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Abstract

Mike Müller-Petke, Berlin University of Technology, PhD thesis 2009

Extended use of Magnetic Resonance Sounding (MRS) datasets - QT inversion
and resolution studies

The present thesis provides a comprehensive insight into the Magnetic Resonance Sounding
(MRS) inverse problem and introduces the QT inversion scheme as native solution scheme of
the inverse problem. At this, the thesis analyses the inverse problem in terms of resolution and
stability both in theory, synthetic and field examples, mostly restricted to 1D depth sounding
(MRS) but with an outlook on 2D tomography like investigations (MRT), and follows several
tasks.

First and within the scope to develop an improved inversion scheme the currently available
solution schemes are analysed. This analysis includes the initial value inversion using extrap-
olated initial values and the time step inversion using multiple inversions for several different
record times. The resulting new approach, called QT inversion, incorporates directly the native
data structure of two variables, namely the pulse moment q and the record time t, and provides
improved resolution and stability.

Second, the model and data spaces of the initial value inversion scheme are investigated. In
order to assess the model resolution as a function of the loop size, maximum pulse moment
and noise level, the model space is studied. On the one hand, the results of this study help
to determine field settings appropriate to the target of investigation. On the other hand, the
estimated model can be evaluated concerning its reliability using measures of resolution derived
from the model resolution matrix.
Besides model resolution the data space caries information on data dependencies. Consequently,
analysing the data resolution matrix a sequence of optimal distributed pulse moments is derived.
This optimal pulse moment distribution provides the maximum amount of information most
efficiently. This analysis introduces the data resolution matrix rather than the model resolution
matrix, as object of analysis into the field of experimental design.

In addition, the properties of the mono or multi-exponential fitting are studied, and possibili-
ties to improve the estimated model using transformation that restrict the model and data space
with upper and lower boundaries are shown. At this, the pseudo water content is introduced to
permit data space transformations.

Finally, all subtasks are summarised, assessed and discussed at a field example.
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Zusammenfassung

Mike Müller-Petke, Technische Universität Berlin, Doktorarbeit 2009

Erweiterter Nutzen von Datensätzen der Magnetischen-Resonanz Sondierung
(MRS) - QT Inversion und Studien zum Auflösungsvermögen

Die vorgelegte Dissertationsschrift stellt einen möglichst umfassenden Einblick in die inverse
Aufgabe der Magnetischen-Resonanz Sondierung (MRS) dar. Im Besonderen wird ein neu-
es Inversionsschema, die QT Inversion als natürlicher der Datensatzstruktur entsprechender
Lösungsansatz, vorgestellt. Das inverse Problem wird dieser Zielstellung folgend, hinsichtlich
Auflösungsvermögen und Stabilität sowohl im theoretischen Rahmen als auch mittels syntheti-
scher und praktischer Beispiele. Dabei folgt die Arbeit mehreren Aufgabenfeldern.

Zum Einen, werden die verfügbaren Lösungsansätze im Hinblick auf die Entwicklung eines
verbesserten Schemas analysiert. Die Analyse beinhaltet dabei das Inversionsschema basierend
auf extrapolierten Werte der gemessenen Zeitreihen zum Zeitpunkt null (Initial value inversion)
und das Zeitschrittinversionsschema, d.h. die gemeinsame Interpretation von Inversionen zu
definierten verschiedenen Zeitpunkten der Zeitreihen (Time step inversion). Der, auf dieser
Analyse beruhende, verbesserte Ansatz wird als QT Inversion bezeichnet und benutzt erstma-
lig nativ die Abhängigkeit des Datensatzes von zwei Variablen, dem Pulsmoment q und der
Aufzeichnungszeit t, direkt, um verbesserte Auflösungseigenschaften und Stabilität zu gewinnen.

Zum Anderen, werden der Model- und Datenraum des Initial value Inversionsschemas ana-
lysiert. Die Analyse des Modelraums führt dabei auf die Evaluierung des Inversionsresultates
in Abhängigkeit von Spulengröße, maximalem Pulsmoment und Rauschlevel. Die gewonnenen
Erkenntnisse helfen dabei, dem Objekt der Untersuchung entsprechende, angepasste Messan-
ordnungen zu wählen und durch Berechnung von Auflösungsmaßen das durch die Inversion
gewonnene Model hinsichtlich seiner Vertrauenswürdigkeit zu untersuchen. Die Analyse des
Datenraums ermöglicht die Wahl einer optimalen Verteilung von Pulsmomenten, dergestalt
dass unter dem Gesichtspunkt der Effektivität der maximale Informationsgehalt extrahiert
werden kann. Diesem Feld des experimentellen Designs wird damit die Analyse der Daten-
auflösungsmatrix hinzugefügt.

Ergänzend werden die Eigenschaften der mono und multi-exponentiellen Datenanpassung
untersucht, sowie die Möglichkeiten das Inversionsresultat mittels Transformationen, d.h. dem
Einschränken des Model- und Datenraumes durch obere und untere Grenzen, zu verbessern,
gezeigt. Dabei wird die Größe des scheinbaren Wassergehaltes eingeführt, um die Transforma-
tionen auch auf den Datenraum erweitern zu können.

Abschließend werden alle Teilaufgaben in einem Feldbeispiel zusammengefasst, beurteilt und
diskutiert.
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1 Introduction

The phenomenon of Nuclear Magnetic Resonance, independently discovered in 1940ies by two
groups of researchers (Purcell, Torrey, Pound and Bloch, Hansen Packard), takes advantage of
a quantum-mechanical property of matter, namely the Spin, and allows investigations of matter
at the basis of signals originating from the nuclei. It has found a widespread of use in medical,
chemical and (geo) physical sciences. Concerning geophysical investigations this is due to its
direct access to hydrogen protons and thus direct detectability of water.

All NMR based techniques share a common procedure in which an alternating magnetic field
(the excitation or secondary field) at Larmor frequency forces reorientation of the macroscopic
magnetic moments from their thermal equilibrium orientated along with the static (or primary)
field. After the excitation field is extinguished, the orientation of magnetisation relaxes back to
this equilibrium. This relaxation process generates a weak magnetic field that is measured and
analysed to determine the matters properties.

Surface Nuclear Magnetic Resonance (surface NMR) as the superordinated method and
Magnetic Resonance Sounding (MRS) as its application for 1D water content depth sounding
denotes the usage of NMR for geophysical exploration at field scale to detect ground water and
to characterise aquifer properties like hydraulic conductivities from the surface.

The technique of surface NMR was introduced by Russian scientists in the 1980ies and first
field results were published by (Semenov et al., 1988). In 1996 Iris Instruments introduced
the first commercially available device and triggered the interests of research groups outside of
Russia. Currently, profound research on the fundamentals of the technique is concentrated at
a workgroup of Iris Instruments, the geological survey of France (BRGM), the University of
Grenoble (France), ETH Zurich (Switzerland), a Russian group in Novosibirsk and at the Berlin
University of Technology (Germany) in cooperation with the geological survey of Germany
(BGR). Furthermore, there is increasing research from China as well as from Iran during the
last years. Besides continuous publications of actual research results, international workshops
that took place in 1999, 2003 and 2006 led to special issues on MRS published in 2002 (Journal of
Applied Geophysics), 2005 (Near Surface Geophysics) and 2008 (Journal of Applied Geophysics).

The simplest configuration of MRS operates with a single loop at the Earth’s surface. This
loop acts both as transmitter (emitting the excitation field) and receiver (recording the relax-
ation signal). The depth sensitivity is based on changed excitation intensities, i.e., the pulse
moment q that is the products of the loops current and pulse duration. Increasing or decreasing
the pulse moment increases or decreases the depth of investigation, respectively. Hence, the
surface NMR dataset are NMR signals in dependency of the pulse moment q and have to be
inverted for their spatial distribution. The basic theory had been presented in some review
articles (e.g. Yaramanci (2000); Legchenko and Valla (2002)) but neither obviously possible
separate transmitter and receiver loops nor the subsurface resistivity are completely discussed.
The most general formulation introducing the actual state of art surface NMR formulation was
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1 Introduction

published by (Weichman et al., 1999, 2000). This formulation allowed modelling of complex
surface NMR signals including separated transmitter and receiver loops and takes into account
the vectorial nature of the NMR phenomenon as well as the subsurface resistivity distribution.

Consequently, the recent research now includes all model parameter that influence the meth-
ods physics. On the one hand, extended formulations triggered the development to overcome
the restrictions on 1D applications using 2D and 3D forward modelling Eikam (2000); Warsa
et al. (2002) and introducing separated loop configurations (Hertrich et al., 2005). In further
development, inversion schemes have been adopted to 2D and according to geophysical notation
the extension to 2 spatial dimensions is called Magnetic Resonance Tomography (MRT), as
presented in Hertrich et al. (2007). On the other hand, detailed investigations on the resistivity
influence on the MRS signal were carried out (Braun, 2007) and finally led to a inversion of the
subsurface resistivity as presented by (Braun and Yaramanci, 2008). Furthermore, jointly with
subsurface resistivity information measures of water quality are available.

Besides the development of the theoretical concepts the method has proved it usage as hy-
drogeophysical exploration technique (Vouillamoz et al., 2008) due to its outstanding properties
compared to other geophysical methods, thanks to the direct sensitivity to hydrogen protons,
i.e., quantitative measures of both subsurface water content and hydraulic conductivity. At this,
beside the total (effective or extractable) water content distribution, the decay time is essential.
Surface NMR measures T ∗

2 , i.e., the relaxation constant of the free induction decay (FID) in
dependency of q. Legchenko and Valla (2002) presented a scheme to invert not only for the
depth distribution of the subsurface water content but also the depth distribution of the decay
time T ∗

2 using a mono-exponential approach. Commonly, laboratory NMR and borehole NMR
use a decay time distribution to describe the NMR relaxation behaviour of a complete sample
derived by multi-exponential fitting, i.e., describing the partial amount of water relative to some
decay time (interval). Thus, a concept of Legchenko and Valla (2002) was extended to multi-
exponential fitting by Mohnke and Yaramanci (2005) and introduced a decay time distribution
in dependency on the spatial dimension as necessary for surface NMR. Mohnke and Yaramanci
(2005) used the description decay time spectra while in this thesis partial water content (PWC)
distribution is proposed as a more convenient descriptor. Ongoing from this PWC distribution
the total water content as a function of depth is the sum over all decay times. In this notation,
the logarithmic mean of the PWC distribution as a function depth, as a usually used measure
for a mean decay time, is named decay time depth distribution. Hence, the inverted T ∗

2 decay
times may provide additional information about aquifer properties due to their dependency on
the pore space geometry but compared to laboratory and borehole measurements that provide
T1 and T2 distributions these information are limited.

All of which above improved the surface NMR forward modelling or extended the limitations
concerning inversion results, but extended insight in the inverse problem is only presented by
Legchenko and Shushakov (1998)). But these insights into the inverse problem are of importance
to evaluate limitations of resolution and reliability as well as to improve inversion schemes and
to extend its limitations. At this, the thesis will provide detailed knowledge on the surface
NMR inverse problem. The results are mostly restricted to the 1D case but with a preliminary
outlook to 2D resolution properties.
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Chapter 2 gives a brief review on NMR basics deriving the most essential results of the spin
theory on the basis of Bloch’s set of equations. The fundamental equation of surface NMR is
shown and discussed afterward.

Chapter 3 opens the field of the surface NMR inverse problem from a general point of view.
It should allow the reader to understand the possible range of solution approaches that are
discussed in later chapters. The fundamental differences according to the dataset, forward
operator and model parameter of the different solution schemes will be shown. It provides
the knowledge of how to construct the forward problem from the fundamental surface NMR
equation and therefore the operator to be inverted as well as the needs for dataset preparation
or processing, depending on the solution approach.

After this overview of approaches and prior to analysing properties, like resolution and sta-
bility of the inversion schemes (as it is done in chapter 5/6), the measured dataset is focused
in-between these chapters.
The dataset has to be analysed before discussing inversion aspects due to the fact that measured
dataset builds the basis of all forthcoming steps. At this, data is handled not only as input
parameter for the inversion but defining the need (and strength) of regularisation due to noisy
data. Consequently, a proper regularisation of the inverse problem has to be based on analysing
the data error, e.g. discussing the mono-, bi-, or multi-exponential fitting. Hence, in this chapter
it is shown how data error can be estimated and how this might vary depending on processing
schemes and/or processing steps.
At the same level of importance, limitations that cannot be seen by a solitary look at inversion
results (that might look nicely but to not fit geological expectations) like systematic data error
have to be analysed. Thus, the outcome of this chapter is fundamental understanding of surface
NMR dataset and a roadmap to follow in order to process and evaluate measured data prior to
invert for the subsurface model.

The inversion scheme widely used is the initial value inversion, i.e., reducing the dataset to a
sounding curve that has to be approximated by an appropriate water content model. Chapter 5
investigates the resolution of model parameters and maximum depth of investigation with re-
spect to different parameters like loop size, resistivity and available pulse moments. Some tables
and graph providing an overview of general relationships are given, hopefully help to plan field
surveys. At a field case the use of such kind of pre-analysis is shown.
Furthermore, the efficiency of different sequences of pulse moments using a data space analysis
is evaluated (experimental design). The necessary total number of pulse moments is derived
and discussed under the scope of the quality of the inversion results. Finally, the influence
and improvements of transformations on the inversion scheme is shown. Pseudo water content
is introduced, enabling restrictions not only to the water content but also to the data and
significantly improving the inversion results.

The spatial extension on 2D water content inversion arises from calculating the forward
operator in 2 dimensions and to get a tomography like subsurface image. Multiple soundings
at different loop locations and configurations are used. While MRS takes only a coincident
loop layout into account, for 2D investigations separated loop layouts where additionally intro-
duced. Therefore, the loop layout for a 2D subsurface image, i.e., overlapping stations and loop
separation are parameters that obviously influence the inversion result. Currently, the spatial
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1 Introduction

extension to 2D uses initial values as input data. Thus, the resolution properties of different
layout strategies are assessed in section 5.5.

Chapter 6 introduces a completely new but somehow more native inversion scheme: the QT
inversion. QT inversion uses the complete surface NMR dataset build by the pulse moment q
and the record time t at once, i.e., calculates a model that satisfies all data in a single step.
This is, in contrast to all previously presented inversion schemes that divide the solution path
into two steps. Consequently, it promises improved resolution and stability. It is assessed with
synthetic and real datasets and compared to the commonly used strategies.

4



2 Surface NMR Forward Problem

The forward problem of Surface Nuclear Magnetic Resonance is a coupled problem. It consists of
the Nuclear Magnetic Resonance phenomenon, i.e. the usage of a quantum-mechanical property
of matter, namely the Spin. Discovered in the 1940ies the NMR phenomenon has nowadays found
a widespread of use in medical, chemical and (geo) physical sciences. While in petrophysical lab
applications the theory of NMR can be applied straight forward the counterpart that leads to a
geophysical surface related application is the electromagnetic field propagation of surface loops
at a fixed frequency.

2.1 NMR phenomenon

The quantum mechanical property of matter called spin is one of the four basic physical prop-
erties of atoms. The three others are: mass, electric charge and microscopic magnetisation.
Since matter is made of atoms there are macroscopic consequences, i.e., matter has a mass
and depending on the internal structure an electric charge. These two are easily observable.
Macroscopic magnetisation sometimes occurs but is due to the movement of electrons while
nuclear magnetism is very weak. Finally, nuclear spin is even less tangible. One can imagine
the nuclear spin as an atomic nucleus that is rotating like a tiny planet in space and thus has an
angular momentum. But in fact, it is an intrinsic property of the nucleus without any rotation
behind. Even though, there is no simple macroscopic consequence, like a macroscopic spin, a
macroscopic magnetisation or net magnetisation at the base of microscopic nuclear spins can
occur.

Macroscopic magnetisation: Lets distinguish between microscopic magnetisation, i.e., an iso-
lated nuclear spin, and macroscopic magnetisation, i.e., net magnetisation M0 of an ensemble of
spins. Based on the microscopic magnetisation a macroscopic magnetisation exist if an external
magnetic field B0 is applied and described by Curie’s law

M0 =
ρ0γ

2
~

2B0

4kBT
(2.1)

with h = ~ ∗ 2π the Planck constant, ρ0 the number of spins per volume, kB the Boltzmann
constant, T the temperature. Obviously, the magnitude of this macroscopic magnetisation is
proportional to the amplitude of its source, the external field B0 and has the same orientation.
After Levitt (2002) this macroscopic magnetisation can be qualitatively understood. Without
external magnetic field the isolated microscopic moment are randomly orientated in space and
thus cancelling the magnetisation in a macroscopic view. If an external static field exists a
magnetisation behaves like a gyroscope rotation at a cone around the orientation of the static
field. Since the spatial location of the single spins is not constant and thus also the local
static field properties show tiny fluctuation the rotation cone of each spin is not constant. In
addition, the parallel orientation of the spin moment with the static field orientation is more
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2 Surface NMR Forward Problem

stable than the antiparallel orientation. Both together results in a very slight amount of more
spins orientated with the static field after some time, i.e., the relaxation time T1, building the
macroscopic magnetisation M0 orientated with the external static field.

NMR experiment: How can we take advantage of this macroscopic magnetisation? In the
following the simplest NMR experiment as it is used for surface NMR is described.
First, a strong static external magnetic field B0 is applied to a sample causing a macroscopic
magnetisation M0 at an amplitude as described by Curies law. According to surface NMR, the
static field is the earth magnetic field and the sample is the subsurface.
Second, the macroscopic magnetisation is forced to tilt with respect to the earth’s field direction
using an alternating excitation field B (the secondary or excitation field) that is perpendicular to
B0 (or at least with field components B⊥ perpendicular to B0) at the larmor frequency (Levitt,
2002)

ωl = −γ · |B0| (2.2)

with γ as a specific value for nuclei (γhydrogen = 0.2675Hz
nT ). The angle of excitation depends

on the amplitude of B⊥ and the duration τ of this excitation field, usually called excitation
pulse. There are different types of pulses according to different objectives. One of those are
90◦ pulses that flip the orientation of the magnetisation from the z-axis by 90◦ to e.g. exactly
the y-axis. Since the earth field is not constant in time or the Larmor frequency might not be
chosen properly, one should also account for off-resonance effects as described in Mansfield et al.
(1979); Legchenko (2004) or Braun (2007). These off-resonance effect cause improper 90◦ flip
angles, i.e., an orientation of the magnetisation after the pulse including z- and x-components.
If this excitation field is extinguished, i.e., after pulse cutoff, the orientation of the macroscopic
magnetisation will move back to its parallel orientation with the static field. The movement of
the magnetisation can be described by the Bloch equations and is discussed in the following.
Basically, this motion is a precession, emitting a electromagnetic field at Larmor frequency that
is measured and analysed concerning the captured information.

Bloch equations: The basic equations that describe the behaviour of a magnetisation vector
M in dependency of the time t under the presence of a magnetic field B0 and damping conditions
(relaxation constants T1 and T2) are the Bloch equations

dM

dt
= γ[M(t) × B0] − Mxex + Myey

T2
− Mz − M0

T1
ez (2.3)

According to the NMR experiment after excitation field cutoff, B0 is the primary static field

B0 = [0, 0, B0]
T (2.4)

and the magnetisation vector at t = 0 for perfect 90◦ pulses e.g.

M(t = 0) = [0,M0, 0]
T . (2.5)

Off-resonance effect are taken into account via introducing the angles φ, θ, in the common
notation of spherical coordinates, calculated in dependency on the off-frequency and defining
the position of the magnetisation in space. Exemplary after Mansfield et al. (1979) (for more

6



2.1 NMR phenomenon

a) b) c)

Figure 2.1: Trajectory of the relaxation process for different ratios T1
T2 . a) 2 · T1 = T2, b)

T1 = T2, c) T1 = 2 · T2. After Levitt (2002)

detail concerning surface NMR see Legchenko (2004); Braun (2007))

Mx(t = 0) = M0 · sin(φ) cos(φ)(1 − cos(θ))

My(t = 0) = M0 · sin(φ) sin(θ)

Mz(t = 0) = M0 · (cos2(φ) + sin2(φ) cos(θ))

Then equation 2.3 decouples concerning vertical and horizontal magnetisation, i.e. longitudinal
(T1) and transverse (T2) relaxation to

dMx

dt
= γ · My · B0 −

Mx

T2
(2.6)

dMy

dt
= −γ · Mx · B0 −

My

T2
(2.7)

dMz

dt
= −Mz − M0

T1
. (2.8)

The solution to this set of equations is a damped harmonic oscillation

Mx,y(t) = Mx,y(0) · exp(−iωt) · exp(−t/T2) (2.9)

in the (x,y) plane (i.e. perpendicular to the static field) and (re)build of thermal equilibrium,
i.e. net magnetisation

Mz(t) = Mz(0) · exp(−t/T1) − M0 · exp(−t/T1) + M0. (2.10)

In total M(t) describes the precession of the magnetisation around B0 (Fig. 2.1), while the
measurable signal is a decay at larmor frequency originating form the magnetisation component
Mx,y(t) oscillating in the (x,y) plane at Larmor frequency.

7



2 Surface NMR Forward Problem

2.2 Surface NMR signal

In contrast to laboratory NMR carrying the sample inside a measurement coil and using artifi-
cial primary magnetic field conditions, the object to be investigated of surface NMR is outside
the coil and as primary field the earth field is used. From this “layout” additional tasks arise to
get a proper set of equations describing the methods physics.
According to the earth field strength the Larmor frequency varies from 1 kHz up to 2.7 kHz.
The excitation magnetic field BT is build up by large surface loops of sizes actually ranging
from 10 m - 150 m. Thus, it is inhomogeneous and elliptically polarised due to the geometrical
damping and subsurface resistivity. Following the description of Weichman et al. (2000), the
emitted, in general elliptically polarised excitation field is projected on the earth’s field orienta-
tion in order to derive the component B⊥

T perpendicular to the earth’s field direction and then
decomposed into two circular polarised fields (Fig. 2.2). This is necessary since only the field
component that is co-rotating with the precession spin and perpendicular to B0 deflects the
spin from its oreintation along with the earth field.
According to Weichman et al. (2000) (in more detail Braun (2002); Hertrich et al. (2005)) and
with Mohnke and Yaramanci (2005) introducing multi-exponential NMR behaviour, the surface
NMR signal in 3D composes to

d(q, t) = V (q, t) =

∫
G(r, q)

∫
m(r, T ∗

2 ) · e−t·(T ∗

2 )−1
dT ∗

2 d3r (2.11)

G(r, q) = sin

(
γ

q

I0
|B+

T (r)|
)

(2.12)

× 2

I0
|B−

R(r)| · ei[ζT (r)+ζR(r)]

×
[
b̂R(r) · b̂T (r) + ib̂0 · b̂R(r) × b̂T (r)

]

with

B+
T = co-rotating part of the transmitter field

B−
R = counter-rotating part of the receiver field

b0 = unit direction of earths magnetic field

b̂R(r) = unit direction of virtual receiver field perpendicular to b0

b̂T (r) = unit direction of the transmitter field perpendicular to b0

d(q, t) = V (q, t) = envelope of the voltage in the receiver loop [V ]

G(r, q) = kernel function, i.e. forward operator [V/m3]

m(r, T ∗
2 ) = partial water content distribution [m3/m3]

I0 = transmitter loop current

τ = pulse (excitation field) duration

q = I0 · τ = pulse moment [As]

r = spatial location

T ∗
2 = apparent transverse decay time

t = time [s]

ζT,R(r) = phase shift [rad]
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2.2 Surface NMR signal

Figure 2.2: Decomposition of an elliptically polarised field B⊥
T into two opposite circularly po-

larised fields B+
T and B−

T (Braun, 2007). For description of all other symbols see
equation 2.12

Equation 2.11 currently provides the most complete forward operator for spatial and time do-
main as well as for arbitrary loop positions, sizes and orientations. Commonly laboratory NMR
and borehole NMR use a decay time distribution to describe the NMR relaxation behaviour of
a complete sample, i.e., the partial amount of water associated with some decay time (interval).
Concerning surface NMR a partial water content (PWC) distribution extends this decay time
distribution by the spatial dimension as necessary for surface NMR. Ongoing from this PWC
distribution the total water content as a function of depth is the sum over all decay times. This
total water content is often referred to as Θ, linking to a usual hydrogeophysical notation of
water content. In addition, the logarithmic mean of the PWC distribution as a function depth,
as a usually used measure for a mean decay time, is named decay time depth distribution.
The spatial resolution of the subsurface PWC distribution is thereby realised by changing the
parameter q, i.e. the spatial energy distribution due to the spatial distribution of the magnetic
field. According to q = I0 ·τ the pulse moment is changed by changing the transmitter loop cur-
rent I0. These pusle moment changes leads to a change of the spatial distribution of excitation
angles and therefore signal amplitudes. Consequently, changing q changes the spatial location
of the subsurface volume creating the signal response. The kernel function G(r, q) describes this
“sensitive“ volumes for any pulse moment q. The kernel is complex valued either due to the
subsurface resistivity or separated transmitter and receiver loops. Depending on a subsurface
assumption the kernel function can be integrated.
Figure 2.3 shows the kernel function for a horizontal layered earth, i.e. 1D conditions. In general,
increasing the pulse moment increases the depth of the main sensitive volume. Figure 2.4 shows
the kernel function in 2D, i.e. only integrating for one horizontal direction. Besides the kernel
function for a coincident configuration (that is usually used for 1D exploration) a separated
loop configuration (as introduced by Hertrich et al. (2005)) is shown. These two configurations
significantly differ in their spatial sensitivity distribution and show different resolution proper-
ties as it will be discussed in section 5.5.
In equation 2.11 a hidden parameter is the subsurface resistivity that enters the equation via
calculating the magnetic fields. Extensive research on the influence of the resistivity on the sur-
face NMR kernel function as well as the development of an inversion schemes for the resistivity

9



2 Surface NMR Forward Problem

has been carried out by Braun (2007) and Braun and Yaramanci (2008).
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valued due to the conductivity.
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Figure 2.5: Surface NMR dataset is a measured voltage in dependency of the pulse moment q
[As] and the record time t [s]. The synthetic dataset (subfigure b) is calculated using
the kernel as in figure 2.3 and the subsurface model in subfigure a). The dataset
might be complex for a complex kernel. Thus, it is presented in real part, imaginary
part, amplitudes and phases. .

Finally, the surface NMR dataset is derived by a multiplication of the subsurface PWC dis-
tribution, i.e., the water content distribution in space and decay time domain, with the kernel
function and integration over the complete space and decay times, resulting in a two dimen-
sional surface of voltages in dependency of pulse moments q and record time t. Figure 2.5
exemplary shows the surface NMR dataset for a coincident loop measurement at 1D layered
earth conditions.
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3 Surface NMR Inverse Problem - Overview

At the end of this thesis in chapter 6 the most advanced but somehow most natural inversion
approach of surface NMR datasets is presented and evaluated. Thus, at chapter 6 a detailed
motivation leading to this approach is given. Nevertheless, general properties like depth of
investigation, resolution, field configuration, processing flows and uncertainty estimations are
applied to the initial value inversion approach, too. Hence, a short derivation of possible solution
strategies to the basic surface NMR equation is given beforehand and should allow the reader
to follow the chapters in the given order. According to the usual matrix notation capital case
bold symbols present matrices, lower case bold symbols present vectors.
Commonly in geophysics the forward problem reads

d = Gm (3.1)

with d the data, G the forward operator and m the subsurface model. Since data is measured,
the subsurface model is derived by multiplying the inverse operator G−1 with the data and the
inverse problem reads

m = G−1d. (3.2)

In most cases the inverse problem is not that easy to pose, since it might be over determined
(more data than model parameter) or underdetermined (less data than model parameter) or
even of mixed condition and of great importance measured data is never exact. Therefore, an
exact inverse G−1 might not exist and we write the generalised inverse problem

m = G−gd. (3.3)

with G−g the generalised inverse operator. Consequently, chapter 4 discussed the data, strategies
of error estimation and limitation of surface NMR data in dependency of the different solution
approaches (as presented next) to the surface NMR inverse problem, while in chapter 5.1.1 one
solution to the problem of calculating the generalised inverse operator is discussed.
In the following three approaches that rearrange equation 2.11 to identify the data, forward
operator and model are shown. Basically the approaches differ in handling the measured surface
NMR dataset. As an simplification equation 2.11 is preintegrated over x and y to handle the
1D case and reads

d(q, t) = V (q, t) =

∫
G(z, q)

∫
m(z, T ∗

2 ) · e−t·(T ∗

2 )−1
dT ∗

2 dz. (3.4)

Initial value inversion: Let’s start with the integral
∫

m(z, T ∗
2 ) · e−t·(T ∗

2 )−1
dT ∗

2 (3.5)

as part of equation 3.4 and assume mono-exponential NMR behaviour. The partial water content
(PWC) distribution then reduces to water content depth distribution m(z) at decay time depth
distribution T ∗

2 (z)
m(z, T ∗

2 ) → m(z), T ∗
2 (z) (3.6)
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Figure 3.1: Surface NMR dataset d(q, t) with mono-exponential fit to each NMR signal d(qi, t)
(the index i indicates a certain pulse moment) for the initial value inversion. Each
datum d(qi, tn) (the index n indicates a certain time) is represented as blue circle
with mono-exponential fit to NMR signal d(qi, t) as read line. The red circle show the
extrapolation to t = 0 and build as E0 the sounding curve that is used for subsurface
water content inversion.
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and the integral over all decay times becomes unnecessary. Thus, equation 3.4 reads

d(q, t) =

∫
G(z, q)m(z)e−t/T ∗

2 (z)dz (3.7)

and at t = 0, i.e. after pulse cutoff

d(q, t = 0) =

∫
G(z, q)m(z)dz = E0(q). (3.8)

Using a discretisation of depth z and the pulse moment q, equation 3.8 can be written as a
system of linear Equations

E0 = Gm (3.9)

and solved for m. Since E0 the initial amplitudes at t = 0 act as input data (called sounding
curve) for the inversion, one can refer to this scheme as initial value inversion. Due to an
instruments dead time, i.e., a registration of the NMR signal starting at t > 0 (currently this
dead time is about 40 ms) these initial values are unknown and have to be estimated in a first
step.
Commonly a mono-exponential fit to d(qi, t), i.e., NMR signal for a certain pulse moment qi, and
extrapolation to the time t = 0 as shown in figure 3.1 is used. These extrapolated initial values
building the sounding curve are then used for water content inversion (Fig. 3.2). This is the
common used approach to invert for water content. Chapter 5 will provide extensively insights
in this type of solution and chapter 4 provides detailed knowledge of dataset preparation, fitting
and error analysis.
Obviously, decay times can be derived only in dependency of the pulse moment but not as a
function of depth. Mohnke and Yaramanci (2002) has presented a slightly extended scheme using
the initial values and mono-exponential fitting also inverting for decay time depth distribution.
This approach was neglected, since the time step inversion approach, as presented in the next
paragraph, is a more enhanced strategy.
Generally spoken, the initial value inversion reduces the dataset by mono-exponential fitting to
a sounding curve (solves for the NMR parameter - figure 3.1) and then inverts the sounding
curve E0(q) for the subsurface water content distribution m(z) (solves for the correct depth
distribution of the NMR parameter). But mono-exponential datafit and extrapolation is not
always a correct simplification, as we see next.

Time step inversion: Equation 3.7 shows that d(qi, t) is of mono-exponential behaviour only
if T ∗

2 (z) is constant for the sensitive volume shown by G(z, q). Since the kernel function is a
smoothing function the assumption is only valid for homogeneous halfspaces.
Therefore, even for mono-exponential behaviour within a subvolume the MRS recorded signal
is multi-exponential due to the second part of the forward problem: the electromagnetic field
propagation. Consequently, the separation has to be vice versa as presented by Legchenko and
Valla (2002) and Mohnke and Yaramanci (2005). Lets start again with equation 3.5, integrate

∫
m(z, T ∗

2 ) · e−t·(T ∗

2 )−1
dT ∗

2 = m(z, t) (3.10)

and with equation 2.11 for a certain time tn

d(q, t = tn) =

∫
G(z, q)m(z, tn) dz = Etn(q) (3.11)

15



3 Surface NMR Inverse Problem - Overview

0

0.2

0.4

0.6 0
5

10
15

0

500

1000

pulse moment [As]time [s]

am
pl

itu
de

 [n
V

]

Figure 3.3: Same dataset as in figure 3.1. At every time step tn a sounding curve Etn(q) =
d(q, tn) (the measured dataset without any exp. fitting) is inverted for water content
m(z, tn). Thus, red lines now represent the forward response of this water content
inversion of each sounding curve, separately.
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Thus, the dataset d(q, t) is separated into Etn(q) = d(q, tn) sounding curves. with tn : a certain
time sample at the NMR signal. After discretising the depth z and the pulse moment q, a system
of linear equation for every time step tn exists

Etn = Gmtn . (3.12)

Consequently, n inverse problems have to be solved (as much as time steps of the NMR signal)
for water content in dependency of the record time as shown in figure 3.3. After all inversion
at every time step the solution for the water content builds a new structure m(z, t). Therefore,
one can call this step a transformation of the dataset into the water content domain.
The second step now either estimates m(z), T ∗

2 (z) (water content and decay time depth dis-
tribution) using a mono-exponential fit to m(z, t) (Legchenko and Valla (2002)) or m(z, T ∗

2 )
(PWC distribution) using multi-exponential fit (Mohnke and Yaramanci (2005)). In any case it
provides an exact solution scheme to equation 2.11.
In Mohnke and Yaramanci (2008) the approach is discussed and both synthetic and field datasets
are presented. In chapter 6 this scheme is used to compare time step inversion results to the
initial value and QT inversion. Generally spoken, the time step inversion solves first for the
correct depth distribution and therefore resolves apparent multi-exponential signals and then
solves for the NMR parameter. Thus, it provides both water content and decay time.

QT inversion: Both two step schemes have a drawback. To get an exact solution the first
scheme has to use multi-exponential fitting of not necessarily multi-exponential NMR signals that
might cause instability as discussed in section 4.2.1. The second scheme has to solve numerous
linear equation systems. Both solve equations independently that share information, i.e., the
subsurface parameter distribution. Since both steps (exponential fitting and water content
estimation) are ill-posed, an appropriate regularisation for the final parameter distribution is
fairly difficult.
To avoid these problems equation 2.11 can be rewritten to

d(q, t) =

∫
G(z, T ∗

2 , q, t)m(z, T ∗
2 )dT ∗

2 dz. (3.13)

Hence, the standard kernel function is extended by the NMR decay signal to solve the complete
problem. Discretising equation 3.13 spatially and for T ∗

2 leads to standard linear equation system
of one spatial and one time dimension

d = Gm. (3.14)

Thus, a fit to the complete dataset d(q, t) is calculated at one step (Fig. 3.5). The new scheme
is tested with synthetic (Chapter 6) and field examples (Chapter 7) and compared to the ini-
tial value inversion and time step inversion, respectively. Figure 3.6 summarises the different
approaches as an overview.
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Figure 3.5: Same dataset (blue circles) as in figure 3.1. The red mesh represents the forward
response of the estimated subsurface PWC distribution m(z, T ∗

2 ) after QT inversion
and satisfies the complete dataset, i.e., all data d(qi, tn) are taken into account jointly.
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4 Surface NMR Dataset

After an overview of solution approaches to the inverse problem identifying the different kinds of
data as input parameter for the different inversion schemes (e.g. exponential fitting to provide
initial values) and prior to analysing inversion schemes dependent resolution and stability prop-
erties (Chapter 5/6) the measured surface NMR dataset is focused in-between these chapters.
Data is analysed before discussing inversion aspects due to the fact that measured data builds
the base of all forthcoming steps. At this, data is handled not only as input parameter for the
inversion but defining the need (and strength) of regularisation due to noisy data. Consequently,
a proper regularisation of the inverse problem has to base on a detailed data error analysis.
First, this chapter shows how data error is estimated and how this might vary depending on
processing schemes (e.g. mono-, bi- or multi-exponential fitting) and/or processing steps.
Second, uncertainties arising from systematic data error are analysed. Here systematic errors
are defined as errors that do not directly influence the inversion quality in terms of a proper
solution to the inverse problem, i.e., the estimated data fits very nicely the measured data, but
may not fit geological expectations or lead to geological misinterpretation.
Due to the different needs of data processing for different inversion schemes the sections are
structured to discuss scheme independent influences, i.e., firstly common processing steps and
secondly forthcoming steps for initial value inversion and QT inversion.
Consequently, the given structure of sections is a roadmap for processing a dataset for inversion
and evaluating the dataset concerning its reliability as well as providing fundamental under-
standing of surface NMR datasets.
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4 Surface NMR Dataset

4.1 Inversion scheme independent dataset processing

The surface NMR dataset following equation 2.11 is of 2 dimensions:

1. The pulse moment q that defines the spatial location of the sensitive volume

2. The time t carrying the surface NMR signal (free induction decay - FID) arising from the
sensitive volume

In general, for 2D or 3D exploration (MRT) the loop position is varied and the spatial sensitivity
distribution, i.e., kernel function, is a function of the loops spatial location and the pulse moment
q, as well as the loop geometry, subsurface resistivity and earth field conditions. Without loss
of generality, basic dataset processing steps can be shown at the 1D dataset, i.e. independent
of the loop location and only as a function of q. Such a MRS dataset is exemplarily shown in
figure 4.1 for 24 pulse moments and a record time of 0.5 s.
The amplitude of the surface NMR signal is mostly smaller than the mean level of Gaussian
distributed noise. Consequently, the measurement for a specific fixed pulse moment is repeated
and stacked to enhance the signal quality. This approach is well known and enhances the signal
to noise ratio by the square root of the stacking number.
Due to the 2 dimensions of the MRS dataset 2 measurement schemes exist. On the one hand,
the same pulse moment is repeated until a necessary stack number is reached and then one
switches to the next higher pulse moment. On the other hand, all pulse moments are recorded
successively until the maximum pulse moment is reached and then restart with the smallest
pulse moment for stacking. Both schemes are currently applied in different devices. But at least
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Figure 4.1: MRS dataset of a single sounding. Surface NMR signals are recorded for 0.5 s and
for 24 pulse moments representing different sensitive volumes.
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Figure 4.2: Stacked surface NMR signal (recorded in Ahrenshop, Germany) based on 164 single
stacks without despiking. The stacked noise also consists of 164 stacks. Even at the
stacked surface NMR signal spike events (e.g. at 0.095 s) are visible.

both schemes have to stack the single records of each pulse moments.
Unfortunately, besides Gaussian distributed noise, spike events often occur due to electromag-
netic events like natural short time variation, pulsations or lightnings but also artificial events
caused by trains or mobile communication. These events do not destroy a single stack but if the
occurrence repeats during many single stacks the stacked signal can be totally corrupted.
A often used scheme is to filter these events using some low-pass filter. Concerning surface NMR
signals this approach is difficult due to the surface NMR signals spectrum and has to be done
adaptively for any dataset. Anyhow, systematic errors might be introduced according to Strehl
(2006). Another approach evaluated by Strehl (2006) are wavelet based spike eliminations that
promise very good results but need further development and evaluation.
Here, a very easy and robust scheme is presented. It is based on deleting spike affected parts of a
single stack rather than to filter (or delete) the complete single stack. Figure 4.2 shows a signal,
recorded near Ahrenshop (Germany), containing 164 stacks without deleting spike events, i.e.,
all 164 single stacks for this pulse moment are stacked to one signal.
Figure 4.3a shows all 164 single stacks. Spike events are easily visible and corrupt the stacked
surface NMR signal (Fig. 4.2, e.g. at 0.095 s). But clearly not a complete single stack is affected
by increased noise condition. Consequently, one would delete valuable information, if the whole
single stack is deleted.
Lets extract e.g. from each single stack the complex value at 0.2 s after pulse cutoff. One gets
a dataset of 164 data points (Fig. 4.3b) virtually repeating a measurement of exactly the same
time sample of the surface NMR signal. Spike events are still clearly visible. Next, a statistical
analysis can be applied. Therefore, the standard deviation for these 164 measurements is cal-
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Figure 4.3: a) 164 single stacks in real and imaginary part. b) Extracted real and imaginary
part of these 164 single stacks at a fixed time (0.2 s), i.e., a dataset of 164 repeated
measurements. The black lines are twice the standard deviation, calculated from
this dataset. Spikes can be easily identified and only single measurements of these
164 stacks at each time sample are deleted instead of the whole single stack. c)
Remaining 164 single stacks after spike elimination.
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Figure 4.4: Stacked surface NMR signal (recorded in Ahrenshop, Germany) based on 164 single
stacks with despiking.

culated. The black lines then indicate an interval of twice the standard deviation, i.e., within
95% confidence interval. Obviously, spike events do not fit into this interval and thus, can be
detected and deleted. This approach is successively repeated for all available time samples.
Consequently, not a complete single stack is deleted, if a spike occurs during the record. Only
the spike of the single stack is deleted and the remaining time samples are still used for stacking.
Figure 4.3c shows the remaining part of all single stacks that are then used to calculate the
stacked surface NMR signal as presented in figure 4.4.
In order to calculate the improvement on the signal to noise ratio, exemplarily this schemes is
applied to the noise record as well. The noise record also consists of 164 stacks, each recorded
directly before the signal. Deleting the spike events before stacking clearly improves the signal
by a factor of 2 (Fig. 4.4).
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4.2 Dataset processing and error estimations for initial value
inversion

4.2.1 Dataset exponential fitting and extrapolation

The essential processing step using the initial value inversion is to calculate the NMR complex
value at an appropriate time t that corresponds to the maximum amplitude, i.e., 90◦ excitation
angle. While most extrapolation approaches (see Legchenko and Shushakov (1998), Mohnke
and Yaramanci (2002)) refer to the time after excitation pulse cutoff as initial value, Weichman
et al. (2000) proposes an extrapolation within half the pulse length but neither proved or eval-
uated this proposal. In 2009 (Walbrecker et al., 2009) has proven this concept. Due to the late
proof, here the time after excitation pulse is used. But since it has no essential influence on the
approach of extrapolation and error estimation the results are transferable.
Depending on the general concept of petro-physics, application range or data feasibility, dif-
ferent extrapolation schemes are available. In laboratory and borehole applications a multi-
exponential approximation of the NMR signal is common sense, while in MRS applications both
mono-exponential (as standard approach) and multi-exponential approximation (Mohnke and
Yaramanci (2005)) schemes exist. Mohnke and Yaramanci (2005) had shown that for multi
layered subsurface structures with different relaxation regimes the surface NMR signal is neces-
sarily multi-exponential.
Besides this, a surface NMR signal is complex due to frequency offsets and phase effects. Thus,
the complex surface NMR signal is usually fitted according to Legchenko and Valla (1998), i.e.,
using real and imaginary part of the signal instead of amplitudes. Taking only the amplitudes
into account, i.e., neglecting phase and frequency offsets leads to a biased solution. In the com-
plex case four parameter: initial amplitude x1, decay time x2, phase x3 and frequency offset x4,
are necessary to completely describe a complex mono-exponential signal V (t) V (t)

ℜ(V (t)) = x1e
−tx−1

2 cos(2πx4t + x3) = VR(t) (4.1)

ℑ(V (t)) = x1e
−tx−1

2 sin(2πx4t + x3). = VI(t) (4.2)

In order to determine these four parameters, at least two complex measurements (at different
times t1 and t2), i.e., four datapoints {VR(t1), VI(t1), VR(t2), VI(t2)} are necessary. Lets write
equation 4.1 and 4.2 using these four datapoints:

VR(t1) = x1e
−t1x−1

2 cos(2πx4t1 + x3) (4.3)

VI(t1) = x1e
−t1x−1

2 sin(2πx4t1 + x3) (4.4)

VR(t2) = x1e
−t2x−1

2 cos(2πx4t2 + x3) (4.5)

VI(t2) = x1e
−t2x−1

2 sin(2πx4t2 + x3) (4.6)

and rearrange in order to solve for {x1, x2, x3, x4}.
First, eliminate x1 in equation 4.3 and 4.5 using 4.4 and 4.6, respectively.

VI(t1)

VR(t1)
= tan(2πx4t1 + x3) (4.7)

VI(t2)

VR(t2)
= tan(2πx4t2 + x3) (4.8)
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This yields the phase x3 and frequency offset x4.
Second, using the known x3 and x4 equation 4.3 and 4.5 leads to

VR(t1)

cos(2πx4t1 + x3)
= x1e

−t1x−1
2 (4.9)

VR(t2)

cos(2πx4t1 + x3)
= x1e

−t2x−1
2 (4.10)

and yields the amplitude x1 and the decay time x2. Obviously, the parameter determinations de-
couples into calculating the phase and frequency first and second the amplitude and decay times.
This has some consequences if data uncertainties are taken into account. After equation 4.7 and
4.8 any misestimation of the phase is compensated by a frequency offset misestimation according
to the data uncertainty. That is, phase and frequency offset are correlated. On the other hand,
after equation 4.9 and 4.10 amplitude and decay time estimation are correlated.
Furthermore, due to the correlation of phase/frequency offset and the decoupling of the param-
eter determination, the amplitude/ decay time estimation is independent and uncorrelated with
the phase/frequency offset estimation.
In the following three fitting approaches are compared and evaluated for its use and feasibility
for estimating MRS initial amplitude and decay time (or decay time distribution). According to
the correlation analyses the synthetic modelling was carried out neglecting phase and frequency
offsets, i.e., phase and frequency offset is set to zero and only the real part of signal is used.
Remark, for real field data the complex fitting is necessary to avoid biased solutions.
The approaches to compare are:

1. Mono-exponential

2. Bi-exponential

3. Multi-exponential

Be aware, the focus of this evaluation is on fitting results in dependency on the signal to noise
ratio and discussed independent of a petro-physical model.
A signal with two exponentials is generated and contaminated with two noise levels related to
laboratory and moderate field signal quality. Here, noise level defines the standard deviation of
a Gaussian distribution.
Furthermore, all synthetic signal are at a sampling frequency of 500 Hz that is equivalent to the
surface NMR field signals.
Figure 4.5 shows the modelling parameters, the noise contaminated signal and the different

fitting results. Both, the multi- and bi-exponential approach can explain the data adequately
while the mono-exponential fit is just able to resolve a mean of the two decay times and there-
fore underestimates the total amplitude. Figure 4.6 presents the results with increased noise
conditions that are equivalent to moderate surface NMR field conditions. For this case all ap-
proaches show deviations for the total amplitude within the same range. Concerning multi- and
bi-exponential fitting the amplitude is overestimated due to wrong decay time estimations, i.e.,
the fitting process is very noise sensitive. The mono-exponential fit underestimates the total
amplitude but the estimated decay time still presents a mean of the two exponentials.
Second, a mono-exponential signal with the total amplitude (1000 nV) and mean decay time
(0.3 s) of the previous experiment at field scale noise level (100 nV). Table 4.1 lists the fitting
results including the standard deviation derived from 100 independent runs of signal creation
and fitting. Obviously, the mono-exponential approach represents the synthetic model with
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Figure 4.5: Comparison of exponential fitting approaches at laboratory noise level (1nV). Syn-
thetic signal consists of two exponentials at the same initial amplitude of 500 nV
but different decay time (0.12 s and 0.5 s). Upper right corner: mono-exponential
fit and signal, Lower right corner: bi-exponential fit and signal, Lower left corner:
decay time distribution of the multi-exponential fit.
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Figure 4.6: Comparison of exponential fitting approaches at moderate field noise level (100 nV).
Synthetic signal consists of two exponentials at the same initial amplitude of 500 nV
but different decay time (0.12 s and 0.5 s).Upper right corner: mono-exponential
fit and signal, Lower right corner: bi-exponential fit and signal, Lower left corner:
decay time distribution of the multi-exponential fit.
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mean initial amplitude ± std mean decay time ± std

mono-exponential fit 1001 nV ± 26 nV 0.29 s ± 0.01 s

bi-exponential fit 1018 nV ± 38 nV 0.36 s ± 0.14 s

multi-exponential fit 1030 nV ± 33 nV 0.29 s ± 0.015 s

Table 4.1: Comparison of exponential fitting approaches at moderate field noise level (100 nV).
Synthetic signal consists of a single exponential at 1000 nV initial amplitude and 0.3 s
decay time). The standard deviations of the fitting parameters are calculated from
100 independent runs.

less deviation due to the limited free model parameters compared to multi- and bi-exponential
approach.

In conclusion, multi-exponential fitting routines using several exponential decay functions are
able to represent complicated models at favourable noise condition in laboratory application but
have to be carefully chosen for MRS field measurements due to unfavourable noise conditions.
In fact, no inversion scheme for MRS datasets uses a multi-exponential fit at surface NMR signal
domain. In general, these results cannot be passed directly to a signal fitting in water content
domain as used in the time step or QT inversion since cross signal correlations and inversion
stability changes the signal to noise ratio at that domain.

4.2.2 Dataset error estimations

Calculating the error estimation: As shown in subsection 4.2.1 the mono-exponential fit is
to be preferred to approximate the initial value. Hence, the following subsection presents error
estimation based on this approach. Later this results will be used for the initial value inversion
as input parameter. Remark, now and for all following discussions the complex fitting for all
four parameter (including phase and frequency offset) is applied.
Concerning NMR signals one has to distinguish between: error estimations for each datum of
the measured time series (as being discussed in subsection 4.3) and for the extrapolated initial
values as discussed in the following.
In order to estimate the error of the extrapolated initial value one has to take two steps into
account. First, the covariance of the fitting result is discussed. Let σk be the standard deviation
of a certain measurement k in the time series and σ it’s mean. Then for n model parameter m
the covariance matrix related to the fit is defined as

Cm = σ2(GT G)−1. (4.11)

with G the forward operator and Cm the n by n element covariance matrix.
Second, the amplitude extrapolation is considered as an error propagation with dependent model
parameters, i.e. Cm

ij with i 6= j is not zero. If mextr = f(m) is the extrapolated value and
following Taylor (1982), the model standard deviation for two model parameter (amplitude and
decay time) reads

σmextr =

√(
∂f

∂m1

)2

Cm
11 +

(
∂f

∂m2

)2

Cm
22 + 2

(
∂f

∂m1

)(
∂f

∂m2

)
Cm

12. (4.12)

Corresponding to subsection 5.1.1 the regularisation parameter can be chosen according to the
discrepancy principle that calculates a proper regularisation parameter depending directly on
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Figure 4.7: Comparison of different error estimations. True signal: Initial amplitude 500 nV,
decay time 0.2 s. Top: Error estimation based on the covariance calculation for a
single signal with Gaussian distributed noise at standard deviation of 10 nV. The
fitted initial value and its standard deviation is given using the Gaussian error propa-
gation as well as (in brackets) the standard deviations before extrapolation. Bottom:
Standard deviation (and max/min values) calculated from 100 independently noise
contaminated signals.

the error estimation of the measured data. An accurate calculation of the data error based
on equation 4.12 will lead to optimal regularisation only if all error estimation are perfectly
known and follow the Gaussian distribution, that is rarely given. Otherwise, an over- or under-
regularised solution is finally calculated. Thus, it is useful to derive an error estimation that
ensures an upper limit independent if parameter covariances exist or not. This solution then is,
by definition, not under-regularised. The Gaussian error propagation is used to ensure such an
upper limit and derived from equation 4.12 by applying the Schwarz inequality

|Cm
12| ≤

√
Cm

11

√
Cm

22 (4.13)

leading to

σmextr =
n∑

i=1

∣∣∣∣
∂f

∂mi

∣∣∣∣ ·
√

Cm
ii . (4.14)

Verification of the calculated error: In order to prove the calculated error estimations the
covariance analysis is compared to a statistical analysis using independent runs. It turns out
(Fig. 4.7 and 4.8) that the estimated standard deviations based on the Gaussian error propaga-
tion are, as expected, mostly larger compared to the statistically calculated standard deviations
based on 100 independently contaminated and fitted signals. But, according to figure 4.7 and
4.8 the estimated error including Gaussian error propagation explains the maximum deviation
of the 100 statistical runs too, and therefore avoids an under-regularised solution. On the other
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Figure 4.8: Top: Same as figure 4.7 but Gaussian distributed noise at standard deviation of
100nV.

hand, neglecting the error propagation completely may underestimate (Fig. 4.7) the error. Con-
sequently, these two estimations define the upper and lower limits of a valid error estimation to
be used for inversion. In order to avoid over-interpreted results (or under-regularised models)
the error estimation taking the Gaussian error propagation into account will be used by default.
In chapter 7 inversion results according to this interval will be presented and discussed.
Estimating a reliable data error is essential for calculating reliable inversion results as well as
resolution properties. To evaluate these error estimates besides the successful synthetic mod-
elling, field data test are essential. In order to prove the use of the error estimation with field
data, three criteria are tested.

1. Repeated measurements should be within the estimated error interval

2. Inversion results regularized using the estimated error should represent the subsurface at
a well known test site

3. Fitting error of an automatically regularised inversion scheme should be in the same range
as the estimated error.

First, a field experiment was carried out based on 3 repeated measurements. The results are
shown in figure 4.9. It turns out that both the amplitudes and decay times can be repeated
within the calculated range based on the covariance analysis while the phases appear not to
be repeatable. As a restriction concerning the measured phases it should be stated that no
phase correction as published in Legchenko (2004) or Braun (2007) was applied. All authors
documented an antisymmetric correlation of the frequency offset to the measured phase. This is
obviously not the general case here. Besides the proposed phase correction that is based on the
frequency offset causing a different spin dynamic also filter properties of the resonance circuit
may cause large phase misinterpretation. Consequently, in order to interpret the MRS phase by
default further evaluation is necessary and only amplitudes are used in the following.
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location with exactly the same layout measured within 1 1/2 days.

33



4 Surface NMR Dataset

600 800 10001200

0

2

4

6

8

10

12

14

16

18

20

pu
ls

e 
m

om
en

t q
 [A

s]

amplitude [nV]

std(∆d): 21.621nV

 

 

0 0.2 0.4

0

10

20

30

40

50

60

70

80

90

100

water content [m3/m3]

de
pt

h 
[m

]

 

 

m
est

d
obs

d
est

Figure 4.10: Field measurements at the test site Nauen. Settings: d = 100 m loop diameter,
larmor frequency at 2089 Hz, earth field inclination at 64◦. The inversion results
are discussed in section 7 in detail.

This results can be confirmed by the results presented in Braun et al. (2003). The authors carried
out a series of repeated measurements at different test sites but changed the pulse duration
since one of the aims of that research was to show this dependency. Beside this they showed
similar results concerning phase behaviour and, in the context of repeatability, reliable decay
times. Remark, repeatability in this context includes an unchanged loop position. There are
datasets measured at locations with comparable hydrological parameters but showing different
(repeatable) decay times.
Second, a measurement at a well known test site Naunen (Yaramanci et al. (2002)) was carried
out. The applied inversion scheme will be presented in chapter 5 using both data space and model
space transformation and generalised cross validation (gcv) to choose an automatic regularisation
(Aster et al. (2005)). The presented water content in figure 4.10 represents the expectations
very well (the complete field case including borehole measurements for verification is discussed
in section 7) and fits the data within an error of about 22 nV standard deviation. The calculated
standard deviation of the mono-exponential data fit is about 28 nV using error propagation and
17 nV without.
Consequently, both test criteria, the comparability of automatically chosen regularisation and
covariance based as well as reliable inversion results based on covariance estimated errors are
satisfied.
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Effects of signal sampling rate and low pass filter: Using the Numis Instrumentation (Iris
Instruments Iris Instruments (2000)) the signal sampling frequency is at about 500 Hz. The
standard processing and measurement scheme already includes a low pass filter at about 100 Hz
(Legchenko and Valla (2002)). If these filtered signals (in contrast to the raw data as used
above) are taken into account a significantly underestimated data error is observed. This effect
can be explained as follows.
In order to establish a well determined system of equations to solve the mono-exponential fitting
problem (for amplitude and decay time) at least two equations, i.e. two measurements, are
necessary. Any additional measurements turn the problem into a over determined, i.e. improve
the fitting as long as the error is Gaussian distributed. In fact, this is similar to repeating a
measurement and calculating the mean

x̄ =
1

N

N∑

i=1

xi. (4.15)

Consequently, the more independent measurements are available, the more exact the estimated
model parameter become, since the standard deviation of this mean increases according to Taylor
(1982)

σx̄ =
σx√
N

(4.16)

with square root of the amount of measurements. But this is only valid as long as the measure-
ments are independent experiments.
In fact, applying a 100 Hz low pass filter to the raw signal of 500 Hz without re-sampling the
signal does creates dependent measurements. After e.g. Buttkus (2000) filtering at the fre-
quency domain, i.e., multiplication of the signal and the filter function in the frequency domain,
is equivalent to the convolution of the signal and the filter function in the time domain. If the
low pass filter at the frequency domain is a perfect step function with the corner frequency fg,

H(f) =

{
1 for −fg ≤ f ≥ fg

0 else
(4.17)

then in the time domain it is a sinc function

h(t) = 2fg
sin(2πfgt)

2πfgt
(4.18)

One can reduce the side lopes using more sophisticated windows. Anyhow, the convolution of
the signal with filter in the time domain is an averaging process while the length of averaging
depends on the cutoff frequency of the low pass. The lower the corner frequency of this low
pass becomes the more averaging takes place and the more dependent data exists. At least
one can understand this also using the sampling theorem. There is no larger frequency, i.e.,
independent information, than half the sampling rate. Consequently, a 100 Hz low pass filtered
signal at a sampling frequency of 500 Hz does contain dependent information. Consequently, a
low pass filtered signal should be re-sampled. Finally, if now a low pass filtered signal without
re-sampling is used to calculate a confidence interval, these intervals must be underestimated
and therefore the fitting error is underestimates if the sampling frequency is not adjusted.
On the other hand, according to equation 4.16 assume a signal without any filter (or at least a
very wideband detection system) with an increased sampling (e.g. higher sampling rate of the
AD converter). With restriction to Gaussian noise, the fitting results can be improved as shown
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Figure 4.11: Same modelling settings as in figure 4.8 but sampling frequency is increased by a
factor of 100 (50 kHz instead of 500 Hz).

in figure 4.11. Of course increasing the sampling frequency might introduce noise sources from
higher frequency bands and a low pass filter has to be applied afterwards and reducing the effect
of higher sampling.
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4.3 Dataset processing and error estimations for QT Inversion

Dataset phase elimination: The main difference between the QT inversion and the initial
value inversion is the use of the complete dataset and not only the initial values. Since a surface
NMR dataset is in general complex valued, due to frequency offsets and signal phases, also the
initial value is complex valued. It has been shown in subsection 4.2.2 that phase information
cannot be used by default. Therefore, only the amplitudes are mostly used. But remark, for
fitting the signals the complex time series has to be used (Legchenko and Valla (1998)). Using
the amplitudes already for fitting the time series causes systematic error since the exponential
function does not decay to zero but to the level of noise. Figure 4.12a/b illustrates the differences
in fitting the complex signal in contrast to the amplitudes.
Whereas for the initial value inversion the complex time series is used to derive amplitude and
phase initial value and afterwards only amplitudes are used, the QT inversion uses the time
series completely for inversion, i.e. the forward response of the QT inversion is the complex
time series, i.e. including phases. Thus, the inversion tries to satisfy both amplitude and phase.
Consequently, if signal phases are corrupted or unexplainable the inversion becomes instable
and leads to wrong solutions. On the other hand, using the amplitude dataset leads to a biased
solution.
To avoid both we need an amplitude dataset that decays to zero. The idea is simple. A complex
value consists of amplitude and phase or real and imaginary part. If the phase of a complex
value is zero then the amplitude equals the real part. So if we delete the phase from a complex
signal we can use the real part as amplitudes. If we do not take noise into account the former
processing does not show any advantage or disadvantage. But if we take noise into account
the new amplitude signal (i.e. the real part) can be negative and decay to zero. Thus, a
transformation sets the phase as well as the frequency offset to zero, i.e. the complex signal is
reduced to a real valued. Fitting this new signal leads to the correct initial amplitude and decay
time. Therefore, this approach ensures the statistical noise properties, especially the mean of
zero, to avoid a biased solution.
The transformation is rather simple. According to the Euler formula every complex value c can
be expressed by it amplitude |c| and phase φc via |c|eiφc . Therefore, the single complex signal
V (t) with |(V (t)| its amplitude and φV (t) its phase at the time t, is initially processed by the
standard mono-exponential fitting to derive: x1 : the initial amplitude, x2 : decay time, x3 :
phase and x4 : frequency. At the next step the full dataset is reconstructed according to

d(t) = |(V (t)|ei(φV (t)−x3−2·pi·x4·t)). (4.19)

while the term “φV (t) − x3” substracts the fitted phase x3 from the actual signal phase φV (t)

and only the random (noise) phase remains. The frequency offset is subtracted via “2 · pi ·x4 · t”
from the signal.
Figure 4.12 illustrates the different fitting strategies. The synthetic signal is calculated with a
initial amplitude of E0 = 200 [nV], decay time T ∗

2 = 0.2 [s], phase φ = 0.5 [rad] and frequency
offset df = 1.5 [Hz]. First, fitting the complex signal, this synthetic model can be estimated
properly. Second, using only the amplitudes of the signal the initial amplitude becomes un-
derestimated and the decay time overestimated. Finally, using the corrected amplitude both
amplitude and decay time are again estimated correctly.
The transformation to corrected amplitudes need to fit the complex data first and uses the fitted
phase to derive these corrected amplitudes. Consequently, what happens if the fitted phases and
frequency offsets are not perfect or wrong? After subsection 4.2.1 there is no correlation between
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the amplitudes and decay time on the one hand and phase and frequency offset on the other.
That is, even if the phase is incorrectly fitted the amplitudes are not affected as long as the
signal shows mono-exponential behaviour, Gaussian distributed noise and/or time constant ad-
ditional (e.g. instrumental) phases. If the signal shows multi-exponential behaviour the phases
cannot be explained completely and some uncorrected artefact remain. To my experience and
actual signal to noise ratios the differences between the phase of a multi-exponential signal and
a mono-exponential signal is unobservable.

Dataset error estimations: Estimating σi is not too difficult in contrast to the initial value
processing. Here a noise signal, that is recorded before the signal record and stacked in the same
manner as the surface NMR signal, can be used to calculate the standard deviation.
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Figure 4.12: Comparison of mono-exponential fits using the complex signal (a), the amplitudes
(b) and a corrected, i.e. phase and frequency reduced signal (c).
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4.4 Estimating systematic error - Frequency variations while stacking

4.4.1 Modelling frequency variations while stacking

In general, error estimation is incomplete since (petro) physical theory is not complete and
finished. Furthermore, only measurable quantities can be taken into account and possible sys-
tematic errors might be hidden.
One of these possible systematic errors can be caused by stacking slightly different signals in re-
spect to the resonance frequency. This stacking of signals can be due to repeated measurements
(traditional stacking to enhance the signal quality) but also caused by integrating over some
spatial subsurface volume (due to the averaging character of the kernel function). As sources of
earth field variation might occur

• daily (sun) and subdaily (moon) variation as linear trends in time and in the range of
some 10 nT (Militzer and Weber (1985))

• variations in the range of seconds with amplitudes of 0.01 up to 10 nT due to pulsa-
tion/oscillation as random distributed variation in time (Militzer and Weber (1985))

• susceptibility variation within the formation as random distribution in space

• external ferromagnetic sources (dikes, cars) as linear trends in space.

In the following, the range of influence is estimated by synthetic modelling.
The impact of the frequency variation on the synthetic model includes:

• actual frequency itself

• additional phase according to Legchenko (2004)

φ = tan−1(∆ω · ωeff · 1−cos(ωeff τ)
sin(ωeff τ) )

ω = γB+
T

∆ω : frequency offset
ωeff =

√
ω2 + ∆ω2

τ : pulse length

• filter properties of the resonance circut according to Strehl (2006). The values given
below do change slightly according to the field setting but stay constant for this synthetic
modelling

Z(ω) =
(

1
RC

+ iωC + 1
RL+iωL

)−1

RC : Resistance of the capacitor = 1e6
RL : Resistance of the loop = .5Ω
C : Capacity = 1

(2πfr)2L

fr : resonance frequency
L : inductance of the loop = 1mH

Varying these properties single signals are calculated and stacked to the final signal. Since we
expect systematic errors by the frequency variation, the signal is additionally contaminated with
Gaussian distributed noise.

39



4 Surface NMR Dataset

4.4.2 Effects of frequency variations on fitting results

Figure 4.13 compares a stacked signal of 100 stacks all of 100 nV noise without frequency
variations (all stacks have zero frequency offset) and a contaminated signal of 100 stacks all
of 100 nV noise and each a different frequency offset according to a Gaussian distribution of
0.5 Hz standard deviation (the equivalent magnetic field variation is 12 nT). That is, for every
single stack a different frequency offset based on the Gaussian distribution of 0.5 Hz standard
deviation is randomly chosen and the signal calculated. Finally, all stacks are summed up to
the stacked signal and fitted. Obviously, a frequency variation can reduce the decay time of
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Figure 4.13: Comparison of a stacked signal consisting of 100 stacks all of 100 nV noise without
frequency variations (all stacks have zero frequency offset) and its mono-exponential
fit to a contaminated signal of 100 stacks all of 100 nV noise and each a different
frequency offset according to a Gaussian distribution of 0.5 Hz standard deviation.

the stacked signal significantly from 0.3 s decay time of the true signal down to about 0.2 s for
the contaminated signal. In contrast, the amplitude and phase remain less affected.
In order to estimate the range of deviation a set of modelling was conducted and presented in
figure 4.14. Three parameters are systematically changed and its influence on the fitting result is
observed. The noise level has changed from noise free up to 100 nV for each stack. The standard
deviation for the randomly chosen frequency offset is varied from no frequency variation up to
1 Hz and shown at the right column. Furthermore, a linear trend for the frequency offset is
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Figure 4.14: Overview on the range off systematic deviations for fitting parameters as functions
of the range and type of frequency variations. Linear increasing (left column) is de-
fined from zero to the value given with the y-axis. Gaussian distributed frequency
variation (right column) is defined by Gaussian distributed random values of fre-
quency variation with a standard deviation given with the y-axis. For the sake of
clarity, the y-axes of the left and right column are equal but given in frequency
variation (left) and magnetic field variation (right), respectively.
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taken into account and shown at the left column. The linear trend is defined by the first stack
with no frequency offset and linear increasing up to a maximum offset for the last stack. This
maximum offset was changed from zero up to 1 Hz. For every modelling the number of stacks
is fixed at 100. Finally, the calculated stacked signal are fitted and the deviation to the original
fitting results are plotted in figure 4.14 against the noise level, Gaussian distributed frequency
offset and linear increasing frequency offset, respectively.
As expected for zero frequency variations and noise free condition the fitting results equal the
original values. With increasing noise conditions and zero frequency variations, single variations
become larger but do not show a systematic trend. On the other hand, with increasing frequency
variation systematic effects occur. These effects can be summarised to

1. linear trends need more than 0.5 Hz variation (12 nT) for significant systematic changes
in decay time and phase while the amplitude is quite unaffected by linear variations.
With increasing noise level all parameters show increasing Gaussian distributed errors as
expected.

2. random variation of less than 0.25 Hz variation (6 nT) already causes a decreased decay
time of 10%, the signal amplitude is less affected until 0.5 Hz, the signal phase in con-
trast stays unchanged from systematic errors, here the random frequency variation act as
random error.

4.4.3 Detectability of frequency variations

Variations of the earth field amplitude in time can be observed easily with standard magne-
tometer within a certain time interval of integration, e.g. some milliseconds. This is suitable
for long time observation, i.e., diurnal variation, but cannot resolve very short spike like events.
An appropriate scheme to detect contaminated signals without a magnetometer using only the
dataset itself is based on a sub-dataset analysis.

A dataset is separated into several sub-datasets that include a sub-amount of the original
stacks. For example, the original dataset contains 100 stacks and the sub-dataset contains 50
stacks. In order to apply a statistical analysis e.g. 20 sub-datasets each of 50 stacks are selected.
Each of this sub-dataset has to be different.
These sub-datasets are processed and fitted in the usual scheme for initial amplitude, decay
time, phase and frequency offset. Since several sub-datasets exist the fitting results can be used
for statistical analysis. That is, the 20 different fitting results have a mean and a standard
deviation for amplitude, phase, decay time and frequency offset, respectively.
Figure 4.15 shows that these statistical properties, i.e., the standard deviation of the fitting pa-
rameters, is smaller for an uncontaminated dataset compared to a dataset affected by frequency
variations. Consequently, a field dataset has to be separated into several sub-datasets and com-
pared to a synthetic dataset at equivalent noise contamination. The level of noise contamination
can be derived from the field noise record. If the calculated statistical properties of the field
dataset and the synthetic dataset are equal, then the field dataset does not contain frequency
variations while stacking. Otherwise if the statistical properties, e.g. the standard deviation of
the amplitude fit, are higher for the field dataset, frequency variation can be expected.
Even if actually no dataset shows detectable deviation, the effect should not be neglected. A
latest development in instrumentation also includes changes of the measurement scheme. Here,
all pulse moments are measured one after one, and then the sequence of pulse moments is re-
peated. This concept increases significantly the time for a single stack and is therefore more
sensitive to frequency variation. In contrast, variation of the earth field amplitude in space
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is rather difficult to observe from the surface and cannot be detected by the former presented
scheme since any time stack is already affected. Two types should be distinct. Effects caused by
bodyies of larger susceptibility compared to its environment or paramagnetic material as iron.
These anomalies can be detected from the surface again by standard magnetometers, i.e. this
effects can approximated using figure 4.14. Susceptibility variations at smaller scales, i.e., pore
wall, are undetectable from surface measurements but act as random variations. They might
be observable using susceptibility logs in boreholes but further research in order to estimate a
contamination using only the surface NMR dataset is necessary.

4.5 Conclusion and outlook

In this chapter several approaches, both for processing and inversion schemes, have been pre-
sented and evaluated concerning its use for the inversion scheme and for estimating the dataset
reliability. This evaluation based on both field repeatability, statistical tests and on presenting
hidden influences like frequency variations.
To sum the processing steps and main properties

Flow Comments & Conclusions

Surface NMR dataset d(q, t)
Measured voltage in dependency of
pulse moment q and time t. Usually
repeated in order to stack.

Despiking
Based on the stacking, calculation of
statistical properties at every d(qi, tn)
and delete those d(qi, tn) of a single
stack that do not fit some statistical
expectations, i.e. twice the standard
deviation (see 4.1)

Stacking
Check for frequency variations while
stacking (see 4.4). Frequency variation
of more than 0.5 Hz during stacking,
corrupts the estimated decay time.

Exponential Fitting
Preferred mono-exponential fitting
due to surface NMR dataset quality
(see 4.2.1) based on the complex
signal envelope after synchronous
detection.
Uncertainty calculation has to take
Gaussian error propagation (see 4.2.2)
and signal sampling vs. filter band-
width into account.
Increasing signal sampling increases
the accuracy of parameter estimation
Field examples shows (local) repeat-
able initial amplitudes and decay times

Phase Elimination
Necessary for QT Inversion to avoid
biased results (see 4.3)
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4.5 Conclusion and outlook

Since there are even more aspects to be discussed, that are not part of this work but have
great influence on the reliability and uncertainty of surface NMR parameters, some open work
shall be listed here:

• Relation of parameter estimation in low field compared to high field NMR. Strehl and
Yaramanci (2008) compares decay time estimates derived at different primary field situa-
tion in order to compare laboratory and field measurements that appear to have different
sensitivity.

• Influence of not neglectable short pulses (Braun et al. (2003)) and off resonance excitation
on the general spin dynamic (Walbrecker et al. (2009)) is currently under investigation at
the research group at the ETH Zurich.

Most of the work focuses on the decay times, that show repeatability in field measurements but
the deviation of hydrological parameters cannot be applied by default. Remark, repeatability
in this context includes an unchanged loop position. There are data sets measured at locations
with comparable hydrological parameters but showing different (repeatable) decay times. Thus,
petrophysical research showing sources of influence on the decay time is needed but underway
(Keating and Knight (2007), Bryar and Knight (2002)) as well as somehow hidden influences
like frequency variation (in time and space) should be of further interest.
In addition, the measured phase contains useful information for both improvements on water
content inversion and resistivity inversion but also cannot be applied by default. Here, on-
going research on reliability and repeatability is needed to take advantage of these measured
quantities.
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5 Initial Value Inversion

5.1 Singular Value Decomposition (SVD)

A suitable tool to get both an appropriate solution to equation 3.8 and insights into the inverse
problem is the well known Singular Value Decomposition (SVD). First, the solution in terms
of SVD, including regularisation, is given and general properties are discussed. Second, the
resolution in terms of model space and data space is derived.

5.1.1 The inverse problem in terms of SVD

After pre-integration of x and y and discretisation of z the MRS forward problem reads like
a standard linear inverse problem (bold capital letter present matrices, bold lower case letters
vectors)

dobs = d + e = Gm + e. (5.1)

with dobs the m-element noise contaminated complex data vector d, i.e., the initial amplitudes
of the measured decay curve, m the n-element subsurface water content distribution and e some
error. G is the m by n complex MRS kernel function.
Since the subsurface water content m is real, the m-complex values of dobs and m by n complex
values of G can be separated into real and imaginary parts and give 2 ∗ m-independent data.

R(dobs) = R(Gm) = R(G)m

I(dobs) = I(Gm) = I(G)m (5.2)

In many real cases only the amplitude data contains reliable information. Hence, we have to
reformulate the forward problem to use amplitude data

∆|dobs| = ∆|Gm| = J∆m (5.3)

while one element of the Jacobian matrix J then reads (see subsection 5.4.2 for detailed deriva-
tion)

J(n,m) =
R(G(n,m)) · R(d(m))

|d(m)| + (5.4)

I(G(n,m)) · I(d(m))

|d(m)| .

Unfortunately, the use of amplitudes turns the problem into nonlinear since the Jacobian matrix
as seen in equation 5.3 depends on a certain model. Therefore, the inversion has to be iterative.
figure 5.1 shows the dependency of the Jacobian matrix on the used subsurface model to illustrate
the non-linearity. First, we calculated a reference Jacobian JR using 0.05 m3/m3 water content
for homogeneous halfspace. Then we build a 3 layer case keeping the background 0.05 m3/m3

water content but introducing one layer with varied water content, layer thicknesses and/or
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Figure 5.1: Dependency of the Jacobian matrix J from the subsurface water content model.
Similarity calculated between a reference model of 0.05 [m3/m3] background water
content and a 3 layer case keeping the background 0.05 [m3/m3] water content but
introducing one layer with varied water content and a) variation of layer thickness
(centered around 15m depth), b) variation of the upper layer boundary depth and
10m constant layer thickness.
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layer position to calculated the Jacobian J to be compared with the reference. As a measures
of similarity between these two Jacobians we use

S =
||J × JT

R||
||J|| · ||JR||

(5.5)

with S ∈ [0, 1] while S = 1 for J = JR. It shows that for a wide range of parameter variations
the similarity of the Jacobians is large, i.e. the dependency of the Jacobian from the actual
model is small. Consequently, as a good estimation we can still use linear inversion theory, even
if using the amplitudes.
Whether amplitudes or complex data is used and via a Singular Value Decomposition (SVD)
the inverse problem (Eq. 5.1) is decomposed into (Menke (1984), Aster et al. (2005)),

dobs = Gm + e = UpSpV
T
p m + e. (5.6)

with Sp is a p by p diagonal matrix with the (p = min(2 ∗ m,n)) nonzero singular values si in
decreasing order. U and V are orthogonal matrices with unit basis vectors forming the data
space R

2∗m and the model space R
n, respectively. Up and Vp then denote matrices formed by

the first p columns of U and V.
Calculating the generalized inverse G† yields

G†dobs = G†Gm + G†e = mest = VpS
−1
p UT

p dobs. (5.7)

Finally, introducing a regularisation the solution to the linear inverse problem reads

mest = VFS†UTdobs, (5.8)

with S† the generalized inverse of S and F the regularisation realised using a diagonal matrix
(Hansen (1994)) either as truncation with r the truncation level

fi =

[
1 if i ≤ r
0 else

]
(5.9)

or Tikhonov regularisation of first kind with λ the regularisation parameter

fi =
s2
i

s2
i +λ2 . (5.10)

Higher orders of Tikhonov regularisation can be realised using a generalized SVD (GSVD, see
Aster et al. (2005)). Besides defining the kind of regularisation a proper choice of the regulari-
sation parameter is essential. There are various methods available. In this thesis the generalised
cross validation (gcv) and the discrepancy principle are used. The gcv is used as an automatic
regularisation (for details see Aster et al. (2005)) and can be used without any knowledge of
data error. In contrast, the discrepancy principle needs an error estimation (also see page 53).
Then, the regularisation parameter is chosen to satisfy

||(dest − dobs)||2√
(m − 1)

≤ δ (5.11)

with δ the error estimation and m the number of data.
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Figure 5.2: a) Unit basis vectors vT
i of the model space and b) Picard plot for kernel function

of circular loop with 100 m diameter, 100 Ωm halfspace resistivity and 48000 nT
magnetic field at 60◦ inclination

5.1.2 Picard Plot and model space basis vectors

Analysing equation 5.7 gives insight into the effects of regularisation and basic understanding
of how the estimated model is reconstructed. Starting with figure 5.2 a) the columns vT

i of
the model space V are shown. The first column vT

1 is a smooth distribution. Increasing the
index, high frequency variations are introduced. Consequently, a smooth solution can be forced
if the amount of model space columns are limited to a certain level r, i.e., taking for example
only the first 10 columns for reconstruction and neglecting all others. This approach is known
as truncation and is realised by an appropriate matrix F. Actually, the number of columns
in practice is already limited, due to the rank of G. That is, the maximum reconstruction
sharpness is already defined by the calculation of G, i.e., the subsurface discretisation and
number of measurements.
The truncation level r is then determined using the Picard Plot (Fig. 5.2b) in order to check the
Picard conditions (Fedi et al. (2005)). For the sake of clarity, the Picard Plot is only used to
illustrate general properties and not used for inversion in later chapters. The Picard condition
states that the range of coefficients |uT

i d| that decay on average faster than the distribution of
si are not controlled by the noise and can be used to calculate a stable inverse G†. Let’s set

a = S†|UTdobs| (5.12)

or using index notation

a(i) = |uT
i d|/si (5.13)

in equation 5.8 and interpret a as weighting coefficients to V. Obviously, a must not increase
with increasing index. Otherwise high frequency variation are uncontrolled and the model
overfits the data. Thus, plotting |uT

i d|/si, the usable range of indices is given for on average
not increasing values of |uT

i d|/si. The truncation level r then is the last singular value to be
included. Figure 5.2b) shows that the truncation level r increases from approx. r = 12 for noisy
data (300 nV Gaussian distributed noise) to r = 18 for noise free data. The truncation level
generally increases with decreasing noise level. Consequently, datasets with unknown noise can
be compared in terms of their truncation levels to check the data quality.
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Figure 5.3: Visualisation of the model resolution matrix Rm as weighting operator between
true subsurface water content and estimated water content. The white dashed lines
indicates the full width at the half maximum of a row Rm. The white solid line
indicates the depth position of this maximum. The black line with triangles shows
the depth until the deviation between the position of the maximum and the diagonal
is less than 10 %. This depth defines the confidence depth of the MRS water content
image.

5.1.3 The model resolution matrix in terms of SVD and measures of resolution

After equation 5.7 both the forward and inverse operator define the relationship between the
estimated model and the true subsurface.

mest = G†Gm + G†e = Rmm + G†e, (5.14)

The product Rm = G†G is called the model resolution matrix. Since the data error e does not
vanish for real data, a regularisation has to be applied and Rm is not an identity matrix. In
terms of SVD the resolution matrix can be calculated after

Rm = VFVT. (5.15)

Figure 5.3 shows the resolution matrix calculated for d = 100 m loop diameter, 100 Ωm homo-
geneous subsurface resistivity, 24 logarithmically spaced pulse moments q in the interval [0.2 18]
As and λ = 100 (see Eq. 5.10). Exemplarily mest

2 in figure 5.3 is the water content derived from
the inversion result at 29 m depth. It is the weighted sum of the true subsurface water content
m with ri

m the i’th row of the resolution matrix Rm corresponding to 29 m depth as weighting
operator. If ri

m is a ”delta like” operator then mest
2 = m2. The broader the peak of ri

m becomes,
the more mi are included into mest

2 , i.e. the resolution decreases.
Using this relationship some valuable measures can be defined to analyse the inverse problem
and evaluate the estimated model.
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Figure 5.4: Resolution width. The full width at half the maximum of a row of the resolution
matrix (b) estimates the averaging depth range of the true model (c) for the estimated
model (a) at a certain depth (29 m). The red bar in (a) indicates the full width at
half the maximum, i.e., the resolution width.

Interval of confidence: The position of the maximum of the row ri
m indicates the focus of this

weighting. Thus, misinterpretation occurs if the position of this maximum is not centered at
the main diagonal of Rm (Friedel (2003)), and the estimated model shows wrong water content
according to the position of the maximum. It is observed that from some depth on the deviation
between the main diagonal and the position of the rows maximum continuously increase, at
least due to the limited penetration depth. Therefore, we define the interval of confidence for
deviations between the position of the maximum and the main diagonal of less than 10 %.
Additionally, we define the lower boundary of the confidence interval as confidence depth.

Resolution width: In order to get a suitable measure for the resolution at a certain depth,
the full width at the half maximum of a row ri

m of the model resolution matrix is introduced
(Fig. 5.4). This resolution width describes the size of the depth interval constructing the esti-
mated water content as a weighted sum of the true subsurface water content. This replaces the
radius of resolution proposed by Friedel (2003) taking only the diagonal values of the resolution
matrix into account as a more precise measure of resolution.

Detection depth: In Legchenko and Shushakov (1998) the detection depth is equal to the
depth where the signal amplitude of a 1 m thick layer with 1 m3/m3 water content can be
measured above a noise level of 25 nV (according to the instrumental resolution). Hence, the
detection depth defines the deepest water layer that may influence the estimated water content,
but a reliable interpretation of signals arising from this depth is possible only with a-priori
information (e.g. known boundaries). A comparison of the interval of confidence and detection
depth can be found in Müller-Petke and Yaramanci (2008).
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Figure 5.5: a) Data resolution matrix Rd based on the Jacobian as in figure 5.2 and calculated
with a truncation level of 10. b) Single row of Rd for a pulse moment of 4 As. For a
completely independent pulse moment this would be a delta distribution. The gray
filled area shows dependent pulse moments according to the selected pulse moment
of 4 As.

5.1.4 The data resolution matrix in terms of SVD

Similar to equation 5.14 a matrix carrying the transformation of observed and estimated data
is derived

mest = G†dobs = G†d + G†e

dest = Gmest = GG†dobs = GG†d + GG†e

dest = Rdd
obs = Rdd + Rde (5.16)

and in terms of SVD
Rd = UFUT. (5.17)

According to the model resolution the data resolution describes the relationship between ob-
served and estimated data and can be interpreted similar to the model resolution as weighting
operator. Obviously, if the data error e is not zero but Rd an identity matrix the estimated
model fits the data error and contains noise features. On the other hand if Rd is not an identity
matrix not only dependent measurements might occur but also data error is weighted. There-
fore the data space trade-off can be defined as data weighting vs. independent measurements.
Figure 5.5 shows exemplarily a data resolution matrix and one row at 4 As pulse moment. The
estimated datum dest

i at 4 As is build by a multiplication of Rd
q=4As and the observed dataset

dobs. The filled peak marks the main influence interval of pulse moments and therefore the
dependencies of this pulse moments to all other.
If statistical properties of the data error are known (e.g. standard deviation), a regularisation can
be carefully chosen in a way that the deviation of observed data and estimated data represents
the data error (Discrepancy Principle, see equation 5.11 ). Thus, a model is over-regularized if
independent measurements are weighted during the inversion. Furthermore, a model is improved
if additional dependent measurements are introduced due to its weighting.
Consequently, analysing Rd provides insights into measurement dependencies and is used for
optimisation strategies in section 5.3. Remark, according to the data space trade-off the primary
target of optimisation is not to create a dataset resulting in an identity matrix but to create
equally dependent data.
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5.2 Results of the model resolution analysis

Reliable information or measures to interpret and enhance inversion results are essential for any
field applications. These measures can be captured by analysing the inverse problem concerning
image reconstruction via analysing its resolution properties as recently successfully applied to
several geophysical problems (Friedel (2003), Guenther (2004), Miller and Routh (2007)).
In respect to MRS, two influences can be distinguished: First, the ill-posedness of the inverse
problem, i.e., large volumes of proton excitation cause large volumes of averaging. Second, inex-
act data, i.e., large covariances due to large relative data errors at small signal amplitudes that
occur at small pulse moments, i.e., small volumes of proton excitation. The first effect causes
poor resolution for large depths but good resolution for small depths while the second effect re-
duces the resolution for small depths due to the small volumes of proton excitation. Both effects
are coupled and must be controlled by a regularisation that depends on the level of data error,
i.e., noise conditions. Thus, the resolution matrix is calculated according to equation 5.15 while
the elements of the regularisation matrix F are according to the Tikhonov approach (Eq. 5.10)
and chosen in a way to satisfy the discrepancy principle, i.e., the deviation of estimated and
observed data represents the data error. Since this approach incorporates an appropriate regu-
larisation as a function of noise conditions and measurement configuration, it leads to resolution
parameters and a confidence depth that show the general dependencies of the MRS method in
respect to the loop diameter, pulse moment distribution, subsurface resistivity and noise condi-
tions.
Finally, these results are used in analysing a MRS survey and determine optimum survey pa-
rameters as well as evaluate its interpretation.
Mark, noise condition always refer to the data error of a single measurements at a single stack
while the data error of the sounding curve is derived as described in subsection 4.2.2.

5.2.1 Interval of confidence in dependency on loopsize, noise and maximum pulse
moment

Overview: According to former definition, first the lower boundary of the interval of confidence,
i.e., the confidence depth is calculated for a set of kernel functions in order to give an overview
on the depth range for surface NMR applications. Table 5.1 lists the confidence depth for loop
diameter from 20 m - 300 m and halfspace resistivities from 1 Ωm - 1000 Ωm. Due to the nature
of ill-posed problems dealing with inexact data the level of data error influences the confidence
depth as it will be shown later (Fig. 5.6). Therefore, the same level of noise according to the
face of the loop based on 50 nV for the d = 100 m loop was used. This is true, if the noise is
homogeneous. In fact, mostly the noise is not homogeneous but in order to compare general
properties this assumption appears to be useful. Furthermore, the minimum pulse moment is
set to 0.01 As and maximum pulse moment to 18 As distributed over 24 pulse moments in total.
The results (Tab. 5.1) are comparable to those published in Müller-Petke et al. (2006) using
the real part of the kernel function without adding any noise. The increasing influence of
electromagnetic attenuation is obvious (also shown in Braun and Yaramanci (2008)) for increased
loop diameter. Furthermore, a general depth limitation of the technique down to 100 m can be
derived due to geological relevant resistivities .

Noise influence: As a prominent and often used configuration the d = 100 m diameter (88 m
side length for a equivalent square) placed on a homogeneous halfspace of 100 Ωm is chosen
to investigate the noise influence on the confidence interval. First (Fig. 5.6 a), the Picard
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resistivity [Ωm] 1 3 10 30 100 300 1000

loop diameter [m] noise level [nV]

20 2 20 20 20 20 20 20 20

60 18 20 40 55 60 60 60 60

100 50 20 50 70 80 80 80 80

200 200 20 50 70 100 110 120 120

300 450 20 50 70 110 130 130 130

Table 5.1: Confidence depth for different loop diameter and halfspace resistivities. The noise
level is based on a 100 m circular loop at 50 nV noise and adopted according the
loops face for all other loop sizes in order to ensure comparable results.

plot is used to illustrate the noise influences on the inversion. With increasing data error less
singular values, i.e., less model space eigenvectors that improve both near surface resolution
and confidence depth (Fig. 5.6 a) are included (in the sense of a truncation SVD approach).
For the chosen example at 300 nV |uT

i d|si increases (globally) until approximately 10, i.e., in
equation 5.9 r=10 while for 10 nV r =15 can be used. Figure 5.6b shows the development of the
confidence depth with incerasing noise conditions. As expected the confidence depth decreases
with increasing noise level. On the other hand it increases to a certain plateau with decreasing
noise. The top of this plateau is defined by the maximum and total amount of pulse moments
available.

Maximum pulse moment: Consequently, the influence of the maximum pulse moment is as-
sessed taking the same configuration at 50 nV but variable maximum pulse moment. First,
the Picard plot is used to illustrate the influences on the inversion (Fig. 5.7a). In contrast to
figure 5.6a, the singular value distribution is not constant, i.e., new information is added to the
inverse problem with increasing maximum pulse moment. Hence, the truncation level increases.
Figure 5.7b shows the development of the confidence depth with increasing maximum pulse
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Figure 5.6: Decreasing confidence depth with increasing noise level for d = 100 m loop diameter,
100 Ωm halfspace resistivity and 18 As max. pulse moment. a) Picard plot, b)
confidence depth.
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Figure 5.7: Increasing confidence depth with increasing maximum pulse moment for the same
configuration as in figure 5.6 at 50 nV noise.

moment. Obviously, a linear relationship (at the logarithmic scale of max. pulse moment) exist,
i.e., increasing the pulse moment is useful only up to a certain moment related to the loop size
and resistivity distribution.

5.2.2 Resolution width in dependency on loopsize

Besides the knowledge on dependencies of maximum investigation depth the resolution properties
in general and especially the near surface resolution is of interest. One of the basic questions
belongs to the relationship of loop diameter and near surface resolution. A simple synthetic
model of an aquifer with lower boundary at 2 m as halfspace is useful to illustrate both the
use of calculating the resolution width and a proper chosen loop layout. The modelling was
carried out taking a d = 100 m, d = 30 m and d = 10 m loop diameter while in order to
get a reasonable face the 10 m loop uses 9 turns and equals the face of the 30 m loop. All
loops are place on 100 Ωm halfspace. The maximum pulse moments where adopted to cover
approximately the same depth range using 24 pulse moments in total. The data is contaminated
with noise related to the face (based on 20 nV for the 30 m loop). The sounding curve derived
by a mono-exponential fit.
The results are shown in figure 5.8. The largest loop provides the best signal to noise ratio that
is due to the largest integration volume even in z direction as illustrated by the kernel function.
The calculated resolution width at 2 m depth is approximately 7 m, i.e., the sharp boundary
of the aquifer is smoothed by averaging over the depth from 0-7 m. The smallest loop of 10 m
shows the best resolution of approx. 3 m. The inversion of the 30 m loop data averages the
boundary over approx. 4 m. Taking into account that 9 turns of 10 m diameter needs 283 m
cable in contrast to 94 m cable used for the 30 m loop, the fields choice is obvious.

5.2.3 Field case: Haldensleben

Finally, measurements were carried out at a test site near Haldensleben (previously described
in Yaramanci et al. (1999)) to confirm the described analyses, to illustrate its field use and to
evaluate the estimated model and field layout.
Remark, that the soundings presented here are measured at a different borehole (B13, see
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Figure 5.8: Near surface resolution vs. loopsize. Left: Amplitudes of the kernel function for a)
d = 10 m loop diameter, 9 turns b) d = 30 m, 1 turn and c) d = 100 m, 1 turn.
Middle: observed (blue circles) and estimated (red line) amplitude sounding curve,
Right: Estimated water content (blue), true model (black dashed), resolution width
(red) and confidence depth (black). The noise level is equal according to the loops
face, i.e., 20 nV for 10 m and 30 m, 222 nV for 100 m loop.
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Figure 5.9: Hydrogeological section of the test site near Haldensleben (Germany) by courtesy of
German Geological Survey (BGR)

hydrogeological section in figure 5.9). B13 is approximately 30 m elevated and 8 km north of the
borehole B8 presented in Yaramanci et al. (1999). A set of borehole measurements (resistivity,
gamma-ray) were conducted. At B8, additionally impulse-neutron-gamma measurements were
carried out to estimate the subsurface water content distribution. Since the geology is not
significantly different, the borehole measurements of B13 and B8 can be compared and define
the aquifer top at 48 m depth with a thickness of 30 m. This aquifer is underlain by two deeper
aquifers that are separated from the first by marl aquicludes.

As shown in table 5.1 enlarging the loop size increases the penetration depth for a fixed
maximum pulse. In contrast, the maximum voltage Umax of the NUMIS device is limited to
4000 V (Iris Instruments (2000)) and hence the maximum pulse moment (calculating the loop
impedance L after Gover (1946))

qmax = τImax = τ
Umax√

R2
Ω + ω2L2

(5.18)

depends on the loop diameter (assuming isolating ground conditions). For example enlarging the
loop reduces the maximum pulse moment qmax = 18 As for a d = 96 m loop to qmax = 11 As for
d = 144 m diameter. Since a deep aquifer at 48m is expected two configurations, a d = 96 m and
d = 144 m were carried out. The results are shown in figure 5.10. Due to the reduced maximum
pulse moment, the larger loop of 144 m diameter shows a slightly lower confidence depth and
decreased resolution compared to the smaller loop. We assess the estimated water content with
the model derived from borehole measurements. The second and third layer cannot be estimated
as expected from the confidence depths. The boundaries of the first layer are smoothed and the
larger loop of 144 m diameter shows a higher degree of smoothness. These results are in good
agreement with the presented resolution measures. Due to the resolution the boundaries are
smoothed and using the large loop the water content is even at its maximum underestimated
since the resolution width is larger than the thickness of the aquifer. Taking the higher effort and
necessary cable length of building larger loops in the field into account, the use of a pre-analysis
becomes obvious. Therefore, selecting the loop size carefully the estimated water content model
can be improved and field effort can be reduced.
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Figure 5.10: Inversion results at the test site Haldensleben of measurements with two different
loop sizes. left) d = 48 m loop diameter right) d = 72 m. The dashed line represents
a water content model derived from borehole measurements.
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5.3 Results of the data resolution analysis

Most geophysical measurements provide data that are integral values. The area of integration
depends on the methods characteristics, e.g. DC depth sounding, and user defined values like
the electrode spacing. The area of integration is changed by changing e.g. the electrode spacing.
A set of measurements with different data arising from different integration areas can be called
dataset or sounding curve (1D case). Depending on the distribution of electrode spacing the
integral values might contain common areas that are nearly equal, i.e., the measurements are
fairly equal, or do not share any common values or finally, share only some integration area.
Taking into account that a measurement is never exact the first case does not provide a new
measurement. The second case provides independent information of another area. But the third
case can be used to decrease the integral value to a smaller area and is mostly referred to be a
tomography.
Consequently, a dataset that contains measurements that are distributed in a way to provide a
maximum of overlapping areas but avoids equal measurements is called optimal and includes a
maximum of subsurface information. By a constant number of measurements these datasets are
able to image the closest truth to reality compared to other distributions with the same number
of measurements.
With regard to surface NMR the choice of pulse moments influences the quality of the estimated
model and is to be optimised.
So far, the optimal distribution is calculated by analysing resolution measures derived from the
model resolution matrix, i.e., to change a dataset iteratively until consideration concerning the
model resolution matrix are met. This task is often referred to as experimental design or optimal
survey design and has been recently applied to electrical resistivity tomography (Stummer et al.
(2004), Dahlin and Zhou (2004), Wilkinson et al. (2006)) or seismic tomography (Curtis (1999),
Curtis et al. (2004)). Legchenko and Shushakov (1998) has proposed an approach for magnetic
resonance sounding (MRS) based on the kernel function.
Here, a direct approach is presented to estimate the optimal measurement distribution based
on analysing the data resolution matrix. The developed scheme is used to calculate an optimal
MRS sounding sequence.
Besides optimal distribution, the number of measurements is an essential parameter for an
efficient determination of subsurface properties. The number of measurements may be fixed
(Stummer et al. (2004), Wilkinson et al. (2006)) or determined by cost thresholds (Curtis et al.
(2004)). In contrast, a measure based on the covariance matrix is presented in this section. This
measure is used to evaluate the efficiency of a pulse moment distribution in dependency of the
information content versus the number of measurements.
Depending on the noise conditions MRS field surveys may take several hours up to a day for one
single sounding (using 16 pulse moments as a standard number of measurements). Obviously,
there is an outstanding need for efficiency to avoid redundant measurements.
In dependency of loop size, subsurface resistivity, maximum pulse moment and noise condi-
tions a sequence of optimal distributed measurements is presented and the number of efficient
measurements for common used parameter settings is listed.

5.3.1 Calculation of optimal pulse moment distributions

According of equation 5.17 Rd can be calculated using the unit basis vectors forming the data
space and the regularisation by simple matrix multiplication. The singular value decomposition
has to be done only once to create the unit basis vectors. While the optimal distribution is
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Figure 5.11: Scheme to calculate optimal distributed pulse moments.

defined by the methods physics, the number of measurements depends on the level of data error.
First, a scheme to calculate this optimal distribution of pulse moments for predefined num-
ber of measurements is provided. Therefore, the truncation approach is used as regularisation.
Here the number of used basis vectors exactly defines the number of independent measurements.
Figure 5.11 shows the scheme to calculate an optimal distributed set of pulse moments in depen-
dency of the chosen number of measurement realised by a truncation. The scheme is based on
deleting dependent measurements by analysing the rows of Rd. Since it might not be excluded
to have a “most valuable” measurement, the starting point is not the smallest pulse moment but
defined by the largest value of Rd. Using MRS as an example this “most valuable” measurement
within a dataset is obviously neither the first nor the last, but the pulse moment with the highest
expectable signal amplitude. Figure 5.12 shows optimal distributed pulse moments for different
loop sizes and resistivities. Besides calculating an optimal distribution for any sounding using
the appropriate parameters for sensitivity calculation (loop size, resistivity) a cubic function was
found to be a usefull fit for a wide range of distributions. The cubic parameters are:

q(x) = [(qmax − qmin) ∗ (5.19)

(0.9 ∗ x3 − 0.1 ∗ x2 + 0.2 ∗ x)] + qmin

while x is a vector ∈ [0, 1] with n equally spaced elements, n the number of pulse moments and
qmin, qmax are the minimum and maximum pulse moment, respectively. As long as resistivity
can be neglected (that is in dependency on the loop size Müller-Petke et al. (2006) and Braun
and Yaramanci (2008)) the optimal distribution of pulse moments does not change significantly
and can be approximated by the cubic fit. With increasing resistivity influence the distribu-
tion changes but the cubic is a usable approximation for resistivities in the range of geological
relevance.

5.3.2 Evaluation of optimal pulse moment distributions

In order to evaluate the maximised subsurface information provided by datasets with optimal
pulse moment distributions compared to all other, datasets of optimal, logarithmic and linear
distributed pulse moments using a 96 m diameter circular loop, 100 Ωm homogeneous halfspace
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Figure 5.12: Optimal distributions of pulse moments for different loop sizes and resistivity dis-
tributions with a fixed total number of 24.
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Figure 5.13: Distribution of pulse moments for different schemes (optimal, sensitivity based,
linear, logarithmic distribution) with a fixed total number of 24. Loop size 96 m,
100 Ωm halfspace resistivity

resistivity and 24 pulse moments in the interval of [0.01 24] As are calculated. The earth mag-
netic field inclination is 60◦ at |B| 48000 nT. Figure 5.13 shows these pulse moment distributions
including the sensitivity based sequence proposed by Legchenko and Shushakov (1998). This
sequence is actually implemented as standard pulse moment distribution of the MRS measure-
ments device Numis by Iris Instruments. It turns out that the sensitivity based is similar to the
optimal distributed. A common measure to estimate inversion stability is the condition number

c =
smin

smax
. (5.20)

Concerning the 3 different pulse moment distribution (optimal, linear, logarithmic) the condition
numbers are: coptimal = 56, clinear = 77, clog = 115. The complete singular value distribution for
the Jacobian matrix based on the different pulse moment distributions is shown in figure 5.14.
Even if the differences are small the Jacobian matrix based on optimal distributed pulse moments
is more stable.
As a measure for inversion quality the L2 norm

||∆m|| = ||Mtrue − Mest||2 (5.21)

of the deviations from true model Mtrue to estimated model Mest. Figure 5.15 shows inver-
sion results for the 3 MRS datasets (i.e. sounding curves after mono-exponential fit) based on
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Figure 5.14: Singular value distribution of the optimal, linear and logarithmic pulse moments
distribution.

synthetic data contaminated with noise (zero mean, 15 nV standard deviation applied to the
sounding curve). In order to get statistical measures all inversions where 10 times repeated with
different noise and the norms are calculated from the mean of these 10 independent runs. For
both inversion schemes, smooth and block (after Hansen (1996)) the sounding curves based on
optimal distributed pulse moments provides the lowest deviation norm. The estimated model
provides additional insights into the resolution capabilities of the 3 sounding curves. The lin-
ear distributed is able to estimate the deepest water bearing structure best, but shows large
variances and bad resolution for the near surface structure. The logarithmic distributed has
contrary properties. Both can be explained by the distribution of pulse moments, since low
pulse moments correspond to shallow depths and strong pulse moments to large depths. As
expected the optimal set combines the resolution properties of both and has the best overall
resolution.

5.3.3 Efficient number of pulse moments

Besides optimal distribution of pulse moments the number of pulse moments controls field effi-
ciency. In this context, efficiency is the relation of obtained subsurface information versus various
time/money dependent parameters, i.e., the number of pulse moments. Figure 5.16 shows the
estimated models (with the same parameters as in figure 5.15) for sounding curves with increas-
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Figure 5.15: Estimated models derived from optimal, linear, logarithmic pulse moment distri-
butions. a) - c) synthetic sounding curves, 10 individual sounding curves for every
distribution contaminated with 15 nV Gaussian noise. Forward model based on
100 Ωm halfspace resistivity, loop diameter d = 96 m, earth field |B| = 48000 nT,
60◦ inclination. d) - e) Estimated model derived from smooth inversion. g) - h)
Estimated model derived from block inversion. The norm of the model deviation
is calculated from the mean of all 10 inversion runs.
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Figure 5.16: Estimated models derived from optimal pulse moment distributions with different
total number of data. Forward model settings as in figure 5.15. 10 individual
sounding curves for every distribution each contaminated with 15 nV Gaussian
noise were inverted using a) - d) smooth and e) - f) block inversion. The model
RMS and TVAR are means of the 10 independent inversion runs.

66



5.3 Results of the data resolution analysis

10 20 30 40
1

1.5

2

2.5
model deviation

number of measurements

||∆
m

||

10 20 30 40
0

0.02

0.04

0.06

0.08
total variance

number of measurements

[ ]

10 20 30 40
4

6

8

10

12

14
information content

number of measurements

[ ]

Figure 5.17: Determination of the total number of pulse moments for an efficient number of
optimal distributed pulse moments. In extension to figure 5.16 the model RMS,
total variance and information content is plotted for varied total number of optimal
distributed pulse moments.

ing number of pulse moments (all using the optimal distribution) while figure 5.17 shows only
the obtained measures of the model deviation norm (as a measure for inversion quality), the
total variance TVAR (as a measure for stability)

TV AR =

n∑

i=1

var(M i
est) (5.22)

(with M i
est the independent inversion runs and n the number of model basis layers) and the

information content IC (as measure for resolution)

IC =
n∑

i=1

diag(Rm) (5.23)

with Rm the model resolution matrix. As expected with increasing number of pulse moments
the model deviation norm is decreasing, i.e., a better result compared to the subsurface truth is
obtained. The increasing information content underlines this. The decrease of model deviation
is fast for small numbers of pulse moments and slow for large numbers of pulse moments.
Obviously, the efficiency of adding new pulse moments to the dataset decreases. One could try
to calculate curvatures of the model deviation curve but the total variance is more useful. This
measure shows a distinct maximum. This maximum arises due to the relation of increasing
information content to reducing model variances.

1. For small number of measurements basically independent measurements are added that do
not reduce the model variance but adding new information that causes the total variance
to increase.

2. For large number of measurements basically dependent measurements are added that re-
duce the model variance but not adding new information that reduces the total variance.
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number of q 2nV 15nV 45nV

144m10000Ω m >40 17 12
96m1Ω m >40 18 12
96m100Ω m >40 24 15
96m10000Ω m >40 24 15
48m1Ω m 30 12 7
48m100Ω m 35 14 7
48m10000Ω m 40 15 7

Table 5.2: Total number of pulse moments to get an efficient dataset while the maximum pulse
moment is fixed to current equipment limitations.

confident depth [m]/ qmax

number of q 10As 20As 50As 100 As

144m10000Ω m 83/17 120/28 180/32 230/36
96m10000Ω m 68/18 95/24 135/28 175/32

Table 5.3: Total number of pulse moments and confident depth versus maximum pulse moment
at 15 nV noise.

Therefore, the maximum of the total variance is defined as the total number of pulse moments
to get an efficient dataset. Hence, for the given example of a 96 m diameter loop at 100 Ω m
halfspace resistivity at 15 nV noise we obtained a dataset of optimal distributed pulse moments
with 20 measurements providing the maximum subsurface information in relation to maximum
efficiency.

5.3.4 Effiency in dependency on loopsize, noise amd maximum pulse moment

Since dependent pulse moments are related to the level of noise as well as on the Jacobian
matrix, i.e., the loop size, resistivity and maximum pulse moment, all of these have to be taken
into account. First, table 5.2 lists the total number pulse moments while the maximum pulse
moment is restricted to the numis equipment power limitations, i.e., a pulse moment of 20 As
for 48 m, 96 m and 11 As for 144 m (Eq. 5.2.3). The number decreases with increasing noise
level (that is obvious) and/or increasing conductivity that is due to the decreasing penetrations
depth.
In subsection 5.2.3 it was shown that the confidence depth of a a 144 m loop is less compared
to 96 m loop due to the current limitations. Thus, neglecting the power limitations, the con-
fidence depth and the number of pulse moments for variation of maximum pulse moment was
calculated to obtain a need of power for a certain loop size to be used efficiently (Tab. 5.2).
Increasing the loop diameter to 144 m becomes efficient if the available pulse moment is up to
20 As. Furthermore, from table 5.3 the relationship of figure 5.7 between confidence depth and
maximum pulse moment can be confirmed.
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5.4 The transformed inverse problem

5.4 The transformed inverse problem

The MRS forward and inverse problem (Eq. 5.1) is a linear problem. The forward operator
maps a model with elements m ∈ R into data element d ∈ C. But, if the problem is ill-posed
the inversion might map d ∈ C into m ∈ R. Consequently, handling noise contaminated data
the estimated model can easily contain elements m ∈ C. Therefore, the first transformations,
already presented in equation 5.2, is to separate real and imaginary part to ensure a real valued
model. This separation doubles the amount of equations and leads to improved inversion results
in terms of stability and resolution. It is a general property of transformations (Guenther et al.
(2008)) that reducing the dimension of data or model space improves the stability and enhences
the inversion result.

5.4.1 Model space transformations

In respect to the surface NMR method the model space is the subsurface water content domain.
Obviously, besides being a real number the water content is a positive value and cannot be larger
than 100 % or 1m3/m3. Therefore a transformation should be applied that restricts this model
space first to positive values and second to an upper boundary. That is, a function has to be
found that maps a value a ∈ [−∞,∞] into b ∈ [0, c] with c the upper boundary (ub).
Therefore, the kernel function has to be transformed, i.e., a sensitivity function appropriate to
these targets has to be derived. In general the sensitivity is

Jij =
∂Di

∂Mj
= G (5.24)

with G the kernel function and for any transformation f

Jij =
∂Di

∂f(Mj)
=

∂Di

∂Mj
/
∂f(Mj)

∂Mj
= Gij/

∂f(Mj)

∂Mj
. (5.25)

To ensure positive values the logarithm f(m) = log(m) can be used

J log
ij = Gij · mj. (5.26)

An upper boundary can be applied using the logarithm, too. Here a shifted and scaled (to
ensure values between [0, ub]) tangens function (Hertrich et al. (2008)) is applied

f(m) = tan
(
π

[m

ub
− 0.5

])
(5.27)

and the Jacobian reads

J tan
ij = Gij · cos

(
π

[mj

ub
− 0.5

])2
· ub

π
(5.28)
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5.4.2 Data space transformations

Besides obvious restrictions at the model space, limitation at the data space is less straight
forward. The first step is to transform the forward equation into the amplitude domain. Below
the derivation of equation 5.5 is given.
According to a real valued model space the forward problem is separated

d = Gm

A = real(G)

B = imag(G)

real(d) = real(Gm)
mi∈R
= Am

imag(d) = imag(Gm)
mi∈R
= Bm

and reads using amplitudes

|d| = |Gm| =
√

(Am)2 + (Bm)2

or for a single element

|d(1)| =
√

(A(1, 1)m(1) + A(1, 2)m(2) + ... + A(1, j)m(j))2 + · · ·
(B(1, 1)m(1) + B(1, 2)m(2) + ... + B(1, j)m(j))2

The Jacobian J(1, 1) for this single data element |d(1)| in respect to the model m(1)

J(1, 1) =
∂|d(1)|
∂m(1)

=
[A(1, 1)m(1) + ... + A(1, j)m(j)]A(1, 1)

|d(1)|

+
[B(1, 1)m(1) + ... + B(1, j)m(j)]B(1, 1)

|d(1)|

or any elements

J(i, j) =
|d(i)|
m(j)

=
[A(i, 1)m(1) + ... + A(i, j)m(j)]A(i, j)

|d(i)|

+
[B(i, 1)m(1) + ... + B(i, j)m(j)]B(i, j)

|d(i)| .

Finally, the Amplitude Jacobian reads

JA(i, j) =
real(d(i))A(i, j) + imag(d(i))B(i, j)

|d(i)| . (5.29)

A common approach in geophysical inversion theory is to transform the data into the same do-
main as the model. That is, in DC-Electric measurements are transformed from the voltages into
pseudo resistivities. Then these pseudo values are used for inversion. This ensures equal scales
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on both sides of the equations and is important if transformation (e.g. logarithm for resistivities)
shall be applied. Consequently, the extrapolated initial voltages can be transformed into pseudo
water content. According to DC-Electrics this is the voltage measured for a homogeneous half
space at a certain water content.
In order to apply a transformation that ensures positive data, amplitudes are used to calculate
the pseudo water content. Therefore, the sounding curve dk for a homogeneous half space for
full saturation (100 %) is calculated

dk =
∑

j

JA
ij (5.30)

and used for both side multiplication. For a single pseudo water content (pswc) data element
dpswc

dpswc(i) = d(i)/dk(i) (5.31)

and for the pswc Jacobian matrix Jpswc

Jpswc(i, j) = JA(i, j)/dk(i). (5.32)

Now, using the pswc the data space can be restricted with upper and lower boundaries, e.g.
using logarithm or tanges transformation. Consequently, model and data space can be limited
to reasonable values. In general a both side transformation reads (Guenther (2004))

Jij =
∂f(Di)

∂f(Mj)
=

∂Di

∂Mj
· ∂f(di)

∂di
/
∂f(Mj)

∂Mj
(5.33)

The Jacobian matrix using pswc and logarithm transformation at both sides then reads

J log,log
ij = Gij ·

mj

di
. (5.34)

and using the tanges

J tan,tan
ij = Gij ·

cos
(
π

[mj

ub − 0.5
])2

cos
(
π

[
di

ub − 0.5
])2 . (5.35)

Unfortunately, all transformations turn the linear inverse problems transforms into a non linear,
i.e., a Jacobian matrix that is model dependent. The degree of non-linearity is different, as
shown in section 5.1.1. The amplitude Jacobian is only slightly non-linear while the tangens
transformation shows large the model dependencies (Fig. 5.18). The amplitude Jacobian and the
Jacobian using a tanges transformation on both model and data space for a 2 aquifer situation
are shown. Clearly using the tanges transformation the Jacobian is focused on the areas with
suitable water content. This is due to the multiplication of the original kernel function with the
water content model and the data. Both data and water content become smaller for decreasing
amount of water. Therefore, introducing the logarithm and tanges transformation the Jacobian
(or sensitivity) is “automatically“ focused to the regions of interest that should finally improve
the resolution capabilities.
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Figure 5.18: Jacobian matrix for a non homogeneous subsurface water content distribution (left).
Middle: Amplitude Jacobian JA. Right: Jacobian matrix for tangens transforma-
tion on both model and data space.
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Figure 5.19: Singular value distribution for different transformation with a non-homogeneous
water content model.

5.4.3 Evaluating the use of transformations

Besides analysing the Jacobian matrix in order to compare and evaluate the properties of the
transformed inverse problem next the singular value distribution is compared in figure 5.19 for
the same water content distribution as in figure 5.18. Apparently, the singular value distribution
with transformations performs worse than without, i.e., decreases faster. Taking into account
that the columns of the Jacobian matrix are close to zero at depth with low water content the
distribution of singular value is not surprisingly. In general, one should be aware of comparing
singular value distributions based on different discretisation in model or data space. Either
a higher data or model space sampling would improve the singular value distribution, i.e.,
increasing the number of none zero value or cause a less fast decrease. In fact, the Jacobians
are equally sampled but the transformation maps some columns to zero. Therefore, the same
effect as no sampling or no information occurs. Consequently, the distribution of singular values
for the transformed Jacobians is only apparently worse. But however cannot be evaluated as
better.
However, the distribution of the both side transformation in model and data space shows the
fastest decrease. Therefore, the singular value distribution only for the amplitude Jacobian
and the transformation into pseudo water content data space is compared for a homogeneous
halfspace in figure 5.20. Again, the distribution using the pseudo water content decreases faster
than for the amplitudes and might be evaluated as worse. But since the weight on the lines
of the Jacobian matrices has been changed by the transformation from volt to pseudo water
content the Picard plot is more useful. The Picard plot provides a criterion up to which index
of singular values a truncated svd inversion is stable. According to the svd solution the more
singular values can be used the better the estimated solution. The Picard criterion now states
that singular value can be used for globally decreasing |uT

i d|/si. Concerning figure 5.20 the
index for JA is about 10 and for the Jpswc approximately equal or slightly larger. Consequently,
the transformation into pswc does not worse the inverse problem but allows the application of
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Figure 5.20: Comparison of amplitude Jacobian and transformation into the pseudo water con-
tent data space for homogeneous halfspace using the singular value distribution
(left) and the Picard plots for the amplitudes (middle) and pseudo water content
(right).

a equal transformation also at the data space.
Finally, estimated solutions based on the same data are compared in figure 5.21. The signals
were generated at the base of nmr signals and mono-exponential fitted to create the initial
amplitudes. Then the same initial values are used to test 4 inversion schemes

1. Amplitude inversion (standard application)

2. Logarithmic transformed model space

3. Tangens transformed model space with 0.4 [m3/m3] upper boundary

4. Tangens transformed model and data space with 0.4 [m3/m3] upper boundary.

This is repeated 20 times in order calculate the mean of the model deviation (estimated model
- true model) using the L2 norm. The standard deviation of the data fit was set to 30 [nV].
As expected the model and data space tangens transformed inverse problem provides the best
solution. The deviation to the true model decreases with increasing constraints. The logarithm
ensures a positive water content and improves the model uncertainty compared to the amplitude
inversion that shows negative water content for large depth and at depths about 30 m. But
due to the missing upper boundary and the focused Jacobian the estimated solution often
overestimates the water content while the thickness of the layer is underestimated. This effect
can be reduced by introducing an upper boundary using the tangens transformations. Finally,
due to constraints also on the data space the model variability for larger depth decreases by the
both side transformation and the resolution increases. Since all inversions show the same data
fit (the data error was estimated from the exponential fit) the tangens transformation should be
preferred.
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Figure 5.21: Comparison of estimated solutions using (from left to right) amplitude, logarithmic
transformed model space, tangens transformed model space and tangens trans-
formed model and data space. Bottom: All 20 independent contaminated sounding
curves (red circles) and the forward responses (blue line). Top: All 20 inversion
results (blue line) and synthetic model (black line). The model deviation is the L2

norm of the deviation of the true model to the mean solution of all 20 runs.
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5 Initial Value Inversion

5.5 Outlook on 2D Resolution

An important step during the development of a geophysical technique is to overcome the restric-
tions for both modelling and inversion on a lateral layered earth, i.e., 1D condition. This opens
a new field of applications but also includes new field layout to improve the lateral resolution.
This section shortly summarises the development and improvement taking the step from 1D
to 2D and presents a first analysis of the newly introduced measurement layout concerning
resolution properties and layout strategies.

From 1D to 2D The first misfit estimations using a 2D water content distribution (i.e. a
2D forward operator) and comparing to 1D inversion results were presented by Eikam (2000)
and Warsa et al. (2002). The name Magnetic Resonance Tomography (MRT) for 2D and 3D
applications of the surface NMR technique in combination with first 2D inversion results was
introduced by Hertrich et al. (2005) and in more detail in Hertrich et al. (2007).
Beginning with the standard coincident configuration an expected 2D section can be measured
by several sounding at different positions along a profile as shown in figure 5.22. The resulting
sounding curve might be inverted like 1D depth sounding and plotted. The distance between
these single soundings (Fig. 5.22 one loop diameter) might be adopted depending on the struc-
ture to be expected.

Typically these 1D inversion results a displayed together using a contour plot as shown in
figure 5.23a.
Since the basic surface NMR equation (Eq. 2.11) already holds for 3 spatial dimensions a 2D
inversion is straight forward. In contrast to 1D inversion the kernel function is not pre-integrated
over x and y but only over one lateral dimension depending on the profile orientation. Remark,
the kernelfunction is not symmetric due to the earth field inclination, i.e., the profile direction
is of importance in order to integrate over the perpendicular direction.
Hence, using a 2D inversion code that handles 2D water content distribution the estimated
model can be significantly improved as shown in figure 5.23b. The inversion was carried out
using an SVD based solver as for the 1D inversion while the data is noise free.
Obviously, the quality of the estimated 2D water content distribution using a 1D scheme de-
pends on the lateral change of the structure to be investigated as for any other geophysical

−100 −50 0 50 100

0

20

40

x[m]

z[
m

]

Figure 5.22: Scheme of a 2D survey using a coincident loop layout (transmitter (red) and receiver
(black) coincide) and 1D water content inversion (blue line).
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Figure 5.23: Comparison of 1D inversion shown as a contour of single inversion results (a) and
true 2D inversion using the same noise free data. The true subsurface model is
marked by the black line and represents a water lens at 30 % water content with
a background water content of 0 %. The modelling parameter are: 48 m loop
diameter, |B| = 48000 nT earth magnetic field strength at 60◦ inclination.

method. The larger the lateral homogeneity of the structure the better becomes the estimation
with reality. Some rule of thumb in order to apply 1D inversion of even 2D subsurface will be
presented later. It depends on the loop size and cannot be chosen freely since also the maximum
depth depends on the loop size.
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Figure 5.24: Separated loop sounding. Transmitter and receiver do not coincide but can be
separated by a certain distance, e.g. half overlapping (a) or edge to edge (b).

Separated loop measurements Introduced by Hertrich et al. (2005) and triggered by the
extended surface NMR forward formulation after Weichman et al. (2000) additional loop con-
figurations besides the coincident layout using separated transmitter and receiver loops are of
interest for 2D investigations. Figure 5.24 show schematically a separation of half the loop
diameter (so called half overlapping) and one loop diameter (called edge2edge). It turned
out that increasing the separation the geometrical relation of the receiver to the transmitter
decreases the signal strength but apparently focuses the sensitivity in lateral direction as well
as to smaller depth. Therefore, separated loop sounding promise increases resolution for 2D
investigation.
As an outlook on the resolution properties of 2D investigation and especially on separated loop

measurements a synthetic example using only the real part of the kernel function is calculated
to provide a first insight on the resolution properties.
Figure 5.25 shows again standard 1D kernelfunctions for coincident, half overlapping and
edge2edge measurements as well as the resolution matrix calculated using a truncated svd ap-
proach and cutting after the degree of freedom (for this problem) according to the distribution
of singular values. The model and data space discretisation is equal for all examples. The
kernels were calculated for insulation conditions.
Clearly, the vertical resolution power decreases for increased separations. The sensitivity focuses
on near surface areas with increasing separation and the absolute sensitivity in nanoVolt per
meter decreases as well. Consequently, separated loop sounding are not to be preferred for 1D
vertical investigations.

Besides pre-integration over x and y to get a 1D kernel function for vertical inversion (and
vertical resolution analysis), i.e., assuming lateral layered earth next the integration is over y
and z. This results in a 1D kernel function as well but for horizontal inversion (and lateral
resolution analysis), i.e., assuming a dike like vertical layered earth. This model does not have
to much practical relevance but allows investigating lateral resolution very nicely. Figure 5.26
shows again the kernel function and the resolution matrices for the different layouts.
First, the kernel function for the coincident case is symmetric around the loop center. In order
to interpret the resolution matrices, remark that the resolution matrix is x vs. x direction so
the white loop does not represent true surface position in x and y but helps for orientation.
According to the kernel function the resolution for coincident case is ambiguous. Using just a
single sounding the lateral origin of the signal is not defined. Consequently, applications for 2D
structures have to use many coincident soundings with a small increment in lateral position.
Thus, the signal originates from a laterally limited area. That is, for a 50 m diameter loop
approximately 100m around its midpoint. Consequently, as long as an expected structure is
laterally homogeneous within this area 1D conditions are met.
If the transmitter and receiver are separated this lateral ambiguity is broken. The sensitivity
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Figure 5.25: 1D kernel function and resolution matrices for lateral layered earth condition (stan-
dard 1D assumption). a) coincident, b) half overlapping and c) edge2edge
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Figure 5.26: 1D kernel function and resolution matrices for vertical layered earth condition (dike
like structure). a) coincident, b) half overlapping and c) edge2edge. d), e) and f)
show the resolution matrices. The white circles present the size of the loop and
measurement configuration just for orientation. Remark, the resolution matrix is x
vs. x direction so the white loop does not represent true surface position in x and
y.
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Figure 5.27: 2D inversion using the complete synthetic noise free dataset of coincident, half over-
lapping and edge2edge measurements. The loop diameter is 48 m, lateral increment
of loop position is 24 m, i.e., half overlapping. This corresponds to 9 coincident, 16
half overlapping and 14 edge2edge soundings. |B| = 48000 nT, 60◦ inclination and
insulation conductivity condition.

focuses beneath the receiver loop and with increasing separation the lateral resolution improves.
On the other hand, with increasing separation the total sensitivity in nanoVolt per meter de-
creases as well as the area of integration. That is, the detectable signal becomes smaller with
increasing separation. As a consequence, separations larger than one loop diameter are not
useful. In conclusion, separated loop measurements are important to improve lateral resolution
without increasing the increment of lateral positions.
Next, a true 2D inversion using synthetic coincident, half overlapping and edge2edge measure-
ments is carried out. The lateral increment for midpoint positions is half the loop diameter
of 48m. The lateral extension of the area is from -96 m to +96 m. This corresponds to 9
loop positions and therefore 9 coincident, 16 half overlapping and 14 edge2edge soundings.
Figure 5.27 shows the inversion result for noise free data. Compared to figure 5.23b based on
only the coincident soundings the estimated model is clearly improved but it should be stated
that the amount of data used for this inversion is fairly much larger.

Therefore, a direct view on the resolution is useful. Figure 5.28 shows exemplarily which
cells of the 2D section influences a single cell. These weights are the main diagonal elements of
the resolution matrix. It shows that for the coincident layout the vertical resolution is good,
i.e., the area of influence is small. Laterally the area is large causing bad lateral resolution.
The edge2edge layout shows inverse resolution properties, i.e., good lateral resolution and bad
vertical as expected from the 1D analysis. Consequently, the combination of both improves the
overall resolution very nicely.

Conclusion These first results show the general properties of 2D resolution in dependency on
the layout. It is restricted to the real part of the kernel function as well as on noise free data
and simple inversion schemes, i.e., truncated svd. For further investigations the amplitude signal
should be taken into account as well as noise dependent analysis as shown for the 1D inversion.
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6 QT Inversion

According to chapter 3 and in order to motivate a new inversion scheme, the drawbacks of
the currently used schemes are concluded first and schematically summarized in figure 6.1 and
figure 6.2.
The initial value inversion uses a mono-exponential fit to derive the initial value. Hence, the
final model of this approach only provides the subsurface water content. The decay times can
be represented versus the pulse moment but cannot be inverted for depth. Furthermore, each
of the mono-fits is independent of all other. Due to the integrating character of the kernel
function signals of different pulse moments share depth ranges. Thus, neighbouring pulses are
not independent. Consequently, this scheme has two major drawbacks:

1. Due to the dependency of different pulse moments but independent fitting information
gets lost.

2. Taking different relaxation regimes, i.e., decay times into account a signal can be multi-
exponential even if the single subsurface layers are of mono-exponential behaviour.

According to the inability of estimating the decay time as a function of depth Legchenko and
Valla (2002) presented a new inversion scheme that has been extended by Mohnke and Yaramanci
(2005). Here, the dataset is not extrapolated to the initial values but sub-datasets are extracted.
These sub-datasets are measured values at a fixed time versus the pulse moment, i.e., a sounding
curve at some other time than t = 0. The approach uses the amplitudes of the measured signal
for the same reasons as discussed for the initial value inversion. In contrast to the initial value
inversion not the amplitudes of the initial value is calculated but the amplitude of the relaxation
signal. Thus, an overestimation according to figure 4.12 in subsection 4.3 can occur.
These amplitude subsets are inverted for water content in the same manner as for the initial value
inversion. Consequently, one gets a subsurface water content vs. depth and record time. Since
this water content dataset has already solved the integral character of the kernel function (i.e.,
the signal are separated to its original depths) mono-exponential properties of the subsurface
are not mixed up to multi-exponential signals and one drawback of the initial value inversion is
solved. Next, this water content data can be fitted by mono (Legchenko and Valla (2002)) or
multi-exponential (Mohnke and Yaramanci (2005)) approach and the estimated model of this
inversion scheme consists of both: the water content and decay time as a function of depth.
Although one drawback of mixed relaxation signals is solved, further drawbacks are:

1. The independent processing of dependent data still exist, since any inversion at every time
step is not independent of the former or next one. Therefore, also using the time step
inversion scheme information gets lost that might improve the estimated model.

2. A upper boundary for the water content inversion cannot be fixed due to the decay of the
water content that has to be fitted during the second step.

3. Using the amplitude of the signal the decay times are overestimated.
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Figure 6.1: Scheme of initial value inversion. From the complete dataset (a) the initial val-
ues (only amplitudes shown here) (b) are derived by mono-exponential fitting and
inverted to subsurface water content using the kernel function (c).
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Figure 6.2: Scheme of time step inversion after Mohnke and Yaramanci (2005). From the com-
plete dataset (a) subsets (i.e., sounding curves) at selected (or all) time steps are
inverted for water content (red lines in a) represent the estimated data at this time
step) corresponding to this time step, i.e., the data space of measured voltages is
transformed into the water content space (b) via inversion. Next, at any depth these
water content decay curves are fitted by multi-exponentials and the coefficients pre-
sented as partial water content (PWC) distribution in c).
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6 QT Inversion

In order to avoid overestimated decay times, the time step inversion is used different. Equal to
the dataset processing for the QT inversion the corrected amplitudes (subsection 4.3) can be
used for the time step inversion to ensure non biased decay time estimation. On the other hand,
data space transformations cannot be applied as for the initial value inversion. The pseudo
water content might be calculated but obviously negative data is expected, if the record length
is larger than the decay time, i.e., no lower boundary can be fixed in the data space.
Finally, figure 6.2 shows exemplarily a time step inversion using the corrected amplitudes and the
logarithmic transformation at the model space. The water content vs. decay time is calculated
using a multi-exponential fit to the water content dataset. In order to get a total (or due to
the dead time extractable) water content, all coefficients at the different decay times might be
summed up for total extractable water content. Summarising all the above it appears to be
useful to solve the inverse problem in just a single step as it is presented in the following.

6.1 Forward operator

According to equation 2.11 the forward problem can be rewritten to

d(q, t) =

∫
G(r, T ∗

2 , q, t)m(r, T ∗
2 ) dT ∗

2 dr (6.1)

using a general forward operator G(r, T ∗
2 , q, t) that includes the relaxation process. If assuming

1D lateral homogeneous condition a pre-integration over x and y can be applied

d(q, t) =

∫
G(z, T ∗

2 , q, t)m(z, T ∗
2 ) dT ∗

2 dz (6.2)

and the inverse problem is of two dimensions, the depth z and the decay time T ∗
2 . In order to

solve this numerically both dimension can be discretised and written in matrix notation (Eq. 6.3).
Equation 6.3 shows that the original 1D kernel function G(z, q) remains and is multiplied by a
relaxation term e−t/T ∗

2 . Obviously, the model space is necessarily multi-exponential since the
decay time is discretised and therefore smooth. On the other hand equation 6.2 can be used to
derive a Jacobian matrix for a 2D block inversion to ensure mono-exponential layer properties.
Here equation 6.3 is solved as an 2D smooth problem.

6.2 Inverse problem

There are some basic differences on solving equation 6.3 compared to the initial value inversion.
In addition to a depth discretisation, the decay time is discretised in an appropriate range. That
is, according to the detectable decay times. The dataset is about 24 pulse moments with time
records sampled at 500 Hz. In total, this results in a forward operator that easily fills the size of
40000x6000. The dataset might be reduced in future but basically the problem is too large for
an SVD based solver as used for initial value inversion. Therefore, in the following the conjugate
gradient solver as presented in Guenther et al. (2006) is used.
Due to the two-dimensional model space an upper boundary for the total (extractable) water
content cannot be applied directly since the model space is a PWC distribution. Thus, the total
water content is the sum of all water parts and is not constraint in a first step. Therefore, only
a lower boundary, i.e., the logarithm transformation is applied, yet.
To avoid a biased solution for the decay times the corrected amplitudes (subsection 4.3) are
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Figure 6.3: Schematically visualisation of a data fit presented by the QT inversion. This scheme
takes the complete dataset build by the pulse moments q and the record time t into
account and tries to find a solution that satisfies all data equally.

used. Here the phase and freq. offset is deleted from the complex signal. Thus, the real part
can be used as amplitudes.
Finally, in addition and equal to the time step inversion no transformation on the data space
is used since negative data is expected if the signal record time is long compared to the decay
time.
Additionally, the new inversion scheme takes the complete dataset build by the pulse moment
q and the record time t into account and tries to satisfy all data at once.

6.3 Synthetic comparison

In the following synthetic examples are used to compare all three inversion strategies. The
synthetic model (Fig. 6.4 consists of 3 aquifers off different thickness and relaxation properties.
The general modelling properties are:

• Circular loop of 96 m diameter, 1 turn

• Earth magnetic field at |B| = 48000 nT and 60◦ inclination

• Subsurface resistivity according to the aquifer and aquiclude situation, i.e., 1000 Ωm down
to 5 m: representing the unsaturated dry zone; 200 Ωm down to 15m: the first medium
sand aquifer; 90 Ωm down to 25 m: the first aquiclude; 110 Ωm down to 150 m: a mixed
zone of aquifer and aquiclude of different coarse material and mineralisation; from 150 m
on 3 Ωm halfspace

• 24 pulse moments in the range from 0.01 As up to 18 As maximum pulse moment.

The datasets have been contaminated using Gaussian noise at 5 nV standard deviation repre-
senting very favourable condition and 200 nV standard deviation for unfavourable conditions.
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Figure 6.4: Synthetic model for tests and comparison of the different schemes.
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6 QT Inversion

Figures 6.5/6.6 show the synthetic dataset in real and imaginary part as used for mono-
exponential fitting. Time step and QT inversion uses the corrected amplitudes as described in
subsection 4.3. All schemes use only the logarithmic transformation on the model space in order
to avoid different properties and ensure comparability.
As expected for the low noise condition case all results of the total water content depth distribu-
tion are fairly equal. Due to the scheme no decay time is presented for the initial value inversion.
The synthetic model is estimated nicely for both parameters but shows some overestimation of
the water content for larger depths as discussed for the initial value inversion with logarithmic
transformation.
At the high noise case the QT inversion can estimate the synthetic model reliable while the
standard initial value inversion shows partly underestimated water content and the third aquifer
is located at too large depth. More serious, the time step inversion is not able to estimate a
useful model. In general, this example shows two effects.
First, with increasing noise condition the stabilising effect of the 2D inversion improves the
inversion result, since dependent data is handled together and not separately. Thus, cross infor-
mation can be used.
Second, comparing the time step inversion with the initial value inversion the different order of
the two steps becomes important. On the one hand, the mono-exponential fit is very stable,
i.e., the data quality is improved before inverting for water content. On the other hand, the
time step inversion first estimates the water content that is (compared to the mono-exponential
fitting) a rather unstable process, i.e., the data quality is not improved and due to the difficult
regularisation process mostly worse. Consequently, for bad data quality the standard inversion
should be preferred compared to the time step scheme.
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7 Field cases

Finally, two field datasets, one measured at a well known test site (for comparison see Yaramanci
et al. (2002)) Nauen/Germany (in courtesy of M. Hertrich and M. Braun) and another measured
at the Shwaib/Emirate of Abu Dhabi test site (in courtesy of T. Hiller and Schlumberger Water
Services) will be discussed in detail.

7.1 Naunen

7.1.1 Test site geology - laboratory measurements

The Nauen test site is mainly characterised by glacial sediments as typical for wide parts of
northern Germany. In order to determine the specific and local properties of the test site a
research well had been drilled in 2001. A wide set of geophysical methods were carried out and
presented in Yaramanci et al. (2002). This study characterises the site as partly 2D while the
research well is located at 1D condition. Figure 7.1 shows some of the laboratory measurements
using core samples provided during the drilling. The laboratory measurements provide the mean
grainsize by sieving, total porosity by weighting and laboratory NMR T2 decay time distributions
(in courtesy of S. Costabel). Using these results the 1D part of the test site is characterised
below:

1. A primary unconfined aquifer from about 2 meter (in dependency on the seasonal change)
down to about 22 m and build by medium sand (0-7 m, 35 % porosity), fine sand (7-12 m,
37 % porosity) interrupted by glacial till (8-9 m, 40 % porosity), gravel (12-14 m, 30 %
porosity) and again fine sand (14-22 m).

2. A aquiclude consisting of marl down to 30 m with porosities of about 45 %.

3. A highly structured confined second aquifer partly with thicker layers of fine sand or till
material that might be separated into 2 aquifers. The second ranges from 30 down to 40 m
depth and the third from 45 m on.

The laboratory NMR measured log mean NMR T2 decay time (Fig. 7.1) do not generally corre-
spond to the lithology and especially the dimension of the measured T2 relaxation times are to
small corresponding to an expected permeability. Even though, this petrophysical observation
is part of further research a first approach of interpretation is according to Keating and Knight
(2007) and bases on the presence of iron oxides. The authors concluded that the presence of
iron oxides significantly decreases the T2 relaxation rates in dependency on concentration and
its mineralogical form by increased surface relaxation rates. The laboratory measurements at
the samples of the Nauen core were carried out in 2008, i.e., at dry samples that had to be re-
saturated. This is exactly the sample preparation process used in Keating and Knight (2007).
Due to the geology it can be expected that iron either as Fe(II) or Fe(III) depending on the
redox condition exist. Thus, after re-saturation of dry samples the iron is oxidised and decreased
relaxation rates occur. Especially the small layer of gravel at about 12 m depth is known to
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7 Field cases

carry large amounts of iron. Therefore, this layer is represented by too small relaxation rates
compared to the surrounding medium sand.
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Figure 7.1: Laboratory measurements at core samples from the research well. The mean grain-
size is derived by sieving, total porosity by weighting and decay time after multi-
exponential fitting of T2 measurements.
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7 Field cases
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Figure 7.3: Set of initial value inversion (using the tangens transformation for both model and
data space with an upper boundary of 0.4 m3/m3 water content) to cover the range
of data error from 16 nV up to 26 nV. b) L-curve for the calculated models in a).
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7.1 Naunen
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Figure 7.4: Set of initial value inversion using a) untransformed amplitudes, b) logarithmic model
space, c) tangens transformed model space with 0.4 m3/m3 water content as upper
boundary and d) both data and model tangens transformation all fitting the data
with the same data misfit.

7.1.2 Results of the different inversion schemes

MRS dataset Next, a field measurement was carried out close to the research well using a
96 m diameter circular loop of one turn. The dataset is presented in figure 7.2 including the
mono-exponential fit.
The overall data quality is very good for field measurements, i.e., the average noise is about
60 nV while the maximum amplitude is about 1000 nV. In detail, the dataset shows a large
frequency variation up to 1.5 Hz that obviously influences the signal phases. According to
subsection 4.2.2 the calculated initial values show standard deviations of 28 nV as upper limit
(Gaussian error propagation) and 17 nV as lower limit (at dead time). This error estimation
can be used to determine the regularisation for the initial value inversion. As expected from the
laboratory the surface NMR decay times as a function of the pulse moment derived from the
mono-exponential fit show variations.

Initial value inversion First, the standard initial value inversion without decay time interpre-
tation will be discussed.
According to the interval of expected data errors (16 nV up to 26 nV) a set of inversions was
calculated (with tangens transformation for both the model and data space with an upper
boundary of 0.4 m3/m3 water content) fitting the data within that range (Fig. 7.3). In order to
calculate the well known L-curve as a common approach to decide for an optimal regularisation,
the L2 norm of the model is calculated and plotted against the data misfit. The model showing
the largest curvature within the L-curve is selected. Corresponding to the presented L-curve
this is the model of 18 nV data misfit. In a subjective manner this model appears to be quite
rough. As a smoother representation the model of 20.5 nV is taken as subsurface water content
distribution. Next, the different transformations as described in subsection 5.4 are presented in
figure 7.4. Obviously, the subjective model quality increases the more additional information via
transformations can be introduced. The differences between model space tangens transformed
and both side tangens transformed model cannot be evaluated since borehole data is available
only down to 60m depth. According to the results of subsection 5.4 mostly the accuracy at
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Figure 7.5: Final inversion result using initial value inversion. a) complex data (blue circles) as
amplitude, phase, real and imaginary part as well as the corresponding estimated
data (red line). b) Estimated model (blue line), resolution (red) and confidence
depth (black).

larger depth benefits from the data space transformation and should be trusted.
Finally, figure 7.5 shows the result including resolution properties and confidence depth as well
as the data fit in detail for the complex signal. The estimated model represents the main water
content structure in Nauen. Remark, water content corresponding to small decay times (approx.
T2 < 0.04 s, e.g. clay) cannot be measurement and appears as dry zones. A detailed compari-
son of the field measurements to the laboratory results will follow after presenting all inversion
schemes.
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Figure 7.6: Dataset after subtracting the signal phase and frequency offset in order to use the
real part of the signal as amplitudes, i.e., to ensure unbiased decay times.
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7 Field cases

Time step inversion First, the dataset is processed to calculate the corrected amplitude signals.
As necessary, the imaginary part of the signal is reduced to a random distribution only consisting
of the noise and the real part carries the complete information (Fig. 7.6). Hence, the real part
can be used to fit with the synthetic signal amplitudes and ensures unbiased decay times in
contrast to directly using the amplitude signal.
The final inversion result using the time step inversion is presented in figure 7.7. Clearly, the
independent use of any sounding curve as single inversion are visible (Fig. 7.7a). The results is
a fairly unconstrained global datafit while every single data fit is according to a data average
noise of 62 nV (the same as for the final results of the QT inversion). The direct results of
these single inversion is the water content decay signal (Fig. 7.7b). These results of the first
step are now used for multi-exponential fitting. Even without fitting the lager decay time
of first aquifer compared to the smaller decay time of the second one is visible (Fig. 7.7b).
As expected (reminding the resolution properties in general and especially the comparison of
the transformation schemes in section 5.4) for larger depth the inversion results become more
unstable. Here one of the drawbacks using the model space logarithmic transformation without
upper boundaries is obvious compared to the initial value inversion. Finally, after fitting the
PWC distribution, the total water content (the sum over the PWC distribution) and the log
mean decay time (the logarithmic mean of the PWC distribution) are presented in figure 7.7c.

QT inversion Last but not least the results of the QT inversion using the same corrected ampli-
tudes as for the time step inversion and also only using model space logarithmic transformation
is shown in figure 7.8. A propper model is chosen by calculating the L-curve (Fig. 7.8a) and
selecting the largest curvature. In contrast to all other schemes the observed data is fitted in one
single step taking all data into account. Thus, the estimated data is a smooth surface explaining
the observed data as presented in figure 7.8b. The corresponding model to this datafit is shown
in figure 7.8c again as PWC distribution (as the original output of the inversion scheme), total
water content and log. mean decay time.

7.1.3 Discussion and comparison to the laboratory data

All three inversion schemes show globally a three aquifer case. But in detail the results are
different among each other and different from the laboratory.
The lower boundary of the first aquifer is estimated at approx. 15 m from the field measurements
while the laboratory indicates 22 m. This can be caused by two effects. On the one hand, taking
into account that the first aquiclude (the marl) is rising and crops out in a distance of some
100 m and even though the field measurements are close to the borehole this different estimation
can be geological truth. On the other hand, the decay time of the lower part of the aquifer is
small (about 0.05 s) and might be undetectable by field measurements.
Besides this lower boundary the detailed internal structure of this first aquifer is estimated
different by the field measurements. Referring to the laboratory this aquifer is separated by a
small till layer at about 8-9 m depth. Due to the decay time the water content is not visible for
MRS and, consequently, appears as a zone of less water. This layer is only very slightly visible
by the time step inversion and slightly too deep by the initial value inversion. The QT inversion
estimates the position very nicely compared to the laboratory. Of course the resolution radius
is to large to estimate the water content precisely, i.e., an average according to the resolution
properties is estimated. The small gravel layer at 12 m depth cannot be separated from the
surrounding sand since the decay time differences are too small to be resolved by field data
quality. Finally, the upper boundary, i.e., the water table at about 2 m, is estimated well with
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7.1 Naunen

both the initial value inversion and QT inversion.
The estimated decay times for the first aquifer are equal to the laboratory. Be aware, even the
laboratory measurements show too small decay time due to possible iron oxides. Consequently,
we can expect to have an oxidation regime as well for the field measurements. This interpretation
appears to be valid for the upper 10 m - 20 m. At larger depth an inconsistency appears. If the
lower part after 15 m depth of the first aquifer is not visible due to small decay times a second
and third aquifer should not be detectable too, according to the laboratory decay times since
these decay times are even smaller.
One interpretation approach leads back to the influence of iron oxides. After Bryar and Knight
(2002) and in contrast to the effects of FE(III), FE(II) does not influence the NMR decay time.
The laboratory samples all include the influence of FE(III) due to the re-saturation. At field
conditions the oxidation environment turns into reducing environment at some depth. That is,
FE(II) instead of FE(III) is present. Thus, field measurements are not affected by decreased
decay times for large depth and the second and third aquifer is detectable.
The quality of estimation for the water content is comparable between all schemes but the decay
time estimation of the time step inversion shows an effect discussed in subsection 4.2.1. For bad
data the total water content might be estimated well but the distribution prefers very small or
large times.
The third aquifer using the time step inversion is a rather very smooth estimation while initial
value inversion and QT inversion show a clear separation.
In conclusion, the QT inversion shows the aquifer structure in most detail and contains (from
the point of inversion) reliable decay time information.
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7.2 Shwaib

The data shown next results from a joint research project by the Technical University of Berlin
and Schlumberger Water Services as presented in Hiller (2008). Amongst others, this project
allowed to compare high resolution borehole NMR data with surface NMR data.

7.2.1 Test site geology - borehole NMR

The geology at the Shwaib site is mainly dominated by a tightly folded and thrust-faulted
regime striking NNE-SSW originating in the Late Eocene-Miocene collision of the northeastward
moving Arabian Plate and the Eurasian Plate. Stratigraphically the near surface sediments can
be divided into four parts from top to bottom:

• Unsaturated Aquifer, unconsolidated quartz-rich sand dunes (∼ 30m high)

• Saturated Aquifer, Quaternary unconsolidated Aeolian sands and silt clays

• Upper Fars unit, claystone with interbedded dolomotic marls, limestone and siltstones

• Lower Fars unit, mudstone and evaporites

Schlumberger Water Services has accomplished an Aquifer Storage and Recovery Project in-
cluding the drilling and logging of more than 20 wells spread over the whole test site. Figure 7.9
shows the results of NMR borehole measurements as provides by Schlumberger Combinable
Magnetic Resonance (CMR) tool for the well SWS16 that is close to the MRS measurements
shown later. Here, no focus is drawn on borehole interpretation but the CMR porosities and
the decay time spectra are used. The CMR porosities indicate the saturated aquifer at ap-
proximately 40m down to 70m below surface. The decay time distribution and its separation
into several decay time classes (left column) show very small decay times. Even for the water
saturated aquifer most of the extractable water corresponds to decay times of less than 0.15 s.
Neglecting capillary bounded water of decay times less than 0.03 s (as a usual cutoff for bounded
water) an extractable water content of about 20 % can be expected.

7.2.2 Results

The measurement as presented next was located approx. 70 m west of SWS16 using a 100 m
square loop. The local Larmor frequency was 1850 Hz, earth field inclination was 35◦and the
maximum pulse moment for 0.04 s pulse duration was 12.5 As. The resistivity distribution was
derived from borehole and transient electromagnetic (TEM) measurements (not shown here).
The noise condition were acceptable but according to the expected very small decay times the
signal to noise ratio is quite unfavourable even after 256 stacks as shown in figure 7.10. Most of
the recorded NMR signals had vanished into the noise level after 0.05 s.
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7.2 Shwaib

Figure 7.9: Combinable Magnetic Resonance (CMR) log at the well SWS16.
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Figure 7.10: Rawdata after 256 stacks and despiking at Shwaib test site. Measurement param-
eter are: 100 m square loop, 1850 Hz Larmor frequency and earth field inclination
of 35◦.

Figure 7.11: SAMOVAR (Iris Instruments) Processing and Inversion result. a) fitted signals, b)
water content model, c) decay time model, d) sounding curve (black squares), noise
(blue dots), inverted sounding cure (red line), e) decay time per pulse moment
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7.2 Shwaib

Samovar - Inversion result First, the MRS standard processing result as presented in Hiller
(2008) using the inversion software Samovar as provided by Iris Instruments (Fig. 7.11) is dis-
cussed. The software processes and inverts the data according to Legchenko and Valla (2002),
i.e., water content inversion using the initial values and the decay time inversion using a time
step inversion approach with mono-exponential fit. The fitted single signals are shown in fig-
ure 7.11a while initial amplitude and T ∗

2 decay time in dependency of the pulse moment is shown
in figure 7.11d/e, respectively. The total water content is approximated with maximum 2 %
at 55 m depth (Fig. 7.11b) with an upper aquifer boundary at approx. 30 m. Compared to
the borehole NMR the total water content is underestimated and also the upper boundary is
wrong. These bad results can be interpreted as follows: The signal fit estimates too long decay
times, resulting in too small initial amplitudes. This is due to the very short NMR signals and
the unfavourable noise condition. Therefore, also the sounding shows bad quality, resulting in
a very smooth water content estimation and inexact boundary estimation. Furthermore, after
Walbrecker et al. (2009) the 0.04 s excitation pulse hardly affects water content estimation for
NMR signals with very small decay times. The authors recommend to extrapolate the measured
signals not to the end of the excitation pulse but in the middle of the pulse duration τ . This
reduces wrong water content estimation. Using Samovar this cannot be taken into account.

Initial value inversion Second, the signals were processed according to subsection 4.2.1. This
does not essentially differ from the Samovar exponential fitting routine but provides additional
processing and control like

• Despiking to enhance signal quality

• Every signal can be processed individually to adjust start parameter for the exponential
fit

• According to Walbrecker et al. (2009), the exponential fit can be extrapolated to the
middle of the pulse τ

2 , i.e., 0.06 s (0.04 s pulse, 004 s dead time) to calculate the initial
values and thus the sounding curve.

Figure 7.12 shows the fitting results according to this processing. Compared to Samovor pro-
cessing smaller decay times and higher initial amplitude were calculated. The sounding curve
appears to be slightly smoother due to additional processing. Nevertheless the signal to noise
ratio (largest amplitude of 600 nV/ averaged standard deviation of 100 nV) is only 6.
Finally, the processed dataset is inverted using the initial value inversion (Fig. 7.13a) and using

the QT inversion (Fig. 7.13b/c).
On the one hand, the initial value inversion using the both side logarithm transformation shows
a significantly improved result that fits the expectation of 20 % water content but estimates
the upper aquifer boundary at about 45 m depth slightly to deep. At depth larger than 50 m
the water content estimation becomes wrong, showing an decrease of water content until 65 m
depth. The large increase of water content for depths larger than 70 m should not be interpreted
since not covered by methods sensitivity.
On the other hand, the QT inversion reconstructs the subsurface compared to the NMR logging
very well. Due to the joint use of all data in a single inversion step, resulting in a smooth
datafit (Fig. 7.13c) the maximum information content of the dataset can be extracted. The
upper boundary of the aquifer is close to the logging tool determined boundary and also the
water content, related to the decay times is nicely estimated. Furthermore, even at larger depth
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Figure 7.12: Individually processed dataset of the Shwaib measurements including despiking,
individual fitting and extrapolation to τ

2

the total water content is correctly estimated.
Consequently, even at low signals and short decay times and therefore unfavourable data quality,
MRS using the QT inversion is able to reliable detect the subsurface water content distribution
comparable to NMR logging tools.
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Figure 7.13: Inversion results using a) initial value inversion (both side log. transformation) and
b) QT inversion. c) shows the datafit of the QT inversion result.
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8 Conclusion and Outlook

The development of the Surface Nuclear Magnetic Resonance method has been very rapidly
with respect to the last decade. The theoretical framework for the surface NMR forward
problem had been extended to all physical parameters and spatial dimension. Thus, inversion
schemes had been developed to fundamentally take advantage of these extensions both for
spatial dimensions, i.e., 2D water content inversion and physical parameters, i.e., resistivity
inversion. Therefore, in the course of this work detailed investigations towards the basics of the
inverse problem have been done, including the development of a new solutions scheme, assessing
data uncertainty and resolution of the estimated model.

The initial value inversion approach to the inverse problem had been focused first. Along with
the data processing it had been shown that taking a usual signal to noise level into account a
convenient separation into NMR decay time distribution as known from laboratory applications
is not possible and mono-exponential fitting should be preferred. The target values extracted by
this processing step are, according to the set of physical parameter and the governing equations,
the complex initial values and the decay time of the detected signal both as a function of the
pulse moment.
Next, a scheme was presented that estimates the uncertainty of these values based on noise
records, covariance analysis and Gaussian error propagation. The scheme was evaluated with
synthetic and field data. Concerning field data it showed that, using a dataset with repeated
measurements but in agreement with other field data, the amplitude and decay time are re-
peatable parameter and the uncertainty can be predicted very nicely by the scheme. Thus, in
the sense of signal processing the amplitude and decay time are reliable parameters. Remark,
repeatability in this context includes an unchanged loop position. There are datasets measured
at locations with comparable hydrological parameters but showing different (repeatable) de-
cay times. Therefore, petro-physical research showing sources of influence on the decay time
(e.g. Keating and Knight (2007), Bryar and Knight (2002)) is needed and research on hidden
influences like frequency variation (in time and space) causing significantly decreased decay
times is of interest. In the course of this work some effects that might influence the signal in
a systematic fashion and consequently undetectable from the point of signal processing, like
frequency variations were evaluated and discussed.
On the other hand, the signal phase is even concerning repeatability often rather erratic. Con-
sequently, amplitudes are preferred as default dataset for estimations of the subsurface water
content and assessing surface NMR resolution properties.

In respect to recently presented new measurement devices that provide full time series at
higher sampling and new designed digital record technology as well as noise reducing systems
and multi channel possibilities, the signal processing part will become of increasing interest for
further research.

Next, the initial value inversion scheme estimates the subsurface water content based on
mono-exponential data fitting and extrapolation to calculate initial values. An error estima-
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8 Conclusion and Outlook

tion as presented in the signal processing chapter is used for reliable water content estimation
including error estimation for the water content. At this, a confidence interval as an estima-
tor down to which depth the inversion is reliable and a resolution measure was introduced.
Moreover, the dependencies of the method concerning loop size, maximum pulse moment and
resistivity are shown. This analysis allows determining layout parameter, such as loop size,
beforehand. The importance of this pre-survey analysis is underlined by a dataset measured
in Haldensleben/Germany. It shows that increasing the loop size does not necessarily increase
the depth down to which the inversion result can be trusted and, in addition, the resolution
decreases as it was calculated beforehand. Therefore, this section lists several dependencies of
the confidence depth to common field layouts and noise levels. Remarkably, investigations down
to depth larger than 100 m are not possible.

Since a MRS measurement can take up to several hours depending on the noise conditions
and number of pulse moments there is a need for optimisation and efficiency. Analysing the
data resolution matrix an optimal distribution of pulse moments had been presented as well
as a rule of thumb to estimate an efficient number of pulse moment in the field. Even though,
the presented sequence is very similar to the currently used and the impact of this section
is more theoretically, the presented approach holds for 2D investigations, i.e., separated loop
sounding and promises great influence on resolution and efficiency. In general, the extension of
the resolution analysis for both the data and model space is straight forward. First results for
2D resolution were shown and the use of separated loop sounding for lateral resolution is clearly
emphasised.

Transformations were assessed in order to improve the initial value inversion scheme. Here,
the already developed tangens transformation that introduces a lower and upper boundary
for the estimated water content is combined with a newly introduces pseudo water content.
This conjunction enables the use of the tangens transformation also for the data space and
clearly improves the final estimated model. It should be recommended to use this both side
transformation as standard application in future.

Finally, a new inversion scheme was developed to avoid the inability of the initial value inver-
sion to invert for spatial decay time depth distribution and the drawbacks of stability concerning
the time step inversion. The new inversion scheme called QT inversion, due to the data space
parameter pulse moment q and time t. QT inversion takes for the first time advantage of the
native two parameter data structure of even one dimensional sounding and satisfies all data
jointly. The improved stability and resolution properties are shown by synthetic and field exam-
ples. Foremost the field example of Shwaib clearly shows that using the QT inversion reliable
inversion results can be derived even from measurements at an unfavourable signal-to-noise ratio.

According to the advantage of using transformations that improve the inversion results with
restrictions on the model and data space the QT inversion should be extended to a layered or
block inversion since the actual scheme estimates a smooth parameter distribution. Furthermore,
an extension to 2D should be envisaged and coordinated with further evaluation of physical
influences on the decay time as well as joint inversion schemes.
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