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Abstract 

The vision of Ambient Intelligent Systems describes human-centric environ-
ments that are able to adapt intelligently to the user situation. However, the 
growing complexity of implementing such Ambient Intelligent Systems has 
now outpaced even the most ambitious research efforts due to the ever in-
creasing number of communication devices and the corresponding increase in 
the number of difficult choices each user is faced with. Implementing this vi-
sion of Ambient Intelligent Systems in a world of heterogeneous devices, 
networks, and services available to, and required by, users has thus proved 
harder than was previously expected. Against this backdrop, this thesis 
presents a novel approach that introduces a non-disruptive, scalable architec-
ture for Ambient Intelligent Systems.  

In line with recent research projects, this thesis starts by analyzing typical 
single and multi-user scenarios in varying environments, deriving the re-
quirements for an appropriate architecture on an abstract level. This 
requirements analysis gives a novel layer model for Ambient Intelligent Sys-
tems that decouples the interpreting and processing of user needs – generally 
referred to as context-awareness – from service interaction, and loosely 
coupled service execution from low-level information access across varying 
networks and devices. This layer model is then further extended to the Service 

Request Oriented Architecture by identifying service requests as connecting 
entities between the layers. Thus service request orientation offers a conve-
nient abstraction for translating abstract user requests to specific service calls 
in an extendable and loosely coupled manner that allows for integration not 
only of existing context-agnostic services but also of a wide range of devices, 
from small, resource-bounded sensor nodes to mobile devices or high-end 
computers. 

As work on this Service Request Oriented Architecture was a joint effort be-
tween the TU Berlin and Fraunhofer FOKUS, the findings of this thesis have 
been fed into a number of national and international projects such as Autarke 
Verteilte Mikrosysteme (AVM) funded by the German Federal Ministry for 
Education and Research (BMBF) and e-Sense, funded by the European Com-
mission. 
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German Abstract 

Die Vision der Ambient Intelligent Systems beschreibt Umgebungen, die sich 
unsichtbar und eingebettet in der Benutzerumgebung auf intelligente Weise 
der aktuellen Situation des Benutzers anpassen können. Leider wuchs die 
Komplexität bei der Umsetzung dieser Vision durch die rasche Einführung 
neuer Kommunikationsgeräte schneller als die Forschung in diesem Bereich 
bewältigen konnte. Die Vergangenheit zeigte, dass in dieser wachsenden Welt 
von unterschiedlichen Geräten, Netzwerken und Diensten, deren Möglichkei-
ten nur teilweise von den Benutzern verstanden und angenommen werden, 
neuartige Systeme, die nicht auf bestehende Infrastrukturen aufsetzen, nicht 
durchzusetzen sind. Diese Arbeit beschreibt dementsprechend einen neuen 
Ansatz einer skalierbaren Architektur für Ambient Intelligent Systems, die 
ausdrücklich bestehende Infrastrukturen nutzt und erweitert und so in der 
Lage ist, bereits existierende Dienste einfach einzubinden. 

Analog zu aktuellen Forschungsprojekten beginnt die Arbeit mit der Beschrei-
bung von Szenarien mit einzelnen und mehreren Benutzern, die in der darauf 
folgenden Analyse genutzt werden, um die notwendigen Anforderung zu er-
mitteln. Aus diesen Anforderungen wird dann ein neuartiges Schichtenmodell 
für Ambient Intelligent Systems entwickelt, welches die Interpretation und 
Bearbeitung von Benutzerbedürfnissen von der Interaktion der Dienste und 
die lose gekoppelte Dienstausführung vom allgemeinen Informationszugriff 
auf verschiedenste Geräte und Netzwerke trennt. Dieses Schichtenmodell wird 
im weiteren Verlauf der Arbeit zu einer vollständigen Referenzarchitektur 
ausgebaut, bei der Dienstanfragen (Service Requests) als Bindeglied für die 
Kommunikationseinheiten der verschiedenen Schichten fungiert. Die Ausrich-
tung auf Dienstanfragen (Service Request Orientation) hat sich als eine 
adäquate Abstraktion für die Umwandlung von generischen Benutzeranfragen 
(User Requests) in spezifische Dienstaufrufe bewährt. Diese erweiterbare lose 
Koppelung von Diensten erlaubt es existierende Dienste auf einfache Weise zu 
integrieren sowie Informationen von einer großen Breite von Geräten abzu-
fragen und in das System einzubeziehen, angefangen von kleinsten 
Sensorknoten über mobile Geräte bis hin zu hochwertigen Computern. 

Die Arbeit an dieser Dienstanfragen-orientierten Architektur (Service Request 

Oriented Architecture) ist das Ergebnis gemeinsamer Forschungen von der TU 
Berlin und Fraunhofer FOKUS. Die Ergebnisse dieser Arbeit sind in eine Reihe 
von nationalen und internationalen Forschungsprojekte eingeflossen wie z.B. 
Autarke Verteilte Mikrosysteme (AVM) gefördert vom BMBF sowie e-Sense, 
welches von der Europäischen Union gefördert wurde. 
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1. Introduction 

Recent developments in mobile communication and small computing devices have 
had a tremendous impact on our world. They have brought the dream of Ubiquitous 
Computing and Communication closer to reality. These Ambient Intelligence con-
cepts help to moderate the predicted user information overload, where applications 
utilize advanced anticipation algorithms to adapt their interaction towards the user 
according to his or her current situation. As the computer becomes ever more per-
vasive, the number of tasks assigned to computers increases and the complexity of 
user interaction with the machines increases as well, since all these tasks must hide 
behind simple interfaces. In this regard, Ambient Intelligence, inspired by the vision 
of Ubiquitous Computing, proposes the simplest user interface which is basically no 
visible interface at all. In this vision the user does not need to interact directly with 
the computer anymore since the current user intention can, and should be, derived 
from data gathered invisibly via various sensors in the environment. 

Given the various previous approaches to Ambient Intelligence, we will first propose 
a general overview of the different aspects in terms of both user and device interac-
tion and corresponding technical requirements. We will first analyze and categorize 
different scenarios describing a world of ubiquitous networks. We argue that invisi-
ble computers may not be quite as desirable as the vision usually suggests, and we 
try to identify important aspects for satisfying user interaction. In terms of the initial 
problem of user information overload, we propose that future user-centric comput-
ers must be able to deliver the right information at the right time in the right amount 
of detail to the user without neglecting the currently deployed communication sys-
tems and infrastructures. Therefore, we present a non-disruptive and scalable 
architecture for providing user centric applications in arbitrary network environ-
ments. 

1.1. Methodology and Structure 

Developing frameworks for Ambient Intelligent Systems has been and still is a long 
ongoing effort. Although the general vision of Ambient Intelligence is rather clearly 
defined as helping future users to cope better with the technology available to them, 
the necessary steps and intermediate goals are harder to define. Past research into 
Ambient Intelligence was driven by specific stakeholders such as consumer elec-
tronics manufacturers, (i.e. Philips), or the telecommunication industry, (i.e. 
Motorola, and Nokia to mention but two). Interestingly, after many years of research 
no approach by either stakeholder has yet managed to completely fulfill the hopes of 
Ambient Intelligence. Even so, in the process a specific research methodology pri-
marily utilizing descriptive scenarios has been tested and has proven beneficial. This 
thesis will apply such accepted research methodology and starts by describing vari-
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ous defining ambient intelligent scenarios. Subsequently we analyze the technical 
implications and extrapolate requisite technologies or devices, applications, and 
issues. These implications are then used to structure the various issues involved in 
the development of Ambient Intelligent Systems in a comprehensive layer model. 
This is followed by the introduction of the Service Request Oriented Architecture, 
comprising a universal access layer, pREST, with SEDS, a semantic data space im-
plementation on top. Furthermore, we will learn how to integrate existing legacy 
services not specifically build for this architecture. 
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2. Ambient Intelligence 

Since the emergence of modern communication technologies, individuals have 
quickly realized that their actions and general opportunities are greatly influenced 
not only by physical interaction with other individuals in their vicinity, but more and 
more by events within their whole expanding communication range. The novel ex-
perience for individuals was that information about events, possibly involving 
people they are not even familiar with, could influence their daily lives. At this point 
communication – or information exchange – gained a new quality because previous-
ly information was basically related to individuals and things directly known to the 
sender or receiver. The new concept of News describes all information disseminated 
by print, radio, television, Internet or even by word of mouth. Yet the acceleration of 
data transmission and the exponential expansion of the communication range have 
now led to our current situation where virtually every event in any place on earth 
can be instantly communicated across the whole world. Individuals quickly realized 
that they must learn to deal with the information overload emanating from mere 
advances in communication technology. And even though whole industries soon 
began to emerge for such information confining and filtering, in the end individuals 
still need to adapt and learn how to cope with much more information than those 
who had gone before them. 

In addition, the evolution of computers into ever more powerful and smaller devic-
es, has wrought a second change on the nature and effects of communication. On the 
one hand the degree of automation we now have allows remote control of physical 
objects through communication while on the other the computerization and virtua-
lization of former physical transactions has led to a situation where information can 
directly and literally change the physical world without human interaction. This 
development is partly described and introduced by the term Ubiquitous Computing 
coined by Mark Weiser in 1991 as the computer paradigm of the 21st century. Weis-
er et al. [02][01][04] envisioned the disappearance of computer devices as we know 
them, together with all their dedicated monitors and input devices. According to 
Weiser, in the future computing power will be embedded in every object surround-
ing humans. The introduction of new input mechanisms such as speech recognition 
or other advanced mechanisms for detecting the current user needs will mean that 
no human will ever need to use ordinary input devices such as a keyboard or a 
mouse. Subscribing to Mark Weiser’s seminal vision, Philips along with other re-
searchers developed the paradigm of Ambient Intelligence (AmI) in the late nineties, 
which has now been widely adopted throughout Europe. Other terms such as Perva-

sive Computing or Ubiquitous Networking describe similar approaches in the US or 
the Japanese research community. Against this backdrop Ambient Intelligence (and 
similar such approaches) is set to evolve the vision of vanishing computers still fur-
ther by implementing the following five basic paradigms: 
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• The computer will become embedded, disappearing into customary objects 
• The computer will become context-aware, recognizing the user and his or 

her current situation 
• The computer will become personalized, customized specifically for each 

user 
• The computer will become adaptive, capable of running in almost any envi-

ronment 
• The computer will become anticipatory, guessing human needs without 

user interaction 

2.1. Background 

This vision has been brought closer to reality by programs like the 5th Framework 
Program from the European Information Society Technologies Advisory Group (IS-
TAG) that started in May 2000 and by actions and other efforts driven by non-profit 
consortia such as the Wireless World Research Forum (WWRF). Synchronous to 
these programs in Europe and the U.S., researchers in Japan have developed their 
own similar vision of a ubiquitous network society in programs such as “e-Japan” and 
the follow-up “u-Japan”. 

Critics of world-wide research into Ambient Intelligence (AmI) have long pointed 
out the potential for abuse as Ambient Intelligence Systems need to gather vast 
amounts of information without the user even noticing. Addressing such fears is not 
just a matter of security and privacy or applying well-known cryptographic algo-
rithms to the information thus gathered, since this basically just secures the 
transportation channels. Rather it is a question of bringing transparency to the 
whole system design without thereby losing the envisioned benefits. [99] According-
ly, the vision of human-centric communication and the Service Request Oriented 

Architecture proposed here is not only able to scale and include distributed informa-
tion sources from every node in the network, but also allows the individual to stay 
within this flow of information and identify exactly how and where the information 
is accessed, stored, and evaluated. Moreover, enabling transparency through an 
open and extendable architecture – from information gathering and information 
network transport through to information evaluation – not only creates trust in Am-
bient Intelligence but also increases robustness as each component of the proposed 
architecture is easily replaceable. Each component can be accessed and controlled 
by the user on every layer, thereby avoiding former black-box approaches that act 
invisibly on behalf of the individual. 
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2.1.1. I-centric Communication Reference Model 

The WWRF adopted a further evolution of the vision of Ambient Intelligence for 
their third generation and beyond (3Gb) service architectures and coined the term I-

Centric Communications. Now focusing on services rather than devices, this vision 
basically sought to free up the individual communication space of humans, allowing 
them to interact with all objects in their environment regardless of physical restric-
tions. As depicted in Figure 1 below, the Individual Communication Space includes 
devices as well as abstract concepts such as Knowledge, Food, or People. All the enti-
ties humans (or individuals) will interact with – and even users themselves – are 
referred to as abstract I-centric objects serving as a logical representation [66]. Thus 
these I-centric objects carry specific properties: 

• I-centric objects represent entities surrounding the user 
• I-centric objects are addressable, 
• I-centric objects provide well-defined services to individuals 
• I-centric objects can be activated and deactivated 
• I-centric objects can act by themselves according to the specific needs of an 

individual 
• I-centric objects can wrap arbitrary legacy entities 

 

Figure 1: The Individual Communication Space as defined by I-Centric Communications 

Furthermore, according to the I-Centric Communications paradigm individuals 
communicate through sharing common I-centric objects. I-centric objects then can 
also communicate with each other, following a specific interaction model for 
I-centric objects. As interaction of I-centric objects always occurs with respect to one 
or several specific I-centric contexts, these contexts refer to the relationships and 
circumstances of the individual concerned and are independent of the actual execu-
tion environment. 
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Together with this I-centric service architecture, the WWRF also developed a com-
plete I-centric reference model as depicted in Figure 2. 

  

Figure 2: I-centric reference model 

The I-centric reference model defines the building blocks needed for implementing 
I-centric services. A service middleware on a basic IP-based communication layer 
provides generic service blocks or service elements as they are called in the refer-
ence model. These service blocks include support for the discovery of nodes and 
services, interfaces for monitoring and event notification as well as interfaces for the 
configuration and reservation of resources. The advanced service features cited 
above such as personalization, ambient awareness, and adaptability, utilize these 
generic service elements to provide ambient intelligent – or I-centric – services to 
the user. 

The efforts of the WWRF were mainly driven by players from the telecommunica-
tion industry. Thus the I-centric reference model, relies heavily on fixed or mobile 
terminals as do the underlying scenarios leading to this model. 

2.1.2. Conclusion 

The various research programs mentioned above testify to the fact that deriving a 
universal architecture for a generic Ambient Intelligence framework is no easy task 
and one that still has not been accomplished. Accordingly, we will use their results 
to deduce a new architecture that describes the requisite entities. Another finding of 
past research programs is that utilizing comprehensive scenario descriptions is the 
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implementing a widespread Ambient Intelligence System. We will adapt this metho-
dology and describe its various defining scenarios in the following sections. 

2.2. Scenarios for an Ambient Intelligent World 

This section describes the major scenarios guiding the development of the frame-
work proposed in this thesis. We shall introduce scenarios developed in previous 
research projects, such as e-Sense, WINNER, MAGNET, and MobiLife. These scena-
rios are then analyzed and refined down to three basic scenarios for further 
investigation in this thesis. This way we neither have to introduce as yet unknown 
and unchecked scenarios, nor do we risk being overwhelmed by the sheer volume of 
available scenarios. 

Considered as an elaborate form of story-telling, scenarios are well known in the 
area of future technologies analysis. First used by the military to plan various at-
tacks and counter-attacks, this methodology was quickly taken up by a variety of 
future studies. Scenarios help to identify key aspects, like technologies, drivers, and 
upcoming issues in a comprehensible fashion. A scenario describes several aspects 
of a specific future which can be further elaborated by varying major parameters or 
preconditions. Scenarios also found their place in modern development paradigms 
usually in the form of use-case description, i.e. in UML. However, the main difference 
between such use-case descriptions and scenarios is that use-cases visualize the 
interaction between already known actors and components whereas scenarios help 
to identify and picture the actors and components that are needed. 

Scenarios can be distinguished according to their specific type. They can either be 
trend extrapolating or contrasting, either supporting current technologies or help-
ing to visualize the - possibly negative - consequences of emerging ones. Scenarios 
can also be descriptive or normative, explorative or anticipatory. Descriptive scena-
rios simply describe a possible future whereas normative scenarios also try to 
convey specific positive or negative judgments. Since we do not intend to evaluate 
the possible human impacts of this technology in this thesis, we will only deal with 
descriptive scenarios in the analysis below. Similarly we will not use explorative 
scenarios which try to forecast the consequences of circumstances observable in the 
present but rather utilize anticipatory scenarios that can be used to “backcast” what 
effects or technologies are needed to reach a specific future already described by 
Ambient Intelligence. 

The vision of Ambient Intelligence aims to support the user in coping with an ever 
more computerized world. For the analysis of the scenarios we will suppose three 
basic roles for the user in guiding the scenario analysis. Although every user takes 
on several roles on a daily basis, these can essentially be reduced to three basic ones 
– the public participant, the professional, and the private individual. Note that these 
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basic roles apply equally to groups of users or even situations. The currently active 
role has a great influence on the behavior of the Ambient Intelligent System in terms 
of the way data about the environment and the user can be used by the system and 
made available to others. These roles also influence all other aspects of the Ambient 
Intelligent System introduced above such as personalization and context-aware 
adaptation on behalf of the user. 

As private individuals or groups we all have everyday tasks to do such as house-
work, shopping, etc. AmI holds out the promise of relieving the tedium of such 
activities through the broad use of personal information, acting autonomously on 
behalf of the user and even foreseeing needs and wishes before they are formulated. 

The professional also utilizes AmI to relieve his or her working life according to 
their personal preferences. This can include helping in organizing and executing 
work tasks, and filtering and categorizing information to avoid the now notorious 
information overload. However, unlike the private individual’s data the user data 
gathered and utilized always belongs to a specific work environment. Nor should all 
private data generally available about the user be used by the AmI system at work to 
avoid privacy concerns. User-related company data must be protected from theft 
and misuse. This is obvious, and easy to implement for specific types of data such as 
company documents or spreadsheets. Even so, a personal filter list for important 
phone numbers may indeed include valuable company information. 

Finally, the public participant represents the biggest challenge for the future of AmI. 
Current privacy laws, although different in each country, all outline quite strictly 
what kind of data can be utilized by the AmI systems in the public domain. Although 
most users welcome more personalized service offers, they are also aware of the 
implications of the loss of privacy these entail. Additionally, leaving aside the inten-
tional and consensual gathering of personal user data, it is indeed unintentional and 
accidentally acquired user data that usually proposes a bigger threat to user privacy. 
Although privacy issues are not the immediate concern of this thesis, the architec-
ture proposed below will be able to accommodate them. 

Similar to the roles of the user we can further categorize the scenarios according to 
the environment the user is currently in and what the respective goals of AmI can 
be. This is particular interesting as the deployment of Ambient Intelligent Systems is 
not, and cannot be, centralized or enforced. The advantages of Ambient Intelligence 
are now emerging through various bottom-up approaches initiated, driven, and fi-
nanced by users themselves. Thus every scenario describing the future of Ambient 
Intelligence must feature a unique benefit for the user that cannot otherwise easily 
be achieved. A parallel approach to the part-achievement of features promised by 
AmI is for service providers to offer these as part of a better user experience. Accor-
dingly personalization and personalized advertisements are the most common 
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features implemented today. However, as noted above, the privacy issues implied by 
those services are still likely to loom large in the future. 

We thus distinguish two basic settings in our scenarios - Smart Environments [03] 
and Smart Personal Mobility. Smart Environments mainly describe the user envi-
ronments envisioned by Mark Weiser with almost invisible computing devices 
acting for, and on behalf of, the user. We assume that the goal of the AmI system is to 
maintain the user environment as constantly and consistently as possible - ideally 
without any user interaction at all. This is in contrast to the latter setting, Smart Per-
sonal Mobility. Here typically no AmI enabled devices are available, and the user is 
rather equipped with an advanced personal digital assistant which is expected to 
help with user-initiated requests or tasks. Of course, we expect future AmI systems 
to generally support both settings but this distinction will now help us to better 
classify the scenarios on a abstract level. It will also help to better differentiate later 
between user-initiated and ubiquitous AmI services and their respective require-
ments. 

2.2.1. Smart Environments 

As outlined above, invisible computing devices and anticipatory services are not 
only the goal of AmI, they are also needed for managing the complexity of future 
interactions between humans and machines. Similar to the above classification of 
user roles, we can further divide smart environments into three different locations, 
each with their specific technical requirements and characteristics – smart homes, 
smart office, and smart public services. These are further described in this section. 

In general smart environments implement the vision of always on, networked, and 
highly distributed computing devices, ranging from small sensors – for e.g. measur-
ing the temperature – and actuators - e.g. lights - to more resourceful devices such as 
music players or cell phones, and even beyond to full-fledged computers either in 
the vicinity of the user or as hidden servers. Of course, all these devices are sup-
posed to cooperate regardless of whatever applications are deployed and without 
any prior knowledge of the specifics of such cooperation. The following sub-settings 
will help us to derive the technical requirements for a framework supporting Am-
bient Intelligence.  

2.2.2. Smart Homes 

Freeing people of the burden of housework through modern devices engineered by 
technology has long been a major driving force behind innovation. In the past elabo-
rate devices such as power systems, lights, or washing machines increased the 
convenience and value of homes. The notion of prolonging this success story ex-
plains the great efforts manufacturers of household devices such as Philips are 
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putting into the area of Ambient Intelligence. Scenarios set in Smart Homes are thus 
common and easy to follow since they readily apply to most people in modern socie-
ty. Most scenarios given in research projects quickly identify annoyances found in 
modern homes and provide appropriate solutions. Well-known examples include 
picture frames that always display the favorite image of the user standing in front of 
it. Or the incoming phone call that automatically mutes the music playing and fol-
lows the user from room to room. Unfortunately, these scenarios and their 
implementations have proven difficult to implement in a general, transferable, and 
extendable manner. 

Even without a complete presentation of all the scenarios described in the various 
projects and without a specific analysis including a special focus on economic as-
pects, it is still safe to say that future smart homes are more driven by the services 
provided to the user than by the new devices themselves. In other words, users will 
tend to change and replace services utilizing existing devices rather than install new 
ones. Installing a new device almost always means introducing at least one new ser-
vice to the smart home. 

The services genuinely belonging to smart homes can be roughly divided into two 
basic groups: monitoring services, such as health or pet care, and home automation 
services such as automatic lighting or a simplified configuration of devices. These 
services are ubiquitously available without explicit user-interaction. Furthermore, 
the characteristics of these two basic service groups are special to the setting of 
smart homes, given the less strict requirements on privacy usually involved with 
user monitoring. By choosing the setting of the private home we can therefore focus 
our analysis on requirements for technical implementation. 

The analysis of the above scenarios shows that the devices deployed remain static 
whereas the services installed comparatively interchangeable. Specifically, in terms 
of the kind of devices deployed we should be prepared to deal with a very broad 
spectrum ranging from small sensor nodes right through to in-house servers. The 
devices most probably come from a variety of vendors, but somehow must be able to 
function with each other. In general, the above requirements represent the basic 
technical requirements for AmI systems. The scenarios described below build upon 
these basic requirements and utilize their capabilities. Specific scenarios described 
in the setting of smart homes, can be, and are already being implemented, using 
conventional off the shelf sensors and actuators. However, these implementations 
require custom work to bring together the various parts and lack the universality of 
our approach. In this way they form the starting point for our framework. 

Accordingly, we start with a trivial scenario for smart homes and its common im-
plementation as now found in homes to analyze the issues that need to be targeted 
and to identify differences to future AmI systems. In this scenario motion sensors 
are used as input, and a simple light is used as an actuator which switches on if the 
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sensors detect movements in the room they are installed in. Figure 3 below depicts a 
centralized implementation of this scenario. As shown, several motion sensors are 
used in a sensor network for redundancy and increased accuracy. Even though this 
scenario is extremely simple on the drawing board, its actual implementation is 
highly complex as the aim is to give it maximum user-friendliness, e.g. sparing users 
all the hassle of configuration details. 

 

Figure 3: Simple scenario for Smart Homes with centralized implementation 

Generally, we can observe that the application logic needed for this scenario, i.e. 
connecting the input sensor information with a simple rule to switch on the light, 
can be implemented on the motion sensors, the light actuator, or on a central exter-
nal node monitoring and controlling all devices. The latter seems to be the pragmatic 
choice, as it offers flexibility of communication interfaces to access the sensors and 
the actuator, no resource constraints and a convenient way of interaction with the 
user. 

However, centralizing the functionality on specific hardware and degrading other 
participating devices to peripherals renders the service unrealizable should this 
central node fail to operate. This approach also squanders vital energy in transfer-
ring sensor and control messages to and from the central node, and 
disproportionately binds up resources for a relatively trivial task. Nor does it scale 
with the number of interacting devices that have to be coordinated. Such an ap-
proach requires central knowledge about the sensors and actuators currently 
deployed in the network with wide ranging implications, i.e. each node must be di-
rectly addressable by the central node, requiring a form of address assignment with 
additional consumption of energy. 

In this context, we may assert that the general value of smart homes increases with 
the number of sensors - i.e. input devices - available to the monitoring services. Thus 
the value of home automation increases with the number of services available to the 
user so that the possibilities for new and additional services increase not only with 
the number of sensors but in line with the number of actuators i.e. output devices. 
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Alternatively, this scenario can also be realized through direct cooperation of the 
devices involved in the service, i.e. the sensors and actuators, or intermediate nodes 
transmitting data in a multi-hop network. This means that much fewer resources, 
for e.g. communication and computing, need to be utilized than for service provision. 
Failure of one of the devices can easily be offset by a nearby equivalent device, and 
scalability is improved since spatially disjoint interactions do not affect each other, 
and sensor information can be aggregated within the network, again saving commu-
nication energy. This is especially important since not all sensors within a smart 
home network are likely to be connected to a power line but run on batteries in-
stead. The implications of such networked sensor nodes have been extensively 
studied in the research field of Sensor Networks which we will also try to apply to 
our architecture.  

  

Figure 4: the decentralized implementation approach 

Although the decentralized approach depicted in Figure 4, is more scalable and ex-
tendable and therefore more suited for future AmI environments, distributing the 
service logic in this way poses a number of new challenges to the implementation 
and the overall system itself. Firstly, general network connectivity is needed for a 
successful implementation of either approach. Most previous research assumed that 
connectivity is based at least on the IP protocol. With regard to the above scenario 
we do not need to be as specific as that. However, we do need to identify the mini-
mum properties for network connectivity. These are: 

• Nodes must be able to identify and address neighbors 
• Nodes must be able to transmit messages to neighbors 

Note that those properties are rather minor and comparable to the requirements of 
the MAC layer. The IP protocol, on the other hand, has much higher requirements, 
e.g. network-wide unique IP addresses. However, beyond this general network con-
nectivity we also need a standardized access protocol for requesting and sending 
information such as sensor data or events from node to node. And since current 
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nodes just ‘know’ their direct neighbors, we also require a standard for addressing 
or ways to identify and discover objects, i.e. either nodes or services. 

2.2.3. Smart Self-Configuration 

Bearing in mind the AmI vision of ubiquitous computing with minimal user inter-
vention, we can now extend the above scenario to address another important issue: 
self-configuration. As described above, neither can the sensor directly address the 
light nor can the light directly request the sensors, since both can only address their 
respective neighbors. This scenario also includes the (temporary) removal or re-
placement of either device. What we want is to allow additional lights or sensors to 
be easily included in the scenario. This can result in several lights being controlled 
through the motion sensors. Or other kinds of sensors, such as simple switches, be-
ing able to control the available lights. 

Therefore this addressing scheme must be flexible enough to support those scena-
rios. However, for the configuration and interconnection of these nodes a flexible 
way of lose coupling is needed to accommodate new or changing nodes. This is es-
pecially true if these devices are not fixed in terms of the services they can provide. 
In this case, the overall system has to find an appropriate replacement for the now 
missing functionality. To achieve that, the overall system must be able to specify in a 
general manner what the user currently wants to be done and on a much lower lev-
el, what kind of service is currently requested. 

2.2.4. Smart Services 

The previous scenario introduced the notion of user and service requests, which we 
will discuss later in more detail, to dynamically accommodate device changes. Such 
service requests are used to address current system goals independently of specific 
devices. The following scenario further details the benefits of such loosely coupling 
via requests. 

What we do here is simply extend the above scenario from Section 2.2.3 Smart Self-
Configuration. Instead of lights switching on or off, we replace these actuators with 
jukebox devices that can play specific music files. We are now able to include the 
personalization aspects of Ambient Intelligence and require the system to dynami-
cally select appropriate music instead of simply working off an a-priori playlist. 
Furthermore, the selection should depend not just on the taste of a single user but of 
all users present as well as taking account of the time of day. Since by its very nature 
such automatic music selection is not perfect, users can provide feedback that will 
also be included in this and further selections. 

The analysis of this scenario yields several additional requirements. In addition to 
the rather technical requirements identified in the previous scenario, we now need a 
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new layer for addressing user-related issues like personalization, which generally 
subsumes all necessary service adjustments to better accommodate user prefer-
ences. Users not only must be able to specify and adjust their likes and dislikes, but 
the system itself must be able to combine several of such user preferences in order 
to correctly adjust the system’s behaviour to all users present. Since we are still in 
the setting of smart private homes, the privacy issues touched on above are still very 
crucial. We therefore include an additional setting, the office, which will more explic-
itly bring this and other additional aspects to the requirement analysis. 

2.2.5. Smart Offices 

As outlined above, another important setting for scenarios is the office. First, in of-
fices we are likely to encounter several users acting in new roles. Second, businesses 
have a higher demand for enterprise features such as redundancy and service re-
covery. 

We thus extend the above scenarios to include such feature requests. Redundancy is 
implemented by several devices offering the same or a similar service. So instead of 
several devices fulfilling the same service request, i.e. lights switching on, we now 
want precisely one device to handle the request. However, in case the device is no 
longer available or unable to process the request, we also want the other devices to 
automatically take over. Utilizing the jukebox devices introduced in Section 2.2.4 
Smart Services this scenario now includes several jukebox devices which are re-
quested to play specific songs. To avoid confusion by the user, only one jukebox 
device is supposed to be playing songs. Of course, the jukebox device mentioned 
here can be easily replaced with any another arbitrary device offering this specific 
service. 

The requirements for this scenario are similar to those of Section 2.2.3 Smart Self-
Configuration. However, instead of addressing all the devices, we need to dynamical-
ly address just one device and include appropriate mechanisms for service recovery 
in case the active jukebox device becomes unavailable. 

Of course, this scenario can also feature the personalized music selection introduced 
above. However, in this office setting additional privacy aspects must be respected. 
The following scenario not only tries to take account of this, but also gives an exam-
ple of how to include services not specifically designed to work within this AmI 
system. 

2.2.6. Smart Public Services 

One important aspect of the previous smart homes and smart offices scenario set-
tings is that they are user-controlled environments. This means that within the 
home, users can choose and select the devices and service they deploy. Likewise, 
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within an office environment, it is possible to ensure that compatibility between 
devices. In contrast to these environments at the other end of the spectrum stand 
service offered through a web interface. The next scenario will outline why and how 
these must be incorporated within a complete AmI architecture. 

The previous scenarios generally differentiated between input devices and output 
devices. We have already exemplified the range of input devices, from simple motion 
sensors or switches to components delivering more advanced input information 
such as user preferences in music. Likewise, output devices can range from lights to 
jukeboxes. One common requirement we can derive here is that the basic informa-
tion entity is rather a data or message, as opposed to a service or code. This has a 
number of advantages in terms of the technical requirements since we do not re-
quire a common execution environment and the security that comes with code-
oriented approaches such as agent systems. Since we only use and transform data 
on the devices within the AmI network, we are able to include existing legacy servic-
es with little effort. The details of such integration are outline below. The following 
section describes a scenario that utilizes this property. 

2.2.7. Smart Search 

This scenario aims at providing context-aware recommendations to a group of users 
using today’s internet search services. It is set in an office where several users in 
their professional roles are engaged in a business meeting. The goal is to use an ex-
isting legacy service that is advanced enough to make duplication of the service 
within the AmI framework unnecessary. The most obvious service now offered is 
the Internet search for web sites. 

Over the past few years great efforts have gone into the indexing and ranking of 
search results. Search providers collect vast amounts of data from web sites and 
users to select and rank the most appropriate search results. Such efforts now in-
clude personalized approaches where users are required to log in and have their 
search history monitored and analyzed. However, the limits of such approaches due 
to privacy issues as well as to incomplete knowledge have long been widely dis-
cussed. In our scenario, therefore, devices in the user domain are used to do such 
personalization in a transparent manner.  

In this scenario the users in the business meeting are searching for a place to eat in 
the evening. In this search the system is expected to include the personal food pref-
erences as well as the business-related circumstances of the meeting. For instance, 
for a meeting including external partners or important customers the choice of res-
taurants will be clearly different from the kind of restaurants selected for internal 
meetings. 
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Once more, this rather simple scenario description allows us to picture various high-
level implementation approaches. First, one could implement an own recommenda-
tion database that retrieves and evaluates local information such as the number and 
kind of people involved. Second, instead of costly implementing and maintaining 
such a database, one could try to extend existing databases. Unfortunately, this 
raises a number of privacy issues as well as insurmountable technical issues in 
terms of external access to internal, i.e. local and private, sensor information. We 
need instead the overall system to make a bridge between the internal collection 
and evaluation of sensor information and the external service invocation. While this 
is rather easy to implement for specific scenarios, we need to find a generic ap-
proach suitable for all kinds of services and information. 

2.3. Layer Model for Ambient Intelligence 

This chapter has outlined previous approaches to Ambient Intelligent Systems and 
pictured various scenarios whose generalizations are used to derive the technical 
requirements for the following specification of our architecture. Previous efforts 
highlight two important aspects - the use of scenario descriptions for a comprehen-
sive analysis of the technical requirements and the need for layering the different 
problems when designing and implementing AmI systems. In short, we have derived 
the following five general layers as depicted in Figure 5 with the user above all as 
the focal point of this architecture. 

 

Figure 5: Required layering derived from scenario descriptions 

The lowest layer, Network Connectivity, allows devices to discover and connect to 
their neighbors by sending and receiving messages – as introduced in section 2.2.2 
above. On top of this we also require a generic information access protocol for re-
trieving data and manipulating the devices. The representation layer allows us to 
specify and address service requests without unique identification of nodes. The 
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interaction layer implements a loosely coupled service provisioning. In the top two 
layers we encapsulate the user and the interpretation of user demands and requests. 
We also need to specify, evaluate and possibly transform abstract user requests to 
specific service requests. User requests can be a search request for restaurants in 
the vicinity that take into account user eating preferences or a request for favorite 
music to be played on currently available jukebox devices . 

The following chapters will use these requirements and explain for each layer which 
solution is best suited for implementing all of the above scenarios. We will start with 
a theoretical discussion of coupling in time, space, and representation, and the re-
spective interaction models. This is followed by a discussion of the respective 
service models that includes an analysis of existing technologies. We will learn how 
to express semantic information for service description as well as how to formalize 
user needs and requests in semantic descriptions. We will then use this theoretical 
background to introduce a Service Request Oriented Architecture and an exemplary 
implementation of the same. 
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3. Theoretical Background and Related Work 

With reference to the technical requirements identified in Chapter 2.2 Scenarios for 
an Ambient Intelligent World and the layer model introduced in conclusion, we now 
discuss the theoretical background and state-of-the-art technologies for each layer. 
For better understanding, we will start with the two middle service related layers – 
interaction and representation, given the new decomposition of traditional middle-
ware approaches called for by the requirements analysis for Ambient Intelligent 
Systems. Traditional middleware systems tightly couple access protocol, data repre-
sentation, and the service interaction model for the sake of application 
transparency. However, this brings with it inflexibility and a lack of scalability and 
flexibility for heterogeneous environments. Nonetheless, the need to deal with hete-
rogeneous environments has spawned a number of new middleware protocols that 
enable invocation across system boundaries, and provide infrastructure services 
and a unified, abstract view of the system. We thus start by a general analysis of ser-
vice interaction models that will lead us to a new interaction model and allow for 
truly loose coupling in space, time, and representation. 

Against this background, we will shortly review respective service models for loose-
ly coupled service interaction. We then describe various technologies for describing 
semantic information and appropriate mechanisms for the interpretation and classi-
fication of semantic data. As indicated in the requirements analysis, we will need 
semantic descriptions for the analysis of user goals and demands as well as for the 
decoupling of services in representation to enable ubiquitous and heterogeneous 
Ambient Intelligent Systems. 

3.1. Coupling and Interaction Models 

The interaction model specifies how data is exchanged among several participants 
in an interaction. It abstractly describes an interaction medium and the ways partic-
ipants communicate via this medium. The medium defines how the handling of data 
is organized, i.e., it describes the conditions for a data exchange between two partic-
ipants and enforces communication ways and base structures for the representation 
of data without naming contents and purpose. Control of the medium by partici-
pants is realized through a finite set of interaction directives. These directives are 
directly related to the functionality of the medium and allow the participants to pub-
lish data on the medium, to define how this data needs to be handled and even to 
administrate it within the medium. Take, for instance, a simple messaging system: 
the basic data structure is a message, the medium is a virtual channel between two 
participants and the interaction directives are send, to emit data to the medium, and 
receive, to indicate readiness for receiving data. 
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Cabri et al. classify interaction models in [17] according to the strength of coupling 
between the interacting parties, whereby time and space are regarded as the most 
significant characteristics. Given the heterogeneous setting of the computing envi-
ronment, the following sections will also include considerations on the 
representation of data as drivers for loosely coupled interactions. 

3.1.1. Coupling in Time 

Temporal coupling typically requires all parties involved in an interaction to be syn-
chronized in time. Delays in data exchange are taken as minimal and thus may be 
disregarded. In contrast, decoupling in time explicitly disregards temporal depen-
dencies, i.e., delays in data exchanges are expected.  

 

Figure 6: Classification of interaction models in terms of temporal coupling 

A common example for a temporally coupled interaction is the Remote Procedure 
Call (RPC). Here one party performs a procedure that was previously requested by 
another one. Until the procedure is complete, the caller is usually blocked while 
awaiting results. RPC is especially applied in middleware intended to support the 
interoperability of heterogeneous systems while hiding the distribution. Technolo-
gies like Java Remote Method Invocation (RMI) [18] and Web Services are modern 
relatives of RPC. 

Buffered message systems or message boards are examples of temporally uncoupled 
interaction models. The former includes ordered message storage system that is 
temporally coupled with the interacting parties and consequently prevents them 
from being directly coupled in time. Implementations of these systems include the 
Java Message Service (JMS) [19] and the common e-mail system. Message boards are 
similar to buffered message systems, only they do not provide a fixed order for the 
stored messages. Moreover, unlike common message systems, they require the ad-
dressee to poll a message instead of delegating it automatically. 

3.1.2. Coupling in Space 

Spatial coupling implies that the parties involved in an interaction know each other, 
at least by name. In contrast, a spatially decoupled interaction allows parties to stay 
anonymous. They are neither supposed to know each other, nor how many other 
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parties are involved in an interaction. Interactions are usually based on the contents 
of the data exchanged through the interaction medium. Spatially decoupled interac-
tions are especially favorable to dynamic computing environments that do not rely 
on the addressability of their resources or need to support one-to-many communi-
cations. 

 

Figure 7: Classification of interaction models in terms of temporal and spatial coupling 

Spatially coupled systems include message systems wherein sender and receivers 
are addressed directly in the message. Examples of such are once again the common 
e-mail system, or JMS. The most appropriate forms for the realization of spatially 
decoupled interaction models include publish-subscribe approaches, data spaces 
and blackboard systems.  

Publish-subscribe approaches are anonymous messaging systems. They usually 
support two interaction directives, publish and subscribe. The subscribe-directive 
allows parties to sign in for the receipt of data from the interaction medium. While 
subscribing, the parties also define a filter criteria for messages they are interested 
in, and a callback address for notification in the occurrence of an appropriate mes-
sage. Due to the undirected nature of message delivery, messages are rather 
referred to as ‘events’. Emitting a new event is done with the publish-directive. The 
interaction medium is supposed to verify the filter criteria of the subscriptions on all 
new events, and to delegate events to the corresponding subscribers. Eugster et al. 
in [20] identify three major methods for event filtering, by topic, type and content. 
Type- and topic-based filter criteria depend on the events to be either typed in 
terms of programming languages or tagged with a key word, the topic. Both types 
and topics may be organized hierarchically. Hence, filter criteria are defined to 
match particular types or topics, or appropriate super-types and –topics. In contrast, 
content-based filter criteria refer to the data composing an event and may, for in-
stance, be represented by conditional expressions or program code.  
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Publish-subscribe approaches can either be realized in a temporally coupled or 
temporally decoupled manner. Temporally coupled realizations require all sub-
scribers to be available at the moment an event is published. Delegations of events 
to unavailable parties are discarded. Temporally loosely coupled approaches queue 
events for subscribers until they are once more available. 

Data spaces in terms of Gelernter et al. [21] represent a spatially and temporally 
decoupled interaction model. They are similar to message boards, but the data they 
contain is not individually dedicated to certain parties. Rather parties interact while 
reading from the data space, adding new data, and manipulating existing data. Ac-
cordingly, the original interactions directives are read, in, and out, whereby out 
allows removing and reading data from the data space in a single step. However, 
data are retrieved in an associative manner like in publish-subscribe approaches, 
i.e., data units within the space are addressed by templates or queries. If there are 
multiple data units matching a template, one is chosen in a non-deterministic man-
ner.  

Recent implementations of data spaces like MARS [22], JavaSpaces [23] and Even-
tHeap [24] include publish-subscribe functionality in addition to active interaction 
directives. Hence, a party is no longer required to continuously poll the data space to 
recognize changes within the data it contains. Instead, templates can be subscribed 
and newly inserted data is published immediately. Even so, one major difference 
between data spaces and publish-subscribe systems is the management of states. 
While temporal decoupled publish-subscribe systems queue data related to sub-
scribers, in data spaces no distinction is made with regard to the possession of data. 
Thus, as long as data is kept within the data space, it is accessible to all parties. 

An interaction model deliberately aligned to the creation of a common knowledge 
base is implemented by blackboards systems in terms of Erman et al. [25]. Black-
boards are shared storages, similar to data spaces. Since blackboards are designed 
for collaborative problem-solving, the parties compile several solutions by alter-
nately adding facts, i.e., data with a particular meaning to the blackboard. 
Blackboard systems are based on publish-subscribe approaches. Hence, parties can 
subscribe for changes within the knowledge base and may manipulate this know-
ledge base when notified. Concurrent manipulations are managed by a controller. 
The controller determines the next participant who is allowed to write to the black-
board on every change. During this process each party can view the whole 
knowledge base. Thus on the one hand the parties are required to interpret the 
blackboard data on each change they are notified about while on the other they need 
to understand the whole problem domain or at least a reasonable part of it. Unlike 
data spaces, blackboard systems represent data units that explicitly refer to each 
other rather than discrete data units without any relations. 
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3.1.3. Coupling in Representation 

The contents of exchanged data are the significant drivers for interaction, especially 
in spatially decoupled systems. Although participants are not required to share a 
common namespace in terms of addresses, they usually need to agree on common 
data structures, vocabularies and vocabulary semantics to describe the data com-
municated among them. In an open, heterogeneous environment finding such 
agreement either requires the previous standardization of all these elements or 
loose coupling in representation. Loose coupling in representation calls for all par-
ties involved in an interaction to only share minimal knowledge about an application 
domain and the terminology describing it. . Therefore, the language describing data 
during an interaction needs to be ad hoc interpretable, while the interacting parties 
should be able to understand it and conceive its semantics. Decoupling in represen-
tation thus addresses both representation of data and representation of meaning. 

3.1.3.1. Representation of Data 

A data structure defines a formal order for an atomic set of data units. Generally 
speaking, structuring of data benefits the exchange and processing of information 
through machines. While free text documents are regarded as unstructured, tuples, 
tables or trees are simple examples of structured data. More comprehensive repre-
sentations of data structures and the dependencies between several segments of the 
structure are provided by relational and object-relational data models, originally 
introduced by Codd et al. [26]. These models are especially employed for large 
amounts of co-related data in databases. The appearance of such a comprehensive 
structure can be described by a schema.  

However, while interacting in a distributed environment participants are required 
to either implicitly share a common schema or publish the one they will apply. This 
way other participants are enabled to process the corresponding data. Publishing 
means to refer to an open accessible schema or to embed the schema within the data 
submitted. Such approaches of self-describing data are referred to as ‘semi-
structured’ as argued by Abiteboul et al. in [27]. Today’s most common format for 
semi-structured data is the Extensible Markup Language (XML) [28]. The XML stan-
dard defines how simple datasets can be structured and composed as trees. 
Vocabulary definitions and structural constraints on data, e.g., typing or the number 
of child-nodes per node, can be specified with XML Schema [29] for each document 
type. Additionally, the XML schema allows the combination of terminologies and 
structures from different document types in one single XML document. Thus any 
known scheme may be referenced and included, while namespaces support the dif-
ferentiation of vocabularies from different schemes and the distinction of terms that 
are defined twice. 
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XML is designed to describe data structures in self-contained documents. Conse-
quently, there is no common method of representing relations between several 
documents and the data they contain. If, for example, two parties in a temporal de-
coupled interaction exchange XML documents that need to refer to each other for 
representing a dialog, such reference needs to be represented in a proprietary man-
ner. For this reason, in addition to XML, the Resource Description Framework (RDF) 
[30][122] was also introduced. Relations between resources in RDF are represented 
by triples that contain a subject, a predicate and optionally an object. Subject and 
object identify the related resources, while the predicate determines the kind of re-
lation between them. The resources are either defined in place or referenced with 
Uniform Resource Identifiers (URI) [121][31]. Objects can also represent atomic 
data values (e.g. floating point numbers and character strings) or may even be left 
blank. Combining triples results in a directed graph that can span, if need be, the 
contents of several documents. A model graph is depicted in Figure 8, where re-
sources and predicates are represented by simple names instead of complete URIs. 
However, the name Bob could also represent a URI like 
‘http://www.example.net/names#Bob’. 

 

Figure 8: Simplified version of a graph in terms of RDF 

3.1.3.2. Representation of Meaning 

XML and RDF allow the representation of arbitrary structures and their relations, 
but do not include considerations about the meaning of either, as is argued by Bern-
ers-Lee et al. in [32]. There is, for instance, no common way to describe and 
consequently recognize the semantic equality of two entities if they have different 
names. The most powerful representation of meanings according to [33] are natural 
languages like English or German because they obviously allow us to describe any-
thing. However, the structure of natural languages is too complex for their efficient 
utilization in today’s computing environments. Instead the formal logic of state-
ments is extracted to give a simple machine-interpretable representation. The 
domain of a problem actually defines which assertional elements are required for a 
reasonable description. For instance, representations of social networks between 
peoples require concepts like relationships, while workflows are based on a com-
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mon understanding of time and concepts like before and after. The advantage of 
logical representation based on common concepts is that it offers a way to describe 
general correlations. Thus, from a given set of facts further ones can be inferred – for 
instance if cups are generally defined as having a handle, then a particular cup can 
also be expected to have one.  

In terms of interaction models the semantics of exchanged documents are especially 
relevant. The interacting participants are required to describe the contents of these 
documents in relation to commonly accepted knowledge. Each one is then allowed 
to understand and verify the statements of others. One widely accepted form of logic 
aligned to the representation of static knowledge based on “is-a”-relationships is 
Description Logic (DL) as outlined by Baader et al. in [34]. DL is more of a category 
than a standard, and therefore always implemented somewhat differently. However, 
its common core elements are concepts, individuals, and role assertions. A concept 
is usually a superset of semantically equivalent things. Each concept is defined 
through combinations of other already existing concepts applying operators of set 
theory. For instance, a cup may be specified as equivalent to an intersection of 
tableware and fluid containers. An individual may be regarded as an instance of a 
concept. The relations between an individual and a concept are referred to as ‘mem-
bership assertion’. To continue with the cup-example, a certain cup can be defined 
as an individual of the concept ‘cup’. On the other hand, role assertions define the 
relations between several individuals. Hence, they allow us to state that a particular 
cup has a particular handle. Some DL-related logics additionally support definitions 
for types of role assertions on concepts. 

Inferring in knowledge bases is a complex proceeding, so that initiating an inference 
process should be target-oriented. Hence, only when questioning for a certain fact 
should a search-process be triggered (e.g. simply breadth-first or depth-first), 
wherein all the known facts are successively combined until the question can be 
answered. A major benefit DL has unlike more expressive logics (e.g. FOL) is decida-
bility. The elements of DL prevent an inference process from running ad infinitum, 
since there is only a limited set of possible combinations of facts.  

Although inference processes are deterministic, the answer to a certain question 
depends on the assumption about the world reflected by the facts of the knowledge 
base. This world can either be closed or open [35]. A closed world is defined as being 
completely described by the known set of facts. Within an open world, however, the 
existence of more facts in addition to the known ones is implicitly assumed. Given, 
for instance, the facts that each handle belongs to one cup only and handle A belongs 
to cup B and to cup C. In a closed world this definition causes inconsistency in the 
knowledge base. In contrast, in an open world the inference process would need to 
assume that cup B and C are one and the same, even if this fact is not explicitly given. 
Another more abstract example is the distinction between good and evil. In a closed 
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world, everything that is not good can assumed to be evil. In an open world no con-
clusion can be drawn for things that are not good. 

3.1.3.3. Loose Coupling in Representation 

Loose coupling in representation is defined above as the need for composing self-
describing data representation with a framework for the reasonable description of 
the required semantics. Based on RDF new standards have emerged to improve the 
interoperability of distributed systems through extended semantic descriptions. One 
standard that includes a definition set for Description Logics is the Web Ontology 
Language (OWL) [36]. OWL DL is intended to support interoperability in open envi-
ronments and is thus based on an open world assumption. According to Berners-Lee 
et al. paradoxes and unanswerable questions are the price that must be paid to 
achieve versatility [32]. Some core elements have been given different names. For 
instance, role assertions are referred to as properties and concepts are called 
classes. However, the caption ‘individual’ has been kept from the original terminolo-
gy of Description Logics. OWL DL also introduces restrictions on properties. These 
restrictions may either constrain the range of a property when applied on a certain 
class, or define the cardinality of the property. Classes are still defined in relation to 
other classes through concepts of set theory (i.e. union, intersection, complement, 
etc.). Nevertheless, the term ‘class’ was not arbitrarily chosen since there is also an 
option for sub-typing classes, similar to inheritance hierarchies in object-oriented 
programming languages.  

3.1.4. Loose Coupling 

Loosely coupled interaction models weaken temporal and spatial dependencies, 
while requiring only a minimal correspondence of data representations supported 
by the participants. Temporal decoupling can be achieved through buffering data 
between originator and receiver, i.e., by utilizing queues or shared storages. Either 
way there are differences in the conditions under which the state of the interaction 
medium is kept, i.e., data are buffered. On the one hand data may be buffered on 
behalf of the receiver so that the interaction medium needs to be aware of the re-
ceiver, as is realized in publish-subscribe approaches. On the other, data may be 
globally buffered, as for instance is realized by message boards. This way the inte-
raction medium is not required to know potential receivers for newly originated 
data. Spatial decoupling can be achieved if the originator of data is not required to 
address a receiver of these data directly. The receiver is rather supposed to be ad-
dressed by the content of data. For that purpose, data may either be tagged with 
keywords to allow a fast classification, or the data contents themselves need to be 
interpretable. Hence, especially for content-based interactions, a consensus about 
the representation of data and the expression of knowledge about the application 
domain is required. For representing data in open systems, semi-structured descrip-
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tions have proven suitable. A starting point for the description of data contents is 
logic. Forms of logic differ in the type of information they enable to describe, i.e., the 
axioms they provide. However, elementary concepts and their relations can be effec-
tively described with Description Logic. 

Spatial and temporal decoupling are reasonably combined in data spaces. They al-
low content-based retrieval of data and support real temporal decoupling, since they 
are not required to be aware of the receivers when new data is submitted. Moreover, 
the interacting participants do not need to interpret all data within the space to find 
relevant data as required by blackboard systems. Even so, adding considerations 
about loosely coupled representations through semi-structured semantic descrip-
tions to the original concept of the data space does result in a more flexible 
interaction model.  

This concept is realized in the semantic tuple space sTuples [37]. In sTuples each 
tuple is more an entire document, represented in RDF and DAML+OIL [38] (a prede-
cessor of OWL) rather than a list of attributes. According to the original tuple spaces 
directives, sTuples supports insertion, retrieval, and withdrawal of documents. Re-
trieving and withdrawing documents is realized in an associative manner, i.e., 
through content templates. Although the represented data is based on RDF, the 
strict separation of data units hardly allows for the representation of relations 
among single documents. Thus relationships spanning multiple documents may only 
be described implicitly, and there is no way to retrieve a structure spanning several 
documents at once. Consider, for instance, the case of three documents within the 
space, the first defining the color blue, the second defining the color yellow, and the 
third describing the color green as a result of mixing the first two while referring 
their definitions. In sTuples there is no way to retrieve the entire conclusion as a 
closed set of data. This feature is especially relevant if the context of an interaction 
needs to be reproducible, i.e., if a third party needs to understand how green was 
composed. Another critical aspect of this scenario is the withdrawal of data. Al-
though data withdrawal allows the synchronization of several participants by 
preventing tuples from being read twice, the removal of documents containing as-
sertions referenced in other documents may result in inconsistencies. 

Further approaches for semantic data spaces are TripleSpace [39] and Semantic 
Web Space [40]. Both are inspired by tuple spaces, but regard a single RDF triple as 
a basic data unit. Hence, the space itself constitutes the document whereby the doc-
ument contains a coherent data representation instead of numerous independent 
data units. Consequently, manipulation of the spaces is also based on operations 
addressing single triples. Indeed, structures in higher level logic descriptions like 
OWL are usually composed of multiple RDF-triples. So, on the one hand, a single 
operation call may not suffice to reach a consistent representation of information in 
terms of the higher level description within the data space while on the other re-



 Theoretical Background and Related Work 

I. Radusch: Service Request Oriented Architecture Page 27 

trieval of a set of triples representing a reasonable document is impossible. Nor does 
either approach provide access methods for reactive retrieval, e.g., in terms of 
change notifications. Participants rather need to continuously poll the tuple spaces 
to recognize changes. 

3.2. Service Models 

The service model defines the actual service provisioning and therefore the subject 
of an interaction. Specified are the roles of the involved parties and their duties, the 
documents that need to be exchanged as well as the sequence and conditions for the 
document exchange. The service model defines a guideline for the participants of the 
service provisioning that guarantees successful service execution.  

3.2.1. Traditional middleware 

The interconnection of heterogeneous devices with common middleware platforms, 
such as CORBA[116], UPnP[63], or Jini[10], enables them to expose their services 
and properties to peers as objects, and to have them accessed by external entities. 
Let’s consider a possible solution for the exemplary scenario described in Section 
2.2 – Scenarios for an Ambient Intelligent World – realized with traditional middle-
ware approaches such as CORBA. The task to switch on the light according to input 
values of specific sensors merely requires agreeing upon an appropriate interface 
for the light node and the sensor nodes, so the application logic can first query the 
sensors’ state and, second, invoke the appropriate method on the light node when 
the sensor data indicates motion. 

 

Figure 9: Sensor and actuator as CORBA objects 

However, agreeing on an interface is no easy task considering the number of nodes 
that might be connected to a switch, not to mention the complexities of more ad-
vanced devices. In fact, to invoke the “lightOn” method, the same interface definition 
must be present on both sides, coupling the components unnecessarily and making 
them incompatible with independently developed components. Figure 9 illustrates 
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the interconnections of distributed objects with specific interfaces: both parts match 
each other, but independently developed components cannot be connected.  

Alternatively dynamic invocation can be utilized, allowing one of the devices to dis-
cover the interface of remote components by their names and parameters. This, 
however, further burdens the nodes, already constrained with running a middle-
ware, with a runtime analysis of their counterpart’s interfaces. Furthermore, this 
approach will only work as long as the appropriate means for the discovery of the 
counterpart are known at compile time. Most traditional systems either rely on an 
externalized discovery service, such as UDDI[11] with UPnP, which requires an addi-
tional network load, or on a standardized discovery interface that all nodes must 
comply to, and which is hard to change once a critical number of nodes are dep-
loyed. 

In addition to the invocation syntax, participating components also have to be confi-
gured at the control node. One possibility could be using one of the general 
discovery protocols, such as SLP, SSDP or a proprietary discovery service offered by 
the middleware. Even so, the user is still required to make the final decision as to 
which devices are to be connected. As devices such as light bulbs or sensors have 
little means to interact with the user directly, the configuration needs to be per-
formed via an external client, translating user input to the protocol understood by 
the target device.  

Finally, the interconnection of components is restricted to configurations foreseen 
by the vendor or application developer, making integration of arbitrary off-the-shelf 
components a game of chance. One could argue that this is a question of standardiza-
tion; however implementations of compliant software components on constrained 
nodes are often impossible, given the complexity of the middleware and the level of 
transparency required by applications. 

This trivial scenario illustrates the shortcomings of traditional middleware when 
dealing with resource-constrained, loosely coupled systems. The main issues are: 

• Overly restrictive interfaces restrain interactions in pervasive systems to the 
extent the application programmer has foreseen.  

• Complex invocation semantics depend on interface definition at compile 
time, and prevent implementations from being tailored to the capabilities of 
the application.  

• Binary interaction protocols prevent the use of generic user clients and tying 
services to predefined libraries. 

• Lack of semantic description of interactions and data other than imple-
mented at the application level 

• Fixed roles of participants defined at compile-time prevent an extension of 
the service due to fixed interfaces. 
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• Breakable identifiers which basically live and die with the referenced object 
and the publishing server, or require a naming service to be running. 

3.2.2. Super Distributed Objects  

The I-centric Communication Reference Model outlined above in Section 2.1.1 was 
specified, standardized, and implemented in detail as Super Distributed Objects by 
the Object Management Group (OMG). The above scenario involving sensors and 
lights together can be implemented using Super Distributed Objects (SDO) and thus 
solves some of the problems outlined in the previous section. The SDO specification 
defines generic interfaces for configuration, monitoring of status changes, and ser-
vice invocation, atop of which concrete services can be implemented. Figure 10 
illustrates concrete nodes and services thereon wrapped through SDO interfaces.  

 

Figure 10: Sensor and actuator wrapped as SDOs 

Applied to the exemplary scenario, the Monitoring interface reduces the problem of 
extensible interface definitions to a pair of subscribe and notify functions. Thereby, 
the node encapsulating the light subscribes at the switch, and acts as an input sensor 
to be notified of any status changes in its SwitchState property. Upon reception of the 
current status via the notify method, it maps the received value on its own LightState 
property. 

The largely semantic-free invocation of the light’s functionality brings us way ahead 
in interconnecting independently developed components. Even so, the subscription 
and notification methods are still defined in the IDL file and considerable effort is 
involved in invoking them via dynamic invocation as there is a lack of a common 
interface definition at compile time. In addition, dynamic invocation still requires 
the configuration of the invocation target with the application merely verifying user 
decisions by querying the interface repository. 

Secondly, the interpretation of incoming data is hard-coded in the application. The 
light SDO subscribes to a particular parameter and maps the incoming data onto its 
own properties, making it compatible with just one kind of switch. Once again the 
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problem could be avoided by redesigning the application to make it more configura-
ble and setting the mapping at run-time. Yet this wouldn’t make the application any 
more extensible or flexible. 

Finally, connecting the light to other sensors that could produce different kinds of 
data - such as a motion sensor providing Boolean values, and a light sensor produc-
ing integer numbers - has not been considered at all. With both of them invoking the 
notify method, the light service is forced to dispatch the input based on incoming 
values, making an agreement on keywords, such as ‘dimValue’ or ‘switchState’ neces-
sary.  

Summarizing we can say that a generic interface, independent of application defined 
syntax, is suitable for interconnecting independently developed components. How-
ever, the implementation as one function dispatching requests also introduces 
additional dependencies. Instead of dynamically identifying the appropriate me-
thods to call, application logic has now to determine the appropriate property 
names to subscribe to or send data to. Since these are ordinary string constants in 
the SDO implementation, they can be easily exchanged. However, advanced trans-
formation or mapping of different properties is still not possible given the lack of 
semantic annotations. 

3.2.3. Service-oriented Architectures 

Service-oriented Architectures are characterized by open interfaces described in a 
platform-independent manner. Actually there are only a handful of technologies that 
innately fulfill these characteristics. The most appropriate candidates are UPnP [63] 
and Web Services [05]. Interactions in these technologies are strictly separated by 
the two processes responsible for finding an appropriate service and invoking a 
found service - service discovery and service execution. While the structures of the 
documents and their exchange sequences are always the same in service discovery, 
for service execution both aspects are individually defined by a service description 
provided in the discovery phase. A service description is offered by the service pro-
vider and the instruments for describing services are specified by the corresponding 
standards. Hence, the standards also constrain the range of representable informa-
tion in the documents and the appearance of document exchange patterns. In 
addition to a plain explanation of the service interface, the description may also de-
fine the semantics of a service, usually according to some special ontology. The 
service models of the UPnP and Web Service together with service semantics and 
their representation are discussed in detail below. 
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3.2.4. Universal Plug and Play 

UPnP is a simple service architecture that mainly addresses service executions be-
tween hardware devices in ad hoc environments. The standard defines services to 
be owned by devices, a fact that is especially reflected in the composition of entities 
as utilized in service descriptions. The services themselves contain a set of actions 
and state variables. Each action addresses some logic executed on demand by the 
service provider wherein the action is intended to change a state variable of the ser-
vice as a side-effect. Since the documents exchanged in UPnP are atomic and self-
contained, they can rather be considered as messages. 

Service discovery in UPnP is designed to match the requirements of dynamic ad hoc 
environments. The processes are aligned to manage a lack of knowledge about the 
names and addresses of devices involved in the same environment. The UPnP stan-
dards provide two ways to discover devices in the environment and consequently 
also their services. First, each device may continuously publish Advertising messag-
es via group communications to all listening receivers. Second, a device may send a 
parameterized Discovery message to all other devices in the environment to search 
for candidates with special capabilities. Each device supposed to be addressed with 
the Discovery message is intended to respond with an appropriate response mes-
sage. Discovery messages describe a certain subject to be searched for such as 
devices or services. To this end the message contains some kind of search pattern to 
address a particular device or service type, and the maximum time to wait for a re-
sponse. 

However, service discovery is neither able nor intended to address devices or ser-
vices by advanced semantic descriptions. Identifiers used in advertisements and 
discovery messages are thus pre-defined by the UPnP forum. They are, however, 
extendable due to the XML encoding of messages. 

Service execution in UPnP is realized as a simple request-response message ex-
change. Once a service consumer has recognized the address of an appropriate 
service provider for the required service, and obtained and interpreted the service 
description, it may send an Action Request message to the service provider - i.e. the 
corresponding device. The device is required to answer this request either with a 
respective response, if the action is finished successfully, or otherwise by reporting 
an error. 

3.2.5. Web Services 

Web Services (WS) are special resources in the World Wide Web providing any func-
tionality to be executed on demand. In the WS architecture the actual service is an 
organizational construct that composes a set of operations. An operation represents 
a single, executable piece of the overall service functionality, similar to the actions in 
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UPnP. Thus each operation addresses a particular interaction between service pro-
vider and consumer. 

Like any other resource on the web, each WS is given a global identifier, the Uniform 
Resource Identifier (URI) [31]. Since URIs are intended to be globally unique, they 
usually also serve as synonyms for addresses in a network. Hence, a URI allows the 
service consumer to address a WS independent of location and time, and always in 
the same manner. The Web Services Architecture specification [05] does not need to 
include specifications for distinctive discovery mechanisms like UPnP. The descrip-
tion of the service interface is self-contained and identified through the particular 
URI that also serves as locator for the actual document. The relation between service 
description and service interface is represented by a special part of the service de-
scription – the service grounding. 

However, although not specifically needed during run-time, there are approaches 
for discovering Web Services, i.e. to discover the URIs of requested services. These 
serve as a first approach to loose coupling since these approaches merely store and 
return URIs and therefore act rather like directories or registries. The discovery 
systems are usually designed similarly to search engines in the web. A widely ac-
cepted system for finding Web Services is OASIS’s Universal Description, Discovery 
and Integration standard (UDDI) [11]. UDDI is based on a registry, i.e., it has a cen-
tral infrastructure for listing services. Unlike a directory, services are required to 
register themselves with the UDDI system. These registries basically manage sets of 
business-dependent meta-data about WSs that refer to service URIs. The meta-data 
structures describe such things as service families and addressed user roles (e.g. 
personnel administration). Each meta-description is usually given a unique identifi-
er or some keywords for categorization. The actual discovery - i.e., locating a WS in 
the registry - is done by matching identifiers and keys introduced in the meta-data. 
Thus a potential service consumer is required to search for an appropriate service 
or service provider by naming a meta-data structure that describes them. UDDI de-
fines a heavy-weight interface with numerous operations for doing so. The interface 
itself is again represented as WS. The strength of UDDI is the way it enables service 
descriptions to be browsed from an abstract point of view. However, UDDI does not 
directly help to find a service through its functionality; it rather depends on some 
annotated meta-data. 

The documents exchanged between service providers and consumers in WS are re-
ferred to as messages. A finite set of messages, but at least two, are exchanged for 
performing a particular service operation. The supported message types are de-
clared in the service description as well as the direction enabling a certain type of 
message to be sent either from the consumer to the provider or vice versa. As men-
tioned above, the message exchange is spatially coupled which means that the 
originator of a message addresses the receiver directly. However, messages basically 
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contain a name and some content. andthe message name uniquely identifies the 
message in the context of a particular exchange sequence. This way each participant 
involved in the interaction may verify whether the exchange sequence defined in the 
service description is upheld by the others or not. Message content can describe any 
form of structured data such as lists of typed values, graphs, or trees as long as the 
appearance of the data structure was previously defined or referenced in the service 
description. The meaning of a message in the context of a particular interaction is 
only addressed by its content which makes it application-dependent. 

In general the flow of messages between service consumer and provider during the 
execution of each operation is defined as a static sequence in service descriptions. 
There is, for instance, no possibility to define that two messages of different types 
can be send alternatively at a certain point in the message flow. The only type of 
message that may disrupt the flow is a fault message. Fault messages may be sent 
when a party is unable to communicate an error condition inside the normal mes-
sage flow or when a party wishes to terminate a message exchange and 
consequently the service execution. The actual error description is application-
dependent. However, message flows may additionally be constrained by some prop-
erties and features describing consumer and provider behavior in detail. Features 
are usually optional attributes defining, for instance, reliability and security aspects 
supported by the service provider and that can be utilized by service consumers. 
Properties are non-functional attributes of a service and define the number of re-
tries for a message transmission in the case of network failure. Unlike the features, 
the constraints declared by properties should be met by the service consumer. 

3.2.6. Discussion 

UPnP and Web Services fulfill the criteria of service-oriented architectures, although 
both technologies address very different application domains and seem to be able to 
support loose coupling as derived from the requirements analysis in Section 2.3. 
While UPnP is dedicated to numerically limited, dynamic service environments, Web 
Services are rather intended for fixed, large-scale settings. This difference is clearly 
visible in the service discovery process. During this process the service consumer 
tries to find an appropriate instance of a required service, i.e., some party providing 
the service so that the service consumer is required to interpret the service descrip-
tions of all candidates itself or needs to resort to a third party lookup-service.  

UPnP is designed for a highly dynamic environment setting wherein each party pro-
viding a service is required to continuously announce itself. This way potential 
service consumers are always kept informed about the capabilities of their neigh-
bors. In the WS world each service has a globally unique identifier with which it can 
be addressed. Additional service registries help the service consumer to find a ser-
vice with the required capabilities, similar to search engines on the web. However, 
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these registries usually require the indexed services to be annotated with categoriz-
ing key words. 

In UPnP as well as in WS the service consumer needs to interpret a service descrip-
tion that specifies in detail how to interact with the service. A successful service 
execution depends on the addressability of the service instance cited in the service 
description and on compliance with the interaction scheme. However, the spatial 
coupling of service consumer and provider causes repetition of the service discovery 
if a service instance can no longer be found. As suggested above, the Web Service 
Architecture is not designed to cope with a dynamic service environment, but in 
UPnP as well continuously repeated lookups in consequence of disappearing service 
providers may place a high burden on the physical resources of the service-
consuming system or even the entire environment. 

UPnP and WS also differ in terms of the constraints placed on interactions during 
service execution. Whereas in WS neither the number nor the contents of the ex-
changed messages are limited, in UPnP each action is initiated by exactly one 
message and concluded with another one containing the results. Moreover, in UPnP 
the structure of each message is oriented to a list of parameters. In practice most WS 
operations are also based on simple two-way message exchanges, i.e., a request and 
a response, since they are mapped to functions or methods of the programming lan-
guages they are implemented in. 

The service model of UPnP primarily addresses features and functionality of devices, 
and statements about the device states affected by a service execution are explicitly 
included in the service description. Although even WSs often change the state of the 
system running the service, the service description does not allow corresponding 
explanations. With pure WSDL description [12][124] this means there is now a way 
to express whether a service changes a state or only retrieves some information. 
Both technologies therefore lack the proper means to describe service semantics as 
needed for the layer reference model introduced in Section 2.3. 

3.3. Semantics of Services 

As outlined above, loose coupling in representation requires description of service 
semantics. Usually, in service architectures like the ones introduced so far the cha-
racteristics of the service models - i.e. the range of supported interactions - are 
solely defined by standards. Each service is specified by a description, explaining 
how to handle service execution appropriately. Thus the description includes which 
messages are to be exchanged between the parties involved in the service execution 
and how the data structures in the messages are to be composed. All entities com-
municated between the parties are given a specific handle identifying an entity 
either as globally unique or at least as unique within the scope of that particular 
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interaction. Thus it is guaranteed that service consumer and provider share a com-
mon understanding of the messages and the data they contain. However, the actual 
meaning of this data in the context of a certain application domain can only be 
represented implicitly. Service description languages must offer additional descrip-
tion elements to annotate service interfaces with such features as natural language 
comments for developers. Additionally, separate specification documents address-
ing service developers are required to provide a detailed understanding and a view 
of the possible side effects of what exactly this service is doing and in which situa-
tions it may used. Unfortunately, explaining services with closed, stand-alone 
descriptions conflicts with the intention of SOA which is the loose coupling of ser-
vice consumers and service providers. If two services addressing the same problem 
are described with different terminologies, their semantic equivalence cannot be 
automatically recognized. An application that is designed to bind a specific service to 
solve a particular problem at run-time needs to know the exact name of the service 
type. 

This shortcoming was the main reason behind the development of ontologies de-
scribing the semantics of service interfaces and functionality such as OWL-S [14], 
WSMO [15], and SWSO [13]. Ontologies for the representation of service semantics 
basically comprise of two types of descriptions. First, they explain the context of 
application and the service environment in which the utilization of the service is 
reasonable and permitted. Secondly, they describe the processes performed during 
the service execution and the flow of input and output data. For that purpose seman-
tic description are either provided as separate documents referring to a particular 
service, such as OWL-S or as inline annotations within the technical service descrip-
tion as proposed in WSDL-S [41]. Today’s semantic service descriptions are 
designed to achieve three major goals. First, they are intended to support the auto-
matic discovery of services by explaining the service capabilities in detail. Secondly, 
they are supposed to benefit the automatic execution of services while dispensing 
with the need of applications to implement fixed services terminologies. Thirdly, 
they are intended to enable an automatic service composition to solve abstract 
tasks. The correct treatment of semantic description to meet these goals is usually 
realized by special match-making frameworks, like IRS II/III [42], METEOR-S [43], 
or the Semantic Web Service Architecture [16].  

As argued above, service semantics can be regarded from two different points of 
view, a state-based perspective and a process-based one. The state-based view de-
scribes service perquisites and behavior with regard to the state of service 
environment and the changes made to this state during the service execution. The 
process-based view describes the activities that will be performed when executing 
the service and the data flow between service consumer and service provider. 



Theoretical Background and Related Work 

Page 36 I. Radusch: Service Request Oriented Architecture 

3.3.1. State-based View 

The definition of the state-based view comprises of concepts referred to as precon-
ditions, assumptions, post-conditions, and effects. Preconditions and post-conditions 
address the direct information space of the service, i.e., all information the service 
accesses explicitly or creates during execution. Assumptions and effects, on the oth-
er hand, affect the informational state of the environment the service operates in, 
i.e., the context of its execution. However, it is important to realize that all these con-
cepts abstract from data flows such as input and output. They only apply to plain 
information and its corresponding implications, both before and after service execu-
tion. 

A precondition defines which information is actually needed to invoke the service 
and the criteria this information shall fulfill. Consider, for instance, a service that is 
bound to a mobile displaying device like a tablet-pc and allows for the viewing of 
video clips. A precondition for such a service could claim that there is initially a clip 
named to be shown. Assumptions describe the conditions that need be fulfilled in 
the informational state of the environment before a service will be executed. In the 
example above an assumption could define that the displaying device needs to have 
enough battery power to play at least a reasonable part of the clip. Post-conditions 
describe the state the information space will have after a successful service execu-
tion, e.g., through defining how the preconditions will change. With reference to this 
example, a post-condition could describe that the playback of the addressed clip has 
either started or is already finished, depending on the service logic. Effects again 
describe the expected changes in the context of the service environment indepen-
dently of the states explicitly affected by the service. In our example an effect could 
describe how much battery power was consumed during the service execution. In 
OWL-S neither preconditions and assumptions nor effects and post-conditions are 
regarded separately. Instead, there are only preconditions and effects, whereby the 
effects can be constraints with conditions. These conditions serve as guards for the 
effects and basically address the purpose of assumptions.  

Since descriptions of conditions and changes in the environment state require ma-
thematical elements such as comparisons and functions, the preconditions, post-
conditions, assumptions, and effects need to be represented in an expressive type of 
logic. However, as the complexity of reasoning processes can be considered as pro-
portional to the complexity of the descriptive logic, in the context of strongly 
constrained physical resources, expressive logics are expensive as are the descrip-
tive elements introduced.  

3.3.2. Process-based View 

The process-based view describes a service execution in terms of the internal 
processes and the data flow between service consumer and service provider, i.e., the 
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inputs and outputs of the service. The inputs and outputs of a service can be com-
pared to the parameters and return values of functions in programming languages. 
Inputs are concrete information provided to a service instance for execution. On the 
other hand outputs are information produced by the service during execution. For 
instance, in WSs inputs and outputs are the messages respectively received and ori-
ginated by the service. Semantic descriptions of these data structures enable an 
interpreting party to understand their meaning in the context of the application. If 
the semantics of all data structures composing a complex input for service are 
known by the service executing system, the meaning of the input can be inferred 
from the meaning of the single data structures.  

The relations between input data, output data, and the execution flow of a service 
are explained with process descriptions. These descriptions specify the process that 
corresponds to a service execution, i.e., the single activities internally performed and 
the dependencies among them. There are mainly two approaches for the representa-
tion of the execution flow: workflow structures and state machines. Whereas in 
OWLS-S and SWSO workflow structures are favored, WSMO utilizes Abstract State 
Machines, in terms of Gurevich [44]. Both approaches starting from an initial situa-
tion allow a description of how to, achieve a particular aim under particular external 
conditions, inputs, and outputs. The expressiveness of both approaches is similar, 
but while state machines focus on modeling the states before and after execution of 
sub-processes, workflows rather model the sub-processes themselves and the con-
ditions for their execution. In either case the description of the service internals 
enables an interested party like a potential service consumer to determine how a 
service works and how it will behave in a given situation. 

Service execution processes can be described from two different points of view; one 
addresses the service choreography, the other the service orchestration, as argued 
in [45]. The service choreography is an abstract description only representing those 
activities that are required to understand the interactions with the service. Choreo-
graphies allow a service consumer to adapt its informational state while running the 
service, and to recognize at which point in the execution particular inputs are re-
quired or outputs produced. Thus the choreography describes an exchange pattern 
for inputs and outputs. Specific to this pattern is its conditional nature as the se-
quence of inputs and outputs may vary from service execution to service execution 
depending on the information exchanged. Let us return to the service that allows the 
playback of video clips on a mobile displaying device: if the application logic behind 
the service determines that the codec for processing the clip is not locally available, 
it may obtain permission to retrieve the codec from the internet before the playback 
is started. In this case additional outputs and inputs would be required, e.g., a re-
quest and some acceptance or denial. 
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While the service choreography only contains abstract activity descriptions that 
suffice to familiarize a potential reader with state changes and exchange patterns, 
the orchestration models the real sub-processes composing a service execution. Un-
like the choreography the orchestration addresses less the service consumer than 
the planner of composite service executions that are needed for mapping complex 
business processes. From the orchestration can be inferred, for instance, which real 
life processes a service runs on execution, how these processes depend on each oth-
er, and if they refer to other services. This information may be utilized to plan and 
schedule service bindings and executions.  

The description of service choreography and orchestration is neither new nor spe-
cific to semantic service descriptions. For Web Services there exist standards like 
the Web Service Choreography Interface [46] or the Business Process Execution 
Language for Web Service [47]. However, a semantically enhanced representation of 
processes and process-dependencies allows a party to reason the service functional-
ity without exactly knowing the terminology and concepts employed in the 
description. Indeed, the definition of both vocabulary and concepts needs to be re-
ducible to a common description about the application domain. If this is not 
possible, some kind of mediator is required. Moreover, semantic descriptions of 
processes again require expressive logics that support the representation of dynam-
ic knowledge. To represent conditional branches or state transitions, comparisons 
and functions are needed. For this purpose OWL-S utilizes rule languages from the 
semantic web stack. SWSO and WSMO are rather based on First Order Logic deriva-
tives as specified in [13] and [15]. 

3.3.3. Discussion 

Service semantics can be described from a state-based perspective and a process-
based point of view. Ontologies for semantic service description like WSMO, OWL-S, 
and SWSO combine both aspects to address a wide range of applications. However, 
both views are based on the assumption that a service changes states, either the 
state of the system executing the service, or the informational state of the consumer, 
or both. Hence, a service can be regarded as an abstract state transition.  

A state transition function may be represented as a set of constant mappings, but 
any increase in the number of mappings required to represent such a function also 
raises the complexity of the description. Therefore the relation between source and 
target state is primarily described in a relative manner. The state transition is 
represented as a composition of multiple primitive functions and operators linked 
with variables that serve as placeholders. Consider for instance a service for booking 
a flight ticket that is related to the occupancy state of the corresponding flight. To 
represent that after execution of the service one less seat can be offered for sale, 
some kind of ‘decrease’ function is needed. However, to represent functions and 
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variables, expressive logics are required. For that purpose in WSML and SWSO deri-
vations of First Order Logic [33] are utilized in OWL-S the Semantic Web Rule 
Language [48]. Expressive logics may be comfortable, but their correct use is diffi-
cult and their processing is expensive. As the search trees in the inference processes 
usually become very large and some problems are not decidable at all, semantic ser-
vice descriptions are intended to be processed by comprehensive service integration 
and planning systems, like IRS III or METEOR-S. But running those systems, in turn, 
requires powerful hardware. 

Planning and execution frameworks are also intended to process the descriptions of 
service choreography and orchestration. Description of service choreography is 
usually only reasonable if the interactions during execution are non-atomic. In UpnP, 
for instance, there is no conditional message exchange pattern; there are only action 
request, response, and fault messages. Service orchestration describes the concrete 
implementation of a service in terms of executable sub-processes so that orchestra-
tion is rather a useful aid for the party that actually runs the service instance. A 
service consumer could at best use it to interpret how the service works and which 
other third party services are included. However, the description of choreography 
and orchestration requires special ontologies defining the meaning of processes, 
workflows, and their relationships. These descriptions are rarely simple, and terms 
are needed to represent conditional branches. The decision to enter a particular 
branch depends on a guard that needs to be evaluated, and guards are again based 
on operators and functions.  

Descriptions of service semantics are normally defined above common service de-
scriptions and service architectures. Layering supports the reusability of one service 
ontology for multiple implementations of the same service in different service archi-
tectures. For instance OWL-S can be grounded to UPnP or WS, as realized in [49]. 
Furthermore, the parties actually performing the service execution are not forced to 
understand the service semantics. But limiting the use of expressive, descriptive 
instruments to an abstract view on services does not directly benefit the interac-
tions between service consumer and provider. Both are still required to utilize the 
same representations for data they want to exchange. Solely a mediator translating 
the data based on the semantic descriptions of inputs and outputs could make good 
this shortcoming. 

3.4. Context-awareness and User-Level Service Adaptation 

The previous section introduced semantic descriptions for expressing the inner 
workings of services. According to our layer reference model for Ambient Intelli-
gence introduced in Section 2.3, semantic data can also be utilized for user-level 
service adaptation, commonly described as context-awareness. As outlined above, 
the challenge of context-aware service adaptation is the ability to utilize services 
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agnostic to Ambient Intelligence, i.e. legacy services. This not only reduces the im-
plementation complexity of these services through a separation of concerns, but also 
allows the Ambient Intelligent System to pool these service adaptations to accom-
modate not only single users but complete user groups. 

This section discusses the respective fundamentals and related work and is organ-
ised as follow: section 3.4.1 outlines both the potential for adapting context-agnostic 
legacy services with model web search engines, and the possibilities of parameter 
adaptation while section 3.4.2 discusses the Semantic Web, a technology for user-
centric semantic descriptions. 

3.4.1. Adaptation of Context-agnostic Services 

The Internet offers a huge number of services typically solely characterised by their 
input parameters and output results. One of the most used service categories is web 
search services such as Google, Amazon, or Yahoo! that are able to search on request 
in a large indexed dataset for the occurrence of user-entered input. Several smart 
search and rating algorithms are used to improve the precision and recall of the re-
turned results. Precision and recall are measures rating the relevance and 
completeness of the search results. The higher the number of relevant documents 
returned is, the higher is the recall. The lower the number of returned non-relevant 
documents is, the higher is the precision. In most cases the desired web search re-
sult is a maximum in recall and precision. The deployed algorithms benefit from 
research in the fields of information retrieval (IR) and information filtering (IF). 
Leaving aside the differences between information retrieval and information filter-
ing [87], both aim at the selection or elimination of documents from a database with 
the help of user profiles, queries, relevance feedback, or similarity measures.  

Service adaptation refers to the influencing of service behaviour in a manner cur-
rently directly or indirectly desired by the user. There are several possibilities for 
adapting services, including respecting different user preferences or terminal capa-
bilities. In general, services can be adapted in two ways: internally and externally. 
The first option, internal adaptation, refers to self-adaptable services where service 
functionality changes according to certain conditions. In this case the logic responsi-
ble for the adaptation process resides within the service, whereas the conditions 
usually describing the user context are implicit or explicit input parameters passed 
during service execution. The external adaptation refers to components located out-
side the service implementation that are responsible for processing the service 
input or output in an appropriate manner.  

One advantage of utilising an integrated adaptation component is that no additional 
component is required for service adaptation. Furthermore, the respective provider 
is able to control the adaptation process which facilitates support and maintenance. 
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On the other hand, with internal service adaptation the respective adaptation logic is 
closely connected with the service itself. Therefore it is often difficult to transfer the 
integrated component to other services or applications. Similarly, it is hard to add 
additional and independent components regarding security issues and other ser-
vices or application areas. Another disadvantage of an integrated approach concerns 
the lack of transparency that may increase the user’s doubts about the usefulness of 
the service adaptation. 

These drawbacks can be avoided with the help of an external adaptation component 
if designed in an appropriate manner. However, as external adaptation does not 
directly adapt the service, but rather its input parameters and output, it is possible 
to adapt a service without accessing its actual implementation. Furthermore, an ex-
ternal component is able to consider further aspects such as deciding for a service 
based on certain conditions before adapting the inputs or presenting the outputs in 
an appropriate manner - an aspect that enables service composition. 

As mentioned above, service adaptation can be done with respect to various needs 
and aspects. On the one hand, the adaptation process is intended to directly influ-
ence the contents of the service results. On the other, a further purpose of service 
adaptation is to enable the choice of a proper presentation format in line with ter-
minal capabilities. For example, HTML may be transformed to WML to present a 
web site on a mobile phone [114]. In this context, the kind of adaptation assumes 
that certain information is available, e.g. user preferences or terminal types. 

3.4.2. Semantic Web Related Technologies 

The Semantic Web [72] is meant as an extension of the traditional web, modelling 
explicitly the semantic data typically hidden from non-human interpreters within 
the content of web sites. In order to make the information machine processable and 
utilisable, the Uniform Resource Identifiers described in RFC 2396 [88] and the Re-
source Description Framework (RDF) [89] were specified as the base for the 
respective semantic annotation of documents. 

The envisioned benefits of semantic descriptions of (thus-far) only humanly com-
prehensible information on web sites are that, as outlined above in the description 
of Ambient Intelligence, future computer systems should be able to understand the 
context of a web site. Given such understanding, the ratings of web sites in search 
engines could be vastly improved. Furthermore, since all information is understood 
by all the systems involved, the common representation of semantic annotations 
enables the set-up of semantic networks and the assembly of content currently be-
longing to different areas. In this manner, the Internet will evolve to become an 
increasingly collaborative instrument. 
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In this context, ontologies as well as the Web Ontology Language (OWL) are pre-
sented in Section 3.4.2.1 and Section 3.4.2.2. Classification and inference 
mechanisms are closely related to ontologies and are presented in Section 3.4.2.3 
and Section 3.4.2.4. 

3.4.2.1. Ontologies 

Ontologies are one of the main building blocks of the Semantic Web. They are used 
to represent and structure the semantics of things in a machine processable way. An 
ontology, as far as information technology is concerned, is an explicit formal specifi-
cation of objects or concepts and their relationships. It is typically in the form of 
hierarchically structured data whose key concepts are listed in the following. 

Classes are general concepts that are physical or virtual objects of interest. As in ob-
ject-oriented programming languages, it is possible to define individuals of classes 
with concrete names and values. Classes and individuals are related to each other 
with the help of properties. The hierarchical structure of ontologies is accomplished 
by defining subclasses which give a tree-like structure. The general attributes of the 
classes defined by properties are linked to specific values by individuals in terms of 
a domain and a range denoting the type of classes the relationship refers to. There 
are two types of properties: object property and data type property. Depending on 
the property type, an individual is linked to another individual or a data value. With 
restrictions it is possible to affect the affiliation of individuals to a class. These re-
strictions are used in the classification process discussed in detail further on. 

3.4.2.2. The Web Ontology Language (OWL) 

The Web Ontology Language (OWL) [70] is a standardised language written in XML 
for the purpose of describing ontologies. OWL offers some advantages over other 
technologies for ontology description: 

• It is written in XML and therefore human readable text. Each person who 
understands the language is able to understand at least the structure of a 
given ontology without having to use a specialised editor. 

• It is standardised and already supported by a number of tools. Because of 
standardisation assurance is given that all valid OWL files in the Internet can 
be processed by these tools. 

• OWL ontologies can be distributed, merged, classified, and checked for in-
tegrity and validity. 

In terms of the set of vocabulary and corresponding limitations, OWL can be divided 
into three groups: OWL Lite, OWL DL, and OWL Full. OWL Lite does not support all 
the OWL language constructs, but provides tool builders with some basic functional-
ities of OWL. OWL DL, which is labelled according to the research field of description 
logics [34], makes the maximum expressiveness of OWL available, requiring that all 
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conclusions are computable and ensuring decidability. Each valid model in OWL Lite 
is also a valid model in OWL DL. OWL Full has no restrictions as far as the OWL vo-
cabulary is concerned and comprises of OWL DL.  

Figure 11 shows the process of development for the Web Ontology Language. The 
Extensible Markup Language (XML) serves as a base for the ontology language and 
was recommended in 1998. The Resource Description Framework (RDF), which was 
recommended by the W3C in 1999, is an approach to represent resources of the 
World Wide Web (WWW) utilising XML syntax. With the help of RDF, metadata of 
web resources can be expressed in a subject-predicate-object notion. RDF Schema 
(RDFS) extends RDF and defines a basic type system as well as offering a way to 
specify descriptive elements for a class of resources or to express constraints. The 
DARPA Agent Markup Language (DAML) [118] uses XML and RDF to allow classifi-
cation and inference. Another similar approach is the Ontology Inference Layer 
(OIL) that is compatible with RDFS. The efforts of these projects resulted in 
DAML+OIL and provided a machine-readable and understandable language to de-
scribe information in 2001. Further research resulted in the W3C recommendation 
of OWL in 2004 making a standardised ontology language available and triggering 
many initiatives to extend OWL, e.g. OWL-S [82] for web services.  
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Figure 11: Timeline of the ontology language evolution proposal 

Since OWL is written in XML it is possible to edit OWL files with a simple text editor. 
However, there are some more sophisticated ways of editing ontologies and rules 
comprising a lot of different approaches. One of the most famous graphical editors is 
Protégé [92][93]. This ontology editor is open source and can be extended with sev-
eral plug-ins, e.g. with plug-ins for OWL, OWL-S, and SWRL, the Semantic Web Rule 
Language [95]. 



Theoretical Background and Related Work 

Page 44 I. Radusch: Service Request Oriented Architecture 

Another useful tool is the Semantic Web Development Environment (SWeDE) [94]. 
SWeDE is an Eclipse plug-in that provides syntax highlighting, ontology validation, 
Java interface generation, and other tools for ontology editing. 

In addition to the vast variety of editors and environments for OWL, there are sev-
eral frameworks that can be used to process it, including Jena [101], OWL API [51], 
and KAON2 [102]. Basically, each of these frameworks is able to load and process 
ontologies, i.e. to add, create, or remove classes, properties, and instances. Further-
more, most frameworks support classification and inference issues, although often 
in a restricted way. For example, KAON2 is able to cope with SWRL ontologies while 
Jena has its own rule syntax. 

3.4.2.3. Classification 

Classification refers to the determination of class hierarchies and the categorisation 
of objects according to the restrictions of a given ontology. It is typically done by a 
reasoner program such as RACER [71] or Pellet [54] for OWL. Besides the creation 
of classes and subclasses that give a class hierarchy, the definition of restrictions 
enables reasoners to detect implicit knowledge residing in the ontology and state 
new facts accordingly.  

A restriction refers to a class of individuals fulfilling certain requirements. In this 
respect, OWL has two types of property restrictions. A “value constraint” restricts 
the type of a property value, whereas a “cardinality constraint” is a restriction on the 
property’s cardinality. An example with omitted namespaces for a value constraint 
is given in Figure 12. 

 

Figure 12: Example for a value constraint 

First of all, the class Situation and the object property hasParticipant are defined. The 
restriction on the property hasParticipant requires that all property values be of the 
type #Friend. Figure 13 shows an example of a cardinality constraint on the property 
#hasParticipant where the cardinality of the property is restricted to two.  

<owl:Class rdf:ID="Situation"/>
<owl:ObjectProperty rdf:ID="hasParticipant">

<rdfs:domain rdf:resource="#Situation"/>
</owl:ObjectProperty>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasParticipant"/>
<owl:allValuesFrom rdf:resource="#Friend"/>

</owl:Restriction>
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Figure 13: Example for a cardinality constraint 

There are some other property restrictions regarding these two types, which are 
detailed in OWL Web Ontology Language Reference [70]. OWL also provides some 
optional global property restrictions, such as the possibility of stating that there is 
only one unique property value. 

The classification capabilities for OWL are limited in some ways. For example, OWL 
has restrictions on the comparison of data type property values [98]. Without ex-
tending the ontology with XML Schema Datatypes [100], it is not possible to check 
restrictions for whether a property value is above a certain value or not. 

Another restriction that cannot easily be solved with the help of classification can be 
illustrated by a simple example: if a badge is in a certain room and the badge belongs 
to a specific person, the person is also located in the room. 

Thus, another means is needed to be able to dynamically express coherences, 
namely inference rules that can be used in combination with OWL classification. 

3.4.2.4. Inference 

The inference process refers to the application of a set of rules to a knowledge base, 
e.g. an ontology, for facilitating the deduction of new facts. A rule typically consists 
of a body and a head. The head determines the conclusion on condition that the body 
is true. In this respect, a rule is comparable to an ‘if-then’ statement as it is accepted 
in traditional programming languages. However, a uniform rule language and a tool 
for its interpretation do enable the easy and flexible modification of the correspond-
ing conditions and conclusions without having to program.  

There are a lot of different approaches for rule languages, but none of them is cur-
rently standardised. Some languages are directly related to the ontology language, 
e.g. SWRL to OWL, others are specific to an API, e.g. the rule language used by the 
Jena API.  

The Rule Markup Language (RuleML) [104] is a rule language written in XML and 
based on Datalog. The Semantic Web Rule Language (SWRL) [95] is closely related 
to RuleML while mixing it with aspects of OWL. In this manner it is possible to em-
bed rules directly in an OWL ontology. However, the XML dialect requires a lot of 
text and constructs in order to define a rule. One framework that is able to cope with 
SWRL is KAON2 [102]. The Jena Semantic Web Framework [101][103] has its own 
representation for rules that are applied to the internal ontology representation. 
One important disadvantage of the specific rule syntax is the necessity of using Jena 

<owl:Restriction>
<owl:maxCardinality rdf:datatype="#nonNegativeInteger">2</owl:maxCardinality> 
<owl:onProperty rdf:resource="#hasParticipant" /> 

</owl:Restriction>
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API for processing. Furthermore, unlike SWRL, Jena rules can only be embedded in 
OWL with the help of a special property or by making appropriate extensions to 
OWL. 

Even so, the vast variety of rule languages triggered the development of a frame-
work that can be used to harmonise the different representations. In this respect, 
SweetRules [105] is able to cope with Jena rules and SWRL. Once installed 
SweetRules can be used to combine the capabilities of different rule languages. Thus, 
it is possible to understand rules from different sources without having to define a 
fixed rule language. 

3.4.2.5. Processing Rules and Inferred Statements 

In general, rule-based systems consist of a knowledge base and an inference engine 
as described by Hayes-Roth [106]. The knowledge base is a storage comprising of 
facts and rules, whereas the inference engine is responsible for interpreting the 
knowledge. Depending on the derived facts, further actions can be triggered. The 
basic components of a rule-based system and the data flow are depicted in Figure 
14. 

 

Figure 14: Basic components of a rule-based system 

The outcome of the inference process can usually be affected by changing the rules, 
activating and deactivating certain facts, or altering the behaviour of the inference 
engine. In this respect, derived facts may either be added to the knowledge base or 
processed separately by an execution component which strongly depends on the 
purpose of the system. 

3.4.3. Context Provisioning 

This section deals with several approaches and applications related to the provision 
of context in services. It classifies existing ideas into three categories: extended ser-
vices, context-aware systems, and information retrieval. Each domain has its specific 
key points, advantages, and disadvantages, which are mentioned in the respective 
sections. 
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3.4.3.1. Extended and Combined Services 

This section depicts approaches that extend or change extant service logic to enable 
context-awareness. As this idea is closely related to the internal adaptation of ser-
vices depicted in Section 3.4.1, most of the approaches have its respective benefits 
and drawbacks. An example for this approach is the new ranking mechanism pro-
posed by Google [108] which includes a “PersonalisedScore” in addition to the well-
known “PageRank”. This score is calculated with the help of explicit or implicit user 
profile information, e.g. user entered preferences, previous queries, or selected re-
sults.  

In terms of search services, there are also some approaches that combine existing 
services. For example, Yahoo! Maps [109] may be regarded as a map service ex-
tended with a search engine. To date, it is restricted to the United States and can be 
used to find restaurants or similar things on a selected map. It depends on user in-
put, but can be useful to filter out search results based on the location.  

However, extended services are application specific and often very restricted in 
terms of the use of context and its gathering, and representation.  

3.4.3.2. Context-aware Systems 

Context-aware systems aim at the provision of multiple services and often provide 
separate components intended for certain tasks, e.g. context modelling and service 
invocation. Unlike extended services, context-aware systems aim at supplying sev-
eral external applications with different tasks for context-aware information. An 
overview of existing approaches to a context-aware system is given by Baldauf et al. 
in [97]. To give some examples, two approaches that use ontologies and inference 
are shortly discussed in the following. 

The Service-oriented Context-Aware Middleware (SOCAM) aims at the “building and 
rapid prototyping of context-aware mobile services” [110]. However, this approach 
focuses on the acquisition, discovery, and dissemination of context using a simple 
ontology that covers some general aspects as well as concepts relevant to the cur-
rent domain. Services interested in specific context information need to actively 
discover it with the help of the framework’s service. Furthermore, service develop-
ers are able to define rules that trigger service methods should the conditions be 
met. 

Another example for an architecture incorporating OWL ontologies and inference is 
the Context Broker Architecture (CoBrA) [111]. It aims at providing context-
awareness in smart spaces such as meeting rooms. In CoBrA a central component, 
the context broker, is responsible for all the tasks related to the context including 
acquisition, representation, interpretation, and policy management. The context 
broker communicates with devices, services, and agents in the respective intelligent 
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space in order to update the knowledge base and invoke typical services such as 
dimming the lights or controlling devices. 

However, as these systems do not aim at adapting existing services that expect so-
phisticated and multifaceted input in a semantic and pluggable manner, they do 
have drawbacks, when it comes to a flexible service description, the semantic repre-
sentation of service input and output, and situation-specific user interaction. 

3.4.3.3. Context-Aware Retrieval (CAR) and Query Expansion 

Context-aware Retrieval (CAR) refers to the use of context information in the re-
trieval process. Jones and Brown [119] depict a number of aspects related to this 
topic, e.g. the interactive and proactive retrieval paradigm. The first paradigm de-
notes a request explicitly initiated by the user, whereas the second refers to 
annotated documents that are automatically delivered to the user if the context 
matches. They build an experimental system to verify the ideas of CAR based on 
their own retrieval engine. Basically, certain weighted fields, e.g. for location and 
temperature, are filled on the basis of the predicted context, and retrieved docu-
ments are matched with the user profile afterwards. The documents are then 
delivered to the user should the results still be needed. 

Storey et al. analysed the usefulness of user profiles in the process of expanding user 
queries [86]. In addition to ontologies and lexicons that are used to disambiguate the 
query and to determine the user’s domain knowledge, profiles divided into frames, 
slots, and values also enrich the original query. If a predefined frame, e.g. a restau-
rant, is identified with the help of the current query, the respective preferences, i.e. 
the values of the slots, are added, e.g. vegetarian. In a model restaurant setting they 
prove that the results of the extended queries are more relevant than those of the 
original queries.  

In terms of the disambiguation of queries, much research has gone into considera-
tions of concept relationships, domain knowledge, or the past behaviour of the user. 
These approaches are often referred to as query expansion or query enhancement 
[112][113] and consider the context of the query items entered by the user rather 
than the user context itself. For instance, if a word the user has entered bears two 
contradictory meanings, respective domain knowledge can be used to determine the 
user’s intention. Hence, additional words are added to the query or the word itself is 
substituted by another. 

3.4.3.4. Summary 

As the description in the previous section shows, CAR needs to be extended in many 
ways to offer a context-aware framework which is able to adapt several existing 
services. Storey et al. have already proven the usefulness of this approach when ap-
plied to search services and user profiles. Thus, the strong points of context-aware 
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systems depicted in Section 3.4.3.2, i.e. context representation, inference, and the 
use of distributed context sources, need to be combined with the ideas of CAR. Some 
other aspects such as a more comprehensive profile representation, a reasonable 
knowledge base structure, a flexible service description for pluggable services, and 
context-dependent user feedback also have to be considered. In short, the benefits of 
these approaches have to be combined, so that the need for implementing domain 
specific context-aware services from scratch can be generally avoided.  

3.5. Conclusion 

In this chapter we have studied the technologies most suitable for the layer model 
for Ambient Intelligent Systems. Whereas each layer required an individual set of 
technologies, we observed that semantic descriptions can be utilized for describing 
and deriving the context situation the user is currently in, and the subsequent con-
text-aware service adaptation as well as for a representation-independent 
description of services. We will describe both these uses in Chapter 4. 

We also presented the theoretical background for decoupled service interaction 
models and their existing service models ranging from traditional middleware sys-
tems to newer service-oriented architectures such as web services. [06][07][08] 
However, even though already designed with abstraction from specific devices in 
mind, the latter is not able to fulfill the requirements outlined above since it still 
relies on specific interface descriptions which are neither replaceable nor adaptable 
during run-time. This means that this tightly coupled interaction model of web ser-
vices is neither able to cope with the continuously changing appearance of the 
computing environment nor with the physical characteristics of the devices and the 
networks that constrain the reliability of interworking. Thus, the development of 
services in pervasive computing requires more consideration of the dynamism of 
the computing environment and context-aware service adaptability. 

We therefore introduce a new paradigm called Service Request Oriented Architecture 
(SROA) that is better suitable for Ambient Intelligence Systems. SROA is a further 
development of distributing service components which adds adaptability and ser-
vice requests as novel underlying paradigms. The Service Request Oriented 
Architecture is based on a message-like communication model in which the inter-
working of devices is realized through the exchange of Service Requests. In contrast 
to traditional approaches in which service interaction is realized through the direct 
invocation of methods according to a well-defined interface specification, the service 
request-oriented approach relies on the capability of the system to autonomously 
interpret, adapt, and deliver these requests to suitable service objects. This commu-
nication paradigm calls for a complex communication model which not only 
supports formal function calls but also supports high-level colloquial descriptions of 
user needs. 
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Figure 15: Communication dimensions 

Whereas traditional approaches rely on specific formal interface descriptions, the 
Service Request Oriented Architecture tries to open up this limitation by supporting 
mapping from high-level user requests to specific service calls as depicted in Figure 
15. The full potential - but also the challenges - of this approach depend on the quali-
ty and the possibilities of such mapping. However, allowing communicating 
computing systems to better understand the intention of the user will generally faci-
litate the design of more adaptable and user-friendly systems. 
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4. Service Request Oriented Architecture Specification 

The Service-Request Oriented architecture enables the execution of service requests 
in a loosely coupled, distributed, and ad-hoc manner. Below we will describe the 
interaction model, and how the initial Service Request is analyzed and executed. Up 
to now, temporal coupling has generally required all participants involved in an in-
teraction to be synchronized in time. Communication time is neglected and delays in 
data exchange are assumed to be minimal. As outlined above, one common example 
for a temporally coupled interaction is the Remote Procedure Call (RPC). Here one 
party performs a procedure that was previously requested by another. Until the 
procedure is finished, the caller is usually blocked while awaiting the results. Un-
coupled interaction models can be realized by queued messaging systems or shared 
message storages (e.g. message boards, etc.). Likewise, spatial coupling implies that 
the participants involved in an interaction know about each other and can be indivi-
dually addressed by name. A spatially decoupled interaction, on the other hand, 
enables participants to stay anonymous. In addition to temporal and spatial de-
coupling, we would also like to introduce representational decoupling, whereby the 
messages exchanged, i.e. the Service Requests, Generic Service Descriptions and 
Service Calls, are generically described in an extendable format like XML with no 
need for every participant to understand every part of the message. 

 

Figure 16: Components in the layer model 

Figure 16 shows how the components of Service Request Oriented Architecture in-
teract in the layer model introduced above. The application layer holds the 
application domain logic implemented in either device applications or back-end 
services. The basic tasks of Service Request routing and transformation are accom-
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plished in the loosely coupled service layer which holds all requests and distributes 
them through the semantically enhanced data space (SEDS) which utilizes the uni-
versal access layer to request information. The following sections describe these 
layers and the tasks accomplished within them. 

Apart from introducing the general pREST access layer architecture for universally 
accessing data from all devices, we specifically address two important aspects of the 
user-specific relevance of data that to date have received only insufficient coverage: 
the semantic meaning of the user request and the context of the respective user, e.g. 
the location, user specific preferences, or current weather. The allocation and use of 
context information pertains to the design of the service itself. The automatic adap-
tation of existing services is preferable to the development of a context-aware 
service for each domain. 

Finally we present a solution that is able to provide the user context needed to adapt 
services with the help of profiles and rules. A simple semantic service description 
facilitates the easy and flexible use of existing services, while an intuitive approach 
is developed that enables the user to influence the adaptation process and respond 
to the outcome. 

4.1. The Access Layer 

This work investigates the application of Web like interactions and data description, 
commonly referred to as the Representational State Transfer (REST) architectural 
model for the interconnection of independently developed heterogeneous compo-
nents. The goal is to provide the same simplicity and holistic view of services and 
data that the World Wide Web introduced to the Internet. 

In the course of this work, we shall analyze the interconnection paradigms enforced 
by traditional middleware platforms, and illustrate their shortcomings when applied 
to loosely coupled, heterogeneous systems. We also present a number of desirable 
characteristics for middleware for resource-constrained sensor nodes and massively 
distributed systems based on current sensor network and pervasive computing re-
search. 

We take the concept of a resource as meaning a typed, uniquely addressable com-
munication endpoint that can be used as an abstract addressing scheme for devices, 
data and services in pervasive systems, and we further define a common set of oper-
ation semantics as methods to access and manipulate resources. 

Subsequently we evaluate the representation of data and description of components 
with domain-specific XML vocabularies to aid the user in the composition of nodes 
to provide higher level services. To support the validation of component assembly 
on the system side, we introduce MIME types to specify the transmission encoding 
of data, and as an extensible mechanism to describe application level types. 
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Extending the standard interaction pattern proposed by REST, i.e. synchronous doc-
ument submission and retrieval, we introduce asynchronous delivery of events and 
data to support extensible and scalable assembly of components and realize in-
network processing and data-centric routing schemes. 

The reason for these shortcomings is seen in the strict coupling of interactions be-
tween the parties involved in service provisioning. Therefore, the coupling of 
interactions is analyzed with regard to temporal dependencies, spatial dependen-
cies, and dependencies in the representation of exchanged data. 

4.1.1. The Concept of Resources 

Objects are the predominant abstraction of data and functionality in software engi-
neering. An object is defined by its state, behavior and identity [69]. Implicitly the 
object model assumes that implementation details are hidden behind the object’s 
interface, and that state can only be modified by using the object’s provided me-
thods. Middleware platforms such as CORBA or Java RMI try to preserve this 
abstraction for distributed applications as well, by hiding the remote invocations 
behind the interface of an object. 

In service-oriented architectures [61], on the other hand, no interface is exposed to 
clients and no state is held within the server component. Rather the state is trans-
mitted within the messages, and all computation is performed on the message 
content. Interoperability is ensured through message syntax which is common for 
the whole component rather than a single method. 

REST takes a different approach. In it the primary abstraction of information and 
functionality are resources. Any information that can be named is a resource: a doc-
ument, a function, a device configuration or a property. Fielding [09] emphasizes the 
equivalence of a resource’s representation and its identifier in a view which is influ-
enced by the synergistic relationship of URLs and documents on the World Wide 
Web. For component interconnection, the interactive aspect of resources is more 
important. A resource in the sense of component interconnection is a uniquely ad-
dressable entity, service or data whose content can be retrieved via a uniform 
mechanism. Its representation contains the information needed to access and mani-
pulate the resource itself and the resources nested therein. 

While a resource has state and identity just like an object, interaction is performed 
via a uniform interface for all components. An operation on a resource is performed 
by sending a representation (or an identifier) and possibly receiving another repre-
sentation in return, as in service oriented architectures. In fact, resources have more 
in common with distributed objects than with services. Nevertheless, resources en-
compass the abstraction of information, like images, documents and structured data, 
as well as functionalities like services and methods. 
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In pervasive systems, the dynamic nature of resources needs to be considered along 
with uniform accessibility. Dynamic properties such as sensor values and their coun-
terparts in actuators produce or consume constant streams of data. This interaction 
pattern allows an ad-hoc federation of components to form a dynamic, autonomous 
system, but in turn it also requires runtime negotiation of resource contents and 
transmission encoding, thus placing additional constraints on the description, ad-
dressing and typing of resources. 

4.1.2. Resource Representation 

We have defined a resource as a uniquely addressable, universally accessible, typed 
communication end point. Based on this characterization, a platform independent 
way to address and access resources and represent their content needs to be de-
fined.  

4.1.2.1. Resource Typing 

The interconnection of arbitrary resources introduces a requirement to verify such 
compositions and to report meaningful errors should a user try to connect incom-
patible resources. As resources are abstractions of data, their type is defined by the 
encoding understood by the resource and the application level types it produces or 
consumes.  

Interactions in heterogeneous systems require a common format for the transmis-
sion of values; however, the variety of data that can be encountered in pervasive 
environments ranges from logical values such as Boolean or numeric types to media 
types. As it is unlikely that an image producer will ever be communicating with a 
consumer of numeric values, it is reasonable to specify specific encodings for media 
types and logical values.  

On the World Wide Web multipurpose internet mail extension (MIME) types define 
a common yet extensible set of standard encodings, and cover the whole spectrum 
of media types produced or consumed by electronic devices. The respective encod-
ing should be enclosed in the resource meta-data. Limited by the scope of this work, 
the transactions treated here will be considered to involve only textually encoded 
values such as plain ASCII and XML. 

The data types produced or consumed by a particular resource are defined at the 
application level. Barton et al. [57] propose the usage of Accept and Provide headers 
to agree upon a common data format. However, the values allowed by them only 
define the encoding type, whereas the interconnection of components producing 
and consuming logical values needs specification at the datatype level. The following 
section introduces a common set of data types to interconnect resources.  
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4.1.2.2. Primitive Values 

The components treated here exchange logical values rather than multimedia types. 
For a platform-independent representation of values one has to decide whether to 
transmit data as binary data or in ASCII form. While the former is more efficient in 
terms of packet sizes and processing overheads, it also introduces issues of byte 
ordering and sizes of data values.  

ASCII encoding has proven successful for data interchange on the web as it offers 
platform-independent representation without byte-ordering issues. What’s more, it 
is human-readable and the default input is provided by off-the-shelf clients.  

To ensure compatibility of interfaces, a common set of basic data types need to be 
defined. The XML schema specification [128] defines one such set consisting of 
about 19 primitive types “believed to be so common, that if they were not defined in 
this specification many schema designers would end up ‘reinventing’ them“, and a 
lot more derived types. Such an abundance of types is overkill and impedes the in-
terconnection of sources and sinks, as it reduces the number of compatible 
endpoints.  

Accordingly, as a basis for the exchange of values, a subset of the primitive types 
defined by XML schema is taken as common to all components. The set of primitive 
types comprises: 

Type Allowed values 

int  representing integer values  

float  for floating point numbers  

string  for textual data  

boolean  contains binary values 

enum  holding one of several predefined values, the actual values need to be retrieved 
from the interface descriptor. 

Table 1: Primitive data types 

 Additionally constructed types may be exchanged by components in ASCII repre-
sentation, only this is considered bad design since it undermines efforts to ensure 
interoperability among devices.  

4.1.2.3. Complex Data 

Whereas parameters and simple properties can be represented sufficiently well 
with primitive data types, complex values and user interfaces need richer forms of 
presentation. Atop of ASCII encoding of values, a representation is needed that con-
tains semantic tags as well as actual values.  

For platform-independent, self-describing representation of arbitrary data XML is a 
favorite choice. Although encoding with ASN.1 [125] offers platform independence 
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as well, and binary transmission according to the Basic Encoding Rules is more effi-
cient in terms of network traffic and computational overhead, XML [126] is still 
preferable for a number of reasons. 

the same syntax is utilized for data description and transmission 
descriptors are extensible without invalidation 
descriptors are human readable 
generation of user interfaces via Web-forms or VoiceXML is made easier  
complementary standards for interlinking, transformation and querying are given  
additional semantics can be specified with RDF and OWL  

Even choosing XML as the encoding for structured data, different schemes or con-
ventions for tags to be used can be distinguished using shared, predefined tags - also 
known as meta-schema mapping - and using instance-specific tags - also known as 
schema mapping. 

Meta-schema mapping categorizes elements by one of their aspects, while the ele-
ments’ distinct characteristics are specified as attributes or tag contents. An 
exemplary meta-schema mapping for pervasive systems might define a set of tags 
consisting of component, data source, data sink and description and require partici-
pating components to describe their capabilities in such terms. The motion sensor in 
the exemplary scenario would be described as: 

<component> 
 <description>Sensor capturing motion and 
volume</description> 
 <source name=”motion” type=”boolean”/> 
 <source name=”volume” type=”int”/> 
</component> 

Schema mapping defines custom tags for each data instance, while providing catego-
ry information such as types or classifiers as attributes. Encoding the sensor in the 
exemplary scenario according to a schema mapping would yield a document con-
taining motion, volume and light as child nodes of sensor, also specifying them as 
being capable of producing or consuming data via attributes. A descriptor for a sen-
sor might then read: 

<sensor description=”Sensor capturing motion and volume”>  
 <motion type=”boolean”/> 
 <volume type=”int”/> 
</sensor> 

The advantage of meta-schema mapping is easier validation and integration since 
specific data values are contained in parts which are not subject to validation. As 
tags are defined for a class of documents, documents can be syntactically verified 
against a common schema. Moreover, such a mapping scheme reflects the intention 
of XML which is to specify the meaning of data in the tags and its value in the tag’s 
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content. The requirement for this kind of mapping is, however, that elements of a 
distinct type can be meaningfully subdivided into categories by a certain aspect. 

The more universal a description scheme, the less specific is the information that 
can be derived from tags. A sensible trade-off between expressiveness and useful-
ness for integration is given by domain specific vocabularies or ontologies. An 
ontology would be specified as an XML schema, wrapping the representation of in-
stance data in XML and values expressed in their ASCII representation.  

 

Figure 17: Representation of complex data 

There are a number of initiatives that define ontologies for particular domains. The 
Dublin Core Metadata Initiative [127], for instance, is an endeavor to standardize a 
set of elements to describe web resources in such terms as title, author, audience 
etc. The Resource Description Framework provides a set of tags and conventions to 
address semantic information as structured data. The Web Ontology Language [123] 
extends the RDF by more specific relationships like inheritance, ownership and 
composition, allowing automated reasoning to be performed on data described in 
this way.  

The Super Distributed Objects specification [68] defines a vocabulary for distri-
buted, autonomous systems. Components are defined in terms of properties and 
interfaces for configuration, monitoring and service invocation. This ontology is de-
fined in the Resource Data Model. Device specific data and services are provided as 
instance data via these interfaces. The mapping to XML elements used to describe 
resources in pervasive computing environments based on this ontology will be pre-
sented later.  

4.1.3. Device Representation 

A resource representation needs to contain all the necessary information to access 
and manipulate the resource. Component descriptors in pervasive systems aiming at 
both inter-object and human-object communication have therefore two purposes: 
interface definition and user interaction. 
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4.1.3.1. User Interaction 

One purpose of interface descriptors is the generation of user interfaces or, more 
generally, to provide users with sufficient information to make use of a particular 
component. User interaction is not equivalent to the invocation of services or re-
quests for data, as the user might just want to find out the correct communication 
endpoint to which to connect a data source. This is especially true in terms of the 
transparency requested by the users that allow them to comprehend the workings 
of the Ambient Intelligent System. 

For this reason the component descriptors should contain the type information of 
nested resources as well as a human-readable description of their meaning or func-
tionality. Transforming a service descriptor to a specific user interface allows the 
creation of graphical, voice or gesture controls depending on available input devices 
and the user’s situation [58]. Hodes et al. [60] propose the use of service descriptors 
as a way to externalize a portion of the system state, allowing this state to be altered 
via document authoring, in addition to an API access. This approach contributes to 
the overall adaptability of component based systems since the system can be ad-
justed to application requirements without recompiling the involved components 

Interaction with the user would then be performed via a suitable client after proc-
essing the descriptor to fit a concrete client. For interaction via a web browser, for 
instance, the tags contained in the descriptor need to be transformed to HTML with 
hyperlinks for each contained resource. Other presentation types such as speech via 
VoiceXML are also feasible.  

Presentation-specific elements in descriptor documents such as the checkboxes and 
selection lists proposed by Roman et al. [65] introduce more disadvantages than 
benefits, as Nichols et al have pointed out. [64]: 

Descriptors get longer by providing UI elements for each client type 
Descriptors might lose forward compatibility with future clients  
Over-specification of the interface impedes the generation of user interfaces with a 

common look and feel. 

4.1.3.2. Interface Description 

As outlined in Section 4.1.1, a resource descriptor contains the information needed 
to access the resources or communication endpoints nested within. As it is not pos-
sible to know the interfaces of all components in ad hoc environments at compile 
time, one main purpose of resource descriptors is to allow nodes capable of analyz-
ing such descriptors to construct invocations based on this information.  

The descriptor document contains a list of all nested resources as well as the infor-
mation needed to interconnect them such as their data type, or URLs for requesting 
further information. The amount of meta-data about resources should be balanced, 
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so as not to overload the descriptors (after all, energy is still scarce). The user can 
request additional information via a separate request on a specific resource. 

Since the interface description is static, it can be stored in a non-volatile memory of 
the device and be treated like a string constant. In this manner even constrained 
devices not capable of handling XML structures at runtime or parsing their content 
can publish their interfaces.  

Dynamic invocation is also offered by middleware platforms such as CORBA. How-
ever, experience has shown that the runtime analysis of an interface is cumbersome 
and ends up translating configuration data to the internal invocation format. With 
REST the internal and external representation is equivalent, hence user input can be 
directly translated onto invocations. Even so, due to the additional logic involved in 
runtime interface analysis, user interaction can be expected to be derived from the 
descriptor documents.  

4.1.4. Device and Service Properties 

A resource’s state is the sum of all (non-static) property values belonging to that 
resource. Since the capability to process XML documents cannot be assumed of all 
nodes in the network, the minimum functionality of server-side components or de-
vices is to return primitive property values on request. Primitive type properties are 
those which cannot be further decomposed, as opposed to the complex types repre-
sented by XML descriptors. Instead of embedding the values of primitive properties 
directly in the descriptor, resource representations contain identifiers which can 
then be used to retrieve these property values. This concept of indirection is known 
from distributed hypermedia systems. 

It offers two advantages. First, it keeps the descriptors compact. A recursive listing 
of all the elements contained potentially containing nested elements themselves 
would blow the descriptors in all but trivial cases and waste energy during trans-
mission. Secondly, resource-constrained nodes might not be able to construct 
complex state representations at runtime, but should at least be capable of transmit-
ting a single value in reply to a request.  

Separation of the resource description and the actual (and dynamic) property values 
allows constrained nodes to provide an immutable descriptor first, while actual data 
values can be retrieved upon subsequent requests. What’s more, links between 
components will be by property values sent to a data sink, either regularly or upon 
change. Such an interconnection would be difficult to realize with values embedded 
in XML documents.  

In the exemplary scenario, a user could request the representation of a sensor, lo-
cated at:  

http://sensor/ 
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and in return receive the descriptor constant descriptor.  

<sensor desc=”A simple sensor”>  
<motion type=”boolean” href=’./motion’>  

Motion in proximity  
</motion> 
<volume type=”int” href=’/volume>  

Volume in dB  
</volume> 
<vibration type=”int”> Vibration in Hz </vibration> 

</sensor> 

which is rather unexciting to subscribe for. First issuing a request for 

http://sensor/motion 

would then render the current value of the property as 

false 

Subscription of a light for the property would connect the sensor to an actuator. 

4.1.5. Services 

Services are by definition consumers of data, since the data provided by them is de-
pendent on the input provided. Services provide some higher level functions other 
than the retrieval and manipulation of properties such as subscribing to a notifica-
tion of status changes. A service descriptor needs to specify the parameters the 
service expects as well as a human-readable description of the service’s function.  

Unlike descriptors of complex resources, service descriptors do not contain commu-
nication end points, but rather specify the expected parameters to be submitted for 
invocation of that service. Whereas in traditional distributed software systems the 
remote invocation of services or methods is the most commonly used interaction 
paradigm, in pervasive systems it should rather be the exception.  

The reason is that services tend to have rather complex signatures requiring specific 
knowledge on the client side. Defining services as communication endpoints that 
accept a specific combination of parameters drastically reduces the number of com-
patible data sources which can be connected to them. Thus services should rather be 
designed as consumers of events that contain the necessary parameters. 

Services and service interaction models are described above in more detail in Sec-
tion 3.2. 

4.1.6. Resource Identifiers 

We have identified the unique addressing of communication endpoints as a major 
advantage of REST-based systems as opposed to traditional middleware. As with 
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data representation and resource access, the World Wide Web provides a proven 
and scalable solution. Resources in REST are addressed with URLs.  

The term “Uniform Resource Locator” (URL) refers to the subset of Uniform Re-
source Identifiers that describe via a representation of their primary access 
mechanism, e.g. their network location and protocol. With REST this would be 
“http://”, or “httpu://” depending on the transport protocol followed by the node 
address and resource path. The node address is in the simplest case of an IP address. 
This address may be retrieved via a broadcast protocol, a machine-readable tag at-
tached to the device or by manual configuration [62]. Alternatively, symbolical 
names may be used that address nodes by their function, location or properties [67]. 

The use of URLs as resource identifiers further decouples interacting components, 
allowing late binding of a concept to its actual implementation [59]. Unlike CORBA, 
interoperable object references URLs are designed to be transcribed and stored ex-
ternally in a memory, a file or on the back of a napkin. Thus their validity is not 
dependent on the existence of an object in a given server but rather on a local reso-
lution.  

Name resolution may be realized via an orthogonal protocol (a domain name ser-
vice) which places a central component in the architecture. Alternatively, using 
REST interactions names can be resolved by storing references resource values, and 
making use of redirect messages. 

Because of their hierarchical structure, references can be created by requesting a 
general descriptor from a top level node, and subsequently appending the identifiers 
of nested resources. Given the following descriptor: 

<light> 
<state type=”boolean”>  

 The current state accepts true and false 
</state> 

</light> 

The light state can be accessed by appending the element name to the address of the 
parent node i.e.  

http://light/state 

4.1.7. Summary 

This section introduced a generic access layer that can be used to retrieve and up-
date generic data on arbitrary devices. Unlike other technology, this pREST access 
layer is light weight, universal, scalable and easy to implement. The following sec-
tion describes how this layer is used to implement a new loosely coupled service 
interaction model. 
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4.2. Service Interaction Model 

Since the service environment each time in a pervasive setting is formed in accor-
dance with the current context of the user, the number of appropriate services - 
especially those provided by the physical environment - is limited in a natural way. 
Therefore, the service environment can be regulated and controlled by the involved 
parties themselves so that no third parties are required to manage special aspects of 
service provisioning. Thus, the entire system becomes more resilient against 
changes in the environmental setting. In terms of the supposed characteristics of the 
service environment, this service model is based on loosely coupled interactions 
according to the three dimensions of space, time, and representation. This section 
examines the realization of these three aspects with regard to service provisioning. 

As argued in Section 3.2, the service models of today’s SOAs typically realize a strict 
separation of the two phases of service discovery and service execution. There are 
interactions first to find and interpret the capabilities of a service and second to ex-
ecute the service. The separation ensures that during execution each service 
instance is only given the information which it can interpret and is able to create an 
appropriate answer for. Thus, a major intention of the service discovery is to enable 
spatially coupled interactions of service consumers and providers during service 
execution. One practical benefit of separating service discovery from service execu-
tion is that a service consumer can execute a service, once discovered, multiple 
times. This has a positive impact on the performance of service provisioning and 
saves physical resources. Even so, these advantages only hold true in static service 
environments. In a highly dynamic setting, such as is usually encountered in perva-
sive computing environments, service discovery needs to be repeated continuously 
to keep the consumer’s view of the service environment up-to-date. Moreover, 
choice of available services is limited by the current environment of the user. Hence, 
there is no need for the service-consuming system to determine the service-
executing system by name as long as the functional and non-functional require-
ments for the requested service are fulfilled. 
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Figure 18: Abstract control flow in service provisioning. 

The central element of this service model is the service request. The service request 
is originated by the so-called Service Requester and includes a self-contained speci-
fication of the task a service should perform. The parties providing services are 
supposed to analyze the service request in order to determine whether or not they 
are capable of processing the specified task. In the following a service providing par-
ty is referred to as a Service Provider.  

Since the service model is required to be spatially uncoupled, all information pub-
lished in the provisioning process can be obtained by all parties. A service request is 
published to all interested Service Providers in the environment of the Service Re-
quester. The type of request defines whether a service should be executed by exactly 
one Service Provider or by multiple Service Providers. Figure 18 illustrates both 
methods. The first method of service provisioning is referred to as one-to-one ser-
vice provisioning, the second method as one-to-many service provisioning. In the 
one-to-one service provisioning Service Providers initially need to agree on which 
one of them will execute the requested service, assuming that there are multiple 
Service Providers offering this service. Here a first-come-first-served approach is 
utilized. The first Service Provider that notifies the receipt of a service request is 
also supposed to execute the service. Thus all Service Providers capable of solving a 
requested task are required to listen to the notifications of the others before notify-
ing the receipt themselves. Synchronization is handled by the interaction medium. 
However, in both methods of service provisioning the completion of a service execu-
tion is notified with an appropriate feedback for the Service Requester. 

4.2.1. Control Flow in Service Provisioning 

In the following three sections the procedure of service provisioning is explained in 
detail from an information-centric point of view. For simplicity’s sake the term ‘con-
trol entity’ is used whenever some structured data with a concrete semantic is 
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meant. All control entities contain a reference to their originator, and some control 
entities have a limited life-span not necessarily defined by a date or a time-span. The 
expiration of a control entity is rather bound to the occurrence of a certain event in 
the context of the service environment such as the publication of new information. 
However, control entities generally may refer to each other but only in a directed, 
acyclic manner.  

The control flow in the one-to-one service execution is illustrated in Figure 19 as a 
finite state machine. Since the involved parties determine the current state of the 
provisioning process with the obtained control entities, the state machine is only an 
abstraction. However, a service execution is initiated by the Service Requester by 
publishing a Service Request that contains the specification of the required service 
and some input data the service should be executed on. Before a Service Provider 
can start the execution, it first needs to acknowledge the request. The Service Pro-
vider that publishes the first Service Acknowledgement is allowed to execute the 
service. Thus, all providers receiving a Service Acknowledgement are forbidden to 
execute the corresponding requested service. While executing long-running servic-
es, the Service Provider is allowed to publish further Service Acknowledgements to 
indicate that execution is still in progress. For this purpose the Service Acknowled-
gement is one of the control entities with a limited span of life. If the execution 
process creates some provisional results, these may additionally be included in the 
Service Acknowledgements. Service Requester and third parties may use the extra 
Service Acknowledgements to determine whether a provider is still processing a 
requested service or has possibly disappeared from the service environment.  

When the Service Provider successfully finishes the service execution, it publishes a 
Service Response. Otherwise, if problems occur during execution, the provider 
should publish these problems as Service Failure and cancel all processes related to 
the service. The failure of a service execution is implicitly assumed if the last valid 
Service Acknowledgement expires and no further ones are published. In both cases, 
no matter if the execution is explicitly canceled or the provider is gone, another Ser-
vice Provider may accept the original Service Request. Possibly existing Service 
Acknowledgements containing provisional results may then be used to recover the 
service execution in the last known state. 

A Service Requester can also cancel its own Service Request with a Service Request 
Invalidation. Unless the execution is already completed the executing system should 
cancel all related processes and return to the initial state. However, as a Service Re-
quest may also expire on the occurrence of a certain event, Service Requesters may 
publish Service Confirmations whose meaning is analogous to the meaning of the 
extra Service Acknowledgements. Service Confirmations can be used by Service Pro-
viders and third parties to determine if the Service Requester is still waiting for the 
response or has disappeared from the service environment. 
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Figure 19: State chart of one-to-one service provisioning from external 

The one-to-many service execution, as illustrated in Figure 20, is based on a best-
effort approach. All Service Providers that understand a Service Request should 
process the corresponding task. The execution begins with the first Service Ac-
knowledgement of a Service Provider. Unlike in the one-to-one service execution 
multiple, Service Acknowledgements from different originators are allowed. Once 
again Service Providers may publish the Service Acknowledgment to notify that ex-
ecution is still in progress. Similarly, Service Requesters need to publish Service 
Confirmations for the same purpose. This way, the number of currently running, 
finished, and failed service executions can be determined at anytime. The first suc-
cessful completion of an execution does not necessarily mean the end of all 
interactions. In fact, all processes are continued until the Service Requester publish-
es a Service Request Invalidation for the Service Request or the Service Request 
expires or the last valid Service Confirmation expires, allowing other Service Provid-
ers executing the service in parallel to complete execution. Even so, a one-to-many 
service execution is still regarded as successful if at least one Service Provider pub-
lishes an appropriate Service Response. Interrupted execution processes caused by 
failures or by the disappearance of Service Providers are not recovered. 
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Figure 20: One-to-many service provisioning from an external point of view. 
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Acknowledgement of the Service Provider expires and there is no appropriate 
response for the requested service, the service execution is considered to have 
failed. 

Service Response 

The Service Response is originated by a Service Provider executing the re-
quested service to signalize the successful completion of the execution.  

Service Request Invalidation 

The Service Request Invalidation can be published by the Service Requester to 
cancel currently running executions or to avoid that a Service Request being 
processed by any provider at all. Naturally a Service Request expires at a certain 
time as argued above, but if the needs of a Service Requester change before the 
request is accepted or the processing finished, the Service Request Invalidation 
can be used to publish this circumstance.  

Service Failure 

The Service Failure can be originated by the system executing the service to 
communicate that some exceptions, e.g., errors, caused the execution to be ab-
orted. In the one-to-one service execution it may serve as starting point for the 
recovery of the requested service by another Service Provider. 

4.2.2. Semantics of Service Provisioning 

In general a service is executed on behalf of the Service Requester since it is the Ser-
vice Requester that formulates the problem to be solved. Whereas in traditional 
service environments the service consumer may chose an appropriate service out of 
a list of descriptions, in this loosely coupled approach the Service Requester speci-
fies the needed service itself. Accordingly, the Service Provider is required to 
determine whether or not it can interpret the specification and accept the service 
request.  

As explained in section 3.1.2, data exchanged within interactions are required to 
contain enough reasonable information to be delegated to an appropriate destina-
tion. With reference to the service model this means that the content of a service 
specification needs to address a Service Provider. Given its task-oriented nature, the 
description of the problem a service should solve is more relevant to the Service 
Requester than the description of the service implementation. Complex process de-
scriptions, as realized in SWSO and OWL-S, are intended to support the planning of a 
composite service execution. This model addresses services that represent atomic 
processes. As each service is intended to be executed in a single step, neither de-
scriptions of service internal workflows in terms of orchestrations, nor descriptions 
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of overall data flows in terms of choreographies are included in the service specifica-
tion. Instead, in the beginning of a service execution the Service Requester provides 
a set of input data to the executing system, while at its end the service executing 
system responds with some output data. However, this model does not exclude the 
representations for the entire composition of services. In fact, the specification of 
services is already designed to take account of higher-level models as the following 
sections suggest. 

The service model refers to an environment based on cooperating objects around 
the user. In terms of pervasive computing, the services provided by these objects 
indirectly allow users to inform themselves about, and to manipulate, their physical 
environments. A lamp, for instance, may provide a service that allows switching it 
either on or off. Thus, calling the service changes the state of the executing system. A 
service that provides some information, such as about the weather in a certain loca-
tion, can in reverse be seen to change the state of the consuming system or at least 
its informational state. Therefore, the service specification is oriented to the repre-
sentation of state transitions on the service executing system as well as on the 
service requesting system. 

In contrast to the simplified view of variable symbols and assignment rules, for the 
service specification a variable symbol is represented as tuple of the form (Function, 
Term1, Term2, ..., Termn), which in the following will be called the Partial State. A 
Function is regarded as an identifier of a virtual object, while, in the context of a Par-
tial State, Terms are arguments that determine a particular property of this virtual 
object. Each Term is itself either a Partial State or a Constant, where Constants are 
any atomic or complex data structures and do not need any further interpretation 
for the service specification. However, a Partial State is not required to contain any 
Terms at all, only its Function is mandatory. Representing variable symbols as Par-
tial States naturally also affects the assignment rules which are henceforth referred 
to as Updates. The head of an Update is always a Partial State, while the body is a 
Term, i.e., either a Partial State or a Constant, formally written as tuple (Partial State, 
Term). 

Based on the introduced terminology a service specification is defined through a 
finite set of Updates on Partial States. The relation of the service specification to 
Service Requester and Service Provider is realized through the Functions addressed 
by the Partial States in the Updates. As indicated above, each Function refers to a 
virtual object which may have a counterpart in the real world, and may thus be 
represented by the Service Requester or Service Provider. Therefore updating the 
Partial State for a Function means to change the corresponding virtual object and 
thus the current state of Service Requester or Service Provider. However, neither do 
all functions correspond to virtual objects represented by the Service Provider or 
Service Requester nor is the use of Functions in the Updates arbitrary.  
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Figure 21: Hierarchy of function types for the Service Specification. 

For clarification Functions are first separated into external Functions and internal 
Functions, as shown in Figure 21. An external function refers to a virtual object that 
is defined outside of the service specification. Thus, neither Service Requester nor 
Service Provider represents this object. The values for corresponding Partial States 
are rather considered to be generally known and are not allowed to be updated. On 
the other hand, internal functions address virtual objects represented by the Service 
Requester or Service Provider And the service specification also differentiates be-
tween three types of internal functions, henceforth referred to as in-Functions, out-
Functions, and shared-Functions. The Function types suggest in which way the 
represented virtual object may be accessed. An in-Function represents a virtual ob-
ject that is only accessible for reading data; an out-Function represents a virtual 
object that is only accessible for writing data; and a shared-Function represents a 
virtual object that may be accessed for reading and writing data. Moreover, in-
Functions and out-Functions are defined to refer exclusively to virtual objects 
represented by Service Requesters, while shared-Functions exclusively refer to vir-
tual objects represented by Service Providers.  

The differentiation of Function types is especially relevant for the Updates, since the 
type of Function addressed by a Partial State defines whether the value represented 
by the Partial State may be updated or not. However, within one service specifica-
tion one function of each type is allowed at most, i.e., in, out, and shared. However, 
unlike the shared-Function, the in-Function and out-Function are optional to service 
specification. 

 

Figure 22: Example of a service specification 

Extern Intern

Out In Shared

Function

Updates
(playing, song) := (input)
(playing, volume) := 50
(output) := (playing, length)

Service Specification

Functions
in -> input
out -> output
shared -> playing

Precondition
(playing, song) = nil
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Figure 22 shows an example of a service specification which addresses the playback 
of a song with a certain volume. To this end the in-Function input, the out-Function 
output, and the shared-Function playing are all defined. In the updates the Function 
playing is required to be changed in the Partial States song and volume, whereby the 
value for volume is a constant while the value for song is obtained from the Partial 
State of input. Moreover, the Partial State of output needs to be updated with the 
approximate length of the playback. The example also illustrates a construct called 
Precondition. The Precondition is introduced to enforce a certain state of the virtual 
object represented by the shared-Function before the Updates are performed. In the 
example the Precondition is used to indicate that the Partial State of playing for song 
should not be set. Therefore, proprietary to this example, the constant nil is intro-
duced as placeholder for an undefined reference. 

As explained, the service specification only describes the difference between two 
states without making any assumption about the states themselves, except for the 
Precondition. Consequently, Service Providers are intended to analyze the service 
specification with regard to Partial States referring to the shared-Function. If a Ser-
vice Provider represents a virtual object that corresponds to the shared-Function 
and supports all required operations, i.e., updates and data retrieval, this Service 
Provider is allowed to accept the requested service. On the other hand, the Service 
Requester should provide representations of the in-Function and out-Function 
named in the service specification, if they are needed. 

4.2.2.1. Data Values for Service Execution 

The above section shows how services are specified in this service model. The ser-
vice task is described with a set of Updates on Partial States wherein Partial States 
are supposed to represent values for certain properties of Functions. In the Updates, 
however, Partial States are only placeholders since the actual value represented by 
these states is not considered. Thus, in addition to the service specification, Service 
Provider and Service Requesters are also required to provide the actual values of the 
Partial States required for execution of the Updates. With reference to the example 
given in Figure 22, the Service Requester would be required to provide a constant 
value of the Partial State for the function input, while the Service Provider should 
finally provide a constant value for the Partial State of the Function playing and the 
argument length. 

To this end a tuple of the form (Partial State, Constant), referred to as Evaluation, is 
introduced. During service execution Evaluations are used to communicate data 
values between the Service Provider and Service Requester. In general, the Service 
Requester is supposed to provide Evaluations for Partial States of the in-Function, 
while the Service Provider is supposed to provide Evaluations for Partial States of 
the shared-Function. 
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4.2.3. The Service Model Ontology  

In terms of the three dimensions of loose coupling, spatially decoupling is explicitly 
achieved while delegating information by its content and temporally decoupling is 
implicitly achieved since no information exchange is strictly bound in time. The last 
requirement to be fulfilled is a loose coupling is representation. In Section 3.1.3.2 
the utilization of proper logics is identified as a suitable approach with which to ad-
dress this challenge. Thus the control entities and the formalisms for the 
representation of service tasks are composed to a Service Model Ontology (SMO). 
Since the control entities and the specification formalisms are static structures 
based on ‘is-a’-relationships, they are defined with Description Logics (DL). Rather 
than words in a finite vocabulary, the types of information used in this model are 
defined as concepts. Although concepts are identified by names, they are not iso-
lated but rather defined in relation to each other and to common base concepts. This 
way, a concept can be addressed without knowing its name, just by circumscribing it 
with its defining concepts. . A concrete datum can be seen as instance of a concept, 
i.e., the concept types the datum. Connections between these instances are 
represented as binary relations in this ontology, since each n-ary relation can be 
represented as a new concept whose instances have n binary relations. 

The adoption of logic descriptions for the representation of concepts also allows the 
formalization of conditions and constraints on concepts as theorems. However, the 
scope of a theorem is not limited to the concepts it is proposed for because theorems 
are rather required to hold true even in instances of new concepts that inherit sig-
nificant characteristics from those originally named in the theorem definition. Thus 
theorems can be used to enforce common, structural restrictions for the data ex-
changed. During service provisioning the validity of obtained concept instances can 
be verified by proving the theorems, i.e., by checking the conditions and constraints 
on those instances. The theorems are explicitly contained in the ontology. When 
extending the ontology or defining new ontologies based on the original one, new 
theorems can also be introduced. The parties involved in service provisioning may 
thus even check the constraints and conditions for concepts from new ontologies 
without any need for modification of the implementation. 

The concepts of instances exchanged among the participants of the service provi-
sioning are illustrated in Figure 23 and described in the following sections where 
the relations between concepts and possible constraints are explained in detail. In 
general all relations have the cardinality one. It should be noted that for greater clar-
ity not all relations described below are depicted in the figure. 
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Figure 23: Overview of the Service Model Ontology and their relations 
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Relations 

hasSpecification This relation references an instance of ServiceSpecification. This in-
stance needs to be analyzed by Service Providers to determine 
whether they can answer the request or not. 

isExclusive The relation points to one of the two constants True or False and de-
termines whether the request needs to be answered by exactly one 
Service Provider or multiple Service Providers. This is especially im-
portant for distinguishing between one-to-many and one-to-one 
service provisioning. 

hasAddressee This optional relation references the name of a particular Service Pro-
vider that is needed to execute the requested service. The relation may 
be utilized if a desired provider is already known as originator of other 
instances for concepts of control entities, ideally instances of the con-
cept ServiceResponse. This relation is included for convenience and 
intended to help a Service Requester get responses to a sequence of 
service requests from the same Service Provider. 

expiresOn The expiresOn-relation references an instance of the concept Expira-

tionCondition. This instance defines under which conditions the 
instance of ServiceRequest should be regarded as having expired. 

hasOriginator This relation is a reference to the name of the party that originated the 
request, i.e., the name of the Service Requester. 

4.2.3.2. ServiceConfirmation 

The concept ServiceConfirmation represents the control entity of the same name. An 
instance of ServiceConfirmation revalidates an instance of ServiceRequest as long as 
the former has not itself expired. 
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Relations 

refersTo The refersTo-relation names the instance of ServiceRequest to be revali-
dated. 

expiresOn This relation references an instance of ExpirationCondition that defines 
under which conditions the instance of ServiceConfirmation should be 
regarded as having expired. 

hasOriginator The relation is a reference to the name of the party that originated the 
instance of ServiceConfirmation, i.e, the Service Requester that also origi-
nated the referred instance of Service Request. 

4.2.3.3. ServiceAcknowledgement 

The concept ServiceAcknowledgement represents the control entity of the same 
name. The Service Provider may use instances of this concept to accept a service 
request or to indicate that the execution of a requested service is still in progress. 
The expiration of all valid instances of ServiceAcknowledgement from the same ori-
ginator implies that the execution has failed. However, the ServiceAcknowledgement 
may also be extended in ontologies for particular application domains to allow the 
representation of the application-dependent provisional results of an ongoing ser-
vice execution. 

Relations 

refersTo This relation names an instance of ServiceRequest that is supposed to be 
marked as accepted by the originator of the instance of ServiceAcknow-

ledgement. 

expiresOn The expiresOn-relation refers to an instance of ExpirationCondition that 
defines under which condition the current instance of ServiceAcknow-

ledgement becomes invalid. 

hasOriginator The relation is a reference to the name of the party that originated the 
instance of ServiceAcknowledgement, i.e., usually the Service Provider. 

4.2.3.4. ServiceFailure 

The concept ServiceFailure represents the control entity of the same name. An in-
stance of this concept implies that the execution of the corresponding requested 
service has failed. 
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Relations 

refersTo This relation refers to the instance of ServiceRequest, for which a Service 
Provider executing the requested service needs to suggest a failure. 

hasOriginator The hasOriginator-relation is a reference to the name of the party that 
failed while executing the requested service, i.e., usually a Service Pro-
vider. 

4.2.3.5. ServiceRequestInvalidation 

The concept ServiceRequestInvalidation corresponds to the control entity of the 
same name. The Service Requester may use instances of this concept explicitly to 
invalidate an earlier originated instance of ServiceRequest. 

Relations 

refersTo This relation points to the instance of ServiceRequest that should be 
marked as invalid. 

hasOriginator The hasOriginator-relation refers to the name of the party that origi-
nated the instance of ServiceRequestInvalidation. The originator should 
be the same as the one that requested the service to be invalidated. 

4.2.3.6. ServiceResponse 

The concept ServiceResponse represents the control entity of the same name. In-
stances of this concept are used by Service Providers to suggest the successful 
completion of a service execution. 

Relations 

refersTo This relation refers to the instance of ServiceRequest for which a Service 
Provider wants to suggest a successful execution. 

hasOriginator The hasOriginator-relation is a reference to the name of the party that 
originated the instance of ServiceResponse, i.e., usually a Service Provid-
er. 

4.2.3.7. Function 

The concept Function represents the construct of the service specification with the 
same name. Instances of this concept are identifiers for virtual objects. In the Service 
Model Ontology differentiation between in-Function, out-Function, and shared-
Function is not modeled explicitly, but ratherthe type of an instance of the concept 
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Function is determined by the relation of this instance to an instance of ServiceSpeci-

fication. 

4.2.3.8. ServiceSpecification 

The concept ServiceSpecification represents a bridge between instance of ServiceRe-

quest and a set of instances for Precondition, Evaluation, and Update. Instances of 
this concept are thus related to three instances of Function whereby the relation 
determines the type of each instance of Function.  

Relations 

hasInFunction The hasInFunction-relation refers to an instance of Function that 
should be treated as in-Function. Based on this instance, corres-
ponding instances of PartialState and Update may be found that 
also belong to the same service specification. 

hasOutFunction This relation refers to an instance of Function that should be 
treated as out-Function. The instance may be used to obtain in-
stances of PartialState and Update that also belong to the same 
service specification. 

hasSharedFunction The hasSharedFunction-relation refers to an instance of Function 
that should be treated as shared-Function. The instance may be 
used to find instances of Precondition, PartialState, and Update that 
refer to the same service specification. 

4.2.3.9. Term 

The concept Term is a placeholder and only introduced to simplify the definition of 
constructs that alternatively require instances of Constant or PartialState. 

4.2.3.10. Constant 

The concept Constant refers to a constant term. Hence, instances of this concept can 
be seen as data values that do not require further interpretation within a certain 
service specification. These instances may, for example, be any numbers and charac-
ters like “1”, “2”, or “H”, as well as complex structured data like “Movie (‘Life of 
Brian’, 1979)”. 

4.2.3.11. PartialState 

The concept PartialState represents the construct of the service specification with 
the same name. Consequently, instances of this concept are supposed to refer to 
precisely one instance of Function and an arbitrary number of instances for Constant 
or PartialState. 
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Relations 

hasFunction This relation refers to the instance of Function addressed by the instance 
of PartialState. 

hasArguments The optional hasArguments relation points to an instance of the concept 
ArgumentList that contains a list of instances for PartialState or Con-

stant, and parameterizes the referred instance of Function in detail.  

4.2.3.12. ArgumentList 

Since relations between concepts are unordered, there is no direct way to define a 
certain sequence for a set of instances. The concept ArgumentList thus represents a 
recursive list of instances for the concepts Constant and PartialState. 

4.2.3.13. Update 

The concept Update represents the constructs of the service specification with the 
same name. Consequently, instances of this concept refer to an instance of PartialS-

tate to be updated and the instance of Constant or PartialState that is supposed to 
provide the new value. Instances of Update may also appear in combination with 
instances of ServiceSpecification. 

4.2.3.14. Evaluation 

The concept Evaluation represents the construct with the same name introduced to 
communicate data values during service execution. Instances of Evaluation are may 
appear in combination with instances of ServiceRequest and ServiceResponse. 

Relations 

refersToPartialState This relation refers to the instance of PartialState the value is 
provided for. 

hasValue The hasValue-relation is a reference to an instance of Constant 

which represents the actual data value. 

4.2.3.15. Precondition 

The concept Precondition represents the construct of the service specification with 
the same name. Instances of this concept may appear in combination with instances 
of ServiceRequest and ServiceSpecification. 
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Relations 

refersToPartialState The relation references an instance of PartialState that is required 
to have a particular value. 

hasValue This relation names an instance of Constant that is represented by 
the required value for the PartialState. 

4.2.4. Bringing the Interaction Model and Service Model Together  

Since the interaction and service model are defined to fulfill the same requirements 
with respect to loosely coupled interactions, the combination of both models does 
not require complex mappings of features. The major challenges are the representa-
tion of data and semantics. While the interaction model deals with a graph-based 
data representation, the service model utilizes DL-based ontologies for the descrip-
tion of concepts, relations, and individuals. One approved and widely accepted 
representation that combines both levels of description is the Web Ontology Lan-
guage (OWL) of W3C, specified in [36]. As shown in section 3.1.3.2 above, OWL also 
includes a subset for Description Logics so that the service model ontology may be 
realized in this language without the need for any modifications.  

However, the interaction subject in a service provisioning process is the actual ex-
ecution of a service. This means that the Service Requester is required to open the 
Data Space when interactions with the Service Request should be transacted. Conse-
quently, the Service Request is required to be originated immediately afterwards. 
The Service Requester is also supposed to close this Data Space if execution was 
successfully completed. During the service provisioning process control entities, as 
represented in the Service Model Ontology, reflect the intentions of the involved 
parties. Since the descriptions of these intentions are self-contained, all control enti-
ties, i.e., individuals of the corresponding concepts and related data, are added to 
separate Data Planes in a Data Space. On writing data to a plane, the resulting graph 
is not only a structural check but also supposed to be proven for semantic consisten-
cy and completeness as enforced by the service ontologies. 

4.3. Ontology for Modelling User Context 

Modelling of context to facilitate a context-aware system is not an easy task as it 
deals with the representation of context information such as sensor values in a form 
that can be processed by a machine and understood by a human being. One of the 
major problems context modelling has to deal with is the variety of sources provid-
ing snippets of context as well as the high distribution of such sources. In this 
respect, the most important sources for context information are: 
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• Sensor information: information that is gathered from sensors is usually 
transient. Possible sensor systems are badge systems, Radio Frequency Iden-
tification (RFID), or MICAz nodes [117]. 

• User input: examples for user input are preferences or other data the user 
has entered. Naturally this type of information does not change as often as 
sensor information. 

• Abstract and general knowledge: this type of information normally com-
prises of general statements about the world or the context such as facts 
about the character of things. This kind of knowledge is often established 
and changes rarely. 

To make use of this information what is needed is a mechanism to gather, save, and 
allocate context sources. Furthermore, the facts gathered from different sources 
need to be combined in a meaningful way in order to draw useful conclusions. There 
are a wide variety of different approaches to the modelling of context. Strang and 
Linnhoff-Popien [107] evaluate key-value, mark-up scheme, graphical, object-
oriented, logic-based, and ontology-based models in terms of various criteria such as 
distributed composition and the level of formality. They conclude that the ontology-
based approach is the one that best meets the requirements and offers the most 
promising way of modelling context. 

However, it is important to decide not just how context is to be modelled, but also 
what aspects are related to the current context. In the majority of cases it is neither 
possible nor reasonable to apply all the facts that may influence the current context. 
Therefore, either a decision regarding the possible context sources has to be made 
or an appropriate interface has to be provided enabling the flexible addition or sub-
traction of such sources. There are indeed other properties of sources that may be 
relevant at modelling time. For instance, information that changes often may be 
separated from information that remains the same for a long time in order to facili-
tate easy and flexible adaptation to the current context.  

4.3.1. Context Information 

The modelling of context information is only the first step towards a context adapta-
tion layer. In order to make use of the modelled information other components that 
are able to understand the context are needed. Tasks and components can be devel-
oped that are able to cope with the inputs and produce the desired outputs.  
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Figure 24: Tasks and actions of the context adaptation layer 

Context information being sent over the network is gathered from several resources 
and accessed in order to represent it in an appropriate format. The representation 
comprises at least of the Input Parameters and Context Data. Depending on the ser-
vice discovery mechanism utilised by the overall framework, the Service Descriptions 
may also be represented here, or are externally located, or need to be discovered 
later on. The data residing in the representation format is processed with the help of 
a suitable API enabling the interpretation of the information and giving the Derived 

Parameters depicted in the previous section. If the Service Descriptions are not yet on 
hand, they need to be discovered. Depending on the Derived Parameters, suitable 
Service Descriptions and Service Parameters are determined, the results are adapted 
and the service calls are finally executed. Feedback information gathered from the 
user may require the data to be interpreted once again.  

With respect to ontologies, the proper means to interpret the contained knowledge 
are classification and inference. The whole process as depicted in Figure 25 com-
prises of the modification of property restrictions, the classification of a given 
ontology based on specified rules, and the application of those rules. The resulting 
facts are then added to the original ontology and can easily be retrieved using an API 
or a query language. It is important to note that the process may be repeated several 
times since derived facts may influence the classification of the knowledge base and 
vice versa. 
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Figure 25: An exemplary inference process using rule-based classification 

In terms of this model, there is no specification either of where the context informa-
tion and rules come from or of what is done with the deduced facts. However, it is 
assumed that an application is able to process resulting information in a meaningful 
way and is therefore context-aware. 

Data stemming from external context providers is harmonised by Context Brokers 
which make this information available to other components in the context adapta-
tion layer. Ontologies are used by the Context Broker as a knowledge-base 
representation of context data. However, ontologies are only one means that can be 
used for context modelling and bring their own specific advantages and disadvan-
tages. The most important aspects are outlined below.. 

One of the main benefits of ontologies is the interoperability they offer when using a 
uniform way of representation. As the common understanding of a certain domain 
enables the combination of distributed knowledge as well as the reuse of existing 
information, it is easy to design an upgradeable, machine-readable, and flexible 
knowledge representation that is adaptable to state-of-the-art web technologies. 

Another key feature of ontologies is the implicit knowledge that resides within this 
kind of representation and that enables reasoning techniques. Apart from the stated 
information, with ontologies it is possible to add significance to the plain facts allow-
ing their verification and the inference of additional statements, while the 
hierarchical structure of ontologies and the given properties of objects enable vir-
tual navigation along links as well as basic functionalities such as generalisation and 
specialisation. 

On the other hand, one drawback is their need for a suitable means of representa-
tion, i.e. an expressive language. Since ontologies should be designed to be flexible 
and open, the structure of this language is often complicated. Hence, huge ontologies 
are often exceedingly complex, making the reasoning process expensive and slow. 
Work with ontologies is often more difficult than with alternative technologies such 
as databases. 

The context of an entity comprises of heterogeneous information gathered from 
many different resources. Context-awareness presumes comprehension and inter-
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pretation of the represented context. Ontologies meet these requirements perfectly 
and are an adequate means of modelling context as well as having enough flexibility 
to adapt to the ongoing evolution of information technology. 

Since there are many specific ontologies, dealing with a certain domain or intended 
for a specific purpose, the following subsections depict a selected variety and evalu-
ate them in terms of their application to the context adaptation layer. 

4.3.2. Ontology Domains 

Depending on the type of the application that uses ontologies for context modelling 
or other purposes, different requirements need to be met by the ontology. As there 
are a variety of ontologies for different domains and use cases, it is vital to evaluate 
existing approaches and solutions in order to find the most suitable one. This section 
specifies the most important criteria in terms of this present thesis while the follow-
ing sections evaluate some of the most common popular ontologies in terms of these 
criteria. Finally, a conclusion is drawn as to which of these ontologies are the most 
suitable for utilisation within this layer. 

Type The ontology type is determined by its application area. Ontolo-
gies may vary in the domain they try to describe, but also in 
their focus or degree of abstraction. Depending on the ontol-
ogy’s type the requirements differ, i.e. a global ontology only 
needs to define general concepts whereas a specific ontology 
has to provide certain concepts if it is to be beneficial. 

Support The support criterion comprises of aspects such as numbers of 
users, updating levels, types of license, and chances of being 
standardised. Preferable results in this area are: regular up-
dates, free availability, visible standardisation efforts, and 
widespread application use of the ontology. 

Languages & 

Mappings 
This aspect refers to the representation of the ontology. As 
shown in the previous chapter, an ontology written in OWL or at 
least a mapping to OWL concepts is preferable. Extant transla-
tions and concept mappings for other ontologies are further 
features. The better an ontology scores in this criterion, the 
more flexible it is. 

Complexity The complexity of an ontology is determined by the number of 
concepts, relations, and instances it comprises as well as its hi-
erarchical structure. In this regard it is also important to know 
how long it takes to process an ontology using a classification 
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tool or an editor. The complexity level strongly depends on the 
type and domain of the ontology. In short, low complexity is 
preferred in order to facilitate fast and easy processing.  

Structure & 

Expandability 
This criterion relates to ontology design which should be intui-
tive, clear, correct in the common understanding of things, and 
easy to expand. The embedding of new concepts has to be sim-
ple without the need for extensive tests. Meta-concepts and 
abstract objects are less important than concrete items serving 
as service input values. An ontology should also be distributable 
and extendible, a criteria which is normally fulfilled by OWL 
ontologies.  

Concepts In terms of the framework, some concepts occupy key roles like 
the concepts Situation, Location, and Person. The ontology needs 
to include these facets in an adequate way or has to be extendi-
ble according to them.. It is necessary to evaluate which 
concepts are ignored, incompletely covered, or even overrated. 

4.3.2.1. Upper Ontologies 

Upper ontologies try to model virtual and physical objects and constructs that can 
be found in the real world so that particular objects can be hierarchically arranged 
in an easy way. These ontologies are normally used as a base and can be extended by 
more specific ones. However, most of them are very large and comprise of a many 
different concepts and relationships that are hardly ever used. Even so, use of an 
upper ontology is advisable to merge information stemming from different sources 
and to avoid semantic heterogeneity [74]. 

Some common upper ontologies are briefly depicted in the following subsections 
with regard to the criteria mentioned in the previous section. Important require-
ments for an upper ontology include support for OWL, free availability, reasonable 
complexity, high expandability, and adequate completeness. 

4.3.2.1.1. SUMO 

The Suggested Upper Merged Ontology (SUMO) [74] is a free upper ontology written 
in the SUO-KIF language [76]. The IEEE owns SUMO and maintains its web site with 
the help of the Standard Upper Ontology Working Group (SUO WG). Besides the 
original English KIF version, there are also language templates, some provided do-
main ontologies as well as a mid-level ontology in SUO-KIF referring to SUMO, a 
mapping to WordNet concepts [77], and a translation to OWL. The current OWL 
(Full) representation of SUMO is incomplete as compared to the original KIF version 
but sufficient for use as an upper ontology. The OWL model comprises of over 600 
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classes, 200 properties, and 400 individuals. The averaged level in the tree view of 
the model and the branching factor is fairly high. However, the OWL representation 
makes an ontology extension relatively simple and an online mapping to WordNet 
concepts eases embedding of new concepts in the hierarchy. Since SUMO is an upper 
ontology, some concepts are not completely covered such as situations or private 
relationships. On the other hand, the concepts time and location and their aspects 
are sufficiently well represented. In short, although SUMO is fairly complex and still 
needs to be extended in terms of this thesis, it is supported by the IEEE, provides 
many mappings, and contains most of the necessary concepts. 

4.3.2.1.2. DOLCE 

The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [77] is 
an upper ontology in English that isavailable in the Knowledge Interchange Format 
(KIF) and OWL where it has the version name DOLCE-2.1-Lite-Plus. The OntoWord-
Net project provides a beta version of a top-level alignment from DOLCE to 
WordNet. DOLCE consists of a core ontology with upper level concepts that are less 
complex than SUMO. It is extendible with other provided ontologies that model spe-
cific aspects. However, the core ontology and even its extensions comprise of many 
abstract concepts that need to be expanded if they are to be used as part of the sys-
tem ontology. In short, the DOLCE ontology is similar to SUMO, but has drawbacks in 
terms of certain criteria, namely support, available mappings, and provided con-
cepts. 

4.3.2.1.3. OpenCyC 

OpenCyc [79] is an upper ontology and the open source version of Cyc, a knowledge 
base and reasoning engine. OpenCyc is currently available in the version 0.9 and 
written in CycL, the Cyc representation language. According to the web site, 
OpenCyc contains 47,000 concepts and 306,000 assertions. OWL mappings are 
available but are extremely large and cannot be processed by the ontology editor 
Protégé [92] in reasonable time. Due to its dimensions, the ontology is relatively 
complete. Similar to SUMO, OpenCyc is supported by the Standard Upper Ontology 
Working Group (SUO WG). However, as the OWL mappings are unusable for frame-
work implementation, the OpenCyc ontology is not utilised as an upper ontology. 

4.3.2.1.4. WordNet 

WordNet [80], which was evaluated in its version 2.1, is rather a lexical reference 
system than an upper ontology. The main building blocks of WordNet are lexical 
concepts represented by synonym sets comprising of nouns, verbs, adjectives, and 
adverbs. Synonym sets can also be related to each other, e.g. by defining generalisa-
tions or specializations. WordNet is freely available and can be used online or 
offline. The offline version of the database can be accessed with the help of an API. 
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As the language of WordNet is English, there have been some attempts to map the 
English concepts to concepts in other languages. However, project results with 
European languages are restricted and require payment of a license fee. According 
to the web site, the database of WordNet includes approximately 150,000 unique 
strings comprising of all of the concepts needed by the service framework. Even so, 
there are some drawbacks of WordNet that prevent use of the application as an up-
per ontology. Firstly, it is not intended to be anontology, but a lexical database with 
a main focus on words and their relations. This means that there is a lack of the use-
ful aspects of ontologies as depicted above. Secondly, the expandability of WordNet 
is very restricted making it less flexible than alternative forms of representation 
such as OWL. In short, WordNet should rather be used to complement the service 
framework than to serve as a base ontology. Possible applications include the identi-
fication of synonyms and translation purposes. 

4.3.2.2. Domain Ontologies 

In contrast to upper ontologies, domain ontologies are intended for use within the 
scope of a certain application or domain. These ontologies are normally smaller than 
the huge upper ontologies and are only applicable for a specific purpose. The follow-
ing ontologies have been selected for the evaluation process since they cover the 
relevant aspects of context modelling. Important requirements with respect to do-
main ontologies include sufficient simplicity, high usefulness of the described 
concepts, and observable support for the ontology. 

4.3.2.2.1. SOUPA 

The Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA) [73] is 
described with the Web Ontology Language (OWL) and includes modular compo-
nents for representing key aspects in pervasive computing. SOUPA consists of a core 
(nine concepts) and its extensions (nine concepts) and is very small. The concepts 
needed for the modelling of situations are present, but have to be mapped to the 
concepts of an upper ontology in order to represent the context. The latest version 
of SOUPA was released in 2004 and there have been a few attempts to utilize it. Con-
cepts such as location, person, and time are covered by SOUPA, but others are not 
like relationships. This means that the SOUPA ontology can only be used as an ex-
tension for situation modelling. 

4.3.2.2.2. CONON 

The CONtext ONtology (CONON) [81] is another OWL approach for modelling con-
text in pervasive computing environments. In their paper Wang et al. classify the 
proposed model into an upper ontology and a specific ontology. The current version 
of CONON contains 197 OWL classes. The authors of the paper merge CONON with 
the Cyc ontology and evaluate the performance in terms of the reasoning process. 
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Depending on the ontology size, process run-time can take up to several seconds. 
The main application of CONON is the classification of the situation for meetings and 
home scenarios. Concepts such as location, activity, and person are included, but 
time and relationship are insufficiently covered. However, as Wang et al. do not pro-
vide an OWL file, an OWL mapping has to be constructed manually. Furthermore, 
CONON is far less supported than upper ontologies such as SUMO or DOLCE.  

4.3.2.2.3. OWL-S 

OWL-S [82] is an ontology for Web Services based on OWL DL. According to the 
documentation, OWL-S has four main purposes: 

Automatic Web Service Discovery 
Automatic Web Service Invocation 
Automatic Web Service Composition and Interpretation 
Automatic Web Service Execution Monitoring. 

The ontology comprises of four building blocks. The Service ontology includes four 
classes and eleven properties and serves as a base for the other three blocks - Proc-

ess, Profile, and Grounding. Utilising the four ontologies, it is possible to describe a 
service and its effects, to compose service chains, and to invoke Web Services auto-
matically. The OWL-S proposal, which uses OWL-Time [83], has already been 
submitted to the W3C. The version 1.1 has been available since 2004 and has been 
utilised by some projects like the OWL-S API of Mindswap [49]. Even so, there are 
still some approaches that extend the abilities of OWL-S in terms of the semantic 
description of Web Services, such as the First-order Logic Ontology for Web Services 
(FLOWS) which is part of the Semantic Web Services Ontology (SWSO) belonging to 
the Semantic Web Services Framework (SWSF) [90]. Another option in terms of Se-
mantic Web Services specifications is the Web Service Modeling Ontology (WSMO) 
[91] based on the Web Service Modeling Framework (WSMF) [96]. 

In short, the semantic description of services is indeed a necessary and important 
aspect of a service framework based on ontologies. OWL-S comprises of some inter-
esting features in this respect, but does not cover all possible aspects for the 
development of alternatives or extensions such as SWSF or WSMO.  

4.3.2.2.4. FOAF 

The Friend of a Friend (FOAF) ontology [84] models persons and their personal in-
formation, groups of people, and related documents or accounts. FOAF can be 
represented in RDF and is already used for the annotation of web sites and search 
engines. One available OWL mapping includes 23 classes, 20 data type properties, 
and 37 object properties. However, some of the properties are very specific, such as 
certain chat IDs. Persons, groups, and organisations are sufficiently well considered, 
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but relationships between persons are hardly covered at all. Without extending the 
FOAF ontology, it can only be used for constructing profiles.  

4.3.2.2.5. OWL-Time 

OWL-Time [85] is an ontology that models concepts related to time. The university 
project resulted in several papers in 2004 and 2005. The concepts of OWL-Time are 
used by OWL-S and are mapped to concepts of SUMO. The complexity is comparable 
to that of the respective component of SUMO and includes most of the necessary 
preconditions for modelling time in terms of the current context. However, if SUMO 
is used as an upper ontology, OWL-Time is not essential. 

4.3.2.3. Summary 

Table 2 shows the evaluation results outlined in the previous sections. The depicted 
rating of the ontologies refers to the criteria mentioned in Section 4.3.2; the mini-
mum score per ontology and criterion is zero and the maximum score is three. 

 

Table 2: Ontology evaluation results 

SUMO, DOLCE, and OpenCyc are classified as upper ontologies. SUMO meets the re-
quirements for the criterion Support and scores well in terms of 
Languages&Mappings. Most of the needed concepts are also covered by this upper 
ontology. However, it is extremely sophisticated. OpenCyc on the other hand, seems 
not to be the best solution for the planned framework since it is too complex. DOLCE 
is comparable to SUMO and slightly less complicated, but has drawbacks with re-
spect to languages, support, and concepts. 

As WordNet is a lexical database, it scores well in the Support criterion. However, it 
is not applicable as an upper ontology and meets the other requirements only 
poorly. 

++++++++++Domain OntologyOWL-S

++++++++Domain OntologyFOAF

+++++++++Domain OntologyOWL-Time

++++++++ODomain OntologyCONON

+++++++++Domain OntologySOUPA

+++++++Lexical ReferenceWordNet

-+OO++Upper OntologyOpenCyC

++++++++Upper OntologyDOLCE

++++++++++Upper OntologySUMO

ConceptsStructure &
Expandability

ComplexityLanguages &
Mappings

SupportTypeOntology

++++++++++Domain OntologyOWL-S

++++++++Domain OntologyFOAF

+++++++++Domain OntologyOWL-Time

++++++++ODomain OntologyCONON

+++++++++Domain OntologySOUPA

+++++++Lexical ReferenceWordNet

-+OO++Upper OntologyOpenCyC

++++++++Upper OntologyDOLCE

++++++++++Upper OntologySUMO

ConceptsStructure &
Expandability

ComplexityLanguages &
Mappings

SupportTypeOntology

Does the ontology meet the requirements?    o Not at all.     + Poorly.      ++ Almost.      +++ Yes.     - Not rated.
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CONON is classified as a domain ontology as its focus is on situation reasoning. 
Hence, in contrast to common upper ontologies, many abstract categories are not 
designated. The structure of CONON fulfils the requirements, but the lack of support 
is a severe drawback. SOUPA - which is also ranked as domain-specific due to its use 
in pervasive applications - is a very simple ontology though hardly containing neces-
sary concepts. Support also seems to be unsatisfactory. 

OWL-S, FOAF, and OWL-Time are all domain ontologies with different application 
areas. FOAF and OWL-Time do not play an important role as their concepts are not 
needed or already contained in the upper ontologies. The application of OWL-S de-
pends on the need for Web Services and the required support for alternative 
technologies such as REST. 

In short, for an upper ontology SUMO is to be preferred over DOLCE and OpenCyC, 
and is also used by the context-aware framework.  

WordNet can be used in two ways. Firstly, it can be deployed as a service for finding 
synonyms or, if extended, for translation purposes. Secondly, WordNet can be used 
to interpret the input and output of services by finding the meaning of things. For 
example, the mapping of WordNet concepts to SUMO classes and properties enables 
the processing and interpretation of textual information by the framework.  

With the exception of OWL-S, the evaluated domain ontologies are not used since 
their concepts are already covered by SUMO or not needed. In terms of OWL-S, two 
aspects are particularly useful when realising the context-aware framework: the 
semantic description of services and its automatic invocation. However, the sophis-
ticated and manifold input of legacy services in the Internet, e.g. search services, 
requires a more subtle and accurate semantic description than is currently pro-
vided, i.e. a versatile and detailed parameter composition characterisation. Other 
aspects of OWL-S such as service composition facilitating service chains and service 
discovery are also very beneficial, but not within the scope of this thesis. The same 
goes for the alternatives mentioned that support further features for Semantic Web 
Services, namely SWSF and WSMO. 

4.4. Conclusion 

This chapter specified the Service Request Oriented Architecture by defining a uni-
versal access layer, a novel service model for loosely coupled interaction, and by 
outlining the general components as well as appropriate ontologies for adapting 
context-agnostic services to user needs. 
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5. Implementation 

5.1. pREST Access Layer 

In the following section two approaches are presented to realize a REST interface for 
distributed components. The first one presented below is designed as a general pur-
pose middleware that makes few assumptions about the components to be 
published (most of the assumptions concern naming conventions, such as a “get” 
prefix for access methods). It is intended to publish arbitrary objects as REST re-
sources.  

The second approach targets resource constrained systems, and integrates commu-
nication handling, message parsing, and service provision. For those limited devices 
a simple yet fully functional REST implementation has been realized.. Section 5.1.4 
summarizes the implementation of a REST compliant interface on embedded hard-
ware. 

The pREST access layer provides portability across platforms and programming 
languages by specifying a system-independent data format and common set of oper-
ations for all resources. Whereas resources published this way are universally 
accessible across system boundaries, invocations from outside need to be translated 
to platform specific calls.  

The common approach to binding an implementation to an externally visible, plat-
form-independent interface is to place stub and skeleton objects on each side, 
communicating natively with the server and client respectively, while transmitting 
data according to the middleware protocol between each other.  

5.1.1. Generic middleware interface 

To provide for portability to future en-vogue technologies without subsequent code 
changes, the application code should be kept clear of middleware specific types and 
concepts. To realize such abstraction, an additional software layer is needed which 
maps application level behavior such as event publication or remote access onto the 
mechanisms of the underlying middleware. 

This abstraction layer is specified as a set of Java interfaces to be implemented by a 
custom middleware such as pervasive REST or an adaptation component mapping 
application level behavior onto a middleware specific API such as CORBA or Axis. 
The interfaces are kept simple in terms of both contracts and method signatures. 

Unlike the CORBA based implementation where objects derive from Portable Object 

Adapters pass Any-type parameters around parse Structured Events half of the time 
and throw up low-level errors such as ServantNotActive or InvalidPolicy, the abstrac-
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tion layer’s interface to the application is defined purely in java.lang types, predomi-
nantly Object and String. The stub objects, implementing the application level 
interfaces of the respective remote objects are created in runtime and thus can be 
treated without regard to their nature as placeholders.  

The abstraction layer wraps the specific mechanisms of the middleware into general 
methods such as ‘lookup’ or ‘publish’. The functionality it provides is defined in terms 
of interfaces with contracts specified as effects on the application layer.  

Upon invocation of ‘bind’, for instance, subsequent calls to lookup will yield an object 
representing the previously published one. If the published object happens to be in 
the same address space as the caller, lookup might return the object itself; if not, a 
proxy object would be returned. The invocation of publish with a group identifier 
and a message object causes all parties that have previously subscribed for this 
group to be notified. 

5.1.2. pREST middleware specification 

The pREST middleware is an implementation of the general naming and event ser-
vice interfaces specified in the previous section. It consists of two parts, the first one 
the RestServer which is responsible for publishing arbitrary objects as resources and 
translating REST invocations to method calls. In addition the server also provides 
publish-subscribe communication.  

 

 

Figure 26: pREST middleware architecture 

The second part is the RestProxy which generates InvocationHandler objects which 
act as stubs allowing invocation of methods on remote resources the same way as 
local objects. Each addressable entity of a server object such as a method, field, array 
element etc. is associated with a Wrapper object mapping resource access onto the 
respective entity.  
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Wrapper classes realize the abstraction of Java elements as resources. As addressa-
ble entities vary by representation and their retrieval in Java, separate wrappers 
exist for objects, fields, and methods. REST communication via HTTP and XML takes 
place between the InvocationHandler and the Wrapper classes.  

5.1.3. Interaction examples 

5.1.3.1. Object publication 

To make an object remotely accessible, the server invokes the bind method with an 
identifier and a set of interfaces. The RestServer constructs a valid URL out of the 
given identifier and context, replacing illegal characters with an appropriate repre-
sentation and making sure the path starts with a slash.  

Then the server creates a new object wrapper for the object and stores it in the map 
of bound objects using the path as the key. If the server has any peers it is aware of, 
it creates a HTTP redirect entry at the peers so the object can be looked up on re-
mote servers.  

 

Figure 27: Object creation 
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The creation of redirects realizes a simple decentralized naming service. Compo-
nents unaware of the actual URL of a remote object query the list of known peers for 
a symbolic name (the local path). Since any object deposits an absolute URL at its 
peers, the request will yield a redirect message with the actual URL in its Location 
header.  

For a real peer-to-peer lookup, the naming tables ought to be partitioned and distri-
buted redundantly among nodes to ensure scalability and efficiency of lookup. 

5.1.3.2. Object Lookup and Remote Invocation 

To look up a remote object, the client invokes the lookup method of its local naming 
service, i.e. the RestServer. The server consults the map of local objects and retrieves 
the wrapper bound to this path. The getObject method of the wrapper returns either 
the original object or an invocation handler associated with the URL of the remote 
object. 

The way the wrapper retrieves the wrapped object depends on the kind of resource 
it wraps. Object wrappers return the wrapped object without additional processing. 
Field and accessor wrappers invoke the respective get method or read the particular 
field and return the result as an object. Redirect wrappers request the RipProxy to 
create a new InvocationHandler instance and establish a connection to the original 
resource.  

 

Figure 28: Object lookup and remote invocation 
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Lookup requests for remote objects will always result in the return of an invocation 
handler. When created, the invocation handler sends a HEAD request to the remote 
resource to verify the given URL. If the request yields a 200 OK response, the handler 
will direct any subsequent invocations to that URL; if it results in a redirect message, 
the URL is retrieved from the message and the handler establishes the connection 
with the resource at its actual location.  

All invocations to the handler instance, are internally directed (by Java reflection 
mechanisms) to the invoke method with the name of the method passed as a para-
meter. The handler transforms the invocation target (consisting of an object and the 
method name) to a URL, analogous to the wrapper classes. The ‘get’ prefix of access 
methods is stripped. Likewise the id parameter of selectors is appended to the re-
quest path.  

The HTTP method to request a resource is determined according to the method in-
voked and the return value. Access and selector methods are transmitted as a GET or 
HEAD request depending on whether the returned object is a primitive property or a 
complex resource. Methods that do not start with get and expect parameters are 
invoked via a POST message with the parameters passed in the message body. 

5.1.3.3. Request Processing 

Connection requests via TCP are accepted by the ConnectionHandler and processed 
by a separate thread. The multithreading approach allows the processing of several 
requests at a time, but also prevents deadlocks if a resource requests data back from 
the invoking server. The DatagramHandler and MulticastHandler classes do not start 
separate threads since the caller does not wait for the callee to finish, and deadlocks 
shouldn’t occur.  

The handler thread creates a new RipRequest object from the data received and 
passes it on to the wrapper associated with the requested path. The wrapper re-
trieves the requested data (if the HTTP method is GET or HEAD) or invokes the called 
method based (for POST requests) and returns the result in a RipResponse object. 

If the resulting object is simple enough to be returned as a string the RipParser is 
requested to marshal the value which is then enclosed in the response object. If the 
requested object is complex or a service an appropriate resource descriptor is re-
turned. 
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Figure 29: Request processing 

If no wrapper is associated with the requested path, the root wrapper is consulted. 
The request for an unknown path may have three reasons.  

• the resource really does not exist. In this case a 404 Not Found response is 
sent back.  

• the resource is to be created via a PUT request equivalent to redirect crea-
tion. In this case a new RedirectWrapper is instantiated and a 201 Created 
returned. 

• the resource is a child of an existing object (such as a method, field or array 
element) for which a wrapper doesn’t yet exist.  

In all cases the root wrapper needs to iterate through the map of known resources 
and check whether they have a child element that matches the requested path. This 
is done by stripping off path components one by one until the path matches an exist-
ing wrapper. Once a matching (grand) parent-wrapper is found, a search starts for 
the child elements named after the stripped off path components.  

For each found child-element a new wrapper is created until either the whole path is 
reconstructed or no matching child found. In the former case the request is 
processed by the newly created wrapper, in the latter a not-found error is sent back. 
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5.1.3.4. User interaction 

Representation of resources as XML documents allows the generation of web inter-
faces for user interaction. The actual generation is performed by the browser via an 
XSL style sheet stored externally and referenced in the descriptor document.  

Separate style sheets exist for services and resources. The service style sheet trans-
forms the whole document into an HTML form, and nested elements into input 
elements according to their type. Enumeration type parameters are presented as 
selection lists, Boolean values as checkboxes, and the remaining types as text fields. 
Figure 30 shows a service interface for the subscribe method defined by the SDO 
monitoring interface. 

 

Figure 30: Generated user interface 

Complex resources are transformed into a plain HTML document listing the nested 
elements as hyperlinks. Figure 31 shows a dynamically generated descriptor of a 
sensor node. 
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Figure 31: Resource descriptor transformed in the Web browser 

5.1.4. Implementation on Embedded Hardware 

While the existing applications are designed in an object-oriented manner, and are 
not constrained by resource limitations, pREST is also intended to interconnect very 
simple devices such as sensor nodes. The sensor hardware is capable of receiving 
data via a serial port and through radio communication. Sensing capabilities include 
a light sensor, a microphone, infrared signal reception and motion. The implementa-
tion utilizes the freely available μIP stack as a starting point. 

The sensor node has a total of 64k flash ROM for firmware and applications, and 2k 
of RAM for application data. The memory footprint of the various components of the 
implementation is presented in Table 3. 

 Firmware only Firmware + μIP Firmware + μIP + REST Application 

Memory 500 Byte 1.818 Byte 2.008 Byte 

Code 17.096 Byte 23.504 Byte 37.096 Byte 

Table 3: Memory footprint of embedded pREST 

The basic firmware provides for communication via serial line and radio, sensor 
operation and support for application processes. The μIP stack uses about 1,300 
byte of memory which includes two buffers of 552 bytes (512 bytes application data 
+ 40 bytes TCP/IP header) and the data structures to hold the application state.  
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The combined pREST and application layer does not add overly to memory usage. 
Only application buffers to store partial requests and subscriptions for data notifica-
tion can make a substantial difference to code size - a consequence of the design 
decisions outlined in section 5.1.4.4. New functions can still be added to existing 
applications even though the available 2k of memory is almost exhausted. 

5.1.4.1. Architecture 

The pREST implementation on sensor nodes is implemented in C and is compiled 
with a GNU compiler for the MSP430 embedded processor. The firmware receives 
data packets through the serial port or the radio, and calls the μIP layer both upon 
data reception and at regular intervals to allow application-initiated data transfer.  

The interface to the application layer is realized via two callback methods called by 
μIP, one for TCP communication and one for UDP data. Connection-oriented TCP 
communication is used for user interaction and querying and sends data only upon 
request. UDP is used to deliver data such as sensor readings asynchronously and is 
initiated on the client side.  

 

Figure 32: Embedded pREST server architecture 

The UDP callback function http_udp_appcall is relatively simple, responding to poll 
events by the μIP layer, and invoking just one sub-function for message construc-
tion. The processing of client requests via TCP has a more complex flow of control. 
μIP notifies the TCP function http_appcall of events such as connection establish-
ment, new data and acknowledgements. Upon reception of a request message the 
application parses the request for the requested path, method and parameters and 
dispatches the request to one of the handler methods. In addition the ‘http_appcall’ 
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function keeps track of the transmitted bytes and notifies the handler when Content-

Length bytes have been received.  

Besides the actual application logic contained in the handler functions, there is also a 
utility module e that provides functions for URL comparison, save string concatena-
tion (without exceeding the buffer) and creation of HTTP response messages, which 
is used both by the callback and the handler functions.  

5.1.4.2. Synchronous Interactions 

When a complete IP packet is received by the firmware it is placed in the IP buffer 
which performs the necessary processing to determine port, protocol and sender 
address and invokes one of the application methods.  

The application for TCP connections is capable of processing valid HTTP requests 
and sending back static descriptor documents or dynamic values in their string re-
presentation. The server is implemented as a state machine with a separate state for 
processing the request line, headers, body and sending the response message back. 
An outline of the state machine is presented in Figure 33. 

 

Figure 33: pREST server state diagram 

The handler function for a URL is invoked several times during message processing 
with a flag parameter indicating the state of the processing. Immediately after the 
correct handler for the requested path is determined, the handler function is in-
voked with the flag set to INIT, to allow the handler to set default parameter values 
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etc. Upon reception of each parameter (detected by one of the separator characters 
‘&’, ‘;’ or newline) in the message body, the received part is passed to the handler to 
parse the plain text and the parameter in a memory-efficient format. The parameter 
is kept in the application level buffer bound to the TCP session. 

When the end of the request message has been detected the handler is invoked with 
the flag set to EXCUTE, and the application expected to place a response message in 
the IP buffer. 

5.1.4.3. Asynchronous data delivery 

The delivery of data to subscribers is initiated by a regular poll by the firmware. 
Depending on the type of subscription, data is sent in regular intervals or upon 
change of a sensor value.  

For each subscription a separate UDP connection is kept. The data-producing func-
tion is polled regularly every 100 ms, and checks whether a subscribed-for 
parameter has changed or if an interval timer has run out. In both cases a message is 
sent containing the current status of the relevant parameters, otherwise the function 
returns with the ip_datalen variable set to zero and no IP packet is sent out. The sub-
scription times out after a time specified in the request. 

5.1.4.4. Implementation experience 

During the implementation operational memory was the scarcest resource, particu-
larly given the buffer space inherently required by network applications (see Table 
3).  

The requirement to allow configuration of the sensor via a telnet client makes the 
implementation more complex and requires additional buffer space. This is because 
data cannot be stored in the IP buffer until the whole request is received as each 
new character arriving overwrites the previous IP packet.  

To process partial request reception, such as with telnet access, the application layer 
keeps a buffer of its own to store incoming data. The structure of HTTP messages 
allows the incoming request to be processed partially, one line or one parameter at a 
time. At the end of the line the input can be transformed into a more memory-
efficient form to be stored until the end of the connection or simply discarded.  

The mapping of URLs to content, for instance, is realized via a lookup table associat-
ing a URL with a function pointer. This way each URL has an own handler method 
associated with it in a design that trades code size for memory usage. After the hand-
ler function has been determined, the URL can be safely discarded since the 4-byte 
pointer uniquely identifies the data to be returned. On the other hand, code reuse is 
largely prevented.  
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5.2. Semantically Enhanced Data Space Layer 

The section on the realization of loosely coupled service provisioning comprises of 
descriptions for appropriate implementations of the Semantically Enhanced Data 
Space (SEDS) and the Service Model Ontology (SMO) as proposed in the last chapter. 
Thus the SEDS is deployed in a peer-to-peer framework based on Representational 
State Transfer while the SMO is modeled as OWL DL ontology. 

In the preceding chapter an interaction model and a service model of a Service-
oriented Architecture in a pervasive computing environment were explained. The 
interaction model, i.e., the SEDS, describes a virtual space wherein, bound to interac-
tion subjects, data can be placed that need to be exchanged between several 
interacting parties. Such data are represented as logics descriptions based on graph 
structures and do not name particular receivers. Hence, interactions are loosely 
coupled with respect to time, space and representation. The service model is based 
on the same considerations on loosely coupled interaction. The center of this model 
represents the specification of a desired service by the service consumer. This speci-
fication is embedded in the service request while the request can be seen as the 
actual interaction subject in terms of the interaction model. After the publication of 
the request in a spatially uncoupled manner each party providing the specified ser-
vice may react. 

The environment in which these models are deployed is composed ad hoc by the set 
of devices useful for the current context of the user. The resources and services of a 
device are represented through a uniform software abstraction and accessible 
through the universal access layer pREST. With regard to the processing of tasks on 
behalf of the user, the devices are also autonomous and may provide and consume 
their capabilities among each other in order to fulfill a demanded task. From a net-
work-centric point of view devices can be seen as interacting peers in a peer-to-peer 
network and are therefore also realized in that way. 

5.2.1. Realization of the Semantically Enhanced Data Space 

As suggested above, the SEDS is realized as a self-contained software component 
with a well-defined interface derived from the operational interface proposed in 
section 4.2. However, as the SEDS is embedded in a particular peer of a peer-to-peer 
environment, the realization also includes an appropriate adaptation of the interface 
of the SEDS to the communication interface of this environment and vice versa. For 
the peer-to-peer environment a framework referred to as pREST is utilized. This 
framework is based on Hypertext Transfer Protocol (HTTP) communication in ac-
cordance to Representational State Transfer (REST) as described by Fielding et al. in 
[09]. This means that pREST includes server and client implementations as well as 
several tools and abstractions for the representation of served and requested re-
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sources. Moreover, an integrated naming service allows peers to look up each other 
in a feature that especially supports discovery of the peer actually serving the SEDS. 
Further details are given in section 5.2.4 where the integration of the SEDS to the 
peer-to-peer framework is discussed.  

Since the pREST-Framework is written in Java and there are numerous Java-based 
semantic web tools, SEDS is also implemented with Java 5. However, realizations 
related to the processing of RDF and OWL ontologies are based on the semantic web 
framework Jena 2.3 [50]. Jena provides a graph abstraction for RDF documents and 
various utilities to read data from these graphs and edit them with regard to higher-
level logics like OWL DL. Moreover, Jena also serves as platform for the integration 
of third-party components like reasoning systems and query analyzers. Comparable 
open tools like the OWL-API [51] proved insufficient due to their lack of functionali-
ty and bugs in the implementation. 

Implementation of the Semantically Enhanced Data Space is separated into three 
major parts. The actual data storage, i.e. the Data Space Environment, is addressed 
by the SEDS Core System implementation. This implementation is accessed through 
the SEDS Interface, i.e. a set of Java interface classes that realizes the operational 
interface introduced in section 4.2.3. The SEDS Server implementation realizes the 
connection of the Core System to the pREST-Framework and thus to the HTTP inter-
face. Accordingly, it maps all methods provided by the SEDS Interface to a set of 
resources addressable with HTTP requests to certain URLs. Finally, the SEDS Client 
implementation represents the counterpart on the client side and provides stubs of 
the SEDS Interface based on the pREST client. As the SEDS Client is more intended 
for convenience than to achieve location or access transparency, a client may also 
directly utilize HTTP requests. In the following sections the Data Space Interface and 
its implementation are described in detail. 

5.2.2. The SEDS Interface 

The SEDS Interface realizes the operational interface explained in section 4.2.3. 
which means that the introduced operations are integrated in a set of interface 
classes which serve as template for the semantic of the Data Space Environment. 
Thus, all implementations of the interface classes are considered to exactly fulfill the 
claimed behavior. However, in the following sections the descriptions of interface 
classes are separated into management interfaces, querying interfaces, and feedback 
interfaces. The management interfaces deal with data manipulation, the querying 
interfaces the control of data retrieval, and the feedback interfaces the representa-
tion of retrieved data. 
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5.2.2.1. Management Interfaces 

The management interfaces are derived from the organizational elements of the 
SEDS, i.e. Data Space Environment, Data Space, and Data Plane. Accordingly the me-
thods of the interfaces implement the claimed functionality of the corresponding 
operations as defined in section 4.2.3 in an object-oriented fashion. The data of a 
Data Plane are supposed to be set only once since data manipulation within the Data 
Spaces is not allowed to prevent inconsistencies. Consequently, assigning data to a 
Data Plane twice causes an exception. 

 

Figure 34: Interface classes for data organization and manipulation in the SEDS Interface 

5.2.2.1.1. DataSpaceController 

The DataSpaceController serves as an entry point to the Data Space Environment. 
The interface allows the creation and removal of Data Spaces driven by the party 
that originates an interaction subject. 

Method(s) 

openDataSpace This method creates a new Data Space and returns the iden-
tifier for this Data Space. The identifier is supposed to be 
unique and never reusable even if the corresponding Data 
Space is removed. 

getDataSpace This method retrieves an interface to a Data Space for a par-
ticular identifier. If there is no Data Space assigned to the 
given identifier a null reference is returned. 

getDataSpaceIdentifiers From this method an interface to iterate over the identifiers of 
all Data Spaces known to the controller can be obtained. 

closeDataSpace Calling this method removes a Data Space. If there is no Data 
Space with the passed identifier this method has no effect. 

 

1 * 1 *

+openDataSpace() : Integer
+getDataSpace(in ID : String) : DataSpace
+getDataSpaceIdentifiers() : Iterator<String>
+closeDataSpace(in ID : String)
+getGlobalDataView() : DataView

«interface»
DataSpaceController +createDataPlane() : String

+getDataPlane(in ID : String) : DataPlane
+getDataPlanes() : Iterator<DataPlane>
+getDataPlaneIdentifiers() : Iterator<String>
+getIdentifier() : String
+setMaxIdleTime(in value : Integer)
+getMaxIdleTime() : Integer
+getDataView() : DataView

«interface»
DataSpace

+setData(in source : Reader)
+getData() : Reader
+getIdentifier() : String

«interface»
DataPlane
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getGlobalDataView This method returns an interface to a composite view on all 
Data Spaces in the Data Space Environment. The global data 
view is intended as entry point for parties that are rather 
reacting to the actions of others than originating interaction 
subjects themselves. 

5.2.2.1.2. DataSpace  

The interface DataSpace represents a Data Space and thus a collection of Data 
Planes. It provides the access to functionality needed for adding and retrieving Data 
Planes and also offers a composite view on the graphs contained in all Data Planes.  

Method(s) 

getIdentifier This method returns the identifier of the corresponding Data 
Space. 

createDataPlane Calling this method creates of a new Data Plane. The unique 
identifier of the new Data Plane is returned.  

getDataPlane This method returns an interface to the Data Plane with the 
passed identifier. If this Data Plane does not exist a null refer-
ence is returned. 

getDataPlanes This method returns an interface to iterate over the collection 
of Data Planes contained in the Data Space. 

getDataPlaneIdentifiers This method returns an interface to iterate over the identifiers 
of the collection of Data Planes contained in the Data Space. 

getMaxIdleTime By this method the maximum idle time of the Data Space is 
obtained. The idle time should be represented in seconds. 

setMaxIdleTime This method allows for setting the maximum idle time of a 
Data Space in seconds. 

5.2.2.1.3. DataPlane 

The interface DataPlane represents a Data Plane and allows the insertion of new 
data to a Data Space. As long as no content is assigned to the corresponding Data 
Plane it should be disregarded when matching patterns. 
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Method(s) 

getIdentifier This method returns the unique identifier of the Data Plane. 

setData This method allows the assignment of an RDF graph to the Data Plane. 
Before the graph is set to the Data Plane the consistency is verified with 
regard to the entire graph spanned by all Data Planes of the Data Space. If 
any problems are recognized the operation is cancelled and the new graph 
rejected. However, since changing the data in a Data Space is not sup-
ported, the graph of a Data Plane can only be successfully assigned once. 

getData This method returns the model contained in the data plane or a null refer-
ence if no model is yet assigned.  

5.2.2.2. Querying Interfaces 

The Data Space Environment supports active and reactive retrieval of data. Data 
Views are introduced as a common abstraction for all operations related to the data 
retrieval. Data Views are provided by the interfaces DataSpace and DataSpaceCon-
troller. Consequently, a Data View allows either accessing all the data from one Data 
Space or from the entire Data Space Environment. However, the Data View of the 
Data Space Environment does not consider the data from all Data Spaces as a com-
posite graph; but rather represents a delegate interface to all Data Views of the 
single Data Spaces. 

While the active retrieval of data is realized with a simple method call, reactive re-
trieval is based on a listener software pattern. The Data Space client is required to 
implement a callback interface and to subscribe this implementation combined with 
the Pattern to be evaluated. On the appearance of data matching the Pattern, the 
assigned callback implementation should to be executed by the implementation of 
the Data Space Environment. The corresponding interfaces are illustrated in Figure 
35 and explained below. 
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Figure 35: Interface classes for data retrieval in the SEDS Interface 

5.2.2.2.1. DataView 

The interface DataView represents a Data View either for all the Data Planes of one 
Data Space or for all Data Spaces in the entire Data Space Environment. The latter 
case is addressed by the interface DataSpaceController. Thus, the actual scope of the 
implementation depends on the object that provides this interface. 

Method(s) 

getPatternEvaluator This method returns the interface of a component that allows the 
immediate evaluation of a Pattern.  

getPatternRegistrar Calling this model returns the interface of a component that sup-
ports the subscription for the appearance of data in the data view.  

5.2.2.2.2. PatternEvaluator 

The interface PatternEvaluator supports the direct evaluation of patterns. The graph 
actually addressed by the evaluator depends on the corresponding data view.  

Method(s) 

evaluate This method retrieves all sub-graphs that match a given graph 
pattern. The order of these so called Pattern Bindings is non-
deterministic. Thus, the order may vary with each call of this 
method with the same pattern. 

5.2.2.2.3. PatternRegistrar 

The interface PatternRegistrar allows subscribing for the appearance of a particular 
graph. Subscriptions should be evaluated for the first time when being registered 

11
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1
*
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+call(in binding : PatternBinding, in dataSpaceId : String)

«interface»
Callback

+createSubscription() : String
+createSubscription(in subs : Subscription) : String
+getSubscription(in ID : String) : Subscription
+removeSubscription(in ID : String)

«interface»
PatternRegistrar

+evaluate(in pattern : String) : PatternBindingIterator

«interface»
PatternEvaluator

+getCallback() : Callback
+setCallback(in callcack : Callback)
+getRepetitions() : Integer
+setRepetitions(in value : Integer)
+getPattern() : String
+setPattern(in pattern : String)

«interface»
Subscription

+getPatternVerifier() : PatternEvaluator
+getPatternRegistrar() : PatternRegistrar

«interface»
DataView
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and subsequently only on the appearance of new data in the corresponding Data 
View. 

Method(s) 

createSubscription This method creates a new Subscription and returns an identifier 
for this Subscription. If a Subscription is also passed as a parame-
ter to this method, the fields of the new Subscription are also 
initialized with the values of the passed one. 

getSubscription This method returns the Subscription for the given identifier. If the 
identifier is not assigned to any Subscription, a null reference is 
returned. 

removeSubscription Calling this method removes the Subscription with the given iden-
tifier. If no Subscription can be found for the identifier, this 
method has no effect. 

5.2.2.2.4. Subscription 

The Subscription represents all information relevant for the reactive delivery of 
data. A Subscription is intended to be first activated when all fields are set, i.e., each 
set-method was called once to initialize the corresponding field of the implementa-
tion. 

Method(s) 

setCallback This method assigns a callback function to the subscription.  

getCallback The invocation of this method returns the Callback referenced by 
the Subscription.  

setRepetitions This method returns the number of repetitions for the notification 
of Pattern matches via the Callback referenced by the subscription. 
With each successful execution of the Callback, i.e. each notification 
of a Pattern Binding, the number of repetitions is decreased by one. 
If the value reaches zero, the subscription should be deactivated. 
The corresponding Pattern is not evaluated any more against the 
Data View and no further notifications are published. 

getRepetitions This method returns the current number of repetitions for a Sub-
scription. If the value reaches zero, the subscription should be 
deactivated. 

 



 Implementation 

I. Radusch: Service Request Oriented Architecture Page 107 

setPattern With this method the pattern to be evaluated is assigned to the Subscrip-
tion.  

getPattern Calling this method returns the pattern currently assigned to the Sub-
scription. 

5.2.2.2.5. Callback 

The Callback is an interface of the subscriber intended to serve as the endpoint for 
publishing the occurrence of new data matching the pattern of a Subscription.  

Method(s) 

call This method is called if the pattern of the Subscription the Callback 
belongs to matches any data of the corresponding Data View. The 
passed parameters identify the Data Space wherein the match was 
found and represent an appropriate Pattern Binding. The actual imple-
mentation of this method depends on the object providing the Callback. 

5.2.2.3. Feedback Interfaces 

Retrieval of data from a Data Space is realized through evaluating patterns on a 
composite view of all graphs represented in the appropriate Data Planes. Although 
the size of the retrieved sub-graphs is limited by the structural dimensions of the 
pattern, processing RDF graphs and any OWL DL semantics they might contain is 
very complex. Thus, clients of the Data Space Environment should not process these 
graphs, and the representation of retrieved data, i.e. the Pattern Binding, is kept 
simple. Instead of returning the entire sub-graph matching a pattern only the nodes 
and relations indicated by the free variables in the pattern should be returned. A 
Pattern Binding is thus a list of name-value pairs. The corresponding Java interfaces 
are illustrated in Figure 36 and explained below. 

 

Figure 36: Class diagram of the interfaces used for data retrieval 

5.2.2.3.1. PatternBinding 

The interface PatternBinding represents a Pattern Binding, i.e. precisely one possi-
ble answer to a pattern including free variables. The values bound to the variables 
may either be some URIs representing node and relation names or atomic values 
like integers, string or floats. 

+getBoundVariables() : Set<String>
+getBoundValue(in var : String) : String
+isBound(in var : String) : Boolean

«interface»
PatternBinding

+hasNext() : Boolean
+next() : PatternBinding
+release()

«interface»
PatternBindingIterator

1 *
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Method(s) 

getBoundVariables This method returns the names of all variables that were bound 
while matching the corresponding pattern. 

isBound This method checks whether a variable of the given name is bound 
or not. 

getBoundValue This method returns the value assigned to the given variable in the 
current Pattern Binding. 

5.2.2.3.2. PatternBindingIterator 

The PatternBindingIterator represents an interface to access the collection of all 
Pattern Bindings for a particular pattern in a Data Space. This collection should be in 
a non-deterministic order. Hence, two instances of the PatternBindingIterator 
representing the set of Pattern Bindings for the same pattern matched twice against 
a certain Data Space are not guaranteed to return the single Pattern Bindings in the 
same order. 

Method(s) 

hasNext This method checks whether or not there are any more bindings of 
a particular pattern in the underlying list of results. 

next This method returns the next Pattern Binding for the underlying 
collection or nothing if there are no more Pattern Bindings. 

release Calling this method indicates that all remaining bindings for the 
corresponding Pattern can be discarded. 

5.2.3. The SEDS Core System Implementation 

The implementation of the SEDS Core System addresses two views, the view of a 
client of the Data Space Environment and the view of the developer configuring the 
behavior of the Core System. The view of the Data Space client is implemented ac-
cording to the SEDS Interface introduced in the previous section. Thus, all interface 
classes are realized with normal Java classes that implement the behavior claimed. 
For the representation of graphs inside the Data Planes Jena models are utilized so 
that each Data Plane can be seen as the envelope of exactly one model. These models 
are abstractions of RDF graphs and provide actual access to a collection of RDF 
triples, i.e. subject, predicate and object. The generality of the models allows them to 
serve as containers for all RDF-based data representations so they also support the 
representation of OWL ontologies. The classes of the SEDS Core System and the im-
plemented interface classes are illustrated in Table 4.  
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The view of the developer is realized with a configuration system that allows, for 
instance, the definition of Hooks for significant actions in the Data Space Environ-
ment. The classes of the SEDS Core System are not supposed to be accessed directly 
as a special factory is applied that only provides a view on the SEDS Interface and 
hides the details of the implementation. In the following sections the representation 
and evaluation of patterns is explained and the configuration system described. 

Class  Nested Class Interface 

ModelStorageManager  DataSpaceController 

ModelStorage  DataSpace 

ModelEnvelope  DataPlane 

QueryManager  Dataview 
PatternRegistrar 
PatternVerifier 

Binding PatternBinding 

BindingIterator PatternBindingIterator 

GlobalQueryManager  Dataview 
PatternRegistrar 
PatternVerifier 

BindingIterator PatternBindingIterator 

SimpleSubscription  Subscription 

Table 4: SEDS Core System classes with the implemented interface classes 

5.2.3.1. Pattern Representation and Evaluation 

The patterns utilized to retrieve data from a Data Space are usually graph structures 
containing variables as placeholders. If any sub-graph in the entire Data Space 
matches the pattern, i.e. a set of data can be found as substitution for the variables, 
these data are considered to be a match. Powerful representations for patterns are 
provided by query languages. Since the data within the space are described in 
OWL/RDF, the RDF query language SPARQL [52] is used for the representation of 
patterns in the SEDS Core System. The syntax of SPARQL is similar to that of SQL. A 
SELECT-clause defines the variables to be bound by the query and a WHERE-clause 
the actual graph pattern to be matched. Optional bindings and filter criteria may also 
be defined for the graph pattern to enforce such as certain types of literals or to ex-
clude resulting sub-graphs with undesirable characteristics.  

 

Figure 37: OWL fragment describing an abstract question 

<rdf:RDF
    xmlns:dialog="http://host/dialog-terms.owl#"
    ...
    xml:base="http://host/doc1">
  ...
  <dialog:Question rdf:ID="RequestForCurrentTime"/>
</rdf:RDF>
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Figure 38: OWL fragment describing an answer to the question of Figure 37 

 

Figure 39: Example of a SPARLQL query 

 

Figure 40: A binding for the query illustrated in Figure 39 

Patterns are matched against a composite view of all data in a Data Space so the 
models from all Data Planes are merged for the evaluation. Consider, for instance, a 
Data Space that contains two data planes with the RDF graphs illustrated in Figure 
37 and Figure 38 as content. Both graphs are defined with reference to an ontology 
termed ‘http://host/dialog-terms.owl’, which defines the concepts ‘Question’ and 
‘Answer’ as well as the relation ‘hasAnswer’. Performing the query illustrated in 
Figure 39 on this Data Space gives the binding visualized in Figure 40. However, for 
the interpretation of SPARQL queries in Jena models the ARQ [53] toolbox is utilized. 
ARQ uses an object abstraction for the queries so it preprocesses, i.e. parses and 
verifies queries first to make them usable. To avoid repeated preprocessing of a par-
ticular query, all queries are cached centrally for the entire Data Space Environment.  

A Data Space supports on the one hand the direct evaluation of queries on demand 
and on the other registration of queries to be evaluated when any changes in the 
data occur. The query registration includes a Callback that allows notifying the ori-
ginator about a variable binding, i.e. a Pattern Binding, if evaluation of the 
corresponding query is positive. However, if this originator is temporarily unavaila-
ble the corresponding Callback is not executable. This means that all Callbacks that 
cannot be executed immediately when a query is evaluated as positive are added to 
a Callback Controller. This Callback Controller tries continuously to execute the Call-
backs in short intervals. With each try the duration of these intervals is increased. 
The total number of retries is limited by a configurable threshold. If this threshold is 
exceeded, the Callback is canceled. Callbacks are also canceled if the variable binding 

<rdf:RDF
    xmlns:dialog="http://host/dialog-terms.owl#"
    xmlns:doc1="http://host/doc1#"
     ...
    xml:base="http://host/doc2">
  ...
  <dialog:Answer rdf:ID="ResponseCurrentTime"/>
  <rdf:Description rdf:about="doc1#RequestForCurrentTime">
    <dialog:hasAnswer rdf:resource="#ResponseCurrentTime"/>
  </rdf:Description>
</rdf:RDF>

PREFIX dialog: <http://host/dialog-terms.owl>

SELECT ?question ?answer
WHERE { ?question dialog:hasAnswer ?answer }

question=<http://host/doc1#RequestForCurrentTime>,
answer=<http://host/doc2#ResponseCurrentTime>
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they are supposed to notify about becomes invalid, e.g., due to changes in the cor-
responding Data Space. 

5.2.3.2. Data Space Configuration 

Developers are allowed to configure details of the SEDS Core System behavior while 
utilizing a special configuration object when creating an instance for DataSpaceCon-
troller with the corresponding factory. This object allows definition of the utilized 
reasoning system, some Hooks, and Model Injectors. The specified reasoning system 
is used whenever data need to be inferred from the raw data in the Data Planes. 
Thus, the logic actually supported by the Core System implementation and conse-
quently the comprehension of meta-knowledge may be changed at any time 
according to needs. The SEDS Core System implementation is not necessarily limited 
to the representation of OWL DL. 

The Hooks included in the Data Space Configuration are similar to event handlers. 
There are some predefined events raised by the SEDS Core System that signal, for 
instance, the appearance of new data or the creation of a new Data Space. These 
events are delegated to the Hooks for processing. However, Hooks are not executed 
in parallel threads but rather evaluated in the flow of the actions that originate the 
events, and the actions are suspended until the processing of all Hooks is completed. 
Hooks may even throw up critical exceptions to explicitly interrupt the program 
flow they are executed in. This way, for instance, the insertion of data to a Data Plane 
can be rejected if such data fail to meet the required criteria. 

The third instrument that influences the SEDS Core System is the Model Injector. As 
the name suggests, Model Injectors are used to add particular information when 
reasoning the graph of a Data Space. An injected model may represent dynamically 
provided knowledge like the current environment context such as the current time 
or even an ontology bridging two terminologies. Such type of ontology may serve as 
mediators in interactions among multiple parties using different ontologies for the 
description of data added to Data Spaces. 
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Figure 41: Overview of the classes for Data Space Configuration 

5.2.3.2.1. DataSpaceConfiguration 

The DataSpaceConfiguration aggregates the instruments for Data Space Configura-
tion introduced above. An instance of this class is required when creating an 
instance for the interface DataSpaceController.  

Method(s) 

getDefaultConfiguration This method provides the minimum configuration required to 
run the SEDS Core System. The returned configuration does 
not include Hooks nor Model Injectors. 

loadFormFile This method loads a Data Space Configuration from the file of 
the given name. This file needs to be a simple text file contain-
ing a list of name-values pairs separated with a carriage 
return-character and line-feed-character. Each name-value 
pair is also required to be separated by an equal sign. The 
supported names for these pairs are listed in the table below 
whereby the index ‘k’ in the names is a placeholder for a 
counter that starts with zero. Thus, each name with an index 
may appear many times in the file. 

5.2.3.2.2. ModelInjector 

The ModelInjector represents a container for a single model. This model is included 
in the set of models provided by the Data Planes when retrieving data from a Data 
Space. 

+getDefaultConfiguration() : DataSpaceConfiguration
+loadFromFile(in fileName : String) : DataSpaceConfiguration

DataSpaceConfiguration

+notify(in event : DataSpaceEvent)

«interface»
DataSpaceHook

+notify(in event : DataSpaceControllerEvent)

«interface»
DataSpaceControllerHook

com.hp.hpl.jena.ontology::OntModelSpec

+getModelInjection() : Model

«interface»
ModelInjector

1
1

1
*

1

*

1

*
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Method(s) 

getModelInjection This method returns the model contained in the corresponding 
Model Injector. 

5.2.3.2.3. DataSpaceHook 

The DataSpaceHook represents a listener for events that notify about changes in 
Data Spaces. The interface serves as a callback for the SEDS Core System. 

Method(s) 

notify This method is called by the SEDS Core System to process events 
that notify about changes in any Data Space in the entire Data Space 
Environment. The event types that may be passed to this method are 
specified in Table 5. 

 

Event Description 

BeforeDataAssignmentEvent Is raised before data is assigned to a Data Plane. 

AfterDataAssigmentEvent Is raised after data is assigned to a Data Plane. 

Table 5: List of all events that notify about changes in a Data Space 

5.2.3.2.4. DataSpaceControllerHook 

The DataSpaceControllerHook represents a listener interface for events that notify 
about changes in the Data Space Environment. The interface serves as a callback for 
the SEDS Core System. 

Method(s) 

notify This method is called by the SEDS Core System to process events 
that notify about changes in the Data Space Environment. The event 
types that may be passed to this method are specified in Table 6. 

 

Event Description 

DataSpaceOpenedEvent Is raised on opening a new Data Space. 

DataSpaceClosedEvent Is raised on closing an existing Data Space. 

Table 6: List of all events that notify about changes in the Data Space Environment 
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5.2.4. Integration into the pREST Access Layer 

The SEDS Core System is integrated into the pREST access layer to make it available 
in a distributed setting. Implementation of the data space adapters is based on the 
software abstraction for resources included in the pREST access layer. These re-
sources represent mappings to particular entities and in the software model are 
distinguished according to the types of operations supported by the represented 
entities. The types are realized through the marker interfaces GET, HEAD, POST, PUT, 
and DELETE that correspond to the HTTP methods with the same name. Delegate 
methods of these interfaces allow access to the attached entities through writing or 
requesting raw data along with metadata represented by a marker interface named 
Content. The resource abstractions may be arranged in trees so that resources may 
be bound to Node elements wherein, the root node is attached to a special Servlet, 
i.e. some kind of HTTP request handler that maps the path of a URL to a path in the 
tree of nodes. 

5.2.4.1. SEDS Server Implementation 

The SEDS Server implementation provides a set of adapter classes that are intended 
to wrap the interface classes of the SEDS Interface. The adapter classes implement a 
combination of the interface classes Head, Get, Put, Post, and Delete from the re-
source model according to the features of the wrapped object. Hence, each adapter 
represents a pREST resource. The adapter classes also implement the Node interface 
introduced above so the entire adapter setting is arranged as a tree. In practice the 
adapter model is not supposed to be utilized directly but a special server peer 
should be instantiated which binds the adapter model in the background to the 
pREST server. This peer also registers the name of the data space controller at the 
naming service of pREST to enable collocated peers to discover the SEDS Server.  

A coarse-grained view of the adapter model is provided by Figure 42. All classes 
implement the interfaces Resource and Node from the pREST resource model but 
for simplicity’s sake only the most important methods are visualized and explained 
below. In addition to the illustrated adapter classes there are also adapters for the 
atomic data fields like the maximum idle time of a data space or the pattern of a sub-
scription. These adapters support HTTP requests of the types HEAD, PUT, and GET 
whereby HEAD acknowledges the existence of a resource, PUT sets the value of the 
entity corresponding to this resource, and GET returns the value. The transferred 
data need to be represented as plain text. However, adapters for the Callback of a 
Subscription are realized in a special way. In the HTTP interface of the Subscription 
the Callback is only referenced, while the actual implementation of logic that is sup-
posed to handle the Patten Binding is realized on the client side. An adapter for a 
Subscription thus only stores a callback-URL that points to the corresponding client 
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implementation. When notifying a Pattern Binding with a Callback, the bound va-
riables and their values are represented as a name-value list. 

 

Figure 42: Coarse-grained class diagram of the adapters for the SEDS Server 

The following subsections describe the entity-specific mapping to the common 
pREST methods, HEAD, GET, POST, etc. 

5.2.4.1.1. DataSpaceControllerAdapter 

The DataSpaceControllerAdapter wraps any instance of the interface DataSpaceCon-
troller and maps HTTP requests to the methods of this interface. 

Method(s) 

head This method allows verifying whether or not the adapter is available. 

get A call of this method returns a simple text entity that contains the name of the 
data view and the identifiers of all contained data spaces as a list. Passed pa-
rameters are ignored. 

post This method initiates the creation of a new Data Space. The identifier of the 
new Data Space is returned as a text entity. Passed parameters are ignored. 

getChild This method returns either an adapter for the global Data View or an adapter 
for a Data Space according to the passed name. 

5.2.4.1.2. DataSpaceAdapter 

The DataSpaceAdapter wraps any instance of the interface DataSpace and maps 
HTTP requests to the methods of this interface. 

+head(in params : NameValueMap)
+get(in params : NameValueMap) : Content
+post(in content : Content) : Content
+getChild(in name : String) : Node

DataSpaceControllerAdapter

+head(in params : NameValueMap)
+get(in params : NameValueMap) : Content
+post(in content : Content) : Content
+delete()
+getChild(in name : String) : Node

DataSpaceAdapter

+get(in params : NameValueMap) : Content
+put(in content : Content)
+post(in content : Content) : Content

DataPlaneAdapter

+head(in params : NameValueMap)
+get(in params : NameValueMap) : Content
+getChild(in name : String) : Node

DataViewAdapter

+head(in params : NameValueMap)
+get(in params : NameValueMap) : Content
+delete()
+getChild(in name : String) : Node

SubscriptionAdapter

1

*

1 1

1

1 *

1

*
1

+head(in params : NameValueMap)
+post(in content : Content) : Content
+getChild(in name : String) : Node

PatternRegistrarAdapter

+head(in params : NameValueMap)
+post(in content : Content) : Content

PatternEvaluatorAdapter

11

1

1
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Method(s) 

head This method allows verifying whether or not the adapter, i.e. the correspond-
ing resource is available. 

get The method returns the name of the maximum idle time adapter and the iden-
tifiers of all contained Data Planes as a list. This list is encoded as plain text. 
Passed parameters are ignored. 

post This method initiates the creation of a new Data Plane. The identifier of the 
new Data Plane is returned as plain text. Passed parameters are ignored. 

delete The method removes the wrapped data space and consequently all contained 
data planes. 

getChild This method returns either an adapter for the maximum idle of the Data Space 
or an adapter for a Data Plane according to the passed name. 

5.2.4.1.3. DataPlaneAdapter 

The DataPlaneAdapter wraps any instance of the interface DataPlane and maps 
HTTP requests to the methods of this interface. 

Method(s) 

head This method allows verifying whether or not the adapter, i.e. the correspond-
ing resource is available. 

get A call of this method returns the data contained in the Data Plane as a RDF 
graph. Passed parameters are ignored. 

put This method sets the data of a Data Plane. Therefore the given data need to be 
represented as a RDF graph. 

post The method has exactly the same behavior as the put-method above. It does 
not return any data. 

5.2.4.1.4. DataViewAdapter 

The DataViewAdapter wraps any instance of the interface DataView and maps HTTP 
requests to the methods of this interface. 
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Method(s) 

head This method allows verifying whether or not the adapter, i.e. the correspond-
ing resource is available. 

get The method returns the name of the adapter for the Pattern Evaluator and the 
name of the adapter for the Pattern Registrar. The names are encoded as plain 
text.  

getChild This method returns either an adapter for the Pattern Evaluator or an adapter 
for the Pattern Registrar according to the passed name. 

5.2.4.1.5. PatternEvaluatorAdapter 

The PatternEvaluatorAdapter wraps any instance of the interface PatternEvaluator 
and maps HTTP requests to the methods of this interface. 

Method(s) 

head This method allows verifying whether or not the adapter, i.e. the correspond-
ing resource is available. 

post This method executes the evaluation of a pattern passed as a parameter to this 
method. The pattern is required to be contained in a text entity. The results of 
this method, i.e., potential Pattern Bindings are encoded as a list of name-value 
pairs. Therefore, the variable names in the Pattern Bindings are given separate 
name prefixes according to Pattern Binding. 

5.2.4.1.6. PatternRegistrarAdapter 

The PatternRegistrarAdapter wraps any instance of the interface PatternRegistrar 
and maps HTTP requests to the methods of this interface. 

Method(s) 

head This method allows verifying whether or not the adapter, i.e. the correspond-
ing resource is available. 

post This method creates a new subscription. Optionally, a list of name-value pairs 
may be passed to this method which contains the number of repetitions, call-
back-URL and pattern. The values are used to set the fields of the Subscription 
directly. If no parameters are passed to this method, the fields of the Subscrip-
tion need to be initialized by separately putting data to the corresponding 
adapters. The method returns the identifier of the newly created subscription 
as plain text. 
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getChild This method returns an adapter for a subscription according to the passed 
name. 

5.2.4.1.7. SubscriptionAdapter 

The SubscriptionAdapter wraps any instance of the interface Subscription and maps 
HTTP requests to the methods of this interface. 

Method(s) 

head This method allows verifying whether or not the adapter, i.e. the correspond-
ing resource is available. 

get The method returns the names of the adapter for the number of repetitions, 
the adapter for the callback-URL, and the adapter for the pattern. The adapter 
names are represented as plain text. 

delete The method removes the wrapped Subscription. 

getChild This method returns according to the passed name either an adapter for the 
number of repetitions or an adapter for the callback-URL or an adapter for the 
pattern. 

5.2.4.1.8. The Resulting HTTP Interface 

As proposed in the preceding sections each adapter is given a name with respect to 
the Node abstraction of the pREST resource model. While adapters for Data Spaces, 
Data Planes, and Subscriptions in each case are named in line with the identifier of 
the wrapped entities, the names of all other adapters are fixed. However, paths in 
the trees resulting from the concatenation of node names should be represented by 
the path segments of URLs so that each adapter is addressable with a particular URL. 
Figure 43 illustrates the navigation scheme in this tree as a graph since the Data 
View exists on a Data Space controller as well as on a Data Space. The HTTP methods 
supported by the corresponding adapters are once again annotated in a compact 
form. All fixed names and name prefixes are underlined. 
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Figure 43: Navigation schema in the HTTP interface of the SEDS Server 

Based on this schema, a Data Plane with the identifier ‘21’ in a Data Space with the 
identifier ‘1’ may be addressed with the relative URL ‘/data-space/space1/plane21’. 
Setting the pattern for a subscription ‘7abcd5d9’ on the global Data View may be 
realized with a PUT-request to ‘/data-space/data-view/7abcd5d9/pattern’. 

5.2.4.2. SEDS Client Implementation 

Integration of the SEDS to the pREST access layer also requires a client implementa-
tion. This client implementation is composed by a set of stubs re-implementing the 
interface classes of the SEDS Interface. The stubs create appropriate HTTP requests 
for each method call on the interface classes and send them to the SEDS Server, i.e., 
the adapter implementations. Consequently, the URLs receiving these requests, and 
the encoding utilized to represent the transmitted contents are aligned to the im-
plementation of the adapter classes for the corresponding data space elements. 
Table 7 thus only summarizes the stub classes and the interface classes they imple-
ment. However, the stub implementations are not accessed directly. Like the classes 
of the Core System they are rather hidden behind a factory which only provides a 
view on the SEDS Interface. 

Class  Nested Class Interface 

DataSpaceControllerStub  DataSpaceController 

DataSpaceStub  DataSpace 

X
y data-space

POST

PUT

GET

HEAD

DELETE

space x

plane xdata-view

pattern-registrar pattern-evaluator

y

number-of-repetitions callback-url

max-idle-time

pattern

POST

GET

HEAD

DELETE

POST

GET

HEAD

DELETE

PUT

GET

HEAD

GET

HEAD

PUT

GET

HEAD

PUT

GET

HEAD

POST

HEAD

PUT

GET

HEAD

GET

HEAD

POST

HEAD

a placeholder for a natural number
a randomly chosen, unique name
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DataPlaneStub  DataPlane 

DataViewStub  DataView 

PatternRegistrarStub  PatternRegistrar 

PatternEvaluatorStub PatternEvaluator 

PatternBindingIteratorStub PatternBindingIterator 

SubscriptionStub  Subscription 

Table 7: Stub classes and the implemented interface classes of the SEDS Interface 

In section 5.2.4.1 a special treatment of Callbacks for the reactive retrieval of data 
from the HTTP interface is suggested. In fact the Callback logic is supposed to be 
kept at the client while the server is given a URL to invoke this callback logic on de-
mand. The SEDS client thus also includes an adapter for Callbacks. Since the stubs 
themselves are stateless, a Callback Manager stores and controls the associations 
between Callbacks, adapters and the corresponding Subscriptions on the server 
side. 

 

Figure 44: Classes for callback management on the client side 

5.2.4.2.1. CallbackManager 

The CallbackManager is a singleton class that manages the binding of Callbacks to 
URLs. An instance of the pREST server is utilized to make Callbacks available on an 
HTTP interface. In addition to the mapping of Callbacks to URLs the CallbackManag-
er also stores the association of each Callback to the corresponding Subscription on 
the server side. 

+getCallbackManager(in server : RestServer) : CallbackManager
+bindCallback(in callback : Callback) : String
+assignSubscription(in subscriptionID : String, in callbackID : String)
+getCallback(in callbackID : String) : Callback
+getCallbackBySubscription()
+removeCallback(in callbackID : String)
+removeCallbackBySubscription(in subscriptionID : String)
+getCallbackURL(in callbackID : String) : String

CallbackManager

+head(in params : NameValueMap)
+post(in content : Content) : Content

CallbackAdapter

+call(in binding : PatternBinding)

«interface»
Callback

1 *
1
1
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Method(s) 

getCallbackManager This method returns an instance of the CallbackMa-
nager for a given pREST server. Since the 
CallbackManager is a singleton, this method always 
retrieves the same instance for each server. 

bindCallback The method binds the given Callback on a randomly 
chosen, unique identifier to the pREST server of the 
CallbackManager. An identifier for the binding is also 
returned. 

assignSubscription This method allows assigning the identifier of a Sub-
scription from the server side to the corresponding 
implementation of the contained Callback on the client 
side.  

getCallback Calling this method returns the Callback for the given 
identifier or a null reference if such a Callback cannot 
be found. 

getCallbackBySubscription This method returns a Callback by the identifier of the 
corresponding Subscription from the server side. This 
method is necessary since the SEDS Interface - and 
especially the Query Registrar - only provides the iden-
tifier of a Subscription to the client system but not the 
identifier for the association between Callback and 
callback-URL. 

removeCallback This method removes the Callback with the given iden-
tifier. 

removeCallbackBySubscription This method removes a Callback by the identifier of the 
corresponding Subscription at the server side. 

getCallbackURL Calling this method returns the complete URL of the 
CallbackAdapter for the given Callback identifier. 

5.2.4.2.2. CallbackAdapter 

The CallbackAdapter is similar to the adapters of the data space server based on the 
pREST resource model - its intention is to map HTTP requests to the methods of the 
callback interface. 
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Method(s) 

head This method allows verifying whether or not the adapter, i.e. the corresponding 
resource, is available. 

post This method executes the call-method of the Callback corresponding to this adap-
ter. The Pattern Binding as well as the Data Space identifier should be contained in 
a list of name-value pairs given as parameters to this method. All variables are 
supposed to have the same name prefix. 

5.2.5. Realization of the Service Model Ontology 

Section 4.2.3 introduces the service model ontology. All data structures to be ex-
changed between the Service Requester and the Service Provider are represented as 
concepts in terms of Description Logic. This semantic approach for the representa-
tion of data is intended to support loosely coupled interactions. For instance, the 
interacting parties are allowed to understand each other although using slightly 
different terminologies to express themselves. Indeed, the terminologies need to be 
declared on common base concepts. As argued in 4.2.4, OWL DL is a suitable lan-
guage for the realization of the Service Model Ontology. In OWL concepts are 
referred to as classes while a property is the correspondent to a relation or a role 
assertion. Apart from classes and properties there are also atomic data types like 
integers or strings derived from XML Schema [29]. Accordingly, a separate type of 
property is dedicated to these simple data types, the so called ‘data type property’. 
One extension special to OWL is restrictions. Restrictions allow definition of the car-
dinality of properties, and can thus be utilized to enforce a special structure for a 
data set.  

The concepts of the Service Model Ontology are divided into concepts for the service 
specification and concepts for the service execution. This means that the realization 
of the Service Model Ontology is also a composition of two separate ontologies: the 
Service Specification Ontology and the Service Execution Ontology. These ontologies 
basically define OWL representations for the base concepts and their relations as 
introduced in 4.2.3. Additionally, common characteristics of these concepts and rela-
tions are modeled with special classes and properties. This refinement of the 
structural design for the realization is specifically addressed in the following sec-
tions. 

5.2.5.1. Service Specification Ontology  

The Service Specification Ontology is closely oriented to the concepts explained in 
4.2.3. All concepts are realized as OWL classes as illustrated in Figure 45. The rela-
tions between the concepts are mapped to OWL object properties. Properties 
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intended to be used either once for each individual or never are also tagged as func-
tional.  

Since all relations are supposed to have the cardinality one, cardinality restrictions 
are introduced for the remaining object properties and their domains OWL, as hig-
hlighted with a hatched background in Figure 45. These restrictions require 
individuals of the corresponding classes to bind all restricted properties exactly 
once. For instance, an individual of the class Update needs to be related with exactly 
one individual of PartialState through the property hasHead. 

The list of arguments utilized in the representation of Partial States is thus realized 
as a recursive list in the Service Specification Ontology. The end of an instance of this 
list may either be represented by a missing hasRest-property or by a bottom element 
referred to as nil, i.e. the corresponding individual that serves as a constant here. 

 

Figure 45: Core classes of the Service Specification Ontolgy and their properties. 

Communication of explicit data values in service provisioning is realized with Evalu-
ations, i.e. tuples relating a Constant to a Partial State. The same structural 
appearance is required for the Precondition which expresses the need for a certain 
initial value of a Partial State. Accordingly, the class PartialValue is introduced to the 
Service Specification Ontology. This class enforces the required structural con-
straints and serves as a base class for the classes Precondition and Evaluation as 
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highlighted with a hatched background in Figure 46. The properties are again con-
strained with cardinality restrictions which enforce each individual of PartialValue 
to reference precisely one individual of the class PartialState and precisely one indi-
vidual of the class Constant. 

 

Figure 46: Data assignment constructs defined in the Service Specification Ontology. 

5.2.5.2. Service Execution Ontology 

The Service Execution Ontology realizes the concepts for the control flow introduced 
above. Thus, it mainly contains appropriate classes for the concepts representing 
control entities. Individuals of these classes and their properties enable control of 
the service execution state. However, since all control entities are supposed to point 
to their originator, the Service Execution Ontology includes a special class with a 
corresponding property hasOriginator for this structural constraint. This class 
serves as a base class for all other classes representing control entities and is re-
ferred to as the ControlEntity.  
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Figure 47: Base classes for control entities defined in the Service Execution Ontology 

Furthermore, the classes TransientEntity and ComplementaryEntity are introduced 
to represent special characteristics of control entities. They are highlighted in Figure 
47. TransientEntity is a classifier for control entities that should expire on the occur-
rence of a particular event, and thus serves as domain for the property expiresOn. 
The Service Execution Ontology also defines a class for a default expiration condi-
tion which should be fulfilled when a particular point in time is exceeded. This class 
is called TimeExceeded. Individuals of this class are required to reference a time-
stamp, as illustrated in Figure 48. While exchanging individuals of TransientEntity 

the time-stamps referenced by the expiration condition need to be compared to the 
current time of the environment. An individual of TransientEntity is considered as 
expired if the environment time exceeds the time-stamp referenced by its expiration 
conditions. 

 

Figure 48: Constructs related to the expiration condition 

ComplementaryEntity is a classifier for all entities that refer to a particular request. 
The class serves as domain for the property refersToRequest originally defined as a 
refers-to relation for the concepts Service Acknowledgement, Service Confirmation, 
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Failure, Invalidation, and Response. Consequently, the corresponding classes are 
sub-classes of ComplementaryEntity as illustrated in Figure 49. Since Service Ac-
knowledgement and Service Confirmation are also defined to expire after a certain 
time-span, the corresponding classes are also sub-classes of TransientEntity. 

 

Figure 49: Inheritance hierarchy of control entities in the Service Execution Ontology 

5.2.5.3. Data Space Configuration for the Service Model Ontology 

Service provisioning based on the Semantically Enhanced Data Space and the Ser-
vice Model Ontology is realized through the exchange of ontologies. For each new set 
of individuals representing a control entity and assigned data, Service Requester and 
Service Provider are required to create a new Data Plane and add this data set. The 
Data Space in return, enables temporal decoupling and verifies the validity of each 
new data set as it is added. Hence, the Data Space always provides a valid and con-
sistent view of all contained data to the interacting parties. However, to check the 
correctness of data to be added, the SEDS obviously needs to partially understand 
their meaning. In terms of the Service Specification Ontology and the Service Execu-
tion Ontology this understanding addresses on the one hand the structural 
constraints enforced by the OWL DL representation and on the other the sequence 
and conditions for the origination of individuals for particular control entities. Both 
aspects are realized with a special data space configuration as introduced in Section 
5.2.3.2. 

The verification of structural consistency and correctness for newly added data in 
terms of OWL DL is realized with the Description Logic reasoner Pellet [54]. Pellet is 
based on the tableaux algorithms developed for expressive Description Logic ontol-
ogies. In fact, Pellet is also the only freely available reasoner that supports the 
complete expressiveness of OWL DL. Kaon2 [55], Bossam [56], and the Jena internal 
DL reasoner have proven insufficient or non-performing in this work.  

Observation of constraints addressing the sequence of control entities is realized 
with a special Model Injector for the current time and two implementations of Da-
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taSpaceHook. The first Hook ensures that time-stamps related to individuals of 
TimeExceeded are not outdated when added to the Data Space. The same Hook also 
searches for individuals of the class Acknowledgement in new data sets. If such an 
individual is found its regularity is checked against the data already contained in the 
Data Space. Thus, the Hook proves whether or not there is already a valid individual 
of Acknowledgement for the same service request. Indeed, this check is only per-
formed for exclusive service requests and irregular service acknowledgements, i.e. 
the corresponding individuals and assigned data, are rejected. The second Hook only 
scans newly added data sets for individuals of TimeExceeded. Since these expiration 
conditions may influence the execution state of a service, updates of the data view 
are scheduled. For the appropriate time-stamps An update of the Data View of a Da-
ta Space causes all subscribed queries of the corresponding Pattern Registrar to be 
evaluated. In this way the expiration of the last valid service acknowledgement for 
an exclusive service request can be notified to potentially interested Service Provid-
ers. 

5.3. Service Adaptation Layer 

The aspects mentioned above together with some demo scenarios were imple-
mented and tested in order to prove the functionality and usefulness of the 
approach. Section 3.4 gives the technical means employed in the development proc-
ess and depicts the general interaction of the implemented components, constituting 
an overview and serving as a guideline for the other sections. The implementation of 
the components related to the context is depicted in Section 5.3.1. Section 5.3.2 deals 
with input of the framework gathered from the user through the sensor node im-
plementation of the pREST access layer. The implemented functionality is detailed in 
Section 5.3.3 in terms of inference and classification. Section 5.3.4 covers aspects 
related to the description and invocation of services. Implementation of components 
related to the processing of user feedback is covered by Section 5.3.5. 

The framework is implemented using Java programming language in the Java 2 Plat-

form, Standard Edition (J2SE) 5.0. The ontology is represented in the Web Ontology 

Language (OWL) and processed with the help of the Jena Semantic Web Framework 

2.2 [103]. The Protégé Ontology Editor in the versions 2.1 and 3.1 are used for edit-
ing the ontology. The Suggested Upper Merged Ontology (SUMO) is used as the upper 
ontology of the system ontology and NanoHTTP, a small HTTP server in Java, is util-
ised for serving the ontology. Thus it can be classified by the Renamed Abox and 

Concept Expression Reasoner (RACER) used in version 1.7. As used in the demo sce-
narios, the graphical user interface is implemented utilising HTML as well as the Java 

Server Pages (JSP) that come with the Java 2 Platform, Enterprise Edition 1.4. The 
web application is deployed in the Jakarta Tomcat Web Server version 5.5. 
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An external application can use the functionality of the framework with the help of 
the Context Hotspot object serving as an entry point. The Context Hotspot manages 
the whole framework process and returns a service that can be executed. It provides 
methods to derive a service call based on the current context as well as for obtaining 
a Feedback Manager object which can be used by the client to provide user feedback. 

First of all, the Context Hotspot retrieves the user and the respective profiles based 
on the provided request information. The next step is to call the Query Manager with 
the provided query. Then the Context Broker is asked for the current context model 
providing the user and profiles. The resulting model is then published to a user spe-
cific URL so that the external reasoner is able to access it. The Inference Module is 
now consulted in order to derive parameters that are then passed to the Service 

Manager. As service composition features are not implemented, the Service Manager 
only returns one Service object with respective parameters. The Service Manager, 
the Service, and the information of the request are then utilised to construct a Feed-

back Manager object which can be used to retrieve the available Feedback Options as 
well as the service results. 

5.3.1. Context Broker and Context Snippets 

The Context Broker is responsible for constructing the actual context ontology given 
the current user and a list of profiles. The ontology layers forming the resulting sys-
tem ontology are gathered from different sources and do not have to reside on the 
local machine. Since some information changes from situation to situation it has to 
be altered dynamically as depicted above. Context Snippets are statements stemming 
from sensors and other devices that contain a piece of information vital for the con-
text such as the current temperature. In order to alter such information in a dynamic 
way, Context Snippets can be added to and removed from the context model making 
it possible to include transient information if need be. 

Figure 50 shows the interfaces that are related to the Context Broker. ContextBroker 
represents the provider for the context model. It has methods to add and remove 
ContextSnippet objects each wrapping a Context Snippet, and to get the current 
model and the ConceptMapper. ContextSnippet offers a method to add statements to 
the context model which is invoked by the respective ContextBroker if the model is 
constructed. To achieve this, ContextSnippet objects communicate with the respec-
tive data sources such as real sensors via a defined interface, i.e. the pREST access 
layer. The method getConceptMapper of the ContextBroker object is vital for the 
Query Manager and the Service Manager to translate strings into concepts and vice 
versa. ConceptMapper has a description and provides the method parseQuery that 
takes a string and returns an instance of ParsedMapping. This ParsedMapping can be 
used to get the concept representations and the unmatched inputs, i.e. the terms that 
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could not be mapped to a concept. The method getMappingTerm of ConceptMapper 
can be used to get a string given a reference to a concept, e.g. an URI.  

 

Figure 50: Interfaces belonging to the context package 

The context model, i.e. the ontology, provided by the Context Broker is discussed in 
the remainder of this section. The following Section 5.3.1.1 depicts the data that 
make up the different ontology layers and mentions the links between them. Editing 
and the provision of ontology layers is detailed in Section 5.3.1.2 which also dis-
cusses how current context data is integrated into the ontology and how information 
residing within the ontology layers is processed by the framework. 

5.3.1.1. Adaptation of the Ontology Layers 

The system ontology, which consists of several layers, is used by the framework as 
the context model and has the same structure as depicted above. The following sec-
tions discuss the specific layers and mention the classes, instances, and properties 
specified in each case. 

5.3.1.1.1. The Upper Ontology and its Limitations 

We use the OWL representation of the Suggested Upper Merged Ontology as an up-
per ontology in line with the results of our evaluation. SUMO comprises of many 
basic and abstract concepts that can be referred to by the underlying layers. It is 
important to note that the current representation of SUMO utilises some OWL Full 
constructs, e.g. some classes are addressed as individuals. Hence, reasoners de-
signed for OWL DL or OWL Lite either ignore these facts or cannot utilize them 
properly. For instance, RACER [71], which is used as an external reasoner, is able to 
load OWL Full ontologies even though as an OWL DL reasoner it is incapable of in-
terpreting certain essential facts. 

Many concepts that may be helpful when modelling context are not covered by 
SUMO and have to be specified in the Specific Ontology layer which imports SUMO 
and adds concrete concepts to the system ontology of importance for the current 
application. For example, the recommendation of activities depending on the cur-
rent context assumes the definition of concepts such as Bar, Friend, or Temperature. 
However, when realising an intelligent jukebox, other concepts such as Song and 
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Artist are important too. The Specific Ontology may comprise of concepts suitable for 
a wide variety of different scenarios but the more concepts are added the more 
complex the ontology becomes which affects the duration of the inference process. 
In terms of the recommendation scenario, some examples of missing classes and 
instances as well as potential super classes of SUMO marked by the prefix “sumo” 
are: 

The classes Friend, Colleague, Stranger, and similar concepts defined as subclasses 
of the SUMO class sumo:SocialRole. These concepts are needed to express the 
social relationships of persons. 

Concepts referring to establishments such as Bar and Opera are inserted as sub-
classes of sumo:Building.  

Activities introduced extending the respective class, e.g. Volleyball is a subclass of 
sumo:Sport. 

Classes, instances, and properties representing the base for sensor information 
and other context data are added to the upper ontology. For example, Tempera-

ture is an instance of sumo:CelsiusDegree and has an additional hasTemperature 
property. 

Further freely definable concepts may be added as needed including Evening and 

Morning as subclasses of sumo:TimeInterval. 

It is important to note that concepts defined in the Specific Ontology need to be em-
ployed carefully when it comes to expressing subjective and user-specific aspects. 
For example, the user Bob states in his profile that the user Eve is a friend of his us-
ing the concept Friend defined in the Specific Ontology. The user Alice does not know 
Eve who is therefore defined as an instance of class Stranger in her ontology. So if 
Bob, Alice, and Eve are involved in the same context, the user Eve is an instance of 
both, Friend and Stranger. Restrictions and rules referring to one of the classes also 
apply to Eve. Therefore, if Bob wants to write rules only matching his friends, he has 
to define a separate class in his profile ontology.  

5.3.1.1.2. Framework Ontology 

The Framework Ontology imports the Specific Ontology and comprises of the con-
cepts needed by the framework to dynamically process input, infer facts, and call 
services. The facts contained in this ontology are directly interpreted and used to 
store values or parameters. The particular concepts given definition in the Frame-

work Ontology are: 

The class Situation defined to cope with situations and its restrictions. Each situa-
tion has parameters. These parameters are dynamically added to the respective 
situation depending on the current context. 
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The class Restriction and ParticipantRestriction as a subclass added to the ontology. 
ParticipantRestriction has the property hasParticipant to cope with the Open 
World Assumption (OWA). 

The instance ssf_situation of type Situation and ParticipantRestriction is added. This 
is necessary since the current situation shall be classified in terms of the context 
and class restrictions. Rules can then refer to the current type of the 
ssf_situation and set service parameter values accordingly.  

The class Input is defined in the Framework Ontology. It has parameters represent-
ing the user input. This definition is necessary to specify rules that set 
parameter values depending on the user input. An individual of the classes In-

put and Situation may also have the property hasNoneConceptParameter. This 
property - which is discussed in detail in Section 5.3.2 - can be used to consider 
user input that cannot be matched to concepts by the respective Concept Map-

per, but is also relevant when constructing the service call.  
The definition of the class Rule and the property hasRepresentation enables the 

embedding of rules in an alternative syntax such as Jena rules in profiles. 
The property hasPriority of a parameter and the class Priority with the individuals 

Ignore, Low, Normal, and High make it possible to link priorities with parame-
ters. 

All users important to the framework are defined as being instances of Man or 
Woman, e.g. Alice, Bob, Dave, and Eve. In this manner, all underlying layers as 
well as different user profiles refer to the same respective entity. 

Some values of properties defined in the Framework Ontology are set in the Tran-

sient Ontology as depicted in Section 5.3.1.1.4. 

5.3.1.1.3. Profile Ontology 

Domain profiles, mood profiles, and user profiles add preferences to the system on-
tology. The profiles are stored in files residing on the local machine or can be 
accessed remotely by providing a URL. The domain profile is application-specific 
and chosen in line with the current context, e.g. the intelligent juke box scenario 
requires a domain profile comprising of music-related preferences and settings. The 
user specifies the mood profile to use when querying the system by providing an 
identifier. A Profile Manager tries to match this identifier to a profile. In the same 
manner the user profile of the requesting user is also identified. Unlike the mood 
profile there may be multiple user profiles added to the system ontology since sev-
eral users may be important in terms of context. However, the profile types are only 
distinguishable as far as their purpose and contained facts are concerned. Once they 
are added to the Profile Ontology layer it is not possible to determine which state-
ment derived from which profile.  
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5.3.1.1.4. Transient Ontology 

The Transient Ontology sets properties defined in the other ontologies depending on 
the current values of sensors and other resources. It is constructed with the help of 
the Jena API and imports the user profiles. The ontology is then passed to an ontol-
ogy server, the NanoHTTP. With the help of an OWL writer the server publishes the 
ontology in OWL to a specified URL. The URL is passed to RACER which loads the 
ontology and is able to classify it. Since the ontology imports all the other layers di-
rectly or indirectly, RACER is aware of the whole system ontology. 

During the construction process the registered Context Snippets are added to the 
ontology model using the API. For example, the concrete restriction on the property 
hasParticipant is set in line with the participants in the context. The number of par-
ticipants in the context is provided by a Context Snippet or alternatively by a 
component that is aware of the locations of all users. Context Snippets representing 
sensor information such as temperature and location are also added to the ontology.  

5.3.1.2. Editing and Processing the Ontology Layers 

The OWL version of the upper ontology SUMO was not altered at all and was used as 
provided on the web site. With the exception of Transient Ontology, the other ontol-
ogy layers , were edited with the help of Protégé and a simple text editor. Since all 
ontologies may be distributed, the small NanoHTTP server only consisting of one 
Java class was chosen to publish them on specified URLs. The Tomcat server could 
also publish them but requires many more resources and is therefore only used for 
the scenario web application. 

Whenever the Context Broker is asked for the current context ontology with the re-
questing user and an optional mood profile as input, an internal ontology 
representation is constructed with the help of the Jena Semantic Framework. In de-
tail, the Context Broker executes the following sequence: 

1. A new empty ontology model is constructed which can be used to add ontol-
ogy facts. 

2. If a mood profile ID was provided by the user, a Profile Manager is consulted 
to retrieve the ontology model which is added to the model created in step 
one. 

3. All registered Context Snippets stating current sensor values or other data 
are added to the ontology. A configuration file is used to register all available 
snippets to the framework and to set initial values. It is important to note 
that the Query Manager also provides a snippet with the concepts of the cur-
rent user query which is added in this step. 

4. The current model is used to figure out the participants of the current con-
text as reported by the respective sensors or a combination of these and a 
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database. The Profile Manager is used to determine the profiles of the users 
which are also added to the ontology model. 

5. The available domain profiles are added to the model. 
6. The other ontology layers, namely the Framework Ontology, the Specific On-

tology, and the Upper Ontology, are imported in the current model.  
7. The model is returned. 

5.3.2. Mapping Query Concepts 

The Query Manager uses a Concept Mapper to create a Context Snippet comprising of 
the Input Parameters. A Concept Mapper is responsible for mapping input terms 
stemming from the user interface to concepts included by the current ontology base 
layers, i.e. either the Upper Ontology or the Specific Ontology layer. Therefore, when-
ever the respective ontologies are adapted, the appropriate Concept Mapper should 
be updated otherwise the provided Input Parameter would be a concept not in-
cluded in the ontology but still referable by rules unless the ontology is checked for 
consistency. 

Figure 51 shows the interfaces QueryManager and QuerySnippet which are important 
for processing the user input. QueryManager provides methods to register and re-
move a new ContextBroker. The method updateQuery currently has one parameter: 
the user input string. If other kinds of user input need to be supported, this method 
has to be changed accordingly. If executed, a suitable ContextBroker is chosen and 
the respective ConceptMapper is used to obtain a ParsedMapping as depicted in Fig-
ure 50. With the help of the ParsedMapping object, the QuerySnippet is created that 
extends ContextSnippet and is added to the model of the respective Context Broker. 

 

Figure 51: QueryManager and QuerySnippet 

The following box illustrates a simple Context Snippet generated with the help of a 
“Text-to-SUMO” Concept Mapper, which simply parses the string input and maps it to 
as many concepts defined in a text file as possible, using the input query “recrea-
tion”. 

<rdf:RDF 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

+addContextBroker()
+removeContextBroker()
+updateQuery()

«interface»
QueryManager

+addStatements()

«interface»
ContextSnippet

«interface»
QuerySnippet

1

-creates

1
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    xmlns:j.0="http://ontServer/context/ssf_ontology.owl#"> 
  <rdf:Description  

rdf:about= 
  "http://ontServer/context/ssf_ontology.owl#ssf_input"> 

    <j.0:hasParameter  
rdf:resource="http://ontServer/context/ 
   upper_ontology.owl#RecreationOrExercise"/> 

  </rdf:Description> 
</rdf:RDF> 

It is also possible for the user to provide terms that are not contained in the ontol-
ogy. To include input which cannot be mapped by the Concept Mapper to ontology 
concepts the property hasNoneConceptParameter is defined in the Framework On-

tology. An individual of type Input or Situation can provide such a property value. 
However, the Query Manager only sets the property value of the respective individ-
ual of type Input. To apply this parameter to the situation as well, a rule can be 
defined similar to the one depicted in the following box where “ns” determines the 
namespace of the concepts.  

[noneConcept: (ns:casaf_input ns:hasNoneConceptParameter ?x) -> 
(ns:ssf_situation ns:hasNoneConceptParameter ?x)] 

It should be noted that the rule may also contain additional conditions in the body, 
making it possible to restrict the number of cases in which it is possible to provide 
concepts not included in the ontology. For example, if a bar is recommended it may 
be desirable to use features provided by a search service, such as excluding a certain 
type of bar. 

5.3.3. Inference and Classification 

The Inference Module is responsible for deriving parameters depending on the cur-
rent context model. The resulting list of Derived Parameters is then passed to the 
Service Manager. The Inference Module executes the following tasks in each infer-
ence process: 

1. The Jena API is used to load the model provided by the Context Broker and 
the Jena rules which are either embedded in the context model, e.g. the pro-
files, or which reside in a separate file are extracted. 

2. The rules are parsed and each fact in the rule body that refers to the class hi-
erarchy of the model or the types of individuals causes a request sent to the 
reasoner, i.e. RACER. If the fact in question is true, it is added to the model. 

3. The model containing the facts added in step 2 is now used to derive new 
facts using the extracted rules. The Jena Framework automatically applies 
the rules and infers a new model accordingly. 

4. A table with priorities based on the inferred model is created, i.e. all facts 
that refer to the priority of concepts are put in a table. 
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5. All statements that are set by the rules and that refer to potential parameters 
for current situation are listed. For each parameter the following procedure 
is triggered: 

6. If the parameter refers to a class, the reasoner is asked for all super classes. 
If the parameter refers to an individual, the reasoner is asked for the class of 
the individual and all super classes. The resulting information is linked to the 
respective parameter. 

7. If one of the classes retrieved or the parameter itself has a priority value 
linked with it in the priority table, the respective value is set. If the priority 
value is set to Ignore, the parameter is discarded. 

8. A Derived Parameter is created setting the reference to the respective ontol-
ogy concept, the priority value, and all super classes which facilitates 
subsequent processing by the Service Manager. 

9. The connection to the reasoner is closed and the parameter list is returned. 

 

Figure 52: Important inference interfaces 

Figure 52 depicts the main interfaces of the inference package. The InferenceModule 
provides the method deriveParameters that returns a list of DerivedParameters based 
on the current context model. For this purpose it utilises a reasoner. Since the Jena 
API is used for the processing of rules, no additional interface is needed as far as the 
rule reasoner is concerned. Rules within profiles are identified with the help of the 
ontology class Rule as defined in the Framework Ontology. The extracted rules are 
passed to the rule reasoner after the classification reasoner is applied. The Reasoner 
interface is used to communicate with the classification reasoner, the RACER. The 
interface provides methods to start and shut down the reasoner. Given two parame-
ters referring to ontology concepts, the methods isTypeOf and isSubclassOf return a 
Boolean value. The methods getTypes, getSuperclasses, and getInstances return a list 
of URIs of concepts with respect to the concept provided. Since DerivedParameter 
extends Parameter and java.lang.Comparable, parameters of this kind can be sorted 

+deriveParameters()
+getOntModel()
+getReasoner()

«interface»
InferenceModule

+getPriority()
+getSuperClasses()

«interface»
DerivedParameter

+getName()
+getValue()

«interface»
Parameter

«interface»
java.lang.Comparable

+begin()
+end()
+isTypeOf()
+isSubclassOf()
+getTypes()
+getSuperclasses()
+getInstances()

«interface»
Reasoner

*

-has

1

-has

1 1
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according to priority. DerivedParameter also has methods to determine the parame-
ter’s priority and its super classes. 

5.3.4. Executing Services 

The Service Manager is the central component responsible for service administra-
tion and the inference of service calls. Service Templates announced to the Service 

Manager are used to decide which suitable service to invoke. The structure of a Ser-

vice Template is described in Section 5.3.4.1. Section 5.3.4.2 depicts the process of 
deriving Service Parameters and choosing suitable services based on available Ser-

vice Templates. Finally, an implementation overview is given in Section 5.3.4.3. 

5.3.4.1. Service Templates 

A service is made available to the framework with the help of one or more Service 

Templates. The current implementation utilises a fixed number of XML tags to de-
scribe the Service Templates which are parsed by the Service Manager. It is also 
possible to group multiple templates in one file. The supported tags and its attrib-
utes are listed in Table 8. 

Name Description 

Services May encapsulate multiple Service Templates and is the root tag of the 
XML file.  

Service This tag starts a new Service Template description and has three attrib-
utes. A ‘Service’ tag may enclose multiple ‘InputParameter’ and 
‘OutputParameter’ tags. 

Attribute 
name 

Description 

name The unique name of the Service Template. 

describes The reference to the actual service that is described. The 
value points to a class or file used to execute the service. 

priority The optional priority of the Service Template. The default 
priority is ‘normal’. 

InputParameter An ‘InputParameter’ tag refers to a parameter of a service such as the 
string of a search service. It can comprise of multiple ‘Component’ tags 
and has two attributes. 

Attribute 
name 

Description 

describes The name of the parameter that should correspond to the 
name used in the class or file that is utilised to execute the 
service. 

adapter The optional adapter class that is used to compose the 
input parameter before executing the service. The default 
adapter class simply strings all components together sepa-
rated by a blank. 

OutputParameter Describes an output parameter of a service and may have the same fea-
tures as an input parameter. However, in the majority of cases the 
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components are determined dynamically at runtime and cannot be de-
scribed a priori in a static template. The detailed description of output 
parameters is only needed if service composition is desired. 

Component Describes a component of an input or output parameter. The value of a 
component is the URI of a semantic concept contained by the system 
ontology. It has two attributes. 

Attribute 
name 

Description 

minCard The minimum number of terms matching the component 
concept. Allowed values are numbers >= 0. 

maxCard The maximum number of terms matching the component 
concept. Allowed values are number >= 0 and * (unlim-
ited). 

Table 8: Service Template tags 

In terms of the current implementation, the attribute “describes” of the “Service” tag 
points to a Java class that extends AbstractService. This abstract class implements the 
Service interface and is used to set and retrieve service parameters. The method to 
execute the service is implemented by the extending class, i.e. the respective Web 
Service is called and the results are returned. However, if the framework is not able 
to find a proper Java class by reflection, other possibilities may be tried such as 
automatically executing the service based on its OWL-S description. 

Another attribute that requires further explanation is the attribute adapter of the tag 
InputParameter. This attribute points to a Java class that implements the interface 
ParameterAdapter and is executed with the help of Java reflection. This interface 
provides a method responsible for composing the final input parameter with the 
help of the given components. The simplest way of doing this is to string the compo-
nents together and separate them by a blank. However, other possibilities are also 
feasible. For example, in some cases it may not be desirable to allow input that can-
not be mapped to an ontology concept by the Concept Mapper as discussed in 
Section 5.3.2.  

5.3.4.2. Derive Service Parameters 

The Service Manager is responsible for finding a matching Service Template and re-
spective parameters based on the context model, the list of Derived Parameters 
stemming from the Inference Module, and the Concept Mapper of the respective Con-

text Broker. The following sequence is triggered to achieve this: 

1. If available, the unbound string is extracted from the model. This string does 
not match any concept included in the model and may be set by a rule as dis-
cussed in Section 5.3.2. 

2. The Derived Parameters are sorted in the descending order of their priori-
ties. 
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3. Each Service Template currently available is checked to see whether or not it 
can be fulfilled.  

4. The Service Manager iterates through the components of the template and 
checks if there is a matching parameter, considering both the concept itself 
and the super classes of the Derived Parameterset by the Inference Module. 

The rules that are applied for this process are: 
5. Parameters with a high priority are checked before those with a lower prior-

ity. That is why the parameters were sorted in step 2. 
6. If the minimum number for a component is larger than zero, but has no 

matching Derived Parameter, the whole template is dropped. 
7. If there is more than one parameter possible for a component, as many De-

rived Parameters as possible are utilised. 
8. If the maximum number of parameters of a component is reached, no further 

Derived Parameter is checked. 
9. A Service Template is fulfilled if all components are satisfied and no restric-

tions are infringed.  
10. The Service Manager compares a fulfilled template to the best current one 

since only the best template is chosen at present. It applies the following 
rules: 

11. A template with components of higher than average priority is preferred. 
12. If the average priority of the components is equal to the best average, the 

template that has a higher priority is chosen. 
13. If the template priority and average component priority are equal, the tem-

plate that fulfils more components is preferred. 
14. If a template is equal to the current best template in terms of the rules men-

tioned above the former best template is preferred.  
15. If the Service Manager has found the best matching template it creates the 

respective service call with the Service Parameters. 
16. The Concept Mapper is used to find a proper string representation for a 

matching concept. If no mapping is found, the namespace of the concept is 
simply neglected giving the concept’s local name. 

17. The group of components that belong to an ‘InputParameter’ are composed 
with the help of the adapter class. The unbound string may be also consid-
ered by the adapter. 

18. Finally, the Service Manager creates the service call using the created inputs 
and pointing to the respective Java class or alternative description. 

The following box comprises of two exemplary Service Templates referring to one 
service class, the YahooWebService class which uses the Yahoo! Web Services [115] 
implementation. Both Service Templates describe the same InputParameter that con-
sists of three components, whereby “ns” denotes the namespace of the respective 
ontology concept.  
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The first template requires at least one parameter of the type ns:GeographicArea and 
an optional parameter belonging to the classes ns:IntentionalProcess and 
ns:TimeMeasure. The concept ns:IntentionalProcess defines a kind of process that is 
performed, e.g. by a human, with a certain purpose. The second template is similar 
to the first but requires a parameter of the type ns:Building instead of 
ns:IntentionalProcess. The OutputParameter of the service is not described precisely 
in either template. 

<?xml version="1.0"?> 
<Services> 
 
    <Service name="YahooWebService1"  
describes= 
  "de.fhg.fokus.casaf.extern.service.web.YahooWebService"                 
priority="normal"> 
        <InputParameter describes="Query" adapter= 
      "de.fhg.fokus.casaf.service.adapter.StringAdapter"> 
        <Component minCard="1" maxCard="*">  
         ns:GeographicArea 
      </Component> 
            <Component minCard="0" maxCard="1"> 
         ns:IntentionalProcess 
      </Component> 
            <Component minCard="0" maxCard="1"> 
         ns:TimeMeasure 
      </Component> 
        </InputParameter> 
        <OutputParameter describes="Result"> 
        </OutputParameter> 
</Service> 
<Service name="YahooWebService2"  
describes= 
  "de.fhg.fokus.casaf.extern.service.web.YahooWebService"  
priority="normal"> 
  <InputParameter describes="Query" adapter= 
      "de.fhg.fokus.casaf.service.adapter.StringAdapter"> 
            <Component minCard="1" maxCard="*"> 
         ns:GeographicArea 
      </Component> 
         <Component minCard="0" maxCard="1"> 
         ns:Building 
      </Component> 
            <Component minCard="0" maxCard="1"> 
         ns:TimeMeasure 
      </Component> 
        </InputParameter> 
  <OutputParameter describes="Result"> 
        </OutputParameter> 
    </Service> 
</Services> 

In terms of the exemplary Service Templates, Table 9 shows some examples of De-

rived Parameters, the selected Service Parameters, and the Service Template chosen 
by the Service Manager according to the selection rules depicted above. Here, Berlin, 
Bar, Opera, Volleyball, and Germany denote the respective concepts. Berlin and Ger-
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many belong to the class ns:GeographicArea, Volleyball to the class 
ns:IntentionalProcess, and Bar and Opera to the class ns:Building. 

Derived Parameters Service Template Service Parameters 

Berlin, Bar YahooWebService2 Berlin, Bar 

Berlin, Volleyball YahooWebService1 Berlin, Volleyball 

Berlin YahooWebService1 Berlin 

Berlin, Bar, Opera YahooWebService2 Berlin, (Bar or Opera) 

Berlin, Bar, Volleyball YahooWebService1 Berlin, Volleyball 

Volleyball none - 

Berlin, Germany, Bar YahooWebService2 Berlin, Germany, Bar 

Table 9: Derived Parameters and corresponding Service Templates and Parameters 

5.3.4.3. Implementation Overview 

Figure 53 depicts the static structure of the interfaces connected to the service selec-
tion and invocation process.  

 

Figure 53: The service interfaces 

The ServiceManager is the entry point for all tasks related to the selection and invo-
cation of services. A new instance can be created using a constructor that includes 
the context model, a list of Derived Parameters, the current Concept Mapper, and a 
list of available Service Templates as parameters. The deriveServiceCall method can 
then be used to determine a ServiceCall representing the service to invoke. Service 

Templates can be added or the current settings can be found out. A derived Service-

Call has a name and ServiceInputs set by the ServiceManager instance. If the 
respective service is executed using the execute method, ServiceOutputs are re-
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turned. ServiceInputs and ServiceOutputs are described by the ServiceInputDescrip-

tions and ServiceOutputDescriptions. Respective instances of the description classes 
are created during the process of parsing the available Service Templates. For each 
semantic component of an input or an output parameter, a DescriptionComponent is 
created. A DescriptionComponent has a semantic type, a maximum, and a minimum. 
The ServiceOutputDescription and the ServiceInputDescription can be used to retrieve 
the actual component descriptions as well as the name of the adapter class and the 
name of the parameter. A ServiceInput has a name, a short description, and a Parame-

terAdapter as described by the respective parameter description. It may also have a 
value that could not be classified by the Concept Mapper and which can be received 
with the help of the getNoneConceptParameter method. The getParameters method 
returns the current ServiceParameters as set by the Service Manager. The method 
getValue inherited from ParameterAdapter, returns an object that serves as the actual 
service input such as a string received by concatenating the parameter values. Servi-

ceParameter extends Parameter and therefore has a name and a value referring to 
the semantic concept. Furthermore, the super classes of a parameter can be deter-
mined which enables the Service Manager to find matching templates given the 
Derived Parameters. The methods getParameters, setAdapter and getNoneConceptPa-

rameter of ServiceOutput are only important if service composition features are 
required and is therefore not implemented in the current context. 

5.3.5. Considering User Feedback 

As illustrated above the inference process of the Context Hotspot returns a Feedback 

Manager that can be used by the user interface to obtain service invocation results 
and available Feedback Options. The abstract classes FeedbackManager and Feed-

backObject represent the conceptual components and are depicted in Figure 54.  

 

Figure 54: Abstract classes Feedback Manager and Feedback Object 

The FeedbackManager class has several attributes that can be retrieved using the 
respective getter methods which are the current ContextHotspot, the reasoner used, 
the ServiceManager, the Service, and request information comprising the user ID, the 
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and removed from the FeedbackManager. A FeedbackObject has an ID, a name, and a 
description. An instance of this class has to implement the abstract methods isAp-

plicable and invoke. The method isApplicable returns true if the creation of a new 
Feedback Option is meaningful given the current settings of the FeedbackManager. 
The invoke method is executed if the user chooses the respective Feedback Option 
and returns a new FeedbackManager object. The method getApplicableFeedbackOb-

jects of FeedbackManager returns a list of FeedbackObjects whose method 
isApplicable returned true. 

Implemented FeedbackObjects affect the user query in the desired manner, substi-
tute or drop Derived Parameters, or neglect certain service results. For example, 
Figure 55 shows the relations of spatial concepts used by a Feedback Object that 
expands the current location. The property partlyLocated connects different con-
cepts and can be used to substitute one concept instance with another. 

 

Figure 55: Scenario ontology structure of important location concepts 

As the purpose of the Feedback Options is to provide a simple means for the user to 
influence framework results, they need to be sufficiently significant. For example, 
the ontology structure shown in Figure 55 allows for more than one Feedback Op-

tion, e.g. one for substituting a district with the city and a city with the nation. 
However, this is not desired since the user risks losing track of the available options. 
It is preferable to use only one option for expanding the location. Table 10 shows the 
possible outcomes of such a spatial Feedback Option. 

Available Service Parameter types Possible impact of the Feedback Option 

Street and Nation Replaces the street with the respective district. 

Street, District, City, and Nation Neglects the street. 

District and City Neglects the district. 

City Replaces the city with the respective nation. 

Table 10: Possible impacts of a Feedback Option for locations 

Street

District

City

Nation

(subclass of StationaryArtifact)

(subclass of GeopoliticalArea)

(subclass of GeopoliticalArea)

(subclass of GeopoliticalArea)

partlyLocated

partlyLocated, located, part, geographicSubregion

partlyLocated, located, part, geographicSubregion

Street

District

City

Nation

(subclass of StationaryArtifact)

(subclass of GeopoliticalArea)

(subclass of GeopoliticalArea)

(subclass of GeopoliticalArea)

partlyLocated

partlyLocated, located, part, geographicSubregion

partlyLocated, located, part, geographicSubregion
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For instance, if all four location concepts Street, District, City, and Nation are already 
contained by the current Service Parameters, it is reasonable to neglect the parame-
ter of the type Street. On the other hand, if only the city is provided it should be 
replaced with the respective nation. 
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6. Summary 

This chapter summarizes the thesis, and reiterates the major steps and the novel 
contributions to the research field of Ambient Intelligent Systems. The outlook de-
scribes the next steps to be taken and hurdles to be tackled for on-going 
enhancement of the communication life of the user. 

6.1. Conclusion 

This thesis has presented a novel layer model for Ambient Intelligent Systems based 
on the analysis of various single- and multi-user scenarios situated in heterogeneous 
communication environments. The new layer model derived from this requirement 
analysis then led to a new paradigm of service request orientation and the specifica-
tion of the corresponding servicerequest-oriented architecture. Service requests 
decouple the interpretation and processing of user needs from service calls by being 
formal enough to allow grounding to specific service calls while still encapsulating 
semantic annotations describing the current user goal to allow for context-aware 
service adaptation. Loosely coupled service interaction in time, space, and represen-
tation is also utilized to accommodate varying user environments. Given the 
underlying generic information access layer – pREST – the proposed architecture is 
highly distributable from small sensor nodes to high-end computers, as well as being 
scalable, and non-disruptive which gives it the capability to include existing context-
agnostic services such as traditional web search engines. 

6.2. Outlook 

Given the modular design of the Service Request Oriented Architecture presented in 
this thesis, further research can easily extend the proposed system. .The author con-
siders the following issues to be paramount in future research in this field:  

Support for service request routing. While the underlying information layer is already 
able to span several networks due to underlying pREST information access layer and 
its URI based addressing, service requests are currently distributed only through the 
semantically enhanced data space. Although the data space itself can be distributed 
over several nodes, all service requests within that data space belong to the same 
domain which is not always a desirable feature as when different users have parts of 
separated data spaces. If service requests need to cross several of these separate 
data spaces they must be routed which involves having the means for service re-
quest routing. 

Dynamic and distributed service composition and evaluation. Due to the loosely 
coupled service interaction pattern employed in the Service Request Oriented Archi-
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tecture, the semantic descriptions found in service requests cannot be used to ena-
ble on-the-fly composition of new services if no appropriate service consumer can 
be located in the semantically enhanced data space. The same holds true for abstract 
user requests that can guide dynamic service composition. Once services can be 
composed dynamically, the appearance of new devices with new capabilities can be 
used for dynamic performance evaluation and possible reconfiguration if other de-
vices are able to better execute the service request. 

Extended user evaluation of context-aware service adaptation. Although designed 
with the user in mind, the implementation of the Service Request Oriented Architec-
ture has not yet been scientifically tested with a large user group. Large user group 
testing would enable fine-tuning of the context-awareness component as well as 
providing further insights into user needs and sparking the development of further 
adaptation components.  
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