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Abstract

My thesis deals with the recognition of visual concepts on images using statistica
machine learning. Recognition is treated here as classification task with continu
ous predictions. The continuous predictions can be used to generatkiregraf
images and thus will be often evaluated in a ranking setting. Ranking means that
for a given visual concept the set of all test images will be sorted diowpto the
prediction in a descending order and evaluated using a ranking me@biselis-
sertation treats the general case of visual concepts in which concepdsfared
explicitly by a set of images. The aim is multi-label classification in which for one
image all present concepts are to be predicted. The challenge compéighlyo
specialized tasks such as face recognition is the ability to deal with a gereric s
of visual concepts which are defined by the training data.

Classification is based on kernel methods such as extensions of supgtortma-
chines. The features are predominantly bag of visual words (BoW)hafiald
superior results for visual concept recognition on images with genemigegas as
demonstrated constantly over the last years by the results of internatiord-be
mark competitions such as Pascal VOC classification and ImageCLEF Photo an
notation. The problem of classification and ranking of a generic set oavion-
cepts can be divided into three subtasksrmulation of the problem and design
or choice of a corresponding loss functidhe Learning of feature combinations
given a loss functioand theDesign of FeaturesMy publication record contains
co-authored work on all subtasks. This dissertation contains contribdtotise
first two subtasks.

In the first part of the dissertation | consider (for the aspedtarmulation of
the problem and design or choice of a corresponding loss functimuels which



are capable of minimizing hierarchical loss functions which are inducedxsy ta
onomies over the set of all visual concepts. The idea is that a taxononmgslefi

a prioritization of classification and ranking errors. The goal is to avaidrer
which originate from confusing concepts which are distant under thengaxo-
nomy. One example is a system which annotates images such that it retuans for
request of dogs in case of absence of dogs or in case of error iaidnges of cats
than images of cars.

In contrast to preceding publications the focus lies not on speed dustigge
time but on improved classification and ranking performance under thettiera
cal loss. The developed model aggregates the votes of all edges in cimetay

not only those of the locally best or shortest path. Furthermore the tiécat
models are generalized such that they can be predict multiple labels for multi-
label ranking problems in which each image can have more than one visual co
cept. Previous approaches based on greedy walks along the edigesirarchy
are able to predict only the most likely concept. In the context of multi-lalmdd-ra
ing we define also a ranking measure which incorporates taxonomicahiafion.
The developed model is compared against one-versus-all and stédiprediction
baselines.

In the second part of the dissertation | analyze (for the aspdataring of fea-
ture combinations given a loss functjotie non-sparse multiple kernel learning
(MKL) for multi-label ranking of images. It is compared against averagmél
support vector machines (SVMs) and sparsaorm MKL. For the empirical part

| evaluate the performance of these methods on the Pascal VOC2008i€dass
tion and ImageCLEF2010 Photo Annotation datasets. It is shown that velireg u
model selection in a practical setup, hon-sparse MKL yields equal or besiglts
compared to the average kernel SVM which does not learn feature caticinis,

in contrast to sparsé -norm MKL which yields worse results. For the theoreti-
cal part we identify limiting and promoting factors for the performance gafns o
non-sparse MKL when compared to the other methods.

The dissertation is closed by an outlook section.



Abstract

Meine Dissertation behandelt Probleme der Erkennung visueller Konaggpte
Bildern mit Hilfe von Methoden des statistischen maschinellen Lernens. Ziel der
Erkennung im Rahmen meiner Dissertation ist es, einem Bildedes visuelle
Konzept einen reellen Wert zuzuweisen, desseis&r einer (nicht probabilistis-
chen) Konfidenz in das Vorhandensein des Konzeptes in diesem Bilgriehts
Derartige reellwertige Vorhersagenrnen fir Klassifikation von Bildern undifr

die Rangsortierung benutzt werden. Unter Rangsortierung wird inrdiebeit

die Anordnung der Bilder entsprechend der Konfidenz@nein vorgegebenes
Konzept verstanden, welche zum Beispiel als Ausgabe einer Suchimagenutzt

werden lonnte.

Diese Dissertation behandelt den allgemeinen Fall, bei dem im Kontext der Kla
sifikation ein visuelles Konzept implizit definiert werden kann durch diegsbe
einer Menge von Bildern, die ein solches Konzept aufweisen. Ziel istalje-
nannte multi-label Klassifikation, bei der zu einem Bild alle dort vorhandeine
suellen Konzepte aus der vorgebenenen Menge aller visuellen Konoepegge-
sagt werden sollen. Die Herausforderung im Unterschied zu hozifispaen
Aufgaben wie der Gesichtserkennung liegt darin, dass die Mengeislezlien
Konzepte durch die Trainingsdaten frei vorgegeben werden kashdatmer gener-

isch ist.

Zur Klassifikation werden kern-basierte Methoden aufbauend awfosupek-

tor Maschinen verwendet. Als Merkmale werd@merwiegend sogenannte His-
togrammelber visuellen Vdrtern verwendet (bag of words). Die Kombination
von Histogramméiber visuellen Vrtern und nichtlinearen re@asentiert den Stand

der Technik im Bereich der Klassifikation von generischen visuellen &oten,



was durch internationale Wettbewerbe wie Pascal VOC Classification urggeima
CLEF Photo Annotation aljhrlich demonstriert wird. Das Klassifikationsprob-
lem in seiner Gesamtheit kann in drei Teilprobleme unterteilt werdenfalie
mulierung des Problems sowie die Auswabhl der VerlustfunktiasLernen einer
Kombination von Merkmalemit dem Ziel eine Verlustfunktion zu minimieren
und dieMerkmalsextraktion Die Liste der von mir mitverfassten Publikationen
weist Arbeiten zu allen Teilproblemen auf. Diese Dissertation leistet&gtzu

den ersten zwei Teilproblemen.

Im ersten Teil der Dissertation werden im Rahmen des Entwurfs von Yerlus
funktionen Modelle betrachtet, die hierarchische Verlustfunktionen minimiere
kdénnen, welche durch Taxonomien dilfer der Menge der visuellen Konzepte
definiert werden. Die Idee besteht in der Nutzung einer Taxonomie &g Pr
isierung von Klassifikations- oder Rangsortierungsfehlern. Ziel istab®i, dass
das Modell Vorhersagefehler vermeidet, die durch Verwechselungwder Tax-
onomie weit voneinander entfernten Konzepte verursacht werdefienSoB.
Bilder von Hunden gefunden werden, kann dieses Ziel erreichtemerthdem

im Falle statistischer Unsicherheit eher Bilder von verwandten Tieren, \Bie z

Katzen, anstelle von Autos oder Fernsehern als Ergebniasermtiert werden.

Im Unterschied zu vorangegangenen Publikationen liegt der Schakdrpicht

auf Geschwindigkeit zum Zeitpunkt der Evaluation eines Bildes, soralgmmer-
besserter Rangsortierungs- und Klassifikationsgenauigkeit. Dazewdie Vorher-
sagen aller Kanten im Taxonomie-graphen mit Hilfe von sogenannten psmean
kombiniert anstelle wie bei vorangegangenen Arbeiten nur die lokal optimale
Kanten. Des weiteren werden die hierarchischen Modelle derart vematigert,
dass sieiir Multilabel Probleme, bei denen jedes Bild mehrere visuelle Konzepte
aufweisen kann, alle vorhandenen visuellen Konzepte vorherségeeR. Bish-
erige Anstze, welche nur dem lokal optimalerii(gesten) Pfad entlang der Kan-
ten der Taxonomie folgengkinen pro Bild nur ein visuelles Konzept erkennen. In
diesem Zusammenhang wird auch ein taxonomie-basiertes Rangsortieassgs

definiert, welches Information aus der Taxonomie zur Berechnungaieau@gkeit



der Rangsortierung verwendet. Die entwickelten Verfahren werdgengstruk-
turierte Vorhersagemodelle und einer-gegen-alle Klassifikationsmodedjiéchen.

Im zweiten Teil der Dissertation werden im Rahmen des Lernens der Kombi-
nation von Merkmalen das non-sparse multiple kernel learning (MKL) auif d
Rangsortierungsproblem auf Bildern untersucht und gegen swagddr maschi-
nen mit einem gemittelten Kern, welche keine Kombination von Merkmalen ler-
nen, und denY;-Norm multiple kernel learning, welches nur eine sehr kleines
Anzahl von Merkmalen ausihlt, verglichen. In empirischer Hinsicht wird dies
auf den Dateriszen der PASCAL VOC 2009 Classification and ImageCLEF2010
Photo Annotation Wettbewerbe durchigeft. Es wird gezeigt, dass das non-
sparse MKL unter Praxisbedingungen bei Duittirfing von Modellselektion gle-
ich gute oder bessere Ergebnisse als support vektor maschinen mitgenéttel-

ten Kern liefert, im Unterschied z3-Norm MKL, welches oft schlechtere Ergeb-
nisse liefert als die support vektor Maschinen mit einem gemittelten Kernhevelc
keine Kombination von Merkmalen lernen.

In theoretischer Hinsicht werden Faktoren identifiziert, die déiwen, dass sup-
port vektor Maschinen mit einem gemittelten Kern gute Ergebnisse liefeth, un
untersucht, welche Faktoren potentielle Verbesserungen durch adesilaer Kom-
bination von Merkmalen begrenzen und welche Faktoren dalatef, dass das
non-sparse MKL im Schnitt etwas bessere Ergebnisse liefert.

Die Arbeit wird durch einen Ausblick abgeschlossen.
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Introduction

1.1 Problem Description of Semantic Concept Recognition in Im-
ages

At first | will define the problem which | have been working on.

1.1.1 What defines a Semantic Concept

Formally a semantic concept can be represented by an indicator fuii¢tmmthe space of all
imagesX such thaflo(z) = 1 denotes the presence of concépin an imager € X.

I : X —s {0,1} (1.1)

For ambiguous semantic concepts this definition can be extended by assignmager a
scorelc(x) in a bounded interval (e.g.[0,1] ) which represents a numerical value for the
strength of the presence of a semantic concept in an image:

le X —[0,1]. (1.2)

This numerical value can be interpreted in a probabilistic manner as thevseef a set of
human annotators with respect to the question whether an image belongsiardgiseoncept
or not. In the context of classification this is known as label noise. In lagtitistic model of
classification witHX being the space of allimages apd- {0, 1} being the label for a semantic
conceptC this setting can be modeled by a joint distributién : Xx{0,1} — [0, 1]. The label
noise is related to the prediction certaitity (Y = 1 | X = z) = P(I¢(x) = 1) which can be
used to define the scotg(x) in Equationl1.2 Such ambiguities arise naturally for concepts



1. INTRODUCTION

denoting the emotional impression of an image such as the corsmgtseuphoricor calmin

the ImageCLEF2011 Photo Annotation datadgbf concepts related to aesthetic quality. The
label noise plays an important role in the question why image annotation is imlyedificult
and its impact on model selection be treated in more detail in setiibh

1.1.2 Two Modes of Semantic Concept Recognition

Semantic Concept Classification Given a semantic concept a binary prediction function
fc acting on the set of all imagéé can be employed for semantic concept classification:

fo X — {0, 1} (1.3)

One application derived from it is automatic tagging of image collections baspteedefined
semantic concepts.

Semantic Concept Ranking Given a semantic concept a continuously-valued prediction
function f¢- acting on the set of all imagée$ can be employed for semantic concept ranking.
The importance of semantic concept ranking lies in its application to the mosameievages
for a semantic concept from a large set of images. This is the classicahssFaine paradigm
and the aim of many search engines.

1.2 What makes semantic concept classification and ranking of im-
ages a challenging task?

One may ask why common internet search engines employ image searclohd8edames
as the default tool while search based on visual content appears tdHechata phase at best.
In this section we discuss issues and challenges of semantic conceffiicelthss for general
semantic concepts.

We are interested in predicting a large set of generic semantic concepigriastoo a small
set of highly specialized concepts as it is the aim of face recognition asaampée. One image
may show multiple concepts. Figuiel shows an example image from the ImageCLEF2011
Photo annotation dataset and all of its annotated visual concept labets. théd this kind
of annotation is far away from multi-class classification scenarios in which gaage has
at most one visual concept present in it, this images was labeled with 13 eimueepts.
The prediction output is desired to be a continuous score usable fangaplrposes. The
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continuous score allows to provide information about uncertainty of thaeifitzgion. Such
information is highly useful for the common search scenario in which a useteisested to

find the K most likely images for a selected concept.

Figure 1.1: An example image from the ImageCLEF2011 Photo amtation dataset and its
set of visual concept labelsOutdoor, Plants, Day, Still Life, Neutral lllumination, Ry Blurred,
No Persons, Park Garden, Toy, Natural, Cute, Funny, Calm

1.2.1 \Variability in the Structure of Semantic Concepts

The question "What defines a semantic concept” raised in the title of Settiohcan be
interpreted in an alternative way as the an attempt to give an overview ofotistitating
elements of a semantic concept in a less mathematical sense, more drivendlycuoigent.
What kind of semantic concepts do we expect to observe and what kiold we like to be
able to deal with?

One well known type are semantic concepts defined by the presence ofilzemef class
of objects, e.g.Porsche Car or four-wheeled vehicle This is classic object recognition as
proposed by the seminal Caltech101 data®etlt order to define the term object recognition
we may say an object is a physical object of limited extent for which we céaa pounding
box in a photo around large parts of it.

Another type of semantic concepts are more abstract ones defined bgskaqe of several
visual cues in the image. The difference to object recognition is that thalwiges may vary
highly and may not be classified into one object class in the above sensgid@othe concept
Concert Photos showing a small group of people known to be famous music artistags s
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PartyLife Aesthetic Indoor SunsetSunrise

Cute

Figure 1.2: Some Concepts from the ImageCLEF 2011 Photo Antation Challenge and
example images.

are likely to belong to such a concept. At the same time a large group of hotdig pataying
in an orchestra also defineancert

Composition of cueBeyond mere presence may play an important role: A person holding
a guitar in a certain pose may contribute to the classification@greert However another
pose with a guitar on his back may depict rather a travelling person not edahvconcert
activities. Two people with a guitar in a different pose can have the mearabhgdime guy is
smashing a paparazzo with a guitar unrelated to a concert scene. Similsslg,aha funeral
scene is less likely called@oncert One can think of many setups of musical instruments and
people which are more or less likely to b€ancert

One can extend this to abstract concepts which require the presemsels/arying cues
and theabsencef certain cues. Consider the semantic con&gptyLife Three people stick-
ing together do not make a party — if they show faces full of grief or ahgeran annotators
would hardly rate it to be RartyLifescene. Similarly a lonely guy playing guitar at a campfire
in the woods might not be @oncert

This reveals that general semantic concepts are more difficult to reeogoimpared to
classic single object recognition. Another reason besides the wideoépgssible cues is that
cues contribute in a non-deterministic way to the rating for belonging to a sencamiiept.
Consider the concetreetScenethe presence of roads and buildings are cues for such a
concept however the density and height of buildings, density of raadithe density of parked
cars are important for judging whether this iS@eetScener just a lonely road outside a town
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with some buildings. If a probabilistic model contains only binary variableshferpresence
of roads or buildings, then these variables will likely contribute in a nonrdeéstic manner
to the concept of &treetSceneThis probabilistic contribution of cues and their composition

becomes obvious for concepts related to aesthetic quality or emotional inygacas-unny
or Scary

Figure 1.3: Left: Macro of a fly; Middle: Not a macro of an elephant; Right: Macro of an
Elephant. Images by courtesy of wikimedia users nachul68, Fruggo dexbAder Klink.

Finally, some concepts require to have prior knowledge about propeftaepicted cues
which cannot be extracted ad hoc from the single image. FifjlBgives an example. The
conceptMacroShowof an elephant looks different from tidacroShotof a fly. A macro image
of a fly usually shows large parts of a fly while a macro image of an eleplaantever show
the whole elephant due to its elephantous size. The objects of interestjhlyothe same
area in the left and middle images of Figur8, however the middle image is not a macro shot.
A macro of an elephant will rather show only a smaller piece of elephantlikkirthe right
image in Figurel.3. At least, there exists a theoretical replacement for prior knowledge in the
framework of statistical learning: increasing humbers of training samplesovergome the
lack of information in the single image.

The reader may note that this discussion starts to get messy becausethe diefinain of
mathematical description and definition which yielded clear results in Settioh

The conclusion from this confusion is that we observe a large variabilitydiseimantic
structure of semantic concepts. This presents a challenge for algoritleignels to predict
semantic concepts and rank images according to them. The variability of atsenowatept
can be defined in mathematical terms as a statistical variance over the set e inedgnging
to this concept computed by any kind of function which takes the pixels ofghesimage as
an input. Key factors for the variance in the semantic structure of a semantiet are the
presence and absence of a wide range of visual cues, their compasiticdheir contribution
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to the classification of an image in a non-deterministic manner. This is what medehor
images based on filenames a task which is easier to solve than image seaistiabgues.

We can identify some special cases of the variability of cues which we willxp&aia
briefly in the next subsections.

Figure 1.4: Bottles in varying positions and sizes. Imagesdm the PASCAL VOC 2009
challenge dataset.

Varying positions and sizes of Regions in an image relevant for a semtémconcept When
limited to objects one will note that an object can fill a large fraction of the imagewary
small region. An smaller object may have a highly varying position within the imaghawn

in Figurel.4for the semantic conceottle Similarly the appearance of an object may vary
with its viewpoint. The same holds for cues contributing to a semantic concept.

Occlusion of Regions in an image relevant for a semantic conceptRegions of an image
relevant for the recognition of a semantic concept can be occludedisléasy to understand
for occluded objects shown in Figuteb.

Figure 1.5: Occluded objects. From left to right: airplane,bus, car and car. Images from the
PASCAL VOC 2009 challenge dataset.

Clutter and Complex Scene Compositions Images can have large areas which are at least
in part irrelevant for the classification of a semantic concept. The leftmos fimages in
Figurel.4 may serve as an example, the bottles are embedded in complex sceneriear@hich
not necessarily related to bottles.
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1.2.2 The Impact of Label Noise on Model Selection

The points discussed above may have two effects on increasing thelgifb€the semantic
concept classification problem. The first effect in a probabilistic claasific setting is, given
a fixed feature space, an increased complexity of the Bayes bodndérg second effect is
increased label noise.

Label noise can be measured as the uncertainty of human annotatoiig/ivirgsan image
to belong to a semantic concept. Mathematically it can be modelled as the probahdity o
image to belong to a concept(Jc(z) = 1).

Note that the notion of label noise is not disjoint from the preceding digmssFrom a
semantic viewpoint label noise can arise from occlusions of an objecmsfarmations such
that some human annotators will tend to reject the presence of a semantptbased on
their own definition, judgement or in case of concepts related to emotionsigticaguality,
their perception.

We expect less ambiguity and label noise for object-based conceptasbatyclethan
for concepts defined by a sentiment suctsador a very abstract notion likiechnical travel
orwork.

Label noise has an obvious deteriorating impact on classification agcaratmore impor-
tantly on model selection. Learning a support vector macling, 6) by solving its optimiza-
tion problem corresponds to the selection of a function from a class ofifuns by selecting
support vectors, their weights and the bias when solving the SVM optimizatudregm. The
selection of a function from a class of hypotheses by minimizing a reguldnzedver a finite
set of training samples can be treated in the framework of empirical risk minimzatio

Theorem 6 in§) provides lower bounds for the expected risk in empirical risk minimization
depending on a uniform bound for the label noise.

Theorem 1(Theorem 6 from&)). Let . be a probability measure o and S be some class
of classifiers orX such that for some positive constaifs, K5 ,co andr

Koe " < Hy(e,S,pn) < Ky "

forall 0 < e < ¢y, whereH (¢, S, ) denotes thé; (u)-metric entropy of S. Furthermore I&t
be a bound on the label noise:

Vo |P(Y = 1|X = ) — 0.5 > h/2

the Bayes boundary is the optimal decision boundary for classificatien we generating distribution of the
data is assumed to be known.
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Then, there exists a positive const@tdepending or,,K5,eq andr such that the following
bound holds
Ru(h,S,p) = inf  sup  E[P(Y # §(X)) = P(Y # 5*(X))]
ses PeP(h,S,u) (14)

> K(1—- h)ﬁ max(ffﬁ:n*ﬁlr,n_%)

whenevemn > 2.

The work in (7) contains examples how to establish the validity of the imposed condition
on Hi (e, S, 1) for smoothly differentiable Bayes boundaries. This allows to apply it tosupp
vector machines with Gaussian kernels and otherwise smooth settings likéeobbdomains
and distributions with sufficiently smoothly differentiable Bayes boundariEsr the under-
standing of the theorem note tHth, S, 11) is the set of distributions on the input-label product
spaceX x Y such that the input space distributiornisFurthermore the label noise is bounded
in each point ofC by 1/2 — h/2 due to| P(Y = 1|X = x) — 0.5] > h/2. Finally, s* is the
Bayes classifierE[P(Y # §(X)) — P(Y # s*(X))] is the deviation between the expected
errors of the classifier and the a posteriori optimal Bayes classifier The supremum is taken
over a class of distributions followed by selection of the optimal empirical iflaisg given
knowledge of the distribution. Since the distribution is unknown this implies thalother
bound has an optimistic formulation compared to practice.

An increase in the overall label noise corresponds to a decrease wdltleeof 4 which
yields an increased lower bound in Theorgfior the expected deviation between the expected
error of an optimistically selected classifier and the best possible classifien & function
class. The qualitative message is that label noise does have a deterimfitigigce on model
selection.

1.3 State of the art in Semantic Concept Recognition in Images

Image Annotation as a tool for content-based image retrieval is a field afigpngesearch
since decades. The reader is referred to the overview p&pdéor(the numerous research
efforts undertaken in the last century alone.

Image annotation follows two big lines, generative approaches basedpmbabilistic
model and discriminative approaches aiming at minimizing a loss function.

Yfor a brief introduction to support vector machines see Sedti8r?
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Among the discriminative approaches kernel-based methods such awtsuggior ma-
chines B, 4) or kernel discriminant analysi®) based on BoW (bag of words) featurd<)Y
have been proven particularly successful in the field of image annotattbraaking. Kernels
computed over BoW features are constantly dominating international compettioinsage
annotation and ranking in terms of performance measures such as theAPA&sLial Ob-
ject Categorizationl(1) and the ImageCLEF PhotoAnnotation challengesl@) over the last
years. Thus they will be the fundament of the work described in this th&sis.following
sectionsl.3.1and1.3.2will give a short introduction into BoW features and support vector
machines (SVMs).

The state of the art for Semantic Concept Recognition in Images is baseahmuting
many features for each image. When considering a larger set of maeyediffsemantic con-
cepts it may be very difficult to construct the one ultimate feature for clasgifthem all
reliably. The basic idea is to counter the high variability and complexity of gésemantic
concepts described in Sectidn2.1 by computing many different features per image and if
necessary learning combinations of them adapted to the semantic conceptasdified. This
is the main reason to compute many features per image.

It is worth to remark about a very recent development. While it was knosfarbe that
neural nets are very suitable for object classes with rigid structureasudfe CIFAR datasets
(13) which do not have a high scale variance and are centered, recelts iesng neural nets
with additional regularization ideas yielded excellent performance onlgmmabwith much
more diverse visual concepts such as the Imagenet Challédgés). From that we may

expect a revival of neural networks for general visual conpoggagnition in the next years.

1.3.1 Bag of Word Features

The Bag of Word (BoW) feature is a framework rather than a fixed featamputation algo-
rithm useful for computing a vector-valued representation for one imégewvean be used for
subsequent classification and ranking. Intuitively speaking it looks ayparts of the image,
each of them represented by a local feature and aggregates theelaizakt into one global
representation for the image which is the final bag of Word feature. Themotable property
of the BoW framework is the fact that the spatial relations between locairtssaare ignored.

Figurel.6 shows the stages of computing a BoW feature.
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A) Determine Regions B) Compute C) Map Local Features D) BoW feature as
for the extraction of Local Features onto the set of a histogram of
local features Visual Words local feature
mappings
Visual Words: ®
I Local Features:

;'.- -
12345
Space of Local Features typically > 1000
typically > 50 dimensions dimensions

Figure 1.6: Bag of Word Feature Computation pipeline.

First Stage: Local Features In the first stage (left part of figure.6) a set of local features

is computed from an image. Formally, a local feature is a vector compute@ oggion of the
image by some fixed algorithm. In Figute6the local feature is for the sake of demonstration
merely composed of the gradient norms along the horizontal and vertiealvelxich results

in two dimensions. For real applications the SIFT descripté) {s the most famous choice
for general multimedia images. Besides the choice of the local featurensdgioits compu-
tation have to be chosen. Typically, local features are computed on sradkhpping regions
distributed across the whole image. Apart from grid sampling as the simplesbandiased
random sampling1(7, 18, 19) may serve for the computation of the corresponding descriptor
regions. The number of local features may vary across images, fanpady adaptation

to image size. The work in2Q, 21) shows that a sufficiently dense sampling is required for
good classification performance which is the reason why for image clagiificin contrast

to object matching across images, classic keypoint based detectors yselategvhat lesser
performance as demonstrated in the Pascal VOC 2007 Chall2Rgd bis is consistent to the
author’s own experience.

For improvement of performance local features are often computedaoset of differ-
ent color channels and concatenat&d)( This allows to incorporate color information and
correlations between various color channels. We assume in the followinthéhamages are
available as digital RGB-images with color channels red, green and blue ahtbs/lying in

[0, 1]. Examples for such sets of color channels are the basic set of red, gred blue (RGB),

10
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the set (OPP) composed of the three channels dr&y, opponent color 11.6) and opponent
color 2 (1.7), the normalized RGB setl(8) (nRGB) or the normalized opponent colors set
(nOPP) (.9). The latter color channels are given in Equatich$)((1.6),(1.7),(1.8) and (.9

as functions of RGB-valueg:, g, b) lying in [0, 1].

gr(r,g,b) = (r+g+0b)/3 (1)
ol(r,g,b) =(r—g+1)/2 (1.6)
02(r,g,b) = (r+g—2b+2)/4 (1.7)

r__ 9 _b ifr+g4+0b6>0
nrngnb(T7 g9, b) - (T‘+g+b r+g+b T+g+b) ' g (18)

0 otherwise
. g,b), Lrg:b) 02rgb) ) ey oS

nopp(r, g,b) = (gT(T 9:0): Grr.g.0) gr(r’g’b)) g g. (1.9)

0 otherwise

The idea of computing features over sets of color channels and s@mtlgooncatenating
them is applied also to other feature extraction algorithms as well.

Second Stage: Visual Words The second stage, the computation of the set of visual words,
which is not shown in figuréd.6, is done once during training time for each BoW feature to be
computed.

It is important to understand that BoW features cannot be computed insgcatesadigm
in which a feature is a function of an image alone, because the BoW histograndefined
relative to the set of visual words which must be obtained in some wayilyifwan training
images. The BoW features are a function of the imagd the visual words. After having
computed visual words from training images, BoW features can be comfauterdining and
testing data using the same fixed set of visual words for both datasetanfyeln the visual
words requires to recompute the BoW histograms for all images.

Formally, a visual word is merely a point in the space of the local featuigard=L.6 de-
picts exemplarily the two-dimensional local feature space with red dots agse¢hedual words.
One possibility to compute the visual words is discretization of the empiricalleatlre den-
sity using k-means. Practically proven alternatives are radius-basstdrig @0), Bayesian
methods like pLSAZ4) and more commonly Fisher vectors based on Gaussian mixture models
(25), sparse coding?2@). It is an open question for what kind of data a density-based method
like k-means is preferable over a radius-based method like radius-blasgering 20).

11
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Third Stage: Mapping of Local Features onto Visual Words The third stage is the map-
ping of local features onto the visual words, usually by computing weighgedbon the dis-
tances between the local feature and all the prototypes. This step, depittee middle of
figure 1.6 yields for each local feature a vector of weights with its dimensionality beingleq
to the number of prototypes in the visual codebook. Examples are s@&fboolls £7) and fast
local linear coding 8).

There has been considerable research on improvements for the twaktepsal word
generation and mapping, such as hierarchical clustefi)g €lass-wise clustering3(), ran-
dom forests$1), hybrid semi-supervised clusteringd) or optimization of information-theoretic
criteria 33). Note that many of these works have been very recently developedydbe au-
thor’s work for this thesis. Hierarchical clustering and random forasisat improved speed
of feature computation, class-wise and hybrid semi-supervised clustetamgl to interpolate
between improved speed and improved precision while local coordinategc(iB) focuses
on improvement of precision at the cost of higher dimensional features.

Some particular mapping functions are given in the following. iLle¢ a local featuren
the mapping function, and finally.,; the projection of the mapping function on tii¢h output
dimension corresponding to thikth visual wordvy. Hard zero-one mapping is the simplest
procedure. Each local feature is mapped onto its nearest visual egutling in a unit vector
as in equation(.10.

mg(l) =

{1 if d = argmin, ||l — v||? (1.10)

0 otherwise

The norm|| - ||? in equation .10 is usually the euclidean norm however it might be interesting
to try out other norms such @s-norms withp < 1, or more generally distance functions like
the x2-distance between two vectarsandy: x%(z,y) = Y. 4(®a — ya)?/(za + ya). Both
alternative distance functions would put more emphasis on dimengioith small values of
the vectorse andy.

Soft mapping as in equatiod.(L1) was introduced ind7) and became popular in the con-

text of competitions in image annotation and ranking

exp (—all —va?)
2 e exp (—olll —vel?)

Soft mapping acts a smoothed version of hard mapping because it distiiveitespping for

ma(l) = (1.11)

a local feature to a set of its neighboring visual words.

12
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It was found however in34), and by the author's own experiments during the Image-
CLEF2011 PhotoAnnotation Challeng®) that for good ranking performance it is necessary
to achieve a sufficiently fast decay of assignments as a function of distdirmen a local fea-
ture to neighboring visual words. A revised version of soft-assignifightin equation {.12
assigns votes only to the k nearest neighldg¢§l ) for local featurd in the set of visual words.

exp(=oalli—vall®) .
ma(l) = { Teexp(=oelll=ve[?) if d e Ni(l)

0 otherwise

(1.12)

The author used another form of localized mapping successfully fonissions of the Image-
CLEF2011 PhotoAnnotation ChallengB ,(rank mapping as in equatiot.(3. Let Rank(z)
be the rank of the value € {||l — v4||?,d = 1,..., B} within the set of distancelfl — vy||?
sorted in ascending order.

(1.13)

9.4~ Rank(li=vall®) it g & N, (1)
mq(l) = '
0 otherwise

While the revised soft mapping from equatidh {2 showed slightly better performance on
the ImageCLEF2011 PhotoAnnotation corpus in a post-challenge evaluti®advantage

of rank-mapping is its explicit modelling of decay of mappings as a functionehtimber

of nearest neighbors. The author used in his submissibnslg) for the ImageCLEF2011
PhotoAnnotation challenge rank mapping (equatibiid) with parametet = 8 having in
mind that2.4=8 ~ 1000. For revised soft mapping from equatioh 12 it is still necessary

to fit the constants,; appropriately for each visual word. The author’s solution for the post-
challenge evaluatiohwas to set

04 = 084 (1.14)

wheres, is the inverse of the median of squared distariées; || from all local featureg such
that the visual wordy,; is their nearest word within the set of all visual words. This reduces
the number of parameters for that mapping to be estimated to one global paranzetd
allows the width parametets; in equation {.12 to scale according to robust local distance
statistics. The need for such scaling comes from the fact that k-meansririgsfor visual

The author tried the revised soft mapping (equatibri?) during the ImageCLEF2011 PhotoAnnotation
challenge before learning of the work i84), noticed slightly better results via cross-validation compared to rank-
mapping (equationl(13) and still decided to submit solutions based on rank-mapping due to itéesiamm thus
potentially more robust structure compared to the revised soft mapping.

13
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word generation results in clusters with neighboorhoods of varying diasmeet is a density-
sensitive clustering method. This implies that the neighborhoods for differeual wordsv,
have different distance statistics of the local features which lie in thectgpaeighborhoods.

Further notable coding methods which yield good results in published \86Jlafe sparse
coding as in equatioriL(15 and local linear codingZ@) as in equationX.16

m(l) = argmin ||l — Vz|> 4 ¢||z|1 (1.15)

whereV is the matrix of visual words of format x B, [ is the local feature of formal x 1,
and the mapping vector has formatx 1.

2
(1.16)

B
S zaexp (ol - val?)
d=1

m(l) = argmin ||l — Vz||> + ¢
2

2

The missing minus in equatiod (L6 is intended. The idea behind local linear coding is that

locality is able to induce sparsity such that weighisfor distant visual words; are set to

zero or very small values. Finally, the author likes to point out again thaeFigectors Z5)

also perform well on large-scale image classification tasks like the Imagksitetet 15). An

overview of the performance of different coding methods is give).

Fourth Stage: Aggregation of Local Feature Mappings Finally, the mapping weight vec-
tors, one from each local feature, will be aggregated into one globalrie which is the final
BoW feature, as depicted on the right side of figli® The usual aggregation step consists of
summing the mapping weight vectors and normalizing the resulting vector to &mtjuatying
numbers of local features.

The combination of a mapping function : RX — R? and sum aggregation yields a
representation of a BoW featureas

r=Y m(l)eR? (1.17)
l

Maximum pooling 84) where the sum in equatiod.(L7) is replaced by a maximum oper-
ator has also been applied as a biologically-inspired alternative.

Finally, one frequently used modification of the Bag of word features paéas tilings.
Originally they were introduced as spatial pyramids36)( The idea of a spatial tiling is to
split each image into a set of regularly shaped spatial tiles, to compute ondedike for each
tile separately and finally to concatenate the BoW features over all tiles intBahefeature.

14
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Examples are the spatial tilirig< 1 which decomposes each image into three horizontal stripes
of equal height an@ x 2 which cut an image intd regular squares. Spatial tilings allow to
incorporate a low degree of spatial information into BoW features in a tobasner.

Further Remarks The strength of the bag of word feature lies in its robustness which comes
from the following factors:

e the absence of modelling of spatial relations between parts unlike earlievaahes
which are susceptible to noise in images with complex sceneries.

e the aggregation of local features into a global feature which implies degoisnav-
eraging of contributions of many local features. Equatibi7) can be interpreted as
a sum of many noisy parts which are nonlinear mappings of local featatestee set
of visual words. For an alternative interpretation s&8.(Apart from normalization of
the BoW feature to unif; - or £5-norm, other pooling methods than the sum can be em-
ployed like max pooling in which the sum is replaced by a maximum over all mappings
mq(l;), or generalized p-means,(z) = N—l(Z?Ll z?)1/? which allows to interpo-
late between the minimum, the maximum, harmonic, geometric and arithmetic means as
special cases.

e the choice of robust local features such as SIEd) or SURF (38) which are known to
be invariant against many changes in lighting conditions. 38gfér an overview of
invariance against lighting variations from a color theoretic point of view.

Another advantage of bag of words features is their computational ditglabhis is an
advantage over intuitively more appealing Bayesian approaches whih ded to rely on
restricted probability models or inference approximations in practice. Comiputaf bag
of words features in real-time is demonstrated3f) (while (40) demonstrates their efficient
computation on GPUs.

The most critical choices in the BoW feature is the local feature, the Bo\trieali-
mensionality and the way of mapping:(in Equation (.17)) of local features onto the Bow
dimensions.

The work @1) shows by comparing against human performance that Bag of worddsatu
yield a similar performance to humans on so-cajledbled imagesvhich were cut into square
parts and then piecewise randomly permutated and rejoined. The humantaaydvés our
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1. INTRODUCTION

ability to extract spatial relations between parts which requires us, hovtevapend years of
training and learning in childhood from millions of examples and some hundoeddmd years
of brain evolution before our base learning system became operatiarapaed to that Bow
models enjoy the advantage of algorithmic simplicity.

Notably, @2) and @3) but also @4) propose methods which avoid the discretization step
implied by the usage of visual words. These works go beyond the limits adicédBoW
models. {2) uses a boosting type formulation on sets of local features whigléarns a
set kernel metric for pairs of local features under incorporation adlloontext. A potential
drawback is the loss of computational scalability which comes with the origirgpbB&aords
model.

The BoW method is also applied with superior results in competitions in related domain
such as semantic indexing for videosTTRECVID(45) or the winning entry inLSVRC2011
large scale object detection challengé)(

Despite their robustness for domains with highly variable images, Bag offeatdres are
also applied to narrow domains such as concept recognition for medicadinfaQ 48, 49).

1.3.2 Support Vector Machines in a Nutshell

We will give a short introduction to support vector machines (SVM). Foremetails the
reader is referred ta}. | refrain from reciting all the known facts about SVMs except foraivh
is necessary to understand their usage.

A support vector machine learns a linear predictor

flz)=w-x+b (1.18)

for an input sample by minimization of a loss functiohtogether with a quadratic regularizer
for the parametersy of the predictor.

Let {(z;,4;) | « = 1,..., N} be the training data: a set of input featurgsand their
binary labelg); € {—1,+1}. Then the support vector machine can be defined as the following
optimization problem for learning the parameteus b) of the classifier given in equatidn18

N
. 1
Iglll)’l 2w~w+02l(w~wi+by,—) (1.19)

The loss function can be chosen to maximize the mardifw;)y; of samples(z;,y;).
Examples are the hinge loss
l(z,y) = max(0,1 — zy) (1.20)

16



1.3 State of the art in Semantic Concept Recognition in Images

and the logistic loss
l(z,y) = In(1 + exp(—2y)) . (1.21)

This approach has two principled advantages. Firstly, from a theorptaat of view the
solution of support vector machine is known to be parametrized such thabased on the
span of the training samples. Differentiation of0 = Jw - w + CZ?LI [((w-x; +b)y)
based on Formula.19for the variable component(¥) in dimensiond proves this claim.

Secondly, from a practical point of view the support vector machine allfow certain
losses like the hinge loss and the quadratic loss to incorporate non-linearisiesilaetween
data points in the form of Mercer kernels. The nonlinear version of Flarthd9is given by
replacingz; with its mapped value(x;) for some mapping : X — X into a Hilbert space
K.

The non-linear similarities can be specified implicitly via the choice of a Mercereke
k : X x X — R. The dual formulation of the support vector machine can be written for
appropriate loss functions to depend merely on Mercer kernel similarities

k(zi,xj) = () -9c p(:) (1.22)

without explicit references to the mappingnto a feature space.

For the sake of self-containedness we give a formal definition of a miezceel. A mercer
kernel is a symmetric functioh : X x X — R on a compact subsét ¢ R? such that with
respect to the Lebesgue measien R? the operator

TIH(f)(y) = /x Bz, ) f(2)dA(2) (1.23)

does result always in a functidhik]( f) lying in Lo(X) whenf € Ly(X) and all the eigenval-
ues of the operatdr[k] : Lo(X) — Lo(X) are non-negative. The eigenvalues are defined by
the Lo-Hilbert spacel, (X) of real-valued functions ot induced from the Lebesgue measure
Al

Fog= | f@o@are (1.24)

Ly(X) :{f X — R‘f is measurable fok andf - f = || f||? < oo} (1.25)

This result can be generalized to compact Hausdorff spaces with a firdtecauntably
additive measur operating on the Borel-Algebra of it. For practical purposes in the context
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1. INTRODUCTION

of SVMs, however, it is sufficient that the matriXx;, «;) defined over a set of samplés; }

is always non-negative definite for all sets of samples in the sense of cofimaar algebra.
Back to the formulation of a support vector machine, its essential paraméterrisgular-

ization constantC' in equation1.19 High values put more emphasis on minimizing the loss

while low values emphasize the quadratic regularization. Appropriate noatiatizof kernel

matrices balances the loss and the regularizer term to be on the same sdhlesaaitbws in

practice to choose a regularization constant on a grid around theValué.

1.3.3 Kernels Related to this Dissertation

The kernel mostly used in this dissertation is fffeKernel which is an established kernel for
capturing histogram featuresQ 51). Let z(%) be the d-th component of vector

d d
G

1
k(.%'l, $2) = exp —; Z W (126)
PRI R

The bandwidths of the x? kernel in (L.26) is thereby heuristically chosen as the megn
distance {.27) over all pairs of training examplds, z2), as done, for example, iB).

(d) (d)\2
2 (7 — )
X (x1,x2) = Rt —— T~ (1.27)
Z ﬂigd)—l-l‘gd)

d|x§d)+x;d) >0

It shares with the gaussian kernel (equatidr2®) the structure of being an exponential of a
negative function of a distance. For the gaussian kernel it is the styéiadistance while for
the y2-kernel it is they?-distance given in equatiod 7). Compared to the gaussian kernel,
differences in histogram bingwith low counthgd) + :rgd) ~ 0 are upscaled in thg?-kernel.
We remark that there exists also another non-exponential formulatiorybkarnel which is

not guaranteed to be positive definife).

k(z1,22) = exp <—1 Z(x&d) — :céd))2> (1.28)

g
d
Another established kernel for histograms is the histogram intersectinalKeq. (.29).

k(x1,xe) = Zmin(xgd), acéd)) (1.29)
d
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1.3 State of the art in Semantic Concept Recognition in Images

All kernels in this study are normalized to have standard deviation 1 in Hilpaxtes This
amounts to compute

— LK) - L1TK1 (1.30)
which was proposed irb@, 55) and entitledmultiplicative normalizationn (56). This avoids
situations in which a kernel with low variance is dominated by a kernel with higfance
when both are combined.

For large scale applications many of those kernels can be approximatedywetplicit
feature maps33, 57, 58) which are then used as higher-dimensional features for a lineankerne

This allows to use primal support vector machines with approximations ofinear kernels.

1.3.4 Kernel Alignment

The kernel alignment introduced bg9) measures the similarity of two matrices as a cosine

angle in a Hilbert space defined by the Frobenius product of matrices
(k1, ko)

11|l [l k2]l 7

We will use kernel alignment in two variants in Chapt@rand 3 for the analysis of kernel

.A(kil,k‘g) = (131)

properties.

The first variant computes the cosine angle between two kernels compatadriage
features. We call this kernel-kernel alignment (KKA).

The second variant, kernel target alignment (KTA) measures the similaityelen one
kernel from features and an optimally discriminative kernel computed trmrabels for a
given visual concept. The centered kernel which achieves a padparation of two classes
can be derived from the labels and is proportionaj3o , where

1
- ~ ~ - Y = +1
y=@) =9 " (1.32)
o Yi=
andn_ andn_ are the sizes of the positive and negative classes, respectively.
It was argued in§0) that centering@1) is required in order to correctly reflect the test
errors from SVMs via kernel alignment. Centering in the correspondiatyfe spaces is the

replacement ok (z;, x;) = (P(x;), d(x;)) by

N N
<¢<xi> — NS (), dlay) - N7 Z¢<xk>> (133)
k=1

k=1
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Note that support vector machines using a bias term are invariant agaireting, which can
be shown using the condition’; a;y; = 0 from the optimization problem given by equation
(3.2). To see the influence of centering on kernel alignment consider thabvthealized kernel
alignment with an added biasand non-negative kerne{s;, z2) > 0 will be dominated by the

biasz when||z|| — oc:

(¢@1) + 2, 6(w2) +2) 1212 lell=po

> 1. (1.34)
[o(z1) + zl[[l[¢(z2) + 2l — ll¢(z1) + 2[ll|o(22) + 2|
Centering can be achieved by taking the prodiiét H, with
H:=1- 1111 (1.35)
n

1 is the identity matrix of sizex and1 is the column vector with all ones.

1.4 Overview of this dissertation

This thesis is not method driven, it is problem driven. This means, | didexglop one single
method which | apply to various kinds of datasets and compare where isviatker than
existing baselines. Neither did | perform a theoretical analysis for orss dhalgorithms.
Instead | have worked on one larger problem, namely that of image anmogattbranking,
which required me to tackle several aspects of that problem ranging&aore design to loss
function design and optimization. This problem can be divided for discrimmaipproaches

which aim at minimizing a loss or maximizing a score into three big topics.

e Formulation of the problem and design or choice of a correspondinguassidn
e Learning of feature combinations given a loss function

e Design of Features

This is not a strict hierarchy, since the design of features and theiegiep may have
influence on the method to learn the feature combination. The simplest examties fargu-
ment is the case when one makes the assumption that only a small but a grrewmnsubset
of the given features will be useful. In that case one would rely orsgpalgorithms to learn
the feature combination.

Figurel.7 depicts these three big topics. The decomposition into three topics is the reason
why subsequent chapters have their own related work and conclugisactions. Essentially,
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1.4 Overview of this dissertation

the following chapters tackle different topics of the same grand problerthéfmore, the field
of computer vision is sufficiently developed and diversified such thdt pat deserves its own
specific set of references.

For the aspect dbesign of Featureshave analyzed the impact of biased random sampling
using novel sampling methods for BowW (Bag of words) featui&%. (This methodology was
part of the author's submission on out of sample testing data for the Imd&fextll1 Photo
Annotation Challenge which yielded the winning entries in this competition for multiainod
and pure visual categoriesg).

For the same aspect | also worked on hybrid algorithms which combine the &tilfgst
feature computation due to tree structures together with supervised leafrsplits based on

support vector machine8%).

Problem types:

1. classification or ranking?

2. Multi-Label (many concepts per image)
or Multi-class (mutually exclusive
concepts per image) ?)

Problem Formulation Learn Feature Combinations
Loss function Choice combine many features to deal with supervised,
withhin-concept variability and minimizes
input: prior knowledge unsupervised large number of visual concepts loss function
Chapter 2: Learning with Taxonomies Chapter 3: Multiple Kernel Learning (MKL)
Author, 1JCV, 2012 Author, PLoS ONE, 2012
Taxonomy loss or flat loss?? Gradient-
loss(Cow,Dog)=loss(Cow,Sheep) ?? Based =
SN ~
Laurasitheria &
Texture : g
Cetartiodactyla  Pegasofera Descripeors LB
~ T R
Cow Sheep Carnivora Horse = =
n @©
Cat Dog 56

loss(Cow,Dog)=5
loss(Cow,Horse)=4
loss(Cow,Sheep)=2

Design of Features
- supervised (if affordable)
- unsupervised
-prior knowledge
example: BoW features over [
biased random sampling
Author, CVIU, 2012

S

sampling of global Bow
local features feature

Figure 1.7: Three big topics of the image annotation and rankg problem. Blue shows the
type of supervision. Green colors examples. Brown colczasd
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1. INTRODUCTION

A brief overview over the state of the art of feature design for BoW festis given in
sectionl.3.1 The following two contributions will be shown in this thesis in more detalil.

For the aspect dformulation of the problem and design or choice of a corresponding loss
functionl proposed a novel algorithm capable of optimizing taxonomy-induced loggibns
for multi-class data in a computationally efficient manner and taxonomy-bag&ihg scores
for multi-label data §2). This will be discussed in Chaptr

For the aspect ofearning of feature combinations given a loss functianalyzed the
behavior of the existing non-sparse multiple kernel learning (MKL) algorifh6) specific to
properties of features commonly used in image annotation due to their stateaot fhexfor-
mance 63). | will give novel explanations on its limits and benefits based on experinoents
real-world data. This will be discussed in Chaer

The two aspects on which | will focus subsequently, namely learning withntarg-
induced loss functions and ranking scores and an analysis of nosegpaltiple kernel learn-
ing in image ranking, can be treated separately or in a combined mannen. tGéveomplexity
of these topics and the authors’ impression that both of them contain margm®which are
not understood sufficiently, | will treat them independently in two sepatzdpters.

An overview over publications coauthored by me is given in Sectid2

The annotation system was tested in three international benchmark compaetihiais
were evaluated on image collections with undisclosed ground truth, namelgl R&3C 2009
Classification §4), ImageCLEF2009 Photo Annotatiofig) and ImageCLEF2011 Photo An-
notation (). It yielded in these competitions top-five placements and winning entries in two
categories of the most recent of these competitions, ImageCLEF2011 ARtadtation ().

1.4.1 Why do we not learn anything at once but divide the prol#m into parts?

One may ask here why | did decompose the problem into parts and did not thikoway to
learn everything simultaneously. It might be indeed a desirable long terhtaglearn all pos-
sible parameters from data in a unified framework. Still, elegant theory ialwalis practical
when real data has to be processed. For example full-scale crosatieaiidver all hyperpa-
rameters is limited in practice to a low number of parameters because the nurghdrafints
may grow exponentially with the number of parameters. In practice sequentss-validation
or alternative heuristics like genetic algorithms may yield the best results asdeated in
(66). The alternative to cross-validation are likelihood based models. Disctinermraodels
in computer vision like SVMs may overfit in practice strongly on the training ddtentbeing
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1.4 Overview of this dissertation

at their optimum with respect to their performance on test data — see for bxtimamecessity
to use cross-validation for generating SVM outputs which are used forihgof subsequent
models in 67, 68). This effect makes the usage of cross-validation preferable forimhisa-
tive methods over direct likelihood based models acting on the whole traintagditactly.
Problem decomposition allows to include prior knowledge easily yielding begttergnition
performance or saving time even when the problems are solved only apptely. The tables
2.10and?2.11in Chapter2 provide an example, where structured prediction algorithms with
all their mathematical elegance do not provide significant performance gansimpler and
much faster approximate models. Problem decomposition as the alternativakaproblems
to be solved more efficiently and in less time which is an argument against monatiiified
frameworks. For these reasons | will approach the problem of imagatation and ranking
by decompising it into three levels mentioned in Secfich

The three levels of the problem can be also classified by their relation toviipe. Fea-
ture design is a part which can be performed efficiently in an unsupdreismerely weakly
supervised manner. It may include prior knowledge about the problemwehak supervision
can be used to ensure that certain statistical properties of the datasefiected in the fea-
tures. One example would be for the case of Bag of word features tls@i@uevhich images
are used for computing visual words. The visual words will be computad & set of local
features which have been extracted from the images in question. In m®hlith many visual
concepts it maybe helpful to ensure that images from visual concepts witaldondance in
the training data do appear in the set used for computation of visual wotds.matter has
been investigated irBQ) where it was shown that learning a separate visual vocabularydar ea
visual concept and fusing all these vocabularies into one big set ddlwgards may help to
improve ranking performance. Further examples of introducing supemvie feature design
are 31, 32). Using more supervision in feature design has the potential to improvgmnitiom
performance at the price of slower algorithms.

The feature combination part relies on supervision for learning a usefabination of
unsupervised or weakly supervised features as it is based on minimizdteomiven loss
function. For that part an empirical analysis of multiple kernel learning véldiscussed in
Chapter3.

The last part, the choice of a loss function, relies on incorporation of griowledge
in one or another way. The usage of supervision for the choice of afuossion requires
some kind of regularization because the criterion used for supervisidhistsiefined at this
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level. Introducing regularization can be interpreted as a way to incagprear knowledge.
Regularization implies that hypotheses which receive stronger regtianzae only chosen
if the data supports them particularly well. This is a way to express the prawlkdge that
these hypotheses are expected to be chosen less likely. In summarygattpeiaton of prior
knowledge is necessary for choosing a loss function.

As an extreme example why usage of supervision may not be always Ihaiphe level
where the loss is designed consider a loss function which is learnt fraanirda way such that
it places no or low penalties for misclassifying images showing visual césmieépch are hard
to recognize. It might be not always in the interest of users to ignore rassfitation of hard
cases. On the contrary, in some cases it might be useful to improve tlymitmo performance
of badly recognized visual concepts at the cost of reducing recogmigcformance of easier
recognized visual concepts.

In this dissertation | did not attempt to learn loss functions for this reasoingtead chose
the simpler way in Chaptét to learn models based on hierarchical losses which were derived
from prior knowledge about the problem. The following sectlof.2lists work published by
the author.

1.4.2 The Author’s Contributions

e Choice of Loss FunctionClassification with Hierarchical Structure

— A. Binder, K. R. Miller, M. KawanabeOn Taxonomies for Multi-class Image
Categorization, International Journal of Computer Vision 99(3), 281-301, 2012,
accepted January 20167%)

e Feature Combination for a given loskearning Kernel Combinations

— A. Binder, S. Nakajima, M. Kloft, C. Mller, W. Samek, U. Brefeld, K.-R. Mler,
M. Kawanabeinsights from Classifying Visual Concepts with Multiple Kernel
Learning PLoS ONE 7(8), 2012, doi:10.1371/journal.pone.0038&3} (

— S. Nakajima, A. Binder, C. Mller, W. Wojcikiewicz, M. Kloft, U. Brefeld, K.-
R. Muller, M. Kawanabe:Multiple Kernel Learning for Object Classification ,
IBIS2009 Workshop, Fukuoka, Jap&aib)

— M. Kawanabe, S. Nakajima, A. Bindérprocedure of adaptive kernel combina-
tion with kernel-target alignment for object classification, CIVR2009 (70)
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e Feature Combination for a given loskearning Relations between Semantic Concepts

— A. Binder, W. Samek, K.-R. Nller, M. Kawanabe:Enhanced Representation
and Multi-Task Learning for Image Annotation , Computer Vision and Image
Understanding, accepted, DOI: 10.1016/j.cviu.2012.09.00%

— W. Samek, A. Binder, M. Kawanab#ulti-task Learning via Non-sparse Mul-
tiple Kernel Learning, CAIP 2011(1): 335-34247)

e Feature Combination for a given losMulti-Modal Classification of Images

— M. Kawanabe, A. Binder, C. Mler, W. Wojcikiewicz: Multi-modal visual con-
cept classification of images via Markov random walk over tagsiIEEE WACV
2011: 396-40171)

e Feature DesignMocabulary Optimization for Bag of Word Features

— A. Binder, W. Wojcikiewicz, C. Miller, M. Kawanabe:A Hybrid Supervised-
Unsupervised Vocabulary Generation Algorithm for Visual Concept Recogni-
tion, ACCV 2010 (3): 95-10832)

— W. Woijcikiewicz, A. Binder, M. KawanabeShrinking large visual vocabularies

using multi-label agglomerative information bottleneck ICIP 2010: 3849-3852
(72

— W. Wojcikiewicz, A. Binder, M. KawanabeEnhancing Image Classification
with Class-wise Clustered VocabulariesICPR 2010: 1060-1063()

e Feature DesignAnalysis of biased random sampling and Learning of Relations between
Semantic Concepts for the ImageCLEF 2011 Photo Annotation dataset.

— A. Binder, W. Samek, K.-R. Nller, M. Kawanabe:Enhanced Representation
and Multi-Task Learning for Image Annotation , Computer Vision and Image
Understanding, accepted, DOI: 10.1016/j.cviu.2012.09.Q0%

e Overview Chapters in Books
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— A.Binder, F.C. Meinecke, F. Biessmann, M. Kawanabe, K.-RlI&:Maschinelles
Lernen und Mustererkennung in der Bildverarbeitung, Grundlagen der prak-
tischen Information und Dokumentaticeditors: R. Kuhlen, T. Seeger, D. Strauch,
submitted

— A. Binder, W. Samek, K.-R. ldller, M. KawanabeMachine Learning for Visual
Concept Recognition and Ranking for Imagespublished in:Towards the Inter-
net of Services: The Theseus Projedtitors: W. Wahlster, H.-J. Grallert, S. Wess,
H. Friedrich, T. Widenka, accepted

e Challenge Results

— A. Binder, W. Samek, M. Kloft, C. Mller, K.-R. Miller, M. Kawanabe:The
Joint Submission of the TU Berlin and Fraunhofer FIRST (TUBFI) to the Im-
ageCLEF2011 Photo Annotation TaskCLEF(Notebook Papers/Labs/Workshop)
2011, https://doc.ml.tu-berlin.de/publications/data/ABinder/imageclef201 1wpréie. pdf
(18)

— A. Binder, M. KawanabeEnhancing Recognition of Visual Concepts with Prim-
itive Color Histograms via Non-sparse Multiple Kernel Learning, CLEF Post-
proceedings 2009: 269-276, Springer LNCS 6243 (

e Open Source Software

— S. Sonnenburg, G.&sch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. De Bona,
A. Binder, C. Gehl, V. FrancThe SHOGUN Machine Learning Toolbox, Journal
of Machine Learning Research 11: 1799-1802 (201@) (
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2

Semantic Concept Recognition with a
Tree Structure over Concepts

2.1 Motivation for this aspect of Semantic Concept Recognition in
Images

Given image data with an additional structure between semantic conceptscahitie repre-
sented by a tree, the problem considered here is to classify images intatiesrnanepts such
that a loss function which incorporates the tree structure is minimized.

In computer vision, one of the most difficult challenges is to bridge the sengegide-
tween appearances of image contents and high-level semantic cor®ephile systems for
image annotation and content-based image retrieval are continuouslegsigy, they are still
far from resembling the recognition abilities of humans that have closed thidyanans are
known to exploit taxonomical hierarchies in order to recognize genenahatic contents accu-
rately and efficiently. Therefore, it remains important for artificial systeniscorporate extra
sources of information, such as user tagfs {6, 77) or prior knowledge such as taxonomical
relations between visual concepts.

Most work on hierarchies focused on speed gains at testing time bastt odea to
achieve a logarithmic number of SVM evaluations when traversing the higrakaing clas-
sification. The second observation is that it is apparent in the precedirigtihat the losses
used to measure classification performance are flat in that sense thadbgilgnore the same
hierarchic structure employed for classification. This usually resultedeedspgains at testing
time at the cost of higher flat zero-one loss. The third observation is tha publications
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focus on multi-class settings, in which each image shows at most one semantptorl his
is a too restrictive assumption — for many real-world annotation problems amettghoto
collections one has to deal with complex images and larger sets of visuapendn such
settings overlap of semantic concepts becomes unavoidable.

2.1.1 Contributions

We are interested here in optimizing a loss function for multi-class classificattngand a
ranking score for the multi-label ranking setting which is non-flat in the esémest it incorpo-
rates the hierarchical structure. Non-flat implies for multi-class classificatiat confusions
between two semantic concept classes are penalized depending orethkigharchy. Classes
which are more distant in the hierarchy yield a higher penalization whendécgion function
confuses them. One example is given for the multi-label ranking setting irefiyliwhere
mistaking a cat image to show a car is intended to give a lower ranking scoreahéusing
a cat with a dog. In the multi-label ranking setting we have no notion of canfubecause
multiple semantic concepts can be present in one image. However whengamigiges for
the cat category, a sequence which shows images with dogs in high hemitd seceive higher
scores than a sequence in which the images showing dogs are replacéauagés showing
cars as the closest concept to cats in the hierarchy. This is based astimeption that dogs
are closer in a hierarchy to cats than cars.

Figure 2.1: Two sequences for conceptat in a multi-label setting with mistakes which affect
ranking performance, upper: a dog image, lower: a car image.Under a taxonomy-induced
measure the lower sequence should receive a lower rankingae because the difference be-
tween the closest visual concept andat is larger compared to the upper sequencelmages
from Wikimedia Commons.
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2.1 Motivation for this aspect of Semantic Concept Recognition in Irages

We will see that for the multi-class setting for certain loss functions there existdural
solution in the framework of structured prediction. This permits the usage thfatie from
structured prediction as baselines for comparison with our novel method.

The contributions of this chapter ate

¢ a novel method to optimize certain loss functions derived from a hieratdirceture
based on combination of scores of support vector machines whichspomné to local
paths in the hierarchy. Unlike greedy walk-down schemes in this work tresérom all
paths to semantic concepts and all local SVMs are taken into account fanietpclas-
sification performance. The main advantages of this novel method are iathspeed
and scalability relative to structured prediction and improved classificatidarpgance
with respect to hierarchic loss compared to the established one versiasalfication
baseline and greedy walk-down schemes.

e an extension of hierarchical classification approaches to the multi-lattiglgse/hich
allows to predict multiple semantic concepts in one image while relying on hieratchic

structures.

e an extension of average precision ranking scores to the multi-label settich mcor-
porates the hierarchical structure. This extension is general beaaystructured loss
function can be plugged in as a replacement for the average preciskinganeasure,
not just loss functions derived hierarchical learning models.

e we compare the novel local SVM method against various baselines sook aersus all
classification and structured prediction methods and discuss insights inyhewaaks.

The author regards the discussion in subsedBeneralization Ability for Learning of Su-
perclasses in Taxonomiesd section2.4.8important for the understanding why classification
with taxonomies is a challenging problem and why results obtained by using iendi§ferent
from an intuitive view of human abilities.

Why do we need another algorithm for hierarchic classification?

Our work focuses on the question whether we may improve classificaticgslosscores
rather than speed using hierarchies. As a preliminary step to optimizing lagséke to
revisit the question what kind of loss or score functions we intend to optimiznwising

1The content of this chapter is based on the author's own peer-revigardn (62).
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hierarchical models for classification and ranking. We felt that this quests not sufficiently
considered in many of the preceding works. Furthermore we extenddtiaral approaches to
multilabel datasets which we think to be a more realistic assumption for image datatbets w
many concepts defined over them.

In this work, we contribute a tractable alternative to the structure learrdnggivork which
can solve our task in a sophisticated way, but is less time consuming. Wesprapceffi-
cient decomposition into an ensemble of local support vector machines g5¥slt can be
trained efficiently. Since the primal goal of this chapter is to discuss how rmuthvhy pre-
determined taxonomies improve classification performance, we considdeemyiques for
speed-up which degrade performance to be out of the scope of tipitecha

Our work is similar in spirit to {8) who deployed user-determined taxonomies and showed
that classifiers for super-classes defined at parent and graedtpendes can enhance leaf-
edge classifiers by controlling the bias-variance trade-off. Howevgtanthe discrimination
of images was performed against a small set of common backgroundhumall classifiers
at all edges share the same negative samples, i.e. the background ifRagesmance was
measured for object versus background scenarios. In contrasBtone will study a more
difficult problem, namely, multi-class or multi-label classification between olgjatgories.
Since our problem does not contain uniform sets of background, it istaresting question
whether an averaging along the leaves of a taxonomy integrating everftbimgsuper-class
classifiers until the lower leaf-edges can still help to improve the objecgrigon result, in
particular as the negative samples can not be shared among all classifie(ss).

We remark furthermore that we observe from our experiments that yWeategies as
e.g. (79 are inferior by prediction accuracies to our novel taxonomy based miethat we
propose in this chapter.

In contrast to this work the approaches mentioned in Segtib2have one aspect common
in their methodology: they restrict performance measurement to flat lossiresashich do
not distinguish between different types of misclassification. In contraftaibhumans tend
to perceive some confusions like cat versus fridge to be more unnétaralothers like cat
versus dog which can be reflected by a taxonomy. The hierarch@jgarnedfrom features
reflects feature similarities and is as a consequence in part not biologilzalkilge: the gorilla

!For instance, we use all images for SVM training at every edge, whidtcisusse more costly than the greedy
strategy. It may be possible reducing the large number of negativeptea which are inferred irrelevant to current
and future decisions with high probability without decreasing classificatioaracy.
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is closer to a raccoon than to a chimpanzee, the grasshopper is closesgtorp and more
distant to other insect lifeforms. Such problems can arise generally wieehig¢harchy is
learned from image contents.

This prompts the question whether it is useful to employ a taxonomy which is baexedly
on information already present in the images and which is thus implicitly alreadgithuough
the extracted feature sets that feed the learning machine. Furthermigrimftasnation derived
from the images only, may not always be coherent with the user’s rich toekperience and
implicit or explicit knowledge.

An example is the discrimination of several Protostomia, sea cucumbers lafskisFig-
ure 2.2). While sea cucumbers look definitely more similar to many Protostomia, they are
much closer to fish sharing the property of belonging to Deuterostomiadiogaio phylo-
genetic systematics. Equally, horseshoe crabs look more similar to crabthasalbe a shell
and live on the coast, but the horseshoe-crab as a member of Chelisertatser to spiders
than to crabs. Therefore, this work is focusedppe-determinedaxonomies constructed in-
dependently from basic image features as a way for providing such addiiidformation
rsp. knowledge. This task fits well into the popular structured learningdveork @0, 81)
which has recently seen many applications among them in particular doculassification
with taxonomies §2). Note furthermore that a given taxonomy permits to dedu@xanomy
loss function which — in contrast to the common 0/1 loss — allows to weight misctadiifi
unevenly according to their mismatch when measured in the taxonomy. Thustiés nat-
ural to evaluate classification results according to the taxonomy lossedimgttee flat 0/1
loss, in this sense imposing a more human-like error measure.

The remainder of this chapter is organized as follows. Se@i@r? gives an overview
of algorithms using hierarchical classification in image annotation tasks ketidepaper
which have been mentioned already. In Secfidtwe will explain our novel local procedures
with scoring deduced from generalizeemeans, along with structure learning approaches.
We discuss in Sectio@.3 when and why our procedures can improve the one-vs-all base-
line. The empirical comparisons between our local approach and otlogranxcal algorithms
and taxonomy-free baselines are presented in Segtibn For the present work, we have
constructed multi-class classification datasets with taxonomy trees betweehaaiggories
based on the benchmarks Caltech258 a@nd VOC2006 §4) as explained in Sectioh4.1 In
this Section we discuss why our local approach can improve the onktasaline from the
viewpoint of averaging processes. Sectb@igives concluding remarks and a discussion.
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Figure 2.2: Mismatch between taxonomy and visual similarity the first column are Proto-
stomia, the second (sea cucumbers) and third row are Deutestomia. The difference is based
on embryonal developmentimages from Wikimedia Commons.

2.1.2 Related Work

There have been a number of studies considdaagning class-hierarchies, for instance on
the basis of delayed decision®s, dependency graphs and co-occurrené&es §6), greedy
margin-trees &7), by hierarchical clustering7@, 88), and by incorporating additional infor-
mation @89). Unfortunately, few could so far report significant performancag the final
object classification (even though they contributed to other aspectssfante, computational
efficiency).

When a taxonomy is available, a standard way of using the hierarchy isrs@ggreedy
decision {9). Starting from the root node, the strategy selects only the most probajge ed
rooted at each node and ignores other possibilities until reaching a ldaf Aderefore, for
classifying an unseen image only the classifiers on one path of the hiereget to be evalu-
ated. Furthermore, since each node takes only relevant images fentcaind future decisions
during the training phase, such greedy methods are computationally vestiaér The work
in (79) focuses on learning hierarchies and demonstrates speed gains beddy glassifi-
cation schemes compared to one versus all classifiers (e.g. 5-fold gpigedt the cost of
10% performance drop). Another greedy walk approach over addarierarchy §5) shows
small improvements on the Caltech256 dataset. A similar result using a noexcfommu-
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2.2 Methods

lation for learning a relaxed hierarchy is presenteddid).( It achieves computation speedups
and even small recognition performance improvements on Caltech256 wittiés zero-one
loss.! The later work in §1) develops general structured prediction for multi-label datasets and
applies it also to hierarchical classification. It finds the one-versudadkification baseline
which we also considered here hard to beat. These findings are cohsigkeour experiments
which structured prediction algorithms below.

2.2 Methods

2.2.1 Problem Formulation

We consider the following problem setting: given areairs{(z(*, ()}, 1 < i < n, where
() e R denotes the vectorial representation of tith image which can be represented in
higher dimensions by a possibly non-linear mappirig(”)). The latter gives also rise to a
kernel function on images, given by x (z,z') = (¢(z), ¢(z')). The set of labels is denoted
by Y = {e1,co,...,cr}. We focus initially on multi-class classification tasks, where every
image is annotated by exactly one elementof Some image databases fall into the multi-
label setting, where an image can be annotated with several class labetfswithioe dealt
with later on.

In addition, we are given a taxonorfiyin form of an arbitrary directed graffv, E') where
V = (v1,...,vy)) andY C V such that classes are identified with leaf nodes (see Figj@re
for an example). We assume the existence of one unique root node eTbkesiges on the
path from the root node to a leaf nogdes defined asr(y). Alternatively, the setr(y) can be
represented by a vectafy) where thej-th element is given by

‘ _f 1:vjen(y)
riy) = { 0 : otherwise

such that the categosheepn Figure2.3is represented by the vector

r(sheep = (1,0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0,0,0)".

For convention purposes please note that a classifier is rooted aé@gelior trees this is equivalent to the
view that each node except for the root node has one classifierirEotad acyclic graphs, however, the first view
is necessary because each node may have more than one direesgeiging to it. We will speak about nodes
when we refer to sets of classes or images and edges when we refesdifiers itself. In this sense a classifier at
a node refers to a classifier at the directed edges leading to that node.
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The goal is to find a functiorf that minimizes the generalization erB( ),
RN = [ 8y f@)dPlay)
RIxY

where P(z,y) is the (unknown) distribution of images and annotations. The quality isf
measured by an appropriate, symmetric, non-negative loss furictishx Y — RJ detailing
the distance between the true clgsand the prediction. For instanc&émay be the common
0/1 loss, given by

N _JO :y=9
%/1(y:9) _{ 1 : otherwise (2.1)

When learning with taxonomies, the distancey;andy with respect to the taxonomy is fun-
damental. For instance, confusing lauswith a catis more severe than confusing the classes
catanddog We will therefore also utilize a taxonomy-based loss function reflecting this in
ition by counting the number of non-shared edges on the path betweendlaasg; and the

predictiong,
14
or(y.9) = Y Ii(y) — r5 (7). (2.2)
j=1
This distance can be induced as Hilbert space norm by the kernel elaiesds defined as
04
Ky (y,9) = > #i(y)k;(9)- (2.3)
j=1

Note here that each node except for the root node can be identified withath element in
the hierarchy from its parent node to the current node. In that seasgstyge of the notions
of node in the hierarchy and of path element in the hierarchy is equivialehterarchies. For
direct acyclic graphs, however, one has to resort to the notion ofsdugsause a node may
have multiple ancestors and edges leading to it.

For instance, the taxonomy-based loss between catedmiesandcowin Figure2.3is
dr(horsecow) = 4 because:(horsg andx(cow) differ at the edges pointing to nodes horse,
pegasofera, cetartiodactyla and cow.

2.2.2 Structure Learning with Taxonomies

The taxonomy-based learning task can be framed as structured learlihgrp 0, 81) where
a function

f(z) = arg;nax(w, U(z,y)) (2.4)
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L:All
2:Nonlife 9:Life
3:2-Wheeled 6:4-Wheeled 10:Person 11:Laurasitheria
4:Bicycle 5:Motorbike 7:Bus 8:Car 12:Cetartiodactyla 15:Pegasofera

13:Cow 14:Sheep 16:Carnivora 19:Horse

AN

17:Cat 18:Dog

Figure 2.3: Taxonomy constructed from VOC2006 labels. Thefe subtree is based on biolog-
ical systematics.

defined jointly on inputs and outputs is to be learned. The mappingy) is often called the
joint feature representation and for learning taxonomies given by thertpnsduct 82) with
indicator functions

ki(y) = [[vi € 7(y)]] (2.5)

and the input feature mappingx)

¢(@)[[v1 € m(y)]]

W) = o) 8t = | P2 €70 | 06

o) [y € 7(v)]

Thus, the joint feature representation subsumes the structural infornaamibexplicitly en-
codes paths in the taxonomy. It leads to a joint kernel

Kxy((z1,y1), (z2,y2)) = Kx(z1,22)Ky (y1, y2), (2.7

whereKx (z1,x2) = (¢(z1), #(z2)) and the label kernek’y-(y1, y2) is defined according to
the taxonomyl” as in EquationZ.3).

The empirical risk can be optimized utilizing conditional random fields (CRE8) ¢r
structural support vector machines (SVMs). We will follow structurati@ay in the formula-
tion by (93, 94). There are two ways of incorporating a la&$y, i) such asjy,; anddr in the
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structural SVMs. The optimization problem with margin rescaling is given by

min  oflwl?+CY €0
=1

S.L.Vi, Vi # y(i) :
(w, ¥, y) — w2, 7)) > A(y®,g) — ¢ (2.8)
Vi W > 0.

The above minimization problem has one constraint for each image. Evesiramt is associ-
ated with a slack-variablg?) that acts as an upper bound on the erxataused by annotating
the i-th image with a wrong label. Once, optimal parametetshave been found, these are
used as plug-in estimates to compute predictions for new and unseen exasipieEquation
(2.4). The computation of the argmax can be performed by explicit enumeratahpzths in
the taxonomy.

An alternative formulation§1) uses slack rescaling instead of margin rescaling in the con-
straints:

. 1 2 - (3
min o fw|?+C ) ¢

wg i=1
s.t.Vi, Vg # ¢y
(i)
@ @Oy _ (@ o &

Vi: €9 > 0.
In this multiplicative formulation based on a hinge loss (assitfw 7) > 0, A(y, y) = 0 Vy)
max A (g, y) (1 + (w, ¥(, g) = ¥(2®,y@))) (2.10)
Yy
each sample receives the same margin of one. As a drawback finding tiveaihaxiolated
label can be more complicated compared to margin rescaling due to thejlappkaring in
both factors of a product. Margin rescaling is also based on the hingbubsses an additive
formulation inA (7, y®)

max A7y + (w, Wz, ) - ¥,y ) 2.11)

where it might be easier to find the maximally violated constraint but on the dtleehere the
loss functionA might dominate the loss ternd.(L]) if it is badly scaled.
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Although, equations?.8) and .9) can be optimized with standard techniques, the number
of categories in state-of-the-art object recognition tasks can easigedxseveral hundreds
which renders the structural approaches inherently slow.

2.2.3 Remark on Feasible Taxonomy Loss Functions

The factorization of the combined feature label kernel (cf.ZE6).in the structured prediction
setup allows to insert more general label kernels beside the one whiatemthe canonical ta-
xonomy distance given in EG-2 Any mappingx(y) may be chosen in Equatio@ssand?2.6.
One particular useful possibility in the connection with a given taxonomy is eéonesghted
taxonomy loss functions which assign non-negative weights to edges iretaedmy from one
node to its child node. This permits to emphasize the importance of certain wmnsuser
others in an easily interpretable manner. To do this, reptégefrom Eq.2.5by element-wise
multiplication with the square-root of the desired edge weights

rluli(y) = Vuillvi € 7(y)]]-

This extends the original setup to taxonomy losses with weighted edges. Gmégfel
application is to weight each edge by the binary po@ef of its negative depthl in the
hierarchy. Sincé_;_ ;27" = 1 — 27° < 1 this ensures that a classification error made at a
higher level closer to the root node always counts more than confusidower levels of the
hierarchy independent of the length of the path from root to the leaf.node

2.2.4 Assembling Local Binary SVMs

We propose here an efficient alternative to the structural approaghiecomposing the struc-
tural approach from Equatior2 @) into several local tasks. The idea is to learn a binary SVM
(e.g. @, 4)) using the original representatiei{z) for each edge:; € E in the taxonomy in-
stead of solving thevholeproblem at once with a structured learning approach. This will help
to circumvent the high computational load typically encountered in structuseditgy. To
preserve the predictive power, the final ensemble of binary SVMs &aah edge need to be
assembled in an intelligent manner, i.e. appropriately according to the taxohdensemark

that this novel approach is different from greedy hierarchical flass where at each edge
only categories (leaf nodes) lying below the edge are taken into accoartheontrary, we

are considerin@ll images and categories at each node: for example, we learn binary SVMs
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such as 'Carnivora vs the others’ and 'horse vs the others’, while’@arnivora vs horse’,
'cat vs dog’ etc. would be used in the greedy hierarchical classificafismutlined in Section
2.4.7, the greedy approaches perform sub-optimally, because they maynrelyaneous de-
cisions of upper internal edges without the possibility to recover by codecisions in lower
internal edges.

Thus essentially, our approach consists of trairivig independent binary support vec-
tor machines (which can be done highly efficiently in parallel!) such thatdbees;(x) =
(W, p(x)) + Bj of the j-th SVM centered at edge; serves as an estimate for the probability
thate; lies on the patly of instancer, i.e., Pr(x;(y) = 1). Animagez(®) is therefore treated
as a positive example for edge if this very edge lies on the path from the root to lab€l
and as a negative instance otherwise, which amounts to the sign @f") — 1.

We resolve oulocal-SVM optimization problem that can be split intd’| independent
optimization problems, effectively implementing a one-vs-all classifier fon edge.

V] vl
. 1 - ~ (i

min oSl + 306D &

Wj,05,85 j=1 j=1 i—1

S.Vi, V) (25 (yD) — 1)((5, ¢ D)) +by) > 1~ € (2.12)
Wi, vj: £ > 0.

At test phases, the prediction for new and unseen examples can betedmjpuilarly to Equa-
tion (2.4). Denote the local-SVM for thg-th edge byf;, then the score for clagsis simply
the sum of all edges lying on the path from the root to the deaf

2 iy (y)=1 i(@)
>ikiy)

The normalization is required due to varying path lengths in our taxonomiedwhi dif-

fy(@) = (2.13)

ference compared to the taxonomies considere@in (The clasgy which has the maximum
scoref, over all classes is selected as the final prediction.

Note that since the entire problem decomposes |Witdbinary classification tasks, paral-
lelization becomes possible and thus, the training time of our approach is emtsidshorter
compared to the structural SVMs. Another advantage is that our loceéguoes can be di-
rectly extended to multi-label problems without taking the maximum operation ahthebat
by setting thresholds only which determine whether object categories &meédcin images
or not.
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Although our initial motivation was to construct an efficient approximation efgtruc-
tural SVMs, we would like to remark that there exists a fundamental difterdetween the
structural SVMs and our local-SVM procedure with respect to their optitimizdarget. The
constraints of the structure learning in Equati@B) aim to order theset of all class labels
correctlyfor each imagen the sense that the SVM score for the correct class label is highest.
For our local-SVM approach the SVM constraints aim at orderingstiteof all imagesor-
rectly for each edgevith respect to the binarized learning problem whether an image belongs
to a class lying on a path passing through this taxonomy node or not. We ré&umiduds that
the constraints of the structural optimization problems do not imply necessatiltheh set of
all images is ordered correctly for the binary classification problem dt sa@nomy edge.
In order to foster a better intuitive understanding, the difference betWweth approaches are
illustrated in Figure?.4.

2.2.5 Scoring with Generalized-means

When we combine the binary classification scores at the edges along # {satiof necessary
to take their arithmetic mean as iB.13. Instead, our procedures permit more general scoring
methods such as the generalizetheans of outputs

1 m 1/p
Mpy(z1,...,2m) = (sz) . (2.14)

i=1
after scaling td0, 1]. This includes the geometric mean as the limit> 0 and the harmonic
mean forp = —1 as well as the minimum as the limit— —oo. Tuning of this extra degree of
freedomp may improve classification performance. To see this note that the geometric mean
and generalized means with negative norms of scorgs Inare upper bounded by a power of

the smallest element.

n
1/n . 1/n
si €10,1] :>1_[15i < min s;
1=

1 n 1/p 1

P 3 .

p<0:><nz;si> gmmilnsZ
1=

For positive norms the generalized mean is upper bounded instead byea pbits largest

element. In that sense generalized means with non-positive norms areensiti/e to nega-
tive outliers and more robust against strong positive outlier votes frayjasthan generalized
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Figure 2.4: Differences between one vs all (top left), struare learning (top right) and local
approach (bottom). The one vs all procedure ignores internianodes of taxonomies and takes
the maximum of the SVM outputs at leaf edges. The structured pproach takes paths as a
whole into account, maximizes the margin between correct ahwrong paths in training and
returns as a predictor the label of the path with the maximum sore. The local procedures
optimize each binary problem of passing through a path indepndently and then combine the
outputs of the local SVMs into a score with generalizeg-means.

means with positive norms where the distortion by strong positive outliers eamtitrarily
large. The selection of an optimal p-norm thus adjusts the sensitivities tosueai} votes
close to0 versus very large votes close to The usage of generalized means with arbitrary

norms requires the scores to be non-negative and SVM outputs to bd.5cale

In order to scale SVM outputs in{6, 1], we deploy a logistic function with fixed parame-

while there exist convex mappings &' to the interval[0, c0) we are not aware of the existence of a
monotonous and continuous mapping®f onto a bounded nontrivial interval which is everywhere concave or
convex. This implies that a model using scaling of unbounded innemptsdannot be optimized by applying
convex methods in the structured output framework.
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2.3 Insights from Synthetic Data

ters
1

s(y) = m-
Experimentally we have seen that learning the logistic regression pararfretargdata 05)
did not further improve performance of image categorization.

Scaling with logistic functions is closely linked to a probabilistic interpretation désast-
fication procedure. Our current approach does not immediately permobalgilistic interpre-
tation fitting to a taxonomy graph. This is because we so far have chosenapsatonsider
classification between a part of the categories and all remaining othexsteédge, instead of
conditioning on its parent nodes.

2.2.6 Baselines

In our experiments, we will use additionally two kinds of classification meth@ise is the
standard one-vs-all classification: we train one binary SVM for eacésalehich uses the
samples of this class as positive labeled data and all the other class dagmtserexamples.
The multi-class labeling is obtained by the class maximizing the scores of all Eévis.
This is a completely taxonomy-free approach. The second is structuredataski-SVMs
which uses the joint feature representation ignoring the taxonomy graph

o[y = 1]
Wy = o) 2ty = | "
6(@)lly = o]

wherew(y) is the vector of the indicator functioffg/ = ¢;]]. This leads to the 0/1 loss from the
label kernel

2 = 2Ky (y1,92) = do/1(y1, Y2),

instead of the taxonomical one in the structured taxonomical SVMs. No taxpmformation
is used, if the 0/1 loss is deployed as the loss funcfidn Equation 2.8) and @.9), while it is
incorporated indirectly into the learning process, wheis the taxonomy losér.

2.3 Insights from Synthetic Data

In this Section, we discuss when and why the taxonomical approaches anigierform the
one-vs-all baseline. Furthermore we can observe differences ingddfes between leaf and
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internal edges which can be linked to flat losses in later experiments odateal\We remark
that the one-vs-all baseline can be regarded as a classification precady with leaf edges,
while the taxonomy-based learning combines classification results of leahtndal edges,
namely by generalizeg-means in the local-SVM approach and by implicit arithmetic mean
integrated in the structural SVMs.

2.3.1 Experimental Results

To illustrate our claim, we consider a 16 class example with the taxonomy beingagy bin
balanced tree with 16 leaf nodes. Each class is generated from onsi@adistribution in
15 dimensions. The variances are equal for all Gaussian and ard t@gé/e seven datasets
with ¢ = 1, 0.5, 0.3725, 0.25, 0.1875, 0.125, 0.0625. The means are distributed such that
their Euclidean distance matrix equals the normalized taxonomy loss matrix whiclahes
i/4,i=0,...,4. Ourintention is to illustrate that taxonomy-based learning reduces taxonomy
loss, if the data is aligned to the taxonomy. For the sake of computation speecihpare
the one-vs-all baseline versus a local algorithm with scoring based agetiraetric mean of
logistically scaled scores of 19200 data points each independently, wkarse 200 samples
per class for training and the remaining 1000 per class for testing. WeydeblBaussian
kernels here, set the width to be the mean of squared distances and nednadilizernels to
have standard deviation one in Hilbert space.

Table2.1 shows the 0/1 and taxonomy losses of one-vs-all and our local SVMguoe
with the scaled geometric mean over different noise levels. The standaedioles are com-
puted between the 15 draws.

The local algorithm improved the one-vs-all baseline significantly unddatt@omy loss
in all cases. The relative improvements are more #yanvith the maximum above% for o =
1/8. We also conducted Wilcoxon'’s signed rank test, which showed thatrédirpgance gains
are significant with p-values of ordet®~* or 10~°. Surprisingly, the local SVM procedure
the taxonomy compares favorably with the baseline under the flat 0/1 lossllas w

There is an intuitive explanation why hierarchical approaches do imposges consistent
with the hierarchy compared to one versus all classifiers. One verstlasslfiers attempt to
rank the images belonging to positive class highest. Classifiers fromcageas in a hierarchy
attempt to rank the images belonging to the positive céasb similar classeso be highest.
Averaging many versus all classifiers from superclasses with onasvalisclassifiers at the
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leafs achieves a tradeoff between both aims. At the same time such anageagpotentially
harm the zero-one-loss which does not consider similarities encodedxareotay.
Table2.2 shows the AUC score (equatio®.(5) (96) at different levels in the hierarchy.

Zi: yi=-+1 Zk: Yyr=—1 H{f(x’b> > f(xk)}
iy =+13 - [{k: yp = -1}
It allows to judge how difficult the learning problems are at the internal ®dgenpared

AUC(f {(@i,y:)}) = (2.15)

Table 2.1: Synthetic data perfectly aligned to the taxonomyLosses of the one-vs-all baseline
(left) versus the local procedure with taxonomy (right) for different label noise levels.dy,; is
the zero-one-lossd is the taxonomy loss. Lower losses are better.

one-vs-all local-SVM approach

o do/1 or do/1 or
1 89.106t0.32 67.09-0.34 88.59+0.34 65.69+0.35
1/2 78.24:0.32 51.3A40.31 77.84+0.39 50.2°A0.35
3/8 69.30:0.38 41.290.28 68.94+0.39 40.2140.29
1/4 51.6%0.52 25.05-0.26 51.26t0.52 24.14-0.22
3/16 37.3220.46 14.94-0.23 36.91£0.48 14.24+0.23
1/8 19.49:0.39 6.0%:0.11 19.12+0.41 5.70+0.12
1/16 2.4%0.13 0.61%#0.03 2.38+0.13 0.60+0.03

Table 2.2: Synthetic data perfectly aligned to the taxonomyAUC scores in the taxonomy for

o = 1/4 at different levels. Higher scores are better.

AUC

level in taxonomy 1
99.21 97.78 95.42

2 3

4 (leaf)
92.40

Table 2.3: Synthetic data perfectly aligned to the taxonomyAt which level does misclassifi-

cation occur for o = 1/4?

level in taxonomy
Differences of Error Rates

1
-1.55

2

-0.68 0.48

4 (leaf)
1.74
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to leaf edges. Note that we observe on this synthetic dataset a higher g€ an internal
edges compared to leaf edges and a decrease in the flat zero-@neeenpared to the one
versus all baseline. This implies that the learning problems are easier erclags level than
at the leaf edges. This might explain why we observe here an improvemtbuetflat zero one
loss as well. Itis not straightforward in a statistical sense that optimizing#eitass improves
another loss as well. As an explanation we propose that in this synthetithedsatures allow
a good generalization at superclass level because the given taxorsoeme=fectly aligned to
the similarities between classes at the feature level. The higher AUC scioteratal edges
compared to leaf edges supports this view. This good alignment might be alsadd when
learning similarities from visual features and explain results for flat logs€83, 85) but it
cannot be expected to hold in general when a taxonomy is provided indempeof visual
features. We will return to this observation in the forthcoming Se@idron experiments on
real data.

Table 2.3 shows another aspect of hierarchical averaging: given a pairstimgsof true
and predicted label we can ask where in the hierarchy the error did.othis leads to two
histograms, for the taxonomy-based and for the one versus all clas§lieTable shows the
difference between both histograms. Negative values imply a reductiomas @t this level
for the taxonomic method. We see that under our taxonomy based appheadhassification
errors are moved to lower levels in the hierarchy compared to a flat osesvell classification

implying that confusions occur more often between taxonomically closeredass

2.3.2 Robustness by-means

The parameter of the generalized controls robustness against outlying classifier outjrgs
ative p’'s make the mean robust against upper extremes while in the opposite casegxe
tremes are suppressed. To see this we conducted an experiment afi@dp@rturbation of
SVM outputs over the toy data. We fixed a priori a set of 10% of the samples perturbed
and for each sample one edge in the taxonomy to be perturbed. We appsiedikesl sets to
values of perturbation factofst+8, +4, —4, —8}. The perturbation is computed for a sample
by adding to the SVM output of this sample the factor times the standard deviétioa out-
puts of the SVM corresponding to the taxonomy node. The negative $aallow to simulate
large negative outliers, the positive factors large positive outliers. Tabkhows the results.

We can see that for large positive distortions both positive means peldaren than geo-
metric mean and a negative mean.
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For large negative distortions the first ranks are held by the non-seal&dhetic mean
and a scaled positive mean. These two methods suffer less from nemétiees than negative
means. Furthermore we observe in both settings that unscaled variameéssarebust than
scaled ones.

Finally the last part of the Tabl2.4 shows a result where 80% of the perturbed samples
are modified by a factor of4 and 20% by—4. Here the geometric mean turns out to be the
best choice which corresponds well to our empirical findings in Se&iérk We conclude
that the geometric mean is well suited to deal with SVM outputs which suffens frasitive
and negative outliers in taxonomy edges coming from noisy classificatidrhepns.

In summary, we would like to emphasize that classification techniques with terieso
can improve the one-vs-all baselines, under the taxonomical loss andttherth one loss.

2.4 Experiments on Real World Multi-class Data

2.4.1 Datasets

For the present work, we constructed multi-class classification datasettawithomy trees
between object categories by modifying the benchmarks Caltec83bérfd VOC2006 &4).

Caltech256 all classes

The Caltech256 datase€i3) contains 256 classes of objects and one clutter class. For an initial
experiment allowing comparison to results from other publications we haea & images
from each of the object classes and employed the taxonomy as providegl iepbrt 83).

The only changes we made were to add pisa-tower to the taxonomy grapseasiéd to be
missing and moved iris to flowers from air animals. Unfortunately, usihg 256 - 0.9 =
11520 samples for training using ten-fold crossvalidation is beyond the scope strilctured
prediction baselines on our hardware. Therefore we consideregtsulif classes which will

be described below. The result for all 256 object classes can bedagkim sectior?.4.7.

Caltech256 animals

We consider all 52 real world animal classes from the Caltech256 dd&&ewhich yields
5895 data points (see Figur25). They form a multi-class problem with mutually exclusive
classes. We used a taxonomy based on a recherche of biologicaldehgta) systematics
consisting out 0D2 nodes constructed a priori. We have chosen this subset for two season
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Table 2.4: Synthetic data perfectly aligned to the taxonomyDifferences in taxonomy loss and
0/1 loss to unperturbed SVM outputs and absolute ranks betwen all four methods. Lower

losses are better.

unperturbed nonscaled; scM, scMy SCM_ o
rankor 1 3 2 4
rankdy /1 1 3 1 4

perturb=+8 nonscaledi; scM,; scMy scM o
diff. or 1.8 0.14 0.04 0.05
rankor 4 3 1 2
diff. dg/1 1.91 0.27 0.15 0.15
rankdg 4 3 1 2

perturb=+4 nonscalet/y scM; scMy SCM_o
diff. op 0.47 0.14 0.04 0.05
rankor 4 3 1 2
diff. do/1 0.81 0.26 0.15 0.15
rankdy 1 4 3 1 2

perturb=-4 nonscaledl/; scMs scMy SCM -
diff. op 0.26 0.03 0.42 0.75
rankor 2 1 3 4
diff. dg/1 0.34 0.13 0.49 0.73
rankdy /q 1 2 3 4
perturb=-8 nonscalefll; scMs scMy ScM_»
diff. o7 0.68 0.03 0.7 0.75
rankor 2 1 3 4
diff. 01 0.73 0.12 0.74 0.74
rankdy 1 2 1 3 4
80% +4, 20% -4 nonscaleld; scM,; scMy scM_s
diff. op 0.41 0.09 0.11 0.12
rankor 4 3 1 2
diff. 5y, 0.53 021 02 0.23
rankdy /1 4 3 1 2
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Firstly, it is a natural multi-class dataset in the multimedia image domain. Secondlgwsa
to define a taxonomy in an indisputable way prior to looking at image content,lyame
biological systematics. For the remaining 204 classes from Caltech256 we axe to rely
on human experience of some sort which might lead to some kind of uninterdjgmearance-
based optimization of when choosing a taxonomy. The technical reporteo@dtiech256
dataset3) contains a hierarchy. We have chosen not to use its construction peibeipause
it is somewhat arbitrary as stated by the authors of the technical reporséthees and from
our own point of view is not biologically plausible. It groups all animals inrfihat subgroups:
insects, land, air and water based lifeforms. As stated in the introductiosalge of phyloge-
netic systematics resulted in a taxonomy which is indeed not fully consistent soiltiective
visual similarities of the authors which diverge for example for crabs ansshoe crabs but
also as shown in Figur2.2 potentially for superclasses in the taxonomy. The hierarchy con-
tains in contrast to many preceding works paths with varying lengths. We onfgiteasy
animals like Minotaurs and Unicorns from the Caltech256 set, as there isj@attiob way to

incorporate them into biological systematics. The full taxonomy is given inreigd.2

Caltech256 animals thirteen classes subset

For further experiments, we seleld classes - all Protostomia (praying-mantis, grasshopper,
cockroach, house-fly, butterfly, trilobite, centipede, crab, spiderpson, horseshoe-crab, oc-
topus, snail) from theCaltech256 animalslataset. This corresponds to one subtree in the
original taxonomy over all 52 classes. The total number of the images iseddol 308. This
allows us faster experimentation with the structural approaches which wasam reason
for choosing this subset. We deploy as taxonomy the correspondingsuwtith21 nodes of
that of Caltech256 animalsvhich is still challenging in its topology due to non-balanced tree

structure and varying path lengths.

VOC2006 multi-class data

We use the VOC2006 datasé&] consisting of 10 object classes a1 images (see Figure
2.6). We have modified the VOC2006 labels in order to obtain a multi-class probliém w
mutually exclusive classes. To achieve such exclusive labeling, for iezage all positive
labels except for a randomly chosen one are suppressed. We remttthkishprocess induces

additional label noise.
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Figure 2.6: VOC2006 dataset example images.

2.4.2 Image Features

For the following experiments, we used bag of words (BoW) representatiased on the
SIFT descriptors1(6) as image features. The BoW features were constructed in a standard
way: using the code fron2@), the SIFT descriptors were computed on a dense grid of step
size six over the color channel tripléged, green, blup(RGB) and{grey, opponent color 1,}2
(OPP, see equations.f),(1.6), (1.7) ). Then, for both triples, 8192 visual words (prototypes)
were generated by using extremely randomized clustering forest (E€d@f¢ring 81) via 16

trees with 512 leaves each based on large sets of SIFT descriptotedebeudomly from the
training images following43). For each image, each SIFT feature was assigned to one leaf for
each of the 16 trees. We have chosen the supervised ERCF proogdukemeans as it does
greatly reduce the time necessary for clustering of visual words andfbagrd computation
while having comparable performance. The sum of these mappings reisudiae histogram

for each image within each cell of the spatial tilings< 1, 2 x 2 and3 x 1. The idea of a

48


./3/figures/024_0001.eps
./3/figures/052_0001.eps
./3/figures/084_0001.eps
./3/figures/087_0001.eps
./3/figures/090_0001.eps
./3/figures/093_0001.eps
./3/figures/106_0001.eps
./3/figures/166_0001.eps
./3/figures/168_0001.eps
./3/figures/186_0001.eps
./3/figures/000001.eps
./3/figures/000002.eps
./3/figures/000003.eps
./3/figures/000004.eps
./3/figures/000005.eps
./3/figures/000006.eps
./3/figures/000007.eps
./3/figures/000008.eps
./3/figures/000009.eps
./3/figures/000011.eps

2.4 Experiments on Real World Multi-class Data

spatial tiling is to split each image into a set of regularly shaped spatial tilesmpute one
BoW feature for each tile separately and finally to concatenate the BoWdsaiuer all tiles
into one BoW feature3d6, 97). Finally, we obtained 6 BoW feature® ¢olor channels sets3
sets of spatial tilings) with dimensionaliti®392, 4 x 8192 and3 x 8192 depending on the
spatial tiling. For Caltech256 data we omitted the two kernels based on ir@sas they did
degrade the one-vs-all baseline performance already. We do noteagrahthe best possible
baseline performance which might be achieved by adding carefully setlsete of additional
features. Instead we focus on the effect of a given hierarchy andflat loss functions. We
note however that high-dimensional bag of words models have been adtbittye superior
performance in recent object categorization challenggLg, 99) which motivates our choice
of these features.

2.4.3 Image Kernels and Regularization of SVMs

We used the exponential’*-Kernel (equation 1.26)) for comparing the image feature his-
tograms 60, 51). The bandwidthr of the x? kernel in (L.26) is thereby heuristically chosen as
the meany? distance (equatioril(27) over all pairs of training examples, as done, for exam-
ple, in 52). All kernels have been normalized to standard deviation in Hilbert specgsial

to one which in practice limits the range where to search for an optimal reqatianzonstant.
We combined all kernels via addition.

In the local-SVM procedure, we used two regularization constants (enelgss) for all
binary problems in order to compensate for the unbalanced ratios betositingand negative
classes. The regularization constant of the smaller class was obtained bylyimgjtthat of
the larger classby the ratio between the two samples. For the structured SVMs we used as
regularization parametef = 16|V for the taxonomical procedures add = 16k for the
multi-class ones, when@’ | andk are the number of nodes and classes, respectively.

This is motivated by comparing the main objective of one local SVM

n
min i+ Gy Y0 E
Wj,b5,€; i—1
to the one from a structured SVM
V]

, I 5\ A
min Y o lal?+C ) €Y.
=1

W, j=1

The regularization constant of the larger class was fixed to 16 whichsmmonds to our experience that high-
dimensional Bag-of-words features perform better under hardimtaaining.
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We note that the ratio between the weight ndpa|? and the slackg(? is roughly up-scaled
by a factor equal to the number of nodes. We have checked experimahttllysing much
lower regularization constants damages the performance of the strustvid, while much

higher regularization constants did not improve the results anymore. Siacsziis of the
object categories are balanced, we do not have to assign one regidarizonstant for each
class separately.

2.4.4 Comparison Methodology

All considered methods can be divided into structured and structueexérevell as taxonomical
and taxonomy-free approaches (Tabl). Due to limited space, we will use the abbreviations
listed in Table2.6to in our experimental results.

There are three ways to use the taxonomy. The taxonomy loss as perfermaasure
is used on all methods. The taxonomy loss as part of the training procedused in all
structured SVMs according to equatich ). The taxonomy structure is incorporated in all
taxonomical approaches but not in the structured multi class procedures

We will use as baselines the structure-free one-vs-all classificatiotmaodomy-free multi
class SVMs with margin and slack rescaling trained using zero-onéJaser taxonomy loss
or. The taxonomy-based algorithms to be tested are, firstly, the structured 8itiMnontriv-
ial taxonomies in margin.8) and slack rescaling formulatio2.9) and, secondly, structure-
free methods where we obtain scores for each concept class via thediitimean over the
component SVM outputs and via generalized means of SVM outputs whicstaled using
logistic functions.

We used SVMmulticlassl00) and modified versions thereof for the structured approaches.

Table 2.5: Classification of methods.

structure-free structured

taxonomy-free onevs all struct multi-class SVMs
(Section2.2.9 (Section2.2.9

taxonomical local taxonomy  struct taxonomy SVMs
(Section2.2.9 (Section2.2.2
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The non-structured methods have been implemented using shogun tooihbwith the SVM-
light solver. We note that SVMlight is also deployed in the optimization proasiof the
SVMmulticlass implementations.

The error measurement is done for the multi-class problems using the 0/faxambmy
loss from equation2.2). For all multi-class problems we use 20 splits into training and test
data with 50 images per class in each split.

Furthermore we use for some experiments the Average Precision (AR fra class
(see EquationZ.16) and the mean Average Precision score (mAP) obtained by averaging the
average precisions over all classes.

For computation of the AP score we assume that the pairs of classifer oatgliggound
truth labels(z(®), y(¢)) for a class in question are sorted according to the descending order
of their output scores,(f) over the data sample indéx The average precision (AP) score for

nSf) =>", I[{yic) = 1} positively labeled samples of classs defined as

C C C)\n 1 - C 1 : C
AP g = 5 M =115 Y Hw? =1} (216)
ny" =1 k=1

2.4.5 Experimental Results: Performance Comparisons

At first, we would like to remark the difficulty inherent in the datasets. Tablesshows the 0/1
loss and the average precisions (AP score) of the one-vs-all basklinthe three multi-class

Table 2.6: Abbreviations for compared methods.

structured multi-class baseline
struct mc mr with margin rescaling
struct mc sr with slack rescaling

taxonomical structural learning
struct tax mr with margin rescaling4.8)
struct tax sr with slack rescalingZ.9)

the local procedure with taxonomy

local tax AM with arithmetic mean4.13
local tax scaled GM with geometric mean after scaling
M, with p-mean after scaling
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datasets.

The AP score is a rank-based measure which was deployed as therzarée criterion in
the recent Pascal VOC challenges. For VOC2006 the results for 20 pgtftem worse due
to sample size effects as they use oflY training data in each split as compared to av&i0
points for the 20-fold cross-validation.

Table 2.7: One-vs-all baseline performance on multi-clasdatasets. Lower losses and higher
AP scores are better.

dataset 0/1 Loss AP score
Cal256 animals 62.56 34.34
Cal256 13 class subset 57.04 43.69
VOC2006, multi-class, 20 splits 50.54 54.75

VOC2006, multi-class, 20-fold crossval 33.56 70.50

The comparisons for Caltech256 animals and its 13 class subset are ishdalries2.8
and2.9. For simplicity, we present only the best result among all options for ebstnuztural
multi-class, local taxonomy-based and structural taxonomy-baseddonese The full Tables
listing all results can be found in the Appendix (Tabk§, 5.2 and5.3 As expected, the
taxonomy-based methods outperform the taxonomy-free baselines in tethestaxonomy
loss by3-5% relatively. For both datasets, our local SVM procedure improves steutgarn-
ing with taxonomy by2-3% relatively. The gains of the taxonomy-based approaches under
the taxonomy loss are achieved at the cost of slightly increasing the 0/1 llossnotable
from Table2.9 that merely including the taxonomy loss in a structured multi-class algorithm
(as an intermediate step of incorporating taxonomical information) doesieldt sufficient
performance gain under the taxonomy loss. Optimization for taxonomy lossscatrtiee cost
of performance deterioration under the 0/1 loss. This is not surprisetuse the baselines,
one vs all and structured multi-class models directly optimize for the flat hingeabih is
more closely related to the 0/1 loss than to the taxonomy loss. Since this probdens éar
all hierarchical methods including the structured prediction based methddgst point out
the considerable difference between the canonical flat loss and wiat anight desire. From

an optimization viewpoint minimizing a different loss leads to a different modekrdfore
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merely the scale of change might be surprising. The relation of 0/1 loss to gddfes at
internal edges across datasets will be discussed in Sectdh

Table 2.8: Errors on Caltech256 animals (52 classes), 20 &pl Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 30.66t 0.46 62.564+ 0.67

best local tax: scaled GM 29.624+ 0.34 76.19%4 0.57
best struct tax: mr 30.58 0.31 81.194+ 0.53

Table 2.9: Errors on Caltech256 animals 13 class subset dat20 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 4249 1.46 57.044+1.98
best struct mc: s\ = 60/1 42.48+ 1.50 57.06+ 2.00

best local tax: scaled GM 40.58+ 1.15 58.33+ 1.50
best struct tax: mr 41.48 1.22 61.544+- 1.55

Table 2.10: Errors on VOC2006 as multi-class problem, 20 sfik. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 27.09t 1.88 50.54+ 2.51
best struct mc: mA = o 26.37+1.77 51.04+ 2.53

best local tax: scaled GM 25.861.56 50.10+ 2.29
best struct tax: mr 25.784+ 1.67 50.174+ 2.17

Table2.10shows the performance comparison for the VOC2006 multi-class problem. Sim-

ilar to the Caltech animals datasets, the taxonomy-based methods outperfasnettis-all
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baseline in terms of the taxonomy loss §¥ relatively. On the other hand, there are some
differences from the previous cases. At first, our local SVM praceds rather on par with
the structural counterpart. Secondly, the intermediate step, the structlirelass procedure
with the taxonomy loss; improved the one-vs-all baseline significantly under the taxonomy
loss. Finally, the taxonomy-based approaches improved slightly the taxefieepaselines
under the 0/1 loss as it was already the case for the synthetic data example.

As a sanity check for structured implementations we remark that the strdctermethods
perform approximately equally well to their structured counterparts ftr taxonomy and 0/1
losses. Since for the flat 0/1 loss setting we used SVMstruct in its unmodifiedifation, this
is clearly a property of the data rather than a potentially faulty implementationuaftsted
approaches.

In summary, we observed that the taxonomical approaches outperfertaxinomy-free
baselines under the taxonomy loss, as was the case for the synthetic dhika. itUthe syn-
thetic data the zero-one error was slightly increased by optimization of taxobaseg losses
for both Caltech datasets. The choice of the loss function determines thighatgto be used.
It is not expectable in a statistical sense that a taxonomical model improwaisli@si under
all circumstances, however there is a tendency for relatedness adzetoss and differences
of AUC scores across levels (see also discussion in Se2ib§. The local taxonomy-based
methods are slightly worse than structured taxonomy ones on VOC200@tl&ustsconsider-
ably better on both Caltech256 animals problems. We would like to emphasizediveaytof
averaging is important to achieve better performance. Note that the seaatkbgical mean
compares favorably with the arithmetic mean. Indeed, when we examinedrbeatieedp-
means in a wide rage of the parameteiparameters close to (i.e. the geometrical mean)
achieved the minimum values both under the 0/1 and taxonomy losses.

2.4.6 Remark on Training Time

In all three data sets the local SVMs are much faster to train when compaseddtured taxo-
nomy approaches (cf. Tab®11). The local SVMs can be parallelized by training each edge as
a separate optimization problem, an advantageous property when scalmgrber of object
categories. Another beneficial scaling characteristic when increasengutinber of samples

is the possibility to reduce the training set for each edge individually sincesiifficient to
control the performance of the binary classification problem at each sejgarately. Certain
steps in the structural approaches like finding the most violated constramtsegarallelized
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to e.g. multicore machines which typically accounts for four or at most eigktscdhe used
code may have potential for further problem-specific optimizations. Thedspains by using
local SVMs are large factors of over 10. Thus we do not expect tharadge of the local
SVMs to disappear against a multicore-parallelization of structural suppotor machines.
Furthermore the parallelization of local SVMs into optimization problems restrictsthgle
edges can be achieved generically over more than 8 cores. Anotlfamnpence reducing fac-
tor was excessive main memory usage of structural algorithms of up to 18y&gaer task
which in practice leads to additional slowdowns compared to many small tasiadvasl by
the local SVMs.

Table 2.11: Training times, the multiplier for local models shows separability into indepen-
dent jobs.

Method Dataset Training time
one vs all Cal256 animals, 52 classes  3.69%2
local tax Cal256 animals, 52 classes  3.6992
struct. tax Cal256 animals, 52 classes 35.13 h
one vs all Cal256 animals, 13 classes 0<5%3
local tax Cal256 animals, 13 classes 0581
struct multi-class Cal256 animals, 13 classes 15.1 min
struct tax Cal256 animals, 13 classes 44.9 min
one vs all VOC2006 <0.5sx 10
local tax VOC2006 <0.5sx 19
struct multi-class VOC2006 9.4 min
struct tax VOC2006 28.7 min

2.4.7 Discussion

Confusion Between Object Categories Figures2.8and2.9 provide example images where
the results from the local taxonomy approach differs compared to theaysasvall baseline.
Each image comes with a graph on the taxonomy. The ground truth label is Jiee choice
by one versus all is marked in magenta and the path to the choice by hieshdagsification
is given in blue. All relevant paths have attached the SVM outputs to thena(se Figure.4).
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Figure2.8shows typical cases when the hierarchic approach fails. It is caydatsb positive
outlier votes at internal edges which are too strong in order to be avkoageFigure2.9shows
cases when the hierarchical approach improves over a flat ones\atdaseline. Typically
the votes from internal edges can average out and thus overrul@édiive and too negative
votes at the leaf edges. The upper part of FidiBsshows a case when a taxonomically more
plausible result can be achieved by using a hierarchy even when tisdiela®r the leaf edge
belonging the ground truth gives a too negative vote. In the lower pahiégnarchic approach
classifies the image correctly.

By comparing the confusion pattern of our taxonomy based procedurethétiof the
one-vs-all baseline, we observe clear qualitative differences. é&R&jdrshows confusion dif-
ferences between the two approaches (y-axis) versus the taxonasey [esaxis) for (a) bus
and (b) cat of the VOC 2006 data. As expected, we can find the getleaidéncy that the
taxonomy based method confused more with the categories with lower taxonmsag,ladile
it can reduce the error with those with higher taxonomy losses. We alsketheignificances
of all confusion differences by a Wilcoxon signed-rank test from &@dom repetitions. Its
p-values are summarized in the panel (c) (row: true classes, columdictec classes). For
instance, for (a) bus class, more images were correctly classified §s-bakie = 0.06%) and
confusion with person reduced significantly (0.16%) at the cost of &sing the error by pre-
diction of cars (0.09%) which is in the taxonomy the closest category to unilaBrelations
hold for (b) cat class: confusions with the closer categories dog ars# lwcreased, which
brought improvements in confusions with farther away classes cow (Pbiégtle (3.1%) and
motorbike (5.1%).

It is worth to point out that the improvement of taxonomy losses by hieraatbliassifica-
tion which was observed in Secti@3 (see Tabl&.3) and Sectior2.4.5implies that erroneous
decisions are moved to lower levels in the hierarchy compared to baselimegidlds a more

plausible, i.e. more human-like, result based on the taxonomy.

Comparison with Greedy Walks We also analyzed the performance for local taxonomy ap-
proaches with hierarchical classification using greedy path-wa@s {Ve regard this direction
rather as a side topic with respect to our comparison of structured decsisnodels. In this
approach for each node in the taxonomy the set of negative examplegiistegl to those with
the class labels of the parent node. For example, for the class cat in tmeitay from Figure
2.3, a binary SVM is trained only with samples of classes Carnivora, i.e. cdtd@gs. Such
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Figure 2.7: Confusion differences between our local SVM wit taxonomy and the one-vs-all
classification (y-axis) versus the taxonomy losses (x-axi®r (a) bus and (b) cat from VOC
2006 categories (bic = bicycle, hor = horse, mot = motorbikgyer = person, she = sheep). Pos-
itive values denote more confusions by the proposed metho8&ignificances of the differences
are checked by Wilcoxon signed-rank test whose p-values asimmarized in (c) (row: true
classes, column: predicted classes).

greedy walks lead to performance decrease. This is not surprisirage ®imbinary SVM at the
leaf edge ’'cat’ takes only images annotated with dog as negative sampley, dgivaanighly
positive scores to images containing horses or motorbikes. It is possibkh¢haassifiers at
the upper edges, e.g. the nonlife-versus-life or the carnivoraiseassifier misjudge some
of these images and that the cat-versus-dog classifier finally annotatessheat with very
high confidence.

We have found that the greedy walks strategy itself is detrimental. We obtaloth
datasets a moderate rise in 0/1 loss and a sharp rise in taxonomy loss. lengatise local
approach adopted here is superior to other possible simpler local soluRerf®rmances of
greedy walks can be found in Appendix (Tabte$5.25.3).

The greedy approach has two advantages in running times compared toahagdproach
presented here. During training it deals at each edge only with classifieking on subsets
of all categories which leads to a reduced amount of training data. Dustiggeve have to
follow only one path for each sample. The local approach presentectharbe, in principle,
modified by subsampling from the set of negative classes during trainitigasd uses the
same amount of training data as the greedy approach. It would still retaedttamtage of
being able to suppress votes for outlier images as described above hee.arcar image is
tested in a cat versus dog classifier in a greedy walk scheme. While thidygrpproach is
the fastest option during test time, the local approach introduced heteecarterpreted as a
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Figure 2.8: Example images where the hierarchical classifias inferior to the one versus all
baseline on Caltech 256 animals, 13 classé®oxed green denotes the ground truth label, dashed
blue the path to the choice by hierarchical classifier anti-diasted magenta the decision by one
versus all.
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(upper)hierarchic: praying-mantis;one versus all: spider; ground truth: spider; Strong
false positive vote for Hexapoda in hierarchical approach, the appea of the spider does

not show 8 legs clearly and is somewhat similar to mantids in pose and color.
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(lower) hierarchic: crab;one versus all:octopus;ground truth: snail; Strong false positive
vote for Ecdysozoa causes hierarchy classifier to fail while one vseligis a taxonomically
closer animal to the ground truth.
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Figure 2.9: Example images where the hierarchical classifieoutperforms the one versus all
baseline on Caltech256 animals, 13 classd3oxed green denotes the ground truth label, dashed
blue the path to the choice by hierarchical classifier anti-diated magenta the decision by one
versus all.
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(upper) hierarchic: horseshoe crabpne versus all: octopus;ground truth: spider; The
hierarchical approach predicts a horseshoe crab which belongs sautie subphylum Che-
licerata as the spider, the score at the one vs all edge for octopus isgeo Téne score in the
one versus all edge for horseshoe crab is too large, too, whichmiseaeorrect classification
as a spider.
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(lower) hierarchic: grasshoppemne versus all: butterfly; ground truth: grasshopper; The
grasshopper gets classified correctly in the hierarchical approable &xopterygota versus
all edge which overrules the too low vote at the leaf edges for classhgy@®sr compared to
butterflies.
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compromise between the structured SVMs and the greedy walks in terms ofgraimd testing
time. It achieves a trade-off between speed and precision.

Outlook - Larger Numbers of Classes: Caltech256 Full Here we consider the results for

all 256 object classes from Caltech256. We omitted the clutter class and tzngme k-
means prototyped Bag of Words kernel based on 1000 words oveGBecBlor channel. We
used 50 images per class and ten-fold crossvalidation which resulted iimiagrset size of
11520 samples. We were not able to compute the solutions from structedidtion methods
however we are still able to compare one versus all against our local &4oach. We
observe in Tabl&.12 qualitatively the same results as for the other, smaller, datasets. The
taxonomy based approach improves on the taxonomy loss at the cost axdksetb the zero

one loss when compared to one versus all. The one versus all basefioenaamce ranges
between the baseline used #5) and the best kernel froni(1).

Table 2.12: Errors on Caltech256 all classes except for cligr, 10 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss
onevs all 34.31:0.74 68.93+1.23
local tax AM 33.04+ 0.7 72914+ 1.16

local tax scaled GM 32.77+ 0.6 7255+ 1.14
local tax greedy path-walk  37.810.71 77.96+ 1.3

2.4.8 Generalization Ability of Learning with Taxonomies

We have formulated in the introductiéhl of this chapter a more human-like classification in
the sense that errors between taxonomically far categories are reaioad of our goals. We
have observed experimental evidence that taxonomical losses ard idieeed when using
hierarchical classification instead of the one-versus-all baseline.

However, there is a gap between our goal and the experimental resaltsie@ne hand,
humans are able to generalize higher level categories very well, seemgttgy than more
specific low level categories. For example humans can label cars vdéirgwea if their opti-
cal appearance is quite diverse as with old-timers, converted carsnigestshapes or rare car
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models, whereas identifying a car brand or even a specific car modsitates a much more
difficult task for humans. On the other hand, the improvement in taxonomissd¢$oobserved
here is somewhat limited. For Caltech datasets we observe an increaséosstldlease note
that for local taxonomic models the difference between the one-velidussaline and classifi-
cation with taxonomies consists of adding classification problems located anet&te edges
of the taxonomy, see also Figuzed for this aspect. If we assume in analogy to our expectation
about human capabilities that the problems at intermediate edges are muckoadasgsify for
our system and thus result in much better recognition rates, then the loocabtaic models
should result in much better improvement over the one-versus-all baseline

We would like to identify reasons for this gap in this section, and point to plessiiprove-
ments for the future. The obvious observation to start with is given in Tak@ We can see
that for the Caltech datasets AUC scores at intermediate edges are vearskdAUC scores
at leaf edges. The classification tasks at the intermediate edges for thehGidtasets are
more difficult and therefore yield more errors compared to classificati@abedges, which is
in clear contrast to our intuition about human capabilities.

Table 2.13: Mean AUCs on leaf edges versus internal edges fone local-SVM methods.
Higher values are better.

Dataset AUC Leaf edges AUC Internal edges
Caltech256 52 animals 88.49 84.82
Caltech256, 13 class subset 84.00 78.55
VOC2006 multi-class 86.38 91.40
Synthetic datag = 1/4, 16 classes (Se2.3) 92.40 96.64

The task of learning with taxonomies can be divided into two aspects. Thadpsct is
the optimization of a non flat loss via the taxonomy structure.

The second aspect is that taxonomy based learning is an averagingclasisifjers con-
structed by forming superclasses from sets of single classes. Addssifiges for these super-
classes with higher error rates, as we have done for the Caltech daitabilkeédy to raise error

we showed for the synthetic data statistics per level of the taxonomy in PabléVe use here the coarser
discrimination between internal edges and leaf edges because fordnemnaies on the real data the notion of level
does not imply a constant difference to the nearest leaf. Leafs laaymg path lengths and thus, two edges at the
same level may have different distances to the nearest leaf. See Eigafor an example.

61



2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS

rates. This has been observed for the flat 0/1 loss in Téb&and?2.9. To shed light on the
guestion why classification problems at superclasses can be hardelt e@wsider additional
metrics. The first metric are kernel target alignment scdi@s The kernel target alignment is
a similarity measure between the kernel from image features and an optimatiynitistive
kernel computed from the labels of the classification problems located addles ef the taxo-
nomy. For a short overview of kernel target alignment we refer to setti®4 Higher scores
imply that a kernel is potentially more useful for solving a classification task.

Table 2.14: Mean Kernel Target alignment on leaf edges versugternal edges for the local-
SVM methods. Higher values are better.

Dataset KTA Leaf edges KTA Internal edges
Caltech256 52 animals 0.0147 0.0241
Caltech256, 13 class subset 0.0431 0.0402
VOC2006 multi-class 0.0662 0.1882
Synthetic datag = 1/4, 16 classes (Se2.3) 0.0675 0.2075

We see from Tabl@.14that the Caltech datasets have low gains in kernel target alignment
scores at classification problems located at internal edges relativertel ikarget alignment
scores at leaf edges. This shows that the kernels when applied to cigsifiat intermediate
edges do not provide much higher information content than the leaf clasdifie Caltech
datasets. Furthermore the TaBld4 shows that the differences in AUC values seen in Table
2.13can be explained by properties of the employed kernel. Therefore weomlpute another
kernel metric for a subsequent complexity analysis.

We claim that some of the classification problems at intermediate edges mayrhiawe a
creased complexity because they have to discriminate two sets of classeiglinbath sets
may have a highly varying visual appearance as a consequence @hanon many different
classes. In contrast to that the classification problems at the leaf edegbtordiscriminate one
class against a set of all other classes, i.e. one of the sets consisiagieackss which may
have lower varying visual appearance than a set of many classesthidbie our experiments
we use the same kernel for all classification problems.

For bringing evidence about the complexity of classification problems we mpley Ker-
nel principal component analysis-based (KkPCA) label reconstruatjorement. This method
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has been discussed itQ2) as a measure of complexity for a classification problem with a
given kernel. The idea is to compute the principal components of a kertted iHilbert space
and sort them according to the descending order of their eigenvaluds.fidm Lemma 1 in
(102 that for a kernel matrix over a fixed finite set of samples the m-th sortatek@CA
component is equal to the corresponding eigenvegctpof the kernel matrix.

For a chosen fixed dimensionalitiywe can project the labels onto the firstd sorted
kPCA components to obtain projected labgls

d
Y= umu,Y (2.17)
m=1
The projected labels allow to compute an agreement to the true label as onemsizeso one
loss:

N
agror (V,Y) = 1 3" {sign(¥) = v} (2.18)

n=1
If we project on all KPCA components by settidg= [V, then we recover the ground truth
labelsY = Y = agroi1(Y,Y) = 1. The idea of relevant dimensionality analysi®® and
kPCA label reconstruction agreement is that for a low-complexity classificaroblem the
majority of information is contained in a small number of the first sorted KPCA coraipts.
Thus, for a low-complexity classification problem the projected labels wilkteakigh agree-
ment to the true labels. We compute the agreement between true and projbeteddathe
firstd = 2¢,i = {2,...,8} kPCA components. We show for each number of components the
ratio between the agreements in intermediate and leaf edges in Riglre

The kPCA ratios are all below implying that more kPCA components are needed at
intermediate edges to reach the same accuracy in explaining the labels cdtogheenumber
of kPCA components at leaf edges. This is consistent to our claim made #atvclasses
representing intermediate edges have on average an increased congplexitye fixed kernel
employed here.

Furthermore the ratios between those accuracies are lowest for Caliewissand higher
for VOC2006 and the synthetic dataset. Therefore, classification pnshéd intermediate
edges have a higher relative complexity for the Caltech datasets. Thisstsdbhat adding
classifiers which were trained on intermediate edges to the one-verailassiifiers on leaf
edges is less likely to improve classification results for the Caltech animal tsathae for
VOC2006 and the synthetic data.
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Figure 2.10: Ratios of agreements of kPCA projected labelsrad ground truth labels. Ra-
tios are computed between classifiers at intermediate edgesd leaf edges. The ratios were
computed at dimensionst to 256. Higher values are better.

This result is what we can expect: both animals taxonomies are built by evaugigim-
ilarities, not visual ones. Visually, a dolphin still looks much more like a fish thamammal.
The visual features are not able to capture genetic similarities - see Eidui@ a convinc-
ing example. To give another example, the horse is as part of odd-t@edates in a group
with cats and dogs while the the look of a horse itself as well as the bacldyegpearance of
horses, meadows, might be more similar to those of even-toed ungulatessaarmbsheep.

The fact that the taxonomies of the Caltech animals are not well aligned telgesimilari-
ties can be validated numerically by computing the cosine angle between thedsstatuced
from the kernel matrices and the taxonomy distance for each of the dathsdternel distance
between two classes is computed as the mean over the kernel distandbsdins af samples
from both classes using the additional fact thatfékernels we have k(x,x)=1:

1 1

d(Cl,CQ) = — —_— Z k(xl,xl) — 2](3(1‘1,&72) + k?(.rg,l‘g) (219)
|Cl| Tr1€C |62| ToECy
1 1
Tr1€C] TroEC2

64


./3/figures/kPCAratios.eps

2.4 Experiments on Real World Multi-class Data

From both distance matrices the mean is subtracted so that they have zeroveeteir en-
tries. We can see from tabBe15that both Caltech datasets have a very low alignment between
kernel induced distances and taxonomy-induced distances. This mlaynetkie observed in-

crease in flat zero-one-loss when applying taxonomy learning.

Table 2.15: Cosine Angles between taxonomy distances andrkel induced distances. Higher
values are better.

Dataset cosine of angles
Caltech256 52 animals 0.1130
Caltech256, 13 class subset 0.1087
VOC2006 multi-class 0.6314
Synthetic datag = 1/4, 16 classes (Se2.3) 0.9752

The ordering of cosine angles across datasets corresponds welbia#reof AUC scores
at intermediate edges in Tal#el3 In the Pascal VOC2006 dataset and the synthetic dataset
the distances from kernel similarities are more in line with the taxonomic ones. $yritfeetic
dataset this has been achieved by construction which is also reflectebl@?TEBand in the
KTA ratios from table2.14

We have identified the reason for the gap between our expectation foreahmoran-like
classification using taxonomies and the case observed experimentally.oSitigepmessage
from our experiments is the observation that even in the adversariabttselow alignment
between taxonomy and visual similarities as seen in Caltech animals data, thenextmsses
can be improved while in the other two more well-behaved cases both lossasotiasic and
flat, can be improved.

A solution for improvement towards more human-like classification is to conaideher
feature representation which allows for a better alignment of the kernet@tbdistances to the
distances from the taxonomy because a richer feature representatibe caed to select for
each classifier its own more appropriate subset of features. In thiswiidged the same ker-
nel for each classifier. Using a better feature set may include featimiehk are not restricted
purely visual ones in order to incorporate knowledge from biologicsiesyatics which can-

not be captured by visual similarities alone. When humans reason aboutiiesilaetween
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known animal species, they use additionally more information than merely isesl e.qg.
they group animals by being insect, mammal or fish.

2.5 Ranking for Multi-label Datasets with hierarchies

Clearly the local SVM approach can also be used in a multi-label setting. Inltilainel
setting each concept can be present or absent in each image indepafradkother concepts.
In particular, each image may contain multiple concepts and, as a conseguentusions
between concepts within an image are not well defined anymore. Thetbfotarget function
evaluated here differs from the multi-class case.

Instead of minimizing confusions between concepts, we aim to enforceafbr @ncept
separately an ordering of images such that images of the concept in queastidaxonomi-
cally close concepts are ranked highest. For this reason we introduseltaxonomy-aware
ranking score, the ATax score.

2.5.1 The ATax score

Technically we will replace scores based on confusion matrices by tiicestdependent rank-

ing scores. A standard flat score function used in the Pascal VOC rhaliethe Average Pre-
cision (AP) (L03) and its mean over all classes. We assume that the pairs of SVM outputs and
ground truth labelgz(), 3(©)) for a class in question are sorted according to the descending
order of their output scoreéc) over the data sample indéx The average precision (AP) score

for n(f) =3, ]I{yic) = 1} positively labeled samples of classs defined as

0 (On 1 S I~ (o
AP (57,4 Nim) == 5 YoM = 1) Y Iy = 1) (2.21)
ny =1 k=1

The AP score is maximized when the images of the class in quastiomranked first. It
is invariant against permutation of the ordering of images from all othesetaas long as the
ranks of images from the class in questioare untouched. However, given relations from
a taxonomy, we would prefer a ranking where images from taxonomicallg d@sses are
ranked in front of images from taxonomically far classes, even whendbhayot belong to
the class in question To incorporate this awareness about the taxonomical structure we will
introduce a novel score and call it the Atax score.

For deriving the structure of the Atax score we need two preliminaries.
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The first preliminary is the fact that we need to consider for each imagetloé all labels.
For the ATax score being a taxonomy-aware extension of the AP scocensider instead of
one single binary Iabe;Jl(f) for the class in questionthe set of labels based @l classes in
the multi-label problen{y,gr) € {0,1},r € {1,...,C}}. y,(:) is the label for data sample
and class-.

The second preliminary is an representation of the AP score as an ewdragp-rank-list
precisions derived from distance functions over a set of samples.

Let us define for 40, 1]-bounded distance functidliy) the top-rank-list precision of the
top ranked samplesPrec|l](i) to be

Prec|l] Z 1—U(y) (2.22)

Then average precision can be seen as an average of top-raniedisigns over a partic-
ular setS of samples:

|S| ZPrec or) (2.23)

€S

where the set of samplésis given in according to Equatio221) asS = {i | ]I{yz(c) =1}}
and

15 (o) = Hyy) # 1} (2.24)
is the zero-one discretized distance of the class lglseke {—1, +1} to the label valug.
This representation holds because of

‘S’ZPrecl(c |S|Z Zl 01 (yr)

i€S i€S =
1-1 1
|S\Z Z {y? # 1}
ieS
Z Z{
‘S‘ €S
1 I~ (o
w2 gt =l
le{m\ﬂ{y =1}}
Iy =1}
— P
— APO((2\9, 4{9)7_,) see Equation22). (2.25)
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We compute a ranking score for a fixed class in questiaf the multi-label problem.
Therefore note that we can replace in the original AP score hierancaware precision score
l(()cl) by a termdependenbn the a priori fixed class. The Atax score will be defined by a
replacement term given in equatidhZ6) based on the minimal taxonomy distargebetween
the fixed clasg and all positive labels in the ground tru{b,(f),r e{l,...,C}| y,(f) =1} of

a fixed samplé:
O r=1,...,c}) = min  &(c,7)) (2.26)
re{l,A..,C’}|y,(:):1

Again, assume that the data samgeg, {y,(f), r =1,...,C}), and thus their Iabely,i") for
all classes, are sorted according to the descending order of the SVM ouiéﬁ)ﬂmr the fixed

classe. The set of sampleS is given again a§' = {i | ]I{yz@ =1}}.

Then we define the ATax score for clast® be:

1
ATaz® = El 3" Preclii?)(i) (2.27)
€S
1 — () 1 ! )
= Z]I{yZ =1}= Z 1-— min dr(c,r) (2.28)
’I’L+ i—1 v k=1 re{l,...,C}\yk =1

The above derivation shows that the ATax score can be seen as af@xaware extension
of the established AP score. Since the taxonomy disténéem equation2.2) is scaled to lie
in [0, 1] and a correct prediction implies scoreﬁ{)gf/,ic) =1}=1 respectivelyl—l(TC)(yk) =1,
the ATax score is never smaller than the AP score. The precision functéshin the AP score
can be interpreted as a zero-one discretization of the taxonomy]sedé@ (yx). Both scores,
AP and ATax, have the advantage of being invariant against the clasisifichreshold and
evaluate the ranking of images. We did not use the ranking based sootteée fmulti-class
problem, however. Inspecting the constraints of the structured predictiorulation from
(2.8) shows that it aims at classifying each image correctly in the sense of olgta@imiorrect
ranking of classefor each image. Its optimization does not aim at obtaining a coraméing
of imagedfor each class. Thus, using a ranking score would be a biased meastinst the

structured approaches.
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2.5.2 Datasets

VOC2006 multi-label data

We use the VOC2006 datasét4] consisting of 10 object classes ah8D1 images with its
original, unmodified labels. The full taxonomy is given in Figar8.

VOC2009 multi-label classification task data

This dataset consists of 20 classes with4 labeled images. It serves as a second multi-label

setting for the local algorithms. The full taxonomy is given in Figarél

2.5.3 Experimental Results

Note that for multi-label data the structured algorithms cannot be applied irctime@ant form
as the multi-class constraints are not well-defined anymore. TherefovalMemmpare one-
versus-all classification against local hierarchical approachesthiddrees us of time and
memory consumption problems related to the structured algorithms we will uswalidation
with 20 folds. We will use the same features and kernels as describedioms2c4.2and2.4.3
and measure with AP and ATax scores.

Table 2.16: Ranking scores on VOCO06 as multi-label problem20-fold crossvalidation.
Higher scores are better.

Method ATax AP
one versus all 90.1¢ 3.46 80.13+7.21
local tax. scaled geometric mear91.29+ 3.34 79.96+ 7.23
local tax. scaled, harmonic mean 908%.28 80.61+ 7.06

Table 2.17: Ranking scores on VOCO09 as multi-label problem20-fold crossvalidation.
Higher scores are better.

Method ATax AP
one versus all 79.02 8.72 55.92+ 15.91
local tax. scaled geometric mear80.68+ 8.20 54.62+ 16.08
local tax. scaled, harmonic mean 80838.33 56.43+ 15.77

69



2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS

Tables2.16and2.17show that even for a multi-label setting, introducing a taxonomy can
improve taxonomy based as well as flat ranking scores, despite we daation of avoiding
confusions anymore.

This may become relevant when using classifier scores for ranking if@gesrieval. A
higher ATax score implies that the desired class and similar classes aeel tsigker than more
distant classes which in effect leads to a subjectively improved rankswitrieom a human
viewpoint. When looking for cats, humans tend to be more impressed by resudis return
erroneously other pets than cars. Highly ranked images from very ticstigories tend to be
perceived as strong outliers.

Figure2.11shows examples where the hierarchical classifier is able to improve ranking
simultaneously for classes which are far apart in the taxonomy given imé=2g& This shows
that taxonomy learning for multi-label problems does not lead necessarilytt@ahaxclusion
of taxonomy branches. In both images, the classes under considenstiseparated already
at the top level. We observe that images can be re-ranked to top positigpisedaverage
rankings at all edges. For the upper image this occurs for the cow @asbe lower image
this occurs for the motorbike class as can be seen from the rankings a@jiveg the paths.
This can be explained by the property of the nonpositive p-means to lee-bppnded by the
smallest score (see Secti@r2.5. Many images which achieved higher scores and ranks at
some edges along the considered path were effectively ranked lowaudmethey received
very low scores at one edge at least in the same path. Note that theasbsaprovement in
ranking is independent of the ranking loss.

Table2.18compares the performance of scaled versus unscaled combinatioosesf &
both multi-label problems. We see clearly that scaling of scores onto a compawal con-
tributes to the good performance of the local models. The good perfoerdrscaled scores
is not surprising as one can expect the SVM outputs to have differemibditon statistics
like variances across the edges. Please note that for one versussificdsion the scaling
has no influence on the ranking scores as it is monotonous and rasgegrng and the score
computation is done for each class separately.

2.6 Conclusions

When classifying complex data such as objects, humans are first of all lpetteln than learn-
ing machines and most importantly human and machine errors diverge aatdydeAmong
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Table 2.18: Scaling of outputs is important for multi-label problems, 20 fold crossvalidation.
Higher AP and ATax scores are better.

Method: local tax. arith. mean ATax AP
VOCO06,unscaled 84.59+ 6.73 60.31+ 15.08
VOCO06,scaled 89.58+ 3.89 74.85+8.51
VOCO09,unscaled 73.35+9.40 35.87+ 14.73
VOCO09,scaled 77.304+9.45 46.58+ 16.61

others, a reason for both findings is the impressing ability of humans to gerdstract rep-
resentations that implicitly organize hierarchical knowledge and thus ttecapgaropriate task
relevant factorizations of the environment, put in one word humans glzeerOne aspect of
such abstract representation can be captured by taxonomies.

In this chapter we have demonstrated that taxonomy-based learning wisictgred SVMs
and local-SVM-based approaches on real world data yields improgedtsevhen measured
with taxonomy-based losses. Local algorithms with generalized means vetiftgp on par
to structured models while being considerably faster in training. The geometdaa appears
to be a good a priori choice as a sensitivity tradeoff against small aneldattjers. Successful
minimization of taxonomy losses implies the reduction of confusions between tdcstee
gories, i.e. a step towards more human-like decision making. Note, hokleean improved
result measured with taxonomy-based losses does not necessarilgtérame a better result
in a flat loss such as 0/1-loss since more meaningful confusions, i.e. ietbgmality of deci-
sion making does not necessarily come with overall quantitative improvenmgnther more
meaningful confusions may come in addition — as a side effect. In the loddl fBAmework
this can be checked by the AUC scores on the internal edges compareddaftedges.

Experiments on synthetic data show, somewhat expectedly, that taxonead/ddgorithms
work better than the taxonomy-free baseline, when the data is aligned to tm®tayxoThey
suggest that performance gains are achieved for local procduoesnbining classifiers with
different trade-offs of false positive versus false negative rdtgsrestingly but in fact to be
expected, taxonomy based learners tend to make their errors rathetactbgeleaf-edges of
the taxonomy tree thereby confusing 'close’ categories, whereashsarased on flat losses

incur classification errors uniformly across the tree. The latter behavaraf the reasons
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Figure 2.11: Example images where the hierarchical classédi improves rankings for taxo-
nomically distant classes compared the one versus all base on VOC2006 multi-label prob-
lem. (Upper) car from 216 to 133, cow from 197 to 31. (Lower) moikelfrom 108 to 52, person
from 125 to 38.

to consider the decisions of taxonomy-based learning machines more tvomgtible than
their flat loss training based counterparts.

The local as well as structured approaches can be combined with methars ledrn
taxonomies. The difference to previous approaches would be to measomomy based
errors instead of flat losses and to rely in case of local algorithms on usienfinstead of
reduced kernels and greedy path-walks. It is open in such a casenbotvcan be retained
of the interpretation of a taxonomy as a weak prior knowledge to definedossidns which
penalize dissimilarities as they are perceived by humans.

With respect to learning hierarchies an image might be scored using multipke |path
ing from the root to the same visual concept in the local setup. This is refatmoproaches
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2.6 Conclusions

learning relaxed hierarchie8%, 90). The idea would be to fix an original hierarchical loss
function and its generating hierarchy and check whether learning aediffaierarchy (or di-
rected acyclic graph structure) than the original one may improve the drigérarchical loss
because the learned hierarchy can encode information about the simitvitydn image fea-
tures and thus help to bridge the gap between the similarity between image $eahich is
used for learning classifiers and the similarity encoded in the original blgravhich is used
for evaluation of classifiers. One simple example would be to suppress mdtteassociated
edges when the classifiers on these edges yield very high error rates.

Another option would be to design local algorithms for the optimization of lossegyu
weighted edges or more general losses. In the structured predictipriagtas using weighted
edges can be achieved straightforwardly by weightin@) — \;x;(y) in equation 2.5 as
shown in Sectior2.2.3 Such weights can be even learned via Multiple Kernel Learning on the
label kernel from equatioB.3in which the original label kerné{y-(y, y) = Z';Ql ki (y)K;(9)

from equatior?.3is replaced by a parametrized variant

14

Ky (y, 9)A] = Y A\jKv,;(y, ) (2.29)
j=1

Ky,j(y,9) = r(y)r;(9) - (2.30)

The difference to the learning of a taxonomy is that the taxonomy and the dessfor eval-
uation is fixed here. The motivation to do so is the same as for learning admgraamely
to bridge the gap between the similarity between image features which is uskdifioing
classifiers and the similarity encoded in the original hierarchy and its lostidan

In the local setup such learning might be analogously achieved by leameiights in vote
fusion as a replacement for the p-means based vote from S&#dsuch as to minimize a
regularized weighted loss between prediction and labels. Based oneniexice with over-
fitting of support vector machines on training data at settings where pwafare on test data
is near-optimal (see also Chap®rsuch scores would have to be learned on cross-validated
outputs in difference to78). One meaningful application of weighted edges is to weight each
path by the binary powez—¢ of its negative deptld in the hierarchy as described in Section
2.2.3 This ensures a strict hierarchy — errors made at higher levels in therdhigralways

count more than errors at lower levels.
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Multiple kernel learning (see Chapt&yor other techniques to fuse information from mul-
tiple features can be employed to learn a mixture of feature kernels degesrdthe position
in the edge.

A further direction is to compare the local-SVM procedures versus targrfeee multi-
task learning approaches on multi-label problems. In these problems weerested to rank
the set of images for each class which demands for threshold-invariasunes like the aver-
age precision scores for comparison or the Atax score. Our simulation@aOC 2006 and
2009 shows encouraging results. In the meantime multi-label structuredtmedas been
developed in91). Yet the reported performance results for hierarchical classificatére not
better than the one versus all baseline which leaves space for improvement.

An open question is the relation between research on attribute classificationiexar-
chical classification. Clearly the works on attribute-based classificatiowrkrio the author
(104, 105, 106) aim at minimizing flat losses and use additional labels, namely the attribute
labels, while the hierarchy approaches work without additional coraepts. Another dif-
ference to the visual concepts defined by edges in a hierarchy is thaetbence of attributes
may vary within a visual concept class0d) which results in a higher flexibility of attributes.
Mathematically attribute prediction itself is the same as visual concept predicGiemanti-
cally, however, the attributes are designed to correspond to image caiehtcan be shared
among visual object classes0d). Attributes share with internal edges in a hierarchy the fact
that they define a new visual concept and use the new visual conoegisling to infer the
original concepts labels. Learning the weights for attributes a$@6) (mproves flat losses
which makes it interesting.

One direction with respect to practical aspects of hierarchical claggificaf any kind
would be to incorporate early stopping when the decision to descendfailtiveg a tree or
directed acyclic graph structure becomes statistically uncertain. This ceddde error rates
and improve similarity of decisions to human ones. Humans also tend to stop \atassif
objects at a level of certainty. All humans are able to identify that a cat iseethdat easily,
however people unfamiliar with those furballs would reject to predict theigeecat breed
unless explicitly asked to do so. In that sense humans perform earlyirgjadppghe absence
of sufficient knowledge. A statistical prediction system can do the sangeawwid to make
predictions if the classifier prediction for a sample is unreliable. One eagywoald be to

determine thresholds for each path in the hierarchy such that classifyiggéexceeding the
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lower or upper threshold yields a fixed accuracy. The threshold castimated by cross-
validation for example. This could also serve as a way to measure the quaitiadgsifier. A

too poor quality of a classifier in the sense that almost no image can be reliagdyfied by it

because the thresholds are too high could be used as an indicator to thisgagh from the

hierarchy.

An overall challenge of the field would be to further the generic undedsigrof the dif-
ferent decision making between human and learning machine, ultimately comkinitheyel
machine precision, attribute based features and human abstraction optimalgddcavtruly
cognitive automated decision making machinery.
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Figure 2.12: Taxonomy on 52 Animals Classes from Caltech25the 13 class subset taxonomy
is contained in the lower left quadrant from octopus to buttefly.
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Figure 2.13: Taxonomy on 20 Classes from Pascal VOC2009.

76


./3/figures/voc09tax.eps

3

Insights from Classifying Visual
Concepts with Multiple Kernel
Learning

3.1 Motivation for this aspect of Semantic Concept Recognition in
Images

Given a set of mercer kernels for image data the problem consideredshtr learn a lin-
ear combination of these kernels for use with semantic concept ranking wgpog vector
machines.

It is a common strategy in visual object recognition tasks to combine differeage rep-
resentations to capture relevant traits of an image. This results in a seitofefe for each
image as opposed to classifying an image using a single feature. Promipegeamtations
are for instance built from color, texture, and shape information and toasaccurately locate
and classify the objects of interest. The importance of such image feahaeges across the
tasks. For example, color information may increase the detection rates @&ighspn images
substantially but it is almost useless for finding cars. This is becauseigtopre usually red
in most countries but cars in principle can have any color. As additiorialdnessential fea-
tures not only slow down the computation time but may even harm predictiferpemnce, it
is necessary to combine only relevant features for state-of-thejadtabcognition systems.

This work is inspired by two factors: firstly, typically many kernels are coregdor state
of the art submissions to renowned competitions such as ImageCLEF Pimatafion () and
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Pascal VOC Classificatiori{). Secondly, many of these submissions do not employ methods
to learn kernel combinations. For a person with a background in keasglebmachine learning
this leaves the pressing question why methods to learn kernel combinationstamployed

in practical settings. Anecdotally it is known that the common sp&rserm multiple kernel
learning does not perform well in many settings outside datasets with sub|gdtiw within-
class variance like Caltech102) (@nd Oxford Flowers07). On other datasets it is reported
anecdotally to select a very sparse set of kernels with a decrease ierfoemance which
indicates overfitting.

3.1.1 Contributions

The contributions of this chapter are

e We apply a recently developed non-sparse multiple kernel learning (Mitiant to
state-of-the-art concept recognition tasks within computer vision.

e We report empirical results for the PASCAL VOC 2009 Classification andjg@a EF2010
Photo Annotation challenge data sets.

e We provide insights on benefits and limits of non-sparse MKL and compagaihst
its direct competitors within the family of algorithms which are based on suppotow
machines, the sum kernel SVM and the sparse MKL. To this end we identifyirmi-
ing factors and one promoting factor for the usage of MKL algorithms owenttural
baseline represented by SVMs applied to uniform kernel mixtures in imagsation
and ranking tasks. We provide experimental evidence for these factors

e We introduce a novel measure for the analysis of the diversity of classifiethe ex-
planation of one of these factors.

This chapter is organized as follows. Sectlbi.2gives an overview of multiple kernel
learning and related algorithms in image annotation tasks. In Sex@owe briefly review the
machine learning techniques used here; The following se8ti®we present our experimental
results on the VOC2009 and ImageCLEF2010 datasets; in Se&&#dame discuss promoting
and limiting factors of MKL and the sum-kernel SVM in three learning scesakide perform
experiments in SectioB.4in order to provide evidence for these factors.

1The content of this chapter is based on the author’s own peer-revieomd63).
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3.1.2 Related Work

In the last decades, support vector machines (SVL08 have been successfully applied
widely to practical problems of image annotatidi), Support vector machines exploit sim-
ilarities of the data, arising from some (possibly nonlinear) measure. Thérapairwise
similarities, also known as kernel matrix, allows to abstract the data from therigaalgorithm
(4).

In image annotation and ranking, translating information from various festinto a set
of several kernels has now become a standard technitile Consequently, the choice of
finding the right kernel changes to finding an appropriate way of fusiadiernel information;
however, finding the right combination for a particular application is soft@nca matter of a
judicious choice (or trial and error).

In the absence of principled approaches, practitioners frequentyt tesheuristics such
as uniform mixtures of normalized kernel&( 50, 98) that have proven to work well. Never-
theless, this may lead to sub-optimal kernel mixtures.

An alternative approach is multiple kernel learning (MKL), which has tegeplied to ob-
ject classification tasks involving various image featudesl(109). Multiple kernel learning
(110, 111, 112, 113) generalizes the support-vector-machine framework and airsisnaita-
neouslylearning the optimal kernel mixtu@nd the model parameters of the SVM. To obtain
a well-defined optimization problem, many MKL approaches promote sparsergsxby in-
corporating a-norm constraint on the mixing coefficients. Compared to heuristic aplpesac
MKL has the appealing property of automatically selecting kernels in a mathersticad
way and converges quickly as it can be wrapped around a regulppgwector machine
(112. However, some evidence shows that sparse kernel mixtures aneoofigerformed by
an unweighted-sum kernel14). As a remedy, {15, 116) propose/s-norm regularized MKL
variants, which promote non-sparse kernel mixtures and subsequeaméybkeen extended to
¢,-norms 66, 117).

Multiple Kernel approaches have been applied to various computer visibiems outside
our scope of multi-label ranking such multi-class problefris3), which require in distinction
to the general multi-label case mutually exclusive labatsl object detectiorl (9, 120) in the
sense of finding object regions in an image. The latter reaches its limits whea toagepts

We make a distinction between the general case of multi-label classificatibtha more special case of
multi-class classification with mutually exclusive classes.
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cannot anymore be represented by an object region such @utideor,Overall Quality or
Boring concepts in the ImageCLEF2010 dataset that we will use.

The family of MKL algorithms is not restricted to SVM-based ones. Anothenpetitor,
for example, is Multiple Kernel Learning based on Kernel Discriminantiysia (KDA) (121,
122). The difference between MKL-SVM and MKL-KDA lies in the underlyiniagle kernel
optimization criterion while the regularization over kernel weights is the same.

Fusing information from multiple features include algorithms relying on a significa
larger number of parameters, for example23), who use logistic regression as base crite-
rion; their approach results in a number of optimization parameters equal twthkeer of
samples times the number of input features. Since the approad2ng priori uses much
more optimization variables, it poses a more challenging and potentially more tirsernomg
optimization problem, which limits the number of applicable features.

Further alternatives use more general combinations of kernels suchdagts with kernel
widths as weighting parameters)(l, 124). As (124) point out, the corresponding optimization
problems are no longer convex. Consequently, they may find suboptitogibss and it is

more difficult to assess using how much gain can be achieved by learnikgried weights.

3.2 Methods

This section briefly introduces multiple kernel learning (MKL). For an esitentreatment see
the surveys in125 126).
Multiple Kernel Learning

Given a finite numbem of different kernels each of which implies the existence of a feature

mappingy; : X — JH; onto a Hilbert space

kj(x, @) = (i (@), ¥;(@))a,

the goal of multiple kernel learning is to learn SVM parametetsb) and kernel weights
{81, 1 =1,...,m} for alinear combination of these kernelskK = ), 5;k; simultaneously.

This can be cast as the following optimization problem which reduces to supgzior

80



3.3 Empirical Evaluation

machines §, 5) in the special case of on kernel = 1

R N
guin 5 z;ﬁj’ijj + C€lx (3.1)
j:

St Vi: oy Zﬁjw;%(xl) +b] >1-¢
j=1

£§20; B=0; |Bl,<1

The explicit usage of kernel mixturés, 3;&; is permitted through its partially dualized form:

n n m
. 1
mén max Zai ~3 Z ;YY) Zﬁjk‘j (xi, 2) (3.2)
i=1 j=1

il=1

st. Vil 0<o; <C Zyiai =0;
i=1
Vit B 205 |IBllp, < 1.

For details on the solution of this optimization problem and its kernelization we te{g6).
This optimization problem has two parameters: the regularization corstant a parameter
p on the constraint for the kernel weighs The regularization constant is known from support
vector machines; it balances the margin t€rif¢||; from equation 8.1) over the regularization
term Z;?";l ﬁjw;wj. A high value of the regularization constafitputs more emphasis on
achieving high classification margirz;s,(Z}”:1 ij}wj(:ni) + b) on the training data while a
low value emphasizes the regularization term as a measure against ovedfittiaining data.
While prior work on MKL imposes d-norm constraint on the mixing coefficients to en-
force sparse solutions lying on a standard simptex {11, 112, 127), we employ a generalized
¢,-norm constraint|3||, < 1 for p > 1 as used ing6, 117). The implications of this modifi-
cation in the context of image concept classification will be discussed thootighis chapter.

3.3 Empirical Evaluation

In this section, we evaluatg,-norm MKL in real-world image categorization tasks, experi-
menting on the VOC2009 and ImageCLEF2010 data sets. We also providetingigvhen
andwhy/,-norm MKL can help performance in image classification applications. Takav
tion measure for both datasets is the average precision (AP) over dlivaoas based on the
precision-recall (PR) curves.
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3.3.1 Data Sets

We experiment on the following data sets:

1. PASCAL2 VOC Challenge 2009 (Multi-label data) The first dataset is the official data
set of thePASCAL2 Visual Object Classes Challenge 2009C2009) 64), which consists

of 13979 images. We use the official split into 3473 training, 3581 validatind,6925 test
examples provided by the challenge organizers. The organizers alddent annotation for 20
object categories; It is a multi-label dataset, i.e. an image may be labeled with mcikigpées.

The task is to solve 20 binary classification problems, i.e. predicting whdtlearst one object
from a classk is visible in the test image. Although the test labels are undisclosed, the more
recent VOC datasets permit to evaluate AP scores on the test set via lbaghavebsite (the
number of allowed submissions per week being limited).

2. ImageCLEF 2010 PhotoAnnotation (Multi-label data) The ImageCLEF2010 PhotoAn-
notation data setl@8) consists of 8000 labeled training images taken from flickr and a test set
with recently disclosed labels. The images are annotated by 93 conceggschassing highly
variable concepts—they contain both well defined objects sudbkas river, plants, trees,
flowers as well as many rather ambiguously defined concepts sueinge, boring, architec-
ture, macro, artificial, motion blur—however, those concepts might not always be connected
to objects present in an image or captured by a bounding box. This makgklit bhalleng-

ing for any recognition system. As for VOC2009 we decompose the proinen®3 binary
classification problems. Again, many concept classes are challengingktorralassify by an
object detection approach due to their inherent non-object natureorAld previous dataset

each image can be labeled with multiple concepts.

3.3.2 Image Features and Base Kernels

In all of our experiments we deploy 32 kernels capturing various aspétie images. Our
choice of features is inspired by the VOC 2007 winrts) @nd our own experiences from our
submissions to the VOC2009 and ImageCLEF2009 challenges. It is kmomrilie top-ranked
submissions in recent Pascal VOC Classification and ImageCLEF Phattsiiom Challenges
that Bag-of-Words features are necessary for state-of-theeddrmance results when the fo-
cus lies on visual concept classification and ranking. At the same time asidipter features
together with multiple kernel learning may improve the ranking performancsdioe visual
concepts as well as the average performance measured over allodeuapts (shown in7@)).
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For the ImageCLEF2010 dataset the test data annotations have beesedisuid we checked
that adding the simpler features listed below improves, indeed, the aveeays-performance
compared to relying on BoW-S features (see next section) alone. Q@igectf features was
furthermore guided by the intention to have several different featusstifat empirically have
been proven to be useful and to use gradient and color informatiotheforore the features
should have reasonable computation times without the need for excessivg ofi many pa-
rameters and they should be able to capture objects and visual conespifoearying sizes
and positions. For this reason, we used bag of word features and blstmrams based on
color and gradient information.

All these features were computed over sets of color channels as infyirét8). The
features obtained for each color channel of one set were contedetoayield one feature for
each color channel set. The color channel sets used here are

e red, green, and blue (RGB)

e grey (equation1.5))

e grey (equation 1.5)), opponent color 1 (equatiori.@)) and opponent color 2 (OPP)
(equation L.7))

e normalized RGB (nRGB)(equatioi.g))
e normalized opponent colors (hOPP) (equatibr@))

The features used in the following are derived from histograms that a paatainno
spatial information We therefore enrich the respective representations by using repaital
tilings1 x 1,3 x 1,2 x 2,4 x 4, 8 x 8, which correspond to single levels of the pyramidal
approach in§6, 97). Furthermore, we apply a exponentid kernel (equation.26)) on top
of the enriched histogram features, which has proven effectivegtogram features5Q, 51).
The bandwidtho of the x? kernel in (L.26) is thereby heuristically chosen as the megn
distance (equatiorl(27)) over all pairs of training examples, as done, for example5a). (

Histogram over a bag of visual words over SIFT features (BoW-S)

Histograms over a bag of visual words over SIFT features are knowiel excellent per-
formance for visual concept recognition both when used as singleésadlone as well as in
combination with other features. This can be observed by checking thranépd submissions
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in the recent ImageCLEF PhotoAnnotation and Pascal VOC Classificatédecyes and not-
ing their general usage in publications on visual concept ranking. sltals® recently been
successfully deployed to object detectiagit)(on a large data set of images within the Ima-
geNet Large Scale Visual Recognition Challenge. For an introductiomgmobword features
the reader is referred to Sectitr8.1

The BoW features1(0) were constructed with parameters that were established in past
image annotation challenges so as to yield good results. At first, the SIEFdedL6) were
calculated on a regular grid with six pixel pitch for each image. We computesiFefeatures
over the following color channel sets: RGB, nRGB, OPP, and nOPP; ditiad, we also
use a simple gray channel. For visual words we used a code book of($igebtained by
k-means clustering (with a random initialization of centers and ust§00 local features
taken randomly from the training set). Finally, all SIFT features were asdigo the visual
words (so-callegrototype$ by hard mapping as in equatioh.{0 and then summarized into
histograms within entire images or sub-regions. The BoW feature was noechatizan/; -
norm of 1. Note that five color channel sets times three spatial tilings1, 2 x 2 and3 x 1
yield 15 features in total.

Histogram over a bag of visual words over color intensity histogramgBoW-C)

This feature has been computed in a similar manner as the BoW-S featur@vétofor the
local feature, we employed low-dimensional color histograms instead af felures, which
combines the established BoW computation principle of aggregating localdeatto a global
feature with color intensity information — this was our motivation for employing théime
color histograms were calculated on a regular grid with nine pixel pitch foh @aage over
a descriptor support of radius 12 and histogram dimension 15 per dwonel (SIFT: 128).
We computed the color histograms over the following color combinations: RG®, Qray
only and, finally, the hue weighted by the grey value in the pixels. For the thgereighting
implies that the hue receives a higher weight in bright pixels as a countseuneeagainst the
known difficulties to estimate the hue in dark regions of an image.

For visual words we used a code book of sip® obtained byk-means clustering. The
lower dimensionality in local features and visual words yielded a much fastaputation
compared to the BoW-S feature. Otherwise we used the same settings as/e®.Brour
color channel sets times two spatial tilings< 1 and3 x 1 resulted in8 BoW-C features in
total.
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Histogram of oriented gradients (HoG)

The histogram of oriented gradients has proven to be usefilgn the seminal Caltech101
Dataset?). It serves as an alternative and much faster way to incorporate gtadfiermation
compared to the BoW-S features. The HoG feature is based on discretligingientation of
the gradient vector at each pixel into bins and then summarizing the disdretieatations
into histograms within image region87, 129. Canny detectors1@0 are used to discard
contributions from pixels, around which the image is almost uniform. We cordpdtes
features over the following color channel sets: RGB, OPP and gray erdyy time using 24
histogram bins for gradient orientations for each color channel aatiaspilings 4 x 4 and
8 X 8.

In the experiments we deploy four kernels: a product kernel created the two kernels
with different spatial tilings using the RGB color channel set, a productdtereated from
the two kernels having the color channel set OPP, and the two kernetgsthsiigray channel
alone (differing in their spatial tiling). Note that building a product kernaf of x> kernels
boils down to concatenating feature blocks (but using a separate kediblfor each feature
block).

This choice allows to employ gradient information for a specific color chlagete— in-
dependent of spatial resolution — via the first two kernels and for afgpsgatial resolution
(independent of color channels) via the last two kernels. This is a pliacipay to yield di-
verse features: one subset varies over color channel sets anthéneeer spatial tilings. In
total we have four HoG features.

Histogram of pixel color intensities (HoC)

The histogram of color intensities is known to be able to improve ranking ipeaioce of
BoW-S features as shown i), which motivated us to use it here. The HoC features were
constructed by discretizing pixel-wise color values and computing their biognams within
image regions. We computed HoC features over the following color chaonabinations:
RGB, OPP and gray only, every time using 15 histogram bins for color itieh$or each
color channel and spatial tilingsx 1, 2 x 2 and4 x 4.

In the experiments we deploy five kernels: a product kernel createdtfie three kernels
with different spatial tilings with color channel set RGB, a product keoneated from the
three kernels with color combination OPP, and the three kernels using thetgaanel alone
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(differing in their spatial tiling). Again, please note the relation between featnncatenation
and taking the product of>-kernels. The last three kernels are HoC features from the gray
channel and the two spatial tilings. This choice allows to employ color informdtiom
specific color channel set independent of spatial resolution via thdviioskernels and for a
specific spatial resolution independent of color channels via the lastawels. In total we
have five HoC features.

For the HoG and HoC feature we used higher spatial tilings because thedeaiures
are much faster to compute compared to BoW features, thus allowing to ia¢hesisdimen-
sionality by the spatial tilings, and due to our empirical experience that chofder spatial
tilings beyon® x 2 tend to yield a higher improvement for such simpler features as compared

to BoW-based features.

Summary of used features

We can summarize the employed kernels by the following types of basic feature
e Histogram over a bag of visual words over SIFT features (BoW-sketnels
e Histogram over a bag of visual words over color intensity histograms {B)V8 kernels
e Histogram of oriented gradients (HoG), 4 kernels
e Histogram of pixel color intensities (HoC), 5 kernels.

We used a higher fraction of bag-of-word-based features as we foen our challenge
submissions that they have a better performance than global histograumegeal he intention
was, however, to use a variety of different feature types that hamrefi®ven to be effective on
the above datasets in the past—but at the same time obeying memory limitations of maximally
ca. 25GB per job as required by computer facilities used in our experimegatssed a cluster
of 23 nodes having in total 256 AMD64 CPUs and with memory limitations rangin@+#98
GB RAM per node).

In practice, the normalization of kernels is as important for MKL as the noratadiz
of features is for training regularized linear or single-kernel modelstinih feature / ker-
nel weights are requested to be small by thenorm constraint in the optimization problem
given by equation3.1), implying a bias to towards excessively up-scaled kernels. In general,
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there are several ways of normalizing kernel functions. We apply fl@iog normalization
method, proposed irb{, 55) and entitlednultiplicative normalizationn (56);

K
K+— . 3.3
Lr(K) - L1TK1 (33)

The denominator is an estimator of the variance in the embedding Hilbert spapeied over
the given dataseb by replacing the expectation operaltjr] by the discrete average over the
data pointse; € D.

Var(¢)ac = E [|6(X) — Elg][15]
= E(0(X) ~ Elg], 6(X) ~ El)sc ~p (K) ~ 51TK1  (3.4)

Thus dividing the kernel matrik(x;, z;) = (¢(x;), ¢(z;))sc by this term is equivalent to di-
viding each embedded featupéz) by its standard deviation over the data. This normalization
corresponds to rescaling the data samples to unit variance in the Hilbee spad for SVM
and MKL classification.

3.3.3 Experimental Setup

We treat the multi-label data set as binary classification problems, that ead¢brobject cate-
gory we trained a one-vs.-rest classifier. Multiple labels per image rendkirclass methods
inapplicable as these require mutually exclusive labels for the images. Hs#iels used here
were trained using the open sourced Shogun toolineow.shogun-toolbox.ory4). In order to
shed light on the nature of the presented techniques from a statisticabiywpe first pooled
all labeled data and then created 20 random cross-validation splits foR@Cand 12 splits
for the larger dataset ImageCLEF2010.

For each of the 12 or 20 splits, the training images were used for learnirgiatbsfiers,
while the SVM/MKL regularization parametéf and the norm parametgmwere chosen based
on the maximal AP score on the validation images. Thereby, the regularizatistantC'
is optimized by class-wise grid search overc {10°|i = —1,-0.5,0,0.5,1}. Preliminary
runs indicated that this way the optimal solutions are attained inside the grid. tiNdtéor
p = oo the £,-norm MKL boils down to a simple SVM using a uniform kernel combination
(subsequently called sum-kernel SVM). In our experiments, we useavdrage kernel SVM
instead of the sum-kernel one. This is no limitation in this as both lead to identscad fer an
appropriate choice of the SVM regularization parameter.
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For a rigorous evaluation, we would have to construct a separate moklédr each cross
validation split. However, creating codebooks and assigning featurésual words is a time-
consuming process. Therefore, in our experiments we resort to the copmactice of using
a single codebook created from all training images contained in the offiial #lthough
this could result in a slight overestimation of the AP scores, this affects allotgthqually
and does not favor any classification method more than another—oLg lieswon arelative
comparison of the different classification methods; therefore there isssarieexploiting this
computational shortcut.

3.3.4 Results

In this section we report on the empirical results achieved},byorm MKL in our visual object
recognition experiments.

VOC 2009 Table3.1shows the AP scores attained on the official test split of the VOC2009
data set (scores obtained by evaluation via the challenge website). $handtae optimal regu-
larization constant has been selected by cross-validation-based retattios on the training
data set. We can observe that non-sparse MKL outperforms the basghMKL and the
sum-kernel SVM in this sound evaluation setup. We also report on the-uatislation per-
formance achieved on the training data set (Té&bR. Comparing the two results, one can
observe a small overestimation for the cross-validation approach (fae#dssns argued in
Section3.3.3—however, the amount by which this happens is equal for all methodsriitp
ular, the ranking of the compared methods (SVM vegusorm MKL for various values op)

is preserved for the average over all classes and most of the clagsept{ons are the bottle
and bird class); this shows the reliability of the cross-validation-basddati@ method in
practice. Note that the observed variance in the AP measure acrogptonan be explained
in part by the variations in the label distributions across concepts ang-eatidation splits.
Unlike for the AUC measured) which is also commonly used for the evaluation of rankings
of classifier predictions, the average score of the AP measure umtkymdy ranked images
depends on the ratio of positive and negative labeled samples.

A reason why the bottle class shows such a strong deviation towards spaiisods could
be the varying but often small fraction of image area covered by bottlemtesm overfitting
when using spatial tilings.

We can also remark thét 333-norm achieves the best result of all compared methods on the
VOC dataset, slightly followed bg; 125-norm MKL. To evaluate the statistical significance of
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Table 3.1: AP scores on VOC2009 test data with fixed,-norm. Higher scores are better.

average aeroplane bicycle bird boat bottle bus
2 54.58 81.13 54.52 56.14 62.44 28.10 68.92
01125 56.43 81.01 56.36 58.49 62.84 25.75 68.22
41 333 56.70 80.77 56.79 58.88  63.11 25.26 67.80
12 56.34 80.41 56.34 58.72 63.13 24.55 67.70
loo 55.85 79.80 55.68 58.32 62.76 24.23 67.79
car cat chair cow diningtable  dog horse
2 52.33 55.50 52.22 36.17 45.84 41.90 61.90
01125 55.71 57.79 53.66 40.77 48.40 46.36  63.10
41333 55.98 58.00 53.87 43.14 48.17 46.54 63.08
12 55.54 57.98 53.47 40.95 48.07 46.59  63.02
loo 55.38 57.30 53.07 39.74 47.27 45.87 62.49
motorbike person pottedplant sheep sofa train  tvmonitor
4 57.58 81.73 31.57 36.68 4572 80.52 61.41
01125 60.89 82.65 34.61 41.91 46.59 80.13 63.51
01 333 61.28 82.72 34.60 44.14 46.42 79.93 63.60
12 60.91 82.52 3340 4481 45.98 79.53 63.26
loo 60.55 82.20 32.76 44.15 45.69 79.03 63.00

AP scores were obtained on request from the challenge @gyaniue to undisclosed annotations.
Regularization constants were selected via AP scores dmthpia cross-validation on the training set.
Best methods are marked boldface.

our findings, we perform a Wilcoxon signed-rank test for the cradglation-based results (see
Table 3.2 significant results are marked in boldface). We find that in 15 out of theldsses
the optimal result is achieved by truly non-spafgsenorm MKL (which meang €]1, o),

thus outperforming the baseline significantly.

ImageCLEF Table3.3 shows the AP scores averaged over all classes achieved on the Im-
ageCLEF2010 data set. We observe that the best result is achievesl lyrfsparsé,-norm
MKL algorithms with norm parametegs= 1.125 andp = 1.333. The detailed results for all
93 classes are shown in the appendix in Tabld$.5and5.6. We can see from the detailed
results that in 37 out of the 93 classes the optimal result attained by nogegpaorm MKL
was significantly better than the sum kernel according to a Wilcoxon sigarddtest.

We also show the results for optimizing the norm parametgass-wiseon the training set

and measuring the performance on the test set (see Jaliter the VOC dataset and TabBeb
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Table 3.2: AP scores obtained on the VOC2009 data set with figel,,-norm. Higher scores

are better.
Norm Average Aeroplane Bicycle Bird Boat Bottle
4 54.94+ 12.3 84.84+5.86 55.35+10.5 59.38+10.1 66.83+12.4 25.914+10.2
l1105 57.07+12.7 84.82+5.91 57.254+10.6 62.4+9.13 67.89+12.8 27.88+9.91
l1333 57.2+12.8 84.51+6.27 57.41+10.8 62.75+9.07 67.99+13 27.44+9.77
12 56.53+ 12.8 84.12+-5.92 56.8%-10.9 62.53+8.9 67.69+13 26.68+9.94
lss 56.084+12.7 83.67+5.99 56.09+10.9 61.914+8.81 67.52+-12.9 26.5+9.5
Norm Bus Car Cat Chair Cow Diningtable
0y 71.15+ 23.2 5454+ 7.33 59.5+ 8.22 53.3+11.7 23.13t13.2 4851+ 19.9
l1105 71.74+22.8 56.59+8.93 61.59+8.26 54.3+12.1 29.59+16.2 49.32+ 19.5
f1333 71.33+23.1 56.75+9.28 61.74+8.41 54.25+12.3 29.89+ 15.8 48.4+19.3
Lo 70.33+22.3 55.92+9.49 61.3%H8.37 53.85+12.4 28.39+16.2 47+ 18.7
loo 70134222 5558+9.47 61.25+8.28 53.13-12.4 27.56+16.2 46.29-18.8
Norm Dog Horse Motorbike Person Pottedplant Sheep
4 41.72+9.44 57.6+ 122 55+ 13.2 81.32+-9.49 35.14+13.4 38.13+19.2
l1105 45.57+10.6 59.4412.2 57.664+13.1 82.184+9.3 39.05+14.9 43.65+ 20.5
l1333 45.85+10.9 5944119 57.57+13 82.27+9.29 39.7+14.6 46.28+23.9
12 45.14+10.8 58.61+11.9 56.94+13.2 82.19+9.3 38.97+14.8 45.88+24
lse 4463+ 10.6 58.32+11.7 56.45+13.1 82+9.37 38.46+14.1 45.93+24
Norm Sofa Train Tvmonitor
4y 48.154+11.8 75.33+14.1 63.9/4+ 10.2
Uy 125 48.72+ 13 75.79+ 14.4 65.994+ 9.83
l1333 48.76+11.9 75.75+ 14.3 66.07+ 9.59
12 47.29+ 11.7 75.29+14.5 65.55+ 10.1
lee  46.08+11.8 74.89+ 145 65.19+10.2

AP scores were computed by cross-validation on the traiségBold faces show the best method and
all other ones that are not statistical-significantly wdrgex Wilcoxon’s signed rank test with a p-value
of 0.05.

for the ImageCLEF dataset). We can see from Tabfethat optimizing the/,-norm class-
wise is beneficial: selecting the besk]|1, oo[ class-wise, the result is increased to an AP of
37.02—this is almost 0.6 AP better than the result for the vanilla sum-kernel. $\dlitiding
the;-norm MKL in the candidate set results in no gains. Similarly, including the semet
SVM to the set of models, the AP score does not increase compared tdydiogms in|1, co[
alone. A qualitatively similar result can be seen from Tabfor the VOC 2009 dataset where

we observe a gain of 0.9 AP compared to the sum-kernel SVM.
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Table 3.3: Average AP scores obtained on the ImageCLEF201@st data set with¢,-norm
fixed for all classes. Higher scores are better.

¢,-Norm 1 1.125 1.333 2 00
34.61 37.01 36.97 36.62 36.45

AP scores computed on the test set. Regularization cosstaamne selected via AP scores computed
via 12-fold cross-validation on the training set.

Table 3.4: Average AP scores on the VOC2009 test data witf),-norm class-wise optimized
on training data. Higher scores are better.

oo {l,00} {1.125,1.333,2} {1.125,1.333,2,00} {1,1.125,1.333,2} all norms from the left

55.85 55.94 56.75 56.76 56.75 56.76

AP scores on test data were obtained on request from thesngelbrganizers due to undisclosed
annotations. The class-wise selectiorf,phorm and regularization constant relied on AP scores
obtained via cross-validation on the training set.

Table 3.5: Average AP scores on the ImageCLEF2010 test datatw £,-norm class-wise opti-
mized. Higher scores are better.

oo {1.125,1.333,2} {1.125,1.333,2,00} {1,1.125,1.333,2} all norms from the left
36.45 37.02 37.00 36.94 36.95

AP scores computed on the test set. The class-wise seleftigmorm and regularization constant
relied on AP scores obtained via cross-validation on thaitrg set.

We conclude that optimizing the norm parametetass-wise improves performance com-
pared to the sum kernel SVM and, more importantly, model selection for tee-ulese optimal
¢,-norm on the training set is stable in the sense that the choices make se¢hsi By scores
on the test set; additionally, one can rely@morm MKL alone without the need to addition-
ally include the sum-kernel-SVM to the set of models. TalBli&sand3.1 show that the gain
in performance for MKL varies considerably on the actual concepsclBise same also holds

for the ImageCLEF2010 dataset.
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3.3.5 Analysis and Interpretation

Analysis of the Chosen Kernel Set with Kernel Alignment

We now analyze the kernel set in an explorative manner; to this end, dbodwogical tools
are the following

1. Pairwise kernel alignment scores (KKA)
2. Kernel-target alignment scores (KTA).

Both are based on measuring angles between kernel matrices embeddedtiorspace and
are explained briefly in sectioh.3.4 The KKA score measures a similarity between two
kernels computed from image features. The KTA score measures a simikinitgdn one of
our computed feature kernels and an optimally discriminative kernel defigen the visual
concept labels. Alternatively RDELQ2) can be used which on these datasets did not yield
conclusive results. For an introduction to kernel alignment we referdtosel.3.4and the
work in (59).

To start with, we computed the pairwise kernel alignment scores of the 2 kmanels:
they are shown in Fig3.1 We recall that the kernels can be classified into the following groups:
Kernels 1-15 and 16-23 employ BoW-S and BoW-C features, resphctikernels 24 to 27
are product kernels associated with the HoG and HoC features; K&®eB) deploy HoC,
and, finally, Kernels 31-32 are based on HoG features over the beaanel. We see from the
block-diagonal structure that features that are of the same type ébgeaerated for different
parameter values, color channels, or spatial tilings) are strongly dedel&urthermore the
BoW-S kernels (Kernels 1-15) are weakly correlated with the BoW-@éter(Kernels 16—
23). Both, the BoW-S and HoG kernels (Kernels 24-25,31-32) uskegra and therefore are
moderately correlated; the same holds for the BoW-C and HoC kerngbg(&ernels 26-30).
This corresponds to our original intention to have a broad range ofréestpes which are,
however, useful for the task at hand. The principle usefulnessrdieature set can be seen a
posteriori from the fact that;-MKL achieves the worst performance of all methods included
in the comparison while the sum-kernel SVM performs moderately well. Clearhgher
fraction of noise kernels would further harm the sum-kernel SVM awdrfthe sparse MKL
instead.

Based on the observation that the BoW-S kernel subset shows highs&dis, we also
evaluated the performance restricted to the 15 BoW-S kernels only. phisngly, this setup
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10 20 30 0 20
Kemel Index Kemel Index

Figure 3.1: Similarity of the kernels for the VOC2009 (ToP) and ImageCLEF2010 (BoTTOM)
data sets in terms of pairwise kernel alignments (EEFT) and kernel target alignments
(RIGHT), respectively. In both data sets, five groups can be identified: 'BoW-S’ (keésnl—
15), 'BoW-C’ (Kernels 16-23), 'products of HoG and HoC kdei¢Kernels 24-27), '"HoC single’
(Kernels 28-30), and 'HoG single’ (Kernels 31-32). On ttiedile rows and columns correspond
to single kernels. On the right side columns correspond moets while rows correspond to visual
concepts.

favors the sum-kernel SVM, which achieves higher results on VOCR#}Gfost classes; com-
pared to/,-norm MKL using all 32 classes, the sum-kernel SVM restricted to 15 etass
achieves slightly better AP scores for 11 classes, but also slightly worse dlasses. Fur-
thermore, the sum kernel SVM;-MKL, and ¢; 333-MKL were on par with differences fairly
below 0.01 AP. This is again not surprising as the kernels from the BoWrSek set are
strongly correlated with each other for the VOC data which can be seentoheft image in
Fig. 3.1 For the ImageCLEF data we observed a quite different picture: the sunelkSVM
restricted to the 15 BoW-S kernels performed significantly worse, wigain gbeing compared
to non-sparsé,-norm MKL using all 32 kernels. To achieve top state-of-the-art parémce,
one could optimize the scores for both datasets by considering the classaaisma over
learning methodand kernel sets. However, since the intention here is not to win a challenge
but a relative comparison of models, giving insights in the nature of the methae therefore
discard the time-consuming optimization over the kernel subsets.

From the above analysis, the question arises why restricting the kettelkke 15 BoW-S
kernels affects the performance of the compared methods differentlthgdvOC2009 and
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ImageCLEF2010 data sets. This can be explained by comparing the KKA#@res of the
kernels attained on VOC and on ImageCLEF (see Figgy(RIGHT)): for the ImageCLEF data
set the KTA scores are substantially more spread along all kernelsjsheither a dominance
of the BoW-S subset in the KTA scores nor a particularly strong correlatithin the BoWw-S
subset in the KKA scores. We attribute this to the less object-based and mioiguaus nature
of many of the concepts contained in the ImageCLEF data set. FurthermateKh scores
for the ImageCLEF data (see Fig1 (LEFT)) show that this dataset exhibits a higher variance
among kernels—this is because the correlations between all kinds of&kareaveaker for the
ImageCLEF data.

Therefore, because of this non-uniformity in the spread of the informatiatent among
the kernels, we can conclude that indeed our experimental setting falls énsitulation where
non-sparse MKL can outperform the baseline procedures. For d&athp BoW features are
more informative than HoG and HoC, and thus the uniform-sum-kernel-S\édhsptimal.
On the other hand, because of the fact that typical image featureslpmaaherately informa-
tive, HoG and HoC still convey a certain amount of complementary informattbis-is what
allows the performance gains reported in Taldgsand3.3.

Note that we class-wise normalized the KTA scores to sum to one. This isisegee
are rather interested in a comparison of the relative contributions of thieydar kernels than
in their absolute information content, which anyway can be more preciseljeddrom the
AP scores already reported in TabB& and3.3. Furthermore, note that we considEmtered
KKA and KTA scores, since it was argued 0) that only those correctly reflect the test errors
attained by established learners such as SVMs.

The Role of the Choice off,,-norm

Next, we turn to the interpretation of the norm parametén our algorithm. We observe a
big gap in performance betweén;s5-norm MKL and the sparsé -norm MKL. The reason is
that forp > 1 MKL is reluctant to set kernel weights to zero, as can be seen fromd=ag2rin
contrast/;-norm MKL eliminates 62.5% of the kernels from the working set. The diffeee
between thée/,-norms forp > 1 lies solely in the ratio by which the less informative kernels
are down-weighted—they are never assigned with true zeros.

However, as proved irbg), in the computational optimum, the kernel weights are accessed
by the MKL algorithm via the information content of the particular kernelsigive af,-norm-
dependent formula (see E&.7); this will be discussed in detail in Secti@w.1). We mention
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Figure 3.2: Histograms of kernel weights as output by,-norm MKL for the various classes
on the VOC2009 data set (32 kernels< 20 classes, resulting in 640 values)/;-norm (rop
LEFT)), £1.125-norm (TOP RIGHT), ¢1 333-NOrm BOTTOM LEFT), and/3-norm BOTTOM RIGHT).

at this point that the kernel weights all converge to the same, uniform fatye— oo. We
can confirm these theoretical findings empirically: the histograms of thekemights shown
in Fig. 3.2clearly indicate an increasing uniformity in the distribution of kernel weightsrwhe
letting p — oo. Higher values op thus cause the weight distribution to shift away from zero
and become slanted to the right while smaller ones tend to increase its skeavtieskeft.
Selection of the/,-norm permits to tune the strength of the regularization of the learning
of kernel weights. In this sense the sum-kernel SVM clearly is an extreameely fixing the
kernel weights, obtained when lettipg— oco. The sparse MKL marks another extreme case:
¢,-norms withp below 1 loose the convexity property so that= 1 is the maximally sparse
choice preserving convexity at the same time. Sparsity can be interpratedhla¢ only a
few kernels are selected which are considered most informative aegdadthe optimization
objective. Thus, thé,-norm acts as a prior parameter for how much we trust in the informa-
tiveness of a kernel. In conclusion, this interpretation justifies the ushggrmrm outside
the existing choiceé; and/,. The fact that the sum-kernel SVM is a reasonable choice in the
context of image annotation will be discussed further in Se@idrl
Our empirical findings on ImageCLEF and VOC seem to contradict preaoas about
the usefulness of MKL reported in the literature, whérés frequently to be outperformed by
a simple sum-kernel SVM (for example, sé®{, 131))—however, in these studies the sum-
kernel SVM is compared té,-norm or¢s-norm MKL only. In fact, our resultgonfirmthese

findings: ¢;-norm MKL is outperformed by the sum-kernel SVM in all of our experiments
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Nevertheless, in this chapter, we show that by using the more gefamatrm regularization,
the prediction accuracy of MKL can be considerably leveraged, deanlg outperforming the
sum-kernel SVM, which has been shown to be a tough competitor in the 58t But of

course also the simpler sum-kernel SVM also has its advantage, althotgh computational
side only: in our experiments it was about a factor of ten faster than its Mithpetitors.
Further information about running times of MKL algorithms compared to sumeke3VMs

can be taken froms().

Remarks for Particular Concepts Finally, we show images from classes where MKL helps
performance and discuss relationships to kernel weights. We havalseemthat the sparsity-
inducing ¢;-norm MKL clearly outperforms all other methods on thettle class (see Ta-
ble3.1). Fig.3.3shows two typical highly ranked images and the corresponding kernghtge
as output by;-norm (LEFT) and/; 333-norm MKL (RIGHT), respectively, on the bottle class.
We observe that;-norm MKL tends to rank highly party and people group scenes. We con-
jecture that this has two reasons: first, many people group and partyssceme along with
co-occurring bottles. Second, people group scenes have similar mradigributions to im-
ages of large upright standing bottles sharing many dominant vertical itkea eninner head
section—see the left- and right-hand images in Big. Sparse/;-norm MKL strongly focuses
on the dominant HoG product kernel, which is able to capture the aforemedt&pecial gra-
dient distributions, giving small weights to two HoC product kernels and alcmspletely
discarding all other kernels.
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Figure 3.3: Images of typical highly ranked bottle images ad kernel weights from ¢;-MKL
(left) and #1 333-MKL (right).
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Next, we turn to theowclass, for which we have seen above thags-norm MKL outper-
forms all other methods clearly. Fi§.4 shows a typical high-ranked image of that class and
also the corresponding kernel weights as outpuf;bgorm (LEFT) and/; 333-norm (RGHT)
MKL, respectively. We observe théf-MKL focuses on the two HoC product kernels; this is
justified by typical cow images having green grass in the background. allbigs the HoC
kernels to easily to distinguish the cow images from the indoor and vehicleeslagsh asar
or sofa However, horse and sheep images have such a green backgimundhey differ in
sheep usually being black-white, and horses having a brown-black lgial® (in VOC data);
cows have rather variable colors. Here, we observe that the ratipteoyet somewhat color-
based BoW-C and BoW-S features help performance—it is also thosel&éehat are selected
by the non-sparsé, 333-MKL, which is the best performing model on those classes. In con-
trast, the sum-kernel SVM suffers from including the five gray-chkbased features, which
are hardly useful for the horse and sheep classes and mostly intradtliieraal noise. MKL
(all variants) succeed in identifying those kernels and assign thosel&evith low weights.
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Figure 3.4: Images of a typical highly ranked cow image and kenel weights from ¢;-MKL
(left) and ¢1 333-MKL (right).

3.4 Promoting and Limiting Factors for Multiple Kernel Learning

In the previous section we presented empirical evidence/thadbrm MKL considerably can
help performance in visual image categorization tasks. We also obseatdbdlyain is class-
specific and limited for some classes when compared to the sum-kernel 8€dgain Tables
3.2and 3.1 The same also holds for the ImageCLEF2010 dataset. In this section, we aim
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to shed light on the reasons of this behavior, in particular discussingyttireaf the average
kernel in Sectior3.4.], trade-off effects in Sectiod.4.2and strengths of MKL in SectioB.4.3
Since these scenarios are based on statistical properties of kernefiscahibe observed in
concept recognition tasks within computer vision we expect the results tahsfdrable to
other algorithms which learn linear models over kernels such2’ {23).

3.4.1 One Argument For the Sum Kernel: Randomness in Featur&xtraction

We would like to draw attention to one aspect present in BoW features, naineeymount of
randomness induced by the visual word generation stage acting as rithisespect to kernel
selection procedures.

Experimental setup We consider the following experiment, similar to the one undertaken in
(131): we compute a BoW kernel ten times each time using the same local featurég;atie
spatial pyramid tilings, and identical kernel functions; the only differdreteveen subsequent
repetitions of the experiment lies in the randomness involved in the generdtiba oode-
book of visual words. Note that we use SIFT features over the gragre that are densely
sampled over a grid of step size six, 512 visual words (for computatienalHility of the clus-
tering), and & kernel. This procedure results in ten kernels that only differ in the nrandéss
stemming from the codebook generation. We then compare the performaheesam-kernel
SVM built from the ten kernels to the one of the best single-kernel SVMragted by cross-
validation-based model selection.

In contrast to {31) we try two codebook generation procedures, which differ by their in-
trinsic amount of randomness: first, we depleyneans clustering, with random initialization
of the centers and a bootstrap-like selection of the best initialization (similar topten
‘cluster’ in MATLAB'’s k-means routine). Second, we depkextremely randomized cluster-
ing forests(ERCF) @1, 132), that are, ensembles of randomized trees—the latter procedure
involves a considerably higher amount of randomization compargehteans.

Results The results are shown in Tal8&5. For both clustering procedures, we observe that the
sum-kernel SVM outperforms the best single-kernel SVM. In partictités confirms earlier
findings of (L31) carried out fork-means-based clustering. We also observe that the difference
between the sum-kernel SVM and the best single-kernel SVM is much moneynced for
ERCF-based kernels—we conclude that this stems from a higher amoamdaimness is in-
volved in the ERCF clustering method when compared to conventienaans. The standard
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deviations of the kernels in Tab&6 confirm this conclusion. For each class we computed the
conditional standard deviation

std(K | y; = y;) + std(K | yi # yj) (3.5)

averaged over all classes. The usage of a conditional variance estisrijasiified because the
ideal similarity in kernel target alignment (cf. equatidn32) does have a variance over the
kernel as a whole however the conditional deviations in equa8di) Would be zero for the
ideal kernel. Similarly, the fundamental MKL optimization formuBa4) relies on a statistic
based on the two conditional kernels used in formd&)( Finally, ERCF clustering uses
label information. Therefore averaging the class-wise conditional atdrdkviations over all
classes is not expected to be identical to the standard deviation of the venoéd. k

Table 3.6: AP Scores and standard deviations showing amourtdf randomness in feature
extraction. Higher AP scores are better.

Method Best Single Kernel ~ Sum Kernel
VOC-KM AP: 44,42+ 12.82 45.84+ 12.94
VOC-KM Std: 30.81 30.74
VOC-ERCF  AP:42.60t 12.50 47.49+12.89
VOC-ERCF Std:38.12 37.89
CLEF-KM AP:31.09+ 556 31.73+5.57
CLEF-KM Std: 30.51 30.50
CLEF-ERCF AP:29.9%5.39 32.77+5.93
CLEF-ERCF Std38.58 38.10

AP Scores and standard deviations showing amount of ranelesrin feature extraction: Results from
repeated computations of BowW Kernels with randomly iniziedl codebooks. VOC-KM denotes
VOC2009 dataset and k-means for visual word generation, ¥BCF denotes VOC2009 dataset and
ERCF for visual word generation. Similarly CLEF denotes gi@@LEF2010 dataset.

We observe in Tabl8.6 that the standard deviations are lower for the sum kernels. Com-
paring ERCF and k-means shows that the former not only exhibits largetub standard
deviations but also greater differences between single-best and esual-las well as larger
differences in AP scores.

We can thus postulate that the reason for the superior performance ahthessnel SVM
stems from averaging out the randomness contained in the BoW kernefsr(sig from the
visual-word generation). This can be explained by the fact that averéga way of reducing
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the variance in the predictors/models3g). We can also remark that such variance reduction
effects can also be observed when averaging BoW kernels with vazgingcombinations or
other parameters; this stems from the randomness induced by the visdajevaration.

Note that in the above experimental setup each kernel usesithenformation provided
via the local features. Consequently, the best we can awegsaging—learning kernel weights
in such a scenario is likely to suffer from overfitting to the noise containederkéhnnels and
can only decrease performance.

To further analyze this, we recall that, in the computational optimum, the informedio-
tent of a kernel is measured By-norm MKL via the following quantity, as proved ip¢):

i’y P
B oo wls™ = | Y awikijajy; - (3.6)
Z'7j
In this chapter we deliver a novel interpretation of the above quantity; tetids we decom-

pose the right-hand term into two terms as follows:

ZaiyiKijajyj = Z o Kijo; — Z o Kija;.
i,j ,5lyi=y; 4.51yi#Y;
The above term can be interpreted as a difference of the support-vesighted sub-kernel
restricted to consistent labedsd the support-vector-weighted sub-kernel over the opposing
labels. Equation3.6) thus can be rewritten as
ey
8 x ( Z ;i Kija; — Z aiKijaj> . 3.7)
.3lyi=y; .31y #Y;
Thus, we observe that random influences in the features combined vetfitiivg support
vectors can suggest a falsely high information content in this measuserfiekernels. SVMs
do overfit on BoW features. Using the scores attained on the training dbsetswe can
observe that many classes are deceptive-perfectly predicted withgkBssfairly above 0.9.
At this point, non-sparsé,.;-norm MKL offers a parametep for regularizing the kernel
weights—thus hardening the algorithm to become robust against randee) pet permitting
to use some degree of information given by Equatiid)(
(137) reported in accordance to our idea about overfitting of SVMs #hdiKL and /;-
MKL show no gain in such a scenario whilg-MKL even reduces performance for some
datasets. This result is not surprising as the overly sparsdKL has a stronger tendency to
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overfit to the randomness contained in the kernels / feature generatiermbEerved amount of
randomness in the state-of-the-art BoW features could be an explandtjotne sum-kernel
SVM has shown to be a quite hard-to-beat competitor for semantic conespification and

ranking problems.

3.4.2 MKL and Prior Knowledge

For solving a learning problem, there is nothing more valuable pin@n knowledge Our em-
pirical findings on the VOC2009 and ImageCLEF09 data sets suggestenlttexperimental
setup was actually biased towards the sum-kernel SVM via usage of mawviédge when
choosing the set of kernels / image features. We deployed kernels ageur features types:
BoW-S, BoW-C, HoC and HoG. However, themberof kernels taken from each feature type
is not equal. Based on our experience with the VOC and ImageCLEF chedleme used a
higher fraction of BoW kernels and less kernels of other types suclstgrams of colors or
gradients because we already knew that BoW kernels have supatfiampence.

To investigate to what extend our choice of kernels introduces a biasdste sum-kernel
SVM, we also performed another experiment, where we deployed a Higlodion of weaker
kernels for VOC2009. The difference to our previous experiments lidsatwe summarized
the 15 BOW-S kernels in 5 product kernels reducing the number of kedfinoen 32 to 22. The
results are given in Tab& 7; when compared to the results of the original 32-kernel experiment
(shown in Table8.2), we observe that the AP scores are in average about 4 points smhlker. T
can be attributed to the fraction of weak kernels being higher as in the driaipariment;
consequently, the gain from using; gs3-norm) MKL compared to the sum-kernel SVM is
now more pronounced: over 2 AP points—again, this can be explainedtyigher fraction
of weak (i.e., noisy) kernels in the working set.

In summary, this experiment should remind us that semantic classification sete@s
substantial amount of prior knowledge. Prior knowledge impliggeaselectionof highly
effective kernels—a carefully chosen set of strong kernels constituteas towards the sum
kernel. Clearly, pre-selection of strong kernels reduces the nedddiaring kernel weights;
however, in settings where prior knowledge is sparse, statistical (araslagptive, adversarial)
noise is inherently contained in the feature extraction—thus, beneficedtefof MKL are

expected to be more pronounced in such a scenario.
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Table 3.7: MKL versus Prior Knowledge: AP Scores for a set of kenels with a smaller

fraction of well scoring kernels. Higher scores are better.

Class /¢,-norm 1.333 00

Aeroplane 77.82+ 7.701 76.28+ 8.168
Bicycle 50.75+ 11.06 46.39t 12.37
Bird 57.74+8.451 55.09t 8.224
Boat 62.8+13.29 60.9+ 14.01
Bottle 26.14+9.274 25.05+9.213
Bus 68.15+ 22.55 67.24+ 22.8
Car 51.72+ 8.822 49.5H4 9.447
Cat 56.69+ 9.103 55.55+ 9.317

Chair 51.67+ 12.24  49.85+ 12
Cow 25.33+13.8 2222+ 1241
Diningtable  45.91+4+ 19.63 42.96+ 20.17
Dog 41.22+ 10.14 39.04f 9.565
Horse 52.45+ 13.41 50.0H4 13.88
Motorbike 5437+ 1291 52.63t 12.66
Person 80.12+ 10.13 79.1A4 10.51
Pottedplant  35.69+ 13.37  34.6+ 14.09
Sheep 37.05+ 18.04 34.65+ 18.68
Sofa 41.15+11.21 37.88t 11.11
Train 70.03+ 15.67 67.8A 16.37
Tvmonitor 59.88+ 10.66 57.74 10.91
Average 52.33+12.57 50.23+ 12.79

In this set only five instead of 15 Bow-S kernels are used teatth a lower fraction of Bow-based
kernels compared to kernels over global histogram features

3.4.3 One Argument for Learning the Multiple Kernel Weights: Varying Infor-
mative Subsets of Data

In the previous sections, we have presented evidence for why the sunatiSVM is consid-
ered to be an efficient learner in visual image categorization. Nevershélesur experiments
we have observed gains in accuracy by using non-sparse MKL foy m@amcepts. In this
section, we investigate causes for this performance gain.

We formulate a hypothesis for the performance gains achieved by Mkih karnel is
informative for a subset of the data in the sense that the kernel, whdmus& VM, classifies

that subset well. These subsets can be partially disjoint between kentklsage varying
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sizes. The MKL information criterion given in EQB.(7) is able to exploit such differences in
informative subsets and is able to weight kernels properly despite bajtabal information
measure that is computed over the support vectors (which in turn arercloeer thewhole
datase}.

In this section, we will present experimental evidence for this hypotheswadrsteps. In
the first step we show that our kernels computed from the real ImageZlIBrdataset indeed
have fairly disjoint informative subsets. This suggests that our obdgr@gormance gains
achieved by MKL could be explained by MKL being able to exploit such aaten In the
second step we will create a toy dataset such that the informative subketaals are disjoint
by design. We will show that, in this controlled toy scenario, MKL outperfoaverage-kernel
SVMs in a statistically significant manner. These two steps together will sereeidence for
our hypothesis given above.

The main question for the first step is how to determine which set of samplesiisiaiive
for a given kernel matrix and how to measure the diversity of two setsatkbig two kernels.
Despite using ranking measures for most of the paper, we will stick hersitapde definition.
Consider one binary classification problem. The set of all true positivedytiaue negatively
classified test examples using a SVM will be the informative subset forreekdf we restrict
the kernel to the union of these two subsets of the test data set, then thimgeslassifier
would discriminate the two classes perfectly. Since we do not have test theta far the
Pascal VOC dataset, we will restrict ourselves to the ImageCLEF data.

The diversity measure will be defined in two steps: at first for two sets, fibrea pair of

kernels. The diversity measutS,, So) for two setsS;, So should have two properties: it

should bel if these sets are maximally disjoint and be equal to zero if one set is contained

in the other. The second property follows the idea that if the informativefsatie kernel is
contained in the informative set of another, then the first kernel is inferithe second and we
would like to reflect this in our diversity measure by setting it to zero as weddeipect little
gain from adding the first kernel to the second one in SVMs or MKL algoerith- we would
say the inferior kernel does not add any diversity.

Using these two conditions we note that two s&tsS, are maximally disjoint if|.S; U
So| = min(|S1] + |S2|, Niest),WhereNy., is the total number of test samples. Analogously, if

one setis contained in the other, th&hU.S2| = min(|S1], |S2|). Linear interpolation between
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these two extremes yield the diversity measure for a pair of%ets;:

7 |S1 U Sa| — min(|Sy], [Sa|)

d(Sy, Sy) = — ’ 3.8
(51, 52) min(|S1| + [S2|, Niest) — min(|S1], |Sa]) (58

Note that we do not use the symmetric difference here because this woodehimpty if one
set was contained in the other.

The diversity measuré(k;, k2) for two kernelsk,, ko, still given a fixed binary classifica-
tion problem, will be defined as the sum of the diversities between the two tizigve sets
from both kernels and the two true negative sets from both kernelsT'Pét) be the set of
true positive samples of kernk| andT'N (k) the corresponding set of true negative samples.
Then we define

d(TP(k1), TP(ks)) + d(TN(k1), TN (k2))
2

d(ki1, ko) = (3.9)

Treating true positives and true negatives separately makes sengsdfranost of the classes
the positive labeled samples constitute only a small fraction of all samples wédtshmpact
on the maximal number of true positives.

The diversity measure is actually a function of a classifier even thougtiftaeedce in our
case is made by varying the underlying kernels. In contrast to kergettalignment$9) (see
Sectionl.3.4), or relevant dimensionality estimation (RDHE)Q) it incorporates information
about the classifiers itself by using true positives and true negativesfofimer two methods
rely on kernels and ground truth labels alone. Support vector machinestdise the whole
kernel matrix in practice. The support vectors select and re-weighises of the kernel matrix
corresponding to training data samples close to the decision hyperplana&h gace. Thus,
the above alternative measures, which consider the whole kernel matspnonde always
optimal for explaining results of support vector machines. The motivatiomfwducing this
novel measure is that incorporating extra information from support vetachines may help
to validate a hypothesis related to classification results of support vectbimeac

Since the ImageCLEF2010 dataset Ba<lasses, we consider the average diversity of a
pair of kernels over all classes and the maximal diversity of a pair ofdkgiover all classes.
Figure 3.5 shows both diversities. We can see an interesting phenomenon: thsittger
are low between the first 15 BoW-S kernels. This may serve as an ekplafiar anecdotal
experiences that using MKL on BoW-S features alone yields no gairesdiVirsity is low but
the randomness in feature extraction as discussed in a subsection efaie in overfitting.
However for the whole kernel set of @2 kernels the diversities are large. The mean average
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diversity (when the mean is computed over all pairs of kernels and thagevef all93 binary
classification problems) i87.77, the mean maximal diversity over all kernel pairs7is68
when the maximum is computed over 88 binary classification problems. This concludes
the first step: our kernel set does have partially disjoint sets of trudvyeoand true negative

samples between pairs of kernels. The informative subsets of keredkrdy disjoint.

Average Diversities between Single Kernel Classifiers ~Maximal Diversities between Single Kernel Classifier Outputs
e

10 15 20 25 30

[Ty
wn
—_
<
—
[

20 25 30
Kernels Kernels

Figure 3.5: Diversity measure from Equation (3.9) between correctly classified samples for
all pairs of 32 kernels. Left: Average over all concept classs. Right: Maximum over all
concept classesRows and columns correspond to entries for a particulardténdex. Red colors
correspond to highest diversity, blue to lowest.

In the second step we will construct two toy data sets in which by design veekeanels
with disjoint informative subsets of varying sizes. The goal is to show thiat. Mutper-
forms the average kernel SVM under such conditions. This implies that KieiMormation
criterion given in Eq. 8.7) is able to capture such differences in informative subsets despite
being aglobal information measure. In other words, the kernel weights are global vgeigh
that uniformly hold in all regions of the input space. While on the first loolpjtears to be
a disadvantage, explicitly finding informative subsets of the input spaceadmata may not
only imply a too high computational burden (note that the number of partitionsofedement
training set is exponential in) but also is very likely to lead to overfitting.

We performed the following toy experiment. The coarse idea is that we cidatgtures
of dimension6k, wheren is the number of data samples. We will comphtieernels such that
the i-th kernel is computed only from the i-th consecutive block &dature dimensions from

all available6k dimensions. We want the i-th kernel to have an informative subset of sample
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and an uninformative complement. After drawing labels fonahmples, we partition all data
samples intd: blocks of varying size. The precise sizes of the blockwill be given below.

The i-th block of data samples will be the informative subset for the i-th kefirigs will
be achieved in the following way: for the i-th block of samples the i-th blockrmoiasions will
be drawn from two Gaussians having different means such that thercl@mussian depends
on the label of the data sample. This implies that each of the two Gaussiangdasixse for
creating the samples of one label. For all other samples (except for thédeth df samples)
the i-th block of dimensions will be drawn from an unconditional mixture of twau&sians,
i.e. which Gaussian is used will be independent of the sample labels. dtetieé i-th kernel
which is computed from the i-th block of dimensions contains discriminativerimdtion only
for the samples coming from the i-th block of samples. For all other samplesthhernel
uses features from a mixture of Gaussians independent of the samptevdiieh allows no
discrimination of labels. By this construction the i-th kernel will have the i-tto§samples as
discriminative subset. Furthermore, all kernels will have mutually disjointin&tive subsets,
because the i-th kernel is discriminative only on the i-th subset.

We generated a fraction pf, = 0.25 of positively labeled ang_ = 0.75 of negatively la-
beled training examples (motivated by the unbalancedness of training gatly @ncountered
in computer vision). The precise data creation protocol is given in theriexpetal section
parts for experiments one and two.

We consider two experimental setups for sampling the data, which differ inuh@er
of employed kernelg and the sizes of the informative sets. In both cases, the informative
features are drawn from two sufficiently distant normal distributions foneach class) while
the uninformative features are just Gaussian noise (mixture of GaussiEms experimental
setup of the first experiment can be summarized as follows:

Experimental Settings for Experiment 1 (k=3 kernels):

Let n; be the size of the I-th informative subset and= >"F_ n,; the total sample size.
{fi € R% | i = {1 : n}} are the features to be drawn wh@fé) is the r-th dimension of the
i-th feature.

Ni—123 : = (300,300, 500)
py:=Ply=+1) =025

Si={1:n1}, Sis1={m-1+1:n}
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o) { informative subse if € Spandr € {1+6(1—1):1} (3.10)

fi . .
! uninformative subset else

The features for the informative subset are drawn according to

f(r) N(0.0,07) ify,=-1 (3.11)
' N(0.4,07) ify; =+1 '

04 ifl=3

The features for the uninformative subset are drawn according to

o {0.3 ifl=1,2 (3.12)

£~ (1= po)N(0.0,0.5) + p N (0.4,0.5). (3.13)
Finally the I-th kernel is defined as

ki(f1, f2) = exp(—ol|mpsea—na (L = f))3), 1=1,... k (3.14)

wherer;,6(-1). (+) is the projection on the feature dimensions ranging in thg¢ set6(/ —
1) :1}.

For Experiment 1 the three kernels had disjoint informative subsets of 8jzg 23 =
(300, 300, 500). We usedl1100 data points for training and the same amount for testing. We
repeated this experimeb®0 times with different random draws of the data.

Note that the features used for the uninformative subsets are drawmaduae of the
Gaussians with a higher variance, though. The increased varianogesihe assumption that
the feature extraction produces unreliable results on the uninformatisesdbset. None of
these kernels are pure noise or irrelevant. Each kernel is the onlynafive one for its own
informative subset of data points.

We now turn to the experimental setup of the second experiment which igems®a to
five kernels:

Experimental Settings for Experiment 2 (k=5 kernels):

Let n; be the size of the I-th informative subset and= 3"/, n; the total sample size.
{fi € R | i = {1 : n}} are the features to be drawn wh@c(fé) is the r-th dimension of the
i-th feature.

ni—1.2.3.45 = (300,300, 500, 200, 500),
py =Py =+1)=0.25
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Sy ={1:n1}, Si=1 ={ni-1+1:n}

(3.15)

f(r) c informative subset ife Spandre {1+6(1—1):1}
: uninformative subset else

The features for the informative subset are drawn according to

i N(my, o) ify; =+1 '

04 ifl=1,2,3
my = ! » % (3.17)
0.2 ifl=4,5
. ifi=1,2
o =03 =1 (3.18)
04 ifl=23,4,5
The features for the uninformative subset are drawn according to
F) ~ (1= py)N(0.0,0.5) + prN(my, 0.5) (3.19)
Finally the I-th kernel is defined as
ki(f1, f2) = exp(—ol|lmpae—ng (i — f)I3), 1=1,...k (3.20)

wherer g 6-1).43 () is the projection on the feature dimensions ranging in th¢ set6(/ —
1) :1}.

As for the real experiments, we normalized the kernels to having staneardtidn 1
in Hilbert space and optimized the regularization constant by grid sear€hdn{10%|i =
—2,-1.5,...,2}.

Table3.8 shows the results. The null hypothesis of equal means is rejected bytavittes
a p-value 0f0.000266 and0.0000047, respectively, for Experiment 1 and 2, which is highly
significant.

Experiment 2 shows that the design of the Experiment 1 is no singular lutkyviie can
extend the setting of experiment 1 and observe similar results again whemusia kernels;
the performance gaps then even increased. Experiment 2 uses fie¢skastead of just three.
Again, the informative subsets are disjoint, but this time of si&s 300, 500, 200, and
500; the the Gaussians are centere.dt 0.4, 0.4, 0.2, and0.2, respectively, for the positive
class; and the variance is takenags= (0.3,0.3,0.4,0.4,0.4). Compared to Experiment 1,
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Table 3.8: AP Scores in Toy experiment using Kernels with djsint informative subsets of
Data. Higher scores are better. Lower p-values imply highestatistical significance of differ-
ences in scores.

Setup  /-SVM l1.0625-MKL  t-test p-value
1 68.72+£ 3.27 69.49+ 3.17 0.000266
2 55.07+2.86 56.39+2.84 4.7-10°6

this results in even bigger performance gaps between the sum-kerneb8¥khe non-sparse
£1.0625-MKL. One can imagine to create learning scenarios with more and more kérribés
above way, thus increasing the performance gaps—since we aim ativeretanparison, this,
however, would not further contribute to validating or rejecting our hygsith

Furthermore, we also investigated the single-kernel performance bfkesinel: we ob-
served the best single-kernel SVM (which attained AP score8.6h, 43.40, and58.90 for
Experiment 1) being inferior to both MKL (regardless of the employed noanametep) and
the sum-kernel SVM over the whole set of kernels. The differences significant with fairly
small p-values (for example, fdx »5-MKL the p-value was still aboud.02).

We emphasize that we did not design the example in order to achieve a maxifioal pe
mance gap between the non sparse MKL and its competitors. For suchraplexaee the
toy experiment of§6). Our focus here was to confirm our hypothesis that kernels in semantic
concept classification are based on varying informative subsets ofatae-@lthough MKL
computes global weights, it emphasizes on kernels that are relevant ¢arghst informa-
tive set and thus approximates the infeasible combinatorial problem of ¢mmg@un optimal
partition/grid of the space into regions which underlie identical optimal weight®ugh, in
practice, we expect the situation to be more complicated as informative sutsgigverlap
between kernels instead of being disjoint as modeled here.

Nevertheless, our hypothesis also opens the way to new directions ifoingaf kernel
weights, namely restricted to subsets of data chosen according to a meapiirgfiple. Find-
ing such principles is one the future goals of MKL—we sketched one gbgsittocality in
feature space. A first starting point may be the workl#4 135 on localized MKL.

We conclude the second step. MKL did outperform the average kekfidli8 this con-
trolled toy data scenario with disjoint informative subsets for each kerrtehay serve as

empirical evidence for our hypothesis why we observe gains using MKteal data: MKL
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with its global information criterion can exploit scenarios in which each Kesnaformative

for a subset of the data and these subsets are partially disjoint betweefske

3.5 Conclusions

When measuring data with different measuring devices, it is always abalte combine the
respective devices’ uncertainties in order to fuse all available serfeomiation optimally. For
images using many different features is a common strategy in visual objegnidon. This
raises the question diowto combine these features.

In this chapter, we revisited this important topic and discussed machine lgappnoaches
to adaptively combine different image features in a systematic and theoretiedllfounded
manner. While MKL approaches in principle solve this problem it has beservéd that the
standard/;-norm based MKL often cannot outperform SVMs that use an avevhgdarge
number of kernels. One hypothesis why this seemingly un-intuitive resultaoeyr is that
the sparsity prior may not be appropriate in many real world problems—eiedigewhen prior
knowledge is already at hand. We tested whether this hypothesis holdisrtoaenputer vision
and applied the recently developed non-spégd@KL algorithms to object classification tasks.
The ¢,-norm constitutes a less severe method of sparsification. By chopsiaga hyperpa-
rameter, which controls the degree of non-sparsity and regularizatan,d set of candidate
values with the help of a validation data, we showed thaMKL significantly improves SVMs
with averaged kernels and the standard sp&ardékL.

From a theoretical viewpoint the works ihd6 137) show that under certain conditions,
like differing decay rates of eigenspectra of kernel operators betkermels, non-sparse MKL
yields faster convergence rates for increasing sample sizes compaeat$e/;-norm MKL.
However, the analysis undertaken in this chapter identified overfitting pasti vector ma-
chines as one source of issues with information fusion in practice. Thk wdi67) and
stacking in 68) used cross-validation to generate SVM outputs which were subsequsaty
for computing kernels employed in information fusion. From a practical viemtplesigning
multiple kernel learning criteria based on outputs computed by cross-validatme potential
direction for reducing the overfitting issues with the current MKL appheac When compared
to more heuristic schemes of iteratively removing the weakest kernel fradding the next

best kernel into a uniform mixture and evaluating the kernel mixture usggealidation the
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approach to use MKL on crossvalidated outputs might offer an advantage a non-uniform
mixture of a subset of all kernels yields the optimal performance.

This approach based on outputs computed by cross-validation can ledappsettings
where higher overfitting is expected due to a more flexible or higher-dimesigparametriza-
tion such as localized MKL1(23, 126).

Future work may study the application of MKL in structured prediction setagsiggested
for label kernels used in classification with taxonomies in Se@i@rof Chapter2. Another
interesting direction is MKL-KDA {21, 122). The difference to the method studied in the
present paper lies in the base optimization criterion: KA leads to non-sparse solutions
in the support vectorsx of the SVM while ours leads to sparse ones (i.e., a low number of
support vectors). While on the computational side the latter is expected tvhatageous,
the first one might lead to more accurate solutions. We expect that the ideega&arization
over kernel weights (i.e., the choice of the norm paramgtgrelds similar effects for MKL-
KDA like for MKL-SVM. Another reason to believe in observing similar effeéin KDA is
that the first two observed effects in this study discussed in Se8tiboriginate from feature
and kernel design such that any kernel-based algorithm will have tovitbaghem.

Information fusion based on multiple kernel learning does matter in practme-sparse
MKL was employed for the best purely visual submission by mAP measure iinthge-
CLEF2011 Photo Annotation challengk (.8).
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Outlook

This thesis is naturally not a complete treatment of the field of image annotatiomakidg.

| left some closely-related questions aside. One can try a similar analysisatflwlid with
MKL-SVM in chapter3 using MKL-KDA. | did not expect a qualitatively new insights from
it, however MKL-KDA seems to be much slower than MKL-KDA, resulting in muiche for
experiments without any new message. Similarly, | did not combine the higralrchassifi-
cation analyzed in chapt@with MKL for the classifiers at the edges. | have no doubts that
one can see improvement from this combination compared to flat classificattoonwvith-

out MKL for some datasets. Again, | did not expect any qualitatively nesighits from that
straightforward combination.

There are many interesting questions which go beyond the setting of pure éanagtation
and ranking. One example is incorporation of more prior knowledge inlgmublike human
action recognition. Segmentation did not prove very useful for imagetatioo with highly
varying concepts in the sense that it is not used in the top submissions td becehmark
competitions on concept classification. It may however be useful in hugtemaecognition
where the images are expected to come from a narrower domain. They @easiicted by
showing humans being centered and of a certain minimum scale in the image.eAsoth
cessful example from a narrower domaini89 where segmentation is used to segment Cats
and Dogs for discriminating between breeds. The images show animalsackatel covering
a larger part of the image which constitutes a difference to generic coremygnition where
the scale and position of parts contributing to a concept can be small. | thiokporating

prior knowledge about a problem without ending up in messy engineeratrui® art.
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Another direction would be to consider more complex settings compared t@fsgyocy
ranking up the far goal of understanding an image by guessing the itivera€ components
in it. What happens if one wants not only to annotate concepts but unognsteat parts of
an image contribute to them? If one is interested in extracting interactions betereapts
or regions which contribute to the classification of belonging to a conceptfe Rumplex
problems could break the dominance of Bag of Word features or eveeldeased methods,
in particular when the complexity of a problem makes it hard to design oneditaéie function
or a score to be optimized. This hypothesis can be supported by the fadistrdminatively
trained part models are dominating in image detectiatt), Part models have been revived in
that setting. One extension of Bag of word features for representdtietations between parts
(beyond weighted but orderless sets of features as dord@)hwould be a view of images as
sets of local graphs with weighted edges and local features at the. Adueslea is to represent
an image by some way of aggregating many small graphs to circumvent proiotemsoise-
corrupted edge weights in single graphs. In contrast to earlier agm@esamn image would not
correspond to one single large graph but to a set of smaller ones aral &laitire can be part
of multiple disjoint graphs. The graphs allow to aggregate smaller regions mgter lanes and
encode relations between parts, yet avoiding the rigidity of early part Imeddch tried to
represent one object by one graph rigidly. The challenge would ben@rgie the graphs and
to aggregate the graphs into one representation as it is done with mappilegaldeatures
into a BoW feature. However the first step would be to define a meaningfutevunderstand
an image via an interpretation of relations in it.

A general question related to more complex image understanding settingshatgiaint
generative methods may have advantages over discriminative ones.ly Clisariminative
methods are strong when an objective function can be formulated and optimize with
BoW features, discriminative methods may be limiting on very complex image unaeirsga
problems where the design of one loss function to be used for optimizatiomesadifficult.
When a large number of different concepts and relations is to be predigtedrative methods

could become more attractive again.
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Appendix

5.1 Tables for Chapter2: Semantic Concept Recognition with a

Tree Structure over Concepts

The full comparison for Caltech256 animals 13 class subset and VOG2886wn in Tables

5.2and5.3.

Table 5.1: Errors on Caltech256 52 animals classes, 20 splitLower losses are better.

Method Taxonomy Loss 0/1 Loss
one vs all 30.66t 0.46 62.56+ 0.67
struct mc mrA = ér 32.29+0.35 66.91+ 0.64
struct mc stA = o7 33.48+ 0.39 68.86+ 0.60
struct mc stA = §y /4 34.09+0.38 68.05+ 0.64
local tax AM 30.01+ 0.31  79.82t 0.55
local tax scaled GM 29.62+0.34  76.19+ 0.57
local tax greedy path-walk  40.3%0.34  77.65t+ 0.46
struct tax mrA = or 30.58+0.31 81.19+0.53
struct tax SIA = i1 —a4 —+ -
struct tax sr A = gy 39.16£0.45 76.85-0.59

2Did not terminate after over seven days. Jobs consume over 20GB.
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Table 5.2: Errors on Caltech256 animals 13 class subset dat20 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 4249 1.46 57.04+ 1.98
struct mc mrA = or 42.764+0.96 64.35-1.40
struct mc sSrA = or 42.49+1.49 57.06+ 2.01

structme sr A = 4g; 42,40+ 1.29 57.05+-1.77

local tax AM 41,78+ 1.16 6257+ 1.42

local tax scaled GM 40.58+ 1.15 58.33+ 1.50
local tax greedy path-walk  47.661.13  63.33f 1.57
struct tax mrA = or 41.484+1.22 61.54L1.55
structtax sr A = 41554+ 1.65 58.21+ 2.20
struct tax sr A = 4y 44,32+ 1.07 59.22+1.51

Table 5.3: Errors on VOC2006 as multi-class problem, 20 spé. Lower losses are better.

Method Taxonomy Loss 0/1 Loss
one vs all 27.09+-1.88 50.54+ 2.51
struct mc mrA = §p 26.37+ 1.77 51.04+ 2.53

structmc sr A = orp 27.20+ 1.89 50.73+ 2.54
structme sr A = 4y 27.18+1.87 50.70+ 2.41

local tax AM 26.02+1.66 50.48t 2.34

local tax scaled GM 25.86:1.56 50.10+ 2.29
local tax greedy path-walk  27.161.65 51.85t+ 2.28
struct tax mrA = o7 25.78+ 1.67 50.174 2.17
struct tax srA = 6 27.24+1.61 52.55+ 2.23

structtax sr A = gy 2763+ 1.71 51.73+2.50
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5.2 Tables for Chapter3: Insights from Classifying Visual Concepts with Multiple
Kernel Learning

5.2 Tables for Chapter 3: Insights from Classifying Visual Con-
cepts with Multiple Kernel Learning

This supplement delivers the average precigfdp) scores for the ImageCLEF2010 test dataset

listed for all 93 visual concepts and dJ}-norms used including the average kernel as the spe-

cial case/™.

Table 5.4: AP scores on ImageCLEF2010 test data with fixed,-norm. Higher scores are

better. Part 1.

Partylife ~ FamilyFriends Beach BuildSights  Snow Citylife
o 28.41 50.82 39.36 54.94 12.75 50.14
(1125 30.52 52.55 42.75 57.23 19.97 52.79
(1333 30.84 52.26 42.71 56.87 20.38 528
72 30.46 51.54 41.77 55.72 19.94 52.34
£° 30.55 50.76 40.78 55.26 20.49 51.69
Landscape Sports Desert Spring Summer Autumn
I 81.42 7.464 10.85 5.962 28.39 26.12
01125 81.97 10.37 15.3 13.52 29.12 32.79
01333 81.8 10.33 15.12 15.59 29.42 33.49
02 81.48 10.19 16.55 16 29.34 33.26
£° 81.16 10.07 15.82 16.54 29.3 33.58
Winter NoSeason Indoor Outdoor NoPlace Plants
A 15.66 96.51 61.8 90.79 60.1 78.04
01125 19.49 96.61 62.53 91.39 60.65 79.28
01333 20.11 96.61 62.44 91.49 60.92 79.44
0?2 20.09 96.53 62.12 91.43 60.33 79.23
£ 19.81 96.47 61.69 91.26 60.06 78.85
Flowers Trees Sky Clouds Water Lake
ot 43.25 63.03 91.39 87.65 62.69 26.24
(1125 46.42 65.35 91.8 88 65.43 26.95
01333 47.47 65.39 91.73 87.93 66.03 27.13
2 47.89 64.87 91.64 87.77 66.01 26.92
£ 47.91 64.13 91.39 87.54 65.79 25.79
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Table 5.5: AP scores on ImageCLEF2010 test data with fixed,-norm. Higher scores are

better. Part 2.

River Sea Mountains Day Night NoTime
A 15.68 47.55 53.21 88.03 55.89 80.1
1125 19.75 48.74 52.86 88.68 57.85 80.83
01333 18.92 48.79 51.95 88.69 58.19 80.83
0? 18.57 48.19 51.03 88.54 58.13 80.62
£ 17.8 47.77 50.36 88.4 57.85 80.38
Sunny Sunset StillLife Macro Portrait Overexpos
A 46.51 81.16 37.64 48.5 65.58 17.43
(1125 49.82 81.58 40.72 50.2 67.58 19.9
01333 50.13 81.37 40.65 49.66 67.62 18.9
02 49.97 81.09 39.76 49.07 67.24 18.51
£ 50.08 80.77 39.54 50.02 66.72 17.61
Underexpos Neutrallllum MotionBlur Outoffocus PartBlur oBlur
A 27.74 98.38 13.35 10.28 72.37 90.92
(1125 28 98.4 19.82 15.08 74.26 91.39
(1333 27.43 98.31 19.72 14.88 74.2 91.14
02 26.99 98.26 19.22 14.21 73.8 91.21
£ 29.22 98.49 18.47 13.47 73.31 91.06
SinglePers  SmallGroup BigGroup NoPersons Animals Food
I 54.52 30.74 34.31 91.5 44.24 49.57
01125 55.85 32.88 41.11 91.99 49.78 52.73
01333 55.78 32.78 41.81 92.03 50.08 53.31
02 55.34 32.28 41.29 92 49.78 53.26
£ 54.81 31.83 40.5 91.81 49.17 52.81
Vehicle Aesthetic OverallQuality Fancy Architecture Stre
& 45.17 28.63 22.6 17.14 27.04 29.46
01125 47.62 28.25 22.41 17.95 28.8 33.7
01333 47.35 27.14 21.57 17.15 29.25 33.91
02 47 26.01 20.77 16.92 28.91 33.42
£ 46.25 28.34 22.46 18.82 27.84 32.79
Church Bridge ParkGarden Rain Toy Musiclnstr
& 5.29 5.087 42.02 0.6378 15.27 5.066
1125 8.15 7.437 44.44 0.8926 22.05 5.231
01333 7.441 7.546 44.75 0.9725 22.35 5.445
0?2 6.577 7.243 44.53 0.9875 21.97 5.609
£ 6.241 7.117 43.91 1.017 20.58 5.33
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Table 5.6: AP scores on ImageCLEF2010 test data with fixed,-norm. Higher scores are
better. Part 3.

Shadow Bodypart Travel Work Birthday VisualArt
o 11.23 22.46 11.68 4264 1.143 32.98
01125 10.93 23.84 12.89 4596 0.9434 32.99
01333 10.15 24.15 12.49 4.468 0.9152 32.62
02 9.702 23.63 12.33 4.314 0.8556 31.97
£ 10.89 23.07 12.69 4.257 0.8731 33.05
Graffiti Painting Artificial  Natural Technical Abstract
o 3.411 12.66 12.64 71.16 5.979 2.553
21125 4.467 18.57 13.96 71.66 6.107 2.33
01333 4.273 18.83 13.67 71.64 5.853 2.137
02 4.094 18.9 13.18 70.62 5.82 2.099
£ 3.882 19.58 13.97 71.32 6.01 2.025
Boring Cute Dog Cat Bird Horse
A 7.281 59.58 22.04 2.132 13.02 1.48
(1125 7.68 59.13 31.54 8.586 23.87 4.414
£1:333 7.388 59.46 31.99 8.97 23.98 3.931
02 7.23 58.08 31.85 8.208 23.33 3.408
£ 7.167 58.88 31.11 7.626 22.7 3.279
Fish Insect Car Bicycle Ship Train
A 0.915 11.51 31.27 18.9 8.157 12.97
(1125 1.844 16.2 34 26.17 9.749 15.42
(1333 1.684 15.6 33.89 26.13 9.164 14.4
02 1.594 14.94 33.51 25.53 8.688 13.45
A 1.605 15.06 32.54 24.5 8.581 12.48
Airplane  Skateboard Female Male Baby Child
o 5.913 0.2205 44.4 20.65 8.028 6.304
1125 11.08 0.4211 45.78 21.02 17.85 10.36
01333 11.14 0.41 45.51 21.01 1814 11.01
02 10.22 0.3963 4478  21.03 17.12 10.8
£ 10.18 0.4172 43.58 20.86 15.22 10.67
Teenager Adult Oldperson
A 21.32 53.03 5.068
L1125 23.69 54.33 5.624
01333 23.35 53.96 5.66
02 23.03 53.4 5.58
£ 23.78 53 5.46
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