testmethoden gegenüber, die zweckbestimmte Lösungen für in der Regel 
spezialisierte Testzusammenhänge darstellen. Die hier vorgeschlagene Testframework wurde in 
einer MATLAB®/Simulink®/Stateflow®-Umgebung realisiert und trägt den Namen Model-in-
the-Loop for Embedded System Test (MiLEST).  
 
Das Signalsmerkmals-orientierte Paradigma erlaubt eine abstrakte Beschreibung eines Signals 
und spricht sowohl die Probleme des fehlenden Verlaufes von Referenzsignalen als auch der 
systematischen Testdatenauswahl an. Zahlreiche Signalsmerkmale werden identifiziert und 
klassifiziert, vordefinierte Testmuster helfen, hierarchische Testspezifikationen zu bilden. Da-
durch wird die Verarbeitung von diskreten und kontinuierlichen Signalen möglich, so dass das 
hybride Verhalten des Systems adressiert wird. 
Das Testen mittels MiLEST beginnt in der Anforderungsphase und geht hinunter auf das Test-
durchführungsniveau. Einige Prozessschritte sind automatisiert, wobei die Testdatengenerie-
rung und die Testauswertung zu den wichtigsten zählen. 
 
Drei Fallstudien, die auf der Funktionalität des Tempomats basieren, werden vorgestellt. Diese 
Beispiele entsprechen den Komponententests, Component-in-the-Loop-Tests und Integrations-
niveautests. Außerdem, werden die Qualität des Testspezifikationsprozesses, des Testmodells 
und der resultierenden Testfälle genauer untersucht. Die Testqualitätsmetriken werden dann 
während der Testkonstruktion und der Testdurchführung angewendet, um einzuschätzen, ob 
und in welchem Maße sich die vorgeschlagene Methode von bekannten Techniken unterschei-
det. Qualitätsgewinn von mindestens 20% wird abgeschätzt. 
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1 Introduction 

“Science arose from poetry… when times change  
the two can meet again on a higher level  

as friends.” 
 

- Johann Wolfgang von Goethe 
 

1.1 Background and Motivation 

The worldwide market for advanced embedded controllers is growing strongly, driven mainly 
by the increasing electronic applications in vehicles and the need for comfort and convenience. 
Studies in [FS08] expect the European market to grow to € 1.14 billion in 2015 at a compound 
annual growth rate (CAGR) of 10.9% from € 499 million in 2007, which substantiates the 
growth of the advanced electronic control unit (ECU) market. Giving the background for com-
parison, the worldwide hardware and software market is expected to grow by 8% per annum 
[Kri05], whereas the average annual growth rate of the gross domestic product (GDP) has been 
5% between 2004 and 2006 [OECD08]. Global light-vehicle production is forecast to grow 
from 67 million in 2007 to 80 million in 2015 [AES08]. 
Furthermore, software shows the highest growth rate within embedded systems. The estimated 
average annual growth rates between 2004 and 2009 are 16% for embedded software [Kri05, 
Hel+05, OECD05]. 
Within the past few years the share of software-controlled innovations in the automotive indus-
try has increased from 20% to 85% [Hel+05] and is still growing [MW04, SZ06, BKP+07]. 
Studies predict that software will determine more than 90% [KHJ07] of the functionality of 
automotive systems in the near future. Consequently the impact of software on the customer 
and, hence, on market shares and competition will be enormous. [LK08] conclude that software 
is established as a key technology in the automotive domain.  

1.1.1 Current Trends for Embedded Systems  

This thesis is primarily focused on the research on the software aspects of embedded systems, 
since this field is expected to have the greatest impact on industry, market, and everyday life in 
the near future [BKP+07]. The increasing system functionality can only be realized by a reason-
able shift from hardware to software [LK08]. Software development offers more flexibility, 
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more variants can be built and, finally, development time and cost can be reduced. At the same 
time, this software often plays a critical role and a failure can result in expensive damage to 
equipment, injury, or even death. 
Moreover, the widening design productivity gap has to be addressed by advances in design ca-
pabilities. Automation of the process is greatly needed. This applies not only to embedded sys-
tems development and deployment, but also, consequently, to quality assurance of the entire 
development process, and the resulting software – not to mention the fundamental research in 
any of these areas [Hel+05].  

1.1.2 Relevance of Model-based Activities 

The creation of consistent, reusable, and well-documented models becomes the important stage 
in the development of embedded systems [Hel+05]. Hence, the concept of model-based devel-
opment (MBD) emerges. Due to the increasing complexity of the developed systems it is neces-
sary to model correctly and to implement the chosen design in a correct manner. The future 
importance of design-level methods and tools is illustrated by the current shift from implemen-
tation towards design [UL06, CD06]. A lot of decisions formerly made during the implementa-
tion phase should already be done on a higher level of abstraction. The paradigm shift is also 
reflected by the increasing use of modeling tools, such as MATLAB®/Simulink®/Stateflow® 
(ML/SL/SF) [MathML, MathSL, MathSF] or UML®-based tools [UML, BBH04, BGD07]. 
 
With the trend towards behavioral modeling in several embedded systems domains, the imple-
mentation of such models becomes gradually more straightforward. This implies a new stan-
dard of the engineers’ competence at the design level [Hel+05]. Subsequently, the role of the 
traditional programmer becomes more restricted since the properly designed models are often 
executable. Virtual prototyping, integration, or transformation into different kinds of model is 
already possible. Hence, substantial parts of the implementation are generated based on models. 
The generated code, if optimized2, is compiled in the traditional way for different platforms. 
Such an approach is manifested within the standardization efforts of the Object Management 
Group (OMG) in the context of Model Driven Architecture (MDA) [MDA], where platform-
independent models (PIMs) can be enriched with platform-specific information. The resulting 
platform specific models (PSMs) are then the basis for code generation. Also, AUTomotive 
Open System Architecture (AUTOSAR) [ZS07] contains the idea of MDA, although a bit more 
specific. It shows that in the near future, generation of the optimized code from models will be 
possible without losing the precision of handwritten code. 
 
MBD introduction is clearly to be observed in the automotive domain. At the end of the 1990s a 
paradigm shift in the development of software-based vehicle functions was initiated. Tradi-
tional software development on the basis of textual specifications and manual coding has not 
been possible any more due to the increasing complexity of software-intensive systems, espe-
cially in the context of control theory. Hence, MBD emerged with the application of executable 
                                                        
 
 
2  The limited resources of the embedded systems for which the code is generated require optimization techniques to be ap-

plied whenever possible in order to generate efficient code with respect to different dimensions (e.g., memory consump-
tion or execution speed) [SCD+07]. 
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models and automatic coding [SM01, CFG+05, LK08] in its background. Within MBD, an ex-
ecutable functional model of the ECU is created at an early stage in the development process. 
The model consists usually of block diagrams and extended state machines. It can be simulated 
together with a plant (e.g., a vehicle) so as to be implemented on the ECU afterwards. Due to 
the availability of executable models, analytical methods can be applied early and integrated 
into subsequent development steps. The models form a basis for further activities, such as code 
generation, model transformations, validation, verification, or testing. The positive effects such 
as early error detection and early bug fixing are obvious [CFB04, SG07]. 
 
In this thesis, the principles of system development apply to the test system as well. If the dis-
cussion about the relevance of models and model-based development is true for software and 
system production, it is also valid for their quality-assurance activities, obviously, including 
testing [Dai06, ISTQB06]. With this practice, the concept of model-based testing emerges.  

1.1.3 Quality and Testing  

An embedded system [BBK98, LV04] is a system built for dedicated control functions. Unlike 
standard computer systems, embedded systems do not usually come with peripheral devices, 
since hardware is minimized to the greatest possible extent. Embedded software [LV04] is the 
software running on an embedded system. Embedded systems have become increasingly so-
phisticated and their software content has grown rapidly in the last few years. Applications now 
consist of hundreds of thousands, or even more, lines of code. The requirements that must be 
fulfilled while developing embedded software are complex in comparison to standard software. 
Embedded systems are often produced in large volumes and the software is difficult to update 
once the product is deployed. Embedded systems interact with real-life environment. Hybrid 
aspects are often expressed via mathematical formulas. In terms of software development, in-
creased complexity of products, shortened development cycles, and higher customer expecta-
tions of quality implicate the extreme importance of software testing. Software development 
activities in every phase are error prone, so the process of defect detection plays a crucial role. 
The cost of finding and fixing defects grows exponentially in the development cycle. The soft-
ware testing problem is complex because of the large number of possible scenarios. The typical 
testing process is a human-intensive activity and as such it is usually unproductive and often 
inadequately done. Nowadays, testing is one of the weakest points of current development prac-
tices. According to the study in [Enc03] 50% of embedded systems development projects are 
months behind schedule and only 44% of designs meet 20% of functionality and performance 
expectations. This happens despite the fact that approximately 50% of total development effort 
is spent on testing [Enc03, Hel+05]. The impact of research on test methodologies that reduce 
this effort is therefore very high and strongly desirable [ART05, Hel+05].  
 
Although, a number of valuable efforts in the context of testing already exist, there is still a lot 
of space to improve the situation. This applies in particular to the automation potential of the 
test methods. Also, a systematic, appropriately structured, repeatable, and consistent test speci-
fication is still an aim to be reached. Furthermore, both abstract and concrete views should be 
supported so as to improve the readability, on the one hand, and assure the executability of the 
resulting test, on the other. In the context of this work, further factors become crucial. The test-
ing method should address all aspects of a tested system – whether a mix of discrete and con-
tinuous signals, time-constrained functionality, or a complex configuration is considered. In 
order to establish a controlled and stable testing process with respect to time, budget and soft-
ware quality, the software testing process must be modeled, measured and analyzed [LV04]. 
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The existence of executable system models opens the potential for model-based testing (MBT). 
Nowadays, MBT is widely used; however, with slightly different meanings. In the automotive 
industry MBT is applied to describe all testing activities in the context of MBD [CFS04, 
LK08]. It relates to a process of test generation based on the model of a system under test 
(SUT). A number of sophisticated methods representing the automation of black-box test de-
sign [UL06] are used. Surveys on different MBT approaches are given in [BJK+05, Utt05, 
UL06, UPL06, D-Mint08]. This will be discussed in Section 2.3.4 in detail.  
 
In this thesis, additionally, requirements-based testing is considered. Furthermore, a graphical 
form of a test design will increase the readability. The provided test patterns will considerably 
reduce the test specifications effort and support their reusability. Then, an abstract and common 
manner of describing both discrete and continuous signals will result in automated test signals 
generation and their evaluation.  

1.1.4 Automotive Domain 

Studies show that the strongest impact of embedded systems on the market has to be expected 
in the automotive industry. The share of innovative electronics and software in the total value 
of an automobile is currently estimated to be at least 25%, with an expected increase to 40% in 
2010 and up to 50% after 2010 [Hel+05, SZ06]. Prominent examples of such electronic systems 
are safety facilities, advanced driver assistance systems (ADAS), or adaptive cruise control 
(ACC). These functionalities are realized by software within ECUs. A modern car has up to 80 
ECUs [BBK98, SZ06].  
Furthermore, the complexity of car software dramatically increases as it implements formerly 
mechanically or electronically integrated functions. Yet, the functions are distributed over sev-
eral ECUs interacting with each other.  
At the same time, there is a demand to shorten time-to-market for a car by making its software 
components reliable and safe. Additionally, studies in [Dess01] show that the cost of recalling a 
car model with a safety-critical failure can be more than the cost of thorough test-
ing/verification. Under these circumstances the introduction of quality-assurance techniques in 
the automotive domain becomes obvious and will be followed within this work.  

1.2 Scope, Contributions and Structure of the Thesis  

After a short motivation on the topic discussed in this thesis, the concrete problems handled 
here, are outlined. Then, the structure of the thesis is provided, followed by its roadmap for 
reading purposes.  
In addition, before the main contributions are explained, a brief report on the scope is given. 
The major results achieved in this thesis apply to the software part of embedded systems, in 
general. Following the current trends of model-based development, the actual scope of this 
work refers to the models of software, on which, the systems are built. To avoid repeating this 
term, whenever system (or system model, system design, software) is referred to in the thesis, 
the model of a software-intensive embedded system is usually meant, unless the context is ex-
plicitly indicated. This form of reasoning reflects the tendency to study the abstract level of sys-
tems within the considered domain [Pre03b, Con04b, Utt05, BFM+05, CFG+05, AKR+06, 
BDG07]. This practice also reflects the trend that the embedded systems are often seen in a ho-
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listic way, i.e., both software and its surrounding hardware trigger the expected functionality 
[KHJ07]. 
The main research problem this thesis is concerned with, relates to assuring the quality of the 
embedded system by means of testing at the earliest level of its development. Based on the 
analysis of the overall software and test development process, the following questions arise: 
 

1. What is the role of a system model in relation to quality assurance? What is the role of 
a test model and what elements does such a test model include? What does MBT mean 
in the context of embedded systems? Is it possible to use a common language for both 
system and test specifications? 

2. How can discrete and continuous signals be handled at the same time? How should a 
test framework be designed and a test system realized? What are the reasons and con-
sequences of the design decisions in terms of test generation and test evaluation?  

3. How can the process of test specification and test execution be automated to the high-
est possible extent? What is / is not possible to be automated and why? 

4. How can the test quality of the test method be assured itself? Which means should be 
used and what do they mean in practice?   

 
The resulting contributions of this thesis can be divided into four main areas:  
 

1. Model-based test methodology for testing the functional behavior of embedded, hybrid, 
real-time systems based on the current software development trends from practice;  

2. In the scope of this methodology, a manner to test the behavior of hybrid systems, in-
cluding the algorithms for systematic test signal generation and signal evaluation;  

3. Synthesis of a test environment so as to automate the creation of a comprehensive test 
system, which is achieved by means of test patterns application that are organized into 
a hierarchy on different abstraction levels;  

4. Assurance of the quality of the resulting test by providing the test metrics and support-
ing high coverage with respect to different test aspects.  

 
These are denominated as challenges in the following and the discourses are tackled for each of 
them separately, but not in isolation. 
 
For the first challenge, now an introductory remark should already be given. The test frame-
work resulting from this thesis is called Model-in-the-Loop for Embedded System Test 
(MiLEST). It is realized in the ML/SL/SF since currently about 50% [Hel+05] of functional be-
havior for embedded systems, particularly in the automotive domain, is modeled using this en-
vironment. Considering the fact that nowadays the integration of validation, verification, and 
testing techniques into common design tools is targeted [Hel+05], the argumentation for choos-
ing this framework for test extensions becomes clear. This practice enables to find a common 
understanding of software quality problems for both system and test engineers.  
 
In order to clarify and solve the challenges listed above, in the upcoming paragraphs the struc-
ture of this work will be provided with a special emphasis on the given challenges and devel-
oped contributions for each of them.  
 
This thesis is organized as follows. This chapter gives an overview and scope of the research 
topics of this thesis. It introduces the problems that the work is dealing with, its objectives, con-
tributions, structure, and roadmap.  
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Next, Chapter 2 (cf. Figure 1.1) includes the backgrounds on embedded systems, control the-
ory, ML/SL/SF environment, and test engineering. Additionally, the test dimensions are ex-
tracted so as to guide the general aims of this work. The emphasis is put on functional, abstract, 
executable, and reactive tests at the Model-in-the-Loop (MiL) level.   
 
Chapter 3 introduces the related work on MBT with respect to embedded systems. For that pur-
pose an MBT taxonomy is provided. Herewith, a link to the first challenge is done. The roles of 
the system model and test model are analyzed. Also, common language for both of them is ap-
plied. The discussion results in a shape of the test methodology proposed in this thesis. It is 
called Model-in-the-Loop for Embedded System Test (abbreviated as MiLEST) and realized as 
an ML/SL/SF library.  
All of the chapters named so far constitute the first general part of the thesis.  
 
The second part relates to the test approach developed herewith. Chapter 4 characterizes a new 
means for signal description by application of signal features. By that, it relates to the second 
challenge answering the question of how to handle continuous and discrete signals simultane-
ously. The algorithms for signal-feature generation and evaluation are presented. They are used 
along a nested architecture for the resulting test system, which is described in Chapter 5 in de-
tail. Additionally, an overview of the proposed test development process and its automation is 
provided. A discussion on test patterns is given so as to support a fast and efficient reusability 
of the created test specifications. By that, the third challenge is addressed.  
 
Chapter 5 utilizes the results of Chapter 4 and addresses the further questions of the second 
challenge. Different abstraction levels of the MiLEST test system are outlined. The test harness 
level including the patterns for test specification, test data generator, and test control is de-
scribed. Then, the test requirements level, test case, and validation function levels follow sub-
sequently. Based on that, algorithms for an automatic test stimuli generation are investigated. 
This relates again to the third challenge. The obtained test models can be used for both validat-
ing the system models and testing its implementation.  
Chapter 5 also includes the first considerations on the integration level tests. Here, benefits of 
applying different views on the test specification are discussed.  
 
Finally, the last part of this thesis reveals the practical substance of the work. In Chapter 6, 
three case studies are discussed to validate each of the presented concepts in practice. The ex-
amples are related to the functionality of an adaptive cruise control utilized in a vehicle.  
 
Afterwards, they are evaluated in Chapter 7, which deals with the test quality metrics for the 
proposed test methodology, obtained test designs, and generated test cases. This piece of work 
relates to the fourth challenge. The concepts of test completeness, consistency, and correctness 
are handled herewith.   
 
Chapter 8 completes this work with a summary and outlook. The MiLEST capabilities and limi-
tations are reviewed, the general trends of the quality assurance for embedded systems are re-
called and influences of the contributions of this thesis are outlined. 
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Figure 1.1: Dependencies between Chapters. 

 

1.3 Roadmap of the Thesis  

In this section, the dependencies between chapters throughout this thesis are outlined (cf. Figure 
1.1). These are also revealed following different reading-paths for this thesis (cf. Figures 1.2 to 
1.4). 
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The detailed discussion on software and test engineering in Chapter 2 serves mostly as a foun-
dation for the considered topics.  
Chapter 3 includes a review of the model-based testing approaches. Readers who are familiar 
with the related work on testing embedded systems are invited to skip this chapter and to con-
sider its contents as additional information.  
Chapters 4 and 5 contain the central achievements of the presented work. The concept of signal 
feature which is presented in Chapter 4 is used as the basis for Chapter 5. Thus, Chapter 5 
should not be read without the understanding of the backgrounds outlined in Chapter 4.  
Chapters 6 and 7 validate and evaluate the proposed concepts. 
 
The three major perspectives that might be interesting for the reader yield three different read-
ing-paths through this thesis, besides the usual sequential one. Below, a brief survey of these 
paths is given.  
 
Whenever an overview of the subjects and results of the thesis is needed, it is recommended to 
focus on this introductory chapter, the signal-feature concept discussed in Section 4.1, the 
evaluation of the soundness and completeness of the contributions described in Chapter 7, and 
the overall conclusions provided in Chapter 8. Additionally, the reader might want to refer to 
the summaries given at the end of each chapter, which provide the essential information on 
their contents. 
 

Button1
INTRODUCTION

Button3.4
SELECTED TEST APPROACHES

Button4.1, 4.6
A NEW TEST PARADIGM

Button5.9
THE TEST SYSTEM

Button6.5
CASE STUDIES

Button7
VALIDATION AND EVALUATION

Button8
SUMMARY

 
 

Figure 1.2: Roadmap for Gaining the General Overview of this Thesis. 

 
The profound understanding of the proposed test methodology supported by MiLEST may be 
best instilled through reading selected sections of Chapters 3 – 5 and Chapter 6. To understand 
the different aspects contributing to the overall shape of the methodology, it is proposed to re-
view the test dimensions (cf. Sections 2.3.2 and 2.3.4) and test categories of the MBT (cf. Sec-
tion 3.3). A short explanation of the main concept, on which MiLEST is based, can be extracted 
from Section 4.1. Then, the test development process on an abstract level is introduced in Sec-
tion 4.4. Its application is revealed in the analysis of the case studies in Chapter 6. For back-
ground information on the quality and completeness of the proposed methodology the reader is 
additionally referred to Chapter 7. 
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Figure 1.3: Roadmap for Studying the Proposed Test Methodology. 

 
Readers interested in the MiLEST implementation that realizes the contributions of this thesis 
are invited to go through selected sections of Chapter 4, first. There, signal generation and sig-
nal evaluation algorithms (cf. Sections 4.1 and 4.2) are provided, both based on the signal-
feature concept. To fit the implementation into the entire test development process along 
MiLEST methodology, Section 4.4 could be helpful. Following this, Chapter 5 includes the 
detailed technical description of the MiLEST test system and its hierarchical structure.  
 

Button1
INTRODUCTION

Button4.1, 4.2, 4.4
A NEW TEST PARADIGM

Button5
THE TEST SYSTEM

Button8
SUMMARY  

 

Figure 1.4: Roadmap for Studying the Implementation. 

 
 



 

2 Fundamentals 

“The important thing is not to stop questioning.” 
 

- Albert Einstein 
 
 

In this chapter the fundamentals of embedded systems, their development and testing are pro-
vided. Firstly, in Section 2.1, the notion of the system under consideration from different per-
spectives is given. Thus, the definitions of embedded, hybrid, reactive, and real-time systems 
are explained, respectively. In addition, the backgrounds on electronic control units and control 
theory are discussed. Understanding the characteristics of the system under test (SUT) enables 
further considerations on its development and quality-assurance methods. Further on, in Section 
2.2, the concepts of model-based development from the automotive viewpoint are introduced. 
MATLAB/Simulink/Stateflow (ML/SL/SF) as an example of a model-based development 
framework is introduced and related approaches are listed.  
Section 2.3 gives an insight into the testing world. First, the testing aspects important for the 
automotive domain are described in detail by categorizing them into different dimensions. 
Then, requirements on testing within the considered domain are specified. Furthermore, a 
model-based testing definition and its goals are introduced. A discussion on test patterns com-
pletes the theoretical basics.  

2.1 Yet Another System under Test   

As already discussed in Chapter 1, the main contribution of this work applies to models of soft-
ware-intensive embedded systems. Whenever a system (or system model, system design, soft-
ware) is referred to in this thesis, the model is usually meant.  

2.1.1 Embedded System  

An embedded system (ES) is any computer system or computing device that performs a dedi-
cated function or is designed for use with a specific software application [BBK98, Hel+05]. In-
stead of dealing with data files, it deals with the control of physical phenomena. It is frequently 
connected to a physical environment through sensors and actuators as shown in Figure 2.1. 
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Environment (i.e., External Process)
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Embedded System 
(e.g., Electronic Control Unit)

Embedded Software
 

Figure 2.1: Interactions of Embedded System with the Environment. 

 
ES [Hel+05] is a specialized computer system that is part of a larger system or machine. All 
appliances that have a digital interface – watches, microwaves, cars, planes, industrial robots, 
security systems – utilize ESs. Some of them include an operating system, but many are so spe-
cialized that the entire logic can be implemented as a single program. Nowadays, software inte-
grated with the ES, also called embedded software [Con04b], makes up 85% [Hel+05] of the 
value of the entire ES.  

2.1.2 Hybrid System  

Hybrid means generally combining two different technologies or systems. A hybrid system is a 
dynamic system that exhibits both continuous and discrete dynamic behavior [Hen00]. Its be-
havior can be described by both differential equations and difference equations. Hybrid systems 
evolve in continuous time with discrete jumps at particular time instances [Tiw02]. For exam-
ple, an automobile engine whose continuous fuel injection is regulated by a discrete microproc-
essor is a hybrid system [Hen00]. 

2.1.3 Reactive System  

In opposite to the transformative systems, reactive systems with a typically non-terminating 
behavior interact with their environment. As a result, once started, a reactive system operates 
continually [Krü00]. It accepts input from its environment, it changes its internal state at the 
same time [Hel+05] and produces corresponding outputs. Reactive systems never halt, although 
the output of these systems may always be empty from a certain point in time onward.  
A reactive system is characterized by a control program that interacts with the environment or 
another control program [MW91, HP85]. ESs are usually reactive.  
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2.1.4 Real-Time System  

According to [LL90], a real-time system is a computing system where initiation and termina-
tion of activities must meet specified timing constraints. The correctness of a computation not 
only depends on the logical correctness of the system, but also on the time at which the result is 
produced. A real-time system has to obey hard, soft, and statistical [Dess01, Hel+05] real-time 
properties. 
 
Hard real-time properties are timing constraints which have to be fulfilled in any case. An ex-
ample is the autopilot of an aircraft, where violation of hard real-time constraints might lead to 
a crash.  
 
Soft real-time properties are time constraints which need to be satisfied only in the average 
case, to a certain percentage, or fast enough. An example is video transmission where a delayed 
frame might either be displayed or dropped, which is not perceivable as long as no consecutive 
frames are affected [Dess01]. Another example is the software that maintains and updates the 
flight plans for commercial airliners.  
 
In statistical real time, deadlines may be missed, as long as they are compensated by faster per-
formance elsewhere to ensure that the average performance meets a hard real-time constraint. 
To be able to fully assess the consequences of the statistical behavior, stochastic analysis is re-
quired. However, it is always possible to transform this into a deterministic analysis by investi-
gating the worst case situation [Dess01]. 
 
Typical examples of timing constraints are: 

− the value from the sensor must be read every 100 ms 
− the Worst-Case Execution Time (WCET) of process A is 160 ms 
− it is expected that when event B finishes, event A appears after 10 ms 
− it is expected that when event B appears, then during 20 ms signal A will be continu-

ously sent  
− it is expected that within 5 ms all events stop  

2.1.5 Electronic Control Unit in the Automotive 

In the automotive domain, an embedded system is called an electronic control unit (ECU). It 
controls one or more of the electrical subsystems in a vehicle. In a car, ECUs are connected via 
bus systems such as, e.g., CAN3, LIN4, MOST5, FlexRay™6 [Sch06] among others.  

                                                        
 
 
3   CAN in Automation – www.can-cia.org [04/04/08]. 

4   LIN Consortium – www.lin-subbus.de [04/04/08]. 

5   MOST Cooperation – www.mostnet.org [04/04/08]. 

6   FlexRay Group – www.flexray.com [04/04/08]. 
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An instance of embedded system in the form of an ECU controller has been depicted in Figure 
2.1. The external process is a process that can be of physical, mechanical, or electrical nature 
[GR06]. Sensors provide information about the current state of the external process by means 
of so-called monitoring events. They are transferred to the controller as input events. 
The controller must react to each received input event. Events usually originate from sensors. 
Depending on the received events from sensors, corresponding states of the external process 
are determined.  
Actuators receive the results determined by the controller which are transferred to the external 
process. 
 
A classification of the application fields of ECUs according to [SZ06] is given below: 

− Body (e.g., for headlights, brake lights, air conditioning, power windows) 
− Comfort (e.g., for seat and steering-position adjustment, seat heating) 
− Engine and power train (e.g., for fuel injection, battery recharging) 
− Dashboard for speedometer, odometer, fuel gauge 
− Chassis, driving functions 
− Telematics and entertainment for audio/video systems 

Automotive software, similarly to embedded software for an embedded system, the software is 
driving an ECU within automobiles.  

2.1.6 Control Theory  

Considering the ECUs (in particular, closed-loop ECUs), it is inevitable to introduce the basics 
of control theory. Aristotle7 [Ack81] already started to think about the control theory [Ben79]. 
Following his statement “… if every instrument could accomplish its own work, obeying or an-
ticipating the will of others … chief workmen would not want servants, nor masters slaves” 
[AR], his wish was to automatize the behavior of others (e.g., people, devices) using a set of 
clearly defined criteria. This is also the idea behind the development of embedded systems – to 
force them so that they work in a manner they are designed. If so, quality assurance for this de-
velopment gains the priority too.  
 
Control theory is an interdisciplinary branch of engineering and mathematics that deals with the 
behavior of dynamic systems. The desired output of a system is called the reference. When one 
or more output variables of a system need to follow a certain reference over time, a controller 
manipulates the inputs to a system to obtain the desired effect on the output of the system. 
Control theory introduces a feedback. Feedback is a process whereby some proportion of the 
output signal of a system is passed (fed back) to the input. This is often used to control the dy-
namic behavior of the system [SG03, MSF05]. A closed-loop controller uses feedback to con-
trol states or outputs of a dynamic system. Its name is derived from the information path in the 
system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process 

                                                        
 
 
7   Aristotle (384 B.C. – 322 B.C.) was a Greek philosopher, a student of Plato and teacher of Alexander the Great. He wrote 

on many different subjects, including physics, metaphysics, poetry, theater, music, logic, rhetoric, politics, government, 
ethics, biology and zoology [Ack81]. 
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outputs (e.g., velocity or torque of the motor), which is measured with sensors and processed by 
the controller. The resulting control signal is used as input to the process, closing the loop. 
 
Closed-loop controllers have the following advantages over open-loop controllers [Kil05]: 

− guaranteed performance  
− rejection of disturbance (e.g., unmeasured friction in a motor) 
− capability to stabilize unstable processes 
− reduced sensitivity to parameter variations 
− improved performance for reference tracking 
 

A simple controller (see Figure 2.2) attempts to correct the error between a measured process 
variable (i.e., output – y(t)) and a desired setpoint (i.e., reference – r(t)) by calculating and then 
producing a corrective action (i.e., error – e(t)) that can adjust the process accordingly.  
In particular, the output of the system y(t) is fed back to the reference value r(t), through a sen-
sor measurement. The controller C then uses the error e(t) (i.e., difference between the refer-
ence and the output) to change the inputs u to the system under control P (e.g., a car). 
 

-

+
C P

r e u y

 
Figure 2.2: A Simple Closed–Loop Controller. 

 
This situation is called a single-input-single-output (SISO) control system. Multi-Input-Multi-
Output (MIMO) systems, with more than one input/output, are common. In such cases, vari-
ables are represented through vectors instead of simple scalar values. For some distributed pa-
rameter systems the vectors may be infinite-dimensional (typically functions).  
 
Common closed-loop controller architecture, widely used in industrial applications, is the pro-
portional-integral-derivative (PID) controller [Kil05]. Its name refers to the three terms operat-
ing on the error signal to produce a control signal. Its general form is:  
 

dt
deKdtteKteKtu D

t

IP ++= ∫
0

)( )( )( , 

 
where:         KP – proportional gain  
                    KI – integral gain  
                    KD – derivative gain. 
 
Larger KP typically means faster response since the larger the error, the larger the proportional 
term compensation. An excessively large proportional gain will lead to process instability and 
oscillation. Larger KI implies steady-state errors are eliminated quicker. The trade-off is larger 
overshoot. Larger KD decreases overshoot, but slows down transient response and may lead to 
instability due to signal noise amplification in the differentiation of the error. 
 
The desired closed-loop dynamics is obtained by adjusting the three parameters KP, KI and KD, 
usually iteratively by tuning and without specific knowledge of a model under control [Kil05]. 
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2.2 Model-based Development 

The development process of embedded systems usually occurs on at least three different levels. 
First a model of the system is built. It simulates the required system behavior and usually repre-
sents an abstraction of the system. When the model is revealed to be correct, code is generated 
from the model. This is the software level. Eventually, hardware including the software is the 
product of the development. The reason for building those intermediate levels is the fact, that it 
is much cheaper and faster to modify a model than to change the final product. The entire proc-
ess is called model-based development (MBD). 
The multiple V-model [BN02, SZ06], based on the traditional V-Modell®, takes this phenome-
non into account. The V-Modell is a guideline for the planning and execution of development 
projects, which takes into account the whole life cycle of the system. The V-Modell defines the 
results that have to be prepared in a project and describes the concrete approaches that are used 
to achieve these results [VM06]. In the multiple V-model, each specification level (e.g., model, 
software, final product) follows a complete V-development cycle, including design, build, and 
test activities as shown in Figure 2.3. The essence of the multiple V-model is that different 
physical representations of the same system on different abstraction levels are developed, aim-
ing at the same final functionality. Then, the complete functionality can be tested on those dif-
ferent platforms. Since certain detailed technical properties cannot be tested very well on the 
model, they must be tested on the prototype instead. Testing the various SUT representations 
often requires specific techniques and a specific test environment. Therefore, a clear relation 
between the multiple V-model and the different test environments exists. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: The Multiple V-Model. 

 

2.2.1 Issues in Model-based Development 

In this thesis the automotive specific MBD process is taken into account to illustrate the prob-
lems and prepare the background for further considerations on quality assurance (QA).  
Since automotive development is an interdisciplinary business including software, electrical 
and mechanical engineering aspects, it is important to create an executable functional and 
graphical model. Engineers can find a common functional understanding early in the design 
phase and improve communication within their teams, with customers, or between car manu-
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facturers and suppliers [BN02, Gri03, Leh03, Con04a, Con04b, CFG+05, LK08]. Moreover, 
separation of concerns appears. The core algorithms are isolated from the technical aspects such 
as fixed-point scaling (i.e., the transformation of floating-point algorithms to fixed-point com-
putations), calibration data management and the representation of signals in memory [LK08]. 
That way the complexity of models is still manageable. 
 
This work encompasses the functional and implementation models (i.e., physical behavioral 
models) [KHJ07, Con04a] in detail. The objective of a functional model is to demonstrate the 
feasibility of new functionalities and algorithms. Functional models are executable, but concen-
trate on the core function of the system. Their testing is reduced to the area of the core func-
tionality. Currently, the tests are nearly automated. Complex functional models are split into 
sub-models and tested separately. Further on, if it is planned to generate the code automatically 
from such functional models, they are refined and enhanced to the so-called implementation 
models [KHJ07]. In such a case, they cover all aspects of the final product, except some parts 
that are usually excluded from being developed using model-based techniques, such as signal 
I/O code, task scheduling, performance, bootstrap code, or operating system-related functions.  
The promise of the model-based design is to simulate, analyze, and validate the models prior to 
implementation. Executing analysis early in the development cycle enables the detection and 
correction of design problems sooner at a lower cost. 
The most important open issue emerging here is how to assure a high quality of the functional 
and implementation models. Any error at the early level is distributed down to the code and 
hardware realization.  

2.2.2 Other Model-based Technologies  

The introduction of MBD led to the development of modeling technologies. Consequently ex-
ecutable high-level models can be obtained. The selection of a modeling technology is very 
dependent on the type of system being modeled and the task for which the model is being con-
structed [Mos97]. Continuous systems are best modeled by differential equations supplemented 
by algebraic constraints, if necessary, whereas discrete systems demand Petri nets, finite state 
automata, Timed Communicating Sequential Processes (Timed CSP) [Mos97].  
 
Some currently available modeling techniques offer a generalized environment and allow for 
interaction between the methodologies. This enables heterogeneous systems of hybrid nature to 
be modeled, combined and different views analyzed based on a common notation or environ-
ment. The modern techniques provide both support for model structure analysis of a dynamic 
physical system and a comprehensive, systematic approach to describing differential equations. 
Moreover, due to their compositional characteristics, they enable hierarchical modeling as well 
as modifying a particular subsystem to a more detailed model. These technologies can be 
MATLAB/Simulink/Stateflow (ML/SL/SF), LabView [LabV] and lately also Unified Modeling 
Language™ (UML®) [UML], or company-specific.  
Since graphical modeling languages increase the productivity benefits of 4 to 10 times as given 
in [KHJ07, Hel+05], several efforts have been undertaken in that area. SCADE Suite™ 
[DCB04], ASCET [DSW+03], Charon [AGH00], Dymola [Soe00], HYSDEL [TB04], Hy-
Visual [LZ05], Modelica [Mod], hySC [GKS99] are some of the examples. 
 
Additionally, methods such as correct-by-construction (CbyC) methods exist [BFM+05]. They 
enable automatic code generation ensuring that what is verified on the model level can also be 
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verified on the embedded code level. Applying CbyC testing is still performed, but its role is to 
validate the correct-by-construction process rather than to find faults. With the growing com-
plexity of software-intense embedded systems, CbyC and formal verification methods become 
less applicable. It happens because of the increasing state space of the systems. Thus, sample-
based testing based on formal correctness criteria and test hypotheses gains importance 
[BFM+05]. 
In the next section, ML/SL/SF will be discussed in detail since the approach proposed in this 
thesis is based on this framework. 

2.2.3 MATLAB/Simulink/Stateflow as a Framework  

ML/SL/SF8 is one of the most advanced solutions for modeling embedded systems in the auto-
motive domain. 50% of behavioral models within the control systems are designed applying 
this tool, being the de-facto standard in the area [Hel+05]. 
 
MATLAB: MATLAB (ML) product [MathML] is a technical computing environment, includ-
ing the m language, for analyzing data and developing algorithms. It integrates computation, 
data analysis, visualization, and programming so as to solve mathematical problems in techni-
cal and scientific applications [MathML]. The tool can be used in a number of fields, including 
signal and image processing, communications, control design, test and measurement, financial 
modeling and analysis, or computational biology.  
 
Simulink: Simulink (SL) product [MathSL] integrated with ML is a software package in the 
form of a simulation engine and a customizable set of libraries. It is an interactive graphical 
environment enabling simulation and model-based development of dynamic systems.  
SL offers different kinds of solvers for the numerical solution of differential equations and dif-
ference equations. SL models are organized as hierarchical block diagrams. Treating an SL 
model as a program, the connections between the blocks would be variables, but the value of 
such a variable would be a function defined over a continuum [LN05]. SL models are designed 
applying blocks available in libraries. SL libraries are collections of special-purpose functions 
that can be re-used in models. With this practice the development time is reduced, function re-
usability is supported, and the maintainability is improved. Blocks copied from a library remain 
linked to their originals such that changes in the originals automatically propagate to the copies 
in a model. Libraries ensure that the models automatically include the most recent versions of 
the previously defined blocks and give fast access to the commonly-used functions. Several 
dedicated libraries for a number of technical and industrial applications exist. A convenient fea-
ture of the SL environment is the possibility of its extension by creating new libraries. Another 
one is the capability of integrating functions written in C using S-Functions.  
 
Moreover, if automatic code generation is used to generate C code from the SL/SF model 
(which is possible by applying e.g., Real-Time Workshop) [Tun04], the functions can be exe-
cuted in the real vehicle. Such code is run on hardware systems in real time. They are connected 
                                                        
 
 
8  In the context of this thesis the following versions of the software have been used: MATLAB® 7.5.0.342, MATLAB® 

Report Generator 3.2.1™ (R2007b), Simulink® Report Generator™ 3.2.1 (R2007b), Simulink® 7.0 and Stateflow® 7.0; 
Release R2007b. 
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to the real plant by special I/O. As a consequence, changes can be made directly to the function 
model and tried out by generating code once again [Bod05, BDH05, SCD+07, D-Mint08]. 
Implementation of the function on a production ECU is also done by automatic or semi-
automatic production code generation. However, the requirements on such a code generator are 
much higher than for rapid control prototyping (RCP). The generated code must be highly effi-
cient, error-free, reproducible, and well documented [SCD+07]. 
 
A SL model is defined as a tuple SL = (B, root, sub_h, P, rlt, sig, subi, subo, C):  
(i) B is the set of blocks in the model. Subsystem blocks Bs, in-blocks in subsystems Bi, out-
blocks in subsystems Bo (representing inputs and outputs of subsystems), merge blocks Bm and 
blocks with memory Bmem. When referring to other types of ”basic” blocks Bb is used in this 
paper. Furthermore, subsystem can be divided into, normal, virtual subsystems Bvs and non-
virtual subsystems Bns, Bs = Bvs ∪  Bns. The virtual subsystems do not affect the behavioral se-
mantics of SL, whereas the non-virtual can. Subsystems Bs, in-blocks, Bi and out-blocks Bo are 
referred to as virtual blocks, since they are used purely for structuring and have no effect on the 
behavioral semantics; 
(ii) root ∈  Bvs is the root subsystem; 
(iii) sub_h: B → Bs is a function that describes the subsystem hierarchy. For every block b, 
sub_h.b gives the subsystem b is in. Note that sub_h.root = root; 
(iv) P is the set of ports for inputs and output of data to and from blocks. The ports Pi ⊆  P is 
the set of in-ports and Po ⊆  P is the set of out-ports, P = Pi ∪  Po; 
(v) rlt: P → B is a relation that maps every port to the block it belongs to; 
(vi) sig: Pi → Po maps every in-port to the out-port it is connected to by a signal; 
(vii) subi: Bs → Po → ρ(Pi) is a partial function that describes the mapping between the in-ports 
of a subsystem and the out-ports of the non-virtual block Bi representing the in-port block in 
that subsystem; 
(viii) subo: Bs → Po → ρ(Pi) is a partial function that describes the mapping between the out-
ports of a subsystem and the in-ports of the non-virtual block Bo representing the out-port block 
in that subsystem; 
(ix) C is the set of block parameters of the model. The block parameters are a set of constants 
defined in ML workspace.  
Similar definitions of the SL model are given in [BM07, BMW07] including the examples. 
 
Stateflow: Stateflow (SF) product [MathSF] extends the SL so as to support modeling of dis-
crete systems more easily and readably. SF model is sequential and deterministic. It is a hierar-
chical state machine that includes states labeled with lists of actions and transitions labeled with 
guards and actions.  
The semantic of SF models defined by [Tiw02] is the following. A SF chart is described by a 
tuple SF = (D, E, S, T, f), where:  
(i) D = DI ∪ DO ∪ DL is a finite set of typed variables that is partitioned into input variables DI, 
output variables DO and local variables DL;  
(ii) E = EI ∪ EO ∪ EL is a finite set of events that is partitioned into input events EI, output 
events EO and local events EL;  
(iii) S is a finite set of states, where each state is a tuple consisting of three kinds of actions: 
entry, exit, and during; an action is either an assignment of an expression to a variable or an 
event broadcast; When a state has parallel (AND) decomposition, all its substates present at the 
same hierarchy level are always active. When a state has exclusive (OR) decomposition, only 
one substate can be active at a time. 
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(iv) T is a finite set of transitions, where each transition is given as a tuple (src, dst, e, c, ca, ta) 
in which src ∈  S is the source state, dst ∈  S is the destination state, e ∈  E ∪ {є} is an event, c 
∈WFF(D) is a condition given as a well-formed formula in predicate logic over the variables D 
and ca, ta are set of actions (called condition actions and transition actions, respectively); 
(v) f : S → ({and, or}× 2S) is a mapping from the set S to the Cartesian product of {and, or} 
with the power set of S and satisfies the following properties: (a) there exists a unique root state 
sroot, i.e., sroot ∉ ∪ i descendants(si), where descendants(si) is the second component of f (si), (b) 
every non-root state s has exactly one ancestor state; that is, if s ∈  descendants(s1) and s ∈  
descendants(s2), then s1 = s2, and (c) the function f contains no cycles; that is, the relation < on 
S defined by s1 < s2 iff s1 ∈  descendants(s2) is a strict partial order. If f(s) = (and, {s1, s2}), then 
the state s is an AND-state consisting of two substates s1 and s2. If f(s) = (or, {s1, s2}), then s is 
an OR-state with substates s1 and s2. In the syntactic description of an SF chart, junctions are 
ignored for simplicity.  
 
SL Simulation: The SL execution engine, called a solver is a component that determines the 
next time step when a simulation needs to meet the target accuracy requirements [MathSL, 
LN05]. SL provides an extensive set of solvers, each adept at choosing the next time step for 
specific types of applications. They fall into two basic categories fixed-step and variable-step.  
Fixed-step solvers solve the model at regular time intervals from the beginning to the end of the 
simulation. The size of the interval is known as the step size [MathSL] and will be called time 
step size in the following. Decreasing the time step size increases the accuracy of the results 
while increasing the time required for simulating the system. 
Variable-step solvers vary the time step size during the simulation, reducing the time step size 
to increase accuracy when a model's states are changing rapidly and increasing the time step 
size to avoid taking unnecessary steps when the model's states are changing slowly. Computing 
the time step size adds to the computational overhead at each step but can reduce the total num-
ber of steps and hence, simulation time. 
 
When modeling automotive embedded software solvers with a fixed time step size are used 
[Con04a]. SL provides a set of fixed-step continuous solvers. They employ numerical integra-
tion to compute the values of a model's continuous states at the current step from the values at 
the previous step and the values of the state derivatives. This allows the fixed-step continuous 
solvers to handle models that contain both continuous and discrete states. 
 
In the case studies discussed in this thesis, explicit fixed-step continuous solver ode4 (i.e., ordi-
nary differential equations of 4th computational complexity) has been selected. It is based on the 
integration technique defined by the fourth-order Runge-Kutta (RK4) [PFT+92] formula. This 
method is reasonably simple and robust. It is a general candidate for numerical solution of dif-
ferential equations when combined with an intelligent adaptive step-size routine. 
 
Let an initial value problem be specified as follows  ),,( ' ytfy =  
where the initial value y is:  .  )( 00 yty =  
 
Then, the iterative formula for y applying the RK4 method is given by the following equations: 
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where yn+1 is the RK4 approximation of y(tn+1) and 
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Thus, the next value (yn+1) is determined by the present value (yn) plus the product of the size of 
the interval (h) and an estimated slope.  
 
The slope is a weighted average of slopes: 

− k1 is the slope at the beginning of the interval 
− k2 is the slope at the midpoint of the interval, using slope k1 to determine the value of y 

at the point  2  htn + using Euler's method 
− k3 is again the slope at the midpoint, but now using the slope k2 to determine the y 

value 
− k4 is the slope at the end of the interval, with its y value determined using k3. 

 
In averaging the four slopes, greater weight is given to the slopes at the midpoint: 
 

6
22 4321 kkkkslope +++

=  (2.7) 

 
The RK4 method is a fourth-order method, meaning that the error per step is on the order of h5, 
while the total accumulated error has order h4. The above formulas are valid for both scalar- 
and vector-valued functions (i.e., y can be a vector and f an operator).   
Further details about the ML/SL/SF framework can be found in [MathML, MathSL, MathSF]. 

2.3 Testing  

2.3.1 Software Testing  

Testing, an analytic means for assessing the quality of software [Wal01, UL06], is one of the 
most important phases during the software development process with regard to quality assur-
ance. It „can never show the absence of failures“ [Dij72], but it aims at increasing the confi-
dence that a system meets its specified behavior. Testing is an activity performed for improving 
the product quality by identifying defects and problems. It cannot be undertaken in isolation. 
Instead, in order to be in any way successful and efficient, it must be embedded in an adequate 
software development process and have interfaces to the respective sub-processes.  
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The fundamental test process according to [BS98, SL05, ISTQB06] comprises (1) planning, (2) 
specification, (3) execution, (4) recording (i.e., documenting the results), (5) checking for com-
pletion, and test closure activities (e.g., rating the final results). 
Test planning includes the planning of resources and the laying down of a test strategy: defining 
the test methods and the coverage criteria to be achieved, the test completion criteria, structur-
ing and prioritizing the tests, and selecting the tool support as well as configuration of the test 
environment [SL05]. In the test specification the corresponding test cases are specified using 
the test methods defined by the test plan [SL05]. Test execution means the execution of test 
cases and test scenarios. Test records serve to make the test execution understandable for peo-
ple not directly involved (e.g., customer) and prove afterwards, whether and how the planned 
test strategy was in actual fact executed. Finally, during the test closure step data is collected 
from completed test activities to consolidate experience, testware, facts, and numbers. The test 
process is evaluated and a report is provided [ISTQB06]. 
 
In addition, [Dai06] considers a process of test development. The test development process, 
related to steps 2 – 4 of the fundamental test process, can be divided into six phases, which are 
usually consecutive, but may be iterated: test requirements, test design, test specification, test 
implementation, test execution, and test evaluation. 
 
The test process aimed at in this work covers with the fundamental one, although only steps 2 – 
4 are addressed in further considerations. Compared to [Dai06] the test development process is 
modified and shortened. It is motivated by the different nature of the considered SUTs. Within 
traditional software and test development, phases are clearly separated [CH98]. For automotive 
systems a closer integration of the specification and implementation phases occurs. Hence, after 
defining the test requirements, the test design phase encompasses the preparation of a test har-
ness. The detailed test specification9 and test implementation are done within one step as the 
applied modeling language is executable. Up to this point, the test development process sup-
ported in this thesis, is very similar to the one defined by [Leh03]. Further on, test execution 
and test evaluation are performed simultaneously. The details of the proposed test methodology 
and test development process will be given in Chapters 4 and 5. 
 
In addition, apart from testing, validation, and verification as further QA activities are espe-
cially important in the domain of embedded systems due to the usually high dependability re-
quirements (e.g., safety, reliability, and security). The purpose of validation is to confirm that 
the developed product meets the user needs and requirements. Verification ensures that it is 
consistent, complete, and correct at the different steps of the life cycle. Testing means exercis-
ing an implementation to detect faults and can be used both for verification and for validation. 
 
A further important aspect is the application of QA for the certification of products, especially 
in safety-critical domains. New certification standards (e.g., IEC 61508 [IEC05] and ISO 26262 
[ISO_SF] for the automotive or the followers of the DO-178B [RT92] in the avionics industry) 
increasingly require the creation of formal models [Hel+05] and reliable QA techniques. 
 

                                                        
 
 
9  Test specification phase is called test design in a number of sources [Gri03, ISTQB06, Din08].  
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2.3.2 Test Dimensions  

Tests can be classified in different levels, depending on the characteristics of the SUT and the 
test system. [Neu04] aims at testing the communication systems and categorizes testing in the 
dimensions of test goals, test scope, and test distribution. [Dai06] replaces the test distribution 
by a dimension describing the different test development phases, since she is testing both local 
and distributed systems. In this thesis embedded systems are regarded as SUTs, thus, the test 
dimensions are modified as shown in Figure 2.4.  
 
In the following the analysis of the current test process for embedded systems reveals a gap that 
if bridged, will contribute to the overall development cost and time reduction at most. Herewith, 
the concrete aims of the test methodology proposed in this thesis, are established.  
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Figure 2.4: The Five Test Dimensions. 

 
Test Goal: During the software development systems are tested with different purposes (i.e., 
goals). They can be categorized into static testing, also called review, and dynamic testing, 
whereas the latter is distinguished between structural, functional, and non-functional testing. In 
the automotive, after the review phase, the test goal is usually to check the functional behavior 
of the system. Non-functional tests appear in later development stages.  
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− Static Test: Testing is often defined as the process of finding the errors, failures, and 
faults. Errors in a program can be revealed without execution by just examining its 
source code [ISTQB06]. Similarly, other development artefacts can be reviewed (e.g., 
requirements, models, or test specification itself). This process is called static testing. 
Dynamic testing in contrast, bases on execution. 

 
− Structural Test: Structural tests cover the structure of the SUT during test execution 

(e.g., control or data flow). To achieve this, the internal structure of the system (e.g., 
code or model) needs to be known. Therefore, structural tests are also called white-box 
or glass-box tests [Mye79, ISTQB06]. 

 
− Functional Test: Functional testing is concerned with assessing the functional behavior 

of an SUT against the functional requirements. In contrast to structural tests, functional 
tests do not require any knowledge about system internals. They are therefore called 
black-box tests [Bei95]. In this category functional safety tests are also included. Their 
purpose is to determine the safety of a software product. They require a systematic, 
planned, executed, and documented procedure. At present, safety tests are only a small 
part of software testing in the automotive area. By introduction of safety standards such 
as IEC 61508 [IEC05] and ISO 26262 [ISO_FS] the meaning of software safety tests 
will, however, increase considerably within the next few years. 

 
− Non-functional Test: Similar to functional tests, non-functional tests are performed 

against requirements specification of the system. In contrast to pure functional testing, 
non-functional testing aims at the assessment of non-functional, such as reliability, 
load, or performance requirements. Non-functional tests are usually black-box tests. 
Nevertheless, for retrieving certain information, e.g., internal clock, internal access 
during test execution is required.  
For example, during the robustness test the system is tested with invalid input data 
which are outside the permitted ranges to check whether the system is still safe and 
works properly. As a rule, the robustness is ensured by dedicated plausibility checks in-
tegrated into the automotive software.  

 
 
The focus of this thesis is put on functional tests. However some timing10 and safety aspects are 
included as well.  
 

                                                        
 
 
10 In traditional understanding the purpose of real-time tests is to find system paths for whose time response of individual 

tasks or the whole ECU is critical. Since the results of the timing behavior depend strongly on the target architecture, real-
time tests are carried out mostly on target systems [Leh03, Con04a, KHJ07]. 

    The context of real-time testing in this thesis refers to the situation when the real-time properties are related to functional 
behavior. In that case they cannot be tested on their own, but require a test case which also involves the associated func-
tional events for stimulating and observing the SUT [Neu04, Dai06]. Thus, real-time testing is incorporated into functional 
testing and is understood as functional testing of timing constraints rather than real-time properties in the traditional sense. 

 



2 FUNDAMENTALS 
 

 

25

Test Abstraction: As far as the abstraction level of the test specification is considered, the 
higher the abstraction, the better test understandability, readability, and reusability is observed. 
However, the specified test cases must be executable at the same time. The non-abstract tests 
are supported by a number of tool providers (see Chapter 3) and they do not scale for larger 
industrial projects [LK08]. Hence, the abstraction level should not affect the test execution in a 
negative way. 
 
This thesis develops a conceptual framework for abstract test specification; however, simulta-
neously an executable technical framework for a selected platform is built.  
 
Test Execution Platform: The test execution is managed by so-called test platforms. The pur-
pose of the test platform is to stimulate the test object (i.e., SUT) with inputs, and to observe 
and analyze the outputs of the SUT. 
The test platform is a car with a test driver. The test driver determines the inputs of the SUT by 
driving scenarios and observes the reaction of the car supported by special diagnosis and meas-
urement hardware/software that records the test data during the test drive and allows the behav-
ior to be analyzed offline. An appropriate test platform has to be chosen depending on the test 
object, the test purpose, and the necessary test environment.  
 

− Model-in-the-Loop (MiL): The first integration level, MiL, is based on the model of the 
system itself. In this platform the SUT is a functional model or implementation model 
that is tested in an open-loop (i.e., without any plant model in the first place) or closed-
loop test with a plant model (i.e., without any physical hardware) [KHJ07, SZ06, 
LK08]. The test purpose is basically functional testing in early development phases in 
simulation environments such as ML/SL/SF. 

 
− Software-in-the-Loop (SiL): During SiL the SUT is software tested in a closed or open-

loop. The software components under test are usually implemented in C and are either 
hand-written or generated by code generators based on implementation models. The 
test purpose in SiL is mainly functional testing [KHJ07]. If the software is built for a 
fixed-point architecture, the required scaling is already part of the software. 

 
− Processor-in-the-Loop (PiL): In PiL embedded controllers are integrated into embed-

ded devices with proprietary hardware (i.e., ECU). Testing on PiL level is similar to 
SiL tests, but the embedded software runs on a target board with the target processor or 
on a target processor emulator. Tests on PiL level are important because they can re-
veal faults that are caused by the target compiler or by the processor architecture. It is 
the last integration level which allows debugging during tests in a cheap and manage-
able way [LK08]. Therefore, the effort spent by PiL testing is worthwhile in almost all 
cases.  

 
− Hardware-in-the-Loop (HiL): When testing the embedded system on HiL level the 

software runs on the final ECU. However the environment around the ECU is still a 
simulated one. ECU and environment interact via the digital and analog electrical con-
nectors of the ECU. The objective of testing on HiL level is to reveal faults in the low-
level services of the ECU and in the I/O services [SZ06]. Additionally, acceptance tests 
of components delivered by the supplier are executed on the HiL level because the 
component itself is the integrated ECU [KHJ07]. HiL testing requires real-time behav-
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ior of the environment model to ensure that the communication with the ECU is the 
same as in the real application. 

 
− Car: Finally, the last integration level is obviously the car itself, as already mentioned. 

The final ECU runs in the real car which can either be a sample or a car from the pro-
duction line. However, these tests, as performed only in late development phases, are 
expensive and do not allow configuration parameters to be varied arbitrarily [LK08]. 
Hardware faults are difficult to trigger and the reaction of the SUT is often difficult to 
observe because internal signals are no longer accessible [KHJ07]. For these reasons, 
the number of in-car tests decreases while model-based testing gains more attention. 

 
This thesis encompasses mainly the system design level so as to start testing as early as possible 
in the development cycle. Thus, the MiL platform is researched in detail. The other platforms 
are not excluded from the methodological viewpoint. However, the portability between differ-
ent execution platforms is beyond the scope of this work.  
 
Test Reactiveness: A concept of test reactiveness emerges when test cases are dependent on 
the system behavior. That is, the execution of a test case depends on what the system under test 
is doing while being tested. In this sense the system under test and the test driver run in a 
‘closed loop’.  
In the following, before the test reactiveness will be elaborated in detail, the definition of open- 
and closed-loop system configuration will be explicitly distinguished: 
 

− Open-loop System Configuration: When testing a component in a so-called open-loop 
the test object is tested directly without any environment or environmental model. This 
kind of testing is reasonable if the behavior of the test object is described based on the 
interaction directly at its interfaces (I/O ports). This configuration is applicable for SW 
modules and implementation sub-models, as well as for control systems with discrete 
I/O. 

 
− Closed-loop System Configuration: For feedback control systems and for complex con-

trol systems it is necessary to integrate the SUT with a plant model so as to perform 
closed-loop tests. In early phases where the interaction between SUT and plant model 
is implemented in software (i.e., without digital or analog I/O, buses etc.) the plant 
model does not have to ensure real-time constraints. However, when the HiL systems 
are considered and the communication between the SUT and the plant model is imple-
mented via data buses, the plant model may include real hardware components (i.e., 
sensors and actuators). This applies especially when the physics of a system is very 
crucial for the functionality or when it is too complex to be described in a model. 

 
− Test Reactiveness: Reactive tests are tests that apply any signal or data derived from 

the SUT outputs or test system itself to influence the signals fed into the SUT. With 
this practice, the execution of reactive test cases varies depending on the SUT behav-
ior. The test reactiveness as such gives the test system a possibility to immediately re-
act to the incoming behavior by modifying the test according to the predefined deter-
ministic criteria. The precondition for achieving the test reactiveness is an online moni-
toring of the SUT, though. The advantages can be obtained in a number of test specifi-
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cation steps (e.g., an automatic sequencing of test cases, online prioritizing of the test 
cases).  
For example, assume that the adaptive cruise control (ACC) activation should be 
tested. It is possible to start the ACC only when a certain velocity level has been 
reached. Hence, the precondition for a test case is the increase of the velocity from 0 up 
to the point when the ACC may be activated. If the test system is able to detect this 
point automatically, the ACC may be tested immediately.  
Although the existing approaches support reactive testing by means of script lan-
guages, it is often difficult to understand the test evaluation part of such textually writ-
ten test cases.  
A discussion about possible risks and open questions11 around reactive tests can be 
found in [Leh03]. 

 
In this work, both open- and closed-loop system configurations as well as reactive and non-
reactive tests will be regarded. The concept of test reactiveness and the ‘closed-loop’ between 
the SUT and test system will be described in Section 5.6 and instantiated in Section 6.4.  
 
Test Scope: Finally, the test scope has to be considered. Test scopes describe the granularity of 
the SUT. Due to the composition of the system, tests at different scopes may reveal different 
failures [ISTQB06, D-Mint08, Wey88]. Therefore, they are usually performed in the following 
order: 
 

− Component: At the scope of component testing, the smallest testable component (e.g., 
a class in an object-oriented implementation or a single ECU12) is tested in isolation.  

 
− Integration: The scope of integration test is to combine components with each other 

and test those not yet as a whole system but as a subsystem (i.e., ACC system com-
posed of a speed controller, a distance controller, switches, and several processing 
units). It exposes defects in the interfaces and in the interactions between integrated 
components or systems [ISTQB06]. 

 
− System: In a system test, the complete system (i.e., a vehicle) consisting of subsystems 

is tested. A complex embedded system is usually distributed; the single subsystems are 
connected via buses using different data types and interfaces through which the system 
can be accessed for testing [Het98]. 

 
This thesis encompasses the component level test, including both single component and compo-
nent in-the-loop test, and the integration level test. 

                                                        
 
 
11 The main risks are the following: The test might run in a different way than intended by the test designer. In that case, the 

scenario of interest may not be checked at all. Also, by only slight adjustments of the SUT, the execution flow of a test 
case may change considerably. A possible solution to these problems would be to introduce monitoring means watching 
the test execution.  

12 For the purpose of this thesis, the component test scope includes both component testing and component in-the-loop test-
ing. The former applies to a single ECU (e.g., open-loop ECU) testing, the latter holds for a test of an ECU configured to-
gether with a plant to form a loop (e.g., closed-loop ECU connected to the car model).  



                                                                                                              2 FUNDAMENTALS 28 

2.3.3 Requirements on Embedded Systems Testing within Automotive 

Along with the growing functionality of embedded systems in the automotive and the introduc-
tion of model-based development processes, the demands on QA have also increased [LK08]. 
The QA activities should be systematic, well structured, repeatable, understandable, and possi-
bly automatic. It is a challenge not only because of the time pressure, but also due to the soft-
ware distribution, its reactive, hybrid nature, and the development process to be obeyed. 
 
Model-based development enables system engineers to test the system in a virtual environment 
when they are inexpensive. In practice there are just a few testing procedures that address the 
automotive domain-specific requirements of model-based testing sufficiently [LK08]. As an 
example, despite the past few years’ intensive efforts of automobile manufacturers and their 
suppliers to enhance the QA of their products, the problems of testing steadily increase in com-
plexity and interconnectedness are still not solved. The variety of proprietary test systems and 
solutions do not allow an integrated definition, transfer, re-use, and execution of tests for auto-
mobile manufacturers, suppliers, and test equipment manufacturers [SG07]. The reason of this 
state lies in the historical data. About 15 – 20 years ago there was no need for dedicated func-
tional testing methods because the functional complexity was comparatively low and limited 
mainly to hardware. With the increasing popularity of MBD the engineering discipline of 
automotive model-based testing has been neglected for a long time [LK08].  
 
The main problems recognized within the existing test solutions encompass the following is-
sues. Only manual test data specification is supported, so that the process of their selection is 
long and costly. If an automatic generation of test data is possible, then it is based almost only 
on the criteria resulting from the internal SUT structure. As a consequence, the produced test 
data are not systematic enough for functional testing. Regarding the test evaluation, entire ref-
erence signal flows are needed for the assessment, which are however not available at the early 
stage of the software development. Only several test patterns exist what implicates the test en-
gineer to start every test project almost from scratch. The entire test specification process is still 
almost purely manual and no interaction is supported. The issues listed herewith will be dis-
cussed in detail based on the concrete test realizations in Sections 3.3 – 3.4. 
 
Hence, new test methodologies should emerge as soon as possible. They should suit the current 
MBD process and lead to a common understanding of model-based testing concepts. They must 
enable the testing of the time constraints, discrete and continuous signals as well as their rela-
tions. Also, assessment of the expected system behavior should be possible and the reusability 
of the test specification elements (e.g., in the form of patterns [TYZ05] or libraries) is of high 
importance.  
In particular, the test system should enable the specication and preprocessing of the signals pre-
sent on the buses including their cycle times in millisecond ranges. The description of signals 
should proceed on an abstract level. Thus, in this thesis the signal properties (i.e., features con-
strained with selected predicates) are considered. The timing relations between properties re-
garding a single signal or a number of signals must be captured. The local and global time con-
cepts are needed. Also, the possibility to define closed-loop tests, called reactive tests [Leh03], 
is of high importance. The test system should be able to react to events, states, or signal proper-
ties in deterministic time (e.g., in real time at hardware level). Watchdog-similar solutions must 
be applied to diagnose the SUT behavior on the fly. Synchronization of the applied/obtained 
signals or the test system with the SUT is needed. The specification of the test cases as well as 
the measurement of events, states, or signal properties need to be time dependent. The test data 
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and their variants should be treated externally. The test evaluation and assessment of the signals 
should be adjusted to the time concepts, traced, and logged. Even the distribution or a parallel 
execution of the tests is not out of consideration.  
 
Standard test specification algorithms (e.g., loops for test flow specification, test control for test 
cases ordering, sleeping or waiting of the test system, test configuration parameterization, or 
arbitration mechanism) should obviously be supported. Further on, the functional test specifica-
tion should be split from the concrete SUT implementation by application of test adapters. Be-
sides, an integrated and manufacturer independent test technology is aimed at.  Clear relation 
between the test specification elements and the test objectives should be supported too.  
 
The next important issue is to provide a testing technology which is understandable to a number 
of stakeholders interested in the development of embedded systems. Hence, a graphical format 
for the test specification and the implicated model-based testing [BJK+05, UPL06] is de-
manded. Finally, the quality of the resulting test methodology has to be measured and improved 
if needed.  
 
The advantages and limitations of the existing test approaches dealing respectively with the set 
of requirements listed above will be exhaustively discussed in Chapter 3, in particular in Sec-
tion 3.3. 

2.3.4 Definition and Goals of Model-based Testing 

Model-based testing (MBT) relates to a process of test generation from an SUT model by appli-
cation of a number of sophisticated methods. MBT is the automation of black-box test design 
[UL06]. Several authors [Utt05, KHJ07] define MBT as testing in which test cases are derived 
in whole or in part from a model that describes some aspects of the SUT based on selected cri-
teria. [Dai06] denotes MBT into model-driven testing (MDT) since she proposes the approach 
in the context of Model Driven Architecture (MDA). [UPL06] add that MBT inherits the com-
plexity of the domain or, more particularly, of the related domain models.  
MBT allows tests to be linked directly to the SUT requirements, makes readability, understand-
ability and maintainability of tests easier. It helps to ensure a repeatable and scientific basis for 
testing and it may give good coverage of all the behaviors of the SUT [Utt05]. Finally, it is a 
way to reduce the efforts and cost for testing [PPW+05]. 
 
The term MBT is widely used today with slightly different meanings. Surveys on different MBT 
approaches are given in [BJK+05, Utt05, UL06, UPL06, D-Mint08]. In the automotive industry 
MBT is used to describe all testing activities in the context of MBD [CFS04, LK08]. [Rau02, 
LBE+04, Con04a, Con04b] define MBT as a test process that encompasses a combination of 
different test methods which utilize the executable model as a source of information. Thus, the 
automotive viewpoint on MBT is rather process-oriented. A single testing technique is not 
enough to provide an expected level of test coverage. Hence, different test methods should be 
combined to complement each other relating to all the specified test dimensions (e.g., func-
tional and structural testing techniques should be combined). If sufficient test coverage has 
been achieved on model level, the test cases can be reused for testing the control software gen-
erated from the model and the control unit within the framework of back-to-back tests 
[WCF02]. With this practice, the functional equivalence between executable model, code and 
ECUs can be verified and validated [CFS04]. 
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For the purpose of this thesis, the following understanding of MBT is used:  
 
Model-based testing is testing in which the entire test specification is derived in whole or in 
part from both the system requirements and a model that describe selected functional aspects of 
the SUT. In this context, the term entire test specification covers the abstract test scenarios 
substantiated with the concrete sets of test data and the expected SUT outputs. It is organized in 
a set of test cases. 
 
Further on, the resulting test specification is executed together with the SUT model so as to 
provide the test results. In [Con04a, CFS04] no additional models are being created for test 
purposes, but the already existent functional system models are utilized for the test. In the test 
approach proposed in this thesis (see Chapters 4 – 5) the system models are exploited too. In 
addition, however, a test specification model (also called test case specification, test model, or 
test design in the literature [Pre03b, ZDS+05, Dai06]) is created semi-automatically. Concrete 
test data variants are derived automatically from it. 
 
Moreover, since the MBT approaches have to be integrated into the existing development proc-
esses and combined with the existing methods and tools, in this thesis ML/SL/SF has been se-
lected as both system and test modeling framework and execution platform. By that, MBD and 
MBT are supported using the same environment.  

2.3.5 Patterns 

The concept of patterns emerges when software reusability is targeted. A pattern is a general 
solution to a specific recurring design problem. It explains the insight and good practices that 
have evolved to solve a problem. It provides a concise definition of common elements, context, 
and essential requirements for a solution as discussed in [Ale79, VS04, Neu04, PTD05]. Pat-
terns were first used to describe constellations of structural elements in buildings and towns 
[Ale79].  
The purpose of software patterns is to capture software design know-how and make it reusable. 
They can enhance the structure of software and simplify its maintenance. Patterns also improve 
communication among software developers and empower less experienced engineers to pro-
duce high-quality results. They contribute the efficiency due to a common and understandable 
vocabulary for problem solutions that they provide [Neu04].  
 
Similarly to the manner software patterns contribute to the software development process, test 
patterns enhance progress in testing. Test patterns [VS04] represent a form of reuse in test de-
velopment in which the essences of solutions and experiences gathered in testing are extracted 
and documented so as to enable their application in similar contexts that might arise in the fu-
ture. Test patterns aim at capturing test design knowledge from past projects in a canonical 
form, so that future projects would benefit from it. 

2.4 Summary  

The first aim of this chapter was to discuss the backgrounds of embedded systems and their 
development. Herein, the details on their different aspects have been presented. Further on, 
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electronic control units and the fundamentals on control theory have been provided. They are 
recalled in this thesis afterwards, especially in Chapters 4 – 6, so as to contribute to the pro-
posed QA framework and complete the case studies.  
Besides this, MBD concepts applied in the automotive domain have been introduced. Basic 
knowledge on the ML/SL/SF framework has been given, including the algorithm of its simula-
tion solver. These details are needed throughout this work, starting from Chapter 4, in order to 
define the test specification in SL/SF language. Then, several MBD approaches have also been 
reviewed.  
Furthermore, testing concerns have been outlined. Herewith, testing – categorized by the di-
mensions of test scopes, test goals, test abstraction, test execution platform, test configuration, 
and test reactiveness – has revealed the complexity of the considered domain. The emphasis of 
this thesis is put on functional, abstract, executable, and reactive MiL level tests. The details on 
their specification are given mainly in Chapters 4 – 5. The test execution is exemplified in 
Chapter 6.  
Finally, the concept of patterns has been provided so as to introduce an abstract way of the test 
specification in the upcoming chapters.  
 
 
 
 
 
 



 

3 Selected Test Approaches 

“Contradiction is not a sign of falsity,  
nor the lack of contradiction a sign of truth.“ 

 
- Blaise Pascal 

 
 
This chapter reviews related work on the model-based testing (MBT) of embedded, hybrid real-
time systems. Firstly, in Section 3.1, an overview of taxonomy for MBT, introduced initially by 
[UPL06], is analyzed and extended for the needs of the considered domain. Further on, con-
straints on nature of the embedded system models are explicitly given. Afterwards, the particu-
lar categories of the taxonomy are discussed in detail. These relate to test generation, test exe-
cution, and test evaluation.  
In Section 3.2, a short report on the current test trends recognized in the automotive domain is 
outlined. Then, in Section 3.3, a trapezoid narrowing the range of MBT approaches is formed. 
It is derived based on the analysis of the test dimensions given in Section 2.3.1 and the test 
categories of the MBT taxonomy. Several test approaches are selected for further analysis. Fi-
nally, a comparison of the selected solutions is provided and their challenges and limitations are 
pointed out.  
A comprehensive list of the corresponding test tools available in the academia or industry is 
presented in Appendix A. Moreover, a brief description of the test method proposed in this the-
sis is given. Finally, conclusions are taken. A summary completes the chapter.  

3.1 Categories of Model-based Testing   

In [UPL06, UL06] a comprehensive taxonomy for MBT identifying its three general classes: 
model, test generation, and test execution is provided. Each of the classes is divided into further 
categories. The model-related ones are subject, independence, characteristics, and paradigm. 
Further on, the test generation is split into test selection criteria and technology, whereas the 
test execution partitions into execution options.  
 
In the following work, the taxonomy is enriched with an additional class, called test evaluation. 
The test evaluation means comparing the actual system under test (SUT) outputs with the ex-
pected SUT behavior based on a test oracle. Test oracle enables a decision to be made as to 
whether the actual SUT outputs are correct. It is, apart from the data, a crucial part of a test 
case. The test evaluation is divided into two categories: specification and technology.  



3 SELECTED TEST APPROACHES  
 

 

33

Furthermore, in this thesis only one selected class of the system model is investigated. For clari-
fication purposes, its short description based on the options available in the taxonomy of 
[UPL06, UL06] will be given. The subject is the model (e.g., Simulink/Stateflow (SL/SF) 
model) that specifies the intended behavior of the SUT and its environment, often connected via 
a feedback loop. Regarding the independence level this model can be generally used for both 
test case13 and code generation. Indicating the model characteristics, it provides deterministic 
hybrid behavior constrained by timed events, including continuous functions and various data 
types. Finally, the modeling paradigm combines a history-based, functional data flow paradigm 
(e.g., SL function blocks) with a transition-based notation (e.g., SF charts). 
 
The overview of the resulting, slightly modified and extended MBT taxonomy is illustrated in 
Figure 3.1. The modification results from the focus of this thesis, which is put on embedded 
systems. All the categories are split into further instances which influence each other within a 
given category or between them. The notion of ‘A/B/C’ at the leaves indicates mutually exclu-
sive options, while the straight lines link further instantiations of a given dimension without 
exclusion. It is a good practice since, for example, applying more than one test selection crite-
rion and by that, more generation technologies can provide a better test coverage, eventually.  
 

 

                                                        
 
 
13  In the test approach proposed in this thesis (see Chapter 4), firstly, a test specification model is created semi-automatically 

and then the test data variants forming the test cases are derived automatically out of the test model.  
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Figure 3.1: Overview of the Taxonomy for Model-based Testing. 

 
In the next three sections the classes of the MBT taxonomy are referred to and the particular 
categories and options are explained in depth. The descriptions of the most important options 
following in this thesis contain examples of their realization, respectively.   

3.1.1 Test Generation 

The process of test generation starts from the system requirements, taking into account the test 
objectives. It is defined in a given test context and leads to the creation of test cases. A number 
of approaches exist depending on the test selection criteria and generation technology. They are 
reviewed below.  
 
Test selection criteria: Test selection criteria define the facilities that are used to control the 
generation of tests. They help to specify the tests and do not depend on the SUT code [UL06]. 
In the following, the most commonly-used criteria are investigated. Referring to the discussion 
given in Section 2.4.4, different test methods should be combined to complement each other so 
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as to achieve the best test coverage. Hence, there is no best suitable criterion for generating the 
test specification.  
 

− Structural model coverage criteria: These exploit the structure of the model to select 
the test cases. They deal with coverage of the control-flow through the model, based on 
ideas from control-flow through code.  
In [Pre03] it is shown how test cases can be generated that satisfy the Modified Condi-
tion/Decision Coverage (MC/DC) coverage criterion. The idea is to first generate a set 
of test case specifications that enforce certain variable valuations and then generate test 
cases for them. 
Similarly, Safety Test Builder (STB) [STB] or Reactis Tester [ReactT, SD07] generate 
test sequences covering a set of SF test objectives (e.g., transitions, states, junctions, 
actions, MC/DC coverage) and a set of SL test objectives (e.g., boolean flow, look-up 
tables, conditional subsystems coverage) (see Section 3.3 for more detail).   

 
− Data coverage criteria: The idea is to split the data range into equivalence classes and 

select one representative from each class. This partitioning is usually complemented by 
the boundary value analysis [KLP+04], where the critical limits of the data ranges or 
boundaries determined by constraints are additionally selected.  
An example is the MATLAB Automated Testing Tool (MATT) [MATT] enabling 
black-box testing of SL models and code generated from it by Real-Time Workshop®. 
It generally enables the creation of custom test data for model simulations by setting 
their types for each input. Further on, accuracy, constant, minimum, and maximum 
values can be provided to generate the test data matrix.  
Another realization of this criterion is provided by Classification Tree Editor for Em-
bedded Systems (CTE/ES) [CTE] implementing the Classification Tree Method 
(CTM) [GG93, Con04a]. The SUT inputs form the classifications in the roots of the 
tree. Then, the input ranges are divided into classes according to the equivalence parti-
tioning method. The test cases are specified by selecting leaves of the tree in the com-
bination table. A line in the table specifies a test case. CTE/ES provides a way of find-
ing test cases systematically. It breaks the test scenario design process down into steps. 
Additionally, the test scenario is visualized in a graphical user interface (GUI).  

 
− Requirements coverage criteria: These aim to cover all the informal SUT require-

ments. Traceability of the SUT requirements to the system or test model/code can sup-
port the realization of this criterion. It is targeted by almost every test approach. 

 
− Test case specifications: When the test engineer defines a test case specification in 

some formal notation, these can be used to determine which tests will be generated. It 
is explicitly decided which set of test objectives should be covered. The notation used 
to express these objectives may be the same as the notation used for the model 
[UPL06]. Notations commonly used for test objectives include FSMs, UML Testing 
Profile (UTP) [UTP], regular expressions, temporal logic formulas, constraints, and 
Markov chains (for expressing intended usage patterns).  
A prominent example of applying this criterion is described in [Dai06], where the test 
case specifications are retrieved from UML® models and transformed into executable 
tests in Testing and Test Control Notation, version 3 (TTCN-3) [ETSI07] by using 
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Model Driven Architecture (MDA) [MDA] methods [ZDS+05]. The work of [Pre03, 
Pre04] is also based on this criterion (see symbolic execution in the next paragraph).  

 
− Random and stochastic criteria: These are mostly applicable to environment models, 

because it is the environment that determines the usage patterns of the SUT. A typical 
approach is to use a Markov chain to specify the expected SUT usage profile. Another 
example is to use a statistical usage model in addition to the behavioral model of the 
SUT [CLP08]. The statistical model acts as the selection criterion and chooses the 
paths, while the behavioral model is used to generate the oracle for those paths.  
Exemplifying, Markov Test Logic (MaTeLo) [MaTL] can generate test suites according 
to several algorithms. Each of them optimizes the test effort according to the objectives 
such as boundary values, functional coverage, and reliability level. Test cases are gen-
erated in XML/HTML format for manual execution or in TTCN-3 for automatic exe-
cution [DF03]. 
Another instance, Java Usage Model Builder Library (JUMBL) [JUMB] can generate test 
cases either as a collection of test cases which cover the model with the minimum cost 
or by random sampling with replacement, or in order by probability, or by interleaving 
the events of other test cases. There is also an interactive test case editor for creating 
test cases by hand. 

   
− Fault-based criteria: These rely on knowledge of typically occurring faults, often de-

signed in the form of a fault model.  
 
Test generation technology: One of the most appealing characteristics of model-based testing 
is its potential for automation. The automated generation of test cases usually necessitates the 
existence of kind of test case specifications [UPL06].  
 

− Automatic/Manual technology: Automatic test generation refers to the situation when 
the test cases are generated automatically from the information source based on the 
given criteria. Manual test generation refers to the situation when the test cases are 
produced by hand. 

 
− Random generation: Random generation of tests is done by sampling the input space 

of a system. It is easy to implement, but it takes a long time to reach a certain satisfying 
level of model coverage as [Gut99] reports. 

 
− Graph search algorithms: Dedicated graph search algorithms include node or arc cov-

erage algorithms such as the Chinese Postman algorithm14, which covers each arc at 
least once. For transition-based models, which use explicit graphs containing nodes 
and arcs, there are many graph coverage criteria that can be used to control test genera-
tion. The commonly used are all nodes, all transitions, all transition pairs, and all cy-
cles. The method is exemplified by [LY94], additionally based on structural coverage 
of FSM models. 

                                                        
 
 
14  Chinese Postman algorithm, http://www.uclic.ucl.ac.uk/harold/cpp/ [04/20/08]. 
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− Model checking: Model checking is a technology for verifying or falsifying properties 
of a system. A property typically expresses an unwanted situation. The model checker 
verifies whether this situation is reachable or not. It can yield counter examples when a 
property is not satisfied. If no counter example is found, then the property is proven 
and the situation has never been reached. Such a mechanism is implemented in 
CheckMate [ChM, SRK+00], Safety Checker Blockset (SCB) [SCB], or in Embedded-
Validator [EmbV]. 
The general idea of test case generation with model checkers is to first formulate test 
case specifications as reachability properties, for instance, “eventually, a certain state is 
reached or a certain transition fires”. A model checker then yields traces that reach the 
given state or that eventually make the transition fire. Other variants use mutations of 
models or properties to generate test suites. 

 
− Symbolic execution: The idea of symbolic execution is to run an executable model not 

with single input values but with sets of input values instead [MA00]. These are repre-
sented as constraints. With this practice, symbolic traces are generated. By instantiation 
of these traces with concrete values the test cases are derived. Symbolic execution is 
guided by test case specifications. These are given as explicit constraints and symbolic 
execution may be done randomly by respecting these constraints.  
In [Pre03b] an approach to test case generation with symbolic execution on the back-
grounds of Constraint Logic Programming (CLP), initially transformed from the Auto-
Focus models [AuFo], is provided. [Pre03b, Pre04] concludes that test case generation 
for both functional and structural test case specifications limits to finding states in the 
model’s state space. Then, the aim of symbolic execution of a model is then to find a 
trace representing a test case that leads to the specified state. 

 
− Theorem proving: Usually theorem provers are used to check the satisfiability of for-

mulas that directly occur in the models. One variant is similar to the use of model 
checkers where a theorem prover replaces the model checker.  
The technique applied in Simulink® Design Verifier™ (SL DV) [SLDV] uses mathe-
matical procedures to search through the possible execution paths of the model so as to 
find test cases and counter examples. 
 

− Online/Offline generation technology: With online test generation, algorithms can react 
to the actual outputs of the SUT during the test execution. This idea is used for imple-
menting the reactive tests too.  
Offline testing means that test cases are generated before they are run. A set of test 
cases is generated once and can be executed many times. Also, the test generation and 
test execution can be performed on different machines, levels of abstractions, or in dif-
ferent environments. Finally, if the test generation process is slower than test execu-
tion, then there are obvious advantages to doing the test generation phase only once.  

3.1.2 Test Execution 

The test execution options in the context of this thesis have been already described in Section 
2.4.2. Hence, in the following only reactive testing and the related work on the reactive/non-
reactive option is reviewed.  
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Execution options: Execution options refer to the execution of a test. 
 

− Reactive/Non-reactive execution: Reactive tests are tests that apply any signal or data 
derived from the SUT outputs or test system itself to influence the signals fed into the 
SUT. Then the execution of reactive test cases varies depending on the SUT behavior, 
in contrast to the non-reactive test execution, where the SUT does not influence the test 
at all.  
Reactive tests can be implemented within AutomationDesk [AutD]. Such tests react to 
changes in model variables within one simulation step. The scripts run on the proces-
sor of the HiL system in real time, synchronously to the model.  
The Reactive Test Bench [WTB] allows for specification of single timing diagram test 
benches that react to the user's Hardware Description Language (HDL) design files. 
Markers are placed in the timing diagram so that the SUT activity is recognized. 
Markers can also be used to call user-written HDL functions and tasks within a dia-
gram. 
[DS02] conclude that a dynamic test generator and checker are more effective in creat-
ing reactive test sequences. They are also more efficient because errors can be detected 
as they happen. Resigning from the reactive testing methods, a simulation may run for 
a few hours only to find out during the post-process checking that an error occurred a 
few minutes after the simulation start.  
In [JJR05], in addition to checking the conformance of the implementation under test 
(IUT), the goal of the test case is to guide the parallel execution towards satisfaction of 
a test purpose. Due to that feature, the test execution can be seen as a game between 
two programs: the test case and the IUT. The test case wins if it succeeds in realizing 
one of the scenarios specified by the test purpose; the IUT wins if the execution cannot 
realize any test objective. The game may be played offline or online [JJR05].   

3.1.3 Test Evaluation 

The test evaluation, also called the test assessment, is the process that exploits the test oracle. It 
is a mechanism for analyzing the SUT output and deciding about the test result. As already dis-
cussed before, the actual SUT results are compared with the expected ones and a verdict is as-
signed. An oracle may be the existing system, test specification, or an individual’s specialized 
knowledge.  The test evaluation is treated explicitly in this thesis since herewith a new concept 
for the test evaluation is proposed.  
 
Specification: Specification of the test assessment algorithms may be based on different foun-
dations that cover some criteria. It usually forms a kind of model or a set of ordered reference 
signals/data assigned to specific scenarios. Considering continuous signals the division into 
reference-based and reference signal-feature – based evaluation becomes particularly important:  
 

− Reference signal-based specification: Test evaluation based on reference signals as-
sesses the SUT behavior comparing the SUT outcomes with the previously specified 
references.  
An example of such an evaluation approach is realized in the MTest [MTest, Con04a] 
or SystemTest™ [STest]. The reference signals can be defined using a signal editor or 
they can be obtained as a result of a simulation. Similarly, test results of back-to-back 
tests can be analyzed with the help of MEval [MEval, WCF02].  
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− Reference signal-feature – based specification: Test evaluation based on reference sig-
nal feature15 assesses the SUT behavior comparing the SUT outcomes partitioned into 
features with the previously specified reference values for those features.  
Such an approach to test evaluation is supported in the Time Partitioning Test (TPT) 
[TPT, Leh03, LKK+06]. It is based on the script language Python extended with some 
syntactic test evaluation functions. By that, the test assessment can be flexibly de-
signed and allows for dedicated complex algorithms and filters to be applied to the re-
corded test signals. A library containing complex evaluation functions is available. 

 
− Requirements coverage criteria: Similar to the case of test data generation, they aim to 

cover all the informal SUT requirements, but this time with respect to the expected 
SUT behavior (i.e., regarding the test evaluation scenarios) specified there. Traceability 
of the SUT requirements to the test model/code can support the realization of this crite-
rion.  

 
− Test evaluation specifications: This criterion refers to the specification of the outputs 

expected from the SUT after the test case execution. Already authors of [ROT98] de-
scribe several approaches to specification-based test selection and build them up on the 
concept of test oracle, faults and failures. When the test engineer defines test scenarios 
in some formal notation, these can be used to determine how, when and which tests 
will be evaluated. 

 
Technology: The technology of the test assessment specification enable an automatic or man-
ual process, whereas the execution of the test evaluation occurs online or offline.  
 

− Automatic/Manual technology: The option can be understood twofold, either from the 
perspective of the test evaluation definition, or its execution. Regarding the specifica-
tion of the test evaluation, when the expected SUT outputs are defined by hand, then it 
is a manual test specification process. In contrast, when they are derived automatically 
(e.g., from the behavioral model), then the test evaluation based on the test oracle oc-
curs automatically. Usually, the expected reference signals/data are defined manually; 
however, they may be facilitated by parameterized test patterns application.  
The activity of test assessment itself can be done manually or automatically.  
Manual specification of the test evaluation means is supported in Simulink® Verifica-
tion and Validation™ (SL VV) [SLVV], where the predefined assertion blocks can be 
assigned to the test signals defined in the Signal Builder block in SL. With this prac-
tice, functional requirements can be verified during model simulation. The evaluation 
itself then occurs automatically.  

                                                        
 
 
15  A signal feature (called also signal property in [GW07, SG07, GSW08]) is a formal description of certain defined attribu-

tes of a signal. In other words, it is an identifiable, descriptive property of a signal. It can be used to describe particular 
shapes of individual signals by providing means to address abstract characteristics of a signal. Giving some examples: in-
crease, step response characteristics, step, maximum etc. are considerable signal features [ZSM06, GW07, SG07, GSW08, 
ZXS08]. A feature can be predicated by other features. Generally, predicates on signals (or on signal features), temporal 
fragmentation of the signal or temporal relation between more than one signal (or signal feature) are distinguished. This 
definition will be extended and clarified in Section 4.1.   
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The tests developed in SystemTest exercise MATLAB (ML) algorithms and SL mod-
els. The tool includes predefined test elements to build and maintain standard test rou-
tines. Test cases, including test assessment, can be specified manually at a low abstrac-
tion level. A set of automatic evaluation means exists and the comparison of obtained 
signals with the reference ones is done automatically. 

 
− Online/Offline execution of the test evaluation: The online (i.e., on the fly) test evalua-

tion happens already during the SUT execution. Online test evaluation enables the con-
cept of test control and test reactiveness to be extended. Offline means the opposite. 
Hence, the test evaluation happens after the SUT execution.  
Watchdogs defined in [CH98] enable online test evaluation. It is also possible when 
using TTCN-3. TPT [Leh03] means for online test assessment are limited and are used 
as watchdogs for extracting any necessary information for making test cases reactive. 
The offline evaluation is more sophisticated in TPT.  

 
Tools realizing the selected test approaches can be classified according to the criteria listed in 
the MBT taxonomy. A comprehensive list of the MBT tools from academia and industry is also 
provided in Appendix A. In Section 3.3 a short description of the automotive trends is reported 
and in Section 3.4 the comparison of test approaches is analyzed. 

3.2 Automotive Practice and Trends 

Established test tools from, e.g., dSPACE GmbH [dSP], Vector Informatik GmbH [VecI], 
MBTech Group [MBG] etc. are highly specialized for the automotive domain and usually come 
together with a test scripting approach which is directly integrated to the respective test device. 
All these test definitions pertain to a particular test device and by that not portable to other plat-
forms and not exchangeable.  
 
Recently, the application of model-based specifications in development enables more effective 
and automated process reaching a higher level of abstraction.  
Thereby, model-based testing and platform-independent approaches have been developed such 
as CTE/ES [Con04a], MTest, and TPT [Leh03]. As already mentioned CTE/ES supports the 
CTM with partition tests according to structural or data-oriented differences of the system to be 
tested. It also enables the definition of sequences of test steps in combination with the signal 
flows and their changes along the test. Because of its ease of use, graphical presentation of the 
test structure, and the ability to generate all possible combination of tests, it is widely used in 
the automotive domain. Integrated with the MTest, test execution, test evaluation, and test man-
agement become possible. After the execution, SUT output signals can be compared with pre-
viously obtained reference signals. MTest has, however, only limited means to express test be-
haviors which go beyond simple sequences, but are typical for control systems. The test evalua-
tion bases only on the reference signals which are often not yet available at the early develop-
ment phase yet and the process of test development is fully manual.  
TPT addresses some of these problems. It uses an automaton-based approach to model the test 
behavior and associates with the states pre- and post-conditions on the properties of the tested 
system (including the continuous signals) and on the timing. In addition, a dedicated run-time 
environment enables the execution of the tests. The test evaluation is based on a more sophisti-
cated concept of signal feature. However, the specification of the evaluation happens in Python 
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language, without any graphical support. TPT is a dedicated test technology for embedded sys-
tems controlled by and acting on continuous signals, but the entire test process is manual and 
difficult to learn.  
 
Current research work aims at designing a new platform-independent test specification lan-
guage, one of the branches called TTCN-3 continuous16 [SBG06, BKL07, SG07, GSW08]. Its 
fundamental idea is to obtain a domain-specific test language, which is executable and unifies 
tests of communicating, software-based systems in all of the automotive subdomains (e.g., 
telematics, power train, body electronics, etc.) integrating the test infrastructure as well as the 
definition, and documentation of tests. It should keep the whole development and test process 
efficient and manageable. It must address the subjects of test exchange, autonomy of infrastruc-
ture, methods and platforms, and the reuse of tests.  
TTCN-3 has the potential to serve as a testing middleware. It provides concepts of local and 
distributed testing. A test solution based on this language can be adapted to concrete testing 
environments. However, while the testing of discrete controls is well understood and available 
in TTCN-3, concepts for specification-based testing of continuous controls and for the relation 
between discrete and the continuous system parts are still under ongoing research [SBG06, 
SG07, GSW08].  
This option becomes interesting, especially in the context of a new paradigm – AUTomotive 
Open System Architecture (AUTOSAR)17 that has been observed as an automotive develop-
ment trend for the last few years. Traditional TTCN-3 is already in use to test discrete interac-
tions within this architecture. The remaining hybrid or continuous behavior could be tested with 
TTCN-3 embedded.  
 
Another graphical test specification language being already in the development stage is UML 
Testing Profile for Embedded Systems [DM_D07, D-Mint08, Liu08]. Its backgrounds root 
from UTP, TPT, and Model-in-the-Loop for Embedded System Test, abbreviated as MiLEST 
(the approach proposed in this thesis). These are coordinated and synchronized with the con-
cepts of TTCN-3 embedded too. 
 
Apart from the tools commonly known in the automotive industry, further approaches exist and 
are applied for testing the embedded systems. Referring to the constraints18 on the topic of this 
thesis, a further comprehensive analysis is done in the upcoming section.   

3.3 Analysis and Comparison of the Selected Test Approaches  

In the following, numerous test approaches are analyzed. Firstly, several, randomly selected 
academic achievements on testing embedded systems are considered, in general. Then, the test 

                                                        
 
 
16  The resulting profile will be called TTCN-3 embedded, http://www.temea.org/ [04/22/08]. 

17  AUTOSAR is an open and standardized automotive software architecture, jointly developed by automobile manufacturers, 
suppliers and tool developers. AUTOSAR Consortium, http://www.autosar.org [04/22/08]. 

18  The emphasis of this thesis is put on functional, abstract, executable and reactive MiL level tests of hybrid embedded sys-
tems (see also Section 2.4). 
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methods restricted by a concrete set of criteria (cf. Figure 3.2) and applied in the industry are 
compared. 

3.3.1 Analysis of the Academic Achievements 

The approach, of which the realization is called Testing-UPPAAL [MLN03], presents a frame-
work, a set of algorithms, and a tool for the testing of real-time systems based on symbolic 
techniques used in the UPPAAL model checker. The timed automata network model is ex-
tended to a test specification. This one is used to generate test primitives and to check the cor-
rectness of system responses. Then, the retrieved timed traces are applied so as to derive a test 
verdict. Here, online manipulation of test data is an advantage and this concept is partially re-
used in MiLEST (cf. test reactiveness on the test data level in Section 5.5.1). After all, the state-
space explosion problem experienced by many offline test generation tools is reduced since 
only a limited part of the state space needs to be stored at any point in time. The algorithms use 
symbolic techniques derived from model checking to efficiently represent and operate on infi-
nite state sets. The implementation of the concept shows that the performance of the computa-
tion mechanisms is fast enough for many realistic real-time systems [MLN03]. However, the 
approach does not deal with the hybrid nature of the system at all.  
 
Similar as in MiLEST the authors of [BKB05] consider that a given test case must address a 
specific goal, which is related to a specific requirement. The proposed approach computes one 
test case for one specific requirement. This strategy avoids handling the whole specification at 
once, which reduces the computation complexity. However, here again, the authors focus on 
testing the timing constraints only, leaving the hybrid behavior testing open. 
 
The authors of [CLP08] use two distinct, but complementary, concepts of sequence-based 
specification (SBS) and statistical testing. The system model and the test model for test case 
generation are distinguished, similar as in MiLEST. The system model is the black-box specifi-
cation of the software system resulting from the SBS process. The test model is the usage 
model that models the environment producing stimuli for the software system as a result of a 
stochastic process. The framework proposed in this approach automatically creates Markov 
chain test models from specifications of the control model (i.e., SF design). The test cases with 
an oracle are built and statistical results are analyzed. Here, the formerly mentioned JUMBL 
methods are applied [Pro03]. Statistics are used as a means for planning the tests and isolating 
errors with propagating characteristics. The main shortcoming of this work is that mainly SF 
models are analyzed, leaving the considerable part of continuous behavior open (i.e., realized in 
SL design). This is not sufficient for testing the entire functionality of the systems considered in 
this thesis.  
 
In contrast, the authors of [PHPS03] present an approach to generating test cases for hybrid 
systems automatically. These test cases can be used both for validating models and verifying 
the respective systems. This method seems to be promising, although as a source of test infor-
mation two types of system models are used: a hybrid one and its abstracted version in the form 
of a discrete one. This practice may be very difficult when dealing with the continuous behavior 
described purely in SL.  
 
The authors of [PPW+05] evaluate the efficiency of different MBT techniques. They apply the 
automotive network controller case study to assess different test suites in terms of error detec-
tion, model coverage, and implementation coverage. Here, the comparison between manually or 
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automatically generated test suites both with and without models, at random or with dedicated 
functional test selection criteria is aimed at. As a result, the test suites retrieved from models, 
both automatically and manually, detect significantly more requirements errors than hand-
crafted test suites derived only from the requirements. The number of detected programming 
errors does not depend on the use of models. Automatically generated tests find as many errors 
as those defined manually. A sixfold increase in the number of model-based tests leads to an 
11% increase [PPW+05] in detected errors. 
 
Algorithmic testbench generation (ATG) technology [Ole07], though commercially available, is 
an interesting approach since here the test specification is based on the rule sets. These rule sets 
show that the high-level testing activities can be performed as a series of lower-level actions. 
By that, an abstraction level is introduced. This hierarchical concept is also used in MiLEST 
while designing the test system. ATG supports some aspects of test reactiveness, similar to 
MiLEST, and includes metrics for measuring the quality of the generated testbench specifica-
tion. Finally, it reveals cost and time reduction while increasing the quality of the SUT as 
claimed in [Ole07]. 

3.3.2 Comparison of the Test Approaches Applied in the Industry  

Based on the analysis of the test dimensions given in Section 2.4.1 and the test categories of the 
MBT taxonomy (see Section 3.2) a trapezoid shown in Figure 3.2 is derived. It narrows the 
range of the test approaches that are compared in the further part of this section in detail. 
 

Dynamic tests considered.
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though SiL/HiL/PiL not excluded.

Praxis relevance in the automotive domain.C
rit

er
ia

 n
ar

ro
w

in
g 

th
e 

ra
ng

e 
of

 th
e 

co
ns

id
er

ab
le

 te
st

 a
pp

ro
ac

he
s.

 
Figure 3.2: Trapezoid Selecting the Range of the Test Approaches. 

 
Firstly, in this thesis only dynamic tests are considered, leaving the static reviews open. Several 
researches on static testing are to be found in [AKR+06, ALS+07, SDG+07, FD07]. Further on, 
only the class of models defined in Section 3.2 is investigated. ML/SL/SF is selected as the en-
vironment enabling instantiation of such models. Although structural test methods have been 
briefly outlined, the focus of this thesis is put on functional testing. Finally, having the previous 
constraints in mind, praxis relevant approaches are to be elaborated.  
Hence, the test approaches influencing this work conceptually and technically are analyzed in 
Table 3.1 and Table 3.2 in terms of the MBT taxonomy. The characteristic of the approach en-
compassed in this thesis is introduced at the end of this chapter.  
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          Table 3.1: Classification of the Selected Test Approaches based on the MBT Taxonomy. 
 

Test Generation Test Execution Test 
Evaluation 

        
                      

                      MBT 
              Categories, 
                   Options      

 
 
 

Selected Test  
Tools 
 

Test Selection 
Criteria Technology Execution 

Options Specification Technology 

EmbeddedValidator 
[EmbV] 

- does not       
apply19 

 

- automatic          
generation  

- model checking 

- MiL, SiL 
- non-reactive 
 

- requirements 
coverage  

 

- manual      
specification 

- does not apply   
 

MEval [MEval] 

- does not apply 
since here back-
to-back regres-
sion tests are 
considered 

 

- does not apply - MiL, SiL, PiL, 
HiL 

- non-reactive 
 

- reference   
signals-based  

 

- manual     
specification 

- offline    
evaluation 

MTest with CTE/ES 
[MTest, CTE] 

- data coverage 
- requirements 

coverage  
- test case      

specification  
- offline         

generation 
 

- manual        
generation 

- MiL, SiL, PiL, 
HiL  

- non-reactive 

- reference         
signals-based  

 

- manual      
specification 

- offline     
evaluation 

Reactis Tester   
[ReactT] 

- structural 
model coverage 

- offline         
generation 

 

- automatic    
generation  

- model      
checking20  

- MiL, SiL, HiL  
- non-reactive 
 

- test evaluation      
specifications 

 

- automatic        
specification 

- offline     
evaluation 

Reactis Validator 
[ReactV] 

- structural 
model coverage 

- requirements 
coverage 

- offline         
generation 

 

- automatic    
generation  

- model checking  

- MiL, SiL 
- non-reactive  

- test evaluation 
specifications 

 

- manual        
specification 

- online     
evaluation 

Simulink®  
Verification and 
Validation™ 
[SLVV] 

- does not apply  
 

- manual        
generation 

 

- MiL 
- non-reactive 

- requirements 
coverage   

 

- manual      
specification 

- online        
evaluation 

 

Simulink® Design 
Verifier™ [SLDV] 

- structural 
model coverage 

- offline         
generation 

 

- automatic          
generation  

- theorem         
proving 

- MiL, SiL 
- non-reactive 

- requirements 
coverage   

- test evaluation 
specifications 

 

- manual      
specification 

- online             
evaluation  

 

                                                        
 
 
19  Unless otherwise noted, the expression ‘does not apply’ is used when the particular option is not explicitly named for the 

given test approach. In that case either further deep investigation is needed to assess the option or the assessment plays no 
role for further analysis.  

20  The tool employs an approach called guided simulation to generate quality input data automatically. The idea behind this 
approach is to use algorithms and heuristics so as to automatically obtain inputs covering the targets (i.e., model elements 
to be executed at least once). The author decided to classify this approach as a sophisticated variant of model checking 
technology.  
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SystemTest™ 
[STest] 

- data coverage  
- offline         

generation 
 

- automatic     
generation21 

- MiL, SiL, HiL 
- non-reactive 

- reference       
signals-based  

 

- manual      
specification 

- offline        
evaluation 

 

TPT [TPT] 

- data coverage 
- requirements 

coverage  
- test case      

specification  
- offline and 

online        gen-
eration 

 

- manual        
generation 

- MiL, SiL, PiL, 
HiL 

- reactive 

- reference      
signal-feature   
– based  

 

- manual      
specification 

- online and 
offline         
evaluation 

T-VEC [TVec] 

- structural 
model coverage 

- data coverage  
- requirements 

specification 
- offline       

generation 
 

- automatic    
generation  

 

- MiL, SiL  
- non-reactive 

- test evaluation 
specifications 
[ROT98] 

 

- automatic 
specification 

- does not apply 

 
Considering the test approaches introduced in Table 3.1, several diversities may be observed. 
EmbeddedValidator [EmbV, BBS04] uses model checking as test generation technology and 
thus, is limited to discrete model sectors. The actual evaluation method offers a basic set of 
constraints for extracting discrete properties, not addressing continuous signals. Only a few 
temporal constraints are checked. However, the mentioned properties of the model deal with the 
concept on signal features, whereas the basic verification patterns contribute to the test patterns 
and their reusability within the technique proposed in this thesis.  
 
MEval [MEval] is especially powerful for back-to-back-tests and for regression tests, since 
even very complex reference signals are already available in this case. The option is excluded 
from further consideration.  
 
MTest [MTest] with its CTE/ES [CTE], as already mentioned in the previous section, gives a 
good background for partitioning of test inputs into equivalence classes. The data coverage and 
test case specifications criteria are reused in MiLEST to some extent. Similarly as in System-
Test, the test evaluation is based only on reference signal-based specification, which constitutes 
a low abstraction level, thus it is not adopted for further development.  
 
Reactis Tester [ReactT], T-VEC [TVec], or the method of [Pre03] present approaches for com-
puting test sequences based on structural model coverage. It is searched for tests that satisfy 
MC/DC criteria. Their value is that the test suites are generated for units (functions, transitions) 
but also for the entire system or on integration level. Although the methods seem to be very 
promising due to their scope and automation grade, this thesis is focused on functional testing 
only. Structural testing is left open as a complementary method.  
 

                                                        
 
 
21  The test vectors may be defined using MATLAB expressions or generated randomly applying probability distributions for 

Monte Carlo simulation [DFG01].  
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In Reactis Validator [ReactV, SD07] only two predefined validation patterns are available. 
Hence, a systematic test specification is not possible. This gap is bridged in MiLEST that pro-
vides assertion – precondition pairs. They enable the test evaluation functions to be related with 
the test data generation.  
For SL DV [SLDV] a similar argumentation applies, although another test generation technol-
ogy is used. An advantage of these three solutions is their possibility to cover both functional 
and structural test goals, at least to some extent.  
SL VV [SLVV] gives the possibility of implementing a test specification directly next to the 
actual test object, but the standard evaluation functions cover only a very limited functionality 
range, a test management application is missing and test data must be created fully manually. A 
similar test assessment method, called ‘watchdog’ and ‘observer’, has been introduced by 
[CH98, DCB04], respectively.  
 
TPT [TPT], as discussed in the previous section, is platform-independent and can be used at 
several embedded software development stages, which is not directly supported with MiLEST, 
although extensions are possible. It is the only tool from the list in Table 3.1 that enables reac-
tive testing and signal-feature – based specification of the test evaluation algorithms. These 
concepts are reused and extended in the solution proposed in this thesis.  
 
The classification of the selected test approaches based on the test dimensions can be derived 
from the discussion above. However, the summary is given explicitly for complementary pur-
poses. Further details can be found in Appendix A annexed to this thesis. 
 

Table 3.2: Classification of the Selected Test Approaches based on the Test Dimensions. 
        

                          Test 
              Dimensions    

 
 
 
 
 
 

Selected Test  
Tools 

Test  
Goal 

Test  
Abstraction 

Test 
 Execution  
Platform 

Test  
Reactiveness 

Test  
Scope 

EmbeddedValidator - functional - abstract - MiL, SiL22 - non-reactive 

MEval - functional - non-abstract - MiL, SiL, PiL, HiL - non-reactive 

MTest with CTE/ES - functional - semi-abstract - MiL, SiL, PiL, HiL - non-reactive 

Reactis Tester - structural - non-abstract - MiL, SiL, HiL - non-reactive 

Reactis Validator - functional - abstract - MiL, SiL - non-reactive 
Simulink®  
Verification and 
Validation™  

- functional - abstract - MiL - non-reactive 

Simulink® Design 
Verifier™ 

- structural 
- functional - abstract - MiL, SiL - non-reactive 

SystemTest™ - functional - non-abstract - MiL, SiL, HiL - non-reactive 

TPT - functional - abstract - MiL, SiL, PiL, HiL - reactive 
 

T-VEC - structural - non-abstract - MiL, SiL - non-reactive 

- component 
- integration 

                                                        
 
 
22  For SiL, PiL and HiL test adapters and test drivers are usually needed.  
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The main shortcomings and problems within the existing test solutions are the following:  
− Automatic generation of test data is based almost only on structural test criteria or 

state-based models (e.g., SF charts), thus it is not systematic enough. 
− For functional testing only manual test data specification is supported, which makes 

the test development process long and costly. 
− The test evaluation is based mainly on the comparison of the SUT outputs with the en-

tire reference signal flows. This demands a so-called golden device to produce such 
references and makes the test evaluation not flexible enough.  

− Only a few test patterns exist. They are not structured and not categorized. 
− The entire test development process is still almost only manual. 
− Abstraction level is very low while developing the test design or selecting the test data 

variants.  
 
Finally, none of the reviewed test approaches overcomes all the shortcomings given above at 
once. Based on the recognized problems and the criteria that have been proven to be advanta-
geous in the reviewed related work, the first shape of MiLEST may be outlined. MiLEST deals 
with all the listed problems. In particular, the following are in focus:  

− Systematic and automatic test data generation process is supported. Here, not only a 
considerable reduction of manual efforts is advantageous, but also a systematic selec-
tion of test data for testing functional requirements including such system characteris-
tics as hybrid, time-constrained behavior is achieved. By that, the method is cheaper 
and more comprehensive than the existing ones.  

− The test evaluation is done based on the concept of signal feature, overcoming the 
problem of missing reference signals. These are not demanded for the test assessment 
any more.  

− A catalog of classified and categorized test patterns is provided, which eases the appli-
cation of the methodology and structures the knowledge on the test system being built.  

− Some of the steps within the test development process are fully automated, which 
represents an improvement in the context of the efforts put on testing.  

− A test framework enabling the specification of a hierarchical test system on different 
abstraction levels is provided. This gives the possibility to navigate through the test 
system easily and understand its contents immediately from several viewpoints.  

 
A brief description of the MiLEST method is given below, whereas a report on its main contri-
butions in relation to the related work is given in Table 3.3 and will be discussed in Chapters 4 
– 6 in depth.  
 
The application of the same modeling language for both system and test design brings positive 
effects. It ensures that the method is relatively clear and it does not force the engineers to learn 
a completely new language. Thus, MiLEST is a SL add-on exploiting all the advantages of 
SL/SF application. It is a test specification framework, including reusable test patterns, generic 
graphical validation functions (VFs), test data generators, test control algorithms, and an arbi-
tration mechanism collected in a dedicated library. Additionally, transformation functions in the 
form of ML scripts are available so as to automate the test specification process. For running 
the tests, no additional tool is necessary. The test method handles continuous and discrete sig-
nals as well as timing constraints.  
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Table 3.3: Classification of the Test Approaches based on the Selected Criteria. 

Test Specification 
        

                 Criteria 
   

 
 
 

Selected Test  
Methodologies,  
Technologies, Tools 
 

Manual  
Test Case / 
Test Data 

Specification 

Automatic 
Test Case / 
Test Data 

Generation 

Test 
Evaluation 
 Scenarios  
as Driving 

Force 

Formal 
Verifica-

tion 

Test 
Patterns 
Support 

Transforma-
tion and  

Automation 
Facilities 

EmbeddedValidator    + + 
(15 patterns)  

MTest with CTE/ES +      
Reactis Tester  +  +    

Reactis Validator  + +  –/+ 
(2 patterns)  

Simulink®  
Verification and  
Validation™ 

+  +  + 
(12 patterns)  

Simulink® Design   
Verifier™   +  + –/+ 

(4 patterns)  
SystemTest™  +      
TPT +    +  
T-VEC  +  +   
Transformations 
Approach [Dai06] +     + 
Watchdogs [CH98]   +    

MiLEST  + +  + (over 50  
patterns) + 

 
A starting point applying the method is to design the test specification model in MiLEST. Fur-
ther on, generic test data patterns are retrieved automatically from some marked portions of the 
test specification. The test data generator concretizes the data. Its functionality has some simi-
larities to the CTM method and aims at systematic signal production. The SUT input partitions 
and boundaries are used to find the meaningful representatives. Additionally, the SUT outputs 
are considered too. Hence, instead of searching for a scenario that fulfills the test objective it is 
assumed that this has already been achieved by defining the test specification. Further on, the 
method enables to deploy a searching strategy for finding different variants of such scenarios 
and a time point when they should start/stop.  
 
Since at the early stage of new system functionalities development reference signals are not 
available, another solution has to be provided. In this thesis a new method for describing the 
SUT behavior is given. It is based on the assessment of particular signal features specified in 
the requirements. For that purpose a novel, abstract understanding of a signal is defined. This is 
the fundamental contribution of this work as both test case generation and test evaluation are 
based on this concept. Numerous signal features are identified; feature extractors, comparators, 
and feature generators are implemented. Due to their application, the test evaluation may be 
performed online which enables an active test control, opens some perspectives for test genera-
tion algorithms and provides extensions of reactive testing, but at the same time reduces the 
performance of the test system. Also, new ways for first diagnosis activities and failure man-
agement are possible.  
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Finally, the introduced reactive testing concept relates to the test control, but it is more power-
ful, especially in the context of hybrid systems. [Leh03] defines the test reactiveness as a reac-
tion of the test data generation algorithm on the SUT outputs during the test execution. In par-
ticular, the test case reacts to a defined SUT state, instead of on a defined time point. This defi-
nition is extended in this thesis as the test data can be additionally influenced by signals from 
the test evaluation. Combining this method with the traditional test control definition, the se-
quence of test cases execution can be organized and test data generation can be influenced de-
pending on the verdict of the previous test case (as in TTCN-3); depending on the SUT outputs 
(as in TPT and in TTCN-3) and on other test evaluation signals (e.g., reset, trigger, activation).  
 
The options that MiLEST covers with respect to the MBT taxonomy are listed in Table 3.4.  
 

Table 3.4: Classification of MiLEST with respect to the MBT Taxonomy. 

Test 
Approach  

Test Generation:  
Selection Criteria  
and Technology 
 

Test Execution Options Test Evaluation:  
Specification  
and Technology  

MiLEST 

 
- data coverage 
- requirements coverage 
- test case specifications  
- automatic generation 
- offline generation 
 

 
- MiL  
- reactive  
 

 
- reference signal-feature – based 
- requirements coverage 
- test evaluation specifications 
- automatic and manual  
   (depending on the process step) 
- online evaluation 
 

 
In this chapter, the first set of questions arisen in the introduction to this thesis has been consid-
ered. The role of system model in relation to the quality-assurance process has been established. 
Since black-box testing is aimed at the availability of the system model and an access to its in-
terfaces became the crucial issue. It has been decided to provide a test model including all the 
parts of a complete test specification. Also, a common language for both system and test speci-
fications have been used.  

3.4 Summary  

In this chapter related work on MBT has been introduced and its analysis has been done. At 
first, MBT taxonomy has been elaborated, extended and presented on a diagram. Then, the sys-
tem model has been fixed as a concrete instantiation of one of the categories from the taxon-
omy. Further categories and options from the taxonomy have been discussed in detail. They are 
related to the test generation, test execution and test evaluation.  
Then, in Section 3.2, the current testing situation identified in the automotive domain has been 
reported. In Section 3.3, a trapezoid has been introduced so as to narrow the range of MBT ap-
proaches investigated further on. Then, an analysis of the selected test methods followed, re-
sulting in a list of the corresponding test tools available in the academia or industry. Their com-
prehensive classification of the MBT solutions has been attached in Appendix A as a table. 
Hence, it should be referred to while analyzing the contents of this chapter. For additional work 
on MBT the reader is linked to the surveys given in [BJK+05, UL06].   



                                                                                                       3 SELECTED TEST APPROACHES 50 

Finally, based on the analysis of challenges and limitations of the existing approaches a short 
characteristic of MiLEST has been elaborated, which will be followed in Chapters 4 – 6 in 
depth. 
 
The work related to the subject of this thesis will be recalled in the upcoming chapters many 
times. This practice should serve as an explanation of fundamental concepts of MiLEST. In 
particular, related research on test patterns will be given Chapter 4 due to its strong relation to 
the approach proposed in this thesis. The same applies to the considerations on signal features.  
  
 
 
 
 
 
 
 
 
 
 
 
 



 

– Part II – 
 

 
 
 

 
 



 

4 A New Paradigm for Testing 

Embedded Systems 

“Anybody who has been seriously engaged in scientific work of any kind realizes  
that over the entrance to the gates of the temple of science are written the words:  

“You must have faith.”  
It is a quality which the scientist cannot dispense with.” 

 
- Max Karl Ernst Ludwig Planck 

 
 

While adding new functionalities into the existing systems in the automotive domain, model-
based development (MBD) paradigm is often applied. At the early stage of this sort of devel-
opment, a functional system model, usually executable, serves as a means for introducing the 
novelties. Neither real-world nor reference signals are available for testing yet. This implies a 
need for another solution.  
 
In this thesis, a methodology for model-based testing of the embedded, hybrid, real-time system 
functionality is provided. It is based on the current software development trends from the prac-
tice. In the scope of this methodology, a new manner for the stimulation and evaluation of the 
system behavior is given. It is breaking the requirements down into characteristics of specific 
signal features. Based on them, the test specification and test assessment are realized. For that 
purpose, a novel understanding of a signal is defined that allows for its abstract description. 
This enables to have a new view on automatic test signals generation and evaluation, both of 
them being the fundamental contributions of this thesis.  
As an outcome, the manual efforts for test data generation are reduced and, at the same time, 
their systematic selection is achieved. This makes the proposed method cheaper and more com-
prehensive than the existing approaches.  
Then, because of the application of signal features, the test evaluation is overcoming the prob-
lem of missing reference signals. These are not demanded for the test assessment any more, 
which shifts the current common practice towards a new testing paradigm.  
Many of the steps within the test development process are fully automated, which gives a sig-
nificant improvement in the context of the efforts put on testing, especially comparing to the 
other, still very manual methods.  
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In the following chapter the conceptual contents of the method proposed in this thesis are intro-
duced. Its realization is called Model-in-the-Loop for Embedded System Test and abbreviated 
as MiLEST. In Section 4.1, the basics on signal and signal feature are presented. Also, different 
combinations of such features are investigated. Then, in Section 4.2, they are classified accord-
ing to the availability in time and assessment delay. Every entry of this classification is re-
viewed from the perspective of signal generation and signal evaluation. At any one time, a re-
alization proposal is given. This gives the possibility to deal with an automatic test generation 
and evaluation and by that, the manual efforts spent on such activities are considerably reduced. 
Section 4.3 introduces the concept of test patterns that are applicable in the proposed method 
and outlines the characteristics of the selected solution. The collection of the MiLEST test pat-
terns is attached as a table in Appendix B. These ease the application of the methodology and 
structure the knowledge on the test system being built. As a consequence, flexible test specifi-
cations can be obtained systematically. In Section 4.4, process of test specification and test exe-
cution is briefly described. Finally, Section 4.5 provides related work on the test paradigms ap-
plied in this thesis, whereas Section 4.6 completes the chapter with a summary.  

4.1 A Concept of Signal Feature  

Before the signal-feature approach and features classification will be presented, fundamental 
knowledge on signal and signal processing is given. Additionally, also logical connectives and 
temporal relations between features are introduced for completeness of the discussion on test 
specification.  

4.1.1 A Signal  

A signal is any time-varying or spatial-varying quantity [KH96, NM07]. It represents a pattern 
of variation of some form [EMC+99]. Signals are variables that carry information.  
Mathematically, signals are represented as a function of one or more independent variables. As 
a matter of example, a black and white video signal intensity is dependent on x, y coordinates 
and time t, which is described as f(x,y,t).  
 
In this thesis, exclusively signals being a function of time – f(t) will be concerned. Giving some 
examples: velocity of a car over time is classified as a mechanical signal, voltage, and current 
in a circuit are electrical signals and acoustic pressure over time belongs to acoustic signals 
[KH96].  
 
Signals can be categorized in various ways. The distinction regarded in this thesis is reduced to 
the difference between discrete and continuous time that the functions are defined over and be-
tween their discrete and continuous values. Most signals in the real world are time-continuous, 
as the scale is infinitesimally fine. Differential equations are used for representing how con-
tinuous signals are transformed within time-continuous systems, whereas difference equations 
enable discrete signals to be transformed within most time-discrete systems. An analog signal is 
a kind of signal that is continuously variable in time, as opposed to digital signal which is vary-
ing in a limited number of individual steps along its range [KH96]. Analog signal differs from a 
digital signal in that small fluctuations in the signal are meaningful. Digital signals are value-
discrete, but are often derived from an underlying value-continuous physical process. 
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Furthermore, in this thesis causal systems are discussed. A system is causal if the output at a 
time only depends on input values up to that time, not on the future values. It is referred to as 
non-anticipative, because the system output does not anticipate future values of the input 
[KH96, EMC+99].  
 
Mathematically, a system x(t) → y(t) is causal if x1(t) → y1(t),  x2(t) → y2(t) and given two input 
signals x1(t), x2(t) have the relation x1(t) = x2(t) for all t ≤ t0 , then y1(t) = y2(t) for all t ≤ t0.  
All real-time physical systems are causal, because time only moves forward, i.e., effect occurs 
after cause [EMC+99]. 
 
In Simulink (SL) even the events are described using signals with a value at every simulation 
time step. The realization of time-continuous and time-discrete signals is based on the same 
principle. Time-discrete signals are a subset of analog signals, although their representation 
seems to be redundant from some viewpoints.  
 
Moreover, a continuous signal in SL is actually time-sampled continuous signal represented as 
an equation:  
 
x[k] = x(kT), where: 
 

− T is sample time23 
− k is the simulation time step. 

 
Hence, the prototypical realization of the test technology introduced in this thesis limits its 
scope to the generation, controlling, and assessment of value-continuous and time-sampled con-
tinuous signals, although the system behavior expressed by those signals can be of continuous 
and discrete nature. Thus, theoretically, the separation of concerns still applies and the signals 
will be considered as both time-continuous and time-discrete.  
 
To sum up, the test system proposed hereby utilizes the basic principles of signal processing24. 
Subsequently, the two main tasks, namely test data generation and test evaluation, can be re-
named to signal generation and signal evaluation with respect to the lowest level of abstraction 
as presented in Figure 4.1. The system specification is used as a decisive factor about the type 
of signals that are generated and evaluated within functional tests. Additionally, the feedback 
path supports the test reactiveness (cf. Section 3.4).  
 
 

                                                        
 
 
23  The sample time also known as simulation time step size is called step size in ML/SL/SF [MathSL]. In this thesis it will be 

denominated to time step size. 

24  Signal processing is the analysis, interpretation and manipulation of signals. 
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SUT
u(kT) y(kT)
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y(kT)
z(kT)

kTz(kT)

feedback (test reactiveness)

u(kT)
h(kT)

h(kT)

 
Figure 4.1: A Hybrid Embedded System with Discrete- and Continuous-timed Signals. 

 

4.1.2 A Signal Feature  

A signal feature (SigF), also called signal property in [GW07, SG07, GSW08], is a formal de-
scription of certain predefined attributes of a signal. In other words, it is an identifiable, de-
scriptive property of a signal. It can be used to describe particular shapes of individual signals 
by providing means to address abstract characteristics of a signal. Giving some examples: step 
response characteristics, step, minimum etc. are considerable SigFs.  
Whereas the concept of SigF is known from the signal processing theory [KH96, Por96], its 
application in the context of software testing has been revealed by [Leh03, LKK+06, ZSM06, 
MP07, GW07, SG07, GSW08, ZXS08]. In this thesis, the SigF is additionally considered as a 
means for test data generation and, similar to [Leh03], evaluation of the SUT outputs.  
 
Graphical instances of SigFs are given in Figure 4.2. The signal presented on the diagram is 
fragmented in time according to its descriptive properties resulting in: decrease, constant, in-
crease, local maximum, decrease, and step response, respectively. This forms the backgrounds 
of the solution presented in this work.  
 

 
Figure 4.2: A Descriptive Approach to Signal Feature. 
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A feature can be predicated by other features, logical connectives, or timing relations.   
 
In mathematics, a predicate is either a relation or the boolean-valued function that amounts to 
the characteristic function or the indicator function of such a relation [Cop79, Men97]. A func-
tion P: X→ {true, false} is called a predicate on X or a property of X. In this sense, a SigF is a 
predicate on a signal. Sometimes it is inconvenient or impossible to describe a set by listing all 
of its elements. Another useful way to define a set is by specifying a property that the elements 
of the set have in common. P(x) notation is used to denote a sentence or statement P concerning 
the variable object x. The set defined by P(x) written {x | P(x)}, is a collection of all the objects 
for which P is sensible and true. Hence, an element of {x | P(x)} is an object y for which the 
statement P(y) is true. 
 
For instance, assuming that the object is a SigF A over the signal sigA and the predicate P(SigF 
A) is a maximum, the following is obtained: {SigF A(sigA) | SigF A(sigA) is a maximum} is the 
set of all maximums within the signal sigA, called here setMax(sigA).  
 
Further on, looking for a particular value of the maximum: {setMax(sigA) | setMax(sigA) is 
equal to v} outputs a set of such maximums that are equal to value v.  

4.1.3 Logical Connectives in Relation to Features  

A logical connective25 is a logical constant which represents a syntactic operation on well-
formed formulas. It can be seen as a function which maps the truth-values of the sentences to 
which it is applied [Cop79, CC00]. 
 
The basic logical connectives applied in the prototypical realization of the test method in this 
thesis are the following, also listed in [Cop79]: 
 

− negation (NOT) – (¬) 
− conjunction (AND) – (&)26 
− disjunction (OR) – (׀׀) 
− material implication (IF … , THEN … ) – (→) 

 
They are used for formalization of the test specification. The detailed description of their appli-
cation follows in Section 4.4 and in Section 5.2. 

4.1.4 Temporal Expressions between Features  

A temporal relation is an inter-propositional relation that communicates the simultaneity or or-
dering in time of events, states, or SigFs. In logic, the term temporal logic is used to describe 
                                                        
 
 
25  A logical connective is also called a truth-functional connective, logical operator or propositional operator. 

26  For boolean arguments, the single ampersand ("&") constitutes the (unconditional) "logical AND" operator, called logical 
conjunction [Men97], while the double ampersand ("&&") is the "conditional logical AND" operator. That is to say that 
the single ampersand always evaluates both arguments whereas the double ampersand will only evaluate the second argu-
ment if the first argument is true. – as retrieved from: http://www.jguru.com/faq/view.jsp?EID=16530 [04/24/2008]. 
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any system of rules and symbolism for representing and reasoning about propositions qualified 
in terms of time. 
 
In this thesis a set of temporal expressions from these available in [BBS04, GW07, GHS+07] 
has been chosen for introducing the relations between features:  
 

− after (d1, d2) B − SigF B occurs after time specified in the range be-
tween d1 and d2, where 0 <= d1 <= d2 

− after (A) B − if SigF A occurs, SigF B occurs afterwards 
− before (A)B  − if SigF A occurs, than SigF B must have occurred be-

fore  
− during (d1, d2) B − SigF B occurs continuously during time specified in 

the range between d1 and d2 
− during (A)B − if SigF A occurs, SigF B occurs continuously during 

activation of SigF A 
− every nth occurrence (A) − SigF A occurs every nth time   
− within (d1, d2) B − SigF B occurs at least once in time specified in the 

range between d1 and d2 
− within (A)B  − if SigF A occurs, SigF B occurs at least once whereas 

SigF A is active 
 
The selection has been done based on the experience analysis from model checking as de-
scribed in [GW07]. The test specification may be combined from SigFs, logical operators, and 
temporal expressions. Giving an example: IF A & after(d1, d2) B ׀׀ C, THEN during(d3, d4) D – 
means that if SigF A on sigA holds and after a period of time not lower than d1 and not higher 
than d2 SigF B on sigB holds or SigF C on sigC holds, then SigF D on sigD should hold during 
the time period starting from d3 until d4.  
Additionally, the following selected temporal expressions [KM08] are covered by the corre-
sponding statements:  
 

− always(A) is covered by IF true THEN A 
− never(A) is covered by IF true THEN  ¬A. 
− eventually(A) is covered by IF true THEN  A at least once27  

  
Similar to the logical connectives, the temporal relations are used for formalization of the test 
specification. The description of their application follows in Section 4.4 and in Section 5.2. 
 
The combinations of predicates can be defined either between features characterizing one signal 
or more signals, using both logical connectives and temporal relations. For the examples below, 
the following assumption is valid: A1 and A2 are SigFs characterizing a time-continuous signal 
sigA. A and B are SigFs characterizing two different time-continuous signals, C represents a 
SigF characterizing a discrete signal sigC. 
 

                                                        
 
 
27  At least once means in this context at least once until the end of the predefined simulation time for a particular model.  
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− within(A1)B1&A2 − if SigF A1 occurs, SigF B1 and SigF A2 occur together at least 
once whereas SigF A1 is active 

− after(y ms)A&B − SigF A and SigF B occur together after y milliseconds 
− during(A)B&C − if SigF A occurs, SigF B and SigF C occur both continuously 

during activation of SigF A  
− A׀׀¬C − SigF A or no SigF C  occurs 
− A=v − a set of SigFs A (e.g., maximum) which values are equal to v. 

 

4.2 Signal Generation and Evaluation   

4.2.1 Features Classification  

This thesis is driven by the practicability factor. Thus, the classification of SigF is done follow-
ing the realization algorithms, instead of any other theoretical approach.  
This trend is motivated by the facts that MiLEST is based on the already existing modeling 
platform and its implications contribute to the reasoning about features. Moreover, a principal 
idea of this work is to show the feasibility of the proposed solution relating to the running case 
studies. Thus, the implementation behind the conceptual reasoning is in the primary focus.  
 
The fundamental task of signal processing, in the context of the approach proposed in this 
work, is to include the concept of SigF. Hence, the core problems of signal generation and sig-
nal evaluation are limited to the generation of an appropriate SigF or a combination of SigFs 
over a predefined signal, on the one hand; and evaluation of an extracted SigF from a signal, on 
the other hand. Therefore, the activities of performing those practices are sometimes denomi-
nated as feature generation and feature extraction, respectively. Feature extraction is a mecha-
nism for reducing the information about signal evaluation. This enables the test assessment be 
abstracted from the large sequences of values that signals represent. Feature extraction is also 
called feature detection in this thesis. 
 
Generation of a feature characterizing a signal translates to the generation of a specific signal, 
which contains the particular properties. The concept of generating the signals relates to the 
mechanisms which serve for their extraction, and thus evaluation. The features extraction per-
spective is used for their classification. In fact, SigFs could be categorized applying the genera-
tion viewpoint too, but it is of more value to use the other perspective. This kind of practice 
simplifies the process of understanding the entire test specification. Moreover, it is motivated 
by the fact, that the specification and evaluation part, including feature extraction, must be de-
signed by an engineer, whereas the signal generation part is done fully automatically based on 
the test specification model. Thus, the starting point is to get familiar with the mechanisms of 
feature extraction, in fact. An additional classification would cause only an abstract overhead 
for the end-user.   
 
Nevertheless, before SigFs will be categorized in detail, a brief overview on the scheme of fea-
ture generation will be given. Firstly, a default signal shape is defined for every SigF (cf. Figure 
4.3). Then, the range of permitted values for the signal is defined. Further on, a minimal dura-
tion time of the feature is provided, in case needed. Otherwise, a default duration time is set. 
Finally, feature specifics are introduced in terms of the so-called generation information. For 
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example, a step generation includes a size of the step as shown in Figure 4.3, whereas an in-
crease generation includes the shape of the increase, a slope, initial and final values. Additional 
parameters that need to be taken into account while feature generation relate to the evaluation 
mechanism for a particular feature. They must be set following the values of the same parame-
ters that have been applied in the extraction part. A simple example is a step, for which the du-
ration of constant signal appearing before the step, must be set. Otherwise, the feature detection 
mechanism could not work properly. Then, generating the step, the duration of the generated 
constant signal, must be set on the minimal value specified within the extraction so as to be de-
tectable at all.  
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Figure 4.3: Signal-Features Generation – a few instances. 

 
To sum up, a generic pattern for signal generation is always the same – a feature is generated 
over a selected signal and the parameters are adjusted according to a predefined algorithm (cf. 
Figure 4.4); however, some feature specifics must be included for an actual generation of every 
single SigF. The details concerning the abstract considerations on that subject and their realiza-
tion in MiLEST are described in the next section.  

Signal
Generation

Feature 
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Parameters 
Sweep
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Feature Specific Parameters

signal x(kT)
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Figure 4.4: Signal-Features Generation – a Generic Pattern. 

 
A similar approach is used for the signal evaluation (cf. Figure 4.5). Firstly, a signal is prepared 
for the extraction of a SigF of interest. This is called the preprocessing phase. Then, the feature 
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is extracted to be finally compared with the reference value. A verdict is set based on the ap-
plied arbitration mechanism. The details w.r.t. extraction of the concrete SigFs are given in Sec-
tion 4.2, whereas the patterns classification leading to the test architecture and the arbitration 
mechanism are elaborated in the upcoming chapter.  
The time step size employed in the process of signal-features extraction is a critical factor in 
establishing its success. The choice of the time step size is dependent on the different rates of 
response that the system exhibits. If it is chosen too small, it may result in a lack of sensitivity 
to changes: too large – it may produce incorrect inferences. Decreasing the time step may help 
in differentiating between discontinuities, abrupt changes, and continuous effects. On the other 
hand, if the time step is too small when applied to a variable with a relatively slowly decreasing 
slope, it appears that the signal does not change for a period of time; therefore, it is reported to 
be normal or to have reached steady state. In reality it is decreasing, and reporting it as normal 
may result in premature elimination of true faults [Mos97]. 

InOut
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Figure 4.5: Signal-Features Evaluation – a Generic Pattern. 

 
The concept of feature extraction and features classification were already given in the previous 
work of the author [ZSM06]. Then, the types of features discussed in this thesis and the sub-
stantial parts of the evaluation implementation are directly adopted from [MP07, ZMS07a].  
 
Extracting SigF from a signal can be generally seen as a transformation of SUT signals to so-
called feature signals (not to be confused with signal feature, also called SigF or simply feature 
in the following). The concrete values of an extracted feature signal represent the considered 
SigF at every time step. The feature signal is then compared with the reference data according 
to a specific, SigF related algorithm.  
 
The scope of the online evaluation is reduced to all the past time steps until the actual one. 
Many features are not immediately identifiable, though. Taking an example of a maximum, it 
can only be detected at least one time step after it takes place. Some features are only identifi-
able with a delay, that might be known in advance (determinate) or not (indeterminate). This 
phenomenon is revealed in the naming convention for SigFs applied in this thesis.  
The feature extraction realization determines the two aspects according to which the features 
can be classified. In Figure 4.6, one example for every combination is drawn, including the ac-
tual signal and the feature signal (i.e., result of the feature extraction). For triggered features an 
additional trigger signal exists. 
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Vertically, the classification in Figure 4.6 addresses the SigF identification trigger. Time-
independent (also called non-triggered) features are identifiable at every time step, while trig-
gered features are only available at certain time steps. In Figure 4.6, the valid evaluation time 
steps of the triggered features are colored in light green.  
 
Horizontally, Figure 4.6 presents the identification delay, differentiating between no delay 
(immediately identifiable), determinate delay, and indeterminate delay. Immediately identifi-
able features are a special case of the features identifiable with determinate delay, but their de-
lay equals zero. The signal value and the searched time step of a given signal are the immedi-
ately identifiable features in Figure 4.6, cases – a and b. In the latter, the trigger signal activates 
the comparison mechanism, whereas, the feature signal represents the simulation time. If a ver-
dict for this check is being set, actually only three time steps deliver a verdict, for every trigger 
rise. Every conceivable causal feature can be classified under this aspect, i.e., all causal filter 
types, moving transforms, slope checks, cumulated values, etc. 
 
When the identification of SigF occurs with a determinate delay (cf. Figure 4.6, cases c and d), 
the feature signal is delayed too. It reports about features in the past that could not be identified 
immediately. A prominent example is detecting a local maximum, for which a constant delay is 
necessary. The size of the delay varies depending on the maximum detection algorithm used. 
When the delay is constant and known, the time step when a certain feature value was observed 
can be determined. However, the signal evaluation is retarded. This fact is particularly impor-
tant when considering relations between features in the upcoming sections. Other features iden-
tifiable with determinate delay are impulse detection algorithms or non-causal filters. 
 
The features that cannot be identified immediately or with a determinate delay after the actual 
observation are exemplified in Figure 4.6f. There the rise time of a step response of a control 
loop is extracted. This feature is clearly triggered and the delay is indeterminate because it de-
pends on the time when the actual loop will respond. Assuming that the step time is the obser-
vation starting point, the delay is then computed as the difference between the trigger rise and 
the observation time. This situation is indicated by the reset signal, in Figure 4.6f – the step 
time). The actual rise time (i.e., feature signal in this context) must be extracted not later than 
when the feature is triggered. In the figure, the rise time is available very early, but the test sys-
tem gets this information when the feature is triggered. Other triggered features identifiable 
with indeterminate delay are, e.g., any other step response characteristic values, a system re-
sponse delay, or the pattern complete step. Generally, most features based on the detection of 
two or more asynchronous events are of this type.  
 
Finally, Figure 4.6e presents the maximal delay to date. This feature measures the delay be-
tween the actual SUT signal and a reference signal when the reference outputs a rising edge. 
Then, it compares the gathered value with the highest delay to date as soon as possible. When 
exactly this will happen is unknown in advance, though. Finally, the highest value is saved for 
the next simulation step. This feature is defined for every time step, although value changes are 
triggered. As expected, the feature signal is a stair step signal that can only increase. An im-
plementation of this kind of feature extraction is not considered in this work since only a few 
features of this type could be identified so far and all of them were either describable using the 
formalism for triggered features or were of low practical interest.  
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Figure 4.6: Signal-Features Classification based on the Feature Identification Mechanism. 

 
The classification of different feature types given in Figure 4.6 is comprehensive as far as the 
output signals of a casual system are evaluated. Using the presented mechanisms, SigFs that are 
observable in the past up to the current time step, can be identified and assessed.  
Under these circumstances, the classification of feature types is completed. Though, the in-
stances representing those types may lead to inconsistencies, as Gödel’s theorem [Fra05] would 
imply. Indeed, the different types of SigFs may often be implemented using different mecha-
nisms depending on the current needs of the test system (cf. Figure 5.10). 
 
The realization of the test evaluation enables to run it online, i.e., during the execution of the 
SUT. This implies that the feature extraction algorithm is run cyclically in SL. Hence, verdicts 
are computed at every time step on the fly. 
 
In the next three sections, the three types of SigFs are explained in detail. The scheme of de-
scription is always the same. Firstly, the definitions are given. Then, a few generic examples are 
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provided, on the basis of which feature generation principles follow. They are listed in tables. 
Furthermore, the implementation examples are described in depth. In particular, algorithms for 
feature extraction are reviewed and the mechanisms for feature generation are discussed.  
The separation into different feature types is motivated mainly by the fact that several features 
are not available at every time step and not all features can be extracted causally. For the time 
steps when the feature is not available, a none verdict is set. 

4.2.2 Non-Triggered Features 

Time-independent (non-triggered) features identifiable with or without a delay (TI) are avail-
able to be extracted at every time step. Thus, they can be described using a single feature sig-
nal. The generation of SigF simply produces a signal including this SigF. The SigF extraction is 
an algorithm that computes the actual value of the feature signal at every time step.  
 
Table 4.1 outlines the examples of detection and generation algorithms for features classified as 
TI identifiable immediately or with a determined delay. The list is obviously not exhaustive. 
Only a set of basic examples are given based on the analysis of mathematical functions or fea-
tures included in [Men97, MSF05, LKK+06, SZ06, MathSL, WG07]. They enable, however, 
creation of more comprehensive features. In the further part of this section the details regarding 
the realization of the features generation and evaluation, both being the contribution of this the-
sis are explained. 
 
Both activities – feature extraction and feature generation are parameterized. Since the signals 
generation occurs automatically (cf. Sections 5.3 – 5.5) additional issues on their derivation are 
given explicitly. These are generation information and a set of parameters strongly related to 
the extraction of features. These are of particular importance since they must be set on exactly 
the same values in the feature generation as in the respective feature extraction blocks. The pa-
rameters for the feature extraction may be found in the MiLEST library, instead. 
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Table 4.1: TI Features – Evaluation and Generation Algorithms. 

Evaluation View Generation View SigF 
Time-independent (TI)        Im

m
ediately identifiable 

 
1-1. Signal value detection 

[LKK+06] 
 
 
1-2. Basic mathematical opera-

tions, e.g., zero detection 
[MathSL] 

 
 
1-3. Increase detection 

[MathSL, LKK+06] 
 
 
 
1-4. Decrease detection 

[MathSL, LKK+06] 
 
 
 
 
1-5. Constant detection 

[MathSL, LKK+06] 
 
 
1-6. Signal continuity detection 

[Men97] 
1-7. Derivative continuity de-

tection [Men97] 
1-8. Linearity (with respect to 

the first value) detection 
 
 
 
 
 
1-9. Functional relation y = f(x) 

detection 
1-10. Maximum to date detection 
 
 
 
1-11. Minimum to date detection 
 
 
 
1-12. Causal filters and moving 

transformations [SZ06] 
1-13. Actual/cumulated emis-

sions, consumption [SZ06] 
 

 
1-1. Any curve crossing the value of interest in the permitted range of values, 

where duration time = default 
          Generation information:  

– value of interest  
1-2. Any curve described by a basic mathematical operations, e.g., crossing 

zero value in the permitted range of values, where duration time = default 
          Generation information:  

– time of zero crossing  
1-3. Any ramp increasing with a default/given slope in the permitted range of 

values, where duration time = default  
          Generation information:  

– slope  
– initial output 
– final output  

1-4. Any ramp decreasing with a default/given slope in the permitted range of 
values, where duration time = default  

          Generation information:  
– slope  
– initial output 
– final output  

1-5. Any constant in the permitted range of values, where duration time = 
default  

          Generation information:  
– constant value  

1-6. Any continuous curve in the permitted range of values, where duration 
time = default 

1-7. Any continuous curve in the permitted range of values, where duration 
time = default 

1-8. Any linear function in the permitted range of values, e.g., described by the 
equation y =ax+b, where duration time = default 

          Generation information:  
– slope 
– y-intersept  

         Parameter: 
– linearity constant 

1-9. Any function in the permitted range of values described by a concrete 
y=f(x), where duration time = default 

1-10. Any curve containing at least one maximum in the permitted range of 
values, where duration time is at least the time of date 

          Generation information:  
– time of date  

1-11. Any curve containing at least one minimum in the permitted range of 
values, where duration time is at least the time of date 

          Generation information:  
– time of date  

1-12. Application specific   
 
1-13. Application specific   
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    Identifiable w
ith determ

ined delay 

 
2-1. Detection of local maxi-

mum [LKK+06] 
 
 
 
 
 
2-2. Detection of local mini-

mum [LKK+06] 
 
 
 
 
 
2-3. Detection of inflection 

point [MSF05] 
 
 
 
 
 
2-4. Peak detection [MSF05] 
 
 
 
 
 
 
 
 
2-5. Impulse detection [MSF05] 
 
 
 
 
 
 
 
2-6. Step detection [LKK+06] 
 
 
 
 
 
 
 
2-7. Non-causal filters and 

moving transformations 
[SZ06] 

 

 
2-1. Increasing and decreasing ramps one after another forming a maximum in 

the permitted range of values, where duration time = default 
         Generation information:  

– duration of the increase and decrease  
– limits of the ramps in value range 

         Parameter:  
– delay value while maximum detection 

2-2. Decreasing and increasing ramps one after another forming a minimum in 
the permitted range of values, where duration time = default 

         Generation information:  
– duration of the increase and decrease  
– limits of the ramps in value range 

         Parameter:  
– delay value while minimum detection 

2-3. A curve, containing a point at which the tangent crosses this curve itself 
e.g., a curve y = x3 forming an inflection point at point (0,0), where dura-
tion time = default 

         Generation information:  
– inflection point 

         Parameter:  
– delay value while inflection point detection 

2-4. Decreasing and increasing ramps one after another forming a peak in the 
permitted range of values, where duration time = default 

         Generation information: 
– duration of the increase and decrease  
– limits of the ramps in value range 

         Parameters:   
– minimal peak size 
– peak sensibility 
– delay value while peak detection 

2-5. An impulse signal with a given impulse size and impulse duration in the 
permitted range of values, where duration time = default 

         Generation information: 
– impulse size  
– impulse duration 

         Parameters:  
– minimal impulse size  
– delay value while impulse detection 

2-6. Any step in the permitted range of values, where duration time = default 
         Generation information: 

– step time  
– initial value 
– step size 

         Parameters:  
– minimal step size 
– constant duration before a step 

2-7. Application specific 
 

 
In the upcoming paragraphs, a further explanation of the selected TI features is presented and 
the SL implementation of their generation and extraction is shown. 
By now, only the generation of single features is provided, omitting the concepts for adjusting 
their duration, their sequencing, or variants generation. These issues will be addressed in Sec-
tions 5.3 – 5.5.  
 
Thereby, considering the signal value feature,  its generation is reduced to producing any curve 
which crosses the value of interest within a predefined duration time. For signal value detec-



                                                                              4 A NEW PARADIGM FOR TESTING EMBEDDED SYSTEMS 66

tion, the role of feature extraction block is to pass signal values to the comparison block. More 
complex features can be extracted applying the mathematical functionality of the standard SL 
libraries. 
 
For generation of increase, decrease, or a constant various solutions are possible, e.g., ramps, 
logarithmic, or exponential functions. The features can be detected by analyzing their deriva-
tive. This can be approximated using the actual signal value and the past one (backward differ-
ence): 
 

f(kT) = sign [signal (kT) − signal ((k − 1) · T)] (4.1) 
 
The feature signal f(kT) is 1 if the signal increases, 0 if it is constant, and −1 if it decreases. 
Similarly, the continuity of a signal can be checked by the argument of the sign function. If the 
backward difference exceeds a certain value, the existence of a step is assumed and a disconti-
nuity is detected. The continuity of the derivative can be extracted in the same manner [MP07].  
In the proposed approach, the realization of an increase is a simple ramp, of which two types 
are possible. One for an increase limited in time and in signal value range, the other for a 
change with a given slope and limited in value range. A simplified version of this feature gen-
eration algorithm is shown in Figure 4.7, including masks for the corresponding blocks in SL. 
Option 3 is not covered in the prototype.   
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Figure 4.7: Feature Generation: Increase Generation and the Corresponding SL Block masks.  
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In the first option the obtained ramp covers the entire range and preserves the proper time con-
straint (t1). In the second option, the signal variants must hold for the given tan(angle) along the 
entire value range, no matter how long. Finally, in the third option only one default boundary of 
the signal range is considered, the tan(angle) is preserved and the predefined t1 indicates the 
duration of signal generation.  
 
For increase detection the system in Figure 4.8 checks if the actual signal value is higher than 
the previous value. The clock and the switch were introduced to prevent bad outputs derived 
from an unfortunate choice of the initial output of the memory block. They provide no effect 
after the first time step.  
 

 
Figure 4.8: Feature Extraction: Increase.  

 
The analog algorithms are valid for decrease, with the appropriate adjustments. Generation of a 
constant is a trivial task and must be limited only by the duration time.  
 
A similar construction to that for the increase extraction appears in the implementation of con-
stant detection in Figure 4.9, but in this case the switch is used to force a zero in the output in 
the first simulation time step. Additionally, the simple signal comparison block has been re-
placed by a subsystem implementing a signal comparison with a relative tolerance.  
 

 
Figure 4.9: Feature Extraction: Constant.  

 
In many cases it is necessary to allow for a small deviation when comparing signals. The reason 
is to avoid simple numerical precision faults. Differences between two signals in the tenth 
decimal place are often negligible and must be filtered out. Additionally, when using measured 
signals for stimulating the test system, deviations must also be considered and filtered out to 
some extent. This can be achieved, among other possibilities, by using the relative tolerance 
block, whose structure is shown in Figure 4.10. The constant value of Relative Tolerance indi-
cates the targeted precision and is a user-defined parameter that can be set up in the feature ex-
traction block mask. 
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Figure 4.10: Relative Tolerance Block. 

 
The linear dependency of two signals can be subsequently analyzed using the initial signal val-
ues (signal (0)) and storing the slope of the line crossing the actual values and the initial values 
at every time step. If the slope changes at some time step, there is a deviation from the linear 
behavior. Thus, the linearity is defined independently of the signal slope, with respect to the 
initial values and to the previous signal values. More sophisticated algorithms determining the 
linearity of two signals are obviously also possible. 
 
A concrete functional relation between two signals can be easily realized with the mathematical 
SL functionality. As a matter of example, a linear functional relation between two signals is 
implemented. Its generation relies on the concept of a step (valued with c) starting at 0 time 
units multiplied by the increasing time values as shown in Figure 4.11. The signals u and y are 
supposed to fulfill the relation y = c·u, where c is a feature parameter. Again, the equation is not 
implemented strictly, but using the relative tolerance block (cf. Figure 4.12). 
 

 
 

Figure 4.11: Feature Generation: Linear Functional Relation.  

 

 
Figure 4.12: Feature Extraction: Linear Functional Relation.  

 
The maximum to date and minimum to date functions can be generated applying simple repeat-
ing sequences and steps or sums of them in different combinations. The crucial issue is to note 
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their duration time and synchronize them with the entire test case generation sequence; how-
ever, this problem will be discussed in Section 5.5.  
The considered functions recursively compute the maximal or minimal signal value to date as 
follows: 
 

max to date (kT) = max [max to date ((k − 1) · T) , signal (kT)] 
 

(4.2) 
 

min to date (kT) = min [min to date ((k − 1) · T) , signal (kT)] 
 

(4.3) 
 

 
Figure 4.13 shows the blocks implementing the minimum to date feature extraction. The last 
minimal value is saved in the memory block for the next time step. 
 

 
Figure 4.13: Feature Extraction: Minimum to Date.  

 
The local maximum or peaks can also be easily produced using a repeating sequence function. 
The objective of local maximum detection is to check if the last backward difference was nega-
tive and the last before last positive. If that is the case, the feature signal is triggered, indicating 
the presence of a maximum with a time step delay, i.e., the maximum takes place one time step 
before it is actually noticed. The feature signal itself does not need to be retarded; it is already 
delayed.  
A basic algorithm for detecting local maxima and minima starts from the value of the backward 
difference in the actual and next time step. By using the next time step, the feature extraction is 
delayed by one time step. If the backward difference changes its sign from positive to negative, 
there is a maximum, whereas a change from negative to positive points at a minimum. The 
situation is presented in Figure 4.14. 

 
Figure 4.14: Feature Extraction: Local Maximum.  
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Inflection points can be detected similarly, since they are defined as maxima or minima of the 
derivative.  
 
Discrete filters and moving transforms – such as the short-time Fourier transform (STFT) – 
produce a single value at every time step. Depending on the signal interval used for computing 
the actual feature signal value, the feature will be immediately identifiable (only past and actual 
signal values are used) or will be identifiable with a determinate delay (use of future values). 
Peaks are pronounced maxima or minima of short duration. They can be detected in a similar 
manner to maxima and minima, but the signal slope around the extremum should be of a mini-
mal size.  
 
The peak detection algorithm shown in Figure 4.15 is similar to the local maximum detection. 
This time, however, the last two backward differences d1 and d2 are explicitly computed. The 
feature parameter sensibility is user-configurable and determines the minimum step size before 
and after the peak. The product of both backward differences is used to assure that they have 
different signs. Since the peak is recognized only one time step after it actually takes place, the 
feature has a unit delay. 
 

 
Figure 4.15: Feature Extraction: Peak.  

 
Impulses are also TI features, since they are characterized by pronounced signal energy over a 
short time period. Computing the virtual emissions and consumption of automotive engines re-
quires more complex algorithms, but these are TI features as well.  
 
The realization of other feature types is partially based on the principles of TI features.  

4.2.3 Triggered Features 

Triggered features identifiable with determinate delay or without a delay (TDD) are basically 
TI features with special time constraints. They could be detected at every time step, indeed, but 
they are temporally constrained. As a consequence, they are not available at every time step. 
Modeling the extraction algorithm of these features implies gathering two pieces of informa-
tion: the extracted SigF value itself and the time point or time range when the feature is valid. 
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Thereby, the generation of TDD feature requires information about the trigger and about the 
delay (if it exists).  
In this context, the feature signal introduced for extraction of TI features is reused and com-
pleted by a trigger signal. The trigger signal indicates the time steps when the feature signal is 
valid. It can only take the values true and false. Trigger and feature signal should not be sepa-
rated, since they do not contain enough meaning when isolated. 
Normally, feature and trigger signal are computed separately, because the trigger signal repre-
sents usually the temporal constraints on the feature signal. Both are often independent. As al-
ready mentioned, this does not necessarily have to be the case, but it appears to be frequently 
that way. In consequence, the feature extraction problem for TDD features can be interpreted as 
the extraction of two separate TI features (cf. Section 4.2.1), resulting in feature and trigger 
signal.  
 
In the same manner as for TI features, the examples of detection and generation algorithms for 
TDD features are listed in Table 4.2. Several of them are based on TI features with an addi-
tional time constraint. 
Any immediately identifiable TI features over a time, e.g., signal value at time1, signal value 
within [time1, time2] or any immediately identifiable TI features when a value is reached, e.g., 
time at value1, time while maximum to date, increase within [value1, value2] belong to the cate-
gory of TDD features. 
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Table 4.2: TDD Features – Evaluation and Generation Algorithms. 

Evaluation View Generation View SigF 
Triggered (TDD)        Im

m
ediately identifiable 

 
3-1. Detection of signal value at 

a certain time step 
 
 
 
 
3-2. Detection of time stamp of 

an event, i.e., time of an 
event 

 
 
 
 
3-3. Detection of increase rate 
 
 
 
 
 
3-4. Detection of decrease rate 
 
 
 
 
 
3-5. Detection of the signal 

value when signal is con-
stant 

3-6. Detection of time point 
since signal is constant 

 
 
3-7. Step size detection 

[LKK+06] 
 
 
 
 
 
 
3-8. Detection of functional 

relation in the first t sec-
onds of the test 

 

 
3-1. Any curve crossing the value of interest in the permitted range of values, 

where duration time = default, but not less than a given certain time step  
         Generation information: 

– signal value  
         Parameter:  

– duration of the feature not less than the given time step 
3-2. Any curve where an event appears in the permitted range of values, where 

duration time = default e.g., a signal flow consisting of increasing ramp, 
peak, increasing ramp, where duration time = default 

         Generation information: 
– time stamp  

         Parameter:  
– triggering value (e.g., event) 

3-3. Any ramp increasing with a default/given slope in the permitted range of 
values, where duration time = default  

         Generation information:  
– slope  
– initial output 
– final output  

3-4. Any ramp decreasing with a default/given slope in the permitted range of 
values, where duration time = default  

         Generation information:  
– slope  
– initial output 
– final output  

3-5. Constant in the permitted range of values, where duration time = default 
         Generation information: 

– signal value  
3-6. Constant following a non-constant curve in the permitted range of values, 

where duration time = default 
         Generation information:  

– starting time of constant 
3-7. Any step in the permitted range of values, where duration time = default 
         Generation information: 

– step time  
– initial value 
– sample time size 

         Parameters:  
– minimal step size 
– constant duration before a step 

3-8. Any function in the permitted range of values described by a concrete y 
=f(x), where duration time is at least time of t seconds 

         Generation information:  
– slope 
– y-intersept  

         Parameter:  
– time t 
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Identifiable w
ith determ

ined delay 

 
4-1. Value detection when TI 

feature identifiable with a 
delay is active, e.g., signal 
value when there is a local 
maximum 

 
 
4-2. Detection of time stamp for 

TI features identifiable with 
a delay 

 
 
 
4-3. Extraction of signal energy 

during an impulse [MSF05] 
 

 
4-1. e.g., Increasing and decreasing ramps one after another forming a maxi-

mum in the permitted range of values, where duration time = default  
         Generation information:  

– signal value 
         Parameter:  

– delay value while maximum detection, i.e., here specific for the 
maximum detection algorithm 

4-2. e.g., Increasing and decreasing ramps one after another forming a maxi-
mum in the permitted range of values, where duration time = default  

         Generation information:  
– time stamp 

         Parameter:  
– delay value 

4-3. An impulse signal with a given impulse size and impulse duration in the 
permitted range of values, where duration time = default 

         Generation information:  
– Signal energy 

         Parameter:  
– delay value 

 
 
 
Signal value at a certain time step is the simplest example of a TDD feature. From the extrac-
tion point of view, it is actually a TI feature with an additional trigger signal given by the ex-
plicit time constraint. The constraint can also be determined by an event that activates the trig-
ger. Any signal including an event (e.g., signal value=x1) that appears at a given time t1 satis-
fies the requirements for generation of this feature (cf. Figure 4.16).  
Concerning the feature extraction in Figure 4.17 the actual time is continuously output, whereas 
the trigger becomes active only when an event occurs. In this case it happens when the input 
signal reaches a certain value. Both trigger and feature signal are computed separately by two 
different TI features completing each other.  
 

signal (kT)

min

max

t1 duration

x1

 
Figure 4.16: Feature Generation: Time Stamp of an Event.  
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Figure 4.17: Feature Extraction: Time Stamp of an Event.  

 
In the implementation presented in Figure 4.17, the relative tolerance block has been used. It 
helps avoid passing the Trigger Value without triggering due to the limited temporal resolution 
of the signal, but it introduces new problems as well: the trigger could be active more than once 
if the tolerance is not optimally configured. Again, the algorithm is not a real-world solution; it 
needs to be improved in order to work reasonably well. But it reproduces the basic principle 
appropriately.  
 
The increase rate of a signal is another possible TDD feature, since it is only available when 
the signal increases. Hence, the trigger becomes active only when the signal increases. The fea-
ture signal is computed independently of that, outputting the backward difference. The back-
ward difference represents the feature extracted when it is positive. The decrease rate and the 
signal value when constant can be extracted analogously.  
 
The generation of feature time since a signal is constant is presented in Figure 4.18. A non-
constant curve is followed by a constant starting at a given time step. Hence, the starting time 
ST of a constant is required generation information. In the realization below, a sine wave is fol-
lowed by a constant.   
Figure 4.19  shows that the trigger and the feature signal do not necessarily have to be inde-
pendently extracted. The trigger signal is active whenever the input signal is constant. The fea-
ture signal is a time counter that will be reset at the trigger rising edge. 
 

 
Figure 4.18: Feature Generation: Time since Signal is Constant.   
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Figure 4.19: Feature Extraction: Time since Signal is Constant.  

 
The extraction of the step size is derived from the detection of a TI feature, called step detec-
tion, as well as the functional relation in a certain time interval. The generation of a step is triv-
ial applying the step generator from the standard SL library; however, it becomes interesting as 
far as the test reactiveness is considered. This particular case will be explained in Section 5.5 of 
this chapter and illustrated in the second case study, in Chapter 7.  
 
Delays are also necessary when extracting triggered features and the delay is applied to both 
trigger and feature signal. All features that are based on a TI feature identifiable with determi-
nate delay posses a delay automatically being the TDD feature. For example, the signal value of 
every local maximum of a signal is a TDD feature identifiable with a delay, since local maxima 
can only be identified with a delay. The implementation in SL illustrated in Figure 4.20 is com-
paratively easy using the TI feature maximum detection (presented in Figure 4.14). Both feature 
extraction outputs have a unit delay. Features extracting the time of an event may obviously 
appear with delay too.  
 

 
Figure 4.20: Feature Extraction: Signal Value at Maximum.  

 
As already mentioned in Section 4.2.1 the generation of a local maximum can also be easily 
achieved using a repeating sequence function. A similar argumentation applies to the generation 
of TDD features involving a maximum. For illustration purpose a number of combinations is 
given in Figure 4.21. For all the listed instances a signal containing a maximum should be pro-
duced. However, each of them is characterized by different properties. Hence, for the feature 
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called Time Stamp at Maximum=Value, a signal including the maximum of a given value at an 
appropriate time point is generated; for Time Stamp at Maximum with given Slope, a signal in-
cluding the maximum determined by a ramp with a given slope value at an appropriate time 
point is obtained; for Time Stamp at Maximum, simply a signal including the maximum at an 
appropriate time point is provided; and for Signal Value at Maximum a signal including the 
maximum of a given value appears.  
 

min

max

t1 duration

signal (kT)

min

max

t1

duration

signal (kT)

min

max

t1 duration

signal (kT)

slope

local max

local max

local max

min

max

duration

local max

signal (kT)

kT

kT
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Figure 4.21: Examples for Generation of TDD Features Related to Maximum and their Correspond-

ing SL Block Masks:                                                                                                           
Time Stamp at Maximum = Value,                                                                                                

Time Stamp at Maximum with given Slope,                                                                                        
Time Stamp at Maximum,                                                                                                       
Signal Value at Maximum.  
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Summarizing, TDD features extraction, in comparison to TI features extraction, needs second 
signal, called trigger signal which is necessary for their description. This additional signal only 
takes on Boolean values, but both signals are extracted in a similar manner. 

4.2.4 Triggered Features Identifiable with Indeterminate Delay 

Triggered features identifiable with indeterminate delay (TID) are available only with an inde-
terminate delay. As a consequence, they are distributed over a previously unknown number of 
simulation iterations. In other words, a single feature extraction algorithm can require different 
amounts of time depending on the SUT behavior. Thereby, the generation of TID feature re-
quires information about the triggers needed for the extraction and the delay of the feature. This 
behavior contrasts with TI and TDD features presented so far. TDD features are not always 
available, but they are identifiable with a determinate delay or even without a delay. However, 
this fact implies that they are computable at every time step. The algorithm runs cyclically and 
extracts a feature in predefined time frames.  
TID features are extracted sequentially, under the assumption that the same features do not 
overlap in the signal. The extraction implementation of TID features is based on the extraction 
of three signals: characteristic feature value (feature signal) – as already discussed for TI fea-
tures, time when the feature value is available (trigger signal) – as added for TDD features, and 
the observation point, establishing the time range when the feature is valid (reset signal).  
 
The feature signal represents the values of the extracted feature in time; however, its value is 
considered only when the trigger signal is active. The reset signal monitors the feature extrac-
tion process and becomes active for one single time step when the feature extraction is com-
pleted. It indicates the delay of TID features and can have a value of true or false – the same as 
the trigger signal. 
 
The reset signal can be obtained in a similar manner to the trigger and feature signals. How-
ever, it is allowed to become active not later than the trigger. Hence, either both signals become 
active at the same time or the reset signal is followed by the activation of the trigger signal. 
Otherwise, the trigger activation is ignored. 
 
The examples of detection and generation mechanisms for triggered features identifiable with 
indeterminate delay are outlined in Table 4.3.   
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Table 4.3: TID Features – Evaluation and Generation Algorithms. 

Evaluation View Generation View SigF 
Triggered (TID)        Identifiable w

ith undeterm
ined delay 

 
5-1. Detection of time between 

two events 
 
 
 
5-2. Detection of signal mean 

value in the interval be-
tween two events 

 
5-3. Detection of response delay 

[MSF05] 
 
 
 
5-4. Complete step detection 

[MSF05, LLK+06] 
 
 
 
 
 
 
 
5-5. Detection of step response 

characteristics [LLK+06], 
e.g., 
– steady-state error 
– rise time 
– overshoot 
– settling time 

 
 

 
5-1. Any non-constant curve where two concrete events appear one after an-

other in the permitted range of values within the given time range 
Generation information:  
– time of event1 (t1) 
– time of event2 (t2) not exceeding the permitted duration, where t1<t2 

5-2. Any non-constant curve intersected by two concrete events sequenced one 
after another in the permitted range of values within the given time range 

         Generation information:  
– signal mean value 

5-3. A stabilized constant followed by a step response characteristics with 
given response delay in the permitted range of values within the given 
time range 
Generation information:  
– response delay 

5-4. At least two steps one after another starting at a default/given value with a 
default/given step size and a default/given time between them and in the 
permitted range of values within the given time range 
Generation information:  
– step size 
– time between steps 

         Parameters:  
– constant duration before a step 
– minimal step size 

5-5. A stabilized constant followed by a step response characteristics in the 
permitted range of values and time 
Generation information:  
– steady-state error 
– rise time 
– overshoot 
– settling time 

         Parameters:  
– constant duration before a step 
– minimal step size  
– systems static gain  
– rise time interval lower limit (in set point %) 
– rise time interval upper limit (in set point %) 
– maximum overshoot - moving average weight 
– settling time range (in set point %) 
– steady-state error - moving average weight 
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min
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t2 duration

x2

t1

x1

signal (kT)

 
Figure 4.22: Feature Generation: Time between Two Events.   

 
Time between two events is one of the simplest TID features. From the generation viewpoint, 
almost any non-constant curve in the permitted range of values and duration time fulfills the 
generation requirements as illustrated in Figure 4.22. The feature is obtained by projecting the 
times of events t1 and t2 onto the generated signal. These determine the values of the signal and 
are treated as events in this particular case. From the evaluation viewpoint, it is arbitrary when 
the TID feature appears – thus also when the events appear – but they must follow each other in 
a sequence, so as to catch the time between them. 

min

max

t2 duration

mean value + x

t1

signal (kT)

mean value

mean value – x

 
Figure 4.23: Feature Generation: Signal Mean Value in the Interval between Two Events. 

 
Signal mean value in the interval between two events is based on the previous feature. Its gen-
eration algorithm is presented in Figure 4.23. Here again, almost any non-constant curve in the 
permitted range of values and duration time fulfills the generation requirements. However, the 
feature is obtained by projecting the mean value between two automatically determined values 
mean value+x and mean value–x onto the generated signal. By that, their occurrence times are 
also automatically determined. These points are treated as events in this particular case. An-
other possible generation algorithm would be to provide the events explicitly and manually on 
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the curve by preserving the mean value of interest. Numerous other features alike and combina-
tions of them are possible. 
 
The response delay can be measured in a situation when an input step is applied on a stabilized 
system. The time needed for a system to respond is the delay. In the evaluation system the reset 
signal becomes active at the time of step occurrence – it being the decisive factor for any rela-
tions with other features.  
 
A generation algorithm for a complete step will be described in Section 5.5 as it exploits the 
concept of test reactiveness. It can be extracted by analyzing a step and the signal right before 
the step, which must be constant. The situation becomes even more complex when a steady 
state of a system is considered. In that case, both SUT input and output signals should be con-
stant for a minimum time, before the step eventually appears.  
 
The detection of a complete step can be used to analyze the system step response, since it in-
cludes all preconditions necessary for the correct measurement of the step response characteris-
tics. The step response is widely used for the description of the behavior of control systems. 
A common step response of a second-order linear system28 is drawn in Figure 4.24. Here four 
characteristics of the step response are marked. The upper plot shows the corresponding step 
signal causing the step response below.  
 
In the following paragraphs, the step response characteristics will be defined, before some in-
depth insight is given into the implementation of the actual feature generation and extraction. 
 
Hence, the rise time (tr) is defined as the time the system response needs to get from 10% to 
90% of the set point yss after the step. Thus, a short rise time will mean a rapid system response 
to the new input situation. Shorter rise times are commonly associated with a larger maximum 
overshoot, i.e., the step response shoots over the actual target. For the maximum overshoot 
many different definitions are used. A widespread one defines it as a percentage of the set point 
as:  

 

ss

ssp

y
yM −  (4.4) 

 
 

where Mp is the step response value at the maximum peak. 
 
A further step response parameter is the settling time. It indicates how long it takes to leave the 
transient state and thus reach the steady state. In practical terms, this is the time between the 
input step and the last time point when the signal crosses into a user-defined tolerance range 
around the set point. Finally, the steady-state error provides information about the final devia-
tion of the signal from the expected reference value (r) in the steady state. Before this deviation 
can be measured it must be assured that the steady state has been reached. Further step response 
characteristics such as the delay time or the peak time will not be considered in this work. 
 

                                                        
 
 
28  Second-order linear systems are the simplest systems that exhibit oscillations and overshoot [Kuo03].  
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Figure 4.24: Reaction on a Step Function:                                                                                  

a) A Step Function – u(kT).                                                                                             
b) Step Response Characteristics y(kT): rise time (tr), maximum overshoot,                                                      

settling time (ts) and steady-state error (ess). 

 
Generation of a step response is of lower practical importance than its evaluation as usually the 
controller outputs are to be checked and not produced. However, a proposal for a simple gen-
eration will be introduced for reasons of completeness. It is realized as a MATLAB (ML) 
script. It is based on adjusting the damping ratio and natural frequency29 assuming that one unit 
step is applied at the input. 
The simplest second-order system satisfies a differential equation of this form [Kuo03, 
EMC+99]: 

 )(2 22
2

2

tuGy
dt
dy

dt
yd

nDCnn ωωζω =++  (4.5) 

where:  
− y(t) – response of the system  
− u(t) – input to the system 
− ζ – damping ratio  
− GDC – DC (direct current) gain of the system 
− ωn – undamped natural frequency 

                                                        
 
 
29  A normalized step response computed as a result of adjustment of the considered parameters can be animated by accessing 

the dedicated web page of University of Hagen: http://www.fernuni-hagen.de/LGES/playground/miscApplets/ Sprungant-
wort.html [04/30/2008]. 



                                                                              4 A NEW PARADIGM FOR TESTING EMBEDDED SYSTEMS 82

The parameters determine different aspects of various kinds of responses. Whenever an impulse 
response, step response, or response to other inputs is concerned, the following relations apply 
[Kuo03, EMC+99]:  
 

− ωn will determine how fast the system oscillates during any transient response  
− ζ will determine how much the system oscillates as the response decays towards steady 

state 
− Gdc will determine the size of steady-state response when the input settles out to a con-

stant value. 
 
Deriving the response ys(t) to a step of unit amplitude, the forced differential equation is: 
 

)(2 2
2

2

tuy
dt
dy

dt
yd

ssn
s

n
s =++ ωζω  (4.6) 

 
where us(t) is the unit step function. 
 
To illustrate, the solution obtained for the equation (4.6), where ζ = 1, is:  
 

[ ] .111)( 2 =−−= −− ζω
ω

ωω forteety t
n

t

n
s

nn  (4.7) 

 
The second-order system step response is a function of both the system damping ratio ζ and the 
undamped natural frequency ωn. For damping ratios less than one, the solutions are oscillatory 
and overshoot the steady-state response. In the limiting case of zero damping the solution oscil-
lates continuously about the steady-state solution yss with a maximum value of ymax = 2yss and a 
minimum value of ymin = 0, at a frequency equal to the undamped natural frequency ωn. As the 
damping is increased, the amplitude of the overshoot in the response decreases, until at critical 
damping ζ = 1, the response reaches steady-state with no overshoot. For damping ratios greater 
than unity, the response exhibits no overshoot, and as the damping ratio is further increased the 
response approaches the steady-state value more slowly. 
 
Manipulating the damping ratio and natural frequency enables different graphs with various 
characteristics to be obtained. The possible step responses of stable second-order systems are 
plotted in Figure 4.25 in terms of non-dimensional time ωnt and normalized amplitude y(t)=yss. 
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Figure 4.25: Step Response of Stable Second-Order System for Different Damping Ratios.   

 
Then, the realization of an online extraction algorithm for the step response characteristics in 
SL is a more complex task due to their dependency on the input signal. It has been originally 
proposed by [MP07]. Starting with the extraction of the newly introduced reset signal the im-
plementation is presented in Figure 4.26. The reset signal is common to all four considered fea-
tures and it becomes active whenever a step appears under the condition that SUT input and 
output have been constant for some time. The memory block in Figure 4.26 is necessary to de-
lay the result of this extraction by one unit.  
 

 
 

Figure 4.26: Reset Signal Extraction for Step Response Evaluation.   

 
The diagram checking if both signals are constant for some user-specified time is shown in 
Figure 4.27. The TDD feature extraction block time since signal constant has been utilized 
twice; the minimum of both TDD features delivers the time since both signals were constant. If 
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the triggers are true, the time value is extracted and compared with the minimum constant time. 
The latter is specified for the reset signal extraction.  
 
 

 
 

Figure 4.27: Constancy Check for a Given Minimal Time within the Reset Signal Extraction.   

 
Figure 4.28 contains the diagram of the step detection algorithm, including a further parameter – 
the minimal step size – which must also be set while generating the step and the step response. 
 
 

 
 

Figure 4.28: Step Detection within the Reset Signal Extraction.   

 
An additional parameter – the relative tolerance value – is hidden behind the constant detection 
algorithm. It must be provided for both generation and extraction of step and step response. The 
parameters can be set up in the mask GUIs of the corresponding blocks.  
 
The feature signal extraction for the four considered SigFs is more complex. They are checked 
in parallel so as to take advantage of synergies during their extraction. 
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Figure 4.29: Feature Signals Extraction for Step Response Evaluation. 

 
Figure 4.29 shows the insights of feature signals extraction of the step response characteristics. 
For each of them a separated block is provided. Additionally, the time of step occurrence (step 
time) is computed using a triggered subsystem that is activated by the reset signal and thus 
holds the step time.  
 
The feature extraction algorithms of the rise and settling time need to know the set point yss in 
advance. Instead of yss the reference value r is used, because the yss is not available in advance. 
In the implementation, the reference r is designed as set point yss for simplification. The re-
sponse step size – the difference between the set points after and before the step – and the step 
sign are calculated by the block called Expected set point and step parameters, the insights into 
which are shown in Figure 4.30. The expected set point is computed using a parameter – the 
static gain of the system.  
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Figure 4.30: Computing Response Step Size, Step Size and Expected Set Point. 

 
Figure 4.31 shows the implementation of the rise time extraction algorithm. When the step re-
sponse crosses the 10% of r and then 90% of r, it triggers the subsystem which calculates the 
time difference between two last times it was activated. The activation is an effect of the signal 
from XOR block or the reset signal. 
 

 
 

Figure 4.31: Feature Extraction: Rise Time. 

 
If the reset signal does not become active during the rise time (i.e., no new step appears), the 
algorithm measures the rise time and holds it at the output. The assumption is, however, that the 
signal will not go back to the value of 90% of r, which can happen in reality. Hence, the im-
plementation of the Time difference block is refined and shown in Figure 4.32. The two mem-
ory blocks on the right store the last two activation times, whereas the Execution counter block 
counts the execution times of the triggered subsystem. These are limited to 3 so as to catch the 
rise time limits properly. The counter is reset by the reset signal every time when a new step 
appears. 
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Figure 4.32: Time Difference Block for Rise Time Detection. 

 
The settling time extraction algorithm is presented in Figure 4.33. Here, the time difference be-
tween the time point when the signal stabilizes and the time of step occurrence is computed. 
Every time the step response enters the tolerance range around the expected set point, a time 
stamp is made. If the tolerance range is not left any more, the settling time has been caught. 
This is the last time difference held before the trigger becomes active. Furthermore, the reset 
signal resets the triggered subsystem, called Time stamp at the beginning of every step, deleting 
any old information stored inside. 
 

 
 

Figure 4.33: Feature Extraction: Settling Time. 

 
The steady-state error is computed at every time step. The expected set point is subtracted from 
the actual signal value and the difference is filtered using a moving average block as shown in 
Figure 4.34. 
 

 
Figure 4.34: Feature Extraction: Steady-State Error. 
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The extraction of the maximum overshoot is more complicated and the implementation details 
are left out of the scope in this description. They can be found in the work of [MP07].  
 
Finally, also the trigger signal must be computed so as to let the evaluation mechanism work 
properly. The trigger for the steady-state error is activated when the step response has stabi-
lized and the SUT input signal has not changed its value after the step. These constraints also 
guard the termination of the extraction algorithms for the other three features. For checking 
them, the algorithm presented previously in Figure 4.27 is used in combination with the TI fea-
ture detect increase for detecting the rising step. With this practice, the trigger signal becomes 
active for only one time step. Additionally, the steady-state error should remain within a cer-
tain range so as to guarantee that the proper stabilization has been reached. The trigger algo-
rithm is shown in Figure 4.35.  
 

 
 

Figure 4.35: Extraction of Trigger Signals. 

 
To sum up, generation of the TID features is relatively similar for TI and TDD features since 
only more parameters appear, making the implementation not exceptionally difficult. Their 
evaluation, however, needs three types of signals for the proper extraction: feature, trigger and 
reset. Such an approach reduces the complexity, which otherwise becomes large.   

4.3 The Resulting Test Patterns  

Test patterns [VS04] can effectively facilitate the automation, reusability, and maintenance of 
the test specification process if used appropriately. Hence, cost, time, and resources planned for 
the development of quality assured embedded systems decrease.  
In this work the patterns for test harness, test data generation, test specification, SigF genera-
tors, SigF extractors, test evaluation, and test control are discussed. Their realization is provided 
in MiLEST library. 
 
[Bert07] argues that any good testing practices need to be collected by a systematic effort so as 
to organize recurring effective solutions into a catalog of test patterns, similarly to what is now 
a well-established scheme for design approaches. Such a test pattern extraction [VS04] is the 
process of abstracting from existing problem-solution-benefit triples in the test developing 
process, to obtain patterns suitable for reuse in future contexts. Although the process of going 
through existing test artifacts and trying to identify patterns for later reuse might appear costly 
and unrewarding at first sight, it pays off in the long term [VS04]. This argumentation espe-
cially applies to the testing of embedded software, where reusability of some common test pro-
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cedures is appreciated. The test patterns provide means for test system developers to focus more 
on what to test and less on the notation itself. With this practice, they simplify the test devel-
opment process, increase the level of automation and facilitate the understandability of the test.  
 
The patterns proposed in this thesis support both a manual and an automated test generation 
approach as [Neu04, PTD05] discuss. In a manual development approach, a developer can re-
use patterns. An automated approach may benefit from an automatic identification of patterns 
so as to provide further solutions for the revealed issue [Neu04]. 
The already discussed features classification reveals that the features themselves follow some 
patterns. The realization of features generation and extraction constitutes the lowest abstraction 
level of the test data, test evaluation, and test oracle patterns. Further on, test control patterns 
are distinguished in the proposed approach. A test control is a specification for the invocation 
of test cases assuming that a concrete set of test cases within a given test configuration exist. 
Hence, the considered patterns can in fact be seen as parametrizable libraries. However, the 
customization possibility makes them more abstract than a library is in a traditional meaning. In 
[PTD05] a variant of patterns called idiom is considered. Idioms provide solutions for general 
problems arising using a certain executable programming language. In that sense, whenever 
ML/SL/SF is understood as a programming language, the test patterns presented in this thesis 
can be considered as such idioms because they are implemented in this language; however, they 
will be called test patterns here. All the mentioned test patterns present abstract solutions for 
generic problems. They are instantiated in MiLEST and summarized in Appendix B and will be 
explained in detail in further sections. 
The test design patterns are provided in a graphical form. Thus, the textual table-form templates 
suggested by [Bin99] are not used. Instead, it is assumed that a short explanation of a graphical 
user interface (GUI) for each pattern block is informative enough to express its meaning, con-
text and the application sense.  

4.4 Test Development Process for the Proposed Approach  

The signal generation and signal evaluation in isolation, no matter how sophisticated, neither 
test the system automatically nor make testing systematic or completed. These activities as such 
should be embedded in a clear and well-defined test process. Moreover, an appropriate frame-
work has to deliver easy means for test specification, generation, and execution. For these rea-
sons a method specific test development process is introduced in this section and a hierarchical 
architecture of the resulting test system in Chapter 5. Both are facilitated by application of test 
patterns in different constellations.  
 
The origin of any test specification is the document that specifies the SUT requirements.  Usu-
ally, they are available in a textual form. System requirements are often hierarchical, starting 
from high level, down to concrete technical specification. In some cases formalized versions are 
provided. From such textual documents, test requirements (here also called test objectives) 
should be derived. According to the general test process these can be classified as a set of the 
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abstract30 test scenarios. These test scenarios can be described by a conditional form which re-
lates incoming SUT stimulation to the resulting SUT behavior by IF–THEN rules (4.8).  
 
A technically-oriented MiLEST test development process proposed in this thesis is shown in 
Figure 4.36. The MBD paradigm assumes that the SUT model is already available and that the 
input/output interfaces are clearly defined and accessible.  
Besides the analysis of the SUT specification, a proper functional, dynamic testing also requires 
a systematic selection of test stimuli, appropriate test evaluation algorithms, and obviously a 
test execution or simulation environment. Thereby, if the above assumptions hold, pattern for 
the generation of test harness31 model can be applied to the SUT model as denoted by step I in 
Figure 4.36. This is done automatically with a MiLEST transformation function, giving an ab-
stract frame for test specification. This phase together with the definition of IF-THEN rules is 
called the test design. Further on, the test specification and test implementation phase is carried 
out in step II, where the test definition in MiLEST is concretized based on the test require-
ments. The test engineer manually refines the test specification using the concept of validation 
function patterns, which include the test scenarios. This issue has been already mentioned in 
Chapter 3 and will be explained later in depth too. Afterwards, in step III, structures for test 
stimuli and concrete test signals are generated. This step occurs automatically with application 
of the transformations. The test control design can be added automatically too. In that case, step 
IV would be omitted. However, if the advantages of the test reactiveness are targeted, it should 
be refined manually. Finally, in the test execution and test evaluation phase in step V, the tests 
(i.e., test cases) may be executed and the test results obtained in the form of verdicts. At the 
same time the quality of the produced test system specification is also assessed. 
 

SUT as a Model

automatic generation –  step I

Test Harness Pattern Application 

manual refinement

automatic generation

Test Data Generation  
manual refinement

Test Control Generation

Test Specification

–  step II

–  step III

–  step IV

automatic execution

Verdicts Analysis

–  step V

 
Figure 4.36: Test Development Process.                  

                                                        
 
 
30  An abstract test scenario means that it is valid for a certain generic description of the SUT behavior, without including the 

concrete data.  

31  In [ISTQB06] a test harness is defined as a test environment comprised of stubs and drivers needed to execute a test. In 
this thesis, the test harness pattern refers to the design level and is specified as an automatically created test frame includ-
ing the generic hierarchical structure for the test specification. Together with the test execution engine (i.e, SL engine) it 
forms a test harness.  
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In Figure 4.37, a generic pattern of the test harness is presented. The test data (i.e., test signals 
produced for the test cases) are generated within the test data generator shown on the left-hand 
side. The test specification, on the right-hand side, is constructed by analyzing the SUT func-
tionality requirements and deriving the test objectives from them. It includes the abstract test 
scenarios, test evaluation algorithms, test oracle, and an arbitration mechanism. The structural 
details and functionalities of the corresponding units will be elaborated in the next chapter32.  
 

SUT

test reactiveness

InOut
Bus Test

Specification
Verdict

Test 
Control

Test Data 
Generator

 
 

Figure 4.37: A Test Harness Pattern. 

 
The test specification is built by applying the test patterns available in the MiLEST library. It is 
developed in such a way that it includes the design of a test evaluation as well – opposite to a 
common practice in the automotive domain, where the test evaluation design is considered last. 
Afterwards, based on the already constructed test model, the test data generators are retrieved. 
These are embedded in a dedicated test data structure and are derived from the test design 
automatically. The generation of test signals variants, their management, and their combination 
within a test case is also supported, analogous to the synchronization of the obtained test stim-
uli. Finally, the SUT model stimulated with the previously created test data is executed and the 
evaluation unit supplies verdicts on the fly.  
 
The first step in the test development process is to identify the test objectives based on the SUT 
requirements. For that purpose a high-level pattern within the test specification unit is applied. 
The number of test requirements can be chosen in the graphical user interface (GUI) that up-
dates the design and adjusts the structural changes of the test model (e.g., it adjusts the number 
of inputs in the arbitration unit). The situation is illustrated in Figure 4.38.  
 
 
 
 
 

                                                        
 
 
32  Parts of the test process have been published in [ZSM07b], the test evaluation in [ZSM06, MP07], the test signals genera-

tion in [ZMS07a, ZXS08], whereas the test control and reactive testing in [Zan07]. This thesis is the most up to date and 
presents the most current progress.  
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a)  
 

b)   

Figure 4.38: A Pattern for the Test Requirement Specification. 

a) Instantiation for One Test Requirement. 

b) Instantiation for Three Test Requirements. 

 
Next, validation functions (VFs) [ZSM06, MP07] are introduced to define the test scenarios, 
test evaluation, and test oracle in a systematic way. VFs serve to evaluate the execution status 
of a test case by assessing the SUT observations and/or additional characteristics/parameters of 
the SUT. A VF is created for any single requirement according to the conditional rules: 
 

setassertionsTHENsetonspreconditiIF  (4.8) 

 
A single informal requirement may imply multiple VFs. If this is the case, the arbitration algo-
rithm accumulates the results of the combined IF-THEN rules and delivers an aggregate ver-
dict. Predefined verdict values are pass, fail, none, and error. Retrieval of the local verdicts for 
a single VF is also possible.  
 
A preconditions set consists of at least one extractor for signal feature or temporally and logi-
cally related signal features, a comparator for every single extractor, and one unit for precondi-
tions synchronization (PS). 
An assertions set is similar, it includes, however, at least one unit for preconditions and asser-
tions synchronization (PAS), instead of a PS.  
 
VFs are able to continuously update the verdicts for a test scenario already during test execu-
tion. They are defined to be independent of the currently applied test data. Thereby, they can set 
the verdict for all possible test data vectors and activate themselves (i.e., their assertions) only if 
the predefined conditions are fulfilled. 
An abstract pattern for a VF (shown in Figure 4.39) consists of a preconditions block that acti-
vates the assertions block, where the comparison of actual and expected signal values occurs. 
The activation and by that, the actual evaluation proceeds only if the preconditions are fulfilled.  
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Figure 4.39: Structure of a VF – a Pattern and its GUI. 

The easiest assertion blocks checking time-independent features are built following the schema 
presented in Figure 4.40.  
 

 
 

Figure 4.40: Assertion Block – a Pattern. 

They include a SigF extraction part, a block comparing the actual values with the expected ones 
and a PAS synchronizer. Optionally, some signal deviations within a permitted tolerance range 
are allowed. Further schemas of preconditions and assertions blocks for triggered features are 
discussed in [MP07] in detail.  
 
A further step in the test development process is the derivation of the corresponding structures 
for test data sets and the concretization of the signal variants. The entire step related to test data 
generation is completely automatic by merit of the application of transformations. Similar to the 
test specification side, the test requirements level for the test data is generated. This is possible 
because of the knowledge gained from the previous phase. The pattern applied in this step is 
shown in Figure 4.41.  
 

 
Figure 4.41: Test Requirement Level within the Test Data Unit – a Pattern. 

Moreover, concrete SigFs on predefined signals are produced afterwards. The test signals are 
generated following a conditional rule in the form (see 4.9): 
 

setsgenerationTHENsetonspreconditiIF  (4.9) 
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Knowing the SigFs appearing in the preconditions of a VF, the test data can be constructed 
from them. The preconditions typically depend on the SUT inputs; however, they may also be 
related to the SUT outputs at some points in time. Every time a SigF extractor is present for the 
assertion activation, a corresponding SigF generator may be applied for the test data creation. 
Giving a very simple example: for detection of a given signal value in a precondition of a VF, a 
signal crossing this value during a default time is required. Apart from the feature generation, 
the SUT output signals may be checked for some constraints if necessary (cf. Figure 4.42). The 
feature generation is activated by a Stateflow (SF) diagram sequencing the features in time ac-
cording to the default temporal constraints (i.e., after(time1)). A switch is needed for each SUT 
input to handle the dependencies between generated signals. Initialization & Stabilization block 
enables to reset the obtained signal so that there are no influences of one test case on another.  
 

 
Figure 4.42: Structure of the Test Data Set – a Pattern. 

 
The patterns in Figure 4.42 and the concrete feature generators are obtained as a result of the 
automatic transformations. The general principle of the transformation is that if a given feature 
or feature dependency extraction is detected in the source (i.e., preconditions part of a VF), 
then the action to generate the target (i.e., feature generator in the test data structure) is per-
formed. A set of transformation rules has been implemented. Afterwards, the concrete test data 
variants are constructed based on the generators obtained from the transformations. The as-
sumption and necessary condition for applying the variants generation method is the definition 
of the signal ranges and partition points on all the stimuli signals according to the requirements 
or engineer’s experience. Equivalence partitioning and boundary value analysis are used in dif-
ferent combinations to then produce concrete variants for the stimuli.  
 
When a test involves multiple signals, the combination of different signals and their variants 
have to be computed. Several combination strategies are known to construct the test cases – 
minimal combination, one factor at a time, and n-wise combination [LBE+04, GOA05]. Combi-
nation strategies are the selection methods where test cases are identified by combining values 
of different test data parameters according to some predefined criteria. In this thesis, the first 
two strategies have been used.  
A similar sequencing algorithm like for the test data applies for ordering the test cases on a 
higher hierarchy level while dealing with a number of requirements. This aspect is called test 
control. A traditional understanding of the control makes it responsible for the order of test 
cases over time [ETSI07]. It may invoke, change, or stop the test case execution due to the in-
fluence of the verdict values coming from the test evaluation. Thus, the test cases are sequenced 
according to the previously specified criteria (e.g., pass verdict). An extended definition of the 
test control is considered in Section 5.5. 
 
The test patterns used for realizing a test specification proposed in this thesis are collected in a 
library and can be applied during the test design phase. In Table 4.4 two patterns are presented, 
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each of them corresponding to a selected testing activity. Since they will be applied in the case 
studies part in Section 6.4, their meaning will be explained afterwards. The full collection of 
MiLEST patterns enabling the entire test system to be built is attached to this thesis in Appen-
dix B. 
 

Table 4.4: Illustration of Reasoning about Patterns. 

Test   
Activity 

Test Pattern 
Name 

Context Problem Solution      
Instance 

Test  
evaluation 

Detect SigF Test of a control 
unit 

Assessment of a control unit behavior in 
terms of a selected SigF 

 
Test data 
generation 

Generate      
SigF 

Evaluation of a 
step response 
function  

Generation of the proper signal to stimu-
late a selected feature on the SUT output 
signal 

 
 
 
After the test specification has been completed, the resulting test design can be executed in SL. 
Additionally, a report is generated including the applied test data, their variants, test cases, test 
results, and the calculated quality metrics.  

4.5 Related Work  

4.5.1 Property of a Signal 

Property of a signal, called SigF in this thesis, has been introduced in hybrid Sequence Charts 
notation [GKS99] used for describing the behavior of hybrid systems. The language is based on 
Message Sequence Charts [ITU96, ITU99], including some concepts of timing diagrams 
[ABH+97]. Already there, the signal has been partitioned according to its characteristics and 
constraints put on it. This technique will be recalled in Chapter 6 to illustrate some of the de-
veloped concepts.  
[GW07] indicates that the descriptive approach to the signals reveals some advantages over the 
commonly-used constructive approach, especially in the context of SUT behavior evaluation. 
Here, an obvious link to the test evaluation in MiLEST exists.  
Further on, the consortium developing the Testing and Test Control Notation (TTCN-3) for 
embedded systems [Tem08] incorporates the paradigm of SigF into the ongoing research on the 
test assessment functions. 
Finally, the timing relations between signals classified in [GHS+07] contribute to the develop-
ment of temporal expressions within the test specification proposed in MiLEST.  

4.5.2 Test Patterns  

Referring to the test patterns, [Bin99] describes object-oriented test strategy patterns. They 
handle several strategies to derive test cases for testing object-oriented software. However, this 
definition cannot be adapted in this thesis as object orientation is out of its scope. [Din08] 
elaborates a set of methods and patterns to design and implement efficient performance tests. 
These are also only related to the test patterns presented in this thesis. In [Neu04] Real-Time 
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Communication patterns are used in the form of time relations among communication opera-
tions. They describe real-time requirements related to delay, throughput, periodic events, and 
jitter. These patterns are applicable to the telecommunication systems mainly. 
 
[Neu04] also presents a detailed survey through test patterns regarding a number of criteria. 
According to his classification the proposed patterns are categorized as functional in the context 
of the test goals, as test design patterns in the sense of the test development and as component 
level considering the scope of testing. 
 
[TYZ+03] argue that developers often specify embedded systems using scenarios and a typical 
medium-size system has hundreds of thousands of scenarios. Each scenario requires at least one 
test case, which in turn requires individual development and debugging. Verification patterns 
(VP) are proposed to address this problem. The VP approach classifies system scenarios into 
patterns. For each scenario pattern (SP), the test engineer can develop a template to test all the 
scenarios that belong to the same pattern. This means that the engineer can reuse the test tem-
plates to verify a large number of system scenarios with minimum incremental cost and effort. 
Each scenario has preconditions (causes), postconditions (effects), and optional timing con-
straints. A SP [TYZ+03] is defined as a specific temporal template or cause-and-effect relation 
representing a collection of requirements with similar structures. A VP [TYZ+03] is a prede-
fined mechanism that can verify a group of behavioral requirements that describe similar sce-
narios. A GUI-based specification tool to facilitate the scenario specification is available. In this 
work the focus is put on the test specification patterns, which mainly relate to the test behavior 
similarly to [TYZ+03]. However, both discrete and continuous signals are handled, while 
[TYZ+03] addresses only scenarios describing discrete behavior.  

4.6 Summary  

In this chapter the second set of the research questions given in the introduction to this thesis 
has been addressed. In particular, a new way for handling the discrete and continuous signals at 
the same time, based on the SigFs, has been provided. By that, a first sketch of the test frame-
work realizing this concept has been given, indicating the design decisions in terms of test gen-
eration and test evaluation.  
 
The main technical intention of this chapter was to introduce a new way of signal description 
by application of the SigFs. These have been discussed in Section 4.1. Further on, based on the 
previous assumptions, Section 4.2 introduced the classified means for signal generation and 
signal detection. The challenges and limitations of the realization have been discussed.  
In Section 4.3, test patterns have been investigated, with a particular emphasis on the hierarchi-
cal architecture of the proposed test system. The MiLEST test patterns have been attached to 
this thesis as a table in Appendix B. These will be carefully reviewed in Chapter 5 and applied 
to a number of case studies in Chapter 6.  
Furthermore, Section 4.4 elaborated on the proposed test specification process and its develop-
ment phases starting from requirements analysis until the test execution. Finally, the related 
work on SigFs and test patterns has been described in Section 4.5.  
The detailed discussion on the test development process artifacts will be continued in Chapter 
5.  



 

5 The Test System 

“I dream, I test my dreams against my beliefs, I dare to take risks,  
and I execute my vision to make those dreams come true.“ 

 
- Walt Disney 

 
 

The upcoming chapter is related to the previous one since the considerations on the new test 
paradigm introduced there, are continued here. In particular, a test framework is provided in 
order to automate the creation of concrete test systems. This is possible by application of test 
patterns that are organized into a hierarchy on different abstraction levels.  
 
The fundamental approach to the signal features (SigFs), their classification, generation, and 
detection mechanisms enable to synthesize the entire architecture of the test system. This is 
done in Section 5.1 in order to exploit the SigF for testing purpose. Different abstraction levels 
for both test specification (TSpec) and test data generation (TDGen) are provided. The full con-
solidation of the architecture levels can be additionally found in Appendix C. Their realization 
is possible applying the Model-in-the-Loop for Embedded System Test (MiLEST) method pro-
posed in this thesis. In the TSpec, also the test evaluation is modeled as Section 5.2 emphasizes. 
The advantages of designing the architecture as such are revealed especially at the validation 
function (VF), feature generation, and feature detection levels, where the real test stimuli crea-
tion and test assessment of the SUT behavior takes place. Furthermore, the link to the TDGen is 
established by application of the automatic transformations, which in consequence, supports the 
automatic generation of the test signals. The details of these activities are given in Section 5.3. 
The obtained test patterns are classified and categorized. In contrast to the related work, the 
numerous patterns proposed herewith are very granular and represent different abstraction lev-
els while specifying the tests. This gives the possibility to navigate through the test system eas-
ily and understand its contents from several viewpoints immediately. 
In Section 5.4, a description of signal variants generation is discussed, combination strategies 
for test case construction are reviewed and variants sequencing at different levels is considered. 
This contributes to the concept of automatic and systematic test data generation representing a 
comprehensive advantage over the existing solutions.   
Section 5.5 introduces the concept of reactive testing. There, also the test control is investi-
gated. The concept of online test data manipulation is introduced that contributes to test time 
reduction at the end. Afterwards, Section 5.6 underlines the progress on integration level test-
ing. In Section 5.7, the execution of the resulting test model is considered. Also, the importance 
of the test report is shortly mentioned.  
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Finally, Section 5.8 gives insights into the related work in the context of the test evaluation 
process based on the SigF, other transformation approaches and the ongoing work of the author 
of this thesis towards some extensions affected by the paradigm presented here. The summary 
in Section 5.9 completes this chapter.  

5.1 Hierarchical Architecture of the Test System 

The test development process described in the previous chapter together with the abstract archi-
tecture of the test system enable to apply the concepts of SigF generation and extraction 
mechanisms while building test models systematically. In this context, the term architecture of 
the test system is understood as a hierarchically structured test model. Consequently, the formal 
test specifications in SL/SF reflect the structure of the system requirements. The primary goal 
behind the architecture is a hierarchical structure that serves for gaining abstraction.  
Since the aim of the test system is not to provide the means for testing single signal properties 
but for validating complete SL/SF SUT models, independently of their complexity, structuring 
the test models in a proper way contributes to the scalability and reusability of the solution. 
Moreover, traceability of the test development artifacts and transformation potentials can be 
identified.  
 
The structure of the test system consists of four different levels (see Figure 5.1) that can be built 
systematically. This makes the test system less error-prone while also leaving the test engineers 
plenty of scope for developing the complete test specification. Figure attached to this thesis in 
Appendix C provides a deeper insight into the architecture. Even though the diagram presented 
there has a general character, a similar format to the signal flow diagram notation of SL/SF has 
been used. Also, the scheme is used to describe the different level details in the following para-
graphs. 
 
 

Test Harness level

Test Requirement level

Test Case level

Feature Generation level

abstraction

refinem
ent

Test Harness level

Test Requirement level

Validation Function level

Feature Detection level

Test Data Generation (TDGen) Test Specification (TSpec)

 
Figure 5.1: Hierarchical Architecture of the Test System. 

 
At the highest abstraction level the test harness appears. It is the same for both test data genera-
tion (TDGen) and test specification (TSpec) lanes. Here, apart from the SUT model, TDGen, 
TSpec, and test control units exist. Also, the connections between the corresponding units are 
covered. All SUT input and output signals are collected in advance and provided as a single bus 
signal to the TSpec. TSpec includes the behavioral test scenarios that are eventually evaluated. 
Due to this functionality, the TSpec can sometimes be called test evaluation. Additionally, any 
other signals that might be of interest for the test can also be fed into the SUT. In order to pro-
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vide a full TSpec and make the test evaluation independent of the current SUT input signals all 
SUT interfaces should be covered. The test evaluation block outputs the overall test verdict.  
One level below, the test requirement level divides the TSpec into the different SUT require-
ments to be tested. At this level, on the one hand, the test data sets are collected according to 
the requirements they are assigned for. On the other hand, the test evaluation mechanisms are 
separated into different blocks according to the requirements they check. Each requirement 
block outputs all relevant test information of that requirement. An arbitration algorithm extracts 
the overall verdict from the structured test results. Single requirement verdicts can also be ob-
tained. 
The third level is a bit more complicated. Considering the TDGen scope, the test data sets form-
ing the test steps are stored and their sequencing into test cases is supported. Test steps repre-
sent a combination of features designed in the preconditions of a VF, appropriately.  
Within the TSpec scope, the corresponding VFs containing preconditions-assertions pairs ap-
pear. Here, the abstract behavioral test scenarios are included, with an emphasis on properties 
and their interdependencies to be asserted.  
Finally, at the lowest abstraction level, SigFs are managed, generated, and extracted, respec-
tively as described in Section 4.2.  

5.1.1 Test Harness Level  

The test harness level consists of the SUT model usually designed in SL/SF, TDGen unit, 
TSpec unit, and test control as already mentioned in Section 4.4 and shown in Figure 4.37. All 
SUT inputs and outputs or any other relevant signals required by the actual VFs (e.g., interme-
diate) are collected using Bus Creator blocks and passed to the SUT as a single bus, called In-
Out Bus. A good practice is to name the signals included in the InOut Bus so as to let the test 
evaluation unit to extract the correct signals for a particular VF. This activity is done automati-
cally by application of transformations described in Section 5.3.  
 
Additionally, the input and output signals are split forming two separate abstract buses, applica-
tion of which will be explained analyzing the concrete implementation in Chapter 6.  
Furthermore, at this level the test configuration is established. Apart from the default elemen-
tary units, the test components, or plant model may be comprised.  

5.1.2 Test Requirement Level  

The test requirement level for TDGen (see Figure 5.2) is built using a single subsystem for each 
tested requirement and a Selection block being a multi-port switch for switching between dif-
ferent signals. The number of Selection blocks is equal to the number of test stimuli that are to 
be passed on to the SUT. These SUT inputs flow out of every requirement to the Selection 
blocks. The signals are ordered by matching their names with the corresponding Selection 
blocks. The maximum number of signals generated within a requirement is equal to the number 
of all SUT inputs. Thereby, the size of the Selection block is determined by this number too. 
Nevertheless, not all of them must be generated within one requirement since not all of them 
play a significant role for a particular test objective. In the case when an input is not included in 
the requirement subsystem, a default signal is produced. These and other rules will be described 
in Section 5.3 in detail.  
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Additionally, at the test requirements level, the Test Control signal is forwarded to all the Selec-
tion blocks. Its primary task is to inform the Selection in which order the scenarios should (here 
test cases) be generated and how they relate to each other. This issue will be explained in Sec-
tion 5.5 in depth.  

Requirement 1

Requirement 2

Requirement n

Selection

Selection

Test 
Control

 
Figure 5.2: Fundamental Structure of the Test Requirement Level – TDGen View.  

 
The test requirement level is actually a pure abstraction level. From the TSpec point of view 
(see Figure 5.3), each requirement consists of several VFs. A mask of this block enabling to set 
the number of VFs has already been shown in Figure 4.39.  
 

Requirement n

Requirement 2

Requirement 1

log

Arbitration

 
Figure 5.3: Fundamental Structure of the Test Requirement Level – TSpec View.  

 
At this point a clear distinction between the TSpec and test evaluation is done. Starting from 
here not only are test scenarios considered, but also their evaluation, in terms of assertions 
check, is taken into account. By that, the TSpec becomes to be the test evaluation at the same 
time. The specified test scenarios within each requirement are assessed resulting in a verdict. 
The evaluation issues will be described deeper at the further levels, representing more concrete 
test solutions.  
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At the test requirement level, the InOut Bus coming from the test harness level is passed to each 
requirement subsystem, which in turn, lets the test system to evaluate the SUT and collect the 
assessment information, including verdicts and arbitration mechanism.  
The test results of all requirements are logged using the signal logging capabilities of SL. Tech-
nically, the pin after the Bus Creator block in Figure 4.38 indicates that the signal values are 
logged to the MATLAB (ML) workspace during the simulation. The logged signals include all 
information about the test assessment. Hence, the log file size depends on the size of the entire 
test evaluation system. All abstraction levels can be identified in the logged structure. 
 
Figure 5.4 additionally shows the implementation of an arbitration algorithm. It determines the 
global overall verdict from all local verdicts of the VFs. As a matter of example, three local 
verdicts are passed on. The minimum among the local verdicts constitutes the global, i.e., over-
all one. 
 
  

 
Figure 5.4: Arbitration Mechanism.  

 
The arbitration algorithm is based on the minimum computation, because the verdicts are de-
fined in descending priority (cf. the last paragraph of Section 5.1.4). The feedback Memory 
block enables the algorithm to retain the worst verdict found to date. Thus, the overall verdict 
equals to pass if any local verdict has been at least once pass and no local verdict has been fail 
or error during the test. An important implementation detail is that the initial output value of the 
Memory block must be set on a value not less than two (in contrast to the standard value that is 
zero). Otherwise one for pass or two for none can never be reached. The value of the overall 
verdict once set on a lower case, will it never come back on the upper case.  
 
Additionally, from the technical perspective, the data type conversion for the InOut Bus is sup-
ported at this level (cf. Figure 4.38). Signal Conversion block is applied for automatically cast-
ing the data types of all signals of a bus to the format required by the destination blocks.  
 
The requirement blocks in the test requirement level, for both TDGen and TSpec views should 
be named, which improves the readability and enables a straightforward tracing to the textual 
requirements. This option is technically supported by several interfaces between requirements 
tools and SL/SF33. 
                                                        
 
 
33  The requirements tracing [SLVV] is possible using the Requirements Management Interface for Telelogic DOORS® soft-

ware [TelD] or selection-based linking for Microsoft® Word and Excel® documents  – to name the two examples. 



                                                                                                                                                     5 THE TEST SYSTEM 102 

5.1.3 Test Case Level – Validation Function Level  

The test case level is a level related entirely to the generation of test cases – on the TDGen lane. 
It consists of Test Data subsystems, a Generation Sequence and Selection blocks (see Figure 
5.5). The Test Data blocks correspond to the Preconditions subsystems that are to be found on 
the same abstraction level, called validation function level, but on the TSpec side. One Test 
Data subsystem contributes to the concept of the so-called test step. The test case is composed 
of a sequence of such test steps that are ordered in Generation Sequence for one single re-
quirement. This means that the test case is constructed by the Generation Sequence block and 
Test Data blocks. The maximum number of Selection blocks (i.e., concrete multi-port switches) 
is determined by the number of SUT inputs.  

 

Test Data 1

Test Data 2

Test Data p

Selection

Generation 
Sequence

 
Figure 5.5: Fundamental Structure of the Test Case Level.  

 
At this level, similarly as at the test requirement level, not all the SUT inputs must be con-
strained. The inputs, for which no SigFs have been explicitly defined, obtain the default values. 
Such a case is shown in an exemplified implementation in Figure 5.6, which will be explained 
in Section 6.2 in detail. Here, the phi_Brake signal has not been constrained. 
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Figure 5.6: Exemplified Structure of the Test Case Level.  

 
Thus, the real number of Selection blocks is equal to the number of the SUT inputs constrained 
in the preconditions. Further on, the size of a single Selection block is usually the same as the 
number of Test Data subsystems. It is assumed that every Test Data set includes different types 
of SigF generators for a given SUT input. The signals coming out of the Test Data sets are or-
dered by matching their names with the corresponding Selection blocks in the sequence of their 
appearance. 
 
Additionally, an Initialization/Stabilization block (cf. middle of Figure 5.6) may exist for reset-
ting the signals between different test steps so that the test behavior of the first one does not 
influence the next one. Since this situation is a specific one, it will be used for explanation of 
the concrete case studies in the upcoming chapters.  
 
Finally, an Out Bus can be required (cf. left side of Figure 5.6). It enables the values of the SUT 
output, among other signals, to be checked. If predefined conditions are fulfilled, a given test 
step starts to be executed; otherwise another one, unconstrained is chosen. This concept con-
tributes to the test reactiveness. The Generation Sequence block serves as a unit for ordering 
the test steps in time. If any dependencies of the TDGen on the SUT outputs exist, they are 
handled within this element.  
 
As already described in Section 4.4, VFs are the implementation of IF-THEN rules. The VF is 
formed by preconditions-assertions block which is reflected in the validation function level. 
Herewith, the independence of the applied test signals during the test execution is obtained on 
the one hand. On the other hand, the test evaluation system checks the specified test scenario 
constantly and simultaneously, not just at certain time steps determined by a test case. At this 
point the discussion on the relation between the TSpec and test evaluation from the previous 
section can be recalled. The test evaluation system represents a formal and systematic TSpec, 
indeed. The same applies vice versa in this case. Moreover, the verdicts set for the different 
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assertions do not directly link to a test case. A verdict primarily belongs to its corresponding VF 
and therewith to a requirement as well.  
 

Preconditions 1

Assertions 1

Preconditions 2

Assertions 2

Preconditions p

Assertions a

 
Figure 5.7: Fundamental Structure of the Validation Function Level.  

 
In Figure 5.7, the fundamental structure of the validation function level is shown. Groups of 
preconditions and assertions blocks can be recognized, all preconditions having the same input 
– the signal bus containing all SUT relevant signals. The Precond signal bus is connecting pre-
conditions and assertions. A Bus Creator block collects the assertions outputs, which enables 
them to be linked with the corresponding VFs. 
 
Similarly as for the upper level, a good practice within this level is to give the different blocks 
the names of the activities performed inside. With this practice, readability and quick under-
standability is supported. The elements may be traced to the requirements easily too. 

5.1.4 Feature Generation Level – Feature Detection Level  

The feature generation level is the implementation of the generation algorithms for the SigFs. 
Since they have been already introduced in Section 4.2, the explanation of this level falls short. 
Every SigF is embedded in a Feature Generator subsystem. The feature generation works ac-
cording to the generic algorithm, whereat numerous variants of the SigF are constructed. These 
are produced as a result of transformations described in Section 5.3. The created signals are 
passed on to the test case level and managed there further on. Additionally, a log file is pro-
duced for each signal (cf. Figure 5.8): it is applied for generation of the test report and realiza-
tion of the quality metrics described in Chapter 7. 
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Figure 5.8: Fundamental Structure of the Feature Generation Level.  

 
The structure handling the variants management is shown in Figure 5.9. The insights of the 
Feature Generator subsystem are shown to illustrate the generation of feature representatives. 
In this example, two variants are produced.  
The activation of variants on the test data level is synchronized with the test control. It is as-
sured due to the application of the From block (cf. Figure 5.9) retrieving the variant number 
from the Goto block that is specified in the test control (cf. Figure 5.26 – in Section 5.5). Fur-
ther details on variants management will be described in Section 5.4.  
 

 
Figure 5.9: Variants Management Structure.  

 
The feature detection on the same abstraction level, but from the TSpec perspective, is the tech-
nical realization of signal evaluation. At this level more signal evaluation units appear and re-
late to each other by a logical AND operator. Each atomic signal evaluation unit consists of a 
feature extraction block in conjunction with a signal comparison block and the value of a refer-
ence SigF (see Figure 5.11 and Figure 5.14).   
 
Following the IF-THEN rule that propagates the SigFs in preconditions-assertions pairs, their 
synchronization is required. Two cases must be distinguished since precondition blocks pro-
duce a common activation signal set for the assertions, while the assertions deliver a set of ver-
dicts and related information. Consequently, both cases should be realized separately in PS and 
PAS blocks as mentioned in Section 4.4. Thus, the upcoming discussion will be split into two 



                                                                                                                                                     5 THE TEST SYSTEM 106 

topics: the realization of preconditions and assertions. Before, a short description of the syn-
chronization algorithm assumption will be given. The granular implementation details concern-
ing the mechanism for both elementary parts of the feature detection level can be found in 
[MP07] (pages: 55 – 66 and 71 – 83, respectively). 
 
Detection of TI features can be modeled as an identification of TDD features that are triggered 
at every time step. Respectively, detection of TDD features can be described as the extraction 
of TID features that have a constant delay as shown in Figure 5.10. This principle is utilized in 
the implementation of the synchronization algorithm. Firstly, the detection mechanisms of all 
features are transformed to the most complex form including A, T, and R signals. Then, a 
common activation signal bus is generated; it is built from the feature, trigger, and reset signals 
and a mode signal indicating what kind of feature description has been applied – TI, TDD, or 
TID. The assertions are only activated at these time steps when all preconditions are active 
[MP07].  

 

kT
kT

kT

A
T

Aconverted to

kT

kT

T

kT

A

R

Identification mechanism using 
activate signal – A. 

Identification mechanism using
trigger signal – T 
and
activate signal – A.

converted to

Identification mechanism using
trigger signal – T ,
activate signal – A,
and reset signal – R.

 
Figure 5.10: Conversions of the identification mechanisms for TI – TDD and TDD – TID features. 

 
Test Specification: Feature Detection Level: Preconditions. The feature detection level for 
the preconditions is structured as shown in Figure 5.11. In the schematic structure only TI fea-
tures are considered, since the extraction blocks only output a feature signal. In the implemen-
tation, however, the trigger (T), and reset signals (R) can be utilized by the PS block for syn-
chronization too. 
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Figure 5.11: Fundamental Structure of the Feature Detection Level for Preconditions.  

 
The comparison block34 supports basic comparison operations, namely ==, ~=, ≤, ≥, <, and >, 
but also more-flexible comparison forms that include tolerance ranges. The comparison blocks 
transform the feature signal to a boolean value, outputting true for a successful check, i.e., 
when the feature under extraction exist. The resulting signal is denoted as activation signal (A), 
next to T and R.  
Thus, the preconditions synchronization block has as many A inputs as features are extracted, 
as many T inputs as TDD and TID features are available, and as many R inputs as TID features 
are checked. The number of TI, TDD, and TID features can be set in the PS block mask shown 
in Figure 5.12.  
 

 
 

Figure 5.12: Preconditions Synchronization Parameter Mask.  

 

                                                        
 
 
34  Simulink® Validation and Verification™ library offers a set of comparison blocks. Although SL includes the possibility of 

disabling them after the system has been validated successfully, they could be used here as well.  
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When TI or TDD features are extracted, their delays have to be specified using a vector nota-
tion. They need to be provided in simulation steps, i.e., x seconds delay would be introduced in 
the form of x * time step size delay.  
 
The basic functionality that must be covered by the PS block will be illustrated using the exam-
ple presented in Figure 5.13, introduced initially by [MP07]. Therein, the extracted signals of 
five different features are shown (Figure 5.13, cases a to e). The first feature represents constant 
detection, the second one – step detection with a 5 units delay. The next figure shows the time 
when a signal crosses a value x (i.e., extraction of the time stamp of an event). The fourth fea-
ture identifies the local maximum of value x with a unit delay. The last feature measures some 
step response characteristic. Given this concrete situation, the task of the PS block is to deliver 
the activation information to the assertion block (cf. Figure 5.13, case f). 
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Figure 5.13: Preconditions Synchronization – an Example.  
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Introduction of a delay presents the straightforward reasoning about A signal. Hence, taking the 
features in Figure 5.13, cases a and b as an example, the feature identifiable with a shorter delay 
must be fictitiously delayed by the delay difference, in order to filter the delay out. This time 
shift guarantees that all features are evaluated at the same time. If the A signal in Figure 5.13b 
is delayed by 5 time steps, both A signals will be triggered at the same time step. In conse-
quence, the maximum delay within the preconditions determines the size of the preconditions 
delay. It is calculated using the formula:  
 

∆τi = τmax – τi (5.1) 
 
τmax = max(τi) represents the maximum delay among all the SigFs present in the preconditions. 
 
Thus, the signals in Figure 5.13c need to be delayed by 5 time steps, whereas the signals in 
Figure 5.13d needs to be additionally delayed by 4 time steps. 
If a trigger signal is extracted, the preconditions become triggered automatically. Whenever the 
triggered feature is not available, the preconditions are not available either, since they are all 
related by the AND-operator. In that case, all TI features must be transformed to TDD features, 
so that they obtain a fictitious T signal as well. Its value is the same as the value of A signal. A 
TDD feature with identical T and A signal is equivalent to a TI signal.  
 
Considering the TID features the situation is a bit more complex. In the case of having only one 
precondition, whenever the R signal becomes true, the preconditions are potentially active. 
Then, their real activation is confirmed only when T and A signals become active too. All three 
signals, R, T, and A must be passed to the assertions, so as to inform them about both the poten-
tial and real activation. 
Combinations of TID features only activate the preconditions if all their R signals become ac-
tive at the same time and the R signals then remain inactive until all T and A signals have be-
come active. Each T-A pair must become active simultaneously, but the delays of the different 
T-A pairs do not have to be the same. If the T signal becomes active without the corresponding 
activation of its A partner, the preconditions do not become active. A new activation of R re-
starts the synchronization process. Again, the highest delay applies for all preconditions. Com-
binations of TID features with TI or TDD features are managed by converting the latter to TID. 
This is achieved by generating an R signal identical to the T signal of the TDD feature.  
The R signal of TID features cannot be delayed. This limitation was introduced to reduce the 
complexity of the synchronization algorithm, meaning that the extraction mechanism for the R 
signal needs to be delay-free. When different feature types are combined, all three TID feature 
description signals R, T, and A are delayed by the maximum [MP07].  
 
Test Specification: Feature Detection Level: Assertions. The assertions at the feature detec-
tion level have the same structure as the preconditions, i.e., SigFs are extracted and related con-
junctively. Only when all preconditions are active, can the assertions be active.  
However, if a large set of IF-THEN-rules is considered, it would be possible to find more than 
one rule with exactly the same preconditions, but with different assertions. If these rules belong 
to different requirements, the preconditions set will repeat in each rule. Such a case does not 
have to be designed this way, but it appears to be a good practice for at least two reasons. 
Firstly, the requirements may slightly change. As a result previously the same preconditions 
would be altered too, which would consequently lead to their separation anyway. Secondly, 
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every single assertion should deliver a separate verdict in order to localize a fail as efficient and 
effective as possible.  
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Figure 5.14: Fundamental Structure of the Feature Detection Level for Assertions.  

 
In this work, every assertion is treated as an autonomous unit, delivering its own verdict. Re-
garding the implementation, the IF–THEN rule (4.8) is transformed to the set given in (5.2) 
without losing the previous semantic. Therefore, the way how the single assertions are related 
to each other can be left open.  
 

IF Precondition1 ^ Precondition2 ^ . . . ^ Preconditionm THEN Assertion1 
IF Precondition1 ^ Precondition2 ^ . . . ^ Preconditionm THEN Assertion2 
... 
IF Precondition1 ^ Precondition2 ^ . . . ^ Preconditionm THEN Assertionn 

(5.2) 

 
Apart from the feature extraction, each assertion has to be synchronized with the preconditions. 
This task is performed by the preconditions-assertions synchronizer. Here, the activation signal 
A from preconditions activates the assertions and PAS functionality at the same time. Each 
PAS block consists of a PS block for exactly two features, complemented by algorithms capa-
ble of setting verdicts and delays independently of the feature types used. Every assertion deliv-
ers a verdict, a verdict delay, and further verdict-related information at every simulation time 
step. The information from the different assertions is collected and recorded separately in the 
requirements level, which assures a separation of concerns. PAS block outputs a signal bus with 
the evaluation information. All PAS buses are collected in order to output a single bus for all 
assertions at once. 
The setting of different verdicts that occurs in PAS contrasts with the simple monitoring that PS 
block does. 
Also, the signal comparison blocks slightly differ from the ones for the preconditions. The ac-
tual comparison mechanisms remain the same, but the blocks collect further test-related infor-
mation. With this practice, fundamental elements for reconstructing and understanding the test 
verdicts offline may be retrieved. Offline means after the execution of a test, in contrast to 
online which means during its execution. Each test verdict can be related to a concrete asser-
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tion, and in consequence, to the corresponding requirement and to a specific time step. Also, the 
test behavior can be reproduced offline using the test evaluation system.  
The verdicts that can be applied are: 

− none (2) – when no other verdict can be set or when the preconditions are not active 
− pass (1) – when the SUT functional behavior is correct  
− fail (0) – when the SUT behavior does not correspond to the expected one 
− error (−1) – when the test system contains errors (e.g., the PAS input signals have an 

invalid format). 
 
The arbitration mechanism has been described in Section 5.1.2 and illustrated in Figure 5.4. 
There is a default arbitration algorithm. It is used while delivering the verdict for a single asser-
tion, a requirement evaluation, test case, or the entire test suite. Verdicts are ordered according 
to the rule: none < pass < fail < error following the standard [UTP]. 

5.2 Test Specification 

As introduced in Section 4.4 and explained in Section 5.1.3, a VF is the fundamental part con-
stituting the TSpec. Referring to the rule (4.8), the preconditions set and assertions set are pro-
positional variables that stand for any propositions in a given language. The preconditions set is 
called the antecedent and the assertions set is called the consequent, while the statement as a 
whole is called either the conditional rule or the consequence. Assuming that the conditional 
statement is true then the truth of the antecedent (i.e., fulfilling the constraints in the precondi-
tions set) is a sufficient condition for the truth of the consequent (i.e., activation of the asser-
tions set), while the truth of the consequent is a necessary condition for the truth of the antece-
dent [Men97].  
 
The conditional rule given in (4.8) is understood as an abstract test scenario describing a set of 
preconditions that must be fulfilled so as to assess the expected behavior of the SUT (i.e., acti-
vate the assertions). Concretization of such a scenario at the VF level is also possible, but usu-
ally it is more effective to design more generic test specifications.  
The main difficulty that the test engineer needs to overcome at this place is to create reasonable 
IF-THEN statements from the SUT requirements so as to design flexible, high-quality tests. 
Thus, some test modeling guidelines are provided in the following in order to clarify the proc-
ess of TSpec. 
 
Generally, the rule holds that the preconditions should be determined by the constraints set on 
the SUT input signals, whereas the assertions should check the SUT outputs. This is the natural 
manner of understanding a test scenario, since the SUT inputs represent the test stimuli and the 
SUT outputs need to be evaluated so as to assess the behavior of the SUT. 
The point is, however, that sometimes complex structures appear where the inputs and outputs 
cannot be separated. Hence, a few variants of a mixed version are allowed too. These are given 
in the statements (5.3 – 5.6).  
 
The situation that the SUT interfaces of both directions need to be constrained in the precondi-
tions part (cf. rules 5.3 – 5.4) happens when the tested SUT behavior can be activated only un-
der certain circumstances that occurred before and led the SUT to a particular state. This state is 
then determined by the selected constraint on the SUT output.   
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 IF constrained_inputsn ^ constrained_outputsm 
 

THEN constrained_inputsn ^ constrained_outputsm 
 

(5.3) 
 

IF constrained_inputsn ^ constrained_outputsm 
 

THEN constrained_outputsm  
 

(5.4) 
 

IF constrained_inputsn 
 

THEN constrained_inputsn ^ constrained_outputsm 
 

(5.5) 
 

IF constrained_inputsn 
 

THEN constrained_outputsm 
 

(5.6) 
 

 
The combination of interfaces of both directions in the assertions part (cf. rules 5.3 and 5.5) 
appears usually when some SUT output must be computed by application of the corresponding 
stimulus (e.g., calculation of the braking torque based on the position of the brake pedal).  
 
Combining the different options in such a way that either only constrained outputs occur in the 
preconditions or only constrained inputs occur in the assertions is not allowed. The exclusive 
presence of the constrained outputs in the preconditions implies that some behavior had already 
happened before starting the considered scenario. By that, the scenario is dependent on some 
other scenario. That is not a convenient practice for the proposed TSpec algorithms since the 
test scenario should be possibly independent. Moreover, the test data cannot be generated 
automatically from such preconditions applying the currently available transformations. It also 
does not make sense to check the constrained inputs in the assertions since these are the SUT 
stimuli, not the SUT execution results.  
 
The impermissible variants are listed in the formulas (5.7 – 5.9). They should be reformulated 
using modus tollens35 or transposition36 [Cop79, CC00] rules so as to adopt a valid form. 
 
IF constrained_inputsn ^ constrained_outputsm 
 

THEN constrained_inputsn 
 

(5.7) 
 

IF constrained_outputsn 
 

THEN constrained_inputsn ^ constrained_outputsm 
 

(5.8) 
 

IF constrained_outputsn THEN constrained_inputsm  (5.9) 

                                                        
 
 
35  In logic, modus tollendo tollens (Latin for "the way that denies by denying") [Cop79] is the formal name for indirect proof 

or proof by contraposition (contrapositive inference), often abbreviated to MT or modus tollens. It can also be referred to 
as denying the consequent, and is a valid form of argument (unlike similarly-named but invalid arguments such as affirm-
ing the consequent or denying the antecedent). Also known as an indirect proof or a proof by contrapositive [CC00]. Mo-
dus tollens has the following argument form:                                                                                                                           
If P, then Q.                                                                                                                                                                               
¬Q                                                                                                                                                                                        
Therefore, ¬P.                                                                                                                                                                        
Every use of modus tollens can be converted to a use of modus ponens and one use of transposition to the premise which is 
a material implication. For example:                                                                                                                                                
If P, then Q. (premise - material implication)                                                                                                                                                
If Q is false, then P is false. (derived by transposition).  

36  In the methods of deductive reasoning in classical logic, "transposition is the rule of inference that permits one to infer 
from the truth of "A implies B" the truth of "Not-B implies not-A", and conversely" [Cop79]. Its symbolic expression is: 
(P → Q) ↔ (~Q → ~P). 
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In the cases when only the interfaces of the same directions are constrained in both precondi-
tions and assertions, respectively, as provided with the rules (5.10) and (5.11), the following 
holds. (5.10) can be restructured to the equivalent, more reasonable version given in (5.12) in-
dicating that the test scenario should always be assessed, no matter what test stimuli have been 
currently applied, whereas (5.11) does not make sense at all since it does not test any behavior 
resulting from the SUT behavior.  
 
IF constrained_outputsn 
 

THEN constrained_outputsm 
 

(5.10) 
 

IF constrained_inputsn 
 

THEN constrained_inputsm 
 

(5.11) 
 

IF true ^ any constraints THEN constrained_outputsn ^ constrained_outputsm    (5.12) 
 
Additionally, the construction of IF-THEN rules can be enriched with the logical connectives 
and temporal expressions listed in Sections 4.1.3 and 4.1.4. Although not all of them have been 
implemented, a few of them deserve a special attention. These are:  

− OR – for the considerations on the alternative [ETSI07]   
− during(x), after(y) as expressions of temporal dependencies between the SigFs.  

 
The former one is implemented as an extension of the arbitration mechanism, whereas the latter 
one is implemented as a workaround of the existing synchronization algorithms rather than 
dedicated structures.  
 
The alternative given in (5.13) determines alternative behavior of the SUT. Whenever A holds, 
B or C or D should hold too. This statement is realized in MiLEST by an equivalent set of logi-
cal implications given in (5.14) providing that the arbitration mechanism is adjusted for this 
particular case.   
 

IF      A       THEN    B 
                                 OR C  
                                 OR D  

 (5.13) 

 
 

IF      A       THEN    B 
IF      A       THEN    C 
IF      A       THEN    D } including the adjustment of the arbitration mechanism 

(5.14) 

 
Here, all the cases are executed and checked in parallel and the snapshot known from the 
TTCN-3 alternative [ETSI07] does not have to be taken at all. Instead, it is enough to adjust the 
arbitration mechanism so as to add the semantic of the disjunction. Following the example from 
(5.13 and 5.14), if any assertion delivers a pass verdict, the entire logical implication passes as 
well, whatever verdict is provided by the remaining assertions.  
 
Then, taking the expression during(x) as an example of temporal dependencies, the SF diagram 
enables to control the activation of the features in time by manipulating the signals. Considering 
the scenario provided in (5.15):  
 

IF      A       THEN   during(x) B,   (5.15) 
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the extraction of SigF B takes place only during a certain period of time (here, x seconds). An 
example of the realization solution is given in Figure 5.15. The feature is checked only during 
time x multiplied by the current time step. Whenever the activation of SigF extraction appears, 
it happens in the restricted frames of time. To do so the reset signal, being a constituent of the 
activation signal, is constrained within the SF diagram (see Figure 5.16). 
 

 
Figure 5.15: Implementation of during(x) TI feature – Feature Detection Level (Assertions).  

 

 
 

Figure 5.16: Insights of the SF Diagram for the Implementation of during(x) TI feature.  

 
The expression after(y) refers to the logical implication given in (5.16). Here, the concept of 
features synchronizations may be re-applied so as to shift the activation of the features in time 
by manipulating the signals (cf. Figure 5.17). It is based on the retardation concept. The activa-
tion of SigF B extraction is retarded by application of a delay of y seconds.  
If an identification delay for a given SigF already exists (see Section 4.2.1), it is summarized 
with the retardation caused by the temporal expression. 
 

IF      A       THEN   after(y) B   (5.16) 
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Figure 5.17: Retarding the Extraction of TI Feature by Application of after(y).  

An additional issue emerges when the SUT output signal is not a number (NaN) or is out of 
range. Although such a case is related to negative testing (cf. Section 8.1), which is beyond the 
scope of this work, the following solution is recommended and has been realized. An extra 
function checks all the output signals on violation w.r.t. the mentioned problems. If any of them 
is detected, the test execution is either aborted or paused with a clear indication on the faulty 
signal (see Section 5.5.2 for further explanation). Generally, it is good practice to shift such 
types of issues into the test control to achieve the separation of concerns splitting the functional 
abstract test scenarios from the run-time faults. Hence, it has been realized in the test control. 
 
Whereas the process of test specification (TSpec) has already been described in many places in 
this thesis, the test data generation (TDGen) still deserves particular attention. This is due to (1) 
the automatic transformations applied to obtain the test stimuli, (2) generation of test signals 
variants, (3) their combination, and (4) sequencing of the obtained signals into the test steps, 
test cases, and test suites. Hence, the following three sections concern those issues in detail.  

5.3 Automation of the Test Data Generation 

The test development process proposed in this thesis can be automatized by application of 
transformations and the ready-to-use test patterns. This saves the test development time and 
enables the test engineers to focus on different aspects of the test coverage instead of the tech-
nical details.  
The transformations allow for the retrieval of the test harness. The entire TDGen mechanism is 
supported. The test patterns help to collect the data, whereas the transformations serve for pro-
ducing their variants systematically.  
The application of automatic transformations assure that the TSpec and TDGen correspond to 
each other in a consistent manner. It is possible because the produced test signals are derived 
directly from the TSpec design.  

5.3.1 Transformation Approach  

Generation of the test data applies the currently known techniques in combination with the SigF 
concept. These are equivalence partitioning (EP) and boundary testing (BT). EP is a black-box 
test design technique in which test cases are designed to execute representatives from equiva-
lence partitions. In principle, test cases are designed to cover each partition at least once. 
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Equivalence partitioning assumes that all values within any individual partition are equivalent 
for a selected test purpose [ISTQB06]. BT does not only select one value from the partition 
points, but boundary values. The test data variants are established for each SigF separately, 
based on a dedicated algorithm.  
Basically, the problem of test stimuli generation can be divided into a set of problems classified 
according to different activities:  
 
(1) Transformation:  

− Generation of the structure for the test data based on the preconditions from validation 
functions  

− Generation of the abstract SigFs generators 
 

(2) Preparation of test signals generation:  
− Establishing the ranges of the SUT input and output signals  
− Establishing the partition points for every signal  
 

(3) Generation of concrete test signals: 
− Generation of signal variants based on the selected algorithms depending on the SigF 

type  
 

(4) Combination of the obtained test signals and their sequencing:  
− Combination of signal variants according to the chosen strategy for test automation 
− Sequencing of the test signals over time in a test case or in a test suite 
− Manual refinement if needed (e.g., when there exists a functional relation between the 

test cases)  
 

The transformation is defined as a mechanism for transforming the elements of a model con-
forming to a particular metamodel into elements of another model that conforms to another 
metamodel [CS03, BSK04]. The test data generation is realized using ML scripts, the meta-
models are not directly necessary (cf. Section 5.8.2 of this chapter). The abstract objects of the 
SL/SF model are already available thanks to its comprehensive API.  

5.3.2 Transformation Rules  

The concrete high-level implementation rules applied in the prototype are listed below:  
− Before the transformation begins, all necessary libraries must be loaded 
− The link to the MiLEST library for all blocks added to the test model should be dis-

abled in order to manipulate their parameters within this model 
− For each SUT a test harness must be built  
− The data types of all generated signals should inherit from the types specified for them 

in the SUT model and consequently in VFs 
− The names of all generated Inport blocks at the source and signal lines connecting them 

with the SUT should match 
− The structure of the TestData must be consistent with the MIL_Test/Test Data/Test 

Data Architecture/<Test data generator> from the library 
− The simulation parameters in the resulting test model inherit the ones in the source 

model 
− After a successful transformation the new test model is saved automatically 
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The technical transformation rules related to the specification levels are listed in Table 5.1 for 
illustration purpose. Starting at the test harness level, the TDGen unit is generated based on the 
structure of the TSpec unit. If the TSpec is further defined by the test engineer, the transforma-
tion functions refine the TDGen unit by updating the number of requirements and test data sets 
inside them. This is possible by analyzing the fixed elements of the TSpec, e.g., ‘Test Info’ in-
terfaces, and projecting them onto the transformation target, e.g., ’Requirement’ subsystem in 
the TDGen. Similar methodology applies for all the levels in the test system hierarchy.   
 

Table 5.1: Transformation Rules for Test Data Sets Retrieval.  
Level Test Specification Test Data Generation 

 
TSpec subsystem identified  Generate ’Test Data’ subsystem applying the pattern from 

MIL_Test/Test Data/Test Data Architecture/<Test data 
generator> 

Test    
Harness 

Number of SUT input signals Number of generated signals for ‘Test Data’ subsystem 
’Test Info’ interface Generate a ’Requirement’ subsystem Test Re-

quirement Number of ’Test Info’ interfaces  Number of requirements 
’Activate ’ interface Generate a ’Test Data’ set pattern and a corresponding 

state in ’Generation Sequence’ diagram 
Number of ’Activate’ interfaces Number of ’Test Data’ sets  

Test Case 
–  

Validation 
Function Number of ’Activate’ interfaces Number of states in ’Generation Sequence’ diagram 

SUT input signal in Bus Selector, ‘MATLAB 
Fcn’, signal comparison block 

Generate a ‘MATLAB Fcn’ connected to an output port 
labeled with SUT input’s name 

SUT input signal in Bus Selector, ‘Logical 
expression’, signal comparison block 

Omit ‘Logical expression’ and detect other connected 
feature extractor 

SUT input signal in Bus Selector, ‘Complete 
step’, signal comparison block 

Generate ‘Complete step’ connected to an output port 
labeled with SUT input’s name 

SUT input signal in Bus Selector, ‘Detect 
constant’, signal comparison block 

Generate a subsystem labeled ‘Constant’ and an output 
port labeled SUT input signal 

SUT input signal in Bus Selector, ‘Detect 
increase’, signal comparison block 

Generate a subsystem labeled ‘Increase’ and an output 
port labeled SUT input signal 

SUT input signal in Bus Selector, ‘Detect 
decrease’, signal comparison block 

Generate a subsystem labeled ‘Decrease’ and an output 
port labeled SUT input signal 

SUT input signal in Bus Selector, ‘Detect 
step’, signal comparison block 

Generate a ‘Step’ and an output port labeled SUT input 
signal 

SUT output signal in Bus Selector, signal 
comparison block and reference block 

Generate a Bus Selector (with SUT output selected inside), 
signal comparison block, reference block, Memory block, 
and an output port labeled ‘Activate’ 

SUT input signal in Bus Selector and signal 
comparison block parameterized by ‘==’ 

Generate a subsystem labeled ‘Constant’ connected to an 
output port labeled with SUT input’s name 

SUT input signal in Bus Selector and signal 
comparison parameterized by ‘>’ or ‘>=’ 

Generate a subsystem labeled ‘Increase’ connected to an 
output port labeled with SUT input’s name 

Feature 
Generation 

–  
Feature 

Detection 

SUT input signal in Bus Selector and signal 
comparison parameterized by ‘<’ or ‘<=’ 

Generate a subsystem labeled ‘Decrease’ connected to an 
output port labeled with SUT input’s name 

 
The approach is summarized based on a simple, relatively abstract example in Figure 5.18. As-
suming that a transformation from functional requirements into their conditional representation 
is already done, two VFs nested in the TSpec unit are designed (see the right part of Figure 
5.18). The preconditions encapsulate information about the test data demanded to activate the 
appropriate assertions. For each single precondition a corresponding set of signal generators is 
used resulting in the test data sets. The next step is to constrain the data with time. Either de-
fault or parameterized duration time for a single signals set may be applied. A temporal con-
straint – after(time1) is used in the example below. Finally, further parameters (e.g., signal 
value, permitted value range) depending on the feature from which the corresponding signal is 
generated, are set. This is supported by the values contained in the precondition’s parameter rs. 
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Hence, the test signals sequences are obtained. In Figure 5.18, the preconditions correspond to 
their test data sets. If the transformation is complete, the generated signals activate every single 
assertion one after another following the predefined time intervals.  
 

SUT InOut
Bus

Preconditions1

Assertions1

Preconditions2

Assertions2

Generate Test Data1 
from Preconditions1

Generate Test Data2 

from Preconditions2

Test Data Generation

after (time)

after (time) automatic 
transformation

Formal IF-THEN rules

SUT informal requirements

semi-automatic 
transformation

manual  transformation

Verdict

Test Specification

 
 

Figure 5.18: Test Stimuli Definition – an Abstract View. 

 
In Figure 5.19, a similar situation as in Figure 5.18 is presented, but on the lower level of ab-
straction (i.e., using concrete signals). In VF1, all the values above the dotted line over the sig-
nal u1(t) activate the flag assertion. Thus, u1(t) is generated applying a corresponding pattern 
and it is available within time ∈  (0, t1). Afterwards, u1(t) remains unchanged and u2(t) in-
creases within time ∈  (t1, t2) so as to enable the flag assertion in VF2. In this example, no de-
pendencies between features exist. Thus, the process of the test stimuli generation is completed. 
 

 q2(t)

SUT InOut
Bus Verdict

u1 (t)

Validation Function 2

0 t1 t2 time
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u2 (t)

0 t1 t2
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time
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time
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time

IF
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time

u2(t)

time
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THEN ASSERT
q2(t)

Validation Function 1Test Data Generation

Test Specification

 

Figure 5.19: Test Stimuli Definition – a Concrete View. 
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5.4 Systematic Test Signals Generation and Variants Management  

5.4.1 Generation of Signal Variants  

The test data are the test signals which stimulate the SUT to invoke a given behavioral scenario. 
In the approach proposed here, a particular set of SigF generators produces selected signals for 
particular test cases.  
The concrete variants of the test signals are provided based on the generation patterns discussed 
in Section 4.2. The variants generation method can be applied if the signal ranges and partition 
points have been defined on all the stimuli signals according to the requirements or engineer’s 
experience.  
 
Partitioning the range of inputs into groups of equivalent test data aims at avoiding redundant 
testing and improving the test efficiency and coverage. The situation is becoming even more 
complex when hybrid systems are considered since their signals vary continuously in value and 
time. However, in this work only values are partitioned, they relate to the signal characteristics. 
It is due to the fact that the SigF generation as such is already implicitly based on the time parti-
tioning concept (cf. Figure 4.2). The duration time of a feature is taken as default unless no 
temporal expressions are included.  
 
Practitioners often define equivalent classes intuitively, relying primarily on case studies. The 
success of this method depends on the tester’s experience and his subjective judgments.  
Another option is to specify the equivalence [Bur03] based on the requirements. This approach 
depends on the fact of whether the specification provides sufficient details from which the 
equivalence classes and boundaries could be derived.  
At least three different methods can be used to choose the representatives of the equivalence 
class, namely random testing, mean value testing, and boundary testing. 
 
Dedicated blocks, called signal range and partition points are provided for every SUT input and 
output interfaces in order to let the test engineer set the boundaries. Three types of such 
boundaries are distinguished. These result from the applied data type, the signal range, and 
specific partition points.  
Data type boundaries are determined by the lower and upper limit of the data type itself (see 
Figure 5.20A). They are limited by its physical values. For example, the lower limit of tempera-
ture is absolute zero (i.e., 0 K or -273.15˚ C); an unsigned 8-bit value has the range from 0 to 
255. 
The range of the signal belongs to the data type range and it is specific for the SUT (see Figure 
5.20B). For example, if water is the test object, water temperature is the input to the SUT; test 
data for water may be specified to be between 0˚ C and 100˚ C.  
Finally, the partition points (see Figure 5.20C) are of concern since they constitute the specific 
values of critical nature belonging to the signal range.  
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Figure 5.20: Steps of Computing the Representatives. 

 
A number of algorithms are proposed for signal variants generation depending on the SigF type. 
The analysis of SigF types, equivalence partitioning and boundaries are used in different com-
binations to produce the concrete test data variants. 
As an example, the feature increase is considered in the following. A number of generation 
options given in Table 5.2 are possible to produce the signal variants systematically. Here, three 
possibilities showing two variants for each are considered. For reasons of simplicity the ramp is 
selected as a shape representative of an increase. In the first option, timing constraint and sig-
nal range are the factors indicating the generation rule. Hence, two different ramps are ob-
tained, both covering the entire range and preserving the proper time constraint (t1 and t2 re-
spectively). In the second option, signal range and the tangent of the angle play a significant 
role. Thus, it does not matter how long the signal is generated, the signal variants must hold 
within the given tan(angle) along the entire value range. Finally, in the third option, timing con-
straint and tangent of the angle determine the generation rule. At this point only one default 
boundary of the signal range is considered, the tan(angle) is preserved and the predefined t1 
indicates the duration of a signal generation.  
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Table 5.2: Options for Increase Generation. 

signal (kT)
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max
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max

t2

min

max
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max
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kT

signal (kT)

kT

signal (kT)

kT

signal (kT)

kT

signal (kT)

kT
 

 
Considering the increase generation in terms of a real-world signal, vehicle velocity is taken as 
an example. Its value range is between <-10, 70>. Additionally, {0} is taken into account since 
the car changes its driving direction from backwards to forwards at this point. The third genera-
tion option is chosen from Table 5.2. The algorithm computes 10% of the current range around 
all boundaries and partition points. Thereby, variantn of a signalm belongs to the range calcu-
lated according to the formula given in (5.17) for lower or upper limits, respectively, where p is 
a partition point or a boundary point.   
 

<pn, pn+10% · (pn+1-pn)> or <pn-10% · (pn-pn-1), pn> (5.17) 
 
Hence, the following increases are obtained as representatives: <-10,-9>, <-1,0>, <0,7> and 
<63,70>. The duration of those increases can be either derived from the VFs, or set as default 
values, or changed manually. The steps of computing the representatives on the value axis are 
illustrated in Figure 5.21. 
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Figure 5.21: Steps of Computing the Representatives for Vehicle Velocity. 

 
Firstly, the boundaries of the range are identified (step A) resulting in a set {-10, 70}. Then, all 
risk-based partition points are included (step B) resulting in value {0}. They are derived from 
the specification or the test engineer’s experience. The increase ranges are calculated and the 
variants in those ranges are generated (step C) as given below. Finally, durations of the features 
are added on the time axis.  
 

v1  ∈   <-10, -10+10% · (0-(-10))> ≡ <-10, -9>  
v2  ∈   <0-10% · (0-(-10)),0> ≡ <-1, 0>  
v3  ∈   <0, 0+10% · (70-0)> ≡ <0, 7>  
v4  ∈   <70-10% · (70-0),0> ≡ <63, 70>  

 
The example discussed above is an instance of an explicit partition, when a single signal is in-
volved in the partitioning process. Additionally, implicit partitions appear when the SUT input 
signals are put in a mathematical relation with each other. In such a case, both sides of the 
equation (or inequality) are considered. Taking the inequality given below as an example, gen-
eration of variants for the relation of two SigFs A and B, on the left, depends on the variants for 
SigF C, and vice versa.  
 

A – B > C   
 
Hence, firstly the right-hand side partitions for C are produced. Then, the variants for A and B 
on the left-hand side are generated in such a way that the inequality for the representatives of C 
is valid. Later on, the procedure is repeated for the left-hand side SigFs, whereat the redundant 
cases are deleted.  
 
In MiLEST not only SUT input partitioning, but also SUT output partitioning [FDI+04] is ap-
plied. This enables (1) to verify the power of the equivalence partitions built for the SUT input 
signals and (2) to improve the test data generator. The procedure is similar to the input parti-
tioning. This time, the ranges of SUT output signals are defined and their partition points are 
identified. Alternatively, the type of SigFs constraining the output in the assertions may be 
taken into account. Then, after the test execution, it is checked whether the expected results of 
the test cases cover all possible equivalence partitions of the SUT output. If this is not the case, 
additional test stimuli are designed so as to cover the missing values.  

5.4.2 Test Nomenclature  

Summarizing the approach in terms of the nomenclature given in Sections 5.1 – 5.4, the follow-
ing definitions are provided. The generated test signals create the behavior of a test case. Test 
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case is a set of input values, execution preconditions, expected results, and execution postcon-
ditions, developed for a particular test objective37 so as to validate and verify compliance with a 
specific requirement [ISTQB06].  
A test step is derived from one set of VFs preconditions. It is related to the single scenario de-
fined in the VF within the TSpec unit. Thereby, it is a basic, non-separable part of a test case. 
The test case can be defined as a sequence of test steps dedicated for testing one single re-
quirement. Obviously, if only one VF is defined for a given requirement within a TSpec, the 
test step corresponds to the test case.  Otherwise, a test case consists of as many test steps as 
VFs exist for a single requirement. Hence, the number of test cases is the same as the number of 
requirements multiplied by the maximal number of variants constructed for the feature genera-
tors within this single requirement.  
W.r.t. the architecture of the test system, the test step corresponds to the so-called Test Data set, 
whereas the test case is composed of a sequence of such test steps within one single require-
ment block. This means that the test case is constructed by the Generation Sequence block and 
Test Data blocks. By that, the traces to the requirements are implicitly obtained.  
A test suite is a set of several test cases for a component or SUT, where the postcondition of 
one test is often used as the precondition for the next one [ISTQB06]. The specification of such 
dependencies takes place in the test control unit in the proposed test framework.  
The concept of a test suite according to the definition given in [ISTQB06] is particularly impor-
tant in the context of integration level test, where the test cases depend on each other. Other-
wise, if no relations are noted, a test suite is simply a collection of ordered test cases.  

5.4.3 Combination Strategies  

When a test involves multiple signals, which is usually the case, the combination of different 
signal variants should be established. In the proposed framework, the combination is done at 
the test case level. In particular, the generated variants of SigFs in one test step (i.e., in one Test 
Data set block) are combined. Technically, this is possible by manipulating the numbers pass-
ing to the switch present at the feature generation level so as to control the application of fea-
ture generators. Several combination strategies to construct the test cases are known, e.g., 
minimal combination, one factor at a time, and n-wise combination38 [LBE+04, GOA05]. Com-
bination strategies are used to select a subset of all iterations of different variants of test signals 
based on some coverage criterion. In the following, three combination strategies are discussed. 
However, the implementation attached to this thesis realizes the first two only. 
 
Minimal combination, denoted as A++B means that each class in A and B is considered at least 
once [LW00, CDP+96]. It iterates every interface and ends with the last variant. This one is held 
until other input variants iteration ends. Figure 5.22 illustrates the iterations based on three in-
puts. Only two iterations are obtained because every input has two variants. Each of them ap-
pears once in a combination. The error detection coverage is not satisfactory for this method, 
though.  
 
                                                        
 
 
37  Test objective is a reason or purpose for designing and executing a test. 

38  Further combinations strategies are random combination, which does not support reliable test coverage [CDP+96, LBE+04, 
Con04a] or complete (maximum) combination, which leads to exhaustive testing.  
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Figure 5.22: Minimal Combination. 

 
One factor at a time method uses a default normal condition as the starting point. Then, in the 
next iteration only one parameter at a time is changed, under the assumption that there is no 
interaction between parameters. Figure 5.23 presents the iterations based on this method.  
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Figure 5.23: One Factor at a Time Combination. 

 
For n-wise combination [CDP+96, LBE+04, GOA05] every possible combination of n classes is 
selected at least once. A special case of n-wise combination is a pair-wise combination. Here, 
orthogonal arrays [Man85, GOA05] may be applied. Figure 5.24 illustrates a situation when 
the iterations are constructed by 2-wise combination. Three inputs with two variants match the 
orthogonal arrays. Compared to the ‘one factor at a time method’, this one computes the same 
amount of iterations. Nevertheless, the iterations based on the orthogonal array a stronger abil-
ity to find errors [CDP+96]. 
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Figure 5.24: Pair-wise Combination. 

 

5.4.4 Variants Sequencing  

If the test data variants are calculated and the combination strategy has been applied, the test 
cases can be established. Every set of SigF generators constitutes a test purpose for a test case. 
All the sets together form a test suite and are sequenced in the test control. Before the details of 
the test control are discussed, the sequencing of the test signals within the test data sets will be 
explained. Every single generated signal is activated for a given predefined period of time. The 
SigFs within one set need to be synchronized so that the timing is the same for all of them. The 
SF diagram on the test data level called ‘Sequencing of test data in time due to Preconditions’ 
(Std) controls the activation of a given variants combination applying a predefined duration 
time.  
 
If there is no temporal constraint within the preconditions in a VF, the following timing issues 
apply for the test data sequencing:  
 

− Duration time of a test case execution (TCD) is equal to the duration time of the test 
data set execution multiplied by the number of test data sets assuming that the duration 
time of the test data set is fixed, otherwise the duration time of the test data sets are 
summarized for a given test case.  

− Duration time of a test data set generation includes the duration time of the selected 
variant generation for a given set of SigFs and the transition time to the next test data 
set (if any exists). 

− Execution time of the entire test suite for a single combination of variants is equal to 
the sum(TCD).  

− Execution time of the entire test suite including all the combinations of variants (i.e., 
for the entire test design) is equal to the sum(TCD) multiplied by the maximum num-
ber of variants in all test data sets.  
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− Maximum number of all test data variants in one test data set for the analyzed test suite 
indicates the number of loops over the test control.  

− The maximum number of variants can be calculated from the analysis of the number of 
variants for every single test data set. The maximum found for any precondition is de-
noted as the maximum number of variants.  

− Sequencing of the test data variants can be controlled either by the SF diagram or by 
the iteration number applied currently in the test control loop. In the former case all the 
variants are applied one after another until all of them have been executed. In the latter 
case, they are applied in a functional sequence determined by the test suite (i.e., test 
cases sequence given in the test control). If the number of loops is higher than the 
number of variants in a particular test data set, then the last available variant is used 
over and over again.   

 
In the case when temporal expressions appear in the preconditions of VFs, they should be in-
cluded in the calculation, extending the duration time of SigFs generation, respectively.  
 
The activation of test data sets must be synchronized with the timing given in the test control 
algorithm. Thus, taking minimal combination of variants as an example, in Std a time-related 
parameter is added. It results from the way the test control is specified. It enables the starting 
point of a selected test data set to be synchronized forming a test case on the test data level with 
the starting point of a test case within the test control.  
The first test case in the test control starts without any delay, so the parameter should be equal 
to 0. The duration of this first test case specified on the test control level determines the starting 
point of the next test case. Hence, the starting of the following test case appears after the former 
finishes, which means after a specified period of time. The same applies to the activation of the 
test data sets on the test data level. It starts after the same period of time as the test case speci-
fied on the test control level. Further on, the next following test case starts after all the previous 
ones finish. Thus, the same applies to the activation of the further test data set. Since the dura-
tion of all the previous test cases on the test data level is not explicitly included within the Std, 
it is calculated by summarizing the durations of all previous test cases. 
  
An example illustrating this algorithm is given in Figure 5.25. Assuming that a test control pre-
sented on the left-hand side is given, the parameters are calculated as shown on the arrows pro-
vided in the middle of Figure 5.25.  
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Figure 5.25: Test Control and its Implication on the Test Data Sequencing. 

 
This algorithm applies only to the first iteration within the test control. If more iterations are 
needed (i.e., if more variant sets are applied for a particular test suite execution), a more com-
plex algorithm should be used depending on the number of iterations.  
The test cases are executed one after another according to the sequence specified in the test 
control. After execution of one set of variants for such a sequence the next set of variants is 
chosen and consequently, the sequence including new test stimuli repeats.   

5.5 Test Reactiveness and Test Control Specification  

Test control is a specification for the invocation of test cases within a test context. Test configu-
ration is determined by the chosen SUT, the components, the initial parameters that must be set 
to let this SUT run and a concrete test harness.  
The test control in a traditional meaning is a concept widely known in the protocol testing, but 
also discussed for testing automotive system [Con04b]. In this thesis, it is considered as a 
means to achieve reactive testing. [Leh03] defines the test reactiveness as a reaction of the 
TDGen algorithm on the SUT outputs during the test execution. In particular, the stimulation 
mechanism in a test case reacts on a defined SUT state, instead of on a defined time point.  
In this thesis, the definition of reactive testing is extended [Zan07]. Additionally, the TDGen 
algorithm can be controlled by signals from the test evaluation system. Hence, not only can the 
test cases’ execution be organized over time, but also the data generation may be influenced by 
the verdict of the previous test case (as in [ETSI07]); the SUT outputs (as in [Leh03]) and by 
other test evaluation signals (e.g., reset, trigger, activation). Loops and conditions can be used 
to specify the execution order of individual test cases [ETSI07]. Depending on how the test 
control is defined, it enables the inclusion/exclusion of only those test cases, which are/are not 
of our interest at a particular moment. 
Moreover, the signal generation becomes more flexible and supports major SUT changes with-
out needing to be parameterized again after each SUT update. 
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Similarly to [Syn05] and [Leh03], a reactive test is defined as a test that is able to react to the 
SUT behavior and adapt to the newly observed situation dynamically within one simulation 
step during the execution. The test system is required to run synchronously to and simultane-
ously with the SUT model so that test actions can be performed using the same concept of time.  
 
If during a test run an identifiable behavior is observed, then the test control decides on the fur-
ther test execution, i.e., if a strategic test case fails, the current test control algorithm is acti-
vated. A test may either be aborted, provide a warning, invoke/redefine another desirable test 
case, or change the sequence and range of the applied test data, etc.  

5.5.1 Test Reactiveness Impact on Test Data Adjustment 

The process of TDGen can be impacted by different factors. The design principles listed in 
Table 5.3 refer to different reactiveness scenarios that enhance an automatic TDGen. A name of 
a method indicates its application context, whereas an example is a solution proposal.  
Principle no. 1.1 has been identified in [Leh03]. The TDGen depends on the SUT outputs as 
discussed by [Leh03]. A set of non-reactive test cases for different SUT variations can be speci-
fied as a single reactive test suite that automatically adapts itself to the actual variation. Princi-
ple no. 1.2 enhances systematic concrete test data retrieval by parameter adjustment. Principle 
no. 1.3 refers to the situation when the internal signals of the test evaluation influence the test 
data.  
 

Table 5.3: Test Data Generation Dependencies. 

no. Test Data Generation – Design Principles Influenced by 

1.1 

Name: Use an SUT output value to compute the test data.  
Example: If an SUT output reaches certain value, then perform further 
action within the TDGen algorithm.   
This concept is realized by [Leh03]. 

SUT Output 

1.2 

Name: Use verdict value for parameter sweep within the TDGen proc-
ess. 
Example: If verdict of test case X = none, then change the value of a 
particular parameter within the test data (e.g., the signal range) to meet 
the appropriate coverage of signal range. 
Note that the last value of the refined parameter must be stored to make 
the test repeatable.  

Verdict 

1.3 

Name: Compute the temporal dependencies of SigF generation within 
the TDGen process. 
Example: If trigger signal T appearing in the test evaluation unit indi-
cates that a single feature has already been assessed, then start generat-
ing a new variant of this feature (e.g., complete step generation) at this 
particular time point. 

Termination of 
the validation 
process for a 
selected SigF   

 
 
A classic example of the application of principle no. 1.3 application is the generation of differ-
ent step functions for the measurement of the step response characteristics. If the signal genera-
tion algorithm knows when the SUT output has stabilized and a verdict has been established, it 
neither outputs a second step too early – eliminating the possibility of an incorrect measurement 
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– nor too late – preventing wasting important testing time. Moreover, the signal generation be-
comes flexible and supports major SUT changes without needing to be parameterized again 
after each SUT update [MP07]. For example, every single step function represents one variant 
of a step.  
The test engineer decides about the arrangement of test signals or test cases using predefined 
constraints. For that purpose a number of predefined generic conditions that may be applied by 
a tester to constrain the test control, is provided. These are:  
 

− if signal =, <, <=, >=, >, ~= value 
− if signal =, <, <=, >=, >, ~=  value @ time  (e.g., if signal = value @end time of a test) 
− if signal = value @ [time1, time2] || (time1, time2) || [time1, time2) || (time1, time2] 

              where: @ – at,  
                           || – means logical or. 
 
The signal can be replaced by a concrete instantiation: 
 

− local verdict or overall verdict – value range ∈{pass; fail; none; error} 
− evaluation trigger, reset signal – value range ∈{1,0} 
− SUT output signal – value range ∈{flows, features, strings, numbers, etc.}. 

 
The resulting examples are, respectively:  
 

− if evaluation trigger = 1 
− if local verdict = none at 6th second  
− if local verdict = pass in the interval between (3,5) seconds.  

 

5.5.2 Test Control and its Relation to the Test Reactiveness 

In Table 5.4 a number of factors influencing the test control and different scenarios including 
those factors are introduced. The scenarios are denoted as test control principles. They refer to 
different reactiveness paths and support an automatic execution of a test. They are elicited 
based mainly on the experience gained by testing the adaptive cruise control (ACC). Principle 
2.1 presents the case when the SUT output range overflow is used to decide about the further 
progress of the test execution. If an SUT output involved in a test case appears to be out of an 
allowed range, the execution of this test case should be stopped or paused (cf. Section 5.2). Ad-
ditionally, at least all the test cases where this particular signal is involved in the validation 
process should not be executed before the SUT is fixed.  
 
As previously mentioned, a name of a principle indicates its application context, whereas an 
example is a solution proposal. 
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Table 5.4: Test Control Principles on the Component Test Level. 

no. Test Control – Design Principles influenced by 

2.1 

Name: Check if an SUT output is outside a value range and reacts to the 
conclusion in a proper way. 
Example: If an SUT output is out of an allowed range, then stop execut-
ing this test case and do not execute all the test cases where this particu-
lar signal is involved in the validation. 

IF 
SUT output <X1
and  
SUT output >X2

 

SUT output  

2.2 

Name: Use verdict value to control the order of test cases. 
Example: If verdict of a test case X = fail, then execute test case Y, else 
execute test case Z.  

IF verdict of 
test case X = fail execute 

test case Y
execute 

test case ZELSE
 

Note that this principle relates to the traditional understanding of the test 
control. 

Verdict 

2.3 

Name: Use temporal constraints from preconditions to indicate how long 
a given test data set should be generated.  
Example: If preconditions X demand 30 seconds, then test case X’ 
should last at least 30 seconds. This should be specified in the test con-
trol.  

IF duration of 
preconditions = 30s

duration of the related 
test case >= 30s

 
Note that this principle relates to the way of specifying the test control 
rather than to the reaction of the test system. 

Temporal con-
straints in the 
validation 
process for a 
selected SigF 

2.4 

Name: Use validation signals to compute the test case starting time. 
Example: If trigger signal T appearing in the test evaluation indicates 
that a feature has already been assessed within a considered test case, 
then start a new test case at this time point. 

IF trigger signal T = 1 start executing 
the next test case

 

Termination of 
the validation  
process for a 
selected SigF   

 
As previously mentioned the SUT outputs (principle 2.1), verdicts (principle 2.2), and evalua-
tion signals (principle 2.4) might impact the test execution. Furthermore, temporal constraints 
specified in the functional requirements may indicate the duration time of particular test cases 
or duration time of a test step as explained in Table 5.4, point 2.3. The duration time of a par-
ticular test case can be calculated according to formula (5.18): 
 

)(
1

timespecificSigFxdurationcasetest
i

i

i
+∑=

=

 (5.18) 
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where:  
− SigF-specific time is the stabilization time of a SigF,  

− x equals time specified in the temporal expression, 

− i is the number of test data variants applied for a given test case. 

 
Note that the SUT output signals influencing the test arrangement may be interpreted either 
directly by the test control unit, or indirectly by the validation functions in terms of verdicts. 
This issue is left open since the test designer decides where, when, and which option to use. 
There exist cases favoring one of these approaches depending on the complexity of the SUT 
and the resulting TSpec.   

5.5.3 Test Control Patterns 

The traditional test control patterns can be realized by the SF diagram. An example of variant-
dependent test control is shown in Figure 5.26.  

 
Figure 5.26: Variant-Dependent Test Control. 

 
The insights of the test control are illustrated in Figure 5.27. In this example, a test suite includ-
ing four test cases is provided. Every test case, apart from the very first one, is activated after a 
given period of time, which is equal to the duration time of the previous test case. Furthermore, 
the applied variants combination can be controlled. Here, test case 1 is activated first and when 
the entire test suite has been executed, the next one follows.  
 
 

 
Figure 5.27: Test Control Insights for Four Test Cases. 
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Additionally, in Figure 5.26, the number of currently applied variant is forwarded into Goto 
block. Such a design of the test control enables to set the corresponding variants on the test data 
level. There, a block called From (cf. Figure 5.9) receives the variant number from the Goto 
block.  
 
The test control patterns facilitated by the reactive testing concept are usually application spe-
cific. Thus, the realization example and an explanation will follow in Section 6.3.    

5.6 Model Integration Level Test   

Analyzing the integration level test the cross-cutting nature of functionality and failures occur-
rence is considered. This enables quality assurance (QA) to be approached in terms of interact-
ing services, which is a potential candidate for dealing with the integration problems 
[EKM+07]. Service-orientation means, in this context, a design paradigm that specifies the crea-
tion of automation logic in the form of services. A service itself is a cross-cutting functionality 
that must be provided by the system. Like other design paradigms, it provides a means of 
achieving a separation of concerns [All06]. The services are sometimes also referred to as sys-
tem functions or functionalities in the automotive domain. Services identify partial behaviors of 
the system in terms of interaction patterns [Krü05, EKM06, BKM07]. Based on the interactions 
between services the test specifications are developed.  

5.6.1 Test Specification Design Applying the Interaction Models  

The analysis of the system starts at the requirements level, where features and functions of new 
software within a car [KHJ07] are described. The requirements are used as a basis for interac-
tion models. These models present the behavior between different software parts. In the follow-
ing the extended Message Sequence Charts (MSCs) [ITU99, Krü00] combined with the hybrid 
Sequence Charts (hySC) [GKS99], called hySC for testing (hySCt), are applied as a modeling 
technique. With this practice, both discrete and continuous signals exchanged between the 
components, can be expressed. Such hySC can be advantageously used in the early phases of 
the development process, especially, in the requirements capture phase. The interacting compo-
nents are specified as the roles and the functional relations between them are the services. 
 
In the upcoming paragraphs the syntax and some semantics extensions of [Krü00] (as compared 
to traditional MSCs [ITU96, ITU99] combined with the semantics given by [GKS99] are ap-
plied. In particular, (1) arrows to denote events are used. Then, (2) angular box denotes condi-
tions on the component’s variables suggested by [GKS99]. A pair consisting of an arrow and an 
angular box defines (3) the conditions (i.e., states defined by a set of signal feature (SigF)) be-
ing mainly a result of sending the information continuously. This enables the notation for con-
tinuous behavior to be clarified. However, the semantics remains the same as [GKS99] defined: 
(4) a continuous global clock exists and an abstract time axis is available for each component. 
The components occurring in the sequence charts are connected by channels along which in-
formation exchange occurs. It is possible that more than one signal (i.e., message) appears si-
multaneously (5). The dashed vertical lines are used to denote simultaneous signals appearance. 
A simple example is given in Figure 5.28. Also, (6) triggers, (7) parallel signal receiving, (8) an 
alternative, and (9) local timers are available. These are specified in [ITU99]. It is left open 
which concrete modeling dialect should be used in the future.  
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The resulting hySCts are translated to the MiLEST syntax and semantics. Hence, the hySCts are 
transformed to the VFs and interpreted in terms of their execution.  
 

Role 2

Role 1 informs Role 2

about its state

message 1

Role 1

message 2

Role 3

state 1

state 2

message 3

 
Figure 5.28: Basic hySCt. 

 
The hySCts are the interaction models representing the services as shown in Figure 5.28. A ser-
vice is defined by the interaction of its roles. In an interaction, a role represents the participa-
tion of a system entity in an interaction pattern. Between roles, different information can be 
exchanged. These are: a message, an event, a continuous signal, or a reference to another ser-
vice. Compound interaction elements consist of a number of interaction elements composed by 
operators. Instances of operators are sequence, loop, alternative, parallel, and join, representing 
sequential composition, repetition, choice, parallel, and join composition, respectively 
[EKM06]. The state in an angular box indicates a condition and remains unchanged until a new 
state appears. Please note that this interaction model abstracts from concrete notations – in the 
context of this work a combination of selected modeling dialects has been used.   
 
HySCts combined with the SigF paradigm introduced in Chapter 4 of this thesis enable the flow 
of information (i.e., signals, events, messages) between different components (i.e., roles) to be 
designed without specifying how this flow should be realized and how the components process 
the inputs to produce valid outputs. This abstract design method is powerful enough for specify-
ing the integration level test. Further on, the resulting elements are incorporated into and exe-
cuted together with the SUT model.  
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Role 2

message 1

Preconditions Assertions

Role 1

message 2

Role 3

state 1

 
Figure 5.29: HySCt including VFs Concepts. 

 
In Figure 5.29, a simple example of a hySCt enriched with additional elements is given. In ref-
erence to the test specification, preconditions and assertions boxes being the constituents of a 
VF are added at the top of the diagram so as to identify which information should be trans-
formed to the appropriate VF part. The dashed lines indicate the simultaneity.  
 
Then, it is aimed to facilitate the retrieval of the running VFs from the hySCts. Hence, the boxes 
called preconditions and assertions present at the hySCts diagrams are reused. They recall the 
notion of the test specification. The role of each such VF, in this context, is to detect the SUT 
failures. Every hySCt may result in one or more VFs depending on the complexity of the re-
quirement on which it was built and its own complexity. 

5.6.2 Test Data Retrieval 

At this point such a test specification can be utilized twofold: (1) as an information source for 
the test data generator for further test design refinement; (2) to evaluate the SUT behavior dur-
ing the test execution (being the primary aim of a VF existence).  
 
Since (2) has already been discussed in the previous sections of this thesis (cf. Section 4.4), 
herewith more attention will be given to (1). 
Applying the algorithms for test stimuli derivation as described in Sections 5.3 – 5.5 the redun-
dant test cases would be obtained. The redundancy (i.e., in the sense of duplication) is caused 
by generating similar test data for different VFs because of the existence of similar precondition 
sets. Additionally, it may happen that several VFs include exactly the same sets of pre-
preconditions, resulting from the hySCts, next to their original preconditions. This situation oc-
curs especially at the system integration level test when the previous test scenarios play a sig-
nificant role for the current test scenario. In that case, the test objective being checked at the 
moment may only be reached when the SUT is brought to a predefined state.  
Hence, as a solution to this problem, not only the VF’s preconditions, but also higher-level 
hySCts (HhySCts) decide on the contents of generated test data sets. HhySCts are defined simi-
larly as high-level MSCs in [ITU99, Krü00]. They indicate sequences of, alternatives between, 
and repetitions of services in two-dimensional graphs – the nodes of the graph are references to 
hySCts, to be substituted by their respective interaction specifications. HhySCts can be trans-
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lated into basic hySCts without loss of information. Generally, the rule applies that only those 
VFs, where the entire sequence of interactions within one single service is caught, should be 
considered for the test data generation. If this is the case the number of the test data sets does 
not match the number of VFs. In fact, the number of test data sets is less than the number of 
VFs and it matches the number of services present in the higher-level hySCt. This is an advan-
tageous situation in terms of testing as all possible behavioral sequences are still covered and 
the tests are not redundant.  
Additionally, the sequences of the generated sets of the test data are obtained from the higher-
level hySCts by analyzing the paths of those charts are analyzed. The algorithm for obtaining 
possibly lots of the meaningful sequences results from the white-box test criterion commonly 
known as path testing [ISTQB06].  
Further on, when the test data sets are set and their sequencing algorithms have been defined, 
the automatic test data variants generation and their combination methods may be applied with-
out any changes as described in Sections 5.4 – 5.5. 

5.6.3 Test Sequence versus Test Control  

In this thesis, at the component level test, the single test case consists of several test steps. The 
test control allows for specification of the execution order for such test cases including their 
different variants. Hence, no additional concept for a test sequence is used.  
 
At the integration level test the situation changes. Here the test sequence is derived from the 
HhySCts. It includes a set of test cases that need to be executed in the order specified by this 
sequence. Then, the test control enables to manage all the resulting test sequences and their 
variants. An example of such circumstances will be given in Section 6.4. 

5.7 Test Execution and Test Report 

The test execution does not demand any further effort other than the simulation of any SL 
model. The test assessment is already included in the test design, thus the verdicts are immedi-
ately obtained. This is possible due to the existence of the test oracle and arbitration mechanism 
in the TSpec unit. Additionally, the quality metrics for evaluating the test model are calculated 
and the test report is generated after the test execution (see Chapter 7).  
 
Although producing the reports is rather an implementation issue, its basic design has been pro-
vided in this work and reports have been generated for the case studies presented in Chapter 6. 
The MATLAB® Report Generator™ [MRG] and Simulink® Report Generator™ [SRG] are 
used for defining and generating compact, customizable documents automatically after test 
execution. They include the applied test data, their variants, test cases, test control, test results, 
and the calculated quality measures. The presentation form is constituted by a number of tables, 
plots of signals, graphs, verdict trajectories, and their textual descriptions [Xio08]. The generic 
design of a report template enables it to be adapted to the actual test model and SUT configura-
tion. Technically, both report generation and test system need to be coordinated. Many func-
tions contribute to the report contents depending on the available models.  
Before generating the test reports, the test results have to be recorded in the ML workspace. 
Also, the verdicts need to be ordered according to the delays they were identified with during 
the test so as to provide the test results in a correct manner.  
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5.8 Related Work  

The model-based test approaches have already been reviewed in Chapter 3. Similarly, related 
work on properties of signals has been discussed in Section 4.5. However, a few issues deserve 
a special attention since they either contribute to the results achieved in this thesis or constitute 
the ongoing efforts that are based on the experience gained here.  

5.8.1 Test Specification  

Time Partitioning Testing (TPT) [Leh03] is the primary example using the concept of SigF in 
an evaluation system. Although the test assessment is mainly offline – due particularly to the 
real-time constraints at the HiL level – TPT concepts are a basis for the TSpec unit described in 
this thesis.  
Similarly, the Classification Tree Method [GG93] illustrates how to construct test stimuli sys-
tematically. Even if the realization proposed in MTest [Con04b] enables test data to be only 
created manually, the concept constitutes the fundamental principles according to which the test 
data generator embedded in TDGen unit is built.  
Also, the synchronization mechanism for the test evaluation system of MiLEST realized in 
[MP07] is a considerable contribution to this thesis. As discussed in Chapter 3, the transforma-
tions of [Dai06] contribute to the MiLEST automation. [SCB, EmbV] help to conceive of the 
TSpec. [CH98, WCF02] underline the test evaluation problems. [SLVV] gives the technologi-
cal solution for building the prototype of MiLEST. 
Further on, the progress achieved in MiLEST is the foundation for the ongoing efforts towards 
UML Testing Profile for Embedded Systems (UTPes) [DM_D07, Liu08].   

5.8.2 Transformation Possibilities  

The background knowledge for the MiLEST transformations has been gained from the experi-
ence on Model Driven Architecture (MDA) artifacts [MOF] applied in the context of testing 
[ZDS+05, CBD+06, GCF06, Dai06]. This practice enabled the creation of generic transforma-
tion functions that may be applied to any model39.  
 
The reasoning on the MDA-related transformation for testing proposed by [DGN04, Dai04, 
Dai06] may be followed for the framework provided in this thesis in an analogue way. Figure 
5.30 shows a layered metamodel hierarchy applicable to MiLEST. It has been resigned from 
developing the detailed metamodels for both ML/SL/SF and MiLEST since the direct ML-
based solution appears to be feasible and performs well. The continuation of this topic, e.g., 
along the application of Query/View/Transformation (QVT) techniques is, however, not ex-
cluded from the future research as indicated in [ZSF06]. 
 
 

                                                        
 
 
39  This is possible under the assumption that the guidelines given in Section 5.3 are followed.  
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Figure 5.30: The Metamodel Hierarchy of MiLEST. 

 

5.9 Summary  

In this chapter, the concepts of testing in MiLEST have been introduced and explained follow-
ing its development phases. Technically, MiLEST extends and augments SL/SF for designing 
and executing tests. It bridges the gap between system and test engineers by providing a means 
to use the SL/SF language for both SUT and test specifications, similarly to the way [Dai06] 
did for the Unified Modeling Language [UML] world. Moreover, it allows for the reuse of sys-
tem design documents for testing. By that, the test development is early integrated into the 
software production. 
 
This chapter adresses the third set of the research questions given in the introduction to this the-
sis as well. It has been illustrated that the test development process can be automated by appli-
cation of test patterns and transformations. In particular, the test data and their systematically 
selected variants can be generated automatically from the formerly designed test specification. 
Then, the test control patterns can be applied. The manual workload during the test design 
phase cannot be fully excluded, though. The concrete VFs must be added by the test engineer, 
even if many hierarchically organized patterns for the test specification ease this process con-
siderably.  
Regarding the test execution, the test evaluation runs automatically on the fly, which allows for 
an immediate analysis of the test results. Test reports are obtained automatically as well. 
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In particular, in this chapter, the classification of signal features presented in Chapter 4 has been 
recalled to describe the architecture of the test system. In Section 5.1, different abstraction lev-
els of the test system have been provided. They were denominated by the main activities per-
formed at each level. The test harness level includes patterns for TSpec, TDGen, and test con-
trol. Then, the test requirements level has been followed by test case and validation function 
levels. Afterwards, the feature generation and feature detection have been elaborated on. In Ap-
pendix C, an overview of all the hierarchy levels is given. Also, different options for the speci-
fication of a test have been reviewed, revealing the challenges and limitations of the test design. 
The importance of the test evaluation has been emphasized. Furthermore, principles for the 
automatic generation of test data have been presented. By means of the concrete generic trans-
formation rules, the derivation of test signals from the VFs has been formalized. Similarly, the 
generation of signal variants has been investigated. Combination strategies for test case con-
struction have been outlined and sequencing of the generated variants at different levels has 
been reported. The concepts of reactive testing and of test control have been summarized too.   
Section 5.6 presents considerations on the integration level testing. An advantage of using the 
ML/SL/SF framework is the possibility to execute both the system and test models. Thus, in 
Section 5.7, the test execution and test reporting have been discussed.  
Finally, in Section 5.8, related work on test design, transformation approaches, and ongoing 
work towards UTPes [DM_D07, Liu08] have been elaborated.  
 



 

  
 
 

– Part III – 
MiLEST Application  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

6 Case Studies 

“To every action there is always opposed an equal reaction.” 
 

- Isaac Newton 
 
 

In this chapter, an analysis of the Adaptive Cruise Control (ACC) [Con04b]  is presented. Its 
requirements and some further details are provided in Section 6.1. The ACC controls the speed 
of the vehicle while maintaining a safe distance from the preceding vehicle. ACC divided into 
different functional units forms more case studies. By that, three examples are elicited: pedal 
interpretation, speed controller, and ACC. They demonstrate the application of the concepts 
presented in the previous chapters of this thesis according to the Model-in-the-Loop for Em-
bedded System Test (MiLEST) method.  
The test development process is illustrated for all the case studies; however, every time another 
test aspect is investigated. For the first two examples, a similar presentation scheme is followed, 
although the emphasis is put on different steps of the process. Testing the pedal interpretation 
component gives insights into the specification of concrete validation functions (VFs), test data 
generation algorithms for them and the test control arranging the obtained test cases applying 
the minimal combination strategy. In the test specification for the speed controller, the VFs are 
defined as first. Then, the test reactiveness concept on the level of test data and test control is 
exploited. In the third example, the details of testing at the model integration level are addition-
ally provided. Here, besides the VFs, specific interaction models are provided and the test se-
quences in relation to the test control are explicitly considered. 
Regarding the structure of this chapter, in Section 6.2, the pedal interpretation as an instance of 
an open-loop system is introduced. There, the main concepts of the test data generation algo-
rithms are discussed. In Section 6.3, the speed controller as a representative of a closed-loop 
electronic control unit (ECU) is investigated. In this part, the attention is given to the test con-
trol and test reactiveness. Then, in Section 6.4, the model integration level test concepts are 
reviewed in the context of ACC functionality. Section 6.5 finishes this chapter with a summary.  

6.1 Adaptive Cruise Control 

The ACC controls the speed of the vehicle while maintaining a safe distance from the preceding 
vehicle. There are two controllers within the ACC: a speed controller and a distance controller.  
Both operate in a loop in conjunction with the vehicle.  
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The speed controller of an ACC measures the actual vehicle speed, compares it with the desired 
one and corrects any deviations by accelerating or decelerating the vehicle within a predefined 
time interval. Afterwards, the vehicle velocity should be maintained constant, if the desired 
speed does not vary. 
 
If the vehicle approaches a car traveling more slowly in the same lane, the distance controller 
recognizes the diminishing distance and reduces the speed through intervention in the motor 
management and by braking until the predefined ‘safe’ distance has been reached. If the lane is 
clear again, ACC will accelerate to the previously selected desired speed.   
 
When the deceleration performed by ACC is not sufficient because another car suddenly cuts 
out in front, ACC requests the driver through acoustic signals to additionally apply the brakes 
manually as [Con08] specifies. If the speed drops below 11 m/s because of the traffic, ACC will 
automatically turn off. In Table 6.1 a set of ACC requirements is given in a more condensed 
manner.   
 

Table 6.1: Selected Requirements for Adaptive Cruise Control. 

 
 
A realization of the ACC provided by Daimler AG is demonstrated in Figure 6.1. Different 
components are responsible for different functionalities. Here, the loop between the ACC and a 
vehicle can be observed. Also, the pedal interpretation component used later in Section 6.2 is 
present there.  

ID Requirements on ACC 
1 The ACC controls the speed of the vehicle while maintaining a safe distance from the preceding 

vehicle. There are two controllers within the ACC: a speed controller and a distance controller.  
2 The speed controller measures the actual vehicle speed, compares it with the desired one, and 

corrects any deviations by accelerating or decelerating the vehicle within a predefined time inter-
val.  

3 If the desired velocity is considerably changed, the controller should react and adapt the vehicle 
velocity. This happens within a certain time due to the inertial characteristics of the velocity, 
which is related to the vehicle dynamics.  

4 Afterwards, the vehicle velocity should be maintained constant, if the desired speed does not vary.  
5 If the vehicle approaches a car traveling more slowly in the same lane, the distance controller 

recognizes the diminishing distance and reduces the speed through intervention in the motor man-
agement and by braking until the predefined ‘safe’ distance has been reached.  

6 If the lane is clear again, ACC accelerates to the previously selected desired speed.   
7 If the deceleration performed by ACC is not sufficient because another car suddenly cuts out in 

front, ACC requests the driver through acoustic signals to additionally apply the brakes manually.  
8 If the speed drops below 11 m/s because of traffic ACC, automatically turns off. 
9 If the braking action is undertaken, the ACC should switch off and the car should brake (velocity 

should decrease) as long as the braking pedal is pressed.  
10 If the ACC has been active before braking, it should not be reactivated when the braking action is 

stopped.  
11 If acceleration action is undertaken by a driver, the car should speed up.  
12 If the ACC has been active before the acceleration, it should be reactivated when the acceleration 

action is stopped. 
13 The ACC can be activated when the velocity is higher than 11 m/s. 
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Figure 6.1: Components of the ACC System. 

 
In Figure 6.2, the insights of the real cruise control are shown. The two controllers and some 
helping coordinators are specified. The speed controller being tested in Section 6.3 is illustrated 
at the left top of the figure.  

 
Figure 6.2: Components of the Cruise Control Subsystem.  
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6.2 Component Level Test for Pedal Interpretation  

This and the two following sections demonstrate the application of MiLEST concepts. Testing 
the pedal interpretation component illustrates the process of VFs specification based on the se-
lected system requirements. Also, test data generation patterns and their corresponding variants 
generation algorithms are given. Finally, the test control arranging the resulting test cases by 
means of the minimal combination strategy is introduced.  
 
A simplified component of the pedal interpretation of an ACC is being tested. This subsystem 
can be employed as pre-processing component for various vehicle control systems. It interprets 
the current, normalized positions of acceleration and brake pedal (phi_Acc, phi_Brake) by us-
ing the actual vehicle speed (v_act) as desired torques for driving and brake (T_des_Drive, 
T_des_Brake). Furthermore, two flags (AccPedal, BrakePedal) are calculated, which indicate 
whether the pedals are pressed or not. Some excerpts of its functional requirements are given in 
Table 6.2, while the SUT interfaces are presented in Table 6.3 and in Table 6.4.  

 

Table 6.2: Requirements for Pedal Interpretation (excerpt).  

ID  Requirements on pedal interpretation 
1 Recognition of pedal activation 

If the accelerator or brake pedal is depressed more than a certain threshold value, this is indicated with a 
pedal-specific binary signal. 

1.1 Recognition of brake pedal activation 
If the brake pedal is depressed more than a threshold value ped_min, the BrakePedal flag should be set 
to the value 1, otherwise to 0. 

1.2 Recognition of accelerator pedal activation 
If the accelerator pedal is depressed more than a threshold value ped_min, the AccPedal flag should be 
set to the value 1, otherwise to 0. 

2 Interpretation of pedal positions 
Normalized pedal positions for the accelerator and brake pedal should be interpreted as desired torques. 
This should take both comfort and consumption aspects into account. 

2.1 Interpretation of brake pedal position 
Normalized brake pedal position should be interpreted as desired brake torque T_des_Brake [Nm]. The 
desired brake torque is determined when the actual pedal position is set to maximal brake torque 
T_max_Brake. 

2.2 Interpretation of accelerator pedal position 
Normalized accelerator pedal position should be interpreted as desired driving torque T_des_Drive 
[Nm]. The desired driving torque is scaled in the non-negative range in such a way that the higher the 
velocity is given, the lower driving torque is obtained40. 

 

Table 6.3: SUT Inputs of Pedal Interpretation Component. 
SUT Input Velocity 

(v_act) 
Acceleration pedal 

(phi_Acc) 
Brake pedal 
(phi_Brake) 

Value Range <-10, 70> <0, 100> <0, 100> 
Unit m/s % % 

                                                        
 
 
40  A direct interpretation of pedal position as motor torque would cause the undesired jump of engine torque while changing 

the gear while maintaining the same pedal position. 
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Table 6.4: SUT Outputs of Pedal Interpretation Component. 
SUT Output Acceleration pedal 

flag (AccPedal) 
Brake pedal flag 

(BrakePedal) 
Driving torque 
(T_des_Drive) 

Braking torque 
(T_des_Brake) 

Value range {0, 1} {0, 1} <-8000, 2300> <0, 4000> 
Unit - - Nm Nm 

6.2.1 Test Configuration and Test Harness 

The test configuration for the pedal interpretation SUT is straightforward, since it is an open-
loop system. The insights into the pedal interpretation are provided in Figure 6.3.  
 

 
Figure 6.3: Pedal Interpretation Insights.  

 
When the SUT is elicited from the entire ACC functionality, the test harness is built automati-
cally around it (see Figure 6.4). Then, further refinements of the test specification are needed.    
 

 
Figure 6.4: The Test Harness around the Pedal Interpretation.           
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6.2.2 Test Specification Design  

The design of the test specification includes all the requirements of the pedal interpretation 
listed in Table 6.2. By that, four meaningful test sub-requirements (i.e., 1.1 – 1.2, 2.1 – 2.2) 
emerge. These result in the validation functions (VFs). Requirement 2.2 is analyzed for illustra-
tion purposes. The following conditional rules are based on the VFs provided here: 
 
 

− IF v is constant AND phi_Acc increases AND T_des_Drive is non-negative  
    THEN T_des_Drive increases. 
− IF v increases AND phi_Acc is constant AND T_des_Drive is non-negative  
    THEN T_des_Drive does not increase.   
− IF v is constant AND phi_Acc decreases AND T_des_Drive is non-negative  
    THEN  T_des_Drive decreases.   
− IF v is constant AND phi_Acc decreases AND T_des_Drive is negative  
    THEN  T_des_Drive increases.   
− IF v is constant AND phi_Acc increases AND T_des_Drive is negative  
    THEN T_des_Drive decreases. 
− IF v is constant AND phi_Acc is constant  
    THEN T_des_Drive is constant.   

 
The VFs for the formalized IF-THEN rules are designed as shown in Figure 6.5. The actual 
signal-feature (SigF) checks are done in assertions when they are activated by preconditions.  
 
 

 
Figure 6.5: Test Specification for Requirement 2.2. 
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An insight into a VF is given for the first one from Figure 6.5: If the velocity is constant and an 
increase in the acceleration pedal position is detected as illustrated in Figure 6.6, then the driv-
ing torque should increase as given in Figure 6.7.  
 

 
Figure 6.6: Preconditions Set: v = const & phi_Acc increases & T_des_Drive >= 0. 

 
 
 

 
Figure 6.7: Assertion: T_des_Drive increases. 

 

6.2.3 Test Data and Test Cases 

When all the VFs are ready and the corresponding parameters have been set, test data can be 
retrieved. Using the preconditions from Figure 6.5 and the patterns for test data generation dis-
cussed in Section 5.1, the design given in Figure 6.8 is automatically obtained as a result of the 
transformations. Then, the test data generator (TDG) is applied to derive the representative 
variants test stimuli. 
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Figure 6.8: Derived Data Generators for Testing Requirement 2.2. 

 
The number of preconditions blocks in Figure 6.5 suits the number of VFs appearing in Figure 
6.8. Sequencing of the SigF generation is performed in the Stateflow (SF) diagram. Signal 
switches are used for connecting different features with each other according to their dependen-
cies as well as for completing the rest of the unconstrained SUT inputs with user-defined, de-
terministic data, when necessary (e.g., phi_Brake).  
Thus, as shown in Figure 6.9 (middle part) a constant signal for velocity is generated; its value 
is constrained by the velocity limits <-10, 70>. The partition point is 0. The TDG produces five 
variants from this specification. These belong to the set: {-10, 5, 0, 35, 70}.  
 

 
 

Figure 6.9: Test Data for one Selected Precondition Set. 

Generate increase 
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For the acceleration pedal position limited by the range <0, 100> an increase feature is utilized. 
Furthermore, it is checked whether the driving torque is non-negative. This is the condition al-
lowing the generation of the proper stimuli in the final test execution. The entire situation is 
depicted in Figure 6.9 (bottom part).  
 
The Generate increase subsystem is shown to illustrate the variants generation. Here, two vari-
ants of the test data are produced. These are the increases in the ranges <0,10> and <90,100>. 
They last 2 seconds each (here, default timing is used). The brake pedal position is arbitrarily 
set since it is not constrained by the preconditions. Then, the combination strategy is applied 
according to the rule: If the current number of the variant is less than the maximal variant num-
ber, the switch block chooses the current number and lets it be the test signal variant, otherwise 
the variant that is last in the queue (i.e., maximum) is selected. 
 
 

 
Figure 6.10: Parameterized GUIs of Increase Generation. 

 

6.2.4 Test Control  

The insights into the test control are shown in Figure 6.11. Since there are no functional rela-
tions between the test cases, they are ordered one after another using the synchronous sequenc-
ing algorithm for both SigF generation and test cases. The default duration of SigF at the fea-
ture generation level is synchronized with the duration of a corresponding test case at the test 
control level. Technically, this is achieved by application of after(time1, tick) expressions. 
 
Moreover, there is a connection of variants activation on the test data level with the test control 
level. It happens along the application of the From block deriving the variant number from the 
Goto block specified on the test control level as discussed in Section 5.5. Here, the context of 
minimal combination strategy of variants is applied at both test data and test control level.   
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Figure 6.11: Test Control for Ordering the Test Cases Applying Minimal Combination Strategy. 

 

6.2.5 Test Execution  

The test execution of the pedal interpretation case study is firstly discussed for a selected test 
case and then for the entire test suite. The test suite is repeated five times using different variant 
combinations.  
 
In Figure 6.12, a selected combination of variants (numbered with 4) validating requirement 2.2 
is shown. There, six test steps can be recognized. They are sequenced one after another so as to 
assert all VFs present within this requirement.   
 
Now, the attention is focused to only one test step described in the previous section. Then, if the 
driving torque increases as expected, a pass verdict is delivered, otherwise a fail verdict ap-
pears. In Figure 6.12 a), the acceleration pedal (i.e., gas pedal) value increases in the time inter-
val between 82 and 86 seconds and the velocity, if held constant. The local verdict (see Figure 
6.12 d) drops down to pass for this particular situation, with a very short break for test steps 
switch (there, none verdict is monitored). This selected verdict provides the conclusion on only 
one single assertion. Every assertion has its own verdict. They are all summarized into an over-
all verdict simultaneously.  
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a) Applied Test Data Set 
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b) Obtained SUT Outputs 
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c) Obtained SUT Outputs 
 
 

 

 
 

d) A Selected Local Verdict 
 

Figure 6.12: Execution of Test Case 4 Applying the 4th Test Data Variants Combination.  

 
Observing the SUT outputs (cf. Figure 6.12 b,c)), it is difficult to assess whether the SUT be-
havior is correct. Firstly, every single signal would need to be evaluated separately. Then, the 
manual process lasts longer then a corresponding automatic one and needs more effort. Also, 
the human eye is evidently not able to see all the changes. This already applies to the consid-
ered example, where the increase of driving torque is not easily observed, although it exists in 
reality. Further on, even if using the reference data so as to compare the SUT outputs with them 
automatically, it still relates to only one particular scenario, where a set of concrete test signals 
has been used. Regarding the fact that a considerable number of test data sets need to be applied 
for guaranteeing the safety of an SUT, it becomes evident and obvious how scalable the SigF-
oriented evaluation process is and how many benefits it actually offers.  
 
Figure 6.13 reflects the entire flow of signals produced for the pedal interpretation case study. 
Figure 6.14 and Figure 6.15 illustrate the SUT outputs just for orientation purposes. The test 
suite in the time interval between 0 and 22 seconds serves as a scheme for all the following 
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suites, in which only the signals values vary, not the SigFs. All the SigFs may be traced back in 
Figure 6.8; therefore, no additional explanation on the flows will be provided here.  
 
The local verdicts for assertions of each SigF can also be traced in time and are associated with 
the corresponding test steps (i.e., test cases and test suites). 
 

 

 

 
Figure 6.13: Resulting Test Data Constituting the Test Cases According to Minimal Combination 

Strategy. 
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Figure 6.14: SUT Outputs for the Applied Test Data (1). 
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Figure 6.15: SUT Outputs for the Applied Test Data (2). 

 
Let us consider the quality of the MiLEST approach. The execution of the tests using the gener-
ated test data in the pedal interpretation case study, let us recognize that several issues have not 
been designed in the VFs. While testing the SUT, some fail verdicts appeared. The reason for 
this was not an incorrect behavior of the SUT, but the imprecise design of the VFs with respect 
to the constrained ranges of data. Thus, the test specification has been refined (i.e., three VFs 
have been modified and two have been added). Then, the test data have been generated once 
again. The SUT issued a pass verdict at that point. This proves two facts: the TDG supports not 
only the test case production, but validates the defined test scenarios as well. By that, the test 
engineer is forced to refine either the SUT or the test specification, depending on the situation. 
The evaluation and validation of the proposed method will be discussed in Chapter 7 in detail.  

6.3 Component in the Loop Level Test for Speed Controller  

In this section, the tests of another ACC constituent are illustrated. This time, it is a component 
in loop with a vehicle model. Here, the test specification in the form of VFs is defined. Then, a 
particular attention is drawn to the test reactiveness so as to exemplify the concepts introduced 
in Section 5.5. The test reactiveness is exploited on the level of test data and test control. 
 
 



6 CASE STUDIES 

 

157

6.3.1 Test Configuration and Test Harness 

Figure 6.16 shows the speed controller as the SUT connected to a vehicle model. 

 
Figure 6.16: The Speed Controller Connected to a Vehicle Model via a Feedback Loop. 

 
The SUT interfaces important for the upcoming considerations are listed in Table 6.5. The de-
sired velocity (v_Des) at the SUT input influences the actual vehicle velocity (v_act) at the 
SUT output. Selection and CCMode are internal ACC signals that indicate the state of the 
whole ACC system. They will both be set to a predefined constant value to activate the speed 
control during its test. In this case study, v_Des and v_act play an important role. This practice 
simplifies the analysis of the proposed solution.  
 

Table 6.5: SUT Inputs of Speed Controller. 
Name of SUT  

signal 
Desired  

 velocity (v_Des) 
Selection Cruise controller 

mode (CCMode) 
Vehicle velocity 

(v_act) 
Values range 

<10, 70> {0, 1, 2, 3} {0, 1, 2, 3} <-10, 70> 

Unit m/s –   – m/s 
 
In Figure 6.17, a test harness for the speed controller test is presented. Comparing it with the 
test harness for the pedal interpretation, the test control and its connections look different. The 
control is linked to both test specification and test data generation units. Hence, here the evalua-
tion results influence the sequencing of test cases and by that the test stimuli activation algo-
rithm.  
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Figure 6.17: A Test Harness for the Speed Controller. 

 

6.3.2 Test Specification Design  

An excerpt of the functional requirements on the speed controller is given in Table 6.6. Very 
concrete requirements have been chosen so as to introduce the concepts more easily. Their re-
alization at the test requirements level is shown in Figure 6.18.  

 
Table 6.6: Requirements on Speed Controller. 

ID Formal requirements on speed controller 
1 Speed control – step response:  

When the cruise control is active, there is no other vehicle ahead of the car, the speed controller is 
active and a complete step within the desired velocity has been detected, then the maximum over-
shoot should be less than 5 km/h and steady-state error should also be less than 5 km/h.  

2 Speed control – velocity restoration time after simple acceleration/deceleration 
When the cruise control is active, there is no other vehicle ahead of the car, the speed controller is 
active and a simple speed increase/decrease applying a speed control button is set resulting in a 1-
unit difference between the actual vehicle speed and the desired speed, then the speed controller shall 
restore the difference to <= 1 no later than 6 seconds after. 

 

 
Figure 6.18: Test Requirements Level within the Test Specification Unit. 



6 CASE STUDIES 

 

159

Concerning the first requirement, the steady-state error is checked. It permits for a deviation of 
±5 km/h. Furthermore, the maximum overshoot of the vehicle velocity step response should not 
be higher than ±5 km/h. 
In the second requirement, a comfortable speed increase/decrease of 1 km/h is being tested. 
Here, a button is used to set the speed change.  
As a result of the requirements analysis, the following scenarios are obtained: 
 

− IF Complete step within v_Des detected AND CCMode=active+no_target AND Speed 
Control Selection=active 

    THEN for v_act Maximum overshoot<5 AND Steady-state error<5. 
− IF CCMode=active+no_target AND Speed Control Selection=active AND single 

v_Des step of size=|1| AND constant duration before the v_Des step=7 seconds 
    THEN after(6 seconds) |v_Des-v_act|<=1. 

 
Then, the preconditions detect different sorts of steps within the desired velocity and they check 
whether the ACC is still active and no vehicle ahead appears, as presented in Figure 6.19.  
 

 
Figure 6.19: VFs within the Test Specification for the Speed Controller. 

 
Preconditions and assertions pairs are implemented in the Test Specification part as two sepa-
rate VFs each within a requirement. In the first VF the Detect step response characteristics pat-
tern is applied to assess the test case. In the second VF a test pattern containing the temporal 
constraint (after) is used. Further details of their realization are omitted referring the reader to 
[MP07].  

6.3.3 Test Data and Test Reactiveness 

Figure 6.20 presents the abstract insights of the test data generation unit at the test requirements 
level that matches the test specification from Figure 6.18. For every requirement a subsystem is 
built and the appropriate signals are passed on to their switches. Depending on the test control 
conditions, a pre-selected test case is activated.  
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Figure 6.20: Test Requirements Level within the Test Data Generation Unit. 

 
To validate requirement no. 1, Selection and CCMode are set to the predefined constant values 
that activate the speed control. Further on, at least two step functions are needed on the desired 
velocity signal. One of them should go up, the other down. Generators for such SigFs set are 
shown in Figure 6.21.  

 
Figure 6.21: Test Data Set for Test Case 1. 

 
It is difficult to establish when the next step function should appear as the stabilization time of 
the step response function is not known. Thus, the evaluation trigger T from the assertion of the 
corresponding VF (coming through the OutBus signal) is used to indicate the time point when 
the validation of the results from the previous step function has completed. In that case, the next 
step function can be started. This is realized within the Generate complete step subsystem as 
depicted in Figure 6.22.  
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Figure 6.22: Influence of Trigger Value on the Behavior of Test Data. 

 
Design principle no. 1 from Table 6.7 guarantees that if the first test data variant has been 
evaluated, the second one can subsequently be applied. Thus, the starting time of the second 
test data partition is established. The calculation is done automatically. The trigger T is 
checked. If it is activated, the time point is captured and the next step is generated. In this par-
ticular case a direct test reactiveness path is applied forwarding the signals from the VF directly 
to the test data unit without application of the test control unit.  
 
In Table 6.7 the principles applicable for the speed controller case study are listed and the refer-
ence to the theoretical part initially provided in Section 5.5 is given.  
 

Table 6.7: Design Principles Used to Support the Test Reactiveness in the Speed Controller Test. 

 no. Context Realization Reference to 
theory 

1 

starting point of the 
next SigF variant 

generation within a 
single test case 

IF evaluation trigger=1 in the evaluation  of a test case 
for an applied SigF variant 
THEN go on using the next SigF variant 

1.3 

2 test case duration 
IF temporal constraint x determines a SigF under test, 
THEN test case duration is determined by a SigF specific equation 
(5.18) 

2.3 

3 starting point of the 
next test case 

IF verdict of a test case equals to pass or fail, or error,                          
THEN leave this test case at that time point and execute the next test 
case 

2.4 

 
Principle no. 2 allows for an automatic calculation of the test case duration. It is possible due to 
application of some specified criteria depending on the SigF under test. In this example the 
equation given in (5.18) applies, where:  

− SigF specific time is the duration of a constant signal before the step and it equals at 
least 7 units,  

− x equals at least 6.01 units following the time expression ‘after (6, units)’ and the time 
step size of 0.01 units,  

− i equals 1. 
Hence, the calculated duration of test case 2 is applied in the test control. 

6.3.4 Test Control and Test Reactiveness 

Finally, the test control specification for the speed controller is illustrated in Figure 6.23. 
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Figure 6.23: Influence of Verdict Value from Test Case 1 on the Test Control. 

 
Here, test case 1 validating requirement no. 1 is executed first. When the local verdict of test 
case 1 appears to be different to none, the next test case is executed. There is no need to specify 
the duration of test case 1 since the test control enables to redirect the test execution sequence 
to the next test case automatically whenever the evaluation of the previous test case has been 
completed. This is possible due to the application of principle no. 3 given from Table 6.7. The 
automation enables the test cases to be prioritized. Also, the testing time is saved. Test case 2 is 
then executed.  

6.3.5 Test Execution  

In Figure 6.24, the results of the test execution for the selected requirements of the speed con-
troller are drawn. Firstly, in Figure 6.24a the desired velocity (provided in km/h) is constant, 
then it increases in time; hence the vehicle velocity in Figure 6.24b increases as well. When the 
step response within the vehicle velocity stabilizes, the test system assigns a verdict to the ap-
propriate test case (as illustrated Figure 6.24c and d) and the next test data set is applied. The 
desired velocity decreases; thus, a decreasing step response is observed and a verdict is set. Fur-
ther on, the next test case is activated. The stairs function is applied and appropriate verdicts are 
assigned. The stairs stimulate the SUT multiple times following the scenario when a car driver 
accelerates/decelerates considerably by pressing a button.  
 
Summing up, two test cases containing sequences of different test data variants are executed. 
The local verdict values are shown in Figure 6.24c and d. Only none and pass appear which 
indicates that the SUT satisfies the requirements. No faults are found (i.e., no fail verdicts ap-
pear).  

 
a) Applied Test Data 
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b) Obtained SUT Output 
 
 

 
 

c) Local Verdict 1 
 
 

 
 

d) Local Verdict 2 

Figure 6.24: Results from the Test Execution of the Speed Controller. 
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6.4 Adaptive Cruise Control at the Model Integration Level  

In the following section, the third case study is presented. It is the ACC itself used for repre-
senting the model integration level testing. The general requirements for the ACC have already 
been introduced in Section 6.1. Some of them are recalled now in order to illustrate the integra-
tion test in a relatively simple manner. In this example, besides the VFs, specific interaction 
models are provided. Also, the concept of a test sequence is applied and put in relation with the 
defined test control specification. 

6.4.1 Test Configuration and Test Harness 

The test harness for the ACC is shown in Figure 6.25. In contrast to the previous case studies an 
additional bus creator called Intermediate appears. It collects the signals present between dif-
ferent components within the system. These are needed to be able test whether the integration 
of these units is working properly.  

 
Figure 6.25: Test Harness for ACC. 

 

6.4.2 Test Specification Applying Interaction Models  

ACC behavior can be divided into a few services interacting with each other. A general ACC 
flow scenario is presented in Figure 6.26 applying the High level hybrid Sequence Charts for 
testing (HhySCt) notation that has been described in Section 5.6. Here, the ACC system must be 
activated first. This activation enables the velocity or distance controller to be started (Adjust-
Distance/Velocity). The ACC may operate in two modes – it can either adjust the distance or 
the velocity. The system may be deactivated by braking coming out from two services: ACC 
being active (ActivateACC) or ACC already controlling the velocity of a car (AdjustDis-
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tance/Velocity). The controlling activity happens continuously. The system may be switched off 
temporarily when the car driver accelerates. When the acceleration activity stops the automatic 
reactivation of the ACC system appears and it starts to work in the control mode again.  

 

ActivateACC

AdjustDistance/Velocity

BrakingWhenACCactive_triggerAccelerateWhenACCactive
_trigger

ReactivateACC_AftrAccel
_trigger

 

Figure 6.26: ACC Flow – Possible Interactions between Services. 

 
Adjusting the velocity or distance may happen only after the activation of ACC. Then, the brak-
ing service (shown in Figure 6.27) comes into play. It is designed using hySCt. The assump-
tions resulting from the previous activities are that:  
 

− the car is in a movement, 
− the desired speed is set on a predefined speed level such that it is higher than 11 m/s,  
− and the ACC is switched on.  

 
If this is the case and the braking pedal is pressed (phi_Brake>ped_min), then the pedal inter-
pretation unit sets the braking flag on (PedalBrake=1); the braking torque is adjusted according 
to the formula T_max_Brake/T_des_Brake=phi_Brake/phi_Max. Additionally, the ACC flag is 
set on non-active (ACCFlag=0) and the cruise controller mode is set on non-active 
(CCMode=0). As a result the car decelerates (v decreases). With this practice, the ACC is 
switched off.  The activities of all the specified units should happen simultaneously. 
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phi_Brake
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t1, t2

[phi_Brake >= ped_min]

[PedalBrake=1]

[T_max_Brake/T_des_Brake =
phi_Max/phi_Brake]

[ACCFlag=0]

[CCMode=0]

[v decreases]

[CCMode>=2, ACCFlag=1]
ACC_ON

ACC_ON

ACC_OFF

 
Figure 6.27: Service: Braking when ACC System is Active Trigger. 

 

6.4.3 Test Specification Design 

The implementation of the test specification in MiLEST is generated from the HhySCts and 
hySCts provided in the previous section. An example set of the VFs is given in Figure 6.28. 
Some of them relate 1-to-1 to the hySCts, whereas the others focus on selected aspects (e.g., 
timing issues) of the services.  
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Figure 6.28: A Set of VFs Retrieved from the hySCts. 

 
In the following only one VF is presented in detail for the simplicity reason. 
It is called Braking when ACC active_trigger and its implementation is proposed in Figure 6.29 
and in Figure 6.30. In the preconditions part (see Figure 6.29), the braking pedal signal is moni-
tored. If the pedal is pressed and the gas pedal is not pressed simultaneously it is checked 
whether the ACC has been active before. If this is the case, the preconditions activate the asser-
tions. Within the assertions (Figure 6.30) several SigFs are tested. If CCMode and ACCFlag 
indicate that the ACC system has been switched off, the velocity decreases, the braking torque 
behaves according to a predefined formula and the pedal flag is true, then the test provides a 
pass verdict. Otherwise a failure is detected.  
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Figure 6.29: Preconditions for the VF: Braking when ACC active_trigger. 

 
 

 
Figure 6.30: Assertions for the VF: Braking when ACC active_trigger. 

 

6.4.4 Test Data Derivation 

The structural framework managing the created test data is created automatically as a result of 
the transformation from the given VFs. It is presented in Figure 6.31. Here, only three data sets 
are obtained since only the left-hand flow from Figure 6.26 is analyzed in this case study. The 
restriction cuts the search space to the path: Activate ACC  Adjust Velocity  Braking when 
ACC active. Every set is responsible for one test case. Only the entire set of interactions form-
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ing the services is considered during the transformation. The remaining test objectives are acti-
vated implicitly by these sets of data.  
 
 

 
Figure 6.31: Test Data Set for a Selected ACC Model Integration Test. 

 

The contents of the generated test data sets are limited too. They are provided in the form of 
parameterized generators of SigFs. The test data variants are generated automatically based on 
the boundaries and partitions analysis, similar as for the previous case studies. In Table 6.8 only 
an abstract overview of a selected set of the produced data is given for reasons of simplicity. 
The main issue is to understand the reasons for generating the SigFs and the meaningful con-
straints put on the ranges of those signals. Hence, the analysis leading to the concrete represen-
tatives is omitted here.   
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Table 6.8: Relation of Test Data Sets to Services. 

ActivateACC AdjustDistance/Velocity BrakingWhenACCactive_trigger
      Services

Interfaces

phi_Acc

phi_Brake

v_aim

v_des

LeverPos

t (seconds)

phi_Acc (t)

t (seconds)

phi_Acc (t)

t (seconds)

phi_Acc (t)

ped_min

phi_Brake (t)

v_aim (t) v_aim (t) v_aim (t)

v_des (t) v_des (t) v_des (t)

LeverPos (t) LeverPos (t) LeverPos (t)

              
23

constant  
throughout            
the entire              

test sequence

activated 
throughout            
the entire              

test sequence

related to 
v_des value

ped_min ped_min

ped_min ped_min ped_min

t (seconds) t (seconds) t (seconds)

t (seconds) t (seconds) t (seconds)

t (seconds) t (seconds) t (seconds)

t (seconds) t (seconds) t (seconds)

phi_Brake (t) phi_Brake (t)

              
23

              
23

              
23

              
23

              
23

              
1

              
1

              
1

 

 
Additionally, Table 6.8 includes the sets of the created test data in relation to the previously 
specified services. The SigF generators are derived directly from the VFs; however, indirectly 
they are based on the detailed specification of services. This indirect relation results from the 
fact that the VFs themselves are the targets of the transformation from the services descriptions. 
 
Then, also at this level the information gained from the HhySCts is leveraged. The sequence of 
services provides the knowledge, how some SigFs should behave in combination with the other 
SigFs so as to assure the proper flow of the entire test scenario.  
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Here, the concept of the so-called test sequence is applied. The test sequence for the considered 
flow (cf. Figure 6.31) is exactly the same as the content of the test control (see Figure 6.32). It 
happens because only one path of the HhySCt has been exploited. If all the paths are executed, 
though, the test control includes more test sequences. Their number is equal to the number of 
paths resulting from the path coverage criterion.   

6.4.5 Test Control 

Sequencing the test data sets on the higher abstraction level (i.e., here in the test control part in 
Figure 6.32) is derived from the HhySCts too. In that case, it is a one-to-one mapping of the 
left-hand flow from Figure 6.26 since the analysis of the case study is restricted to only one 
path. Eventually, the timing issues are added so as to make the test model executable according 
to the algorithm provided in Section 5.4.4. The test control design is given in Figure 6.32.  

 
Figure 6.32: Test Control for a Selected ACC Model Integration Test. 

 

6.4.6 Test Execution 

While executing the tests of this case study, the first phase is the activation of ACC. Further on, 
the velocity adjustment occurs and then braking appears. By that, three test cases arranged in 
one test suite are obtained. Every combination of variants appears in the same sequence re-
stricted by the test suite within the test control.  
Going through the results of the test execution, the function of the car velocity in time is ob-
tained. As one can observe the velocity increases in the first 20 s of the simulation (as specified 
in the first column of Table 6.8 and caused by pressing the gas pedal). Further on, the velocity 
is pending so as to achieve 23 m/s as the ACC is already activated. Finally, after 60 s, braking 
activity appears. At 80 s the test suite finishes. Additionally, the next variants set of signals 
combination is applied. The behavior corresponds to the previous one, although a slightly dif-
ferent shape of the car velocity is observed.  
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test case 1 test case 2 test case 3

test suite 1 test suite 2

 
Figure 6.33: The Car Velocity Being Adjusted. 

In these test scenarios all the test cases pass. So, the SUT behavior is the same as expected. 
Nevertheless, further variants of the test stimuli should be applied to complete the test coverage 
for this case study. This need is indicated by the test quality metrics values that will be calcu-
lated in Section 7.2.  

6.5 Summary 

The case studies are a means to show the feasibility of MiLEST. Three of them have been per-
formed; all of them are related to the ACC system design.  
The functional requirements and the model of ACC have been provided in Section 6.1. Then, 
the pedal interpretation and the speed controller have been extracted from it. The first example 
has been analyzed in Section 6.2 representing a test at a component level. Here, the test specifi-
cation and data generation algorithms have been described in detail. The next example has been 
discussed in Section 6.3 and the concepts of a test at the component in the loop level have been 
reviewed. Also, reactive testing has been illustrated in this section.  
Finally, in Section 6.4, the ACC itself as an SUT for model integration level testing has been 
investigated. The HhySCt and hySCt models have been designed so as to define the functional 
relations between the interacting requirements for testing purpose. The test data have been re-
trieved by assuring the coverage of the selected services specified in the HhySCt.  
All the tests have been executed returning the verdicts.  
 
The concepts of completeness, consistency and correctness of the designed test models for 
every single case study will be discussed in Section 7.3. Also, the executed test cases will be 
carefully evaluated there.  



 

7 Validation and Evaluation   

“One never notices what has been done;  
one can only see what remains to be done.” 

 
- Maria Skłodowska – Curie 

 
  

The following chapter investigates quality aspects of the test approach proposed in this thesis. 
In particular, test metrics are defined so as to measure and, by that, assure the consistency and 
correctness of the proposed test method. The tests can reveal high coverages with respect to 
different test aspects only if the corresponding test metrics provide a proper level.  
Besides, in this chapter, the test strategy is considered. Obviously, the prototype is provided so 
as to validate the concepts developed in this thesis.  
 
Section 7.1 outlines the details of the realization of Model-in-the-Loop for Embedded System 
Test (MiLEST) attached to this thesis. The components of its implementation are additionally 
listed in Appendix E. In Section 7.2, the quality of the test specification process, the test model, 
and the resulting test cases are investigated in depth. Firstly, the test quality criteria are re-
viewed. Then, the test quality metrics are defined and explained. Finally, they are classified, 
summarized and compared with related work.  
Section 7.3 presents test quality metrics calculated for the test models of the case studies given 
in Chapter 6. Further on, in Section 7.4, the applied test strategy is contrasted with other ap-
proaches, commonly known in the automotive domain. At the end, in Section 7.5, scope and 
limitations of MiLEST are outlined. Finally, a short summary in Section 7.6 concludes this 
chapter.  

7.1 Prototypical Realization  

MiLEST is a Simulink (SL) add-on built on top of the MATLAB (ML) engine. It represents an 
extension towards model-based testing activities as shown in Figure 7.1.  
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Figure 7.1: Integration of MiLEST in the MATLAB/Simulink framework. 

 
MiLEST consists of an SL library including callback functions, transformation functions, and 
other ML scripts. The testing library is divided into four different parts as illustrated in Figure 
7.2. Three of them cover the units present at the test harness level. These are: test specification, 
test data, and test control. Additionally, the test quality part includes elements for assessing the 
quality of a given instance of a test model by applying the metrics.  
 
The callback functions are ML expressions that execute when a block diagram or a block is 
acted upon in a particular way [MathSL]. These are used together with the corresponding test 
patterns to set their parameters.  
Additionally, transformation functions and quality metrics have been realized. Their application 
is described in Appendix E. A simple example of an ML function call is the main transforma-
tion where two input parameters must be entered by the test engineer manually so as to indicate 
the names of the system under test (SUT) and the resulting test model as presented in (7.1).  
 

TestDataGen('Pedal_Interpretation_test', 'PedalInterpretation') (7.1) 
 

 
Figure 7.2: Overview of the MiLEST Library. 
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Different test activities are divided according to a scheme. In each case a hierarchical architec-
ture is provided and separately the elements of the corresponding units are collected. These pat-
terns correspond to the levels discussed in Section 5.1, providing different abstractions for dif-
ferent functionalities.  
 
Taking the patterns of the test specification (TSpec) as an example, a Simulink (SL) subsystem 
called <Test specification> is present in <Test specification architecture> tag. Here, the con-
struction of validation functions (VFs) is possible. Also, the signal evaluation functionality is 
available, including both feature extractors under <Feature extraction> and signal comparison 
blocks under <Signal comparison>. <Temporal expressions> are helpers for designing a full 
TSpec as discussed in Section 4.1.4 and Section 5.2.  
By default, the <Test specification> contains a single requirement pattern with both a precondi-
tions and assertions block, each of which includes one single precondition and one single asser-
tion. If further requirements need to be inserted, the callback function for the subsystem enables 
it to be parameterized. Then, more requirements can be added into the design (cf. Figure 4.39 in 
Section 4.4). Applying this practice down to the feature detection level guarantees that large 
test system structures may be generated quickly and efficiently. In the MiLEST library the arbi-
tration algorithm, local verdicts bus and the verdict output are additionally included so as to use 
the TSpec as a test evaluation mechanism.  
At the feature detection level, more manipulation is needed since here the real content of the 
TSpec is provided. The feature extraction and the signal comparison blocks differ, depending 
on the functionality to be validated. Both <Feature extraction> and <Signal comparison> blocks 
need to be replaced in the concrete test model by using the instances from the library (cf. Figure 
4.40 in Section 4.4, Figure 5.2 and Figure 5.3 in Section 5.2). The implemented entries of <Fea-
ture extraction> are listed in Figure 7.3.   
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Figure 7.3: Overview of MiLEST Library. 

 
In the pattern for preconditions specification (cf. Figure 4.39 in Section 4.4) a single PS block is 
available. It is parameterizable and synchronizes different signal features (SigFs). In the pa-
rameter mask the identification delays of the triggered and non-triggered SigFs can be entered. 
The pattern for assertions specification includes a PAS block instead. In contrast to the previous 
case a single PAS block is needed for every extracted feature. The PAS block can be configured 
according to the SigF type being asserted, changing w.r.t. the number of inputs. 
 
Similar procedures apply to the <Test data generator> embedded in the <Test data architec-
ture>. However, the guidelines are only needed when it is created manually. Since it is pro-
duced automatically in the proposed approach, the details will not be described here.  
 
Also, the test control can be constructed automatically. However, a number of elements to be 
added manually may enrich its logic. These are: <Test control conditions> and <Connection 
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helpers>. They include algorithms that restrict the test case execution based on the verdicts, test 
stimuli values or test evaluation information at a certain time point or in given time interval.  
 
A good practice is to rename all the applied patterns according to the concrete functionality that 
they contain. 

7.2 Quality of the Test Specification Process and Test Model   

7.2.1 Test Quality Criteria  

As far as any testing approach is considered, test quality is given a lot of attention. It constitutes 
a measure for the test completeness and can be assessed on different levels, according to differ-
ent criteria. In the upcoming paragraphs three main categories of the test quality resulting from 
the analysis of several efforts in the related work are distinguished. All of them are based on the 
functional considerations, leaving the structural41 issues out of the scope in this thesis.  
 
Primarily, criteria similar to that for software development are of importance. Hence, the same 
as the consistency of the software engineering process are evaluated the test specification proc-
ess and the resulting tests should be assessed.  
While consistency is defined as the degree of uniformity, standardization, and freedom from 
contradiction among the documents or parts of a component or system [IEG90], consistency of 
a test relates entirely to the test system. An example of the consistency check is evaluating 
whether the test pattern applied in the test is not empty.  
Correctness is the degree to which a system or component is free from faults in its specification, 
design, and implementation [IEG90]. Correctness of a test is denoted in this thesis by the de-
gree to which a test is free from faults in its specification, design and applied algorithms, as 
well as in returning the test verdicts. This definition is extended in comparison to test correct-
ness provided by [ZVS+07]. There it is understood as the correctness of the test specification 
w.r.t. the system specification or the test purposes, i.e., a test specification is only correct when 
it always returns correct test verdicts and when it has reachable end states.  
Correctness of a test can be exemplified when the robustness of the test is considered, e.g., in 
MiLEST a check is made to see whether the tolerance limits applied in the assertions are high 
enough to let the test pass.  
 
In this thesis, consistency and correctness of a test are mainly defined w.r.t. to the test scenarios 
specified applying the MiLEST method. Both of them can be assessed by application of the 
corresponding test quality (TQ) metrics. 
 
Progress on the TQ metrics has been achieved by [VS06, VSD07], where static and dynamic 
metrics are distinguished. The static metrics reveal the problems of the test specification before 

                                                        
 
 
41  Metrics related to structural model coverage are already well established in the common practice. They analyze path cov-

erage, branch coverage, state coverage, condition coverage, cyclomatic complexity, MC/DC, etc. of a system model 
[ISTQB06, IEG90, MathSL]. 
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its execution, whereas the dynamic metrics relate to the situation when the test specification is 
analyzed during its execution.  
An example of a static consistency check is evaluating if at least one test for each requirement 
appears in the test specification, whereas a dynamic check determinates whether a predefined 
number of test cases has been really executed for every requirement.  
 
Additionally, [ZVS+07] define a TQ model as an adaptation of ISO/IEC 9126 [ISO04] to the 
testing domain. Its characteristics are taken into account in the upcoming analysis too. 
These are:  

− test reusability and maintainability that have already been discussed in the introduction 
to test patterns in Section 4.3;  

− test effectivity that describes the capability of the specified tests to fulfill a given test 
purpose, including test coverage, test correctness, and fault-revealing capability, 
among others; 

− reliability that reveals the capability of a test specification to maintain a specific level 
of work and completion under different conditions with the characteristic of maturity, 
thus consistency; 

− usability that describes the ease to actually instantiate or execute a test specification, 
distinguishing understandability, and learnability, among others; 

− finally, efficiency, and portability. These, however, are left out of the scope in this the-
sis.  

7.2.2 Test Quality Metrics  

For the purpose of this thesis several TQ metrics have been defined, based mainly on the func-
tional relevance. In the following paragraphs, they are discussed and ordered according to the 
test specification phases supported by the MiLEST methodology. Obviously, the list is not 
comprehensive and can be extended in many directions.  
Additionally, a classification of the presented TQ metrics in terms of the criteria defined in Sec-
tion 7.2.1 is provided in Table 7.1. 
 
 
Test data related quality metrics:  

 
− Signal range consistency is used to measure the consistency of a signal range (speci-

fied in the Signal Range block) with the constraints put on this range within the pre-
conditions or assertions at the VF level. It applies for SUT inputs and outputs. The 
consistency for inputs is implicitly checked when the variants of the test signals are 
generated. In other words, the test data generator informs about the inconsistencies in 
the signal ranges.  The metric is used for positive testing.  

 
− Constraint correctness – assuming that the signal range is specified correctly for every 

SUT interface, it is used to measure the correctness of constraints put on those signals 
within the preconditions or assertions at the VF level. If the ranges are violated, then 
the corresponding preconditions or assertions are not correct.  

 
− Variants coverage for a SigF is used to measure the equivalence partitions coverage of 

a single SigF occurring in a test design. It is assessed based on the signal boundaries, 
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partition points, and SigF type and uses similar methods to those for the generation of 
test stimuli variants. The metric is used for positive testing. The maximum number of 
variants for a selected SigF is equal to the sum of all possible meaningful variants. The 
metric can be calculated before the test execution by: 

 

SigF selected afor   variantspossible all of #
design test ain  applied SigF selected afor   variantsof #

SigF afor  coverage Variants  =
 

(7.2) 

 
The sign #  means ‘number of’. 
 

− Variants coverage during test execution is used to measure whether all the variants 
specified in the test design are really applied during the test execution. It returns the 
percentage of variants that have been exercised by a test. Additionally, it checks the 
correctness of the sequencing algorithm applied by the test system.  

 

design test ain  specified  variantsof #
execution test during applied  variantsof #

execution test during coverage Variants  =
 

(7.3) 

 
− Variants related preconditions coverage checks whether the preconditions have been 

active as many times as the different combinations of test signal variants stimulated the 
test. It is calculated during the test execution.  

set onspreconditi selected a of sactivation of #
execution test during applied beingset  data given test ain present  nscombinatio variant of #

 coverage onspreconditi related Variants

 

=

=

 

(7.4) 

 
 
− Variants related assertions coverage is used to measure whether all the combinations 

of test signal variants specified within a given test data set (thus, generated from a cor-
responding preconditions set) and applied during a test cause the activation of the ex-
pected assertions set.  

 

set assertions selected a of sactivation of #
execution test during applied beingset  data given test ain present  nscombinatio variant of #

 coverage assertions related Variants

 

=

=

 

(7.5) 

 
− SUT output variants coverage is used to measure the range coverage of signals at the 

SUT output after the test execution. It is assessed based on the signal boundaries and 
partition points using similar methods like for the generation of test stimuli variants. 
The metric can be calculated by:  

 

output selected afor   variantspossible all of #
execution after test recognizedoutput  selected afor   variantsresulting  theof #

coverage rangeoutput  SUT  =
 

(7.6) 
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− Minimal combination coverage is used to measure the coverage of combining the test 
stimuli variants according to the minimum criterion. 100% coverage requires that every 
variant of a SigF is applied at least once in a test step42 (i.e., technically, it appears in 
the test data set). The metric is also called each-used or 1-wise coverage. 

 

criterion wise-1 satisfying nscombinatio possible all of sum
criterion wise-1 satisfying nscombinatio variant applied  theof sum

coveragen combinatio Minimal  =
 

(7.7) 

 
 
Test specification related quality metrics:  
 

− Test requirements coverage compares the number of test requirements covered by test 
cases specified in MiLEST test to the number of test requirements contained in a corre-
sponding requirements document. It is calculated by:  

 

tsrequiremen test of # overall
design test ain  covered tsrequiremen test of #

coverage tsrequiremenTest  =
 

(7.8) 

 
− VFs activation coverage is used to measure the coverage of the VFs activation during 

the test execution. This metric is related to the test requirements coverage, but one 
level lower in the MiLEST hierarchy. It is calculated as follows:  

 

design test ain present  VFs all of #
execution test during activated VFs of #

coverage activation VFs  =
 

(7.9) 

 
− VF specification quality is used to assess the quality of an IF-THEN rule specification. 

In particular, it evaluates whether the test data generation algorithm is able to provide a 
reasonable set of test signals from the specified preconditions. In other words, a check 
is made to see whether the signals within preconditions of VFs are transformable into 
the test stimuli. The metric, though simplified, results from the discussion given ini-
tially by [MP07] (pg. 92) and continued in Section 5.2 on Modus Tollens [Cop79, 
CC00] rules application. If only the SUT outputs are constrained in the preconditions 
part of a VF, then no test stimuli can be produced from it. In that case, it is reasonable 
to modify (e.g., reverse) the VF contents. If the result equals 0 then the IF-THEN rule 
is not correct and must be reconstructed.  

 

set onspreconditi in thepresent  signals all of #
set onspreconditi ain  applied signalsinput  of #

qualityion specificat VFs  =
 

(7.10) 

 
− Preconditions coverage measures whether all the preconditions specified in the test de-

sign at the VF level have really been active during the test execution.  
 

                                                        
 
 
42  Test step is a unique, non-separable part of a test case according to the nomenclature given in Section 5.4.2. The test case 

can be defined as a sequence of test steps dedicated for testing one single requirement.  
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design test ain  specified onspreconditi all of #
execution test during active onspreconditi of #

coverage  onsPreconditi  =
 

(7.11) 

 
− Effective assertions coverage uses cause-effect analysis to determine the degree to 

which each effect is tested at least once. In other words, it reveals the number of im-
plemented assertions being active during the test execution in relation to the number of 
all possible IF-THEN textual rules.  

 

design test ain  specified assertions of # overall
assertionan by    testedeffects of #   

coverage assertions Effective  =
 

(7.12) 

 
 
Test control related quality metric: 

 
− Test cases coverage is used to measure the coverage of real activations of test cases. 

The sequence of test cases to be activated is specified in the test control unit. The met-
ric is calculated by the formula:  

 

design control test ain present  cases test all of #
cases test activated  theof #

 coverage  casesTest  =
 

(7.13) 

 
 
Other TQ metrics: Additionally, dedicated metrics for different indirect testing activities can 
be defined. An interesting example results from the discussion about services on the interaction 
models in Section 5.6.  
 

− Service activation coverage measures the number of services being executed in a test 
in relation to the number of all services that have been designed in the test specifica-
tion. It is calculated by the formula:  

 

hySCtsin  services) of parts(or  services specified all of # 
services) of parts(or  services evaluated and executed  theof # 

 coverage  activation Service  =
 

(7.14) 

 
 
Realization: A few of the mentioned TQ metrics have been realized in the prototype. These are 
implemented either as SL subsystems or as ML functions. For instance, implementation of the 
VFs activation coverage is based on computing the number of local verdicts for which the value 
has been different from none or error in relation to the number of all VFs. The situation is illus-
trated in Figure 7.4. 

 
Figure 7.4: Implementation of the VFs Activation Coverage Exemplified for Two of Them. 
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Another example is a ML function called input_coverage() that lists the results of the metric 
called variants coverage for a SigF for every SUT input signal.  
 
 
Test modeling guidelines check:  Furthermore, apart from the measurements realized with the 
help of TQ metrics, consistency of the test specification may be checked statically by applica-
tion of the test modeling guidelines. The modeling guidelines may be either company specific 
or defined by some institutional bodies, e.g., the Motor Industry Software Reliability Associa-
tion (MISRA™) [Mis]. The technical realizations of modeling guideline checkers for system 
design are presented in [NSK03, AKR+06, ALS+07, FG07] using graph transformations or 
OCL.   
 
Some ad-hoc test modeling guidelines rules for the test specification developed in MiLEST are 
given below:  

− Assertions block in a VF cannot be empty 
− Preconditions block in a VF cannot be empty 
− Test data generation unit cannot be empty 
− Hierarchical structure for TDGen and TSpec units should be preserved  
− Number of SigFs found in the preconditions of a VF should be equal or higher than the 

number of inputs in the preconditions  
− Number of SigFs found in the assertions of a VF should be the same as the number of 

the PAS blocks  
− One PS block should be present in the preconditions of a VF 
− PAS inputs are signals that pass on from the comparison blocks  
− Comparison blocks must have the reference data  
− ‘TestInfo’ bus is built by the set of signals: {Local verdict, Expected lower limit, Ex-

pected upper limit, Actual data, Delay} 
− The names of some objects present in the test model, e.g., ‘TestInfo’ should remain 

fixed.  

7.2.3 Classification of the Test Quality Metrics  

Similar to separate test activities needing to be performed for both functional requirements ap-
proval (i.e., black-box test) and structural model validation (i.e., white-box test), the same ap-
plies to quality considerations. Hence, already [Con04a] claims that system model coverage 
should be used in combination with the other functionality-related metrics.  
 
A possible realization that measures structural coverage at the model level is provided by the 
Model Coverage Tool in Simulink Verification and Validation [SLVV]. There, model coverage 
is a metric collected during simulation delivering information about model objects that have 
been executed in simulation. In addition, it highlights those objects that have not yet been 
tested. The metric assesses the completeness of the test. A generic formula used for its calcula-
tion is given by [ZVS+07]:  
 

structure model  system  of coverage possible 
structure model  system of coverage achieved 

 coverage  model System  =
 

(7.15) 
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Furthermore, the discussion on quality is given by [Leh03, Con04a] w.r.t. their concrete test 
approaches. Thus, for Time Partitioning Testing – cost/effort needed for constructing a test data 
set, relative number of found errors in relation to the number of test cases needed to find them – 
are named as examples. [Con04a] adds coverage of signal variants combinations – CTCmax, 
CTCmin initially introduced in [Gri95] for Classification Tree Method – CTM (cf. minimal com-
bination coverage in Table 7.1). Obviously, both authors distinguish requirements coverage (cf. 
test requirements coverage in Table 7.1) as an important measure too.  
 
In Table 7.1 all the TQ metrics that have been defined in Section 7.2.2 and in this section are 
classified according to the criteria provided in Section 7.2.1.  
 

 

Table 7.1: Classification of MiLEST Test Quality Metrics. 

Classification Criteria  
 
TQ Metrics 

TQ Model 
 

Assessability Phase  Consistency of test,  
correctness of test 

Test data related:     

Signal range consistency 
- Reliability  
  (maturity) 
 

- Static  
 

- Consistency of test 
 

Constraint correctness 

- Reliability  
  (maturity) 
- Effectivity  
  (test correctness) 
 

- Static  
 

- Correctness of test 
 

Variants coverage for a SigF 

- Reliability  
  (maturity) 
- Effectivity  
  (test coverage) 
 

- Static  
 

- Consistency of test 
 

Variants coverage during test 
execution 

- Effectivity  
  (test coverage) 
- Effectivity  
  (test correctness) 
 

- Dynamic - Correctness of test 

Variants related preconditions 
coverage 

- Effectivity  
  (test coverage) 
- Effectivity  
  (test correctness) 
 

- Dynamic - Correctness of test  

Variants related assertions cov-
erage 

- Effectivity  
  (test coverage) 
- Effectivity  
  (test correctness) 
 

- Dynamic - Correctness of test  

SUT output variants coverage - Effectivity  
  (test coverage) 

- Dynamic - Does not apply 

Minimal combination coverage 
- Effectivity  
  (test coverage) 
 

- Dynamic 
 

- Consistency of test 

Test specification related:     

Test requirements coverage  
- Effectivity  
  (test coverage) 
 

- Dynamic - Consistency of test 
 

VFs activation coverage 
- Effectivity  
  (test coverage) 
 

- Dynamic 
 

- Consistency of test 
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VF specification quality 

- Effectivity  
  (test correctness) 
- Reliability  
  (maturity) 
- Usability  
  (understandability) 
- Usability  
  (learnability) 
 

- Static - Correctness of test 
- Consistency of test 
 

Preconditions coverage 
- Effectivity  
  (test coverage) 
 

- Dynamic - Consistency of test 
 

Effective assertions coverage 

- Effectivity  
  (test coverage) 
- Effectivity  
  (fault revealing ability) 
 

- Dynamic - Consistency of test 
 

Test control related:     

Test cases coverage  
- Effectivity  
  (test coverage) 
 

- Dynamic - Consistency of test 
 

Others:    

Service activation coverage 
- Effectivity  
  (test coverage) 
 

- Dynamic - Consistency of test 

System model coverage 
- Effectivity  
  (test coverage) 
 

- Dynamic - Does not apply 

Cost/effort needed for con-
structing a test data set 

- Does not apply - Static - Does not apply 

Relative number of found errors 
in relation to the number of test 
cases needed to find them 

- Effectivity  
  (fault revealing ability) 

- Dynamic - Does not apply 

Coverage of signal variants 
combinations – CTCmax, CTCmin 

- Effectivity  
  (test coverage) 
 

- Dynamic - Consistency of test 

 

7.3 The Test Quality Metrics for the Case Studies 

The test quality metrics can be calculated during the test specification phase when applied on 
the design or during and after the test execution. In this section, the practical relevance of the 
metrics is illustrated for the selected case studies that have been provided in Chapter 6. Never-
theless, in the following only a few post-execution metrics are computed since the test-design-
based ones are covered almost 100%. This applies, in particular, to the test-specification-related 
metrics since the necessary condition to conclude on further steps in the test process is a com-
plete and exhaustive definition of VFs in MiLEST models. This is not the case for the test data 
generation, though, as here the TDG implementation details matter as well. 
For illustration purposes variants coverage for SigF and SUT output variants coverage are cal-
culated for the MiLEST models of all the case studies in the form they were in when they were 
introduced in Chapter 6. Thereby, it is shown what progress can be achieved and concluded, 
and how much effort is needed for different types and test levels so as to obtain an expected 
level of advance.  
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The metrics investigating the cost or power of the method in terms of finding the errors will not 
be analyzed in this thesis since the author can neither objectively assess the efforts spent on 
using the proposed test method, nor possess enough statistics regarding more examples of 
MiLEST application.  

7.3.1 Pedal Interpretation  

In the pedal interpretation case study all the metrics related to the test data, test specification, 
and test control have reached their maximal values (cf. Table 7.2); therefore, they will not be 
discussed in detail here. Further on, the metric called service activation coverage is not calcula-
ble for this example since only the component level test is regarded here.   
 

Table 7.2: Variants Coverage for SigF and SUT Output Variants Coverage Exemplified for the 
Pedal Interpretation. 

Direction Name Domain Partition 
Point 

Achieved 
Coverage 

v_act [-10, 70] {0} 100 % 
phi_Acc [0, 100] {5} 100 % 

Input 
Signal 

phi_Brake [0, 100] {5} 100 % 
     

Acc Pedal [0,1]  –  100 % 
Brake Pedal [0,1]  – 100 % 
T_des Drive [-8000, 2300] {0} 100 % 

Output 
Signal 

T_des Brake [0, 4000] {0} 100 % 
 

7.3.2 Speed Controller  

In contrast to the previous model, the test of speed controller covers fewer issues. For instance, 
variants coverage for SigF and SUT output variants coverage reveal lower levels as given in 
Table 7.3. The reason is that the test data variants have not been generated yet. Instead, the case 
study has provided the way for how to automate the mechanism, which is sequencing the test 
steps or test cases. The values of the metrics indicate that further efforts are needed so as to 
complete the test design in terms of data selection.  

 

Table 7.3: Variants Coverage for SigF and SUT Output Variants Coverage Exemplified for the 
Speed Controller. 

Direction Name Domain Partition 
Point 

Achieved 
Coverage 

v_des [11, 70] – 33 % 
CCMode [] {0,1,2,3} 25 % 

Input 
Signal 

Selection [] {1,2,3} 33 % 
     
Output 
Signal 

v_act [-10, 70] {0} 40 % 
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7.3.3 Adaptive Cruise Control   

Similar considerations to those for the previous case study apply to adaptive cruise control 
(ACC). The values obtained for variants coverage for SigF and SUT output variants coverage 
(see Table 7.4) indicate that there is still plenty to do in terms of test data generation. Here, the 
reason for such results is that only one path of the High level hybrid Sequence Chart for testing 
(HhySCt) has been traversed during the test data generation (cf. Section 5.6).   
 

Table 7.4: Variants Coverage for SigF and SUT Output Variants Coverage Exemplified for the 
ACC. 

Direction Name Domain Partition 
Point 

Achieved 
Coverage 

v_aim [-10, 70] {0} 20 % 
phi_Acc [0, 100] {5} 100 % 
phi_Brake [0, 100] {5} 80 % 
LeverPos [] {0,1,2,34} 11 % 
DistanceFactor [0,1]  –  33 % 
v_des [11,70]  – 33 % 

Input 
Signal 

    
v_act [-10,70] {0} 67 % 
Torque_brake [0,4000]  – 100 % 

Output 
Signal 

Torque_engine [-8000, 2300] {0} 60 % 
 
 
The metrics applicable for ACC relate additionally to further aspects. For example, the service 
activation coverage achieves coverage of 14% since only one path of the corresponding 
HhySCt diagram is included in the test execution.  

7.3.4 Concluding Remarks   

An important remark is that the values of metrics calculated throughout the case studies have 
been differentiated on purpose. In other words, the test design of the speed controller and ACC 
are presented as incomplete so as to explain the extracted ideas behind different elements of 
MiLEST more clearly, show the weight of the introduced concepts in comparison and reveal 
the need for application of the test quality metrics. 
In reality, the test designs are much more complete. However, it would make no sense to prove 
that all of them yield maximal values of metrics.   
Furthermore, the only quantitative results that the author of this thesis is able to relate to are 
included in the work of [Con04a], where similar case studies have been applied. The obtained 
values of the metrics in the context of the test data selection reveal that the automatically gener-
ated test cases produce very similar test coverages w.r.t. different aspects as a manual specifica-
tion using classification trees executed in MTest.  
The component level test in MiLEST may be fully automated, whereas the integration level test 
needs manual refinement. Nevertheless, it is still better than simply a manual test stimuli selec-
tion.  
Concerning the test evaluation considerable progress has been achieved in this thesis since it 
works automatically regardless of which input is being applied. In other words, if the test 
evaluation has been specified once, it runs independently of the SUT stimulation, in contrast to 
the MTest approach.   
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7.4 Quality of the Test Strategy    

In the upcoming paragraphs the criteria defining an efficient and effective test strategy given by 
[Leh03, Con04a]43 are analyzed and modified in such a way that the test dimensions (defined in 
Section 2.3) and test categories (provided in Section 3.1) constituting the aims of this thesis, 
remain the primary focus.  
 
The criteria defined by [Leh03] are:  

1. automation of the test execution  
2. consistency throughout different execution platforms 
3. systematic test data variants selection  
4. readability  
5. reactive test support  
6. real-time and continuous behavior support  

 
Whereas [Con04a] indicates the following as the most important:  

1. possibility to describe different signal categories (related to (6) of [Leh03]) 
2. test abstraction and type of description means (related to (4) of [Leh03]) 
3. expressiveness (related to (6) of [Leh03]) 
4. coverage criteria support (related to (3) of [Leh03])  
5. embedding in the existent methodology (related to (2) of [Leh03]) 
6. tool support (related to (1) of [Leh03])  
7. wide-spreading in the domain  

 
Based on the above, the criteria for MiLEST aiming for high-quality test strategy and method-
ology are listed:  

1. automation of the test specification process and test execution (cf. Section 4.4, Sections 
5.2 – 5.4), similar to (1) of [Leh03] 

2. systematic selection of test signals and their variants (cf. Section 5.3), similar to (3) of 
[Leh03]  

3. readability, understandability, ease of use (cf. test patterns in Chapters 4 – 5), similar to 
(4) of [Leh03]  

4. reactive test support (cf. Section 5.4), similar to (5) of [Leh03]  
5. real-time, discrete and continuous behavior support (cf. Chapter 4), similar to (6) of 

[Leh03]  
6. abstraction, test patterns support (cf. Chapters 4 – 5) 
7. high quality, correctness, and consistency of the resulting test model (cf. this chapter), 

similarly as (4) of [Con04a] 
8. support of signal-feature – oriented data generation and their evaluation (cf. Section 4.1 

– 4.2), related to (1,3) of [Con04a])  
 
The embedding of the test approach within the model-based development paradigm (as (5) of 
[Con04a]) and tool support (as (6) of [Con04a]) are obvious criteria that any new technical pro-
posal must fulfill.  
                                                        
 
 
43  The two approaches have been selected since they have already been in use at Daimler AG for the last few years [KHJ07]. 
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An undeniable fact is that the automotive industry aims at transferring innovative model-based 
testing technologies from research into industrial practice. However, eventually any company is 
interested in reducing cost for testing by reaching higher test coverage simultaneously, which 
subsequently enables more errors to be detected whatever test techniques are used [DM_D07, 
D-Mint08]. Therefore, a very crucial industry-driven research question is the quality of the test 
cases and test design. This can be measured by means of different quality metrics as discussed 
in Section 7.2.  

7.5 Limitations and Scope of the Proposed Test Method   

The main limitations of the MiLEST method and its realization result from the context of the 
applied test strategy and are outlined below.  
   

− Support of different test execution platforms for the proposed method has not been suf-
ficiently explored yet. Consequently, the consistency throughout the platforms cannot 
be considered. System engineers use the models developed on MiL level for HiL, SiL, 
and PiL platforms, though. Interesting research questions arise asking to what extent 
the concrete test cases should be reused on different levels.   

− Real-time properties on the run-time execution level in the connection with hardware 
devices in the sense of scheduler, RTOS, priorities, and threads have not been investi-
gated. Also, the test system itself has not been designed to be real time (cf. Section 
3.3).    

− Distribution of the method within the automotive domain is not yet possible since 
MiLEST is not a ready-to-use product, but rather an extendable prototypical realiza-
tion. If customized further, it might be applied on a large scale in the future. These and 
other issues are currently under discussion with the industrial partners [D-Mint08]. 
Moreover, the tendency to handle continuous signals based on their features and predi-
cates is a promising one as discussed by [ZSM06, MP07, GW07, SG07, Xio08] (cf. 
Section 4.5).  

− In addition, the complexity of the method and the learning curve influenced by the 
learning ability of the test engineer cannot be assessed in a straightforward manner. 
Nevertheless, the analysis of a simple questionnaire that has been filled out by execu-
tive managers of software- and test-related projects and is attached in Appendix D, 
gives an overview of the acceptance rate for different test modeling techniques. It re-
veals that the CTM and sequence-diagrams-based testing are still the most widespread 
test methods in the industry.  

 
While soundness of the proposed methodology is analyzed by application of the test metrics, its 
completeness deserves some considerations. It is applicable to causal systems of either continu-
ous or discrete nature, or the combination of both of them, alternatively described by time con-
straints. The methodology and test development process could be reused also for other types of 
SUTs. However, the implementation restricts MiLEST to these specified in the ML/SL/SF en-
vironment.  
 
From the perspective of the technical domain, MiLEST suits any area where hybrid embedded 
software is developed. Hence, besides the automotive one, it can be deployed in avionics, aero-
space, rail, or earth information systems, after some adjustments.  
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Further discussion on the restrictions and challenges of MiLEST methodology will be given in 
Section 8.1. Despite the listed limitations, it is believed that the novel test paradigm described 
in Chapter 4 and the advantages resulting from the implications of the applied strategy dis-
cussed in Chapters 3, 5, 6 represent enough decisive factors to pay attention to the MiLEST.  

7.6 Summary  

The quality of the test method proposed throughout this thesis has been the main subject of this 
chapter. Prototype must have been supported since it is a reliable proof of concept for valida-
tion of any newly developed approach. Further on, the test models designed in MiLEST have 
been explored so as to define a number of test quality metrics. By that, the fourth research ques-
tion introduced in the first chapter of this thesis has been adressed. The quality of the resulting 
tests and the test method itself can be assessed by application of those metrics.  
  
In Section 7.1, the prototypical realization has been discussed. The ML scripts, callback func-
tions, transformation functions, and the MiLEST library have been attached to this thesis and 
listed in Appendix E. Section 7.2 has served as a backbone for this chapter since here, the qual-
ity metrics of the test specification process, test design, and the resulting test cases have been 
investigated. They have been classified according to the predefined criteria and contributed as 
input for Section 7.3. There, they have been calculated for the case studies that had been intro-
duced in Chapter 6. Afterwards, in Section 7.4, the commonly known test strategies have been 
reviewed and compared with the strategy proposed in this thesis. Based on the results, the chal-
lenges, scope and limitations of MiLEST have been indicated in Section 7.5.  
This discussion will be continued and summarized in the next chapter in order to illustrate the 
remaining research potential and its new directions in relation to the achievements gained 
throughout this work.  
 
 



 

8 Summary and Outlook  

“Perfection is achieved, not when there is nothing more to add,  
but when there is nothing left to take away.“ 

 
- Antoine de Saint-Exupéry 

 
  

This is the last chapter of this thesis. It is divided into three sections, the first of which contains 
a general summary, including a discussion on the problems and challenges that have been in-
troduced in Section 1.2. Then, the outlook part emphasizes two aspects – future work, advan-
tages and limitations of the test method proposed herewith, as well as general trends of the 
quality assurance (QA) for embedded systems (ES). Afterwards, in the last section, indirect 
influences of the contributions presented here are outlined.  

8.1 Summary  

The first part of this thesis has dealt with general information on its topics. Hence, Chapter 1 
has introduced the motivation, scope and contributions of this work. Also, the structure has 
been provided there and a roadmap has been discussed.  
 
Then, in Chapter 2, the backgrounds on ESs and their development have been described. Here-
with, the fundamentals on the control theory and electronic control units have been provided. 
Besides, model-based development concepts applied in the automotive domain have been in-
troduced. Also, basic knowledge on the MATLAB/Simulink/Stateflow (ML/SL/SF) framework 
and testing concerns has been given. The testing has been categorized by the dimensions of test 
scopes, test goals, test abstraction, test execution platform, test configuration, and test reactive-
ness for the needs of this thesis. Functional, abstract, executable, and reactive MiL level tests 
have been put in the center of attention. 
 
In Chapter 3, analysis of the related work on model-based testing (MBT) has been provided. 
MBT taxonomy has been elaborated, extended, and presented on a diagram, where the test gen-
eration, test execution, and test evaluation were in focus. Then, the current testing situation in 
the automotive domain has been reported. A comprehensive classification of the MBT solutions 
has been attached in Appendix A. Finally, based on the analysis of challenges and limitations of 
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the existing approaches (cf. first challenge given in Section 1.2), characteristics of the method 
proposed in this thesis have been briefly elaborated on.  
 
Next, the intention of the second part of this thesis has been to introduce the Model-in-the-Loop 
foe Embedded System Test (MiLEST) method. In Chapter 4, a new way of signal description 
by application of a signal feature has been investigated. The features have been classified, and 
their generation and detection have been realized (cf. second challenge). Furthermore, a test 
specification process, its development phases and artifacts have been discussed. Also, test pat-
terns have been described and attached to this thesis in Appendix B. 
 
Chapter 5 has been based on the previous chapter. Here, the methodological and technical de-
tails of MiLEST (cf. second challenge) have been explained. MiLEST extends and augments 
ML/SL/SF for designing and executing the test. It bridges the gap between system and test en-
gineers by providing a means to use SL/SF language for both SUT and test specification (cf. 
first challenge).  
Then, the classification of signal features has been recalled so as to describe the architecture of 
the test system. Thus, different abstraction levels of the test system have been provided (cf. 
second challenge). They were denominated relating to the main activities performed at each 
level. The test harness level included the patterns for test specification, test data generation, and 
test control. Then, the test requirements level appeared. It has been followed by the test case 
and validation function levels. Afterwards, the feature generation and feature detection have 
been elaborated. In Appendix C a consolidation of the hierarchical architecture has been at-
tached.  
Furthermore, in Chapter 5, different options for the test specification have been reviewed. The 
importance of the test evaluation has been emphasized. The automatic generation of the test 
data has been presented. By means of concrete generic transformation rules, the derivation of 
test signals from the validation functions (VFs) has been formalized. Similarly, the generation 
of signal variants has been investigated. Combination strategies for test case construction have 
been outlined and sequencing of the generated variants at different levels has been reported. 
The concept of reactive testing and the test control have been summarized too. All these con-
tributed to the definition of a test development process and automation of some of its phases 
(cf. third challenge).  
 
Figure 8.1 summarizes the conceptual contents of Chapters 4 – 5, positioning MiLEST and its 
main value disposers. 
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Figure 8.1: Overview of the Thesis Contents. 

 
The advantages of MiLEST combination with the hybrid Sequence Charts for testing (hySCts) 
at the integration level have been discussed. The details of the approach from the methodologi-
cal and technological perspective have been given.  
Due to the application of a graphical representation of the requirements in the form of hySCts, 
the contents of the resulting QA process can be understood more easily by different stake-
holders. This fact has been confirmed by the analysis of a simple questionnaire that has been 
filled out by several executive managers of software- and test-related projects (Appendix D). 
Herewith, the sequence diagrams have been selected as the most widespread methods in the 
industry.  
Then, the high level hySCts have been reused to generate the concrete test data systematically 
and semi-automatically at the model integration level test (cf. third challenge).  
 
In the third part of this thesis the practical relevance of the presented concepts has been proven. 
In Chapter 6, three case studies related to the functionality of an adaptive cruise control (ACC) 
have been analyzed. The entire system under test has been initially realized at Daimler AG, 
which has provided the functional requirements and the model. The extracted pedal interpreta-
tion example, used for the illustration of component level test, has showed the application of the 
test specification and data generation algorithms in detail. Then, the speed controller has pro-
vided the basis for component in the loop level test, proving mainly the feasibility of reactive 
testing concepts. Finally, ACC itself has been investigated. Here, the hySCt models have been 
designed. Then, the model integration level test has been designed. The test data have been re-
trieved by assuring the coverage of the selected test objectives.  
 
Chapter 7 explored the test models designed in MiLEST so as to define a number of test quality 
metrics that, in turn, enabled to evaluate the resulting tests (cf. fourth challenge). The values of 
the metrics for the test specification process, test design, and the resulting test cases have been 
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calculated based on the case studies from the previous chapter. In addition, the prototypical re-
alization has been discussed and summarized in Appendix E. Afterwards, the commonly known 
test strategies have been reviewed and compared with the strategy proposed in this thesis. Also, 
the challenges and limitations of MiLEST have been indicated.  
This chapter serves as a close to this thesis and as such is self-explanatory. Thus, summing up, 
MiLEST constitutes a comprehensive QA framework (cf. Figure 8.1) enabling a full test speci-
fication for ES based on the ready-to-use test patterns.  
 
The MiLEST signal-feature approach provides the essential benefit of describing signal flows, 
their relation to other signal flows, and/or to discrete events on an abstract, logical level. This 
prevents not only the user from error on too-technical specifics, but also enables test specifica-
tion in early development stages. The absence of concrete reference signals is compensated by a 
logical description of the signal flow characteristics. 
 
In addition, MiLEST automates the systematic test data selection and generation, providing a 
better test coverage (e.g., in terms of requirements coverage or test purpose coverage) than 
manually created test cases.  
 
Furthermore, the automated test evaluation reveals considerable progress, in contrast to the low 
level of abstraction and the manual assessment means used in existing approaches. The tester 
can immediately retrieve the test results and is assured about the correct interpretation of the 
SUT reactions along the tests.  
The signal evaluation used in the automated test evaluation can even run independently of the 
SUT stimulation. The signal evaluation is not based on the direct comparison of SUT signals 
and previously generated concrete reference signals. Instead, it offers an abstract way for re-
quirements on signal characteristics. The signal evaluation is particularly robust and can be 
used in contexts other than testing, e.g., for online monitoring.  
 
Furthermore, the test specification enables the SUT requirements to be traced. The manner how 
it is defined gives the possibility to trace root faults by associating local test verdicts to them, 
which is a central element in fault management of embedded systems.  
 
Finally, the MiLEST test quality metrics reveal the strengths of the approach by providing high 
test coverage in different dimensions and good analysis capabilities. The MiLEST projects 
demonstrated a quality gain of at least 20%. 

8.2 Outlook  

Due to the application of MiLEST the test engineer needs considerably less effort in the context 
of test generation and test execution, concentrating on the test logic and the corresponding test 
coverage. By that, the cost of the entire process of software development is definitely cut. 
However, there is still plenty of work concerning MiLEST future achievements.  
 
Starting with the conditional rules utilized within the test specification and the discussion pro-
vided in Section 5.2 on the problem of ordering the SUT inputs and outputs constraints, an 
automatic transformation of the incorrect functions (e.g., IF constrained output THEN con-
strained input) into the reverse, based on the transposition rule [CC00] could be easily realized.  



                                                                                                                                      8 SUMMARY AND OUTLOOK 194 

Then, the issue of handling the SUT outputs existing in the preconditions of a VF (e.g., IF con-
strained input AND constrained output THEN constrained output) has been only partially 
solved. A check is made to see whether the test data generator has been able to produce the 
meaningful signals from such a specification. If this is not the case, a manual refinement is 
needed in the Initialization/Stabilization block at the test case level. An automatic way of relat-
ing the functional test cases and test sequences to each other can be a struggle to find, though.   
 
The test stimuli generation algorithms can still be refined as not all the signal features are in-
cluded in the realization of the engine. Also, they could be enriched with different extensions 
applying, in particular, a constraint solver and implicit partitions as discussed in Section 5.4.1.  
There is further work regarding the negative testing as well. Here, the test data generation algo-
rithm can be extended so as to produce the invalid input values or exceptions. However, the test 
engineer’s responsibility would be to define what kind of system behavior is expected in such a 
case. 
An interesting possibility pointed out by [MP07] would be to take advantage of the reactiveness 
path for optimizing the generated test data iteratively. In that case, the algorithm could search 
for the SUT inputs leading to a fail automatically (cf. evolutionary algorithms [WW06]). 
 
Moreover, since software testing alone cannot prove that a system does not contain any defects 
or that it does have a certain property (i.e., that the signal fulfills a certain signal feature), the 
proposed VFs could be a basis for developing a verification mechanism based on formal meth-
ods in a strict functional context [LY94, ABH+97, BBS04, DCB04]. Thus, the perspective of 
mathematically proving the correctness of a system design remains open for further research 
within the proposed QA framework.  
 
Besides the test quality metrics analyzed in Chapter 7, other criteria may also be used to assess 
the proposed test method, the following being only some of them:    

− the efficiency of faults detection – aimed to be as high as many VFs are designed under 
the assumption that the corresponding test data are generated and applied properly 

− the percentage of test cases / test design / test elements reusability  
− time and effort required for the test engineer to specify the test design, which is rela-

tively low only for persons knowing the technologies behind the concepts 
− the percentage of the effective improvement of the test stimuli variants generation in 

contrast to the manual construction. 
 
Regarding the realization of MiLEST prototype, several GUIs (e.g., for transformation func-
tions, for quality metrics application, for variants generation options, or for the test execution) 
would definitely help the user to apply the method faster and more intuitively.   
 
Furthermore, the support of different test execution platforms for the proposed method has not 
been sufficiently explored yet. Interesting research questions concern the extent to which the 
concrete test cases could be reused on various execution levels. Consequently, real-time proper-
ties on the run-time execution level [NLL03] in the sense of scheduler, RTOS, priorities, or 
threads have not been considered.   
 
Then, the Testing and Test Control Notation (TTCN-3) is worth mentioning since the advan-
tages of this standard technology have already been recognized by the automotive industry. 
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AUTOSAR and MOST [ZS07] decided to use TTCN-3 for the definition of functional tests. 
Currently, TTCN-3 for ESs is under development [Tem08, GSW08].  
Investigation in the context of transformations from UML Testing Profile for Embedded Sys-
tems [Liu08] into executable MiLEST test models and further on, into TTCN-3 for ESs would 
be an interesting approach enabling the test specification to be exchanged without losing the 
detailed information since all three approaches are based on a similar concept of signal feature. 
This would give the advantage of having a comprehensive test strategy applicable for all the 
development platforms. 
 
Moreover, an interesting option would be to investigate the potential of MiLEST for testing the 
AUTOSAR elements having in mind that an analysis of Simulink itself is already included in 
the AUTOSAR standard.  

8.3 Closing Words  

There is still plenty of research potential resulting from this thesis, in general. The authors of 
[Hel+05] consider the multidisciplinary character of the embedded domain as a challenge that 
should not be neglected. Indeed, it is necessary in software development for ES to consider sev-
eral aspects together. Hardware/software field alike, technological progress and economic suc-
cess profit highly from human abilities of cooperation and the social environment. 
The argumentation applies to the QA disciplines too. There should be a link or at least a con-
ceptual common understanding forwarded from MiLEST to other test types, e.g., structural test, 
performance test, or robustness test so as to position all the QA activities in the development 
process.  
Generally, the concept of working together with any other parties holds at every level of inter-
actions, starting from software development, through assuring the quality and safety of the re-
sulting product, to the real effects while running this product (e.g., fuel consumption, carbon 
dioxide (CO2) emissions44). Europe has already shown interest towards environmentally 
friendly hybrid cars. The market for hybrid ECUs used for engine management is expected to 
witness a steady growth across the forecast period with units and revenues expected to reach 
0.7 million and € 26.1 million by 2015, respectively [FS08]. Hence, similarly as the trends of 
sustainable development45 indicate, this thesis has aimed at accomplishing local actions that 
think globally in parallel.   
 
Moreover, the effects of any progress achieved in the research on fuel cells and hybrid cars 
should be included in analyzing the role of software and new paradigms of its QA to shape our 
common future.  
ESs ease environmental research and enable many new investigations on the measurement and 
tracking of diverse data, like weather and climate data. Sensors are used to identify early indica-
tors of earthquakes, volcanic eruptions, or floods. Wireless sensor networks are used to observe 
                                                        
 
 
44  According to the recent trends in new car purchases in European Union, the average car sold over the period 1995-2004 

experienced a surge in power of 28% while CO2 emissions decreased by 12% [EU06]. 

45  Sustainable development is the development that meets the needs of the present without compromising the ability of future 
generations to meet their own needs [Bru87]. 
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animals and to track changes of ecosystems in order to better understand these changes and ex-
amine the effects of nature conservation activities [Hel+05]. Hence, the QA techniques for such 
constellations are important issues that will be dealt with in the near future.  
 
The main wish of the author is that at least some parts of this thesis will be reused and the sub-
ject will be explored further on, e.g., based on one of the points from the outlook or in another 
domain. The author has already made some effort to enable such progress. 



 

Glossary 

Arbitration algorithm – The role of the arbitration mechanism is to extract the overall ver-
dict, being a single common verdict for the entire test from the structured test results. Single 
requirement-related verdicts or local verdicts for every validation function can also be ob-
tained. There is a default arbitration algorithm ordering the verdicts according to the rule: none 
< pass < fail < error. 
 
Assertions set – An assertions set consists of at least one extractor for signal feature or tempo-
rally and logically related signal features, a comparator for every single extractor, and at least 
one unit for preconditions and assertions synchronization. 
 
Hierarchical architecture of the test system – A leveled structure for designing the test sys-
tem that includes the means for specification of test cases and their evaluation. It comprises 
several abstraction levels (test harness level, test requirement level, test case – validation func-
tion level, feature generation – feature detection level) that can be built systematically.  
 
Model-based testing – Model-based testing is testing in which the entire test specification is 
derived in whole or in part from both the system requirements and a model that describe se-
lected functional aspects of the SUT. In this context, the term entire test specification covers 
the abstract test scenarios substantiated with the concrete sets of test data and the expected 
SUT outputs. It is organized in a set of test cases. 
 
Model-in-the-Loop for Embedded System Test (MiLEST) toolbox – A toolbox (i.e., library 
in the form of set of test patterns and functions) defined in MATLAB/Simulink/Stateflow en-
vironment that enables a hierarchically organized test system to be designed and the resulting 
test cases to be executed. 
 
Preconditions set – A preconditions set consists of at least one extractor for signal feature or 
temporally and logically related signal features, a comparator for every single extractor, and 
one unit for preconditions synchronization. 
 
Signal feature – A signal feature (also called signal property in the literature) is a formal de-
scription of certain defined attributes of a signal. It is an identifiable, descriptive property of a 
signal. It can be used to describe particular shapes of individual signals by providing means to 
address abstract characteristics of a signal. A signal feature can be predicated by other signal 
features, temporal expressions, or logical connectives.  
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Signal-feature evaluation – A signal-feature evaluation is an assessment of a signal based on 
its features. It consists of a preprocessing phase, extraction phase, where a signal feature of 
interest is detected to be compared with the reference value. Finally a verdict is set.  
It is also called signal evaluation. 
 
Signal-feature generation – A signal-feature generation is an algorithm, where feature is 
generated over a selected signal and the parameters are swept according to a predefined algo-
rithm. The actual generation of every single signal feature must include its specific character-
istics. 
It is also called signal generation. 
 
System model – A model of an SUT in the form of a block executable in MAT-
LAB/Simulink/Stateflow environment, whereat the SUT represents a software-intensive em-
bedded system.  
 
Test case – A test case is a set of input values, execution preconditions, expected results, and 
execution postconditions, developed for a particular test objective so as to validate and verify 
compliance with a specific requirement. The test case can be defined as a sequence of test 
steps dedicated for testing one single requirement.  
 
Test configuration – A test configuration is determined by the chosen SUT, additional com-
ponents (e.g., car model), the initial parameters that must be set to let this SUT run and a con-
crete test harness. 
 
Test control – A test control is a specification for the invocation of test cases assuming that a 
concrete set of test cases within a given test configuration exist.  
  
Test design – A graphical and executable design modeled applying MiLEST notation. It com-
prises the entire test specification including the concrete test cases.  
It is also called a test model.  
 
Test dimensions – Tests can be classified in different levels, depending on the characteristics 
of the SUT and the test system. The test dimensions aimed at in this thesis are test goals, test 
scope, test abstraction, test reactiveness, and test execution platform. 
 
Test evaluation – Test evaluation is a mechanism for an automatic analysis of the SUT out-
puts so as to decide about the test result. The actual SUT results are compared with the ex-
pected ones and a verdict is assigned. It is located in the test specification unit in MiLEST test 
model. It includes the arbitration mechanism and is performed online, during the test execu-
tion.  
 
Test harness – The test harness pattern refers to the design level and is defined as an auto-
matically created test frame including the generic hierarchical structure for the test specifica-
tion. Together with the test execution engine (i.e., Simulink engine) it forms a test harness.  
 
Test oracle – A test oracle is a source to determine the expected SUT results so as to decide 
about the test result. It is located in the test specification unit in the MiLEST test model. 
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Test pattern – Test patterns represent a form of reuse in the test development in which the 
essences of solutions and experiences gathered in testing are extracted and documented so as 
to enable their application in similar contexts that might arise in the future.  
In this work the patterns for test harness, test specification, test data generation, signal-feature 
generators, signal-feature extractors, test evaluation, and test control are discussed. 
 
Test process – The fundamental test process comprises planning, specification, execution, 
recording (i.e., documenting the results), checking for completion, and test closure activities 
(e.g., rating the final results). 
 
Test quality – Test quality constitutes a measure for the test completeness and can be assessed 
on different levels, according to different criteria, applying metrics defined upon them.   
 
Test quality metric – A metric is the measure applied on the test specification so as to esti-
mate its test quality according to some predefined criteria. 
 
Test specification – Test specification (TSpec) comprises abstract test scenarios describing the 
expected behavior of the SUT when a set of conditions are given. It consists of several test 
requirements which are boiled down to validation functions. It serves as an input for test data 
generation unit.  
It is also called test specification design or test specification model. 
 
Test step – A test step is derived from one set of preconditions from a validation function. It is 
related to the single scenario defined in the validation function within the test specification 
unit. Thereby, it is a unit-like, non-separable part of a test case. 
 
Test suite – A test suite is a set of several test cases for a component or SUT, where the post-
condition of one test is often used as the precondition for the next one. The specification of 
such dependencies takes place in the test control unit in the proposed test framework. It is par-
ticularly important in the context of integration level test, where the test cases depend on each 
other.  
 
Validation function – A validation function defines the test scenarios and test evaluation 
based on the test oracle in a systematic manner. It serves to evaluate the execution status of a 
test case by assessing the SUT observations and/or additional characteristics/parameters of the 
SUT. It is created following the requirements by application of an IF – THEN conditional rule. 
 
Verdict – A verdict is the result of an assessment of the SUT correctness. Predefined verdict 
values are pass, fail, none, and error. Verdict may be computed for a single validation function 
(i.e., assertions set), requirement, test case, or entire test.  
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Appendix A  

List of Model-based Test Tools and Approaches 

List of selected model-based test (MBT) approaches in the context of embedded systems rele-
vant for the development of this thesis.  
 
 

Table A: Classification of Selected Test Approaches Based on the MBT Taxonomy. 

Test  
Approach, 
Tool  

Test  
Generation  
Selection  
Criteria  
and Technology 
 

Test  
Execution 
Options 

Test   
Evaluation 
Specification  
and  
Technology  

Description 

Li
nk

 

CTE/ES - data coverage 
- requirements 

coverage  
- test case      

specification  
- manual         

generation  
- offline          

generation 
 
 

- does not 
apply46  

- non-reactive 

- does not apply 
here as the test 
evaluation is 
not supported 
at all  

Classification Tree Editor for Embedded 
Systems (CTE/ES) implements the Clas-
sification Tree Method (CTM) [Con04a]. 
The SUT inputs form the classifications 
in the roots of the tree. Then, the input 
ranges are divided into classes according 
to the equivalence partitioning method. 
The test cases are specified by selecting 
leaves of the tree in the combination 
table. A line in the table specifies a test 
case. CTE/ES provides a way of finding 
test cases systematically. It breaks the test 
scenario design process down into steps. 
Additionally, the test scenario is visual-
ized in a GUI. 
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46  Unless otherwise noted, the expression ‘does not apply’ is used when the test approach does not explicitly name the par-

ticular option or when the option does not matter in the context of a particular approach. In that case further deep investi-
gation is needed to assess the option.  



APPENDIX A 226 

Embed-
ded Vali-
dator  

- does not apply 
- automatic          

generation  
- model checking 
- offline          

generation 
 

- MiL, SiL 
- non-reactive 

- requirements 
coverage  

- manual      
specification 

- does not apply   
 

EmbeddedValidator [BBS04] is the 
model verification tool used for verifying 
temporal and causal safety-critical re-
quirements of models designed in SL/SF 
and TargetLink. The method offers a set 
of test behavior patterns like “an output is 
set only after certain input values are 
observed” based on model checking. It is 
limited mainly to discrete model sectors. 
The actual test evaluation method offers a 
basic set of constraints for extracting 
discrete signal properties. 
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JUMBL - random and 
stochastic      
criteria 

- automatic    
generation 

- offline         
generation 

 

- MiL, SiL47 
- non-reactive 

- requirements  
coverage 

- automatic 
specification 

- offline       
evaluation 

The Java Usage Model Builder Library 
(JUMBL) can generate test cases as a 
collection of test cases which cover the 
model with the minimum cost, by random 
sampling with replacement, by probabil-
ity, or by interleaving the events of other 
test cases. The usage models are finite-
state, time homogeneous Markov chains, 
characterized as deterministic finite 
automata with probabilistic transitions 
[Pro03]. There is also an interactive test 
case editor for creating test cases by hand. 
In [CLP08] the approach is used for test-
ing SL/SF control models.  
 

w
w

w
.c

s.u
tk

.e
du

/s
qr

l/e
sp

/ju
m

bl
.h

tm
l 

MaTeLo 
 
 

- random and 
stochastic      
criteria 

- automatic    
generation 

- offline          
generation 

 

- MiL, SiL 
- non-reactive 

- requirements  
coverage 

- automatic          
specification 

- offline          
evaluation 

Markov Test Logic (MaTeLo) tool can 
generate test suites according to several 
algorithms. Each of them optimizes the 
test effort according to the objectives such 
as boundary values, functional coverage, 
and reliability level. Test cases are gener-
ated in XML/HTML format for manual 
execution or in TTCN-3 [ETSI07] for 
automatic execution [DF03]. 
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MATT - data coverage  
- automatic      

generation  
- offline         

generation 
 

- MiL, SiL 
- non-reactive 

- reference 
signals-based  

- manual       
specification 

- offline     
evaluation 

MATLAB Automated Testing Tool 
(MATT) uses information that it obtains 
from ML/SL model in order to create a 
set of input test data. With a series of 
point and click selections the data can be 
set for each input port and parameters can 
be adjusted for accuracy, constant, mini-
mum and maximum values. Once each 
input port has been set up, the test data 
matrix can be generated. The test matrix 
output is then returned to ML for simula-
tion, code generation, comparison.  
 

w
w

w
.c

s.u
m

t.e
du

/R
TS

L/
m

at
t 

                                                        
 
 
47  For SiL, PiL and HiL test adapters and test drivers are needed.  
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MEval - does not apply 
since here back-
to-back regres-
sion tests are 
considered.  

- MiL, SiL, 
PiL, HiL 

- non-reactive 
  

- reference 
signals-based  

- manual    
specification 

- offline   
evaluation 

MEval offers an automatic comparison of 
test signals with their reference signals in 
ML/SL, provided that the reference sig-
nals are given. The tool applies innova-
tive two-stage algorithms [WCF02]. Its 
strength is the successive use of the pre-
processor and comparison component for 
signal evaluation.  
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MiLEST - data coverage  
- requirements 

coverage  
- test case specifi-

cations  
- automatic     

generation 
- offline               

generation  
 

- MiL,    
extendable 
to SiL, PiL, 
HiL  

- reactive   
 
 

- reference 
signal-         
feature – based  

- requirements 
coverage  

- test evaluation 
specifications 

- automatic and 
manual speci-
fication48 

- online   
evaluation 

 

Model-in-the-Loop for Embedded System 
Test (MiLEST) is desirable for functional 
black-box testing of embedded hybrid 
software. A new method for the system 
stimulation and evaluation is supported, 
which breaks down requirements into 
characteristics of specific signal features. 
A novel understanding of a signal is 
defined that enables its description in an 
abstract way based on its properties (e.g., 
decrease, constant, maximum). 
Technically, MiLEST is a Simulink add-
on built on top of the ML engine that 
represents an extension towards model-
based testing activities. MiLEST consists 
of a library including callback functions, 
transformation functions, and other 
scripts.  
Reusable test patterns, generic validation 
functions and patterns for test data gen-
erators are provided. Transformations 
contribute to the automation of the test 
development process. Test data variants 
are created systematically and automati-
cally. Reactive testing is also supported. 
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MTest - data coverage 
- requirements 

coverage  
- test case      

specification  
- manual        

generation  
- offline              

generation  
 

- MiL, SiL, 
PiL, HiL  

- non-reactive 

- reference 
signals-based  

- manual      
specification 

- offline     
evaluation 

MTest [MTest] combines the classical 
module test with model-based develop-
ment. The central element of the tool is 
the CTM and CTE/ES. It is integrated 
with SL and TargetLink. Once the test 
cases are designed in CTE/ES, MTest 
introduces such tasks as test development, 
test execution, test evaluation and test 
management. It enables SUT output sig-
nals to be compared with previously 
obtained reference signals using a reproc-
essing component and the difference 
matrix method. The reference signals can 
be defined using a signal editor or they 
can be obtained as a result of a simula-
tion. MTest provides a means to auto-
matically test automotive software within 
the whole development process. It is 
based on AutomationDesk’s technology 
for test project management. 
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48  It depends on the process step when the evaluation design is developed (cf. Section 4.4 and Section 5.2 – 5.6). 
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PROVE- 
tech 

- does not apply 
- manual        

generation 
- offline              

generation  
   
 

- MiL, SiL, 
HiL 

- non-reactive 

- does not apply 
- manual      

specification 
- offline     

evaluation 

PROVEtech:Test Automation (PROV-
Etech:TA) realizes the test approach, 
which is not actually based on any model. 
However, it is a relevant tool in the con-
text of automotive testing.  
It is an operational software, developed 
by the MBtech Group, for the control and 
automation of test systems, initially on 
HiL level. It constitutes a basis for exe-
cuting automated tests on a real-time 
platform by means of its integrated devel-
opment environment and program librar-
ies for test execution on real-time com-
puters. 
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Reactis 
Tester  

- structural model 
coverage 

- automatic    
generation  

- model           
checking (Author 
decided to classify 
this approach as a 
sophisticated variant 
of model checking 
technology.) 
- offline              

generation  
 
 

- MiL, SiL, 
HiL  

- non-reactive 

- test evaluation 
specifications 

- automatic        
specification 

- offline     
evaluation 

Reactis Tester automatically generates 
test suites from SL/SF models. The idea 
behind this approach is to use guided 
simulation algorithms and heuristics so as 
to automatically obtain inputs covering 
the targets (i.e., model elements to be 
executed at least once). Two of the targets 
involve SL, three are specific to SF and 
the remaining include criteria within both 
the SL and the SF portions of a model. 
Each test case in a test suite consists of a 
sequence of inputs fed into the model as 
well as the responses to those inputs 
generated by the model. The obtained 
tests may be used for validating the model 
itself or for comparison of source-code 
implementation with model behavior 
results. 
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Reactis 
Validator  

- structural model 
coverage 

- requirements 
coverage 

- automatic    
generation  

- model           
checking 

- offline              
generation  

 
 

- MiL, SiL 
- non-reactive 

- test evaluation 
specifications 

- manual        
specification 

- online     
evaluation 

Reactis Validator provides a test frame-
work for validation of the system design. 
It enables to express the so-called asser-
tions and user-defined targets graphically. 
The former check an SUT for potential 
errors. The latter monitor system behavior 
in order to detect the presence of certain 
desirable test cases [SD07]. If a failure 
occurs, a test execution sequence is deliv-
ered and it leads to the place where it 
happens. Then, this test is executed in 
Reactis Simulator. 
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Safety 
Checker 
Blockset  

- does not apply 
- automatic          

generation  
- model checking 
- offline              

generation  
 

- MiL, SiL 
- non-reactive 

- requirements 
coverage  

- manual      
specification 

- online   
evaluation   

 

Safety-Checker Blockset (SCB) enables 
to formally verify properties of the SL/SF 
models, with the emphasis on SF. A 
property is a combination of model's 
variables connected to a proof operator. 
The verification mechanism is based on 
the model checking.  
Model checking analyzes a system re-
garding arbitrary input scenarios and can 
thus be viewed as a test performed against 
a formally specified requirement. SCB 
blocks typically express an unwanted 
situation (e.g., never together). Counter 
examples are provided in case of a failure.  
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Safety 
Test 
Builder  

- structural model 
coverage 

- requirements 
coverage  

- automatic            
generation  

- offline              
generation  

 

- MiL, SiL 
- non-reactive 

- does not apply  
- automatic        

specification 
- offline     

evaluation 

Safety Test Builder (STB) is a solution 
dedicated to automating the production of 
test cases for embedded software, pro-
vided the software has been modeled 
using SL/SF.  
It generates test sequences covering a set 
of SL and SF test objectives based on the 
structural analysis. The approach creates 
lists of objectives automatically by model 
exploration, supporting basic coverage 
metrics. The test harness is created auto-
matically. STB is dedicated to software 
testing at the function and subsystem 
level.  
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SCADE 
Design 
Verifier  

- automatic          
generation  

- model checking 
- offline              

generation  
  

- MiL, SiL 
- non-reactive 

- requirements 
coverage   

- manual      
specification 

- online        
evaluation 

 

SCADE Design Verifier (DV) is a model-
based proof engine allowing formal veri-
fication of safety-critical properties using 
model checking techniques. It enables 
proving of a design safety with respect to 
its requirement. In case of property verifi-
cation failure, a counter example is pro-
vided. Safety properties are expressed 
using the SCADE language. A node im-
plementing a property is called an ob-
server. It receives the input variables 
involved in the property and produces an 
output that should be always true. DV is 
able to verify properties mixing boolean 
control logic, data-value transformations 
and temporal behavior. The core algo-
rithms are based on Stalmarck’s SAT-
solving algorithm for dealing with boo-
lean formulas, surrounded by induction 
schemes to deal with temporal behavior 
and state space search. These algorithms 
are coupled with constraint solving and 
decision procedures that handle the data 
path [DCB04]. 
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Simulink®  
Valida-
tion and 
Verifica-
tion™ 

- does not apply  
- manual        

generation  

- MiL 
- non-reactive 

- requirements 
coverage   

- manual      
specification 

- online        
evaluation 

 

Simulink Validation and Verification (SL 
VV) is a tool for validating SL models. 
Tests are produced manually as a set of 
signals and can then be subjected to 
automated coverage analysis on the level 
of the model. The assertion blocks are set 
up to notify the user if a failure arises. A 
selection list of available assertions can 
be displayed in the SL Signal Builder, in 
order to activate or deactivate certain 
assertions depending on the input signals 
to be generated. SL VV enables traceabil-
ity from requirements to SL/SF models 
and model coverage analysis. For SF 
charts, the classic state coverage and 
transition coverage are provided. SL 
blocks rely on dedicated criteria such as 
lookup table coverage, which records the 
frequency of table lookups in a block. 
Other structural coverage analysis is 
provided, i.e., for data coverage boundary 
values, signal range analysis and for 
complex boolean decisions (decision 
coverage, condition coverage, modified 
condition/decision coverage). Test cases 
are run on the model itself. To run tests 
on the SUT, the tests must be recorded 
first and then adapted to the SUT inter-
face.  
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Simulink®  
Design 
Verifier™ 

- structural model 
coverage 

- automatic          
generation  

- theorem proving  
- offline              

generation  
 

- MiL, SiL 
- non-reactive 

- requirements 
coverage   

- test evaluation 
specifications 

- manual      
specification 

- online   
evaluation   

 
 

Simulink Design Verifier generates tests 
for SL models that satisfy model coverage 
and user-defined objectives. After com-
pleting the generation it produces a test 
harness model that contains test cases. 
The tool also proves model properties and 
generates examples of their violations. It 
uses mathematical procedures to search 
through the possible execution paths of 
the model so as to find test cases and 
counter examples. The main blocks for 
specifying the objectives are proof as-
sumption, proof objective, test condition, 
test objective and verification subsystem.  
A similar approach is realized in a re-
search prototype, called automatic test-
case generation (ATG) [GMS07].  
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System 
Test™ 

- data coverage  
- automatic and 

manual            
generation 

- offline              
generation  

 

- MiL, SiL, 
HiL 

- non-reactive 

- reference 
signals-based  

- manual      
specification 

- offline        
evaluation 

 

SystemTest is a tool for testing ML 
scripts and SL models. Test cases can be 
specified at a low abstraction level and 
are executed manually. The test vectors 
may be defined manually using ML ex-
pressions or generated randomly applying 
probability distributions for Monte Carlo 
simulation [DFG01]. Besides a small set 
of automatic evaluation means based on 
the reference signals, the actual test as-
sessment is performed manually using 
graphical signal representations and ta-
bles. 
SystemTest supports test case reusability. 
Parameter sweep for system optimization 
is also possible.  
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Testing of   
Auto-
Focus  
Models 
[Pre03b] 

- data coverage 
- test case     

specifications 
- automatic    

generation 
- symbolic          

execution 
- offline              

generation  
 

- does not 
apply 

- non-reactive 
 

- test evaluation 
specifications 

- automatic 
specifications 

- does not apply  

The approach enables both generation of 
functional, but also structural (based on 
MC/DC criterion) test specification 
[Pre03, Pre03b], followed by concrete test 
cases derivation. It is based on AutoFocus 
system models. The generation of test is 
supported by the symbolic execution on 
the grounds of CLP (initially transformed 
from the AutoFocus models). [Pre04] 
concludes that test case generation for 
both functional and structural test case 
specifications boils down to finding states 
in the model’s state space. The aim of a 
symbolic execution of a model is then to 
find a trace – a test case – that leads to the 
specified state. Specification of test case 
in the form of interaction patterns means 
providing the concrete signals. For uni-
versal properties such as invariants, the 
deduction of test case specifications is 
possible by syntactically transforming 
temporal logic formulas [Pre03b]. 
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TPT - data coverage 
- requirements 

coverage  
- test case      

specification  
- manual        

generation 
- offline and 

online generation  
 

- MiL, SiL, 
PiL, HiL 

- reactive 

- reference 
signal-feature – 
based  

- manual      
specification 

- online and 
offline         
evaluation 

The objectives of Time Partitioning Test-
ing (TPT) are to support a test modeling 
technique that allows the systematic se-
lection of test cases, to facilitate a precise, 
formal, portable, but simple representa-
tion of test cases for model-based auto-
motive developments, and thereby, to 
provide an infrastructure for automated 
test execution and automated test assess-
ments even for real-time environments 
[LK08].  
TPT supports the selection of test data on 
the semantic basis of so-called testlets and 
several syntactic techniques. Testlets 
facilitate an exact description of test data 
and guarantee the automation of test 
execution and test evaluation.  
Test evaluation is based on the concept of 
the property of a signal. A library contain-
ing several evaluation functions is avail-
able. External tools can be easily inte-
grated into the evaluation process too. 
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T-VEC 
Tester for 
Simulink 

- structural model 
coverage 

- data coverage  
- requirements 

specification 
- automatic    

generation  
- offline              

generation  
 

- MiL, SiL  
- non-reactive 

- test case  
specifications 
[ROT98] 

- automatic 
specification 

- does not apply 

Test VECtor (T-VEC) Tester automates 
some steps of the test development proc-
ess by analyzing the structure of the SL 
model. Test cases for validating the 
model and testing implementations of the 
model are determined. The test selection 
process produces the set of test vectors 
effective in revealing both decision and 
computational errors in logical, integer 
and floating-point domains [BBN04]. T-
VEC determines test inputs, expected 
outputs and a mapping of each test to the 
associated requirement, directly from SL 
specifications. 
T-VEC analyzes also the transformed 
specification to determine whether all 
specification elements have a correspond-
ing test vector.  
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Appendix B  

Test Patterns Applicable for Building the Test System 

 

Table B: Test Patterns Implemented in MiLEST. 

Test Activity 
Test 

System 
Abstraction  

Level  

Test Pattern 
Name Context Problem 

Solution 
Instances 

 

 
Test Harness Preparation 

 
Test Harness 
Level Test harness Functional 

test 
Generation of a test frame 
around the SUT. 

SUT

test reactiveness

InOut
Bus Test

Specification
Verdict

Test 
Control

Test Data 
Generator

 
 

Test Data Generation 
 

Test Requirement 
Level 

Collection of 
the test re-
quirements 

Instantiation 
of a test re-
quirement 

Generation of a frame for 
collecting the test require-
ments 

 

Test Case Level Collection of 
the test cases 

Specification 
and sequenc-
ing of stimuli 
for a test case 

Generation of a block 
sequencing the test stimuli 
along the test cases 

Feature Generation 
Level 

Generate      
SigF 

Generation of 
concrete 
signals along 
the test cases 

Generation of the SigF to 
stimulate the SUT 

 
Test Specification and Test Evaluation 

 

Test Requirement 
Level 

Collection of 
the test re-
quirements 

Technical 
instantiation 
of a test re-
quirement 

Tracing a set of test re-
quirements in the form of 
their abstract instantiation 
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Test Requirement 
Level Arbitration 

Delivering 
the test re-
sults 

Extraction of an overall 
verdict from the collection 
of local verdicts  

Validation Func-
tion Level 

A validation 
function 
block 

Specification 
of an abstract 
test scenario 

Decomposition of an ab-
stract test scenario into a 
set of preconditions and 
assertions 

 

Validation Func-
tion Level 

Collection of 
preconditions  

Specification 
of the pre-
conditions 

Decomposition of the 
preconditions into a set of 
SigFs to be extracted 

Validation Func-
tion Level 

Collection of 
assertions 

Specification 
of the asser-
tions 

Decomposition of the 
assertions into a set of 
SigFs to be extracted 

Feature Detection 
Level 

Detect SigF 
characteristics 

Evaluation of 
a mathemati-
cal function 

Assessment of a control 
unit behavior in terms of a 
selected SigF 

 
 

Test Control 
 

Test Harness 
Level 

Test control 
depending on 
verdict value 

Specification 
of the test 
control 

Specification of such a test 
control where the sequenc-
ing of test cases depends 
on the selected verdict 
values 

 

Test Harness 
Level 

Independent 
test control 

Specification 
of the test 
control 

Specification of such a test 
control where no depend-
encies between test cases 
exist 

 

Test Harness 
Level 

Variants 
dependent 
test control  

Specification 
of the test 
control 

Specification of such a test 
control where the sequenc-
ing of test cases depends 
on the number or value of 
test data variants applied in 
a selected test case(s) 

 

Test Control Level Test control 
condition 

Specification 
of the test 
control condi-
tions 

Specification of default 
conditions enabling to 
constrain the definition of a 
test control  

 
Test Quality Assessment 

 

Test Harness 
Level 

VFs activa-
tion coverage 

Assessment 
of the quality 
of the test 
specification 

Evaluation of the test 
specification effectivity 
and efficiency by checking 
the activation coverage of 
validation functions  

Test Harness 
Level Signal range 

Assessment 
of the quality 
of the test 
specification  

Evaluation of the SUT 
input/output signal range 
coverage  
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Hierarchical Architecture of the Test System 
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Questionnaire  

Imagine that you have been a system and test engineer in an international software engineering 
company for the last five years. Now, you got promoted and you are becoming a leader of the 
test engineers’ group in an automotive company. The task assigned to your team is to test the 
functionality of the electronic control units in a car and you are responsible for the success of 
the project.  
Additionally, assume that the Simulink®/Stateflow® (SL/SF) modeling language is applied for 
building the system under test.  
 
 
1. Which of the following black-box test approaches do you 
    know?  

  State charts for testing, e.g., Time Partitioning Testing  
  Classification Tree Method (CTM) - based testing,  

       e.g., CTM for Embedded Systems 
  SL/SF add-in for testing, e.g., SL Design Verifier, MiLEST 
  Sequence diagrams for testing,  

       e.g., using UML® Testing Profile for Embedded Systems 
  

2. Which modeling technique would you prefer to apply?  
  State charts for testing  
  CTM - based testing  
  SL/SF add-in for testing  
  Sequence diagrams for testing  
  Your own method. Which?  
  More of them. Why?  

 
3. How much time would you expect to need for getting  
    familiar with the method?  

  a few days  
  a few weeks 
  a few months  
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Contents of the Implementation 

Test system library:  
  
Path:/MiLEST library  
  
MiLEST.mdl . . . . . . . . . . . . . . . . . . . . MiLEST library  
  
Functions for test specification:   

  
Path:/Transformation  
  
PAS callback.m . . . . . . . . . . . . . . . . . .  PAS callback function. 
PAS init.m . . . . . . . . . . . . . . . . . . . . . .  PAS initialization function. 
PS init.m . . . . . . . . . . . . . . . . . . . . . . .  PS initialization function. 
PSTDD callback.m  . . . . . . . . . . . . . . .  PS TDD callback function. 
PSTI callback.m  . . . . . . . . . . . . . . . .  PS TI callback function. 
PSTID callback.m. . . . . . . . . . . . . . . .  PS TID callback function. 
slblocks.m . . . . . . . . . . . . . . . . . . . . . .  Definition of the Simulink library block representation. 
DelDelay.m . . . . . . . . . . . . . . . . . . . . . .  Elimination of verdict delays. 
  
Transformation functions for test data derivation: 
  
Path:/Transformation   
  
GenConstVar_Single_D_1.m . . . . . . . Partitioning of Generate Decrease produced for extraction of De-

crease. 
GenDecrVar_Single.m. . . . . . . . . . . . .  Partitioning of Generate Decrease produced for extraction of sig-

nal<=x. 
GenDecrVar_Single_D.m. . . . . . . . . . .  Partitioning of Generate Constant produced for extraction of Constant. 
GenIncrVar_Single.m. . . . . . . . . . . . . Partitioning of Generate Increase produced for extraction of sig-

nal>=x. 
GenIncrVar_Single_D.m. . . . . . . . . . .  Partitioning of Generate Increase produced for extraction of Increase. 
GenVarSequence_1.m. . . . . . . . . . . . . . Synchronization of the variants using Stateflow diagram. 
TestcontrolGen.m. . . . . . . . . . . . . . . .  Synchronization of the test cases execution in the TDG using one fac-

tor at a time combination strategy. 
TestcontrolGen_v.m. . . . . . . . . . . . . . Synchronization of the test cases execution in the TDG using minimal 

combination strategy. 
Testdata_Preconditions_G.m . . . . .  Transformation at the Test Case Level – TDGen View. 
TestdataFeature_G.m. . . . . . . . . . . . . Transformation at the Feature Generation Level – TDGen View. 
TestdataGen.m . . . . . . . . . . . . . . . . . . . Transformation at the Test Harness Level – TDGen View. 
TestdataReqG.m . . . . . . . . . . . . . . . . . . Transformation at the Test Requirement Level – TDGen View. 



APPENDIX E 

 

239

Other functions:  
  
Path:/Transformation  
  
TransformationStep4.m. . . . . . . . . . . Transformation of pure SUT model to test harness.  
system_name2.m . . . . . . . . . . . . . . . . . . Callback function for the mask parameter: number of requirements of 

the <system name> system. 
shut_mask.m . . . . . . . . . . . . . . . . . . . . . Shutting the mask off in the <Test data generator> system. 
Test_D_Gen.m . . . . . . . . . . . . . . . . . . . . Callback function for the mask parameter: number of requirements of 

the <Test data generator> system. 
Test_D_Gen_S.m . . . . . . . . . . . . . . . . . . Callback function for the mask parameter: number of signals of the 

<Test data generator> system. 
VFs_callback.m . . . . . . . . . . . . . . . . . . Callback function for the mask parameter of the <Requirement name> 

system – TSpec View. 
GenLogdata_1.m . . . . . . . . . . . . . . . . . . Setting the parameter of 'DataLogging’ on ‘on’ in all preconditions.  

This function assists the calculation of input coverage. 
GenLogdata_tc.m . . . . . . . . . . . . . . . . . Setting the parameter of 'DataLogging’ on ‘on’ in all requirements.  

This function assists the calculation of input coverage. 
get_partition.m . . . . . . . . . . . . . . . . . Calculating the partition coverage. 
input_coverage_1.m. . . . . . . . . . . . . . Listing of partition coverage for all SUT input signals. 
output_coverage_1.m. . . . . . . . . . . . . Listing of partition coverage for all SUT output signals. 
ReqName_callback.m. . . . . . . . . . . . . . Callback function for the mask parameter of the <Requirement name> 

system. 
fix_pos.m. . . . . . . . . . . . . . . . . . . . . . . . Graphical adjustment of the position between two blocks in two dimen-

sions. 
Mask_Shut_off.m . . . . . . . . . . . . . . . . . Shutting the mask off in the <Test data generator> system, after trans-

formation. 
  
Examples:  
  
Path:/Adaptive Cruise Control  
  
pedal.mat . . . . . . . . . . . . . . . . . . . . . . . . Pedal characteristic.  
drossel.mat  . . . . . . . . . . . . . . . . . . . . . Throttle characteristic. 
fzgbib.mdl . . . . . . . . . . . . . . .  . . . . . . .  Vehicle model library. 
tempomat_para.m. . . . . . .  . . . . . . . . . . Speed Control test parameters.  
ACC.mdl . . . . . . . . . . . . . . . . . . . . . . . . . . Adaptive Cruise Control model. 
ACC_FM.mdl . . . . . . . . . . . . . . . . . . . . . . . Adaptive Cruise Control model including the failure management. 
ACC_Test.mdl. . . . . . . . . . . . . . . . . . . . . Adaptive Cruise Control model including the entire test system.  
  
Path:/Speed Controller  
  
Speed_Controller_Test.mdl. . . . . . .  Speed Control model including the test specification part.  
  
Path:/Pedal Interpretation  
  
Pedal_Interpretation_TC.mdl. . . . .  Pedal Interpretation model including the test specification part.  
Pedal_Interpretation_Test.mdl. . . Pedal Interpretation after the transformation including the entire test 

system.  
TestReporter.pdf. . . . . . . . . . . . . . . . . Test report document.  
TestReporter.rpt. . . . . . . . . . . . . . . . . Test report generator.  
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Application of I/O Parameters for the Transformations Functions: 
 

.m File ID I/O Parameters Example 
fix_pos I: blocka, blockb, x, y fix_pos('Pedal_Interpretation_Test/Bus Selector', 

'Pedal_Interpretation_Test/Memory',120,80); 
GenConstVar_Single_D_1 I: is_increase, tar, Input-

Name, ODT, duration_tick 
O: variants_nr (i.e., number 
of variants) 

variants_nr = Gen-
ConstVar_Single_D_1(['Pedal_Interpretation_Test/ Gen-
erate constant ' num2str(1)], 'Pedal_Interpretation_Test', 
'phi_Acc', 'OutDataTypeMode', '200'); 

GenDecrVar_Single_D I:is_increase, tar, InputName, 
duration_tick 
O: variants_nr 

variants_nr = GenDecrVar_Single_D 
('Pedal_Interpretation_Test/Generate constant ', 
'Pedal_Interpretation_Test' , 'phi_Acc', '200'); 

GenDecrVar_Single  I: is_decrease, tar, Input-
Name, ref, duration_tick 
O: variants_nr 

variants_nr = GenDecrVar_Single 
('Pedal_Interpretation_Test/Generate constant ', 
'Pedal_Interpretation_Test' , 'phi_Acc', '5', '200'); 

GenIncrVar_Single I:is_increase, tar, InputName, 
ref, duration_tick 
O: variants_nr 

variants_nr = GenIncrVar_Single 
('Pedal_Interpretation_Test/Generate constant ', 
'Pedal_Interpretation_Test' , 'phi_Acc', '5', '200'); 

GenIncrVar_Single_D I:is_increase, tar, InputName, 
duration_tick 
O: variants_nr  

variants_nr = GenIncrVar_Single_D 
('Pedal_Interpretation_Test/Generate constant ', 
'Pedal_Interpretation_Test' , 'phi_Acc', '200'); 

GenLogdata I: targetModel GenLogdata('Pedal_Interpretation_Test') 
GenLogdata_tc I: targetModel GenLogdata_tc('Pedal_Interpretation_Test') 
GenVarSequence_1 I: path, ReqNr GenVarSequence_1 ('Pedal_Interpretation_Test/variants 

sequence', 4) 
get_partition I: lower, upper, partition-

Point, actualSignalRange 
O: par (i.e., actual number of 
partitions), partition (i.e., 
expected number of parti-
tions)  

[p partition] = get_partition(-10, 70, [0], [-10 70]); 
 

input_coverage_1 I: targetModel input_coverage_1('Pedal_Interpretation_Test') 
output_coverage_1 I: targetModel output_coverage_1('Pedal_Interpretation_Test') 
ReqName_callback I: blockName ReqName_callback(gcb) 
TestcontrolGen_v I: targetModel, time TestcontrolGen_v('Pedal_Interpretation_Test', 200); 
TestcontrolGen I: targetModel TestcontrolGen_v('Pedal_Interpretation_Test', 400); 
Testdata_Preconditions_G I: sys, RequirementName, 

tar, duration_tick 
O: TCD (i.e., test case dura-
tion), p_nr (i.e., number of 
preconditions), vr_max (i.e., 
maximum number of variants 
in the requirement) 

[t1 p_nr vr_max_1] = Test-
data_Preconditions_G('Pedal_Interpretation_Test/ Valida-
tion Functions', 'SRPI01.1', 
'Pedal_Interpretation_Test_TC', '200'); 

TestdataFeature_G I: VFsName, TestDataName, 
tar, duration_tick 
O: vr_max 

vr_max_1 = TestdataFea-
ture_G('Pedal_Interpretation_Test/Validation Func-
tions/SRPI01.1/v=const', 
'Pedal_Interpretation_Test_TC/TestData1/SRPI01.1/v=co
nst','Pedal_Interpretation_Test_TC', '200'); 

TestdataGen I: source, SUT, duration_tick 
O: time, vr_max  

[time vr_max] = Test-
dataGen('Pedal_Interpretation_Test', 'PedalInterpreta-
tion','200') 

TestdataReqG I: sys, block, tar, 
duration_tick 
O: time_exe, vr_max 

[time vr_max_1] = TestdataReqG(' 
Pedal_Interpretation_Test/Validation Functions','Test 
Info', 'Pedal_Interpretation_Test_TC', '200'); 
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