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We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid
crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be
quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions
chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits
structural characteristics of a blue phase II. This is established through the tetrahedral symmetry
of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed
by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue
phase II is then exposed to confinement, the interplay between its helical structure, various anchoring
conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a
broad variety of novel, qualitative disclination-line structures that are reported here for the first
time. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4920979]

I. INTRODUCTION

Liquid crystals are a fascinating class of soft matter
systems that are still receiving a lot of interest from the
scientific community even after more than one and a half-
centuries of research.1 In more recent times, the focus has
shifted towards liquid crystals composed of chiral molecules
(i.e., mesogens). The interesting properties of this class of
liquid crystals arise from the combination of handedness of
the interaction between a pair of mesogens and their ability to
form (orientationally and/or positionally) ordered phases with
helical substructures.2

Among the various phases that are formed by chiral liquid
crystals, the so-called blue phases are of particular interest.
This is because they exhibit spectacular reflections of visible
light that can be controlled by external fields. Blue phases
have therefore been considered as tunable photonic materials
with a wide range of potential applications.3,4

Unfortunately, when it comes to applications, blue phases
turned out to be rather difficult to handle. This is because in the
past and under ordinary conditions, their thermal stability was
rather limited and amounted only to a few K. Hence, from
a practical perspective, it is highly desirable to broaden the
regime of thermal stability of blue phases considerably.5 In
the meantime, a lot of progress has been made to enhance this
stability range. For example, Kikuchi et al.6 could stabilize
blue phases by polymers thus widening the temperature range
of stable blue phase II to 60 K. An even larger range of
stability of −125 ◦C to 125 ◦C has been reported by Castles
et al.7 who investigated the blue-phase templated fabrication
of nanostructures for photonic application. Other methods to

a)Electronic mail: s.schlotthauer@mailbox.tu-berlin.de

stabilize blue phases have been reported by Zheng et al.,8 He
et al.,9 and Yoshizawa et al.10

Similar advances have been made to reduce the pitch p of
the double-twist helices characteristic of blue phases. Whereas
traditionally p is of the order of µm, Oo et al.11 have recently
reported materials where p is only about 160 nm.

The key structural characteristic of blue phases is a
complex network of (double-twist) helices such that locally
blue phases are highly ordered entities whereas globally they
appear to be isotropic, that is, they do not exhibit birefringence,
for example. Because of the high degree of local order and
the global isotropy, many regions exist in blue phases where
mesogens are orientationally frustrated. These regions form
disclination lines that exhibit geometrically highly non-trivial,
three-dimensional structures.

If colloidal particles are dissolved in blue phases, the
colloids experience structural forces from the disclination lines
that allow one to build and stabilize unique spatial arrange-
ments of the colloids.12–14 The possibility to arrange colloidal
particles through effective interactions with a unique, locally
ordered host phase is of immense fundamental and techno-
logical interest. This is because the colloidal suspension may
exhibit properties not present in the pure bulk compound as
a consequence of the interaction between the (nano-)colloidal
objects and their anisotropic host. Moreover, differently
structured host phases may be used to drive the assisted
and directed self-assembly of nanoparticle arrangements in
particular ways.

If, in addition, external fields are applied, one may switch
between various structures of the liquid crystal which enhances
the number of ways in which dispersed colloidal particles
may be arranged. The field-induced structures in blue phases
and their dynamics have recently been explored by Fukuda
and Žumer using Landau-de Gennes continuum theory.15
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More recently, quite a bit of experimental and theoretical
interest has been devoted to study torons and other soliton-like
structures.16–20 These rather complex structures are created
and stabilized in external laser fields.

Another realization of such an external field is the wall of
a nanocontainer to which the liquid crystal is confined. These
nanoconfining containers such as nanopores of various widths
and geometries can nowadays be synthesized almost routinely
in the laboratory in a controlled fashion and with specifically
tailored properties.21–24 Confined chiral liquid crystals have
been studied experimentally25–27 and theoretically.25–29 On the
theory side, continuum approaches based upon a minimization
of the Frank free-energy density25–27,29 or homotopy theory28

have been employed to study the defect topologies in confined
chiral liquid crystals. To the best of our knowledge, this work
is the first molecule-based theoretical study of such topologies.

In particular, confinement stabilizes unique structures
in chiral liquid-crystalline phases.19 This has been shown
experimentally quite some time ago30 but a comprehensive
theoretical understanding of the interplay between chirality
and confinement is still in its infancy. For example, focusing
on blue phase I confined to a slit-pore, Fukuda and Žumer
use Landau-de Gennes theory to investigate novel defect
structures under severe confinement.31 Within the framework
of Landau-de Gennes theory, these same authors observed ring
defects where these rings are independent entities that do not
intersect in space and form very beautiful, highly symmetric
structures.32

From a molecular point of view, very little effort has
been invested so far to study chiral liquid crystals under
confinement conditions. One reason for the relative lack of
such molecule-based studies may be that the size of the pitch
of helical structures forming is usually too large to be captured
at the resolution of individual mesogens. This is not so for the
model system employed in this and previous studies by some
of us.33,34

Our model consists of a Lennard-Jones core with super-
imposed orientation dependent dispersion attraction combined
with a certain handedness of these interactions. In fact, as
we showed earlier, this model is capable of forming blue
phases II and III besides a cholesteric phase.33 In particular, the
blue phase II could be identified unambiguously through its
characteristic double-twist helices arranged in a simple-cubic
lattice and the tetrahedral arrangement of its disclination lines.
For colloids placed in the cholesteric phase of this model,
disclination lines near the colloid’s surface could be observed
in excellent qualitative agreement with lattice Boltzmann
studies35 and even with experimental data36 both of which
focus on length scales much larger than those characteristic
of our model. However, a direct quantitative comparison with
these earlier studies35,36 is precluded because upscaling defect
topologies to larger length scales would only be possible for
nonsingular defects.

The remainder of our manuscript is organized as follows.
In Sec. II, we give a brief introduction to properties that we
seek to compute. Section III is given to an introduction of our
model of a confined chiral liquid crystal. Results of this study
are presented in Sec. IV. The paper concludes in Sec. V with
a summary of our findings.

II. PROPERTIES

In this work, we focus on the interplay between the
geometry of mesochannels and structural properties of ordered
liquid crystals composed of chiral molecules. This interplay
gives rise to interesting and unique disclination lines in the
confined liquid crystal that have no immediate counterpart
in the bulk. From an operational point of view, we define
disclination lines through the set

ℓ ≡

r = (x, y, z)T��� S (r) ≤ δS


, (2.1)

where the superscript T denotes the transpose of the three-
dimensional vector r, S (r) is the local nematic order parameter
at point r, and δS is a threshold value for S (r). Clearly, the
value of δS is unknown a priori. It has to be chosen to optimize
the visibility of ℓ. In practice, it turns out that setting δS = 0.20
provides an optimal representation of ℓ so that we fix δS to
this value throughout the present study.

Because of Eq. (2.1), the key quantity to be computed is
the local nematic order parameter S (r). It can, in principle,
be defined as the ensemble average of the second Legendre
polynomial. However, this definition is useless from a compu-
tational perspective because the nematic director is unknown a
priori as has been discussed quite some time ago by Eppenga
and Frenkel.37 These authors suggest to consider the alignment
tensor38 instead.

Here, we are particularly interested in the local alignment
tensor defined at the microscopic level as

Q(r) ≡ 1
2ρ (r)

 N
i=1

[3u(ωi) ⊗u(ωi) − 1] δ (r − ri)

, (2.2)

where

ρ (r) =
 N
i=1

δ (r − ri)


(2.3)

is the local average number density, the operator “⊗” stands
for the tensor product, 1 is the unit tensor, angular brackets
⟨. . .⟩ denote an ensemble average, δ(. . .) is the Dirac δ-
function, and the caret is used to indicate a unit vector
throughout this manuscript. In particular,u (ωi) is a unit vector
specifying the orientation of mesogen i in a space-fixed frame
of reference. On account of the uniaxial symmetry of the
mesogens, ωi = (φi, θi) where φi and θi are two (out of three)
Euler angles.

According to its definition, Q can be represented by a
3 × 3 matrix that is symmetric, traceless, and real. It satisfies
the eigenvalue equation

Q (r)ni (r) = λi (r)ni (r) , i = 1, . . . ,3, (2.4)

where ni and λi are the ith eigenvector and eigenvalue of Q,
respectively. Using Jacobi’s method,39 Q can be diagonalized
numerically in the basis of its three eigenvectors. Following
previous workers,37,40–42 we take

S (r) ≡ max [diag Q (r)] = max
i=1, ...,3

λi (r) (2.5)

as a definition of the local nematic order parameter where
diag Q (r) is the diagonalized local alignment tensor. The
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eigenvector associated with the largest eigenvalue is then taken
as the local nematic director n (r).

Another quantity that allows us to characterize our model
liquid crystal is the nematic correlation length ξ. For the bulk
system, we define a correlation function

g2
�
r ∥
�
≡


1

N
�
r ∥
�

N
i=1

N
j=1
i, j

P2[u(ωi) ·u(ω j)]δ(r ∥ − r ∥i j)

,

(2.6)

where P2 is the second Legendre polynomial, r ∥i j ≡
���r
∥
i − r∥j

���,
r∥i, j ≡ [ri, j ·u �

ωi, j

�]u �
ωi, j

�
, and N

�
r ∥
�

is the number of
particles located in a cylindrical shell of a certain radius and
height (see Sec. IV B) centered on r∥i and oriented such that
the cylinder axis is parallel to r∥i . In the limit of sufficiently
large r ∥, this correlation function allows us to estimate ξ as
described in Sec. IV B. We note in passing that our definition
of g2 in Eq. (2.6) is analogous to the one used earlier by
Memmer et al.43

III. MODEL SYSTEM

For the current model of a confined liquid crystal, each
configuration of the N mesogens is associated with a total
configurational potential energy that can be written as

Φ(R,Ω) = Φmm(R,Ω) + Φmw(R,Ω), (3.1)

where subscripts “mm” and “mw” refer to mesogen-mesogen
and mesogen-wall contributions, respectively. Here, R
= {r1,r2, . . . ,rN} and Ω = {ω1,ω2, . . . ,ωN} denote sets of
the center-of-mass coordinates and the polar angles describing
positions and orientations of the mesogens, respectively.

A. The liquid crystal in the bulk

We begin the discussion with Φmm assuming pairwise
additivity of the mesogen-mesogen interactions so that

Φmm(R,Ω) = 1
2

N
i=1

N
j=1
j,i

ϕmm(ri j,ωi,ω j), (3.2)

where ri j ≡ ri − r j and ϕmm is the mesogen-mesogen interac-
tion potential. The latter is split into an isotropic and into an
anisotropic contribution according to

ϕmm(ri j,ωi,ω j) = ϕiso(ri j) + ϕanis(ri j,ωi,ω j), (3.3)

where ri j =
�
ri j

�
. For the isotropic part, we adopt the well-

known Lennard-Jones potential

ϕiso(ri j) = 4εmm



(
σ

ri j

)12

−
(
σ

ri j

)6
, (3.4)

where ε is the depth of the attractive well.
In view of the nearly spherically symmetric shape of

ϕmm (see, for example, Fig. 1 of Ref. 41 for the achiral
version of our model), it has been suggested by Steuer et al.44

that σ should be viewed as the typical size of a nearly
spherical assembly of individual mesogens in the spirit of

ideas originally put forward by Maier and Saupe.45 Hence,
in this case σ should be of the order of 1–10 nm. As
we will demonstrate below in Sec. IV B, this brings the
pitch p of helical structures forming under the conditions
adopted here well within reach of p ≈ 100 nm observed in
the recent experiments of Oo et al.11 Nevertheless, it needs to
be emphasized that this p is typically two or three orders of
magnitude smaller than typical values found traditionally in
experimental studies.46,47

To treat the anisotropic part of ϕmm, we follow Giura and
Schoen48 and expand ϕanis in the basis of rotational invariants
Φlil jl according to

ϕanis(ri j,ωi,ω j) =

lil jl

ϕlil jl

�
ri j

�
Φlil jl

�
ωi,ω j,ω

�
, (3.5)

where li, l j, and l are non-negative integers and ω is
the orientation of ri j ≡ ri j/ri j. Restricting the discussion to
dispersion interactions, the expansion coefficients ϕlil jl are
proportional to r−6

i j regardless of li, l j, and l.49

To specify the integers li, l j, and l, we notice that
many liquid crystals possess head-tail symmetry, that is, the
interaction potential should remain invariant if one replaces
either ωi by −ωi or ω j by −ω j (see, for example, pp. 3–10
of Ref. 2). Because of the definition of rotational invariants
in terms of spherical harmonics and because of the parity
rule49 for the latter set of functions, li and l j are immediately
restricted to zero or even integers.48

However, integers li, l j, and l are not independent of
each other. In fact, Φlil jl , 0 only if the triangle inequality�
li − l j

�
≤ l ≤ li + l j is satisfied.48 Because of this selection

rule and because we intend to restrict the discussion to
the leading terms in the expansion Eq. (3.5) for the sake
of simplicity, only terms proportional to Φ000, Φ220, Φ221,
Φ202 and Φ022 will be considered. Of these, Φ000 = (4π)−3/2

contributes only to ϕiso. In the context of this study, Φ221 is of
particular interest because it accounts for the handedness of
the interaction between a pair of mesogens in leading order.50

Based upon this truncation of the expansion in Eq. (3.5)
and grouping individual terms according to the criteria of
Giura and Schoen,48 we cast ϕanis as

ϕanis(ri j,ωi,ω j) = −4εmm

(
σ

ri j

)6

Ψ(ri j,ωi,ω j), (3.6)

where the anisotropy function is given by

Ψ(ri j,ωi,ω j) = 5ε1P2[u(ωi) ·u(ω j)]
+ 5ε2{P2[ri j ·u(ωi)] + P2[ri j ·u(ω j)]}
+ ε3[u(ωi) ×u(ω j)] ·ri j[u(ωi) ·u(ω j)].

(3.7)

Throughout this work, we fix the (dimensionless) anisotropy
parameters 2ε1 = −ε2 = 0.08. Closer scrutiny reveals that the
first term on the right side of Eq. (3.7) describes the orientation
dependence of interactions in the Mayer-Saupe mean-field
model of a nematic liquid crystal.45,51,52 The next two terms
are a correction describing the orientation dependence of the
anisotropic attractions with enhanced sophistication whereas
the last term is related to Φ221.
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Mathematically speaking, this term is a pseudo-scalar that
changes sign if ω → ω′ = −ω on account of the parity rule for
spherical harmonics,49 that is, if we exchange the center-of-
mass positions of mesogens i and j (i.e., forri j → r′i j = −ri j).
Notice also that this term remains invariant if ωi or ω j are
replaced by−ωi or−ω j thus preserving the head-tail symmetry
of the mesogens. The sign of the chirality coupling constant ε3
controls the handedness of the interaction whereas |ε3| controls
the pitch p of helical structures that may form provided |ε3| is
sufficiently large (see Sec. IV B below). The introduction of
chirality in our model follows in spirit earlier simulation work
by Memmer et al.43,53 who modified the achiral Gay-Berne
model to allow for the formation of helicoidal (bulk) phases.

We note in passing that Hess and Su54 were the first to
suggest the achiral form of the anisotropy function (ε3 = 0)
in Eq. (3.7) for a liquid crystal that exhibits a nematic besides
the more conventional isotropic liquid and gaseous phases.
However, unlike Giura and Schoen,48 Hess and Su base their
derivation of Ψ on an expansion of ϕanis in terms of irreducible
Cartesian tensors.

B. Confinement to mesoscopic channels

The chiral model liquid crystal introduced in Sec. III A is
now placed in mesoscopic channels with cross sections sy and
sz in the y- and z-directions; in the x-direction, the channels
are supposed to be infinitely long which we realize by applying
periodic boundary conditions across the y–z planes located at
x = ±sx/2 on account of the short-range character of ϕmm.

From Fig. 1, one can identify three different zones in the
mesochannels as far as the interaction between a mesogen
and the mesochannel’s wall is concerned. In zone I, the
mesogen interacts with both the top/bottom and left/right
straight portions of the wall. In zone II, a mesogen interacts
either with the upper or lower or with the left or right wall.
Finally, in zone III, a mesogen interacts with the nearest point
on the mesochannel’s wall.

Because of these three different zones, the mesogen-wall
configurational potential energy [see Eq. (3.1)] can be cast as

Φmw(R,Ω) =
N
i=1

[ϕmw(∆yi,ri,ωi)Θ(ζi,y)
+ ϕmw(∆zi,ri,ωi)Θ(ζi,z)
+ ϕmw(∆di,ri,ωi)Θ(−ζi,y)Θ(−ζi,z)], (3.8)

where Θ denotes the Heaviside function, ζi,α ≡ |αi | − sα/2
+ R, ∆αi = αi − sgn(αi)sα/2 (α = y or z),

sgn(αi) =



−1, αi < 0
0, αi = 0
+1, αi > 0

(3.9)

is the signum function, and R is the radius of an arc of the
wall (see Fig. 1). This implies that 2R ≤ min(sy, sz). Because
of this definition and our choice of the origin of the Cartesian
coordinate system at the center of the simulation cell, ∆αi ≥ 0
and ∆di ≥ 0 whereas ζi,α may be positive, negative, or vanish.

With the aid of the sketch shown in Fig. 1, it is clear that
the first two terms on the right side of Eq. (3.8) represent the

FIG. 1. Sketch of the model system in the y–z plane where the coordinate
system has been chosen such that −sy/2 ≤ y ≤ sy/2 and −sz/2 ≤ z ≤ sz/2.
For symmetry reasons, only the upper right quadrant is shown. In zones I–III
separated from each other by dashed lines, a mesogen located at a point r′i in
the y–z plane interacts with different portions of the wall of the mesochannel
(here shown for a mesogen located in zone III, see text). The position of the
wall is demarcated by the solid line where R denotes the radius of curvature
of the outer surface of zone III such that ∆di = R− |di | is the shortest distance
of a mesogen in zone III from the wall of the mesochannel.

interaction of a mesogen located in one of the zones labelled
II; for a mesogen located in zone I, Θ(ξi,y) = Θ(ξi,z) = 1.
Hence, quantities ∆yi and ∆zi are the minimum distances
of a mesogen from the nearest straight portion of the wall
of the mesochannel. The third term in Eq. (3.8) accounts
for the interaction between a mesogen and the container
wall if the mesogen is located somewhere in zone III. Here,
∆di = R − |di | is the minimum distance of such a mesogen
from the container wall. The significance of di = r′i − t is
illustrated by the sketch in Fig. 1.

The mesogen-wall interactions are described by the
potential function

ϕmw(δi,ri,ωi) = εmw



2
5

(
σ

δi

)10

−
(
σ

δi

)4

g(ri,ωi)

, (3.10)

where εmw = 2ε is the depth of the attractive well of the
mesogen-wall potential and δi is taken to be ∆yi, ∆zi, or
∆di depending on which of the Heaviside functions (or their
product) are equal to one in Eq. (3.8).

The strength of the mesogen-wall interaction has been
chosen on the one hand to prevent the confined liquid crystal
from freezing in the corners of the mesochannels where the
mesogen-wall attraction is strongest. On the other hand, to
realize a sufficiently stable alignment of mesogens at the wall,
the mesogen-wall attraction must not be too weak. Our choice
εmw = 2ε is a reasonable compromise.

In the actual simulations, we typically find Umm
= ⟨Φmm (R,Ω) /N⟩ ≃ −7.00εmm and Umw = ⟨Φmw (R,Ω) /N⟩
≃ −0.20εmm for the mesogen-mesogen and mesogen-wall per-
particle potential energies, respectively, depending somewhat
on the exact geometry of the mesochannel. Hence, following
the line of arguments presented by de Gennes and Prost
(see pp. 113–114 of Ref. 2) this corresponds to the limit
of weak anchoring because Umw ≪ Umm and therefore to an
extrapolation length b that is large on a molecular length scale.

The function 0 ≤ g(ri,ωi) ≤ 1 in Eq. (3.10) is the so-
called anchoring function. Depending on u(ωi), the anchor-
ing function switches on or off attractive mesogen-wall
interactions. This energetic discrimination serves to stabilize
specific alignment scenarios. The anchoring function should
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therefore be viewed as a mathematical device to realize
specific chemical or mechanical surface preparation as it
is frequently employed in experimental systems. A host of
different techniques to accomplish specific surface anchoring
is known experimentally for quite some time.55,56

In this work, we consider three different alignment
scenarios. First, if

g(ri,ωi) = g⊥(ri,ωi) = [u(ωi) ·s(ri)]2, (3.11)

locally homeotropic alignment is favored where s (ri) is the
local surface normal. To realize a locally planar alignment, two
options exist. In the first of these, the orientation of a mesogen
is orthogonal to both s (ri) and ex (i.e., to the x-axis). This
planar anchoring can be realized by introducing the anchoring
function

g(ri,ωi) = g∥(ri,ωi) = [1 − |u(ωi) ·s(ri)|]2
×{[u(ωi) ·ey]2 + [u(ωi) ·ez]2}. (3.12)

In Eq. (3.12), the first term on the right side favors planar
anchoring whereas the second term allows one to specialize
to anchoring of mesogens orthogonal to the x-axis (i.e.,
orthogonal to the symmetry axis of the mesochannel). In
addition, we consider directional anchoring in which the
energetically favorable alignment of mesogens is still locally
planar with the walls of the mesochannel but this time it is
also parallel with its symmetry (x-)axis. Hence, for directional
anchoring, we choose

g(ri,ωi) = g|(ri,ωi) = [1 − |u(ωi) ·s(ri)|]2[u(ωi) ·ex]2
(3.13)

as the appropriate anchoring function. Notice that both
anchoring scenarios represented by Eqs. (3.12) and (3.13) are
monostable in the sense of Jérôme.57

Last but not least, we can also control the geometry of
the mesochannels. This is illustrated by the plots in Fig. 2
for different values of R. For vanishing R, the mesochannel
is rectangular whereas the corners become more rounded as
R increases all the way to a cylindrical channel in part (c)
of the figure. As anticipated, the minimum of the mesogen-
wall potential is located in the immediate vicinity of the
channel walls. The mesogen-wall potential decays rapidly as

one moves away from these walls and remains very weakly
attractive as one approaches the mesochannel’s midpoint.

IV. RESULTS

A. Numerical details

To analyze the local structure of the confined chiral liquid
crystal introduced in Sec. III, we perform MC simulations
in the grand canonical and in the canonical ensembles.
Henceforth, we shall express all quantities in the customary
dimensionless (i.e., “reduced”) units. We shall express length
in units of σ, energy in units of ε, therefore temperature in
units of ε/kB (kB Boltzmann’s constant), and finally pressure
in units of ε/σ3.

For the bulk liquid crystal, we know from previous
work33 that for a sufficiently large chirality coupling constant
|ε3| = 0.25, our liquid crystal is stable in blue phase II for a
temperature T = 0.95 and a pressure of P = 1.81. Under these
conditions the bulk number density is ρ ≃ 0.92. As we shall
demonstrate shortly in Sec. IV B, p is proportional to |ε3|−1.
Thus, we can set up the simulation cell such that its linear
dimensions are an integer multiple of p/2 to make sure that
the helices of blue phase II are not exposed to any spurious
strain. We are then in a position to determine the number
of mesogens N that our simulation cell should accommodate
under these conditions.

For this N and the given T and P, we determine the
associated chemical potential µ ≃ −11.88 in a corresponding
MC simulation in the isothermal-isobaric ensemble by using a
properly adjusted version of Widom’s test particle method.
In this adapted version the fluctuating volume is included
in the ensemble average of the Boltzmann factor of the test
particle’s configurational potential energy.58 In a subsequent
MC simulation in the grand canonical ensemble, we use this
µ, T , and the mean side lengths from the isothermal-isobaric
simulation to obtain a mean number density and pressure both
of which agree to within a few percent with the input values
employed in the isothermal-isobaric simulation. In particular,
we monitored the acceptance ratio for creation/deletion of
mesogens which always exceeded 5.0 × 10−4 so that the results

FIG. 2. Plots of the mesogen-wall equipotential surface in the y–z plane generated via Eq. (3.10) for g (ri,ωi)= 1. The attached color bar gives the local value
of ϕmw for sy= sz= 10σ illustrating its short-range character. (a) R/sy= 0, (b) R/sy= 0.25, and (c) R/sy= 0.50.
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obtained can safely be considered reliable and the two sets of
simulations are mutually consistent with each other.

For all simulations, we use the same µ and T and adjust
the linear dimensions of the simulation box such that in the
x-direction, 2sx/p = k (k ∈ N), where k has been chosen such
as to limit the number of mesogens to the range 1.0 × 104 ≤ N
≤ 1.5 × 104 and therefore the CPU time needed; side lengths
sα (α = y or z) have been chosen so that a helix of pitch p can
be accommodated perfectly or is strained in a controlled way.
Notice that in practice, a value of 2σ has to be added to sα on
account of the excluded volume at the walls.34

In MC simulations in the grand canonical ensemble, two
events allow one to generate a Markov chain of configurations
numerically. In the first of these, it is decided with equal
probability whether to displace a mesogen’s center of mass
or to rotate it around a randomly chosen axis. The outcome
of both processes is accepted (or rejected) on the basis of an
energy criterion59 to make sure that the limiting distribution
of configurations in configuration space complies with the
probability density of the grand canonical ensemble. During
this step of the MC simulations, each of the N mesogens
presently in the system is considered sequentially.

During the second step of the MC simulation in the
grand canonical ensemble, it is decided with equal probability
whether to remove a randomly chosen mesogen from the
system or to add a new one at a randomly chosen position
and with a randomly chosen orientation. Again, an energy
criterion is employed for both processes.59 This second step
is performed N ′ times where N ′ is the number of mesogens
present at the beginning of the second step. Together, the
N + N ′ attempts to generate a new configuration are referred
to as a “MC cycle” in the grand canonical ensemble; in the
canonical ensemble, a MC cycle consist of N attempts to either
displace a mesogen’s center of mass or to rotate it.

In the grand canonical ensemble, the system is equili-
brated for 2.0 × 104 MC cycles followed by another 1.0 × 105

cycles during which we monitor in particular the mean
number of mesogens ⟨N⟩ to make sure that the actual
number of mesogens N fluctuates around this average value.
Once this has been accomplished, we take N = ⟨N⟩ as input
for a corresponding simulation of 5.0 × 105 cycles in the
canonical run where we compute Q (r) via Eq. (2.2) based
upon the assumption of equivalence of statistical physical
ensembles. We switch to the canonical ensemble to save
CPU time; in the grand canonical ensemble, MC simulations
are severely slowed down by the attempted creation and
deletion of mesogens. Other parameters/techniques employed
in the simulations have been chosen/implemented exactly as
discussed elsewhere.33

B. Bulk system

We begin our presentation of results with a discussion of
the bulk system. In the absence of chirality [i.e., for ε3 = 0,
see Eq. (3.7)] our model is capable of forming gaseous and
isotropic and nematic liquidlike phases.48 The nematic phase is
characterized by a global directorn and a scalar nematic order
parameter S. For |ε3| > 0, more complex ordered phases form
that are dominated by helical structures such as a cholesteric

phase and blue phases.33 These structures can be analyzed
quantitatively by determining the local director field n(r),
the associated order-parameter field S(r), and the pitch p
of the helix/helices forming under favorable thermodynamic
conditions and suitable choices for ε3 , 0.

In a computer simulation, where for short-range interac-
tions, periodic boundary conditions are applied at the faces of
the rectangular simulation cell to minimize surface effects, the
formation of helical structures poses a problem in principle.
Let eα (α = x, y, or z) be the direction along which a helix
of pitch p evolves. Because of the head-tail symmetry of
the mesogens, the helix can be accommodated perfectly if
2sα/p = m where m ∈ N. Only for integer values of m, a helix
of a given p corresponds to a minimum in the free energy
as has recently been demonstrated by Fukuda and Žumer.60

Otherwise, the helix is strained (i.e., compressed or stretched)
which may eventually lead to its complete destruction or may
cause the direction along which the helix evolves to form some
unwanted angle other than π

2 with the faces of the simulation
cell.

Unfortunately, p is a priori unknown. To circumvent the
problem with improperly chosen dimensions of the simulation
cell, Melle et al.33 have placed the liquid crystal between
the planar surfaces of a slit-pore with degenerate planar
anchoring57 of the mesogens. Suppose, the thermodynamic
state has been chosen such that a cholesteric phase would form.
Then, the presence of the slit-pore walls and the anchoring of
mesogens at the substrate guarantees that the cholesteric helix
evolves in a direction perpendicular to the substrate plane.
If, for the initial choice of sz, the ratio 2sz/p is not integer
but some rational number, an unstrained partial helix will still
form because the orientation of mesogens at one wall and that
at the other can relax on account of the degenerate planar
anchoring conditions. In a sequence of relatively short MC
simulations, one can then adjust sz such that upon replacing
the slit-pore walls again by periodic boundary conditions, a
cholesteric helix of an integer half-pitch ending at z = +sz/2
can be continued properly at z = −sz/2. This helix remains
stable even without the walls of the slit-pore. This approach
works, in principle, also for blue phases consisting of more
complex helical structures than the cholesteric phase.33

Experimentally, one can control p by considering binary
mixtures in which a small amount of chiral material is
immersed into an achiral (nematic) host phase. Depending
on the concentration of chiral material, a chiral nematic phase
forms characterized by some pitch (see p. 284–285 of Ref. 2)
This has been demonstrated originally by Adams and Haas61

quite some time ago and later by Cladis25 and by Kitzerow
et al.30 These authors argue that for fixed T , p−1 ∝ c where
c is the concentration of chiral dopant in the binary mixture.
Thus, by varying c, one gets a handle on p. As pointed out
later by Wilson and Earl,62 the concentration of chiral dopant
is proportional to a change in free energy which in turn may be
interpreted as a change in the effective strength of interaction
between molecules of the chiral mixture component. Hence,
in our single-component model of a chiral liquid crystal, one
would anticipate p ∝ |ε3|−1. Figure 3 confirms this expectation.

To demonstrate that the above simulation protocol is
adequate, we present in Fig. 4 a “snapshot” of a configuration
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FIG. 3. Plot of the reduced pitch p/σ as a function of the chiral coupling
constant |ε3| (•) obtained in MC simulations33 together with a fit of p
= a/ε3+b (red solid line) (see text) where a ≃ 4.41 and b ≃ 6.20 have been
obtained from a least squares fit to the simulation data.

as it was generated as part of the Markov chain in the grand
canonical ensemble. A comparison with Fig. 3 reveals that the
value of the coupling strength |ε3| corresponds to the strong
coupling regime where p begins to level off and approaches
a nearly constant value. The color code in Fig. 4 has been
chosen such that mesogens oriented along the line of vision
are colored in blue whereas mesogens lying in the paper plane
have been colored red.

As one can see from Fig. 4, four areas can be identified that
form a nearly perfect array of fourfold symmetry. These areas
extend into the paper plane with the symmetry axis of each
area remaining parallel to the line of vision. Focusing on one
of the four areas, one notices that at its center mesogens align
their longer axes with the line of vision; as one moves away
radially from the center to the circumference, the mesogens
eventually are lying in the paper plane. This structure comports
with that of a double-twist helix. In other words, we obtain

FIG. 4. “Snapshot” of a configuration generated for |ε3| = 0.25 (p = 23.8,
see Fig. 3). The aspect ratio of mesogens is greatly exaggerated to enhance
the visibility.

FIG. 5. Plots of components of the nematic director nα(rβ) and the local
nematic order parameter S(rβ) (magenta solid line) as functions of specific
lines of vision rβ = r ·eβ where α = x (red solid line), α = y (green solid line),
and α = z (blue solid line); (a) β = z, (b) β = y, and (c) β = x.

a simple-cubic array of double-twist helices characteristic of
blue phase II.2

If one analyzes the structure shown in Fig. 4 more
quantitatively in terms ofn(r) and S(r), plots of these quantities
in Fig. 5 are indeed indicative of the highly symmetric structure
just described. For example, in Figs. 5(a)–5(c), we show
that always the component of n(rβ) along the line of vision
rβ = r ·eβ (β = x, y, or z) approximately vanishes whereas
the remaining other two components show a very regular
sinusoidal structure. We use the overbar to indicate that n(rβ)
has been averaged over the plane orthogonal to rβ. These
sinusoidal curves are shifted relative to one another by about
π
2 . Hence, plots in each panel of Fig. 5 signal the formation of
helices evolving in planes orthogonal to rβ.

Nevertheless, the overall nematic order in each of the
planes orthogonal to rβ remains small and nearly vanishes
as plots of S(rβ) in Figs. 5(a)–5(c) reveal. This is consistent
with the snapshot presented in Fig. 4. It shows that despite
the existence of highly ordered regions in each plane, the
overall order obtained as an average of the local nematic order
parameter over planes is small or vanishes for each individual
plane orthogonal to rβ. Hence, we are dealing with double-
twist helices arranged such that along each line of vision a
structure of fourfold symmetry is obtained. These features
clearly point to a stable blue phase II.
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FIG. 6. (a) Color cube to illustrate the spatial variation of color whereeR ·ex=eB ·ey=eG ·ez= 1 whereeR,eB, andeG are unit vectors defining the axes used for
the color cubes. (b) Disclination lines ℓ for blue phase II.

Further evidence for this conclusion is provided by an
analysis of disclination lines ℓ. Because the spatial structure of
disclination lines is complex and difficult to visualize, we have
developed a color code [see Fig. 6(a)] where a different color
is assigned according to the specific point on ℓ. An inspection
of 6(b) shows that under the present conditions, disclination
lines form a complex structured three-dimensional network.
Most notably, however, is the clear tetrahedral symmetry of
the arrangement of these lines. This tetrahedral arrangement
of disclination lines is what one would indeed expect for a blue
phase II as has been demonstrated earlier by Ravnik et al.13

within the framework of Landau-de Gennes theory and a little
later by Melle et al. by MC simulations.33 Hence, together
the results presented in this section provide clear evidence
for the formation of a blue phase II in our bulk liquid crystal
under the thermodynamic conditions chosen and for the model
parameters selected.

Because in blue phase II the liquid crystal is ordered
locally but disordered globally, one expects this order to
decay monotonically for nonvanishing chirality as the distance
between locally ordered regions increases. In the limit of
vanishing chirality, however, one is confronted with an
ordinary nematic phase which, under the present thermody-
namic conditions, is characterized by a global nematic order
parameter S = 0.620. For the nematic phase, one therefore
anticipates from Eq. (2.6), limr∥→∞ g2(r ∥) = S2. Plots in Fig. 7
confirm both expectations. In the simulations, we obtain the
curves as histograms using cylindrical shells of radius 0.5 and
thickness ∆r ∥ = 0.05 [see Eq. (2.6)].

In both curves in Fig. 7, one also notices weak oscillations
at smaller r ∥ which disappear for r ∥ & 5.00. The oscillations
reflect spatial correlations superimposed onto the orienta-
tional ones. Once these superimposed spatial correlations
have nearly vanished and assuming an exponential decay
proportional to exp(−r ∥/ξ) for larger r ∥, we get a correlation
length which is infinite in the case of the achiral, nematic
phase whereas in the blue phase, we obtain ξ ≃ 2.70 indicat-
ing that nematic correlations are short range for the chiral

bulk fluid at |ε3| = 0.25 as one would expect. Taking ξ as
a characteristic length scale in our system, p is roughly an
order of magnitude larger than ξ. Hence, we conclude that
the helical structures at the focus of this work are truly
supramolecular compared with the range of orientational
correlations.

C. Confinement effects

If we now bring the bulk liquid crystal into confinement,
the pitch as a characteristic length scale will have to compete
with the linear dimensions of the confining mesochannel (see
Fig. 1). In the following, we always choose ex as the line of
vision. Along ex, we analyze components of n (x) and S (x).
In addition, we consider n (r′) and S (r′) where r′ is a two-
dimensional vector in the y–z plane at a given x.

FIG. 7. Plots of the nematic correlation function g2(r∥) defined in Eq. (2.6)
where ε3= 0.00 (blue solid line ) and |ε3| = 0.25 (red solid line). The hori-
zontal line (black solid line) corresponds to S2. The inset is an enlargement of
the plot for |ε3| = 0.25 where we also show the function aexp(−r∥/ξ) (- - - -)
fitted to the simulation data and taking a and the nematic correlation length
ξ as fit parameters (see text).
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FIG. 8. (Upper panels) Variation of
components of the local director field
nα (x) along the x-axis of a mesochan-
nel for R/sy= 0.50; α = x (red solid
line), α = y (green solid line), and α = z
(blue solid line). Also shown is the local
nematic order parameter S (x) (magenta
solid line). Dots, colored the same way
as the above lines, indicate the actual
position along the line of vision. (Lower
panels) Plot of n(r′) (dashes) for given
x as in the upper panel. Values of S (r′)
correspond to the attached color bar.

1. Homeotropic anchoring

We begin the discussion withone of the simplest cases
in Fig. 8 for a mesochannel of width sy/p = sz/p = 0.50
and R/sy = 0.50. For these parameters, the mesochannel is
cylindrical. In the upper panels of Fig. 8, we display plots
of components of the director field n (x) along the cylinder’s
symmetry axis. From these plots, it is evident that nx (x) ≃ 0
and that ny (x) and nz (x) can be described by sine functions
shifted with respect to each other by a phase of π

2 . Hence, the
director field rotates in the y–z plane thus forming a single-
twist helix that evolves along the x-axis.

In addition, we present the local nematic order parameter
S (x) in the upper panels of Fig. 8. The nematic order parameter
assumes a nearly constant, relatively high value S (x) ≃ 0.50
indicating that the overall nematic order across each of the
y–z planes along the x-axis is quite large. In summary, n (x)
and S (x) indicate that inside the cylindrical mesochannel a
phase has formed which is reminiscent of a cholesteric phase.

However, this phase is unique (and different from a
cholesteric phase in the bulk) in that the director field is not
entirely uniform across any y–z plane as one can see from
the plot displayed in the lower panels of Fig. 8. Nevertheless,
n (r′) is relatively uniform in a fairly large central region. In
this region, S (r′) is quite substantial.

Towards the walls of the mesochannel, one notices from
Fig. 8 that n (r′) has to bend more and more to accommodate
the local homeotropic anchoring of the mesogens directly at
the container walls. As a result, S (r′) goes down up to a
point where the local nematic order suddenly drops because
further bending of n (r′) would cost too much free energy.
Instead, two defects are forming in the vicinity of the wall.
The director field and defect structure presented in the lower
panels of Fig. 8 are well-known for nematic phases confined to
mesoscopic cylinders.25,28,63 In Ref. 63, however, the director
field n (r′) is constant between successive planes along the
x-axis whereas here it rotates.

Given the fact that sy/p = sz/p = 0.50, the mesochannel
would, in principle, be capable of accommodating a single
double-twist helix. As we demonstrated in Sec. IV B, double-
twist helices are structures that are stable for our current choice
of the chiral coupling constant |ε3|. Nonetheless, double-twist
helices cannot form in the present cylindrical mesochannels
with locally homeotropic anchoring because the impact of
the walls is too strong given the diameter of the mesoscopic
cylinders.

Moreover, regions of low nematic order visible in the
plots in the lower panels of Fig. 8 are actually part of three-
dimensional disclination lines ℓ whose evolution in space
we illustrate by the plot in Fig. 9(a). From that plot, one

FIG. 9. Three-dimensional representa-
tion of disclination lines ℓ. To enhance
the visibility the lines have been colored
according to the color cube shown in
Fig. 6(a). The mesochannels have been
cut open so that one can look inside.
Note that this also eliminates part of
ℓ from the plot. (a) R/sy= 0.50 sy/p
= sz/p = 0.50, (b) as (a), but for R/sy
= 0.00.
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FIG. 10. As Fig. 8, but for R/sy= 0.00. Lower panels (a)–(c) show the local director fieldsn(r′) and the local nematic order parameter S (r′) (see attached color
bar for different positions along the line of vision indicated by the colored dots in the corresponding upper panels).

realizes that, similar to the director field (see Fig. 8), two
separate disclination lines exist forming helical structures
and evolving in the x-direction. These lines never intersect.
This disclination-line topology has already been reported
by Fukuda and Žumer.31 However, in their case, different
boundary conditions have been used. This implies that the
origin of the defect topology illustrated by the plot in Fig. 9(a)
is different from that in work of Fukuda and Žumer.

Changing now R/sy to 0.00 while maintaining the size
of the mesochannel’s cross section sy/p = sz/p = 0.50 as in
Fig. 8, we notice from the plots in the top panels in Fig. 10
that again the director field is forming a single-twist helix
evolving along the x-direction. This helix is also visible from
plots in the lower panels of Fig. 10 where we indicate the
direction of n (r′) for three distinct positions along the line of
vision.

Again, one sees that regions of low S (r′) exist which
change position in phase with the rotation of n (r′). In
Figs. 10(a) and 10(c), these defect regions run more or less
parallel with either the y- or the z-axis. For an intermediate
case displayed in Fig. 10(b), the extended defect regions
reduce to much smaller regions located in all four corners
of the rectangular mesochannel.

As before for the cylindrical mesochannel, the full three-
dimensional variation of the disclination lines is illustrated
by the plot in Fig. 9(b). To make contact between the plots
in Fig. 9(b) and those presented in Fig. 10, the reader
should realize that the situations depicted in Figs. 10(a)
and 10(c) correspond to situations in Fig. 9(b) in which the
disclination lines connect to walls of the mesochannel along
the y- and z-directions, respectively. The case depicted in
Fig. 10(b) is representative of regions in which ℓ in Fig. 9(b)
is perpendicular to the x-axis. Hence, the topology of ℓ can
best be described as that of two ladders in the y–z plane that
are connected periodically for certain values of x.

If one increases the size of the cross section of a
cylindrical mesochannel, the structure of the confined liquid

crystal illustrated by plots in Fig. 11 changes significantly
from that discussed before [see Fig. 8]. Again, the variation of
components of n (x) displayed in the upper panels of Fig. 11
is the fingerprint of a helical structure evolving along the
line of vision. However, compared with S (x) in the upper
panel of Fig. 8, this quantity appears to be much reduced in
Fig. 11 indicating the presence of more extended regions of
low nematic order in each individual y–z plane along the line
of vision.

In fact, the plots in the lower panels of Fig. 11 reveal a
complex structure of the confined liquid crystal. One notices
that at the center of the plots in the lower panels of Fig. 11,
the small dashes indicating the local direction of n (r′) are
becoming shorter and the closer one moves towards the center
of the plots. This indicates that in the central region, the local
director field has a nonzero component nx (r′). Hence, the
formation of a double-twist helix, which is favored on account
of the magnitude of |ε3|, is possible here. This is because of
the wider cross section of the mesochannel which reduces the
impact of wall anchoring on the orientation of the mesogens
at its center.

As one moves towards the circumference of the central cir-
cular region, mesogens are increasingly lying in the y–z plane
as one would expect for a double-twist helix (see Fig. 4). If
this planar arrangement of mesogens along the circumference
of the double-twist helix would be preserved, a closed circular
loop of low S (r′) would have to form eventually. Its formation
would be caused by the incompatibility between the in-
plane orientation of mesogens along the circumference and
their homeotropic anchoring at the walls of the mesochannel.
However, the system can lower its free energy by forming six
spatially rather isolated defect regions, three inner ones at the
circumference of the double-twist helix, and three outer ones
next to the wall of the mesochannel. Both groups of defects
form highly symmetric, trigonal structures rotated with respect
to each other by an angle of π

3 . All six regions rotate in the
y–z plane as plots in Fig. 11 reveal.
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FIG. 11. As Fig. 8, but for sy/p
= sz/p = 1.00.

The full three-dimensional representation of disclination
lines ℓ is displayed in Fig. 12(a). As one can see from the
plot, three helical disclination lines form in the cylindrical
mesochannel, which are wrapped around one another without
any junctions at which two or all three lines would intersect.

For a rectangular mesochannel of the same sizes of the
cross sections, a completely different structure is found. This
is illustrated by plots of components ofn (x), S (x),n (r′), and
S (r′) in Fig. 13. As before for the cylindrical mesochannel
(see Fig. 11), a single double-twist helix forms at the center
of the mesochannel as reflected by the decreasing length of
dashes. Mesogens at the center of the double-twist helix have
their longer axes oriented such that they are orthogonal to the
paper plane (see, for example, double-twist helices in Fig. 4).
As is characteristic for double-twist helices, this orientation
changes as one moves to its circumference where mesogens
lie in the paper plane. On account of the in-plane orientation
conflicts arise with the homeotropic wall anchoring such that
two regions of low S (r′) arise. These regions actually form
two helices wrapped around the line of vision as one can see
from the plot in Fig. 12(b).

The other feature visible from the plots in Fig. 13 is two
regions of low S (r′) running more or less parallel with the

upper and lower walls of the mesochannel, respectively. As
one moves along the line of vision, the upper/lower configu-
ration of these regions alternates periodically with a left/right
configuration in very much the same way as it is observed in
Fig. 10. This alternating arrangement can also be seen from
the full three-dimensional representation of disclination lines
in Fig. 12(b) indicating again a ladder (sub-) structure of ℓ.

So far in this section, we considered mesochannels
characterized by cross sections of equal size in both y- and
z-directions. The plots in Fig. 14 illustrate the structure of a
liquid crystal confined to a mesochannel of a cross section
ratio of sy/sz =

3
4 . As for the previously discussed cases,

components of n (x) shown in the upper panels in Fig. 14
indicate that the director field forms some sort of periodically
changing structure along the line of vision.

However, in this case, ny (x) and nz (x) can no longer be
described by simple trigonometric functions. This is because
only the three outer regions of low S (r′) visible in the
plot in the lower panels of Fig. 14 turn out to rotate in
a counterclockwise fashion as one moves along the line of
vision. These rotating outer regions of low S (r′) mark centers
of double-twist helices which are incomplete because of their
close proximity to the walls. Because, at the center of each

FIG. 12. As Fig. 9, but for (a) R/sy= 0.50, sy/p = sz/p = 1.00, (b) R/sy= 0.00, sy/p = sz/p = 1.00, and (c) R/sy= 0.50, sy/p = 0.75, sz/p = 1.00.
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FIG. 13. As Fig. 10, but for R/sy= 0.00, sz/p = sy/p = 1.00.

of the three incomplete double-twist helices, mesogens would
have to be aligned separately with the line of vision, a fourth
region of low S (r′) is visible in Fig. 14 which arises on account
of orientational frustration of mesogens in a region in which
the circumferences of all three double-twist helices meet. This
region remains stationary and, in fact, forms a straight line
as the corresponding three-dimensional plot of disclination
lines in Fig. 12(c) clearly indicates. Again, the topology of
disclination lines depicted in Figs. 12(c) and 14 has already
been observed theoretically in a qualitatively similar fashion
(see Fig. 10(c) of Ref. 28).

2. Planar anchoring

Compared with the case of homeotropic wall anchoring,
planar wall anchoring of the mesogens gives rise to somewhat
less spectacular defects. This is an immediate consequence of
the fact that for planar anchoring, the orientation of mesogens

at the wall is compatible with their in-plane arrangement along
the circumference of a double-twist helix.

We consider the case of (locally) monostable planar
anchoring first where the anchoring function is given in
Eq. (3.12). Take, for example, a cylindrical mesochannel
of cross sections sy/p = sz/p = 0.50. This mesochannel is
wide enough to accommodate a single double-twist helix
where the center of the helix coincides with the center of
the mesochannel. At the center of the double-twist helix,
mesogens align with the x-axis and assume an increasingly
planar arrangement in the y–z plane as one moves towards
the circumference of the double-twist helix. In this case,
the planar anchoring stabilizes a double-twist helix because
the orientation of mesogens directly at the walls of the
mesochannel is compatible everywhere with their orientation
along the circumference of a double-twist helix (cf. Fig. 11).
As a consequence, no defects arise under these circum-
stances.

FIG. 14. As Fig. 8, but for sy/p = 0.75
and sz/p = 1.00.
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FIG. 15. As Fig. 11, but for locally planar anchoring of
mesogens at the walls of the mesochannel.

FIG. 16. As Fig. 9, but for local planar anchoring of mesogens at the wall of a mesochannel. (a) sy/p = sz/p = 1.00, R/sy= 0.50, (b) sy/p = 0.50, sz/p = 1.00,
R/sy= 0.25, (c) sy/p = 1.00, sz/p = 1.25, R/sy= 0.50.

If the cylindrical mesochannel is twice as wide, two
double-twist helices can be accommodated. In this case,
mesogens in regions shared by both double-twist helices are
orientationally frustrated such that between the helices, a
relatively large region of low S (r′) arises as the plot in Fig. 15
reveals. The two defect regions visible in Fig. 15 form two
independent helices along the line of vision as one can see
from the plot of disclination lines in three dimensions shown
in Fig. 16(a). The helical disclination lines are wrapped around
the x-axis rotating in a counterclockwise fashion. Exactly the
same structure has been reported earlier by Fukuda and Žumer
but for a blue phase I in a slit-pore with homeotropic anchoring
of the mesogens.31

Next, we consider a situation in which the mesochannel
is deformed such that it is stretched in the z-direction by a

factor of two relative to the cross section along the y-axis.
Under these conditions, the plot in Fig. 17 reveals that two
double-twist helices can be accommodated whose centers
are approximately located at y/p = 0.00 and z/p = ±0.25.
Because of the dimensions of the mesochannel chosen here
and because of the locally planar anchoring at its walls,
no defects arise except in those regions where the double-
twist helices begin to merge along the line z/p = 0.00.
Therefore, one anticipates two separate, linear disclination
lines parallel to ex. The plot in Fig. 16(b) confirms this
expectation.

The last case considered in this section is that of a
mesochannel with an inner surface that is always curved
(see Fig. 18). This mesochannel is wide enough so that a
trigonal arrangement of three double-twist helices can be

FIG. 17. As Fig. 15, but for sy/p = 0.50, sz/p = 1.00,
and R/sy= 0.25.
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FIG. 18. As Fig. 15, but for sy/p = 1.00, sz/p = 1.25,
and R/sy= 0.50.

accommodated. Mesogens are orientationally frustrated in
small regions where the circumferences of any two of the
three double-twist helices meet. Consequently, three defect
regions exist that are rotating in a counterclockwise fashion
together with the three double-twist helices. Moreover, we
note that this defect topology is structurally equivalent to the
one already illustrated in Fig. 14.

In addition, a fourth region of low S (r′) is visible in Fig. 18
surrounded by the trigonal arrangement of the outer ones. In
this region, the circumferences of all three double-twist helices
gather. This fourth region stays put along ex as one can see
from the plot of ℓ in Fig. 16(c). The structure of ℓ illustrated
by plots in Figs. 16(c) and 18 has already been reported earlier
(see Fig. 10(a) of Ref. 28) but for a true cylinder rather than a
slightly deformed one considered here.

3. Directional anchoring

After having discussed the case of planar anchoring in
Sec. IV C 2, we conclude the presentation of results by
considering very briefly the case of directional anchoring
where the anchoring function is now given by Eq. (3.13).
Hence, mesogens located in the immediate vicinity of the
walls of the mesochannel tend to align their longer axes with
the line of vision ex; any other orientation would receive an
energy penalty.

The disclination lines depicted in Fig. 19(a) for a
cylindrical mesochannel turn out to be very similar to the
ones observed earlier for degenerate planar anchoring [see
Fig. 16(c)] and for homeotropic anchoring [see Fig. 12(c)].

However, in these cases, three helices of disclination lines
winding around a straight portion of the disclination line along
the x-axis are only observed for mesochannels for which the
cross sections along the y- and z-directions are different. In
the present case, this configuration is observed for cylindrical
mesochannels.

However, two more interesting cases are illustrated by the
plots in Figs. 19(b) and 19(c). In both cases, we find ringlike
disclination-line loops that are intertwined in ways that depend
on the width (i.e., sy) of the mesochannels. From the plot in
Fig. 19(b), these rings do not intersect at any point in space.
This is different for the situation depicted in Fig. 19(c) where
we consider a mesochannel that has a larger cross section in
the y-direction compared with the mesochannel considered
in Fig. 19(b). Widening the cross section still causes ringlike
defect loops to be stable. However, now these individual loops
connect at certain tetrahedrally coordinated points at which
pairs of disclination loops merge.

Because it is a formidable task to visualize disclination
rings, we amend the plot in Fig. 19(b) by the director field and
the associated local nematic order parameter both of which are
presented in Fig. 20. One clearly sees the formation of double-
twist helices that have their centers in regions where the
dashes representing n (x, z) vanish. The double-twist helices
are evolving in the y-direction until they reach the walls of
the mesochannel. Positions at which the disclination rings
are intersecting the x–z plane at y = 0 manifest themselves
as two-dimensional, periodically arranged regions of low
nematic order in Fig. 20. Hence, disclination rings are bent
with respect to the x–z plane at y = 0.

FIG. 19. As Fig. 9, but for local directional anchoring of mesogens at the wall of a mesochannel for a wall curvature of R/sy= 0.50. (a) sy/p = sz/p = 0.75,
(b) sy/p = 0.25, sz/p = 1.25, (c) sy/p = 0.50, sz/p = 1.25.
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FIG. 20. As Fig. 19(b), but for the local director field (dashes) and the local nematic order parameter. In addition, disclination rings are shown that are colored
in cyan if they lie above the x–z plane at y = 0 and are colored in blue otherwise.

V. SUMMARY AND CONCLUSIONS

In this work, we employ MC simulations in the grand
canonical and canonical ensembles to investigate a chiral
liquid crystal confined to mesochannels. These mesochan-
nels constitute confinement to two dimensions (y- and z-
directions) but are quasi-infinite in the x-direction on account
of periodic boundary conditions. The mesochannels have
variable cross sections in the y–z plane which allows us
to consider various geometries. The confined mesogens are
anchored at the inner surfaces of the mesochannels in three
different ways. Specifically, we consider local homeotropic
anchoring as well as planar and directional anchorings.

Throughout this work, we selected a thermodynamic state
and a strength of the chiral coupling constant in the mesogen-
mesogen interaction potential such that in the bulk, the liquid
crystal is stable in blue phase II. The structure of this phase
is characterized by a three-dimensional simple-cubic lattice
of double-twist helices that render the liquid crystal highly
ordered locally but isotropic globally because the arrangement
of helices is the same regardless of the line of vision along the
x-, y-, or z-axis.

If this liquid crystal is confined to a mesochannel, the
dimensions of its cross section compete with p such that novel
defects and disclination-line geometries arise that have no
counterpart in the bulk. For cylindrical mesochannels (i.e., for
sy/sz = 1) with homeotropic wall anchoring and sy/p = 0.50,
a quasi-cholesteric phase is observed. Here, the local director
field indicates that mesogens lie in the y–z plane everywhere
along ex. These mesogens are pointing more or less in the
same direction such that for each of the y–z planes along the
line of vision, the director field is constant.

However, on account of the local homeotropic anchoring
at the walls of the mesochannels, small regions exist in which
the mesogens are orientationally frustrated. Both the director
field and the defects near the walls rotate in the y–z plane
along ex. In other words, the confined mesogens form a
quasi-cholesteric phase in which the defects form two isolated
helices rotating around the line of vision.

If the size of cross sections is maintained but their
geometry is changed from cylindrical to rectangular, one
observes a similar quasi-cholesteric phase. However, here the
defect lines align themselves with the walls. This alignment
changes periodically between the two opposite walls of the
channel in the y- and z-directions, respectively. Thus, unlike
for the cylindrical mesochannel, we observe a ladder-like
structure of disclination lines in this case. These ladders are
periodically connected by other parts of the disclination lines.

In both cases, the double-twist helical structure char-
acteristic of the bulk liquid crystal is suppressed because
of the dominant impact of wall anchoring. If the cross
section of the cylindrical mesochannel is widened (i.e., for
sy/p = 1.00), a single double-twist helix forms with its center
coinciding with the center of the mesochannel regardless
of whether the mesochannel is cylindrical or rectangular in
shape. For the cylindrical mesochannel, mesogens appear to be
orientationally frustrated in three regions on the circumference
of the double-twist helix. Here, the planar orientation of the
mesogens in the y–z plane is in conflict with the homeotropic
wall anchoring. The three regions form a trigonal structure
that rotates in the y–z plane along ex thereby forming three
independent disclination line helices. The arrangement of all
six disclination line helices (three inner and three outer ones)
forms a perfectly symmetric structure along the cylindrical
mesochannel’s line of symmetry.

For the same size of the cross section but a rectangular
rather than cylindrical geometry, one observes the same
ladder-like structure described above. However, because
the mesochannel is wider now, a single double-twist helix
resides at the center of the mesochannel. Because the in-
plane orientation of the mesogens at the circumference of
the double-twist helix clashes with the locally homeotropic
wall anchoring, two regions exist in which the mesogens
are orientationally frustrated such that along ex two helical
disclination lines can form.

If the mesochannel is deformed such that the ratio of sy/p
is no longer an integer multiple of p/2 but sufficiently wide, a
trigonal arrangement of three partial double-twist helices can
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be accommodated. These double-twist helices are incomplete
because of their close proximity to the walls. Nevertheless,
they are rotating in the y–z plane as one moves alongex. Near
the center of the mesochannel, at which the circumferences of
all three double-twist helices meet, a small defect region exists
in which the mesogens are orientationally frustrated because
here they cannot attain an orientation compatible with that
of all three double-twist helices at the same time. This inner
region is part of a straight portion of ℓ alongex.

Combinations of helical disclination lines and straight
ones are also observed for planar wall anchoring. Perhaps
most remarkable in this case is a disclination line structure
that looks topologically similar to the one described before.
However, here the rotating outer disclination lines do not form
at the center of each of the three double-twist helices but in
regions in which the circumferences of a pair of double-twist
helices meet.

Last but not least, if we consider the case of local
directional anchoring and mesochannels with a rather substan-
tial shape anisotropy, we are able to stabilize disclination
lines that have a ring topology. Ringlike disclination lines
have been observed also by Fukuda and Žumer within the
framework of Landau-de Gennes theory.32 The difference
between their disclination rings and ours is that in our case,
the rings are intertwined whereas they remain independent
and symmetrically arranged entities in the work of Fukuda
and Žumer. Moreover, if the aspect ratio of the mesochannel’s
is a bit larger, the rings persist but now they are connected at
isolated, tetrahedrally coordinated “points.”

It is particularly gratifying that the present very simple
model of a liquid crystal is apparently capable not only to
reproduce structural features of bulk chiral phases33,34 in a
qualitatively correct fashion but also some of the defect topol-
ogies reported earlier theoretically,28 where a non-molecular
approach has been used, as well as one topology that has
been seen experimentally quite some time ago.25 However, it
needs to be stressed again that simply upscaling the topologies
observed here to, say, a µm length scale is not possible quan-
titatively but only qualitatively as already stated in Sec. I.

Thus, we have demonstrated here that if a chiral liquid
crystal is confined to containers whose dimensions compete
with the pitch of helical structures the liquid crystal would
attain in the bulk, a great variety of different disclination line
topologies may be observed. Thus, one may envision a great
complexity of spatial arrangements of nanoparticles that are
brought into contact with these disclination line topologies13

which may, in turn, give rise to new nanocolloidal materials
with specific and novel functionalities.

ACKNOWLEDGMENTS

We are grateful to Deutsche Forschungsgemeinschaft for
funding under the auspices of the International Graduate
Research Training Group 1524 “Self-assembled soft matter
nanostructures at interfaces.”

1J. Planer, Liebigs Ann. Chem. 118, 25 (1861).
2P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed.
(Clarendon, Oxford, 1995).

3W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, Nat. Mater. 1, 111
(2002).

4S. Yokoyama, S. Machiko, H. Kikuchi, K. Uchida, and T. Nagamura, Adv.
Mater. 18, 48 (2006).

5H. J. Coles and M. N. Pivnenko, Nature 436, 997 (2005).
6H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, Nat. Mater.
1, 64 (2002).

7F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim,
S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, Nat.
Mater. 11, 599 (2012).

8Z. Zheng, D. Sheng, and P. Huang, New J. Phys. 12, 113018 (2010).
9W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H.
Cao, and H. Yang, Adv. Mater. 21, 2050 (2009).

10A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, J.
Mater. Chem. 19, 5759 (2009).

11T. N. Oo, T. Mizunuma, Y. Nagano, H. Ma, Y. Ogawa, Y. Haseba, H. Higuchi,
Y. Okumura, and H. Kikuchi, Opt. Mater. Express 1, 1502 (2011).

12H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S.
Kuwabata, H. Kikuchi, and M. Ozaki, Appl. Phys. Express 2, 121501
(2009).

13M. Ravnik, G. P. Alexander, J. M. Yeomans, and S. Žumer, Proc. Natl. Acad.
Sci. U. S. A. 108, 5188 (2011).

14K. Stratford, O. Henrich, J. S. Lintuvuori, M. E. Cates, and D. Marenduzzo,
Nat. Commun. 5, 1 (2014).

15J.-I. Fukuda and S. Žumer, Phys. Rev. E 87, 042506 (2013).
16O. Trushkevychet, P. Ackerman, W. A. Crossland, and I. I. Smalyukh, Appl.

Phys. Lett. 97, 201906 (2010).
17P. J. Ackerman, Z. Qi, and I. I. Smalyukh, Phys. Rev. E 86, 021703

(2012).
18J. S. Evans, P. J. Ackerman, D. J. Broer, J. van de Lagemaat, and I. I.

Smalyukh, Phys. Rev. E 87, 032503 (2013).
19P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I.

Smalyukh, Phys. Rev. E 90, 012505 (2014).
20M. B. Pandey, T. Porenta, J. Brewer, A. Burkart, S. Čopar, S. Žumer, and I.
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