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Abstract. We propose a two-level nested preconditioned iterative scheme for solving sparse4
linear systems of equations in which the coefficient matrix is symmetric and indefinite with relatively5
small number of negative eigenvalues. The proposed scheme consists of an outer Minimum Residual6
(MINRES) iteration, preconditioned by an inner Conjugate Gradient (CG) iteration in which CG can7
be further preconditioned. The robustness of the proposed scheme is illustrated by solving indefinite8
linear systems that arise in the solution of quadratic eigenvalue problems in the context of model9
reduction methods for finite element models of disk brakes as well as on other problems that arise10
in a variety of applications.11
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1. Introduction. Symmetric indefinite linear systems15

(1) Ax = b,16

arise in many applications ranging from optimization problems to problems in com-17

putational physics, see e.g. [2, 17]. In this paper we assume that A ∈ Rn×n is a18

sparse, full-rank, symmetric and indefinite matrix with only few negative eigenval-19

ues. Our motivation to develop a new preconditioned iterative method arises from20

an application in the automotive industry. In order to control brake squeal, large21

scale eigenvalue problems are solved via a shift-and-invert Arnoldi method to obtain22

a reduced model that can be used for parameter studies and optimization, see [10]23

and Section 3.1. We propose the use of a two-level preconditioned iterative method24

with a positive definite preconditioner for the solution of the arising linear systems.25

The basic idea of such a preconditioner iteration is well-known. In the context of26

optimization problems, see [9], a sparse Bunch-Parlett factorization27

(2) PAPT = LDLT28

is suggested as a solver for the systems involving the indefinite blocks of various29

preconditioners. Where P is a permutation matrix (with PPT = I), L is a sparse30

lower triangular matrix (typically with some fill-in compared to the sparsity pattern31

of A), and D is a block-diagonal matrix that contains either 1 × 1 or 2 × 2 blocks.32

Given such a factorization, one can modify the diagonal matrix D to obtain a positive33

definite D̃ such that the eigenvalues of D̃ are the absolute values of the eigenvalues of34

D, so that also M := LD̃LT is positive definite. If a diagonal block of D is 1× 1 and35
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2 M. MANGUOĞLU AND V. MEHRMANN

negative, then one replaces it with its absolute value. Otherwise, it is a symmetric36

2× 2 block,37

(3)

[
α β
β γ

]
.38

and one computes the spectral decomposition39

(4)

[
α β
β γ

]
=

[
c s
s −c

] [
λ1

λ2

] [
c s
s −c

]
40

where c, s ∈ R satisfy c2 + s2 = 1, and one replaces the 2× 2 block with41

(5)

[
α̃ β̃

β̃ γ̃

]
=

[
c s
s −c

] [
|λ1| 0
0 |λ2|

] [
c s
s −c

]
.42

The matrix M , if easily available, is a good preconditioner for a preconditioned Krylov43

subspace method, such as the Minimum Residual method (MINRES) [14], since due44

to the fact that the spectrum of M−1A has only the values +1,−1, it would converge45

in at most 2 iterations in exact arithmetic if the factorization is exact. However, this46

preconditioner is, in general, not practical for large problems due to fill-in and large47

storage requirements. In [12], therefore, an incomplete LDLT factorization (ILDLT )48

based preconditioner for MINRES is proposed.49

Another suggestion for a preconditioner of MINRES, proposed in [21], is the50

positive definite absolute value of A, defined as |A| := V |Λ|V T in which A = V ΛV T is51

the spectral decomposition of A, however, to avoid the high computational complexity52

of the spectral decomposition, in [21] it is suggested to use a geometric multigrid53

method instead of the absolute value preconditioner and it is illustrated via a model54

problem that this approach is very effective when the system matrix arises from elliptic55

partial differential equations.56

In our motivating problem, the indefinite matrix arises from a perturbed wave57

equation where the resulting linear system depends on parameters and has the extra58

property that the number of negative eigenvalues is much smaller than the number of59

positive eigenvalues. For this class of problems we propose a new two-level iterative60

scheme that combines the absolute value preconditioner approach with a deflation61

procedure and we show that this method is also very effective for a large class of62

indefinite problems arising in other applications.63

2. A two-level iterative scheme. In this section we describe a new two-level64

preconditioned iterative scheme for symmetric indefinite linear systems where the65

coefficient matrix has only very few negative eigenvalues. The method employs MIN-66

RES together with a modified absolute value preconditioner that is constructed via67

a deflation procedure which, however, is not carried out explicitly. The linear sys-68

tems involving the preconditioner are solved again iteratively via the preconditioned69

Conjugate Gradient (CG) [7] which can be preconditioned via an incomplete LU70

(ILU) decomposition, see e.g. [17], of the original coefficient matrix A or any other71

preconditioner obtained from the original coefficient matrix . These include but are72

not limited to Sparse Approximate Inverse Algebraic Multigrid based preconditioner73

as well. We illustrate that this MINRES-CG iterative scheme is very effective and74

more robust than other preconditioned general Krylov subspace methods, such as the75

restarted Generalized Minimum Residual (GMRES) [18], the stabilized Bi-Conjugate76
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A ROBUST ITERATIVE SCHEME FOR SYMMETRIC INDEFINITE SYSTEMS 3

Gradient method (BiCGStab) [19], inner-outer FGMRES-GMRES [16] or just ILDLT77

preconditioned MINRES.78

As an approximation to the absolute value preconditioner we use79

(6) Mmr := A+ 2V̂ |Λ̂|V̂ T .80

where V̂ is an approximate invariant subspace ofA associated with the (say k) negative81

eigenvalues and |Λ̂| is the corresponding absolute value of the diagonal matrix of82

negative eigenvalues. Since we have assumed that k is much smaller than n, the83

modification (or as it is sometimes called deflation) is of small rank. In each iteration84

of MINRES applied to (1) a system of the form85

(7) Mmrz = y86

has to be solved, and again the preconditioned matrix M−1
mrA has only eigenvalues +187

or −1 so that MINRES with the exact preconditioner converges theoretically again88

in at most 2 iterations. However, since Mmr is symmetric and positive definite, we89

propose to use a preconditioned CG iteration for solving system (7) approximately90

with an indefinite preconditioner, Mcg, which is an approximation of the original91

coefficient matrix itself. Note that the eigenvalues of the preconditioned matrix for92

CG, M−1
cg Mmr, would again be either +1 or −1 if the exact matrix A−1 was used.93

Indefinite preconditioning for the CG method is rarely applied with the exception94

of [15], where CG for indefinite systems with indefinite preconditioner is used but it95

is assumed that the preconditioned matrix is positive definite. In our case, however,96

this will not be the case.97

The first level preconditioner (Mmr) is symmetric and positive definite, but dense,98

so it should not be formed explicitly. On the other hand, the second level precondi-99

tioner (Mcg) is sparse and symmetric but not positive definite. However, the precon-100

ditioned CG is still guaranteed not to break down (see [17, p. 277]) using an indefinite101

preconditioner which can be seen as follows. It is well-known, see e.g. [17, p. 279],102

that preconditioned CG with a preconditioner M applied to a system Wx = b with103

symmetric positive definite W can be expressed in an indefinite M -scalar product104

by replacing the Euclidean inner products in CG by the M -inner products. If W is105

symmetric positive definite, and M is symmetric indefinite (but invertible), then we106

can define the indefinite M -inner product as (x, y)M = (Mx, y) = yTMx = xTMy =107

(y, x)M , so M−1W is positive definite with respect to the M -inner product, since108

(M−1Wx, x)M > 0 for all x 6= 0.109

Given the system Wx = z, an initial guess x0, and a preconditioner M , as110

CG is a projection based Krylov subspace method, the vectors xm must satisfy the111

orthogonality condition112

(8) (M−1(z −Wxm), v)M = 0 for all v ∈ K̂m,113

where K̂m = span{r̂0,M
−1Wr̂0, ..., (M

−1W )(m−1)r̂0} and r̂0 = M−1r0 with r0 =114

z −Wx0. Note that (8) is equivalent to the orthogonality condition of CG without115

preconditioning116

(9) (z −Wxm, v) = 0 for all v ∈ K̂m117

Therefore, indefinitely preconditioned CG minimizes the error118

(10) ||xm − x∗||W = inf
x∈x0+K̂m

||x− x∗||W ,119
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4 M. MANGUOĞLU AND V. MEHRMANN

in the energy norm defined by the positive definite matrix W .120

In summary, our two-level scheme consists of two stages. First, we compute121

approximations to the negative eigenvalues and the corresponding invariant subspace122

(see Algorithm 1). This computation itself may be very expensive even if the invariant123

subspace has small dimension. However, in our motivating application many linear124

systems with the same coefficient matrix (or closely related coefficient matrices) need125

to be solved. Hence, this potentially expensive initial cost is quickly amortized. This is126

typical when solving eigenvalue problems with the shift-and-invert Arnoldi method as127

in [10]. The second stage in the iterative solution stage consists of nested MINRES and128

CG iterations (Algorithm 2). Note that while the outer MINRES iterations require129

matrix-vector multiplications with the original sparse coefficient matrix A, the inner130

CG iterations require matrix-vector multiplications of the form v = Mmru which are131

efficiently performed by using sparse matrix-vector multiplications and together with132

dense matrix-vector operations (BLAS Level 2) and vector-vector operations (BLAS133

Level 1) in the following procedure134

(11) Mmru = Au+ 2(V̂ (|Λ̂|(V̂ ∗u)))135

The total cost of each such matrix multiplication operation is O(nnz + 2kn) where136

nnz,k and n are the number of nonzeros, negative eigenvalues and rows of A, re-137

spectively. We note that this extra operation is much more cache friendly than con-138

structing an orthonormal basis in GMRES which rely on dot products (BLAS Level139

1). Alternatively, to further speed up the convergence, the proposed scheme can be140

implemented using RMINRES [8, 22], i.e. recycled and deflated MINRES, as the141

outer solver instead of plain MINRES. The trade-off would be increased storage and142

computation requirements due to the necessary orthogonalization against the recy-143

cled subspace and the updates of the recycled subspace [22]. Furthermore, finding144

subspaces that lead to improved convergence is considered to be a highly challenging145

task and application specific [8].146

Algorithm 1 Preprocessing stage of MINRES-CG

Function MINRES-CG-Preprocess(A):
Compute (or approximate) all negative eigenvalues and the corresponding invari-
ant subspace V̂ of A (AV̂ = Λ̂V̂ )
return Λ̂, V̂

2.1. Improvement via Sherman-Morrison-Woodbury Formula. The pre-147

conditioner Mmr in MINRES-CG is a k-rank update of A. Therefore, one can use the148

Sherman-Morrison-Woodbery formula to express M−1
mr . Given,149

(12) Mmr := A+ 2V̂ |Λ̂|V̂ T150

after applying the Sherman-Morrison-Woodbury formula and some algebraic manip-151

ulations, we obtain,152

(13) M−1
mr := A−1 − 2V̂ Λ̂−1V̂ T .153

Note that since we do not have the exact A−1, but use an approximation of it, M−1
mr is154

not positive definite. Still, we can use it as the preconditioner for the CG iterations.155

In other words, we apply the preconditioner for CG, M−1
cg = Ã−1−2V̂ Λ̂−1V̂ T in which156

This manuscript is for review purposes only.
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Algorithm 2 Iterative solution stage of MINRES-CG

Function MINRES-CG(A,b,x0,Λ̂,V̂ ):

Solve Ax = b via MINRES using the preconditioner Mmr = A + 2V̂ |Λ̂|V̂ T in
each iteration of MINRES using the subroutines:

• Compute matrix-vector products with A.
• Solve Mmrz = y via preconditioned CG using as preconditioner Mcg = Ã an

approximation of A.
In each iteration of PCG:

– Compute matrix-vector products: v = Mmru
– Solve the system Mcgt = g

return x

the action of Ã−1 is approximated, such as by an incomplete factorization of A. In157

the improved scheme, application of the preconditioner involves an additional dense158

matrix-vector multiplication (BLAS Level 2) cost of 2kn but no additional storage159

requirement. Hereafter, we refer to this improved version as MINRES-CG∗.160

3. Application of the two-level method. In this section we describe the161

applications to which we apply the proposed two-level procedure.162

3.1. Finite Element Models of Disk Brakes. In the context of noise reduc-163

tion in disk brakes, reduced order models are determined from the finite element model164

[10] by computing the eigenvalues in the right half plane and close to the imaginary165

axis of a parametric Quadratic Eigenvalue Problem (QEP)166

(14) (λ2M+ λDΩ +KΩ)x = 0167

in which168

(15) DΩ = DM +

(
Ωref

Ω
− 1

)
DR +

(
Ω

Ωref

)
DG169

and170

(16) KΩ = KE +KR +

((
Ω

Ωref

)2

− 1

)
Kg,171

whereM and KE are symmetric positive definite, DG is skew-symmetric, DM , DR,Kg172

are symmetric indefinite, and KR is general [10]. Here Ω denotes the angular velocity173

in the disk (2π < Ω < 4× 2π) and Ωref is the reference angular velocity.174

The QEP is solved by first rewriting it as a linear eigenvalue problem, using a175

companion linearization of (14) given by176

(17)

([
0 I
−KΩ −DΩ

]
− λ

[
I 0
0 M

])[
x
λx

]
= 0.177

Audible brake squeal is associated with eigenvalues in the right half plane. For this178

reason we are interested in those eigenvalues that lie in a rectangular domain in the179

complex plane given by −50 < Re(λ) < 1, 000 and −1 < Im(λ) < 20, 000 correspond-180

ing to the audible range.181
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6 M. MANGUOĞLU AND V. MEHRMANN

Solving the eigenvalue problem (17) via an eigensolver such as the shift-and-invert182

Arnoldi method [13], requires the solution of a shifted linear system of equations in183

each iteration, see [10] for details of the eigensolver. To apply our two-level linear184

system solver, we consider the solution of the following shifted linear system with185

complex shifts (γ inside the rectangular domain of interest),186

(18) C(x+ iy) = f + ig187

where i =
√
−1, C = γB −A, and188

(19) B =

[
I 0
0 M

]
, A =

[
0 I
−KΩ −DΩ

]
.189

In [10] this complex linear system is solved with a sparse complex direct solver. To190

solve the problem iteratively, we follow [1] and map the complex system (18) to an191

equivalent double-size real system.192

Splitting into real and imaginary parts C = Â + iB̂ and γ = γr + iγi with193

γr = Re(γ) and γi = Im(γ), we obtain194

(20) Â =

[
γrI −I
KΩ γrM+DΩ

]
, B̂ =

[
γiI 0
0 γiM

]
,195

for the real and complex parts of C, respectively. This leads to the real system196

(21)

[
B̂ −Â
Â B̂

] [
x
−y

]
=

[
g
f

]
.197

which we then solve via a preconditioned Krylov subspace method with preconditioner198

(22) M =

[
B̃ −Ã
Ã B̃

]
199

where200

(23) Ã =

[
γrI −I
KE γrM

]
201

and B̃ = B̂. Note that both M and KE are symmetric and positive definite. The202

preconditioner can be block LU factorized as203

(24)

[
B̃ −Ã
Ã B̃

]
=

[
B̃ 0

Ã B̃ + ÃB̃−1Ã

] [
I −B̃−1Ã
0 I

]
.204

Hence, the major cost in solving systems involving the preconditionerM is the solution205

of two linear systems where the coefficient matrix is (i) B̃ and (ii) S = (B̃+ ÃB̃−1Ã),206

namely the Schur complement. Since the solution of (i) is quite trivial, we only discuss207

how to solve systems involving the Schur complement matrix, which typically is dense208

see [2], but in our case it has the factorization209

(25) B̃ + ÃB̃−1Ã︸ ︷︷ ︸
S

=

[
M−1 0

0 I

]
︸ ︷︷ ︸

S1

(γi +
γ2
r

γi

)
M− 1

γi
KE −2γrγiM

2γrγiKE

(
γi +

γ2
r

γi

)
M− 1

γi
KE


︸ ︷︷ ︸

S2

.210
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A ROBUST ITERATIVE SCHEME FOR SYMMETRIC INDEFINITE SYSTEMS 7

Solving systems involving the Schur complement matrix, therefore, requires two steps:211

(i) scaling the right hand side vector with S−1
1 and (ii) solving systems where the212

coefficient matrix is S2. Step (i) is again trivial, hence we now look into (ii) which we213

solve iteratively using a Krylov subspace method where the preconditioner is214

(26) S̃2 =

(γi +
γ2
r

γi

)
M− 1

γi
KE 0

2γrγiKE

(
γi +

γ2
r

γi

)
M− 1

γi
KE

 ,215

since in our case ||M||F � ||KE ||F . Hence, the main cost in solving the block216

triangular systems lies in the solution of217

(27)

[(
γi +

γ2
r

γi

)
M− 1

γi
KE

]
u = v,218

or after multiplying both sides of the system by −γi we obtain219

(28) [KE − |γ|2M]u = −γiv,220

where |γ|2 = γ2
i + γ2

r . Even though M and KE are symmetric and positive definite,221

there is no guarantee that the symmetric coefficient matrix KE − |γ|2M is positive222

definite. However, system (28) is a perfectly suitable for the proposed MINRES-223

CG scheme, since in our application it only has few negative eigenvalues and they224

need to be computed only once. Furthermore, the preconditioner (22) is completely225

independent of the parameters Ω and Ωref , and the coefficient matrix of inner systems226

that have to be solved (28) are the same for a given |γ|. This means that a factorization227

(incomplete or exact) or an approximation for the coefficient matrix KE − |γ|2M can228

be computed once and re-used for all values of γ of the same absolute value and for229

all corresponding Ω values.230

Numerical experiments for this class of problems are presented in section 4.231

3.2. Other applications. As further applications we consider all symmetric232

indefinite problems in SuiteSparse Matrix Collection [5] of sizes between n = 1000233

and n = 50, 000 and with at most 100 negative eigenvalues. Since this includes 7234

matrices from the PARSEC group [3], we exclude the 3 smallest matrices from this235

group. Furthermore, since shifts around the so-called Fermi level are also of interest in236

the PARSEC group of matrices, we shift the largest matrix (SiO) by A−σI. For σ, we237

chose three values (0.25, 0.5 and 0.75) which approximately correspond to the gaps in238

the spectrum of A. The properties of these 11 matrices are given in Table 1. Note that239

we include two examples (*) that arise in finite element discretization of structural240

problems. These are not full eigenvalue problems but just mass matrices; solving these241

linear systems is useful if eigenvalues in inverse mass matrix inner product space are242

computed.243

4. Numerical results. In this section, we study the robustness of the proposed244

two-level scheme for indefinite linear systems described in the previous section. All245

experiments are performed using MATLAB R2018a.246

In MINRES-CG, we use an indefinite preconditioner (Mcg) obtained either by an247

incomplete LDLT or LU factorization of the coefficient matrix for inner CG iterations.248

Former is the only suitable preconditioner available in MATLAB which we refer to249

as ILU . Hence, even though it does not exploit symmetry, we use it to show the250

robustness of the proposed scheme in Section 4.2.1. For the latter, on the other hand,251
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8 M. MANGUOĞLU AND V. MEHRMANN

Table 1: Matrices from the SuiteSparse Matrix Collection with application domains
and properties (n is matrix dimension, nnz is number of nonzeros and k is number of
negative eigenvalues).

Matrix n nnz k Application
Bcsstm10∗ 1, 086 22, 092 54 Structural Engineering
Bcsstm27∗ 1, 224 56, 126 31 Structural Engineering
Nasa1824 1, 824 39, 208 20 Structural Engineering
Meg4 5, 860 25, 258 54 RAM Simulation
Benzene 8, 219 242, 669 2 Real-space pseudopotential method
Si10H16 17, 077 875, 923 41 Real-space pseudopotential method
Si5H12 19, 898 738, 598 6 Real-space pseudopotential method
SiO 33, 401 1, 317, 655 8 Real-space pseudopotential method
SiO(σ = 0.25) 33, 401 1, 317, 655 16 Real-space pseudopotential method
SiO(σ = 0.5) 33, 401 1, 317, 655 26 Real-space pseudopotential method
SiO(σ = 0.75) 33, 401 1, 317, 655 41 Real-space pseudopotential method

we use symm-ildl which is an external package [11] that has an interface for MATLAB252

and is robust. Hereafter, we refer to this preconditioner as ILDLT . Therefore, we253

use it to show that the proposed scheme is competitive against other solvers in terms254

of number of iterations even when a much more robust preconditioner is used in255

Sections 4.1 and 4.2.2. For a fair comparison, exactly the same preconditioner is256

used for BiCGStab, GMRES(m) (m = 20, 40, 60 and 120) as well as another outer-257

inner scheme with Flexible GMRES (FGMRES) as the outer solver and GMRES258

as the inner solver [16]. In Section 4.2.2, we also use a MINRES preconditioner259

with the modified ILDLT factorization. For FGMRES-GMRES we use a restart260

value of 120 for both inner and outer iterations. Iterative solvers, except FGMRES,261

are the implementations that are available in MATLAB. We note that MATLAB’s262

BiCGStab implementation terminates early before completing a full iteration if the263

relative residual is already small enough. This counts as a half iteration. We modified264

GMRES to stop the iteration based on the true relative residual rather than the265

preconditioned relative residual. Storage requirements for MINRES, CG, BiCGStab,266

FGMRES and GMRES are given in [4, 17, 20, 16, 18], respectively. In Table 2,267

we illustrate the storage requirement of each of the iterative solvers via the number268

of vectors in addition to the coefficient matrix, the preconditioner (i.e. incomplete269

factors) and the right hand side vector which are common for all solvers.

Table 2: Total additional memory requirements (number of vectors) of various itera-
tive solver (not counting A , M and b) where m is the restart and k is the number of
negative eigenvectors.

MINRES MINRES-CG GMRES FGMRES-GMRES BiCGStab
7 11 + k m+ 2 3m+ 4 6

270

4.1. Disk brake example. In the following we solve (28) for the small and271

large test problems of [10] of sizes n = 4, 669 and n = 842, 638, respectively, with272

Ωref = 5. Note again that (28) is independent of Ω. For the first set of experiments273
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A ROBUST ITERATIVE SCHEME FOR SYMMETRIC INDEFINITE SYSTEMS 9

we fix the shift γ to be the largest value in the range of values of interest, namely274

1, 000 + 20, 000j. This also happens to be the most challenging case since the number275

of negative eigenvalues is also the largest, with k = 18 and k = 60, respectively.276

For the proposed scheme, an ILDLT factorization of the coefficient matrix is used277

as the preconditioner (Mcg) of the inner CG iteration. We use the same preconditioner278

for BiCGStab, GMRES(m) and FGMRES-GMRES. For the smaller problem, we also279

use the ILU factorization with no fill-in (i.e. ILU(0)) preconditioner of MATLAB.280

For all experiments a moderate outer stopping tolerance of relative residual norm281

less than or equal to 10−3 is used. For MINRES-CG and FGMRES-GMRES schemes282

the inner stopping tolerance is 10−2. For all methods, the maximum (total) number283

of iterations are 2, 000 and 15, 000 for small and large problems, respectively. In all284

experiments, the right hand side vector is a random vector of size n.285

The required number of iterations for the proposed scheme as well as for base-286

line algorithms are given in Table 3 for solving the small problem using ILU(0),287

ILDLT (1, 10−2) and ILDLT (1, 10−3) preconditioners. GMRES(20) reaches the max-288

imum number of iterations without converging (†) irrespective of the preconditioner.289

When the preconditioner is ILU(0), BiCGStab converges but it requires twice as290

many iterations as MINRES-CG, while all other solvers reach the maximum num-291

ber of iterations without converging. Using ILDLT (1, 10−2) and ILDLT (1, 10−3) as292

the preconditioners, GMRES(m) converges for m = {120} and m = {40, 60, 120},293

respectively.294

In Table 4, results are presented for solving the large problem using the seven295

iterative methods with the preconditioners LDLT (4, 10−4), LDLT (5, 10−5) as well296

as LDLT (5, 10−6). Note that a much smaller dropping tolerance is required for the297

large problem. Incomplete factors contain 117.1 , 144.5, and 146.8 nonzeros per row298

which are relatively small considering complete LDLT factorization would produce299

558.4 nonzeros per row. In fact, incomplete factorization may not be an efficient300

preconditioner for this problem. However, we still include these results here only301

to show the robustness of the proposed scheme in terms of number of iterations.302

While for all preconditioners GMRES(m), FGMRES-GMRES and BiCGStab reach303

the maximum number of iterations without converging, MINRES-CG still converges304

in 4 outer iterations albeit with a large number of inner iterations.305

In Figure 1, the relative residual history is given when the ILU(0) preconditioner306

is used for three algorithms for the small test problem. Note that for MINRES-CG307

the relative residual is only available at each outer iteration. Hence, only those are308

presented in the figure.309

As second application we fix the preconditioner to be ILU(0) and vary the shift310

γ in the complex domain of interest for the small test problem. Here γ is a parameter311

that we change in the context of the eigenvalue problem. It is of interest to see how312

the method behaves as γ is varied. In Figure 2, the total number of iterations is313

presented. Preconditioned BiCGStab fails to converge for some values of γ (shown as314

the white area in the figure) while MINRES-CG converges for all γ values. Figure 3315

depicts the number of outer iterations and the average number of inner iterations for316

MINRES-CG.317

4.2. Test cases from the SuiteSparse matrix collection. In this subsection,318

the results are presented for systems that are obtained from the SuiteSparse Matrix319

Collection. In the first set we compare the proposed method against the classical320

general iterative schemes GMRES(m) and BiCGStab using an incomplete LU fac-321

torization based preconditioner. In the second set, we compare against the modified322

This manuscript is for review purposes only.
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Table 3: Required number of iterations using various preconditioners and iterative
methods for the small system (†: maximum number of iterations is reached without
convergence)

Preconditioner Solver Outer its. Inner its. (Avg.) Total its.

ILU(0)

BiCGStab 1, 421.5 - 1, 421.5
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
FGMRES-GMRES † † †
MINRES-CG 4 177.75 711

ILDLT (1, 10−2)

BiCGStab 1, 337.5 - 1, 337.5
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) 7(103) - 823
FGMRES-GMRES 1(3) 259.3 778
MINRES-CG 4 199.5 798

ILDLT (1, 10−3)

BiCGStab 143 - 143
GMRES(20) † - †
GMRES(40) 8(40) - 200
GMRES(60) 2(7) - 67
GMRES(120) 1(62) - 62
FGMRES-GMRES 1(4) 46.3 185
MINRES-CG 4 32.8 131

Fig. 1: The relative residual history for MINRES-CG, BiCGStab and GMRES(20).
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Table 4: Required number of iterations using various preconditioners and iterative
methods for the large system (†: maximum number of iterations is reached without
convergence)

Preconditioner Solver Outer its. Inner its. (Avg.) Total its.

ILDLT (4, 10−4)

BiCGStab † - †
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
FGMRES-GMRES † † †
MINRES-CG 4 3, 032 12, 128

ILDLT (5, 10−5)
BiCGStab † - †
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
FGMRES-GMRES † † †
MINRES-CG 4 2, 221 8, 884

ILDLT (5, 10−6)
BiCGStab † - †
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
FGMRES-GMRES † † †
MINRES-CG 4 2, 242.8 8, 971

(a) BiCGStab (b) MINRES-CG

Fig. 2: Total number of iterations for BiCGStab and MINRES-CG using the precondi-
tioner ILU(0). White color indicates that the method failed to converge. GMRES(20)
fails for all shifts.
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(a) Outer (b) Inner

Fig. 3: Number of outer (MINRES) iterations and average number of inner (CG)
iterations for MINRES-CG using the preconditioner ILU(0).

incomplete Bunch-Parlett based preconditioned MINRES.323

4.2.1. Comparison against ILU preconditioner. We use ILU(0) for all324

cases except Meg4 where incomplete LU factorization fails due to a zero pivot. There-325

fore, we use the modified incomplete LU factorization in MATLAB with 10−2 dropping326

tolerance (i.e. MILU(10−2)) for this case only. Since in practice GMRES is always327

used with a value for the restart (m) we choose a restart value of m = 20, 40, 60 and328

120. In FGMRES-GMRES, we use a restart of 120 for both inner and outer itera-329

tions. We stop the iterations when the relative residual norm is less than 10−5 for330

all cases. The inner iteration stops when the relative residual norm is less than 10−3331

for CG and GMRES, in MINRES-CG and FGMRES-GMRES, respectively. Both in332

MINRES-CG and BiCGStab iterations stop when the true relative residual is less333

than the tolerance. For preconditioned GMRES the available residual is only the334

preconditioned residual. In order to have a fair comparison, we explicitly compute335

the true residual at each GMRES iteration and stop the iteration based on the true336

relative residual norm. For all methods, the maximum (total) number of iterations337

are 20, 000.338

In Table 6, the detailed number of iterations for ILU preconditioned MINRES-339

CG, GMRES(m), FGMRES-GMRES and BiCGStab are given. GMRES(20) fails340

in 6 cases out of 11. For bcsstm10, GMRES(20) stagnates (‡), while for 5 other341

cases (namely bcsstm27, nasa1824, Si10H16, SiO(σ = 0.25) and Sio(σ = 0.75)),342

the maximum number of iterations is reached without convergence (†). If the restart343

is increased to 40, 60 and 120, GMRES(m), fails in 4, 3 and 2 cases, respectively.344

BiCGStab fails for bcsstm27 and Meg4 due to the maximum of iterations being345

reached without convergence (†) and a scalar quantity became too large or too small346

during the iteration (∗), respectively. FGMRES-GMRES fails in 3 cases due to347

the maximum of iterations being reached without convergence (†). The proposed348

MINRES-CG method does not fail in any of the test problems. Although the cost per349

iteration is different for each method, the total number of iterations are presented in350

Table 7. For the cases they do not fail, GMRES(120) and FGMRES-GMRES requires351

fewer number of iterations than MINRES-CG but they also require more storage. In352
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4 cases MINRES-CG requires fewer iterations than BiCGStab. It is possible to im-353

prove the total number of iterations of MINRES-CG via using the algorithm described354

in Section 2.1, Table 5 shows the improved number of iterations which is significant355

especially for the cases where the inner or outer number of iterations are high.356

In order to study the effect of the inner stopping tolerance on the eigenvalues357

of the preconditioned matrix, we explicitly compute M−1
mrA using preconditioend CG358

iterations using stopping tolerances of 10−2, 10−3 and 10−4. In Figure 5, a clear359

clustering of eigenvalues of the preconditioned matrix M−1
mrA is visible around +1360

and −1 for bcsstm10 while the unpreconditioned coefficient matrix had no clustering361

of eigenvalues (see Figure 4). As expected, the clustering around −1 and +1 improves362

as the stopping tolerance for the inner CG iterations is decreased.363

Table 5: Comparison of MINRES-CG and MINRES-CG∗, the improvement via the
Sherman-Morrison-Woodbury formula is given in the second column, both are using
the same ILU preconditioner.

MINRES-CG MINRES-CG∗

Name MINRES CG (Avg.) MINRES CG (Avg.)
Bcsstm10 4 650.5 4 470
Bcsstm27 5 3, 186.4 4 1, 339.5
Nasa1824 4 455.3 4 309.3
Meg4 16 18.6 4 1.5
Benzene 3 24.3 3 22.7
Si10H16 4 831 4 893.5
Si5H12 4 53.8 4 47.3
SiO 4 50.5 4 48.8
SiO(σ = 0.25) 4 259 4 141.8
SiO(σ = 0.5) 4 94.3 4 80
SiO(σ = 0.75) 4 179.5 4 184
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14 M. MANGUOĞLU AND V. MEHRMANN

Fig. 4: Eigenvalues of A (bccstm10)

4.2.2. Comparisons using incomplete LDLT . In this subsection, we com-364

pare the proposed scheme against a robust incomplete LDLT (Bunch-Parlett) factor-365

ization [6].366

We use the ILDLT implementation of [11] in MATLAB which computes the367

incomplete Bunch-Parlett factorization of the coefficient matrix. The default param-368

eters are 3 and 10−3 for the level of fill-in and the dropping tolerance, respectively.369

Furthermore, it uses the Approximate Minimum Degree reordering, Rook pivoting370

and Scaling are used to improve the numerical stability of the incomplete factors by371

default. Note that all of those enhancements that are implemented in ILDLT makes372

the preconditioner much more robust than the ILU(0) preconditioner. In the follow-373

ing experiments all methods are applied to the permuted and scaled linear systems.374

After computing the ILDLT factorization the D matrix is modified as described375

in [9] in order to obtain a positive definite preconditioner to be used with MINRES. To376

have a fair comparison, the same ILDLT factorization (without the modification) is377

used as the preconditioner for GMRES(m), FGMRES-GMRES, BiCGStab and as the378

inner preconditioner for MINRES-CG. Stopping tolerances and the maximum number379

of iterations allowed are set exactly the same as in Section 4.2.380

In Table 8 the total number of iterations for all methods are given. Even though381

it is a much more robust preconditioner, MINRES preconditioned with the modified382

ILDLT preconditioner stagnates (‡) for bcsstm27. For the same problem BiCGStab,383

FGMRES-GMRES and GMRES(m) (for all restart values m = 20, 40, 60, 120) reach384

the maximum number of iterations without converging (†). On the other hand,385

MINRES-CG converges in all problems which confirms the robustness of the pro-386

posed scheme. In Table 9, the total number of iterations for all methods are given.387

GMRES(m) with larger restart values and BiCGStab require the fewest number of388

iterations. FGMRES-GMRES requires fewer number of iterations than MINRES-CG.389

This manuscript is for review purposes only.



A ROBUST ITERATIVE SCHEME FOR SYMMETRIC INDEFINITE SYSTEMS 15

T
ab

le
6:

N
u

m
b

er
o
f

it
er

a
ti

o
n

s
u

si
n

g
I
L
U

M
IN

R
E

S
-C

G
G

M
R

E
S

(m
)

F
G

M
R

E
S

(m
1
)-

G
M

R
E

S
(m

2
)

B
iC

G
S

ta
b

N
am

e
M

IN
R

E
S

C
G

m
=

20
m

=
4
0

m
=

6
0

m
=

1
2
0

m
1

=
1
2
0

m
2

=
1
2
0

B
cs

st
m

10
4

65
0
.5

‡
‡

1
2
(6

0
)

1
(8

0
)

1
(5

7
)

1
4
.5

4
4
3
.5

B
cs

st
m

27
5

3
,1

86
.4

†
†

†
†

†
†

†
N

as
a1

82
4

4
45

5
.3

†
10

1
(1

4
)

1
5
(3

0
)

4
(7

8
)

1
(6

)
9
2

4
8
3

M
eg

4
16

18
.6

5(
20

)
1(

3
8
)

1
(3

8
)

1
(3

8
)

1
(3

)
2
8
.3

∗
B

en
ze

n
e

3
24
.3

6(
4)

2
(1

)
1
(4

1
)

1
(4

1
)

1
(2

)
3
0
.5

3
7
.5

S
i1

0H
16

4
83

1
†

†
†

†
†

†
6,

9
5
6
.5

S
i5

H
12

4
53
.8

34
7(

19
)

9(
1
8
)

3
(1

4
)

1
(8

0
)

1
(3

)
6
6
.7

1
0
8
.5

S
iO

4
50
.5

10
6(

5)
6(

1
5
)

2
(1

8
)

1
(7

0
)

1
(2

)
5
5

1
1
4

S
iO

(σ
=

0.
25

)
4

25
9

†
†

†
2
5
(1

2
0
)

†
†

2,
1
0
9
.5

S
iO

(σ
=

0.
5)

4
94
.3

49
2(

20
)

48
(3

1
)

1
2
(5

9
)

2
(1

1
1
)

1
(3

)
1
1
6
.3

6
2
1
.5

S
iO

(σ
=

0.
75

)
4

17
9
.5

†
51

(3
3
)

2
0
(2

4
)

5
(5

6
)

1
(3

)
2
3
2
.7

1
,0

0
7

This manuscript is for review purposes only.
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Fig. 5: Eigenvalues of M−1
mrA (εcg = 10−2, 10−3 and 10−4) (bccstm10)

On the other hand, MINRES requires more iterations than MINRES-CG in 4 cases,390

and the required number of iterations are marginally better than that of MINRES-CG391

for 3 other cases.392

5. Conclusions. A two-level nested iterative scheme is proposed for solving393

sparse linear systems of equations where the coefficient matrix is symmetric indefinite394

with few negative eigenvalues. The first level is MINRES preconditioned via CG. The395

inner level CG is preconditioned via the original indefinite coefficient matrix. The396

robustness of the proposed scheme is presented for linear systems that arise in disk397

brake squeal as well as systems that arise in a variety of test cases from the SuiteSparse398

Matrix Collection.399
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