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Abstract
Recent developments in EEG hardware and analyses approaches allow for record-
ings in both stationary and mobile settings. Irrespective of the experimental setting, 
EEG recordings are contaminated with noise that has to be removed before the data 
can be functionally interpreted. Independent component analysis (ICA) is a com-
monly used tool to remove artifacts such as eye movement, muscle activity, and 
external noise from the data and to analyze activity on the level of EEG effective 
brain sources. The effectiveness of filtering the data is one key preprocessing step to 
improve the decomposition that has been investigated previously. However, no study 
thus far compared the different requirements of mobile and stationary experiments 
regarding the preprocessing for ICA decomposition. We thus evaluated how move-
ment in EEG experiments, the number of channels, and the high-pass filter cutoff 
during preprocessing influence the ICA decomposition. We found that for commonly 
used settings (stationary experiment, 64 channels, 0.5 Hz filter), the ICA results are 
acceptable. However, high-pass filters of up to 2 Hz cut-off frequency should be used 
in mobile experiments, and more channels require a higher filter to reach an optimal 
decomposition. Fewer brain ICs were found in mobile experiments, but cleaning the 
data with ICA has been proved to be important and functional even with low-density 
channel setups. Based on the results, we provide guidelines for different experimen-
tal settings that improve the ICA decomposition.
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1  |   INTRODUCTION

Over the last decade, the development of lightweight 
portable electroencephalography (EEG) amplifiers and 
new data-driven analyses approaches led to the investi-
gation of the neural basis of ecologically valid cognitive 
processes in actively behaving human participants out-
side established laboratory environments. Experiments 
now allow active behavior of participants both in the lab 
(De Sanctis et  al.,  2014; Djebbara et  al.,  2019; Ehinger 
et  al.,  2014; Gehrke et  al.,  2018; Gramann et  al.,  2010; 
Nenna et al., 2020, this issue) and in the real world, which 
increases our understanding of human brain dynamics ac-
companying embodied cognitive processes as well as the 
impact of real world environments (Debener et  al., 2012; 
Ladouce et al., 2017; Protzak & Gramann, 2018; Wascher 
et  al., 2014; Wunderlich & Gramann, 2018). While these 
experimental protocols provide new insights into the neural 
activity subserving cognition in more realistic and natu-
ral settings, they present new challenges. Mobile EEG or 
Mobile Brain/Body Imaging (MoBI; Gramann et al., 2011, 
2014; Jungnickel et al., 2018; Makeig et al., 2009) record-
ings are impacted by movement-related electrical activity 
stemming from facial muscles, neck muscles and eye move-
ments that naturally accompany active behaviors. While 
these physiological contributions are usually considered 
to be artifacts, they may still provide additional insights if 
analyzed separately. Other artifactual contributions to the 
recording are even less welcome. For example movement 
in mobile protocols might lead to mechanical artifacts like 
cable sway or micro movement of electrodes that contribute 
artifactual activity into the recording. Finally, environmen-
tal sources and the equipment necessary for the experiment 
itself like head mounted virtual reality (VR) systems or 
treadmills can be another unavoidable source of electrical 
artifacts in mobile recordings. All these signals mix at the 
sensor level and render it difficult to dissociate brain from 
non-brain activity to investigate the neural basis of the cog-
nitive processes of interest. While movement-related non-
brain sources are specifically problematic for experiments 
including actively behaving participants, contributions 
from sources like eye movements, facial muscles, and neck 
muscle activity can also be found in EEG data recorded in 
established desktop settings. These forms of biological sig-
nals are traditionally considered artifacts and are one of the 
main reasons why established EEG research minimizes any 
kind of participant movement, including eye movements or 
blinks. Thus, the ability to interpret EEG data from both 
classic stationary as well as MoBI experiments depends 
greatly on the ability to dissociate signals of interest origi-
nating in the brain from those of other sources.

Mechanical and electrical artifacts do not correlate highly 
with physiological recordings and thus are typically easier to 

detect and to remove than physiological contributions (Chang 
et al., 2020). The dissociation of potentially correlating phys-
iological sources (brain, eyes, and muscles) is more difficult. 
It can be achieved by applying spatial filter methods to the 
data, exploiting the fact that electrical activity is recorded 
with multiple electrodes on the scalp. Among different spa-
tial filter approaches, blind source separation techniques 
(Bell & Sejnowski,  1995; Hyvärinen et  al.,  2001; Makeig 
et  al.,  1997) proved to be very successful and specifically 
independent component analysis (ICA) applied to EEG and 
magnetoencephalography (MEG) data demonstrated increas-
ing popularity among researchers. With the number of ICA 
applications to EEG data constantly growing over the last 
25 years from 16 publications in 1995 to 5,450 publications 
in 2019 alone (search term "EEG" + "Independent compo-
nent analysis", Google Scholar, accessed on 2020-05-18), the 
variations of preprocessing the data to eventually applying 
ICA also increased. In most cases a channel density of 64 and 
upwards is being used for ICA since spatial filtering typically 
improves with more degrees of freedom, but less consensus is 
reached considering the applied filter. Often a high-pass filter 
of 1 Hz is used, but lower frequencies like 0.5 Hz or higher 
ones like 2 Hz or even 3 Hz can be found in the literature as 
well. Sometimes, additional low-pass filters are applied while 
many times none is used. While some of the preprocessing 
steps have been evaluated regarding their impact on the sub-
sequent ICA decomposition, not all factors have been sys-
tematically investigated. Quantitative validation of different 
ICA algorithms and their efficacy in separating brain from 
other data was often done with simulated data, since a ground 
truth for signal and noise is available in that case. However, 
simulated data are cleaner than natural data and cannot re-
flect the true complexity of artifacts and the intricate varia-
tions in physiological activity occurring in real experiments. 
Researchers working with natural EEG data need to under-
stand the effects of different preprocessing steps on this data 
and the subsequent ICA decomposition. Consequently, the 
purpose of this study is to shed light on the relevant contri-
butions of different factors on ICA for both stationary and 
mobile experiments using natural data, and to provide a "best 
practices" guideline to improve the ICA decomposition.

In this paper, we will first introduce the EEG mixing 
model and discuss prior research on the effect of different 
data preprocessing settings on ICA. Formulating our hypoth-
eses, we will then present our approach in investigating the 
impact of the three most common factors influencing ICA de-
compositions: high-pass filter settings, channel density, and 
movement, by evaluating ICA decompositions with respect to 
the number of components categorized as brain or non-brain 
origin, independent component (IC) dipolarity, and the sig-
nal-to-noise ratio (SNR) of event-related potentials (ERPs). 
Finally, the results will be discussed and recommendations 
will be given.
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1.1  |  The EEG linear mixing model

Analyzing EEG data with ICA is based on a general assump-
tion that the data matrix X∈ℝ

N×M recorded by the EEG 
electrodes is a linear mixture of different sources S∈ℝ

N×M 
with a mixing matrix A∈ℝ

N×N such that X=AS (N being 
both the number of sources and EEG channels, and M being 
the number of samples in the dataset; Hyvärinen et al., 2001; 
Hyvärinen & Oja, 2013). Sources are assumed to be statis-
tically independent and stationary. These assumptions can 
now be leveraged to compute an inverse un-mixing matrix 
W=A

−1 (W∈ℝ
N×N), such that S=WX. Finding W is an ill-

posed problem without an analytical solution. Different ICA 
algorithms use different heuristcs and thus compute slightly 
different un-mixing matrices (Hyvärinen et  al.,  2001), and 
even the same algorithm does not always converge on the 
same solution for the same data (Artoni et al., 2014; Groppe 
et al., 2009).

1.2  |  Achieving an optimal decomposition

Since ICA is becoming increasingly popular for EEG re-
search, efforts have been made to identify the best algorithms 
and prerequisites to obtain a good decomposition of the 
data. Comparing different algorithms, Delorme et al. (2012) 
and Leutheuser et  al.  (2013) found that AMICA (Palmer 
et al., 2011) performed best among different algorithms. This 
was confirmed in part by (Zakeri et al., 2014), but it was con-
cluded that the choice of preprocessing was more relevant to 
the decomposition quality than the algorithm itself.

Already early work on ICA has found the choice of pre-
processing to be relevant, as "[t]he success of ICA for a given 
data set may depend crucially on performing some applica-
tion-dependent preprocessing steps" (Hyvärinen et al., 2001, 
p. 263). One often used method to improve the decomposi-
tion quality is that of high-pass filtering. High-pass filter-
ing is essentially another linear transformation of the data 
and thus does not violate the ICA assumptions, as it can be 
expressed by multiplying the first equation with a compo-
nent-wise filtering matrix F from the right such that Xfiltere

d = XF = ASF = ASfiltered. It is thus possible to compute the 
mixing matrix A on filtered data and apply it to the unfiltered 
data without modification (see also Hyvärinen et al., 2001; 
Winkler et  al.,  2015), which is common practice in ICA 
analysis. While low-pass as well as high-pass filtering may 
remove noise from the data, filtering also bears the risk of 
removing relevant information. For low-pass filtering this 
is the case especially for high-frequency activity stemming 
from muscle contractions while for high-pass filtering this 
concerns slow cortical potentials in the data. Noise in form of 
slow drifts in the data affecting multiple channels (e.g. from 
cable sway or strong sweating) often occurs in all or many 

EEG channels and is thus hard to separate from brain signals 
(Winkler et al., 2015). Removing slow drifts can thus benefit 
the decomposition. While being used in practice almost uni-
versally as a preprocessing step before ICA, the exact filter 
specifications, especially the cut-off frequency of the high-
pass filter, are not always agreed upon.

Several studies have investigated the effect of high-pass 
filtering on the ICA decomposition. Groppe et  al.  (2009) 
have found that removing the mean of epoched data (which 
acts as a leaky high-pass filter) resulted in a more reliable de-
composition. Following up on this result, Zakeri et al. (2014) 
compared the effects of filtering, epoching, de-meaning, and 
including electrooculography and electrocardiography chan-
nels (EXG) on the ICA decomposition. By assessing IC dipo-
larity and mutual information, the authors found that the best 
approach was to compute the ICA on filtered continuous data 
including EXG. However, the applied filter was a band-pass 
filter of 0.16–40  Hz, which is a low high-pass filter com-
pared to previous studies that used filters of 0.5 Hz or higher 
(Delorme et al., 2012; Leutheuser et al., 2013). Additionally, 
the application of a band-pass filter does not allow any conclu-
sions for high-pass filtering specifically. This was addressed 
in detail by Winkler et al. (2015), who compared the effect 
of high-pass filtering in frequencies of 0 (no filter) to 40 Hz 
on the number of dipolar ICs and both SNR of ERPs and 
classification accuracy when artifactual ICs were removed. 
It was found that filters of <0.5 Hz were indeed suboptimal, 
and the best results were achieved with filters of 1–2 Hz. In a 
recent study, Frølich and Dowding (2018) found that filtering 
data that had already been band-pass filtered from 2–40 Hz 
with another 14 Hz high-pass filter increased the number of 
dipolar ICs and event-related desynchronization measures 
in a scenario with high muscular contributions to the data. 
Considering especially the impact on data with high amounts 
of ocular movements, Dimigen (2020) found that a high-pass 
filter cut-off of 1–1.5 Hz produced best results when com-
paring filters of 0 (no filter) to 30 Hz by assessing the resid-
ual eye artifacts, the size of the saccadic spike potential, and 
the distortion of artifact-free intervals. In addition, the study 
specifically investigated low-pass filtering and found that 
low-pass filtering with 40 Hz was detrimental compared to 
100 Hz. Lastly, in a study using a phantom head to simulate 
EEG recordings during walking, Richer et al.  (2019) found 
that adding EMG channels to the recording before computing 
ICA improved the recovery of simulated brain signals.

Taken together, previous studies suggest that a high-pass 
filter between 1 and 2 Hz and no low-pass filter seems to be 
the best choice to improve ICA decompositions. However, the 
results are inconclusive, and two factors have not yet been ad-
dressed that can be observed in several EEG studies. Firstly, 
no study yet compared the different requirements of standard 
stationary experiments and active MoBI experiments. While 
(Winkler et al., 2015) used a stationary experimental protocol 
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where comparatively low amounts of artifacts were to be ex-
pected, other studies only investigated muscle artifacts (Frølich 
& Dowding, 2018; Richer et al., 2019; Zakeri et al., 2014), with 
one study exploring the removal of ocular artifacts in great de-
tail (Dimigen, 2020). The second not yet examined factor is the 
number of channels which were used for the decomposition, 
as none of the above-mentioned studies compared scalp chan-
nel montages, and the reported studies used channel densities 
ranging from 45 to 71 channels. Yet, as the number of cortical 
and artifactual sources in a given recording stays the same, no 
matter how many channels are used, the distinction between 
signal and noise could become more evident with an increasing 
number of channels, as the sources might be more clearly sep-
arated. This is especially important in mobile studies as more 
and stronger contributions from non-brain physiological (eye 
and muscle activity) and other sources (mechanical and electri-
cal noise) are expected in these types of experiments. Here, the 
available degrees of freedom for the decomposition might play 
a crucial role.

1.3  |  Current study

We thus specifically asked how movement in EEG experi-
ments would influence the quality of the decomposition. 
We were further interested whether and how the number of 
channels would impact the decomposition results. Lastly, 
we investigated how the filter settings during preprocess-
ing influence the outcome of the decomposition, especially 
considering the differences between stationary and mobile 
experiments with different spatial densities of the montages. 
The quality of the decomposition was assessed using the di-
polarity of IC topographies, the noise in the event-related 
potential data after backprojection to the sensor level using 
only brain ICs, and the number of brain components auto-
matically classified from all resultant ICs. We assumed that 
higher-density channel montages would be beneficial in gen-
eral, and more so for data recorded from mobile participants. 
Especially for a mobile setting, we expected that adding 
EMG data from sensors placed on the neck would improve 
the decomposition. We further expected the best decomposi-
tion results for preprocessing with a high-pass filter cut-off 
in the range between 0.5 and 2 Hz. Finally, we hypothesized 
that mobile experiments include more slow drifting signals 
due to mechanical and movement-related artifacts and thus 
require a higher cut-off frequency than stationary experi-
ments to achieve the best decomposition.

2  |   METHODS

We analyzed data from a spatial orienting MoBI experi-
ment, which is particularly useful for this study as it included 

a stationary as well as a mobile condition in which partici-
pants solved the identical task with comparable visual input. 
It allows for a comparison of stationary and mobile EEG 
setups and thus the impact of movement on decomposition 
quality. Details of the experiment can be found in (Gramann 
et al., 2018).

2.1  |  Experiment and dataset

2.1.1  |  Participants

20 healthy adults participated in the study (11 females, aged 
20–46 years, M = 30.25 years) and were compensated with 
either 10/h or course credits. One participant aborted the ex-
periment due to motion sickness, the remaining 19 datasets 
were used for analysis. The experiment was approved by 
the local ethics committee (Technische Universität Berlin, 
Germany) and all participants gave written informed consent 
in accordance with the Declaration of Helsinki.

2.1.2  |  Experimental paradigm

Participants were situated in a virtual environment that dis-
played only floor texture. They were instructed to follow a 
sphere that rotated around them and stopped unpredictably 
on a trial at different eccentricities. The task of participants 
was to rotate back to indicate their initial heading direction. 
The task was self-paced and participants initiated a trial with 
a button press with their index finger. Each trial started with 
the appearance of a red pole indicating the starting position 
participants had to face. After signaling alignment with a 
second button press, the pole disappeared and a red sphere 
appeared, circling around the participant in a distance of 
30m. Participants rotated on the spot to keep the sphere in 
the center of their view. The sphere stopped and turned blue 
to mark the end of the outward rotation. Participants then ro-
tated back and indicated their estimated initial heading by a 
button press. Participants rotated both clockwise and coun-
ter-clockwise, in varying velocities and eccentricities (30° 
to 150°), in a randomized order, summing up to 140 trials. 
The task was completed twice, once using a traditional 2D 
monitor setup where movement was controlled through a 
joystick (stationary condition), and once with a virtual real-
ity setup where movement was controlled through physical 
body movement (mobile condition). The order was balanced 
across participants. An overview of the paradigm can be seen 
in Figure 1.

In the stationary condition, participants stood in front 
of a TV monitor (Samsung UE42F5000AW, 1.5m distance, 
40” diagonal size, HD resolution, 60  Hz refresh rate) and 
were instructed to move as little as possible. In the mobile 
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condition, they were wearing a head-mounted virtual reality 
display (HTC Vive, 110° field of view, 2x1080x1200px res-
olution, 90 Hz refresh rate) and a backpack PC so no cables 
constrained their movement, and completed the task by phys-
ically rotating on the spot. Each condition was preceded by 
a baseline of three minutes during which participants were 
asked to stand still, keep their eyes open, and to look straight 
ahead. Completing each condition took around 30 min, with 
the mobile condition being slightly shorter than the station-
ary condition due to faster physical rotations during the re-
sponse movement.

2.1.3  |  Data recording

In both conditions, EEG was recorded from 157 active elec-
trodes on both the scalp (129 electrodes) and neck of the par-
ticipant (28 electrodes). The latter were used to specifically 
record neck muscle activity for a potential benefit in data 
cleaning. Electrodes on the scalp were placed using an elastic 
cap with an equidistant design. The electrodes on the neck 
were placed with a custom design neckband (EASYCAP, 
Herrsching, Germany). All channels were referenced to an 
electrode close to the standard FCz position and data were re-
corded with a sampling rate of 1,000 Hz. The data were band-
pass filtered from 0.016–500 Hz (BrainAmp Move System, 
Brain Products, Gilching, Germany) and impedances were 
kept below 10k Ω for electrodes on the scalp, and below 50k 
Ω for neck electrodes. Individual electrode locations were re-
corded using an optical tracking system (Polaris Vicra, NDI, 
Waterloo, ON, Canada).

In addition to the EEG, motion capture data were recorded 
using either the camera location in the virtual environment, or, 

in the mobile condition, the VR lighthouse tracking system 
(HTC Corporation, Taoyuan, Taiwan) of the head-mounted 
display, and active LEDs on the feet, around the hip, and on 
the shoulders with the Impulse X2 System (PhaseSpace Inc., 
San Leandro, CA, USA), all with a sampling rate of 90 Hz. 
Motion capture data were not used for the analyses presented 
here. Data and event marker streams of different sources were 
time-stamped and recorded using Lab Streaming Layer.1

2.2  |  Processing pipeline

The data were analyzed in MATLAB (R2016b version 9.1; 
The MathWorks Inc., Natick, Massachusetts, USA), using 
custom scripts based on the EEGLAB toolbox (Delorme & 
Makeig,  2004, version 14.1.0). We investigated the effects 
of different factors on the quality of the resulting ICA de-
composition. To this end, we systematically assessed the 
impact of the experimental protocol (stationary versus. mo-
bile condition), the channel density (five different montages 
subsampled from the original 157-channel motage), and the 
high-pass filter cut-off frequency (from no filter up to 4 Hz 
cutoff). A schematic overview of the data processing pipeline 
can be seen in Figure 2.

2.2.1  |  Preprocessing

Data from both conditions was first appended and indi-
vidual channel locations were loaded. Raw EEG data 

 1https://github.com/sccn/labst​reami​nglayer

F I G U R E  1   Experimental setup and paradigm. (a) Setup of the stationary condition with joystick rotation (visual flow only), displaying a 
sparse virtual environment with a local landmark providing the initial heading direction (pole). The joystick was placed on a table in front of 
the standing participant. (b) Mobile Brain/Body Imaging setup with a participant wearing a head-mounted virtual reality (VR) display, high-
density EEG including an EMG neckband, and motion capture devices (red LEDs on gloves and VR). (c) Top-down view of a participant in the 
mobile condition, displaying the rotation eccentricities (varying ±15° around 45°, 90°, and 135°, respectively).

(a) (b) (c)

https://github.com/sccn/labstreaminglayer
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were then low-pass filtered to the new Nyqvist-frequency 
to prevent aliasing (zero-phase Kaiser-windowed sinc 
Finite Impulse Response (FIR) filter, Kaiser beta  =  5, 
cutoff = 112.5 Hz, stopband = 125 Hz, transition band-
width  =  25  Hz, default when using the pop_resample 
function of EEGLAB) before being resampled to 250 Hz. 

Subsequently, bad channels were detected manually to re-
move strong outliers which were then interpolated (e.g. 
channels heavily contaminated by line noise, transient ar-
tifacts from electrode shifts, or strong drifts, 17.6 channels 
on average, SD = 9.5). Lastly, channels were re-referenced 
to the average reference.

F I G U R E  2   Schematic overview of the processing pipeline. Blue boxes mark processing steps which were executed identically for all datasets, 
red boxes mark a selection of conditions, green boxes mark final quality measures. Steps are described in section Processing pipeline
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2.2.2  |  Channel selection

In the next step, we selected channels of the dataset to be in-
cluded in the analyses. These included either all channels, 
using the full equidistant setup with 129 scalp and 28 neck 
electrodes or a subset of only the scalp electrodes, resulting in 
a 128, 64, 32, and a 16 channel scalp setup. The subsampled 
channel layouts of 64 and less channels were chosen such that 
the whole head was covered while the mean of the channel 
locations remained within 1 cm of the mean of the 128 channel 
layout. Since the data contained free eye movements, the two 
electrooculogram (EOG) electrodes below the eyes were kept 
for all setups. Earlier testings pointed toward different results 
when using a more dorsal channel layout in the 16 channel re-
cordings, which is why an additional channel layout was tested. 
To not inflate the results section, the effects of this layout can 
be found in the supplementary material. The channel subset 
selection was identical for all participants, see Figure 2 for an 
exemplary visualization of the channel layouts. These data 
constituted the basic datasets ("datasets A").

2.2.3  |  High-pass filtering

In order to compare the impact of different high-pass filter fre-
quencies on ICA decompositions, the five datasets A were fil-
tered with a zero-phase Hamming window FIR-filter (EEGLAB 
firfilt plugin, version 1.6.2) with varying cut-off frequencies. In 
many cases, it is advisable to specify the filter order in detail to 
achieve maximal control of the process (see Widmann 
et al., 2015) for a practical guide to filtering EEG data). The 
filter passband-edge defines where signal attenuation begins, 
the cut-off frequency is the frequency where the signal is at-
tenuated by 6 db and can be regarded as the frequency where 
the filter starts to have a noticeable effect. The transition band-
width is double the difference between passband-edge and cut-
off frequency and is specified by the filter order. The 
stopband-edge is the passband-edge minus the transition band-
width and can be regarded as the frequency where the signal 
attenuation reaches its full effect. At this point, it should be 
noted that in EEGLAB filters are specified by passband edge 
and follow a heuristic to find a suitable filter order (and thus 
transition bandwidth) depending on the frequency. For exam-
ple, a default 1 Hz filter as used by EEGLAB routines has a 
transition bandwidth of 1 Hz and a cut-off of 0.5 Hz, whereas a 
3Hz filter has a transition bandwidth of 2 Hz and a cut-off fre-
quency of 2 Hz. For the present study, we used a constant filter 
order of 1,650 to ensure comparability, resulting in a transition 
bandwidth of 0.5  Hz independently of the passband-edge.2 

This means that a filter with a specified passband edge of 1 Hz 
and a transition bandwidth of 0.5  Hz leads to a cut-off fre-
quency of 0.75 Hz and a stopband frequency of 0.5 Hz. In the 
further course of this paper, we use the cut-off frequency to 
specify the filter. As the literature suggests, we focused our 
analysis on lower frequencies. Since the transition bandwidth 
was 0.5 Hz, the lowest cut-off frequency that could be applied 
was 0.25  Hz. We then increased the frequency in steps of 
0.25 Hz for lower frequencies up to 1.5 Hz, then in steps of 
0.5 Hz up to 3 Hz, and added a 4 Hz filter as the highest fre-
quency. Additionally, we added an analysis without any addi-
tional filtering (“0  Hz”) for comparison. This resulted in 11 
different filter settings for all of the datasets A.

2.2.4  |  Data selection

After filtering, segments in the data which were not part of 
the experiment were rejected and subsequently a manual 
cleaning followed where the data were scored for strong arti-
facts (on average 11.1% of the experiment data was removed, 
SD = 5.6%). The marked timepoints were saved and rejected 
from all filtered datasets. The separation of the stationary and 
mobile experimental conditions was made based on the event 
markers present in the data. Importantly, to ensure compara-
bility, both the stationary and mobile conditions had to be of 
the same length. As a consequence, the longer dataset was cut 
to the length of the shorter dataset (on average, datasets were 
27  min long, SD  =  5.8  min). Overall, this resulted in 110 
datasets per subject composed of 2 (movement conditions) × 
5 (channel montages) × 11 (filter cutoff) that entered an ICA 
decomposition.

2.2.5  |  Independent Component Analysis

All final 2090 datasets (110 datasets × 19 participants) were 
then decomposed using the AMICA algorithm (Palmer 
et al., 2011). AMICA was chosen since it is considered the 
best ICA algorithm (see section Achieving an optimal decom-
position) and is widely used by different research groups. 
Although the impact of filtering has been evaluated for al-
gorithms other than AMICA, AMICA itself was not often 
subject to these investigations. We used one model and ran 
AMICA for 2000 iterations on all datasets. Since we interpo-
lated channels previously and used an average reference for 
our datasets, we also let the algorithm perform a principal 
component analysis rank reduction to the number of channels 
minus 1 (average reference) minus the number of interpo-
lated channels. All computations were performed using four 
threads on machines with identical hardware, an AMD Ryzen 
1,700 CPU and 32GB of DDR4 RAM. Overall, computation 
time amounted to 4,340 hr for all participants and datasets.

 2This can be reproduced in MATLAB/EEGLAB with [EEG, com, ∼] = 
pop_eegfiltnew(EEG, highpassPassbandEdge, 0, 1,650, 0, [], 1), note that 
in EEGLAB the specified value is the passband edge, not the cutoff 
frequency, which in this case is desiredCutoff + 0.25.
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2.2.6  |  Dipole fitting

Subsequently, for every resulting IC, an equivalent dipole 
model was computed as implemented by the DIPFIT plugin 
for EEGLAB. For this purpose, the individually measured 
electrode locations of every participant were warped (rotated 
and rescaled) to fit a boundary element head model based 
on the MNI brain (Montreal Neurological Institute, MNI, 
Montreal, QC, Canada). The dipole model includes an esti-
mate of IC topography variance which is not explained by the 
model (residual variance, RV).

2.2.7  |  Transfer of AMICA and equivalent 
dipole model structures

Since the final quality measures of the resultant AMICA 
decomposition needed to be computed on comparable un-
filtered data to allow for a direct comparison of ICs, we 
copied the resulting weight matrices of the AMICA and 
the equivalent dipole model back to dataset A. This also al-
lowed an automatic IC classification based on ICLabel (Pion-
Tonachini et al., 2019) to be performed on data containing 
the complete spectrum which increases classification ac-
curacy. Subsequently, the data were cleaned and separated 
into the two movement conditions (identical to section Data 
selection).

2.2.8  |  Automatic component classification

The next part of the processing was the automatic classifica-
tion of ICs using the ICLabel algorithm (Pion-Tonachini 
et al., 2019). ICLabel is a classifier trained on a large data-
base of expert labelings of ICs, which classifies whether or 
not ICs are of brain or non-brain origin, including eye, mus-
cle, and heart sources as well as channel and line noise arti-
facts and a category of other, unclear, sources. The class 
probability is provided allowing both for a more fine-grained 
analysis of probabilities and a classic popularity vote classi-
fication. Classifying based on a class probability threshold 
per class can be beneficial when the focus of interest lies 
mainly on one class, but it can also lead to ICs which have 
zero or more than one class labels assigned. Since we were 
interested in comparing the different classes, we used the 
popularity vote for our analysis. As a result, ICs received the 
class with the maximal probability as their class label. Two 
versions of the ICLabel algorithm exist: i) the default version 
which uses the IC activity spectrum (1-100Hz), IC topogra-
phy, and IC activity autocorrelation as features for classifica-
tion, and ii) the lite version which does not take autocorrelation 
into account. The latter is faster to compute and uses less 
RAM, especially for larger datasets, and although the 

classification of brain ICs can be slightly better in the default 
version, classification of other sources like eyes and muscles 
can be better using the lite version. Hence, we ran ICLabel 
twice using both versions but focus our analysis on the lite 
version.3 See Figure 2 for example patterns of the most im-
portant classes.

2.2.9  |  Automatic selection of 
parietal components

In addition to the ICLabel classification, we automatically 
selected one parietal IC for each decomposition, based on a 
topographic weight map. To allow automatic selection of this 
parietal component, we took the first 10+  number of ICs/ 
3 ICs with a RV of  <10% into account. The analysis of a 
specific brain IC allowed for an additional investigation of 
the impact of the preprocessing independent of ICLabel. 
Additionally, this allowed for investigating the effect of 
channel density, filtering, and movement on specific scalp 
topographies as opposed to a general decomposition quality. 
This can be important when using ICA to examine the data 
on the source level, for example in a parietal region of inter-
est. See Figure 2 for an example parietal pattern. The low-
density layouts with 16 and 32 channels were excluded from 
this analysis because parietal patterns could not be detected 
reliably. Additionally, two subjects had to be excluded even 
in the high-density layouts because the algorithm failed to 
reliably detect a parietal pattern.

2.3  |  Quality measures

In order to compare the decomposition quality, we ex-
tracted several features addressing both general and practical 
considerations.

First, we considered the ICLabel classifications. The 
focus of most EEG research lies on brain signal analysis and 
the removal of other sources that are considered artifactual 
contributions. In MoBI research, in contrast, analyzing mus-
cle and eye activity as signals can be very important to make 
sense of the data and potentially to be used as a source of 
insight into cognitive processes. Hence, we were interested in 
the amount of brain, eye, and muscle ICs as signal sources, 
and the amount of other ICs as a proxy of general decompo-
sition quality.

Additionally, we were interested in the residual variance 
of ICs after fitting an equivalent dipole model. The RV, es-
pecially of brain components, is an important measure to 

 3A comparison of the two algorithms’ effect on the number of ICs per class 
can be found in the supplementary material. For further inquiry refer to 
(Pion-Tonachini et al., 2019).
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estimate the quality of a component (Delorme et al., 2012). A 
low RV means that the respective independent component is 
largely dipolar in nature, which in turn indicates more physi-
ologically plausible sources that are more likely to be of brain 
origin, since the standard head models only include dipoles 
in the cortex. Often, this measure is used to separate brain 
ICs from other ICs where ICs with an RV <15% are treated 
as more likely originating in the brain. We were interested in 
the mean intra-class RV for the ICLabel classes as well as the 
mean RV of the parietal ICs.

Finally, as a practical measure for researchers, event-re-
lated-responses (ERPs) were computed for all datasets and 
further examined on their the signal-to-noise ratio (SNR). 
To this end, the data were pruned with ICA by removing all 
ICs that were classified as non-brain classes and only brain 
ICs were backprojected to the sensor level. In case no IC was 
classified as brain, the one with the highest brain probabil-
ity was used (over all conditions, this occurred 16 times). 
Since the data were previously scored for strong artifacts in 
the time domain, only trials not containing these artifacts en-
tered the ERP. The ERPs were computed at an electrode in 
equidistant layout which was positioned closest to the POz 
electrode in the standard layout (POz’). Importantly, to not 
distort the results we used no frequency filter on the data (as 
the ICA results were copied back to the unfiltered data), but 
only the spatial filter of the ICA. We then extracted epochs 
(−600 ms to +1,200 ms) around the trial-onset event (onset 
of the moving sphere) for which we expected a parietal late 
positive complex to occur, and removed the pre-stimulus 
baseline activity. The two mobility conditions (stationary, 
mobile) did not contain the same amount of events, as the 
stationary condition had to be cut short to fit in length to the 
mobile condition in which participants rotated back faster 

and thus were able to answer more trials within the same 
time. To ensure comparability between the conditions, we 
determined the minimal number of available events for both 
movement conditions per subject and used this number of 
events in both conditions to compute the ERPs. On average, 
77.8 (SD = 18.2) epochs were used per subject and condition, 
and the final measures for signal and noise were computed. 
To this end, the mean amplitudes from 250  ms to 450  ms 
served as the signal which was divided by the standard devia-
tion in the 500 ms pre-stimulus interval to compute the SNR 
(Debener et al., 2012).

3  |   RESULTS

As the effects are either clearly visible in the figures or a re-
flection of the arbitrarily chosen filter steps, statistical testing 
was not performed. Overall, the ICA decompositions were 
sensitive to the different preprocessing parameters. Figure 3 
shows the results for the number of ICs in the Brain, Muscle, 
Eye, and Other, classes, as well as their mean RV. The results 
of the RV values of the parietal ICs can be seen in Figure 4. 
Finally, the practical quality measures of ERPs and SNR val-
ues can be found in Figure 5.

Clear differences could be observed between the station-
ary and mobile data. The stationary data contained more brain 
ICs and less muscle ICs than the mobile data (see Figure 3), 
and additionally, the mobile data contained more ICs classi-
fied as "other". Interestingly, the number of eye ICs did not 
differ between the mobility conditions. A larger RV of brain 
ICs could be observed in the mobile condition, however, this 
difference was not very large. Considering the parietal ICs 
specifically (see Figure 4), the mobile condition consistently 

F I G U R E  3   Results for the ICLabel classifications (n = 19). Shaded areas depict the standard error of the mean. 0 Hz refers to no additional 
filter being applied before computing ICA. Note the logarithmic scaling of the abscissa with grid lines for each available filter frequency. Top row: 
amount of ICs per class, bottom row: mean residual variance (RV) per class.
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exhibited a slightly higher RV than the counterparts in the 
stationary condition. The SNR of the ERPs was considerably 
greater in the stationary condition than in the mobile con-
dition (see Figure 5), and the shape of the ERP in the two 
mobility conditions was different, with a larger late positive 
peak including a steeper offset in the stationary condition.

The ICA decomposition was also clearly influenced by 
the channel montage, with generally more ICs being present 
in each class in higher channel densities. This was evident 
also in the number of brain ICs, but even with 16 channels 
there were still ICs classified as brain. Importantly, the dif-
ference in brain ICs between montages with different chan-
nel densities appeared less pronounced than the difference in 
muscle and other ICs, indicating a possibly more pronounced 
stability of the brain ICs. Note that the maximum of brain ICs 
was not reached with the montage containing the neck band 
(157 channels), but with 128 scalp channels. This was true 
for both mobility conditions, but the detrimental effect of the 
neck band was less pronounced in the mobile condition. The 
number of eye ICs was stable across channel montages, with 
densities of 64 channels and upward containing four eye ICs, 
the 32 channel montage containing three eye ICs, and only the 
16 channel montage containing only two ICs classified as re-
flecting eye movement activity. The RV of channel montages 
with fewer channels was lower in general. The 16 channel 
montages reached RV values of <10% in most cases, includ-
ing not only physiological, but also other ICs. The difference 
between the channel montages were more pronounced for 

muscle and other ICs than for brain ICs, which means that the 
difference in RV values between brain and non-brain ICs was 
larger when using more channels. In the parietal ICs, the 157 
channel montage showed a general increase of RV (around 2 
percentage points) above the 128 and 64 channel montages, 
whereas only a slight increase could be observed in the 128 
channel montage over the 64 channel montage. Interestingly, 
when looking at the SNR and the ERP waveforms, the 64 
channel montage already led to very good or the best results 
and cleaning the data with ICA based on 32 channels already 
led to a substantial improvement in SNR. The improved SNR 
values did not come at the cost of increased standard devia-
tions which would indicate more outliers. On the contrary, the 
standard deviation of the SNRs was generally lower when the 
data were cleaned with ICA. Visual inspection of the ERPs 
showed improvements already for 16 channels when cleaned 
with ICA, but the ERP waveform, especially in the mobile 
condition, was more similar to the uncleaned ERP than to 
the ERP of the 32 channels condition. However, employing 
a channel layout more focused on dorsal electrodes led to an 
improvement of the SNR and ERP waveforms (see supple-
mentary material).

The high-pass filter applied before computing ICA had 
a considerable influence as well. For brain and muscle ICs 
an increase in the number of ICs in these classes with in-
creasing high-pass frequencies could be observed, espe-
cially when compared to the data without additional filter 
(“0 Hz”). The number of eye ICs appeared to be insensitive 

F I G U R E  4   Residual variance (RV) of 
the parietal patterns (n = 17). Shaded areas 
depict the standard error of the mean. Only 
channel montages of 64 and more channels 
were considered. 0 Hz refers to no additional 
filter being applied before computing ICA. 
Note the logarithmic scaling of the abscissa 
with grid lines for each available filter 
frequency.

F I G U R E  5   Practical quality measures (n = 19). Top: Signal-to-noise ratios (SNRs) of the event-related-responses (ERPs) computed on 
uncleaned data and data that were cleaned with ICA by removing all non-brain ICs as classified by ICLabel. ERPs were computed on the POz’ 
electrode for the trial-onset event. Note that as the ICA results were copied back to the unfiltered datasets prior to ERP computation, the datasets 
themselves only differed in the ICA decompositions that were used for cleaning, no frequency filter was applied before computing the ERPs. SNR 
was defined as the mean amplitude in the 250 ms–450 ms interval divided by the standard deviation in the 500 ms pre-stimulus interval. 0 Hz refers 
to no additional filter being applied before computing ICA. Bottom: Corresponding ERPs, plotted either for different channel montages and a fixed 
filter cutoff frequency used before computing ICA (columns of SNR plots, a, b, e, f), or different cutoff frequencies and a fixed channel montage 
(rows of SNR plots, c, d, g, h).
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to high-pass filtering, whereas the number of other ICs 
dropped with increasing filter frequency. The effect of fil-
tering also exhibited a ceiling (brain/muscle ICs) or floor 
(other ICs) effect, where a filter higher than 1–2 Hz did not 

affect the results any further. The number of muscle ICs in-
creased a little slower, approaching an optimum from 2Hz 
onward and continued to increase even up to 4 Hz cut-off 
(maximum filter applied). The RV of brain ICs appeared 
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relatively stable across different filter frequencies, imply-
ing that an increased number of brain ICs did not coincide 
with classifying less dipolar ICs as originating in the brain. 
The mean RV of brain ICs ranged from 3% (stationary con-
dition with 16 channels) to 15% (mobile condition with 157 
channels). RV values of muscle and other ICs droppped 
with increasing filter frequency up to 1 Hz, which was more 
noticeable with higher channel densities. In the parietal 
ICs, a slightly different pattern was observed, where the 
RV did not approach a floor asymptote, but increased again 
after reaching the minimum around 1  Hz. This inverted 
U-shape with increasing filter frequencies could also be 
observed for the SNR measures of the ERPs and the ERP 
waveforms themselves, where mid-range filters showed a 
larger late positive signal, not only in the range used for the 
SNR computation (250  ms to 450  ms post-stimulus) but 
continuing until around 600 ms post-stimulus. In the pari-
etal ICs, the already small difference between the 64 and 
the 128 channel montage disappeared at the optimal filter 
frequency. The SNR in higher channel densities generally 
required a higher filter to reach its maximum which could 
also be seen in the ERPs themselves.

Finally, the effects of filter and mobility conditions ap-
peared to interact as well. For the number of brain ICs, the 
necessary filter to reach the maximum showed a marked 
difference between stationary and mobile data: The maxi-
mum number of 17.2 brain ICs in the stationary condition 
was reached with 128 channels and a 1  Hz filter. In con-
trast, the maximum of 12.7 brain ICs in the mobile condi-
tion was reached also with 128 channels but requiring a filter 
of 2.25 Hz. The SNR of the ERPs also showed that in the 
mobile condition a higher filter led to the best results. As 
expected from the SNR values, the ERP waveforms with the 
highest late positive values in the mobile condition were the 
ones cleaned with ICA computed on higher filtered data, es-
pecially noticeable with 128 channels where the maximal late 
positive peak occurred with the 2.25 Hz filter in the mobile 
condition as opposed to 1.25 Hz in the stationary condition.

4  |   DISCUSSION

EEG is a widely adopted tool in neuroscientific research and 
in the recent years new trends toward more active and mo-
bile experiments emerged, allowing for the investigation of 
more natural cognitive processes "in the wild". These experi-
ments, however, come with the drawback of additional and 
stronger artifactual contributions in the data which can mask 
electrical activity originating from the brain. Separating the 
different sources is thus a key step in modern EEG research 
and does not only allow for an analysis of clean data but also 
an estimation of the source activity and their cortical origins. 
Although blind source separation techniques like ICA are 

widely adopted as a tool to achieve this goal, the influence of 
different factors on this decomposition is not always clear. In 
this study, we investigated the impact of movement of partic-
ipants, channel density, and high-pass filter cut-off frequency 
during preprocessing on the decomposition of EEG data with 
ICA. We evaluated the outcome of ICA based on differently 
preprocessed data using the number of brain, muscle, eye, 
and other ICs as classified by ICLabel, their dipolarity, and 
the SNR of ERPs on the cleaned data.

The results show that, as expected, participant movement 
has a detrimental effect on the decomposition and generally 
leads to fewer and less dipolar brain ICs but more muscle ICs in 
the data. This is not surprising as more artifacts and especially 
more muscle activity is present in MoBI data which take up 
degrees of freedom for the ICA decomposition. Importantly, 
ICA is still a powerful tool for cleaning EEG data even in 
light of increasingly noisy recordings from MoBI and mobile 
EEG experiments, as the effect of cleaning on SNR and ERPs 
shows. In fact, in mobile EEG studies researchers risk to ob-
tain a very low SNR of an ERP without cleaning the data, 
but ERP quality might be significantly improved by removing 
non-brain ICs. When inspecting the ERPs of the uncleaned 
data some residual signal was observed even though the aver-
age varied around the baseline activity, possibly indicating an 
underestimation of the SNR in this case. This notwithstand-
ing, the ERP waveform is clearly different from the cleaned 
ones. Analyzing MoBI data with ICA or a comparably power-
ful cleaning method thus appears to be vital. It is to note that 
the strong difference of the ERP waveform between stationary 
and mobile data is not necessarily an effect of artifacts and 
increased noise alone. Since the brain needs to fulfill a vari-
ety of additional tasks when moving the body by preparing 
and executing motor commands with constant sensory feed-
back, attention to a specific stimulus may be limited (Ladouce 
et al., 2019) and decreasing sensory mismatch might change 
oscillatory processes (Gramann et al., 2018).

Considering the effect of the number of EEG channels, it 
can be stated that a higher scalp electrode density generally 
leads to a better ICA decomposition. However, there seems 
to be a ceiling effect when cleaning the sensor data with 
ICA which is reached already when using 64 channels, as 
shown in the ERP SNR analysis of both mobility conditions. 
Although the ICA decomposition of the 16 channel subsam-
pled montage did not reach the same level of data cleaning as 
observed for the high-density montages, it seems to be power-
ful enough to reconstruct event-related activity in stationary 
experiments to a useful degree and is still an improvement 
over uncleaned data analysis for mobile protocols. Recent 
advancements using ear-EEG have already shown promising 
results in detecting EEG artifacts with ICA in low-density 
recordings (Bleichner & Debener,  2019), and channel lay-
outs focusing on more dorsal electrode sites appear to result 
in better cleaning capabilities (see supplementary material). 
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Selecting a suitable channel layout might thus be especially 
important in low density recordings. Additionally, since the 
ICLabel classifier was not trained on low-density recordings, 
it might be possible to improve the ERP reconstruction by se-
lecting specific ICs manually. Nonetheless, using more chan-
nels resulted in more brain ICs, which in turn led to a more 
precise source-level analysis, making EEG a powerful tool to 
truly image the brain in action. A second surprise was the ob-
served detrimental effect of an EMG neckband on the num-
ber of brain ICs and their RV. This might have two reasons: 
First, it could be that the neckband is not an ideal candidate 
for measuring EMG activity. As 28 electrodes were placed 
around the neck, the width of the band might have been too 
large in some participants, leading to movement of the neck 
band and the incorporated electrodes and thus artifacts due to 
changes in the electrode-skin contact. Additionally, since the 
neckband was fixed, turning the head might have led to elec-
trodes shifting over the skin, leading to artifacts and EMG 
measurements that were potentially spatially unstable, intro-
ducing non-stationarity into the ICA decomposition and thus 
violating assumptions of the ICA model. In sum, the EMG 
neckband that was used might have introduced more artifacts 
to the data than adding useful information and degrees of 
freedom for the spatial filter. Another explanation could be 
that the images of the IC topography used by ICLabel as a fea-
ture for classification did not incorporate topographies based 
on additional neck channels (see Figure 2). This might have 
led to less accurate classifications and thus more incorrectly 
classified brain ICs. When looking at the SNRs and ERPs, 
although not being particularly helpful, the neckband seemed 
to be unproblematic, and especially in the mobile case the 
highest SNR was reached with the 157 channel montage.

In light of these considerations and the beneficial effect 
of EMG found in simulation studies (Richer et  al.,  2019), 
it needs to be further examined whether using sticky elec-
trodes for recording neck muscle activity instead of a neck-
band improves the results. One other observation we made is 
that the RV of ICs decreases with fewer channels, seemingly 
suggesting a better, more dipolar, decomposition. This effect 
could be caused by an actually better decomposition due to 
more samples available relative to the number of channels 
(as the dataset size was kept identical to ensure that the same 
information entered the ICA). On the other hand, it might 
be caused by less measurement points (channels) available 
to compute the RV in these recordings. Extrapolating to the 
case of a single-channel recording, no RV would be measur-
able any more. Exploring this factor by adjusting the dataset 
length to the number of channels is an important option for 
future investigations. Independently of the underlying cause, 
however, it is important to note that in experiments of typical 
lengths of 30 to 60 min, RV may only be useful to dissociate 
brain and non-brain ICs when recording with higher-density 
montages of 64 channels and more.

Lastly, we were able to confirm our hypothesis that 
high-pass filtering before computing ICA does improve the 
decomposition when the data are filtered with a cutoff be-
tween 0.5–2 Hz. However, there is not one optimal filter as 
the filtering frequency should be adjusted depending on other 
factors of the experiment. In standard stationary experiments 
with 64 channels a high-pass filter cutoff of 0.5 Hz is accept-
able, but with increasing number of channels a higher filter 
cut-off of up to 1.25 Hz should be employed to achieve the 
best decomposition. This effect was even more pronounced 
in the mobile condition where the decomposition improved 
further with cut-off frequencies of up to 2 Hz, correspond-
ing to results of Winkler et al. (2015) and Dimigen (2020). 
Interestingly, even though we came to similar conclusions 
as Winkler et al.  (2015) regarding the filter cut-off, we did 
observe clear changes in the ERP waveforms which the au-
thors did not report. We believe this could be due to differ-
ences in the experimental paradigm, with the present study 
requiring participants to stand upright even in the stationary 
condition controlling the visual flow with a joystick. This 
likely introduced more artifacts than would be observed 
in a classic auditory oddball paradigm with seated partici-
pants and the effect of cleaning the data with ICA thus be-
came more noticeable. Comparing our results to those of 
Frølich and Dowding (2018), we could not confirm that a 
very high cut-off frequency led to better results, as we saw 
detrimental effects after reaching the optimal filter cut-off. 
These conflicting results may be due to the fact, that Frølich 
and Dowding (2018) employed a 45 Hz low-pass filter even 
though they specifically investigated muscle activity, which 
is more prevalent in higher frequencies.

It should be noted that cleaning data with classic ICA 
alone is not the only option to remove undesired artifacts. 
Dimigen (2020) was able to improve the ICA cleaning ca-
pabilities by leveraging eye tracking data to overweight 
saccadic potentials before computing ICA. Artifact 
Subspace Reconstruction (ASR; Kothe & Jung,  2015) is 
another cleaning method that gained increased attention in 
the last years, especially since it also works in an online 
fashion. Recently, Chang et  al.  (2020) evaluated ASR in 
terms of its efficacy when using different cleaning sensi-
tivities and also showed that an ICA decomposition could 
be improved by first cleaning the data with ASR. ASR is 
particularly helpful in removing transient burst artifacts, 
but when setting the sensitivity to a degree which removes 
physiological artifacts from eyes and muscles reliably 
from the data, it bears the risk of removing too much brain 
activity as well. Using a cautious ASR cleaning in com-
bination with the classic ICA appears to be a promising 
approach and needs further evaluation. Additional modi-
fications like Riemannian ASR (Blum et al., 2019) could 
also be of interest here. Another potentially promising on-
line-capable unified source imaging and artifact cleaning 



14  |      KLUG and GRAMANN

approach was proposed by Ojeda et al. (2019), but further 
comparisons and evaluations are needed. Taken together, 
the field of EEG research is clearly moving toward more 
sophisticated artifact removal techniques which advance 
our abilities to investigate the human brain in everyday life. 
Extending the present study to include and compare these 
recent data cleaning methods is a promising step for future 
investigations.

We conclude that obtaining an optimal ICA decomposi-
tion when analyzing EEG data is highly relevant, not only for 
source-level analysis but also for cleaning sensor data, and it 
is especially effective and necessary when expecting increased 
artifactual contributions to the recording. We would like to fi-
nalize this paper by providing some recommendations as a set 
of "best practices" when performing ICA on EEG data.

First of all, when computing ICA to remove eye and mus-
cle artifacts it is important to do this on data which was high-
pass filtered but not low-pass filtered, and it is unproblematic 
to apply the obtained decomposition to unfiltered data for 
further analysis. Second, higher-density recordings of 64 and 
more channels should be used when aiming for an optimal re-
covery of the brain signals and especially when doing source-
level analysis, as low-density recordings cannot separate 
neural sources adequately. Third, an increasing channel den-
sity is required with increasing movement range and velocity 
in the experimental protocol. Fourth, when no high-density 
recording is possible, ICA can still be used to clean the sensor 
data from eye and muscle activity artifacts. Last, but not least, 
we recommend using higher high-pass filter cut-offs than tra-
ditionally used. We want to emphasize again that when dis-
cussing filters in this paper we used the cut-off frequency, 
not the passband-edge as the defining parameter, and when 
using EEGLAB it is recommended to specify the correct fil-
ter (see section High-pass filtering). While 0.5 Hz might be 
acceptable for 64 channels in stationary experiments, using 
a 1 Hz filter is not detrimental and ensures a good decom-
position also for higher-density recordings with more noise 
being present in the data. For MoBI experiments with signif-
icant noise even higher filters of 1.5 or even 2 Hz should be 
employed before computing ICA, depending on the channel 
montage.
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