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Abstract

This paper presents novel flux and source term treatments within

a Godunov-type finite volume framework for predicting the depth-

averaged shallow water flow and sediment transport with enhanced

the accuracy and stability. The suspended load ratio is introduced

to differentiate between the advection of the suspended load and
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the advection of water. A modified Harten, Lax and van Leer Rie-

mann solver with the contact wave restored (HLLC) is derived for

the flux calculation based on the new wave pattern involving the

suspended load ratio. The source term calculation is enhanced by

means of a novel splitting-point implicit discretization. The slope

effect is introduced by modifying the critical shear stress, with two

treatments being discussed. The numerical scheme is tested in five

examples that comprise both fixed and movable beds. The model

predictions show good agreement with measurement, except for

cases where local three-dimensional effects dominate.

sediment transport; total load model; HLLC Riemann solver; finite-volume

method; source term treatment

Highlights

1. A second-order finite-volume method is presented for solving the

total-load sediment transport

2. An improved HLLC Riemann solver is derived

3. An improved bed slope treatment is derived to account for density

variation inside the cell

4. A novel implicit source term discretization is presented

5. The numerical model shows good agreement with measurement as

long as the shallow flow assumptions are valid
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1 Introduction

Flow processes often are associated with the transport of sediments,

which impacts the topography of the earth. Sediment transport gov-

erns the erosion and deposition processes, the movement of sediment

with fluid is among the most complex and least understood processes

in nature [55]. Depending on its transport mode, sediment can be cat-

egorized as “suspended load” and “bed load”. Here, suspended load de-

scribes the smaller particles that are suspended in the water, while the

bed load is comprised of larger particles that are transported on the

bed by means of rolling, sliding, or saltation. The mathematical and

numerical modeling of these processes is challenging, because the ero-

sion and deposition processes lead to a time-variable bottom elevation,

which in return influences the flow. Current process-based sediment

transport models use partial differential equations that are referred to

as conservation laws to describe flow and transport processes [3, 25].

Usually, the water flow is solved by using either a kinematic or diffu-

sive wave approximation, or by using the fully dynamic shallow water

equation. The latter usually provide more accurate and detailed flow

fields [7, 23, 24, 31, 35–37, 40, 43, 53, 57, 60]. Based on the way the sedi-

ment transport is related to the flow, sediment transport models can be

categorized into (1) decoupled and (2) coupled models. Decoupled flow

and sediment transport models have been widely used in many real-life

engineering problems. They are relatively easy to implement, and the

results may be justified due to different time scales in flow and sedi-

ment transport and the using of empirical formulas for bed roughness

and sediment transport capacity [55]. Most of the decoupled models are
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related to the equilibrium sediment transport assumption considering

low sediment concentration and small bed change in each time step.

Fully coupled models that account for the coupling of water and sed-

iment phases can be used at a wider range of flow conditions. These

models are categorized as (1) Exner equation coupled models (bed load

flux coupled model), e.g. [27, 32, 35, 36, 43], and (2) concentration flux

coupled models, e.g. [7, 14–16, 40, 58, 61]. The Exner equation coupled

model solves the depth-averaged shallow water equations together with

the Exner equation, which describes the sediment transport based on

bed load movement through a power law for the flow velocity. The inter-

action between flow and sediment is accounted for by a variable param-

eter [23, 31, 35–37, 43]. Existing literature about the Exner equation

treats the hydrodynamic and sediment mass conservation separately,

without considering the influence of sediment movement on hydrody-

namics [22, 31, 32, 43]. This approach assumes that the movement of

the sediment is much slower than the flow velocity. The concentration

flux coupled model describes the sediment transport as a fully mixed

suspended load, while the erosion and deposition processes are calcu-

lated with empirical equations. The sediment is modelled as a concen-

tration in the water column, and its fluxes are calculated based on this

concentration. Additional parameters are introduced to calculate mass

exchange between the dissolved sediment and the bed, and additional

source terms are introduced to account for the interaction between the

sediment and flow [7,40,57,60]. The difference between the concentra-

tion flux coupled model and Exner equation coupled model is analyzed

in Zhao et. al. [63]. The concentration flux coupled model is suggested

for rapidly varying flows such as dam-break and tsunami. The Exner
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equation coupled model is more suitable for less varying flow such as

river channel flow and overtopping flow.

Guan et. al. [15] propose a one-dimensional shallow water model

coupled with sediment transport, which considers the velocity differ-

ence between the sediment and water flow. The model treats the sedi-

ment transport separately as bed load and suspended load. This model

provides a way to simulate the sediment transport more physically, and

it is suitable for more complex and different conditions. However, it is

observed that even if the model in [15] uses different velocities for sedi-

ment transport and water flow, it neglects the influence of this difference

on the Jacobian matrix, and the unmodified HLLC Riemann solver [50]

was used to compute the numerical flux. Using the unmodified HLLC

Riemann solver in this case is not optimal, because it neglects the addi-

tional wave emerging due to the difference in sediment and fluid veloc-

ities, and therefore calculates a non-optimal numerical flux.

In Audusse and Bristeau [2], a hydrostatic reconstruction of the bot-

tom elevation is proposed that ensures non-negativity of water depth

and preserves the C-property (i.e. if water level is constant, the mo-

mentum should equal to nil in the stationary case) [4] of the numerical

scheme. This method uses the divergence form of the bed slope source,

and shifts it to the cell edges [2]. In second-order schemes, the sediment

concentration is interpolated linearly from cell center to the interface,

which leads to a variation of density inside the cell. Hence, the density

of the sediment flow mixture will be not distributed homogeneously, and

the original treatment of the slope source will not provide a satisfying

result anymore.

In order to avoid instability and spurious velocity due to stiff friction
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source terms for very shallow water depths, the friction source term can

be discretized using the splitting point implicit treatment [6]. However,

common sediment transport models in the literature usually discretize

the source terms in an explicit way. This influences the stability of these

schemes.

This work extends the idea of the multimode total load transport

model of Guan et. al. [15] to present a two-dimensional, non-equilibrium,

total load sediment transport model with several improvements in the

numerical solution. In the proposed model, the bottom elevation is up-

dated via the summation of erosion and deposition calculated by em-

pirical equations based on the sediment concentration and flow field

variables at the last time step. Sediment (include both suspended and

bed load) is distributed into the water column represented by the sed-

iment volume concentration. Sediment fluxes across the cell edges are

transported as an additional transport term added to the shallow water

equations. At the end of each time step, the concentration is updated by

the sediment fluxes from the neighboring cells and the erosion and de-

position inside the considered cell. In this process, the flow field is also

influenced by sediment movement. The aforementioned shortcomings of

existing sediment transport models are addressed as follows: (1) We de-

rive a modified HLLC Riemann solver that accounts for the additional

wave generated by the velocity difference between fluid and sediment;

(2) We present an extension to the hydrostatic reconstruction [2] that ac-

counts for variable density inside the computational cell. This ensures

that the C-property of the numerical scheme is preserved and positive

water depth reconstruction is guaranteed; (3) We utilize the splitting

point implicit treatment [6] to discretize the additional source terms re-
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lated to sediment transport. This relaxes the time step restriction and

improves the robustness of the scheme for small water depths. A ro-

bust shallow water total-load sediment transport model is finalized and

solved based on the aforementioned novel numerical treatment, which

provide a physical meaningful and numerical stable model to simulate

the sediment transport with fluid.

Finally, we note that this work, similar to the work in [15], assumes

that the sediment material is non-cohesive and turbulent effects are

neglected. The implications of these assumptions are discussed in the

conclusions.

2 Governing equations

The model consists of two modules that interact with each other via

source terms; the hydrodynamic module and the morphodynamic mod-

ule. The governing equations introduce a coefficient ξ addressing the

sediment to flow velocity, which is the ratio between the velocities of

sediment advection and fluid movement. Although in [7,40,43] it is as-

sumed that the flow velocity equals the sediment advection velocity, i.e.

ξ = 1, in this work these velocities are assumed to be different. With

this additional velocity of sediment, the Jacobian matrix will change to

reflect the different eigenstructure of the governing equations. Hence,

a novel Riemann solver is derived to approximate the interfacial fluxes

correctly.
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2.1 Hydrodynamic module

The hydrodynamic module considers the sediment-laden surface water

flow that drives the bed evolution. The depth-averaged two-dimension-

al shallow water and sediment transport equations are used to describe

the mass and momentum exchange of the sediment-water mixture flow

[7, 40, 61]. In order to account for the effect of the density change and

bed evolution on the momentum of the flow, additional terms are added

to the equations. The usual depth-averaged shallow flow assumptions

are adopted here, i.e. the vertical acceleration of flow is negligible and

the pressure is hydrostatic.

This yields the following equations:

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= −∂zb

∂t
(1)

∂(hu)

∂t
+
∂(hu2 + 1

2gh
2)

∂x
+
∂(huv)

∂y
= gh(Sbx + Sfx)− ρs − ρw

2ρm
gh2 ∂c

∂x

+
ρs − ρw
ρm

u∂zb
∂t

ξ(1− p− c) (2)

∂(hv)

∂t
+
∂(huv)

∂x
+
∂(hv2 + 1

2gh
2)

∂y
= gh(Sby + Sfy)−

ρs − ρw
2ρm

gh2 ∂c

∂y

+
ρs − ρw
ρm

v∂zb
∂t

ξ(1− p− c), (3)

where t, x and y are time and two-dimensional Cartesian coordinates,

h is the water depth, and u and v are the velocity in x− and y− direc-

tion, respectively. (Sbx, Sby) and (Sfx, Sfy) are the bed slope and fric-

tion source terms, Sbx = −∂zb/∂x, Sby = −∂zb/∂y, Sfx = Cfu
√
u2 + v2,

Sfy = Cfv
√
u2 + v2, Cf is the bed roughness coefficient determined by

the Manning coefficient n and h in the form of gn2/h1/3, g represents

the gravity acceleration, ∂zb/∂t represents the rate of the bed elevation

change, ξ is the aforementioned sediment to flow velocity coefficient for
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total sediment transport that is calculated as

ξ = α/β + (1− α) , (4)

where α is the sediment transport mode parameter in the range of 0 to

1 which specifies the ratio of the bed load in total load, β is the ratio of

the fluid velocity relative to bed load velocity, and the velocity of the sus-

pended load is assumed to be the same with the flow velocity. Values for

α and β can be obtained from [14], p is the porosity of bed material. The

last two terms on the right hand sides in Eq. (2) and (3) account for the

spatial variations in sediment concentration and the momentum trans-

fer between flow and erodible bed because of the sediment exchange

and velocity difference between flow and bed material. ρm is the depth-

averaged density of sediment water mixture, ρw and ρs are the density

of water and sediment, respectively, which can be calculated as

ρm = ρsc+ ρw (1− c) , (5)

where c is the depth-averaged volume concentration.

2.2 Morphodynamic module

The morphodynamic module considers sediment transport and bed evo-

lution. These processes are governed by the suspended load and bed

load equations. In [15], the suspended load model sets the advection

velocity of the sediment equal to the flow velocity. The bed evolution is

governed by

∂zb
∂t

=

[
α
qb − qb∗
La

+ (1− α) (D − E)

]
/ (1− p) , (6)
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and the sediment concentration is calculated by

∂hc

∂t
+ ξ

∂huc

∂x
+ ξ

∂hvc

∂y
= −∂Zb

∂t
(1− p) . (7)

D and E are the deposition and entrainment fluxes representing the

settling and entrainment of sediment respectively due to the suspended

load transport. qb = ξ
√
q2
x + q2

yc is the bed load sediment transport rate

(m2/s), where qx = uh and qy = vh are the unit width discharge (m2/s)

in x− and y− direction, and qb∗ is the bed load transport capacity (m2/s).

Based on the non-equilibrium assumption, La is the adaptation length

of sediment (m), which is the characteristic distance for sediment to

recover from non-equilibrium transport towards equilibrium transport.

The widely used Meyer-Peter-Müller formula [34] is adopted to cal-

culate the bed load transport capacity as

qb∗ = ε8.0

√(
ρs
ρw
− 1

)
gd3 (θ − θc)3/2 , (8)

where ε is a calibration parameter for erosion, θ and θc are, respectively,

the real dimensionless bed shear stress and the critical dimensionless

bed shear stress with θ = u2
∗/[(ρs/ρw− 1)gd], d is the sediment diameter,

u∗ = n
√
g(u2 + v2)/h1/6 is the friction velocity, and θc can be related to

following the empirical equation in [46]

θcf =
0.3

1 + 1.2d∗
+ 0.055(1− e−0.02d∗), (9)

where d∗ = d50[(ρs/ρw−1)g/ν2]1/3 is the dimensionless particle diameter,

where d50 is the median diameter. Considering the effect of longitudinal

slopes, an empirical function is proposed in [41] as

θc
θcf

= cosϕ (1− tanϕ/tanϕr) . (10)
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where θcf is the critical shear stress on the flat bottom calculated using

Eq. (9), ϕr is the repose angle, ϕ is the bed slope angle, with positive

values for down-slope beds. And a slope effect function from [9] is chosen

for comparison as
θc
θcf

=
sin(ϕr − ϕ)

sinϕr
, (11)

The definition of the parameters is the same as in Eq. (11).

Deposition and entrainment fluxes of suspended load are calculated

as D = ωsCa and E = ωsCae [55]. ωs settling velocity of naturally sedi-

ment particle (m/s) estimated as shown in [62]:

ωs =

√
(13.95

ν

d
)2 + 1.09(

ρs
ρw
− 1)gd− 13.95

ν

d
(12)

where ν is the water viscosity. Ca = φc, herein, φ = min (2.0, (1− p)/c)

is a parameter which depends on the distribution of the sediment over

water column originally proposed in [7]. Cae is the near bed equilibrium

concentration at a reference level σ [15] above the bed, determined by

the function proposed in [10] as

Cae =
1

11.6

qb∗
σU ′∗

, (13)

where U ′∗ is the effective bed shear velocity related to grain roughness,

determined by U ′∗ = Ug0.5/C
′
h with C ′h = 18log(4h/d), the reference level

is chosen as σ = 2d.

In this work, sediment transport mode coefficient α is calculated by

following an equation originally proposed in [14] as

α = 1.0−min(1, 2.5e−Z), (14)

Z =
ωs
κu∗

, (15)
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where κ is the von Kármán constant, and is assumed equal to 0.41.

The first term of right hand side of Eq. (14) is the source term from

bed load transport. For the bed load movement, it is assumed that

the velocity difference is innegligible, which is supported by findings

in [14, 52]. In this work, the equation from [14] is used to estimate the

appropriate velocity ratio for weak bed shear stress. For high bed shear

stress with θ/θcr > 20, the bed load velocity coefficient β is set to be 1,

which yields

1

β
=


u∗
u

1.1(θ/θc)0.17[1−exp(−5(θ/θc))]√
θc

if θ/θc ≤ 20

1 if θ/θc > 20

, (16)

the adaption length La has been studied in, e.g. [1,14,55,56,59]. In this

work, La is calculated with

La =
h
√
u2 + v2

γωs
, (17)

as described in [15], where γ is the ratio of near bed concentration and

volume concentration in flow. The value of γ is calculated as

γ = min

(
h

βhb
,
1− p
c

)
, (18)

where the thickness of sheet-flow layer is calculated by the function

hb = 10θd as proposed in [54].

3 Numerical scheme

Eq. (1), (2), (3), and (7) constitute a non-linear hyperbolic system. The

governing equations can be rewritten in vector form as:

∂q

∂t
+
∂f

∂x
+

g

∂y
= s (19)
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with vectors define as:

q =


h

hu

hv

ch

 , f =


hu

hu2 + gh2/2

huv

ξuch

 , g =


hv

huv

hv2 + gh2/2

ξvch

 ,

s =



∂Zb
∂t

gh(Sbx + Sfx)− ρs−ρw
2ρm

gh2 ∂c
∂x + ρs−ρw

ρm
u∂Zb
∂t ξ(1− p− c)

gh(Sby + Sfy)− ρs−ρw
2ρm

gh2 ∂c
∂y + ρs+ρw

ρm
v∂Zb
∂t ξ(1− p− c)

α qb∗−qbLa
+ (1− α)(E −D)

 .

q is the vector of conserved variables, f and g are the flux vectors in x−

and y− direction, respectively. s is the source term including the bed

friction, bed slope and the additional terms associated with the sedi-

ment transport and bed deformation.

Eq. (19) can be written in integral form as:∫
Ω

∂q

∂t
dΩ +

∫
Ω

(
∂f

∂x
+
∂g

∂y

)
dΩ =

∫
Ω
sdΩ (20)

where Ω is an arbitrary control volume (CV). Applying the Green-Gauß

theorem and replacing the boundary integral with a sum over all edges,

Eq. (20) becomes a finite-volume formulation written as∫
Ω

∂q

∂t
dΩ +

m∑
k=1

F · nklk =

∫
Ω
sdΩ, (21)

where m is the number of edges, k is an index, and n = (nx, ny)
T is the

unit vector in the outward direction normal to the interface of the cell, l

is the length of the edge, F · n is the flux vector normal to the interface
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and can be written as

F · n = (fnx + gny) =


qxnx + qyny

(uqx + gh2/2)nx + vqyny

uqxnx + (vqy + gh2/2)ny

ξqxcnx + ξqycny

 . (22)

The value of q in cell i is updated using the two-stage explicit Runge-

Kutta scheme [21, 28, 29], where the value at the next time level in cell

i, qn+1
i , is updated by

qn+1
i =

1

2
{qni + f [f (qni )]} (23)

with

f(qni ) = qni +
∆tn

Ω

[∫
Ω
sn+1dΩ−

m∑
k=1

F(qni )k · nklk

]
, (24)

where sn+1 is the source term composed with friction source and sedi-

ment movement discretized in a splitting point implicit way to be dis-

cussed in Sec. 3.2.2. f() is a function to represent the updating process

to a new time level in the considered cell. ∆tn is the time step at the

nth time level. For this work, the Courant-Friedrichs-Lewy condition is

used here for maintaining the stability,

∆t = CFL min

(
R1√

u2
1 + v2

1 +
√
gh1

, ...,
Rn√

u2
n + v2

n +
√
ghn

)
(25)

where Rn is the minimum distance from the cell center to the edge, CFL

is the Courant-Friedrichs-Lewy number. For explicit time marching al-

gorithms CFL ∈ (0, 1]. In this work, CFL = 0.8 is adopted.

3.1 Novel HLLC approximate Riemann solver

The introduction of the coefficient ξ in Eq. (7) augments the Riemann

solution with an additional contact wave. Fig. 1 shows a possible wave

15



(normal direction)

Figure 1: HLLC solution of the Riemann problem with SL, S∗, Sc∗, SR

describing the wave speed of the left wave, the contact waves for scalar

and sediment and the right wave.

configuration for this Riemann problem. The wave propagating with

the speed Sc∗ results from the introduction of ξ and is distinct from the

contact wave associated with the advection of the tangential velocity,

which propagates with the speed S∗.

We now design a modified HLLC approximate Riemann solver that

is suitable for the presented wave pattern. The presence of the source

terms leads to a mixed system, but with the assumption of dominant

advection it can be classified and numerically treated as a hyperbolic

system [23]. Hence, from Eq. (21), a Jacobian matrix can be defined as

A =
∂F · n
∂q

=


0 nx ny 0

(−u2 + gh)nx − uvny 2unx + vny uny 0

−uvnx + (−v2 + gh)ny vnx unx + 2vny 0

cξ(−unx − vny) ξcnx ξcny ξ(unx + vny)


(26)
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The eigenvalues of the Jacobian matrix A can be obtained as:
λ1

λ2

λ3

λ4

 =


u⊥ − a

u⊥

u⊥ + a

ξu⊥

 (27)

here, u⊥ = unx + vny is the velocity normal to the interface, a =
√
gh

is the local dynamic wave velocity. There are 4 real and distinct eigen-

values, so the hyperbolicity of this system is preserved. We observe a

1-wave that is either a shock or a rarefaction, a 2-wave that is a contact

wave, a 3-wave that is either a shock or a rarefaction and a 4-wave that

is a contact wave. It can be thought to solve a one-dimensional Riemann

problem across the cell interface in the normal direction of it. The tan-

gential velocity is assumed to be transported with the mass flux. For

sake of simplicity we consider the normal direction to be aligned with

the x-axis, i.e. n = (1, 0). The corresponding Jacobian matrix can be

written as:

As =


0 1 0 0

a2 − u2 2u 0 0

−uv v u 0

−cξu ξc 0 ξu

 (28)

where the velocity u can be thought of as the velocity normal to the in-

terface and v is the tangential velocity. In order to analyze the Rankine-

Hugoniot condition across the shock waves and the generalized Rie-

mann invariants across the rarefaction and contact waves, the right
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eigenvector of Jacobian As can be calculated as:

R =


1 0 1 0

u− a 0 u+ a 0

v 1 v 0

−ξca
u−a−ξu 0 ξca

u+a−ξu 1

 (29)

The matrix R allows the following generalized Riemann invariants

[49] to be defined for a solution made of simple waves:

dh
1

=
dqn
u− a

=
dqt
v

=
d(ch)
−ξca

u−a−ξu
across

dx
dt

= u− a (30)

dh
0

=
dqn
0

=
dqt
1

=
d(ch)

0
across

dx
dt

= u (31)

dh
1

=
dqn
u+ a

=
dqt
v

=
d(ch)
ξca

u+a−ξu
across

dx
dt

= u+ a (32)

dh
0

=
dqn
0

=
dqt
0

=
d(ch)

1
across

dx
dt

= ξu (33)

After integration, constant variables across simple waves lead to the

following relationships:
u+ 2a = const

v = const, across dx
dt = u− a

ch
[a+(ξ−1)u]2ξ

= const

(34)


h = const

qn = const, across dx
dt = u

ch = const

(35)


u− 2a = const

v = const, across dx
dt = u+ a

ch
[a+(1−ξ)u]2ξ

= const

(36)
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
h = const

qn = const, across dx
dt = ξu

qt = const

(37)

Consequently, in Eq. (35), u = qn/h also is constant across the wave,

and u = qn/h, v = qt/h are constant in Eq. (37), representing the contact

discontinuity wave for qt and ch, respectively.

Based on a two rarefaction wave approximation [48], the immediate

dynamic wave velocity a∗ can be obtained as

a∗ =
1

2
(aL + aR)− 1

4
(uR − uL) , (38)

where L and R means the left and right side of the considered edge.

The corresponding velocity u∗ and water depth h∗ in the star region

is given by

u∗ =
1

2
(uL + uR) + aL − aR, (39)

h∗ =
1

g

[
1

2
(aL + aR)− 1

4
(uR − uL)

]2

. (40)

Compared to the scalar transport equation in [48], the sediment con-

centration stays constant across the 1-, 2- and 3-wave, the water depth

h and the normal velocity u change. The sediment concentration only

changes across the 4-wave, which is a contact wave. In the presented

scheme, for the third terms in Eq. (34) and (36), it is assumed that the

concentration c stays constant. It is further assumed that the coefficient

ξ changes across the 1- and 3-wave, following a two shock wave approx-

imation with two discontinuities. In the star region, the coefficient set

to be a constant value ξ∗ (see Eq. (4)), i.e. it does not change across the

4-wave.
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With this knowledge about the physical problem, we calculate the

wave speed S∗ by using the relationships in the star region defined in

[49] as

q∗J = hJ

(
SJ − uJ
SJ − S∗

)
1

S∗

u
||
J

 (41)

for J = L,R. For the wave speed Sc∗, the relationship can be written as

q∗J = hJ

(
SJ − ξJuJ
SJ − Sc∗

)cJ
Sc∗

 . (42)

Using the first components of the vectors in Eq. (41) and 42 each, and

by noting that h∗L = h∗R, we obtain the two wave speeds as

S∗ =
SLhR(uR − SR)− SRhL(uL − SL)

hR(uR − SR)− hL(uL − SL)
(43)

Sc∗ =
SLhR(uRξR − SR)− SRhL(uLξL − SL)

hR(uRξR − SR)− hL(uLξL − SL)
. (44)

The tangential velocity u|| changes across the 2-wave propagating with

the speed S∗ and the sediment concentration changes across the 4-wave

propagating with the speed Sc∗.

The HLLC solution for the hydrodynamic module is

F hllci+1/2 =



FL if 0 ≤ SL

F∗,L if SL < 0 ≤ S∗

F∗,R if S∗ < 0 ≤ SR

FR if SR < 0

(45)

where SL and SR are the 1- and 3-wave speeds, respectively, cf. Fig.1.

They can estimated following [12] as:

SL =

 uR − 2
√
ghR if hL = 0

min(uL −
√
ghL, u∗ −

√
gh∗) if hL > 0

, (46)
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SR =

 uL + 2
√
ghL if hR = 0

max(uR +
√
ghR, u∗ −

√
gh∗) if hL > 0

. (47)

The fluxes FL and FR are calculated from the left and right Riemann

states, qL and qR respectively. As described in [45], the fluxes at the left

and right side of the 2-wave, F∗,L and F∗,R are given by

F∗,L =


F∗,1

F∗,2nx − u‖,LF∗,1ny

F∗,2ny + u‖,LF∗,1nx

 , (48)

F∗,R =


F∗,1

F∗,2nx − u‖,RF∗,1ny

F∗,2ny + u‖,RF∗,1nx

 . (49)

The HLLC solution for the morphodynamic module is

F4 = F s hllci+1/2 =



FL,1cL if 0 ≤ SL

F∗,scL if SL < 0 ≤ Sc∗
F∗,scR if Sc∗ < 0 ≤ SR

FR,1cR if SR < 0

(50)

where the tangential velocity u‖ is obtained with u‖ = −uny + vnx. The

flux in the star region of the hydrodynamic module is calculated by us-

ing the HLL flux equation [48] as

F∗ =
SRF (q⊥L)− SLF (q⊥R) + SLSR(q⊥R − q⊥L)

SR − SL
(51)

where the normal variables q⊥ and the fluxes F are calculated as

q⊥ =

 h

qxnx + qyny

 , F (q⊥) =

 hu⊥

u⊥(qxnx + qyny) + gh2/2

 , (52)
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The HLL flux of the morphodynamic module, F∗,s, is calculated by using

the following relationships:

ξLu
⊥
LcLhL − F∗,scL = (ξLcLhL − ξ∗cLh∗)SL (53)

ξRu
⊥
RcRhR − F∗,scR = (ξRcRhR − ξ∗cRh∗)SR (54)

The solution of this system of two equations with two unknowns is

unique, and F∗,s can be calculated as

F∗,s =
SR(ξLu

⊥
LhL)− SL(ξRu

⊥
RhR) + SLSR(ξRhR − ξLhL)

SR − SL
. (55)

This completes the presentation of the novel HLLC approximate Rie-

mann solver.

3.2 Source term treatment

We propose an improved slope source term calculation based on the

method in [2]. In order to prevent an overestimation of the source term,

a splitting point implicit method is proposed to calculate the friction and

sediment source terms.

3.2.1 Improved slope source term treatment

The slope treatment in [2] is modified to account for the density change

due to suspended load. Variables at the cell edges are adjusted by using

the non-negative water depth reconstruction from [20].

Slope terms in the cell are projected onto the edges using∫
Ω
SbdΩ =

∮
Γ
FSM (q)dΓ =

m∑
k=1

[FSM (q)lM ], (56)

where FSM represents the flux vector of the slope source terms, located

at the middle of the edge and along the normal direction of this edge, M
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Figure 2: Improved slope source term treatment at the edge of e of the

left cell.

is the index of the edges, lM is the length of the edge, and m is the total

number of the edges in the considered cell.

As shown in Fig. 2, the slope source flux can be separated into an

interface part that results from the hydrostatic reconstruction and a

inner part due the results from the bed elevation change from the cell

center to the edge center.

The calculation of the variables at the edge is based on the averaged

variables inside the considered cell. Hence, the reconstruction at the

edge can be enhanced by taking the density variation inside the cell

into account. This can be achieved by multiplying the water depth with

the ratio of the density at the edge, ρM , to the density at the cell center,

ρi. The fluxes at the interface F ISM and the center FCSM can be written
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as

FISM =
gρLM
2ρi

[
(hLM )2 − (ĥLM )2

]
, (57)

FCSM = −g
2

(
ρLM
ρi
ĥLM + hi

)(
zLbM − zbi

)
, (58)

and the normal flux of bed slope can be calculated as

FSM (q) = FSMnM = (FISM + FCSM )nM , (59)

where nM = (nx, ny)
T is the unit normal vector of the edge, ĥLM is the

water depth after interpolation from the cell center, as shown in Fig.2,

zbi, hi, and chi are the bottom elevation, water depth and sediment vol-

ume depth at cell center, respectively, and similarly zLbM , ĥLM , and ĉh
L

M

are the bottom elevation, water depth and sediment volume depth after

the interpolation but before the hydrostatic reconstruction, respectively,

and finally, hLM is the water depth after the interpolation and after the

hydrostatic reconstruction.

We can introduce a virtual bed and ignore the influence of the water

body under the virtual bed [21], which gives the slope flux that accounts

for the density variation as

FSM =
g

2

[
−(
ρLM
ρi
hLM + hi)(zbM − zbi)

]
, (60)

and the final slope flux is given by

FSM =


0

−nx g2(
ρLM
ρi
hLM + hi)(zbM − zbi)

−ny g2(
ρLM
ρi
hLM + hi)(zbM − zbi)

0

 . (61)

At steady state with a homogeneous concentration, the density is con-

stant and the ratio ρLM/ρi equals to 1. Then, the slope flux is equivalent
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to the one presented in [21], which is proven to preserve the C-property.

Hence, the presented numerical scheme is also well-balanced and C-

property preserving.

3.2.2 Splitting point implicit source term treatment

We now focus on the discretization of the remaining source terms. The

most straight-forward technique would be to treat them explicitly in

time. However, this approach yields numerical instabilities unless the

time step size ∆t satisfies [17]:

− 1 ≤ 1 +
S(Un+1,x

i )

Un+1,x
i

∆t ≤ 1, (62)

where Un+1,x
i is the solution after adding the fluxes terms, and the time

step has to be calculated using

∆tS = Min
i=1,...,N

[
−2

Un+1,x
i

S(Un+1,x
i )

]
(63)

∆t = Min(∆tc,∆tS), (64)

where ∆t, ∆tS and ∆tc are time steps for the system, source term part

and conservation part, respectively. Depending on the source term, this

might result in a severe degradation of the time step size.

To overcome this limitation, in literature, e.g. [20, 21], the splitting

point-implicit method is adopted. This avoids the instability of the nu-

merical scheme for very shallow water depths.

In splitting point implicit methods, conserved variables inside the

cell are updated as

qn+1 = qn +
1

PI

(
−∆t

A

∑
k

fnk · nklk + ∆tSn

)
. (65)
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Here, n and n+ 1 represent the time levels and PI is a matrix equal to

PI = I−∆t

(
∂S

∂q

)n
. (66)

We now derive all momentum source terms with respect to the unit

discharge, except the slope source term that has been transformed into

fluxes over the cell edges. Eq. (66) then yields

PI = [1−∆t(∂Sx/∂qx)n, 1−∆t(∂Sy/∂qy)
n]T . (67)

This gives

∂Sx
∂qx

= −
Cf
h2

(q̂ +
q2
x

q̂
) +

ρs − ρw
ρm

∂z

∂t

ξ(1− p− c)
h

, (68)

∂Sy
∂qy

= −
Cf
h2

(q̂ +
q2
y

q̂
) +

ρs − ρw
ρm

∂z

∂t

ξ(1− p− c)
h

, (69)

where q̂ =
√
q2
x + q2

y is the magnitude of the unit discharge vector.

3.3 MUSCL reconstruction

We use a TVD-MUSCL reconstruction of cell-averaged variables [51] to

obtain second order accuracy. There are many TVD-MUSCL schemes in

literature, cf. e.g. [5,18,21,26,30,39,49,64]. In this work, we apply the

multislope total variation diminishing (TVD) scheme from [64].

If not treated properly, the MUSCL reconstruction will overestimate

the sediment volume ch at the cell interfaces, leading to concentrations

larger than 1. We use the sediment diameter to limit the MUSCL re-

construction of ch at cell interfaces as

ci =


(ch)i/hi if hi > d

(ch)e/he if hi ≤ d
, (70)
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where, ci, (ch)i, and hi represent the interpolated concentration, sed-

iment volume and water depth, respectively, along the interface, and

ce, (ch)e, and he are the corresponding values at the cell center. The

threshold value for determining whether a cell is wet or dry is set to be

10−6 m.

3.4 Boundary conditions

The hydrodynamic module uses the ghost cell-based boundary condi-

tions presented in [21]. The sediment concentration is set

cb = ci (71)

for all boundary conditions, with cb being the concentration of the ghost

cells, and ci being the interpolated value of the shared interfaces.

4 Computational examples

A series of model tests were undertaken to verify the numerical model

outlined above, the predictions of the proposed model will be compared

the alternative numerical solutions and laboratory experimental data

published in the literature. Five test cases of dam-break and dyke over-

topping flows were undertaken, (i) a dam-break flow wave over a tri-

angular bottom, (ii) one-dimensional dam-break over movable bed, (iii)

dyke erosion due to flow overtopping, (iv) dam-break flow in a mobile

channel with a sudden enlargement, and (v) a partial dam-break flow

on movable bed in a straight channel.

Sensitivity analysis is investigated against one-dimensional dam-

break over movable bed, four parameters which include Manning num-

27



ber n, sediment diameter d, and sediment porosity p are chosen to con-

sider the sensitivity to the sediment movement. The root-mean-square

error (RMSE) of the bottom is chosen to evaluate the difference of the

simulation results,

RMSE =

√∑N
i=1[(zbi − zbi0)2Ωi]∑N

i=1 Ωi

(72)

which, N is the number of the cells, zbi0 is the benchmark bottom eleva-

tion for comparison.

In this work, the density of water is set to be ρw = 1000 kg/m3, water

viscosity is ν = 1.2e-6, and gravity g = 9.81m/s2, the sediment diame-

ter d, density ρs, porosity p, repose angle ϕr and the Manning number

of the computational domain n will be specified in each test case, the

parameter ε in Eq. (8) will be specified after calibration.

4.1 Laboratory dam-break wave over a triangular bottom

sill

Aim of this test case is to verify the hydrodynamic module of the pro-

posed scheme. A laboratory experiment considering a dam-break wave

over a triangular bottom sill is reproduced. Measurement data, experi-

mental setup and numerical parameters are provided in [44]. A sketch

of the setup is shown in Fig. 3. There is a dam located at the 2.39 m of a

5.6 m long and 0.5 m wide horizontal channel, and a reservoir is formed

at the upstream of the gate with a 0.111 m deep still water. A symmet-

rical bump is set at x = 4.45 with a height of 0.065 m and bed slopes of

±0.14. Between the bump and wall in downstream, a pool is set with an

initial water level at 0.02 m above the flat bottom. Three gauges are in-

stalled to measure the water level around the bump, which are located
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Figure 3: Dam-break over a triangular bottom sill: experimental setup

and initial conditions (all dimensions are in m) [44].

along the centreline of the channel with x1 = 5.575 m, x2 = 4.925 m and

x3 = 3.935 m for representing the location of G1, G2 and G3 respectively.

As this is a one-dimensional test case, for the sake of efficiency,

the numerical solution is based on a 5.6 m × 0.2 m computational do-

main. All boundary conditions are closed boundaries. The domain is

discretized with 1400 cells. The simulation stops after 45 s. A Manning

coefficient n = 0.011 sm−1/3 is given as suggested in [44].

In this test case, the bed is fixed and therefore only the hydrody-

namic module takes part in the calculation. All source terms and fluxes

that are related to the morphodynamic module are automatically equal

to zero. The computed water levels are compared with measurement

data at three gauges are plotted in Fig. 4. Very good agreement be-

tween model results and measurement data is achieved.

As the sediment movement is mainly caused through exceeding the

shear stress, which means that even on the fixed bed, the coefficients

still can be calculated, and as there is no interaction between the flow

and the sediment movement, it is straightforward to check the laws of

the relationship between the coefficients. In order to show the sensi-

tivity of the coefficient in this test case, a group of imaginary initial
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Figure 4: Dam-break over a triangular bottom sill: time histories of

water levels at: (a) gauge 1, (b) gauge 2, (c) gauge 3.

30



conditions are studied for the sediment. Here, the sediment diameter is

d = 0.008 m, and the density is set to be ρs = 2650 kg/m3, the porosity

of sediment bed p = 0.4, calibration parameter ε = 1.0, and the repose

angle is ϕr = 30◦. The water levels around the triangular bump and

coefficients for sediment transport at 1.8 s, 3.0 s and 8.4 s are plotted in

Fig. 5. The water levels are well captured by the numerical simulation.

The sediment velocity coefficient ξ behaves similar to the suspended

load coefficient 1 − α. This is because ξ is calculated based on the ratio

of the suspended load coefficient to the bed load velocity coefficient 1/β,

cf. Eq. (4). We note that 1/β < 1, which means the more suspended

load in the sediment transport, the larger the sediment velocity will be.

Taking the partial derivative of Eq. (4) with respect to the ratio of sus-

pended load 1−α, we obtain ∂ξ/∂(1−α) = 1−1/β, as shown in Eq. (16),

1/β ≤ 1.0 which means that the sediment velocity is increasing with the

ratio of suspended load.

4.2 One-dimensional dam-break over movable bed

4.2.1 One-dimensional dam-break over movable bed test against

experiment

The purpose of this test case is to analyze the model parameters re-

lated to the morphodynamic module and assess the model performance

for sediment transport for rapidly varying flow. A laboratory experi-

ment that considers a dam-break wave over movable bed is reproduced

numerically. The experimental data, initial conditions and model pa-

rameters can be found in [11]. The domain is 2.5 m long and 0.1 m wide.

A dam is set at 1.25 m. The upstream water depth is initially h0 = 0.1 m,
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Figure 5: Dam-break over a triangular bottom sill: water level and

coefficients around triangular bottom sill at: (a) t = 1.8 s, (b) t = 3.0 s,

(c) t = 8.4 s.
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Figure 6: One-dimensional dam-break over movable bed: sketch of

the experiment set up, initial and boundary conditions (dimension in

meters).

and with dry bed downstream, four boundaries are set to be solid bound-

aries, there will be a hydraulic jump happen near to the location of

the dam during the flow process. A sediment layer with a constant

thickness of approximately 5 − 6 cm is placed within the boundaries

domain, the sediment diameter is reported to d = 0.0035 m, and the den-

sity is ρs = 1540 kg/m3, bed porosity is p = 0.3, the Manning coefficient

n = 0.025 sm−1/3, the repose angle ϕr = 30◦, and the erosion calibration

parameter ε = 2.4. The domain is discretized with 1710 triangular cells,

whole experiment runs for 2 s.

Model results are compared with measurement data and a pseudo-

analytical solution from [11]. Fig. 7 (a-c) shows the comparison of water

levels and bed elevations. Overall good agreement is observed, the po-

sition of the largest erosion and its elevation are well predicted and

the hydraulic jump is captured accurately. Compared to the pseudo-

analytical results, the proposed model performs better with regard to

water level prediction at the upstream of the dam-break. However, both

of the water elevations for the hydraulic jump are not well captured

33



by the proposed model and the pseudo-analytical model, this may due

to the gate opening generated a localized disturbance on the nearby

region, which the flow does not completely smooth out as it becomes

shallower which lead to the non-hydrostatic effect arise in this region,

breaks down the shallow water assumption. Here, the bed elevation is

also predicted more accurately by the proposed model. The shock prop-

agating in downstream direction is not captured well by the pseudo-

analytical solution because it neglects the influence of the additional

source terms due to sediment transport.

Due to the total load sediment transport concept of the proposed

scheme the sediment is transported as suspended load and as bedload.

The related coefficients are plotted in Fig. 8. We observe that large

velocities yield large values of suspended transport ratio (1− α) (see

Eq. (14)). Bed load transport dominants upstream while in the region

near to the shock wave suspended load transport dominates.

Fig. 8 also shows that the velocity of the water sediment mixture col-

umn u exhibits similar behavior as the suspended load ratio (1− α) (see

Eq. (14)), Shield’s parameter θ and the sediment concentration. Based

on the Eq. (17) and Eq. (18), it can be observed that with the increasing

of adaption length La, there is a monotonically increasing tendency for

the flow velocity, Shield’s parameter θ, ratio of suspended load 1−α, and

the sediment flux q̂c. This relationship can be seen in Fig. 8, where the

adaption length is the parameter used for sediment exchange from the

non-equilibrium to equilibrium state. For high velocity and high con-

centration conditions, the corresponding adaption length will be longer.

As the velocity of suspended load is assumed equal to the fluid, which

means that sediment velocity coefficient ξ (see Eq. (4)) is mainly depend
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Figure 7: One-dimensional dam-break over movable bed: bed and wa-

ter surface at: (a) t = 5.0 t0, (b) t = 7.5 t0, (c) t = 10.0 t0, t0 = 0.101

s.
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Figure 8: One-dimensional dam-break over movable bed: water level

and coefficients along the channel: (a) t = 5.0 t0, (b) t = 7.5 t0, (c) t = 10.0

t0, t0 = 0.101 s.
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on the bed load velocity coefficient 1/β (see Eq. (16)). As described in

Sec. 4.1, the velocity coefficient ξ shows the increasing relationship with

the ratio of suspended load. Using a similar manipulation, it can be de-

rived that the larger bed load velocity coefficient 1/β will lead to a larger

sediment velocity. Eq. (16) reveals that if θ/θc > 20, 1/β equals 1 and

the advection velocity of the sediment is equal to the flow velocity. Fig. 8

shows that θ/θc is located in the range of [0, 40), remaining mostly below

20, while the bed load velocity 1/β still reaches 1. As u∗/u = n
√
g/h1/6,

we can use Eq. (16) to derive that 1/β is also influenced by the water

depth, and therefore Eq. (16) should be limited as 1/β = min(1, 1/β).

4.2.2 Sensitivity analysis of dam-break over movable bed

In order to investigate the influence from the different parameters, and

quantity how different parameters outperform for the dam-break flows,

the sensitivities of the Menning number n, sediment diameter d, and

sediment porosity p are undertaken in this section.

The open-source Python library SALib [19] is applied here to do a

global sensitivity analysis. A group of parameters generated by the al-

gorithms from [38] the range of parameters is set to be [0.5n0, 1.5n0],

[0.5d0, 1.5d0], and [0.5p0, 1.5p0], which the subscript 0 means the pa-

rameters used in the Sec. 4.2.1. The Sobol’s sensitivity analysis is per-

formed based on the results from 80 times simulations, the evaluation

of the computational model is calculated via Eq. (72) at time t = 7.5 t0,

the results from Sec. 4.2.1 are chosen as the benchmark results.

The first-order sensitivity indices (S1) and the total-order sensitiv-

ity index (ST) of the parameters are shown in Tab. 1. The first-order
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Table 1: Results of sensitivity analysis

Parameter S1 ST

n 0.303090 0.204921

d 0.091357 0.023238

p 0.783449 0.776626

0.6 0.8 1.0 1.2 1.4
n/n0

0.000

0.002

0.004

0.006

0.008

RM
SE

0.6 0.8 1.0 1.2 1.4
d/d0

0.000

0.002

0.004

0.006

0.008

RM
SE

0.6 0.8 1.0 1.2 1.4
p/p0

0.000

0.002

0.004

0.006

0.008

RM
SE

Figure 9: One-dimensional dam-break over movable bed: relationship

between the parameters’ relative value and RMSE.

sensitivity indices (S1) shows that the porosity p give the most sensitiv-

ity in this numerical model, and sediment diameter d provide the least

sensitivity, the total-order sensitivity index shows that the porosity p

receives the least sensitivity by the interactions from the other param-

eters. The relationship between the parameters’ relative value and the

RMSE can be seen in Fig. 9.

The linear increased parameters are chosen for evaluating the sen-

sitivity from the single parameter, the parameter are set into five levels

(e.g. n/n0 = 0.5, 0.75, 1.0, 1.25, 1.5) compare to the value set in Sec.

4.2.1. The water surface and bed elevation at time t = 7.5 t0 are shown

in the left side of Fig. 10, it can be observed that the sediment diameter
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d shows very slight influence for the water surface, bottom elevation,

and the discharge, which is match the global sensitivity analysis; the

Manning number n shows highly influences the discharge, the speed of

wave front in the downstream give a linear decrease with the increasing

of value n, but the shape of the position of maximum erosion hole and

the secondary shock at the middle is quite similar; the porosity p of the

bed shows more influence on the topography of the bed, even the shock

wave front shows the different velocity for the different porosity, but the

distribution of the discharge in the downstream is similar, while with

the increasing of porosity p, the the position of maximum erosion hole

and the secondary shock at the middle is moving to the upstream di-

rection and the erosion depth is getting bigger, which also explain why

the porosity p give the most sensitivity in the global sensitivity analysis

when the evaluation is calculated based on the influence on the bottom

elevations.

4.3 Dyke erosion due to flow overtopping

Flow overtopping of dykes can cause serious erosion and even wash out

structures. Such a complex process is involving outburst, supercriti-

cal and steady flow making the simulation of sediment movement even

more difficult. Aim of this example is to test the proposed model for each

complex flow condition and the influence of different slope effects on the

sediment movement.

The laboratory experiment from [47] is replicated numerically. The

experimental set-up is sketched in Fig. 11. The flume is 35 m long and

1 m wide. The dyke is 0.8 m high and 1 m wide, and is located at the mid-
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Figure 10: One-dimensional dam-break over movable bed: water

surface and bed elevation change with the increasing of parameters

(left) and the corresponding discharge along x− direction qx (right) at

t = 7.5 t0.
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Figure 11: Sketch of overtopping flow over a dyke

dle of the flume with a crest width of 0.3 m. The upstream and down-

stream slopes of the dyke are 1 : 3 and 1 : 2.5, respectively. The bottom

of up- and down-stream of the dyke is fixed and unmovable, the dyke

is made of medium sand with a diameter of d = 0.00086 m, and the

density of the sand ρs = 2650 kg/m3, the porosity of the bed material

p = 0.35, the Manning coefficient is set to n = 0.018 sm−1/3, the repose

angle ϕr = 26◦ and the calibration parameter ε = 1.2 after calibra-

tion. Initial conditions can be seen via the sketch of the experiment in

Fig. 11, a constant water level of 0.83 m is set at upstream reservoir of

the dyke, and 0.03 m downstream, bottom elevation is 0.0 m except the

dyke, which the downstream slope is initially set to dry. The upstream

boundary condition is an inflow boundary, where a constant discharge

of 1.23 · 10−3 m3/s is imposed. The downstream boundary condition is a

free outflow condition. The domain is discretized with 1190 triangular

cells.

We use the measurement data from the case C-2. The comparison of

measured and model predicted bed profiles at 30 s and 60 s is shown in

Fig. 12 (a-b). The agreement at 30 s between the simulation results and
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Figure 12: Comparison between simulated bed elevation and measured

data at t = 30 s (a) and t = 60 s (b).

the measurement data is fairly good, while it is slightly underestimate

the measured erosion at 60 s, there is an obvious scour pit at the peak of

the dyke in the observation that is missing in the model prediction.

In addition to measurement data, model results obtained with the

SWE-Exner model from [35] and the total load model from [16] (Guan’s

model hereinafter) are compared with the proposed model. Fig. 13 (a)

shows that the proposed model captures the peak in the discharge ac-

curately, but undershoots the measurement data in the later stages of

the simulation. We note that the other two models can not replicate

this part of the hydrograph neither and the proposed model outperforms

both of them. Fig. 13 (b) compares the water elevations. We see that
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Figure 13: Simulated discharge (a) and water elevation (b) against time

compared to the measurement data, SWE-Exner and Guan’s model.

water elevations are well predicted for the first 60 s, but overshoot the

measurement data after 80 s. This might be due to the effect of the slope

on the critical Shield’s number θc (see Eq. (9), (11), (10)) that influences

the erosion on the dyke and the water elevation. Another reason might

be the underlying empirical equations that have been derived under dif-

ferent conditions than the investigated case.

Fig. 14 compares different slope effects from Damgaard et al. [9] and

Smart and Jäggi [41] that relate to the critical shear stress as seen in

Eq. (11) and Eq. (10), respectively. It is seen that the peak discharge

from [9] is predicted earlier and lower than [41]. We can conclude that

the slope effect significantly influences the flow pattern but has only
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small influence on the water elevation. This means that the erosion at

the top of the crest is small, because the critical shear stress of the slope

effect is only suitable for a range of bed slope angles and is not valid for

this type of topography. We investigate the sensitivity of the slope effect

for different values of the repose angle ϕr: 26◦, 30◦, 35◦ and 40◦. The

model results obtained with these angles are plotted in Fig. 15 and 16.

We see that the peak of the discharge shifts to an earlier point in time

as ϕr increases. The maximum discharge decreases for larger values of

ϕr. Meanwhile, larger ϕr values lead to higher water elevations at the

upstream. This can be explained by the increased critical shear stress

on the slope, which is proportional to ϕr as seen in Eq. (11) and 10.

Parameters include suspended transport ratio 1 − α (see Eq. (14)),

sediment velocity coefficient ξ (see Eq. (4)) and the slow velocity u which

used for controlling the sediment transport mode are presented in Fig.

17. The relationship between the parameters is similar to what has

been discussed in Sec. 4.2. By comparing (1− α), we can argue that the

results of the proposed scheme are influenced more significantly by the

bed load transport, while the results obtained from [16] are more sig-

nificantly influenced by the suspended load transport. Eq. (14) reveals

that the sediment settling velocity ωs is the parameter that indicates

which transport mode is more significant. In this work, we calculate

ωs via Eq. (12), while [16] treats ωs as a calibration parameter. This

explains the difference in the results.
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Figure 14: Comparison of measurement data with slope effect from

Smart and Jäggi [41] and Damgaard et al. [9] for simulated discharge

(a) and water elevation (b) against time.
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Figure 15: Comparison of measurement data with slope effect from

Smart and Jäggi [41] for different repose angle ϕr for simulated dis-

charge (a) and water elevation (b) against time.
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Figure 16: Comparison of measurement data with slope effect from

Damgaard et al. [9] for different repose angle ϕr for simulated discharge

(a) and water elevation (b) against time.
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Figure 17: Simulated coefficients at t = 30 s and t = 60 s.
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4.4 Two-dimensional dam-break flow in a mobile channel

with a sudden enlargement

In this test case, we aim to assess the suitability of the proposed scheme

to two-dimensional problems. The laboratory experiment described in

[13] is reproduced numerically. The flume in the experiment is 6 m long

and features a sudden enlargement from 0.25 m to 0.5 m width, which is

located at 1 m downstream of the gate, cf. Fig. 18. The initial conditions

consisted of a 0.100 m horizontal layer of fully saturated and compacted

sand over the whole flume and an initial layer of h0 = 0.25 m clear water

upstream of the gate water depth at the upstream of the gate and dry

bed in the downstream. The median sediment diameter is d = 1.65 mm,

the density is ρs = 2630 kg/m3, the repose angle ϕ = 30◦ and the porosity

of the sand is p = 0.42. Bed friction is accounted for via a Manning’s

coefficient of n = 0.0185 sm−1/3. At the beginning of the experiment, the

gate is opened to generate a dam break wave. In the numerical model,

we use 2064 triangular cells to discretize the flume. The calibration

parameter is determined to be ε = 0.15 in this test case. Measurement

data of water and bed elevations at specific gauges and cut sections are

available from [13], cf. Tab. 2 and 3, respectively. The three dimensional

results from a standard k − ε model (3D results) obtained from [33] are

chosen here for comparison.

Fig. 19 shows the comparison of measured and computed water el-

evations. We see that overall the model prediction is fairly close to the

measurement data. Gauges U1 and U3 show the worst agreement. Es-

pecially for U1, the 3D results almost perfectly match the measurement

data, but for results from this work overestimate the water level. Sim-
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Table 2: Position of gauges

Gauge x (m) y (m)

U1 3.75 0.125

U2 4.20 0.375

U3 4.20 0.125

U4 4.70 0.375

U5 4.70 0.125

Table 3: Position of cut sections
Section x (m)

CS1 4.05

CS2 4.15

CS3 4.25

CS4 4.35

CS5 4.45

Initial water depth = 0.25 m
Initial water depth = 0 m

F
re

e
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u
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D
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Figure 18: Sketch of a 2D dam-break flow with a sudden enlargement

channel over mobile bed.
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ilarly, for the results at U3, both the results from 3D model and this

work underestimate the measurement, but the 3D results show slightly

better agreement. The reason for the deviation is that these gauges are

located close to the expansion where strongly three-dimensional flow

occurs. The depth-averaged model concept is poor at these locations.

While, at U2, the results from this work show slightly better agreement

than the 3D model results, both models provide good results at the re-

maining gauges. This supports the conclusion that the deviation at U1

and U3 are due to strong 3D effects at these locations.

Fig. 20 shows the comparison between measured and computed bed

elevations at cut sections CS1 to CS5, at the end of the simulation. We

see that all cut sections are predicted reasonably well by the numerical

model. The overall tendency of erosion on the right side and deposi-

tion on the left side of channel is captured accurately. At CS1, which is

located close to the expansion area, the maximum erosion is underesti-

mated and its location is predicted wrong, more specifically it is shifted

to the left, while the 3D results almost perfectly capture the magni-

tude of maximum erosion and its location, the deposition at the left

bank is predicted wrong with an erosion hole instead. At CS2 to CS5,

deviations between the measured and predicted maximum erosion is

observed. The maximum deposition locations are predicted more accu-

rately in 3D results. A consistent shift to left of the maximum deposi-

tion locations in the simulation results from this work can be observed.

Three-dimensional flow effects are most likely the reason for these de-

viations. The proposed model is depth-averaged, and therefore neglects

three-dimensional effects. This means that there will be more flow pre-

dicted into the down-stream direction of the channel, which might be

51



0 2 4 6 8 10 12
t [s]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

W
at

er
 le

ve
l [

m
]

Gauge U1

Calculated
3D results
Measured

0 2 4 6 8 10 12
t [s]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

W
at

er
 le

ve
l [

m
]

Gauge U2

Calculated
3D results
Measured

0 2 4 6 8 10 12
t [s]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

W
at

er
 le

ve
l [

m
]

Gauge U3

Calculated
3D results
Measured

0 2 4 6 8 10 12
t [s]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
W

at
er

 le
ve

l [
m

]
Gauge U4

Calculated
3D results
Measured

0 2 4 6 8 10 12
t [s]

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

W
at

er
 le

ve
l [

m
]

Gauge U5

Calculated
3D results
Measured

Figure 19: Comparison between measured (-◦-) and calculated (–) water

levels at gauges U1-U6.
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the reason for more erosion at the right side and less deposition at the

left side. We show the computed final bed elevation contours in Fig. 21.

4.5 Partial dam-break flow on movable bed in a straight

channel

In this final example, we test the proposed model again for complex two-

dimensional flow conditions, the computational domain is a suddenly

enlarged channel with symmetric geometry. As the proposed model is

discretizated on the unstructured grids, the complex geometry condi-

tions can be thought as a good benchmark for verifying the sediment

movement and whether the flow field is influenced by the sediment in-

teraction which leads to a non-symmetric flow field. The laboratory ex-

periment from [42, 58] is reproduced numerically. The flume is 3.6 m

wide and 36 m long, cf. Fig. 22. A 1 m wide gate is located in the middle

of the domain, the partial dam-break was represented by rapidly lift-

ing the gate away. Initially, a sand layer with a depth of 85 mm is set

over a fixed bed in the region that spans from 1 m upstream of the gate

to 9 m downstream of the gate and is indicated with gray color in Fig.

22. The density of the sand layer is ρs = 2630 kg/m3 and its porosity

is p = 0.42. The diameter of the sediment is d = 0.00161 m, and the

repose angle ϕr = 30◦. The origin of the coordinate system is located

at the middle of the gate. Water and bed elevations are measured at

8 gauges. Gauges 1-4 are located at the coordinates x = 0.64 m with

y1 = −0.5, y2 = −0.165, y3 = 0.165, y4 = 0.5 m, respectively, gauges

5-8 are located at the coordinates x = 1.944 m with y5 = −0.99, y6 =

−0.33, y7 = 0.33, y8 = 0.99 m, respectively. Three longitudinal cut sec-
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Figure 20: Comparison between measured (-◦-) and calculated (–) bot-

tom topographies at cut sections CS1-CS5.
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Figure 21: Contour plot of calculated final bed topography.

Figure 22: Sketch of UCL partial dam-break experiment (dimension in

meters) after [58]

tions are chosen to measure the final bed topography, all the cut sections

are set along the x− direction by the range of [0.0, 9.0] m, with parallel

lines for cut section CS1 to CS3 located at y = 0.2 m , y = 0.7 m and

y = 1.455 m, respectively, cf. Fig 22.

The laboratory experiment is repeated twice, i.e. two measurement

data sets are available for comparison.

The domain is discretized using 2935 triangular cells. The simula-

tion is run for 20 s. The calibration parameter ε = 0.75 is adopted in

this test case. The Manning roughness coefficient is n = 0.01 sm−1/3 for
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the fixed bed, and n = 0.0165 sm−1/3 for the sand layer [58]. The initial

water level in the reservoir is 0.47 m above the fixed bed, and the dry

bed for the downstream. Transmissive boundary conditions are set at

the downstream boundary and free slip boundary conditions are set for

all other boundaries.

Fig. 23 shows the comparison of measured and computed water el-

evations at the 8 gauges. We note that the locations of the gauges are

symmetric with regard to the y-axis. Thus, we observe that the flow is

symmetric by comparing the corresponding gauge pairs, i.e. G1 and G4,

G2 and G3, G5 and G8, and G6 and G7. The computed water eleva-

tions at gauges G5 to G8 show good agreement with the measurement

data. At gauges G1 and G4 the computed water elevations undershoot

the measurement data, while at G2 and G3 the measurement data is

overshot by the numerical model. This is most likely due to the sud-

den expansion that causes three-dimensional flow conditions in these

locations.

The predicted bed elevations at 20 s along longitudinal cut sections

at CS1-CS3 are compared against measurement data in Fig. 24. We

see that the model prediction is good in the upstream part for CS1 and

CS2. The deposition at the downstream is under-predicted. The bed el-

evations at CS3 show good agreement. In the upstream, the deposition

is underestimated.

5 Conclusions

We present a two-dimensional, well-balanced total load sediment trans-

port model that features following novel aspects: (1) the suspended
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Figure 23: Comparison between measured and calculated water levels

at gauges G1-G8.
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Figure 24: Comparison between measured and calculated bottom to-

pographies at cut sections CS 1,2 and 3.
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load is advected with a different velocity from that of water, which is

achieved by the introduction of the coefficient ξ; (2) a novel HLLC ap-

proximate Riemann solver is used to take into account the different ad-

vection velocities; (3) an improved bed slope treatment that accounts

for density variation inside the cell; (4) a novel splitting-point implicit

source term discretization for the remaining source terms.

The model is tested in 5 examples that include fixed bed and mobile

bed problems. From these examples we can conclude that the hydro-

dynamic module reproduces the flow fields accurately and the morpho-

dynamic module reproduces the bed evolution fairly well for different

types of complex flows such as dyke overtopping, dam-break flow and

discontinuous geometry.

A sediment velocity coefficient is introduced to distinguish between

flow velocity and sediment advection velocity. This coefficient mainly

depends on the ratio of suspended load. The increase of bed load velocity

coefficient 1/β, will lead to a larger sediment advection velocity.

The sediment movement calculation is mainly based on the equation

from Meyer, Peter and Müller, which is an empirical equation derived

from a group of physical experiments. Situations that satisfy the labora-

tory conditions are limited. Hence, the validity of the Meyer-Peter and

Müller equation for a majority of cases is questionable. The calibration

parameter ε is introduced to account for this issue. Varying this param-

eter yields a change in the erosion depth, and enables reproducing the

measurement data more accurately.

Meanwhile, the slope effect is also found to have a large influence

on the sediment movement and the flow pattern during the simulation,

as the slope effect will lead to a different critical shear stress number
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θc, which will lead to a different bed load capacity qb∗. Hence, the sus-

pended load erosion and the concentration distribution are also influ-

enced. In this work, the slope effect from [41] is found to outperform

other formulations, but it must be mentioned that we did not perform

tests that consider different initial bed gradients.

A sensitivity analysis is undertaken against the one-dimensional

dam-break flow over movable bed, parameters include Manning number

n, sediment diameter d, and sediment porosity p are chosen as the sensi-

tive parameters, the results show that the diameter of sediment d gives

the least influence and sensitivity for the numerical model, Manning

number n shows more sensitivity for the water discharge, the erosion

depth also get influenced but the position of the shock wave in the mid-

dle and maximum erosion hole keep doesn’t get influenced, the porosity

p shows more sensitivity on the erosion hole depth and shape for the sed-

iment, but for the water surface and the discharge in the downstream,

the influence is quite small.

On a final note, we discuss some limitations of the model. The

proposed model uses depth-averaged approach. Consequently, if three-

dimensional effects or large horizontal circulation patterns become sig-

nificant, e.g. turbulent vertical structures and non-hydrostatic pres-

sure distribution, the model’s underlying assumptions are violated and

model accuracy can not be guaranteed. In the range of classical shallow

flow theory, the proposed model is expected to predict the flow field and

the sediment movement with reasonable confidence. Depth-averaged

models are useful for applications considering large-scale far-field re-

sults for real-world cases, where the influence of localized three-dimen-

sional effects can be neglected in the “larger picture”.
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The proposed model further assumes non-cohesive sediment. On the

other hand, the basic assumption for suspended load theory is that the

diameter of the sediment is much smaller than the water mass scale.

With this assumption, the velocity of suspended load is thought to be

equal to the velocity of the fluid in all horizontal directions. For bed

load, the sediment diameter and the water mass scale are almost at the

same order of magnitude, and a different transport velocity must be as-

sumed [8]. All of these findings are valid only for cases with relatively

low sediment concentration. If the sediment concentration is high, the

fluid-sediment mixture will become a non-Newtonian fluid, and all our

assumptions would fail. Thus, the proposed model is limited to low sed-

iment concentrations. This limitation is not unique for the proposed

model, but also applies to all sediment transport models discussed in

the introduction.

While we discussed the limitations of the proposed model, we em-

phasize that the model is reliable and accurate for a broad range of ap-

plications in hydro- and environmental system modeling, and improves

existing shallow flow sediment transport models. Future work will aim

to extend the range of model’s capability, e.g. by using a multi-layer

shallow flow model to capture the three dimensional effects, and includ-

ing turbulence models.
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[64] J. Zhao, I. Özgen, D. Liang, and R. Hinkelmann. Improved multi-

slope muscl reconstruction on unstructured grid for shallow water

equations. International Journal for Numerical Methods in Fluids,

2018. fld.4499.

70

View publication statsView publication stats

https://www.researchgate.net/publication/330373190

