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Homotopy colimits - comparison lemmas for 
combinatorial applications 

By Volkmar Welker1) and Günter M. Ziegler2) at Berlin, and Rade T. Živaljević3) at Belgrade 

Abstract. We provide a “toolkit” of basic lemmas for the comparison of homotopy 
types of homotopy colimits of diagrams of spaces over small categories. We show how 
this toolkit can be used in quite different fields of applications. We demonstrate this with 
respect to 

1. Björner’s “Generalized Homotopy Complementation Formula” [5], 

2. the topology of toric varieties, 

3. the study of homotopy types of arrangements of subspaces, 

4. the analysis of homotopy types of subgroup complexes. 

1. Introduction 

The aim of this paper is to advertise homotopy colimit considerations for topological 
investigations in combinatorics. For this, we provide a toolkit and demonstrate its usefulness 
by a number of applications. 

A diagram of spaces is a functor from a small category to the category of topological 
spaces. In various topological, geometric, algebraic and combinatorial situations one has 
to deal with structures that can profitably be interpreted as (co)limits or homotopy (co)limits 
of diagrams over small categories, specially over (finite) posets. In fact, if a space is written 
as a finite union of (simpler) pieces, then it is the colimit of a corresponding diagram of 
spaces. While (co)limits do not have good functorial properties in homotopy theory, they 
can usually be replaced by homotopy (co)limits (Puppe [32] may have been the first to 
exploit this). Homotopy (co)limits have much better functorial properties. Thus there is 
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118 Welker, Ziegler and Živaljević, Homotopy colimits 

a wide variety of techniques to manipulate diagrams of spaces in such a way that the 
homotopy (co)limit is preserved (up to homotopy type). 

Basic work on homotopy (co)limits has been done by Segal [37], Bousfield and Kan 
[7], tom Dieck [42], Vogt [44], and Dwyer and Kan [11], [12]. See Hollender and Vogt 
[21] for a recent survey. 

Two key results in this setting are the “Projection Lemma” [3], [7], XII.3.1(iv), 
[15], [37], [49] which sometimes allows one to replace colimits by homotopy colimits, 
and the “Homotopy Lemma” [42], [7], XII. 4.2, [44] which compares the homotopy 
types of diagrams over the same small category. These tools have found striking applications, 
for example, in the study of subspace arrangements [49], [41], [36]. 

The choice of contents for our “toolkit for the manipulation of homotopy colimits” 
is partially motivated by the usefulness of corresponding lemmas in the special case of 
order complexes (the discrete case, when the spaces of the diagram are points). In this 
case, there is a solid amount of theory available, which has proved to be extremely powerful 
and useful in quite diverse situations. The key result is the Quillen Fiber Theorem (Quillen's 
“Theorem A” [33], [34], see below). All other basic tools of the “homotopy theory of 
posets”, such as the crosscut theorem, order homotopy theorem, complementation for¬ 
mulas, etc., can be derived from it. We refer to Björner [4] for an excellent account of the 
theory [4], Sect. 10, for an extensive survey of applications [4], Part I, and for further 
references. 

Homotopy limits have not found immediate applications in combinatorics and discrete 
geometry so far, and this is the reason why we restrict our attention to the case of homotopy 
colimits. Also note that many results about homotopy limits can be derived from the case 
of homotopy colimits by standard duality procedures (see Bousfield and Kan [7], XII. 4.1, 
and Hollender and Vogt [21], Sect. 3). 

We provide several applications of our methods to various areas within mathematics. 
As a first application, in the field of topological combinatorics, we present a new proof 
of a result by Björner on the homotopy type of complexes [5], which generalizes the 
Homotopy Complementation Formula of Björner and Walker [6], a tool which has proved 
to be very powerful in combinatorics. Since this proof affords the application of many of 
the techniques provided in this paper, we give a detailed exposition of it here. 

Then we present a new view of toric varieties. Namely, we start with the observation 
that toric varieties are homeomorphic to homotopy colimits over the face poset of the fan 
defining the variety. This immediately leads to a spectral sequence to compute the homology 
of toric varieties isomorphic to one already employed by Danilov [9]. 

We derive a new “combinatorial formula” for the homotopy types of quite general 
arrangements (such as “Grassmannian” arrangements) that are associated to linear sub-
space arrangements by suitable functorial constructions. More briefly we cover two appli¬ 
cations for which details are contained in other papers: We describe a new result on the 
homotopy type of the order complex of the poset Sp(G) of non-trivial p-subgroups of a 
finite group G [31], and we review results obtained by homotopy limit methods on the 
topology of subspace arrangements in [49], and provide the equivalence with the results 
of Vassiliev [43]. 
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2. Fundamental concepts and constructions 

2.1. Basic definitions and motivating examples of diagrams. In the following, all cate¬ 
gories are small, so their objects and morphisms form sets. Any partially ordered set can 
be considered as a category “with morphisms pointing down”, that is, for $ there 
is a (unique) arrow x → y if and only if $. 

A diagram of spaces over a small category A is a covariant functor $ into 
the category Top of topological spaces. We denote for an object $ the image under 
$ by Fa or by F(a), and for a morphism $ the image $ or 
by F(g). If there is a unique morphism g : a → b in A between a and b, then we write fab 

for $. A morphism $ of diagrams $ and $ is a functor 
F:A  → B together with a natural transformation α from $ to $. Given a 
diagram $, the homotopy colimit hocolim $ is a space associated to $ by a homotopy 
mixing construction, see Section 2.2. Before we proceed with a reasonably detailed outline 
of the theory, we introduce several motivating examples of diagrams of spaces. 

Constant diagram. For a topological space X the constant diagram $ is defined by 
sending each object of A to the space X and each morphism to the identity id : X → X. Of 
particular interest is the case when $ is the one-point space. In this case the constant 
diagram $ leads, via homotopy colimits, to the construction of the classifying space 
BA of the category A. In the special case when A = P is a partially ordered set—a  poset 
for short—the classifying space BP will be seen to coincide with the order complex Δ (P) of P. 

Group diagram. Given a discrete group G, let AG be the category which consists of 
one single object and a morphism for each element $. Then the classifying space of 
this category is the K(G,1)-space $ of the group G. Its universal cover EG is 
constructed in a similar way from the category whose objects are the elements of the group. 
Here for each pair of elements $ the unique morphism from g to h is given by hg-1. 
Finally, any AG-diagram $ can be interpreted as a G-space X and it turns out 
that $. 

Subspace diagrams. Let $ be a collection of subspaces of a topological 
space X. The intersection poset PU of the family U is the partially ordered set of all non¬ 
empty intersections $, ordered by reversed inclusion. Regard PU as a small cate-

gory. Then the subspace diagram associated to U is the diagram $ sending 
each element of PU to the corresponding intersection $, with inclusions as morphisms. 

This class of examples can be used to see many results from topological combinatorics 
from a higher perspective (e.g. Borsuk’s Nerve theorem [4]). 

Arrangements as diagrams. An especially interesting class of examples arises if X in 
the previous example is a linear space (affine space, sphere, projective space) and the family 
U is an (affine, spherical, projective) subspace arrangement. The subspace diagrams that 
arise this way have been successfully used to deduce both new and old results about the 
homotopy and homology of these arrangements and their complements (see Ziegler and 
Živaljević [49], Schaper [36]). 
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Orbit diagrams. Let G be a Lie group acting on a space X with finitely many orbit 
types. From this arises a natural diagram $ over the category OG of all G-orbits 
defined by $, see [14]. Recall that the orbit category OG is defined as the 
category with $ while the morphisms are G-equivariant maps 
$. 

Generally any diagram over the orbit category OG will be referred to as an orbit 
diagram. 

Toric diagrams. A toric diagram $ is a diagram for which each space Dd is the 
standard torus $, and each morphism dab: Da→Db is a standard 
algebraic homomorphism, i.e., a homomorphism that arises from an integer matrix 
$. An important observation is that any compact 
(complex) toric variety can be interpreted as the homotopy colimit of a toric diagram over 
the face poset of a complete fan, see Section 5.3. 

In order to avoid pathological behavior of the topological spaces involved and because 
this setting covers all application we can think of—in our combinatorial context — we 
assume that all spaces are compactly generated. For the same reason we restrict our 
attention to small categories which are not topologized. Note however that the general 
theory (see [21]) can be developed for the case of topological categories A for which the 
map $ is a cofibration. 

2.2. Limit space constructions. We will now discuss several constructions of “limit 
spaces” from a diagram $. For that we recall the notion of a simplicial space and its 
geometric realization. The references provide more information about simplicial sets and 
spaces, their geometric realizations, and other general categorical constructions used in 
this paper. Nevertheless, we try to be as self-contained as possible. 

The category Ord has as objects the finite ordinals $; its mor¬ 
phisms are the non-decreasing maps f : [n] → [m] (i.e., $). The set of mor¬ 
phisms of Ord is generated [25], p.4, [19], II. 2.2 by the maps $ and $, where 
$ is the increasing injection that does not assume the value i (for $), 
and $ is the non-decreasing surjection that assumes the value i twice (for 
$). 

A simplicial space is a contravariant functor F : Ord → Top. A simplicial set is a 
contravariant functor F : Ord → Set. We will not distinguish between simplicial sets and 
simplicial spaces equipped with the discrete topology. SimplicialSets and SimplicialSpaces 
are categories with the “obvious” morphisms, that is, whose morphisms are the natural 
transformations between functors Ord → Set resp. Ord→Top. 

There is a simple geometric realization functor R : Ord → Top that associates with 
[n] the standard n-dimensional simplex 

$, 
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and associates with $ and $ the “face operators” $ resp. the “degeneracy operators” 
$. (Viewing Ord as the category of finite chains and order preserving maps, the functor 
R associates with chains their order complexes and with order preserving maps the cor¬ 
responding simplicial maps.) 

Now we are able to review some important “limit space” or “total space” construc¬ 
tions arising from categories and diagrams. 

Geometric realization. Given a simplicial space F one defines its geometric realiza¬ 
tion |F| . Denote by $ the image of [n] under F, by $ the image of $ under F 
and by $ the image of $ under F. Then | F | is obtained as the quotient of the disjoint union 
$ modulo the equivalence relation “~” defined by 

$ for $ and $, 

$ for $ and $. 

With this geometric realization, |·| is a functor from SimplicialSpaces to Top. 

Classifying spaces. If A is any small category, then there is a natural simplicial set 
FA : Ord→Set associated to it. Namely, the image of [n] under FA consists of all sequences 
$ of objects $ and maps $ in the category 
A. The maps $ are given by 

$, 

$. 

The maps $ are given by 

$. 

The geometric realization of the simplicial set FA is the classifying space B(A) of the cate¬ 
gory A. 

Colimit. The colimit of a diagram $ is the topological space obtained from the 
direct sum $ modulo the equivalence relation “~” generated by x ~ y for $, 

$ if $ for some g:a → b. We write colim $ for the colimit of the diagram $. 

Homotopy colimit. The homotopy colimit of a diagram $ is defined as the quotient 
of the direct sum $ by an equivalence relation “~.” Here A↓a denotes, for 

a given category A and $, the category of all arrows a → b emanating from a 
with commutative triangles as morphisms between objects a → b1 and a → b2. If A = P is 
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a partially ordered set, then $. The equivalence relation “~” is 
defined as follows. For all morphisms f : a → b consider the maps: 

$, 
$, 

$, 
$. 

Then “~” is the transitive closure of α(p,x) ~ β(p,x). 

If it is important to emphasize the indexing category A, then the homotopy colimit 
of a diagram $ is denoted by $. 

Bar construction. A very general construction of a limit space is a construction given 
by Hollender and Vogt [21]. Given diagrams $ and $ over a category 
A and its opposite category Aop, there is an associated total space $. Its construction 
generalizes all limit space constructions presented so far (except for the colimit construc¬ 
tion). To the data $ and $ one associates a simplicial set $. The space of n-simplices 
of $ is the space of all “threads” 

$, 

where $ and $. More precisely, this space can be described as the space 
$, where the direct sum is taken over all n-chains 

$ of morphisms in A. The maps $ are given by 

$ 

$, 

$, 

$. 

The maps $ are given by 

$. 

Denote by $ the geometric realization of the simplicial space $. 
The homotopy colimit and the classifying space are special cases of the geometric realization 
of simplicial spaces of the form $. Namely, let $ be the diagram over the 
category A that assigns to each object a in A the one-point space $. Then the classifying 
space of the category A is the geometric realization of $. For a diagram 
$ the homotopy colimit $ is homeomorphic to the space $ 
(see [21]). 
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We may observe that for every diagram $ over a category that is a poset P there is 
a canonical partial order on $ defined by setting $ and $, if 

and only if $ and dpp'(x) = x'. With this definition there is a canonical bijection 
$; however, the topology on the two spaces is different: in fact, with 
the usual topology on simplicial complexes the subspaces $ get a discrete topology. 
Note however, see Section 4.1, that there exists a convenient geometric model for 
$ realizing this space as a subspace of the join $. This construction 

can be seen as a natural extension of the order complex construction to diagrams over posets. 

Examples 2.1. Here are some simple examples for the construction of homotopy 
colimits of diagrams over posets. 

(i) If Dp is a one-point space for all $, then $ is (isomorphic 
to) the order complex of P. 

(ii) If P = {p} is a one-element poset, then $. 

(iii) If P = {p,p'} has two points and p' >p , then $ is the mapping cylinder 
of the map f = dp'p : Dp' → Dp. 

(The mapping cylinder is homotopy equivalent to the image space Dp, which is the 
colimit of the diagram.) 

(iv) If P = {p,p'} and p, p' are not comparable, then $ is the 
disjoint union. 

(In this case it agrees with the colimit $ of the diagram.) 

(v) Let P = {p,p',p"} be the three-element poset with $, $, for which p' 
and p" are incomparable, and let $ be a diagram over  P with $ a one-point space. 
Then the homotopy colimit $ is homeomorphic to the mapping cone of the map 
dpp' : Dp → Dp'. 

(vi) If $ is a diagram such that the spaces Dp are identical, and the maps are identity 
maps, then $. 

(The colimit of such a diagram is Dp, if P is connected.) 

2.3. Simplicial homotopy lemma and the gluing lemma. 

Definition 2.2. A simplicial space F : Ord → Top is called good if the inclusion map 

σ(F[n]) → F([n + 1]) is a cofibration where $ is the space of all 

degenerated simplices in F([n + 1]). According to Lillig’s union theorem for cofibrations 
[23], F is good if for any surjective map  σ : [n +1 ] → [n] in Ord the inclusion 
Im(F((σ)) → F([n + 1]) is a closed cofibration. 
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Proposition 2.3 (Simplicial Homotopy Lemma). Let A, B be two good simplicial 
spaces. Let F : A → B be a map of simplicial spaces. If Fn : An → Bn is a homotopy equivalence 
for all n, then the induced map 

| F | : | A | → |B| 

is a homotopy equivalence. 

Good simplicial spaces were defined by Segal [38], Appendix. In [27] and in [26] 
the closely related, albeit not coinciding, classes of proper and strictly proper spaces are 
introduced. Proofs of Proposition 2.3 can be found in either of the references mentioned 
above. 

The Gluing Lemma is a key result. It has repeatedly been used in inductive proofs 
of results establishing that two spaces are homotopy equivalent; a notable example is the 
proof of Proposition 2.3. This lemma is a basic example for an important general principle 
which informally says that a local homotopy equivalence is also a global homotopy equi¬ 
valence - see the Homotopy Lemma 3.7. 

Lemma 2.4 (Gluing Lemma [8], [42]). Consider the commutative diagram of spaces 

$ 

$. 

Assume that h0,, hl, h2 are homotopy equivalences and that either both f1 and g1 are cofi-
brations or both f2 and g2 are cofibrations. Let $ (resp., $) denote the 
colimit (or push-out) of the diagram formed by the maps (f1,f2) (resp., (g1,g2)). Then the 
induced map h : X → Y is also a homotopy equivalence. 

3. Comparison results for diagrams of spaces 

In this section we set up the toolkit for applications of diagrams of spaces. In the 
subsequent section we will show how these very general results specialize to forms applicable 
in various combinatorial situations where the emphasis is on diagrams over (locally) finite 
posets. The toolkit consists of a sequence of propositions and lemmas most of which are 
part of standard tools of an algebraic topologist. These results allows us to recognize a 
topological space as the homotopy colimit of a diagram (Projection Lemma), to check if 
a given morphism $ of diagrams induces a homotopy equivalence 

$ 

of the corresponding homotopy colimits (Homotopy Lemma), to change the underlying 
small category of the diagram without changing the homotopy type of the homotopy 
colimit, to “compute” a standard, combinatorial form of the space $ (Wedge 
Lemma), etc. 
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3.1. Projection, wedge and the quasifibration lemma. 

Proposition 3.1 (Projection Lemma [3], [49]). Let P be a finite poset and let 
$ a diagram having the property that for each $ the induced map 
$ is a closed cofibration. Then the natural map 

$ 

is a homotopy equivalence. 

Remark. A more general form of the Projection Lemma has been established for 
the so called free diagrams over arbitrary small categories, see [14] and [15], Appendix 
HL. The first “Projection Lemma” was established by Segal [37] for numerable coverings 
of topological spaces. 

The next result that we are heading for, the Wedge Lemma, has been formulated and 
used before in the case of diagrams over posets [49]. In order to formulate and prove a 
more general form of this lemma we need two preliminary definitions. 

Definition 3.2. A diagram $ is called a diagram with constant maps if 
for all $ and any nonidentity morphism f : a → b, $, the map 
X(f): X(a) → X(b) is a constant map. A diagram with coherent constant maps is a diagram 
with constant maps with the additional property that for any object $ there exists 
a point $ such that for any morphism f : b → a, $, the one element set Im(X(f)) 
is precisely {xa}. In addition it is assumed that all spaces X(a) are well pointed [8], which 
means that (X(a), {xa}) is a cofibration pair. If the category A has an initial object a, (i.e., 
an object such that for each $ there is a unique morphism from a to b) then a 
diagram with constant maps over A is called an initial diagram with constant maps. 

Note that an initial diagram with constant maps is automatically a diagram with 
coherent constant maps. 

Recall, see Section 2.2, that for a given category A and $, the undercategory 
A↓a, often denoted by a\A or a↓Id, is the category with objects 

$ 

and an arrow from $ to $ for each commutative triangle formed by f, g 
and a morphism $. 

Definition 3.3. Given $, the truncated category obtained by deleting c and 

all incident morphisms is denoted by A\\c. If we delete from A↓a the initial object $ 
and all incident morphisms we obtain the truncated undercategory A↓ a \ \ ida which is denoted 
by $. 

Specially, if A is a poset category P, then A↓a and $ are the poset categories $ 
and P<a. 

9 Journal für Mathematik. Band 509 
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Lemma 3.4. Let $ be an initial diagram with constant maps over a category A with 
a as an initial object. If X(b) is a one-element space for each object $, then the homotopy 
colimit of this diagram has the following join decomposition: 

$, 

where B(A\\a) is the classifying space of A\\a. Moreover, if X(a) is not a singleton then 
these spaces are homeomorphic. 

Proof. For an object $ let $ be the unique morphism con¬ 
necting a and b (e.g., fa = ida). If $ then $ hence $. 
If $ this is possible only if  X(a) consists of a single element. In this case 
$ and it is well known [37] (see also Section 3.3) that B(A) is contractible 
if A has an initial object. On the other hand the right hand side is obviously contractible. 

If | X(a) | > 1 then the only non-identity morphisms with a as the domain or codomain 
are of the form $ for some $, $. In this case the formula 
$ follows by the definition of the homotopy colimit through 
the bar-construction. 

Remark. There are interesting examples of diagrams $, see [49] and 
Section 5.4, which have the property that for all $ and f : a→b, $, the 
map X(f) : X(a) → X(b) is homotopically trivial. Typically these diagrams can be trans¬ 
formed, usually with the aid of the Homotopy Lemma (Proposition 3.7), into diagrams 
with coherent constant maps without affecting the homotopy type of the homotopy colimit. 
The following lemma shows that in these cases we can actually “compute” these homotopy 
types. 

Proposition 3.5 (Wedge Lemma). Suppose that $ is a diagram with coherent constant 
maps over A. If the category A is connected then the homotopy colimit of $ has the wedge 
decomposition 

$. 

(It is assumed that the base point of  $ is the base point of its subspace X(a) 
while the base point of the connected CW-complex B (A) is arbitrary.) 

Proof. For each $ we consider two diagrams: 

• The initial diagram with constant maps  X [a] : A↓a→Top, and $ if 
$ and $. The maps are the obvious constant maps. 

• The diagram with coherent constant maps  Y[a] : A → Top, and  b → {xb} if $ 
and $. Again the maps are the obvious constant maps. 

Since $ is a diagram with coherent constant maps, there exist maps of diagrams 
$ and $ such that $. This implies that 
$ is a retract of $. In particular, $ is a closed subspace 
of $. Obviously, $. Moreover, $ is the colimit of the covering by the $. 
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In other words a subset F of $ is closed if and only if $ is closed in $ for all 
$. This follows from the fact that this is true on the level of simplicial spaces and 
that the geometric realization functor commutes with colimits. 

Each space $ is homeomorphic to the push-out of the diagram: 

(1) $. 

From here we deduce that $ is homeomorphic to the push-out of the 
diagram 

(2) $. 

Each of the spaces B(A↓a) is contractible to its base point ida. We conclude from the 
Gluing Lemma 2.4 that the push-out of (2) is homotopy equivalent to the push-out of the 
following diagram: 

(3) $. 

By assumption B(A) is connected which implies that α is homotopic to a constant 
map. This observation together with the Gluing Lemma 2.4 and 3.4 complete the proof. □ 

Note that if the category A is not connected, then the formula from Proposition 3.5 
applies to the diagrams induced on each of the connected components. 

The obvious “collapsing” map of diagrams $ where $ is an arbitrary 
A-diagram and $ is the constant point-diagram over A, induces a map 
$. Under certain strong conditions this map turns out to be a qua-
sifibration, a concept introduced by Dold and Thorn [10]. A map f : X → Y between 
topological spaces is a quasifibration if for any $ and $ the induced maps 
$ are isomorphisms for all $. The following proposition 
is essentially due to Quillen [33]. 

Proposition 3.6 (Quasifibration Lemma [33], §1). If $ is an A-diagram such that all 
the maps X(f) : X(a) → X(b), $ are homotopy equivalences, then the natural 
projection map $ is a quasifibration. In particular, if B(A) is contractible, 
then for every $ the map $ is a homotopy equivalence. 

3.2. From local to global homotopy equivalences. This is the first circle of results 
about homotopies between homotopy colimits of diagrams. 

Proposition 3.7 (Homotopy Lemma). Suppose that $ and $ are diagrams over C and 
$ is a morphism such that α(c) : X(c) → Y(c) is a (weak) homotopy equi¬ 
valence for all $. Then the induced map 

$ 

is also a (weak) homotopy equivalence. 
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This Homotopy Lemma is a central result about diagrams of spaces. As noted above 
it has evolved from the Gluing Lemma, Proposition 2.4, in the papers of tom Dieck [42], 
Bousfleld and Kan [7], XII. 4.2, Vogt [44] and others. Both the Homotopy Lemma and 
the following more general result from [21] for the bar construction (as discussed in Section 
2.2) can be deduced from the results stated in Section 2. 

Proposition 3.8. Let $, $ and $, $ be diagrams. Suppose 
$ and $, are morphisms of diagrams such that α(c) : X(c) → X'(c) 
and β(c) : Y(c) → Y'(c) are homotopy equivalences for all $. Then the induced map 

$ 

is also a homotopy equivalence. 

The Homotopy Lemma is a very convenient tool if we want to compare homotopy 
types of homotopy colimits of two diagrams over the same category C. For comparison 
of homotopy colimits of diagrams over different categories we have at our disposal the 
following two elegant results. They both describe possible changes of the indexing category 
of a diagram that do not affect the homotopy type of the homotopy colimit. 

Definition 3.9. Given a functor F : C → D, the pullback functor F* associates a C-
diagram with every D-diagram: It is defined by $ for any D-diagram $. If 
$ let d↓F be the category which has as objects all arrows of the form d → F(c) 
for some $ and for morphisms between arrows $ and $ 
commutative triangles 
$ where $. 

If F = Id is the identity functor we recover in d ↓ Id the definition of undercategory 
from Definition 3.3. Dually to Definition 3.9 one defines the category d↑F. Again in the 
case F = Id we obtain the “overcategory” D↑d. 

Proposition 3.10 (Cofinality Theorem [7], XL 9.2, [12], [21]). If a functor F:C→D 
is right cofinal, i.e., if the classifying space B(d↓F) is homotopically trivial for all $, 
then the induced map 

$ 

is a homotopy equivalence. 

The (Segal’s) homotopy pushdown functor $ associates a D-diagram to any 
C-diagram $, [38], [21]. 

Definition 3.11. For every category D there is a tautological (Dop×D))-diagram 
$ of discrete spaces defined by $. If $ 
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is fixed, then let $ be the D-diagram defined by $. Similarly, 
for a fixed $, the Dop-diagram defined by $ is denoted by $. 
Given a functor F : C → D and $, the Dop-diagram $ is, via F, seen also as a 
Cop-diagram, so the space $ is well defined. The assignment $ 
defines a D-diagram $ which is called the homotopy pushdown of X or the left homotopy 
Kan extension along F. 

Proposition 3.12 (Homotopy Pushdown Theorem). Given a functor F : C → D and 
a C-diagram $, there is a natural homotopy equivalence 

$. 

Remark. The Homotopy Pushdown Theorem is particularly transparent if C = P 
and D = Q are poset categories. Suppose that F : P → Q is a functor (a monotone map). 
Then for each $, $, the “overcategory” q↑F is the poset category 
$ and the space $ is homeomorphic to the space $ 
where $ is the associated restriction diagram. 

3.3. Homotopies arising from natural transformations. A proposition of Segal [37], 
Prop. 2.1 says that any natural transformation of functors F0, F1 : C → D induces a homo¬ 
topy on the level of geometric realizations. This principle has numerous consequences and 
applications; some of them are collected in this section. 

Recall that a morphism $ of diagrams $ and $ is a 
functor F : A → B and a natural transformation α from $ to $. The result of Segal deals 
with topological categories and not with diagrams. However, the connection with results 
quoted here becomes obvious if a diagram $ is viewed as a topological category 
with $ as the space of objects and an arrow $ for each pair of objects 

x, y and a morphism $ such that $, $ and X(f)(x) = y. We are 
indebted to the referee for the following proposition and its corollaries. The referee also 
pointed out that these results can be immediately deduced from Proposition 3.1.7 in [21]; 
however, in the more explicit form presented here they are closer to our intended com¬ 
binatorial applications. 

Proposition 3.13. Suppose that $ and $ are diagrams of spaces 
over A and B. Assume that $ and $ are morphisms of these dia¬ 
grams such that either 

1. there exists a natural transformation $ such that $ or 

2. a natural transformation  $ such that $. 
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$ 

$ 

$ 

Then (F,α) and (G,β) induce continuous maps 

$ 

such that g is a left homotopy inverse to f, 

$. 

Moreover, if there exists a morphism of diagrams  $ and either a natural trans¬ 
formation $ such that $ or a natural transformation $ 
such that $, then (F,α), (G,β) and (H,γ) induce homotopy equivalences 

$. 

Corollary 3.14. Let i : B→A be an inclusion of B as a full subcategory of A, F : A→B 
a functor which maps B to B, and  $ a natural transformation. Let $ be an 
A-diagram, and let $ denote the restriction of  $ to B. Then the canonical inclusion map 
induces a homotopy equivalence 

$. 

Proof. The inclusion of diagrams $ induces an inclusion map 
$. The natural transformation ξ defines a map 
$ of diagrams, $, which induces a map 

$. 

Then h(Φ) is both the right and left homotopy inverse of h(Ξ). Indeed, this follows from 
Proposition 3.13 with ( F,α) = ( H,γ) = (F,Xξ), (G,β) = (i,id), $, $, and 
$. □ 

Corollary 3.15. Let F : A→B be a left adjoint to G : B→A. Let $ be an A-diagram. 
Then (G, id) is a map of diagrams which induces a homotopy equivalence 

$. 

Proof. Let $ and $ be the adjunction transformations. 
Apply Proposition 3.13 with (F,α) = (H,γ) = (F,η), $, (G, id), $ and 
$. □ 
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4. Diagrams over posets 

Diagrams over posets play a special role in this paper since the majority of diagrams 
arising in combinatorics are of this type. The situation resembles the use of diagrams of 
spaces in the theory of transformation groups where this technique is also of utmost im¬ 
portance. A topologist primarily interested in group actions may find it convenient to have 
the key statements formulated in the language of G-spaces although they are consequences 
of more general results. An example is the result that an equivariant map f : X → Y induces 
a homotopy equivalence $ if fH : XH → YH is a homotopy equivalence 
for any subgroup $. 

A similar tendency exists in combinatorics. For example, the reference [34], where 
Propositions 4.2 and 4.3 are formulated, deals only with posets despite the fact that Quillen 
himself was in possession of much more general statements, his well known Theorems A 
and B [33]. All these results are relatives of theorems formulated in Sections 3.3 and 3.2 
and they have played an important role in the development of the general theory. 

This is the first reason why we collect some of the corollaries of the general results 
in a separate section. A second reason is that there exist results which hold for posets and 
which do not have useful analogs for general categories. 

4.1. Homotopy colimits revisited. The homotopy colimit construction is supposed 
to be a direct extension of the order complex construction for (locally) finite posets P. It 
is shown in Section 5.1 that the join [4], $ of a family $ of 
spaces has a simple description as the homotopy colimit of a natural diagram of spaces. 
Here we note that conversely, at least in the case of posets, the homotopy colimit can be 
described as a subspace of a join of spaces. 

Proposition 4.1. Let $ be a diagram over a (locally) finite poset P. Let 
$ be the join of all spaces in this diagram and let 

$. 

Then this space is naturally homeomorphic to the homotopy colimit of $, 

$. 

This characterization of homotopy colimits generalizes the order complex construc¬ 
tion, since $, where $ is the constant diagram associated to P, as in 
Section 2. 

4.2. Comparison results for diagrams over posets. In this section we briefly review 
some of the most useful comparison lemmas which are meaningful only for order complexes 
of posets. Examples of such results are the Crosscut Theorem 4.4 and the Homotopy 
Complementation Formula [6], the latter one being a special case of Theorem 5.2. These 
results have found many interesting combinatorial applications. Also, by showing some 
of the most useful corollaries of general results from Section 3 we provide a link between 
these results and the general theory of diagrams. 
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Quillen’s Theorem A ([33]) and its specialization for posets the so called Fiber 
Theorem can be seen as a corollary and a result that motivates both the Cofinality Theorem 
(Proposition 3.10) and Segal’s Pushdown Theorem (Proposition 3.12). The Order Homo¬ 
topy Theorem is a corollary and a good illustration of results from Section 3.3. 

Proposition 4.2 (Quillen Fiber Theorem: Quillen [33], [34], Walker [45]). If f : P→Q 
is a map of posets such that the order complex of $ is contractible for all $, then 
the simplicial map Δf : Δ(P) → Δ(Q) is a homotopy equivalence. 

Similarly, if the order complex of $ is contractible for all $, then Δf is a 
homotopy equivalence. 

Proposition 4.3 (Order Homotopy Theorem: Quillen [34], see Bjorner [4], (10)). If 
f:P→Pis a decreasing poset map (that is, $ for all $), then P is homotopy 
equivalent to f(P). 

A join semilattice is a poset P such that every finite subset has a unique minimal 
upper bound. If P is of finite length, then this implies that P has a unique maximal element 
$. The crosscut complex Γ(P) of a join semilattice is the simplicial complex of all nonempty 
subsets of min(P) that have an upper bound in $. 

Proposition 4.4 (Crosscut Theorem: see Björner [4], (10.8)). For every join semilat¬ 
tice P of finite length, the crosscut complex Γ(P) is homotopy equivalent to the order com¬ 
plex of $. 

Next we come to the combinatorial version of the Projection Lemma 3.1. The natural 
combinatorial setting for its application (see Sections 5.2 and 5.4) is the following: A topo-
logical space X is covered by a (finite) set $ of closed subspaces. The intersection poset 
P of the covering $ is defined on the set of all spaces $, that occur as 

an intersection of spaces $ with the reversed inclusion as its order relation. There is 
a natural diagram $ associated to the covering. Namely, to each element $ 
one assigns the corresponding intersection Dp and defines the maps as the natural inclu¬ 
sions. 

Lemma 4.5 (Projection Lemma: [3], [49]). Let $ be a covering of the space 

X by a finite set of closed subspaces. Let P be the intersection poset P and let $ be the 
corresponding P-diagram. Assume that all maps in this diagram are closed cofibrations. Then 
the natural map $ induces a homotopy equivalence $. 

In general a ‘standard’ application of the homotopy colimit tools proceeds from a 
diagram $ associated to a covering to another ‘more simple’ diagram by suitably modify¬ 
ing $ using a poset version of the Homotopy Lemma 3.7, the Cofinality Theorem 3.10 
or the Upper Fiber Lemma. 

Lemma 4.6 (Homotopy Lemma). Let $ and $ both be P-diagrams, and assume that 
there is a map of diagrams $ such that αp : Dp→Ep is a homotopy equivalence 
for each $, then a induces a homotopy equivalence $. 
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If one wants to change the poset underlying a diagram one needs an analog of the 
Cofinality Theorem 3.10. 

Lemma 4.7  (Inverse Image Lemma). Let f : P → Q poset morphism and let $ 
be a Q-diagram. Define the P-diagram $ by $ and f * ep p ' = ef(p)f(p'). 

If for all  $ is contractible, then f induces a homotopy equivalence 

$. 

The following Upper Fiber Lemma is a useful result which also permits us to compare 
homotopy colimits of diagrams over different posets. For comparison we give two proofs 
of this lemma. The first and elementary proof is based on the basic principles while the 
second proof illustrates the use of general tools developed in earlier sections. 

Lemma 4.8  (Upper Fiber Lemma). Let $ be a P-diagram and let $ be a Q-diagram. 
Assume $ is a map of diagrams. If (F,α) induces a homotopy equivalence of the 
restrictions 

$ for all $, 

then (F,α) induces a homotopy equivalence $. 

Proof. (1st proof) We proceed by induction on the cardinality | Q| of Q. Let $ 
be a minimal element of  Q. Then $ for $ and Q2 = Q\{q}. The poset 
$ equals Q>q. We set $ for i = 1,2,3, which implies $ 
and $. 

If q is the unique minimal element of Q (i.e., Q1 = Q), then the assertion follows 
trivially from the assumptions. Otherwise a induces a homotopy equivalence 
$ for i = 1, 2, 3, by induction. Since 

$ 
and 

$, 

it follows from the Gluing Lemma 2.4 that α induces a homotopy equivalence between 
$ and $. 

(2nd proof) By the Homotopy Pushdown Theorem, $. 
By the remark after the Proposition 3.12, $ is the diagram defined by 
$. Le t $ be the d iagram defined by 
$. Then the natural map $ is a homotopy equivalence 
by Corollary 3.14. Finally, since by assumption the natural map $ is a 
homotopy equivalence, the proposition follows from the Homotopy Lemma, Proposition 
3.7. □ 

If one is lucky—and surprisingly often one is indeed lucky—one is able to transform 
a diagram $ into a diagram that allows an application of the Wedge Lemma 3.5 whose 
poset version we state next. 
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Lemma 4.9 (Wedge Lemma). Let P be a poset with maximal element $. Let $ be a 
P-diagram so that there exist points $ for all $ such that dpp' is the constant map 
$, for p > p'. Then 

$ 

where the wedge is formed by identifying $ with $, for $. 

We close this toolkit of lemmas by a result that is a simple consequence of the 
definition of a homotopy colimit. 

Lemma 4.10 (Embedding Lemma). Let $ be a map of P-diagrams. If 
$ is a closed embedding for every $, then α induces a closed embedding 

$. 

In particular, if $ is a P-diagram and $ is a subposet, then $ 
is a closed embedding. 

5. Applications 

5.1. Combinatorial objects as homotopy colimits. In this section we show how some 
well known combinatorial constructions can be usefully related to diagrams and their 
homotopy colimits. 

Proposition 5.1. Let $ be a collection of spaces. Denote by $ the poset 
of all nonempty faces of an n-simplex, i.e., the poset $ ordered by inclusion. 
Let $ be the following diagram associated to the collection $. For $ let 
$ and for $ let $ be the canonical projection. Then 

the join $ of all spaces in the family $ is naturally homeomorphic to the homotopy colimit 
of this diagram 

$. 

Figure 1. The join of S0 and S1 as a homotopy colimit 
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The formula given in Proposition 5.1 is a very simple and useful representation of 
the join of spaces exposing much of the underlying combinatorial structure. 

An important variation of the diagram above arises if  Xi = S1 for all i. This is a toric 
diagram in the sense of Section 5.3. There is a natural diagonal action of the circle group 
U(1) on all tori $. Dividing by this action leads to a new diagram $ 
and a well known fact is that this leads to a combinatorial description of the complex 
projective space $: 

$. 

A very useful concept, which has found numerous applications in combinatorics, is 
the deleted join operation [4], [35], [50]. Given a simplicial complex K, the pth deleted 
join $ is the subcomplex of the join $ of p copies of  K which consists 
of all simplices $ which have the form $ where $,  i = 1,...,p, are 
pairwise vertex disjoint simplices of  K. Some very important complexes can be constructed 
by iterating the join and the deleted join operation, for example the well known chessboard 
complexes Δp,q [4], [50], arise this way. The simplest complex of this form is $ 
where ΔN is the standard N-dimensional simplex. This space, viewed as a space with the 
obvious cyclic $-action, has been applied in combinatorics to problems of Tverberg type, 
to the ‘necklace’ partition problem, etc., see [4]. Motivated by these and other similar 
examples, it is natural to look for homotopy colimit representations for deleted joins as well. 

There are two obvious ways to associate a diagram to the space of the form $. 
One can view $ as a subspace of $ which has the homotopy colimit representation 
described in Proposition 5.1. The subdiagram which arises this way is similar except that 
the products Kj are replaced by deleted products $, j = 1,...,p. Recall that the deleted 
product $ is a cell subcomplex of the cell complex  Kj consisting of all cells of the form 
$, where $,  k = 1,..., j, are pairwise vertex disjoint simplices in K. Another 
possibility is to link $ with a diagram over the face poset of  K itself via the ‘collapsing’ 
map $. The diagram arising this way is a finite space diagram. For example if 
K= ΔN, the space $ is the homotopy colimit of a diagram of the type described 
in Proposition 5.1 where $ for all i = 0,1,...,N. These and other examples 
indicate that it may be useful to study discrete analogs of toric diagrams with the discrete 
‘tori’ $ in place of Tj = S1 × ... × S1. Specially it is an interesting question 
which convex polytopes admit natural discrete toric diagrams. 

5.2. Björner’s generalized homotopy complementation formula. Björner’s generalized 
homotopy complementation formula [5] is an effective tool to compute the homotopy 
type of a simplicial complex Δ in the case when a large, contractible induced subcomplex 
$ is known, whose connections to the rest of the complex are not too complicated. 

In the following, we provide a “diagrammatic” proof of Bjorner’s result, thereby 
demonstrating the applicability of some of our lemmas. 

Let $ be a finite (abstract) simplicial complex with vertex set  S, let $ be a 
subset of its vertex set, and denote by $ the complement  S\A of A. 

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 09.11.18 17:08



136 Welker, Ziegler and Živaljević, Homotopy colimits 

Let $ be the induced subcomplex on A, and similarly $ 
the induced complex on $. In the following, the key assumption we will make is that $ 
is contractible. 

Theorem 5.2 (Generalized homotopy complementation formula: Björner [5]). For 
any simplicial complex $ and $, define a new simplicial complex TA by taking the 
union of all the simplicial complexes 

$ for $, 

where p is an additional point $, and $ denotes the join of two complexes. 

If $ is contractible, then Δ and TA are homotopy equivalent. 

Proof Let P be the poset of all nonempty faces of Δ, ordered by inclusion, and let 

$, 

partially ordered by the condition 

$. 

(Thus Q is isomorphic to the poset of all intervals in P, ordered by inclusion: $.) 

For $ we define 
$. 

Then we clearly have inclusion maps $ whenever $. This defines a P-
diagram $, with 

$, 

where the equality holds by definition of the colimit (this is a subspace diagram!), and 
the homotopy equivalence is an application of the Projection Lemma 4.5. 

Similarly, for $ we define 

$. 

Then we get inclusion maps $ whenever $. This defines 
a Q-diagram $, with 

$, 

by definition of the colimit and the Projection Lemma. 

Thus, the claim of the theorem is reduced to proving that the homotopy colimits of 
the P-diagram $ and the Q-diagram $ are homotopy equivalent. This demands use of 
our new homotopy lemmas, since the posets P and Q are quite different. 
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The canonical poset map to use is 

f : Q → P, (Σ,Τ) → Τ. 

This f induces a homotopy equivalence between the posets P and Q (Walker [46]). To see 
this, we observe that the lower fibers $ are canonically isomorphic to $. On 
the poset $ we have an increasing map $ given by 
$. Thus, by the Order Homotopy Theorem 4.3 the fiber $ is homo¬ 
topy equivalent to the image $, which is a cone. 

Now we modify $ and $ a little. We define a new Q-diagram $, whose spaces are 

$, 

and whose maps are the obvious inclusions. Furthermore, there is a map $, 
which is the identity map on Q, and between the spaces uses the inclusion maps 

$ 

which are clearly homotopy equivalences, since $ is contractible. Thus, by the Homotopy 
Lemma 4.6, ψ1 induces a homotopy equivalence 

$. 

Similarly, we define a new P-diagram $, whose spaces are 

$, 

and whose maps are the obvious inclusions. Furthermore, there is a map $, 
which is the identity map on P, and between the spaces uses the inclusion maps 

$ 

which are clearly homotopy equivalences. Thus, by the Homotopy Lemma, ψ2 induces 
a homotopy equivalence 

$. 

Finally, at this stage we see that $ is an inverse image diagram, $, where 
f is a poset map whose lower fibers we have already checked to be contractible. Hence 
the Inverse Image Lemma 4.7 implies a homotopy equivalence 

$ 

which completes the proof. 

Alternatively, one could derive $ also from the Upper Fiber 
Lemma 4.8, together with the Projection Lemma 4.5, since $ and $ are subspace dia¬ 
grams as well. □ 
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We note that there are alternative ways to describe the construction of TA. For 
example, one can (as Björner does in [5]) start from a wedge (or a disjoint union) of the 
spaces $, and then check that all the identifications of the 
colimit $ are generated by identifying, for $, the identical subcomplexes 
$. 

Also, there are countless variations possible, corresponding to different coverings of 
the complex Δ. The beauty of Björner’s set-up is that his transformations of Δ end up 
with a subspace diagram, and thus with a colimit instead of a homotopy colimit, which 
leads to an effective model for $. It seems to us that the diagram techniques yield an 
extremely natural and convenient setting for the proof of the generalized homotopy com¬ 
plementation formula and similar results. 

5.3. Toric varieties. In this section we give a representation of the topological space 
underlying a toric variety (see Danilov [9], Fulton [18], and Ewald [13] for general back¬ 
ground on toric varieties) as the homotopy colimit of a diagram. For this we recall a 
description, due to MacPherson (see Yavin and Fischli [48], [17]), of a toric variety. A 
decomposition of $ into a complex Σ of closed, convex, polyhedral cones with apex 0 is 
called a complete fan. If all cones in Σ are generated by lattice points in $, then Σ is called 
rational. Assume that Σ is a complete and rational fan in $. Then let $ be the cell decom¬ 
position of the unit ball in $ that is dual to the one induced by Σ. For $ we denote 
by $ the cell in $ that corresponds to $. Thus $ is a cell of dimension n — dim(σ). 

We identify the n-torus $ with the image of the projection map $. For 
all cones $ the image of σ under this projection is a subtorus $ 
of $. Since σ is rational, this is a closed subtorus of dimension dim(σ). Thus the quotient 
$ is a real torus of dimension n — dim(σ). 

The toric variety XΣ is obtained from $ by taking the quotient of $ by 
the action of $ on $ for each $. This leads to a nice (compact, Hausdorff) quotient 
space since we take quotients by larger tori on $. In particular, we see that the toric 
variety XΣ has a well-defined map $, for which the fiber over any interior point 
of $ is isomorphic to $. 

Let PΣ be the poset whose elements are in bijection with the cones in Σ and whose 
order relation is defined by reversed inclusion of the cones in Σ. Thus PΣ is the poset of 
non-empty faces of $, ordered by inclusion. In particular, PΣ has a largest element $ cor¬ 
responding to the 0-dimensional cone {0}. We construct a diagram DΣ over the poset PΣ 

as follows. For $, set $. Topologically, $ is an (n — dim((σ))-torus. The map 
dτ,σ for $ is the map induced by the projection $. 

Proposition 5.3. Let Σ be a complete and rational fan in $. Then the toric variety 
XΣ is homeomorphic to the homotopy colimit of the diagram DΣ associated with Σ: 

$. 

Proof Let $ be the map that sends $ to its image in XΣ. By construction 
of DΣ the map $ is compatible with the equivalence relation $. Hence 
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$ induces a map $: hocolim DΣ → XΣ. It is routine to check that $ is indeed a homeo-
morphism. □ 

The resolution of singularities of a toric variety also fits our homotopy colimit 
framework. Namely, let Σ', Σ be two complete, rational fans in $ such that Σ' is a 
refinement of Σ (i.e., for every open cone τ'° in Σ' there is an open cone Τ° in Σ such that 
$). Thus there is an induced map f : PΣ' → PΣ. Also assume that τ' is a cone in Σ' 
whose interior is contained in the interior of the cone τ of Σ. Then the inclusion $ 
induces a surjective map $. It is easily seen that $ induces a map of 
diagrams. Hence there is an induced map $ : hocolim $. The 
map $ is surjective since f and all $ are surjective. 

Proposition 5.4. Let Σ' be a complete rational fan which is the refinement of the com¬ 
plete rational fan Σ. Then there is a surjective map $. 

It is well known that XΣ is non-singular if and only if Σ is simplicial (i.e., all cones 
are simplicial) and unimodular (i.e., all full-dimensional cones are equivalent to 
$ under unimodular transformations from $). For an example that 
shows that $ is not a combinatorial invariant of Σ in general see [28]. It is also 
well known that for any complete rational fan Σ there is a simplicial and unimodular 
complete rational fan Σ' which refines Σ. In this case $ is a resolution of singularities. 

One can also use our results to investigate the (co)homology of a toric variety. For 
this we set up a spectral sequence introduced by Segal [37], which uses the filtration of 
hocolim D by the s-skeleta of the order complexes. For a simplicial complex Δ we denote 
by Δ5 its s-skeleton. 

Assume D is a P-diagram for a poset P. Then we denote by hocolim D5 the image 
of $ in hocolimD. The filtration $ 

defines a spectral sequence with termination at $ in the E2-term and 
$. Following Segal’s arguments one finds that $ is 
given by $. Now assume (σ0< ··· < σ5) × c is a (s + t)-cell in 

hocolim D5. Then the differential of the cell complex hocolim D is given by 

$ 

$. 

T h u s t h e di f ferent ia l $ a p p l i e d t o t h e cell  (σ0< ··· < σ5) × c e q u a l s 

$, where c is 

a cycle in $. 

From this it is easily seen that our spectral sequence is isomorphic to the deRahm-
Hodge spectral sequence applied by Danilov [9], Chap. 3, § 12, to compute the cohomology 
of a toric variety. 
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5.4. Subspace arrangements. Arrangements of affine subspaces in $ also allow an 
application of the homotopy colimit method. Let A be a finite set of affine subspaces in 
$. Let us denote by $ the corresponding arrangement of spheres in the one-point com-
pactification Sn of $. Under our assumptions intersections of spheres in $ are again 
spheres (or the compactification point). The following result can be deduced from the 
Projection Lemma 4.5, the Homotopy Lemma 4.6, and the Wedge Lemma 4.9. 

Theorem 5.5 (Ziegler and Živaljević [49]). Let A be a finite set of affine subspaces 
in $. Let $ be the one-point compactification of the set-theoretic union of the subspaces 
in A and let P be the intersection poset of A. Then 

$. 

An equivalent result can be found in Vassiliev [43], III. §6, Thm. 1. In Vassiliev’s 
formulation the spaces Δ(P<p) are replaced by quotients of 

simplices by crosscut complexes, 
the spaces K(p) in his notation. More precisely, for an arbitrary subspace V corresponding 
to some point p = pv in the intersection lattice P of A, let  V1,...,Vt be the subspaces in  A 
such that Vi contains V as a subspace. Let  Σ(p) be the simplex which is spanned, in the 
abstract sense, by the vertices  V1, ...,Vt. Vassiliev calls a face x of Σ(p) marginal if V is 
not the intersection of the subspaces corresponding to the vertices of Τ . Thus the marginal 
faces are the simplices in the crosscut complex $. By the Crosscut Theorem 
4.4 the complex of marginal faces is homotopy equivalent to Δ(P<p). In Vassiliev's formula 
the spaces $ are replaced by $. Let us analyze 
$. If $ is the full simplex Σ(p), then $ and by the Crosscut 
Theorem also Δ(P<p) are contractible. In particular, 

$ and $ 

are contractible. If $ is some non-empty part of the boundary of  Σ(p) then $ 
is the suspension of $. Thus again the Crosscut Theorem shows that 

$ and $ 

are homotopic. If $ is empty, then we have to “interpret” $ as the sus¬ 
pension of the empty space, which is in our definition the join with a two point space. 
Then the homotopy equivalence also follows in this case. 

By Alexander duality on Sn we infer from Theorem 5.5 the following formula of 
Goresky and MacPherson [20]. 

Corollary 5.6 (Goresky and MacPherson [20]). Let A be a finite set of affine sub¬ 
spaces in $. Let MA be the complement $ and let P be the intersection poset of A. Then 

$, 

where codim(p) denotes the real codimension of the subspace corresponding to p. 
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Analogous results for arrangements of spheres and projective spaces can be found 
in Goresky and MacPherson [20] and in [49]. In the following, we describe a simpler, 
more general, and more powerful approach that provides combinatorial formulas for quite 
general “Grassmannian arrangements”. Let A be a central arrangement in $ (or $, $) 
with intersection poset P and a dimension function $. Let $ 
be the corresponding P-diagram of linear spaces. In case each of the linear subspaces Ap, 
$, is invariant under the action of a finite (or just closed) subgroup $ (resp. 
U(n), Sp(n)) of the orthogonal (unitary, symplectic) group, a natural step to make is to 
define the associated orbit diagram. More generally, if T is an operation (a functor) asso¬ 
ciating a space T(V) to a linear subspace $, where $, then T(A) denotes 
the diagram $ associated to the corresponding arrangement of subspaces 
in $. There are several examples that come up very naturally in the mathematical 
practice. For example, if $ is the operation of associating the unit sphere to the 
linear subspace $, then $ is the associated spherical diagram. 
Similarly, functors $, $ or simply P(V) in both cases (and in the case 
of quaternionic spaces) lead to the corresponding projective arrangements $, $ 
or $, denoted simply by P(A). Projective diagrams are special cases of the associated 
Grassmann diagrams obtained with the aid of the functor 

$. 

Lens space arrangements Lm(A) are defined similarly, where $ 
is the lens space associated to the unit sphere in a complex linear space V. 

We illustrate how the Homotopy Lemma 4.6 can be applied to produce a combi¬ 
natorial description of the link of the related arrangement in all the special cases above. 
We obtain in particular simpler, stronger, and more natural proofs of some results from 
[49], Thms. 2.11 and 2.14 about projective arrangements. The advantage of the proof 
below is that it uses the Homotopy Lemma in its simplest form and allows a uniform 
treatment of all the special cases above. It is clear that this method may be useful for other 
applications, say for other group actions, since the argument no longer requires the 
arrangement to be shifted to a more special position by a dilatation $, i = 1,...,n, 
for some ε > 0. 

Our objective is to show that the homotopy type of the link has a purely combinatorial 
description in terms of the poset P and the associated rank function $. The link 
of a (spherical, affine, projective, lens, Grassmann etc.) arrangement is the union of all 
spaces in the arrangement. It follows from the Projection Lemma that the link has the 
same homotopy type as the homotopy colimit of the corresponding diagram. 

We uniformly construct a combinatorially defined diagram which serves for compa¬ 
rison with the original one. Choose a flag $, $. Let 
$ be one of the functors described above. Then T[F] = T[F](A), the flag diagram 
associated with T(A), is defined by $ where the morphisms T[F]p → T[F]q 

are the obvious inclusion maps. Every two flag diagrams T[F] and T[F'] are naturally 
isomorphic, thus the isomorphism type of T[F] depends only on P and d. 

We want to compare our diagram T(A) with the combinatorially defined diagram 
T[F](A). There does not seem to exist a natural map of diagrams between T(A) and 
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T[F](A) because e.g. the projection map is not natural. This difficulty was overcome in 
[49], in the case of projective diagrams, by shifting the diagram T[F](A) to a more special 
position and by applying a more general version of the Homotopy Lemma by Vogt [44] 
that allows noncommutative diagrams if they commute up to coherent homotopies. The 
proof of Theorem 5.8 shows that in practical problems a very natural idea to use is the 
comparison with the third, so called “ample space” diagram that contains both T(A) and 
T[F](A) as subdiagrams. We need a lemma which explains what is meant by “ample” in 
all the interesting cases above. 

Lemma 5.7. Let T: $, $, be one of the functors defined above 
which to every vector space $ associates the corresponding projective space P(V), 
Grassmann manifold Gk(V), the lens space Lm(V) (for $), or the unit sphere S(V). 
Then in each of these cases there exists a functor $ which associates with 
each subspace $ an “ample” subspace $ and to each inclusion V → W an 
inclusion of spaces RT(V) → RT(W) so that the following condition is satisfied. 

Let $, dim( V) = k. Then for any W of dimension k with $, there 
is an inclusion $ so that the inclusion map 

iw:T(W)→RT(V) 

is a homotopy equivalence (actually, an inverse to a deformation retraction). 

Proof. The space RT(V) is defined in a very similar way for all the examples above. 
For example in the case of the functor $ we put $. The 
construction in the case of a projective functor $ is analogous, one removes the 
projective space $ from $. The inclusion map $ is a 
homotopy equivalence since $ is the total space of a vector space bundle (a 
tubular neighborhood) over P(V). Obviously $ for any W with the 
property $. Finally, iw : P(W) → RT(V) is a homotopy equivalence since there 
exists a linear map $ which maps V to W and leaves $ invariant. Something 
similar is done in the case of Grassmannians. Here, $ is defined by 

$. 

In this case $ is also the total space of a vector bundle over Gk(V) which can be 
seen as follows. If Mk(V) is the Stiefel manifold of all 1-1 linear maps (matrices) $ 
then Gk(V) = Mk(V)/G(k) where G(k) = GL(k,K) is the appropriate group of linear 
automorphisms. Let $ be the projection map. Note that 

$, 

where $is the space of all linear maps, and that the group G(k) acts diagonally 
on the product $. Now it is enough to recall that if X and Y are two G-
spaces and if the action on Y is free, then the orbit space (X × Y) / G of the diagonal action 
is represented as a fiber bundle 

X → (X ×Y)/G → Y/G 
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which in our case means that $ is fibered over Gk(V) with the fiber $. Hence, 
iv is a homotopy equivalence. It is shown that iw is also a homotopy equivalence analogously 
to the case of projective diagrams. 

Finally, in the case of the “lens space” functor, let $. The 
proof that $is “ample” in the sense above is analogous and can rely on the fact 
that the sphere $ is a join of spheres S(V) and $, and that the action of the 
cyclic group $ respects this decomposition. □ 

Theorem 5.8 (Homotopy types of arrangements). Let $ be a linear sub-
space arrangement of $, where $ is one of the (skew) fields $, $ or $. Let P be the 
intersection poset of A, with the dimension function $, d(p) = dim(Ap), defined 
above, and set $ for $. 

Let T : Vect → Top, $, be the projective, sphere, Grassmann or the lens space 
functor defined above and let T(A) be the corresponding arrangement of subspaces of $. 
Then there is a homotopy equivalence 

$ 

Proof. We start by choosing the flag F, $, in sufficiently general 
position with respect to the arrangement A. This requirement means that for any Fi and 
$, if $ the $. Let us define the associated “ample” space 
diagram $ by $, $, where $ is the 
“ample” space functor associated with T described in Lemma 5.7. Hence, there exist two 
naturally defined maps of diagrams α and β, 

$ 

induced by the inclusion maps αp : T(Ap) → Rp and βp : T[F]p → Rp. By Lemma 5.7 these 
inclusion maps are homotopy equivalences. From here and the Homotopy Lemma it 
follows that $ and $, which implies 

$. 

Finally, we notice that the embeddings $ induce a diagram map 

$, 

where $ denotes the “constant” P-diagram which has $ for all $, and iden¬ 
tity maps fpp, for $. From the Embedding Lemma 4.10 we get that $ is an embedding 

$, 

and we easily identify the image of $ with the space $. □ 
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Note that for the homotopy formula for Grassmann arrangements in Theorem 6.4 
only the truncated poset $ is relevant: This corresponds to the fact 
that spaces with d(p) < k do not have k-dimensional subspaces, so A and 

$ 

have the same associated k-Grassmann arrangement. 

The following proposition shows that there is a general decomposition formula for 
the homology of flag diagrams and, a posteriori, of the T- links of $-arrangements for 
$. 

Proposition 5.9 (Homology of flag diagrams). Let A be an arrangement of linear 
subspaces in $ and let T be one of the functors described above. Let T[F](A) be the com-
binatorially defined flag diagram associated to the arrangement A and the functor T. We set 
$ and $. Assume that for the coefficient ring R and for 
all $ 

• the exact sequence of the pair $ splits in homology and 

• the homology groups $ are free R-modules. 

Then, 
$ 

$. 

Proof. For this proof we fix the coefficient ring R used for homology computations 
and we write $ for $. For an arbitrary poset Q and a natural number k we 
introduce “constant” diagrams $ over Q, defined by $, $. 
If it is clear from the context which poset Q is used, we write $ for the diagram $ 
Note that our diagram T[F](A) can be squeezed in between two constant diagrams $ 
and $. Clearly, hocolim $. The Künneth theorem and the freeness 
of R-modules $ imply 

$. 

From this observation and from the fact that the map $ is a mono-
morphism for $, we conclude that the map $, for $, 
induces a monomorphism of homology groups. Then the composition of homomorphisms 

$ 

is a monomorphism too. Thus the first of them is also a monomorphism. It follows that 
the long exact sequence of the pair (hocolimT[F](A), $) splits and 

$. 
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Informally speaking, we peel from the homotopy colimit of the diagram T[F](A) the part 
of its homology coming from the constant subdiagram $. Let $ be the restriction of 
the diagram T[F](A) on the poset $. By excision, recalling the definition of the 
homotopy colimit hocolimT[F](A), we have 

$. 

By induction on i we may assume that for some $ 

$ 

$ 

$ 

The long exact sequence of the triple 

$ 

splits by the same argument as above. This means that we can peel from the homology 
$ the part isomorphic to 

$ 

$. 

The part that remains is isomorphic to the group $. The 
last group is by excision isomorphic to $. So 
the Künneth formula, the process described above and induction on i lead to the desired 
formula. □ 

If the arrangement A is essential (i.e., if s = 0 and $, then both 
$ and $ are interpreted as empty spaces and the formula given in Proposition 
5.9 can be rewritten as follows. 

Corollary 5.10. Let A be an essential arrangement satisfying the assumptions of Pro¬ 
position 5.9. Then 

$. 

For example if T = P is the functor which associates the complex projective space 
P(V) to every complex linear space V, then the formula given in Corollary 5.10 has the 
following form 

$, 

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 09.11.18 17:08



146 Welker, Ziegler and Živaljević, Homotopy colimits 

where $ and $ for all k > 0. This formula together with its counterpart 
for the real projective arrangements was formulated and proved in [49]. Unfortunately, 
as it was kindly pointed to us by Anders Björner and Karanbir Sarkaria, the formulation 
there suffers from some misprints. 

The following example, which we also owe to A. Björner and K. Sarkaria, shows how 
a formula of the type above arises in connection with the Stanley-Reisner ring of a simplicial 
complex Δ. 

Corollary 5.11. Let Δ be a simplicial complex on the vertex set { 1 , . . . , n } . Let AΔ be 
the arrangement of complex linear subspaces in $ defined by $, where 
$, ei the ith unit coordinate vector in $. Let $ be the 
associated projective arrangement. Then the homology of the union $ of the arrange¬ 
ment P(A) is given by 

$, 

where $ is a subposet of $ and Δ(Δ[k]) its order complex. 

Note that the union of the arrangement P(AΔ) is a projective variety whose homo¬ 
geneous coordinate ring is the Stanley-Reisner ring of Δ. 

Note that Proposition 5.9 deals with the case when $ is in-
jective in contrast to the Goresky-MacPherson formula (Corollary 5.6). We already men¬ 
tioned that the Goresky-MacPherson formula for the cohomology of the complement of 
an arrangement A of (affine) subspaces can be proved by Alexander duality from the homo¬ 
logy of an associated arrangement S(A) of spheres. In the case when T = S the map 
$ is trivial. Although it does not completely fit in the setting of 
this section one may regard toric varieties—seen from the point of view of Section 5.3 — 
as an interesting third case, when the map in homology induced by the diagram maps are 
surjective. 

5.5. Subgroup complexes. The order complex of the poset 

$ 

of non-trivial p-subgroups of a finite group G has received considerable interest over that 
past few years (see for example [1]). It was already observed by Quillen [34] that Sp(G) 
is homotopy equivalent to the poset Ap(G) of non-trivial elementary abelian p-subgroups 
of G. In [31] the authors consider the covering of Δ(Ap(G)) by the subcomplexes 
Δ(Ap(NA)) for a fixed solvable normal p′-subgroup N and maximal elementary abelian 
p-subgroups A of G. Then they use the following facts: 

(a) Intersections of the spaces of type Δ(Ap(NA)) are again of the type Δ(Ap(ND)) 
for some elementary abelian p-subgroup D of G. 
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(b) For a solvable normal p'-group N and an elementary abelian p-subgroup A the 
complex Δ(Ap(NA)) is homotopy equivalent to a wedge of spheres of dimension 
rank(D)—l. 

Observation (a) follows by basic group theoretical argumentation. Assertion (b) is 
much less obvious. It was established by Quillen [34], Theorem 11.2, but also follows by 
applications of the homotopy colimit methods (see [31], Theorem (A)). Using facts (a) 
and (b), the Projection, the Homotopy and the Wedge Lemma the following wedge de¬ 
composition of Δ(Ap(G)) for finite solvable groups G with non-trivial normal p'-group is 
proved in [31]. 

Theorem 5.12 (Pulkus and Welker [31], Theorem (B)). Let G be a finite group and 
let p be a prime. Let N be a solvable normal p'-subgroup. Let CN/N be the intersection of 
all maximal elementary abelian p-subgroups of G/N. For $ let cAN/N be an 
arbitrary but fixed point in Δ(Ap(G/N)>AN /N). Then Δ(Sp(G)) is homotopy equivalent to 

$ 

where the wedge is formed by identifying, for AN / N > N / N, 

the point $ 

with the point $. 

In particular, if A is a maximal elementary abelian group of rank r in G, then 
$ is homotopyc to a wedge of (r — 1)-spheres. 
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