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Predicting and Rationalizing the Soret Coefficient of Binary
Lennard-Jones Mixtures in the Liquid State

Nils E. R. Zimmermann,* Gabriela Guevara-Carrion, Jadran Vrabec,* and Niels Hansen*

The thermodiffusion behavior of binary Lennard-Jones mixtures in the liquid
state is investigated by combining the individual strengths of non-equilibrium
molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD)
simulations. On the one hand, boundary-driven NEMD simulations are useful
to quickly predict Soret coefficients because they are easy to set up and
straightforward to analyze. However, careful interpolation is required because
the mean temperature in the measurement region does not exactly reach the
target temperature. On the other hand, EMD simulations attain the target
temperature precisely and yield a multitude of properties that clarify the
microscopic origins of Soret coefficient trends. An analysis of the Soret
coefficient suggests a straightforward dependence on the thermodynamic
properties, whereas its dependence on dynamic properties is far more
complex. Furthermore, a limit of applicability of a popular theoretical model,
which mainly relies on thermodynamic data, was identified by virtue of an
uncertainty analysis in conjunction with efficient empirical Soret coefficient
predictions, which rely on model parameters instead of simulation output.
Finally, the present study underscores that a combination of predictive
models and EMD and NEMD simulations is a powerful approach to shed light
onto the thermodiffusion behavior of liquid mixtures.

1. Introduction

In the nineteenth century, Ludwig[1] and Soret[2] observed in-
dependently from each other that a temperature gradient in
an isotropic mixture can induce a concentration gradient (Fig-
ure 1). This coupling phenomenon between heat and mass flow
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is known as thermal diffusion, thermodiffu-
sion, Ludwig–Soret effect, or simply Soret
effect. Coupled heat and mass transfer oc-
curs inmany industrially relevant processes
such as absorption, distillation, extraction,
drying, crystallization, or condensation.[3]

As a second-order effect, the mass flux in-
duced by the Soret effect is usually rel-
atively small, but it can play an impor-
tant role in many natural[4,5] and technical
processes.[6] Thermal diffusion can be em-
ployed to separate mixtures that are hard
to handle by conventional methods,[3] for
example, the fractionation of isomers,[7]

isotopes,[8] polymers,[9] and colloids.[10] Fur-
ther applications include surface coating,[11]

geological carbon dioxide storage,[12] mod-
eling of hydrocarbon reservoirs,[13] and hy-
drogen enriched flames.[6]

Chemical systems that undergo ther-
modiffusion in practical settings are fre-
quently binary systems in the liquid state.
In such cases, the separation of the two
components can be quantified by the Soret
coefficient ST , which is a preferred quantity
in the study of liquids.[14] In case of multi-

component mixtures, the Soret coefficient becomes a vectorial
quantity.[15] The Soret coefficient relates the thermal diffusion co-
efficient DT to the Fick diffusion coefficient D

ST =
DT

D
(1)

From a technological perspective, the Soret coefficient provides a
compact metric to rate the separation efficiency of a process that
is based on thermodiffusion (Figure 1).
Two factors render the measurement of the Soret coeffi-

cient usually challenging: first, the small magnitude of ST
and, second, the presence of undesirable convective currents
due to gravitation.[16,17] Despite efforts to produce benchmark
data,[12,18–21] some even in microgravity environments,[22,23] the
measurement of the Soret coefficient is still challenging, in par-
ticular, for liquid mixtures with more than two components.[16,24]

Consequently, several theoretical models were proposed to pre-
dict the Soret coefficient,[25–27] which were thoroughly reviewed,
for example, in refs. [16, 28]. However, even the most established
models based on non-equilibrium thermodynamics[16] often fail
when dealing with strongly interacting liquid mixtures.
Molecular modeling and simulation offer a complimentary ap-

proach to gain a deeper understanding of the microscopic mech-
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Figure 1. An increasing Soret coefficient ST yields stronger separation of
components if the temperature gradient, the Fick diffusion coefficient D,
and the mean composition remain constant. The displayed behavior is
referred to as positive thermodiffusion because the present component
(typically the heavier one) accumulates in the low temperature region. By
contrast, the component that accumulates in the high temperature region
(typically the lighter one) undergoes negative thermodiffusion.

anisms of thermal diffusion and also allow for the prediction of
Soret and other transport coefficients. The Lennard-Jones inter-
action potential is particularly attractive because it is a computa-
tionally efficient and yet realistic molecular model, thus helping
to rapidly generate a fundamental understanding of molecular
processes. Furthermore, Lennard-Jones mixtures can exhibit a
rich vapor–liquid equilibrium behavior,[29–31] which can facilitate
constructing new theoretical models and testing application lim-
its of existing ones. Knowing the phase diagram is in itself central
to studying thermodiffusion because phase changes are typically
to be avoided, that is, gas bubbles and solid precipitates are un-
wanted when investigating thermal diffusion in the liquid state.
Thermodiffusion can be simulated in various ways by molec-

ular simulations, where non-equilibrium molecular dynamics
(NEMD) simulations are a well-established standard approach.
These simulations closelymimic experimental scenarios for ther-
modiffusion measurements, making them the ideal candidates
to construct benchmark data. NEMD simulations monitor the
response to system perturbations out of equilibrium. Synthetic
NEMD simulations[32–34] add external forces on molecules, thus
altering their dynamics in an artificial way. On the contrary,
boundary-driven NEMD methods[35–42] aim at paralleling experi-
mental situations much more directly by their conceptual set-up.
These methods impose different temperatures within the simu-
lation volume that give rise to temperature gradients, which, in
turn, exert thermodynamic forces on themolecules in an indirect
and natural way. Typically, a narrow region along one spatial di-
rection is assigned as a heat source volume, and a corresponding
heat sink region is placed half the simulation volume apart. The
difference between the various boundary-driven methods is the
way in which the temperature is controlled in the two regions.
Another approach to simulate thermal diffusion and to calcu-

late the Soret coefficient is based on the spontaneous fluctuations
of the microscopic fluxes that are present in equilibrium molec-
ular dynamics (EMD) simulations through the Green–Kubo for-
malism. Although the corresponding flux expressions for mix-
tures were thoroughly derived in the 1980s,[43,44] only a few
molecular simulation studies on thermal diffusion employing
EMD techniques can be found in the literature.[32,33,45–50] Further-

more, EMD methods have been mostly used for validation pur-
poses, that is, together with NEMD simulations.[33,45–48,50] Pre-
sumably, this originates from the difficulties inherent to EMD
simulations. First, cross-correlation functions are weaker and
thusmore challenging to sample than auto-correlation functions.
Second, reliable information on the thermodynamic factor and
the partial molar enthalpy is required to calculate the Soret coef-
ficient. However, EMD simulations are valuable to gain insight
into the sign and magnitude of the individual contributions to
thermal diffusion processes, as recognized by Miller et al.[49]

In this work, the strengths of NEMD and EMD simulations
were combined to reliably predict and understand the Soret co-
efficient of three different Lennard-Jones mixtures in the liquid
state.[29,30] Furthermore, a popular theoretical model,[27] which
mainly relies on thermodynamic input data, and a regression
model to predict the Soret coefficient were tested, investigating
their applicability limits. Our results and insights underscore
that NEMD and EMD simulations in conjunction with theoret-
ical models build a strong framework to foster understanding of
thermodiffusion in liquid mixtures.

2. Methodology

When two or more processes occur simultaneously in a sys-
tem, they may couple, causing new effects.[51] Examples of such
cross-phenomena are the Soret and Dufour effects. The ther-
modiffusion or Soret effect addresses the macroscopic motion
of molecules that results in a concentration gradient caused by
a temperature gradient. The reciprocal phenomenon, that is,
a temperature gradient caused by a concentration gradient, is
known as Dufour effect.

2.1. Non-Equilibrium Thermodynamics

Linear non-equilibrium thermodynamics (NET) provides a com-
pact framework to describe the behavior of systems subject
to various driving forces and is fundamentally based on four
postulates:[14]

1) the quasi-equilibrium postulate, requiring that gradients are
not too large;

2) the linearity postulate, stating that all fluxes are linear func-
tions of all relevant driving forces;

3) Curie’s postulate, constraining which fluxes and forces are
coupled; and

4) Onsager’s reciprocal relations, requiring symmetric coeffi-
cient matrices in the flux-force relations.

Considering the Soret and Dufour effects only, the equa-
tions for heat flux JQ andmass flux of component 1 Jm1 in a binary
mixture can be written in the NET framework as[52]

JQ = −LQQ
∇T
T2

− LQ1

(
𝜕𝜇1

𝜕w1

)
T,p

∇w1

(1 − w1)T
(2)

Jm1 = −L1Q
∇T
T2

− L11

(
𝜕𝜇1

𝜕w1

)
T,p

∇w1

(1 − w1)T
(3)
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where T is the temperature, p is the pressure, and 𝜇1 and w1
are the chemical potential and mass fraction of component 1,
respectively. Lij are phenomenological Onsager coefficients that
describe the proportionality between the thermodynamic forces
and the fluxes that they induce.[53] The auto-correlated properties
L11 and LQQ are themass–mass and heat–heat phenomenological
coefficients. The cross-correlated phenomenological coefficients
L1Q = LQ1 follow Onsager’s reciprocity relations.[54]

On the other hand, experimentalists usually employ the follow-
ing constitutive equations[46,52] to describe heat and mass fluxes

JQ = −𝜆∇T − 𝜌mw1

(
𝜕𝜇1

𝜕w1

)
T,p

TDD
T∇w1 (4)

Jm1 = −𝜌mw1w2D
S
T∇T − 𝜌D∇w1 (5)

where 𝜆 is the thermal conductivity, 𝜌m is the mass density of the
mixture, and DS

T and DD
T represent the thermal diffusion coeffi-

cients of Soret- and Dufour-type, respectively.
When the steady state is reached (i.e., Jm1 = 0) and a constant

mass density can be assumed, Equation (5) can be rearranged to

ST =
DS

T

D
= − 1

w1w2

(
∇w1

∇T

)
Jm1 =0

= − 1
x1x2

(
∇x1
∇T

)
J1=0

(6)

where xi is the mole fraction of component i and J1 the molar
flux of component 1. Another frequently determined and closely
related quantity is the thermal diffusion factor[52] 𝛼T

𝛼T = TST = T
DT

D
(7)

The relations between phenomenological coefficients and
transport coefficients can be determined by comparing the NET
phenomenological Equations (2) and (3) with the constitutive
Equations (4) and (5). Consequently, the thermal diffusion coef-
ficients of Soret- and Dufour-type are thus given by[46]

DS
T =

L1Q
𝜌mw1w2T2

(8)

DD
T =

LQ1
𝜌mw1w2T2

(9)

From Onsager’s reciprocity relations, it follows that DD
T = DS

T =
DT .
The Fick diffusion coefficient is related to the mass–mass phe-

nomenological coefficient L11 by

D = L11
1

𝜌mw2T

(
𝜕𝜇1

𝜕w1

)
T,p

= L11
kB

𝜌w1w2M1M2
Γ (10)

where 𝜌 is the molar density of the mixture.Mi is the molar mass
of component i, kB is the Boltzmann constant, and Γ the thermo-
dynamic factor. The Soret coefficient is thus[46]

ST = 1
w1T

L1Q
L11

(
𝜕w1

𝜕𝜇1

)
T,p

=
w1M2

x1kBT2Γ
L1Q
L11

(11)

Figure 2. a) The key elements of the Langevin NEMD simulations are two
temperature control regions. One of those regions (center) is maintained
at a higher temperature Thigh, whereas the outermost regions that are con-
nected via periodic boundary conditions are kept at a lower temperature
T low. The temperature T and themole fractions xi as functions of the Carte-
sian z-direction are obtained from histograms using 50 bins. b) The pro-
files of T and x1 obtained from Langevin NEMD simulations are linear.
Two regions (green) can be used to determine slopes for further analysis
to calculate the Soret coefficient.

2.2. Non-Equilibrium Molecular Dynamics

NEMD simulations closely mimic experimental scenarios to
study thermodiffusion because these simulations exhibit regions
of high and low temperature within the simulation volume. Fur-
thermore, linear concentration profiles and linear temperature
profiles in between these regions are obtained at steady state, the
latter implying a constant thermal conductivity.[35] The thermal
conductivity of pure Lennard-Jones fluids and binary mixtures
increases with temperature and density,[35,55–57] the two effects
possibly compensating each other. Thus, a narrow region in the
center of the simulation volume is defined as a heat source and a
corresponding region as a heat sink at the edges of the simulation
volume in z-direction (Figure 2a).
The temperature profile T(z) and the mole fraction profiles

xi(z) were determined on the basis of particle trajectories ob-
tained with LAMMPS[58] (stable version: October 29, 2020). Both
temperature-control regions were of equal size, having a width
of 0.3𝜎1 , unless stated otherwise, where 𝜎1 is the Lennard-Jones
size parameter of component 1. The resulting width was typically
≈1% of the simulation volume. Two Langevin thermostats[59]
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were used, where one thermostat heated one temperature-control
region and the other thermostat cooled the other T-control re-
gion, so that we refer to this method as Langevin NEMD.
The Langevin NEMD simulations were typically carried out

with 1200 molecules. The z-direction of the simulation volume
was divided into 50 bins of constant widthΔz = lz∕50 (Figure 2a).
Each molecule iwas assigned to one of the bins j, according to its
position zi: j = int(zi∕Δz). For each bin j, the kinetic energy of all
molecules located in the bin Ekin(zj) was determined

Ekin(zj) =
1
2

N(zj)∑
i=1

mi|vi − v|2 (12)

where N(zj) is the number of molecules in bin j, mi, and vi the
mass and the velocity of molecule i, respectively, and v is the
center-of-mass velocity of the system. Since the total momentum
of the system was set to zero, v vanishes. The local temperature
in bin j T(zj) was calculated by

[35]

T(zj) =
2Ekin(zj)

3N(zj) kB
(13)

The number of degrees of freedom 3N(zj) should be adjusted
to account for fixing the total momentum of the entire system,
by subtracting three in total, but distributed over the entire tem-
perature profile. Since 50 bins were typically used, we would
need to subtract approximately 3∕50 = 0.06 from the number
of degrees of freedom in each bin. As the number of degrees
of freedom was typically (3 × 1200)∕50 = 72 in each bin with
N(zj) ≈ N∕Nbins = 1200∕50, the adjustment would have been
on the order of 0.1% and thus negligible. In this context, we
investigated the influence of system size (i.e., the number of
molecules) on the Soret coefficient—and thus on the tempera-
ture profile—while keeping the number of bins constant, and
found no measurable influence when using larger systems, in
agreement with previous work.[60] Usually, four different temper-
ature differences ΔT between the region of high Thigh and low
temperature T low were considered. The relative imposed temper-
ature differences (Thigh − T low)∕(0.5 ⋅ (Thigh + T low)) were set to
13.3%, 26.6%, 40%, and 53.3%, respectively. The largest temper-
ature gradient observed in the simulations was 0.026 such that
violation of local equilibrium is not expected.[61,62]

After a certain response time, a steady state was observed,
where the temperature gradient induced a mole fraction gradi-
ent. The simulation time of 3500 to 5000 Lennard-Jones units
spent to establish the steady state was selected based on transient
density profiles reported by Bonella et al.[63] The mole fraction
of component k in bin j xk(zj) was calculated as the ratio of the
number of molecules of component k in bin j Nk(zj) over the total
number of molecules in bin j N(zj)

xk(zj) =
Nk(zj)

N(zj)
(14)

The slopes of the mole fraction dxk∕dz and temperature profiles
dT∕dz as well as the average mole fraction of component k x̄k
provide all required input data to calculate the Soret coefficient of
component k using Equation (6). For each ΔT , ten simulations

Figure 3. a) Parity plot of mean temperature in the profile fit region of the
Langevin NEMD simulations T(z)|Vfit and the global mean temperature⟨T⟩ for all systems and state points studied in this work (cf. Table 1). b)
Meanmole fraction of component 1 in the profile fit region of the Langevin
NEMD simulations x1(z)|Vfit for all systems and state points.

with independent initial configurations were performed in order
to average the individual Soret coefficient data and obtain reliable
uncertainty estimates via the sample standard deviation.[64,65]

A transition regime was observed, in which the tempera-
ture and mole fraction profiles were still influenced by the
temperature-control regions (Figure 2b). Therefore, all data
points that were closer than≈ 0.05 × lz to the center of each ther-
mostat layer were discarded. Thus, roughly 20% of the profile
data were discarded in order to maximize the likelihood to ana-
lyze linear profiles only.
Unless it is specified otherwise, the average temperature in

the profile fit region Vfit was identified as the temperature of the
NEMDsimulations, that is,T = T(z)|Vfit . The average values from
profiles agree very well with the corresponding global mean tem-
perature obtained from all molecules in the entire NEMD sim-
ulation volume (Figure 3a). Similarly, the mean mole fraction
of component 1 in the profile fit region of the NEMD simula-
tions x1(z)|Vfit was close to the globally imposed value of x1 =
0.5 mol mol−1 (Figure 3b).
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Newton’s equations of motion were integrated with a velocity-
Verlet algorithm[66,67] during the production phase. More details
about the NEMD simulations and the corresponding computa-
tional workflow are provided in Section S1.1, Supporting Infor-
mation.

2.3. Equilibrium Molecular Dynamics

All EMD simulations were carried out with the ms2 package.[68]

The mass–mass, heat–heat, and heat–mass phenomenolog-
ical coefficients defined by the NET framework[52] can be
sampled with EMD simulations, employing the Green–Kubo
formalism.[69,70] In this framework, the phenomenologicalmass–
mass phenomenological coefficient L11 is given by

[44]

L11 =
V
3kB

∞

∫
0

⟨Jm1 (0)Jm1 (t)⟩ dt (15)

where t is the time. The microscopic mass flux Jmi is defined as

Jmi (t) =
1
V

Ni∑
k

mi(v
k
i (t) − ⟨v⟩) (16)

Here, mi is the mass of a molecule of component i, vki (t) the cen-
ter of mass velocity vector of molecule k at some time t, Ni is the
number of molecules of component i, and the angular brackets
indicate the canonical (NVT) ensemble average. After setting the
total momentum to zero, ⟨v⟩ deviated from zero during simula-
tion only within machine error such that Jm1 + Jm2 = 0.
The Green–Kubo expression for the heat–mass phenomeno-

logical coefficient LQ1 is

LQ1 =
V
3kB

∞

∫
0

⟨JQ (t)Jm1 (0)⟩ dt (17)

In EMD simulations, the heat flux JQ cannot be directly
determined—in contrast to the internal energy flux JE which can
be directly computed. Thus, the associated internal energy–mass
phenomenological coefficient LE1 was calculated by

LE1 =
V
3kB

∞

∫
0

⟨JE(t)Jm1 (0)⟩ dt (18)

where the internal energy flux JE is given by

JE = 1
2V

n∑
i=1

Ni∑
k=1

mk
i

(
vki − ⟨v⟩)2 ⋅ (vki − ⟨v⟩)

−1
2

n∑
i=1

n∑
j=1

Ni∑
k=1

Nj∑
l≠k

[
rklij :

𝜕uklij

𝜕rklij
− I ⋅ uklij

]
⋅ (vki − ⟨v⟩) (19)

Here, uklij is the inter-molecular potential energy and rklij is the dis-
tance vector between molecules k and l. The indices i and j de-
note the components of the mixture. The dyadic product is rep-
resented by : and I is the unitary tensor. In a binary mixture, LQ1

can be determined from LE1 if the partial molar enthalpies hi of
both components are known[71]

L1Q = L1E − L11

(
h1
M1

−
h2
M2

)
(20)

Because of Onsager’s reciprocity LE1 = L1E . Thus, both cross-
correlated coefficients were independently sampled during sim-
ulation and averaged to improve statistics.

2.3.1. Partial Molar Enthalpy

In this work, the partial molar enthalpy was calculated fromEMD
simulations in two steps. First, the residual molar enthalpy of the
binarymixture hres was calculated for ten different mole fractions
in the isobaric–isothermal (NpT) ensemble over the composition
range x1 = 0.5 ± 0.05 mol mol−1. Subsequently, an appropriate
function h = f (x1) was fitted by a least squares optimization to the
simulation data to generate an expression for the molar enthalpy
h = hres + hid.
The partial molar enthalpy hi was then obtained from

hi = h + xj

(
𝜕h
𝜕xi

)
T,p

(21)

2.3.2. Thermodynamic Factor

To determine the Fick diffusion coefficient from the mass–
mass phenomenological Onsager coefficients according to Equa-
tion (10), the thermodynamic factor Γ is required

Γ =
x1
kBT

(
𝜕𝜇1

𝜕x1

)
T,p

(22)

It describes the thermodynamic non-ideality of amixture and can
be obtained from Kirkwood–Buff integrals[72] Gij

Gij = 4𝜋

∞

∫
0

(
gij(r) − 1

)
r2 dr (23)

employing

Γ = 1 −
𝜌1𝜌2(G11 +G22 − 2G12)

𝜌1 + 𝜌2 + 𝜌1𝜌2(G11 +G22 − 2G12)
(24)

where gij (r) is the radial distribution function, while 𝜌1 and
𝜌2 are the partial densities 𝜌i = xi𝜌. The truncation method by
Krüger et al.[73] and the corrections of the radial distribution func-
tion by Ganguly and van der Vegt[74] were employed because of
convergence issues.[75]
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Table 1. Lennard-Jones parameters and state points.

System, Mass ratio Size ratio Energy ratio Temperature Pressure Cutoff radius Time step size

state point m2∕m1 𝜎2∕𝜎1 𝜀2∕𝜀1 kBT∕𝜀1 p𝜎31∕𝜀1 rcut∕𝜎1 Δt∕103

A1 0.5 1.5 0.75 0.75 0.09 3.75 0.7071

A2 0.5 1.5 0.75 1 0.09 3.75 0.7071

A3 0.5 1.5 0.75 1 1.8 3.75 0.7071

B1 3.375 1.5 1 0.75 0.09 3.75 1

B2 3.375 1.5 1 1 0.09 3.75 1

B3 3.375 1.5 1 1 1.8 3.75 1

C1 1 1 0.75 0.75 0.09 2.5 1

C2 1 1 0.75 1 0.09 2.5 1

C3 1 1 0.75 1 1.8 2.5 1

2.4. Models

Equimolar (i.e., x1 = x2 = 0.5 mol mol−1) binary liquid mixtures
of molecules that interact via the Lennard-Jones potential were
considered

uklij = 4 ⋅ 𝜀ij

[(
𝜎ij

rklij

)12

−
(
𝜎ij

rklij

)6
]

(25)

where 𝜀ij and 𝜎ij are the Lennard-Jones energy and size parameter
for the interaction between molecule pairs belonging to compo-
nents i and j, and rklij denotes the distance between molecules k
and l. The interaction parameters if i = j 𝜎i and 𝜀i are provided
in Table 1. The parameters for the interaction between differ-
ent components were determined with the Lorentz–Berthelot
combining rules[76] unless stated otherwise: 𝜎ij = 0.5 (𝜎i + 𝜎j) and
𝜀ij =

√
𝜀i𝜀j. Furthermore, the potential was explicitly evaluated

up to a cutoff radius rcut = 2.5 × max(𝜎1, 𝜎2),
[39] and analytic

tail corrections were applied to pressure and energy terms.[77,78]

Small time step sizesΔt were chosen to integrate Newton’s equa-
tions of motion[79] (Table 1).
All results are presented in Lennard-Jones units, where the

mass m1, the Lennard-Jones energy 𝜀1, and Lennard-Jones size
parameters of component 1 𝜎1 were used for reducing all quanti-
ties: m∗ = m∕m1, E

∗ = E∕𝜀1 , and l∗ = l∕𝜎1, where E denotes en-
ergy and l length or distance. The reduced time and temperature

are t∗ = t
√

𝜀1∕(m1𝜎
2
1 ) and T

∗ = TkB∕𝜀1, respectively. For the sake
of brevity, the asterisks on the reduced quantities are omitted in
the remainder of this work.

3. Results

First, we present NEMD results because the corresponding Soret
coefficients serve as a benchmark for the subsequent EMD sim-
ulations. For both approaches, specific issues, pitfalls, and nec-
essary procedures are highlighted to obtain reliable Soret coeffi-
cient data. This is followed by a comparison and discussion of the
data for all Lennard-Jones models considered in this work, where
two lean prediction models are also included. The first model
is based on thermodynamic and approximate kinetic data,[27]

Figure 4. Soret coefficient of krypton ST in itsmixture with argon as a func-
tion of temperature T using the present Langevin NEMDmethod (circles).
The color from blue to orange indicates an increasing relative temperature
difference and thus a rising T gradient in the simulation volume. Litera-
ture values[32,33,35,41,49] (gray diamonds) and their average value[41] (black
square) are provided for comparison.

whereas the second one is a regression model that relies on
Lennard-Jones and mass parameters of the force field.[39]

3.1. NEMD: Creating a Benchmark

3.1.1. Validation

The Langevin NEMD method and the corresponding analysis
workflow was validated on the basis of literature data for the
mixture argon/krypton.[32,33,35,41,49] The present Soret coefficient
data (Figure 4) agree well with data from literature, which were
obtained using a broad variety of approaches: NEMD with syn-
thetic NEMD simulations,[32,33] the heat exchange method,[35] as
well as the modified heat exchange method and reverse NEMD
simulations[41] and Green–Kubo-based EMD simulations.[49] The
average temperature that was observed in the central profile-fit
region of our simulation volume varied with the imposed tem-
perature difference. The colors on the depicted data points cor-
respond to the observed relative temperature difference ΔT∕T . It
can be concluded that the present workflow is reliable but that it

Adv. Theory Simul. 2022, 5, 2200311 2200311 (6 of 13) © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 5. Soret coefficient of component 1 ST for different temperatures T
and target pressures p as obtained from Langevin NEMD simulations for
the Lennard-Jones mixture A studied in this work (cf. Table 1). The color
fromblue to orange indicates an increasing relative temperature difference
ΔT∕T in the Langevin NEMD simulations. Open symbols represent linear
interpolations of ST and its standard deviation around the desired target
temperature T target. Corresponding plots for the other two Lennard-Jones
mixtures are provided in the Supporting Information (Figure S5).

leaves some imprecision regarding the target temperature, which
is on the order of 1%.
The LangevinNEMDprocedurewas also validated based on se-

lected Lennard-Jones systems,[39,71] and the agreement was usu-
ally excellent (Figure S2, Supporting Information). Furthermore,
the Langevin NEMD method and the enhanced heat exchange
(eHEX) algorithm[40] as implemented in LAMMPS[58] yield con-
sistent results (Figure S4, Supporting Information). Therefore,
it can be concluded that the Langevin NEMD procedure reliably
yields Soret coefficient data for Lennard-Jones systems.

3.1.2. Interpolation

The Soret coefficient from a given Langevin NEMD simulation
is associated with the mean temperature in the fit region, which
is the common practice when handling the rather complicated
temperature-dependency of thermodiffusion quantities.[14] Typ-
ically, Soret coefficient data from NEMD simulations should
be extrapolated to the zero-force regime,[32,39,80] where a linear
function can be used.[39] However, MacGowan and Evans esti-
mated zero-force transport coefficients by weighted averaging if
a distinct force dependence of a given coefficient could not be
detected.[32] On the one hand, the variation of the Soret coeffi-
cient is typically small for different thermodynamic driving forces
around a given state point in this work (Figure 5). On the other
hand, the average value of the temperature in the gradient fit re-
gion does not exactly match the target temperature (i.e., mean
value of imposed high and imposed low temperature), but the
deviations are small: a few percent. Furthermore, the Soret coef-
ficient data determined with different gradients and at different
temperatures usually exhibit consistent temperature trends (Fig-
ure 5). Therefore, comparison to EMD predictions, in which the
target temperature is reached exactly, was facilitated by interpo-
lation. Specifically, ST and its standard deviation were linearly in-

terpolated in the small window around the target temperature to
provide the most likely values at the target temperature.

3.1.3. Screening Other Influences

Validation on the basis of literature data and solving the interpola-
tion issue were central to verifying the reliability of our Langevin
NEMDmethod. However, other technical and model-related fac-
tors that can possibly influence the Soret coefficient were also
sounded out. Specifically, it was reassured that the Langevin
damping constant, the width of the temperature control regions,
the system size, and the cutoff radius have no systematic impact
on ST (Section S2.4, Supporting Information), which leads us to
the conclusion that the Langevin NEMD method proposed here
yields reliable and robust results.

3.2. EMD: Obtaining Causal Data

The EMD approach based on correlation functions and the
Green–Kubo formalism is challenging for dense liquids because
the cross-correlations required to calculate thermal diffusion are
at least one order of magnitude smaller than the auto-correlation
functions[44] required to determine the self-diffusion coefficient.
In a first step, EMD simulations were performed using the same
simulation parameters as for the NEMD simulations (Table 1).
The resulting Soret coefficient data are provided in Figure 8 and
Table S1, Supporting Information. In a second step, the simula-
tion parameters were optimized to yield consistent data with the
NEMD simulations.

3.2.1. Finite Size Effects and Cutoff Radius

It is well known that small molecular systems under periodic
boundary conditions are associated with systematic errors when
diffusion coefficients are calculated. In this context, the size de-
pendence of the mass–mass L11 and internal energy–mass LE1
phenomenological coefficients was studied for one of the con-
sidered systems (i.e., mixture B2). A series of simulations with
varying system size containing 600, 1200, 2400, 4800, and 8000
molecules was performed. As expected, a clear system size de-
pendence was observed for the mass–mass phenomenological
coefficient L11 (Figure 6a). Its value in the thermodynamic limit,
obtained by extrapolation to infinite size, was found to be 5.5%
higher than its sampled value for 1200 molecules. Therefore, L11
had to be corrected to account for finite size effects whenworking
with small systems, for example, as proposed in ref. [81]. A finite
size correction of L11 based on a modified version of the correc-
tion factor by Yeh and Hummer [82,83] for binary mixtures yields
an improvement, but L11 remains underestimated by 4%. On the
other hand, no clear system size dependence could be inferred
for the internal energy–mass coefficient LE1 despite its diffusive
nature (Figure 6b).
The prediction of the thermodynamic factor by Kirkwood–Buff

integration is also subject to system size effects, as can be seen in
Figure 7. Because this formalism was originally derived for the
grand canonical (𝜇VT) ensemble, it has to be extrapolated to the

Adv. Theory Simul. 2022, 5, 2200311 2200311 (7 of 13) © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 6. a) Mass–mass and b) internal energy–mass phenomenological
coefficients of mixture B2 as functions of the inverse edge length of the
simulation volume l−1. The dashed lines are a linear fit and a fit of a con-
stant (average) to the simulation results, respectively.

thermodynamic limit when the NVT ensemble is used. The cor-
rectionmethod by Krüger et al.[73] was successfully employed in a
previous work[75] to determine extrapolated values when dealing
with small systems. However, when sufficiently large systems are
employed, this methodology can lead to an over-correction of the
thermodynamic factor (Figure 7).
Because of finite size-related issues, additional EMD sim-

ulations were performed with larger volumes for all studied
mixtures. For this purpose, relatively large systems with 8000
molecules were employed and the cutoff radius was extended to
half of the edge length of the simulation volume l∕2. For mixture
A2, the difference between the extrapolated and sampled mass
transfer coefficient was within its statistical uncertainty (i.e.,
≈ 2%). Further, the sampled thermodynamic factor differed
by +2.5% from its extrapolated value. Therefore, the sampled
values of the mass–mass phenomenological coefficient and the
thermodynamic factor were employed directly without further
finite size corrections for the calculation of the Soret coefficient.
On the other hand, the coefficients sampled in a smaller sim-
ulation volume, containing 1200 molecules, do require finite
size corrections.
Figure 8 shows the Soret coefficient of the studied Lennard-

Jones mixtures for different system sizes (i.e., 1200 and 8000
molecules). As can be seen, there is a very good agreement be-

Figure 7. a) Thermodynamic factor of the mixture B2 as a function of
the inverse edge length of the simulation volume l−1, including a linear
fit (dashed line) and the resulting extrapolated value in the thermody-
namic limit (ochre cross). b) Thermodynamic factor sampled for systems
with 1200 (solid circles) and 8000 (solid squares) molecules, respectively,
and their corrected values (empty symbols) following Krüger et al.[73] as
functions of the calculated Soret coefficient. The ochre cross represents
the linearly extrapolated thermodynamic factor of mixture B2, as obtained
from (a).

Figure 8. Soret coefficient calculated with 1200 (solid circles) and 8000
(solid squares) molecules. The open symbols represent coefficients cal-
culated with the corrected mass–mass phenomenological coefficients[81]

L11 and the corrected thermodynamic factor[73] Γ. The ochre symbols rep-
resent data calculated with 1200 molecules and a cutoff radius of l∕2.

Adv. Theory Simul. 2022, 5, 2200311 2200311 (8 of 13) © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 9. Range of the calculated Soret coefficient when the magnitude of
the mass–mass phenomenological coefficient (ochre) changes by ± 10%
and when the partial molar enthalpy difference (h1∕M1 − h2∕M2) (blue)
changes by ± 10%. The original Soret coefficient data with uncertainties
(solid squares) were added for comparison.

tween the Soret coefficient based on the simulations with 1200
molecules and those obtained from the simulations with 8000
molecules for the mixtures B and C. The peculiarly strong differ-
ences found for mixture A could be traced back to the use of a rel-
atively short cutoff in the simulationswith 1200molecules.When
the cutoff radius was changed to l∕2, the agreement with the 8000
molecules simulation was significantly improved. A strong de-
pendence of the cross-correlated phenomenological coefficient
LE1 on the cutoff radius was found especially for mixture A1.
Changes of other transport properties due to the cutoff radius
(e.g., diffusion coefficients, shear viscosity, and thermal conduc-
tivity) were found to be within their statistical uncertainties. Neg-
ligible changes were also found for the thermodynamic equilib-
rium properties. Solely, the average pressure was 15% lower for
the simulations with a smaller cutoff radius.

3.2.2. Sensitivity

Two factors were identified to highly affect the Soret coefficient
value when predicted from EMD simulations: the mass–mass
phenomenological coefficient and the difference between the par-
tial molar enthalpies of both components (h1∕M1 − h2∕M2). For
the majority of considered mixtures, a change of a few percent of
either of these quantities leads to a large change of the Soret coef-
ficient. For example, Figure 9 shows the resulting changes of the
Soret coefficient when the mass–mass phenomenological coeffi-
cient L11 and the enthalpy difference (h1∕M1 − h2∕M2) are varied
by±10%. The strong variation of the Soret coefficient is related to
LQ1. As can be seen in Figure 10, the contribution of the enthalpy
on the heat–mass phenomenological coefficient is large for most
of the studied mixtures. Furthermore, in cases where terms of
Equation (20) have a very similar magnitude a small change of
the second termmay even lead to a change of sign of the Soret co-
efficient.
Because of the strong sensitivity of the EMD simulations for

the studied mixtures, the results obtained from the larger sys-
tems featuring 8000 molecules are regarded as the more ade-

Figure 10. Soret coefficient of component 1 as a function of the heat–
mass phenomenological coefficient LQ1 and the internal energy–mass
phenomenological coefficient LE1, respectively, obtained from EMD simu-
lations with 8000 molecules.

quate values for comparison with NEMD results. The numerical
results are listed in Table S2, Supporting Information.

3.2.3. Other Properties

EMD simulations for the calculation of the Soret coefficient are
challenging and have to be performed with carefully chosen pa-
rameters. However, all relevant quantities for gaining a micro-
scopic understanding of the heat andmass transfer processes can
be calculated directly with EMD: the Fick and the thermal diffu-
sion coefficients as well as the thermal conductivity or the degree
of coupling q = LQ1∕(L11LQQ )0.5. These quantities are listed in Ta-
ble S3, Supporting Information.

3.3. NEMD versus EMD: Rationalizing ST

Figure 11 shows the final data set with Soret coefficients of
Lennard-Jones component 1 ST from NEMD and EMD simula-
tions as functions of temperature for two different average pres-
sures and three Lennard-Jones mixtures (A, B and C; cf. Table 1).
None of the systems studied gives rise to a sign change in the
Soret coefficient and thus to a switch in thermophoretic behav-
ior when the temperature or pressure is altered. The temperature
and pressure ranges investigated are small and the data sparse.
The observation is yet important because the change from posi-
tive to negative thermodiffusion behavior is subject ofmany stud-
ies due to the technological significance of this phenomenon.
The pressure impact on ST is consistent across the different

systems; however, the temperature influence can be different. In
all cases, an increase in pressure from0.09 to 1.8 yields a decrease
of the Soret coefficient of component 1: by 30%, 417%, and 53%
for mixtures A, B, and C, respectively. By contrast, ST increases
with rising temperature from 0.75 to 1 at p = 0.09 for mixture B
by 50%, whereas it decreases by 44% and 6% for mixtures A and
C, respectively. However, half of these relative change figures

dST = 100 ×
ST (T2 or p2) − ST (T1 or p1)|ST (T1 or p1)| % (26)

Adv. Theory Simul. 2022, 5, 2200311 2200311 (9 of 13) © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 11. Soret coefficient of component 1 ST for different temperatures
T and pressures p (squares: p = 0.09; circles: p = 1.8) of three different
Lennard-Jones mixtures A (top), B (center), and C (bottom) as obtained
from NEMD (black symbols) and EMD simulations (blue symbols). The-
oretical predictions according to the model by Shukla and Firoozabadi[27]

(small purple symbols) are also included as well as predictions on the ba-
sis of Reith’s and Müller-Plathe’s regression model (ochre solid line).[39]

exhibit large uncertainties when relying on a 2𝜎dST threshold
to achieve 95% confidence. For the temperature-induced ST
changes, the uncertainties are 11%, 67%, and 37% and, for the
pressure-induced ST changes, they are 15%, 622%, and 23% for
mixtures A, B, and C, respectively. We used the ST uncertain-
ties 𝜎ST from the NEMD simulations to obtain the uncertain-
ties 𝜎dST and applied conventional uncertainty propagation rules,
which yields, for example, for the temperature-induced relative
ST change

𝜎dST
= 100 ×

[(
𝜎ST (T2)|ST (T1)|

)2

+
(
𝜎ST (T1) × [−|ST (T1)| − (±1)(ST (T2) − ST (T1))]

[ST (T1)]2

)2
]0.5

% (27)

where the factor ±1 depends on whether ST (T1) ≷ 0.
NEMD and EMD simulations usually yield consistent results

because the 1𝜎ST uncertainties always overlap—with exception of

mixture B, state point 2. The statistical uncertainties of ST from
EMD simulations are larger than those fromNEMD simulations,
which can be explained by the relatively small signal-to-noise ra-
tio inherent to the cross-correlation functions. For mixtures A, all
1𝜎ST uncertainties are small, whereas those of mixtures B and C
might seem moderate or large. This, however, is only a plotting
effect because the vertical axis range in Figure 11 is more narrow
for mixture B and much more narrow for mixture C.

3.4. Simulations versus Theoretical Models: Efficiently Predicting
ST

Several theoretical models[25,27,84,85] for predicting ST leverage
readily accessible thermodynamic information. In particular, the
model by Shukla and Firoozabadi[27] is successful for gaseous and
liquid mixtures.[86] The Soret coefficient is given by[27,86]

SSFT = −
u1∕𝜏1 − u2∕𝜏2
x1(𝜕𝜇1∕𝜕x1)T,pT

−
(v2 − v1)(x1u1∕𝜏1 + x2u2∕𝜏2)
(x1v1 + x2v2)x1(𝜕𝜇1∕𝜕x1)T,pT

(28)

where ui and vi are the partial molar internal energy and the par-
tial molar volume of component i, respectively. The component-
specific factor 𝜏i, which is the cohesive energy of the liquid di-
vided by the activation energy supplied for molecular motion,[27]

ranges typically between three and five for liquids.[27,86] The pre-
dictions are included in Figure 11 using 𝜏i = 3.5 (cf. ref. [86] and
Section S2.6, Supporting Information). Since none of the state
points chosen for the three considered Lennard-Jones mixtures
is in the proximity of the critical point, the model should work
well.[27]

We performed a detailed uncertainty propagation analysis[87]

for the Soret coefficient given by the Shukla–Firoozabadi model
(Section S2.6, Supporting Information). This could explain some
of the discrepancies observed between NEMD, EMD, and pre-
dictive model results. For mixtures A and C, the model predicts
the correct sign and most of the temperature and pressure de-
pendences of ST . The difference between NEMD simulation and
model prediction relative to the model uncertainty is, on an av-
erage, however as large as 285% for these two mixtures. While
uncertainties cannot be made fully responsible, they could con-
tribute significantly to the deviations. In order to better under-
stand the precise source of themodel uncertainty, its relative con-
tributions were calculated (Section S2.6 and Table S4, Supporting
Information). The by-far largest contribution to the uncertainty
in SSFT of component 1 stems from the 𝜏1 parameter 𝜎𝜏1 . The next
largest contribution originates usually from 𝜎𝜏2 . The critical role

of the 𝜏 parameters is also reflected in the inability of the model
by Shukla and Firoozabadi to predict the correct sign of ST for
highly asymmetric mixture B. Here, the regression model by Re-

Adv. Theory Simul. 2022, 5, 2200311 2200311 (10 of 13) © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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ith and Müller-Plathe[39] might help shed light onto the reason
for the prediction failure.
The Reith–Müller-Plathe model consists of three additive

quadratic functions, each of which was separately fitted to a se-
ries of NEMD-derived Soret coefficients. In each series, a single
model parameter of component 1, m1, 𝜎1, or 𝜀1, was systemati-
cally varied so that the impact of one model parameter was en-
coded in one quadratic function. The resulting overall Soret coef-
ficient, whichwas successfully validated on realistic systems such
as isotopic argon–argon, argon–krypton, and xenon–methane, is
given by[39]

SRMP
T = − 0.7

(
m1

m2

)2

+ 9.5

(
m1

m2

)
− 8.8

+ 67.4

(
𝜎1

𝜎2

)2

− 179.3

(
𝜎1

𝜎2

)
+ 111.9

+ 4.4

(
𝜀1

𝜀2

)2

+ 3.5

(
𝜀1

𝜀2

)
− 7.9 (29)

The applicability ranges for the different contributions are lim-
ited by originally fitting within m1∕m2 ≤ 8, 𝜎1∕𝜎2 ≤ 1.25, and
𝜀1∕𝜀2 ≤ 1.75. Moreover, the Soret coefficient is not given in
Lennard-Jones units but in (10−3K−1). Hence, SRMP

T has to be ad-
justed to the present unit system.
The regression model by Reith and Müller-Plathe can reliably

predict the sign of the Soret coefficient. Furthermore, the magni-
tude of SRMP

T is reasonable, considering the fact that this predic-
tion does not incorporate any temperature or pressure/density
dependence. Another drawback of this model is the assumption
that there are no coupling effects among the Lennard-Jonesmass,
size, and energy parameters. However, it has been found that
such effects play a non-negligible role for the prediction of ther-
modiffusion of equimolar Lennard-Jones mixtures.[88]

The insight that was gained from these predictions is that
mass and Lennard-Jones size parameter have opposing effects
on the Soret coefficient. The lower mass of component 1 alone
would result in negative thermodiffusion, whereas the smaller
size parameter would trigger positive thermodiffusion. It thus
depends on which effect is stronger and hence which type of
model parameter ratio is larger. In the case of mixture B, the
mass ratio ultimately dictates the negative sign. The 𝜏 parameters
used in the model by Shukla and Firoozabadi[27] were originally
determined for real systems, for which size and mass typically
correlate. It is therefore possible that these parameters require
a re-optimization if size and mass strongly diverge, as seems
to hold for mixture B. Very recently, Hoang and Galliero [89]

came to a similar conclusion on the lack of reliability of the
Shukla–Firoozabadi model for the prediction of thermal diffu-
sion factors for Lennard-Jones mixtures that are asymmetric in
size and mass.
Finally, note that another possibility to describe the effects

of mass, size, and energy parameter ratios on transport prop-
erties of Lennard-Jones mixtures is the van der Waals one-fluid
model.[76,90] This model considers the mixture to be a hypothet-
ical pseudo-compound that approximates its equilibrium and

transport properties. [91] However, this approach has signifi-
cant limitations when dealing with strongly asymmetric mix-
tures [56,91] so that is not applied to the present systems.

4. Conclusion

We used Langevin NEMD alongside EMD simulations to in-
vestigate the Soret coefficient of binary Lennard-Jones mixtures.
The Langevin NEMD simulations served as benchmarks because
EMD predictions based on the Green–Kubo formalism are chal-
lenging due to a weak signal-to-noise ratio of the cross-correlation
functions, the strong system-size dependence of the mass–mass
phenomenological coefficient, and the uncertainties related to
the calculation of the thermodynamic factor. Once optimal set-
tings for the EMD simulations were determined, the data-set
from the EMD simulations was successfully used to rational-
ize the behavior of the Soret coefficient. Furthermore, the EMD
data were leveraged to test the applicability of a lean theoretical
model,[27] which allows for predictions of the Soret coefficient
mainly based on thermodynamic data.
We could identify a limitation of the theoretical model by

Shukla and Firoozabadi.[27] Importantly, a detailed uncertainty
analysis, which has, to the best of our knowledge, not been per-
formed for themodel yet, and complementing insights from a re-
gressionmodel,[39] which leveragesmodel parameters of themix-
ture chosen, helped us pinpointing the probable reason. The the-
oretical model is unable to account for opposing effects of mass
and size on the Soret coefficient. A parameter that is mainly ki-
netic in nature plays here a major role in dictating the sign of
the Soret coefficient and thus in the applicability of the analyti-
cal model. More elaborate models such as those by Artola et al.[92]

could be used instead, but thismodel requires, for example,more
transport data.
Extending the combination of NEMD and EMD simulations to

more complex systems is expected to provide insight into prac-
tical applications of thermodiffusion. The NEMD method was
successfully applied to study aqueous alkali halide solutions[93]

as well as to ternary[94,95] and quaternary[94] liquid mixtures of or-
ganic molecules. For both methods, the sampling of species with
low concentration poses a challenge in these applications.
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