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Abstract

We consider a Dirichlet problem driven by the anisotropic (p, g)-Laplacian and with
a reaction that has the competing effects of a singular term and of a parametric super-
linear perturbation. Based on variational tools along with truncation and comparison
techniques, we prove a bifurcation-type result describing the changes in the set of
positive solutions as the parameter varies.
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1 Introduction

Let Q@ € RY be a bounded domain with a C2-boundary 9. In this paper, we study
the following anisotropic Dirichlet problem

— Apoytt — Agoyu = u™ " LA f(x,u) in Q (P2)

umzo, u>0 A>0.
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For r € Ey, where E| is given by

E| = {r eC) 1< minr(x)},

x€Q

we denote by A,y the anisotropic r-Laplacian (or r(-)-Laplacian) defined by
Argou = div (|Vu|r(x>*2w) for all u € W2 ().

The differential operator in problem (P,) is the sum of two such operators. In the
reaction, the right-hand side of (P, ), we have the competing effects of two terms
which are of different nature. One is the singular term s — s~7®) for s > 0 with
n € C(Q) such that 0 < n(x) < 1 forall x € Q. The other one is the parametric term
s — Af(x,s)with A > 0 being the parameter and f: Q2 x R — R is a Carathéodory
function, that is, x — f(x,s) is measurable for all s € R and s — f(x,s) is
continuous for a.a.x € . We assume that f(x, -) exhibits (p; — 1)-superlinear
growth for a.a.x € Q as s — +o0o with p; = max, g p(x). We are looking for
positive solutions of problem (P, ) and our aim is to determine how the set of positive

solutions of (P;) changes as the parameter A moves on the semiaxis R = (0, +00).

The starting point of our work is the recent paper of Papageorgiou-Winkert [16]
where the authors study a similar problem driven by the isotropic p-Laplacian. So,
the differential operator in [16] is (p — 1)-homogeneous and this property is exploited
in their arguments. In contrast here, the differential operator is both nonhomogeneous
and anisotropic.

Anisotropic problems with competition phenomena in the source were recently
investigated by Papageorgiou-Réadulescu-Repovs [11]. They studied concave-convex
problems driven by the p(-)-Laplacian plus an indefinite potential term. In their equa-
tion there is no singular term. In fact, the study of anisotropic singular problems is
lagging behind. We are aware only the works of Byun-Ko [2] and Saoudi-Ghanmi [20]
for Dirichlet as well as of Saoudi-Kratou-Alsadhan [21] for Neumann problems. All
the aforementioned works deal with equations driven by the p(-)-Laplacian.

We mention that equations driven by the sum of two differential operators of differ-
ent nature arise often in the mathematical models of physical processes. We mention the
works of Bahrouni-Ridulescu-Repovs [1] (transonic flow problems), Cherfils-11'yasov
[3] (reaction diffusion systems) and Zhikov [26] (elasticity problems). Some recent
regularity and multiplicity results can be found in the works of Ragusa-Tachikawa
[19] and Papageorgiou-Zhang [17].

In this paper, under general conditions on the perturbation f: 2 x R — R which
are less restrictive than all the previous cases in the literature, we prove the existence
of a critical parameter A* > 0 such that

e forevery A € (0, A™), problem (P, ) has at least two positive smooth solutions;
e for A = A*, problem (P;) has at least one positive smooth solution;
e for every A > A*, problem (P, ) has no positive solutions.
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On a class of singular anisotropic (p, q)-equations 547

2 Preliminaries and hypotheses

The study of anisotropic equations uses Lebesgue and Sobolev spaces with variable
exponents. A comprehensive presentation of the theory of such spaces can be found

0 v v

in the book of Diening-Harjulehto-Histo-RiiZicka [4].
Recall that Ey = {r € C(R2) : 1 < min r(x)}. For any r € E| we define

xeQ

r— =minr(x) and ry = maxr(x).
xe xeQ

Moreover, let M (2) be the space of all measurable functions u: 2 — R. As usual,

we identify two such functions when they differ only on a Lebesgue-null set. Then,
given r € E1, the variable exponent Lebesgue space L") () is defined as

L'O(Q) = {u e M(Q) : / lul ™ dx < oo}.
Q

We equip this space with the so-called Luxemburg norm defined by

r(x)
||u||r(.)=inf{k>0 : / <%> dxgl},
Q

Then (L") (), |- Il(.)) is a separable and reflexive Banach space, in factitis uniformly
convex. Let ' € E| be the conjugate variable exponent to r, that is,

1 1
—— + —— =1 forallx € Q.
r(x) = r'(x)

We know that L) (Q)* = L”'0)() and the following Holder type inequality holds

1 1
/Q|uv|dx < [r—_ + Z} el vl

forallu € L"(Q) and forall v € L"(Q).
Ifr,r € Ey and ri(x) < rp(x) for all x € €2, then we have that

L?O(Q) — L"(Q) continuously.
The corresponding variable exponent Sobolev spaces can be defined in a natural

way using the variable exponent Lebesgue spaces. So, if » € E|, then the variable
exponent Sobolev space W) (Q) is defined by

WO =lue @ : vule 'O@)}.
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548 N. S. Papageorgiou and P. Winkert

Here the gradient Vu is understood in the weak sense. We equip W!")(2) with
the following norm

lull ey = llullyey + 1Vullly) forallu e WO (Q).

In what follows we write ||Vu/|,(, = IVullly). Suppose that r € E is Lipschitz
continuous, that is, r; € E; N CY1(Q). We define

Wi @) — T .

The spaces wlrO(Q) and WO1 ’r(')(Q) are both separable and reflexive, in fact

uniformly convex Banach spaces. On the space Wg’r(')(Q) we have the Poincaré
inequality, namely there exists ¢g > 0 such that

1,r(-
lullr) < collVallyy forallu e Wy ().

Therefore, we can consider on WO1 ’r(')(Q) the equivalent norm

luallr¢) = IVully ) forallu e Wy ().

For r € E| we introduce the critical Sobolev variable exponent r* defined by

Nr(x) if N o
Py = |V Tr@ <N e
+00 if N <r(x),

Suppose that r € E; N C%Y(Q), ¢ € Ei, g+ < Nand 1 < g(x) < r*(x) for all
x € Q. Then we have
Wol‘r(')(Q) < L99(Q) continuously.
Similarly, if 1 < g(x) < r*(x) forall x € Q, we have
Wol’r(')(Q) <> LI9(Q) compactly.

In the study of the variable exponent spaces, the modular function is important, that
is, forr € Eq,

0r(y(u) = / lu|"® dx forallu € L' (Q).
Q

As before we write 9,(y(Vu) = 0,¢)(|Vul). The importance of this function comes
from the fact that it is closely related to the norm of the space. This is evident in the
next proposition.

Proposition 2.1 [fr € E, then we have the following assertions:

(@) lullycy =% < or¢) (%) =1forallu e L") (Q) withu # 0;
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On a class of singular anisotropic (p, q)-equations 549

(b) llull,¢y <1 (resp. =1, >r 1) < Qr(.)(u)r< 1(resp. =1, > 1);
() llulrey <1 = lull,(y < orey@) = llull, )

d lullyoy >1 = ||u||:[.) <or(Hm) < ||M||:J{.);
(e) llupllrcy >0 <= 0r¢(uy) = 0;
@ Nupllyy = +00 <= 0r¢)(uy) = +oo.

We know that for r € E; N C%1(Q), we have
1,r(-) * _ ur—1r'()
wlrO @t = wlO(@).

Then we can introduce the nonlinear map A, (,): W(;’r(')(SZ) — W‘l”/(')(Q) defined
by

(Ar(.)(u),h):/ |Vu" =2V . Vhdx forallu,h € Wy (Q).
Q

This map has the following properties, see, for example Gasiniski-Papageorgiou [7,
Proposition 2.5] and Radulescu-Repovs [18, p. 40].

Proposition 2.2 The operator A,(): W(}’r(')(Q) — W_l’r/(')(Q) is bounded (so it

maps bounded sets to bounded sets), continuous, strictly monotone (which implies it
is also maximal monotone) and of type S, that is,

Uy X uin Wol’r(')(Q) and 1im sup <Ar(.)(un), U, — u) <0

n—oo
. . 1,r(-)
imply uy — win Wy "7 ().

Another space that we will use as a result of the anisotropic regularity theory is the
Banach space

@ ={ueC'@ : ufyq =0}
This is an ordered Banach space with positive (order) cone
Ch @4 = [u e Ch@ :u) = Oforall x e 2.
This cone has a nonempty interior given by

_ _ 9
int (cg(sz)+) - {u € Cl@)4 1 u(x) > Oforall x € Q, —"’;

< O} ,
9
where g—z = Vu - n with n being the outward unit normal on 9€2.
Let hy, hy € M(2). We write hy < hp if and only if 0 < cx < ha(x) — h1(x)
for a.a.x € K and for all compact sets K C . It is clear that if &1, h, € C(2) and
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550 N. S. Papageorgiou and P. Winkert

h1(x) < ha(x) for all x € 2, then h; < hy. From Papageorgiou-Radulescu-Repovs
[11, Proposition 2.4] and Papageorgiou-Radulescu-Repovs [13, Propositions 6 and 7],
we have the following comparison principles. In what follows, let p, g € E;NC%1(Q)
with g(x) < p(x) forall x € Q and € C(Q) with 0 < n(x) < 1 forall x € Q.

Proposition 2.3

(a) Ifé € L®(), E(x) > O0fora.a.x € Q hi,hy € L®(Q), hy < ha, u € CH(Q)+,
u>0forallx € Q, v eint (Cé(§)+) and

—Apytt — Mgyt + EuP O — T =y (x) in Q,
—Ap(yv = Dgyv + E)POT 1O = s (x) in @,

then v — u € int (C(l) (§)+).

(b) Ifé € L®(Q), € > 0fora.a.x € , hi,hy € L®(Q), 0 < & < ha(x) — hi(x)
fora.a. x € Q u,v € cl(Q) \ {0}, u(x) < v(x)forallx € Q, v € int (Cé(§)+)
and

—Apoyu — Agyu + é(x)up(x)_l — 1 = hi(x) in 22,
—Apyv — Ayyv + é(x)v”(x)_l —p77 = hy(x) in 2,

then u(x) < v(x) forall x € Q.

Remark 2.4 Note that in part (a) of Proposition 2.3 we have by the weak comparison
principle that u < v, see Tolksdorf [24].

Ifu,v e Wé’p(')(Q) with u < v, then we define

[u, v] = {y € Wol""(')(Q) cu(x) <yx) <v)fora.a x € Q} ,

[u) = {y € Wol‘p(')(Q) tu(x) < y(x)fora.a.x € Q}

In what follows we will denote by || - || the norm of the Sobolev space WO1 0 ().
By the Poincaré inequality we have

1,p(
lull = |Vull e, forallu e WyP(Q).

Suppose that X is a Banach space and let ¢ € C'(X). We denote the critical set of
¢ by

Ky={ueX:¢'u)=0}.
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On a class of singular anisotropic (p, q)-equations 551

Moreover, we say that ¢ satisfies the “Cerami condition”, C-condition for short, if
every sequence {u,},en € X such that {¢(u,)}neny € R is bounded and

(I + llunlx) ¢ (up) - 0 in X* asn — oo,

admits a strongly convergent subsequence. This is a compactness-type condition on
the functional ¢ which compensates for the fact that the ambient space X need not be
locally compact being in general infinite dimensional. Applying this condition, one
can prove a deformation theorem from which the minimax theorems for the critical
values of ¢ follow. We refer to Papageorgiou-Réadulescu-Repovs [12, Chapter 5] and
Struwe [22, Chapter II].

Given s € (1, +00) we denote by s” € (1, +00) the conjugate exponent defined by

-+ —=1.
s s

Furthermore, if f: & x R — R is a measurable function, then we denote by N the
Nemytskii (also called superposition) operator corresponding to f, that is,

Ne(w)(-) = f(-,u(-)) forallu € M(L2).

Note that x — f(x, u(x)) is measurable. We know that if f: @ x R — Ris a
Carathéodory function, then f(-, -) is jointly measurable, see Papageorgiou-Winkert
[15, p. 106].

Now we are in the position to introduce our hypotheses on the data of problem (P;,).

Ho: p.g € ExNC%(Q), n € C(Q), q(x) < p(x),0 < nx) < 1forall x € Q,
p— < N.

Hi: f: Q x R — Ris a Carathéodory function such that f(x,0) = 0 fora.a.x € Q
and

(i) there exists a € L®°(£2) such that

0< f(x,s) <a(x) [1 +Sr—1]

s

fora.a.x € @, for all s > 0 and with p; < r < p*, where

Np_
P== N—p_

*_

)

(i) if F(x,s) = /S f(x,t)dt, then
0

. F(x,s)
lim

s—+oo §P+

= 400 uniformly for a. a. x € ;
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552 N. S. Papageorgiou and P. Winkert

(iii) there exists a function T € C(R) such that

T(x) € <(r —p2) l, p*(x)> forall x € Q
p7

and

,8)s — p+F(x,
0 < yp < liminf fx,9)s = p+Flx, 5)

s—+00 §T™)

uniformly for a. a. x € €;

(iv) for every p > O there exists é » > 0 such that the function

s — f(x,s) —i—é‘psp(x)_l
is nondecreasing on [0, p] fora.a.x € Q.

Remark 2.5 Since we are interested in positive solutions and all the hypotheses above
concern the positive semiaxis Ry = [0, +00), we may assume without any loss of
generality that f(x,s) = 0 for a.a.x € Q and for all s < 0. Hypotheses H;(ii), (iii)
imply that f(x, -) is (p4+ — 1)-superlinear for a. a. x € Q. However, this superlinearity
condition on f(x, -) is not formulated by using the Ambrosetti-Rabinowitz condition
which is common in the literature when dealing with superlinear problems, see Byun-
Ko [2], Saoudi-Ghanmi [20] and Saoudi-Kratou-Alsadhan [21]. Here, instead of the
Ambrosetti-Rabinowitz condition, we employ hypothesis Hj (iii) which is less restric-
tive and incorporates in our framework nonlinearities with “slower” growth near +oo.
For example, consider the functions

filx,s) =+ DP*ns + 1) + s foralls > 0
with r; € Eq, r1(x) < p(x) forall x € Q and

shn)-1 ifo<s<l,

sPln(s) + 520~ if 1 <5

falx,s) =

with 11, 75 € Eq and rp(x) < p(x) for all x € Q. These functions satisfy hypotheses
Hj, but fail to satisfy the Ambrosetti-Rabinowitz condition, see, for example, Gasinski-
Papageorgiou [7].

The difficulty that we encounter when we study a singular problem is that the energy
(Euler) functional of the problem is not C! because of the presence of the singular
term. Hence, we cannot use the results of critical point theory. We need to find a way to
bypass the singularity and deal with C'-functionals. In the next section, we examine
a purely singular problem and the solution of this problem will help us in bypassing
the singularity.
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On a class of singular anisotropic (p, q)-equations 553

3 An auxiliary purely singular problem
In this section we deal with the following purely singular anisotropic (p, g)-equation

—Apyu — Agoyu =u" inQ, ul,, =0, u>0. 3.1

Proposition 3.1 If hypotheses Hy hold, then problem (3.1) admits a unique position

solution u € int (Cé (§)+).

Proof Let g € LPO(Q) and let 0 < & < 1. We consider the following Dirichlet
problem

—Apyt — Agoyu = [1g(x)| + 177 in @, =0, u>0.

”|asz
Let V: Wol’p(')(Q) — Wol’p(')(Q)* = W12 0(Q) be the operator defined by

V() =Apu) + Agey(u) forallu e Wol’p(')(Q)

This map is continuous and strictly monotone, see Proposition 2.2, hence maximal
monotone as well. It is also coercive, see Proposition 2.1. Therefore, it is surjective,
see Papageorgiou-Ridulescu-Repovs [12, p. 135]. Since [|g(-)| + £]7"") e L®(Q),
there exists u, € Wol’p(')(Q), ug > 0, u, # 0 such that

Viue) = [lgl +e177 .

The strict monotonicity of V implies the uniqueness of u,. Thus, we can define the
map B: LPO(Q) — LPO(Q) by setting

B(g) = ue.

Recall that Wol’p (‘)(Q) s LPO(Q) is compactly embedded. We claim that the map
1S continuous. So, let g, — g 1n ’ and let u;, = p(gn) withn € N. We have
' i So, 1 in LP)(Q) and let u” (gn) withn € N. We h

(Apey () B)+(Aqe) (), h) = /Q h

— _ux (3.2)
[lgn| + &]7™®

forall h € Wy’ (Q) and for all n € N.
We choose h = ul Wé’p(')(Q) in (3.2) and obtain

un
0p() (V) + opy (Vul) < [Q oy a4

which by Proposition 2.1 implies that

{ul} . < Wy""(Q) is bounded.

&JlneN =
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554 N. S. Papageorgiou and P. Winkert

So, we may assume that
W' S, inWyPQ) and u! — i, in LPO(Q). (3.3)

Now we choose h = uf} — iy € Wol’p(‘)(Q) in (3.2), pass to the limit as n — oo and
apply (3.3) which results in

lim [(Ape) (up) ,uy — i)+ (Agey (u}) , uf —ite)] = 0.

n— oo

Since Ay (.)(-) is monotone, we have

limsup [(Apc) (uh) , uf — die) + (Ag) (e) , uf — iie)] <O.

n—o0

Applying (3.3) gives

lim sup <Ap(.) (ug') Jun — 125) <0
n—0oo

and so, by Proposition 2.2,
- . 1,p(-
W — i, in Wy "O(Q). (3.4)

Passing to the limit in (3.2) as n — oo and using (3.4) yields

~ _ h
(Apey (ie) , h) + (Ag(y (”8)’h>:./;z[|g| Fe® dx

forall € Wy'"")(Q). Hence, ii. = B(g).
So, for the original sequence, we have

”Z = B(gn) = B(g) = i,

which shows that § is continuous.

From the argument above and recalling that W(;’p (')(Q) — LPO(Q) compactly,
we see that B(LPO)(Q) € LPV(Q) is compact. So, by the Schauder-Tychonov fixed
point theorem, see Papageorgiou-Ridulescu-Repovs [12, p. 298] we can find i, €
W,y " (Q) such that B(ie) = de.

From Fan-Zhao [5], see also Gasinski-Papageorgiou [7] and Marino-Winkert [10],
we have that ity € L%°(Q). Then, from Tan-Fang [23, Corollary 3.1], we have 4, €
Cé(Q) \ {0}. Finally, the anisotropic maximum principle_ of Zhang [25], see also
Papageorgiou-Vetro-Vetro [14], implies that ii, € int (C& (Q)+).

Claim: If 0 < ¢’ < ¢, then i1, < ii,s. We have

1 1
>
[ﬁg/ +8/]'7(X) - [128/ +8]77(x)

—Ap(.)ﬁgf — Aq(.)ﬁg/ = in . (3.5)
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On a class of singular anisotropic (p, q)-equations 555

We introduce the Carathéodory function k. : Q2 x R — R defined by

1

D ———— 11 s < MA ’(-x)
()C) — & ’
[S + &

ke(x,s) = (3.6)

 ifdg(x) <s.
[125/()6) + 8]7](X)

Weset K. (x, s) = fg ke (x, t) dt and consider the C!-functional J; : Wol’p(')(Q) — R
defined by

1 1
Jg(u)zf —|W|P(X>dx+/ —|Vu|"(x)dx—/ K, (x, u)dx
Q p(x) Qq(x) Q

forallu € W(}’p(') (2). From (3.6) it is clear that J, : W(}’p(') () — Ris coercive and

by the compact embedding WOl PO (R2) — L"(2) we know that it is also sequentially
weakly lower semicontinuous. Therefore, by the Weierstraf3-Tonelli theorem, there

exists i} € W(}’p(')(Q) such that
J; (%) = min [Jg(u) ue Wol"’(')(sz)]. (3.7)

Let u € int (C}(R)+) and choose t € (0, 1) small enough so that ru < i,

recall thatii,s € int (Cé (§)+) and use Proposition 4.1.22 of Papageorgiou-Radulescu-
Repovs [12]. Then, by (3.6), we obtain

Je(tu) < ﬂ; [Qp(.)(vu) + 040) (Vu)] —f ;(tu)l—fl(x) dx
q- ol—n)

<cyt?- — Czl‘l_n’

for some ¢; = c1(u) > 0,¢c3 = c2(u) > 0and ¢ € (0, 1). Choosing t € (0, 1) even
smaller if necessary, we see that

Je(tu) < 0,

since | —n— < 1 < g—. Then, by (3.7), because i} € Wol"’(')(Q) is the global
minimizer of Jg, we conclude that

Je (0F) <0 =J:(0)

and so i} # 0.
From (3.7) we have J/ (ii}) = 0 which means

(A 32) )+ gy 32) R} = [ b (5, 2) 6
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556 N. S. Papageorgiou and P. Winkert

forall h € WP (Q). Testing (3.8) with h = — (i¥)~ € W, """ () we obtain

&

0p() (V (ﬁﬁ)_) <0,
because of (3.6) which by Proposition 2.1 implies that
ar>0 and 4} #0.

Now we choose h = (ﬁ;" — ﬁ5/)+ € Wol’p(')(Q) in (3.8). Applying (3.6) and (3.5)
gives

(Apcr (@), (a2 = )" )+ (g0 @) (37 — )
1 Ak oA
:fsz [ae +¢]"™ (@5 — er) ™ dx
&

= (Ap0 (@)« (@2 = i) ") + (A0 (i) (@2 = 2) ).
Hence, i} < .. So we have proved that
are[0,4.], ar#0. (3.9)

From (3.9), (3.6), (3.8) and the first part of the proof we infer that &} = i,/ and so,
by (3.9), iy < iiy. This proves the Claim.

Next we will let & — 07 to produce a solution of the purely singular problem (3.1).
To this end, let &, — 0T and set i1, = il, for all n € N. We have

o . h
(Ape) (@n) h) +(Aq) (iin) , h) = / T dx (3.10)
@ [in + ]

forall h € Wol’p(')(Q) and for all n € N. Choosing h = ii,, € W()"”(')(sz) leads to

0p() (Vﬁn) < / ft,ll_"(") dx foralln € N.
Q

Therefore, {ii, }ueny € W, "" () is bounded.
By passing to an appropriate subsequence if necessary, we may assume that

i, = inWy"Q) and 4, —u in LPO(Q). 3.11)
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Now we choose h = i, — i € Wol’p(')(Q). This yields

(Ap(-) (ftn) in — ﬁ) + (Aq(») (ﬁn) sl — ﬁ)

Uy — Up — U
=/ —r;(X) </ TES) dx foralln e N,
[ Un +5n] 2 uy

due to tpe Claim. .
Let d(x) = dist(x, 9€2) for all x € €2. Using Lemma 14.16 of Gilbarg-Trudinger
[8, p. 355] we have thatd € int (C}(2)4). We can find c3 > O such that c3d < iy, see

Papageorgiou-Radulescu-Repovs [11, p. 274]. Then we have for all 4 € WO1 P (‘)(Q)

that
/s; An (x)

for some c4, c5 > 0. Here we used the anisotropic Hardy inequality of Harjulehto-
Histo-Koskenoja [6]. From Marino-Winkert [10] (see also Ragusa-Tachikawa [19])
we have that {ii,, },eny € L°°(2) is bounded. Moreover by the lemma and its proof of
Lazer-McKenna [9] we know that ﬁ;n(') e L' (). So, from (3.11) and the dominated
convergence theorem, it follows that

c4/ P dx < esl 9l

Uy —u
dx — 0 asn — oo.
Q AT (x)

iy

This implies

limsup [(Ap) (@n) , ity — )+ (Ag() (fln) . it — u)] <0,

n—oo

which by the monotonicity of A, (.) and the S -property of A (. (see Proposition 2.2
and the first part of the proof) leads to

iy — 1w inW,"(Q) and 4y <u. (3.12)

So, if we pass to the limit in (3.10) as n — oo and use the Lebesgue dominated
convergence theorem, we then obtain

_ — h p(0)
(Ap(.) (n), h) + (Aq(.) (n), h) = . u”( =) dx forallh e W0 ().

Since 11 < u, we seethatu € Wol’p(') (£2) is a positive solution of (3.1). From Marino-
Winkert [10] we know that @ € L°°(£2) and so we conclude that @ € int (C}(Q)4),
see Zhang [25] and (3.12).

o
Finally, note that the function Ry 5 s — 577 is strictly decreasing. Therefore,
the positive solution # € int (C} (). ) is unique. |
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In the next section we will use this solution to bypass the singularity and deal with
C!'-functionals on which we can apply the results of critical point theory.

4 Positive solutions

We introduce the following two sets

L ={A > 0: problem (P,) has a positive solution},

Sy, = {u : u is a positive solution of problem (P;)} .

Proposition 4.1 If hypotheses Hy and H| hold, then L # (.

Proof Let u € int (C(l) (§)+) be the unique positive solution of problem (3.1),
see Proposition 3.1. By the anisotropic Hardy inequality, see Harjulehto-Hésto-

Koskenoja [6], we know that w7k € LY(Q) for all h € W, " (Q). Hence,
a0 e Whr'O@) = w0 @)%,
We consider the following auxiliary Dirichlet problem

—Apoyu = Agou=1" +1 inQ, ul,, =0, u>0. 4.1

As in the proof of Proposition 3.1, exploiting the surjectivity and the strict monotonicity
of the operator V, we infer that problem (4.1) admits a unique positive solution i €

Wy ().
Since 7" < ¢ced ") for some cg > 0, from Theorem B.1 of Saoudi-Ghanmi
[20] we have

i € int (Cé (§)+) .
From the weak comparison principle, see Tolksdorf [24], we have that
u <. 4.2)

Let Ag = , see hypothesis H;(i). For A € (0, o] we have that

1
N ¢ @)oo

Af(x,u(x)) <1 fora.a.x € Q. 4.3)
Applying (4.2) and (4.3) we get

—Apyii = Mgyt =" 41> 71 faf (x,d(x)) in Q. (4.4)
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We introduce the Carathéodory function i, : 2 x Ry — R defined by

()71 A f (x,u(x)) ifs < @(x),
i (x,8) = 1571 LA f (x,5) ifu(x) <s <), 4.5)
AX) ™MD 4 af (x, id(x)) ifi(x) < s.

Weset I, (x,s) = fos i5(x, 1) dt and consider the C!-functional Yy Wé’P(')(Q) —- R
defined by

1 1
m(u)zf —|Vu|p(x)dx+/ —|Vu|‘1(*>dx—/ Lo(x, u) dx
o p(x) Qq(x) Q

forall u e WO1 P (')(Q). Evidently, ¥, is coercive due to (4.5) and it is sequentially
weakly lower semicontinuous. So, we can find u, € WO1 P (')(Q) such that

Vi) = min [v) e W3O (@),

From this we know that ‘Pi (u;) = 0 and so,
(Apey W) h)+(Age) () h) = /Qix (x,u3) hdx 4.6)

forall h Wé’p(')(Q). First we choose h = ( — u;)" € Wé’p(')(Q) in (4.6). Then,
by (4.5), f > 0 and Proposition 3.1 it follows that

(Apey ), (@ —u) )+ (Agy ), @ —up)™)

- f b () (@ — )t dx
Q

- / [ﬂ—"@“) Tf (x, ﬁ)] @ — u)t dx
Q

> / 7" @ —u)t dx
Q

=(Apoy @), @ —u) )+ (Age) @), @ —up)™).

Therefore, u < u;.
Next, we test (4.6) with h = (u; — @)™ € Wy’ (Q). As before, by (4.5) and

(4.4), we have

(Ap) ) (wx — D))+ (Agey @) . (s — iD)™)

= / iy (x,up) (wy, — )" dx
Q
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_ /Q (779 40 f i) | G — ) e
<(Apy @), (up —D)F) + (Age) @), (up — D)™).
Hence, u; < u. So, we have proved that
uy € [u,al. 4.7
Then, from (4.7), (4.5) and (4.6), it follows that
u, €8, forall A € (0, Ap].

Thus, (0, ko] £ # 0. o

We want to determine the regularity of the elements of the solution set S;. To this
end, we first establish a lower bound for the elements of S;.

Proposition 4.2 If hypotheses Hy, H| hold and A € L, thenu < u forallu € S,.

Proof Letu € S;. We introduce the Carathéodory functionb: Q@ xR, — R, defined

by
s if
bx.s) = s . %0<s<u(x), 4.8)
w(x)™"1if u(x) < .
We consider the following Dirichlet problem
—Apoyu — Agoyu =b(x,u) inQ, ul,, =0, u=>0. (4.9)

As in the proof of Proposition 3.1, using approximations and fixed point theory, we
can show that problem (4.9) has a positive solution ug € W(} P0) (£2). Applying (4.8),
f>0andu € S, yields

(Ape (o) . (1o — )T + (Ag() Gao) , (o — u)™)
=/ b (x,u0) (o — u)* dx
Q
= / u " @y — )t dx
Q
< / [M_"(x) + Af(x, u)] (o —u)t dx
Q
=(Ape) ), @ — ) ")+ (Ag) ), (@o —w)*).
Therefore, we have

uyp < u. (4.10)
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Then, (4.10), (4.8), (4.9) and Proposition 3.1 imply that
W =T € int (cg<§>+) .
This shows that u < u for all u € S, see (4.10). O

Using this lower bound and the anisotropic regularity theory of Saoudi-Ghanmi
[20], we can have the regularity properties of the elements of S;.

Proposition 4.3 If hypotheses Hy, Hy hold and ) € L, then @ # S, C int (Cé (§)+).

Next we prove a structural property of £, namely, we show that £ is connected, so an
interval.

Proposition 4.4 If hypotheses Hy, H| hold, ). € L and 1 € (0, 1), then u € L.
Proof Letu; € S, C int (Cé (§)+), see Proposition 4.3. We introduce the

Carathéodory function e, : Q@ x Ry — R, defined by

#)TNO 4 f (xu(x)) ifs < w(x),
eu(x,5) = 3571 L i f (x,9) ifu(x) <s <uy(x), 4.11)
wp ()71 f (e, up(x) ifup(x) < s.

We set E,,(x,s) = [y e, (x, t)dt and consider the C'-functional o, : Wol’p(')(Q) —
R defined by

1 1
o (u)zf —|Vu|p(x)dx—|—/ —|Vu|‘1(x)dx—/ E, (x,u)dx
g o p(x) 0 q(x) o "

for all u € Wol’p(')(Q). It is clear that o, is coercive because of (4.11) and it is

sequentially weakly lower semicontinuous. So, there exists u, € Wol’p (')(Q) such
that

0,,(1t,,) = min [au(u) ue Wol”’(')(Q)].

That means U;/L (uy,) = 0 and so,

(Apey () 1)+ {Agy () 1) = /Q ey (x. 1) hdx .12)

forall h € Wy'")(Q). If we choose h = (i — u,) " € WP (Q) in (4.12) we can
show thatu < u,,, see the proof of Proposition4.1. Next, we choose h = (u w— u;L)Jr IS
Wy " (%) in (4.12). Then, by (4.11), f > 0, 4t < A and u;, € S;., e obtain
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<Ap(-) () > (e = “/\)+> + <Aq(-) () » (e = ”)\)+>
- /Qeﬂ (e up) (1 — )" dx
_ /Q [u;”(” Fuf(x, u,\)] (uy — )" dx

< / [u;"m +Af (x, uk)] (uﬂ — u;\)+ dx
Q

= (Ap(~) (u3) (”M - “A)+> + <Aq(~) (u3) (”u - ”?»)+>'
Hence, u;, < u;. Therefore we have
uy € [u,uy]. (4.13)
From (4.13), (4.11) and (4.12) it follows that

u, €S, Cint (Cé(§)+) andso e L.

From Proposition 4.4 and its proof we have the following corollary.

Corollary 4.5 If hypotheses Hy, Hy hold and if » € L, u; € S, C int (C(% (§)+) and
0 < < A, then u € L and there exists u, € S, C int (C& (§)+) such that u,, < u;.

In the next proposition we are going to improve the assertion of Corollary 4.5.

Proposition 4.6 If hypotheses Ho, Hy hold and if . € L,u; € S C int (C}(Q)+)
and 0 < p < A, then p € L and there exists u,, € S, < int (C§(Q)+) such that

uj — Uy, € int (Cé(§)+> .

Proof From Corollary 4.5 we already know that u € £ and that there exists u, €
S, C int (CA(Q)+) such that

uy < uj,. (4.14)

Let p = |lu;|loo and let ép > 0 be as postulated by hypothesis H;(iv). Applying
u, €S, (4.14), hypothesis Hi (iv), f > 0, u < X and u,, € S, gives

— Apyup — Dgyup + Mép“ﬁm_l - “;n(x)
=pun [f (x, uM) + épuz(x)fl]

< [ e+ By
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2 -1
< Af (e ) + pdpul™
A _1 _
= — A,y — gy + pépul O 1 (4.15)

Note that since u,, € int (C}(Q)+), f = 0and u < A, we have
O — ) [Nf(uu) + épulfj(')*‘] > 0.
Hence, from (4.15) and Proposition 2.3(a), we infer that

w, — u, € int (cg(§)+) .

O
We set A* = sup L.
Proposition 4.7 If hypotheses Hy, Hy hold, then \* < 4o0.
Proof Hypotheses Hj (i), (ii) and (iii) imply that we can find A > 0 such that
sTI) 4 3 f(x,s) > sPO71 fora.ax € Qandforalls > 0. (4.16)

Let A > A and suppose that A € £. We can find u € S, C int (C4()+) and from
Proposition 4.2 we have u < u. Let Q9 € 2 be an open subset with C 2-boundary,
Qo € Qand my = minxeﬁO u(x) < 1. Note that since u € int (C(l) (§)+) we have
0 < mg. Let§ € (0, 1) be small and set mg = mg + §. Note that

1 1 §n(x) S o
0= @ s\t S 5w S T forall x € Q. 4.17)
My (mp) m, m

Let p = ||ulloo and let & » > 0be as postulated by hypothesis Hi (iv). Then, by applying
(4.17), (4.16), mg < 1, 6 > 0 small enough, f > 0O and A >  we obtain

)p(x)—l _ (mg)—ﬂ(x)

8 8 TE 8

— Apeymy — Dgymg + Ag, (mg

Aépmg(x)_l + x(8) — m&"(x) with x(8) — 0" as§ — 0T,
36+ 1]mE™7 4 @) = my"™

= A ermo) + EmEY ™ 4 x @) —my™

IA

IA

<A [f(x, u) + épup(x)_l]
< Af(x,u) + A& uPO!
= —Ap(‘)u — Aq(.)u + iépup(x)—l — u—n(x) in .
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Then, by Proposition 2.3(b), we get mg < u(x) for all x € Qg and for all § € (0, 1)
small enough. This contradicts the definition of mg. Therefore, A* < A <4oo. O

Next we are going to prove that we have multiple solutions for all A € (0, 1*).

Proposition 4.8 If hypotheses Hy, H hold and X € (0, 1*), then problem (P, ) has at
least two positive solutions

uo, i € int (cg(§)+) with wo # .

Proof Le_tO <A <?® < A*. On account of Proposition 4.6 we can find uy € Sy C
int (C}(Q)+) and ug € ), < int (C}(R)4) such that

Wy — ug € int (cg (§)+) : (4.18)
Also from Proposition 4.2 we have
u < uo. (4.19)

Let p = |jugllo and let é‘p > 0 be as postulated by hypothesis Hj(iv). Then, using
f >0, (4.19), hypothesis H(iv) and ug € S,, we obtain

— Apyit — Ag(yit + AEpuP =1 — g7
<a[f e+ Earo]
=[S o) + Epuf ]

= —Dpyto = Dg(yuo + A pu

(4.20)
POy in .

Note that 0 < épug(x)q since ug € int (Cé (§)+). So, from (4.20) and Proposition
2.3(a), we get that

Uo — T € int (CO‘ (§)+) . 4.21)
From (4.18) and (4.21) it follows that

ugy € intC(l)(ﬁ) [, uy]. (4.22)

We introduce the Carathéodory function jj : 2 x Ry — R defined by

w) 7MY 4 f (x,u(x)) ifs < u(x),

TN LA f (x,5) ifu(x) <s. (423)

Jr(x,s) = {

Moreover, we introduce the truncation of j, (x, -) at uy (x), namely, the Carathéodory

function f;\: Q x Ry — Ry defined by
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e = {f*(x’ D=, (424)

Ja(x,ug(x)) ifuy(x) < s.

We set J; (x,s) = [y ju(x,1)dt and Ji(x,s) = fo jr(x, 1) dt and consider the C!-
functionals wy,, Wy : Wl’p(')(Q) — R defined by

w;h(u):/‘ —|Vu|p(x)dx+/ ! |Vu|q(x)dx—/ Jo(x, u)dx,
(x) q(x) Q

uA);»(u)z‘/ —|Vu|p(x)dx+/ L|Vu|q(x)dx—/ Jy.(x, u) dx
(x) q(x) Q

forall u € W' ().
From (4.23) and (4.24) it is clear that

Wil iy = Wrligu,; a0d Wilo = 5l (4.25)
Moreover, applying (4.23) and (4.24), we can easily show that
Kuw, C [@) Nint (cg (§)+) and K, C[@uy]Nint (cg (§)+) . (426)
On account of (4.24) and (4.26), we see that we may assume that
Ky, = {uo}. (4.27)
Otherwise we already have a second positive smooth solution for problem (P, ) and so
we are done, see (4.24) and (4.26).

From (4.24) we see that the functional wj, : W(}’p (')(Q) — R is coercive and it is
easy to check that it is sequentially weakly lower semicontinuous. Hence, its global

minimizer iig € Wol’p(‘)(.Q) exists, that is,
W (itg) = min [ﬁ)k(u) Cue Wol”’(')(Q)].

From (4.2_7) we conclude that 119 = ug. From (4.22) and (4.25) it follows that ug is a
local Cé (2)-minimizer of w,, Hence

ug is a local Wé’p(')(Q) -minimizer of w, (4.28)

see Tan-Fang [23] and Gasinski-Papageorgiou [7]. From (4.23) and (4.26) we see that
we can assume that

Ky, is finite. (4.29)

Otherwise we already have an infinity of positive smooth solutions for problem (P;)
and so we are done.
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Then, from (4.28), (4.29) and Theorem 5.7.4 of Papageorgiou-Radulescu-Repovs
[12, p. 449] we know that there exists p € (0, 1) small such that

w; (uo) < inf [wy (u) : llu — upll = p] = m,. (4.30)
On account of hypothesis H; (ii), if # € int (C}(Q)), then
wy (fu) - —o0 ast — +oo. 4.31)

In order to apply the mountain pass theorem we only need to show that the functional
w;, satisfies the C-condition.

Claim: w;, fulfills the C-condition.

We consider the sequence {u,},en € Wé’p O (€2) such that

|wy(up)| < c7 forsomecy > 0andforalln € N, (4.32)

(1 + upDw, (un) — 0in WHP'O(Q) as n — oo. (4.33)

From (4.33) we have

. enllhl]
(Ao Gt )+ (A g () ) — / Jueouyhdx| < g 5y
Q L+ flunl
for all h € Wol’p(')(Q) with &, — 0%. Choosing h = —u, € Wol’p(')(Q) in

(4.34), recalling that T"h € L'(Q) for all h € W, " (), see Harjulehto-Hiists-
Koskenoja [6], and applying (4.23) leads to

0p(y(Vu, ) + 040)(Vu, ) < cg Hu; || for some cg > O and foralln € N,

which implies that

{ul’l_}neN S Wé

0(Q) is bounded. (4.35)

Now we choose h = u;\ € Wol’p(')(Q) as test function in (4.34). This gives

—0p(y (V) — 040y (V) +/ Jr(xouf)ufdx <e, foralln eN. (4.36)
Q

Furthermore, from (4.32) and (4.35), we obtain

1 1
—|Vu,+|p(x)dx~|—/ —|Vu+|qmdx—/ B (x, ut) dx
/s.-zp(x) ' Qqx) " Q (v.107)

=09
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for some c9 > 0 and for all n € N. This implies

0p(y (Vb)) + 0g(y (Vb)) — /Q p+di (x.u)) dx < pyco foralln e N. (4.37)
We add (4.36) and (4.37) and obtain
/Q [jx (x, u;r) u,J{ — p+ (x, u,f)] dx < c1g9 forsome cig > O and foralln € N,

which by (4.23) results in

/ A [f (x, u:[) ujl' — p+F (x, ujl')] dx < c11 <1 +/ (u;l")l_n(x) dx) (4.38)
Q Q

for some ¢y} > 0 and for all n € N.
Hypotheses Hj (i), (iii) imply the existence of y; € (0, ) and c12 > 0 such that

yls_r(x) —cpp < f(x,s)s — p+F(x,s) fora.a.x € Qandforalls > 0. (4.39)

Using (4.39) in (4.38), we have
0:() (u;f) <ci3 |:1 +/ (u;l")lin(x) dxi| for some c13 > 0 and for all n € N.
Q

Hence, we see that

{uf}, o © L7O(R) is bounded. (4.40)

From hypothesis H; (ii1) we see that, without any loss of generality, we may assume
that T(x) < r < p* forall x € Q.Hence, 7_ <r < p* andsowecanfindt € (0, 1)
such that

11—t ¢
= +—. (4.41)
r T_ pr

Applying the interpolation inequality, see Papageorgiou-Winkert [15, p. 116], we have
1—
[Eng ey Uy Wl [ (o
Thus, due to (4.40),

||u;l" ||: < ci4 ||u2' for some c14 > 0 and for all n € N.

tr
pr

@ Springer



568 N. S. Papageorgiou and P. Winkert

Then, by the Sobolev embedding theorem, we obtain

+ ”" for some c15 > 0 and for all n € N. (4.42)

[ 7 = ers [

We take h = u,} € Wol’p(')(Q) in (4.34) as test function and get

0p( (VU ) 4 0g(1(Vu) < e, + / Jr (x uf)ufdx foralln € N,
Q

which by (4.23) and (4.42) gives

0p(- (Vi) + 04y (Vi) < cie [1 + /Q)»f (x ) uyh dxi|
< a1+ Ju ]

<eig [1 4 |u H”] (4.43)

for some cy¢, ¢17, ¢1g > 0 and for all n € N.
From (4.41) we have

pr(r—rt-)
=<

tr
pr—_

p—.

Therefore, from (4.43) and Proposition 2.1 it follows that
{ LpQ) .
Untpeny S W, (€2) is bounded.
So, we may assume that
w . Lp() . p()
u, — u in W, () and wu, — u in LPY(Q). (4.44)

We choose h = u, —u € W(}‘p(‘)(SZ) in (4.34), pass to the limit as n — oo and
apply (4.44). This yields

nll)n;o [(Ape) ) s un — u) +(Age) (un)  un —u)] = 0.
Note that A, ()(-) is monotone, so we have

lim sup [(Ap(‘) (uy) , u, — u) + (Aq(‘) (u), u, — u)] <0.

n—oo

Because of (4.44) we then derive

lim sup <Ap(.) (up) , uy — u) <0

n—oo
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and so, by Proposition 2.2,
. Lp()
up, —> u in Wy ().

This proves the Claim.
Then, (4.30), (4.31) and the Claim permit us the use of the mountain pass theorem.

So we can find &1 € Wol’p(')(SZ) such that
il € Ky, C [@) Nint (c3<§)+) ,
see (4.26), and
wy, (o) < my, < wy (1),

see (4.30). We conclude that 7 € int (C& (§)+) is the second positive solution of (P;)
for A € (0, A*) and &t # uy. O

It remains to decide whether the critical parameter value A* > 0 is admissible.

Proposition 4.9 If hypotheses Hy and Hy hold, then \* € L.

Proof Let {A,}nen € (0, A*) C L be such that A, / A*asn — oo. From the proof
of Proposition 3.10 we know that we can find u,, € S, C int (Cé (Q)+) such that

wy, (uy) < w;,(u) foralln e N.
Applying (4.23), f > 0 and Proposition 3.1 we obtain

W), (un)

1
< q—[g,,(,> (Vit) + 04() (Vﬁ)—/ﬂﬁ“"“‘) dx—/gx,,f(x,ﬁ)ﬁdx]

IA

1
q_ [QP(') (Vu) + Oq() (Vﬁ)] _ /Qﬁl—r;(x) dx

IA

1 _ _
|:q_ — 1] (Qp(.) (Vi) + 04() (Vu)) <0 (4.45)
for all n € N. Furthermore, we have
(Apey un) B) + (Ag() () ) = / Jo (x, up) hdx (4.46)
Q

forall h € Wy " (%) and for all n € N.
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Using (4.45) and (4.46) and reasoning as in the Claim in the proof of Proposition
4.8, we obtain

uy — u* in Wy P(Q) and @ <u*,

see Proposition 4.2. Hence, u* € Sy C int (C(l) ()4) and so A* € L. O

So, we have proved that
L£=(0,1].

Summarizing our results we can state the following bifurcation-type result describ-
o
ing the changes in the set of positive solutions as the parameter moves on R} =
(0, +00).
Theorem 4.10 If hypotheses Hy and H hold, then there exists .* > 0 such that

(a) forevery A € (0, A™), problem (P, ) has at least two positive solutions
o, ii € int (C5(§)+) . ug # i
(b) for .. = A*, problem (P;,) has at least one positive solution
u* € int (cg (§)+> :

(c) forevery & > A*, problem (P;,) has no positive solutions.

Acknowledgements The authors wish to thank the two anonymous referees for their constructive remarks.
Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bahrouni, A., Radulescu, V.D., Repovs, D.: Double phase transonic flow problems with variable
growth: nonlinear patterns and stationary waves. Nonlinearity 32(7), 2481-2495 (2019)

2. Byun, S. S., Ko, E.: Global C La regularity and existence of multiple solutions for singular p(x)-
Laplacian equations, Calc. Var. Partial Differential Equations 56 (2017), no. 5, Paper No. 76, 29 pp

3. Cherfils, L., II'yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with
p&q-Laplacian. Commun. Pure Appl. Anal. 4(1), 9-22 (2005)

@ Springer


http://creativecommons.org/licenses/by/4.0/

On a class of singular anisotropic (p, q)-equations 571

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable expo-
nents. Springer, Heidelberg (2011)

Fan, X., Zhao, D.: A class of De Giorgi type and Holder continuity. Nonlinear Anal. 36(3), 295-318
(1999)

Harjulehto, P., Histo, P., Koskenoja, M.: Hardy’s inequality in a variable exponent Sobolev space.
Georgian Math. J. 12(3), 431442 (2005)

Gasinski, L., Papageorgiou, N.S.: Anisotropic nonlinear Neumann problems. Calc. Var. Partial Differ.
Equ. 42(3-4), 323-354 (2011)

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin
(2001)

Lazer, A.C., McKenna, PJ.: On a singular nonlinear elliptic boundary-value problem. Proc. Amer.
Math. Soc. 111(3), 721-730 (1991)

Marino, G., Winkert, P.: L°°-bounds for general singular elliptic equations with convection term. Appl.
Math. Lett. 107, 106410, 6 pp (2020)

Papageorgiou, N.S., Radulescu, V.D., Repovs, D.D.: Anisotropic equations with indefinite potential
and competing nonlinearities. Nonlinear Anal. 201, 111861 (2020)

Papageorgiou, N.S., Réddulescu, V.D., Repov§, D.D.: Nonlinear Analysis — Theory and Methods.
Springer, Cham (2019)

. Papageorgiou, N.S., Riadulescu, V.D., Repov§, D.D.: Nonlinear nonhomogeneous singular problems,

Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 9, 31 pp

Papageorgiou, N.S., Vetro, C., Vetro, F.: Multiple solutions for parametric double phase Dirichlet
problems. Commun. Contemp. Math. 23(4), 2050006 (2021)

Papageorgiou, N.S., Winkert, P.: Applied Nonlinear Functional Analysis. an Introduction. De Gruyter,
Berlin (2018)

Papageorgiou, N.S., Winkert, P.: Singular p-Laplacian equations with superlinear perturbation. J. Diff.
Equ. 266(2-3), 1462-1487 (2019)

Papageorgiou, N.S., Zhang, C.: Noncoercive resonant (p, 2)-equations with concave terms. Adv. Non-
linear Anal. 9(1), 228-249 (2020)

Rédulescu, V.D., Repovs, D.D.: Partial Differential Equations with Variable Exponents. CRC Press,
Boca Raton (2015)

Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable
exponents. Adv. Nonlinear Anal. 9(1), 710-728 (2020)

Saoudi, K., Ghanmi, A.: A multiplicity results for a singular equation involving the p(x)-Laplace
operator. Complex Var. Elliptic Equ. 62(5), 695-725 (2017)

Saoudi, K., Kratou, M., Alsadhan, S.: Multiplicity results for the p(x)-Laplacian equation with singular
nonlinearities and nonlinear Neumann boundary condition, Int. J. Differ. Equ. 2016, Art. ID 3149482,
14 pp

Struwe, M.: Variational Methods. Springer-Verlag, Berlin, fourth edition (2008)

Tan, Z., Fang, F.: Orlicz-Sobolev versus Holder local minimizer and multiplicity results for quasilinear
elliptic equations. J. Math. Anal. Appl. 402(1), 348-370 (2013)

Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary
points. Comm. Partial Differ. Equ. 8(7), 773-817 (1983)

Zhang, Q.: A strong maximum principle for differential equations with nonstandard p(x)-growth
conditions. J. Math. Anal. Appl. 312(1), 24-32 (2005)

Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth con-
ditions. J. Math. Sci. (N. Y.) 173(5), 463-570 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	On a class of singular anisotropic (p,q)-equations
	Abstract
	1 Introduction
	2 Preliminaries and hypotheses
	3 An auxiliary purely singular problem
	4 Positive solutions
	Acknowledgements
	References




