Jan Lucas, Michael Andersch, Maurisio Alvarez-Mesa,
Ben Juurlink

Spatio-temporal SIMT and
scalarization for improving
GPU efficiency

Article, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-6262

Suggested Citation

Lucas, J.; Andersch, M.; Alvarez-Mesa, M.; Juurlink, B.: Spatio-temporal SIMT and scalarization for improving
GPU efficiency. - In: ACM Transactions on Architecture and Code Optimization:ACM TACO. - ISSN:
1544-3973 (online), 1544-3566 (print). - 12 (2015), 3. - Art.Nr. 32. - DOI: 10.1145/2811402. (Postprint version
is cited.)

Terms of Use
© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for lll .
your personal use. Not for redistribution. The definitive version was published in ACM WISSEN IM ZENTRUM l Technische

Universitat

Transactions on Architecture and Code Optimization (TACO), {VOL 12, ISS 3, (2015)} https:// A :
dl.acm.org/citation.cfm?doid=2818748.2811402. UNIVERSITATSBIBLIOTHEK Barfin

Spatio-Temporal SIMT and Scalarization for Improving GPU Efficiency

Jan Lucas, Technische Universitit Berlin

Michael Andersch, Technische Universitit Berlin
Mauricio Alvarez-Mesa, Technische Universitit Berlin
Ben Juurlink, Technische Universitét Berlin

Temporal SIMT (TSIMT) has been suggested as an alternative to conventional (spatial) SIMT for improving
GPU performance on branch intensive code. Although TSIMT has been briefly mentioned before, it was not
evaluated. Therefor we present a complete design and evaluation of TSIMT GPUs, along with the inclusion
of scalarization and a combination of temporal and spatial SIMT, named Spatio-Temporal SIMT (STSIMT).
Simulations show that TSIMT alone results in a performance reduction but a combination of Scalarization
and STSIMT yields a mean performance enhancement of 19.6% and improve the energy-delay-product by
26.2% compared to SIMT.

CCS Concepts: *Computer systems organization — Parallel architectures; Single instruction, mul-
tiple data;

Additional Key Words and Phrases: GPUs, temporal SIMT, branch divergence, scalarization

1. INTRODUCTION

GPUs have pervaded computing systems as massively parallel accelerators, and inte-
grated CPU-GPU systems along with the heterogeneous codes written for them have
become relevant for both industry and academia. Programming interfaces such as
CUDA and OpenCL have become commonplace, and GPU architectures have evolved
specifically for general-purpose computing on GPUs (GPGPU).

One of the main design decisions in GPUs has been the ganging of execution threads
into batches named warps, and in particular the sequencing of these warps onto an
array of execution units in a single-instruction multiple-data (SIMD) fashion. This way
of performing SIMD execution is supported by a hardware stack to manage divergent
thread control flow, and the resulting execution paradigm has become widely known
as single-instruction multiple-thread (SIMT) execution. While SIMT amortizes control
hardware over many execution units, research over the past years has shown that
this approach yields poor SIMD utilization under control divergence, i.e. when some or
most of the threads in a warp are inactive, thus not performing any useful work [Fung
et al. 2007].

In this paper, we evaluate an alternative approach to the classical spatial SIMT. It
has been proposed to base GPU cores on temporal SIMT (TSIMT), which is a different
way of mapping individual threads to execution units [Keckler et al. 2011]. Figure la
compares the spatial and temporal approaches intuitively. In the figure it is shown how
four warps (WO - W3) consisting of 4 threads each are executed, once for spatial and
once for temporal SIMT. On the left-hand side, spatial SIMT operates in a classical
SIMD fashion: All threads in a warp execute the same instruction and thus the in-
struction word is broadcast to all execution units every clock cycle. On the right-hand
side, temporal SIMT is shown as a transpose of the spatial SIMT mapping of warps
and threads to datapath units. Here, each warp is executed on only one specific lane,
and the threads corresponding to the warp are sequenced onto the scalar execution

This project received funding from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under the LPGPU Project (www.lpgpu.org), grant agreement n° 288653.
Authors’s address: J. Lucas and M. Andersch and M. Alvarez-Mesa and B. Juurlink, Technische
Universitdt Berlin, Sekretariat EN 12, Einsteinufer 17, 10587 Berlin,Germany

SPATIAL SIMT TEMPORAL SIMT SPATIAL SIMT TEMPORAL SIMT

I
TO T1 T2 T3 wo Wi w2 w3 Wo Wo : wWo' W1 W2 w3
w3 T3
‘ ‘ W1 Wil ''wo wi w2 W7
BEEE. CEEE e
= I
EEEE- -NEEE | oW
7"7’7’7\/\/0 Tgﬁ... wg WS WZ W5 : W5
A\ A\ A\ v A\ v v v - - :
ALU ALU ALU ALU ALU ALU ALU ALU I
(a) Mapping of warps and threads to execution (b) Comparison of conventional and TSIMT exe-
units in both spatial and temporal SIMT. cution for control-divergent code.

Fig. 1: Conventional SIMT vs. TSIMT. Different colors are used to symbolize different
warps on the core. In this comparison, warps are assumed to be 4-wide and cores are
assumed to have 4 execution units / 4 TSIMT lanes.

unit in that lane cycle by cycle. As such, TSIMT is reminiscent of a single lane vector
processor [Lee et al. 2013].

Beside divergent branches another situation where SIMT architectures waste exe-
cution cycles is when all threads in a warp not only execute the same instruction, but
do so on identical data as well. In this case, it would be more efficient to execute the
instruction only once instead of once per thread, thereby freeing execution resources.
By doing so the SIMD instruction is turned into a scalar instruction, and therefore this
technique is known as scalarization. Besides releasing execution resources, scalariza-
tion also reduces the pressure on the register file. This requires, however, that scalar
values are stored in such a way that all threads of a warp can access the value. In a
conventional GPU this requires additional broadcast networks and often specialized
dedicated scalar register files as well. In TSIMT GPUs, on the other hand, tiny modi-
fications to the existing register file suffice and the register file space can be used for
both scalar and vector values.

While the basic idea of TSIMT has been sketched in a patent [Krashinsky 2011] and
has been briefly described as an additional idea in two papers [Lee et al. 2013; Keckler
et al. 2011], a microarchitectural implementation and detailed performance analysis
have not been presented before. To fill this gap, we introduce a GPU design based on
TSIMT and perform a detailed analysis of its advantages and shortcomings.

Although TSIMT can improve the performance of control divergent workloads, it
can, as we will show in the analysis of simulation results, suffer from load balancing
issues. As a way to have both the control divergence mitigation of TSIMT and improve
the load balancing, we also propose and evaluate an architecture that combines the
traditional spatial SIMT with TSIMT, and we refer to it as spatio-temporal SIMT.

More concretely, the contributions of our work can be summarized as follows:

— For the first time, we present a detailed microarchitecture design and implementa-
tion of temporal SIMT for GPGPUs.

— We evaluate the TSIMT approach in detail and show that it is able to provide large
performance benefits for control divergent GPU codes in p-benchmarks, but suffers
from significant load balancing problems in real applications.

— We propose two optimizations to the basic TSIMT microarchitecture that reduce the
load balancing problem.

— We introduce and evaluate an architecture that combines spatial and temporal SIMT
and demonstrate that it exhibits performance improvements compared to both spa-
tial and temporal SIMT (STSIMT).

— We show how scalarization can be integrated in the proposed TSIMT architecture in
a way that requires less hardware than its integration in conventional SIMT GPUs.

— Finally, we evaluate power, energy consumption and energy efficiency of the architec-
tures presented and show that STSIMT with scalarization improves the energy-delay
product (EDP) by more than 25% compared to the SIMT baseline.

This paper is organized as follows. Section 2 describes related work, both on tempo-
ral SIMT and on handling control divergence on GPUs. After that, Section 3.8 intro-
duces and describes our TSIMT-based GPU design. Then, Section 4 describes Scalar-
ization and its integeration in TSIMT architectures. The performance evaluation re-
sults are discussed in Section 5. Finally, Section 6 concludes this paper.

2. RELATED WORK

Related work can be grouped into three categories: First, work describing temporal
SIMT, second, studies focusing on efficient execution of branch divergent codes, and
last, work concerned with the integration of instruction scalarization.

Temporal SIMT. The general idea of temporal SIMT execution is described in an
NVIDIA patent by [Krashinsky 2011], but the details provided are insufficient to de-
rive an implementation and furthermore no performance evaluation is included. In the
academic world, TSIMT has also been mentioned by [Keckler et al. 2011] in a paper
that describes that moving data across the chip is more energy-consuming than actual
computation. This paper introduces the Echelon GPU architecture that offers TSIMT
execution as well as many other features. The authors mention the potential benefits
of TSIMT for branch divergent applications, but neither, presents an implementation
nor an evaluation of Echelon.

Branch Divergence. A large body of work has been performed on how to improve
GPU performance when there is control divergence. Many techniques such as Dynamic
Warp Formation [Fung et al. 2007], Thread Block Compaction [Fung and Aamodt 2011]
and Large Warp Microarchitecture [Narasiman et al. 2011] reorder threads from mul-
tiple warps into fewer warps with more active threads per warp. All these techniques
keep the spatial SIMD property: All lanes execute the same instruction at the same
time, but differ in when and how threads are reordered. Furthermore, because these
techniques reorder threads between warps, memory divergence can increase and cor-
rectness problems for applications that rely on warp-level synchronization can arise.

Another, related technique called Simultaneous Branch and Warp Interweaving was
introduced by [Brunie et al. 2012]. They introduced enhancements to the GPU’s mi-
croarchitecture to a) co-issue instructions from two different branch paths and &) co-
issue instructions from different warps to the same SIMD unit. Interestingly, this ar-
chitecture shares a property with TSIMT, namely that the different lanes do not need
to share the same instruction. In SBWI, however, only two different instructions can
be executed at the same time, while in TSIMT each lane can execute a different in-
struction.

A common disadvantage of the techniques described above is that they can only im-
prove performance when the active mask meets certain conditions. One of the reasons
for these conditions is that the individual contexts of the threads that run on the GPU
are stored in a specific part of the GPU’s register file [Jayasena et al. 2004]. As a result,
it is generally not possible to freely swizzle and re-group threads for execution. TSIMT

takes a different approach that avoids this problem almost entirely at the expense of
higher issue throughput requirements.

[Vaidya et al. 2013] proposed an architecture in which 16-wide SIMD instructions
are executed over multiple cycles on 4-wide SIMD units. Two techniques are proposed
to accelerate execution when only a subset of threads is active: Basic Cycle Compres-
sion (BCC), where SIMD subwords are skipped if no thread is active, and a more costly
but also more powerful technique called Swizzled Cycle Compression (SCC) that em-
ploys crossbars to permute the operands prior to compaction to enable a more efficient
compaction.

[Lee et al. 2011] group different possibilities for data parallel accelerators into five
different groups: MIMD, Vector-SIMD, Subword-SIMD, SIMT and Vector-Thread (VT).
TSIMT can be seen as another variant. The programming model is MIMD, but the ex-
ecution units are similar to density-time vector lanes [Smith et al. 2000]. The lanes
share the same instruction fetch and decode frontend but are not bundled in groups
that execute the same instructions at the same time as in the architectures classified
as Vector-SIMD and SIMT. On the other hand, the TSIMT-lanes are also not as inde-
pendent as the lanes in the VT architecture. The control logic in each lane is limited
to a register storing a single instruction, control logic for the sequential register fetch
and the density-time execution of the stored instruction, while in VT each lane is able
to fetch its own instructions and can use a shared control processor.

Scalarization. [Lee et al. 2013] discussed scalarization as well mentioned TSIMT.
They developed a scalarizing compiler for SIMT architectures and evaluated architec-
ture independent metrics such as percentage of scalar instructions but did not evaluate
performance. They also described potential GPU architectures exploiting scalarized
code, such as SIMT datapaths with an additional scalar unit, SIMT datapaths with
scalars in a single SIMD lane, and TSIMT datapaths. The authors recognized that
scalarization and TSIMT match each other well, but, as mentioned before, no actual
implementation or evaluation is provided.

A similar analysis has been performed by [Collange 2011]. Like the previous study,
Collange implemented compiler support for scalarization, but in a just-in-time form
using GPUOcelot [Diamos et al. 2010]. The author presented the scalarization metrics
of the resulting code, i.e. dynamic instruction counts of scalar and vector instructions,
but no performance analysis is presented.

[Coutinho et al. 2011] transform GPU kernels to a SSA-based intermediate repre-
sentation called u-SIMD, afterward they analyze the divergence of the program in its
p-SIMD representation. They recognized that instructions can sometimes be scalar-
ized, even during divergent control flow, if their output registers are not alive at the
immediate post-dominator of the potentially divergence branch. However, they do not
perform register allocation and thus only report how many of the register in SSA form
could be scalarized, but do not report how many registers of which type are actually
needed after register allocation. The scalarization algorithm presented in this paper
directly works on the representation of GPU kernels used by NVIDIA and does not
require a transformation to a SSA-based representation and back. In this paper regis-
ter allocation is performed on the scalarized code and we discuss the modifications to
register allocation that are required for scalarized code.

[Xiang et al. 2013] studied the problem of scalarization as well, but consider uniform
values across warps as well. They introduce a hardware scalarization mechanism for
intra-warp uniform instructions. This mechanism, however, does not enable higher
occupancy. A scalar register file based architecture is also presented, but also does not
enable higher occupancy but only reduces energy consumption. Scalars are processed
using the same 8 element wide SIMD execution units as vector instructions, but scalar

Warp Scheduler

‘Instruction Reg Active Mask

Lane Register File

e
Warp Scheduler

e
LD/
i S B

TSIMT| |TSIMT TSIMT| TSIMT| |TSIMT TSIMT TSIMT TSIMT
Lane | Lane | Lane | Lane Lane | Lane | Lane | Lane

(a) TSIMT lane (b) TSIMT core

Fig. 2: Block diagrams visualizing the organization of a TSIMT lane and the construc-
tion of TSIMT SIMT cores from TSIMT lanes. In the figure, lanes are one-wide, and
cores are constructed from 8 lanes and have an overall occupancy of 16 warps at max-
imum.

operations are finished in 1 cycle instead of 4. While this improves performance, it
leaves 7 out of 8 ALUs unused during the execution of scalar instructions.

Finally, [Kim et al. 2013] studied the relationship of the different values processed
by a warp. They named this value structure and identified several important classes
such as uniform vector where all elements contain the same value and affine vectors
where all elements share a simple affine relationship to block- and threadids. The au-
thors focus on an architecture named fine-grained SIMT (FG-SIMT) that is closer to
purely compute-focused SIMT accelerators than to GPUs. They propose microarchi-
tectural mechanisms to exploit uniform and affine values, including an affine register
file as well as dedicated affine execution units. The proposed mechanisms were evalu-
ated on a conventional NVIDIA-like GPU architecture, but the authors state explicitly
that the lack of public knowledge about GPGPU architectures prevents them from per-
forming more than a preliminary design space exploration. Instead, they focused on an
evaluation using a VLSI implementation of an FG-SIMT design.

3. ATEMPORAL SIMT GPU ARCHITECTURE

These sections describes the proposed TSIMT p-architectures. As TSIMT-based GPUs
are still GPUs, most parts of the p-architecture are identical to conventional GPUs.
A good overview over conventional GPU micro-architecture is provided by [Bakhoda
et al. 2009]. Everything outside the GPU cores is unchanged: interconnect, memory
controllers, PCle interfaces and CTA scheduler. Many structures inside the GPU core
are also unchanged: instruction fetch and decode, caches, scoreboards and the recon-
vergence stack. In the following sections we will thus concentrate on the element that
are modified in TSIMT GPUs compared to conventional GPUs.

3.1. TSIMT Cores and Lanes

The basic building block of TSIMT GPU cores is the TSIMT lane. A block diagram
is depicted in Figure 2a. Such a lane consists of four key components: An instruction
register able to store a single warp instruction, a slice of the core’s register file, an
operand collector, private to the lane, and one-thread-wide execution resources for in-

teger, floating point, and memory instructions. Operationally, a TSIMT lane receives
a warp instruction along with the corresponding thread active mask from the core’s
warp scheduler and stores them into dedicated instruction and mask registers. The
instruction register is used to hold the instruction in place while the lane back-end
sequences through the warp’s threads, thereby decoupling the lane from the scheduler
while the lane is executing.

Figure 2b indicates how TSIMT lanes are used to construct cores with arbitrary
throughput. In a TSIMT core, multiple lanes operate independently and in parallel
processing the instruction words stored in their instruction registers. The overall num-
ber of threads and warps held in the core are evenly divided over all TSIMT lanes, e.g.
in a core with 8 lanes holding 64 warps at most, every lane will statically hold 8 of
the warps. Warps cannot switch between lanes as the thread context associated with
a warp is stored in the register file within the warp’s lane. This subdivides the core’s
warp pool into separate pools for every lane. In the core’s front-end, an instruction fetch
unit accesses the instruction cache and fetches as well as decodes instructions into an
instruction buffer (IB). The instructions buffer uses dedicated slots for each warp. A
single warp scheduler (WS) for the whole core utilizes a scoreboard to monitor which
instructions in the IBs have their dependencies fulfilled and are ready to issue. The
WS also monitors when TSIMT lanes complete the execution of an instruction and,
therefore, require a new instruction word to be sent to the lane’s instruction register.

The execution resources are warp-wide (i.e. 32-thread-wide) in conventional spa-
tial SIMT. In a TSIMT execution architecture, on the other hand, each TSIMT lane
is one-wide, meaning that one thread instruction can be executed every cycle. There
is, however, an entire spectrum of GPU architectures possible in between spatial and
temporal SIMT, that combine both execution paradigms. Such spatio-temporal SIMT
(STSIMT) architectures operate like TSIMT architectures, but each lane contains suf-
ficient execution resources to execute instructions of multiple threads in a single clock
cycle. For example, with a warp size of 32, one can construct a 4-way-spatial 8-way-
temporal SIMT architecture where each TSIMT lane contains 4-wide execution re-
sources. In this microarchitecture, a TSIMT lane sequences the 32-wide warp onto its
4-wide execution resources in 8 consecutive clock cycles. The performance trade-offs of
STSIMT as an evolution of basic TSIMT are discussed in Section 5.7.

STSIMT is not completely new, single lane implementations without compaction
have been used in existing GPU architectures such as NVIDIA Tesla [Lindholm et al.
2008a]. Tesla uses STSIMT to construct SIMT cores with lower throughput while
maintaining a large warp size. For example, in Tesla, 32-wide warps are sequenced
onto an 8-wide SIMD datapath over 4 clock cycles. One key difference to STSIMT as
proposed here is that existing approaches do not implement compaction and are there-
fore unable to provide any benefit for the execution of divergent applications. As in
both TSIMT and STSIMT lanes are usually busy for more than a single cycle, multiple
lanes can share a single frontend for instruction issue and decode. Tesla, however, does
not exploit this property of STSIMT. We use a baseline architecture similar to Tesla
for the experimental evaluation in Section 5.

3.2. Control Divergence

The TSIMT concept can efficiently provide large performance benefits when executing
control-divergent codes. Consider Figure 1b for example. It shows how a conventional
GPU core with 4 execution units and a TSIMT-based core with 4 lanes execute in-
structions from 8 different warps, where each warp is coded with a different color. For
the sake of conciseness, warps are assumed to consist of 4 threads each. The warp in-
structions executed are control divergent, i.e., some threads do not participate in the

execution and are inactive. For explanatory purposes, each warp instruction is shown
with a different active mask, although such situations are rare.

The figure shows that the conventional GPU architecture always requires one clock
cycle on all 4 ALUs to execute a warp instruction, regardless of the instruction’s active
mask. Threads that are switched off and the ALUs are left unused. In this example the
conventional GPU completes 15 thread instructions in 8 clock cycles for an overall IPC
of 16/8 = 2.0. On the TSIMT-based core, on the other hand, compaction is performed:
Warp instructions with some inactive threads are executed in fewer cycles than the
warp width. In fact they are executed in the minimum possible number of clock cycles,
e.g. a warp with 2 active threads utilizes one ALU for exactly 2 clock cycles. As such,
no execution resources are wasted. Overall, in this hypothetical example, the TSIMT
core completes the 15 thread instructions in 6 clock cycles, corresponding an overall
IPC of 16/6 = 2.67. We remark that the IPC in the TSIMT case would approach the
ideal IPC of 4 if more work was available, as TSIMT lanes 0 (on the left) and 3 (on the
right) are ready to receive new instructions after 3 clock cycles.

In spatio-temporal SIMT architectures, some compaction ability of TSIMT is lost. As
an example, consider an STSIMT architecture where each TSIMT lane contains 4-wide
execution resources. In this case, compaction only works for warp active masks with
aligned bundles of 4 consecutive inactive threads (e.g. 111100001111...). Warp instruc-
tions with active masks that switch more often between active and inactive threads
(e.g. 101010...), irregular (e.g. 100111010...) or unaligned (e.g. 1000011110000...) can-
not be compacted. Therefore, STSIMT architectures lose compaction ability compared
to TSIMT architectures, but exhibit larger latency hiding ability within each lane as
the core’s warp pool is partitioned over fewer lanes if the overall execution width of the
core remains constant.

3.3. Instruction Issue

In essence, TSIMT effectively trades instruction issue bandwidth for instruction exe-
cution bandwidth when executing branch divergent code. In conventional GPUs, the
instruction issue bandwidth is coupled with the execution bandwidth. If a SIMT GPU
needs four cycles to execute a warp, it will only need to supply one new instruction
every four cycles. If some improvement made it possible to execute instructions with
a smaller number of active threads faster in the execution units, speed would not im-
prove, because instructions could not be issued faster. In this work we assume a front
end that is able to issue one instruction per clock cycle. This provides a 4 times higher
instruction issue bandwidth than needed for perfectly convergent code. The SIMT GPU
can use this additional issue bandwidth to execute instructions on SPs, SFUs and
LDST units concurrently to exploit ILP. The total number of issued instructions is
always the same in SIMT, TSIMT and STSIMT, only the peak issue rate increases
in TSIMT. Each warp instruction needs to be issued only once, no matter how many
threads are active. Executing the operation over multiple cycles on all active threads
of the warp does not require additional issue cycles but is performed locally in the
TSIMT lane. In conventional SIMT threads from each warp are executed in lock-step
and explicit synchronization can be omitted when data is exchanged between threads
of the same warp. Contrary to some other techniques for improving the performance
of divergent applications such as thread block compaction [Fung and Aamodt 2011],
where threads can get reassigned to a different hardware warp and programmers can-
not expect that threads from same initial warp keep executing in lockstep, in TSIMT
lockstep execution of threads of the same warp is preserved and no modifications are
necessary to kernels.

3.4. Memory Access Coalescing

With respect to memory coalescing, a TSIMT architecture is largely unchanged from
a conventional GPU architecture. When a lane executes a warp-wide memory instruc-
tion, it generates one thread memory address per clock until all memory addresses
requested by the warp instruction are known. Then, the entire bundle is passed onto
the coalescing hardware in the load-store unit that reduces the requests to the min-
imum number of memory transactions. Finally, the transactions access the L1 cache
and, potentially, the lower levels of the memory hierarchy. If the L1 cache or the load-
store unit are stalled, then stall signals are propagated back to the warp scheduler
which will therefore be unable to issue memory instructions until the stall is resolved.
Using instruction replay the coalescing hardware can be simplified by reusing ma-
jor parts of the core [Diamond et al. 2014], which is also currently used in NVIDIA
GPUs [Ziegler 2011]. Our simulator is based on GPGPU-Sim which, however, currently
does not model instruction replay. For this reason we decided to model all architectures
without instruction replay.

3.5. Shared Memory

While global memory request coalescing in TSIMT and SIMT is similar, shared mem-
ory instructions are handled differently by TSIMT GPUs. In a conventional GPU,
threads within a warp must access different memory banks to prevent serialization
due to bank conflicts. In TSIMT, on the other hand, threads within the same warp
never produce bank conflicts as they are executed in consecutive cycles. Instead, warps
on different lanes that try to access shared memory simultaneously may produce inter-
warp bank-conflicts. Despite these differences the hardware needed for the shared
memory is almost identical for TSIMT and SIMT. Each lane sends up to one address
to the shared memory, the addresses are checked for conflicts and a crossbar connects
several SRAM banks to the input and output ports of the lanes. In TSIMT some ports
of the shared memory are often not used because the lane connected to that port is
currently executing an arithmetic instruction, this can reduce the number of shared
memory bank conflicts that occur. The lockstep execution of the warps in SIMT, on
other hand, often causes all lanes to execute a shared memory instruction at the same
time, which makes conflicting accesses more likely.

3.6. Latency Hiding

In conventional GPU architectures, the multitude of active warps residing on a core
or warp scheduler is used to hide the latency of currently executing instructions. A
rather large number of warps is required to hide the latency of deep pipelines or long-
latency memory operations [Wong et al. 2010]. In the TSIMT architecture described
above, the warps as well as the execution back-end of the core are partitioned into a
number of TSIMT lanes. This means that while the pipeline depth and memory latency
remain unchanged, the number of warps available for latency hiding within each lane
decreases considerably (i.e. by a factor equal to the number of lanes per core). This
does not necessarily impact performance negatively though, as a single instruction
contributes significantly more latency hiding ability in a TSIMT GPU core than to a
conventional one: In a conventional GPU, having one independent warp instruction
available for execution corresponds to one clock cycle of latency hiding. In the TSIMT
core, on the other hand, a single independent warp instruction keeps a TSIMT lane
busy for up to 32 clock cycles, depending on its active mask.

3.7. Register File

TSIMT register files use the same basic design idea as the register files of conventional
GPUs: Instead of using costly multiported memories, multiple single ported SRAM
banks are used [Lindholm et al. 2008b; Gebhart et al. 2012]. These register banks are
connected using a crossbar to a operand collector. The operand collector fetches the
operants over multiple cycles. In TSIMT instead of using a single very wide register
file with one 32-bit entry for each thread of a warp, each lane implements one small
32-bit wide register file. In a conventional SIMT register file only a whole warp wide
register entry can be addressed. Even if just a single thread is active and we are only
interested in the operand for that thread, a whole 1024-bit wide entry (32-bits for
each of the 32 threads of warp) would be fetched. In TSIMT only the operands of active
threads are fetched. Using individual register file lanes rather than a single monolithic
register file gives more flexibility with the placement of the components and helps to
keep distances between register file and execution units small. However, it also divides
the register file into multiple parts. The register file in each lane stores the registers
for warps assigned to that lane. Other lanes cannot execute instructions from these
warps as there is no connection between the lanes that would allow operands from
register file of lane to be passed to an execution unit located in a different lane. The
register file of each lane provides only enough bandwidth for executing instructions
at full speed in one lane. For this reason adding additional connections to allow the
execution of warps on other lanes would not increase performance, as the execution
units would stall because one register file lane cannot supply operands fast enough
to keep multiple lanes running at full speed. All registers required by one warp must
fit into a single lane it is not possible to store some registers of the warp in one lane
and some registers of the warp in the register file of a different lane. No additional
warp can be allocated, if all lanes together have sufficient free register resources for
one or multiple additional warps, but no lane alone can provide enough space for an
additional warp.

The operand collector reads and writes the operands in multiple cycles from multiple
banks. Reads and writes of multiple instructions are overlapped. In TSIMT we can use
this structure to fetch the operands for the different active threads. This multi-cycle
operand fetch avoids the need for an area and power-hungry multiported register file.
However, depending on the register allocation and divergence pattern, load balancing
problems between the register banks can appear and cause stalls.

Two optimizations related to the register file allocation are explored in this paper:
First, register resources are freed on warp exit instead of block exit and second, par-
tially filled warps only allocate registers for each active thread instead of the entire
warp. We use TSIMT+ to refer to an optimized version of TSIMT that implements
these two optimizations.

The first optimization makes it possible to launch new thread blocks sooner: In the
conventional GPU, as modeled by GPGPU-Sim, register resources are managed at the
thread block level. Registers allocated to a warp can only be reused after the entire
thread block has finished executing. This potentially leaves many register resources
unused for extended periods of time. With the optimization, warp resources are freed
as soon as a warp finishes execution. Consequently, new blocks are launched as soon
as sufficient resources are available. A similar approach has been described for con-
ventional SIMT GPUs by [Xiang et al. 2014]. Other than their solution, however, our
solution only permits the launch of a new block if sufficient resources are available to
launch a full thread block.

The second optimization can increase occupancy if thread block sizes are not divisi-
ble by the warp size. For example, if a thread block size of 112 is requested in a regular

GPU Register File using a single 256-bit wide lane
Component | Width | Size/Ports | Area (mm?) | Number | Total Area (mm?)

SRAM 256-bit | 8192 Byte 0.0296 8 0.2365
Crossbar 256-bit 8x8 2.0302 1 2.0302
Total 2.2667

GPU Register File using 8 independent 32-bit wide lanes
Component | Width | Size/Ports | Area (mm?) | Number | Total Area (mm?)

SRAM 32-Bit 1024 Byte 0.0036 64 0.2279
Crossbar 32-bit 8x8 0.0333 8 0.2664
Total 0.4943

Table I: Area estimates for different possible register file implementations at 40nm

GPU, registers for 128 threads are allocated. Our optimization allocates only the regis-
ters for 112 threads, i.e. the restriction to allocate registers with warp size granularity
is removed. In the case of 112 threads, three full warps of 32 threads and one half filled
warp would be allocated. When the next block is allocated, another half filled warp is
allocated to the lane where the half filled warp from the first block resides. This opti-
mization is not possible in the register files of conventional GPUs as it is enabled by
the ability of TSIMT register files to address registers with a per-thread granularity.
The register files of conventional GPUs can only be addressed with a per-warp gran-
ularity, because of this limitation partially filled warps leave some register file space
unusable in conventional GPUs.

3.8. Area

We expect that the die area required by a TSIMT GPU should be close to the area re-
quired by a SIMT GPU with an otherwise identical configuration. As already explained
in Section , most structures are unchanged from a SIMT GPU. On die storage is almost
unchanged: Only a few additional bits for the instruction register and the storage of
the active mask are required per TSIMT lane.

The number of bits in the register file stays the same, however, they are distributed
over a higher number of narrower banks. [Fung et al. 2009] estimated an 18.7% in-
crease in register file area, but we think this is an overestimate. We used CACTI 6.5 to
estimate the area of the SRAM banks and crossbars used in the GPU register file. We
tested two potential designs: First, a monolithic 256-bit wide register file and second, a
register file with 8 narrow 32-bit wide lanes with independent decoders and crossbars.
We show the results of this estimation in Table I. The second option is more flexible
and small at the same time. Even the SRAM banks are slightly smaller, but especially
the crossbar is reduced in area: the narrow input and output ports greatly reduce the
distances between the different ports. Splitting the register file into lanes, results in
a interleaved implementation of the register file that reduces the length of required
wiring. The additional flexibility offered by the second design is required for TSIMT,
but the second design can also be used to implement the register file of a conventional
GPU. As a conventional GPU does not require all the flexibility offered by this design,
slightly less area is likely needed as some parts of the address decoders could be shared
by multiple lanes.

4. SCALARIZATION

Previous work [Xiang et al. 2013; Collange 2011; Lee et al. 2013] has shown that in
SIMT architectures several threads often redundantly perform the same calculation
on the same vector operands. Such situations are common because in many cases it
is easier and faster to recalculate results in different threads than to calculate the
results only once and to broadcast them to all threads. Redundant calculation not only

3. Mark instructions

1.Optimistically mark all 2. Mark instructions . h
registers & instructions » accessing threadidx > and‘"ﬂ:zi:’zzttom"&uﬂsslers
scalar or memory as vector P 9
as vector
/Yes v
No 5. New vector & Ma:ft:&:egoi;it?orls gaih
6. Scalarization finished! =« instructions or -

flow dependencies

registers found?
as vector

Fig. 3: Scalarization Algorithm

wastes execution throughput, it also wastes storage as well as energy since copies of
the calculated values have to be stored for every thread.

Redundant calculations can be removed by applying a technique called scalariza-
tion [Xiang et al. 2013; Lee et al. 2013]. In this technique a static compiler algorithm
is used to identify instructions that always use the same operands in all active threads
of a warp. Likewise, it also identifies registers that always store the same value in all
threads of a warp. These instructions are then only executed once per warp instead of
once per thread, also the identified registers are stored once per warp instead of once
per thread. The hardware cost of integrating scalarization in the proposed TSIMT
architectures are much lower compared to regular GPUs, because since most of the
execution resources can be reused for the scalar and vector datapaths. Furthermore,
we improve upon the scalarization algorithm proposed in [Lee et al. 2013] by allowing
scalarization, even with divergent control flow.

4.1. Hardware Support for Scalarization

In conventional SIMT GPU architectures, implementing scalarization requires sep-
arate execution units and register files for scalar values and a broadcast network to
transport values from the scalar register file to the vector execution units. AMD’s GCN
architecture is an example of such an architecture [AMD 2012]. It combines scalariza-
tion and a spatial SIMT GPU. In a TSIMT based GPU, however, we may use the same
ALU and register file for both scalar and vector operations. The additional logic re-
quired for scalarization is limited to small changes: An additional addressing mode
in the register file is needed for scalar registers. Scalar registers can be packed more
densely as we only need to store one value per warp instead of one value per thread. Be-
side this difference in register file addressing, execution of scalar instructions is han-
dled just like execution of regular vector instructions with a single active thread. This
reduces not only the additional hardware required for scalarization, but also enables
more flexibility: As opposed to conventional GPU architectures, where the separate
scalar ALUs stay idle when no scalar instructions are available from the currently ac-
tive warps, in TSIMT GPUs with scalarization one type of ALU is used for both scalar
and vector instructions. This enables flexible adjustment to any ratio of vector and
scalar instructions.

4.2. Compiler Scalarization Algorithm

We present a new scalarization algorithm for code analysis, that is able to identify in-
structions that are guaranteed to use the same inputs in all active threads of a warp.
It also identifies which registers always store scalar values. The algorithm is shown in
Figure 3. The algorithm starts by optimistically marking all registers and all instruc-
tions as scalar (Step 1). Then, instructions reading the thread local memory or the
threadid register are marked as non-scalar (Step 2). Instructions reading non-scalar

registers are also marked as non-scalar (Step 3). Registers written by non-scalar in-
structions are also marked non-scalar (also Step 3). In Step 4 registers with control
flow dependencies on vector values are marked as vector. The main difference of our
algorithm compared to [Lee et al. 2013] lies in this stage: In the algorithm from Lee et
al. all registers and instructions are marked as non-scalar where convergent control
flow cannot be guaranteed. We found that their criterion is safe but too strict. If con-
vergent control flow cannot be guaranteed, we can still scalarize as long as the register
goes dead before the reconvergence point. This way only a single version of the regis-
ter per warp can exist at the same time and a scalar register can be used. After Step 4
we check if any new vector registers or instructions have been found, if yes we repeat
steps 3 to 5, if nothing changes we have found all vector registers and instructions. All
instructions and registers that are still marked scalar are guaranteed to be uniform
for the whole warp and can benefit from the scalarization capabilities of the hardware.

4.3. Implementation of the Scalarization Algorithm

The experimental evaluation presented in Section 5 uses GPGPU-Sim 3.2.1 [Bakhoda
et al. 2009] extended with our enhancements. By default this GPU simulator does not
simulate a real instruction set of any GPU but simulates NVIDIA’s PTX intermediate
code instead. PTX uses a generic ISA with an unlimited number of virtual registers. In
real systems the PTX code is mapped by the driver to the actual ISA of the employed
GPU. We implemented the presented Scalarization algorithm in the PTX loader of the
simulator. After parsing the PTX code and identifying the basic blocks and recover-
gence points, the algorithm explained in Section 4.2 identifies scalar instructions and
registers as well as vectors instructions and registers. In a real system the driver would
subsequently map the PTX code to the actual ISA of the GPU. This mapping includes
register allocation. Unfortunately GPGPU-Sim is not able to simulate this part of the
mapping process but instead simulates an unlimited register file and queries NVIDIA’s
ptxas tool to inquire the number of registers required per thread after register alloca-
tion. This partial information about the results of register allocation is used by the
simulator to restrict the maximum occupancy. This simulation shortcut of GPGPU-
Sim is problematic as not only the number of registers needed per thread influences
the performance but the register mapping also. Register allocation changes the timing
of the register fetch and additional pipeline stalls may happen due to write-after-read
hazards, that were not present in the PTX code prior to register allocation. GPGPU-
Sim is also able to simulate PTXPlus code, that closely resembles the ISA of NVIDIA’s
Tesla architecture, however, as NVIDIA’s Tesla architecture does not support scalar-
ization and scalarizing works with PTX code, all simulations in this paper use PTX
instead of PTXPlus.

To solve the issues with PTX we added a register allocator to GPGPU-Sim. A stan-
dard register allocator based on graph-coloring [Muchnick 1997] was implemented. It
first determines which virtual registers are alive at each instruction. Then an inter-
ference graph is constructed, in which every vertex represents a virtual register. The
edges connect all virtual registers that are alive at the same time. Then all vertices
are colored, so that no vertex is connected to another vertex of the same color. Each
color represents a physical register. As GPUs support an adjustable number of regis-
ters per thread, we try to color using the smallest number of colors possible. As this is
an NP-hard problem, we employ a heuristic [Lumsdaine and Gregor 2004]. To support
Scalarization this algorithm is executed twice: Once for allocating vector registers and
once for scalar registers.

An important change from the standard register allocation algorithm described
above is required while constructing the interference graph: Additional edges need
to be added to the graph to account for interferences between different threads from

SIMD Efficiency

Fig. 4: Effective SIMD efficiency for conventional SIMT.

the same warp. Scalar registers are shared by all threads of a warp. For this reason the
control flow of warp and the effect of the reconvergence stack need to be considered.
When threads execute a divergent branch a scalar register can be alive on one branch
direction but dead on the other branch direction. When such a branch is executed,
scalar registers that were considered dead from the perspective of a single thread can
be “resurrected” when the control flow reaches the reconvergence point. This would,
however, fail if the space occupied by the scalar register had been reused in the branch
path, where it is dead. For this reason all scalar registers that are alive at the first
instruction after a potentially divergent branch must also be considered alive at all
instructions of the other side of the branch.

5. EXPERIMENTAL EVALUATION

In this section the proposed TSIMT GPUs are experimentally evaluated using a GPU
simulator. It is organized as follows: Section 5.1 describes the experimental platform as
well as the benchmarks employed. Section 5.2 evaluates the properties of the TSIMT
core using a synthetic microbenchmark. In Section 5.3 TSIMT is evaluated using real
benchmarks, afterwards Section 5.4 explores load balacing issues we discovered in
TSIMT. Section 5.5 describes how optimization to the resource allocation can reduce
these issues and in Section 5.6 the performance effects of different design tradeoffs
are examined. Section 5.7 evaluates STSIMT, and Sections 5.8 and 5.9 analyze the
effects of Scalarization. Last, but not least Section 5.10 looks at the power and energy
efficiency of TSIMT and STSIMT.

5.1. Experimental Platform and Benchmarks

For microarchitecture simulations, we utilized the cycle-level GPU simulator GPGPU-
Sim 3.2.1 [Bakhoda et al. 2009] and extended it to support TSIMT. For the evalua-
tion, we selected a large set of benchmarks listed in Table II from multiple widely-
known sources such as the popular Rodinia benchmark suite [Che et al. 2009] and the
GPGPU-Sim repository [Bakhoda et al. 2009]. We also included a version of breadth-
first search using the virtual warp-centric programming model [Hong et al. 2011]. Ta-
ble IIT shows our used GPU configuration. We selected a similar configuration as the
configuration used in [Fung and Aamodt 2011], however, these results are not still not
directly comparable, because Fung et al. used a much older version of GPGPU-Sim.
The benchmarks are selected to contain both very control-divergent kernels as well
as almost and fully coherent kernels to be able to see the performance impact of TSIMT
on both types of applications. The SIMT bars in Figure 4 quantify the degree of di-
vergence by showing the average SIMD efficiency for each benchmark without com-

Abbr. Description Kernels] Domain Blocks Threads Source
per Grid per Block
AES AES Encryption 1 Cryptography 257 256 [Bakhoda et al.
2009]
BFS Breadth-first search | 2 Graph Algorithms 1954 512 [Che et al. 2009]
BWC BFS warp centric 1 Graph Algorithms 977 128 [Hong et al. 2011]
BP Back Propagation 2 Pattern Recognition 4096 256 [Che et al. 2009]
CP Coulombic potential | 1 Physics Simulation 256 128 [Bakhoda et al.
calculation 2009]
DG Discontinuous 3 Physics Simulation 268, 84, 112, [Bakhoda et al.
Galerkin solver 268, 603 256 2009]
GAU Gaussian Elimina- 2 Linear Algebra 1,2704 512,16 [Che et al. 2009]
tion
HOTSP | HotSpot 1 Physics Simulation 1849 256 [Che et al. 2009]
IDCT H.264 IDCT 2 Video Compression 252,231, 192 [Wang et al. 2013]
100, 130
LIB Libor stock option | 2 Computational Finance 64 64 [Bakhoda et al.
calculation 2009]
LPS 3D Laplace Solver 1 Physics Simulation 100 128 [Bakhoda et al.
2009]
LUD LU decomposition 3 Linear Algebra 1-155 16,32,256 | [Che et al. 2009]
MC H.264 Motion Com- | 2 Video Compression 8160 64 [Wang et al. 2015]
pensation
MGST Merge sort 4 Sorting 256,4, 512,256, [NVIDIA 2011]
4,2048 256,128
MUM DNA sequence 2 Bioinformatics 196, 316 256,256 [Che et al. 2009]
alignment
NN Nearest Neighbors 1 Data Mining 168 256 [Che et al. 2009]
NW Needleman wunsch 2 Bioinformatics 1-128 16 [Che et al. 2009]
PR Parallel reduction 2 Basic Parallel Algorithm 64,1 256,32 [NVIDIA 2011]
RAY Raytracing 1 Computer Graphics 512 128 [Bakhoda et al.
2009]
STO StoreGPU 1 Database 1-260 2-64 [Al-Kiswany et al.
2008]
VIS Visibility Calcula- | 1 Game Al 24 256 AiGameDev
tion

Table II: GPGPU benchmarks used for experimental evaluation.

Parameter Value Parameter Value
GPU cores 30 SP units / core 8
Memory channels 8x 64-bit SFU units / core 2
Core clock 1300 Mhz L1 D-cache / core 32 KB
Interconnect clock 650 Mhz L1 I-cache / core 4 KB
Memory clock 800 Mhz L2 cache 1 MB
Shared mem. / core 64 KB Max. warps / core 32
Max. blocks / core 16 Process Node 40nm

Table III: GPU configuration used for experimental evaluation.

paction. For each warp instruction, SIMD efficiency is defined as the ratio of active
threads to the maximum number of threads per warp. The maximum SIMD efficiency
that can be achieved is therefore 1.0. To arrive at the average SIMD efficiency for
the entire kernel, the per-instruction SIMD efficiency is averaged over all executed
instructions. Figure 4 groups the benchmark kernels into two categories separated by
the blue dashed line. Divergent benchmarks are shown left of the line, these kernels
have an average SIMD efficiency of less than 85%. The remaining kernels to the right
of the line are called coherent benchmark kernels.

5.2. Synthetic Benchmark Analysis

To demonstrate the performance of a TSIMT-based GPU architecture in an isolated
fashion, we developed a microbenchmark that enables us to precisely control both the
warp active masks and the overall number of active warps (i.e. occupancy). We exe-

cuted this microbenchmark both on a conventional GPU core and on a TSIMT GPU
core, while varying the number of active threads per warp and occupancy, and mea-
sured core IPC. For this experiment, the core’s configuration is as described in Table I1I
(execution throughput of 8 thread instructions, warp size of 32 threads). The results of
these experiments are shown in Figures 5a and 5b. Both figures show the IPC achieved
as a function of the number of active threads per warp for different numbers of active
warps. (1 (W1) up to 32 (W32)).

Starting with the conventional GPU (Figure 5a), the effect of reducing branch di-
vergence (i.e. the horizontal axis) is a corresponding linear increase in IPC (with an
increase in active threads per warp). The maximum per-core IPC of 8 is only achieved
when the execution is coherent, i.e. there is no control divergence. The number of ac-
tive warps, on the other hand, has no effect on performance, provided it exceeds 4. The
measurements for 4, 8 and 16 active warps are hidden behind the results of 32 ac-
tive warps, as 4 warps are sufficient to provide full performance. Additional warps are
not needed to tolerate the latency of the arithmetic pipeline but tolerate long latency
memory accesses. As having many warps is important for hiding instruction latency
on GPUs, the effect of having a small number of available warps is directly linked to
the type of instructions executed. As our microbenchmark utilizes math instructions
with relatively short latency, only the pipeline latency must be hidden. This effect is
observed in the figure, where only the configurations with 1 and 2 active warps are
insufficient to fully hide the latency. Therefore, these configurations cannot reach full
performance.

The microbenchmarking results on the TSIMT architecture (Figure 5b) are vastly
different. We begin by looking at the effect of the number of active threads per warp
in the full-occupancy configuration with 32 active warps. The figure shows that the
maximum IPC of 8 is reached much sooner than on the conventional GPU at only 8
active threads per warp. Below this number performance increases linearly, with the
number of threads. This behavior is caused by insufficient instruction issue bandwidth:
On a GPU configuration with 8 TSIMT lanes and an instruction issue bandwidth equal
to that of the baseline GPU (i.e. one warp instruction per clock), the scheduler will be
busy for exactly 8 clock cycles before it can re-issue to the same lane again. Therefore,
each lane must be able to at least hide a number of clock cycles equal to the number of
lanes per core with execution. To hide 8 clock cycles, a lane requires a warp instruction
with at least 8 active threads. If there are fewer than 8 threads active in an instruction,
the lane completes the instruction “too soon” and then remains idle until the warp
scheduler issues a new warp instruction to it.

Next, we consider the effect of the number of active warps on TSIMT GPU perfor-
mance. Figure 5b shows that a small number of active warps has a stronger impact
on the performance of the TSIMT-based GPU than on the conventional GPU. In fact,
having only a few warps available on the core enforces an upper bound on the achiev-
able performance within that core. The figure demonstrates that this upper bound is
equal to the number of available warps, e.g. with 4 active warps, the maximum achiev-
able core IPC is 4. This can be explained by the warp allocation scheme in the TSIMT
architecture: As the warp set is statically partitioned across all TSIMT lanes, having
fewer than 8 active warps on the core means that some TSIMT lanes will not have any
warps allocated to them. As a result, TSIMT cores can never reach full performance if
the number of warps is so small that some lanes remain empty.

Comparing the results for SIMT and TSIMT reveals that TSIMT provides only rel-
atively small speedups, when the average number of active threads per warp is high.
Even severe slowdowns by 50% are possible in case less than 8 warps are available.
On the other hand, speedups between 2.5x and 4x are possible if 8 or more warps are
available and 12 or less threads per warp are enabled.

|-—tW1 e—e W2 == W4 < W8 ~— WI6 o o W32 |-—tW1 e—e W2 == W4 < W8 ~— WI6 o o W32

[C - SR«
IPC
[C - SR«

IPC
IS

S

3 3
2 2
1 17
% 5 10 15 20 75 30 % 5 10 15 20 75 30
Active Threads per Warp Active Threads per Warp
(a) Regular SIMT-based GPU (b) TSIMT-based GPU
[~ W1 oo W2 52 W4 ~~ WB — WI6 o o W32
4.5
4.0 X
3.5 a5
3.0 hN
Q
325
L7
8 2.0
wn
1.5

1.0
0.5
O.G0

5 10 1.5 20 25 30
Active Threads per Warp

(c) Speedup of TSIMT over SIMT

Fig. 5: Microbenchmarking results showing the speedup of TSIMT over regular SIMT
for different combinations of active warps and threads per warp.

Additional insights can be gained by considering the speedup over regular SIMT.
The speedup is shown in Figure 5. The speedup peaks close to four with 16 and 32
warps and 8 active threads per warp. For smaller numbers of active threads, TSIMT is
unable to provide additional speedup as the warp scheduler cannot issue new instruc-
tions to the lanes any faster. In configurations with large numbers of active threads
but small numbers of active warps, TSIMT exhibits slowdowns over regular SIMT. In
the microbenchmark, the largest possible slowdown is equal to 0.5, as regular SIMT
performance also decreases with only one or two active warps due to the inability to
hide the pipeline latency. The slowdown of TSIMT over regular SIMT can be larger
for real-world kernels, however, as such kernels normally contain some amount of ILP,
which increases the ability of SIMT GPUs to hide the pipeline latency, even if only 1
or 2 warps are active. For TSIMT, on the other hand, ILP does not increase the per-
formance when only a single warp is active. While ILP provides more independent
instructions to the warp scheduler, these instructions can only be executed on the lane
that is already busy. Lanes without any active warps remain idle. For this reason,
benchmarks with only a few active warps per SM can experience drastic slowdowns
with TSIMT. In the worst case (1 active warp, no control divergence, large amounts of
ILP), TSIMT can never achieve more than one eight of SIMT’s performance.

100000 200000 300000 400000 ' 500000
tlcycles]

|”|n||||| f ' :
'H'“'F |' | ; H

OFENWEULGO-OW

Qo

1P
(a) DG_0 benchmark on unoptimized TSIMT

IR |
w..qllﬁn R
_ Il 0.8
i 07
IR i oS
,IIIIIE rllll IIIIJ 1l ||||| 8“;
100000 200000 300000 400000 500000 o
t[cycles] Cola
P
(b) DG.0 benchmark on optimized TSIMT
0.7
0.6
0.5
0.4
0.3
0.2
100000 200000 300000 200000 500000 s
tlcycles] 2
IPC
(¢) DG_0 benchmark on TSIMT without lane lock
EEE TSIMT = TSIMT+|
B T
N I
g1
208
15: 0.6
[
204
w0
0.2
0'090'\00‘\‘\’&0000’50%0‘\0'\0 QA 9. %9 5%>5» 90 0 1,599,570 1,70
NSRRI S %{,ﬁ;&%& PELEPETETRSE @ﬁ/é\'gag(;é@goé%&

Fig. 7: TSIMT GPU Speedup compared to the baseline

5.3. Full Benchmark Analysis

Figure 7 depicts the speedup of a TSIMT-based GPU over the conventional GPU. The
benchmarks on the horizontal axis are sorted by increasing average SIMD efficiency.
The dotted line separates the divergent (left-hand side) from the coherent (right-hand
side) benchmarks. For both types of benchmarks, the geometric mean is shown as well.

As the figure reveals, a straight implementation of TSIMT does not perform as well
as one might expect. There are cases where TSIMT provides substantial performance
benefits, but the overall effect from TSIMT is an average performance loss of 7.3%,

both for the divergent as well as for the coherent benchmarks. A significant perfor-
mance improvement is obtained, e.g., for the GAU_1 kernel, but a severe slowdown
is incurred in other kernels such as LUD_1 or the (coherent) DG_1 kernel. Some co-
herent benchmarks show increased performance due to the changed shared memory
handling. As explained in Section 3.5 TSIMT can reduce the number of shared memory
bank conflicts. Interestingly, the five most divergent kernels (LUD_0, MUM_0, MUM _1,
NW_0, NW_1) experience either no change or a performance loss on TSIMT. Looking
at the SIMD efficiency provides a first hint of the possible performance improvements.
As Figure 4 reveals, even most divergent benchmarks have SIMD efficiencies of more
than 50%, and only LUD_0, MUM_1, MUM_0, NW_0 and NW_1 have SIMD efficien-
cies below this level. As discussed already in the last section, kernels with high SIMD
efficiency usually cannot benefit from TSIMT.

5.4. Load Balancing Issues

While investigating the matter we discovered that the limited performance improve-
ments of TSIMT were due to load balancing issues. To illustrate these issues, we de-
veloped a tool that generates graphs that show IPC over time for each lane of one core.
One these graphs is shown in Figure 6a for the DG_0 kernel. It can be seen that lanes
6 and 7 are completely empty, while lanes 2 and 5 frequently run out of work. DG_0’s
block size of 84 threads largely explains this behavior: A block of 84 threads is mapped
to 2 full warps and 1 partially filled warp with 20 active threads. Furthermore, because
of the high register requirements of this kernel, each core only holds at most 2 blocks
simultaneously. The full warps are mapped to lanes 0, 1, 3, and 4 while lanes 2 and
5 execute the partially filled warps. Because the warps are only partially filled, they
execute and finish much faster than the full warps. But this does not result in any
performance advantage: The lanes must stay idle until the complete block is finished.
To gather event more insight into the effects of load balancing we recorded how
many lanes on average had warps allocated to them and how many of these lanes had
usable warps. Lanes can have warps allocated to them, but can still stall because all
its warps are currently waiting for long latency memory operations. We recorded this
information in the two lanes active columns of Table IV. Static means that at least one
warp is allocated to the lane. However, some of these lanes are still stalled, because all
warps allocated to them are waiting for long latency memory operations. The dynamic
column shows how many lanes on average have at least one warp available, that is not
stalled by a long latency operation. This can also be considered be the average effective
width of the TSIMT core. In 19 out of 37 benchmarks more than 7 lanes on average
have warps allocated to them, however, only 2 kernels have more than 7 lanes with
usable warps. Some kernels such as BFS_0 or DG_2 have warps allocated to almost all
lanes, but only a small number of lanes can be active because almost all warps are not
available for scheduling since they are waiting for long latency memory operations.

5.5. Register Allocation Optimizations

As explained in Section 3.7 two optimizations of TSIMT register resource allocation
can potentially improve the performance: First, resource deallocation on warp instead
of block exit and second, allocating registers only for active threads instead of allocat-
ing register for the entire warp.

Figure 6b again shows IPC over time per TSIMT lane for an execution of DG_0 with
these optimizations. Most lanes are now busy at the start of the kernel. But at the end
of the kernel a strong tail effect is visible: only 1 of the 8 lanes are still busy.

The performance of these optimizations are shown in Figure 7. The overall effect of
these optimizations is a slightly better performing version of TSIMT, called TSIMT+,
with 6.0% performance loss compared to the SIMT baseline and a 1.4-% improvement

Kernel Issue Conflicts Lanes active Warps
1 2 >3 Dynamic | Static
AES 0 9.34% 1.45% 1.23% 4.70 7.66 7.66
BFS_0 8.92% 1.79% 0.75% 1.14 7.69 26.68
BFS_1 15.44% 4.45% 3.12% 3.06 6.84 15.25
BP0 7.59% 2.05% 3.06% 6.72 7.97 23.14
BP_1 7.62% 0.81% 0.40% 7.02 7.97 15.16
BWC_0 5.11% 0.29% | 0.03% 2.50 7.81 25.14
CP0 4.95% 0.07% 0.01% 6.55 6.71 17.68
DG.0 7.18% 0.33% 0.01% 3.89 4.95 4.95
DG.1 10.17% 0.73% 0.04% 4.76 5.93 10.15
DG.2 10.45% 1.61% 0.27% 1.85 7.82 27.81
GAU.0 12.46% 1.78% 0.37% 1.11 1.61 241
GAU_1 17.87% 3.58% 0.80% 3.80 7.55 14.29
HOTSP_0 10.24% 2.12% 1.34% 5.34 7.72 7.72
IDCT.0 5.14% 1.14% 1.07% 4.65 7.47 19.89
IDCT.1 3.14% 0.44% 0.32% 4.86 7.67 20.47
LIB.O 1.44% 0.01% 0.00% 3.24 4.08 4.08
LIB_1 1.86% 0.02% 0.00% 2.87 4.11 411
LPS.0 16.61% 3.92% 1.42% 4.47 6.43 10.09
LUD.O 0.00% 0.00% 0.00% 0.13 0.33 0.33
LUD1 0.00% 0.00% | 0.00% 0.23 0.38 0.38
LUD.2 13.58% 1.78% 0.31% 4.92 7.05 20.95
MC.0 11.47% 1.17% 0.13% 7.47 7.86 19.31
MC_1 6.94% 0.45% | 0.04% 5.14 7.85 20.73
MGST.0 7.04% 0.69% 0.28% 6.62 7.60 15.18
MGST-1 5.42% 0.73% 0.57% 0.87 2.57 2.57
MGST_2 10.13% 1.93% 1.09% 1.95 2.59 2.59
MGST-3 13.59% | 2.03% | 0.46% 5.22 777 28.56
MUM_0 7.26% 0.97% 0.31% 2.37 7.36 20.80
MUM_1 9.01% 1.05% 0.47% 1.08 5.98 8.91
NN_O 9.51% 1.31% | 0.67% 6.53 7.06 21.11
NW.0 2.70% 0.05% 0.00% 0.23 2.54 2.54
NW_1 2.91% 0.06% 0.00% 0.20 2.55 2.55
PR.O 3.87% 0.08% | 0.02% 1.95 7.92 16.77
PR_1 0.00% 0.00% 0.00% 0.13 0.33 0.33
RAY.0 8.91% 1.24% 0.31% 6.14 7.50 7.50
STO_0 2.43% 0.99% 1.05% 2.24 4.89 4.89
VIS.0 23.60% | 6.71% | 1.86% 0.66 3.03 3.03

Table IV: Benchmark Scheduling Statistics

over unoptimized TSIMT. For most benchmarks, the optimizations have no effect, but
some particularly problematic cases (MGST_3, DG_0 and DG_1) show speedups be-
tween 5% and 10%. Unfortunately, in some benchmarks, the optimizations lead to
extended tail effects, thereby causing slight slowdowns compared to TSIMT.

5.6. TSIMT Design Tradeoffs

Another potential bottleneck in TSIMT can be the instruction issue bandwidth. Mul-
tiple lanes can finish execution of their current warp instruction in the same cycle,
but the frontend can only supply a new instruction to a single lane each cycle. If two
or more lanes request new instructions at the same time, all but one lane will stall
because the frontend cannot supply a new instruction fast enough. To discover how
common these stall cycles are, we recorded how often they happen on average and
show this information in the "Issue Conflicts” columns of Table IV. The table shows
how often 1, 2 or 3 or more instructions could not be issued as soon as they were ready
for issue and their lane was ready to accept them, but the instruction frontend was
busy with issuing an instruction to a different lane. On average 7.9% of the cycles two
lanes are awaiting for instructions. This can also be seen as a temporary reduction of
average effective number of lanes. In some benchmarks such as VIS 0, GAU_1, BFS_1

‘- TSIMT+ STSIMT2 [STSIMT4

Speedup Normalized
O O O R R R

Fig. 8: Speedup for STSIMT with different lane width

and LPS_1 in more than 20% of the cycles one or more lanes are stalled because the
frontend cannot supply instructions fast enough.

In the previous section we already noticed that load balancing issues between dif-
ferent lanes hurt the performance of TSIMT. Additionally, we cannot exploit ILP in
TSIMT as all instructions, even if independent, need to be executed on the same lane.
To determine how much these issues reduce the performance of TSIMT, we also sim-
ulated an unrealistic configuration of TSIMT, where all warps can issue instructions
to all lanes. The overall effect of removing the locking of warps to a specific lane is a
performance improvement of 7.6% compared to SIMT and of 16.4% over TSIMT.

A more realistic approach than removing the lane locking for improving the TSIMT
load balancing is to reduce the warp size. We simulated a configuration with warp size
of 16 and found that overall the performance improves by 1.4% over SIMT. Reducing
the warp size improves the load balancing as more warps are available and the GPU
can exploit ILP within a warp for additional performance. However, reducing the warp
size increase the load of the frontend. With a warp size of 16, instruction fetches need to
be amortized over a smaller number of threads. But the reduction of warp size can also
have positive effects on divergent memory accesses. The results show that on average
smaller warps are better than TSIMT with 32-wide warps.

5.7. Spatio-Temporal SIMT

While the optimizations presented Section 5.5 help some applications, they do not
resolve the main problem of TSIMT: Severe performance reductions when only few
warps are available and/or load balancing issues between the lanes. As described in
Section 3.8, spatio-temporal SIMT reduces the impact of these problems, as the warp
pool is partitioned across a smaller number of lanes: With only four or two lanes, it be-
comes much more likely that each lane receives at least one active warp and that the
work is distributed equally over all lanes. At the same time it also reduces the latency

Figure 8 shows the performance of regular SIMT, TSIMT and STSIMT with two and
four ALUs per lane. The number of lanes was adjusted to keep the number of func-
tional units (FUs) identical in all configurations, i.e. TSIMT has 8 lanes with one FU
each, STSIMT2 has 4 lanes with 2 FUs each, and STSIMT4 has 2 lanes with 4 FUs
each. In the results, we observe improvements over the conventional SIMT architec-
ture for both two and four wide STSIMT. The maximum speedup is observed in the
STO benchmark where regular TSIMT experiences a 15% slowdown compared to the
baseline while STSIMT4 shows a 51% speedup. Due to the low active warp count, the
STO benchmark was not performing well on TSIMT. On average, STSIMT4 performs
about 6% faster than the baseline on the divergent benchmark set and 10% faster than

HE Conventional [Scalarization

1600
21400
= 1200
2 1000
i
g 800
= 600
o 400
200
0
) %" 0N OO0 QN 9% 0.0 5O AN O QN1 QN NI R AR
5769 24D 7R 7oR 47 R 7.0 75207 7 7R 7 A 7A 7 7R 769 7Q 19 2Q 4L /1L 7R ZA A ZA T 7R 7@ 7 /) R R £0 706 7 o
CFHL IS SLY oc,vd;é\‘o\o%c PELPPPE e&e&e&‘o@@g‘g\ SIERFLOPY

Fig. 9: Registers per Warp

TSIMT. For the coherent benchmarks, STSIMT4 is 12.6% faster than TSIMT and 5.9%
faster than the baseline. The very short GAU_0 benchmark exhibits an unusual behav-
ior: It runs much faster despite having almost no divergence. This happens because a
large part of the divergent instructions in this benchmark are very slow division in-
structions that are responsible for tail effects. The convergent instructions are mostly
simple and fast instructions, with little influence on the total runtime of the kernel.

5.8. Scalarization Results

We executed our new scalarization algorithm on the kernels described in Section 5.1.
We verified that our algorithm works correctly and does not scalarize non-scalar reg-
isters or instructions by adding checks to the simulator. Figure 9 shows the number
of registers required per warp, before and after scalarization. Figure 10 shows how
many executed instructions were scalarized by our algorithm. Without scalarization
the kernels required an average of 24.2 vector registers per thread. After scalariza-
tion 17.6 vector registers and 9.0 scalar registers are required on average per thread.
While the sum of scalar+vector registers is slightly higher than the number of regis-
ters without scalarization, each scalar register is allocated only once per warp instead
of once per thread. This reduces the register file space needed per warp significantly:
With 32 thread wide warps, the kernels require an average of 773.2 registers per warp
without scalarization, but with scalarization only 571.1 registers are needed per warp.
With our new algorithm scalarization reduces register file space required per warp by
26.1%. If we restrict the algorithm to scalarize only when convergent control flow can
be guaranteed, as was proposed in [Lee et al. 2013], then less scalarization is possible
and 695.0 registers are required per warp. Likewise the number of instructions that
could be scalarized is also lower: With our algorithm 31.1% of the static instructions
are classified as scalar and 30.3% of the executed instructions are scalar instructions,
but with the restriction to convergent control flow only 12.9% of the instructions could
be scalarized and 13.5% of executed instructions could be scalarized.

All benchmarks but one execute at least 6% scalar instructions. Only the STO bench-
mark executes almost no scalar instructions (0.4%). The GAU_O kernel has the highest
percentage of scalar instructions executed with 64.2%, the fraction of scalar instruc-
tion identified is slightly lower at 57.1%. LIB_1 has the highest number of static scalar
instructions at 66.1%, but the fraction of executed scalar instructions is only 48.8%.
Compared to the previous restricted scalarization algorithm our algorithm scalarizes
more than double the number of instructions and the number of registers is reduced by
17.8%. This scalarization algorithm is well suited for code with complex control flow, as
it makes scalarization possible where convergent control flow cannot be guaranteed.

HE Convergent Only =3 All

Fig. 10: Scalar fraction of executed instruction for regular algorithm (all) and algo-
rithm restricted to convergent control flow

5.9. Putting it all together: TSIMT+Scalarization

We combined Scalarization with TSIMT, and performed the experiments again. Fig-
ure 11 compares the performance achieved with SIMT with a GCN-style scalar-
ization (SIMT_SCALAR), TSIMT+, TSIMT+ with Scalarization and the best spatio-
temporal SIMT configuration (STSIMT4) with and without scalarization (STSIMT4
and STSIMT4 _SCALAR). SIMT without scalarization is employed as a baseline.

The geometric average of the speedup achieve by TSIMT+ due to scalarization to
the optimized TSIMT configuration is 16.1%. Gains from applying Scalarization to
STSIMT4 are slightly lower with a 13.0% higher performance than in STSIMT4 with-
out scalarization. The highest scalarization speedup of 4.2x over TSIMT+ can be seen
in the BP_0 kernel. Three reasons explain the very high speedup of this kernel: First,
a high ratio of 56% scalar instructions. Second, many scalar instructions are low
throughput SFU instructions, while the vector instructions are mostly high through-
put instructions. Third, the performance differences reorder the memory accesses and
this improves the DRAM efficiency significantly from 12% to 42%. In MC_1, on other
hand, Scalarization causes a slowdown of almost 40%. In this case scalarization allows
placing 4 instead of 3 warps in a lane. This increased occupancy is normally beneficial,
but in some rare cases such as in this kernel, the higher occupancy causes the number
of shared memory bank conflicts to increase by more than 10x and also decreases lo-
cality, which results in 65% more read misses in the L1 data cache. Some kernels show
almost no change in performance. In many cases this is connected to a low fraction of
scalar instructions such as in STO_0, PR_0, IDCT_0 and IDCT_1. Some kernels such as
BFS_1 use many scalar instructions but still do not profit from Scalarization. This hap-
pens if the performance of the GPU kernel is not limited by compute throughput but
by another bottleneck. The BF'S benchmark, for example, is a graph benchmark and is
limited mostly by memory bandwidth and latency rather than compute throughput.

We also evaluated Scalarization on a conventional GPU. Similar to AMD’s GCN
architecture, an entire scalar datapath including an additional scalar register file
and scalar execution units as well as a broadcast network to transmit scalar val-
ues back to the vector datapath was added to the simulated architecture. This ad-
ditional hardware overhead is significant, which needs to be considered when com-
paring it to TSIMT+Scalarization. On kernels with little divergence conventional
SIMT+Scalarization performs slightly better (+1.3%) than STSIMT4+Scalarization.
On benchmarks with higher divergence, however, STSIMT4 with Scalarization per-
forms better than SIMT+Scalarization (+4.2%). Benchmarks that show high perfor-
mance gains from Scalarization on one architecture such as BP_0, MGST_3, HOTSP_0
and AES 0 show high performance gains from Scalarization across all architectures.

I SIMT_SCALAR I TSIMT+ [0 TSIMT+_SCALAR [STSIMT4 0 STSIMT4_SCALAR

Speedup Normalized

Fig. 11: Performance with and without Scalarization for TSIMT and STSIMT4 Config-
urations, normalized to SIMT

B cycles
B power
3 energy
3 edp

[
)

1

1.0

0.8

0.6

0.4
0.2

0.0

SIMT TSIMT+ STSIMT4 TSIMT_SCALAR STSIMT4_SCALAR

Fig. 12: Geometric Mean of Runtime, Power, Energy and EDP

Benchmarks such as PR_0 or NW_1 that do not benefit from Scalarization on a conven-
tional GPU do not profit from adding Scalarization to TSIMT either.

5.10. Power and Energy

We extended GPGPU-Sim to allow power modeling of TSIMT as well as SIMT GPUs.
Figure 12 shows the power estimates of this power model for different variants of
TSIMT. Despite lower performance on average the power consumption of TSIMT+
is approximately the same as that of regular SIMT (101% of SIMT power). These
configurations are thus less energy efficient than regular SIMT. The architecture
with STSIMT4 provides higher performance (5.6% shorter runtime) dissipating only
slightly higher power (1.8% higher power), but lower energy consumption (-4.1%) and
thus improve energy efficiency (EDP reduced by 9.5%). Scalarization results in signif-
icant performance gains (+9.3% over baseline TSIMT, +20% with STSIMT4). Because
Scalarization improves the utilization of resources it increases the power consump-
tion (5.9% for TSIMT, 5.6% for STSIMT4), but overall energy consumption is decreased
because of the shorter execution time (-8.3% for TSIMT, -16.4% for STSIMT4). EDP is
improved by 10.1% for regular TSIMT with Scalarization and by 26.2% for STSIMT4
with Scalarization. These results show that by combining STSIMT and Scalarization
the energy efficiency can be improved significantly.

6. CONCLUSIONS

This paper has presented a microarchitecture implementation and optimizations, and
a rigorous performance evaluation of temporal SIMT GPUs. TSIMT aims at improv-
ing the performance of control divergent GPGPU workloads by executing warps over

time instead of over space as regular spatial SIMT GPUs do. A microbenchmark analy-
sis has shown that TSIMT offers significant performance benefits compared to spatial
SIMT, provided there are sufficient warps are available. When evaluated with com-
plete benchmarks, however, the basic TSIMT approach generally achieves lower per-
formance compared to spatial SIMT. A detailed performance analysis has revealed that
TSIMT suffers from lane load balancing and occupancy issues and microarchitecture
optimizations have been presented to improve this for some benchmarks.

In addition we have proposed and evaluated a more general solution, called spatio-
temporal SIMT (STSIMT) that offers the control divergence mitigation of TSIMT while
significantly reducing the high occupancy and load-balancing requirements of TSIMT.
Using a particular configuration of STSIMT, an average speedup of 8% was achieved
for control divergent benchmarks and 6% on average for all benchmarks.

Scalarization has been combined with TSIMT with a hardware cost that is much
lower than a SIMT GPU with Scalarization. It improves performance by 16% over
regular SIMT. We also showed that a previously published scalarization algorithm
employs overly restrictive rules, and presented a scalarization and register allocation
algorithm, that is well suited for extracting scalar instructions from kernels with di-
vergent control flow. By applying this algorithm double the number of instructions
could be scalarized and 26.1% fewer registers were required per warp.

It has also been shown that several of the proposed designs provide significant power
and energy advantages. The most energy-efficient design (ST-SIMT4 with Scalariza-
tion) improves the energy delay product by 26.4% on average.

Future work includes new methods for reducing lane load imbalance such as flexible
warp sizes and GPUs that can dynamically switch between SIMT and TSIMT opera-
tion modes. Further code and microarchitecture optimizations are possible to increase
the performance of TSIMT architectures. Moreover, current benchmarks are not tar-
geted at and optimized for TSIMT and therefore often incur a performance reduction.
If the programmer is targeting a TSIMT-based execution architecture, divergent code
can be implemented in a more straightforward way and still be executed with high
performance by the GPU. We plan to demonstrate this in future work.

REFERENCES

S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu. 2008. StoreGPU: Exploiting Graph-
ics Processing Units to Accelerate Distributed Storage Systems. In Proc. 17th Int. Symp. on High Per-
formance Distributed Computing.

AMD. 2012. AMD Graphics Core Next GCN Architecture White Paper. (2012).

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. 2009. Analyzing CUDA Workloads

Using a Detailed GPU Simulator. In Proc. IEEE Int. Symp. on Performance Analysis of Systems and
Software, ISPASS.

N. Brunie, S. Collange, and G. Diamos. 2012. Simultaneous Branch and Warp Interweaving for Sustained
GPU Performance. In Proc. 39th Int. Symp. on Computer Architecture, ISCA.

S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, and K. Skadron. 2009. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In Proc. IEEE Int. Symp. on Workload Characterization, IISWC.

S. Collange. 2011. Identifying Scalar Behavior in CUDA Kernels. (2011).

B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira. 2011. Divergence Analysis and Optimizations. In
Proc. Int. Conference on Parallel Architectures and Compilation Techniques (PACT’ 11). IEEE, 320-329.

J. R. Diamond, D. S. Fussell, and S. W. Keckler. 2014. Arbitrary Modulus Indexing. In Microarchitecture
(MICRO), 2014 47th Annual IEEE |ACM Int. Symp. on. IEEE, 140-152.

G. F. Diamos, A. Robert Kerr, S. Yalamanchili, and N. Clark. 2010. Ocelot: A Dynamic Optimization Frame-
work for Bulk-synchronous Applications in Heterogeneous Systems. In Proc. 19th Int. Conference on
Parallel Architectures and Compilation Techniques, PACT.

W. W. L. Fung and T.M. Aamodt. 2011. Thread Block Compaction for Efficient SIMT Control Flow. In Proc.
17th Int. Symp. on High Performance Computer Architecture, HPCA.

W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. 2007. Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow. In Proc. 40th Annual IEEE | ACM Int. Symp. on Microarchitecture, MICRO.

W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. 2009. Dynamic Warp Formation: Efficient MIMD
Control Flow on SIMD Graphics Hardware. ACM Trans. Archit. Code Optim. 6, 2, Article 7 (July 2009).

M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally. 2012. Unifying Primary Cache,
Scratch, and Register File Memories in a Throughput Processor. In Proc. 45th Annual IEEE |ACM Int.
Symp. on Microarchitecture. IEEE Computer Society, 96-106.

S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. 2011. Accelerating CUDA Graph Algorithms at Maximum
Warp. In ACM SIGPLAN Notices, Vol. 46. ACM, 267-276.

N. Jayasena, M. Erez, J. H. Ahn, and W. J. Dally. 2004. Stream Register Files with Indexed Access. In Proc.
10th Int. Symp. on High Performance Computer Architecture, HPCA.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. 2011. GPUs and the Future of Parallel
Computing. IEEE Micro 31 (2011).

dJ. Kim, C. Torng, S. Srinath, D. Lockhart, and C. Batten. 2013. Microarchitectural Mechanisms to Exploit
Value Structure in SIMT Architectures. In Proc. 40th Annual Int. Symp. on Computer Architecture.

R. M. Krashinsky. 2011. Temporal SIMT Execution Optimization. (Aug. 2011). Patent No. US 2013/0042090
Al, Filed August 12th, 2011, Issued Februar 14th., 2013.

Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanovié¢. 2011. Exploring the Trade-
offs Between Programmability and Efficiency in Data-parallel Accelerators. In Proc. 38th Annual Int.
Symp. on Computer Architecture, ISCA.

Y. Lee, R. Krashinsky, V. Grover, S.W. Keckler, and K. Asanovic. 2013. Convergence and Scalarization for
Data-Parallel Architectures. In Proc. Int. Symp. on Code Generation and Optimization (CGO).

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008a. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. IEEE Micro (March 2008).

J.E. Lindholm, M.Y. Siu, S.S. Moy, S. Liu, and J.R. Nickolls. 2008b. Simulating Multiported Memories using
Lower Port Count Memories. (2008). Patent No. US 7339592 B2, Filed July 2004, Issued March 2008.

A. Lumsdaine and D. Gregor. 2004. Boost Graph Library: Sequential Vertex Coloring.
http://www.boost.org/doc/libs/1_57_0/libs/graph/doc/sequential vertex_coloring.html. (2004).

S. S. Muchnick. 1997. Advanced Compiler Design and Implementation.

V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt. 2011. Improving GPU
Performance via Large Warps and Two-Level Warp Scheduling. In Proc. 44th Annual IEEE |ACM Int.
Symp. on Microarchitecture, MICRO.

NVIDIA. 2011. NVidia GPU Computing SDK 3.1. (2011).

J. E. Smith, G. Faanes, and R. Sugumar. 2000. Vector Instruction Set Support for Conditional Operations.
In Proc. 27th Annual Int. Symp. on Computer Architecture, ISCA.

A. S. Vaidya, A. Shayesteh, D. H. Woo, R. Saharoy, and M. Azimi. 2013. SIMD Divergence Optimization
Through Intra-warp Compaction. In Proc. 40th Annual Int. Symp. on Computer Architecture, ISCA.

B. Wang, M. Alvarez-Mesa, C. C. Chi, and B. Juurlink. 2013. An Optimized Parallel IDCT on Graphics
Processing Units. In Euro-Par 2012: Parallel Processing Workshops. Leture Notes in Computer Science,
Vol. 7640. Springer Berlin Heidelberg, 155-164.

B. Wang, M. Alvarez-Mesa, C. C. Chi, and B. Juurlink. 2015. Parallel H.264/AVC Motion Compensation for
GPUs using OpenCL. Cir. and Sys. for Video Technology, IEEE Trans. on 25, 3 (March 2015), 525-531.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. 2010. Demystifying GPU Microar-
chitecture Through Microbenchmarking. In Proc. IEEE Int. Symp. on Performance Analysis of Systems
Software, ISPASS.

P. Xiang, Y. Yang, M. Mantor, N. Rubin, L. R. Hsu, and H. Zhou. 2013. Exploiting Uniform Vector Instruc-
tions for GPGPU Performance, Energy Efficiency, and Opportunistic Reliability Enhancement. In Proc.
27th Int. ACM Conference on Int. Conference on Supercomputing.

P. Xiang, Y. Yang, and H. Zhou. 2014. Warp-Level Divergence in GPUs: Characterization, Impact, and Miti-
gation. In Proc. 20th Int. Symp. on High Performance Computer Architecture, HPCA.

G. Ziegler. 2011. Analysis-Driven Optimization. (2011). http:/www.nvidia.de/content/PDF/isc-
2011/Ziegler.pdf.

