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Abstract

This thesis consists of a series of publications dealing with frictional contacts under the in-
fluence of externally applied vibration. The considered cases fall into two large groups: fric-
tional damping and active control of friction through vibration. Phenomenologically, these
two cases are quite distinct, but they can also be understood as two sides of the same system—
a vibrating frictional couple with or without bulk sliding. A flexible model is presented that
is able to describe both of these effects. In this thesis, it is applied to the following variations
of the basic problem:

• Static and sliding friction, as well as damping in stationary contacts.

• Normal, longitudinal and transverse vibration, as well as superpositions thereof.

• Passive friction reduction and active frictional drives and ratchets.

• Displacement-controlled and inertial systems.

The proposed model differs from prior art first and foremost in being purely macroscopic.
It is based on classical contact mechanics and dynamics and does not postulate any micro-
scale processes other than Amontons friction. A key role is played by the compliance of the
contact. Unlike the many specialized empirical and semi-empirical friction laws currently
used to describe transient frictional phenomena, the proposed model is simple, physical, free
of fitting parameters and generalizes to a wide variety of situations. The ten publications
forming this thesis explore a few of them in detail.

Despite being rooted in the same model framework, multiple distinct mechanisms and
behaviors can be identified in the studied systems:

• Damping in the case of combined normal and tangential oscillation leads to the qual-
itatively new effect of Relaxation Damping, whose asymptotic behavior differs from
the classical Mindlin damping: Whereas in Mindlin damping (only in-plane motion)
the dissipation depends on the coefficient of friction 𝜇 and goes to zero as 𝜇 goes to
infinity, introducing the normal degree of freedom enables damping even with infinite
friction, and has a regime where damping does not depend on 𝜇 even if it is finite.

• Normal oscillation reduces sliding friction by inducing a walking-like stick-slip motion,
and is only effective up to a certain maximum sliding velocity. However, resonances in
the surrounding system can be exploited to reduce friction at any sliding velocity.

• Transverse oscillation redirects the average friction vector away from the sliding direc-
tion, while actually increasing the total dissipated energy. Unlike with normal vibration,
stick-slip has no special significance.
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• Superimposed normal and tangential oscillation cover a continuum from reduction of
friction, over asymmetric resistance (frictional ratchets) to active drives.

It is hoped that this workwill contribute to better understanding andmore precisemodeling
of friction under complicated and dynamic loading scenarios. Such situations frequently arise
in modern applications of tribology, e.g., robotics and high-precision positioning systems. It
is also the aim of this thesis to demonstrate the importance of the macro scale in tribology in
general. In the opinion of the author, the conception of friction as a localized phenomenon is
often inappropriate, and can easily lead to incorrect modeling and measurements. This view
is supported with additional examples from the literature.



Zusammenfassung

Die vorliegende Dissertation besteht aus einer Reihe von Publikationen, die sich mit Reibkon-
takten unter Einfluss von extern angebrachten Schwingungen befassen. Die Publikationen
lassen sich thematisch in zwei Gruppen einordnen: Reibungsdämpfung und aktive Reibungs-
beeinflussung. Obwohl beide Themengebiete eine eigene Phänomenologie aufweisen, kön-
nen sie dennoch als verschiedene Aspekte desselben Systems betrachtet werden, nämlich als
vibrationsbehaftete Kontakte mit oder ohne makroskopisches Gleiten. Es wird ein flexibles
Modell vorgestellt, welches beide Fälle gut beschreiben kann. Im Rahmen dieser Dissertation
werden mithilfe dieses Modells verschiedene Variationen des Grundproblems untersucht:

• Haft- und Gleitreibung, sowie stationäre Reibungsdämpfung.

• Einfluss von Vibration in Normalrichtung, Gleitrichtung, orthogonal zur Gleitrichtung
in der Kontaktebene, sowie verschiedene Kombinationen davon.

• Reibungsverringerung, richtungsabhängige Reibung und aktive Reibantriebe.

• Weggesteuerte (quasistatische) und massenbehaftete Systeme.

Der vorgestellte Ansatz unterscheidet sich von Vorarbeiten in erster Linie durch seine voll-
ständig makroskopische Natur. Er basiert auf der klassischen Kontaktmechanik und System-
dynamik, und macht keine Annahmen über Prozesse auf der Mikroskala, abgesehen von dem
einfachen Amontons’schen Reibgesetz. Eine besonders wichtige Rolle wird der endlichen
Kontaktsteifigkeit der Verbindung eingeräumt. Im Gegensatz zu den vielen empirischen und
semi-empirischen Reibgesetzen, die für die Beschreibung von Reibung unter dynamischer
Beanspruchung entwickelt wurden, ist das hier verwendete Modell sehr einfach, physikalisch
begründet, enthält keine Fittingparameter, und kann für eine Vielzahl von unterschiedlichen
Situationen angepasst werden. In den zehn Publikationen, die die vorliegende Arbeit aus-
machen, werden einige dieser Möglichkeiten im Detail untersucht.

Obwohl alle untersuchten Systeme auf denselbenModellvorstellungen beruhen, zeigen sie
dennoch recht unterschiedliches Verhalten, und ähnliche Effekte können oft unterschiedlichen
Mechanismen zugeschrieben werden. Einige Beispiele dafür sind:

• Dämpfung im Kontakt mit überlagerter Vibration in Normal- und Tangentialrichtung
führt zum Relaxation Damping, welches sich qualitativ von der klassischen Mindlin-
Dämpfung unterscheidet: Bei der Mindlin-Dämpfung (nur Tangentialschwingungen)
ist der Energieverlust vom Reibungskoeffizienten 𝜇 abhängig, und geht gegen Null,
wenn 𝜇 sehr groß wird. Wenn aber Schwingungen in Normalrichtung hinzugefügt wer-
den, dann hat der Dämpfungskoeffizient selbst bei vollständigemHaften einen endlichen
Wert. Unter bestimmten Bedingungen ist dieser Grenzwert auch bei endlichen Reib-
koeffizienten gültig.
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• Gleitreibung lässt sich durch Schwingungen in Normalrichtung reduzieren, wobei im
Kontakt eine Stick-Slip Bewegung auftritt, die die Energiedissipation im Vergleich zum
normalen Gleiten verringert. Dieser Prozess ist grob mit dem Gehen (statt Schleifen)
vergleichbar, und is geschwindigkeitsabhängig. Bei gegebenen Frequenz und Ampli-
tude ist die Reduktion der Reibkraft nur bis zu einer Maximalgeschwindigkeit möglich.
Allerdings können Resonanzen im System ausgenutzt werden, um Reibung bei einer
beliebigen Gleitgeschwindigkeit zu verringern.

• Transversalschwingungen (orthogonal zur Gleitrichtung in der Ebene) können den Rei-
bungskoeffizienten ebenfalls reduzieren, aber auf eine andere Art und Weise: Der Be-
trag der momentanen Reibkraft bleibt immer konstant, aber die Richtung oszilliert in
der Ebene, so dass in der Projektion auf die Bewegungsrichtung die Reibkraft scheinbar
kleiner wird. Allerdings steigt gleichzeitig die durch die Reibung insgesamt dissipierte
Energie. Bei Transversalschwingungen kann Stick-Slip ebenfalls auftreten, spielt aber
keine besondere Rolle. Eine feste Obergrenze für die Gleitgeschwindigkeit gibt es nicht.

• Auch Schwingungen in Gleitrichtung können die Reibung verringern. In Kombina-
tion mit Normalschwingungen ist ein Kontinuum von Systemverhalten, angefangen mit
verringerter Reibung, über richtungsabhängige Reibung (Dynamic Ratchets), bis zu ak-
tiven Reibantrieben realisierbar.

Diese Arbeit stellt hoffentlich einen Beitrag zum besseren Verständnis und Modellierung
von dynamischen Reibungsphänomenen dar. Trockene Reibung unter Einfluss von Vibra-
tion sowie Kraft-, Geschwindigkeits-, und Richtungsänderungen ist in vielen technischen An-
wendungen zu finden, insbesondere in aktuellen Technologien wie der Robotik und in hoch-
präzisen Positionierungssystemen. Abgesehen von konkreten Anwendungen unterstreicht die
vorliegende Dissertation auch die allgemeine Wichtigkeit der Makroskala in der Tribologie.
Es wird in der Praxis oft angenommen, dass Systemdynamik und „intrinsische” Reibungmehr
oder weniger getrennt betrachtet werden können. Nach Ansicht des Autors ist diese Betrach-
tung nicht mehr zeitgemäß und kann leicht zu falschen Modellansätzen und unzuverlässigen
Messwerten führen. Zusätzliche Beispiele aus der Literatur für mögliche „Skalenfehler” wer-
den im letzten Kapitel diskutiert.
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Chapter 1

Introduction

1.1 On Friction and Friction Laws
Dry friction is a deceptively complex phenomenon. Despite its great technological impor-
tance and more than two centuries of serious scientific research, it still defies quantitatively
accurate, ab initio prediction. Upon closer examination, this is not entirely surprising. Most
surfaces exhibit roughness and chemical and structural heterogeneity at the microscopic level,
and actual contact is usually limited to a few hotspots that account for a small fraction of the
apparent contact area [8]. Due to the high stresses encountered in these microcontacts, many
nonlinear processes may occur there, including complex elastic and plastic deformation, frac-
ture, phase changes, chemical reactions, interaction with wear particles, etc. [82]. All of this
is notoriously difficult to model mathematically. As Wolfgang Pauli put it, “God made the
bulk; surfaces were invented by the devil.”1

It is actually quite remarkable, given all this microscopic complexity, that relatively sim-
ple and useful “laws” of friction exist at all. The earliest and still widely used friction law is
𝐹 = 𝜇𝐹𝑛, which asserts that the force of friction is proportional to the normal load and mostly
independent of other factors. The constant of proportionality 𝜇 is known as the coefficient of
friction (COF), and is supposed to depend only on the materials of the contacting bodies. This
simple equation is widely known as Amontons’ law [3], and is only a very rough approxima-
tion of real friction. A much more sophisticated view was introduced by Charles-Augustin
de Coulomb around 1780 [11, 66]. Through careful measurements, Coulomb found that the
coefficient of friction is not really a constant, but rather depends on many factors, such as slid-
ing velocity, normal load, time of rest, cleanliness of surfaces, etc. Many additional factors
have since been added to that list, e.g., apparent contact area, surface roughness and pattern-
ing, temperature and humidity. The shape of the contact and the stiffness of the measurement
apparatus are also known to exert an influence [84].

A number of additional phenomena become relevant when friction occurs under non-
steady-state conditions, such as during stick-slip transitions or changes of velocity. One ex-
ample is the kinetic (explicitly time-dependent) behavior of friction, which was already known
to Coulomb at least in principle, and was later studied by Dieterich [15, 16] in the context of
rock friction and earthquake dynamics. On the basis of this work, Ruina [69] and Rice [68]
formulated the first rate-state friction laws, which depend on time and one or more internal
state variables. It is thought that the phenomenon is caused by thermally-activated aging pro-
cesses at the micro scale.

1As quoted by Schroeder in [71].
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Rate-state laws have become established in the geological community and are employed,
e.g., in the study of earthquake dynamics. They may also be used to explain the detailed dy-
namics of the stick-slip transition: although such transitions appear to be abrupt in ordinary
friction experiments, high-resolution position measurements reveal a continuous and accel-
erating creeping motion that seamlessly transitions into bulk sliding [28]. This behavior is
not compatible with the usual division into static and sliding friction, but may be explained
using a combination of rate-state friction and system dynamics [65]. However, an alternative,
non-kinetic, explanation for accelerated creep has also been proposed [47].

A somewhat different framework is used for describing similar issues in control systems
and robotics. The central phenomenon in this context is the so-called pre-slip, which describes
the tendency of a frictional contact to experience a small displacement under lateral loading,
even before bulk sliding sets in. This displacement is not purely elastic, which also gives rise
to the concept of hysteresis of friction under changes of direction. Correct modeling of such
effects is essential when exact positioning under stop-and-go conditions is required, e.g., in the
control of robotic manipulators and stick-slip-based drives and actuators. Various empirical
models have been developed to describe pre-slip. These include, in order of sophistication,
the Elastoplastic [17], Dahl [12] and LuGre [14] models. The latter is a semi-empirical law
based on the bristle model of friction, which itself can be considered a generalization of the
Prandtl-Tomlinson model.

1.1.1 Friction and Oscillation
Another major cluster of dynamic frictional effects is formed by the rich interaction between
friction and vibration. On the one hand, there is the well-known tendency of many tribosys-
tems to experience frictional instabilities (stick-slip) and thereby produce oscillations at vari-
ous frequencies. When the frequency is in the audible range, this is perceived as noise. Typical
examples are brake squeal and cornering noise. However, self-excited vibration is not always
undesirable, and is deliberately used in musical instruments to produce sound. A comprehen-
sive review of friction-induced noise was compiled by Akay [2].

Going in the other direction, externally applied vibration (usually ultrasonic) is able to
significantly reduce friction. This has been known since at least the 1950s [23]. Both static
and sliding friction are affected, and vibration applied in any of the three directions (normal
to the plane [81]; in the direction of motion or static load [35]; transverse) is known to reduce
friction. In the sliding case, the phenomenon is known to be velocity-dependent. It should
also be noted that ultrasonic vibration can suppress lower-frequency frictional instabilities and
therefore finds use as one of the ways to suppressing brake squeal [34, 44].

Although the influence of vibration on friction has been known for a long time and has
foundmultiple practical applications, there appear to be few experimental studies of the effect,
and even fewer credible theoretical models. On the experimental front, the work of Pohlman
[51] and Godfrey [27] is notable. These authors measured the electrical resistance in the
contact and concluded that the reduction of friction is caused by the breaking of microscopic
bridges by the action of ultrasonic vibration. More recent work on friction under the influence
of longitudinal vibration was performed by Chowdhury et al. [10] and V. L. Popov et al. [64].

A few models have been proposed as well, for example a Prandtl-Tomlinson-based for-
mulation by Zaloj et al. [85]. This model was somewhat successful in reproducing certain
aspects of friction under the influence of vibration, e.g., the suppression of frictional instabil-
ities. However, due to its abstract nature, it is generally difficult to connect back to physical
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reality and concrete experimental data.

1.1.2 Frictional Damping
The reduction of friction by externally applied vibration forms one of the focus areas of this
thesis, with frictional damping forming the other.

This kind of damping is generally caused by surfaces sliding relative to each other in
a frictional connection. Typically this involves partial slip (also called micro-slip), a well-
known contact-mechanical phenomenon, first analyzed by Mindlin et al. in 1952 [42]. When
a curved (non-conformal) contact is subjected to a lateral load, it does not begin to slide all
at once, but rather forms a ring-shaped partial slip zone at the edge of the contact. This slip
zone propagates inwards as the lateral load increases. When the partial slip zone reaches the
center of the contact, bulk sliding sets in. Under periodic lateral loading (i.e. vibration),
microslip thus leads to energy dissipation, even though the contact is nominally at rest, and
also produces a characteristic ring-shaped wear track, which is known as fretting wear [32].

In many cases, frictional damping is a desirable characteristic. However, the associated
wear is almost always problematic, both from the point of view of structural integrity and the
release of wear particles. Frictional damping not only plays a role in macroscopic contacts,
but can also affect energy dissipation in bulk materials, e.g., due to the presence of internal
cracks or fiber-fiber contacts in composites.

The immediate cause of mirco-slip is periodic loading in the lateral (in-plane) direction,
and the original analysis of Mindlin focused on this degree of freedom exclusively. Fric-
tional damping under combined normal and lateral oscillation, on the other hand, was not
considered until fairly recently. Putignano, Davies et al. [67, 13] studied this problem using
numerical simulation of rough surface contacts, and found that the normal degree of freedom
significantly affects the dissipation.

1.1.3 Wear and Long-term Dynamics
Apart from being associated with frictional damping, wear also plays a role in another dy-
namic aspect of friction—one that occurs on a much longer time scale than the kinetic fric-
tion discussed earlier: Friction inevitably leads to wear, and wear modifies the surface at
the microscopic level, which in turn affects friction. Especially in rotating or reciprocating
tribosystems this produces a variety of long-term effects, which may be either asymptotic
(run-in) [36], random, or even periodic. The temporal evolution of friction and its relation to
wear processes has been studied extensively by Ostermeyer [49]. The effect of wear particles
on the coefficient of friction is also an interesting research topic. Under some circumstances,
such particles can act as microscopic ball bearings, and probably contribute to the extremely
low coefficients of friction of diamond-like carbon and similar coatings [22].

However, all such long-term phenomena are outside the scope of this thesis.

1.1.4 Some Practical Applications
The phenomena described above have found a large number of practical applications. The
reduction of friction forces through ultrasonic vibration is often used to improve the precision
and efficiency of metalworking processes. Classical examples include wire drawing [73, 45],
press forming [18, 72, 5], cutting and machining [80]. Micro-machining and surgical tools
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[21] in particular can benefit from ultrasonic cutting technology. Ultrasonic welding is em-
ployed as well, but this involves a level of plastic deformation that puts it well outside the
scope of this thesis.

Another major area of application is the stabilization of system dynamics and suppression
of frictionally induced noise. Brake squeal [44] and rail-wheel curve squeal [31] stand out,
but the potential applications are almost limitless. Another possibility for combating undesir-
able vibration is the deliberate introduction of suitable frictional connections [26] to increase
damping. This is particularly attractive in lightweight metallic structures, e.g., in aerospace.
Purposeful design of composite materials with suitable damping properties due to internal
friction is also possible [86].

There are also a number of advanced applications that go beyond simple sliding friction,
and involve vibration-driven motors, actuators and transporters [61]. The most famous exam-
ple are traveling wave motors [70, 83, 76], which are used to adjust focus in camera lenses,
amongmany other applications. Similar principles are employed in vibrational conveyors [25,
24, 43]. The ongoingminiaturization inmany fieldsmakes vibration-based drives increasingly
attractive, since they can be manufactured in much more compact sizes than conventional mo-
tors.

Another variation of stick-slip drives is to be found in high-precision positioning systems
[74, 20]. These are usually based on some combination of piezoelectric actuation and stick-
slip motion, and can reach nanometer precision. Such positioning stages and micro-actuators
play an essential role in microelectronics manufacturing and high-precision scientific instru-
ments.

1.2 Beginnings of a Macroscopic View
As described above, there is a rich body of existing research into the detailed phenomenol-
ogy of friction, including many different environmental and boundary conditions, as well as
various dynamic effects from microscopic creep to ultrasonic vibration. However, the pre-
dominately empirical nature of the research has, for the most part, prevented the integration
of individual results into a coherent and reusable whole. Especially when it comes to physical
interpretation and modeling, much work remains to be done.

This is not to say that reasonable explanations for individual phenomena have not been
proposed. E.g., the mechanism and model parameters of rate-state laws in the context of rock
friction can be plausibly related to thermally activated processes and the characteristic length
of microscopic asperities. Another example is the LuGre model, which consists of differential
equations for the (statistical) evolution of “microcontacts” in the bristle model. The reduction
of friction due to out-of-plane vibration has been attributed to breaking of asperity contacts.
Variations of the Prandtl-Tomlinson model have also been used to explain frictional phenom-
ena at the micro scale. However, upon closer examination, explanations of this kind have to be
classified as mostly empirical. Many of them are plausible in a post-hoc explanatory fashion,
but they do not usually describe specific physical mechanisms and often lack quantitative pre-
dictive power. In addition, while the model parameters are often at least somewhat physically
motivated, they do not reliably correspond to measurable physical quantities and in practice
have to be treated as fitting parameters.

Part of the difficulty in making progress towards proper physical understanding might be
related to the intuitive expectation that the phenomena in question are intrinsic properties of
friction, and are caused primarily by micro-scale processes. However, the complexity of fric-
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tion at the microscopic level makes it rather difficult to work with full-scale physical models,
which greatly increases the appeal of abstract substitutes such as Prandtl-Tomlinson or the
bristle model. A possible solution to this is the emerging hypothesis that many supposedly
intrinsic properties of friction actually arise from the interaction of “ordinary” (e.g., Amon-
tons) friction andmacroscopic dynamics. The promise of this approach is that it may result in
properly verifiable physical models with physical parameters and at least some degree of uni-
fying power. In this thesis, the viability of this approach is shown in the context of dynamic
frictional phenomena, with a particular focus on friction under externally imposed vibration.
Hints at the macroscopic nature of other properties of friction will also be discussed.

The idea that friction is partly determined by macro-scale interactions is not new per se,
and has been around at least since the 1950s. At tribological conferences and in the literature
it is often acknowledged that friction is a “multiscale phenomenon” and that the coefficient
of friction is really a “system property”, rather than a material-specific constant. Work to put
these general principles on a specific, quantitative basis is, on the other hand, fairly recent. One
early example is due to Storck et al. [76], who studied the influence of ultrasonic vibration,
stemming from an interest in ultrasonic motors. They proposed an extremely simple model
consisting of an unstructured contact point sliding with a uniform velocity under constant
normal load, and subject to Coulomb (or rather Amontons) friction. In addition, an in-plane
displacement-controlled oscillation (in either parallel or transverse directions) is present. This
model succeeded in reproducing some features of experimental data quite well, but others
remained unaccounted for.

Figure 1.1: Velocity-dependence of the COF under transverse and parallel oscillation,
as calculated (solid lines) and measured (dots) by Storck et al. Source: Fig. 5 in [76].

In Figure 1.1, reproduced from [76], one can see that in the case of perpendicular oscilla-
tions a convincing fit of theory and experiment is achieved, but in the parallel case the only
really good agreement is in the point of cross-over from reduced to constant friction. The
shape of the predicted curve is also somewhat implausible (and according to results of this
thesis, actually incorrect). The model is also only applicable to sliding friction and is unable
to accommodate static friction or out-of-plane vibration.

Another major contribution to the macroscopic point of view arose from a collaboration
between Edeler et al. [20] and Teidelt et al. [79, 48]. The work of Edeler concerned the
construction of stick-slip microdrives involving spherical ruby micro-contacts. The control
of such devices requires accurate modeling of dynamic friction and the previously mentioned
pre-slip phenomenon. This was attempted using the LuGre [14] model, which is generally
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considered to be the best available for such applications. Unfortunately, this approach did not
yield the desired accuracy. A much better fit could be achieved by Teidelt [77] based on the
idea that pre-slip is not an intrinsic frictional effect, but simply partial slip in a curved contact.

Partial slip was already mentioned in the context of damping, but even under non-periodic
loading (e.g. during a stick-slip transition), Mindlin slip is macroscopically observable as
a small, non-recoverable displacement that precedes sliding. I.e., it has exactly the same
characteristics as pre-slip. However obvious in retrospect, this connection apparently wasn’t
made in the 60 years between Mindlin and Teidelt. But when it ultimately arrived, it proved
highly successful in quantitative modeling of Edeler’s microdrives [20, 19], and did so using
only classical contact mechanics, Amontons friction and no additional fitting parameters.

The identity of “intrinsic” pre-slip and macroscopic partial sliding was extensively tested
by Teidelt [77] and later Milahin [40], and was experimentally confirmed to hold for a range
of normal forces, radii of the contacting spheres, etc. The same was verified numerically
for the contact of rough surfaces by Grzemba et al. [29]. In all cases, the characteristic
length of pre-slip was found to be simply the indentation depth multiplied by the coefficient
of friction. Although this work is yet to gain general recognition, in the opinion of the author
it presents sufficient evidence to strike pre-slip from the list of intrinsic frictional phenomena
and to render associated empirical models, including the highly regarded LuGre, more or less
obsolete. It not only provides a parsimonious physical explanation, but also good quantitative
agreement with experiment and takes into account factors that are not covered by empirical
laws (e.g., curvature of the contact and indentation depth).

The idea to apply macroscopic contact mechanics to friction under dynamic loading was
also tried in the case of friction under the influence of ultrasonic vibration. This can be seen
as an augmentation of the earlier model of the Wallaschek group [76] by a structured contact
capable of pre-slip, and in some cases an additional degree of freedom representing the elas-
ticity of the surrounding system. This approach was pursued by Starcevic and Filippov [75],
Teidelt [78] and Milahin [39, 41] both theoretically and experimentally. This work removed
some of the mentioned limitations of the earlier model (such as the inability to handle static
friction and normal oscillations), but was still unable to achieve accurate fit with experimental
data in many situations.

1.3 The Role of Contact Stiffness
The present thesis continues and extends the approach outlined in the previous section. The
primary difference relative to earlier work by Storck, Starcevic, Teidelt, Milahin and others
is explicit consideration of the macroscopic deformation and dynamics of the contact region,
which continuously responds to changes in the external load. In terms of model complexity
this represents a relatively small addition, but one that turned out to have high impact and
successfully resolved the main issues encountered in earlier models.

The promise of this approach, and the importance of the compliance of the contact, was
initially demonstrated in the context of frictional damping (Chapter 2, Publications 1-3). In
particular, the extension of the Mindlin problem to damping under superimposed in-plane
and out-of-plane oscillation was considered. In this context, the simplicity of the model led
to the discovery of relaxation damping, an effect that appears to have been missed by earlier
investigators [67, 13].

When applied to active control of friction by externally applied vibration, the new model
overcame the remaining discrepancies seen in the work of Storck and later authors, and was
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able to unify the influence of vibration in any of the three possible directions (Chapter 3, Pub-
lications 4-10). Static and sliding friction are handled with equal ease, and the peculiarity of
the displacement amplitude being the determining factor in the former and the velocity am-
plitude in the latter, is easily explained. The velocity-dependence and important cross-over
points appear to be described correctly. Both displacement-controlled (quasi-static) and iner-
tial systems can be modeled, as well as superimposed and phase-shifted oscillations, which
may result in asymmetric friction and active drives.

It should be noted that in most of the work to be presented here, no calculation of the
full contact problem (such as, e.g., the Hertzian contact) is performed. Although this is both
possible and advisable where maximum accuracy is required, all the basic mechanisms can be
elucidated with a minimal contact model that assumes a constant (with respect to indentation)
normal contact stiffness. This assumption is equivalent to a contact of a flat-ended cylinder
with a plane, and in the model can be represented with a single spring element with a spring
constant equal to the bulk contact’s normal and tangential stiffness. Thus, most of the follow-
ing papers make use of variations of the simple system shown in Figure 1.2, although some
publications also treat a curved contact for comparison.

v0

uz

ux

Fx

Fz
µ0

Figure 1.2: Prototype model employed in this thesis, with a single spring represent-
ing the normal and tangential compliance of the contact. Variations of this model are
employed in the presented publications. The situation represented in this particular ex-
ample is sliding friction (with a constant velocity 𝑣0) under a displacement-controlled
normal oscillation 𝑢𝑧(𝑡).

Evenwhenworkingwithin the constant-stiffness approximation, it is important to note that
the actual contact stiffness at the given average indentation should be used. Since this stiffness
is in general a function of contact size, curvature and indentation, it stands to reason that
these parameters quantitatively affect friction under vibration. This has been indeed observed
experimentally [40].

Interestingly, a large variety of proximate mechanisms of friction control and reduction are
observed depending on the specifics of the problem, even though the underlying model is es-
sentially the same. For example, a sliding contact under normal oscillation will experience re-
duced friction due to a type of stick-slip motion that might be described as “pseudo-walking”.
This process causes a direct reduction of both the apparent COF and the total dissipated en-
ergy. In the case of parallel oscillation, on the other hand, the “reduction” of friction is caused
by shifting some of the work from the slider to the oscillator, and in the case of superimposed
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normal and parallel oscillation, the work done by the oscillator can even be used to produce
a driving force. In the third case, transverse oscillation, the apparent reduction of friction
is effected by yet another mechanism: the projection of the oscillating friction vector in the
direction of sliding, which is essentially the same as in the Storck model [76].

In the immediate contact point, Amontons friction (with a constant coefficient of friction
𝜇0 applying to both static and sliding cases) is usually assumed. This is done not only for
the sake of simplicity, but also because the very premise of this thesis is that complex fric-
tional properties can be decomposed into “featureless” microscopic friction and macroscopic
dynamics. In principle, the model allows the use of any other friction law. This is not made
use of in the present thesis, but is one of the possibilities for future work.

1.4 Overview of the Thesis
In the sequel, ten publications are presented, which explore frictional contacts under periodic
loading using the described macroscopic methodology.

The publications are grouped thematically into two chapters. The three papers making up
Chapter 2 are concerned with damping in nominally static contacts under combined normal
and lateral oscillation. Of particular note is the phenomenon of relaxation damping which
occurs in these conditions. The remaining seven papers, grouped in Chapter 3, deal with the
primary focus of this thesis—reduction and active control of friction by exterally applied os-
cillation. This problem is approached in the same general way as frictional damping, but with
the addition of bulk sliding, which qualitatively changes its phenomenology. The individ-
ual publications introduce and analyze the proposed macroscopic model in some detail and
then apply it to a variety of situations, including normal, tangential and transverse oscilla-
tion, quasi-static and inertial systems, as well as frictional drives and ratchets. Each paper is
preceded by a short introduction providing some context to the reader.

In the final Chapter 4, the main findings of these papers are summarized and some addi-
tional commentary is provided. The relation of particular results to the work of other authors
is discussed, and an overall synthesis is attempted. Following this, there is a brief review of
additional examples from the literature, where frictional properties that are normally consid-
ered intrinsic can be plausibly attributed to macroscopic dynamics. The chapter is concluded
by a discussion of the presented work and avenues for future research.

Some additional proofs, with particular relevance to Publication 9, can be found in the
Appendix.



Chapter 2

Publications: Relaxation Damping

This chapter presents three publications on the topic of relaxation damping:

P1: M. Popov, V. L. Popov, and R. Pohrt. “Relaxation damping in oscillating contacts”.
Scientific reports 5 (2015), p. 16189

P2: M. Popov. “Non-frictional damping in the contact of two fibers subject to small os-
cillations”. Facta Universitatis, Series: Mechanical Engineering 13.1 (2015), pp. 21–
25

P3: M. Popov and V. L. Popov. “Relaxation damping in contacts under superimposed nor-
mal and torsional oscillation”. Physical Mesomechanics 19.2 (2016), pp. 178–181

Publication 1 forms the core of this chapter. It introduces the phenomenon of relaxation
damping in the context of a contact with perfect stick. This would preclude energy dissipation
in a traditional fretting-type, tangentially oscillating contact. However, in the paper it is shown
that interaction with the normal degree of freedom allows irreversible loss of energy even in
the absence of frictional slip.

The two follow-up publications use the methodology established in P1 to extend the analy-
sis to different settings, including the contact of oscillating fibers (P2) and combined torsional
and normal oscillation (P3).

Each publication is presented in the original layout, and is preceded with a brief commen-
tary that summarizes the contents and provides some additional perspective.

9
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2.1 Publication 1
Introductory remarks
This paper introduces the concept of relaxation damping, which was so named to contrast it
with ordinary frictional damping. When a contact is subjected to periodic loading in the tan-
gential direction only, it develops a zone of partial slip at the edge of the contact, where energy
is dissipated in every cycle (and which also leads to the well-known fretting wear pattern). It
can be shown that the energy dissipated per oscillation cycle is inversely proportional to the
coefficient of friction, so that dissipation tends to zero as friction tends to infinity. However,
when a contact is periodically loaded in both tangential and normal directions, qualitatively
new behavior appears. Most importantly, dissipation does not tend to zero when the condi-
tion of perfect stick is approached. Instead, it reaches a finite value that is determined by the
stiffness ratio of the medium, the oscillation parameters and a geometry factor. In this limit,
energy is dissipated by radiation of elastic waves, which are eventually thermalized by con-
ventional means. The process can be likened to energy dissipation in a plucked string: elastic
potential energy is first converted to vibrational energy—still mechanical, but less available—
and is then gradually converted to sound and ultimately to thermal motion.

In retrospect, it is the opinion of the author that the paper puts too much focus on this lim-
iting case of infinite friction and the resulting “elastic dissipation”. The presented analysis is
also applicable to contacts where the coefficient of friction is merely large, rather than infinite.
In that case energy will be dissipated mundanely through friction, although the amount will
still tend to the value given in the paper. This fact is, unfortunately, only briefly mentioned in
the Discussion section, but should be kept in mind when considering the main analysis.

Summary
The analysis begins by establishing a simple contact model—based on the Method of Dimen-
sionality Reduction (MDR)—wherein a rigid indenter is pressed into an elastic foundation and
subjected to simultaneous normal and tangential oscillation. The indenter is initially assumed
to be conical, although this is later relaxed to an arbitrary shape, since the surface slope near
the edge of the contact turns out to be the defining factor. The oscillations are assumed to be
harmonic and of equal frequency, but with an arbitrary phase shift. The coefficient of friction
is assumed to be infinite, so that the springs of the elastic foundation stick to the indenter
wherever the local normal force is positive.

Based on this model, it is argued that energy dissipation occurs at all nontrivial phase
shifts, because springs of the foundation are “captured” by the indenter in one position and
released (by loss of contact) in another, with the accumulated energy being released as elastic
waves. The total energy released in this fashion is given in closed form in Eqs. (11, 12).

A different case is then considered, where the frequency of the normal oscillation is much
higher than that of the tangential oscillation. The result, given in Eqs. (16, 17), shows that the
dissipation is proportional to the square of the tangential amplitude, i.e., the energy of themain
oscillation. This implies that the addition of a high-frequency normal oscillation component
can convert frictional attenuation from the usual reciprocal to exponential, although this is not
explicitly mentioned in the paper.

The main results can be written in a shape-invariant form using only the second derivative
of the normal contact force w.r.t. indentation (𝜕2𝐹𝑧/𝜕𝑢2

𝑧). From this it is argued that the
obtained results have nearly universal validity (including rough surfaces, Eq. 18), so long as
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the amplitudes are not too large. This is confirmed numerically for a number of non-trivial
contact configurations using the Boundary Element Method (Fig. 3).

The question of physical interpretation is raised next. The MDR-based model is very con-
venient for analysis, but it does not make it very clear how a continuous, quasi-static move-
ment of a 3D contact can lead to the discontinuous release of stresses as required by relaxation
damping. The explanation is found in a moving stress singularity at the edge of the contact,
which is also confirmed numerically (Fig. 4). However, it should be noted that this expla-
nation is only required in the limiting case considered in the paper. With finite friction the
stored elastic energy would be dissipated by ordinary frictional sliding in a very brief period
prior to detachment.
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Relaxation damping in oscillating 
contacts
M. Popov1,2, V.L. Popov1,2,3 & R. Pohrt1

If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to 
superimposed oscillations in the normal and tangential directions, then a specific damping appears, 
that is not dependent on friction or dissipation in the material. We call this effect “relaxation 
damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed 
analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and 
tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude 
of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is 
dependent on the phase shift between both oscillations. In the case of low frequency tangential 
oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to 
the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough 
surfaces as well as for the case of finite friction is discussed.

It is well known that oscillating tangential contacts exhibit frictional damping due to slip in parts of 
the contact. Solutions for this behavior in the case of spherical surfaces were given by Mindlin et al.1 in 
1952. This contact damping plays an important role in numerous applications in structural mechanics2, 
tribology3 and materials science4. Since this damping arises due to partial slip in the contact of bodies 
with curved surfaces, when the coefficient of friction tends towards infinity, slip disappears, frictional 
losses are eliminated, and the oscillation damping becomes zero1. However, when a contact oscillates 
in both normal and tangential directions, there is another, purely elastic loss mode that we refer to as 
“relaxation damping”. To our knowledge this phenomenon has not yet been discussed in the literature. 
Damping due to a combination of normal and tangential oscillations has been studied recently by Davies 
et al.5 for smooth two-dimensional profiles and by Putignano et al.6 for rough surfaces. However, the 
fact that dissipation exists even in the limiting case of an infinite coefficient of friction, when relative 
frictional movement of contacting bodies does not occur, went unnoticed. This effect is an example of 
purely “non-dissipative” damping, like the Landau damping in a collisionless plasma7.

In its essence the proposed loss mechanism is similar to a spring that is deflected and abruptly released, 
converting the stored energy into elastic waves that are eventually dissipated. If we consider a body that 
is pressed into a plane, then moved tangentially (with “stick” conditions in the contact), and finally lifted 
in the normal direction, the accumulated shear energy will eventually be lost even if there is no slip in 
the contact area and the material is purely elastic. Thus, an apparently non-dissipative system shows 
dissipation. The same will also happen in contacts that oscillate normally and tangentially at the same 
time, even if the motion is very slow (quasi-static.) At first glance it seems contradictory that a slowly 
moving, non-dissipative system shows dissipation. The physical reason for this dissipation is the infinite 
stress concentration at the borders of a tangential contact. Due to the stress singularity, infinitely rapid 
movements occur in the material even in the case of quasi-static macroscopic movement of the contact-
ing bodies, similar to the dissipation from elastic instabilities in the Prandtl-Tomlinson-model8,9,10. The 
physical nature of relaxation damping can be understood and analyzed very simply in the framework of 
the method of dimensionality reduction (MDR). For small oscillation amplitudes, the dissipation rate 
can be calculated analytically.
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Results
Preliminary remarks.  Consider a contact between two axially-symmetric elastic bodies with moduli 
of elasticity of E1 and E 2, Poisson’s numbers of ν1 and ν 2, and shear moduli of G1 and G2, accordingly. 
We denote the difference between the profiles of the bodies as = ( )z f r , where z is the coordinate normal 
to the contact plane, and r is the in-plane polar radius. The profiles are brought into contact and are 
subjected to a superposition of normal and tangential oscillation with small amplitudes. This contact 
problem can be reduced to the contact of a rigid profile = ( )z f r  with an elastic half-space, Fig. 1a.

In our analysis we use the method of dimensionality reduction, MDR11. MDR is based on the solu-
tions for the normal contact by Galin12 and Sneddon13 as well as their extensions for tangential contacts 
by Cattaneo14, Mindlin15, Jäger16 and Ciavarella17. In the framework of the MDR, two preliminary steps 
are performed11: First, the three-dimensional elastic half-space is replaced by a one-dimensional linearly 
elastic foundation consisting of an array of independent springs, with a sufficiently small separation 
distance ∆x and normal and tangential stiffness ∆kz and ∆kx defined according to the rules
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In the second step, the three-dimensional profile = ( )z f r  is transformed into a one-dimensional profile 
according to
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If the MDR-transformed profile ( )g x  is indented into the elastic foundation and is moved normally and 
tangentially according to an arbitrary law, the contact radius and the force-displacement relations of the 
one-dimensional system will exactly reproduce those of the initial three-dimensional contact problem 
(proofs have been done in18 and11). The MDR solution is as accurate as the solutions of Cattaneo14 and 
Mindlin1: the solution contains an inaccuracy, which has been shown to be generally quite small19. From 
the correctness of the force-displacement relations, it follows that the work and the dissipated energy will 
be reproduced correctly as well.

In the following, we consider, without loss of generality, a rigid conical indenter

θ= ( ) = ( )z f r r tan 4

in contact with a half-space, Fig. 1a.
The one-dimensional MDR image of the conical profile (4), according to (3), is

π
θ( ) = = , ( )g x x c x

2
tan 5

where π θ= ( / )c 2 tan  is the slope of the one-dimensional equivalent profile, Fig. 1b. The generalization 
for an arbitrary axis-symmetrical shape can be made very easily: if the amplitude of normal oscillation 
is sufficiently small compared to the indentation depth of the indenter, the shape of the edge of the con-
tact will always be approximately linear. For determining the energy dissipated during one cycle of oscil-
lation, only the zone near the edge of contact (of one-dimensional MDR model) must be considered 
because dissipation can only take place where the surfaces come in and out of contact. In this case, all 
axially-symmetric indenters will behave like conical indenters and the slope c at the edge of the contact 
of the one-dimensional MDR-transformed profile will be the only shape-related parameter. For example, 
for a parabolic indenter = /( )z r R22 , the MDR-transformed profile is = ( ) = /z g x x R2  and the edge 
slope is = /c a R2  where a is the contact radius. The parameter c can also be represented in a universal 

Figure 1.  (a) Contact of a cone with a half-space and (b) the corresponding MDR-transformed one-
dimensional profile.
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form that does not depend on the profile shape: The incremental contact stiffness is known to be equal 
to ∂ /∂ = ⁎F d aE2N , see [20]. Deriving this equation once more gives ∂ /∂ = ∂ /∂ = /⁎ ⁎F d E a d E c2 2N

2 2 . 
Thus, the slope of the MDR-transformed profile can be calculated as

=
∂

∂
.
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F
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1 1
2 6

N
2

2

In the following, we consider energy dissipation in two cases: (a) oscillations in the normal and tangen-
tial direction with equal frequencies, (b) oscillation in the normal direction with much higher frequency 
than in the tangential direction.

Normal and tangential oscillations with equal frequencies.  Let the profile oscillate harmonically 
with a normal amplitude ( )uz

0 , a tangential amplitude ( )ux
0  and a phase difference ϕ0. To study the effect 

of relaxation damping in the pure, we assume an infinite friction coefficient between both bodies. Since 
the springs of elastic foundation in the MDR model are independent, it is sufficient to analyze the energy 
dissipation of a single spring (Fig. 2), and then to sum over all springs which come into contact during 
an oscillation cycle. Consider a point of the rigid indenter with the initial coordinates ( )x 0 , ( )z 0 . Its coor-
dinates during the oscillatory motion can be written as ω( ) = − +( ) ( )z t z u tcosz

0 0  and 
ω ϕ( ) = + ( + )( ) ( )x t x u tcosx

0 0
0 . If >( ) ( )u zz

0 0 , the point of the rigid surface will come into contact 
with one of the springs of the elastic foundation in point x1 and will drag it along to point x 2, where 
contact is lost and the spring relaxes over the distance = −s x x2 1. The coordinates x1 and x 2 are deter-
mined by setting =z 0. After simple calculations we get

ϕ= − = − ( / ) . ( )( ) ( ) ( )s x x u z u2 1 sin 7x z2 1
0 0 0 2

0

The energy dissipated by a single spring during one cycle is equal to the energy stored in the stressed 
spring at the time of its release:

∆ = ∆ = ∆ . ( )
⁎W k s G s x1

2
1
2 8x

2 2

Energy dissipation occurs only if the point of the surface was in contact with the substrate during only 
a part of the cycle. This is the case for all points which satisfy the condition

Figure 2.  A point of the rigid surface with the initial coordinate z=−z(0) oscillates around this position. 
It comes into contact with a spring in point x1 and loses contact in point x2.
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− < < . ( )( ) ( ) ( )u z u 9z z
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Substituting ∆ = ∆ /( )x z c0  in (8) and integrating over the interval (9), we obtain the total dissipated 
energy per cycle:
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The factor “2” takes into account that there are two symmetric regions on both sides of the con-
tact giving equal contributions to dissipation (this complete symmetry is only valid in the standard 
half-space-approximation used in this paper). Substitution of (7) into (10) and evaluation of the integral 
finally gives
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or in the shape invariant form, using (6),
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Low frequency tangential oscillation with high frequency normal oscillation.  If the frequency 
of normal oscillation ωz is much larger than ωx, the frequency of tangential oscillation, the body will 
move tangentially with an approximately constant velocity ( )vx

0  during any given cycle of normal oscilla-
tion. Let the x-coordinate of a point of the indenter be = +( ) ( )x x v tx

0 0 , while the z-coordinate is defined 
by ω= − +( ) ( )z z u tcosz z

0 0  as before. The times at which a spring is coming into contact with the 
indenter (t1) and is released (t 2) are given by the condition =z 0, from which it follows that 
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t z u1 arccosz z1 2
0 0 . For the distance s, we get the following result:
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Substituting into (10) and evaluating the integral, we get the energy dissipated per normal oscillation 
cycle:
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from which we obtain the average dissipated power in a normal oscillation cycle:
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By defining ω ω=( ) ( )v u tcosx x x x
0 0  and integrating over one cycle of tangential oscillation (from 0 to 

π ω/2 x) we find the dissipated energy to be:
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In the shape-invariant form, the energy dissipation per cycle of tangential oscillation is:
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which is nearly identical to (12), save for the different constant and a dependence on the ratio of fre-
quencies, instead of the phase difference. As stated before, this result is only valid if ω ωz x.

Further generalization.  We would like to stress that in spite of the fact that the relaxation losses 
(11)–(12) and (16)–(17) have been derived in a one-dimensional model, they represent, due to the MDR 
theorems, the exact three-dimensional results for axis-symmetric profiles. In the shape invariant form 
(12) and (17) they are even applicable to multi-contact systems with independent contacts, as e.g. rep-
resented by the Greenwood and Williamson model of contact of rough surfaces21. This follows directly 
from the linearity of the energy losses with respect to the normal force. The shape invariance of the 
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results (12) and (17) suggests that these may even be exact relations applicable to any three-dimensional 
contact topography*.

To illustrate this universality and to provide additional numerical validation of the general equa-
tions (12) and (17), we carried out a series of three-dimensional, full-Cerruti-type numerical simulations 
of oscillating contacts using the methods described in detail in23 and25, with some modifications. We 
assumed that normal and tangential deformation are uncoupled i.e. tangential stresses do not alter the 
normal contact solution. This is strictly valid only when both materials are identical, or one is incom-
pressible and the other one is either incompressible or perfectly rigid. In order to handle the case of 
infinite friction, the boundary conditions were altered to force all contact points into an individual 
horizontal deformation depending on their time of entering into contact.

The essential findings related to these simulations are summarized in Fig. 3: For 4 different surface 
topographies (left column), the minimum and maximum contact areas are shown (middle column) as 
well as the time plots of the work done by the external force in the x-direction (right column). The total 
work done during one period (values reached at ω π=t 2 ) is the dissipated energy. The horizontal dotted 
line shows the unity-normalization according to Eq. (12). One can see that the three-dimensional results 
coincide with the analytical prediction not only for axis-symmetrical profiles, but also for profiles having 
an “arbitrary” different form. We thus can conclude that Eq. (12) can be universally applied to contacts 
of arbitrarily shaped bodies. The same will be valid of course for Eq. (17).

Let us apply Eq. (12) to an important class of nominally flat rough surfaces (surfaces having a long 
wavelength cut-off of the power spectrum of roughness) in contact with a flat counterpart. For such 
surfaces, the relation between the normal force and the indentation depth is known to be ∝ ( − / )F d lexpN
11,22, where l is of the order of magnitude of the rms roughness. For the second derivative of the force, 
we have ∂ /∂ = /F d F lN N

2 2 2. Thus, for rough surfaces, the damping is proportional to the normal force. 
Substitution into (12) gives:

ϕ= .
( )

( ) ( )
⁎

⁎W G
E

F
l

u u8
3

sin 18
N

x z2
0 2 0 2

0

Physical interpretation.  Finally, let us come back to the physical nature of the relaxation damping. 
Brillouin was probably the first to recognize that a non-vanishing dissipation at low velocity can only 
occur if there are some discontinuous jumps from one state to another in the system26. In other words, 
movement with finite velocity must occur in the system even if it is driven quasi-statically. Such rapid 
movements due to elastic instabilities are e.g. the reason for the appearance of finite dissipation in the 
celebrated Prandtl-Tomlinson-model8. At first glance, the oscillating contacts discussed in this Paper do 
not lead to any rapid movements. However, a singularity of stresses does exist at the border of the con-
tact. This singularity leads to infinitely rapid movements even if the configuration of the contact changes 
quasi-statically. Let us illustrate this by the distribution of tangential stresses in the contact plane. The 
tangential stress distribution can be easily calculated from the linear force density ( )q x  in the 
one-dimensional MDR-model by applying the integral transformation11

∫τ
π

( ) = −
′( )

−
.

( )

∞
r

q x dx

x r

1
19r

x
2 2

The tangential stress as a function of coordinate and time is shown in Fig. 4 as a color map. Of inter-
est is the range of coordinates where the indenter is in contact only over some part of the oscillation 
period. In this range, one can see two maxima of the stress: the first one is located at the left boundary 
of the range. A detailed analysis shows that this is a logarithmic singularity, which is “pulsating” but not 
moving spatially. The second singularity is located at the right boundary of the contact; it develops and 
persists during the phase of the oscillation when the indenter is “pulled away”. This is a “square root 
singularity”, which is moving spatially. Movement of this singularity leads to infinitely rapid movements 
in the medium even if the indenter is moving quasi-statically. The existence of a singularity of tangential 
stress distribution is a general property of any contact configuration with infinite friction27, which is also 
confirmed by our numerical analysis.

In the realistic case of finite coefficient of friction, there will be no singularity of tangential stress 
due to the appearance of a slip region at the boundary of the contact area. Let us discuss the process of 
energy dissipation in this case. Note that the method of dimensionality reduction is also applicable to 
the superimposed normal and tangential contact in the presence of a finite coefficient of friction11. The 
process of dissipation of the elastic energy of the “border springs” of the equivalent elastic foundation 
described at the beginning of the paper will now occur not instantly at the moment of loss of contact 
but continuously during a finite interval shortly before loss of contact, so that at the moment of final 
separation the springs will be completely un-stressed. However, if the interval of stress relaxation is small 
enough, the amount of energy loss will be practically independent of whether it was lost instantly or 
during a very short time (or displacement) interval. This amount is equal to the elastic energy stored in 
the border springs before the start of the relaxation process and does not depend on the details of the 
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dissipation mechanism. The same amount of energy would be dissipated if the coefficient of friction were 
infinite but the material had viscoelastic properties. The application of the MDR in this case requires 
the replacement of the springs of the elastic foundation by corresponding rheological elements11. Let us 
discuss the simplest case of the Kelvin body. In this case, the elements of the linear viscoelastic founda-
tion will consist of springs connected in parallel to linear dampers. During the superimposed normal 
and tangential oscillations, such an element will come into contact and will be dragged tangentially 
exactly as described in the case of purely elastic elements at the beginning of the paper. During this 

Figure 3.  (a) Various surface profiles used to validate Eq. (12) by direct three-dimensional simulations of 
oscillating contact: a sharp-edged cylindrical profile; a parabolic surface; an arrangement of 16 pyramid 
indenters; a series of elongated sinusoidal profiles. (b) The contact configurations for the corresponding 
profiles. The minimum contact regions of a complete cycle are colored in blue and the additional regions at 
maximum contact in green. (c) Time plots of the work done by external forces in the x-direction on the 
system over one period of oscillation, normalized by the prediction W according to eq. (12). In the first 
example, the contact area is not changed in the cycle so no dissipation takes place. In the other cases, the 
curves reach unity after one cycle, thereby confirming the validity of eq. (12). In all studied cases, the direct 
simulations reproduce the analytical result with an error not exceeding 5%, which is primarily caused by the 
difficulty of determining ∂ /∂F dN

2 2 from discrete samples.
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process, elastic energy will be stored in the spring. At the moment when the normal pressure becomes 
zero, the element starts relaxing. If the relaxation time of the viscoelastic material is much smaller than 
the period of oscillations, then practically the whole elastic energy will be dissipated. Its amount again, 
is given by Eq. (8) or for the whole contact by (12). Thus, the dissipative contribution described in the 
paper will be, in the case of a viscoelastic material, the same as in the elastic case provided the relaxation 
time of the viscoelastic materials is much smaller than the period of the oscillation (so that during the 
non-contact time the material can really almost completely relax). The most important feature of the 
considered dissipation mechanism is that the amount of the dissipated energy is completely independent 
of the particular dissipation mechanism, be it microslip or internal dissipation in the material. Its basic 
mechanism is that the pre-stressed spring becomes unstressed (relaxed) due to normal movement. The 
term “relaxation damping” reflects this physical mechanism of energy loss.

Discussion
In conclusion, the effect of relaxation damping was discussed using the example of axis-symmetric elastic 
bodies with infinite friction in the contact area. The discussion was generalized to bodies with arbitrary 
surface topography, in particular multi-contact systems and contact of bodies with rough surfaces. We 
have shown that a superposition of normal and tangential oscillation (both with equal and different 
frequencies) leads to a specific damping, which we call “relaxation damping”. The damping is propor-
tional to the amplitude of the normal oscillations and to the square of the amplitude of the tangential 
oscillations. For nominally flat rough surfaces, it is also proportional to the applied normal force. The 
assumption of the infinite coefficient of friction was made only to study the effect in the pure. However, 
all results are directly applicable to systems with a finite coefficient of friction provided that the changes 
in the radius of the stick region are much smaller than those due to changing indentation. To show this, 
let us compare the dissipated energy per cycle due to purely tangential vibration (“Mindlin contribu-
tion”1), µ= ( )/ − − / ( )⁎

⁎W R d uMindlin
G
E x

2
3

1 2 1 1 2 0 32
 (which can also be written as µ= ( )− − ( )⁎

⁎W c uMindlin
G
E x

4
3

1 1 0 32
) 

with the energy lost (11) due to relaxation damping. The relaxation damping exceeds the Mindlin damp-
ing if µ ϕ >

( )

( )

⁎

⁎4 sin 1E
G

u

u
2

0
z

x

0

0
. Note that the left-hand side of this inequality is proportional to the ratio of 

the changes in the contact radius due to purely normal and purely tangential oscillation.

Figure 4.  Color map of the distribution of tangential stress as function of radius r (horizontal axis) and 
time (vertical axis) over one period of the oscillation ω( ) = − +( ) ( )z t z u tcosz

0 0  and 
ω ϕ( ) = + ( + )( ) ( )x t x u tcosx

0 0
0  with the phase shift ϕ0= π/2. At the beginning of the motion, a positive 

singularity appears at the initial boundary of the contact and remains at this point during the whole 
oscillation period (right lower subplot.) No energy dissipation is associated with this non-moving singularity. 
At the moment of reversal of the indentation movement (start of the “pulling” phase) a square-root-
singularity appears at the right boundary of the contact and moves subsequently to the left, together with 
the shrinking contact region (right upper sub-plot.) At the same time, irreversible energy dissipation takes 
place. The right subplots correspond to the times shown in the color map with horizontal dashed lines. In 
the sub-plots, the maximum and the minimum extent of the contact region during an oscillation period are 
shown with dotted lines.
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The above comparison provides an impression of the relative importance of the Mindlin damping and 
the relaxation damping. As E*/G* and sin2ϕ0 typically have the order of magnitude of unity, the relative 
importance of the “Mindlin damping” and the relaxation damping is given by the factor µ /( ) ( )u u4 z x

0 0 . 
For example, for the coefficient of friction of μ= 1/4 the relative contribution will be given just by the 
ratio of the normal and tangential oscillation, /( ) ( )u uz x

0 0 . For a typical contact in a system subjected to 
vibrations, it is common for normal and tangential oscillations to have the same order of magnitude. This 
means that the relaxation damping for a “typical system” has the same order of magnitude as frictional 
dissipation.

Let us stress that the present paper is based on the assumption that the amplitude of the tangential 
oscillation is much smaller than the radius of the contact. While this condition is met on the macro-
scopic scale (through the assumption of small oscillation amplitudes), it can be easily violated on the 
scale of microcontacts28. This may pose some restrictions to the applicability of the equations (12) and 
(18) to contacts of rough surfaces. Another restriction is due to the assumption of perfect elasticity. We 
neglected any kinetic processes, such as creep of micro-contacts29, which lead to deviations from the 
theory already in the case of pure tangential loading and surely have to be considered in the general 
case as well.

Our analysis shows that application of normal oscillations will significantly change the damping 
behaviour of tangential movement in a system with friction. This may be used for designing and tuning 
structural damping of systems with frictional contacts. Further, the effect of the relaxation damping may 
account for the well-known effect of suppression of frictional instabilities by application of ultrasonic 
oscillations, which was studied both theoretically30 and experimentally31.

Methods
In the theoretical part, we use the Method of Dimensionality Reduction (MDR) in contact mechanics11. 
Within the usual assumptions of contact mechanics, the MDR has been proven rigorously for normal 
and tangential contacts of simple (axially symmetric) surfaces.

Additional verification and extension to non-axisymmetric indenters is done using the 
three-dimensional Boundary Element Method (BEM)25. We use an implementation of the BEM that is 
based on the Fast Fourier Transform, and was developed by one of the authors (R.P.)

*Let us briefly sketch the reasons for this supposed generality. Consider a contact of an arbitrarily 
shaped rigid indenter with an elastic half-space and assume the decoupling of the normal and tangential 
problems. The normal force FN will then depend only on the indentation depth d, that is FN= FN(d). Let 
us define the incremental normal contact stiffness kz(d) and the incremental tangential stiffness kx(d). 
Now we simultaneously change the indentation by dd and the tangential displacement by dx and calcu-
late the incremental changes of the normal and tangential forces: dFN= kz(d)dd, dFx= kx(d)dx. The ratio of 
these increments is equal to dFN/dFx= (kz(d)/kx(d))(dd/dx). For all axis-symmetric contacts, the ratio of 
the normal and tangential stiffness is constant and equal to kz(d)/kx(d)= E*/G*, see15. Indeed, the integral 
relations connecting the normal and tangential displacements in the origin of coordinates (x= y= 0) with 
normal and tangential stresses read
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with = + R x y2 2 . In the axis-symmetric case, the second term in the previous equation can be aver-
aged over the polar angle in the contact area providing
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The same stress distributions in normal and tangential direction will thus produce displacements 
whose ratio is uz(0,0)/ux(0,0)= 4πG/((2− v)E*)= G*/E*, which means that the stiffness ratio is E*/G*. This 
result happens to be extremely robust and is valid in good approximation not only for axis-symmetric 
contacts. For example, in22, it was shown theoretically and numerically that the ratio of the normal and 
tangential stiffness remains the same for arbitrary randomly rough surfaces. If we assume that this is 
valid for any contact configuration, then for the ratio of forces we get dFN/dd= (E*/G*)dFx/dx which 
means that the tangential reaction of any contact is uniquely determined by its normal reaction. In other 
words, if for two contact systems the normal reaction FN(d) is identical, then the tangential reaction will 
also be identical. In the papers23,24 this has been confirmed by numerical simulation of contacts of rough 
surfaces with arbitrary coefficient of friction. This further means that any arbitrary contact satisfying 
the conditions of decoupling of the normal and tangential contact behaves in the same way in terms of 
displacement and forces as an equivalent single-contact axisymmetric system having the same normal 
reaction. From this it follows that all properties that depend solely on the force-displacement reactions 
of the system will be identical for all contacts having the same dependence of the normal force on inden-
tation. This provides further support to the generality of the equations (12) and (17).
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2.2 Publication 2
This short note represents a direct application of the results from Publication 1 in the context
of woven fabrics. A unit cell of the fabric, consisting of two crossed elastic beams, is con-
sidered, with three ends held fixed and one end subjected to normal and tangential oscillation
(with equal frequencies and a phase shift). The geometric factor 𝜕2𝐹𝑧/𝜕𝑢2

𝑧 is derived for the
system by combining thin beam theory and Hertzian contact mechanics. With that, the energy
dissipated per oscillation cycle is obtained directly by referencing Eq. (12) of the previous
paper. The dependence on the oscillation parameters is unchanged from the indenter-on-plane
configuration, however an inverse dependence on the fifth power of the fiber aspect ratio is
found. This implies that relaxation damping is only likely to play a role in densely woven fab-
rics, a consideration that may be relevant in estimating internal damping in fiber composites.
However, all such conclusions must be considered qualitative, due to the strongly simplified
nature of the mesh cell model.
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Abstract Structural damping is discussed for the contact of two fibers in a woven 

material. In the presence of both normal and tangential oscillations, structural 

(relaxation) damping takes place even with perfect sticking in the contact, where 

slip-related frictional damping disappears. For the case of an infinite coefficient of 

friction and small amplitudes a closed-form solution for energy lost during one 

oscillation cycle is obtained. 
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1. INTRODUCTION 

The present paper is concerned with internal damping in woven materials. When fabrics 

are deformed, energy is dissipated in the contacts between fibers, and it is well known that at 

least part of this dissipation is due to friction in partial slip zones of the contact. Exact 

solutions for frictional damping in the contact of spheres due to tangential oscillations go 

back to Mindlin et. al. [1] and are also applicable to the contact of two crossed cylinders 

(such as the fibers in a woven material). Damping in the presence of both normal and 

tangential oscillations, however, has never been described exhaustively and it remains a 

current research topic [2],[3]. Recently it has been suggested [4] that the superposition of 

normal and tangential oscillations leads, in addition to slip-related frictional dissipation, to 

a new type of non-frictional damping that is caused by elastic relaxation due to variations in 

normal load and therefore contact area. It is found that in the absence of slip (an infinite 

coefficient of friction) and for small oscillation amplitudes, the energy dissipated during an 

oscillation cycle is described by 
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xu and 
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zu  are the tangential and normal oscillation amplitudes, 0 is the phase 

shift between the oscillations (the oscillation frequencies are identical), Fn is the normal 

contact force, uz the indentation depth (relative approach of bodies). E
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reduced elastic and shear moduli and can be expressed through elastic modulus E and 

Poisson's ratio v as follows, when both contact partners are made from the same linear, 

homogeneous, isotropic material. 
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In the present work we specialize the above result for a system of two fibers crossed at 

right angles, representing a single mesh cell of a woven material. Small oscillations that are 

applied to the end of one fiber produce oscillations in the contact, leading to structural 

damping (and frictional damping, if slip is permitted). All assumptions from [4] (linearly 

elastic materials without viscous effects, infinite coefficient of friction, small amplitudes) 

are used here as well, so as to isolate the contribution of structural damping to overall 

losses. 

2. ANALYSIS 

We consider a very simple model representing a mesh cell of a woven material: two 

fibers with circular sections (with radius R) that are crossed at right angles, Fig.1. The fibers 

lie in x, y - plane, while the upward-facing axis is labeled z. Three of the four fiber ends are 

rigidly embedded in the plane at z = 0, while one end is connected to a parallel guide that 

permits motion in x, y - plane (horizontal and vertical). These boundary conditions are 

neither the only possible nor necessarily the most representative of real fabrics. The above 

model is chosen for its simplicity, while other possible configurations are left for future 

work. The movable end is pre-stressed by deflecting it downwards by Wz,0, which is of the 

order of 2R in woven materials, due to symmetrical boundary conditions. Through this 

initial displacement, contact between the fibers is established, and base loading F 
(0)

 is 

produced in the contact. In addition, the movable end of the fiber is forced to oscillate with 

amplitudes  xW ,  zW , a common frequency and phase shift 0. 

Our general approach is as follows: Firstly, the oscillation amplitudes of the movable 

fiber end are related to force oscillations, with certain amplitudes, in the contact. Linear 

beam theory is used for this, while the influence of indentation depth uz is neglected (our 

general assumption is that  Wz,0 >> uz >> W). The force oscillations in the contact are then 

related to geometrical oscillations through the contact stiffness, which is itself determined 

by the contact configuration, and therefore Wz,0. 
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x

y
z

l l

W0,x
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Fig. 1 Two crossed fibers are considered as elastic beams with circular cross-section 

Consider a beam of length 2l  that is stressed with a contact force Fz in the middle and 

deflected by W0,z at one end. The deflection of the central point (at x = l) of the beam with 

these boundary conditions is known to be [5] 
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z
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I
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E
W    , (4) 

where I = R
4
/4 is the area moment of inertia. For the beam with two fixed ends, only the 

first component, due to the contact force in the middle, is present: 
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The difference between the two is equal to indentation depth uz in the contact: 
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As noted above, we assume that the indentation depth is small compared to the 

deflection of the beam, and apply non-penetration condition, uz = 0, which leads to a linear 

relationship between contact force and deflection of the free end: 

 0, 3
 z zF

EI
W

l
. (7) 

For tangential loading, the lower beam is stressed length-wise; its deformation therefore 

can be neglected. The equations in this case become 
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 , 0II xW . (9) 

Proceeding as above, we obtain 

 0,x 3
xF

EI
W

l
. (10) 
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The force is thus linearly proportional to the deflection of the end of the movable beam. If 

the latter is now oscillating according to ,0 sinz z zW W W t   and x 0sin( )xW W t    , 

then the amplitudes of the force oscillations in the contact are 

 
3

  z zW
EI

l
F , (11) 
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  xx W
EI

l
F . (12) 

Now, when the oscillation of contact forces is known, the corresponding components of 

relative displacement of contacting bodies, ux and uz can be found by dividing the force 

increments by contact stiffness kx in the tangential direction or kz in normal direction. The 

latter are known to be 

 *2xk G a , (13) 

 *2zk E a , (14) 

where a, the contact radius, is equal to zRu  in the contact of a sphere with a plane or the 

contact of two crossed cylinders [6]. The derivative of the normal contact stiffness with 

respect to indentation depth uz is given by 
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2
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. (15) 

One last step is necessary to tie all equations together: indentation depth uz, which, for a 

spherical contact, is given by [6] 
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where ,

(0)

0 3zF W
l

EI
   is the initial loading determined with Eq. (7). Substituting all 

factors into the relaxation-damping Eq. (1) and simplifying, gives the following result: 
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By introducing fiber aspect ratio l R  , the normalized initial displacement 0 /  zWW R  

and grouping some of the factors under 
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, (18) 

we can write the result more compactly as 

  
25 4/3 2

0 0sin    x zQ q W E WW . (19) 
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Note that q varies only slightly for typical values of v. Its numerical value is approximately 

45 for 0.2  , 47 for 0.3  and 51 for 0.5  ). 

3. DISCUSSION 

The obtained result for a system of two crossed fibers is similar to Eq. (1) that describes 

relaxation damping when oscillations are applied to the contact directly. In particular, the 

proportionality to the square of the tangential oscillation amplitude, and the modulus of the 

normal oscillation amplitude is preserved, which is, of course, not surprising, since linearity 

is assumed in the derivation. More interesting is the inverse proportionality to the fifth 

power of the aspect ratio of the fibers, which means that the effect will be much more 

pronounced in densely woven fabrics than in sparse ones. 

The obtained result is only valid for an infinite coefficient of friction. An interesting 

avenue for future work would be to consider realistic coefficients of friction and to 

determine the relative importance of frictional and structural damping. Also, although a 

physical interpretation of relaxation damping in perfect stick conditions is given in [4], the 

underlying mechanism in the presence of sliding is yet to be determined. Other unexplored 

possibilities involve other boundary conditions for the mesh cell, embedding the cell in a 

viscous medium (which would extend the results to woven composites), as well as 

experimental verification. 
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2.3 Publication 3
The following short note considers relaxation damping in a contact with superimposed tor-
sional and normal oscillation. This work was prompted by a recent (at the time of publication)
extension of the Method of Dimensionality Reduction, which allowed rigorous reduction of a
torsionally loaded contact to a contact with a one-dimensional elastic foundation with trans-
verse spring movement. Using this result, the present paper repeats the procedure laid out
in Publication 1 to obtain the energy dissipation per cycle under phase-shifted torsional and
normal oscillation. The result (Eqs. 14, 15) is nearly the same as in the tangential/normal
case, except for a different reduced shear modulus and a non-linear term related to the non-
constant contact radius (which disappears if the normal oscillation amplitude is small). The
source of this similarity is immediately apparent when considered within the framework of
the MDR, but would have taken some work to arrive at using more conventional methods of
contact mechanics.

Finally, a system with three overlaid oscillations, where the tangential and torsional com-
ponents have respective phase shifts 𝜑1 and 𝜑2 relative to the normal oscillation, is consid-
ered. The result (Eq. 20, 21) is very straight-forward due to additivity of the elastic energy
components.



��� ��������������������

�����	
��
���
�	�
��	��������������������������������

	��
��
�����
��

������������ ����������� ������������������������� ����

���������� ����!�������������������� ������"� ����������

������ ������������������ �������������# �� ������!���������

 �$��������������"������"��� �������$������"� %	&� ��

	'()�������������� �$��������"������$���������������

�#$���#���������������������#��#����$���������%)&�����*

�����"�%+&��$�����������������%,&��� ������������������*

������������� �������� "��$�����!�����#����$� ���%(-

.&��/����������������������$������#����!������������!� �$�*

����� ���� �$����� ����������0���� �������!!��������!

!�������������������� ���� ����0�� ���!����"�%	&��1�0*

�2����0������������������������������������$����� ����*

�������� ������������������#���������������3#��� �$�*

��������������������"���# �� ��"���2�����������%'&�!��

�$������0�* �$������������!������� ��"��#����������

����%	4&�!�����#����#�!������1�0�2��������!��������� ��*

�����������������2������������$������������!������!�����

���!!��������!�!���������0����������2��!����������$�2�*

$���� �!� ���� ������������� ����  �������� ���#���0���

#������� ��� �0���!����������� ��#�����%		&�������!!���

�!������������ �$��������������� ����%		&�����������*

��"������ � ��������������0��������������5������ ��!����*

�������6��������������#����$���� �0�������$����������*

������0�������������#�������!��������������������/����

�������������������%		&��0�����#$�����!��������7�����#��*

�#��������������

)��/�/�83
3

����� ����������������0�����0��������"*�"$$����������*

������ ����0����$� #����!����������"��!� �� ��� � ��� ����*

���9����������!� �ν ��� � ��ν ��� �������$� #����!� �� ��� 

� �� ������ ����"��:�� ���������� �!!����������0�������

���!������!��� ������� � ��� � �=� �0����� �� � �����������*

 ���������$��������������������������� ���������������*

�������������� �#����������!������������#������������*

����� �� � ���� �#�;���� � ��� �� �#�������������!� ���$���

�������������� ������������������������0�����$�����$���*

�# �����������������������$���������� #�� �����������*

������!������� ����!���� � �� � �=� �0������������������!*�����

5<���=	�6�

����2��������!��������������������������� �������

$���� ��!� �$����������"��� #�����������������$�����*

����5��
6�%	)��	+&��0������������"�0�������� � ���

�������������������%	,&��
������!��$�0��7��!�����$���� 

�!� �$����������"��� #��������0�������$����"����������

���!��$� � %	+&�� <������ ���� �����* �$��������� �������

�� ��������������� ��"������* �$����������������"�����*

���� !�#� ������������������!��������"��!� �� ���� ���

���������0�������#!!�������"��$���� ����������� �∆ � �� 

��������	
	�		��
�����������������������������������	���������������� �����!�
����"���
#$������%��&'"��������

(��%�����)�*'�!����
���+����&��
���+���������#$�����"����,�-�����.������-���.����.����������������������/�������� ���

���������	
���
�	�
�	
��	�����
�	���
��
����
����

������
�	�
������	��
����������	

��
��
����� 
�	�
!�
"�
��
������#

��0������1��+����'���2�)�������%���0�����������3�4������
����'������5��������)���.��'�'��1��+����'���)���.���3/����5#����

3���'������5��������)���.�
���'�������1��+����'���)���.���3/����5#����

6��
����7���.���������+8'#
$������"�


����2� �>#���	'��)4	(

$%������?
��0����������"����0��������!������������!��0���#���"����������� ����0���������� ��������#�;���� ���

�������������������$����� ������������ �������������7�� ��!� �$��������#��� #�����������������!���������������������

�������!������$���������������� ��������������������!���� ������ ���������� ����!����������0��7��
�������������

������0�����0������������$��$�������$������������������0�����#����$���� ����$����� �������������������������/

����� *!��$����#�����!������������������� ���$���� �5���������@����������6������������ �����������!��������������!

��������"��� �����!���2��#���������������� �

��&'=	4�		+,@3	4)''(''	A4)4	4B

9��:��"�C����#��#���� �$��������������$����������������������������������$���� ��!� �$����������"��� #�����

	B.

28 CHAPTER 2. PUBLICATIONS: RELAXATION DAMPING



���
D�/E/�
����/��
�F�
������/��3����D
�3��D

���3D����
�/��/�����
3
��/�

�����	
��
���
�	�
��	��������������������������������

���$����� ���������������!!����� ��∆ ��� � ��∆ � �!��� 

����� ������������#���

�
�� � �∆ = ∆

��0���
�

� �
� �

�
� �

� ��
�

� ��

− ν − ν= + 5	6

�
�

�� � �∆ = ∆
�0����

� �
�

� �

� ��
�

� �� ��

− ν − ν= + 5)6


����������� ����������������* �$������������!����-=G

2�5�6���������!��$� �����������* �$������������!������*

��� ������

� �
�

� �
� � � �

�
� �

� � � �
� �

′
=

−
∫ �5+6


!���0�������
*�����!��$� ����!����%5*6������ ���� 

��������� �!��� ���������!�#� �������"������� ��������

 �����"� �� � ���$�2� ����$���"� �� � �����������"� ��*

��� ���������������"���0������!����* �������$��������*

������ �!� ���� �H#�2������ ���* �$��������� �"���$�0���

����� #����������!�������������������* �$������������*

�����������$�5����!����2������� �������%	)&6�


��%	,&�����0������0����������������� #������������*

��� � � ��� ���������� ��������� �"� ����� ����0����$�2�*

$�����!���������������������* ����������� ��"� �!�����

������������� �������!!���������� ������������#��

� �

� � �
� !" �

� �
	� � �

� ��
∆ = ∆ = +�

�
5,6

������#����#��������������������� ������������!����� �*

��� ����� �!� ���� ����������$�$���� ��� ���� ���������

�������0����� ����-*����� �������� ��� ����������!� ����*

�����

<��$������������������!�����!����* �������$������ 

���H#�*��������������������!����0�����������0��7��� ����

 �������� ������"�0����������������� #�� ���������"������

��������������!���#���������$���� ��!� �$����������"

�� #������!�������#��������!������"� �����������


������!����0�����0������� ��������� ����������� �����

� � !#$� � � �= = θ �5(6

�������������0���������!*������ 5<����	�6�������������

$������������������������������#�������������������I� 

2��"������"���������������"�����*�"$$��������������5���

 ���#����������06���������* �$�����������
*�$���

�!����������������!����5(6������� �������5+6����

� � !#$ �
�

� � � 
 �
π= θ = 5A6

0����� � !#$
 = π θ ���������������!��������* �$��������

�H#�2���������!����5<����	�6��������������I������!�����

��������"�����*�"$$�������������������������� #��������

!���������������������������!����$�������������� �������

�������#����������������� �$���������"������ ����!����

����������� ������������� ��� ���� ��!������$����# ���!

���$�������������������#!!�������"��$������$���� �������

�#�2��#����!������� ������������������!������ ����!����

��������0������0�"������������$����"���������
������������

����������"*�"$$�������� �������0��������2����7������*

������ ��������� ��������������������� ����!������������

�!��������* �$�����������
*�����!��$� ����!������*

��$����������"������*������ �����$������<������$����

!����������������� ������
� �� � �� � �=� �������
*�����*

!��$� ����!�������
�� �� � � � �= =� ��� ������ ��������

��� �
 � �= �0������������������������ �#���/�����0�

����� "����%		&����������$������������������������ �����

#��2������!��$�0����� �������� ���� �����������!���

����������������$�����������������!!��������7��0����

����H#������ �
$ �
 � ��∂ ∂ = �%	(&������2����������H#�*

����������$������2���
� � � �

$ � � �
 � � � � � 
∂ ∂ = ∂ ∂ =
��#��� �����������!� ������
*�����!��$� ����!�������

�������#���� ���
�

$
� �

� �
�

�





 � �

∂=
∂

5B6

����� ������������!� �������� � �� ������0���� �������

 �������� ���
� �!��$������������� �����#�����#$����������

�����������������������$����� ������������ ������������

��2����"
��� ���� � %�& � ���� � � � �= − + ω
���

�� � %�&� ��	 � � �= ϕ ω +ϕ �
5.6

0�����
���ϕ ���������$����# ���!������������!����������/��

������� �!� ����$� �#$�0����� ���� ��� ��������0���� ���

�� ������!����0������$�������
!�
��� ������ �> ������������!

�������� ��#�!����0������$���������������0���������!����

���������!�������������!�#� ������0������������ �����

�!������� ������0������� �	 ��� ������� ������0���� ������

��������������� ��	 �0����������������������� �����������

(���
��
���������!������� ������0���������!*������5�6��� �������������� ������
*�����!��$� ����* �$������������!����5�6�

5�65�6

PUBLICATION 3 29



��� ��������������������

�����	
��
���
�	�
��	��������������������������������

���������2������� �������� � ��� 	 	= − ��������� ������

�	 ��� � �	 ����� ����$��� ��"���������-�G�4��/!������$���

����#��������0�����
�

���
���

� � ����
� � & $ �

�

�
� 	 	

�
�

 
= − = − ϕ  ϕ

 
�5'6

'"(�($()*+���&!� $��$(��&% ��#! �$�%+%�(�� $�!"(�($! )(

%�$!#%!��,+�#�%�$ %#�� $�($!()� &

-#.

- $

�� �

�

�

� � � �= ∫�
�5	46

0����

� � �� � � � 
� �= − = − �5		6

�� �����$���$����� �$���$������������� ������

��

���

- $ ��� �
�




−=
���

-#. ��� �
�




+= 5	)6

�������������5	46��2��#�������
� ��� ���/

���� �
� / /

��
& $ �

/ 0

� �� � �
� �


 


 
= ϕ ϕ +   

� 5	+6


���� #���������J�2���������������� �#�K�� �� � 
= �0�

������0������������

����
��� � ��� �

� �

��
� � & $ � �

/ 0

�
�

� �
� � �


 �

 
= ϕ ϕ +   

�

5	,6

�������H#������5B6������ �������� ������"� #��������

�"�����������������#� �����������!����$����� ����������

�������������0���������!���������2����"C
� ����

� ���� ��� �$
�� � �

�
& $ � �

/ 0

�
�

� 
 �
� � �

� � �

 ∂= ϕ ϕ +  ∂  

�

�5	(6

<����������$����������!������������!������� ��� �����

0������������������!*��������2��������8�#���$� #�#��;

�� ���������������ν��0����2�

�

� �

� �� � �

� �

��
= =

+ ν + ν

�

�� ����� ������������H#��������7�������!��$
�

� ���� ���$
�

����
�

� �

/�

/�� �

& $ � �
0

�

�



� � �

�

�

�

∂= ϕ
+ ν ∂

 
× ϕ +   

5	A6

��!(�!"#!�!" &�)(&1�!�%#$�,(�21)!"()�*($()#� 3(��!�

&14() -4�&(���&% ��#! �$&� $�!"(�$�)-#��#$��!#$*($! #�

� )(%! �$�#&��(���#&�!�)& �$��
&�!"(�!#$*($! #��2�)%(���(&

$�!� $2�1($%(�!"(�!�)& �$#��-�-($!��!"(�2�)%(5� &4�#%(5

-($!�#$��!"(�-�-($!5#$*�(�)(�#! �$&�� ���,(� $�(4($5

�($!���" %"�-(#$&� !"#!� !"(�%�))(&4�$� $*�)(�#.#! �$

%�$!) ,1! �$&� %#$�,(� 61&!� #��(���7�)��&% ��#! �$&��(5

&%) ,(��,+

��� ���� � %�& � ���� � � � �= − + ω 5	B6

���
�� � %�& � ���� � � �= ω +ϕ 5	.6

���
�� � %�& � �� �ϕ = ϕ ω +ϕ �5	'6

���������"� ����������������"����0������
�

���$
� �

����
� ���� � � ���� �

� � �

� �

/

& $ & $ � �
0

�

�
�



� �

� �

�
� � ��

�

∂=
∂

  
× ϕ + ϕ ϕ +      

� 5)46


!������������������$����# ������$����
��� ��� �<< ���������

����� ����$�����������������7����������� ����� �������*

!���
�

���$
� �

� ���� � � ���� �
� �

� �

/

� & $ & $ ��

�

�



� �

� �

� � ��

∂=
∂

× ϕ + ϕ ϕ� 5)	6

+��������3
��


��������������������������!!�����!������������ �$�*

���� ������� � ��� %		&�0�������� � � !��� ���� �#����$*

���� ����$����������������� ��������������������!�����*

����"�����*�"$$���������������� ����0������!������!���*

���������������������������������#$�������!�������!�����

���!!��������!�!��������0���$� �����"������# "������!*

!���� ��� �����#����1�0�2���� ���� ���#���� ���� ����� �����*

������ ��� �"���$��0���� �� !������ ���!!������� �!� !�������

���2� � ��������������������������� �#���!���������7���*

���������$#����$����������������� #����������������*

 �������������� �������� ������"�����������������������

�$����# ���!� �������$����������������� � ����H#�����!

(���
���/��������!��������� ��#�!����0�������������������� �����
���

� �= − ���������������#� ����������������
����$�����������*
�����0���������������������� �	 ��� ������������������������ �	 �

30 CHAPTER 2. PUBLICATIONS: RELAXATION DAMPING



���
D�/E/�
����/��
�F�
������/��3����D
�3��D

���3D����
�/��/�����
3
��/�

�����	
��
���
�	�
��	��������������������������������

�����$����# ���!�������������������������� ��������� 

 ���2���2���!��������$���!�����0���������������������*

 ��������� �����

/�L���D�F�D��3

�����0��7�0����#������ � ���������"���$�7�3����

���2�����"�/�� �$�����
����� ����2�<#� �������$�

���;��������.�)�	'�)4	(�


D<D
D��D3

	� ��� �����
������������:�������$����>�<����� ��������*

0��I��1���D!!������!���������������������������<�������

������������3#�!������!�D�������3�����������
�������'�1�

��'������<��%������2�=�����"������������/3�D����0

8��7��	'()������)4+-)4.�

)� F�#�������� ����I��>��������������"��$�����!�3��#��#���

/���$��� � �"� M���� � >������� =�'�� ������� 	''B�

2���=	)(5,6������	A'-	.	�

+� /7�"��/���/��#�������!�<���������>��=��#�'�������=����)44)�

2����			5,6������	()(-	(,.�

,� N��#��E���3�����D���:�����L�:����� �M�7������D���
����*

!��������$��������������������� �!�������������#��*

M��� � ��$��������� <������� ����� )��������=)44,�

2���=A,5	(6������),)(-),+B�

0� '"�)$!�$��	��#$��� $��8�8����-4#%!��2���#&! %��4"()(&

� !"� #$��� !"�1!�
�"(& �$�����������
������� �����

9���:�0��44���0/;����

A� ���$������������������/�1��������/�����F�� $������
��

�����7�� 
����� �30����"�=1������"��$�����!�������� 

<������������#������!������;�������
$����������F���#���

�� �#$��
�����5�+��&�''���)44,��2����')����=	',+4	�

B� >��������<���������8����� ���#��H#��������/��������#��2�

��0�!���������F���#����F��0�����'#����)44A��2����,,	�

����B)B-B+4�

.� M���������2��������3������<���1���I����� >�*���� �� ��<5

������=������ ���!�����������������F���#����F������
����

5�+��;��	''A��2����(+������(+.)-(+')�

'� ��2���������M�������>�
����� �1��������/���D����"������*

������������<����������
���$��������������0�������"���

���$������ ����'��>��������������)4	)��2����((������	+-)	�

	4� �#����������������2�������������� �M�������>�
���<���������

D����"�������������������������!���$�����"�<����
�#��

3#�!�����#� ���1��$�������"����"������� ���>�������


���������"���)4		��2����('������),,)-),(,�

		� ����2����������2���������� ��������
���
������������$�*

���� ���������������������������?�+7�/���3�3�� @���"


��'���2'A��)4	,�

	)� ����2������� �� �1�=��������'��"��2�B�����������'�

5�"#�'�������<��'��'�������������"�,���'�����M�����C

3���������)4	,�

	+� ����2��������� �1�������������� ��!���$����������"


� #����������������������������� �<�������C��������

1�� ���7��
��/�����"*3"$$����������������,��'��1��+�

������;�%���)4	,��2����	)������	-	,�

	,� :��������D���1�=�������� �����2��������/������������!����

����� ��!���$����������"�
� #������������������#� ��

���$����� �������������� �����,��'��1��+��������;�%��

)4	(��2����	+������)������.	-'4�

	(� ����2��������<��'��'�������������"�,���'�����
�������


������������"�=������'������M�����C�3�������*�������

)4	4�

PUBLICATION 3 31



32 CHAPTER 2. PUBLICATIONS: RELAXATION DAMPING



Chapter 3

Publications: Active Control of Friction

This chapter presents seven publications on the topic of active control of friction by externally
applied oscillation:
P4: M. Popov, V. L. Popov, and N. V. Popov. “Reduction of friction by normal oscillations.

I. Influence of contact stiffness”. Friction 5.1 (2017), pp. 45–55

P5: X. Mao, V. L. Popov, J. Starcevic, and M. Popov. “Reduction of friction by normal
oscillations. II. In-plane system dynamics”. Friction 5.2 (2017), pp. 194–206

P6: M. Popov. “Critical velocity of controllability of sliding friction by normal oscillations
in viscoelastic contacts”. Facta Universitatis, Series: Mechanical Engineering 14.3
(2016), pp. 335–341

P7: M. Popov and Q. Li. “Multimode Active Control of Friction, Dynamic Ratchets and
Actuators”. Physical Mesomechanics 21.1 (2018), pp. 24–31

P8: J. Benad, K. Nakano, V. L. Popov, and M. Popov. “Active control of friction by trans-
verse oscillations”. Friction 7.1 (2018), pp. 1–12

P9: M. Popov. “The influence of vibration on friction: a contact-mechanical perspective”.
Frontiers in Mechanical Engineering 6.10.3389 (2020), p. 69

P10: M. Popov. “Friction under large-amplitude normal oscillations”. Facta Universitatis,
Series: Mechanical Engineering 19.1 (2021), pp. 105–113

Two publications are of particular note: P4, which introduces the theoretical framework
that is used in subsequent publications and considers the canonical case of friction control by
normal oscillations—and P9, which provides a more general formulation of the problem and
provides a high-level overview of new results obtained since the publication of P4.

The other publications extend the original model in various directions and consider a num-
ber of applications: In the companion paper P5 inertial effects are explored (as opposed to the
rest of the papers, where quasi-staticity is generally assumed). P6 and P8 consider different
directions of oscillation: longitudinal (in the direction of motion), combined normal and lon-
gitudinal, as well as transverse. P7 contains a short note on reduction of friction in contacts
with viscoelastic media, while P10 revisits the case of “jumping” contacts (i.e., where the
amplitude is greater than mean indentation).

The publications are presented in the original layout and in chronological order (minus
publication delays). Each publication is preceded with a brief commentary that summarizes
the contents and provides some additional perspective.
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3.1 Publication 4
This publication proposes a new model for explaining and describing the phenomenon of
friction reduction by normal (out-of-plane) vibration. Unlike previous works in the field, the
presented model is entirely macroscopic and is based on classical, quasi-static contact me-
chanics. The system in question is a body that is sliding on a plane with constant velocity,
while being subjected to a harmonic, displacement-controlled oscillation in the normal direc-
tion. The novelty of the approach presented here, is that the finite stiffness of the contact in
both normal and lateral directions is taken into account. To simplify the analysis, it is initially
assumed that the stiffness of the contact is load-independent, so that the body can be modeled
as a single linear spring element.

While the body is sliding, the instantaneous force of friction is exactly balanced by the
lateral spring force (since we are working in the quasi-static limit). But the force of friction
is proportional to the instantaneous normal force, which implies that the lateral deflection is
proportional to the normal load as well, and further that the relative velocity of the contact
point is proportional to the rate of normal loading (with a negative sign). With a sufficiently
quick increase of normal load, the velocity of the contact point can compensate the sliding
velocity and thereby transition from slip to stick (Eq. 2).

During the stick phase, the body continues to move with constant velocity, which leads
to a linear increase of tangential force, until it can no longer be sustained by static friction
(Eq. 7), at which point the contact starts sliding again (usually during the unloading part of
the normal oscillation). The described process repeats periodically. This stick-slip motion is
responsible for the reduction of the macroscopic coefficient of friction, since the lateral spring
force during stick is, by definition, lower than the maximum sustainable friction force 𝜇0𝐹𝑧,
as illustrated in Fig. 2.

Another noteworthy point is that stick-slip—and therefore reduction of friction—is not
always possible. There is a maximum sliding velocity (Eq. 26), beyond which the oscillation
fails to precipitate stick-slip and therefore has no effect on the coefficient of friction (within the
approximations employed in the model). Later publications refer to this important quantity as
the critical velocity of controllability.

The rest of the paper concerns itself with a quantitative exploration of the phenomenon.
A compact empirical approximation of the macroscopic coefficient of friction is given in Eq.
(11), in terms of the dimensionless variable ̄𝑣, which is the sliding velocity 𝑣0 as a fraction of
the aforementioned critical velocity. An exact low-velocity asymptote is derived as well (Eq.
12), but it should be kept in mind that both results are only valid for a displacement-controlled
harmonic oscillation. The same analysis is then performed for the case where the amplitude
is larger than the mean indentation, so that the body is “hopping” over the plane (Eq. 21).

The assumption of constant contact stiffness is lifted in Section 3, where the full Hertzian
contact is considered. The use of the Method of Dimensionality Reduction (MDR) makes the
generalization from single spring to proper 3D contact very straightforward. It is also noted
that the MDR is not even necessary if the amplitude of oscillation is small, since the con-
tact stiffness becomes approximately constant, and the results obtained with the single-spring
model apply. While technically true, this fact no longer seems important to the author, since
the magnitude of the reduction effect is always bounded by the amplitude. E.g., if the ampli-
tude is 5% of the mean indentation, then the COF cannot be reduced by more than that amount
at any sliding velocity. Numerical calculation is ultimately required for practical surface to-
pographies and amplitudes, but this is very simple thanks to the MDR-based formulation.
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Abstract: The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations 

perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the 

tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is 

lost during a part of the oscillation period, so that the sample starts to “jump”. It is shown that the macroscopic 

coefficient of friction is a function of only two dimensionless parameters—a dimensionless sliding velocity and 

dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the 

present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we 

consider “stiff systems”, where the contact stiffness is small compared with the stiffness of the system. The role 

of the system stiffness will be studied in more detail in a separate paper. 
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1  Introduction 

The influence of vibration on friction is of profound 

practical importance [1]. This phenomenon is used in 

wire drawing [2, 3], press forming [4] and many other 

technological applications. Experimental studies of the 

influence of ultrasonic oscillations on friction started 

in the late 1950s [5]. In the subsequent years several 

illuminating works were performed using various 

techniques, e.g., measurement of electrical conducti-

vity of the contact [6, 7]. Reduced friction has been 

observed both with oscillations in the contact plane 

(in-plane) [8] and perpendicular to it (out-of-plane) [9]. 

In the 2000s, interest in the interaction of friction 

and oscillations was promoted by applications such 

as traveling wave motors [10, 11] and the rapidly 

developing field of nanotribology [12, 13]. In recent 

years, detailed studies of the influence of ultrasonic 

oscillations and comparisons with various theoretical  

models have been performed by Chowdhury et al. [14] 

and Popov et al. for in-plane oscillations [15], and 

by Teidelt et al. for out-of-plane oscillations [16]. The 

latter paper also includes a comprehensive overview 

of previous works in the field up to 2012. 

The above works provided an empirical basis  

for a qualitative understanding of the influence of 

oscillations on friction. However, good quantitative 

correspondence between experimental results and 

theoretical models could never be achieved (see, e.g., 

a detailed discussion in Ref. [17]), so it is not clear 

whether we adequately understand the physics of this 

phenomenon. Even the question of which oscillation 

properties determine the reduction of friction force 

is still under discussion: While in the case of static 

friction it seems to be the amplitude of displacement 

oscillation [15], for sliding friction it is believed to 

be the amplitude of velocity oscillation [11]. In the 

following, we will show that, in general, friction under 

oscillation is determined by both of these parameters.  

The main novelty of the present paper compared to  
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earlier work on the influence of oscillation on friction 

is explicit consideration of the contact stiffness. The 

influence of the contact stiffness is closely related to a 

fundamental and still unresolved question about the 

physical nature of the characteristic length determining 

the crossover from static friction to sliding. In earlier 

works on this topic, it was assumed that this charac-

teristic length is an intrinsic property of a frictional 

couple and that its physical nature is rooted in 

microscopic interactions between the surfaces [15]. 

However, later investigations suggested another inter-

pretation. Studies of friction in stick-slip microdrives 

[17, 18] have shown that the static and dynamic 

behavior of drives can be completely understood and 

precisely described without any fitting parameters just 

by assuming that the characteristic length responsible 

for the “pre-slip” during tangential (in-plane) loading 

of a contact is equivalent to partial slip in a tangential 

contact of bodies with curved surfaces. This contact- 

mechanical approach was substantiated in Ref. [19] 

by a theoretical study of the influence of in-plane 

oscillations on the static force of friction. It was shown 

that the characteristic length is simply the indentation 

depth multiplied by the coefficient of friction. Later, 

it was found that this is valid independently of the 

shape of the contact and also holds true for rough 

surfaces [20]. This hypothesis of the purely contact 

mechanical nature of the pre-slip and of the charac-

teristic amplitude was verified experimentally for a 

wide range of radii of curvature and applied forces in 

Refs. [21, 22]. It was thus confirmed that describing 

friction under oscillation, including pre-slip, is basi-

cally a matter of correct contact mechanics and that 

the main governing parameter for both normal and 

tangential oscillation is the indentation depth. This 

realization also led to new generalizations in the 

physics of friction [23, 24], which, however, still need 

experimental verification. 

In the present paper we utilize this new understand-

ing of the importance of the precise contact mechanics 

and the key property of contact stiffness when con-

sidering the details of frictional processes. We focus 

our attention on the influence of normal (out-of-plane) 

oscillations on the macroscopic frictional force. We 

begin by looking at a simple system consisting of a 

single spring and a frictional point, then extend our 

analysis to the Hertzian (parabolic) contact using 

the Method of Dimensionality Reduction [25]. For 

simplicity we do not deal with system dynamics, and 

instead impose a forced oscillation of the indentation 

depth. This restricts our analysis to systems where the 

contact stiffness is small compared with the stiffness 

of the system as a whole and the inertia of the contact 

region thus does not play any role. An analysis 

involving system dynamics is published in the second 

part of this two-part paper.  

Another contribution of this paper is the considera-

tion of large oscillation amplitudes, when the indenter 

starts jumping. To our knowledge this case has not 

previously been considered in theoretical models. 

2  Simplified one-spring model  

Let us consider an elastic body that is brought into 

contact with a flat substrate and then subjected to a 

superposition of an oscillation in the direction normal 

to the substrate and movement with a constant velocity 

in the tangential direction. We will assume that 

Coulomb’s law of friction with a constant coefficient 

of friction 0  is valid in the contact. We first consider 

a very simple model consisting of a single spring with 

normal stiffness zk  and tangential stiffness xk . As the 

reference state, the unstressed state in the moment 

of first contact with the substrate is chosen. Let us 

denote the horizontal and vertical displacements  

of the upper point of the spring from the reference 

state by xu  and zu  and the horizontal displacement 

of the lower (contact) point by ,cxu . The upper point 

is forced to move according to 

 ,0 cosz z zu u u t  and x xu v        (1) 

(see Fig. 1). 

 
Fig. 1 The simplest model of a tribological contact with a con-
stant contact stiffness represented as a single spring, which has a 
normal stiffness zk  and a tangential stiffness xk . The upper end 
of the spring is forced to move according to Eq. (1). At the lower 
end (immediate contact spot), Coulomb’s law of friction with a 
constant coefficient of friction 0  is assumed.  
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2.1 Small oscillation amplitudes (no “jumping”) 

Let us start our consideration with the case of suffi-

ciently small oscillation amplitudes,   ,0z zu u , so that 

the indenter remains in contact with the substrate at all 

times. As for the horizontal movement, the lower point 

of the spring can be either in stick or slip states. During 

the slip phase the tangential force xf  ,c( )x x xk u u  is 

equal to the normal force  ,0( cos )z z z zf k u u t  mul-

tiplied with the coefficient of friction:  ,c( )x x xk u u  

 0 ,0( cos )z z zk u u t . Differentiating this equation with 

respect to time gives     
0 ,c 0( ) sinx x z zk v u k u t . For 

the tangential velocity of the lower contact point, it 

follows that     
,c 0 0 ( / ) sinx z x zu v k k u t . This equa-

tion is only valid when 
,c 0xu , and the foot point of 

the spring will transition from the sliding state to the 

sticking state when the condition 
,c 0xu  is fulfilled. 

This occurs at the time 1t  which satisfies the following 

equation: 

     
,c 0 0 1( / ) sin 0x z x zu v k k u t        (2) 

Introducing a dimensionless velocity 

 



0

0

x

z z

k v
v

k u
               (3) 

we can rewrite Eq. (2) in the form 

 1sin t v                   (4) 

For  1v , this equation has no solutions, and the spring 

continues sliding at all times. Since, in this case, the 

tangential force remains proportional to the product 

of the normal force and the macroscopic coefficient 

of friction 0  at all times, there is no reduction of the 

macroscopic force of friction. 

For dimensionless velocities smaller than one,  1v , 

Eq. (4) has solutions and the movement of the contact 

point will consist of a sequence of sliding and sticking 

phases, where the sliding phase ends at time 1t  given 

by Eq. (4). The tangential force at this point is equal 

to   0 ,0 1( cos )x z z zf k u u t  or taking Eq. (4) into 

account: 

  


           

2
2

1 0 ,0 0 ,0( ) x x
x z z z z

v k
f t k u k u     (5) 

During the sticking stage the tangential force increases 

linearly according to 

   (stick)
1 1( ) ( )x x x xf t f t k v t t           (6) 

The next phase of slip starts at time 2t  when the 

tangential force becomes equal to the normal force 

multiplied by the coefficient of friction (see Fig. 2): 

    1 2 1 0 ,0 2( ) ( ) ( cos )x x x z z zf t k v t t k u u t    (7) 

Or taking Eqs. (5) and (4) into account and using the 

dimensionless variable Eq. (3), 

      2
2 2cos arcsin 1t v t v v         (8) 

The average value of the frictional force during the 

whole oscillation period can be calculated as follows: 

      
2 1

1 2

2π /
(stick) ( )d ( )d

2π

t t

x x x
t t

f f t t f t t     (9) 

Divided by the average normal force, this gives the 

macroscopic coefficient of friction 

 macro x zf f               (10) 

where  ,0z z zf k u  in the non-jumping case, which is 

considered here. The result of numerical evaluation of 

the macroscopic coefficient of friction, normalized by 

the local coefficient of friction 0  is presented in Fig. 3. 

It was found that the numerically obtained depen-

dences of the coefficient of friction on dimensionless 

velocity and amplitude can be approximated very 

accurately with the following equation: 

   


        
2 4macro

0 ,0

3 1
1 1 1

4 4
z

z

u
v v

u
     (11) 

 

Fig. 2 Schematic presentation of the normal force multiplied with 
the coefficient of friction (sinusoidal curve) and tangential force 
(straight line). During the slip phase (before 1t  and after 2t ), the 
tangential force is equal to the normal force times the coefficient of 
friction, thus both curves coincide. During the stick phase (between 

1t  and 2t ), the tangential force is smaller than the normal force 
multiplied by the coefficient of friction. Both forces become equal 
again at time 2t , where the stick phase ends. 
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Fig. 3 Dependence of the normalized coefficient of friction on 
the normalized velocity for ,0/ 0,  0.2,  0.4,  0.6,  0.8, 1.0z zu u   
(from top to bottom). Points represent the results of numerical 
evaluation of the Integral (9). Solid lines represent the empirical 
Approximation (11). The inset shows the low-velocity asymptotic 
Solution (12) (solid line) compared to the numerical Solution (9) 
(points). 

A comparison of this approximation with numerical 

results provided by Eqs. (9) and (10) is shown in Fig. 3. 

The low-velocity limit of the coefficient of friction 

can be derived analytically by replacing the time- 

dependence of the normal force with its Taylor series 

around the points   0t  and   3π / 2t  and repeating 

the above calculations including integration of (9), 

which provides the result 




        
 

3 / 2 2macro

0 ,0

4 1
1 1 π π

3 2
z

z

u
v v v

u
   (12) 

This dependence is asymptotically exact in the limit 

of small sliding velocities. Like the empirical Appro-

ximation (11) it contains only two dimensionless 

variables: the dimensionless amplitude of oscillation 

 ,0z zu u  and the dimensionless sliding velocity (3). A 

comparison with the numerical results is shown for the 

case of the critical oscillation amplitude,  ,0 1z zu u , 

in the inset of Fig. 3. 

Equation (11) can be rewritten in a form explicitly 

giving the average tangential force (force of friction): 

   
            

2 4

0 ,0

,0

3 1
1 1 1

4 4
z

x z z

z

u
f k u v v

u
  (13) 

Note that the change of the friction force due to oscilla-

tion, as compared with sliding without oscillation, 

does depend on the amplitude of oscillation, but does 

not depend on the average normal force: 

             
2 4

0

3 1
1 1

4 4
x z zf k u v v      (14) 

As will be shown later, this property implies that 

Eq. (14) is valid for arbitrarily-shaped contacts if the 

oscillation amplitude is small, and xk  and zk  are 

understood as the incremental tangential and normal 

stiffness of the contact. 

Equation (11) provides a compact representation 

of the law of friction. However, it is not always 

convenient for interpretation of experimental results, 

as the dimensionless velocity (3) is normalized by the 

amplitude of velocity oscillation and thus the scaling of 

the velocity depends on the oscillation amplitude. To 

facilitate the physical interpretation of experimental 

results it may be more convenient to normalize the 

velocity using a value that does not depend on the 

oscillation amplitude. Introducing a new normalized 

velocity v̂  according to the definition 

 


0 ,0

ˆ x x

z z

k v
v

k u
             (15) 

we can rewrite Eq. (11) in the form 




    
              

2 4

,0 ,0macro

0 ,0

3 1
ˆ ˆ1 1 1

4 4

z zz

z z z

u uu
v v

u u u
  (16) 

This dependence is presented in Fig. 4. 

 

Fig. 4 Dependence of the normalized coefficient of friction  
on the dimensionless velocity (15): The horizontal line at the 
constant value 1 corresponds to sliding friction without oscillation. 
When the oscillation amplitude increases, the static force of 
friction (at zero velocity) decreases until it vanishes (bold line). 
This trend is shown in the upper part of the plot for amplitudes 

,0/ 0.2,  0.4,  0.6,  0.8, 1.0z zu u   (from top to bottom). Further 
increase of the oscillation amplitude leads to loss of contact 
during a part of the oscillation period. In this range of oscillation 
amplitudes, the static friction force remains zero, and the slope of the 
dependency decreases with increasing oscillation amplitude. This 
is shown in the lower part of the plot for amplitudes ,0/z zu u  
1.2,  1.4,  1.6,  1.8, 2.0  (from top to bottom). 
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2.2 Large oscillation amplitudes (“jumping”) 

If the amplitude of normal oscillations exceeds the 

average indentation depth, the indenter starts to 

“jump”: In this case it will be in contact with the sub-

strate only during part of the oscillation period and 

in the no-contact-state for the rest of the time. For  

a jumping contact, analytical considerations become 

too cumbersome, and we will only present the results 

of numerical modeling of the behavior of the system. 

In our model, the movement of the contact point is 

determined by local stick and slip conditions: As 

long as the tangential spring force is smaller than the 

normal force multiplied by the coefficient of friction, 

the contact point is considered to be stuck to the 

substrate. If in any particular time step the tangential 

force exceeds the maximum friction force, it is brought 

into equilibrium by appropriately changing the contact 

coordinate. Overall, the system undergoes alternating 

contact and non-contact phases, while each contact 

phase may be divided into stick and slip phases. The 

average force during one complete period of oscillation, 

divided by the average normal force, results in the 

macroscopic coefficient of friction, macro . It can be 

shown that, as in the non-jumping case, the dimen-

sionless coefficient of friction  macro 0/  is a function 

of only the dimensionless velocity v  given by Eq. (3) 

and the dimensionless oscillation amplitude. This pro-

perty was checked by varying (dimensional) system 

parameters while preserving the values of the two 

dimensionless parameters. The numerical results for 

the jumping case are shown in Fig. 5. One can see that 

the dependence of the reduced coefficient of friction 

on the reduced velocity does not change significantly 

after the reduced oscillation amplitude exceeds the 

critical value 1, where static friction first disappears. 

Thus, as a very rough approximation, one can use the 

relation (11) with the critical oscillation amplitude for 

the whole range of jumping contacts: 

   


       
2 4macro

0

3 1
1 1 1

4 4
v v (for the jumping case) 

(17) 

It is interesting to note that the critical value of 

the dimensionless velocity v , after which there is 

continuous sliding and the macroscopic coefficient of  

 

Fig. 5 Dependence of the normalized coefficient of friction  
on the dimensionless velocity v  (3) for the “jumping” case, i.e., 
when the oscillation amplitude exceeds the average indentation 
depth. Curves are shown for 11 oscillation amplitudes from 

,0/ 1z zu u   to ,0/ 2z zu u   with a step of 0.1. The curves for 
higher oscillation amplitudes “pile up” towards a limiting curve. 
The inset shows the dependence of the slope of the low-velocity 
asymptote (21) on ,0/z zu u . One can see that it depends only 
weakly on the oscillation amplitude: Once the sample starts 
jumping the slope drops rapidly by about 20% and then remains 
practically constant with a limiting value of π / 4 . 

friction coincides with the microscopic one, is equal 

to 1 both in the non-jumping and jumping regimes. 

The low-velocity asymptote of the dependence of the 

coefficient of friction can be easily found analytically. 

It is instructive to do this for a better understanding 

of the details of the dependence and of possible 

deviations from the rough estimate (17). At sufficiently 

low velocities, the spring will stick as soon as it comes 

into contact with the substrate. From Eq. (1), we can 

see that the times when contact is lost or regained are 

determined by the equation  

   1,2 0arccos ( / )zt u u , for   0zu u       (18) 

The spring comes into contact in fully relaxed state 

and is then moved with the constant velocity 0v  

during the contact time  contact 22π / 2t t . At low 

velocities the spring will remain in stick for almost 

the entire contact time, so that the average tangential 

force during the contact time can be estimated as 

 0 contactcontact
/2x xF k v t  and the average tangential force 

during the whole oscillation period as 




  
        

2
2

0 contact 0 0π arccos
2 2π π

x x
x

z

k v t k v u
F

u
  (19) 
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The average normal force is given by: 

                 

2

0 0
0

0

1 1
1 arccos 1
π π

z z

u uu
F k u

u u u
 (20) 

with which we finally find the normalized coefficient 

of friction: 




  
     

                 

2

0

macro

2
0

0 0 0

0

1
1 arccos
π

1 1
1 arccos 1
π π

z

z z z

u

u
v

u u uu

u u u u

(21) 

This result illustrates once more that the reduced coeffi-

cient of friction is a function of only the dimensionless 

velocity v  and the dimensionless oscillation amplitude 

 ,0/z zu u . The dependence of the slope of the low- 

velocity asymptote on the dimensionless oscillation 

amplitude  ,0/z zu u  is shown in the inset of Fig. 5. One 

can see that when the sample starts jumping the 

slope drops rapidly by about 20% and then it remains 

nearly constant at the limiting value of π / 4 , thus 

an explicit expression for the low-velocity asymptote 

in the jumping regime can be written (in the original 

dimensional variables) as: 







0
macro

π

4
x

z z

k v

k u
 (low velocity asymptote;   ,0z zu u ) 

(22) 

As mentioned above, for comparison with experi-

ments it may be preferable to use the dimensionless 

velocity v̂  (15), which does not depend on the oscilla-

tion amplitude. In terms of this velocity, the coefficient 

of friction is shown in Fig. 4 for both jumping and 

non-jumping regimes, separated by a bold solid line 

corresponding to the critical amplitude  ,0/ 1z zu u . 

Overall, one can see that an increase of the oscillation 

amplitude first leads to a decrease of the static coeffi-

cient of friction at low sliding velocities. At the critical 

amplitude, the static coefficient of friction vanishes and 

remains zero during further increases of the oscillation 

amplitude, while the overall dependence on velocity 

starts to “tilt” (the slope of the dependence decreases 

with increasing oscillation amplitude). 

3 Reduction of friction in a Hertzian contact 

In Section 2, we considered a simplified model in 

which it was assumed that the contacting bodies have 

a constant contact stiffness that does not depend on 

the indentation depth. This model can be realized 

experimentally by using a flat-ended cylindrical pin 

or a curved body with a flat end (e.g., due to wear). 

However, in the general case the body in contact will 

have curved or rough surfaces so that the contact 

stiffness will depend on the indentation depth. In this 

section we generalize the results obtained in the pre-

vious section for more general contact configurations. 

In our analysis of the contact of a curved body 

with the substrate we will use the so-called Method 

of Dimensionality Reduction (MDR). As shown in 

Ref. [26], the contact of arbitrarily shaped bodies can 

be described (in the usual half-space approximation ) 

by replacing it with a contact of an elastic foundation 

with a properly defined planar shape ( )g x , as shown 

in Fig. 6. The elastic foundation consists of a linear 

arrangement of independent springs with normal 

stiffness  zk  and tangential stiffness  xk  and with 

sufficiently small spacing x . For an exact mapping, 

the stiffness of the springs has to be chosen according 

to Refs. [25, 27]: 

  
    

2 2
* 1 2

*
1 2

1 11
withzk E x

E E E
     (23) 

  
    * 1 2

*
1 2

2 21
with

4 4
xk G x

G G G
      (24) 

where 1E  and 2E  are the moduli of elasticity, 1  and 

 2  the Poisson numbers, and 1G  and 2G  the shear 

moduli of the bodies. The “equivalent shape” ( )g x  

providing the exact mapping can be determined either  

 
Fig. 6 Schematic presentation of the contact of a transformed 
planar profile with an effective elastic foundation as prescribed 
by the rules of the Method of Dimensionality Reduction (MDR). 
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analytically (e.g., for axis-symmetric profiles [25, 27]), 

or by asymptotic [26], numerical [26, 28] or experi-

mental methods. It is important to note that an 

equivalent profile does exist for arbitrary topographies 

of contacting bodies. Once determined, this equivalent 

profile can be used to analyze arbitrary dynamic 

normal and tangential loading histories. If the body 

is moved tangentially, the same law of friction that is 

valid for the three-dimensional bodies is applied for 

each individual spring, using the same coefficient of 

friction 0 . If the above rules are observed, the relations 

between macroscopic properties of the contact (in 

particular the normal and tangential force-displacement- 

relationships) will identically coincide with those of 

the initial three-dimensional problem [26]. 

3.1 Arbitrary surface topography and small  

amplitude of oscillations 

Let us start by deriving the reduction of friction 

force for the case of arbitrary contact geometry and 

small oscillation amplitudes. Consider the MDR- 

representation of the problem in Fig. 6. If the oscilla-

tion amplitude is small, then most springs which came 

into contact with the elastic foundation during the 

initial indentation by ,0zu  will remain in contact at all 

times. Thus, the result (14), which is valid in the non- 

jumping case, is applicable for most of the springs in 

the contact; we only have to replace the normal contact 

stiffness by the stiffness of a single spring: 

              
2 4

0one spring

3 1
1 1

4 4
x z zf k u v v  (25) 

The oscillation amplitude and the expression in the 

brackets are the same for all springs. Summing over 

all springs therefore just means replacing the stiffness 

of one spring by the total stiffness of all springs in 

contact, zk , which leads us back to Eq. (14), which is 

thus generally valid for arbitrary contact shapes. 

3.2 Parabolic surface profile and arbitrary amplitude 

of oscillations 

For a parabolic profile  2/(2 )z r R  the equivalent plane 

profil ( )g x  is given by Ref. [25]:  2( ) /g x x R. In our 

numerical simulations, this profile was first indented 

by ,0zu . Subsequently, the indenter was subjected   

to superimposed normal oscillation and tangential 

movement with constant velocity according to Eq. (1). 

Since the springs of the MDR model are independent, 

the simulation procedure for each spring is exactly as 

described in Section 2: The movement of the contact 

point of each spring of the elastic foundation was 

determined by the stick and slip conditions: as long as 

the tangential spring force remained smaller than the 

normal force multiplied by the coefficient of friction, 

the contact point remained stuck to the substrate. If 

in a particular time step the tangential force exceeded 

the critical value, it was reset to the critical value by 

appropriately changing the contact coordinate. This 

procedure unambiguously determines the normal and 

tangential force in each spring of the elastic foundation 

at each time step. By summing the forces of all springs 

the total normal and tangential force are determined. 

After averaging over one period of oscillation, the 

macroscopic coefficient of friction was found by divid-

ing the mean tangential force by the mean normal 

force. This coefficient of friction, normalized by the 

local coefficient of friction 0 , once again appears to be 

a function of only two parameters: the dimensionless 

velocity (either v  (3), see Fig. 7, or v̂  (15), see Fig. 8) 

and the dimensionless oscillation amplitude  ,0/z zu u . 

For a parabolic profile, the dependences look qualita-

tively very similar to those for a single spring (compare 

with Fig. 3 and Fig. 4). The dependences have two 

characteristic features: (a) the static force of friction— 

the starting point of the curve at zero velocity and (b) 

the critical velocity  1v  after which there is no further 

influence of oscillations on the macroscopic coefficient 

of friction.  

 

Fig. 7 Dependence of the normalized coefficient of friction on 
the normalized velocity v  defined by Eq. (3) for the oscillation 
amplitudes ,0/ 0,  0.2,  0.4,  0.6,  0.8, 1.0z zu u   (top to bottom). 
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Fig. 8 Dependence of the normalized coefficient of friction on 
the normalized velocity v  defined by Eq. (15) for the oscillation 
amplitudes ,0/ 0,  0.2,  0.4,  0.6,  0.8, 1.0z zu u   (the bold line and 
all curves in the upper-left part) and for ,0/ 1.2,  1.4,  1.6,z zu u   
1.8, 2.0 (bottom-right part). 

4  Discussion 

Let us summarize and discuss the main findings of 

the present study and provide a comparison with 

experimental results. The structure of the obtained 

dependences of the macroscopic coefficient of friction 

on the velocity in the presence of oscillations is simple 

and contains only two main reference points: the static 

friction force and the critical velocity. The dependence 

of the static friction force is extremely simple: it is 

determined just by the minimum of the normal force 

during the oscillation cycle. The differences of the 

static friction force for indenters of different shape will 

therefore be completely determined by the solution 

of the corresponding normal contact problem. The 

second reference point is the critical velocity, which 

separates the velocity interval where the coefficient of 

friction does depend on the velocity from the interval 

where there is no further dependence. This critical 

point is given by the condition  1v  or explicitly, in 

dimensional variables:  

  
*

0 0* z

E
v u

G
              (26) 

Since Mindlin’s ratio * */E G  is on the order of unity 

and  zu  is the amplitude of velocity oscillation, this 

means that the critical velocity is roughly speaking the 

amplitude of the velocity oscillation multiplied with 

the coefficient of friction. It is astonishing that this 

simple result is absolutely universal and is valid for 

both the non-jumping and jumping regimes and for 

indenters of arbitrary shape.  

Thus, one of the reference points is determined 

solely by the amplitude of displacement oscillation 

and the other solely by the amplitude of the velocity 

oscillation. Between these points, the dependence of the 

coefficient of friction on sliding velocity is accurately 

approximated by Eq. (11), which can be rewritten in a 

universal form that does not depend on the indenter 

shape: 

    
 

             

2 4macro static

0 0

3 1
1 1 1 1

4 4
v v    (27) 

The indenter shapes will only influence the static 

coefficient of friction in the above equation.  

For practical applications one can use an even 

simpler approximation differing from Eq. (27) by 1% 

or less: 

  
 

 
    

 

2.4macro static

0 0

1 1 1 v         (28) 

Substituting the definition of v , we can write this 

dependence in the initial dimensional variables: 

    
 

 
     

2.4*
0

macro 0 0 static *
0

1
z

vG

E u
   (29) 

This equation contains in a condensed form all essential 

results of the present study. Most interestingly, it is 

approximately valid in both non-jumping and jumping 

regimes and for all indenter shapes. As long as the 

amplitude of oscillation is smaller than the average 

indentation (no jumping), the static friction force 

decreases monotonously with increasing oscillation 

amplitude. After reaching the critical oscillation ampli-

tude, the static friction force vanishes and remains 

zero at larger oscillation amplitudes, but Eq. (27) still 

remains valid in a good approximation. From the critical 

amplitude onwards, the force-velocity dependencies 

start to “tilt”.  

The described features can be readily recognized in 

the experimental data shown in Fig. 9. 

Comparison of the experimental results with the 

theoretical predictions in Fig. 4 shows both similari-

ties and differences. For example, we also observe the  

42 CHAPTER 3. PUBLICATIONS: ACTIVE CONTROL OF FRICTION



Friction 9 

∣www.Springer.com/journal/40544 | Friction 
 

http://friction.tsinghuajournals.com

 

Fig. 9 Experimentally determined dependences of the coefficient 
of friction on sliding velocity between a steel sphere and a steel disc 
for increasing amplitudes of out-of-plane oscillation obtained by 
Milahin (Source: [29], reproduced with permission of the author). 
The upper-most curve corresponds to sliding in the absence of 
oscillation. The second, third and fourth curves correspond to 
amplitudes of 0.06 mzu   , 0.10 mzu   , 0.16 mzu    and 

0.27  m
z

u   . 

decrease of static friction and subsequent “tilting” of 

the dependences in the experimental data. Similar 

behavior was also observed in Ref. [30]. A difference 

between our theory and experiment is that the static 

coefficient of friction does not vanish entirely even at 

large oscillation amplitudes. This effect is known also 

for other modes of oscillation and is related to the 

microscopic heterogeneity of the frictional system, 

which means that Coulomb’s law of friction is not 

applicable at very small space scales [31]. 

As we noted in the introduction, we considered a 

case of a soft contact and a rigid measuring system. 

In the opposite case of a very stiff contact and soft 

surrounding system, the dependences of the coeffi-

cient of friction on the oscillation amplitude appear 

to be essentially influenced by the inertial properties 

of the system [16]. An analysis carried out by Teidelt 

in Ref. [30] has shown that for the measuring system 

described in Ref. [16] a reasonable agreement between 

experiment and theory can only be achieved if the 

contact stiffness is taken into account. However, under 

other conditions—and in particular depending on 

the frequency of oscillations—the assumption of soft 

contact can fail. For such cases, a more general analysis 

has to be carried out, which is provided in the second 

part of this series [32].  
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3.2 Publication 5
The publications in this thesis are based on the assumption of quasi-staticity. This is a conve-
nient approximation for elucidating basic mechanisms, but is often insufficient for describing
practical systems. Since the highly deformed contact region is usually very small (both in size
and mass) compared to the entire system, its inertia can almost always be safely neglected, and
propagation of elastic disturbances across the contact region can be considered instantaneous.
However, the same cannot always be said of the surrounding system, and its dynamics in in-
teraction with the contact forces should be described explicitly for realistic modeling. Due
to the great diversity of possible systems this is ultimately the realm of numerical simulation
and applied engineering. However, the present paper provides a very simple example of this
hybrid approach, which nonetheless uncovers some qualitatively new behaviors.

The modeled scenario roughly corresponds to a pin-on-disc tribometer with an externally
applied out-of-plane harmonic oscillation. The pin is considered to be rigid in the normal
direction, but having a finite bending stiffness and mass. In the model these are represented
with the system spring 𝑘𝑥 and system mass 𝑚 (Fig. 1b). All other aspects of the model are the
same as in the first part of the study, including the displacement-controlled oscillation (only
in-plane dynamics is considered here).

Since the oscillation is still displacement-controlled, the static COF is the same as in the
previous publication. However, the critical velocity (above which stick-slip is eliminated and
reduction of friction becomes impossible), is changed substantially:

𝑣∗
0 = 𝜇0𝜔Δ𝑢𝑧

𝑘𝑧,𝑐
𝑘𝑥,𝑐

|𝑘𝑥,𝑐 + 𝑘𝑥 − 𝑚𝜔2|
|𝑘𝑥 − 𝑚𝜔2|

Note that if the system spring is sufficiently soft (𝑘𝑥 ≪ 𝑚𝜔2 ≪ 𝑘𝑥,𝑐), the critical velocity
reduces to 𝜇0Δ𝐹𝑁 /𝑚𝜔, which matches the result obtained by Teidelt et al. [78]. In case of a
very stiff system (𝑘𝑥 → ∞), the critical velocity reduces to𝜇0𝜔Δ𝑢𝑧𝑘𝑧,𝑐/𝑘𝑥,𝑐 , which reproduces
the result obtained for the non-inertial system in P4.

More interesting are the two resonant cases, which only arise in the inertial model: If
𝑘𝑥,𝑐 + 𝑘𝑥 − 𝑚𝜔2 ≈ 0, the critical velocity tends to zero, meaning that reduction of friction is
prevented even at very low sliding velocity. On the other hand, if 𝑘𝑥 − 𝑚𝜔2 ≈ 0, the critical
velocity tends to infinity and the system consequently never achieves the state of continuous
sliding. At large 𝑣0 the coefficient of friction still reaches a plateau value, but this plateau can
be significantly lower than 𝜇0, so this case is of considerable practical interest.

The two resonances inform the choice of two dimensionless parameters 𝛼 and 𝛽 (Eq. 20)
that are of key importance in describing the system. A large part of the paper is devoted to a
numerical exploration of the (𝛼, 𝛽) parameter plane, which uncovers some unusual velocity-
dependencies of the COF, with multiple intermediate plateaus (see e.g. Fig. 5b).

The second resonant case is then analyzed in some detail and an asymptotic expression
for the plateau value of the COF at large velocities is derived (Eq. 37). This plateau lies at the
“halfway point” between the static coefficient of friction and 𝜇0. The paper is rounded out by
consideration of the “jumping” case and a limited comparison with experimental data. The
main results are summarized graphically in Fig. 10.
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Abstract: The influence of out-of-plane oscillations on friction is a well-known phenomenon that has been 

studied extensively with various experimental methods, e.g., pin-on-disk tribometers. However, existing theoretical 

models have yet achieved only qualitative correspondence with experiment. Here we argue that this may be due 

to the system dynamics (mass and tangential stiffness) of the pin or other system components being neglected. 

This paper builds on the results of a previous study [19] by taking the stiffness and resulting dynamics of the 

system into account. The main governing parameters determining macroscopic friction, including a dimensionless 

oscillation amplitude, a dimensionless sliding velocity and the relation between three characteristic frequencies 

(that of externally excited oscillation and two natural oscillation frequencies associated with the contact stiffness 

and the system stiffness) are identified. In the limiting cases of a very soft system and a very stiff system, our 

results reproduce the results of previous studies. In between these two limiting cases there is also a resonant case, 

which is studied here for the first time. The resonant case is notable in that it lacks a critical sliding velocity, above 

which oscillations no longer reduce friction. Results obtained for the resonant case are qualitatively supported 

by experiments. 

 

Keywords: sliding friction; out-of-plane oscillation; stiffness; system dynamics; macroscopic friction coefficient 

 

 
 

1  Introduction 

Vibrations can be applied to reduce and control friction, 

which is widely used in many industrial branches, 

such as metal forming, wire drawing and drilling [1, 2]. 

One of the earliest studies of friction reduction due to 

oscillations was carried out by Godfrey in 1967 [3]. He 

conducted experiments, in which a rider slid along  

a steel plate and was vibrated in the direction per-

pendicular to the plane. Afterwards numerous studies 

were carried out, which can be roughly classified by 

whether the static or sliding friction is considered and 

by the direction of the oscillations, see, e.g., Refs. [4−6]. 

The three possible directions of oscillation are: (1) in 

the sliding direction; (2) perpendicular to the sliding 

direction in the contact plane; (3) perpendicular to 

the contact plane (out-of-plane oscillations). Arbitrary 

combinations of these three modes are also possible, 

some of which can produce directed motion even in 

the absence of a directed mean force, thus producing a 

frictional drive. In this regard, active control of friction 

through oscillations is closely related to oscillation- 

based frictional drives [7, 8]. However, in the present 

paper we consider only sliding friction under the 

influence of out-of-plane oscillations. 

Friction under the action of out-of-plane oscillations 

has been studied experimentally in the past in a number 

of works [9−12]. The first theoretical description  
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was proposed in Refs. [13, 14], where the movement 

of a rigid body under constant tangential force and 

oscillating normal force was considered. Unfortunately 

this model achieved only qualitative correspondence 

with experimental results. In Ref. [7], it was shown 

that the macroscopic behavior of a frictional contact 

is strongly influenced by the contact stiffness. Related 

studies of the dependence of friction on tangential 

oscillations [15, 16] and a study of frictional drives [17] 

came to the same conclusion. In a recent experimental 

study [18] the contact stiffness was also confirmed as 

one of the main parameters governing the response of 

a tribological contact to high frequency oscillations. 

Based on these indications of the importance    

of contact stiffness, Popov et al. [19] carried out a 

theoretical study of friction under the action of out- 

of-plane oscillations with explicit account of finite 

contact stiffness. In this paper it was assumed that the 

stiffness of the system is much larger than that of  

the contact, which allowed avoiding consideration  

of system dynamics. In real systems, depending on 

their particular mechanical design, the stiffness of the 

system may be comparable with the contact stiffness, 

thus bringing the whole system dynamics into play. In 

the present paper, we extend the previous study [19] by 

considering the complete dynamics of a system with 

a tribological contact.  

2 Simplified model of the experimental 

set-up 

The model studied in the present paper is motivated 

by experimental studies of active control of friction by 

out-of-plane oscillations in a pin-on-disk tribometer 

(e.g., Refs. [7, 14−16]). The design of the pin is shown 

in Fig. 1(a). Assuming that the vertical stiffness of the 

set-up is much larger than the normal contact stiffness, 

the vertical macroscopic motion of the pin can be 

considered to be displacement controlled. The tangential 

stiffness of the pin assembly is much smaller than its 

vertical stiffness, so that it is no longer guaranteed 

that the tangential stiffness of the pin is larger than 

the tangential contact stiffness. Therefore, the tangential 

stiffness of the pin is explicitly taken into account in 

our model. Assuming that the transversal dynamics 

of the pin is controlled by only one bending normal  

mode of the pin, we arrive at the simplified model  

of the system, which is sketched in Fig. 1(b): a one- 

degree-of-freedom model taking into account the 

normal and tangential contact stiffness, the inertia of 

the pin and its tangential stiffness. Modal analysis  

of the pin could be used for estimation of a more 

accurate modal mass, but we do not do this here, as 

our aim is to present a high-level analysis without 

considering particular geometrical realizations. We 

will show that the frequency of free oscillations of  

the pin, 
0

/
x

k m  , is the most important system 

parameter; when describing a real experiment, it has  

to be adjusted to the ground frequency of the free 

oscillations of the pin. Naturally, our model abstracts 

away many (possibly important) aspects of real frictional 

systems, in particular the differential contact stiffness 

of curved bodies (we model the contact as a single 

spring with constant stiffness). However, in the first 

part of this series [19] we found that the detailed 

contact mechanics had surprisingly little influence on 

the results, relative to a one-spring model. In particular, 

abstracting the exact geometry of the contact does 

not change the relevant dimensionless variables. Due 

to this, and in view of the already large number of 

system parameters, we restrict ourselves to the simple 

model described above.  

The model, as shown in Fig. 1(b), consists of a rigid 

body with mass m that is connected to an external 

actuator, which imposes the body’s z-coordinate. The 

body is pulled by a spring with a tangential stiffness 

x
k  and interacts with the substrate through a “contact 

spring” that has the normal stiffness 
,cz

k  and tangential 

stiffness 
,cx

k . The vertical movement of the mass is 

determined explicitly by the external oscillation:  

,0
cos

z z z
u u u t               (1) 

where 
,0z

u  is a constant initial indentation, 
z

u  is the 

amplitude of normal oscillations, and   is the angular 

frequency of the oscillation. The attached “system 

spring” is pulled tangentially with a constant velocity 

0
v . The motion of the body in the x-direction under 

the influence of the attached springs is described by 

Newton’s Second Law for the tangential displacement 

x
u . The tangential displacement of the immediate 

contact point is denoted with 
,cx

u . For simplicity, we 

assume Coulomb’s law of friction with a constant  

48 CHAPTER 3. PUBLICATIONS: ACTIVE CONTROL OF FRICTION



196 Friction 5(2): 194–206 (2017) 

 | https://mc03.manuscriptcentral.com/friction 

 

coefficient of friction 
0

  in the immediate contact 

point between the substrate and the contact spring. 

Although this may be an unrealistic assumption in 

general, the aim of this study is to understand how 

changes in the macroscopic coefficient of friction can 

arise from pure system dynamics even with constant 

microscopic friction. Experimental results might be 

best approximated by a combined theory, including 

system dynamics, contact mechanics and changes of 

the local coefficient of friction, but this is left for later 

studies. 

Note that the amplitude of oscillation can be either 

smaller than the mean indentation (non-jumping),  

in which case the body is always in contact with the 

substrate, or larger (jumping case), where contact with 

the substrate is intermittent. Initially we will focus on 

the permanent contact case. Jumping will be introduced 

later in the paper. 

3 Qualitative analysis 

All previous studies of the influence of normal 

oscillations on friction, including the first part of the 

present work [19], have shown qualitatively the same 

dependence of the macroscopic coefficient of friction 

(COF) on velocity: At zero velocity the friction force 

is at its static value, which is determined solely by the 

minimum value of normal force during one oscillation 

cycle: 





   

    


0 ,0 ,0

0
,0

(1 / ), for   

(non-jumping case)
( 0)

0, for   

(jumping case)

z z z z

z z

u u u u

v
u u

 (2) 

At higher velocities the COF increases until it reaches 

0
  at some critical velocity *

0
v  (“point of insensitivity”), 

and remains constant thereafter. The static COF and 

the critical velocity *

0
v  are the two main reference 

points of the velocity dependence of the COF. While 

the first reference point is universal (Eq. (2)), the 

second one is determined by the dynamics of the 

tribological system.   

We begin our analysis with the case of small 

oscillation amplitudes, 
,0z z

u u  , so that the lower 

point of the indenter remains in contact with the 

substrate at all times. In this case, the normal com-

ponent of the contact force 
N

F  is non-vanishing and is 

determined by the product of the current indentation 

depth (Eq. (1)) with the normal contact stiffness 
,cz

k :  

N ,c ,0
( cos )

z z z
F k u u t             (3) 

At sufficiently large pulling velocities 
0

v , the contact 

point will be sliding all the time (without stick) in 

one direction (except for the resonant case that will be 

described later). Under these conditions, the average 

tangential force is equal to the average normal force 

times 
0

 , and the macroscopically observed COF, 

which we define as the ratio of the mean values    

of tangential and normal forces over one period of 

oscillation, will be constant and equal to 
0

 . When 

the above conditions are satisfied the tangential force 

of the contact spring is in equilibrium with the friction 

force (normal force times 
0

 ), since the contact stiffness 

is not associated with any mass: 

,c ,c 0 ,c ,0
( ) ( cos )

x x x z z z
k u u k u u t           (4) 

The equation of motion of the body m along the 

 

Fig. 1 (a) Photograph and diagram of the pin assembly of a pin-on-disk tribometer used in Refs. [7, 16] and in the experimental part of 
the present study; (b) a simplified model of the pin in contact with the disk, which is studied in the present paper. 
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x-axis is 

   
0 ,c ,c( ) ( )x x x x x xmu k v t u k u u         (5) 

Taking Eq. (4) into account, the equation of motion 

reads 

0 0 ,c 0 ,c ,0
cos

x x x x z z z z
mu k u k v t k u t k u         (6) 

The particular solution of this equation is 

,c 0 ,c

0 0 ,0 2
cosz z z

x z

x x

k k u
u v t u t

k m k


 




  


     (7) 

Differentiating this solution with respect to time gives 

0 ,c

0 2
sinz z

x

x

k u
u v t

m k


 




 


          (8) 

Differentiating the equilibrium condition (Eq. (4)), 

,c ,c 0 ,c
( ) sin

x x x z z
k u u k u t              (9) 

Substituting Eq. (8) into Eq. (9) and resolving the 

resulting equation with respect to 
,cx

u , we obtain the 

following expression for the sliding velocity of the 

immediate contact point (lower point of the contact 

spring)  


  


 

  



2

,c ,c

,c 0 02
,c

sin
( )

z x x

x z

x x

k k k m
u v u t

k m k
   (10) 

Due to our previous assumption of continuous sliding 

this velocity must remain positive at all times. This is 

the case if  

*

0 0
v v                  (11) 

where 


 



 
 



2
,c,c*

0 0 2
,c

x xz

z

x x

k k mk
v u

k k m
      (12) 

This relatively simple equation is one of the central 

results of the present paper and it is instructive to 

discuss it in some detail. First, let us consider limiting 

cases that have already been studied in the literature: 

I. In the case of a very soft system ( 2

x
k m ) with 

very large contact stiffness ( 2

,cx
k m ) we effectively  

have a rigid body under the action of constant 

tangential force. In this case, which was considered in 

Ref. [14] (see esp. Fig. 20 and discussion) the critical 

velocity reduces to 

  


 
 ,c* N

0,soft 0 02

z zu k F
v

mm
        (13) 

II. The limiting case of a very stiff system (
,cx

k   
2

x
k m ) was considered in the first part of the 

present work [19]. In this case Eq. (12) simplifies to 

,c*

0,stiff 0

,c

z

z

x

k
v u

k
               (14) 

There are two other limiting cases which involve 

resonances and have not yet been considered in the 

literature: 

III. If 2

,c
0

x x
k k m   , the critical velocity is very 

small: *

0
0v  . The body is in permanent sliding state 

even at very low velocities and the COF is constant 

and equal to 
0

  at all sliding velocities. 

IV. If 2 0
x

k m  , the critical velocity is infinitely 

large and the system never achieves the state of 

continuous sliding. It will be shown that in this case 

the macroscopic coefficient of friction reaches a plateau 

at large velocities, with a value lower than 
0

 . This 

case is of a special interest and it will be considered 

below in detail and was also studied experimentally. 

Let us now consider the movement of the body in 

the general case, when the contact point slides during 

some part of the oscillation cycle and sticks at other 

times. The movement of the slider is still governed  

by the Eq. (5), however, Eq. (4), which describes the 

tangential force in the contact spring, is only valid 

during the sliding part of the period, while during the 

sticking phase the following is true for the immediate 

contact point: 

,c
0

x
u  , 

,c ,c 0 ,c ,0
( ) ( cos )

x x x z z z
k u u k u u t      (15) 

To study the dynamics of the system in detail, the 

equation of motion (Eq. (5)) was integrated numerically 

with account of Eqs. (4) and (15). The nontrivial 

behavior that can result when both stick and slip 

occur is illustrated in Fig. 2, which presents the time 

dependencies of the normal and tangential force (the  
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Fig. 2 An example of the dynamics of normal and tangential 
contact forces showing the phases of slip, where the tangential 
force (green line) coincides with the normal force multiplied with 

0  (blue line), and the sticking phase, where the tangential force 
is smaller than the normal force multiplied with 0 . 

former multiplied with 
0

 ). During the sliding phase 

(e.g., before 
1

t  and between 
2

t  and 
3

t ), these two 

quantities are equal, while during the sticking phase 

the tangential force (green line) is less than the normal 

force times 
0

  (blue line). The beginning of stick (
1

t ) 

is determined by the condition that the velocity of  

the immediate contact point (lower end of the contact 

spring) becomes zero, while the end of the sticking 

phase (
2

t ) is determined by the condition that the 

tangential force becomes equal to the normal force 

times 
0

 . 

4 Dimensionless formulation of the problem 

Introducing the dimensionless variables  

0

*

0

v
v

v
                   (16) 

t                     (17) 

*

0

x
u

v

                   (18) 

c ,c *

0

x
u

v

                  (19) 

where *

0
v  is defined by Eq. (12), with two additional 

dimensionless parameters 

2

x
k

m



 ,  ,c

2

x x
k k

m





            (20) 

We can rewrite the Eqs. (4), (5) and (15) in the following 

form: 

  


  
     

,0

c

1
( ) cos

1

z

z

u

u
         (21) 

             c( ) ( )( )v          (22) 

  c 0 ,  
  


  
     

,0

c

1
cos

1

z

z

u

u
       (23) 

where d /d    , 2 2d /d    . 

One can see that the behavior of the above system 

is unambiguously determined by the following set of 

variables:  

v , 
,0

/
z z

u u ,  , and               (24) 

After solving the Eqs. (21)−(23), one can go back to 

the initial dimensional variables and calculate the 

average normal force 
N

F   and the average tangential 

force 
0

( )
x x x

F k v t u      . The macroscopic coefficient 

of friction is then defined as  

macro

N

x
F

F


 

 

              (25) 

It is easy to see that with the given dimensionless 

variables (24) the macroscopic coefficient of friction 

will be proportional to 
0

 . Thus, it is more convenient 

to define the reduced coefficient of friction, 
macro 0

/  , 

which is a function solely of the variables (24). In the 

following, we will explore the dependence of the 

reduced COF on the dimensionless velocity (16) on 

the parameter plane ( , )  .  

5 Numerical results and analysis 

We begin with a general classification of the numerical 

results (Fig. 3). According to the definition (20),   is 

always larger than  , therefore we only consider  

the upper half of the parameter space above the line 

  . In the figure, it is easy to identify the previously 

described special cases: the limiting case of a very 

soft system with a stiff contact (case I, according to 

the above classification) corresponds to small values 

of 1   and large values of 1  , and is thus to 

be found in the upper left corner of the diagrams. 

The limiting case of very stiff system with low contact 

stiffness (case II), corresponds to    and is found 

along the diagonal of the diagram. The resonant 
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case III corresponds to the line 1   and the resonant 

case IV to 1  .  

Since case II occupies the diagonal of the diagram, 

there are infinitely many possible transitions from II 

to I. We will consider two such transitions: between  

A and B in Fig. 3, which passes over the resonant case 

III and from C to B, which passes over the resonant 

case IV.  

5.1 Limiting cases of soft (case I) and stiff (case II)  

system and transition over resonant case III 

Let us consider the transition from the stiff to the soft 

system over the resonant case III in more detail. We 

start with the separate consideration of the limiting 

cases of the very stiff and the very soft system. The 

diagram in Fig. 4(a) shows results of numerical simula-

tion for the parameter set ( , ) (0.01,0.02)   , which 

corresponds to the limiting case I according to the 

classification of Section 3. This case was considered 

in detail in the publication [19]. In Fig. 4, results of 

numerical simulations are compared with the semi- 

empirical equation 

2 4macro

0 ,0

3 1
1 ( 1) ( 1)

4 4
z

z

u
v v

u




  
     

 
     (26) 

derived in Ref. [19] with v  given by Eq. (16) and *
0v  

by Eq. (14). The numerical data practically ideally 

coincide with the result (Eq. (26)).  

The right-hand-side diagram Fig. 4(b) presents a 

comparison for the opposite case of very soft system. 

Again, numerical data are compared with the analytical 

expression  




     
               

1.2macro N N

0 N,0 N,0

4π 4π
1 1

9 9

F F
v v

F F
   

(27) 

obtained in Ref. [14], with *
0v  given by Eq. (13). In 

this case too we see a very good agreement. However, 

numerical data have a noticeable fine structure which 

the limiting-case curves do not have (a sort of small- 

amplitude oscillations).  

With these two limiting cases, we establish the 

connection to previous studies and at the same time 

pose the more general problem of investigating the 

dependencies of the coefficient of friction on velocity 

in between these two poles.  

As the character of the transformation of the law of 

friction is very similar for various oscillation amplitudes, 

in the following we illustrate this transformation only 

 

Fig. 3 Typical dependencies of macro 0/   on v  for the oscillation amplitude ,0/ 0.5 z zu u  (a) and for the maximal non-jumping 
oscillation amplitude ,0/ 1.0 z zu u (b) arranged in a matrix of the dimensionless parameters   and  . The individual curves start at 
the static COF value at 0v , which only depends on the oscillation amplitude and is equal to 0 / 2 in (a) and zero in the diagrams in 
(b). With increasing velocity, the reduced COF monotonically increases and reaches the value “1” at the velocity 1v . In between, 
however, the velocity-dependence of the COF is determined by the particular system dynamics. 
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for the case of the critical amplitude 
,0

/ 1
z z

u u  . The 

transition from the lower left corner of the diagram 

in Fig. 3 to the upper left corner means that the value 

of the parameter   remains small, while parameter 

  is changing from very small to very large values. 

The corresponding transformation of the dependencies 

of the reduced coefficient of friction on the dimensionless 

velocity is shown in Fig. 5(a) for the values of   in 

the lower left quarter of the parameter space and in 

Fig. 5(b) for the values of   in the upper left quarter 

of the diagram. In the lower quarter, the changes   

of the form are relatively slow until parameter   

becomes very close to the value of “1”. In the vicinity 

of this “resonant value” the upper point of the curve 

starts to slide to the left forming a plateau (as is clearly  

seen in Fig. 5(a) for 0.91  ). In the exact resonant 

case, the whole “dependence” consists only of this 

single plateau, that means that the coefficient of friction 

is constant and equal to 
0

 . Much more dramatic 

changes occur after passing the resonant value 1  . 

The resonant plateau then sharply decreases and a 

second plateau appears at the same time. This process 

repeats many times producing an oscillating curve 

whose “upper envelope” tends toward the limiting 

solution for the soft system, as already shown in 

Fig. 4(b). 

5.2 Resonant case IV 

We now turn our attention to the resonant case IV, 

where the frequency of oscillation is equal to the natural 

 

Fig. 4 The dependence of macro 0/   on v  for ( , ) (0.01,0.02)    and ( , ) (0.01,400.01)   for the oscillation amplitudes

,0/ 0.2,  0.4,  0.6,  0.8,  1.0 z zu u  (from top to bottom). The crosses and black lines represent results of numerical simulation and the 
red lines the analytical results (26) and (27). 

Fig. 5 The dependence of macro 0/  on v for ,0/ 1z zu u  , 0.01   and a series of  : (a) lower left quarter of the diagram in Fig. 3 (note 
that the curves for   = 0.02 and 0.11 practically coincide and cannot be resolved in the figure), (b) upper left quarter of the diagram. 
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frequency of the slider 
x

k m   and the system’s 

behavior is qualitatively different from previously 

considered cases. For convenience we consider an 

equivalent system, where the right end of the system 

spring 
x

k  in Fig. 1 is fixed and the substrate is instead 

moving with velocity 
0

v . Note also that the velocity 

dependence of the COF cannot be displayed as a 

function of v  in the resonant case, because *
0v  tends 

to infinity and v  becomes zero. We therefore return to 

the ordinary dimensional variables in this section. Since 

we are here concerned with very large values of  , 

we can consider the contact stiffness to be infinitely 

large for the purposes of this analysis. We chose the 

direction of the x-axis as the direction of movement 

of the substrate. The equation of motion then reads 

0 N 0
sign( )

x
mx k x F v x            (27) 

In our model the normal force oscillates according to 

N N,0
cosF F F t               (28) 

Thus, the complete equation of motion is 

0 N,0 0
( cos )sign( )

x
mx k x F F t v x           (29) 

For an approximate analysis, let us assume that the 

body begins with a small-amplitude oscillation  

cosx v t                (30) 

Then the amplitude will be increasing over time 

until v  becomes larger than 
0

v . Indeed, multiplying 

Eq. (29) with Eq. (30) and noting that the left-hand side 

of the resulting equation is the time derivative of the 

energy of the system, we arrive at the energy equation 

22

0 N,0

0

d
( cos ) cos

d 2 2

sign( cos )

x
k xmx

F F t v t
t

v v t

  



 
        

 
 


  (31) 

If 
0

v v  , then the average value of the right-hand 

side is positive, and the energy of the system is 

monotonously increasing from one period to the next. 

However, if 
0

v v   then the amplitude of oscillation 

stabilizes at the value for which the average change 

in energy during one period vanishes  

N,0 0
( cos ) cos sign( cos ) 0F F t v t v v t               

(32) 

where    means averaging over one period of 

oscillation. During one oscillation period, there is a 

time interval 
1 2
     where 

0
cos 0v v    :  

*

1,2 0
arccos( / )v v               (33) 

Assuming that the oscillation amplitude v  exceeds 

the mean sliding velocity 
0

v  only slightly, *  can be 

approximated by 

*

0
2(1 / )v v                 (34) 

In this approximation, the condition (32) can be 

written, after some simple transformations, as 
N,0

4(F   

0
) 2(1 / ) π 0F v v F      . For the ratio of sliding 

velocity and oscillation velocity amplitude we finally 

find 

 

2

0

N,0

1 π
1

2 4

v F

v F F

   
    

          (35) 

Let us now calculate the macroscopic coefficient of 

friction. It is given by the equation 

*

N,0 0

0

N,0

0

0 N,0

( cos )sign( )

4 1 cos d 2π
2π

F F v x

F

F

F




 


 

     


  
          





     (36) 

which, assuming sufficiently small *  and considering 

Eqs. (34) and (35), leads to the equation 

macro

0 N,0

1
2

F

F





                (37) 

Comparing this with numerical results (Fig. 6) shows 

that the obtained approximation describes the plateau 

value of the COF in the resonant case very well. 

6 Large oscillation amplitudes (“jumping”) 

If the amplitude of normal oscillation 
z

u  exceeds the 

average indentation depth 
,0z

u , the body starts to 

“jump”: For part of the oscillation period, it will be in 

contact with the substrate and out of contact the  

rest of the time. In previous studies this case has not 

usually been studied in detail. In the first part of this  
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Fig. 6 The dependence of macro 0/   on the dimensionless 
velocity 0 0 N,0/ ( ) v m F for the resonant case. The curves start at 
zero velocity at the static value 0 N N,0/ 1 /    F F  and tend to 
the limiting value 0 N N,0/ 1 / (2 )    F F  given by Eq. (37) at 
large velocities. The black curves correspond to the non-jumping 
case N N,0/ 1F F ≤ , and the gray curves to jumping conditions 
( N N,0/ 1 F F ). 

publication [19] the jumping case was also considered 

(in the context of a stiff system) and it was found  

that the general character of the dependence of the 

coefficient of friction on dimensionless sliding velocity 

is very similar between the jumping and non-jumping 

cases: In both cases there is a critical velocity above 

which the COF no longer depends on velocity. Also, 

the shape of the velocity-dependences changes little 

after exceeding the critical oscillation amplitude 

(
,0z z

u u  ). In analogy to Fig. 3 we present the 

different dependences for the jumping case in Fig. 7. 

Comparison with the corresponding graph at the critical 

amplitude 
,0z z

u u   presented in Fig. 3(b) shows 

that the general character of the dependences remains 

roughly the same. In particular, in the resonant case IV 

considered above (corresponding to 1  ) there is still 

a plateau. However, the level of the plateau decreases 

with increasing oscillation amplitude. 

7 Comparison with experiment in the 

resonant case 

Of the various cases considered in the above discussion, 

several were studied experimentally in the past. The 

case I of a stiff system (or high-frequency oscillation) 

was studied experimentally, e.g., in Ref. [16]. On the  

 
Fig. 7 Typical dependencies of the reduced coefficient of friction 

macro 0/   on the dimensionless velocity v  for the relative 
oscillation amplitude ,0/ 1.5 z zu u (jumping case). 

other hand, we are not aware of previous experiments 

for the resonant case IV. We therefore conducted 

experiments using a pin-on-disc tribometer (Fig. 8(a)). 

The natural frequency of the pin was determined by 

impacting the pin and measuring its damped oscillation 

with a laser vibrometer (Fig. 8(b)).  

As the determined natural frequency was around 

800 Hz, the usual method of exciting oscillations with 

built-in piezo-elements could not be used, and the  

tribometer was extended with an electromagnetic 

shaker as shown in Fig. 8(a). The frequency of the 

shaker was tuned to the natural frequency of the pin, 

thus creating the conditions of the resonant case IV. 

The results are presented in Fig. 9. In contrast with 

non-resonant cases, where the COF increases mono-

tonically with increasing velocity, in the resonant case 

it was approximately constant (within the relatively 

large stochastic error). 

8 Summary 

We presented a general theoretical analysis of the 

influence of out-of-plane oscillations on the macros-

copically observed coefficient of friction. Unlike 

previous works, we explicitly took into account both 

the contact stiffness and the stiffness of the measuring 

system.  
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Fig. 8 (a) A photograph of the experimental set-up: a pin-on-disc 
tribometer is equiped with an electromagnetic shaker producing 
out-of-plane oscillations at the resonant frequancy of the pin.   
(b) The resonant frequency was determined by impacting the pin 
in the tangential direction and determining the Fourier spectrum 
of the response. The measured natural frequency of the pin was 
about 800 Hz. 

 
Fig. 9 Dependence of the coefficient of friction on velocity  
for the resonant case. The oscillation amplitudes were: (1) 1.3 μm; 
(2) 5.4 μm; (3) 8.2 μm; (4) 60 μm. 

The main governing parameters of the resulting 

system appear to be the ratios of two natural fre-

quencies of the system (one related to the contact 

stiffness of the system and the other to combined 

stiffness of the system and contact) to the frequency of 

the normal oscillation. As observed in previous works, 

the velocity-dependence of the COF was found to 

have two main reference points: 

(1) The value at vanishing sliding velocity (static 

coefficient of friction), which naturally does not depend 

on the dynamic properties and is solely determined by 

the smallest normal force during the oscillation cycle. 

(2) The characteristic velocity above which the COF 

no longer depends on the sliding velocity and is equal 

to its microscopic value 
0

 . 

The only exceptions from this rule are the two 

resonant cases: One where the COF is constant and 

equal to 
0

  at all velocities (III) and a second case 

where the oscillation frequency is equal to the natural 

frequency of the pin. In this latter case the COF tends 

to a plateau value below 
0

  and does not have a 

maximum velocity above which the reduction of the 

COF disappears. To the best of our knowledge, this 

resonance case was not studied yet and is described 

here for the first time. 

Figure 10 summarizes schematically the main 

findings of the present paper. Contrary to the previous 

figures, we use the non-normalized coefficient of 

friction and the non-normalized sliding velocity 
0

v ,  

 

Fig. 10 Schemetic representation of the law of frition (dependence 
of the friction coefficient on the macroscopic sliding velocity) for 
different relations between the contact and system stiffness as 
well as eigenfrequencies and the oscillation frequency.  
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as this better highlights the main tendencies and is 

easier to compare with experiment. 

All dependencies of the macroscopically observed 

coefficient of friction start at the same static value 

0 N N,0
(1 / )F F   , which is determined by the smallest 

normal force during the oscillating cycle. The further 

shape of the law of friction depends strongly on the 

dynamical properties of the system.  

The case of the very soft system (and stiff contact), 

which was studied theoretically in Refs. [7] and [14], 

is shown in Fig. 10 with a blue line. In this case, the 

coefficient of friction first increases very rapidly from 

the static value, reaches the macroscopic value 
0

  at 

the critical velocity 
0 N

/F m   and does not further 

change with increasing velocity. The critical velocity, 

in this case, depends solely on the inertial properties 

of the system, but not on its stiffness. However, in 

this approximation the theoretical predictions showed 

poor fit with experimental data [7]. According to Ref. [7] 

a much better fit to experimental data is achieved if 

the contact stiffness is taken into account.  

The case of finite contact stiffness and very rigid 

measuring system was considered in detail in the first 

part of this series [19] and is represented in Fig. 10 

with a black curve. The curve starts at the same static 

value 
0 N N,0
(1 / )F F    of the COF and increases with 

increasing velocity, however not as rapidly as in the 

case of the soft system. After reaching the value 
0

  

at the critical velocity 
0 ,c ,c

/
z z x

u k k  , it remains 

constant. In this case the critical velocity does not 

depend on inertial properties of the system. However, 

the contact stiffness also does not enter explicitly into 

the critical velocity; only the ratio of the normal and 

tangential stiffness (the Mindlin ratio) appears in the 

equation. This ratio only depends on the Poisson ratio 

of the contacting partners and is equal to 1.25 for   

the typical case of 1 / 3  . As shown in this paper, 

this case is also applicable at very high oscillation 

frequencies independently of contact and system 

stiffness. 

The law of friction in the transition region between 

soft and stiff system is schematically represented by 

the green curve in Fig. 10. In the transition region  

the dependencies of the coefficient of friction on the 

sliding velocities can have a complicated shape and 

are sensitive to the parameters of the system and the 

frequency of oscillations (see Figs. 5 and 6). Regardless 

of this complexity, all curves start at the same static 

friction value 
0 N N,0
(1 / )F F    and reach 

0
  at the 

critical velocity given by Eq. (12). Depending on 

parameters, this velocity can range from zero to 

infinity.  

When approaching the resonant case IV where the 

frequency of the external oscillation is equal to the 

natural frequency of the system, the critical velocity 

tends to infinity and the COF reaches a plateau value 

less than 
0

 . For the exactly resonant case, the COF 

does not exceed the value 
0 N N,0
(1 / (2 ))F F   , which 

is larger than the static value 
0 N N,0
(1 / )F F   , but 

smaller than 
0

  even at very high sliding velocities. 

In conclusion, we would like to stress once again 

that the entire analysis of this paper is based on the 

assumption that Coulomb’s law of friction with a 

constant coefficient of friction is valid locally, in the 

immediate contact point. We have shown that the 

macroscopic behavior can be very non-trivial despite 

the simplicity of the underlying local law of friction. 

However, a more general analysis taking into account 

system dynamics, contact stiffness and changes of 

local friction may eventually achieve the best fit with 

experimental data. Nonetheless, we believe that 

changes in the local COF will not impact the overall 

classification of the discussed dynamic cases. One of 

the most robust predictions of the present analysis is  

the existence of the characteristic velocity above which 

the coefficient of friction does not depend any more 

on the presence of oscillations. The existence of such 

velocity was already confirmed for a more general 

case of a contact with a viscoelastic material [20]. 
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3.3 Publication 6
In this short note the inertial model from P5 is combined with viscoelasticity. The system
model and oscillation parameters remain the same, but the contact is changed from purely
elastic to viscoelastic by addition of a parallel velocity-proportional damper (Fig. 2). How-
ever, a full numerical analysis is not undertaken, since it would likely end up even more ex-
tensive than in P5, due to the additional parameters. Instead, the publication only endeavors
to find the critical velocity of controllability for this system, which already allows to get some
qualitative impression of the system’s behavior, and can inform the choice of dimensionless
variables for an actual parameter study.

After establishing the model, the static coefficient of friction is calculated (Eq. 7), which is
once again independent of the mass, due to displacement-controlled oscillation, but dependent
on frequency, due to the viscoelastic response. To determine the critical velocity, the equation
of motion is set up and solved for the lateral displacement of the contact point (Eq. 13).
Differentiation produces the velocity of the contact point (Eq. 14), from which the critical
velocity is extracted by determining the amplitude of the time-dependent part (Eq. 15).
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1. INTRODUCTION 

The reduction of static and sliding friction by ultrasonic oscillation in various directions 

is a well-known phenomenon with many applications ranging from wire drawing and press 

forming, stabilization of system dynamics, as in brake squeal suppression, and production of 

directed motion, as in ultrasonic motors and linear actuators. The effect has been studied for 

several decades, both experimentally and theoretically. Among the proposed explanations, 

microscopic theories have historically been prevalent. E.g. Zaloj et al. [1] suggest that the 

effect may be due to the dilatation caused by sliding. V. Popov et al. point to the possible 

importance of the microscopic interaction potential [2]. Although plausible, microscopic 

models could never achieve good, quantitative correspondence between theoretical predictions 

and experimental results, e.g. [3]. Opposite to that stand purely macroscopic models, which 

explain the phenomenon using macroscopic contact mechanics or system dynamics. 

Several system configurations have been considered from that perspective [3, 4, 5] and it 

was found that the macroscopic models can describe the observed behavior of the systems 

without fitting parameters. This result is in fact somewhat surprising, considering that 

these macroscopic theories assume a constant microscopic coefficient of friction and a 

friction law of the form Ff = 0Fn. When the average force of friction is determined by 

integrating the force of friction over time (or integrating stress over time and contact area) 

and dividing by the integral of the normal force, the direct proportionality of the assumed 

law of friction will insure that the integrals of normal force will cancel out, with the end 

result that the average coefficient of friction   must always be equal to 0. This reasoning, 

however, is subtly flawed, in that it assumes sliding in one direction with a nonzero velocity. 

It is also possible for the body to temporarily cease motion (e.g. due to increasing normal 

force or more complicated reasons relating to system dynamics). During such stick 

phases, the law of friction needs to be written in its static form: Ff  0Fn. Note the less 

than or equal in this formula, which breaks the proportionality and allows 
 
to be less 

than 0. To the author’s knowledge, the possibility that the influence of normal oscillations 

on sliding friction may be explained entirely by the presence of intermittent stick phases 

has not been made explicit before the publication of the two part-study [6, 7]. In these 

papers, the stick-induced reduction of friction force was studied in a displacement-

controlled setting with and without in-plane system dynamics. Although a closed-form 

solution for the actual force of friction under the action of normal vibrations does not 

exist in either case, it has turned out to be possible to calculate the critical velocity vc for a 

broad class of problems. This critical velocity refers to the maximum sliding velocity, above 

which vibration no longer has any influence on friction (at a given frequency and amplitude). 

This is illustrated in Fig. 1, which qualitatively describes the behavior of the average 

coefficient of friction, as it increases from its static value to 0 with increasing sliding 

velocity. In the theory presented in [6] it was argued that this critical velocity is related to 

the disappearance of stick in the contact. Also in [6], the following expression was obtained 

for the critical velocity in an entirely displacement-controlled system: 

 0

*

c z *

E
v u

G
    , (1) 
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where uz is the amplitude of velocity oscillation and E
*
/G

*
 is the ratio of the normal 

and tangential stiffness of the contact (the so-called Mindlin-ratio). Since this ratio is 

generally of the order of unity, one can roughly say that the critical sliding velocity is 

equal to the maximum velocity in the normal direction (due to the oscillation) times the 

microscopic coefficient of friction. This critical velocity also enters into the primary 

dimensionless parameter characterizing the behavior of the system, which makes accurate 

analysis of this quantity doubly important. 

 

Fig. 1 Qualitative dependence of the average coefficient of friction (COF) on sliding 

velocity under action of normal oscillations. Of particular interest are the “static 

COF” at zero velocity, the monotonous increase of the COF with increasing sliding 

velocity and the critical velocity of controllability, above which the average COF 

is equal to the microscopic COF, 0, with or without oscillations. 

If the model is augmented with a system spring and a contact mass, thus enabling in-

plane system dynamics, the expression for the critical velocity becomes [7]: 

 

2

0 2

z ,c x ,c x

c z

x,c x

k | k k m |
v u

k | k m |

  
  

 
 , (2) 

where kx,c and kz,c are the tangential and normal stiffness of the contact (in this model, the 

contact stiffness is assumed to be constant), kx is the tangential stiffness of the surrounding 

system and m is the mass of the sliding body. The only difference compared to Eq. (1) is 

the additional dependence on the two natural frequencies of the system. Indeed, if kx tends 

to infinity, Eq. (2) reduces to the previous result. Another notable feature is the presence 

of two resonant frequencies, in particular xk m  where vc becomes infinite. Numerical 

experiments show that in this case, the coefficient of friction reaches a plateau (which is 

less than 0) at fairly low sliding velocities and does not change thereafter. For the full 

analysis, the reader is referred to [6, 7]. 

In the present paper these previous results are extended to also include viscoelastic 

contacts. Active control of friction and system stability seems to be an underexplored 

topic when viscoelastic contacts are concerned, despite many possible applications in 

conjunction with the ubiquitous use of elastomers and the rising demands placed on 

devices in contact with biological tissues in medical technology. With this paper we 
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would like to begin establishing a quantitative framework for the analysis of viscoelastic 

friction under oscillation, by proposing that the same methods used in [6, 7] can be 

applied in viscoelastic contacts in order to calculate the critical velocity in closed form. 

2. MODEL AND ANALYSIS 

2.1. Formulation of the model 

The model that will be analyzed in this paper is very similar to the one presented in 

[7]. It consists of a mass m that is pulled with a constant velocity v0 through a system 

spring with a constant stiffness kx (see Fig. 2). In addition, a displacement-controlled 

harmonic oscillation is imposed in the direction normal to the plane. The oscillation is 

defined by: 

 
0z z , zu u u cos t   , (3) 

where uz is the coordinate of the body in the normal direction, uz,0 the mean indentation 

depth, uz the oscillation amplitude and  the frequency. The body is connected to the 

substrate through a contact point, in which Amontons’ law of friction with a constant 

coefficient of friction 0 is assumed. The main difference is that the contact is not elastic 

but viscoelastic and characterized not only by the constant tangential and normal spring 

stiffness kx,c and kz,c, but also by the dynamic viscosities γx,c and γz,c. This corresponds to 

the Kelvin material, the simplest model of viscoelasticity. The relevant dynamics of the 

resulting system is confined to the sliding plane and is characterized by ux, the position of 

the body and ux,c, the position of the contact point. 

 

Fig. 2 Schematic representation of the considered system, consisting of a mass,  

a system spring and a viscoelastic contact with the sliding plane. 

2.2. Analysis of the model 

2.2.1. Normal force 

The normal force in the spring-damper combination is given by: 

 0( )N z,c z z ,c z z ,c z , z z ,c zF k u u k u u cos t u sin t         . (4) 
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To ensure that the body is always in contact with the plane, the normal force must always 

remain positive. This is the case if: 

 2 2 2

0z ,c z , z z ,c z ,ck u u k     . (5) 

Only this “non-jumping” case is considered in the following.  

The static force of friction (the force at zero sliding velocity) can be calculated easily 

by noting that, according to Eq. (4), the amplitude of the oscillation of the normal force is 

equal to: 

 2 2 2

N z z ,c z ,cF u k      . (6) 

The static force of friction is equal to the minimal normal force during an oscillation 

cycle, multiplied with the coefficient of friction: 

 
2 2 2

0 ,0 0 , ,0 , ,( ) ( )s N N z c z z z c z cF F F k u u k         . (7) 

2.2.2 Tangential movement 

Under the assumption that the immediate contact point is always in the sliding state, 

the equation of motion of mass m reads: 

 0 0( )x x x Nmu k v t u F   . (8) 

The equilibrium condition for the “foot point” of the spring-damper combination reads: 

 0( ) ( )x,c x x,c x,c x x,c Nk u u u u F      , (9) 

where FN is given by Eq. (4). 

Equation (8), after inserting Eq. (4) on the right hand side, can be easily solved with 

respect to ux: 

 0
0 0 0 2

( )
z ,c z

x z , z ,c z ,c

x x

k u
u v t u k cos t sin t

k m k

 
       

 
. (10) 

In our analysis we assume that the material of the contacting elastomer body is isotropic, 

with a constant (frequency-independent) Poisson number. Under these conditions, we have: 

 
x ,c x ,c

z ,c z ,c

k

k





. (11) 

Equation (9) can also be solved with respect to (ux – ux,c): 

 0 0( )
z ,c

x x,c z. z

x ,c

k
u u u u cos t

k
     . (12) 

From Eqs. (10) and (12) we can first determine ux,c: 

PUBLICATION 6 65



340 M. POPOV 

 

0
0 0 0 02

1 1
( )

z ,cz
x,c z ,c z , z ,c z ,c z

x x,c x,cx

ku
u v t k u k cos t sin t u cos t

k k km k

   
                

  (13) 

and finally 
x ,cu :  

 

20

0 02

2

20

0 02 2

( )

( )

z ,cz
x ,c z ,c z ,c z

x ,cx

z ,c x ,c xz
z ,c z

x ,cx x

ku
u v k sin t cos t u sin t

km k

k k k mu
v cos t u sin t

km k m k

 
            

 

    
        

   

  (14) 

The critical velocity of controllability is given by the condition that the amplitude of 

the oscillating part of this solution becomes equal to constant sliding velocity vc: 

 

2

2 20

2
( ) ( )

z ,cz

c z ,c x,c x

x,cx

ku
v m k k

k| m k |

   
            

. (15) 

Note that the critical velocity depends on the oscillation amplitude but not on the average 

indentation. 

In the limit of a very stiff system spring, kx, the critical velocity, Eq. (15), is reduced 

to Eq. (1), which thus appears to be valid independently of the viscoelastic properties of the 

medium. According to the Method of Dimensionality Reduction (MDR) [8], any rotationally 

symmetric contact can be equivalently represented by a model consisting of a series of 

independent springs (note that an equivalent one-dimensional model can in fact be constructed 

for almost arbitrary, e.g. rough, contacts, although there may be no closed-form mapping 

rule in the general case). As has been argued in [6], the existence an equivalent model with 

uncoupled spring elements, together with the indentation-independence of Eq. (15), implies 

that the obtained result in Eq. (15) is valid not only for the simple considered model with a 

single spring-damper combination, but also for quite general contacts (so long as the 

amplitude of oscillation remains small). 

3. CONCLUSION 

While the details of the influence of oscillation on friction may be very complicated at 

intermediate sliding velocities [7], there are still two simple and nearly universal (except 

in resonant cases) characteristic points: First, the velocity-dependences all start from the 

static value at vanishing velocity. Second, the coefficient of friction increases monotonically 

(again, barring exceptional system-dynamical circumstances) until it reaches the microscopic 

value at some critical velocity. These two points, the static coefficient of friction, and the 

critical velocity of controllability of friction, are the most important characteristics of any 

oscillating frictional system. It so happens that both of these points can be determined 

analytically for very general classes of contacts with and without system dynamics.  

In the present paper, the critical velocity of controllability was determined for the 

simplest possible viscoelastic rheology (Kelvin body) and the simplest possible contact 

geometry (contact with constant contact stiffness, e.g. cylindrical punch). Eq. (15) provides 
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an explicit analytical solution. Even under these simple assumptions, the critical velocity 

depends on almost all system and loading parameters: the local coefficient of friction 0, 

mass m of the system, the stiffness of the contact and of the system, the frequency of 

oscillations, the damping coefficient of the contact, and on the amplitude of oscillations. 

However, it does not depend on absolute indentation, which permits easy generalization 

to more realistic contact geometry. 

Further, in the case of displacement-controlled horizontal movement (corresponding 

to an infinitely stiff surrounding system, which eliminates system dynamics in the contact) 

it was found that the critical velocity is given by Eq. (1), without dependence on the 

rheological properties of the contact: only the ratio of the contact stiffness (Mindlin ratio) 

appears in the expression for this critical velocity. 

In the future, the critical velocity could also be considered for materials with more general 

rheology. The Method of Dimensionality Reduction [8] provides a natural theoretical 

framework for this and for further generalizations to arbitrary contact geometries and loading 

histories. 

Acknowledgements: The author would like to thank V. L. Popov and A. E. Filippov for inspiring 

discussions concerning the present work. 
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3.4 Publication 7
While the preceding publications were focused on friction control by normal oscillations,
Publication 7 considers tangential (aligned with the direction of sliding) and combined tan-
gential and normal oscillations. The model is carried over from P4, except for an additional
phase-shifted oscillation in the 𝑥-direction.

The analysis mirrors that performed in P4, and the first notable result is the critical velocity
given in Eq. (8). The critical velocity is asymmetric with respect to the direction of motion,
which is unsurprising, since the combined normal and tangential oscillations describe the path
of an inclined ellipse. Although this is not mentioned in the paper, the critical velocity can
also be written as (𝑣2

𝑥+2𝑣𝑥𝑣𝑧 cos𝜑+𝑣2
𝑧)1/2, where 𝑣𝑥 and 𝑣𝑧 are the separate critical velocities

associated with the tangential and normal oscillations and 𝜑 is the phase shift.
The static COF is derived next. Some approximations have to be made to keep the analysis

simple. In particular, the case where a large tangential amplitude causes the contact point to
reverse the direction of sliding, with two intervening stick phases per cycle, is neglected. The
result is given in Eqs. (18, 19) and is likewise asymmetric.

This is as far as analytical estimations can go, and further results are numerical. The
normalized velocity-dependence of the COF for a purely tangential oscillation is shown in
Fig. 3. At low amplitudes the dependencies are very similar to the ones for normal oscillation
(given in Fig 2. for comparison), but at higher amplitudes the dependence splits into a low-
velocity and a high-velocity part. This qualitative transition is explained by the appearance of
the already mentioned direction-reversal mode when the velocity amplitude of the oscillation
exceeds the sliding velocity. Note also that the “negative coefficient of friction” in these figures
has no physical significance and simply carries over the sign of the friction force. This makes
some of the latter figures with pronounced directional asymmetry easier to interpret.

Under purely normal or tangential oscillation friction is “ordinary”, in that the friction
vector is directed opposite to the direction of sliding and has the same magnitude in both
directions. Combining both oscillations is symmetry-breaking, however, and creates a con-
tinuum of systems that range from 1) ordinary friction, over 2) “dynamic ratchets” in which
friction is still opposed to the direction of motion, but no longer symmetric, and finally 3) “ac-
tive frictional drives”, in which the asymmetry progresses to the point that the time-averaged
lateral force acts in the direction of motion. These additional modes are described in the rest
of the paper. The active drive mode in particular is of interest for practical applications, due
to the current proliferation of ultrasonic motors and positioning systems in both consumer and
industrial applications.
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3.5 Publication 8
While the control of friction by oscillations normal to the plane or in the direction of motion
are well known, the possibility of doing the same with transverse in-plane oscillations has
received relatively little attention. This is the focus of the present publication.

The model used here follows the same general pattern as in the other publications: the
contact is modeled as a massless linear-elastic spring, which can be deflected in both of the
in-plane directions (𝑥 and 𝑦). The spring is under constant normal load and slides in the 𝑥-
direction with constant velocity. The oscillation is harmonic and applied transversely (in the
𝑦-direction).

Despite the model being quite similar, the actual mechanism of friction reduction turns
out to be different from the normal and tangential oscillation cases. Stick-slip can also occur
in this system, but it no longer takes center stage. Instead, the reduction of friction is achieved
by “redistributing” some of the magnitude of the friction vector away from the bulk sliding
direction: The transverse oscillation causes the contact point to slide on a sinusoidal path, with
the friction vector constantly realigning itself with this path as well. Due to this, some part of
the friction force is always pointing orthogonally to the direction of bulk motion. And since
the magnitude of the friction vector remains constant, this means that less of this magnitude
is projected onto the direction of macroscopic sliding, creating the impression of a lowered
coefficient of friction.

This difference in mechanism brings with it qualitatively different behavior of the coef-
ficient of friction as well. For example, the static COF (Eq. 16) never formally reaches zero
even at large amplitudes, although it can be made arbitrarily small. Also, the transition from
pure slip to stick-slip does not produce a qualitative change in the velocity dependence (Figs.
7, 8). This also implies that there is also no real “critical velocity” (although something re-
sembling it can still be defined), and that reduction of friction is possible to some degree at
all sliding velocities.

The paper presents a fairly detailed numerical and semi-analytical study of the described
model, with some of the main results being summarized visually in Fig. 11.
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Abstract: The present paper is devoted to a theoretical analysis of sliding friction under the influence of 

in-plane oscillations perpendicular to the sliding direction. Contrary to previous studies of this mode of active 

control of friction, we consider the influence of the stiffness of the tribological contact in detail and show that 

the contact stiffness plays a central role for small oscillation amplitudes. In the present paper we consider the 

case of a displacement-controlled system, where the contact stiffness is small compared to the stiffness of the 

measuring system. It is shown that in this case the macroscopic coefficient of friction is a function of two 

dimensionless parameters—a dimensionless sliding velocity and dimensionless oscillation amplitude. In the limit 

of very large oscillation amplitudes, known solutions previously reported in the literature are reproduced. The 

region of small amplitudes is described for the first time in this paper. 
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1  Introduction 

The interrelation of oscillations and friction is an  

old problem with fundamental importance for the 

understanding of friction and for countless practical 

applications. From the physical point of view, friction 

is fundamentally a non-stationary process. Brillouin 

[1] pointed out as early as 1899 that dry friction can 

occur at low velocities only due to elastic instabilities 

on the microscale. Vibrations can strongly influence 

friction [2] and friction often leads to vibrational 

instabilities [3]. Thus, friction should always be 

understood as the interplay of dynamics and friction 

on different spatial and temporal scales. This interplay 

has many particular aspects which have been studied 

intensively in the past decades: (I) Influence of 

vibrations on friction was studied, e.g., in Refs. [4−6]. 

(II) Frictionally induced oscillations have been studied, 

e.g., in Refs. [3, 7−9]. (III) The interaction of self-excited 

vibrations and friction was subject of studies [10−12]. 

(IV) The interplay of vibrations and oscillations is a 

central principle of oscillation-based actuation [13−17]. 

(V) Finally, oscillations may lead to energy dissipation, 

which of course is intimately connected with all other 

above mentioned points in Refs. [18−20]. 

The present paper is devoted exclusively to the 

aspect (I) of the above list— the direct influence of 

oscillations on friction. Studies of this influence started 

in the late 50s and 60s of the 20th century [21−25]. 

Most models used for the analysis of the active control 

of friction were based on the study of dynamics of 

rigid bodies. Only recently it was recognized that  

the deformability of the bodies and especially the 

contact stiffness plays a central role in determining 

the frictional behavior at small oscillation amplitudes 

and small sliding velocities [26, 27, 6]. However, of 

the three possible oscillation directions: (a) out-of- 

plane, (b) in-plane perpendicular to sliding, (c) in-plane 
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in sliding direction—only the influence of out-of-plane 

oscillations has been studied in detail so far [28, 29]. 

Complete studies of friction under in-plane oscillations 

– both in the sliding direction and perpendicular to 

the sliding direction—are yet to be performed.  

The present paper partially closes this gap and 

provides an analysis of friction under transverse 

oscillations— in-plane oscillations perpendicular to 

the sliding direction. The particular interest in this 

mode of active control of friction is partly due to  

the recently demonstrated importance of transverse 

oscillations both for the stability of macroscopic sliding 

and the design of robust tribological measurement 

techniques [30−33]. 

To achieve qualitative understanding of the corres-

ponding phenomena, we follow the strategy already 

used in a recent analysis of out-of-plane oscillations 

[28, 37]: we start with a very simple model, where the 

contact is modeled as a single spring with constant 

normal and tangential stiffness in a displacement- 

controlled setting (i.e., with a very stiff surrounding 

system). System-dynamical “feedback” from the contact 

to the surrounding system is thereby neglected. 

2 Simplified one-spring model 

Let us consider an elastic body that is brought into 

contact with a flat elastic substrate and then subjected 

to a superposition of horizontal movement with a 

constant velocity and sideways oscillations. In the 

contact of elastic bodies, both normal and tangential 

contact problems can be reduced to a contact of an 

elastic body and a rigid substrate with renormalized 

elastic coefficients [34]. In this paper we further reduce 

the elastic body to a single spring with some normal 

stiffness (the magnitude of which does not play any 

role in the present study) and tangential stiffness k. 

We assume that between the spring and the plane, 

there is a friction force described by the simplest form 

of Coulomb’s law of friction [35, 36] with a constant 

coefficient of friction 
0

 . A schematic drawing of the 

model is shown in Fig. 1: the “body” (the upper point 

P of the spring) is forced to move with a constant 

velocity 
0

v  in the x-direction, and also to perform a 

harmonic oscillation in the y-direction according to 

P 0 siny y t .  

 

Fig. 1 Schematic representation of the considered system: An 
elastic body modeled as a spring is forced into a controlled 
movement at the upper point P, while the immediate contact point 
Q follows according to the equilibrium conditions. It is assumed 
that between the contact point and the horizontal plane there is a 
force of friction described by the classical Coulomb law. 

While the time-resolved reaction of the instantaneous 

friction force on the loading history is also of interest, 

in this paper we consider exclusively the forces in the 

steady state, averaged over one period of oscillation. 

In this connection it is important to lay down the 

terminology used in the paper: all processes referring 

to the time scale much smaller than the period of one 

oscillation are considered here as “microscopic” while 

the processes and quantities running or defined on the 

time scale much larger than the period of one oscilla-

tion are called “macroscopic”. Our goal is to determine 

the macroscopic values of normal and tangential 

forces (meaning their average values over one 

oscillation period) and the corresponding macroscopic 

coefficient of friction. The above-mentioned time- 

resolved reaction, on the contrary, refers to the micros-

copic scale; it will be considered in a separate paper. 

Figure 2 shows the system projected onto the 

contact plane (x, y) for the cases when the immediate 

contact point sticks (Fig. 2(a)) and for the sliding state 

(Fig. 2(b)). In the sticking state, the velocity of the 

“foot point” Q is zero.  

As the vector of the spring force is determined 

uniquely by two quantities: the elongation l and the 

inclination angle   to the direction of the macroscopic 

movement, it is convenient to write equations in terms 

of these two quantities.  

The coordinates of the upper end of the spring can 

be written as 





P 0

P 0

,

sin

x v t

y y t
              (1) 
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Fig. 2 Projection of the considered system onto the (x-y)-plane. 
(a) stick phase; (b) sliding phase. 

and the corresponding velocities 

 






P 0

P 0

,

cos

x v

y y t
             (2) 

Sticking phase: if the immediate contact point is 

sticking then the equations for the angle   and the 

length l are 

0 0
cos cos siny t v

l

   



         (3) 

0 0
cos sin cosl y t v              (4) 

where 
0 0

cos cos siny t v     is the component of 

the velocity of the point P in the direction perpendicular 

to the elongation l and 
0 0

cos sin cosy t v     is the 

velocity component of the same point in the direction 

of the elongation (see Fig. 2(a) for illustration). 

These equations remain valid as long as the 

elongation l remains smaller than the critical value 

0
0

z
F

l l
k


                 (5) 

Slipping phase: after the elongation l reaches the 

critical value 
0

l , it does not increase further, but 

remains equal to 
0

l . Note that due to the equilibrium 

conditions in the immediate contact point Q, its 

movement occurs always in the direction of the 

elongation. Thus it has no velocity component per-

pendicular to the direction of l. The angular velocity 

of the direction of the elongation l is given by the 

ratio of the difference of the transversal velocity com-

ponents of points P and Q to the (constant) length 
0

l . 

However, as the transversal component of velocity of 

point Q is zero, Eq. (3) remains valid, except that l has 

to be replaced by 
0

l : 

0 0

0

cos cos siny t v

l

   



           (6) 

This equation remains valid as long as the projection 

of the velocity of point P on the direction of l remains 

positive: 

0 0
cos sin cos 0y t v               (7) 

This condition guarantees that the point Q is 

following P in the direction of the elongation. Otherwise 

it stops until the condition Eq. (5) is fulfilled again. 

Introducing dimensionless variables and operators 

  0 0
0 0

0 0 0

d
,   ,    ,  ,  

d

y vl
t y l v

l l l
 

 
         (8) 

one can rewrite Eqs. (3) and (4) as 

 0 0

1
sin cos cos ,   for stick phasev y

l
          (9) 

0 0
sin cos cos ,   for stick phasel y v           (10) 

and Eqs. (6) and (7) as 

0 0
sin cos cos ,    for slip phasev y            (11) 

0 0
sin cos cos 0.  for slip phasey v          (12) 

The goal of our study is to determine the average 

force component in the sliding direction 

0
cos cos

x z
F k l F l             (13) 

(where ...  denotes averaging over one period of 

oscillation in the steady state) and the corresponding 

macroscopic coefficient of friction defined as  

macro 0
cos

x

z

F
μ l

F
              (14) 
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or the normalized coefficient of friction 

macro
macro

0

cosl


 


             (15) 

Note that all the Eqs. (9)–(12) as well as definition, 

Eq. (15), depend only on two dimensionless parameters 

0
y  and 

0
v . We therefore present all the results of this 

paper as function of these parameters. 

3 Static coefficient of friction 

If the system starts from the neutral state with zero 

tangential force and moves slowly in the x-direction, 

while at the same time oscillating in the y-direction 

with amplitude 
0

y  (see Fig. 3), then the macroscopically 

seen (average) spring force will be increasing until 

the critical state shown in Fig. 3 is reached. In this state, 

the component of the spring force in the x-direction is  

equal to 2 2

0 0 0
1

x z
F F y l  and remains unchanged 

during the entire oscillation cycle.  

Thus, the average coefficient of friction in this state, 

which we can interpret as the static coefficient of 

friction is given by 

      2 2 2
macro,static 0 0 01 / 1y l y         (16) 

 

Fig. 3 Critical state of a system with oscillation amplitude y0 
and very slow motion in the x-direction. 

4 Continuous sliding and stick-slip motion 

It is intuitively clear that at sufficiently high sliding 

velocities 
0

v , the contact point will be in the sliding 

state all the time, while at smaller sliding velocities 

the motion will consist of a sequence of stick and slip 

phases. On the parameter plane (
0

v , 
0

y ), the region 

of continuous sliding is separated from the stick-slip 

region by a boundary that can be found numerically 

by solving Eq. (11), which is valid in the region of 

continuous sliding, and checking the fulfillment of 

the condition (12). Figure 4 shows the areas of the 

continuous and intermittent sliding and the boundary 

line between them. 

4.1 Small oscillation amplitudes 
0

1y   

As can be seen from Eq. (11), in this case the angle 

also remains small, so that we can set in Eq. (11) 

sin   and cos 1  : 

0 0
cosv y                   (17) 

The steady-state solution of this equation is given by  

 0

2

0

cos
1

y

v
   






           (18) 

with  

0
tan 1 / v                  (19) 

This equation is valid for small angles, i.e. 

0

2

0

1
1

y

v







               (20) 

The borderline between small and large angles is 

shown in Fig. 4 by a dashed line. Substituting Eq. (18) 

into the condition for continuous sliding, Eq. (12), we 

can rewrite this condition as 

 
2

0
0

2

0

cos cos 0
1

y
v

v
    







        (21) 

 

Fig. 4 Area of continuous sliding and area of stick-slip motion 
(separated by the bold line) over the two system parameters. Also 
shown are the regions of small and large angles according to   
Eq. (20) (dashed line). 
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or 

   
2 2

0 0 0
0 22

00

cos 2 0
2 12 1

y y v
v

vv
    



  



    (22) 

It is fulfilled for any   if  

 2 2 2

0 0 0 0 0
2 1 1y v v v v      

             (23) 

Expanding the right-hand-side of Eq. (23) up to the 

terms of second order in 
0

v , we obtain the condition 

 2

0 0 0
2 1y v v    for the border line. Solving it with 

respect to 
0

v  gives  

2

0,crit 0

1 1 1

4 2 2
v y                (24) 

This limiting case is displayed in Fig. 5. 

4.2 Large oscillation amplitudes 
0

1y   

In this case the motion occurs almost perpendicular to 

the direction of the average velocity and during most 

of the oscillation period the contact is sliding. Only in 

the vicinity of the “turning points” there arises the 

possibility of stick, because both components of the 

driving velocity become small. The first turning point 

corresponds to / 2  . Introducing a new variable 

0
( / 2)v    , we can rewrite Eq. (11) as 

0

2

0

d
sin cos

d

y

v

   

  




          (25) 

The behavior described by this equation depends 

on the single parameter 2

0 0
/y v  . Its numerically  

 

Fig. 5 Approximation of the numerical results for the border line 
(dots) with Eq. (24) (solid line) for small oscillation amplitudes. 

determined critical value is 2

0 0
/ 4.5y v   . Thus for the 

critical velocity we get 

1/ 2 1/ 2

0,crit 0 0

1
0.47

4.5
v y y               (26) 

While this equation describes the asymptotic 

behavior very well, a slightly more complex equation  

can be constructed to approximate the complete 

dependence, both for small and large oscillation 

amplitudes: 

5 2

0
0,crit 1 2

2 0
0 2

0

0.47

0.94

1

y
v

y
y

y














            (27) 

This approximation is shown in Fig. 6 together 

with Eq. (26) and the numerical results. 

 

Fig. 6 Approximation of the numerical results for the border 
line (dots) with relation Eq. (26) (dashed line) and relation Eq. 
(27) (solid line). 

5 The macroscopic coefficient of friction 

over the entire parameter space 

For each point 
0 0

( , )v y   in the parameter plane, there 

is a macroscopic coefficient of friction 
macro

 . It is 

displayed over the entire parameter space in Fig. 7. 

In the Fig. 8 the same dependence is shown by cuts 

of the plot in Fig. 7 along the 
0

v -axis. 

While the exact quantitative description of the 

coefficient of friction on the entire parameter plane is 

complicated, the general structure of the dependence 

is relatively simple and is determined by a small 

number of “cornerstone” features. The general classi-

fication of various behaviors is very similar to that  

82 CHAPTER 3. PUBLICATIONS: ACTIVE CONTROL OF FRICTION



6 Friction  

 | https://mc03.manuscriptcentral.com/friction 

 

 
Fig. 7 The macroscopic coefficient of friction displayed over 
the two system parameters. The region of continuous sliding is 
above the bold line. 

 
Fig. 8 The lines show the macroscopic coefficient of friction 
over the dimensionless velocity. They represent vertical cuts 
through the surface shown in Fig. 7. The graphs are shown for 

0 0,  0.1,  0.2, 0.3, 0.4, ..., 2y  . The amplitude 0 1y  is highlighted 
with the bold solid line. The round dots represent the border line, 
here indicating the critical macroscopic coefficient of friction 
over the critical velocity. The squares mark the static coefficient 
of friction as given by Eq. (16). 

given in Ref. [37] for the case of normal oscillations: 

– Without oscillations, the macroscopic coefficient 

of friction is constant and equal to its microscopic 

value 
0

 , thus 
macro

1  . 

– With increasing oscillation amplitude, the static 

coefficient of friction decreases according to Eq. (16) 

and vanishes at 
0

1y   (bold line in Fig. 8). 

– Further increase of the oscillation amplitude leads 

to further decrease of the macroscopic coefficient   

of friction at finite sliding velocities while the static 

coefficient of friction remains zero. 

– The qualitative behavior of the coefficient of 

friction as a function of velocity is different for the 

cases of small (
0

1y  ) and large (
0

1y  ) oscillation 

amplitudes: 

(1) In the region of small oscillation amplitudes, 

the coefficient of friction is roughly speaking increas-

ing monotonically from its static value to the value 

corresponding to the point of continuous sliding. 

After this point, the coefficient of friction increases 

very slowly and can be approximately assumed to be 

constant. The critical velocity of continuous sliding 

thus retains at least approximately the meaning of the 

“critical velocity of controllability” of friction intro-

duced in Ref. [37]. A more detailed analysis of this 

range of oscillation amplitudes, which is of most interest 

to applications, is provided in the next section.  

(2) In the region of large oscillation amplitudes, the 

differentiation between the cases of continuous sliding 

and intermittent sliding loses its importance, so that 

one can define a law of friction that is valid with good 

accuracy in the whole range of sliding velocities. A 

detailed analysis is given in the next Section. Note 

that this case was the only one considered in the earlier 

studies of the influence of sideways oscillations on 

friction Refs. [4, 5, 2]. 

6 Coefficient of friction at low and high 

oscillation amplitudes 

6.1 Coefficient of friction at low oscillation 

amplitudes 

The simple structure of the frictional law in the region 

of small oscillation amplitudes, 
0

1y  , is illustrated 

in Fig. 9, where the dependencies of the coefficient 

of friction on the velocity are shown in normalized 

variables: the deviation of the macroscopic coefficient  

 

Fig. 9 Displayed are transformed lines from Fig. 8 so that the 
square markers of the static friction coefficient and the round 
markers of the critical friction coefficient lie on top of each other. 
Displayed in this figure are only lines that lie above the bold 
line in Fig. 8: 0 0.1,  0.2, 0.3, ..., 0.9y  , the bold line itself is not 
displayed here. The approximation Eq. (28) of this “master curve” 
is shown with red crosses. 
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of friction from its static value normalized by the 

difference between the value of the border line between 

stick-slip and continuous sliding vs. velocity normalized 

by the critical velocity of continuous sliding.  

One can see that at small oscillation amplitudes these 

dependences collapse with acceptable accuracy to a 

single “master curve”, which can be approximated with 

 
 

    
                 

   
  

2 4

macro macro,static 0 0

macro,crit macro,static 0 ,crit 0,crit

3 1
1 1 1

4 4

v v

v v
     

(28) 

which coincides with the velocity dependence in the 

case of out-of-plane oscillations considered in Ref. [28] 

(shown with red crosses in Fig. 9). After passing the 

critical value of velocity the coefficient of friction 

changes only very slowly.  

Thus, for small oscillation amplitudes the “law of 

friction” is completely determined by the value of the 

static coefficient of friction, Eq. (16), the value of  

the coefficient of friction in the critical state and the 

more or less universal transition between both points, 

Eq. (28).  

From the above-mentioned three determining 

parameters of the law of friction at low oscillation 

amplitudes, static coefficient of friction, critical velocity 

of continuous sliding and coefficient of friction at the 

critical velocity, two are already known and given by 

Eq. (16) and Eq. (27), respectively. We now consider 

the macroscopic coefficient of friction 
macro,crit

  directly 

on the border line. For very low values of 
0

y , the 

coefficient of friction in the area of continuous sliding 

(including the border line) can be calculated by 

substituting Eq. (18) into Eq. (15): 

  macro
cos cos             (29) 

with  

0

2

0
1

y

v
 






               (30) 

Expanding Eq. (29) up to the second power of   

gives 

   
22

2 0
macro 2

0

1
1 cos 1

2 4 1

y

v

      






    (31) 

For large velocities, the coefficient of friction 

tends to the limiting value 
macro

1  , as it should.  

At the borderline defined by 2

0 0
/ 2v y   in the first 

approximation we get 

2

0
macro,crit

1
4

y
  


              (32) 

6.2 Coefficient of friction at high oscillation 

amplitudes 

In the case 
0

1y  , for most of the oscillation cycle 

the contact point Q is in the sliding state with the 

possible exception of “turning points” which, however, 

do not substantially influence the average coefficient 

of friction. In this case, in Eq. (11), the derivative on 

the left-hand-side can be neglected compared with 

the terms on the right-hand side and this equation 

can be written as 

     
0 00 sin cos cosv y          (33) 

Hence,  

0

0

tan cos
y

v
 




             (34) 

For the macroscopic coefficient of friction, we obtain, 

using Eq. (15): 

macro
2

2

0

2
0 0

20

0

1
cos

1 tan

1 d 2

2
1 cos

y
K i

v
y

v



 



 



 


 
    

  
  
 










    (35) 

where  

/ 2

2 2
0

d
( )

1 sin
K

 
 




            (36) 

is the complete elliptic integral of the first kind.   

The dependence Eq. (35) is shown in Fig. 10. This  

dependence reproduces the results of earlier studies 

of this mode of active control of friction in Refs. [4, 5, 2]. 

Equation (35) shows that the coefficient of friction at 

large oscillation amplitudes is a function of a single  
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Fig. 10 Dependence of the coefficient of friction on the 0 0/ v y  
-ratio shown for oscillation amplitudes 0 0,  0.8, 1.6, 2.4, ...y  
all the way up to very high values of 0 80y . The results converge 
to relation Eq. (35), which is shown with red crosses. Also 
displayed is the border line (thin solid line with black dots). 

parameter combination 0

0

y

v


0 0

0 0

y y

v v







. Figure 10 

shows that the dependences of the normalized 

coefficient of friction on the parameter 
0 0

/y v   really 

do tend towards the “master curve” given by Eq. (35) 

(red crosses in Fig. 10). 

7 Summary 

We presented a general theoretical analysis of the 

influence of transverse oscillations on the macros-

copically observed coefficient of friction. Unlike 

previous works, we explicitly took into account the 

contact stiffness. The natural length scale of the system 

is the elongation 
0

l  at which sliding starts, which 

depends on the normal force, the contact stiffness 

and the coefficient of friction according to Eq. (5). 

The natural scale of velocity is given by the sliding 

velocity 
0

v . Oscillation introduces an additional 

variable having the dimension of length—the oscillation 

amplitude, 
0

y , and an additional quantity having the 

dimension of velocity, 
0

l  . We have found that the 

dependence of the coefficient of friction on velocity  

is completely determined by two dimensionless 

parameters: the dimensionless amplitude of oscilla-

tion 
0 0 0

/y y l  given by the ratio of the above two 

characteristic lengths; and dimensionless velocity, 

0 0 0
/v v l  . 

Figure 11 summarizes schematically the main find-

ings of the present paper. Contrary to the previous 

figures, we use the non-normalized coefficient of  

 

Fig. 11 Schematic representation of the law of friction (dependence 
of the friction coefficient on the macroscopic sliding velocity). 

friction and the non-normalized sliding velocity 0v , 

as this better highlights the main tendencies and is 

easier to compare with experiment.  

As in the case of out-of-plane oscillations discussed 

in Ref. [33], there is qualitatively different behavior in 

the case of oscillation amplitudes smaller than some 

critical value (which in the present case is given by 

0 0
y l ) and in the case of large oscillation amplitudes.  

In the case of large amplitudes, the behavior is 

relatively simple and coincides with the well-known 

solution obtained in Ref. [4] and later in Ref. [5] which, 

however, never could be fitted to experimental 

results Ref. [15]. In this case the static friction force 

is identically zero and the coefficient of friction is 

increasing monotonically according to the more or 

less universal law given by Eq. (35) tending to the 

microscopic value in the limit of very high velocities. 

In dimensional variables it reads: 

0
macro 0

0

2 y
K i

v


 


 

   
 

            (37) 

In the case of small oscillation amplitudes, there  

is a final static friction coefficient. In this region,   

the law of friction is roughly determined by three 

parameters: the static coefficient of friction, Eq. (16) 

or in non-normalized form: 

2 2

macro,static 0 0 0
1 /y l             (38) 

the critical velocity of continuous sliding, Eq. (24) 

which in dimensional variables reads 
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2 2

0,crit 0 0 0

1
2

2
v l y l      

          (39) 

and the coefficient of friction at this velocity, Eq. (32): 

2

0
macro,crit 0 2

0

1
1

4

y

l
 

 
   

 
           (40) 

At larger velocities, the coefficient of friction has a 

very slowly changing plateau. 

Let us briefly discuss the physical mechanism of  

the reduction of friction by transverse oscillations. In 

the case of out-of-plane oscillations, this reduction is 

exclusively due to the stick-slip motion: during the 

stick-phase the force of friction is smaller than the 

sliding frictional force; therefore, the average frictional 

force is smaller than the force at stationary sliding 

[28]. In the case of transverse oscillations, there are two 

main causes of friction reduction: (a) the occurrence 

of phases of stick and (b) the deflection of the   

local force of friction in the contact point from the 

direction of the macroscopic sliding. The first of 

these mechanisms is common for all kinds of active 

control of friction by oscillations. The second one is 

characteristic only for the case of transverse oscillations 

considered in the present paper. While the absolute 

value of the sliding force remains constant, the 

macroscopic coefficient of friction is determined by 

the projection of the force on the direction of the 

macroscopic sliding which in the case of transverse 

oscillations does not coincide with the direction of 

macroscopic sliding. Thus, it is always reduced 

compared to the absolute value of the sliding friction 

by the average value of cos , where   is the angle 

between the sliding direction and the direction of the 

instant force of friction. This mechanism manifests 

itself in Eq. (15). Due to this second mechanism, the 

reduction of friction occurs even in the cases of 

continuous sliding. 

8 Outlook 

In the future, several problems have to be considered 

that have not been studied yet. From the three basic 

oscillation directions till now only two have been 

studied in detail, with account of the contact stiffness— 

the out-of-plane oscillations [28], and the in-plane 

sideways oscillations (present paper). The complete 

study of the active control of friction by the in-plane 

oscillations in the sliding direction is still open.  

Further generalization of the present work could 

lead to consideration of contacts under simultaneous 

oscillations in many directions. An example of such a 

study carried out in Ref. [14] shows that multi-mode 

“active control of friction” leads to some qualitatively 

new effects such as actuation due to symmetry 

breaking.  

Finally, let us mention that the present study can 

be extended by consideration of the contact dynamics 

on the time scale that was classified as “microscopic” 

in the present study. This would lead to non-local 

(temporal) dependences of the frictional force on the 

loading, or in other words the kinetics of the coefficient 

of friction. The basics for such a consideration are 

already given by Eqs. (9)−(12) but have not been an 

explicit subject of study in the present paper. 
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3.6 Publication 9
This paper is partly an overview and integration of the studies published since the appearance
of P4. It presents many of the old ideas and results in a new light, with the exposition being
more representative of the author’s current understanding of the material. Other aspects of
previous publications are generalized and extended, with several new results being presented.

The first topic to be revisited is static friction under oscillation in various directions, which
is put on a common basis and developed systematically. The main analysis is then devoted
to sliding friction under normal oscillation. Unlike previous publications, which always dealt
with harmonic oscillations, the analysis in this paper is kept as general as possible and is
developed for an arbitrary waveform. The transition from slip to stick and back is derived in
the usual fashion. The concept of critical velocity is abandoned and instead replaced with a
fully dimensionless treatment.

The macroscopic coefficient of friction is written in general form, and the wavefom-
specific “reduction function” Ψ𝑤 is introduced, which contains in itself all nonlinear behavior
of the dependence. The reduction function is then calculated in closed form for a number of
simple oscillation waveforms, which allows to compare the efficacy of these waveforms for
the reduction of friction. Some additional discussion of the properties of Ψ𝑤 can be found in
appendix A. This material was omitted from the original publication due to scope limitations.

The main properties and differences of the tangential and transverse modes of oscillation
are then reviewed, and their energy efficiency is compared.



HYPOTHESIS AND THEORY
published: 20 August 2020

doi: 10.3389/fmech.2020.00069

Frontiers in Mechanical Engineering | www.frontiersin.org 1 August 2020 | Volume 6 | Article 69

Edited by:

Marco Paggi,

IMT School for Advanced Studies

Lucca, Italy

Reviewed by:

Shingo Ozaki,

Yokohama National University, Japan

Varvara Romanova,

Institute of Strength Physics and

Materials Science (ISPMS SB RAS),

Russia

Vladislav Aleshin,

UMR8520 Institut d’électronique, de

Microélectronique et de

Nanotechnologie (IEMN), France

*Correspondence:

Mikhail Popov

mpopov@fastmail.fm

Specialty section:

This article was submitted to

Tribology,

a section of the journal

Frontiers in Mechanical Engineering

Received: 29 May 2020

Accepted: 14 July 2020

Published: 20 August 2020

Citation:

Popov M (2020) The Influence of

Vibration on Friction: A

Contact-Mechanical Perspective.

Front. Mech. Eng. 6:69.

doi: 10.3389/fmech.2020.00069

The Influence of Vibration on Friction:
A Contact-Mechanical Perspective
Mikhail Popov 1,2*

1Department of Continuum Mechanics and Constitutive Theory, Technische Universität Berlin, Berlin, Germany, 2 Tomsk

State University, Tomsk, Russia

A unified model for active control of static and sliding friction by normal, tangential, and

transverse oscillations is discussed, building on a series of past publications. Themodel in

question is quasi-static, uses Amontons friction and takes into account contact stiffness

in both normal and tangential directions. This makes the model fully macroscopic, which

stands in contrast to Prandtl-Tomlinson-derived microscopic models that seem to be

the currently preferred explanation for the influence of vibration on friction. While many

technical details and numerical simulations based on our model have already appeared

in a series of publications, here we attempt to give a high-level overview and discuss

the main properties of friction under oscillation as generally as possible, while making a

minimum of assumptions.

Keywords: vibration, friction, contact mechanics, active control, stick-slip actuation

1. INTRODUCTION

The fact that vibration can be used to significantly reduce the force of friction has been known since
at least the 1950s (Fridman and Levesque, 1959). Since then, the effect has been studied extensively
and exploited in many practical applications. Classical examples are to be found in wire drawing
(Murakawa and Jin, 2001; Siegert and Ulmer, 2001), press forming (Eaves et al., 1975; Ashida and
Aoyama, 2007), cutting (Thoe et al., 1998; Eggers et al., 2004), and other machining processes. Also
well-known is the use of vibration for stabilization of system dynamics, e.g., suppression of brake
squeal (Müller and Ostermeyer, 2007) and cornering noise (Heckl and Huang, 2000).

There are also a number of advanced applications that move beyond simple reduction of
sliding or static friction, and involve vibration-driven directed transport or exact positioning
(Popov, 2017). The most famous example of this are traveling wave motors (Schmidt et al.,
1996; Storck et al., 2002), which are used to adjust focus in camera lenses, among many other
applications. Similar principles are employed in high-precision linear actuators and positioning
systems (Socoliuc et al., 2006), vibrational conveyors (Gaberson, 1971, 1972), and other types
stick-slip drives.

The above examples are only a small sample of technical applications at the intersection of
friction and vibration. Correspondingly, there is a large body of existing research in this field (see
e.g., Pohlman and Lehfeldt, 1966; Godfrey, 1967; Storck et al., 2002; Chowdhury and Helali, 2008).
Most of it is practical in nature, even though several well-known theoretical models have been
proposed as well (DeWit et al., 1995). However, it is the contention of the author that an important
factor is missing from currently popular models: the compliance of the contact and its interaction
with the applied oscillation. The currently prevailing tendency is to ascribe the reduction of friction
by vibration mostly to processes at the micro-scale (Popov et al., 2010). However, here we will
argue that the primary (but not necessarily exclusive) mechanism is to be found on the macro-
scale, in ordinary contact mechanics. It should be noted that this does not automatically invalidate
previous work. In fact, it seems likely that a truly accurate model will be multiscale, combining both
macroscopic dynamics and microscopic processes.
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FIGURE 1 | Static friction model. The intrinsic coefficient of friction in the

contact is µ0. The y-axis points out of the plane.

The primary advantage of our model is its simplicity. It
relies only on macroscopic contact mechanics and introduces
no new physics. In fact, it is likely to be the simplest possible
model that is rich enough to describe almost the full range of
behaviors exhibited by friction under the influence of external
vibration. For this reason, the present paper can be seen
as an exercise in minimalism, attempting to cover as much
phenomenological ground as possible with a minimum of
assumptions and variables.

1.1. Contributions
This work draws heavily on results recently published in a series
of papers with participation of the present author (Mao et al.,
2017; Popov et al., 2017; Benad et al., 2018a,b; Popov and Li,
2018). While there is substantial overlap with these papers, the
present work is organized differently, seeking to present a “big
picture” view without getting bogged down in details. Several
results have been generalized from previous publications, while
the discussion of the influence of oscillation waveforms has, to
the best knowledge of the author, not previously appeared in
the literature.

2. STATIC FRICTION

Towarmup, we consider static friction. This case ismuch simpler
than the sliding case and leads to some satisfyingly general results.
The system under consideration consists of a body resting on a
plane (Figure 1). The body is pressed into the plane with a force
Fz and pulled sideways with a force Fx. The coefficient of friction
between the body and the plane is assumed to be constant and
equal to µ0. The body remains at rest while

|Fx| < µ0Fz (1)

where µ0Fz is the critical force at which the body just begins to
slide. The static coefficient of friction is defined as the ratio of this
critical force to the normal load. In the absence of oscillation, it is
equal to µ0:

µs = µ0 (2)

Things get slightly more interesting when we add an oscillatory
force component. If the force oscillation acts normal to the plane,
we denote it by Azg(t), where Az is the amplitude. The stick
condition in that case needs to be amended to:

|Fx| < µ0

(

Fz + Azg(t)
)+

(3)

The (..)+ notation denotes the ramp function, which clips
negative values to zero. It is necessary because the normal force
does not turn negative when contact is lost.

It is easy to see that the critical force is reduced relative to the
non-oscillatory case, since the above inequality must hold at all
times, including the times when the normal force drops below
its mean value Fz . In other words, static friction is limited by
theminimum of normal force encountered during the oscillation.
For the coefficient of static friction under normal oscillation we
thus obtain:

µs,z = µ0 (1− Az/Fz)
+ (4)

In a similar fashion, we can add an oscillatory component Axg(t)
that is aligned with the tangential force Fx. This results in the
stick condition

|Fx + Axg(t)| < µ0Fz (5)

Note that this inequality is only satisfiable when Ax < µ0Fz .
Otherwise the body starts to slide in place and the contact loses
its ability to statically sustain a lateral force. Thus, µs can be
expressed as:

µs,x = (µ0 − Ax/Fz)
+ (6)

Notice the slight difference between this result and Equation (4).
In particular, note that a tangential oscillation will reduce µs by a
larger amount than a normal oscillation of the same amplitude if
µ0 < 1, and by a smaller amount otherwise.

Transverse oscillations are also able to reduce static friction.
This case is qualitatively similar to that of tangential oscillation,
with the difference that we need to use the vector norm of the
in-plane forces instead of adding them directly:

F2x +
(

Ayg(t)
)2

< (µ0Fz)
2 (7)

Once again, stick is impossible if Ay ≥ µ0Fz , and for the static
coefficient of friction we obtain:

µs,y =

√

(

µ2
0 − A2

y/F
2
z

)+

(8)

One particularly useful thing about these results is that they
are quite general, and in particular independent of contact
geometry, frequency of oscillation, and the shape of the
oscillation waveform.

2.1. Static Friction Under Superimposed
Oscillation
Things become considerably less transparent when we consider
simultaneous oscillation in multiple directions. The stick
condition itself does not change much, and in the most general
case can be expressed as:

(

Fx + Axgx(t)
)2

+
(

Aygy(t)
)2

< µ2
0

(

Fz + Azgz(t)
)2

(9)

Unfortunately, actually finding the maximal Fx that still satisfies
this inequality at all times quickly becomes unwieldy, leading to
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FIGURE 2 | A single massless spring, which serves as a minimal model of a

sliding frictional contact. The sliding velocity is constant, while the vertical

coordinate oscillates. Amontons friction with the constant coefficient of friction

µ0 is assumed in the contact point.

a large number of case distinctions—if a closed-form solution is
possible at all. In addition, when the compliance of the contact is
taken into account, the static coefficient of friction may become
negative, in the sense that a constant force needs to be applied
to prevent the contact from sliding. This effect is what frictional
drives and actuators are based on. For an analysis of this case the
reader is referred to Popov and Li (2018). In this paper, however,
we ignore superimposed oscillation.

3. SLIDING FRICTION UNDER NORMAL
OSCILLATION

The key feature of the model that we use to describe dynamic
friction is that the compliance of the contact is taken into account.
In the initial formulation, the contact is modeled as a single
Hookean spring that has an associated normal stiffness kz and a
lateral stiffness kx (Figure 2). This is a reasonable approximation
of a flat-ended cylinder in contact with a plane. The model can
also be extended to cover arbitrary curved contacts with the
help of the Method of Dimensionality Reduction (Popov and
Heß, 2016). However, for a general analysis, a single spring is
quite sufficient.

The model considered here is displacement-controlled and
quasi-static. A force-controlled and/or inertial model can be
formulated within the same framework, which, however, leads to
certain complications (e.g., resonances) that are outside the focus
of the present paper. For an analysis of such a model, the reader
is referred to Mao et al. (2017).

The kinematics of the model is as follows: The contact spring
is pulled over a flat plane with a constant velocity v0, although
for convenience we consider the spring to be stationary, while
the substrate slides underneath it. The normal displacement uz
of the spring is measured relative to the state of unstressed first
contact with the substrate. uz(t) represents the externally applied
oscillation and is thus given explicitly. The lateral displacement
ux, on the other hand, depends on the current state of the system
and is the only unknown variable.

We assume that Amontons’ law of friction (with a constant
coefficient of friction µ0 that is the same for both static and
sliding friction) holds in the contact point. In general, this may
be an unrealistic assumption. However, the use of a constant
coefficient of friction not only simplifies calculations, but also
eliminates all possible micro-scale influences from the model.
Since one of the primary aims of this paper is to advertise
the feasibility of a purely macroscopic theory of friction under
oscillation, making µ0 constant is actually a prerequisite.

The effective coefficient of friction µ̄, which is to be
determined in the sequel, is defined as the average tangential force
exerted by the spring divided by the average normal force:

µ̄ =
〈Fx(t)〉

〈Fz(t)〉
(10)

where 〈..〉 denotes averaging over one period of oscillation.
Previous publications on the topic assumed that the imposed

normal oscillation is harmonic, so as to simplify analysis.
However, this turned out to be an unnecessary restriction, so
here we will work with a general periodic function that is
parameterized as follows:

uz(t) = ūz + Azw(ft) (11)

Here ūz is the mean indentation, Az is the amplitude and f the
frequency of the oscillation. w(ϕ) is a dimensionless function
describing the “shape” of the oscillation, with ϕ = ft. The
waveform w is normalized such that it is zero-mean, with a
period of 1 and a minimum value of −1. Note however, that the
maximum of w is left unconstrained.

3.1. Pure Sliding
While the behavior of a frictional couple under oscillation has
its complexities in general, there are two extreme cases that
lend themselves to easy and precise analysis: One of them, static
friction, was already discussed above. The second, pure sliding,
is briefly discussed here. The most important thing about pure
sliding is that oscillations do not influence the coefficient of
friction in that mode. This can be easily seen from the fact that
the instantaneous tangential force is uniquely defined during slip
(Fx = µ0Fz), from which the effective coefficient of friction is
immediately obtained:

µ̄slip =
〈Fx(t)〉

〈Fz(t)〉
=

〈µ0Fz(t)〉

〈Fz(t)〉
= µ0 (12)

Irrespective of how complex the dependence Fz(t) may be,
it always cancels out—by linearity of sliding friction. While
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this result may seem unimpressive by itself, it establishes an
important “boundary condition” for the more general case of
friction with stick-slip. Also, as in the static case, the coefficient
of friction in pure slip has the important property of not being
dependent on contact geometry and oscillation parameters. The
result µ̄slip = µ0 is also valid for tangential and combined
normal/tangential oscillations. It can also be shown to be valid
in the inertial case (Mao et al., 2017). However, transverse
oscillations do not, strictly speaking, have this limiting case,
although the deviation becomes negligible at high velocities. This
will be discussed in more detail later.

3.2. Stick-Slip
Two extreme points have now been established: pure stick (static
friction) and pure slip (plateau). Reason suggests that there is also
something in between. It would be physically implausible for the
coefficient of friction under oscillation to “snap” from near zero
back to µ0 due to arbitrarily slow sliding. And this is in fact not
observed experimentally: At a given amplitude and frequency,
the static coefficient of friction is lowest, and then smoothly
increases with the sliding velocity until reaching a plateau of
sorts. Fortunately, the transition region can also be described in
our model. Unsurprisingly, it is dominated by stick-slip.

Let us now consider this phenomenon in more detail. During
sliding, we have Fx = µ0Fz , which can also be written as
kxux(t) = µ0kzuz(t). Substituting uz from Equation (11) and
rearranging gives us the lateral displacement and velocity of the
contact point:

ux(t) = µ0
kz

kx

(

ūz + Azw(ft)
)

(13)

u̇x(t) = µ0
kz

kx
Azfw

′(ft) (14)

A transition from slip to stick happens when the relative motion
between the substrate and the contact point vanishes, i.e., when
u̇x(t) = v0. From this condition, the point of stick onset can
be determined:

ϕ1 = ft1 =
(

w′
)−1

(

kxv0

µ0kzAzf

)

(15)

It becomes obvious that ϕ1 is a function of a single compound
variable, which combines all parameters of the system, except
ūz . To simplify further calculations, we introduce some
dimensionless variables, α (corresponding to amplitude), β

(corresponding to velocity), and ϕ (phase):

α =
Az

ūz
(16)

β =
kxv0

µ0kzAzf
(17)

ϕ = ft (18)

Using these variables, the static coefficient of friction (Equation
4) can be expressed as µs,x = µ0(1 − α)+, while Equation (15)
can be written as

ϕ1 =
(

w′
)−1

(β) (19)

Noting that β is a positive quantity and assuming that w
is differentiable (but not necessarily invertible—there can be
multiple stick events), it can be seen that the above equation has
solutions if

β < max
ϕ

w′(ϕ) = βc (20)

where βc denotes the critical value that separates the stick-
slip region from the continuous sliding region. A harmonic
oscillation, for example, has βc = 2π , while a right-leaning
sawtooth function has βc = 2, which is in fact the smallest
possible value. The larger βc, the more effective the waveform is
at reducing friction at high velocities, but more on that later.

Once stick is initiated, the contact point is dragged along by
the substrate with velocity v0, so that the tangential displacement
and force increase linearly with time:

Fstick(t) = µ0Fz(t1)+ kxv0 (t − t1) (21)

This continues while the condition for static friction holds:

Fstick(t) < µ0Fz(t) (22)

Trivial as it is, this inequality lies at the core of reduction of
friction in our model. It serves as the sole source of nonlinearity
that allows the system to break free of the trivial solution
exemplified by Equation (12). With pure slip, the spring force is
always equal to µ0Fz(t), while in stick-slip it is sometimes lower,
which leads to lower average force and coefficient of friction (see
also Figure 3). Another way of looking at it is that the contact
point stands still when the normal force is highest, and covers
more distance when the normal load diminishes. This leads
to lower energy dissipation over the same distance. The whole
process is somewhat similar to walking, where one leg carries the
load without dissipation, while the other is lifted and advanced to
the next position. Something analogous happens in our model,
only there is just one “leg” and it is not necessarily lifted all
the way.

The stick phase ends at time t2 when the condition Fstick(t2) =
µ0Fz(t2) is met. Expanding this condition yields

µ0kzuz(t1)+ kxv0 (t2 − t1) = µ0kzuz(t2) (23)

or, more conveniently,

v0kx

µ0kz
(t2 − t1) = uz(t2)− uz(t1) (24)

Substituting uz and t = ϕ/f , this can be rewritten as:

β (ϕ2 − ϕ1) = w(ϕ2)− w(ϕ1) (25)

Once again ūz cancels out, leaving us with a function of only
β . Unfortunately, the equation is implicit and cannot be solved
symbolically for ϕ2 except in the simplest cases (sawtooth, square
wave, etc). In the case of a harmonic oscillation, for example,
Equation (25) takes the form (cos x = a + bx), which does
not have a closed-form solution in terms of standard functions.
Numerical solution is required in most cases.
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FIGURE 3 | Stick and slip under the influence of a harmonic oscillation. The

dotted line represents the tangential force as it would be in pure slip

[Fslip = µ0Fz (t)]. The solid line is the actual tangential force in the presence of

stick-slip. The stick phases are the straight segments, e.g., between t1 and t2,

while slip phases are the sinusoidal segments, e.g., between t′2 and t1,

repeating periodically. Note that Fx ≤ Fslip everywhere, which is the origin of

friction reduction in our model.

3.3. Effective Coefficient of Friction
We define the “macroscopic” or “effective” force of friction
simply as the tangential force averaged over one period T = 1/f :

〈Fx〉 =
1

T

∫ T

0
Fx(t)dt (26)

However, it will become clear in a moment that it is more
convenient to consider the difference or reduction of the force of
friction relative to the state of continuous sliding:

1Fx = 〈Fslip〉 − 〈Fx〉 =
1

T

∫ T

0

(

Fslip(t)− Fx(t)
)

dt (27)

Since Fx only differs from Fslip during the stick phase, we can
tighten the integration bounds:

1Fx =
1

T

∫ t2

t1

(

µ0Fz(t)− Fstick(t)
)

dt (28)

This form is convenient for numerical solution. However, some
additional properties can gleaned by expanding Fstick and uz(t)
and making the substitution dt = Tdϕ:

1Fx =
1

T

∫ t2

t1

(

µ0Fz(t)− µ0Fz(t1)− kxv0 (t − t1)
)

dt

=
1

T

∫ t2

t1

µ0kz
(

ūz + Azw(ft)− ūz − Azw(ft1)

−
kxv0

µ0kz
(t − t1)

)

dt

= µ0kzAz

∫ ϕ2

ϕ1

(

w(ϕ)− w(ϕ1)− β (ϕ − ϕ1)
)

dϕ

(29)

It becomes apparent that the expression for 1Fx can be split into
the dimensional factor µ0kzAz and a dimensionless function 9w

of a single variable:

1Fx = µ0kzAz9w(β) (30)

where

9w(β) =

∫ ϕ2

ϕ1

(

w(ϕ)− w(ϕ1)− β (ϕ − ϕ1)
)

dϕ (31)

We refrain from integrating this expression, since a closed-form
solution is precluded by the lack of an explicit formula for ϕ2.
We merely draw attention to the fact that 1Fx is invariant
with respect to mean indentation. The same is not true for the
coefficient of friction:

µ̄ =
〈µ0Fz〉 − 1Fx

〈Fz〉
= µ0 −

1Fx

kzūz
(32)

However, the dependence on ūz is incidental, merely reflecting
the fact that 1Fx is subtracted from different baselines of friction
force. Using our dimensionless variables, the above can also be
written in the following compact form:

µ̄ = µ0

(

1− α9w(β)
)

(33)

Further, it can be shown that 9w is a fairly well-behaved function
that has unit range and is monotonously decreasing and convex
for all waveforms and any number of stick events per cycle
of oscillation. However, space considerations prevent us from
including a formal proof of these properties.

3.4. Oscillation Waveforms
The functional dependence (33) presented in the previous section
permits an interesting observation: the overall strength of the
friction reduction effect is primarily governed by the amplitude of
the oscillation and not by the frequency. In principle, the effective
coefficient of friction can be reduced to very low values, but that
requires a force amplitude that is comparable to the mean normal
force. Thus, the technique is not very useful for reducing friction
in highly loaded contacts, e.g., rail-car or truck wheels.

Furthermore, a higher frequency cannot be used to
compensate for small amplitude. However, frequency is
still an important parameter, since it determines the “velocity-
resistance” of the effect: As has been pointed out before, the
largest reduction is always seen in the static case, and becomes
lower with increasing sliding velocity. The frequency determines
the scaling of this decline, and a strong reduction can be achieved
even at high sliding velocities if the frequency of the applied
oscillation is high enough. However, frequency is not the only
factor that determines this “velocity-resistance.” The waveform
of the oscillation is also quite important, which is why we briefly
discuss it here.

By far the most important property of a waveform w is the
maximal positive value of its first derivative, or βc. A right-
leaning sawtooth function, for example, has βc = 2; a harmonic
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oscillation has βc = 2π , which is slightly better; however, a left-
leaning sawtooth function has βc = ∞, which is ideal. An infinite
value of βc implies that the oscillation will provide some measure
of friction reduction at arbitrarily high velocities. While this is
not really possible in practice, the general rule for waveform
selection is nevertheless that the load should increase as fast as
possible and then relax slowly. Thus, approximations of left-
leaning sawtooth or the square wave are preferable to smooth
and symmetric functions like the harmonic oscillation. Naturally,
this recommendation is subordinate to practical technological
constraints. For example, a high-amplitude harmonic oscillation
could be generated by exciting a natural vibrational mode of
the system, while a square wave would likely require more
sophisticated equipment.

We conclude this section by giving 9w for a few common
waveforms explicitly. For both sawtooth variants and the square
wave 9w can be calculated in closed form. However, for most
oscillations, including sinusoidal ones, this is not possible.
Nonetheless, the function can easily be computed numerically
for arbitrary waveforms, and so we include two empirical
approximations for the harmonic oscillation, which were first
obtained in Popov et al. (2017). The first approximation is slightly
more accurate.

9str(β) = 1−
β

2
(34)

9stl(β) =
2

2+ β
(35)

9sqr(β) =

{

1− β/8 , for β < 4

2/β , for β > 4
(36)

9sin(β) ≈
3

4
(1− β/βc)

2 +
1

4
(1− β/βc)

4 (37)

≈ (1− β/βc)
2.4 (38)

For a visual comparison, the dependence of the coefficient of
friction on β is plotted in Figure 4 for all four of the above
waveforms. To keep things simple, only the case of maximal
friction reduction is shown α = 1, in which case Equation (33)
reduces to µ̄ = µ0[1 − 9w(β)]. This is why all curves show
zero static friction. For other values of α the shapes of the curves
would remain the same, but they would start at nonzero values of
µs and would be scaled accordingly.

As a final remark, we note that there is a unique optimal
waveform with regards to reduction of friction. It is given by
the periodic extension of δ(ϕ) − 1, where δ is the Dirac delta
function. This “impulse wave” is −1 everywhere, except for very
short positive spikes (impulses) that occur with a period of 1 and
each integrate to 1, so that the average of the function is zero.
With this degenerate waveform, the system slides most of the
time, with only an infinitesimal stick phase at each spike, which
implies that 9 is very close to 1 for all β :

9imp(β) → 1 (39)

Thus, we conclude that friction can be reduced, in principle, to
an arbitrary degree even at high sliding velocities, by effectively

FIGURE 4 | Coefficient of friction under normal vibration with different

waveforms, computed using Equation (33) and the individual influence factors

Equations (34)–(37). Note that for all curves α = 1, which corresponds to

maximal friction reduction. Legend: dashed line—right-leaning sawtooth

function (Equation 34); solid line—harmonic oscillation (Equation 37);

dash-dotted line—left-leaning sawtooth function (Equation 35); dotted

line—square wave (Equation 36).

hopping over the surface. In practice, this approach will be
limited by plastic deformation, radiation of elastic waves and the
sheer difficulty of generating such an oscillation.

4. TANGENTIAL AND TRANSVERSE
OSCILLATIONS

Most of this paper was devoted to reduction of friction by
normal oscillations. This focus is explained partly by the fact
that the normal case is easiest to analyze, and partly because
normal oscillations are generally the most efficient way to reduce
friction, out of the three possible directions. Nevertheless, both
tangential (in the direction of sliding) and transverse (in-plane,
but orthogonal to sliding) vibration can reduce friction. For
detailed analysis of the tangential case the reader is referred to
Popov and Li (2018) and for the transverse case to Benad et al.
(2018a). Here we only present some highlights and point out
the major differences between normal oscillations and the other
two modes.

In the tangential oscillation case the normal indentation is
kept constant while an oscillatory component is added to the
base of the spring. Sliding friction under such conditions can
proceed in three modes: (I) pure sliding, in which the effective
coefficient of friction is equal to µ0, as argued previously. (II)
simple stick-slip, which occurs for obvious reasons when the
velocity amplitude is greater than the mean sliding velocity
(Axfw

′(ft) > v0). (III) multiple stick-slip, which occurs when
the velocity amplitude is much larger than v0, so that the contact
point slides back-and-forth in each cycle, going through two stick
and slip phases each.
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The most important difference between friction reduction by
normal and tangential oscillations is that normal oscillations
actually reduce the total dissipated energy through a walking-like
mechanism, while tangential oscillations do not. The author is
not aware of a good analogy to visualize the mechanism in the
tangential case. But it is clear that, since the normal load (and
therefore the force of sliding friction) is constant, the dissipated
energy is simply friction force times distance (in mode II).
Although the effective coefficient of friction (i.e., average spring
force) may be lowered, the missing energy must be supplied by
the oscillator. In mode III, when the amplitude is large enough to
cause in-place sliding, the total sliding distance actually increases,
and the total energy expenditure becomes larger than without
oscillations, even though the effective coefficient of friction will
still appear lower than µ0.

Friction reduction by transverse oscillation always operates
in something like mode III of tangential oscillation: it causes
additional sliding in the direction orthogonal to the main sliding
motion, thereby increasing the total path and therefore energy
expenditure. However, the apparent coefficient of friction is
reduced, because the magnitude of the local friction force is still
limited to µ0Fz , but now shared between the force components
parallel and orthogonal to the main sliding direction. Thus,
transverse oscillations are effectively “stealing” the friction vector
from the slider, but at considerable expense of energy by the
oscillator. This also accounts for the fact, mentioned previously,
that the system never formally reaches the “invariant plateau”
(µ̄slip = µ0) even at high sliding velocities, because the
projection of the local friction force onto the sliding direction
is always less than its total magnitude, so long as the transverse
amplitude is non-zero. However, for sufficiently large sliding
velocities this difference becomes very small, so for all practical
purposes the plateau exists in the transverse case as well.

To summarize, normal oscillations are most effective at
reducing dynamic friction and should be used in preference
to the other directions. Not only do they actually reduce the
total dissipated energy, but normal oscillations also act at
right angles (by definition) to the sliding motion. Thus, they
technically do not require energy to keep going. Of course, this
is never quite the case in practice, but by exciting a resonant
frequency the power needed to drive the oscillator can usually

be made quite small. Compared to that, tangential oscillation
requires a powerful oscillator (except in the static case), while
transverse oscillation is even more energetically expensive, and
also less effective overall. There are cases, however, where energy
expenditure is not a primary concern (e.g., stabilization of system
dynamics) and normal oscillations cannot be easily applied due
to technological constraints. In such cases, tangential and even
transverse oscillations are viable alternatives.

5. CONCLUSION

The present paper summarizes and generalizes a series of recent
works that aim to establish a simple macroscopic contact model
as a viable explanation for active control of friction by externally
applied vibration. Despite its apparent simplicity, the model
not only captures the full range of experimentally observed
effects, but is also very flexible, being able to adapt to static
and dynamic friction, oscillations in normal, tangential and
transverse directions, contacts of curved bodies, etc. Apart from
straight-forward reduction-of-friction settings, the model can
also be applied to the study of frictional drives and actuators
under complicated loading scenarios. A similar approach was
also highly successful in modeling positioning systems without
using any modified friction laws such as the elastoplastic model
(see e.g., Teidelt et al., 2012; Grzemba et al., 2014; Teidelt, 2015).
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3.7 Publication 10
This short note revisits the case of high-amplitude or “jumping” normal oscillation that was
already treated in the original Publication 4. However, the derivation presented in this paper
is no longer limited to the harmonic oscillation and presents some new results. The general
approach is borrowed from the more recent Publication 9. The first new result is the general
shape of the COF under an arbitrary normal oscillation (Eq. 15). Under jumping conditions,
the COF is no longer independent of mean indentation depth and the dependence thus gains a
second dimensionless parameter. In the general case, this dependence can only be determined
numerically, but for triangle waves it can be calculated in closed form (Eqs. 17, 19). It is also
possible to describe the asymptotic behavior of the COF if the waveform is shape-invariant
under re-scaling (i.e. self-affine). The square wave is such a waveform, and is treated next.
However, even not strictly self-affine waveforms can exhibit this behavior at larger amplitudes,
which is demonstrated on the example of the harmonic oscillation (Fig. 4).
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Abstract. Building on a recently proposed contact-mechanical theory of friction control 

by external vibration, the case of large-amplitude normal oscillation is revisited. It is 

shown that the coefficient of friction can be expressed in particularly simple form if the 

waveform of the displacement oscillation is triangular or rectangular, and the contact 

stiffness is constant. The latter requirement limits the scope of the exact solutions to 

contacts between a plane and a flat-ended cylinder or a curved shape with a wear flat, but 

the adopted methodology also enables efficient numerical solution in more general cases. 
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1. INTRODUCTION 

The ability of externally applied vibration to substantially reduce both static and 

sliding friction is well known and enjoys many practical applications. The classical 

examples of wire drawing [1,2] and metal forming [3,4] deserve mention, but a thorough 

review is outside the scope of this paper. While the effect has attracted a fair amount of 

research, most of the works are of an experimental, application-oriented nature [5-7], and 

proposed models are at best semi-empirical [8]. For this reason, no consensus has been 

established concerning the theoretical underpinnings of the phenomenon. A possible 

physical model based on macroscopic contact mechanics was recently proposed by the 

author and colleagues [9]. The mechanism of force reduction in this model is based on 

the observation that stick-slip can arise in an oscillating contact under suitable conditions, 

if the compliance of the contact is taken into account. During the stick phases the lateral 

force is by definition subcritical (i.e. less than what is required to sustain sliding), and 

therefore lowers the average friction force. Multiple extensions of this model have since 
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been published and were reviewed in a recent paper [10]. Here, the same approach is used 
to analyze the case of large-amplitude normal oscillation, when the amplitude is larger 
than the mean indentation and the body starts to “jump” over the plane. 

2. MODEL 

For a complete description of the model the reader is referred to previous publications 
[9,10], but a short overview is provided here for convenience. First and foremost, it is 
assumed that the contact is quasistatic and that the contact stiffness is independent of 
indentation depth. Both assumptions are nonessential for the model as such, but are 
required for analytical calculations. Together, they allow us to treat the contact as a single 
linearly elastic massless spring (Fig. 1) with normal and lateral stiffness kz and kx, 
respectively. If the modeled contact is a flat-ended cylinder with radius a, the stiffness 
values are given by: 
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2 212      where     
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  (1) 

with Ei, Gi being the elastic and shear moduli of the contacting bodies and νi their Poisson 
numbers. 

 
Fig. 1 A single massless spring, which serves as a minimal model of a sliding frictional 

contact. The sliding velocity is constant, while the vertical coordinate oscillates. 
Amontons friction with the constant coefficient of friction µ0 is assumed in the contact. 

The spring is pulled with a constant velocity v0 while also being subjected to a normal 
oscillation that is parametrized as 

 ( ) ( )z z zu t u A w ft= +  (2) 
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where zu  is the mean indentation, Az the amplitude, f the frequency and w a zero-mean, 

unit-amplitude waveform. The lateral displacement ux is the primary unknown of the 

system. 

When the contact point is in a sliding state, its velocity can be shown to be 

 0( ) ( )z

x z

x

k
u t A fw ft

k
 =   (3) 

The contact transitions from slip to stick when this velocity vanishes. The point of stick 

onset φ1 = ft1 can therefore be written as: 

 
1

1 ( ) ( )w −=  (4) 

where β is one of the dimensionless variables that parametrize the behavior of the system: 

 0

0

,      ,      xz

z z z

k vA
ft

u k A f
  


= = =   (5) 

The Eq. (4) does not necessarily have solutions. For stick-slip to be present, it is 

necessary that 

 max ( ) cw


   =   (6) 

where βc is the maximum positive gradient of the oscillation waveform. If the 

dimensionless velocity β exceeds this threshold value, stick-slip becomes impossible and 

the macroscopic coefficient of friction   is the same as the intrinsic coefficient of friction 

µ0. Otherwise it is reduced by some amount that depends on α, β and the shape of w. 

If condition (6) is satisfied and stick is initiated, the spring continues stretching with 

the constant velocity v0 and the lateral spring force therefore increases linearly with time: 

 stick 0 1 0 1( ) ( ) ( )z xF t F t k v t t= + −   (7) 

This continues while the stick condition Fstick < µ0Fz(t) holds. Substituting Fz = kzuz and 

rearranging gives the end of the stick phase φ2 in implicit form: 

 2 1 2 1( ) ( ) ( )w w    − = −   (8) 

The stick-slip process is visualized in Fig. 2. 

The macroscopic friction force 
xF  is computed by integrating Fx(t) over both the 

slip and stick periods: 

 
0

1
( )d

T

x xF F t t
T

=    (9) 
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Fig. 2 Stick and slip under the influence of a harmonic oscillation. The dotted line 

represents the tangential force as it would be in pure slip, Fslip = µ0Fz(t). The solid 
line is the actual tangential force in the presence of stick-slip. The stick phases are 
the straight segments, e.g. between t1 and t2, while slip phases are the sinusoidal 
segments, e.g. between 2t   and t1, repeating periodically. Note that Fx ≤ Fslip  
everywhere, which is the origin of friction reduction in our model. 

Since Fx only differs from µ0Fz during the stick phase, it is actually more convenient to 
determine the absolute force reduction 0x z xF F F = − : 

 2

1
0 stick

1 ( ( ) ( ))d
t

x zt
F F t F t t

T
 = −   (10) 

After expanding and rearranging, it is found that ΔFx can be expressed as 

 0 ( )x z z wF k A  =    (11) 

where Ψw is a dimensionless “reduction function” that is specific to the waveform w: 

 ( ) 2

1
1 1( ( ) ( ) ( ))dw w w




       = − − −   (12) 

The macroscopic coefficient of friction   can then be recovered through 

 0
0 0 (1 ( ))z x x

w
z z z

F F F
F k u


    

− 
= = − = −    (13) 

This puts the dependence into a very simple form, with most of the complexity contained 
in a function of one argument, Ψw(β). This function, however, needs to be determined 
numerically in most cases. 

This concludes our whirlwind tour of the model framework that will be used in the 
sequel. A less hurried presentation can be found in [10]. 
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3. LARGE AMPLITUDES 

In the preceding discussion it was implicitly assumed that the amplitude Az is smaller 

than the mean indentation zu , so that the bodies are permanently in contact and the 

normal force is non-negative. The purpose of this paper is to extend the analysis to 

z zA u , that is, cases where the bodies lose contact periodically. Equivalently, 

z z zA u A−   , where we have excluded the trivial no-contact case. This form also makes 

evident the need for a small re-parametrization: 

 
1 z

z

u

A



= =   (14) 

which avoids the singularity at 0zu = . 

The first thing to note about the jumping case is that the static coefficient of friction is 

always zero, because the contact obviously cannot sustain a lateral force while it is “in the 

air”, and slow creep will therefore be present at arbitrarily small pulling forces. If 

measurements of the static coefficient of friction under normal oscillation do not go to zero 

at suitably large amplitudes, this probably indicates a misalignment in the measurement 

apparatus. 

The second thing to note is that, in general, the simplicity of Eq. (13) can no longer be 

maintained. The clean separation between α and β is only possible because the stick-slip 

process is completely independent of mean indentation, so long as the normal force Fz  is 

positive throughout. However, when uz(t) becomes negative in the jumping case, this causes 

Fz to become “clipped” at zero (assuming no adhesion). This destroys the invariance w.r.t. zu , 

because the waveform w effectively becomes “cut off”, and has to be renormalized to 

maintain the properties of zero mean and unit amplitude. Thus, w(φ) should properly be w(γ,φ) 

in the jumping case. Overall, this leads us to expect the coefficient of friction to be a nonlinear 

function of two parameters (in addition to the waveform dependence): 

 jmp 0 ( , )wg   =   (15) 

In general, the function g needs to be computed numerically. There are, however, a few 

cases of some practical importance that can be treated analytically. These include square 

and triangle waves, for which solutions can be obtained in closed form due to their 

simplicity; and certain self-similar oscillations, for which asymptotic behavior can be 

deduced. These cases are considered next. 

3.1. Special case 1: Sawtooth and triangle wave 

Of the possible waveforms with triangular shape, here we consider the left-leaning 

sawtooth function (stl), the right-leaning sawtooth function (str) and the symmetric triangle 

wave (tri). The normalized functions w for these waveforms can be defined on the unit 

interval (with periodic extension understood) as: 
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  (16) 
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From geometrical considerations (which come down to determining the area between the 

waveform and a straight line with the slope β as in Fig. 2), it is easy to show that the 

corresponding reduction functions Ψw(β) in the simple non-jumping case are given by: 

 
str stl

2 4
( ) 1 ,     ( ) ,      ( )

2 2 4
tri

 
  

 

−
 = −  =  =

+ +
  (17) 

The triangular waves have the unique property that clipping the waveform does not 

affect the coefficient of friction. To appreciate this, refer once again to Fig. 2. The 

coefficient of friction is given by the ratio of the area under Fx to the area under µ0Fz. 

This ratio changes continuously as the waveform is clipped from below by increasingly 

large amplitudes. If the waveform is triangular, however, then the only effect from the 

cutoff is that the ramp of the stick phase starts later and later (in the point of first contact). 

The area ratio is not affected, which means that the coefficient of friction remains constant, 

despite the fact that Ψw formally depends on γ. This means that, for triangular waves, 

 0( , 1) ( , 1) (1 ( ))w        = = = −   (18) 

Using the reduction functions given in Eq. (17), this provides the following simple results 

for the coefficient of friction under large-amplitude oscillation: 

 str 0 stl 0 0

2
( ) ,      ( ) ,      ( )

2 2 4
tri

  
        

 
= = =

+ +
  (19) 

3.2. Special case 2: Self-similar waveforms, Square wave 

The triangular waves are a special case of what could be termed self-similar 

waveforms. By this we mean that a cut-off waveform can be rescaled in such a fashion as 

to be identical to the original waveform. Assuming that the waveform is also convex 

ensures that stick is precipitated in the point of first contact, as in the case of the 

triangular wave. This means that the stick-slip graph of a cut-off waveform can be 

rescaled (together with the stick ramp) to have the same area ratio – and therefore the 

same coefficient of friction – as the same waveform at another cutoff. Of course, this 

rescaling also changes the slope β, which must be adjusted accordingly. Usually, it is 

convenient to choose the coefficient of friction at γ = 1 as a reference point, so that the 

large-amplitude coefficient of friction of a self-similar waveform can be expressed as: 

 0( , ) (1 ( ( , )))w      = −   (20) 

The function ξ which provides the remapping of β is specific to the waveform. 

After the triangle, the next-simplest example of a self-similar waveform is the square 

wave, which alternates between 1 and -1 in equal intervals. It is easy to show that the 

remapping function for such an oscillation is given by: 

 sqr

2
( , )

1


  


=

+
  (21) 

Using this mapping and the reduction function Ψsqr of the square wave (see Eq. (36) in [10]), 

the coefficient of friction under large-amplitude square wave oscillations can be written as: 
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This result is shown in Fig. 3 for the entire range of γ from 1 (starting to separate) to -1 

(barely touching). 

 

Fig. 3 Coefficient of friction under large-amplitude square wave oscillations with 11 

different normalized indentations γ covering the entire jumping range from -1 to 1. 

The concept of self-similar waveforms also applies to the harmonic oscillation, to a 

limited extent. While the entire sine wave is not self-affine according to our definition, it 

can be approximated piecewise by a parabola over some of its domain. Since the parabola 

is indeed a self-affine function, we can expect the coefficient of friction under harmonic 

oscillation to have the described behavior asymptotically, although it will not be valid for 

values of γ close to 1. The remapping function in this case can be shown to be 

 0

2

1
( , )

1


   



+
=

+
  (23) 

where γ0 is the value of γ at the point where the self-affine scaling behavior started. More 

generally, for a waveform that can be asymptotically approximated by a power law φn, 

the corresponding remapping can be shown to be 

 

1/
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106 CHAPTER 3. PUBLICATIONS: ACTIVE CONTROL OF FRICTION



112 M. POPOV 

3.3. Numerical example: Harmonic oscillation 

As an example of asymptotic scaling, Fig. 4 shows numerically determined coefficients 

of friction under large-amplitude harmonic oscillation. One thing to note is that for γ in the 

range of approximately -0.2 to 1, the coefficient of friction depends only weakly on γ, with 

all curves bunching fairly closely together. The dependence on γ is also non-monotonous in 

this range, leading to lower coefficients of friction at first (from γ = 1 to approx. 0.6), and 

then increasing again (from γ = 0.6 to -1). The value around γ = -0.3 is the point from which 

the remaining part of the cropped waveform can be regarded as roughly parabolical, and the 

subsequent behavior of the coefficient of friction can be described by the scaling given in 

Eq. (23). This is also shown in Fig. 4 with black dots. 

 

Fig. 4 Numerically computed coefficient of friction under large-amplitude harmonic 

oscillations with 11 different normalized indentations γ covering the entire 

jumping range from -1 to 1. Note the non-monotonous dependence on γ: The dark 

red line corresponds to the critical value γ = 1, which separates the jumping and 

non-jumping regions. From there, the coefficient of friction is first reduced with 

diminishing γ (red lines and arrow) and then increases again (blue lines and arrow) 

starting somewhere around γ = 0.6. Black dots indicate the expected scaling 

behavior according to Eq. (23) relative to γ0 = -0.3. 

4. CONCLUSIONS 

The influence of large-amplitude normal oscillation on sliding friction, which has not 

previously received much attention in the literature, was analyzed in this work, based on a 

model proposed by the authors in a previous publication. It was shown that the coefficient of 

friction in the jumping case depends on the same dimensionless variables as in the low-

amplitude case, but in a more complicated fashion. At low amplitudes, the influence of the 

two main variables, α and β is cleanly separated, while at large amplitudes they become 
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entangled and influence the coefficient of friction in a nontrivial manner. This was 

demonstrated on the example of the harmonic oscillation, where the amplitude-dependence is 

non-monotonic and can only be determined numerically. However, some simple cases such as 

triangular, rectangular and more general self-similar waveforms yield relatively simple results, 

which allow the coefficient of friction to be expressed either in closed form or as an 

asymptotic scaling relation. 
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improvement programme, which the author gratefully acknowledges. 

REFERENCES  

1. Siegert, K., Ulmer, J., 2001, Superimposing ultrasonic waves on the dies in tube and wire drawing, Journal of 

Engineering Materials and Technology, 123(4), pp. 517–523. 
2. Murakawa, M., Jin, M., 2001, The utility of radially and ultrasonically vibrated dies in the wire drawing 

process, Journal of Materials Processing Technology, 113(1-3), pp. 81-86. 

3. Eaves, A., Smith, A., Waterhouse, W., Sansome, D., 1975, Review of the application of ultrasonic vibrations 
to deforming metals, Ultrasonics, 13(4), pp. 162-170. 

4. Ashida, Y., Aoyama, H., 2007, Press forming using ultrasonic vibration, Journal of Materials Processing 

Technology, 187, pp. 118-122. 
5. Pohlman, R., Lehfeldt, E., 1966, Influence of ultrasonic vibration on metallic friction, Ultrasonics, 4(4), pp. 

178-185. 

6. Godfrey, D., 1967, Vibration reduces metal to metal contact and causes an apparent reduction in friction, 
ASLE transactions, 10(2), pp. 183-192. 

7. Chowdhury, M.A., Helali, M., 2008, The effect of amplitude of vibration on the coefficient of friction for 

different materials, Tribology International, 41(4), pp. 307-314. 
8. De Wit, C.C., Olsson, H., Satrom, K.J., Lischinsky, P., 1995, A new model for control of systems with 

friction, IEEE Transactions on automatic control, 40(3), pp. 419-425. 

9. Popov, M., Popov, V.L., Popov, N.V., 2017, Reduction of friction by normal oscillations. I. Influence of 
contact stiffness, Friction, 5(1), pp. 45-55. 

10. Popov, M., 2020, The influence of vibration on friction: a contact-mechanical perspective, Frontiers in 

Mechanical Engineering, 6, pp. 69. 

108 CHAPTER 3. PUBLICATIONS: ACTIVE CONTROL OF FRICTION



Chapter 4

Discussion and Conclusions

This chapter serves as a summary and discussion of the results from the preceding publica-
tions. The first section provides a brief overview, discussion and integration of the obtained
results, and how they relate to the current state of knowledge in the fields of damping, control
of friction, and tribology in general. This is followed by amore philosophical digression about
the role that macroscopic effects play in tribology, with some speculation about the possible
misattribution of frictional phenomena to the micro-scale. Finally, the limits of the current
model and some possible future research directions are discussed.

Note on notation: The presented papers were published over several years, and there were
some concomitant changes in notation and terminology. Due to the need for a consistent
presentation, the Discussion uses notation from the later publications (esp. P9), and some
results from earlier papers were converted to this notation and rearranged in minor ways.
However, the differences are mostly superficial and it is hoped that this will not cause too
much confusion.

References to equations and figures in the original publications are prefixed with the pub-
lication number (such as Eq. P3-15).

4.1 Summary and Discussion of Main Results
4.1.1 Relaxation Damping
The overarching theme of the Publications 1–3 is the impact of the normal degree of freedom
on energy dissipation in frictional couples, with a particular focus on an effect called relaxation
damping. This effect is introduced in Publication 1, and is so named to contrast it with the
ordinary frictional damping of oscillations confined to the contact plane.

When a non-conformal (curved) contact is subjected to periodic loading in the tangential
direction only, it develops a zone of partial slip at the edge of the contact, where energy is
dissipated in every cycle (and which also leads to the well-known fretting wear pattern). The
corresponding contact problem was first studied in detail in the early 1950s by Mindlin et
al. [42]. For a spherical indenter of radius 𝑅 indented to a depth 𝑑 into an elastic plane and
subjected to tangential oscillations with an amplitude 𝐴𝑥, the energy lost per cycle due to
microslip can be shown to be [63]:

𝑊Mindlin = 2
3

𝐺∗2

𝐸∗ √
𝑅
𝑑

𝐴3
𝑥

𝜇 (4.1)
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where 𝐺∗ and 𝐸∗ are the reduced moduli of shear and elasticity (see Eqs. P1-1 and P1-2).
The dissipation is inversely proportional to the coefficient of friction 𝜇 and therefore tends to
zero in the limit of very high friction. This becomes especially obvious in the case of perfect
stick, where there is no relative sliding at all, and therefore no dissipation.

However, when a contact is periodically loaded in both tangential and normal directions,
qualitatively new behavior appears. Most distinctively, dissipation does not tend to zero when
the condition of perfect stick is approached. Instead, it reaches a finite value that is determined
by the stiffness ratio of the medium (𝐺∗/𝐸∗), the oscillation parameters and a geometry factor.
This happens because the normal oscillation causes a periodic change of the contact area, and
specifically because contact is lost in areas of nonzero shear stress. This stress is released
abruptly and the stored energy is radiated away in the form of elastic waves, which are later
thermalized by conventional means. The process can be likened to energy dissipation in a
plucked string: elastic potential energy is first converted to vibrational energy—still mechan-
ical, but less available—and is then gradually converted to sound and ultimately to thermal
motion.

The mechanism is therefore qualitatively very simple, but it is less obvious how exactly
this sort of elastic instability can materialize during quasi-static motion. In Publication 1,
this is explained by the presence of a moving singularity at the edge of the contact, which is
also confirmed by Boundary Element simulations. This kind of “elastic dissipation” has not
been previously noted in the context of damping, to the knowledge of the author, but similar
effects are occasionally found in other areas of contact mechanics, as pointed out by Ahn [1].
For example, in an elastic wheel rolling with traction on an elastic plane, dissipation is also
present in the infinite-friction limit [9]. This happens due to loss of contact in a region of
nonzero tangential stress at the trailing edge of the contact, and is therefore quite similar to
relaxation damping. Another example is a system transmitting torque between two unequal
pulleys via an elastic belt [32].

It should also be stressed that relaxation damping remains a meaningful concept when the
coefficient of friction is finite. The physical mechanism described above is then no longer
directly applicable, but the overall dynamics is relatively insensitive to the actual value of
the COF, so long as a certain operating regime is present. This regime depends on the nor-
mal amplitude times 𝜇 being large compared to the tangential amplitude (in P1, the criterion
4𝜇𝐴𝑧 > 𝐴𝑥 is suggested). This causes areas in the intermittent contact regions to come into
contact relatively abruptly and with immediate sticking. Disengagement during the upward
half of the oscillation is likewise fairly abrupt, with actual sliding beginning only very shortly
before the final loss of contact. The higher the ratio of normal to tangential amplitude and
the higher 𝜇, the shorter this final relaxation period becomes, and the closer does the system
approximate the behavior of relaxation damping.

In short, the essential feature of relaxation damping is energy loss by unloading of tan-
gentially stressed regions due to periodic changes of normal force, with the exact dissipation
mechanism being less important. Depending on the specifics of the problem, it may take the
form of ordinary friction, viscoelastic losses or radiation of elastic waves. The results derived
in Publications 1–3 under the assumption of infinite friction are therefore valid in a much
broader context. A quantitative study of the finite-friction case and the cross-over to relax-
ation damping can be found in a recent publication by Hanisch et al. [30].

Let us now turn to some specific results derived in Publication 1. For harmonic oscillations
with small amplitudes 𝐴𝑥 and 𝐴𝑧 and a phase difference 𝜑0, the energy loss per cycle due to
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relaxation damping is given by (Eq. P1-12):

𝑊 = 8𝐺∗

3𝐸∗
𝜕2𝐹𝑁
𝜕𝑑2 𝐴2

𝑥 𝐴𝑧 sin2 𝜑0 (4.2)

A similar result was found for low-frequency tangential oscillations superimposed with high-
frequency normal ones. Under the assumption of 𝜔𝑧 ≫ 𝜔𝑥, the energy dissipated per cycle
of the low-frequency oscillation is given by (Eq. P1-17):

𝑊 = (𝜋2 − 4)
𝐺∗

𝐸∗
𝜕2𝐹𝑁
𝜕𝑑2 𝐴2

𝑥 𝐴𝑧
𝜔𝑥
𝜔𝑧

(4.3)

Notably, both results are valid for any reasonable contact geometry, so long as the second
derivative of the normal contact force with respect to indentation, 𝜕2𝐹𝑁 / 𝜕𝑑2, can be deter-
mined. Eq. (4.2) was derived in Publication 1 analytically for bodies of revolution, and also
verified numerically for some decidedly non-axis-symmetric contacts (Fig. P1-3). It was also
applied to the contact of rough surfaces (Eq. P1-18). However, it should be kept in mind that
this particular result is valid for normal amplitudes that are significantly smaller than 𝑙0, the
RMS-roughness of the surface.

An important difference between the classical Mindlin damping (Eq. 4.1) and relaxation
damping (Eq. 4.2, 4.3), is that the energy loss in the former is proportional to the cube of the
tangential amplitude 𝐴𝑥, while in the latter it is proportional to the square (and also propor-
tional to the normal amplitude 𝐴𝑧). This difference is significant insofar as the dependence
on 𝐴3

𝑥 leads to attenuation of free oscillations according to 𝐴(𝑡) = 𝐴0 /(1 − 𝑐𝑡), with 𝑐 being
a system-dependent constant [63]. The dependence on 𝐴2

𝑥, on the other hand, leads to expo-
nential attenuation of the in-plane component in contacts with relaxation damping. (Note that
normal oscillations are not affected at all, to a first approximation).

This property of relaxation damping has a number of potential applications, for example
in the active control and rapid suppression of oscillations in high-precision frictional posi-
tioning systems. Enhancement of damping in frictional joints in metallic structures [26] by
deliberate introduction of high-frequency normal oscillations is also a possibility. This could
be especially useful in the case of stiff and lightweight structures that are prone to vibration
and difficult to effectively dampen otherwise, e.g., in aerospace applications. It also seems
possible that the well-known ability of externally applied ultrasonic normal oscillations to
suppress lower-frequency frictional instabilities is related to relaxation damping and the at-
tendant exponential attenuation. At the time of writing, no concrete data is available to the
author in this regard, but this does present a promising avenue for future research.

Another area where relaxation damping can play a role is internal damping in bulk materi-
als. For example, relaxation-damping-like losses in breathing cracks were studied by Argatov
et al. [4]. Losses from fiber-fiber contacts in woven fabrics and composite materials [86] are
another possibility. These are considered in Publication 2.

The model used in P2 consists of a single contact between two crossed fibers with round
cross section. The boundary conditions are chosen such that three ends are held fixed, with
the remaining end being subjected to a combined normal and tangential oscillation with a
phase shift 𝜑0. This is only one among many possibilities for modeling a mesh cell in a
fabric, and the analysis presented in P1 should be understood as a proof of concept rather
than a quantitative study of damping in real fabrics. Linear beam theory and Hertzian contact
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mechanics are combined to obtain the energy loss per cycle of oscillation (Eq. P2-17):

𝑊Fiber = 2 (
2
3)

2/3
𝜋5/3 (1 + 𝜈)(2 − 𝜈)

(1 − 𝜈2)2/3 𝐸 (
𝑅
𝑑0 )

4/3
𝜌−5𝐴2

𝑥𝐴𝑧 sin2 𝜑0 (4.4)

where 𝐸 and 𝜈 are the elastic modulus and Poisson ratio, 𝑅 and 𝑑0 are the radius and mean
deflection of the fiber, and 𝜌 is the aspect ratio of the fiber segment in a single mesh cell. This
result has many similarities with Eq. (4.2), especially the dependence on 𝐴2

𝑥𝐴𝑧 sin2 𝜑0. The
most significant difference is the inverse-fifth-power dependence on the aspect ratio, which
suggests that relaxation damping will be much stronger in densely woven fabrics. However,
even if the magnitude of the resulting damping coefficient in a particular fabric or composite
is small, the exponential decay of free oscillations may change the overall dynamics of inter-
nal damping.

In P3, the final publication of the series, it is shown that relaxation damping is also present
in contacts with combined normal and torsional oscillation. Following a derivation similar to
P1 and using the extension of the Method of Dimensionality Reduction for torsional contacts,
the following result is obtained for phase-shifted harmonic oscillations with small amplitudes
𝐴𝑧 and 𝐴𝜑 (Eq. P3-15):

𝑊Tors = 8
3

𝐺̃
𝐸∗

𝜕2𝐹𝑁
𝜕𝑑2 (𝑎𝐴𝜑)2𝐴𝑧 sin2 𝜑0 (

1 − 𝐴2
𝑧

5𝑑2 )
(4.5)

where 𝐺̃ is the reduced shear modulus for the torsional contact problem (Eq. P3-4) and 𝑎
is the mean contact radius. 𝑎𝐴𝜑 is the amplitude of in-plane displacements near the edge
of the contact (in the region of intermittent contact significant for relaxation damping), and
therefore plays the same role as 𝐴𝑥 in Eq. (4.2). It should also be noted that for oscillations
with 𝐴𝑧 ≪ 𝑑, the last term, 1−𝐴2

𝑧 /5𝑑2, will be very close to one, in which case the similarity
with Eq. (4.2) becomes even more pronounced.

It is also possible to combine the solutions for relaxation damping with tangential and
torsional components (Eq. P3-20). Because the tangential and torsional contact problems
are assumed to be uncoupled, the stored elastic energies due to linear (in-plane) and torsional
displacements are additive, and are also released at the same time by unloading in the normal
direction. Thus, the energy dissipated per cycle in a system with superimposed normal, tan-
gential and torsional oscillations reduces to a sum of the results (4.2) and (4.5).

This concludes our discussion of relaxation damping, which represents a qualitative change
in the dynamics of periodically loaded frictional contacts due to the introduction of the nor-
mal degree of freedom. The model established here is further developed in the next section by
introduction of bulk sliding, which transforms the problem from one of damping in stationary
contacts to the reduction and active control of friction. As a parting note, we’d like to point
out that, while the derivations presented Publications 1-3 are all based on Method of Dimen-
sionality Reduction, this is not essential. Derivations using the classical methods of contact
mechanics have been given by Ahn [1] and Barber [6].

4.1.2 Active Control of Friction
The series of publications 4–10 is devoted to the reduction and active control of friction by
externally applied vibration. The contact-mechanical approach is inherited from the earlier
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publications on relaxation damping, except that the coefficient of friction is now finite and
bulk sliding is permitted. Friction under the influence of normal, tangential and transverse os-
cillations is studied within this framework. The overall result of these studies is that more or
less the entire known phenomenology of friction under the influence of vibration can be repro-
duced by a simple macroscopic model without recourse to specialized laws of friction. This
represents a major departure from the established models of friction under transient loading
in general, and vibration in particular.

In the context of damping, i.e., nominally static frictional contacts under the influence of
vibration, the use of macroscopic contact mechanics is well-established at least since the work
of Mindlin [42]. But in the case of nominally sliding frictional contacts under the influence of
vibration, an entirely different paradigm has taken hold—with a strong focus on microscopic
mechanisms and empirical friction laws. However, it has to be asked whether such a split
is defensible on physical grounds. After all, the two problems can be essentially seen as
one, differing only in whether the average lateral loading is zero or not. How can it be that
completely different physical mechanisms are postulated in such closely related cases?

Thus, the publications 4–10 are based on the assumption that a Mindlin-style contact me-
chanical analysis is also applicable to frictional problems. This requires that the contact point
be regarded as a proper contact, with compliance in both the normal and lateral directions.
In exchange, no special microscopic friction laws are needed, with a constant microscopic
coefficient of friction 𝜇0 being assumed throughout.

Normal Oscillation

The first paper in the series, P4, introduces the model and provides an analysis of the simplest
case: static and sliding friction under the influence of a harmonic, displacement-controlled,
out-of-plane oscillation. The model initially consists of a single spring (equivalent to a contact
of a flat cylindrical punch on a plane) and is later extended to a parabolic surface using the
Method of Dimensionality Reduction [63].

The force of static friction follows immediately from the assumptions of the model, and
is simply the lowest normal force during an oscillation cycle times the coefficient of friction
(if the lateral force is greater than this value, the contact will slide in at least one point of the
cycle). Given 𝐴𝑧, the amplitude of the normal oscillation, and ̄𝑢𝑧, the mean indentation, the
static COF for a flat punch can be written as:

𝜇𝑠 = 𝜇0 (1 − 𝐴𝑧
̄𝑢𝑧 ) (4.6)

This reflects the known empirical result that the static force of friction depends on the dis-
placement or force amplitude. The above equation is valid while 𝐴𝑧 < ̄𝑢𝑧. Once the amplitude
exceeds the mean indentation, 𝜇𝑠 turns to zero, because the contact is unable to statically sus-
tain a lateral load if it is periodically separated from the surface.

However, the core of Publication 4 deals with sliding friction. First, the relative velocity
of the contact point and the substrate is determined from the force balance between the lateral
contact force and the instantaneous force of friction (Eq. P4-2). The fact that this velocity
may turn to zero leads to the conclusion that under certain conditions the contact can transition
from slip to stick. This transition can only happen during the phase of increasing normal load
and is referred to as contact pinning in later publications. For the harmonic oscillation, the
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condition for the presence of stick-slip is easily shown to be (adapted from Eq. P4-3):

𝑣𝑐 = 𝐺∗

𝐸∗
𝑣0

𝜇0𝜔𝐴𝑧
< 1 (4.7)

The dimensionless quantity 𝑣𝑐 is referred to as the critical velocity of controllability, and is
noteworthy for two reasons. Firstly, the presence of stick-slip determines whether the macro-
scopic coefficient of friction is affected at all by the applied vibration. If 𝑣𝑐 > 1, then ̄𝜇 = 𝜇0
by linearity of Amontons’ friction. Together with the static coefficient of friction, the critical
velocity therefore sets the boundaries of the detailed dependence of the COF on the system
parameters. Secondly, it is found that said dependence is a function of only two dimension-
less parameters: the static COF (or equivalently 𝐴𝑧/ ̄𝑢𝑧), and 𝑣𝑐 . Actually, in the non-jumping
case (𝐴𝑧 < ̄𝑢𝑧), the nontrivial part of the dependence is a function of 𝑣𝑐 alone. In P4, this is
only verified empirically. A rigorous proof is presented in a later publication (P9). Note also
that the known empirical fact that the coefficient of sliding friction depends on the velocity
amplitude is reflected in the term 𝜔𝐴𝑧 being a part of 𝑣𝑐 . This difference between the static
and sliding cases follows naturally from our model, but is more difficult to accommodate in
microscopic and empirical theories.

During the stick phase tangential load increases linearly in proportion to the continued
lateral displacement of the upper part of the spring / sliding body. When the lateral load
exceeds the instantaneous force of static friction, the transition back to sliding takes place
(Eq. P4-7). Note that the lateral force 𝐹𝑥 is, by definition, less than 𝜇0𝐹𝑧 during the stick
phase. This is ultimately the reason for the reduction of the apparent force of friction in our
model: The contact is pinned at higher normal loads and “catches up” when the normal load
is reduced again. This process is somewhat analogous to walking.

With the kinematics of the system established, determining the macroscopic coefficient of
friction ̄𝜇 is simply a matter of averaging 𝐹𝑥 over both the stick and slip phases and dividing by
the average normal load. Unfortunately, ̄𝜇 cannot be expressed in terms of standard functions
for the harmonic, and most other, oscillations. Publication 4 instead gives a fairly accurate
numerical approximation (Eq. P4-11):

̄𝜇
𝜇0

≈ 1 − 𝐴𝑧
̄𝑢𝑧 (

3
4(1 − 𝑣𝑐)2 + 1

4(1 − 𝑣𝑐)4
) (4.8)

An asymptotic expression for low sliding velocities is also provided (Eq. P4-12):

̄𝜇
𝜇0

≈ 1 − 𝐴𝑧
̄𝑢𝑧 (

1
2𝑣2

𝑐 −
4√𝜋

3 𝑣3/2
𝑐 + 𝜋𝑣𝑐 − 1

)
(4.9)

In the case where the amplitude exceeds mean indentation, the separation between the
two dimensionless variables is no longer given, and a fully nonlinear dependence on both is
to be expected. However, in the case of the harmonic oscillation and moderate 𝐴𝑧/ ̄𝑢𝑧 ratios
the shape of the dependence only depends very weakly on this parameter. Thus, as a first
approximation, the following expression can be used for the jumping contact (Eq. P4-17):

̄𝜇jmp
𝜇0

≈ 1 − (
3
4(1 − 𝑣𝑐)2 + 1

4(1 − 𝑣𝑐)4
) (4.10)



4.1. SUMMARY AND DISCUSSION OF MAIN RESULTS 115

Note that the factor 𝐴𝑧/ ̄𝑢𝑧 is entirely missing from this dependence, since the static COF is
always zero in the jumping case, as noted previously. A low-velocity asymptote is also given
(Eq. P4-21).

The fact that the same numerical approximation is useful both for a proper harmonic os-
cillation and for a cut off sinusoid may at first appear surprising. An explanation for this is
provided in a later publication (P10), which considers the jumping case in greater detail. It
is shown that, for a certain class of waveforms, the effect of an increasing jumping amplitude
on the COF is equivalent to a nonlinear rescaling of the critical velocity. For this to be true,
the waveform must be piecewise self-similar under rescaling of the axes. This applies to os-
cillations that are periodic extensions of a power-law (𝑥𝑘) segment. The degenerate cases of
the square (𝑘 = ∞) and triangle (𝑘 = 0) waves also meet this definition, and their shapes are
simple enough that the coefficient of friction in the jumping case can be given in closed form.
For the triangle wave, we get the particularly simple expression

̄𝜇tri = 𝜇0
𝑣𝑐

1 + 𝑣𝑐
(4.11)

(adapted from Eq. P10-19 to match the definition of 𝑣𝑐 used here, which would imply a
triangle waveform with a period of 4). Similar results for the square wave and the sawtooth
in both orientations are given in Eqs. (P10-16,19) and Fig. P10-3.

Returning to the case considered in P4, the harmonic waveform can be regarded as approx-
imately parabolic in a fairly wide interval around the maximum. Thus, a change of amplitude
is equivalent to a square-root rescaling of the critical velocity (Eq. P10-23) in a suitable range
of amplitudes. But since the results of Publication 4 are generally normalized by the critical
velocity, this rescaling is essentially eliminated and the dependencies all appear to collapse
onto a single curve, which is fairly close to the non-cut-off waveform and can therefore be
numerically approximated with the same expression. Later publications (P9 and P10) use
a slightly different normalization that exposes the structure of the underlying dependencies
more clearly. For example, Fig. P10-4 shows both the complex behavior of the COF under
slightly jumping amplitudes—where the parabola is a poor fit for the sinusoid—as well as the
predicted scaling behavior for larger amplitudes.

After the basic theory is established using a single-spring system, the contact of curved
bodies is also considered in Publication 4. A useful approximation in the case of amplitudes
that are much smaller than the mean indentation is to simply use the result (4.8) derived for
a single spring. This is possible because the absolute reduction of the force of friction turns
out to be independent of the average normal load in the non-jumping case (Eq. P4-14). Com-
bining this fact with an MDR-based model, which rigorously maps a 3D contact to an elastic
foundation consisting of independent springs, it becomes apparent that the force reduction in
the individual springs in the contact region can be averaged and is therefore equivalent to the
force reduction in a single spring of the same stiffness as the macroscopic contact.

However, this reasoning is only applicable if the amplitude is small and the influence of
the zone of intermittent contact is therefore negligible. For large amplitudes this is not the
case, and numerical simulation is required. The results of such a simulation for a parabolic
contact are presented in Figs. P4-7 and P4-8.
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Influence of System Dynamics

Publication 5 examines the role of system dynamics in the proposed model. All other pub-
lications in this thesis are based on the assumption of quasi-staticity. This is a convenient
approximation for elucidating basic mechanisms, but may not be sufficient for describing real
tribological systems. Since the highly deformed contact region is usually very small (both in
size andmass) compared to the entire system, its inertia can almost always be safely neglected,
and propagation of elastic disturbances across the contact region can be considered instanta-
neous. However, the same cannot always be said of the surrounding system, and its dynamics
in interaction with the contact forces should be described explicitly for realistic modeling.
Due to the great diversity of possible systems this is ultimately the realm of numerical sim-
ulation and applied engineering. However, Publication 5 provides a very simple example of
this hybrid approach, which nonetheless uncovers some qualitatively new behaviors.

The modeled scenario roughly corresponds to a pin-on-disc tribometer with an externally
applied out-of-plane harmonic oscillation. The pin is considered to be rigid in the normal
direction, but having a finite bending stiffness and mass. In the model these are represented
with the system spring 𝑘𝑥 and system mass 𝑚 (Fig. P5-1b). All other aspects of the model
are the same as in P4, including the displacement-controlled normal oscillation (only in-plane
dynamics is simulated).

Since the oscillation is still displacement-controlled, the static COF remains unchanged.
The critical velocity differs significantly, however, and is given by Eq. (P5-12):

𝑣𝑐 = 𝑣0
𝜇0𝜔𝐴𝑧

𝑘𝑥,𝑐
𝑘𝑧,𝑐

|𝑘𝑥 − 𝑚𝜔2|
|𝑘𝑥,𝑐 + 𝑘𝑥 − 𝑚𝜔2|

< 1 (4.12)

Note that P5 defines the critical velocity in a slightly different manner (as an actual dimen-
sional velocity). In keeping with the notation established in P4 and later papers, it has been
rewritten in the dimensionless form given above.

Of particular interest is the inertial factor |𝑘𝑥 − 𝑚𝜔2|/|𝑘𝑥,𝑐 + 𝑘𝑥 − 𝑚𝜔2|. When the system
stiffness is very high (𝑘𝑥 → ∞) this factor tends towards 1, and the critical velocity reduces to
Eq. (4.7). (Note that the stiffness ratio 𝑘𝑥,𝑐/𝑘𝑧,𝑐 of a flat-ended contact is equal to the Mindlin
ratio 𝐺∗/𝐸∗). In the opposite limit of a very soft system and stiff contact (𝑘𝑥 ≪ 𝑚𝜔2 ≪ 𝑘𝑥,𝑐),
the critical velocity reduces to:

𝑣𝑐 = 𝑣0𝑚𝜔
𝜇0𝐴𝑧𝑘𝑧,𝑐

< 1 (4.13)

This is equivalent to the condition 𝑣0 < 𝜇0Δ𝐹𝑁 /𝑚𝜔 previously reported by Teidelt et al. [78].
Eq. (4.12) also implies the presence of two resonant cases: If 𝑘𝑥,𝑐 + 𝑘𝑥 − 𝑚𝜔2 ≈ 0, the

inertial factor tends to infinity, meaning that the condition 𝑣𝑐 < 1 becomes unsatisfiable even
at very small 𝑣0, which further implies that reduction of friction is prevented at all sliding
velocities. On the other hand, if 𝑘𝑥 − 𝑚𝜔2 ≈ 0, the inertial factor tends to zero, and the stick-
slip condition is satisfied even at very high sliding velocities. At large 𝑣0, the coefficient of
friction still approaches a plateau value, which is given by Eq. (P5-37):

̄𝜇𝑝 = 𝜇0 (1 − 𝐴𝑧
2 ̄𝑢𝑧 ) (4.14)

Comparing this with Eq. (4.6), it is easily seen that this plateau is situated halfway between
𝜇0 and the static coefficient of friction.
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The two resonances also inform the choice of two dimensionless parameters, 𝛼 and 𝛽,
which simplify the parametrization of the system (Eq. P5-20):

𝛼 = 𝑘𝑥
𝑚𝜔2 , 𝛽 =

𝑘𝑥 + 𝑘𝑥,𝑐
𝑚𝜔2 (4.15)

The detailed dependence of ̄𝜇 on 𝑣𝑐 , 𝛼 and 𝛽 is in general highly nontrivial, with some param-
eter combinations resulting in multiple intermediate plateaus (Fig. P5-5b) and other features.
Thus, a simple approximating formula cannot be given. Instead, a large part of Publication
5 is devoted to a numerical exploration of the (𝛼, 𝛽) parameter plane. The main results are
summarized graphically in Fig. P5-10.

An additional factor that can have a large impact on the dynamics of a frictional system
is inherent damping in the material. This is particularly relevant in frictional contacts with
polymers, which can be found, for example, in many types of automotive brake pads. In
Publication 6, the critical velocity is derived for a simple viscoelastic material, the Kelvin
body:

𝑣𝑐 = 𝑣0
𝜇0𝜔𝐴𝑧

𝑘𝑥,𝑐
𝑘𝑧,𝑐

|𝑘𝑥 − 𝑚𝜔2|

√(
𝑘𝑥,𝑐𝛾𝑧,𝑐𝜔

𝑘𝑧,𝑐 )
2

+ (𝑘𝑥,𝑐 + 𝑘𝑥 − 𝑚𝜔2)
2

< 1 (4.16)

(Adapted from Eq. P6-15). The main difference compared to Eq. (4.12) is the presence
of the factor 𝑘𝑥,𝑐𝛾𝑧,𝑐𝜔 / 𝑘𝑧,𝑐 , where 𝛾𝑧,𝑐 is the damping constant of the velocity-proportional
dashpot element set in parallel with the “contact spring” (Fig. P6-2). This new addition acts
as a damping factor for the resonance associated with 𝛽, and may suppress it entirely if the
relaxation time 𝜏 = 𝛾𝑧,𝑐 / 𝑘𝑧,𝑐 of the material is sufficiently large.

The static coefficient of friction can also be determined (Eq. P6-7):

𝜇𝑠 = 𝜇0 (1 − 𝐴𝑧
̄𝑢𝑧

√1 + (𝜔𝜏)2
) (4.17)

According to the above equation, large relaxation times and high oscillation frequencies can
substantially reduce the static COF from its reference value in the purely elastic problem (Eq.
4.6). However, this is for the most part an artifact of the displacement-controlled formulation,
in which the delayed relaxation amounts to a reduction of the effective indentation depth.
This is one of the few cases in the presented series of publications where a force-controlled
formulation would likely produce qualitatively different results.

Longitudinal Oscillation and Frictional Drives

It has already been noted that vibration is affected not only by normal, but also by longitudinal
and transverse oscillations. The longitudinal case, which is the topic of Publication 7, has both
similarities and differences compared to the normal oscillation. In the reduction of sliding
friction by longitudinal vibration (i.e., aligned with the sliding direction), stick slip once again
plays an important role and there is a critical velocity above which stick slip disappears and
the effective COF reaches the constant value of 𝜇0. The critical velocity takes the following
particularly simple form (Eq. P7-22):

𝑣𝑐 = 𝑣0
𝜔𝐴𝑥

< 1 (4.18)
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In other words, stick slip happens if the velocity amplitude of the longitudinal oscillation ex-
ceeds the sliding velocity. When a normal oscillation is added, the combined critical velocity
can be expressed as (𝑣2

𝑥 + 2𝑣𝑥𝑣𝑧 sgn 𝑣0 cos𝜑0 + 𝑣2
𝑧)1/2, where 𝑣𝑥 and 𝑣𝑧 are the separate criti-

cal velocities associated with the tangential and normal oscillations, and 𝜑0 is the phase shift.
Written out, this has the form (Eq. P7-8):

𝑣𝑐 = 𝑣0

𝜔√𝐴2
𝑥 + 2𝜇0

𝑘𝑧
𝑘𝑥

𝐴𝑥𝐴𝑧 sgn 𝑣0 cos𝜑0 + (𝜇0
𝑘𝑧
𝑘𝑥

𝐴𝑧)
2

(4.19)

Note that the critical velocity is asymmetric with respect to the direction of motion.
The static coefficient of friction in the purely longitudinal case is given in Publication 9

(adapted from Eq. P9-6):
𝜇𝑠 = 𝜇0 − 𝑘𝑥𝐴𝑥

𝑘𝑧 ̄𝑢𝑧
(4.20)

while the static COF in the combined longitudinal-normal case is derived in P7 under some
simplifying assumptions. In particular, the case where a large tangential amplitude causes the
contact point to reverse the direction of sliding is neglected. The result (Eqs. P7-18,19) is
likewise asymmetric, this time depending on the direction of the applied force:

𝜇𝑠
𝜇0

= 1 −
√√√
⎷(

𝐴𝑧
̄𝑢𝑧 )

2
+ 2𝑘𝑥𝐴𝑧𝐴𝑥

𝜇0𝑘𝑧 ̄𝑢2
𝑧

sgn𝐹𝑥 cos𝜑0 + (
𝑘𝑥𝐴𝑥

𝜇0𝑘𝑧 ̄𝑢𝑧 )
2

(4.21)

With these quantities established, a numerical parameter study is undertaken in Publica-
tion 7. For a pure longitudinal oscillation, the results are presented in Fig. P7-3. At low
amplitudes, the velocity dependence of the COF looks nearly identical to the dependencies
obtained for the normal case, and can in fact be approximated with the same empirical formula
(Eq. 4.8, Eq. P7-21). But note that the appropriate critical velocity needs to be used!

Fig. P7-3 also shows two distinct operating modes: one where the velocity amplitude is
moderately larger than the velocity and causes one stick event per cycle, and another where the
velocity amplitude is large enough to cause an in-place back-and-forth motion with two stick
phases in between. No such behavior is observed in Storck’s earlier model [76], but Kapelke
and Seemann [33] produced qualitatively similar results by adding elastoplastic friction. In
the view of the author this is unnecessary, and is only mentioned here for completeness.

So long as the oscillation is purely normal or purely longitudinal, the apparent friction
force is “ordinary”, in that the friction vector is directed opposite to the direction of slid-
ing and has the same magnitude in both directions. When both are combined, two notable
symmetry-breaking modes are the result. The first one, termed a dynamic ratchet in the pa-
per, is represented in Fig. P7-5a and means that the magnitude of the friction force depends
on the direction. In the second mode, an active frictional drive (Figs. P7-4 and P7-5b) is
realized, where the apparent friction force becomes negative, i.e., it acts in the direction of
motion. The energy for this driving force is supplied by the external oscillation source.

Which of the two modes is present is mostly determined by the amplitude, while the de-
gree of symmetry-breaking is determined by the phase shift. Conventional friction is always
realized at maximum phase shift (𝜋/2), while highest drive efficiency is achieved when the
oscillations are in phase or counter-phase (𝜑0 = 0 or 𝜋). It should also be stressed that the
presented drive mode works under quasi-static conditions and Amontons friction. Usually
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stick-slip drives exploit inertial effects and the difference between static and dynamic coef-
ficients of friction in their construction (but in turn can be driven by a purely longitudinal
oscillation). Thus the approach presented in Publication 7 potentially enlarges the design
space for ultrasonic motors and actuators.

Transverse Oscillation

Publication 8 explores the remaining case of transverse oscillation. The model is mostly the
same as in the other publications, but the contact spring can be deflected in both of the in-plane
directions (𝑥 and 𝑦). The spring is under constant normal load and slides in the 𝑥-direction
with constant velocity. A harmonic displacement oscillation is applied transversely (in the
𝑦-direction).

This mode of operation demonstrates yet another qualitatively different mechanism of
friction reduction. While normal oscillations actually reduce total frictional energy dissipa-
tion through the previously described walking-like mechanism, longitudinal oscillations only
apparently reduce friction, by shifting some of the work to the oscillator. Finally, transverse
oscillations affect friction by making the friction force vector oscillate in the plane. Since the
magnitude of this vector is constant (at least during sliding), but only part of it is projected
along the direction of motion, there is an apparent reduction of friction. The presence of stick
slip complicates this view somewhat, but does not change it in essence. If the transverse am-
plitude is large, the macroscopic force of friction can be reduced almost to zero. However, this
comes at the cost of ever-increasing energy expenditure that must be invested by the vibrating
mechanism.

The reduction mechanism, as described above, does not depend on stick slip, and is there-
fore present in similar form in the precursor model by Storck et al. [76]. However, the explicit
consideration of the contact stiffness still considerably extends the reach of the model. For
one, it covers both static and sliding friction, and further exposes much more complex struc-
ture depending on the amplitude.

The static coefficient of friction derived in Publication 8 is given by (Eq. P8-16):

𝜇𝑠 = 𝜇0√1 − (
𝐴𝑦𝑘
𝜇0𝐹𝑧 )

2
(4.22)

where 𝐴𝑦 is the transverse amplitude, 𝐹𝑧 the average normal load and 𝑘 the isotropic in-plane
contact stiffness. While the static coefficient of friction is thus relatively simple, the critical
velocity and coefficient of dynamic friction are somewhat more complex. In the analysis of
these quantities, P8 makes the distinction between small and large amplitudes (relative to the
typical in-plane spring deflection 𝑙0).

The critical velocity for small amplitudes is given by (adapted from Eq. P8-24):

𝑣𝑐,lo = 𝑣0 (√
1
4 + 1

2 ̃𝑦0
2 − 1

2)

−1

(4.23)

where ̃𝑦0 = 𝐴𝑦 / 𝑙0 is the ratio of the transverse amplitude and the aforementioned average
spring deflection (Eq. P8-8). For large amplitudes no closed-form expression can be given,
and an empirical approximation is provided instead (adapted from Eq. P8-26):

𝑣𝑐,hi ≈ 𝑣0√
4.5

̃𝑦0
(4.24)
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A combined approximation for low and high amplitudes is given in Eq. (P8-27). However, it
should be noted that the term “critical velocity” is a bit of a misnomer in the case of transverse
oscillation. It still discriminates between the presence or absence of stick-slip, but does not—
unlike in the previously discussed cases—indicate a qualitative transition in the behavior of
the coefficient of friction. This is apparent from Figs. P8-7 and P8-8, in which the dependence
of the COF on normalized velocity and amplitude is presented. No clear transitions are visible
in these figures at the “critical line”.

However, in the case of small amplitudes, the critical velocity is still associated with a
plateau-like coefficient of friction that grows very slowly. It’s value is given approximately by
(Eq. P8-32):

̄𝜇1 = 1 − ̃𝑦0
4 (4.25)

Interestingly enough, the interpolation between the static case and ̄𝜇1 at the critical velocity
can be accomplished by the same empirical approximation (Eq. 4.8) that was developed for
the normal case and was found to be partly applicable in the longitudinal case as well (see
also Eq. P8-28 and Fig. P8-9). In the large-amplitude-limit, the coefficient of friction can be
determined as well (Eq. P8-35):

̄𝜇2 = 2
𝜋 𝐾 (𝑖 ̃𝑦0

̃𝑣0 ) (4.26)

where 𝐾 is the complete elliptic integral of the first kind. In this limit, the model is fairly
close to Storck et al. [76], who obtained a fairly similar result, although the parametrization
is different (compare Eq. 5 in their paper).

The main results of Publication 8 are visually summarized in Fig. P8-11.

Some Generalizations

Many of the above results are summarized and integrated in Publication 9, from which the
present discussion borrowsmuch of its notation and structure. P9 also provides a more general
treatment that removes some of the assumptions of earlier papers.

For example, the min-max principle (i.e., the force of static friction is the lowest value,
taken over one cycle of oscillation, of the highest sustainable friction force) directly results
in closed-form expressions for the static coefficient of friction under oscillation in any of the
three directions (Eq. P9-4,6,8), without additional assumptions about contact geometry and
oscillation waveform. The static friction condition under multi-directional vibration is also
given (Eq. P9-9):

(𝐹𝑥 + 𝐴𝐹 𝑥𝑔𝑥(𝑡))
2 + (𝐴𝐹 𝑦𝑔𝑦(𝑡))

2 < 𝜇2
0 (𝐹𝑧 + 𝐴𝐹 𝑧𝑔𝑧(𝑡))

2 (4.27)

where 𝐹𝑥 is the static tangential load, 𝐹𝑧 the static normal load, 𝐴𝐹 𝑖 are the force amplitudes
and 𝑔𝑖(𝑡) the corresponding oscillation waveforms. Unfortunately, this inequality does not in
general permit a closed-form solution for the maximum value of 𝐹𝑥, but numerical solution
is straight-forward.

P9 also dispenses with the harmonic oscillation, which was assumed in all earlier papers.
Instead, a general waveform 𝑤 with zero mean, unit period and unit maximum value is intro-
duced, in terms of which the oscillation is parametrized (Eq. P9-11):

𝑢𝑧(𝑡) = ̄𝑢𝑧 + 𝐴𝑧𝑤(𝑓𝑡) (4.28)
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This permits decoupling the velocity amplitude from the shape of the waveform (which is
equal to 𝜔𝐴 for the harmonic oscillation, but not in general), which also allows the transition
from thewaveform-specific concept of critical velocity, to a fully general pair of dimensionless
variables (Eq. P9-16,17):

𝛼 = 𝐴𝑧
̄𝑢𝑧

, 𝛽 = 𝑘𝑥𝑣0
𝜇0𝑘𝑧𝐴𝑧𝑓 (4.29)

Although 𝛽 looks like the previously defined critical velocity for the normal oscillation, it is
important to stress that the harmonic-specific factor 𝐴𝑧𝜔 has been replaced by the general
velocity amplitude 𝐴𝑧𝑓 . In the same step, the inequality 𝑣𝑐 < 1 is replaced by 𝛽 < 𝛽𝑐 where
𝛽𝑐 is the maximal positive slope of the waveform 𝑤 (Eq. P9-20).

With these preliminaries, a more general and abstract treatment of the normal oscillation
case is presented, which gives the effective coefficient of friction in the compact form (Eq.
P9-33):

̄𝜇 = 𝜇0 (1 − 𝛼Ψ𝑤(𝛽)) (4.30)
where all non-linear behavior has been encapsulated in the dimensionless and waveform-
specific “reduction function” Ψ𝑤 (Eq. P9-31). This function has a number of useful prop-
erties that were stated in Publication 9 without proof due to space constraints. The complete
development can be found in Appendix A of this thesis.

The generalized derivation makes it possible to compare the effectiveness of different
waveforms for friction reduction, and also to determine Ψ𝑤 explicitly for a number of simple
waveforms (Eq. P9-34,35,36):

Ψstr(𝛽) = 1 − 𝛽
2 (4.31)

Ψstl(𝛽) = 2
2 + 𝛽 (4.32)

Ψsqr(𝛽) =
{

1 − 𝛽/8 , for 𝛽 < 4
2/𝛽 , for 𝛽 > 4

(4.33)

where “str” and “stl” are the right- and left-leaning sawtooth functions, respectively, and
“sqr” is the square wave. It is notable that the effectiveness of the sawtooth wave strongly
depends on the orientation. The right-leaning sawtooth produces a slow force increase and
an abrupt release, which makes it the least effective waveform. The left-leaning sawtooth, on
the other hand, increases the load abruptly—leading to immediate contact pinning—and re-
leases it more slowly. This greatly improves the reduction potential especially at high sliding
velocities. Generally speaking, a steep positive slope (reflected in high 𝛽𝑐) is desirable when
choosing waveforms.

4.2 Frictional Phenomena: Micro or Macro?
The presented work has hopefully convinced the reader that macroscopic contact mechanics
and dynamics is a viable approach for modeling the influence of vibration on friction. The
same approach has also been employed by other authors to explain pre-slip and frictional
hysteresis, as described in the introduction. Given this, one may be excused for supposing
that the phenomenology of friction under arbitrary dynamic loading may be macroscopic in
general. Of course, more work would be necessary to be able to state this with confidence.
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But this also poses the question whether the same can also apply to other “intrinsic” prop-
erties of friction. Could the numerical difference between the coefficients of static and sliding
friction, the velocity-dependence, kinetic effects and slow creep possibly be caused by pro-
cesses taking place at the macro-scale? In the opinion of the author, the answer is affirmative,
and there are multiple hints scattered throughout the literature that corroborate this view. But
the following discussion should nonetheless be regarded as speculative.

One early example of this view comes fromRichard Feynman, who, in his famous Lectures
on Physics (1964), has the following to say about friction:

To show that the coefficient μ is nearly independent of velocity requires some del-
icate experimentation, because the apparent friction is much reduced if the lower
surface vibrates very fast. When the experiment is done at very high speed, care
must be taken that the objects do not vibrate relative to one another, since appar-
ent decreases of the friction at high speed are often due to vibrations. At any rate,
this friction law is another of those semi-empirical laws that are not thoroughly
understood, and in view of all the work that has been done it is surprising that
more understanding of this phenomenon has not come about.

Feynman does not cite any original sources in the Lectures, but in 1967 Tolstoi [81] per-
formed friction experiments using an extremely stiff and well-damped apparatus that strongly
suppressed motion and vibration in the normal direction. It was found that no velocity-
dependence of the coefficient of friction could be observed under such conditions, and con-
versely that a strong reduction of friction could be achieved by active vibration at the resonant
frequency. This would seem to support Feynman’s view that the velocity-dependence of the
coefficient of friction is, at least in part, caused by interaction with self-excited vibration. In
addition, Tolstoi found that the transition from static to sliding friction is accompanied by a
minute displacement in the normal direction, and also that no difference between the static
and sliding COF could be measured if this upward displacement was suppressed.

A similar hint of the importance of seemingly unrelated degrees of freedom in frictional
experiments was recently provided by Nakano et al. [47]. This concerns the effect of slowly
accelerating microscopic creep prior to a stick-slip transition, or “stiction”, which has been
previously attributed to Dietrich-style rate-state friction [28]. However, Nakano et al. argue
that it can also be an artifact of the measurement apparatus. They consider a typical tribologi-
cal setup, where the frictional sample is guided by a double leaf spring. The spring is very soft
in the direction of motion, but very stiff in the normal and transverse directions. This is meant
to ensure that the sample can only move longitudinally. However, upon closer inspection, it
is shown that the transverse degree of freedom can meaningfully participate in the motion.
Given a very small misalignment, which would be difficult to avoid in practice, the contact
tends to “rotate out to the side” during the start-up phase. Due to the stiffness anisotropy of
the spring this motion would be hard to perceive, but the associated rotation of the friction
force vector is actually measurable [46]. When projected onto the direction of motion, this
rotating-out looks exactly like the accelerated creep of stiction.

It would go too far, however, to claim that kinetic friction is generally caused by micro-
scopic displacement in a non-principal direction. Other experiments point strongly towards
the presence of thermally activated aging effects in the contact, the earliest of which were per-
formed by Coulomb himself [11], who was first to notice that the magnitude of the break-away
friction force depends (logarithmically) on prior resting time. Long-term dynamics related to
wear are likewise clearly attributable to the micro scale.
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Another interesting case is elastomer friction. Here it is generally accepted that the pri-
mary dissipation mechanism is due to internal losses in the viscoelastic material. This is
corroborated by the famous master curve procedure that relates the velocity- and temperature
dependence of elastomer friction. However, finer points remain open to interpretation. For
example, in Persson’s influential theory of rubber friction with rough surfaces [50], great em-
phasis is placed on the multiscale nature of rough surfaces, with the assumption that all scales
contribute significantly to friction. However, other authors [62, 60, 37] have argued that there
is in fact a scale separation, with the main contributors being the smallest corrugation scale
on one hand, and macroscopic contact parameters such as radius of curvature and indentation
depth on the other.

The mentioned works show that the interpretation of tribological experiments is at the
very least highly non-trivial. Even the general scale at which the mechanism is situated is
often not easy to narrow down. To rule out large-scale effects, it may be necessary to make
three-dimensional displacement and orientation measurements with microscopic precision,
and also record generated vibration at ultrasonic frequencies. Needless to say, tribological
experiments do not usually go to this trouble. Conversely, ruling out microscopic effects is no
less problematic, since direct observation of the contact zone is in general very difficult.

4.3 Limitations and Future Research
The model and methods presented in this thesis have a considerable amount of explanatory
and unifying power, but are not without limitations. The most glaring omission of the present
work is undoubtedly the current lack of experimental validation, which came about through
the author’s strong affinity towards theory at the expense of experiment. Nonetheless, a large
number of testable predictions are made that can form the basis of future research:

• Quantitative results have been presented for damping in frictional couples under com-
bined tangential/normal oscillation. Coefficients of friction have been calculated under
all three directions of oscillation as a function of velocity, amplitude, frequency and
other parameters. These results can be directly compared to friction force measure-
ments.

• In addition, specific physical mechanisms have been proposed. For example, it would
be interesting to directly observe contact pinning and static force increase during stick,
as well as the disappearance of stick-slip near the critical velocity, in the case of normal
oscillation. Or maybe the transition from single to dual stick-slip modes in the case of
longitudinal oscillation.

• Alternatively, onemay try to compare the predicted time-dependence of the lateral force
in stick-slipmode (see for example Fig. P9-3), with high resolution forcemeasurements.
Such an experiment was in fact attempted by the author’s colleague Lars Voll (private
communication), but the apparatus turned out to have insufficient stiffness to isolate the
deformation of the contact region, and the results were inconclusive.

Apart from experimental verification, there are many opportunities to use the presented
theoretical framework for more accurate numerical modeling:

• More realistic contact geometry with indentation-dependent contact stiffness.
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• Force-controlled (as opposed to displacement-controlled) boundary conditions.

• Non-quasistatic systems and accurate modeling of surrounding system dynamics.

• Additional research into waveforms and combined multi-directional oscillation.

The model also allows incorporating a more complex friction law than Amontons’. In the
author’s opinion this is not a very promising idea, as argued previously, but some of the simpler
variations, such as using different coefficients for static and sliding friction, are probably worth
exploring.

4.4 Conclusion
With this work, the author attempted to make a small contribution to the ongoing endeavor
of figuring out the quantitative, specific details of dry friction, and especially friction un-
der dynamic loading. The adopted methodology, developed from the prior work of multiple
authors, mostly revolves around the nontrivial and under-appreciated role that macroscopic
contact mechanics can play in friction. The influence of contact mechanics is studied in two
closely related cases: 1) Active control of friction, where external vibration is used to reduce
the force of sliding or static friction. 2) Frictional damping in oscillating contacts, especially
with superimposed vibration in two directions.

But this distinction is somewhat artificial, as was shown in this thesis. The discussed phe-
nomena can be understood as special or limiting cases of one and the same system, depending
on whether the system moves macroscopically or not, whether the vibrations break symmetry
or not, and depending on which physical quantities our attention is drawn to. This is one of the
primary advantages of the presented model, that it is able to cover so much phenomenolog-
ical ground both qualitatively and quantitatively. This is especially true since the presented
studies cover only a very limited range of the possible variation of the model—enough to elu-
cidate the main mechanisms and behaviors, but barely scratching the surface of all possible
dynamics with regard to practical applications.

It was also the author’s hope to convince the reader that the macro-scale can absolutely not
be ignored in tribology in general. Coefficients of friction really are system properties, and
not local constants. Maybe this view is not very productive for the practicing engineer, but
the continued sweeping-under-the-rug of the macro scale even by the research-oriented parts
of the tribological community is likely holding back progress in the field. On the positive
side, treating friction as a system property does not always result in more complexity. As was
shown in the present work, sometimes it is quite sufficient to take into account the contact
stiffness or even just the Mindlin ratio.



Appendix A

Extended Discussion of the Normal
Oscillation Case

Publication 9 of this thesis presents the most recent formulation of our model. However,
being in part an overview article, it was constrained in scope and length, and some proofs and
details had to be omitted. An extended analysis of friction under normal oscillation (without
jumping) is therefore presented in this appendix.

Note that sections 1-4, describing the model and its basic dynamics, are substantially the
same as in Publication 9. They are repeated here for the sake of convenience. The newmaterial
is contained in sections 5-6.

A.1 Model
Following Publication 9, we consider a displacement-controlled, quasi-static contact model
with force-independent contact stiffness, so that the contact can be regarded as a single linearly
elastic spring (Figure A.1). The spring slides over a plane under the action of a normal (not
necessarily harmonic) oscillation. The generalization to real contacts of curved bodies is
relatively straightforward, but requires numerical simulation. To demonstrate the qualitative
behavior of the system, a single spring is quite sufficient.

Figure A.1: A single massless spring, which serves as our model of a sliding fric-
tional contact. The sliding velocity is constant, while the vertical coordinate oscillates.
Amontons friction with a constant coefficient of friction 𝜇0 is assumed in the contact
point.

The contact spring should not be thought of as a physical object, but rather as an abstract
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elastic element that maintains proportionality between displacement and force:

𝐹𝑥 = 𝑘𝑥 [𝑢𝑥 − 𝑢𝑥,𝑐]
𝐹𝑧 = 𝑘𝑧𝑢𝑧

(A.1)

Here 𝐹𝑥 and 𝐹𝑧 are the lateral and normal spring forces, and 𝑘𝑥 and 𝑘𝑧 the corresponding
stiffnesses. 𝑢𝑧 denotes the normal displacement (with the 𝑧-axis pointing into the plane). 𝑢𝑥
is the nominal displacement of the spring in the tangential direction, relative to an arbitrary
starting point. 𝑢𝑥,𝑐 is the tangential displacement of the contact point, and (𝑢𝑥 −𝑢𝑥,𝑐) therefore
represents the lateral stretch of the spring.

The spring is moved horizontally with a constant velocity 𝑣0, while also being subjected
to an arbitrary normal oscillation:

𝑢𝑥(𝑡) = 𝑣0𝑡
𝑢𝑧(𝑡) = ̄𝑢𝑧 + 𝐴𝑧𝑤(𝑓𝑡) (A.2)

Here ̄𝑢𝑧 is the mean indentation, 𝐴𝑧 is the amplitude and 𝑓 the frequency of the oscillation.
𝑤(𝜑) is a dimensionless function describing the shape of the oscillation, with 𝜑 = 𝑓𝑡. The
waveform 𝑤 is normalized such that it is zero-mean, with a period of 1 and a minimum value
of -1. This makes the definition of amplitude (𝐴𝑧 = ̄𝑢𝑧 − min𝑡 𝑢𝑧(𝑡)) consistent with its
meaning in static friction. Note, however, that the chosen parametrization does not constrain
the maximum of 𝑤: In general, max𝑡 𝑢𝑧(𝑡) ≠ ̄𝑢𝑧 + 𝐴𝑧. Unless noted otherwise, 𝑤 is assumed
to be continuous and differentiable, although this requirement can be relaxed in many cases
(e.g., to admit the sawtooth function). Note that, since 𝑢𝑥 and 𝑢𝑧 are given as explicit functions
of time, the displacement 𝑢𝑥,𝑐 of the contact point is the only unknown of the system.

In this analysis, we assume that the amplitude is less than the mean indentation, so that
there is always contact between the spring and the plane, and the normal force is consequently
always non-negative. Finally, Amontons’ law of friction (with a constant coefficient of friction
𝜇0 that is the same for both static and sliding friction) is assumed in the contact point.

A.2 Slip state and slip-to-stick transition
While the contact is sliding, the spring force is in equilibrium with the friction force: 𝐹𝑥 =
𝜇0𝐹𝑧, which can also be written as:

𝑘𝑥 [𝑢𝑥(𝑡) − 𝑢𝑥,𝑐(𝑡)] = 𝜇0𝑘𝑧𝑢𝑧(𝑡) (A.3)

Substituting 𝑢𝑥 and 𝑢𝑧 from Eq. (A.2) and rearranging gives the position of the contact point:

𝑢𝑥,𝑐(𝑡) = 𝑣0𝑡 − 𝜇0
𝑘𝑧
𝑘𝑥

[ ̄𝑢𝑧 + 𝐴𝑧𝑤(𝑓𝑡)] (A.4)

The velocity of the contact point is therefore:

̇𝑢𝑥,𝑐(𝑡) = 𝑣0 − 𝜇0
𝑘𝑧
𝑘𝑥

𝐴𝑧𝑓𝑤′(𝑓 𝑡) (A.5)

Note that we use the common convention of denoting time derivatives with a dot (as in ̇𝑢𝑥,𝑐(𝑡))
and other derivatives with a prime (as in 𝑤′(𝜑)).
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To initiate stick, the velocity of the contact point must turn to zero. Applying this condition
to Eq. (A.5), the point of stick onset can be determined:

𝑓𝑡1 = (𝑤′)
−1

(
𝑘𝑥𝑣0

𝜇0𝑘𝑧𝐴𝑧𝑓 ) (A.6)

Thus it becomes apparent that the time of stick onset is a function of a single compound
variable, which combines all system parameters, except the mean indentation ̄𝑢𝑧. To simplify
further calculations, we introduce the dimensionless variables 𝛼 (corresponding to amplitude),
𝛽 (corresponding to velocity) and 𝜑 (phase):

𝛼 = 𝐴𝑧
̄𝑢𝑧

(A.7)

𝛽 = 𝑘𝑥𝑣0
𝜇0𝑘𝑧𝐴𝑧𝑓 (A.8)

𝜑 = 𝑓𝑡 (A.9)
Using these variables, the static coefficient of friction for a single spring can be expressed as
𝜇𝑠 = 𝜇0[1 − 𝛼], while Eq. (A.6) can be written as

𝜑1 = (𝑤′)
−1 (𝛽) (A.10)

This equation can only have solutions if
𝛽 < max

𝜑
𝑤′(𝜑) = 𝛽𝑐 (A.11)

where 𝛽𝑐 is the critical value that separates the stick-slip regime from continuous sliding. As
mentioned previously, active control of friction is only possible in the presence of stick-slip.

A.3 Stick state and stick-to-slip transition
During the stick phase the contact point stands still, while the upper point of the spring contin-
ues to move with the velocity 𝑣0. The tangential force during stick therefore increases linearly
with time:

𝐹stick(𝑡) = 𝜇0𝐹𝑧(𝑡1) + 𝑘𝑥𝑣0 [𝑡 − 𝑡1] (A.12)
The stick phase lasts while the condition for static friction is satisfied:

𝐹stick(𝑡) < 𝜇0𝐹𝑧(𝑡) (A.13)
and ends at some time 𝑡2 such that 𝐹stick(𝑡2) = 𝜇0𝐹𝑧(𝑡2). Expanding this condition yields

𝜇0𝑘𝑧𝑢𝑧(𝑡1) + 𝑘𝑥𝑣0 [𝑡2 − 𝑡1] = 𝜇0𝑘𝑧𝑢𝑧(𝑡2) (A.14)
or, more conveniently,

𝑣0𝑘𝑥
𝜇0𝑘𝑧

[𝑡2 − 𝑡1] = 𝑢𝑧(𝑡2) − 𝑢𝑧(𝑡1) (A.15)

Substituting the explicit form of 𝑢𝑧 and 𝑡 = 𝜑/𝑓 , this can be rewritten as:
𝛽 [𝜑2 − 𝜑1] = 𝑤(𝜑2) − 𝑤(𝜑1) (A.16)

This gives the stick-to-slip transition in implicit form. Unfortunately, the equation cannot be
solved symbolically for 𝜑2 except in the simplest cases (sawtooth, square wave, etc). E.g., in
the case of a harmonic oscillation, Eq. (A.16) takes the form (cos 𝑥 = 𝑎 + 𝑏𝑥), which does not
have a solution in terms of standard functions. Numerical solution is required in most cases.
But note that 𝜑2 depends only on 𝛽 (since 𝜑1 is itself a function of only 𝛽).
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A.4 Macroscopic coefficient of friction
The macroscopic (as opposed to instantaneous) force of friction is simply the tangential force
averaged over one period (𝑇 = 1/𝑓 ) of oscillation:

⟨𝐹𝑥⟩ = 1
𝑇 ∫

𝑇

0
𝐹𝑥(𝑡) d𝑡 (A.17)

However, it will become clear in a moment that it is more convenient to consider the difference
or reduction of the force of friction relative to the state of continuous sliding:

Δ𝐹𝑥 = ⟨𝐹slip⟩ − ⟨𝐹𝑥⟩ = 1
𝑇 ∫

𝑇

0
[𝐹slip(𝑡) − 𝐹𝑥(𝑡)] d𝑡 (A.18)

Since 𝐹𝑥 only differs from 𝐹slip during the stick phase, we can tighten the integration bounds
and rewrite the above as

Δ𝐹𝑥 = 1
𝑇 ∫

𝑡2

𝑡1
[𝜇0𝐹𝑧(𝑡) − 𝐹stick(𝑡)] d𝑡 (A.19)

This form is suitable for numerical solution. However, some additional properties can be
gleaned by substituting the definitions of 𝐹stick (Eq. A.12) and 𝑢𝑧(𝑡).

Δ𝐹𝑥 = 1
𝑇 ∫

𝑡2

𝑡1
[𝜇0𝐹𝑧(𝑡) − 𝜇0𝐹𝑧(𝑡1) − 𝑘𝑥𝑣0 [𝑡 − 𝑡1]] d𝑡

= 1
𝑇 ∫

𝑡2

𝑡1
𝜇0𝑘𝑧 [ ̄𝑢𝑧 + 𝐴𝑧𝑤(𝑓𝑡) − ̄𝑢𝑧 − 𝐴𝑧𝑤(𝑓𝑡1) − 𝑘𝑥𝑣0

𝜇0𝑘𝑧
[𝑡 − 𝑡1]] d𝑡

= 𝜇0𝑘𝑧𝐴𝑧 ∫
𝜑2

𝜑1
[𝑤(𝜑) − 𝑤(𝜑1) − 𝛽 [𝜑 − 𝜑1]] d𝜑

(A.20)

Note the use of the substitution (d𝑡 = 𝑇 d𝜑) in the last step. This result shows that the expres-
sion for Δ𝐹𝑥 can be split into the dimensional factor 𝜇0𝑘𝑧𝐴𝑧 and a dimensionless function
Ψ𝑤 of a single variable:

Δ𝐹𝑥 = 𝜇0𝑘𝑧𝐴𝑧Ψ𝑤(𝛽) (A.21)
where

Ψ𝑤(𝛽) = ∫
𝜑2

𝜑1
[𝑤(𝜑) − 𝑤(𝜑1) − 𝛽 [𝜑 − 𝜑1]] d𝜑 (A.22)

This expression can often be integrated (depending on 𝑤), but a complete symbolic solution
is usually precluded by the lack of an explicit solution for 𝜑2, as mentioned earlier.

As evidenced by (A.21), the absolute reduction of the friction force does not depend on
the mean normal force / indentation. The same is not true for the coefficient of friction:

̄𝜇 = ⟨𝜇0𝐹𝑧⟩ − Δ𝐹𝑥
⟨𝐹𝑧⟩ = 𝜇0 − Δ𝐹𝑥

𝑘𝑧 ̄𝑢𝑧
(A.23)

However, the dependence on ̄𝑢𝑧 is incidental, merely reflecting the fact that Δ𝐹𝑥 is subtracted
from different baselines of friction force. Using our dimensionless variables, the above can
also be written in the following compact form:

̄𝜇 = 𝜇0 [1 − 𝛼 Ψ𝑤(𝛽)] (A.24)
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A.5 General properties of Ψ𝑤

The reduction function Ψ𝑤(𝛽) has a number of useful properties that are (nearly) indepen-
dent of the waveform 𝑤. In particular, it is strictly monotonously decreasing, convex, and
has unit range. In the following, these properties are proved under the assumption that 𝑤 is
differentiable and that there is one stick phase per oscillation cycle. In practice, the listed
properties usually hold even when 𝑤 does not satisfy these criteria. However, a fully general
proof seems to be more trouble than it is worth, so we confine ourselves to a single stick event
and differentiable 𝑤.

Monotonicity is shown by taking the derivative of Ψ𝑤 with respect to 𝛽. For this, we use
Leibniz’s formula for the derivative of a definite integral:

d
d𝜉 ∫

𝑏(𝜉)

𝑎(𝜉)
𝑓(𝑥, 𝜉) d𝑥 = ∫

𝑏

𝑎

𝜕𝑓
𝜕𝜉 d𝑥 + 𝑓(𝑏, 𝜉)d𝑏

d𝜉 − 𝑓(𝑎, 𝜉)d𝑎
d𝜉 (A.25)

Noting that the integrand in the definition of Ψ𝑤 (Eq. A.22) is zero at both bounds, and
assuming that the derivatives of 𝜑1 and 𝜑2 are finite, we can immediately discard the last two
terms of Leibniz’s formula and are left with:

dΨ𝑤
d𝛽 = ∫

𝜑2

𝜑1

𝜕
𝜕𝛽 [𝑤(𝜑) − 𝑤(𝜑1) − 𝛽 [𝜑 − 𝜑1]] d𝜑 (A.26)

= − ∫
𝜑2

𝜑1
[𝜑 − 𝜑1] d𝜑 + ∫

𝜑2

𝜑1
[−𝑤′(𝜑1)d𝜑1

d𝛽 + 𝛽 d𝜑1
d𝛽 ] d𝜑 (A.27)

Since 𝑤′(𝜑1) = 𝛽 by definition of 𝜑1 (Eq. A.10), the second integral cancels, while the first
one results in the pleasingly simple expression

dΨ𝑤
d𝛽 = −1

2[𝜑2 − 𝜑1]2 = −Δ𝜑2

2 (A.28)

where Δ𝜑 is the length of the stick phase. Since the resulting derivative is obviously negative
for all 𝑤 and 𝛽, this concludes the proof of monotonicity.

Convexity is shown by taking the second derivative:

d2Ψ𝑤
d𝛽2 = −Δ𝜑 ⋅ dΔ𝜑

d𝛽 (A.29)

The duration of the stick phaseΔ𝜑 is positive by definition, while its derivative in 𝛽 is negative,
because the stick phase shrinks with increasing velocity1. The second derivative of Ψ𝑤 is
therefore positive for all 𝑤 and 𝛽, which shows that the function is convex.

Since Ψ𝑤 is monotonous, determining its range is just a question of considering two ex-
treme points: In the static limit (𝛽 = 0), we have ̄𝜇 = 𝜇𝑠, and consequently:

𝜇0 [1 − 𝛼 Ψ𝑤(0)] = 𝜇0 [1 − 𝛼] (A.30)

from which we immediately obtain Ψ𝑤(0) = 1. At the other extreme, when the system tran-
sitions to pure sliding (𝛽 = 𝛽𝑐), we have ̄𝜇 = 𝜇0:

𝜇0 [1 − 𝛼 Ψ𝑤(𝛽𝑐)] = 𝜇0 (A.31)
1Formal proof of this is omitted. However, it is easy to see that the stick condition is met at a later time when

velocity increases, while the transition back to slip comes earlier (because the tangential force increases faster
during stick). Thus, the stick interval shrinks overall.
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from which we obtain Ψ𝑤(𝛽𝑐) = 0. Thus, we can conclude that Ψ𝑤 decreases monotonously
from 1 to 0, as 𝛽 increases from 0 to 𝛽𝑐 . In short, Ψ𝑤 is a very well-behaved function that
should be easy to approximate numerically, even if the underlying waveform 𝑤 is complex or
discontinuous. This is a very useful property considering that closed-form solutions for Ψ𝑤
are usually not possible.

With these insights, we can also give an alternative definition for Ψ𝑤 which is shorter than
Eq. (A.22) and occasionally more convenient:

Ψ𝑤(𝛽) = 1 − 1
2 ∫

𝛽

0
Δ𝜑2 d𝛽 (A.32)

While Eq. (A.22) describes Ψ𝑤 in terms of the difference between the potential sliding friction
force and the actual static force, the new equation casts Ψ𝑤 in terms of how increasing 𝛽
progressively makes this difference smaller. (If we increase 𝛽 by some small increment d𝛽,
the integral of 𝐹stick will increase by a thin triangular sliver with the base Δ𝜑 and height
Δ𝜑 d𝛽, while the integral of 𝐹slip will not change).

Another interesting observation is that the coefficient of friction (Eq. A.24) can be rewrit-
ten as

̄𝜇 = 𝜇𝑠 + 𝜇0
𝛼
2 ∫

𝛽

0
Δ𝜑2 d𝛽 (A.33)

In other words, we can regard the coefficient of sliding friction under normal oscillation as
consisting of a static friction term and a dynamic dissipation term, which for small 𝛽 (and
consequently Δ𝜑 ≈ 1) takes the form

𝜇0𝛼𝛽
2 = 𝑘𝑥𝑣0

2𝑘𝑧 ̄𝑢𝑧𝑓 (A.34)

Note that in this form the dynamic contribution depends neither on amplitude or 𝜇0. It is a
sort of “elastic friction”, closely related to the concept of relaxation damping presented in the
first part of this thesis.

A.6 The fine print: Multiple stick events, periodicity, etc.
In the analysis so far, several tacit assumptions were made, namely that there is exactly one
stick event per oscillation cycle, that it is entirely contained in said cycle and that it does not
change from one cycle to the next. For the sake of completeness, these assumptions will be
discussed here.

Let us begin with multiple stick phases per cycle. First we note that the onset of stick
𝜑1 is inherently ambiguous due to the periodicity of the oscillation. Therefore, the 𝜑1 in Eq.
(A.10) should be understood as the smallest 𝜑1 greater than some arbitrary starting point 𝜑0.
Likewise, 𝜑2 in Eq. (A.16) refers, strictly speaking, to the smallest 𝜑2 that is greater than 𝜑1.
If a further stick phase is possible in the same cycle, we solve again for 𝜑1,𝑎 that is greater than
𝜑2 and then for 𝜑2,𝑎 > 𝜑1,𝑎. This process is repeated as necessary until all stick events have
been identified. Note that this does not change the fact that the bounds of each stick phase
are functions of 𝛽 and are independent of ̄𝑢𝑧. Therefore, the reduction function Ψ𝑤 can be
generalized for 𝑛 stick events in a straightforward manner:

Ψ𝑤(𝛽) =
𝑛

∑
𝑖=1

Ψ𝑤,𝑖(𝛽) (A.35)
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where Ψ𝑤,𝑖 is the reduction function for the 𝑖-th event only. In short, nothing changes quali-
tatively when there is more than one stick period per cycle of oscillation.

The number of stick events per cycle depends on 𝛽. In the static limit there is generally a
single stick event lasting for almost the entire oscillation cycle. As 𝛽 increases, this stick event
may split into smaller separate stick phases. Each such “division event” has the interesting
property that Ψ′

𝑤 changes discontinuously where they occur: If Δ𝜑 is the length of the stick
phase just before division, then Ψ′

𝑤 = −Δ𝜑2/2 (Eq. A.28). If the event is split into to halves
of Δ𝜑/2 each, Ψ′

𝑤 for each of them will be 1/4 as large as before, and the overall slope will
be half as large. A less even split will have a less pronounced effect. One way to think about
this behavior is that every split effectively increases the frequency of oscillation, thus making
it more effective at reducing friction at high 𝛽.

Concerning the periodicity and stability of the stick-slip cycles, we first note that periodic-
ity is only established after a certain run-in period, which depends on velocity. If an indenter
is first pressed into the plane in the normal direction, and only then begins to move sideways,
it needs to first build up a certain tangential force before it can begin to slide. In the limit
of very low velocities this pre-loading might take long enough to have an impact on system
dynamics. The run-in time can be estimated as

𝑡pre ≈ 𝜇0𝑘𝑧
𝑣0𝑘𝑥

⋅ min 𝑢𝑧 (A.36)

Once the system begins to slip, it becomes periodic, with the same period as the oscillation.
This is intuitively clear, but for a formal argument, consider the point in the oscillation cycle
at which the normal force is minimal. Assume for contradiction that the system is in a state
of stick at this point. This implies that the tangential force 𝐹𝑥,1 on the spring is less than
(𝜇0 ⋅ min𝐹𝑧). This is possible if the system started in stick (e.g. during run-in). However, if
the current stick state was preceded by slip, the tangential force 𝐹𝑥,0 at the slip-stick transition
must have been less than 𝐹𝑥,1, since 𝐹𝑥 increases linearly during stick. This implies that at
some point (𝐹𝑥,0 < 𝜇0 ⋅ min𝐹𝑧) occurred in a sliding state, which is a contradiction. Thus,
once slip sets in, it recurs at the point of minimal force/indentation in every oscillation cycle.
Since the free variable of the system 𝑢𝑥,𝑐 is uniquely determined at this point and evolves
deterministically, we conclude that it is periodic.

Since the state of the system is periodic, with the same period as the oscillation, the “be-
ginning” of the cycle can be chosen arbitrarily. In particular, it can be chosen such that all
stick events are contained in the cycle and do not cross its “boundaries”, which was implicitly
assumed throughout the preceding analysis.
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