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Zusammenfassung

Diese theoretische Arbeit beschäftigt sich mit der Musterbildung beim Stromtransport in dünnen
dotierten GaAs-Filmen mit zwei konzentrischen Ringkontakten, sog. Corbinoscheiben. Ex-
perimentell war es kürzlich gelungen, den Stromfluß in solchen Proben mittels eines neuen-
twickelten Verfahrens ortsaufgelöst abzubilden. Dabei waren ein oder mehrere Kanäle hoher
Stromdichte, Stromfilamente genannt, in dem ansonsten niedrigleitenden Gebiet zwischen den
beiden Kontakten gefunden worden.

Ein Ziel der vorliegenden Arbeit ist die Untersuchung der Bildungsdynamik dieser Strukturen,
die in den Messungen bislang nicht zugänglich war. Dazu werden unter Einbeziehung eines
Modells für den Tieftemperatur-Stoßionisationsdurchbruch in GaAs die klassischen Halbleit-
ertransportgleichungen auf einem räumlich zweidimensionalen Grundgebiet numerisch gelöst.

Es zeigt sich daß, unabhängig von der Richtung der angelegten Spannung, sich zunächst eine
radialsymmetrische Elektronendichtefront vom mittleren Kontakt her ausbreitet, die dann in
fingerförmige Strukturen aufbricht. Jeder dieser Streamer bildet nach dem Erreichen der äußeren
Elektrode ein Präfilament. Auf Grund der globalen Kopplung über die externe Beschaltung
kommt es zu einem Wettbewerb zwischen den Präfilamenten, aus dem eines (oder einige
wenige) als vollentwickeltes Filament hervorgeht, während die übrigen rekombinieren.

Der Ausbreitungsmechanismus der Front, deren Geschwindigkeit mehr als eine Größenordnung
über der Driftgeschwindigkeit der einzelnen Ladungsträger liegt, wird herausgearbeitet. Er
beruht wesentlich auf einer Abschirmung des elektrischen Feldes durch mittels Stoßionisa-
tion erzeugte freie Elektronen sowie auf der Geometrie der Probe. Es wird gezeigt, daß sich
das verwendete Halbleitermodell formal auf das Standard-Streamermodell für Gase reduzieren
läßt, was die hohe Ähnlichkeit zu den in diesen Systemen beobachteten Phänomenen erklärt.

Beim Anlegen einer Spannungsrampe kommt es zur aufeinanderfolgenden spontanen Entste-
hung mehrerer Filamente; das System zeigt Multistabilität und Hysterese in der Kennlinie in
guter Übereinstimmung zu den experimentellen Ergebnissen. Unter dem Einfluß eines externen
senkrechten Magnetfeldes wird eine Verkrümmung der Streamer in Richtung der Lorentzkraft
beobachtet.
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Abstract

This theoretical work deals with pattern formation in charge transport through thin doped GaAs
films with two concentric ring contacts, so-called Corbino disks. Recently, the current flow
through such samples had been visualized experimentally using a newly developed spatially
resolved measurement technique. One or several channels of high current density between the
two contacts, known as current filaments, were found embedded in the low-conducting rest of
the sample.

One aim of this work is the investigation of the nucleation dynamics of those structures, which
so far was not accessible experimentally. Making use of a model for the low temperature im-
pact ionization breakdown in GaAs the classical semiconductor transport equations are solved
numerically on a two-dimensional spatial domain.

An initial radially symmetric electron density front is found to expand from the central contact,
regardless of the polarity of the applied bias, and then break up into finger-like structures. Upon
reaching the outer electrode, each of those streamers forms a pre-filament. Due to the global
coupling via the external circuit a process of competition occurs among the pre-filaments, one
(or a small number) of which emerges as a fully developed filament, whereas the remaining
ones recombine.

The propagation mechanism of the front, whose velocity is more than one order of magnitude
higher than the drift velocity of a single carrier, is being resolved. It essentially depends on the
screening of the electric field by free electrons produced through impact ionization as well as
on the geometry of the sample. It is shown that the semiconductor model can formally be re-
duced to the standard streamer model in gases, which explains the high similarity to phenomena
observed in those systems.

Applying a voltage ramp several filaments spontaneously form one after another; the system
exhibits multistability and hysteresis in the current-voltage characteristic, in good agreement
with experimental results. Under the influence of an external perpendicular magnetic field a
twisting of the streamers in the direction of the Lorentz force is observed.

ii



Teile der Ergebnisse dieser Arbeit wurden bisher bereits veröffentlicht in:
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Chapter 1

Introduction

One basic aim of science, in particular of physics, is to develop a universal, yet precise under-
standing and description of the phenomena encountered in nature. The notion of universality is
especially prevailing in the comparatively young scientific disciplines of nonlinear dynamics,
often also referred to as “chaos science”, and pattern formation. Those disciplines investigate
the temporal and spatio-temporal evolution of systems from different fields of science ranging
from the study of live organism such as the growth of bacteria cultures, or brain or cortal ac-
tivities, via cosmology, chemistry, or geophysical research like the forecast of earthquakes to
socio-economic problems.

Semiconductors have proven to be versatile model systems for the study of nonlinear dynamics
and pattern formation. They can easily be handled experimentally with an elaborate range of
tempering and measurement techniques already available due to their technological and eco-
nomic relevance. Modern growth technology such as molecular beam epitaxy (MBE) or metal
organic chemical vapor deposition (MOCVD), developed to a high degree of perfection over
the last 30 years, have enabled research to fabricate semicondutor samples with specific prop-
erties, i. e. “taylor” them to their individual needs. The global quantities like current or voltage
can be directly measured and do not require any complicated preliminary conversion into elec-
trical signals. By simply applying an external voltage, semiconductor devices can be driven
far from thermodynamical equilibrium. Under high fields, semiconductors have been shown to
exhibit a broad range of spatio-temporal phenomena, which can be conveniently controled via
external electrical signals and circuits. Moreover, there readily exist a number of well-tested
theoretical models from different hierarchies for the description of the physical phenomena in
semiconductor materials.

Transport instabilities in semiconducor materials, which can lead to the evolution of complex
spatial, temporal, or spatio-temporal structures, can be characterized by a nonlinear dependence
of the local current density j upon the local electric field E . The two important generic cases
are the N-shaped and the S-shaped current density-field characteristic (cf. Fig. 1.1). In the
first case of N-shaped negative differential conductivity (NNDC), which arises for example
through the Gunn effect, regions of different electric fields E1 and E2 can coexist for a given
current density j. (The state corresponding to the field on the intermediate negative differential
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Figure 1.1: Schematic sketch of an N-shaped (a) and S-shaped (b) current density-field char-
acteristic along with an example for bistability in the field (E1, E2) and the current density ( j1,
j2), respectively. The lower half depicts the typical resulting spatial structures, (a) domains and
(b) filaments. The arrow indicates the direction of the current flow.

conductivity branch is typically unstable). This can lead to the development of electrical field
domains, i. e. spatially inhomogeneous patterns in the direction of the current flow (cf. lower
part of Fig. 1.1 (a)). For the case of S-shaped negative differential conductivity (SNDC) in turn
a given electric field E that lies within the region of bistability of the characteristic allows for
two different current-densities j1

� j2. This can give rise to a channel of high current density
j2, i. e. high conductivity, embedded in a region of low current density j1 (cf. lower part of
Fig. 1.1 (b)). Such a transversal structure is called a current filament.

In doped semiconductors at low temperatures transport instability arises through impact ioniza-
tion of the electrons (or holes, for p-type material) from shallow impurities into the conductance
band (or valence band, respectively). For sufficiently high electric fields, the newly created free
carriers can themselves ionize further donors (or acceptors, respectively), leading to an impact
ionization avalanche. This autocatalytic process, which can give rise to current filamentation,
temporal oscillations and chaos, was modeled by SCHÖLL through a rate equation ansatz sim-
ilar to chemical reaction equations [Sch87].

Experimentally, current filaments in thin semiconductor films were observed for p-Ge [May87]
and for n-GaAs samples [May88] with the help of a scanning electron microscope through
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electron beam induced current (EBIC). The surface of the semiconductor film is scanned line
by line by a focused electron beam, and the resulting response of the sample current is recorded
as a function of the scanning position. Within the walls of a filament the irradiation by electrons
leads to a destabilization of the structure and thus a change in the current response, yielding a
spatially-resolved picture of the shape of the current filament boundaries. A similar technique
uses a scanning laser microscope to scan the sample surface [Bra89]. There the laser light
leads to a creation of additional free carriers at the focal spot. In a region within a filament
those additional free carriers can be neglected in comparison to the already existing free carrier
concentration, thus they will not have any measurable effect on the sample current. In a region
outside a filament, those extra free carriers are not sufficient to trigger a self-sustained impact
avalanche, so there the sample current is not affected either. Only within the narrow area of
transition between the low-conducting and the high-conducting sample regions, i. e. within the
filament walls, the free carriers created by laser illumination are sufficient to locally enable an
impact ionization avalanche. This again gives rise to a measurable change in the sample current
when scanning across a filament boundary. That latter method is more suited particularly when
studying the influence of an external magnetic field [Spa94], which would defocus an electron
beam.

A highly successful imaging technique using quenched photoluminescence was developed by
PRETTL and coworkers [Ebe96a, Pre97, Hir99]. Unlike the two scanning methods, which in-
volve a localized irradiation that could mean a distortion of the pattern at that spot, the new
technique uses a homogeneous illumination of the sample surface. That illumination, whose
energy must be greater than the band gap, creates electron-hole pairs. Those electron-hole
pairs can decay via radiative donor-acceptor pair recombination and exciton recombination.
The emission of those two recombination channels, through a suitable optical filter, can sim-
ply be recorded by an infrared-sensitive camera. Within a filament however, the donor states
(in case of an n-type material) will be depleted, which suppresses donor-aceptor and exciton
recombination. Photoluminescence is thus locally quenched by the presence of a filament, and
the respective regions will appear as darker areas on the camera image. Strictly speaking, that
measurement technique does not directly visualize the local current density but the local degree
of ionization of the donors.

The temporal resolution of that imaging technique is given by the speed of the camera, which
can take a frame typically every 20 ms [Pre97]. The big advantage of the quenched photolu-
minescence technique over the previous two methods, in addition to its noninvasiveness to the
current patterns, is the fact that it does not require any scanning of the thin-film sample but can
directly produce a spatially resolved image of a filament that can be viewed in real-time.

Over the last two decades it has been demonstrated both in experiments as well as through
analytic calculations using simple theoretical models and elaborate numerical simulations that
impurity impact ionization at low temperatures can give rise to a multitude of spatio-temporal
instabilities in semiconductors. Chaos in semiconductors was first observed by AOKI and
coworkers [Aok81] and soon afterwards by TEITSWORTH et al [Tei83]. Using laser and elec-
tron beam scanning techniques it was possible to resolve the spatial structure of a current fila-
ment between two localized contacts in both p-Ge and n-GaAs samples. Theoretically, the in-
stability of the homogeneous state was shown through a linear stability analysis [Sch87]. Early
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theoretical work on current filamentation was restricted to spatially one-dimensional investiga-
tions. Breathing of cylindrical filaments [Sch90] as well as lateral movement of filaments under
the influence of a perpendicular magnetic field [Hüp93c, Hüp93a] were obtained. Further-
more, simulations by HÜPPER exhibited intermittent and chaotic behavior [Hüp93c, Hüp93b],
in agreement with experimental results. GAA found traveling waves in the direction of the
current flow through a linear stability analysis and in one-dimensional longitudinal numerical
simulations using periodic boundary conditions [Gaa96e].

An important step towards a better microscopically established theoretical description was the
calculation of the specific field and concentration dependencies of the generation-recombination
coeffcients in the rate equations model for the cases of both p-Ge and n-GaAs, using a Monte
Carlo simulation [Kuh93, Qua94, Hüp93a, Keh95]. KUNZ and in particular GAA made use
of those Monte Carlo data for n-doped GaAs in numerical simulations on a two-dimensional
spatial grid for current filamentation in thin-film samples with two point contacts located di-
rectly at the sample edges [Kun96c, Gaa96a, Gaa96b, Gaa96c]. The simulations gave insight
into the nucleation process of a filament, showing that it evolves out of the initial noncon-
ducting state via an intermediate pre-filamentary state into a fully developed filament. In that
pre-filamentary state the shape of the current filament is already present with the free electron
density and the current density being already notably higher within the pre-filament than in
the surrounding non-conducting regions, but still a few orders of magnitude lower than in the
later final filament. The results obtained for the shape of narrow filaments in the point contact
geometry were in good agreement to experimental measurements in corresponding thin-film
samples [Gaa96d].

Those simulations were extended by KUNIHIRO to include the effect of an external magnetic
field perpendicular to the sample surface [Kun96a, Kun97a, Kun97b]. There it was found that
a field of the order of 10 mT leads to an asymmetric broadening of the current filament due
to the Lorentz force. Also the electric field at the filament boundary, i. e. within the filament
wall, which has to stabilize the filament against diffusion, was found to be increased at one side
and decreased by the same amount on the other one. That asymmetric change in the strenth
of the boundary fields which is given by the additional force exercised by the magnetic field
acting on the moving electrons had previously been observed experimentally in laser scanning
measurements [Bra89].

A different approach was taken by NOVÁK. He numerically calculated the stationary solu-
tions of the transport and generation-recombination equations for a one-dimensional transversal
cross section through a current filament between two point contacts, assuming an unperturbed
dipole structure for the electric field [Nov95a, Nov95b]. As a result, he found that diffusion
could be neglected except within the narrow filament walls. There the electric field attains
some critical value Ec, which he could determine through comparison with experimental mea-
surements. In the case of an additional perpendicular magnetic field an asymmetric transversal
shift of the filament was obtained.

The results led him to the development of a phenomenological model for the description of the
two-dimensional shape of a stationary filament [Nov96, Nov97a, Nov98b]. In that model the
complicated kinetics of the different generation-recombination processes are hidden in a single
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Figure 1.2: Experimental photoluminescence images of current filaments in a Corbino disk at
different bias voltages (inner contact radius 0 � 04 mm, outer contact radius 1 � 05 mm, thickness
of the epitaxial layer 3 � 0 µm). The dark areas correspond to regions of high current density.
From (a) – (h) the total current I through the sample increases from 0 � 32 mA to 2 � 93 mA. (from
[Hir97a])

S-shaped dependence of the conductivity σ on the field E . His model furthermore assumes that
the boundaries of a filament, where all gradients normal to the interface between the conducting
and the non-conducting region have to vanish, are characterized by a specific constant transver-
sal coexistence field Ec. That way he arrived at a free boundary problem for the interface of the
current filament which could be solved numerically. Those numerical results, which turned out
to be in good agreement with the experimental findings, indicate that the shape of the contacts
have a decisive influence on the shape of the fully-developed filament. They were confirmed
by spatially two-dimensional simulations of broad current filaments by REIMANN for samples
with two small circular contacts using the full dynamical genereration-recombination model
[Rei98, Sch00a].

For the latter sample geometry as well as for the previously considered samples with two point
contacts located directly at the sample edges it was shown both experimentally and in simu-
lations that the nascence of a filament can lead to a strong distortion of the electric field, i. e.
the current flow does not follow the initial dipole field profile. This fact justifies the term of
a self-organized filament [Gaa96d]. In those sample geometries the location of the filament,
however, is strictly determined by the two sample contacts. In that respect the situation is qual-
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itatively different in samples with two circular concentric contacts, so-called Corbino disks1.
Those Corbino disks mimic infinitely wide samples with stripe contacts, eliminating any lateral
boundaries.

Current filaments in those sample geometries were visualized with the help of quenched photo-
luminescence by PRETTL and coworkers [Ebe96a, Hir97a, Hir97c, Hir97d]. It was found that
for the application of a sufficiently high bias voltage a straight filament spontaneously forms be-
tween the two contacts (Fig. 1.2 (a)). With increasing applied voltage further filaments appear
one after the other (Figs. 1.2 (b) – (h)).

Those experiments, however, cannot resolve the dynamical processes of the self-organized
breaking of the symmetry and the nascence of a filament in those samples, which happen on a
too short time scale. In order to study those phenomena one must perform numerical simula-
tions of the dynamics of the full nonlinear generation-recombination and transport processes.
That will be the subject of this thesis.

The aim of this research is thus twofold: at first, we want to resolve the processes which lead
to the formation of current filaments in Corbino disk samples. Moreover though, the numerical
investigation of current filamentation in that geometry, where filament formation constitutes a
qualitatively different degree of self-organisation than in point contact geometries, also serves
as a test to the underlying generation-recombination model, which has to inherently contain
the necessary requisits for a spontaneous breaking of the radial symmetry if it is to reproduce
current filamentation in a radially symmetric sample.

This thesis is organized as follows: after this introduction we will discuss in chapter 2 the
theoretical model describing the low-temperature generation-recombination kinetics and charge
transport in doped GaAs samples. In chapter 3 the numerical methods used for solving the
resulting nonlinear dynamical system of partial differential equations (PDEs) are introduced.
We will present simulations of the nucleation process of a current filament. Those simulations
reveal that current filaments in a Corbino disk sample develop out of a radially symmetric
super-fast impact ionization front through a symmetry-breaking instability. The nature of that
impact ionization front will be analyzed in chapter 4, and it will be related to existing concepts
of superfast switching in diodes and of “streamers”, rapidly progressing finger-like structures,
encountered typically in ionizing gases. We will show that for the initial phase of filament
formation the impact ionization model can in fact be formally reduced to the standard streamer
model.

The following two chapters deal with a comparison of simulation results to corresponding
experimental measurements. In chapter 5 we investigate the behavior of a sample subject to
a bias ramp. We find multistability and hysteresis in the global current voltage characteristic,
in good agreement with the experiment. In chapter 6 the influence of a external magnetic
field normal to the sample surface is investigated. In the concluding chapter the results of the
investigation are summarized, and questions that arise from them as well as possible further
directions of research are discussed. The four appendices contain some additional technical
material.

1named after the Italian physicist Orso Mario Corbino (1876 – 1937)



Chapter 2

The underlying model

In this chapter we review the model used for the description of impact ionization in doped semi-
conductors at low temperatures. Originally developed by SCHÖLL [Sch82, Sch87], it has been
used in spatially one-dimensional investigations for p-doped Ge [Sch90, Hüp93c, Hüp93b] and
n-doped GaAs [Kun96b], as well as, more recently, in two-dimensional simulations of thin-
film n-GaAs samples with two point contacts [Kun96a, Kun96c, Gaa96b, Gaa96c, Gaa96d,
Gaa96e, Kun97a, Sch00a]. In this work we will also apply it to the simulation of Corbino disks
[Sch97, Sch99a, Sch99b, Sch00b, Sch00c].

Since we are dealing with sufficiently doped semiconductor material we consider only charge
transport through the majority carriers (i. e. electrons in the case of n-GaAs, which we shall
assume in the following, although p-doped material can be treated analogously). Furthermore,
lacking processes like optical excitation, we can neglect band-band transitions. It is therefore
sufficient to consider electronic transitions between the localized donors and the conduction
band states only.

In order to retain a computationally managable model, we make use of a macroscopic level of
description, characterizing the occupation of donor and conduction band states through electron
densities instead of wave functions or distribution functions as in a quantum mechanical or a
semi-classical model, respectively [Sch98a]. Since we are interested in stationary filaments,
i. e. the coexistence of a low conducting and a high conducting phase, it is necessary for the
model to exhibit bistability. It can be shown [Sch87] that in order to obtain a bistable system
one needs to consider, apart from the electron density in the conduction band, n

�
x � t � , at least

two localized donor levels, n1
�
x � t � and n2

�
x � t � . Here x and t denote the spatial coordinate and

time, respectively. While n1 is the electron concentration in the donor ground state, n2 is an
’effective’ excited state which stands for the occupation of all the remaining excited states in
the donor’s hydrogen-like energy spectrum. The situation is sketched schematically in Fig. 2.1
along with the transition processes T S

1 , XS
1 , T � , X � , X �1 , and X1 considered in the model.

In our “hydrodynamic” semiconductor model the rate of change of the conduction band con-
centration can be expressed through the continuity equation

ṅ �	� ∇ 
 j � φ
�
n � n1 � n2 ��E ��� (2.1)

7
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Figure 2.1: Two-level generation-recombination (GR) model for low temperature impact ion-
ization in n-GaAs. n is the conduction band, and n1 and n2 are the localized donor ground and
’effective’ excited level, respecitvely. T S

1 , XS
1 , T � , X � , X �1 , and X1 denote the GR processes

considered.

with j the particle (i. e. electron) current density. Here, the dependence on time and space of the
variables has been dropped for brevity. The net generation-recombination (GR) rate φ, which
in eq. (2.1) takes the role of the source term, is a function of the electron concentrations n, n1,
n2 and of the strength of the local electric field �E �� E . Analogously, the temporal evolution
of the localized donor concentrations can be expressed as

ṅi � φi
�
n � n1 � n2 � E � (2.2)

with i � 1 � 2. For the reason of particle conservation,

φ � ∑
i

φi � 0 (2.3)

must always hold.

In the explicit two-level generation-recombination model [Sch87] the GR rates are given by the
following rate equations:

φ � XS
1 n2 � T S

1 npt � X1nn1 � X �1 nn2 (2.4)

φ1 � T � n2 � X � n1 � X1nn1 (2.5)

φ2 � � φ � φ1 (2.6)

where ND is the total density of donors and pt � ND � n1 � n2 the density of ionized donors.
In eqs. (2.5), (2.6) X S

1 is the thermal ionization coefficient of the excited level, T S
1 is its capture

coefficient, X1, X �1 are the impact ionization coefficients from the ground and excited level,
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respectively. X � , T � denote the transition coefficients from the ground level to the excited level
and vice versa, respectively.

The two impact ionization coefficients as well as the capture coefficient into the excited donor
level are functions of the electron concentrations and of the strength of the field: X1

�
n � n1 � n2 � E � ,

X �1 � n � n1 � n2 � E � , T S
1

�
n � n1 � n2 � E � (this dependence is suppressed in eqs. (2.5), (2.6)). It is this

dependence that contains the essential nonlinearities of the model which are characteristic for
the given material system. They can be obtained through a single particle Monte Carlo (MC)
simulation which takes into account the relevant microscopic scattering processes.

For doped n-GaAs at liquid Helium temperature (4 � 2 K) such Monte Carlo simulations have
been performed in [Keh95]. The microscopic rates of all band-impurity processes depend
upon the electron densities in the conduction band and donor states. Those electron densities
are calculated from the nonequilibrium carrier distribution function f . To obtain the carrier
densities, the MC method has to be combined self-consistently with the rate equations (2.1)–
(2.2) in the homogeneous steady state, where the GR coefficients X1, X �1 , T S

1 are calculated by
averaging the microscopic transition probabilities (P1

ii , P2
ii , Prec for impact ionization from the

ground state and from the excited state, and capture into the excited donor state, respectively)
over the nonequilibrium electron distribution function f

�
k � , which is extracted from the MC

simulation at each step:

X1
�
n � n1 � n2 � E ��� 1

nn1

�
d3k f

�
k;n � n1 � n2 � E � P1

ii
�
k � n1 ���

X �1 � n � n1 � n2 � E ��� 1
nn2

�
d3k f

�
k;n � n1 � n2 � E � P2

ii
�
k � n2 ��� (2.7)

T S
1
�
n � n1 � n2 � E ��� 1

npt

�
d3k f

�
k;n � n1 � n2 � E � Prec

�
k � pt ���

Note that f and thus X1, X �1 and T S
1 themselves depend parametrically on n, n1, n2 and E . An

iterative procedure, where n1 and n2 are expressed by their steady-state dependence on n and
E , is used to obtain a self-consistent solution [Keh95].

One result of [Keh95] is that the impact ionization coefficients X1 and X �1 can be expressed as
functions of just the electron temperature Te. In this context the term electron temperature is
meant as the second moment, i. e. the variance of the nonequilibrium energy distribution of the
electrons, which for a heated Maxwellian amounts to the more usual definition as the tempera-
ture parameter in that distribution, but more generally can be applied to any energy distribution.
Te in turn depends on E . However, this dependence turned out not to be unequivocal. For low
free electron concentrations n we get a dependence T lo

e
�
E � while for n above a threshold value

nth a higher electron temperature T up
e
�
E � is obtained. This is shown in Fig. 2.2 where the Monte

Carlo results are depicted as dots. The two lines represent an analytical fit of the MC data for
T up

e and T lo
e , respectively. These smooth analytical representations for the electron temperature

as well as for the GR coefficients have been derived by GAA [Gaa94, Gaa95, Gaa96b] and will
be used in our numerical simulations. The detailed expressions can be found in appendix B.

The impact ionization rates X1 and X �1 , which can as well be expressed as functions of the
electron temperature Te, are depicted in Figs. 2.3 and 2.4, respectively, both as the MC results
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Figure 2.2: Electron temperature Te as a function of the electric field E for a free electron
concentration n both below and above the threshold value nth (from [Gaa94])

(single dots) and as fitted analytical representations (dashed curves). The recombination rate
T S

1 (cf. Fig. 2.5) is a dual valued function of Te, again with T S
1

�
Te ��� T S lo

1

�
Te � for a free elec-

tron concentration n below the threshold value nth and T S
1

�
Te ��� T Sup

1

�
Te � for higher n. The

remaining GR coefficients, X S
1 , X � , and T � , can be treated as constants. Their values for the

case of n-GaAs are also found in appendix B.

For the conduction band particle current density j we use the classical semiconductor drift-
diffusion approximation

j ��� nµE � D∇n (2.8)

with the mobility µ and the diffusion constant D. For simplicity, we take µ as a constant and
do not consider any dependence on E , for example. This reflects the notion that the source for
the filamentary instability is impact ionization. Thus the only nonlinearities of the model are
contained in the GR rates. This is one important difference to other semiconductor systems
like high field transport in doped superlattices [Pre94, Bon94] or to the Gunn effect where
the essential nonlinearities can be expressed through a field dependence of the drift velocity
[Sha92]. In this respect the model used here also differs from models for current filamentation
developed by CHRISTEN [Chr94b, Chr94a] which include only a single impurity level and
thus need a nonlinear field dependence of the carrier mobility to obtain an S-shaped current
density-field characteristic.

For the relationship between µ and D we assume the Einstein relation (see e. g. [Ash76])

D � µkBTL � e (2.9)
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Figure 2.3: Impact ionization coefficient X1 times the effective impurity concentration N �D as a
function of the electron temperature Te (from [Gaa94])
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Figure 2.4: Impact ionization coefficient X �1 times the effective impurity concentration N �D as a
function of the electron temperature Te (from [Gaa94])
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Figure 2.5: Recombination coefficient T S
1 times the effective impurity concentration N �D as a

function of the electron temperature Te for a free electron concentration n both below and above
the threshold value nth (from [Gaa94])

where kB, TL and e are Boltzmann’s constant, the lattice temperature and the (positive) elemen-
tary charge, respectively. The various material parameters used for n-GaAs at liquid Helium
temperatures are listed in appendix A.

The electric field is coupled to the carrier densities via Gauss’s law

ε∇ 
 E � ρ � e
�
N �D � n1 � n2 � n ��� (2.10)

where ε is the dielectric constant for GaAs and N �D � ND � NA holds with the compensating
acceptor concentration NA.

It is important to note that none of the GR coefficients depends on n1 or n2, just on the strength
of the electric field E (via Te) and on the conduction band electron concentration n (which
enters only through the ambiguity of Te and T �1 ). Thus it follows directly from eqs. (2.5), (2.6)
that φ and φi are linear in n1 and n2. One can make use of this fact to directly calculate the
steady state values of the donor electron densities n1, n2 for a given free electron concentration
n and electric field E [Sch87] (cf. appendix C).

In the steady state the charge density ρ � e
�
N �D � n1

�
n � E ��� n2

�
n � E ��� n � is thus a function of

n and E only, ρ
�
n � E � . For a spatially homogeneous state, eq. (2.10) implies ρ

�
n � E ��� 0. The

roots of ρ
�
n � E � , which can be solved numerically, are plotted in the n-E parameter plane in

Fig. 2.6. One obtains an S-shaped curve, i. e. within a certain field range Eh
� E � Eth there

exist three stationary state values n1
� n2

� n3 of the free electron density for a given E . For
topological reasons n1 and n3 correspond to a stable stationary state while n2 must be unstable
(for constant field, i. e. under voltage controlled conditions). For the threshold and holding
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Figure 2.6: Solution of ρ
�
n � E ��� 0, i. e. electrically neutral configurations in the E -n parameter

plane

fields, where ∂ρ
∂n changes sign,1 one reads off the values of Eth � 17 V � cm and Eh � 4 V � cm,

respectively.

Since for a spatially homogeneous system, the diffusion term in eq. (2.8) vanishes and j �
nµE holds the S-shaped n-E characteristic directly results in an S-shaped j-E characteristic
(Fig. 2.7).

Some additional insight can be gained through the steady state distribution of the electron
densities among the two localized donor levels and the conduction band. In Fig. 2.8 n, n1 and n2

are plotted along the steady state given by the S-shaped characteristic in Fig. 2.6. The curves are
parametrized by the free electron density n. All three electron densities are scaled to units of the
effective doping density N �D. On the low conductivity branch, corresponding to log10

�
n � N �D � �� 5 � 4, the electron density in the donor ground level is virtually equal to the effective doping

density N �D, while n2 and n are almost empty. On the intermediate branch log10
�
n � N �D � �

1Since in the steady state dρ � ∂ρ
∂n dn � ∂ρ

∂E dE holds and dρ � 0 all along the ρ � 0 curve ∂ρ
∂n must be zero at

the holding and threshold points where the curve is vertical in the E-n plane and thus dE vanishes.
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Figure 2.7: Calculated current density-field characteristic for n-GaAs (corresponding to the
current-voltage characteristic for a completely homogeneous system)� 1 � 0 � log10

�
nth � N �D � the excited donor level n2 becomes more and more populated at the

expense of n1, and inversion between the ground and excited level sets in. With n approaching
N �D on the S-shaped characteristic, both n1 and n2 must vanish since n � ∑i ni � N �D must hold
in the electrically neutral homogeneous steady state. The electron distributions show that for
low electric fields, i. e. on the low conductivity branch, the generation-recombination cycle
runs between the donor ground state and the conduction band, while on the high conductivity
branch it is sustained by impact ionization of excited donor level electrons.

Combining a simple rate equation model approach with the results of a microscopic Monte
Carlo simulation yields the advantage of having a microscopically founded description of the
physical processes while at the same time retaining a system that is still computationally man-
agable on the macroscopic length and time scales required for the observation of pattern for-
mation and even allows for some analytical considerations. It should be stressed that the model
does not contain any experimental fitting parameters.
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in Fig. 2.6 representing the homogeneous steady states of the system. All densities n, n1, n2 are
given in units of the effective doping concentration N �D.



Chapter 3

Simulations

Following the outline of the underlying impact ionization model in the previous chapter we now
turn to the numerical aspects of investigating current filamentation in GaAs. After an introduc-
tion at the beginning of this chapter to the numerical methods used to solve the semiconductor
equations we present simulations of the nucleation of a current filament in a Corbino disk.

Although in special cases and under simplifying assumptions an astonishingly broad range
of results can be gained through mere analytical considerations [Sch87] it normally takes a
numerical approach to solve the full nonlinear system (2.1) – (2.10). This is particularly true for
the Corbino disk geometry where, unlike in e. g. an infinitely long sample with stripe contacts,
a zero-dimensional (i. e. spatially homogeneous) or an effectively one-dimensional treatment
[Sch90, Kun92, Hüp93b, Hüp93c] is no longer sufficent to describe current filamentation.

To self-consistently solve eqs. (2.1), (2.2) and (2.10) we make use of the semiconductor simu-
lation package TeSCA1 [Gaj91]. It had originally been developed for the simulation of charge
transport in Silicon devices but was later extended to include the low temperature impact ion-
ization kinetics in n-GaAs [Kun96c, Sch00c].

It should be noted that due to the drift term in eq. (2.8) the numerical solution of the ba-
sic semiconductor equations, i. e. a drift-diffusion-reaction system, demands for considerably
higher numerical stability of the algorithms involved than for example a reaction-diffusion
model, which is often taken as a prototype for spatio-temporal pattern formation in dissipative
systems [Mor98].2 We make use of an implicit finite element scheme in space combined with
a semi-implicit Euler scheme in time and efficient time-step control [Gaj93]. Semi-implicit
here means that while for the critical transport terms (2.8) an implicit algorithm is employed to
achieve the necessary numerical stability, the low-temperature generation-recombination pro-
cesses for GaAs (eqs. (2.4), (2.5)), which have subsequently been implemented into the code,
are treated in an explicit manner only.

1Originally called ToSCA, short for Two-Dimensional Semi-Conductor Analysis Package, the name was slighly
changed in 1999 due to trademark issues.

2For the pitfalls involved with numerically solving different types of partial differential equations (PDEs) see
e. g. [Pre92]. A general introduction to the numerical treatment of the classical semiconductor transport equations
can be found in [Sel84].

16
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Figure 3.1: Typical spatial grid used by the finite element algorithm to simulate charge transport
in a Corbino disk sample. (9989 mesh points combined into 19648 triangles, contact radii
R1 � 0 � 04 mm and R2 � 1 � 05 mm with N1 � 13, N2 � 317 boundary points)

Since we are interested in spatial patterns in thin-film samples we consider current filamentation
on a two-dimensional domain, effectively treating the sample thickness d as a mere scaling
parameter for the total current. The finite element discretization requires the partition of the
simulation domain into triangular subdomains. For reasons of numerical stability each triangle
should be as equilateral as possible. To solve this problem we make use of the EasyMesh tool
[Nic97] which employs a Delaunay triangulation algorithm in order to generate a suitable grid.
EasyMesh requires the boundaries of the domain to be specified as polygons, whose number of
points determine the density of points within the domain. For a Corbino disk we specify two
closed polygons which approximate two concentric circles of radii R1

� R2. For the number of
points of each of the two polygons, N1 and N2 respectively, we would choose primes in order
to avoid, as much as possible, any artificial symmetry induced through the grid. A typical grid
used in the simulations is shown in Fig. 3.1. It is made up of 9989 mesh points combined into
19648 triangles (N1 � 13, N2 � 317, R1 � 0 � 04 mm, R2 � 1 � 05 mm). It should be mentioned
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RL
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Figure 3.2: Schematic sketch of the Corbino disk sample in the electric curcuit with load resis-
tance RL, voltage source U0.

that neither the mesh generator nor the simulation algorithm has any explicit knowledge of or
makes any explicit assumption about the radial symmetry of the domain.

One major disadvantage of TeSCA’s approach is the fact that it uses a grid which is fixed in
time as opposed to some more complex adaptive grid algorithm. This is of particular concern
when dealing with moving fronts, i. e. sharp gradients whose position traverses across almost
the entire sample domain during the simulation. To still retain numerical stability and avoid
artefacts a comparatively large total number of grid points and thus a respective amount of
computing time, memory and storage is required.

The two circular Ohmic contacts of the Corbino disk we model as a carrier reservoir by applying
Dirichlet boundary conditions for the free electron density n, which is fixed to N �D at the inner
and outer radii, R1 and R2, respectively.

We consider the sample to be biased by a DC voltage source U0 via a load resistance RL (cf.
Fig. 3.2). For the voltage U across the sample Kirchhoff’s law holds:

U � U0 � RL I . (3.1)

Here, I is the total current through the sample, which is an integral quantity of the current
density. In our nomenclature, we will denote the voltage U as positive if the cathode, i. e.
the injecting contact for the electrons, is located at the inner contact (R1) and as negative for
reversed polarity.
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Figure 3.3: Simulation of the nascence of a current filament in an n-GaAs thin film Corbino disk
sample with contacts radii R1 � 0 � 04 mm, R2 � 1 � 05 mm and an applied bias of U0 � 1 � 95 V.
From (a) – (l) the spatial distribution of the current density j is plotted for different times t:
(a): t � 1 ps, (b): t � 0 � 07 ns, (c): t � 0 � 15 ns, (d): t � 0 � 3 ns, (e): t � 1 � 3 ns, (f): t � 1 � 5 ns.
Equipotential lines are plotted spaced by 0 � 2 V. (continued on the next page)
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Figure 3.3: Simulation of the nascence of a current filament in an n-GaAs thin film Corbino disk
sample with contacts radii R1 � 0 � 04 mm, R2 � 1 � 05 mm and an applied bias of U0 � 1 � 95 V.
From (a) – (l) the spatial distribution of the current density j is plotted for different times t:
(g): t � 2 � 5 ns, (h): t � 5 � 0 ns, (i): t � 5 � 7 ns, (j): t � 6 � 0 ns, (k): t � 6 � 5 ns, (l): t � 10 � 0 ns.
Equipotential lines are plotted spaced by 0 � 2 V. (continued from previous page)
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For time t � 0 TeSCA starts the simulation from the equilibrium (i. e. U0 � 0) distribution of the
electron densities n, n1, n2, which are homogeneous except near the contacts. In the simulation
we initially apply the bias U0 in a linear voltage ramp of 1 ps, after which U0 is kept constant.

We first consider a radially symmetric sample with contact radii R1 � 0 � 04 mm, R2 � 1 � 05 mm
and thickness d � 3 µm with an applied bias of U0 � 1 � 95 V and a load resistance of RL �
10 kΩ. Those values have been chosen to match the typical configuration of the experiments
[Hir97a, Hir97d]. The spatial grid used in the numerical simulation is the triangulation depicted
in Fig. 3.1.

Fig. 3.3 shows the spatial distribution of the current density j as a logarithmic color plot at
different times t after the onset of the voltage ramp. In Fig. 3.4 the corresponding spatial
free electron density profiles are depicted. The thin black lines denote electrical equipotential
lines spaced by 0 � 2 V. Note that in the current density series a non-uniform color scale has
been chosen as a compromise to best visualize the relevant spatial patterns during all stages of
the filamentation process, which involves a difference in magnitude of serveral orders in both
current and electron densities.

Initially at t � 1 ps, when the voltage ramp has reached its final value of U0 � 1 � 95 V, we still
have an almost homogeneous, nonconducting state (Figs. 3.3, 3.4 (a)). This shows that on the
relevant time scale the bias U0 can be regarded as instantaneously applied. The equipotential
lines are concentric circles3. Only around the inner contact, the cathode, a small region of
increased current density has formed. That central region of increased current density starts
to expand in diameter (Fig. 3.3 (b) at t � 0 � 07 ns), forming a concentric current density front
departing from the cathode. The free electron density within that region is about n � 1012 cm � 3,
which is already four orders of magnitude higher than in the rest of the sample, i. e. we can
speak of a sharp electron density front expanding into the nonconducting region (Fig. 3.4 (b)).

For about t � 0 � 15 ns (Figs. 3.3, 3.4 (c)) that front is already noticeably modulated. Moreover,
we can clearly see that the equipotential lines just ahead of the advancing front get squeezed,
indicating a locally increased potential gradient, i. e. a higher field in that region, while behind
the front the density of the equipotiential lines, i. e. the electric field strength, is considerably
lower than in the initial field distribution.

With further expansion of the front its radial symmetry gets more and more lost. At t � 0 � 3 ns
(Figs. 3.3, 3.4 (d)) it has clearly broken up into six “fingers”, which we will call “streamers” for
reasons that will be motivated in detail in the next chapter. Each of those streamers continues to-
wards the outer ring electrode with their rounded “heads” penetrating into the low-conductivity
region ahead of them and again leading to a locally increased curvature and squeezing of the
equipotential lines. Along the “tails” of the streamers, where the free electron density is some-
what lower than in the streamer heads but still considerably higher than in the nonconducting
region, the equipotential lines are straight equidistant lines across the streamer’s width, indi-
cating a constant field along each of them. The latter can easily be explained as a requirement

3due to the high turn-on current I – cf. Fig. 3.5 – the sample voltage U is quite small in Fig. 3.3 (a). For the
chosen ∆U � 0 � 2 V of this series only one equipotential line is visible. Only in Fig. 3.3 (b), when I has sufficiently
decreased, does the increase of the distances between the equipotential lines with increasing radial coordinate r
become visible, as expected for a 1 � r field distribution in an electrically neutral radially symmetric system.
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from the continuity equation. Thus the streamers already strongly distort the initial concentric
1 � r field distribution (cf. Figs. 3.3, 3.4 (e) at t � 1 � 3 ns).

The speed of advance slightly varies among the six streamers, with the fastest one expanding at
about vs � 6 
 107 cm � s. This is about the same as the expansion velocity of the initial circular
front, but it is more than one order of magnitude higher than the drift velocity vd � µE �
4 
 106 cm � s taken at the highest field E � 40 V � cm just at the heads of the streamers. That fact
already clearly indicates that what we see cannot be just a wave of individual carriers drifting
from the cathode to the anode, but instead must be a collective phenomenon. That aspect will
be further elaborated in the following chapter where the nature of the front is investigated.

At about t � 1 � 5 ns (Figs. 3.3, 3.4 (f)) the fastest of the six streamers reaches the anode with
the other ones following within about the next ns (Figs. 3.3 3.4 (g)). That first streamer is also
the strongest, most prominent one, and it is the one that has first dissolved from the front. The
two slowest streamers are barely visible in the color density plot of the current density due to
the particular color scale selected, but their presence can clearly be seen through the distortion
of the equipotential profile from circular to locally straight, parallel, equidistant equipotential
lines.

Having reached the outer contact the streamers, the free electron density within which is still
three orders of magnitude below the effective doping density N �D � 5 
 1015 cm � 3, now each
constitute a pre-filament. The free electron density within those pre-filaments starts to slowly
increase as a result of the ongoing impact ionization (Fig. 3.4 (h) at t � 5 ns). Consequently
the current densities of the streamers and thus the overall current I also increases (Fig. 3.3 (h)).
This can be seen in Fig. 3.5 where the red curve shows the total current I through the sample on
a logarithmic scale over time. The letters indicate the corresponding spatial profiles in Figs. 3.3,
3.4.

At about t � 5 � 7 ns it becomes apparent that the pre-filament which had formed first has grown
the fastest (Figs. 3.3, 3.4 (i)). Its free electron density rises above nth � 0 � 1N �D � 5 
 1014 cm � 3.
Consequently, impact ionization in that filament is greatly enhanced leading to a fast further
increase of n and thus j in that pre-filament (Figs. 3.3, 3.4 (j) at t � 6 � 0 ns).

As a consequence of the sharp increase of the total current I (cf. Fig. 3.5) the voltage drop across
the external resistance RL also increases, leading to a drop in the sample voltage U according to
Kichhoff’s law (3.1) and thus in the electric field E of each of the pre-filaments. This can also
be seen from the expanding equipotential lines in Figs. 3.3, 3.4 (j), (k), (l). As a result of the
decline of the field, the free electron density in the remaining five “later” pre-filaments starts to
recombine (Fig. 3.4 (k) at t � 6 � 5 ns), which brings about a decline of their current densities as
well (Fig. 3.3 (k)).

After 10 ns we are left with a single fully developed current filament (Figs. 3.3, 3.4 (l)); the other
pre-filaments have died out. This result matches with the measured stationary current profile
in Fig. 1.2 (a). Note also that as in the experiments the remaining filament has very sharp,
parallel boundaries. Its width does not increase with increasing radial coordinate r inspite of
the symmetry of the sample. This is a direct evidence of self-organization, which has already
been found in experiments and numerical simulations of current filamentation between two
point contacts [Gaa96b].
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Figure 3.4: Calculated spatial profiles of the free electron distribution n and equipotential lines
corresponding to the current density profiles of Fig. 3.3. (continued on the next page)
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Figure 3.4: Calculated spatial profiles of the free electron distribution n and equipotential lines
corresponding to the current density profiles of Fig. 3.3. (continued from previous page)
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Figure 3.5: Total current I vs. time t during the formation of a current filament in a Corbino disk
for a bias voltage U0 � 1 � 95 V (red curve) and U0 � � 1 � 95 V (blue curve). The letters indicate
the corresponding spatial profiles depicted in Figs. 3.3, 3.4 and Figs. 3.7, 3.8, respecively.
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Figure 3.6: Calculated spatial profiles of the electric field E corresponding to current density
profiles of Fig. 3.3. (continued on the next page)
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Figure 3.6: Calculated spatial profiles of the electric field E corresponding to current density
profiles of Fig. 3.3. (continued from previous page)

For the later detailed discussion of the propagation mechanism of the initial expanding front
and the streamers (chapter 4) it is helpful to have a brief look at this point already at the spatial



CHAPTER 3. SIMULATIONS 28

profiles of the electric field corresponding to Figs. 3.3, 3.4 (a) – (l). They are plotted in Fig. 3.6.
We see that the system starts from a radially symmetric distribution with the highest fields of up
to 70 V/cm at the central contact (for a truely infinitely sharp rise of U0 and vanishing current
one would expect an initial field of even U0

ln ! R2 " R1 # 1
R1 $ 150 V � cm at the inner contact; for a

derivation of that expression see appendix D). With the expansion of the front the field just
ahead of it assumes a constant value of approximately E � 40 V � cm (Figs. 3.6 (b), (c)) which
is also kept in the streamers’ heads during their advance through the sample (Figs. 3.6 (d) –
(f)). The most important feature to note however is the fact that the field behind the front and,
to some lesser extend, later behind the streamers’ heads is significantly lower than ahead of it,
in contrast to what one might expect from the mere geometry. We thus conclude that the free
electrons which have been generated through impact ionization in the high field region of the
front or the streamers’ heads lead to a screening of the electric field behind. This effect will
turn out to be of importance to the propagation mechanism.

Next, we look at a simulation of the situation with reversed polarity, i. e. the central contact
is now the anode. The spatial current, free electron density and electric field plots are found
in Figs. 3.7, 3.8, and 3.9, respectively. The total current I as a function of time is plotted as
the blue curve in Fig. 3.5. Starting again from an almost homogeneous, low conducting state
(Figs. 3.7, 3.8 (a) at t � 1 ps) an impact ionization front starts to spread from the central contact
(Figs. 3.7, 3.8 (b) at t � 0 � 07 ns) where the field is the highest due to the sample geometry
(cf. the corresponding field profiles in Fig. 3.9). With roughly 108 cm � s the front velocity is
about the same as in the previously discussed case of positive bias voltage. This is particularly
noteworthy since here the movement of the front is opposite to the direction of the particle
current. The electric field profile in Fig. 3.9 (c) (t � 0 � 15 ns) again shows a screening of the
field behind the front. The field just ahead of the front is about 50 – 60 V � cm, which is higher
than for positive U0.

For t � 0 � 2 ns (Figs. 3.7, 3.8 (d)) the front has become noticeably modulated. At t � 0 � 4 ns
(Figs. 3.7, 3.8 (e)) those modulations have evolved into seven streamers. This time, the differ-
ence in expansion speed among the different streamers is much stronger than in the case of pos-
itive bias U0. The fastest streamer, which has developed from the most pronounced modulation,
progresses at about 2 
 108 cm � s (Figs. 3.7, 3.8 (f) at t � 0 � 6 ns) and is even further accelerated
shortly before reaching the outer contact (Figs. 3.7, 3.8 (g), t � 0 � 64 ns). The field ahead of the
fast streamers is about 75 V � cm (Fig. 3.9 (f)) or even higher (Fig. 3.9 (g)). Within the fastest
streamer, the free electron density is already above the threshold density nth � 5 
 1014 cm � 3

before it reaches the outer electrode. Therefore, competition among the streamers via the exter-
nal circuit is much fiercer than for positive U0. As soon as the first streamer has hit the cathode
it “ignites” as an almost fully developed filament, skipping the pre-filamentary phase. This
results in a much faster rise of the total current in Fig. 3.5 and consequently a more rapid drop
of the sample voltage U . The other streamers do not even manage to reach the outer contact
but instead decay on the time scale given by the recombination processes (Figs. 3.7, 3.8 (h), (i)
at t � 0 � 7 ns, t � 1 � 0 ns, respectively). The final situation is again very similar to the positive
bias case with a single current filament remaining (Fig. 3.7 (j), t � 10 ns).

In summary, we have seen in this chapter that the comparatively simple rate equation model
for low temperature impact ionization combined with the classical semiconductor transport
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equations is able to produce self-organized current filamentation in a Corbino sample in good
agreement with the results of experimental measurements for such sample geometries. Here,
effects of self-organization play an even more crucial role than for the nascence of a current
filament beetween two point contacts [Gaa96d] where they only determine the shape of the
filament and the distortion of the electric dipole field but where the position of the filament is
fixed through the contacts.

For a Corbino sample in contrast, the nascence of a filament occurs through a symmetry break-
ing process: an impact ionization front forms at the central contact were the field is the highest
due to the circular geometry, regardless of the polarity of the bias. That radially symmetric
front expands in diameter with impact ionization creating free carriers that lead to a screening
of the field behind the front. The circular front becomes unstable and breaks up into streamers
which continue towards the outer electrode where they each form a pre-filament.

Further impact ionization leads to an increase in the free electron density within the pre-
filaments and thus to a rise of the total current I through the sample. Due to the external
load resistance, which via Kirchhoff’s law (3.1) here acts as the global coupling mechanism,
this is connected to a drop of the sample voltage U and thus of the electric field in each of the
pre-filaments. As a result, the pre-filaments compete for voltage with each other. For the given
parameters, only one of them, the one which had first reached the outer contact, prevails, while
the others slowly decay. We can thus speak of a “winner takes all” dynamics.

With the obvious exceptions of the initial symmetry and the final competition between several
pre-filaments this multi-stage formation process is very similar to the results obtained by Gaa
el al. for point-contact samples [Gaa96b, Gaa96c]. This becomes apparent, for example, by
comparing the total current I over time t in Fig. 3.5 to the corresponding results in [Gaa96c].
For a sample whose two point contacts are much smaller than their distance l, as they are
discussed there, this does not come too much of a surprise if one thinks of them as two adjacent
Corbino disks with large outer radii 1

2 l each (i. e. virtually plane outer contacts) and opposite
polarity combined into a single sample.

The radial symmetry of the Corbino disks enables us to easily study the mechanism of the
superfast impact ionization front which had not been identified in previous theoretical inves-
tigations of low temperature impact ionization in GaAs samples, although it is present in the
initial stage of current filamentation in those other geometries, too. A more detailed analysis
will be the subject of chapter 4.
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Figure 3.7: Simulation of the nascence of a current filament in an n-GaAs thin film Corbino disk
sample with contacts radii R1 � 0 � 04 mm, R2 � 1 � 05 mm and an applied bias of U0 �%� 1 � 95 V,
i. e. the central electrode is the anode. In (a) – (j) the spatial distribution of the current density
j is plotted for different times t: (a): t � 1 ps, (b): t � 0 � 07 ns, (c): t � 0 � 15 ns, (d): t � 0 � 2 ns,
(e): t � 0 � 4 ns, (f): t � 0 � 6 ns. Equipotential lines are plotted spaced by 0 � 2 V. (continued on
the next page)
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Figure 3.7: Simulation of the nascence of a current filament in an n-GaAs thin film Corbino disk
sample with contacts radii R1 � 0 � 04 mm, R2 � 1 � 05 mm and an applied bias of U0 �%� 1 � 95 V,
i. e. the central electrode is the anode. In (a) – (j) the spatial distribution of the current density
j is plotted for different times t: (g): t � 0 � 64 ns, (h): t � 0 � 7 ns, (i): t � 1 � 0 ns, (j): t � 10 � 0 ns.
Equipotential lines are plotted spaced by 0 � 2 V. (continued from previous page)
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Figure 3.8: Calculated spatial profiles of the free electron distribution n and equipotential lines
corresponding to the current density profiles of Fig. 3.7. (continued on the next page)
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Figure 3.8: Calculated spatial profiles of the free electron distribution n and equipotential lines
corresponding to the current density profiles of Fig. 3.7. (continued from previous page)
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Figure 3.9: Calculated spatial profiles of the electric field E corresponding to current density
profiles of Fig. 3.7. (continued on the next page)
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Figure 3.9: Calculated spatial profiles of the electric field E corresponding to current density
profiles of Fig. 3.7. (continued from previous page)



Chapter 4

Fronts and streamers

We have seen in the previous chapter that current filamentation in a Corbino sample occurs as
a multi-stage process: upon application of a bias voltage free carriers are generated starting
around the central contact. That region of increased free electron density subsequently expands
radially with a speed of about an order of magnitude faster than the drift velocity of a single
electron. The expanding radial impact ionization front separating the high and the low conduc-
tivity regions acquires a growing transversal (azimuthal) modulation and breaks up into several
finger-like streamers. Those streamers, upon reaching the outer contact, each constitute a pre-
filament. In the final stage one of them emerges as a fully developed filament through a process
of competition mediated by the external circuit, whereas the remaining pre-filaments decay.

In this chapter we will have a closer look at the mechanism of the superfast impact ionization
front, motivating the term “streamer”. We will see that it is closely related to phenomena
observed in other semiconductor structures and in gas discharges.

In Fig. 4.1 the radial distribution of both the free electron density n (green dots) and the electric
field E (red dots) in a Corbino disk of radii R1 � 0 � 25 mm and R2 � 1 � 0 mm are shown for
different times t after application of a bias of U0 � 3 � 0 V. It should be stressed that the distribu-
tions have been obtained by simply plotting each data point on the domain grid as a function of
its distance r to the center of the Corbino sample, i. e. the spatial dependence on the azimuthal
angle in polar coordinates has simply been dropped. Since there is no averaging involved a
thin lines represents a perfectly radially symmetric distribution, while a thicker line indicates a
certain loss of radial symmetry of the developing pattern.

Starting from a low, virtually homogeneous distribution of about n � 108 cm � 3 (Fig. 4.1 (a))
the free electron concentration sharply increases to somewhat above n � 1012 cm � 3 near the
central contact (r � 0 � 025 cm) (Fig. 4.1 (b)). During the same interval of time, the electric field
distribution E , which in Fig. 4.1 is plotted on a linear scale ranging from 0 V � cm to 70 V � cm,
rises from an almost vanishing profile for t � 1 ps (Fig. 4.1 (a))1 to a monotonically decreasing
field profile which is the highest at the central contact with about E � 70 V � cm.

1As we have seen in chapter 3 the reason for the vanishing sample voltage U at that stage inspite of the already
fully present bias U0 is the high initial current I.

36
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Figure 4.1: Radial distribution of the free electron density n (green dots; logarithmic scale) in a
Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of U0 � 3 � 0 V
at different times t. Red dots: linear plot of the radial distribution of the electric field E (lower
bound E � 0 V � cm, upper bound E � 70 V � cm). (a): t � 1 ps, (b): t � 0 � 03 ns, (c): t � 0 � 06 ns,
(d): t � 0 � 09 ns, (e): t � 0 � 12 ns, (f): t � 0 � 15 ns, (g): t � 0 � 18 ns, (h): t � 0 � 21 ns, (i):
t � 0 � 24 ns, (j): t � 0 � 27 ns, (k): t � 0 � 30 ns, (l): t � 0 � 33 ns.

In Fig. 4.1 (c) (t � 0 � 06 ns) one can see that the electric field profile has “decoupled” from the
central contact, and its peak value has shifted towards larger r. The free electron distribution
profile has become less steep, i. e. n has been rising monotonically in the region next to the
central contact. This motion continues with time (Figs. 4.1 (d) – (i)). The peak of the electric
field distribution progresses towards the outer contact, leaving behind a region with very low
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field. Apart from this translation in space the overall field profile remains quite unchanged. The
free electron distribution n also forms a rigidly moving front which follows the peak field with
some small lag. Behind the front, where E is very low, n attains a spatially constant value of
some 1012 cm � 3. The radial velocity of the fronts is almost 3 
 108 cm � s, which is, as already
seen in the previous chapter, over one order of magnitude higher than the electron drift velocity
of 7 
 106 cm � s taken at the peak field.

Once the fronts have reached the outer electrode (Fig. 4.1 (j)) we get an almost homogeneous
free electron distribution again, albeit with a free electron density that corresponds to that of
a pre-filament and is thus more than four orders of magnitude higher than that of the initial
state. The electric field profile again assumes a monotonically decreasing shape (Fig. 4.1 (k)).
Both profiles at the contacts already exhibit clear signs of loss of radial symmetry, indicating
the beginning formation of the pre-filamentary state (Fig. 4.1 (l)).

Additional insight into the process of front expansion can be gained from the spatial profiles of
the charge density ρ as well as the trapped electron densities n1 and n2. In Fig. 4.2 the corre-
sponding charge density profiles are plotted in units of the elementary charge e. A logarithmic
scale is used for both positive and negative values. This makes it necessary to set to zero any
values � 1 cm � 3 & ρ � e & 1 cm � 3. The values have been smoothened by averaging across small
intervals ∆r since the original data contains both positive and negative values on small spatial
scales as a result of the numerical algorithm used in TeSCA.

We start with a slightly negative charge distribution, which is homogeneous except near the
contacts (as a result of the boundary conditions) (Fig. 4.2 (a)). In Fig. 4.2 (b) a positive charge
accumulation above that background forms near the central contact. That peak further increases
and travels through the sample with the peak of the electric field (cf. Fig. 4.1). Thus the local-
ized space charge indicates the momentary front position in Figs. 4.2 (c) – (i).

In Fig. 4.3 profiles of the three electron densities n, n1 and n2 are shown on a logarithmic scale.
Initially (Fig. 4.3 (a)), we have a homogeneous spatial distribution: almost all electrons are
trapped in the donor ground level, i. e. n1 is almost identical to the effective doping density
N �D � 5 
 1015 cm � 3. n2 is about 1 � 10000 of that value, and n is again more than three orders of
magnitude smaller than n2, i. e. there are virtually no free electrons. That distribution approx-
imately corresponds to the homogeneous equilibrium (i. e. U � 0) state that can be calculated
analytically (cf. appendix C)2. As already discussed in Fig. 4.1 the free electron density builds
up near the cathode, and subsequently that region of higher free carrier density expands radi-
ally towards the anode. We read off from Fig. 4.3 that both n1 and n2 in contrast stay largely
constant in time and homogeneous across the sample radius, again with the exception of the
contact regions.

From those results we can give an explanation for the mechanism of front propagation. Upon
application of the external bias to the contacts a monotonically decreasing radial field distribu-
tion builds up as a result of the circular geometry of the sample. Due to the minor homoge-
neous negative background charge density (cf. Fig. 4.2) that field distribution does not exactly

2The steady state values for the case E � 0 are n � 1 � 1 ' 10 ( 8N )D � 5 � 4 ' 107 cm ( 3, n2 � 8 � 2 ' 10 ( 5N )D �
4 � 1 ' 1011 cm ( 3 and n1 � N )D * n * n2 + N )D � 5 ' 1015 cm ( 3
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Figure 4.2: Radial distribution of the charge density ρ (devided by the elementary charge e) on
a logarithmic scale for both positive and negative values (values of �ρ � e � � 1 cm � 3 are set to
zero) in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 � 3 � 0 V corresponding to Fig. 4.1.
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Figure 4.3: Radial distribution of the free electron density n (red dots), donor ground state and
excited state, n1 (green dots; located just below the upper bound) and n2 (blue dots), respec-
tively, in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 � 3 � 0 V corresponding to Fig. 4.1.
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Figure 4.4: Rise time τ of the free electron density from the equilibrium state as a function of the
electric field E . The values have been calculated numerically for the generation-recombination
coefficients of appendix B.

decrease with 1 � r as it would in plane polar coordinates for an electrically neutral system, but
the profile is still close to that dependence.

To understand the further process, it is necessary to take a look at the dynamics of the generation-
recombination processes. In Fig. 4.4 the time τ it takes the free electron density n to grow by
the fraction 1 � e of the difference between the equilibrium value and the respective steady state
value has been plotted as a function of the electric field E . To obtain that rise time τ for a
given value of E first the corresponding steady state value of the free electron density, n f � E �
has been calculated by numerically solving the local generation-recombination kinetics (i. e.
using eqs.( 2.1), (2.2) and setting the current density to zero) using a simple Euler scheme and
starting with the equilibrium electron concentrations as the initial values ni, ni

1, ni
2. n f � E � is

then the value of n the system converges to. In a second calculation the local dynamics is again
solved numerically until n reaches ni � exp

� � 1 ��, n f � ni - . τ is then the time it took the system
to reach that point.

We see that τ goes to infinity for E � Eth � 17 
 V � cm and monotonically decreases for higher
values of the electric field. This numerical result agrees with the general theoretical considera-
tions by SCHÖLL for the threshold switching delay time τd which predict τd to be proportional
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to 1 � � exp
�
∆E ��� 1 � , where ∆E � E � Eth is the field corresponding to the so-called overvolt-

age. (cf. chapter 2.2 of Ref. [Sch87]). As a result we see that it takes the local electric field
E to be at least somewhat above the threshold value in order for the system to reach the upper
branch of the stable current-density field characteristic within a finite time, and the higher the
field is, the faster that process works.

Getting back to the initial monotonically decreasing electric field profile, we conclude from
those considerations that the rise of n is the fastest where E is the highest, i. e. right at the
central contact. The developing rigid spatial profile of n is a consequence of the monotonically
decreasing rise time τ with increasing ∆E � E � Eth. Even though the electric field is above
Eth across the entire sample only near its peak is E high enough to lead to a sufficiently fast
rise of n. This means that a considerable amount of free carriers is created only around the peak
of E . Now those newly created free carriers give rise to an effective screening of the electric
field, as can be seen in Fig. 4.1. That latter process is governed by the Maxwellian relaxation
time τM � ε � � enµ � which here is of the order of 10 � 11 s.

A screening of the electric field in one part of the sample in turn means that the voltage U must
drop almost entirely across the remaining part, i. e. the region ahead of the front. Since that
region gets smaller the further the front expands towards the outer contact the local field in
every point of that latter region rises (assuming the overall current I and thus the voltage drop
across the load resistance does not change significantly), enabling a faster local increase of n.
This is a purely geometrical effect which relies on the finite size of the sample. That way the
electric field front can traverse across the entire sample from the inner to the outer electrode
with the free electron front following it slightly behind. That mechanism of front propagation
does not involve an individual electron traversing the sample making it possible to obtain a
front velocity faster than the single carrier drift velocity, i. e. a superfast front.

It should be noted that for the mechanism of the moving impact ionization front, which is an
inherently transient process, the S-shape of the local stationary current-density field relation
does not play a role.

This mechanism of front propagation is remarkably similar to the one found for TRAPATT
(TRApped Plasma Avalange Triggered Transit, cf. [Del70]) like fronts in high-voltage Silicon
sharpening diodes [Min94, Min97b, Min97a, Min00, Foc97]. In those p ./� n � n . structures
there exists a constant background charge due to the doping, which in a rectangular geometry
leads to a spatial field gradient. The theory now assumes that impact ionization sets in instan-
taneously as soon as the local field is above a threshold field Ea. For an appropriate sample
voltage this condition is met initially only within a small active zone near the p .0� n junction.
The free carriers created by impact ionization lead to a screening of the electric field, which
causes the total voltage to drop across a smaller part of the sample, increasing the electric field
in that remaining part and shifting the interface given by the threshold field Ea further into the
previously non-active region.

In that model it is important that there exist already free carriers in the non-active region, i. e.
the system exhibits some degree of pre-ionization. If that was not the case, impact ionization,
which is proportional to the free electron concentration, could only set in once carriers from the
adjacent active region have penetrated. The impact ionization front thus could progress only
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with the drift velocity of the carriers, and one would not obtain a superfast impact ionization
front.

The essential mechanism of front propagation in those structures is the same as in doped GaAs
Corbino disks: an inhomogeneous, monotonically decreasing field profile causes impact ion-
ization only within a portion of the sample. Screening of the electric field due to newly created
free carriers effectively reduces the length of the sample across which the voltage drops, lead-
ing to an increase of the local electric field in that remaining area and thus encouraging impact
ionization and further screening in more and more of the sample area. Thus in both cases the
mechanism is an effect of the finite size (length or radius, respectively) of the sample.

The two semiconductor systems differ in the mechanism responsible for the essential initial
spatially monotonically decreasing electric field distribution: in the Corbino disk it is the radial
geometry, while in the Silicon p .1� n � n . diode it is the charge of the naked donors in the
n-base. Another difference in both models is that for the latter one impact ionization is assumed
to set in instantaneously once a threshold field Ea has been reached, while for low temperature
impact ionization in GaAs we have seen that the field must be sufficiently above Eth to produce
enough free carriers for an effective screening. The latter fact is the reason why in the n-GaAs
Corbino samples the front has an electric field that lies considerably above the threshold field
Eth. It is in particular that latter difference between the two systems that makes the description
of the front dynamics for n-GaAs considerably more complicated.

We have seen in Fig. 4.3 that the trapped electron concentration in the excited donor level, n2,
remains quite constant in both space and time while the ionization front traverses the sample.
This allows a further simplification of our model by eliminating that variable: eq. (2.4) then
reduces to

φ $32 � T S
1
�
ND � N �D � n2 �4� X1N �D � X �1 n2 5 n � XS

1 n2 . (4.1)

Here we have made use of the additional result of the simulations that the electron concentration
in the donor ground state, n1, is approximately N �D. In (4.1) the first term, in particular the
impact ionization X1 is dominating, and the term X S

1 n2 can be neglected. Since the free electron
density n is still much lower than nth � 0 � 1N �D T S

1 , X1 and X �1 are functions of E only.

We can thus rewrite eq. (4.1) as φ $ α
�
E � n with a field-dependent ionization coefficient α.

With eqs. (2.1), (2.2), (2.10) and φ1 �6� φ we arrive at a system of equations that is formally
identical to the standard streamer model for ionization in gases [Vit94, Saa98]:

ṅ � ∇ 
 j � α
�
E � n (4.2)

ṅ1 � � α
�
E � n (4.3)

ε∇ 
 E � ρ � e
�7�

N �D � n2 ��� n1 � n � (4.4)

with j being the sum of the drift and the diffusion current density as in eq. (2.8). In eq. (4.3)
n1 takes the role of the heavier ions in the gas which are assumed to be immobile. We have
thus demonstrated that our model for n-doped GaAs at low temperatures for the case of the
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Figure 4.5: Radial distribution of the free electron density n (green dots; logarithmic scale) in a
Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of U0 �%� 3 � 0 V
at different times t. Red dots: linear plot of the radial distribution of the electric field E (lower
bound E � 0 V � cm, upper bound E � 85 V � cm). (a): t � 1 ps, (b): t � 0 � 03 ns, (c): t � 0 � 06 ns,
(d): t � 0 � 09 ns, (e): t � 0 � 12 ns, (f): t � 0 � 15 ns, (g): t � 0 � 18 ns, (h): t � 0 � 21 ns, (i):
t � 0 � 24 ns, (j): t � 0 � 27 ns, (k): t � 0 � 30 ns, (l): t � 0 � 33 ns.
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Figure 4.6: Radial distribution of the charge density ρ (devided by the elementary charge e) on
a logarithmic scale for both positive and negative values (values of �ρ � e � � 1 cm � 3 are set to
zero) in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 ��� 3 � 0 V corresponding to Fig. 4.5.
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Figure 4.7: Radial distribution of the free electron density n (red dots), donor ground state and
excited state, n1 (green dots; located just below the upper bound) and n2 (blue dots), respec-
tively, in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 ��� 3 � 0 V corresponding to Fig. 4.5.

propagating impact ionization front can be reduced to the model used to describe streamer
formation in gases, with a different specific impact ionization coefficient α

�
E � though.

Figs. 4.5, 4.6, 4.7 are equivalent to Figs. 4.1, 4.2, 4.3 except that the polarity of the external bias
has been reversed (U0 �8� 3 � 0 V), i. e. the central contact is now the anode. We see a similar
behavior as in the previous case of positive polarity with the charge density peak connected
to the front being much more pronounced (Fig. 4.6). That similarity for reversed bias is to be
expected from the mechanism of front propagation described above since the expansion of the
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Figure 4.8: Radial distribution of the free electron density n (green dots; logarithmic scale) in
a Corbino sample with reduced mobility, radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied
voltage of U0 � 3 � 0 V at different times t. Red dots: linear plot of the radial distribution of the
electric field E (lower bound E � 0 V � cm, upper bound E � 80 V � cm). (a): t � 1 ps, (b):
t � 0 � 03 ns, (c): t � 0 � 06 ns, (d): t � 0 � 09 ns, (e): t � 0 � 12 ns, (f): t � 0 � 15 ns, (g): t � 0 � 18 ns,
(h): t � 0 � 21 ns, (i): t � 0 � 24 ns, (j): t � 0 � 27 ns, (k): t � 0 � 30 ns, (l): t � 0 � 33 ns.

front is essentially a result of the monotonically decreasing radial field profile which is given
by the mere geometry of the sample. As the movement of the individual carriers does not play
a role it is not of importance which of the contacts is the injecting electrode.

An interesting effect can be obtained when artificially reducing the current density j. In the
simulations this can be achieved by simply reducing the mobility µ according to eqs. (2.8), (2.9).
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Figure 4.9: Radial distribution of the charge density ρ (devided by the elementary charge e) on
a logarithmic scale for both positive and negative values (values of �ρ � e � � 1 cm � 3 are set to
zero) in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 � 3 � 0 V corresponding to Fig. 4.8.
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Figure 4.10: Radial distribution of the free electron density n (red dots), donor ground state and
excited state, n1 (green dots; located just below the upper bound) and n2 (blue dots), respec-
tively, in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 � 3 � 0 V corresponding to Fig. 4.8.
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Figure 4.11: Radial distribution of the free electron density n (green dots; logarithmic scale)
in a Corbino sample with reduced mobility, radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied
voltage of U0 �6� 3 � 0 V at different times t. Red dots: linear plot of the radial distribution of
the electric field E (lower bound E � 0 V � cm, upper bound E � 88 V � cm). (a): t � 1 ps, (b):
t � 0 � 03 ns, (c): t � 0 � 06 ns, (d): t � 0 � 09 ns, (e): t � 0 � 12 ns, (f): t � 0 � 15 ns, (g): t � 0 � 18 ns,
(h): t � 0 � 21 ns, (i): t � 0 � 24 ns, (j): t � 0 � 27 ns, (k): t � 0 � 30 ns, (l): t � 0 � 33 ns.
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Figure 4.12: Radial distribution of the charge density ρ (devided by the elementary charge e)
on a logarithmic scale for both positive and negative values (values of �ρ � e � � 1 cm � 3 are set
to zero) in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 ��� 3 � 0 V corresponding to Fig. 4.5.
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Figure 4.13: Radial distribution of the free electron density n (red dots), donor ground state and
excited state, n1 (green dots; located just below the upper bound) and n2 (blue dots), respec-
tively, in a Corbino sample with radii R1 � 0 � 25 mm, R2 � 1 � 0 mm and an applied voltage of
U0 ��� 3 � 0 V corresponding to Fig. 4.11.

Setting µ to exactly zero would suppress any pattern formation since the system would have
been reduced to the homogeneous generation-recombination process. We have thus changed
µ to 1 � 1000 of its original value. The results can be seen in Figs. 4.8 through 4.10 and 4.11
through 4.13 for positive and negative U0, respectively.

In both cases we again obtain the previously discussed mechanism for the impact ionization
front which progresses with almost the same velocity as for the original mobility (about one
third more slowly). This is a further indication that the individual movement of carriers is not
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relevant. We note however that here the free electron density n behind the front immediately
rises to almost the final value N �D � 5 
 1015 cm � 3 which corresponds to a state on the upper
branch of the stationary current density-field characteristic and is found in stable, fully devel-
oped filaments. A possible explanation is that with a higher mobility and thus higher current
density the free carriers produced by impact ionization get swept out of the active zone so fast
that impact ionization cannot reach a high efficiency.

The question which naturally arises at this point after investigating the mechanism of the mov-
ing impact ionization front is why and under which conditions that radially symmetric front
breaks up and how many streamers will develop. In principle an answer could be expected di-
rectly from an appropriate linear stability analysis. In a rigoros sense, such an analysis should
be carried out by linearizing the full spatially two-dimensional constitutive equations about a
time-dependent radially symmetric solution of a moving front in the finite system with con-
straints given by the external circuit, considering small azimuthal fluctuations. Such a calcu-
lation would require, at least to a good approximation, the knowledge of an expression for the
radial symmetric solution of the nonlinear system, and it leads to an eigenvalue problem of
spatial functions which again would have to be treated numerically.

Often linearizing around a homogeneous stationary state of a system, which can be done ana-
lytically and thus can be expected to lead to a better understanding of the system than a purely
numerical analysis, yields good qualitative agreement to simulation results of the dynamics of
the full space and time dependent nonlinear system. For low temperature impact ionization
such an analysis has successfully been carried out in the case of transversal fluctuations by
SCHÖLL and DRASDO for breathing cylindrical filaments [Sch87, Sch90] and by HÜPPER for
the lateral movement of a current filament under the influence of a perpendicular magnetic field
[Hüp93a, Hüp93c] as well in the case of longitudinal fluctuations, where GAA found traveling
carrier density waves [Gaa96e]. In the case discussed here however, such an analysis around a
homogeneous or at least electrically neutral state does not yield a wave length selection mech-
anism for the azimuthal instability (cf. appendix D). The deeper reason why here a stability
analysis around a homogeneous state turns out to be an insufficient description is that an impor-
tant assumption which had been made in all the former analyses, namely that the electric field
E 9:9 parallel to the transport is dominant in the GR terms and can treated as spatially constant
along the sample or even acting as a mere parameter, is no longer valid here. We have seen
in the previous analysis that screening of the electric field, for instance, and more generally
a spatially highly inhomogeneous field distribution along the transport direction are inherent
conditions for the mechanism of the superfast impact ionization front. For the same reason
the simple method of equal area rules, which has successfully been used to derive conditions
of stability or, with the help of a co-moving frame, interfacial velocities in reaction-diffusion
systems or for cylindrical filaments [Mor98, Sch87, Sch90, Sch01], cannot be applied to the
impact ionization front because here both the electron concentrations and the electric field E
are spatially varying variables along the direction of current flow which are coupled through
Gauss’s law. Unlike for example in the Gunn effect, here the electrical charge density ρ, i. e. the
spatial derivative of the electric field, is not directly identical to the free electron density, but
they are rather coupled indirectly through the nonlinear generation-recombination relations,
which makes a simple elimination of one of those quantities impossible and hence prevents
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solving the integration across the sample length.

A qualitative argument for the instability of the impact ionization front against transversal
(which here means azimuthal) fluctuations can be given as follows: a small bulge in the front
coordinate (in the picture of a sharp interface) that points outwards in the direction of expan-
sion will lead to a local squeezing of the equipotential lines just ahead of it. This is associated
with a local increase in the curvature of the front and an increase of the local electric field.
Thus impact ionization is locally enhanced, and the generation of free carriers is sped up at that
position. Immediately at the tip of that bulge the interface between low and high free electron
density will advance faster than in its vicinity. Analogously, small parts of the interface that
slightly lag behind will lead to a stretching of the local potential profile, i. e. a local decrease
of the electric field and hence of the rate of free electron generation through impact ionization.
That positive feedback mechanism should lead to an amplification of small transversal fluctua-
tions. However, in order to obtain a specific finite number of initial streamers one also requires a
mechanism that limits the wavelength of the instability, damping out short wavelength transver-
sal fluctuations. In the Mullins-Sekerka instability [Mul64] of a planar solidification interface
expanding into an undercooled liquid, which bears a lot of similarity to the impact ionization
front discussed here, that stabilizing mechanism on small spatial scales is given by curvature
effects [Mor98]. Similar instability mechanisms of moving planar or curved [Pel88] interfaces
have been identified in various areas such as flame fronts, dendrite growth, or viscous fingering
occuring when air is pressed into a viscous fluid. While in those systems the dispersion relation
λ
�
k � for fluctuations transversal to the interface is generally positive and proportional to k for

small transversal wave vectors k, the critical wave vector kn above which λ
�
k � is negative, i. e.

the interface is stable against respective spatial fluctuations, depends of the short wavelength
physics of the individual system [Saa98].

In media where propagation of an impact ionization front into a pre-ionized region occurs
finger-like streamers similar to the ones obtained for GaAs in chapter 3 have been found both in
experiments [Bas76] (for semiconductors) and in numerical simulations [Dha87] (for Nitrogen
gas). A qualitative model with respect to streamers in plasmas was proposed by D’YAKONOV

and KOCHAROVSKY [D’y88, D’y89].

For streamers propagating into a non-ionized state, i. e. with the velocity of the single carriers,
numerical simulations were published for N2 by VITELLO et al [Vit94]. Inspired by those
simulations EBERT, VAN SAARLOOS and CAROLI took on with the theoretical description of
that process [Ebe96b, Ebe97b]. They started their investigation with planar fronts, arguing
that the relevant length scales of the interfacial zone are small compared to the width of a
streamer. They proposed to treat the problem of streamer dynamics on two separate spatial
scales: an inner scale on which the ionization processes occur within a thin sheet, as well as
an outer scale on which pattern formation should be studied in an interfacial description. Our
simulations of GaAs Corbino disks have shown that there such a separation of spatial scales
does not exist.

The most important common feature of streamers evolving both into pre-ionized and into non-
ionized media is the fact that screening of the electric field by free carriers plays a crucial role
for the propagation mechanism. Since this has been shown to be the case for n-GaAs Corbino
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disks as well it serves as the deeper motivation for our use of the term “streamer”, apart from
the simple geometrical similarity of the resulting current density patterns.

For p .;� n � n . Si diodes MINARSKY and RODIN have theoretically investigated the transverse
stability of a propagating planar impact ionization front [Min94, Min97b, Min97a, Min00].
They analytically derived a mechanism for the long wave instability and also arrived at quali-
tative arguments for the minimum width of a streamer. More quantitative results are expected
from numerical simulations which are subject of current research.



Chapter 5

Multistability and hysteresis

So far, we have studied the time-resolved process of nascence of a single filament in a thin-film
Corbino sample. In this chapter we will investigate what happens upon slowly, i. e. quasi-
statically increasing the applied bias U0. Unlike the results of the previous chapters such sim-
ulations can be directly compared to corresponding experimental measurements, which allows
us to draw conclusions as to the quality of our underlying theoretical model.

In Fig. 5.1 a series of experimental photoluminescence images of a Corbino disk sample with
increasing bias voltage is shown. With no applied bias (Fig. 5.1 (a)) we have a homoge-
neously low-conducting sample. We see that at a certain voltage a current filament, visible
in Fig. 5.1 (b) as a dark stripe, spontaneously forms. With increasing bias it gets noticeably
thicker (Fig. 5.1 (c)), until a second filament appears to have split from it (Fig. 5.1 (d)). The
angle between the two filaments does not remain fixed but widens with further increase of the
bias (Fig. 5.1 (e)). Another filaments forms (Fig. 5.1 (f)) which further broadens and shifts with
rising current (Figs. 5.1 (f), (g)). The existing filaments can completely rearrange (Fig. 5.1 (h))
and grow in width (Fig. 5.1 (i)). Additional filaments appear and broaden (Figs. 5.1 (j), (k))
until the sample is almost entirely covered (Fig. 5.1 (l)).

The observation that a filament keeps its position over some part of the voltage ramp and
then spontaneously shifts by a considerable angle is a strong indication that pinning at some
sample inhomogeneities plays a role. When repeating the measurements with the same sample,
the filaments do not necessarily appear at the same locations nor in the same order. A small
perturbation such as a temporary change in the illumination of the sample at constant voltage
might lead to a rearrangement of the existing filaments [Hir99]. This is a sign of the high
degree of symmetry of the sample. In all cases, however, one obtains an increasing number
of filaments with increasing current. An individual current filament can to some degree vary
in width to account for a change in the overall current. There seems to be though a maximum
filament width which is not exeeded, but instead a new filament appears. This experimental
observation is in contrast to measurements in samples with stripe contacts where no such limit
has been found [Hir00]. A possible explanation for that fact is given by the stationary model
by NOVÁK which when applied to the Corbino geometry yields a decreasing local electric field
E near the outer contact in the middle of an existing filament with increasing filament width

56
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.1: Experimental photoluminescence images of current filaments in a Corbino disk at
different bias voltages (inner contact radius 0 � 04 mm, outer contact radius 1 � 05 mm, thickness
of the epitaxial layer 3 � 0 µm). The dark areas correspond to regions of high current density.
From (a) – (l) the total current I through the sample increases: (a): I � 0 mA, (b): I � 0 � 10 mA,
(c): I � 0 � 43 mA, (d): I � 0 � 45 mA, (e): I � 0 � 47 mA, (f): I � 0 � 58 mA, (g): I � 0 � 77 mA, (h):
I � 0 � 80 mA, (i): I � 1 � 54 mA, (j): I � 1 � 71 mA, (k): I � 4 � 08 mA, (l): I � 7 � 08 mA. (from
[Sch00a])

[Nov97a, Hir00]. For some critical width the field at that point will be below the holding field
Eh, which can explain the existence of a maximum observed filament width and which might
indicate a starting point for a splitting process. Since the stationary model cannot account for
the dynamics of such a process and since the number of filaments present in the sample as
well as their positions enter the model as a fixed assumption it cannot conclude whether such a
splitting actually takes place or whether the system reacts to an increase in the overall current
by the nucleation of an additional filament at some different position.

Fig. 5.2 shows a series of stationary experimental photoluminescence images of a Corbino
sample with a larger central contact subject to increasing current. Here as well the number of
filaments increases with rising current I. Again we can observe a tendency of new filaments to
appear next to the already existing ones.

There is strong experimental evidence that the consecutive formation of an additional filament
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Experimental photoluminescence images of current filaments in a Corbino disk at
different bias voltages (inner contact radius 0 � 1 mm, outer contact radius 1 � 5 mm, thickness of
the epitaxial layer 3 � 0 µm). The dark areas correspond to regions of high current density. From
(a) – (f) the total current I through the sample increases: (a): I � 1 � 54 mA, (b): I � 1 � 58 mA,
(c): I � 3 � 73 mA, (d): I � 5 � 73 mA, (e): I � 9 � 54 mA, (f): I � 13 � 0 mA. (from [Sch00a])
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occurs through splitting of an existing one in at least some of the instances [Hir99, Hir00]. A di-
rect experimental proof however is not possible due to the limited time resolution of the applied
imaging technique. That is one motivation for an investigation through numerical simulations.

To simulate current filamentation in a Corbino disk under the effect of a subsequently increas-
ing bias we again start from equilibrium by applying a small initial voltage U0 in a virtually
instantaneous ramp of 1 ps. We subsequently let the system evolve at that constant bias for an
interval of time ∆t. ∆t should be long enough for the system to adapt to the change in the ap-
plied external voltage and reach a stationary state again. This reflects the notion of a sequential
bias ramp and of measurements that are slow compared to the time scales of pattern formation,
which holds in the corresponding experiments. After that interval of time we again linearly
increase the bias by a small step ∆U0 within 1 ps and anew simulate the dynamics for a further
period ∆t before taking the next voltage step ∆U0.

Fig. 5.3 depicts stationary spatial current density profiles of such a voltage sweep for a Corbino
sample with inner and outer contact radii of R1 � 0 � 06 mm and R2 � 1 � 05 mm, respectively.
We have started with an initial bias of U0 � 1 � 0 V which we have subsequently increased in
steps of ∆U0 � 0 � 5 V with an intermediate time interval of ∆t � 30 ns between each bias step.
∆t was chosen to be sufficiently longer than the nucleation time for a fully developed current
filament obtained in the simulations in chapter 3.

For U0 � 1 � 5 V (Fig. 5.3 (a)) the system is completely low-conducting. The equipotential
lines are concentric circles. After the next voltage step (Fig. 5.3 (b) at U0 � 2 � 0 V) a stable
filament has formed. With further increase of the applied voltage U0 the current density within
the filament rises only slightly, while the filament’s width increases (Figs. 5.3 (c) – (e)). The
filament has parallel lateral borders, in agreement with experimental results [Hir00]. As a
consequence, the electric field is notably distorted. Within the filament the equipotential lines
are straight equidistant lines, reflecting the spatially constant electric field within the filament.
With increasing width the filament starts to engulf the small central contact whose diameter it
exceeds.

When the filament width starts to approach the order of the contact distance, i. e. the width
of the filament becomes similar to its length, (Fig. 5.3 (f)) the parallel bordered shape gets
lost starting from the outer contact, and the filament more and more assumes a convex shape,
paying tribute to the curvature of the contacts (Fig. 5.3 (g)).

This transition from a thin paralell-bordered to a convex-shaped filament with increasing cur-
rent has also been observed in both measurements and simulations for current filamentation
between two small circular contacts [Hir00, Sch00a]. Not surprisingly, the filamentary shape
found here in a Corbino sample is almost identical to one half of a filament in those geome-
tries. The results obtained here from the dynamical simulation of the full nonlinear system are
in excellent agreement to the shape of the filamentary boundaries calculated for the Corbino
geometry from NOVÁK’s stationary model [Nov97a, Hir00].

For U0 � 173 � 5 V (Fig. 5.3 (h)) a second filament spontaneously forms. It joins at that sector
of the central contact which is covered the least by the first filament. Further increase of U0

again leads to a broadening of that new filament which upon attaining a width of the order of
the contact distance also starts to gradually loose its parallel-bordered shape (Figs. 5.3 (i) – (l)).
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Figure 5.3: Nascence and expansion of two current filaments in a Corbino disk sample with
radii R1 � 0 � 06 mm, R2 � 1 � 05 mm and a slowly increasing bias U0: current density profiles at
different bias (a): U0 � 1 � 5 V, sample voltage U � 1 � 50 V, total current I � 2 � 58 
 10 � 8 A; (b):
U0 � 2 � 0 V, U � 0 � 56 V, I � 1 � 44 
 10 � 4 A; (c): U0 � 23 � 5 V, U � 1 � 23 V, I � 2 � 23 
 10 � 3 A; (d):
U0 � 61 � 0 V, U � 1 � 36 V, I � 5 � 96 
 10 � 3 A; (e): U0 � 83 � 0 V, U � 1 � 33 V, I � 8 � 17 
 10 � 3 A;
(f): U0 � 106 � 5 V, U � 1 � 37 V, I � 1 � 05 
 10 � 2 A; (g): U0 � 164 � 5 V, U � 1 � 41 V, I �
1 � 63 
 10 � 2 A; (h): U0 � 173 � 5 V, U � 1 � 24 V, I � 1 � 72 
 10 � 2 A; (i): U0 � 187 � 5 V, U � 1 � 18 V,
I � 1 � 86 
 10 � 2 A; (j): U0 � 237 � 5 V, U � 1 � 26 V, I � 2 � 36 
 10 � 2 A; (k): U0 � 258 � 0 V,
U � 1 � 29 V, I � 2 � 56 
 10 � 2 A; (l): U0 � 300 � 5 V, U � 1 � 39 V, I � 2 � 99 
 10 � 2 A. Equipotential
lines are spaced by 0 � 2 V.
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Figure 5.4: Current-voltage characteristic of a Corbino disk sample with radii R1 � 0 � 06 mm,
R2 � 1 � 05 mm. The letters indicate the corresponding current density profiles in Fig. 5.3.

Fig. 5.4 depicts the corresponding current-voltage characteristic. It has been obtained by
recording the total current I as a function of the sample voltage U after each time step ∆t.
The letters (a) – (l) indicate the corresponding current density distributions of Fig. 5.3. The
current-voltage characteristic can clearly be divided into three separate parts, corresponding to
qualitatively different states of the sample: the first part represents the initial state of the low-
conducting sample with no filamentation. In the linear plot it is made up of just three dots lying
virtually on the lower horizontal axis due to the small current. We have seen in Figs. 5.3 (a), (b)
that upon increasing the bias U0 from 1 � 5 V to 2 � 0 V a filament spontaneously appears. In terms
of the electric field, those values correspond to about 15 � 1 V � cm and 20 � 2 V � cm, respectively,
if one assumes a linear electric potential drop between the two contacts. We have seen that the
latter condition is fulfilled once a filament has formed, and we have learned in chapter 3 that
this is also the case already during the transient pre-filamentary phase, even if a pre-filament
(or all of them) later dies due to insufficient field. The first stable filament thus forms once the
electric field U0 � ∆R has passed the threshold field Eth, which in chapter 2 has been shown to
be about 17 V � cm for our material system. ∆R � R2 � R1 here is the contact distance.

The nucleation of a filament means a spontaneous increase in the total current I und thus via
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Kirchhoff’s law (3.1) a respective drop in the sample voltage U . This causes the backward
jump between points (a) and (b) in Fig. 5.4. The new sample voltage U � 0 � 5 V corresponds to
a field of E � 5 � 1 V � cm and is thus still higher than the holding field Eh of about 4 V � cm. As
the current density within a fully-developed stable filament is a fixed quantity for a given field
E that requirement limits the initial width of a newly formed filament.

With further increasing bias U0 the current density within the filament rises, and the filament
gradually broadens, which both leads to a steady increase of the total current I. Depending
on whether this increase ∆I following a bias step ∆U0 is smaller or greater than ∆U0 � RL the
sample voltage U in turn either slightly increases or decreases, according to Kirchhoff’s law
(3.1). This is the reason for the zig-zag shape of the characteristic. In particular after the
current density within the filament has saturated ((c)) small spontaneous expansions in the
detailed filamentary shape as a raction to a bias step ∆U0 can result in a sufficiently large ∆I
and thus a small backward jump in the current-voltage charcteristic. In experiments with point
contact samples such small jumps in the characteristic have in fact been observed and could be
attributed to small local sample imperfections [Kli99]. In the simulations the finite resolution
of the numerical grid takes a similar role.

Between points (g) and (h) the second filament nucleates. Due to the high load resistance RL

of 10 kΩ the resulting rather minor increase of the overall current leads to a noticible jump
backwards in the characteristic, breaking it up into discontinuous parts each corresponding to a
different number of filaments. Those results are in line with respective experimental measure-
ments of a current-voltage characteristic of an n-doped GaAs Corbino disk sample [Ebe97a].

Fig. 5.5 shows a series of current density profiles of a Corbino sample with radii R1 � 0 � 5 mm
and R2 � 1 � 05 mm. Starting from U0 � 0 � 5 V the external voltage is again increased in steps of
∆U0 � 0 � 5 V. In order to stay within a reasonable overall computing time here we have limited
the intermediate interval of time ∆t between each small voltage step to 20 ns.1 At U0 � 150 V
the direction of the bias ramp is reversed, and U0 is decreased again in steps of ∆U0 �	� 0 � 5 V.

We see that starting from the non-conducting state (Fig. 5.5 (a)) one filament after the other
spontaneously forms with increasing bias (Figs. 5.5 (b) – (i)). As in the previously presented
simulation new filaments have the tendency to join the central electrode at sectors that have not
yet been engulfed by the existing filaments. In Fig. 5.5 (h) a new filament is already visible in
the logarithmic current density plot. Nevertheless, its current density is still orders of magnitude
smaller than in the fully developed ones. Only after one further bias step (Fig. 5.5 (i)) a full
filament has formed at that position.

For U0 � 150 V (Fig. 5.5 (j)) there exist six stable current filaments. Reversing the direction of
the bias ramp leads to a gradual uniform decline of all of them with decreasing U0 (Fig. 5.5 (k)).
For zero bias (Fig. 5.5 (l)) all six filaments have vanished.

In the corresponding current-voltage characteristic (Fig. 5.6) we can again clearly distinguish
between separate parts for the different numbers of stable filaments. Reversing the bias sweep
direction we find a monotonical descent of the total current I, indicating a uniform decline in

1Still such a simulation typically takes a few weeks to two months on a dedicated 500 MHz Intel Pentium III
system to complete.
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Figure 5.5: Consequitive nascence and subsequent decay of up to six current filaments in a
Corbino disk sample with radii R1 � 0 � 5 mm, R2 � 1 � 05 mm and a slowly increasing bias U0:
current density profiles at different bias (a): U0 � 1 � 0 V, sample voltage U � 0 � 51 V, total
current I � 4 � 91 
 10 � 5 A; (b): U0 � 1 � 5 V, U � 0 � 41 V, I � 1 � 09 
 10 � 4 A; (c): U0 � 3 � 5 V, U �
0 � 37 V, I � 3 � 13 
 10 � 4 A; (d): U0 � 11 � 0 V, U � 0 � 55 V, I � 1 � 04 
 10 � 3 A; (e): U0 � 13 � 5 V,
U � 0 � 57 V, I � 1 � 29 
 10 � 3 A; (f): U0 � 18 � 5 V, U � 0 � 53 V, I � 1 � 80 
 10 � 3 A; (g): U0 �
45 � 5 V, U � 0 � 59 V, I � 4 � 49 
 10 � 3 A; (h): U0 � 89 � 5 V, U � 0 � 67 V, I � 8 � 89 
 10 � 3 A; (i):
U0 � 90 � 0 V, U � 0 � 61 V, I � 8 � 94 
 10 � 3 A; (j): U0 � 150 � 0 V, U � 0 � 65 V, I � 1 � 49 
 10 � 2 A;
(k): U0 � 2 � 0 V, U � 0 � 15 V, I � 1 � 85 
 10 � 4 A; (l): U0 � 0 � 0 V, U � 0 � 0 V, I � 1 � 23 
 10 � 10 A.
Equipotential lines are spaced by 0 � 2 V.
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Figure 5.6: Current-voltage characteristic of a Corbino disk sample with radii R1 � 0 � 5 mm,
R2 � 1 � 05 mm. The letters indicate the corresponding current density profiles in Fig. 5.5.

the current density in all of the existing filaments with decreasing U0. Since the system does not
follow back the same path it has taken for the rising bias, where one filament has appeared after
the other, we have a hysteretic behavior. In bias sweep-up and sweep-down experiments with
Corbino disk samples hysteresis in the current-voltage characteristic has also been observed.
There however, the filaments have been found to disappear one after another, which manifests
itself in a discontinuous characteristic for the down-sweep as well [Ebe97a]. The fact that
in the calculations the traces of the filaments which have vanished can still clearly be seen
in the electric potential profile ((Fig. 5.5 (l)) is an indication that the relevant recombination
timescales are longer than the simulation time ∆t used2.

In order to test this hypothesis we simulate a voltage ramp applied to a Corbino disk with radii
R1 � 0 � 2 mm and R2 � 1 � 05 mm. We start with U0 � 1 � 0 V and increase in small steps of ∆U0 �
0 � 125 V up to U0 � 25 � 875 V, after which U0 is again decreased in steps of ∆U0 ��� 0 � 125 V.
As in the previous simulations each voltage step is applied as a sharp linear ramp of 1 ps length,

2In the simulations of current filamentation it has turned out quite generally that less prominent patterns tend
to be visible much better or longer in the spatial potential profile than in the electron or current density profiles.
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Figure 5.7: Consecutive nascence and decay of two current filaments in a Corbino disk sample
with radii R1 � 0 � 2 mm, R2 � 1 � 05 mm with slowly increasing and decreasing bias U0: current
density profiles at different bias (a): U0 � 1 � 375 V, sample voltage U � 1 � 374 V, total current
I � 7 � 16 
 10 � 8 A; (b): U0 � 1 � 50 V, U � 0 � 38 V, I � 1 � 11 
 10 � 4 A; (c): U0 � 11 � 75 V,
U � 1 � 17 V, I � 1 � 05 
 10 � 3 A; (d): U0 � 11 � 875 V, U � 0 � 71 V, I � 1 � 10 
 10 � 3 A; (e): U0 �
13 � 25 V, U � 0 � 59 V, I � 1 � 28 
 10 � 3 A; (f): U0 � 1 � 25 V, U � 0 � 26 V, I � 9 � 87 
 10 � 5 A; (g):
U0 � 1 � 125 V, U � 0 � 26 V, I � 8 � 61 
 10 � 5 A; (h): U0 � 0 � 375 V, U � 0 � 28 V, I � 9 � 92 
 10 � 6 A;
(i): U0 � 0 � 25 V, U � 0 � 25 V, I � 4 � 09 
 10 � 10 A. Equipotential lines are spaced by 0 � 2 V.
(Bias ramp with positive slope: (a) – (d); ramp with negative slope (e) – (i); maximum bias:
U0 � 25 � 875 V)
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Figure 5.8: Current-voltage characteristic of a Corbino disk sample with radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm. The letters indicate the corresponding current density profiles in Fig. 5.7. The
inset enhances the part of the down-sweep where the two filaments subsequently vanish.

which is here followed by a “relaxation” interval of ∆t � 200 ns, i. e. ten times longer than in
the previous simulation.

The respective series of current density profiles is depticed in Fig. 5.7, and the corresponding
current-voltage characteristic is shown in Fig. 5.8. Again we find that a single current filament
nucleates at U0 � 1 � 5 V (Fig. 5.7 (b)), which for the given contact dimensions translates to an
average field of 17 � 6 V � cm, i. e. just above the threshold field Eth (the resulting sample voltage
of U � 0 � 38 V after the filament formation again corresponds to an electric field of 4 � 5 V � cm,
which is slightly higher than the holding field Eh). A second filament forms at U0 � 11 � 875 V
(Fig. 5.7 (d)).

Reversing the direction of the bias ramp again (between (d) and (e)), both filaments gradually
decline. For U0 � 1 � 125 V (Fig. 5.7 (g)) the first filament spontaneously disappears. In the
current-voltage characteristic this leads to a jump towards higher sample voltage U due to the
drop in the total current I. Fig. 5.8 clearly shows that the characteristic exhibits a discontinuity
here, owing to the sudden change in the number of filaments. The first filament still remains
for some bias range until it vanishes as well for U0 � 0 � 25 V (Fig. 5.7 (i)). We have thus
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Figure 5.9: Consecutive nascence and decay of two current filaments in a Corbino disk sample
with radii R1 � 0 � 2 mm, R2 � 1 � 05 mm with slowly increasing and decreasing bias U0: current
density profiles at different bias (a): U0 � 1 � 75 V, sample voltage U � 0 � 54 V, total current
I � 1 � 21 
 10 � 4 A; (b): U0 � 16 � 5 V, U � 0 � 84 V, I � 1 � 57 
 10 � 3 A; (c): U0 � 3 � 25 V, U �
0 � 32 V, I � 2 � 93 
 10 � 4 A; (d): U0 � 0 � 75 V, U � 0 � 27 V, I � 4 � 79 
 10 � 5 A; (e): U0 � 0 � 5 V,
U � 0 � 26 V, I � 2 � 43 
 10 � 5 A; (f): U0 � 0 � 25 V, U � 0 � 25 V, I � 3 � 97 
 10 � 10 A. Equipotential
lines are spaced by 0 � 2 V. (Bias ramp with positive slope: (a) – (b); ramp with negative slope
(c) – (f); maximum bias: U0 � 20 � 75 V)

seen that using a sufficiently long simulation time we obtain a successive disappearence of the
individual current filaments on a descending bias ramp as well as a respective discontinuous
current-voltage characteristic.

Figs. 5.9, 5.10 show a current density plot series as well as the respective current-voltage
characteristic of a simulation series with a nominally identical sample (radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm) as in Fig. 5.7. Here we increase the applied voltage U0 in steps of 0 � 25 V and
simulate for 20 ns after each voltage step. Upon reaching U0 � 20 � 75 V the bias sweep direc-
tion is reversed again. On the descending bias ramp, for the last few voltage steps, starting with
U0 � 0 � 75 V, a sigificantly longer simulation time of ∆t � 300 ns is used in each bias step.

Again, we observe the nucleation of two filaments at U0 � 1 � 75 V and U0 � 16 � 5 V, respectively
(Figs. 5.9 (a) and (b)). If we compare those values to the respective voltages in Figs. 5.7 (b)
and (d) we find them to be somewhat higher than in that previous simulation. This indicates
that even for the generation time of a filament the shorter simulation time ∆t used here is not
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Figure 5.10: Current-voltage characteristic of a Corbino disk sample with radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm. The letters indicate the corresponding current density profiles in Fig. 5.9. The
arrows denote the sweep direction.

completely sufficient (i. e. if we use a longer simulation time, which is still orders of magnitude
shorter than any experimental time scales, the new filaments already appear for some lower
U0). On the down-sweep ramp ((c) – (f)) this time the filament which had appeared second is
the first to disappear again, in contrast to the previous simulation.

The fact that minor differences like the simulation time or the size of the bias steps influence
the order of disappearance of the filaments indicates the high degree of symmetry of the system
and the resulting equivalence of different states. On the other hand, the formation of several
filaments with increasing bias and the corresponding discontinuous multistable current voltage
characteristic as such is not affected by the details of the respective simulation and can therefore
be regarded as a robust, inherent property of the system.

In summary, we have demonstrated that our model produces a spontaneous consecutive nucle-
ation and disappearence, respectively, of multiple current filaments in a Corbino disk subject
to an ascending or descending voltage ramp. In the current-voltage characteristic this leads
to the occurrence of several discontinuous branches, each of which corresponds to a state of
the sample with a specific number of filaments. Since for a given voltage U within a certain
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range, corresponding to the bistability range of the microscopic current density-field relation,
the system can attain different values of the overall sample current I depending on the number
of existing filaments, it thus exhibits a high degree of multistability. Reversing the direction
of the bias ramp we find hysteresis in the current-voltage characteristic. Those results are in
good agreement to corresponding experimental measurements on thin-film GaAs samples with
concentric circular contacts.

We have not found, however, in the simulations any indication of new filaments forming via a
splitting process, whereas in the experiments there is evidence that at least some of the filaments
emerge through such a process. Calculations by NOVÁK suggest that for a splitting process the
electric field right at the outer contact within an existing filament might play a crucial role. This
opens up room for speculation whether the numerical treatment of the boundary conditions at
the contacts could be a decisive factor for the specific formation process of a new filament.
Also, the time scales used here in the simulations between each voltage step might be too short
for any splitting to occur since splitting can be expected to be a rather slow process. Simulations
which could resolve that question would likely have to employ a more refined treatment of the
contacts and substantially longer simulation times as well as smaller bias steps, which is beyond
the scope and the computational capabilities of this investigation.



Chapter 6

Corbino disks in a transversal magnetic
field

In this chapter we investigate how a constant magnetic field B normal to the thin-film sample
acts upon current filamentation in the Corbino geometry.

In earlier theoretical work both HÜPPER [Hüp93c, Hüp93a] and CHRISTEN [Chr94b] obtained
a transversal motion of current filaments under the influence of a perpendicular magnetic field.
KUNIHIRO used a spatially two-dimensional numerical simulation to investigate current fila-
mentation in a sample with two point contacts under a constant magnetic field B normal to the
surface [Kun96a, Kun97a, Kun97b]. He found an asymmetric broadening of the filament. Ex-
perimentally, stationary bent filaments [Hir97c, Kli99, Hir00] as well as relaxation oscillations
[Hir97b, Hir97e, Hir98, Aok99a] of a filament between two point contacts were observed. In
the latter case a filament nucleates between the contacts and bends due to the Lorentz force
exerted by the transversal magnetic field. The resulting elongation leads to a reduction of the
electric field E within the filament that extinguishes when E drops below the holding field.
The process then starts over again. That mechanism can result in complex oscillation sce-
narios. In a sample with two parallel stripe contacts the visualization of a current filament
has been used to directly measure the Hall angle and determine the carrier mobility from it
[Nov97b, Nov98a, Hir99].

In the Corbino disk geometry under the influence of a normal magnetic field of the order of
B � 100 mT stationary bent filaments as well as filaments rotating with a frequency of several
10 kHz were observed [Mar96, Ebe97a, Hir97e, Nie98, Hir99, Hir00]. For a magnetic field
parallel to the surface of a thin-film Corbino disk AOKI and FUKUI observed a broadening of
the filaments for the case where the Lorentz force is directed towards the sample surface and an
extinction of those filamaments where the Lorentz force points in the direction of the substrate
[Aok99b].

In Fig. 6.1 photoluminescence measurements of two different Corbino samples ((a) – (d) and
(e) – (h), respectively) subject to a perpendicular magnetic field are shown for several different
values of the total current I. As already observed in chapter 5 the number of filaments in both
samples increases with rising I. Here however, each filaments exhibits a bending due to the
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Figure 6.1: Experimental photoluminescence images of current filaments in two different
Corbino disks at different bias voltages subject to a perpendicular magnetic field B ((a) – (d):
inner contact radius 0 � 04 mm, outer contact radius 1 � 05 mm, magnetic field B � 152 mT; (e)
– (h): inner contact radius 1 � 0 mm, outer contact radius 1 � 5 mm, magnetic field B � 237 mT;
thickness of the epitaxial layer 3 � 0 µm). Total current through the sample: (a): 0 � 2 mA, (b):
1 � 1 mA, (c): 1 � 7 mA, (d): 3 � 3 mA, (e): 0 � 7 mA, (f): 1 � 9 mA, (g): 4 � 4 mA, (h): 5 � 9 mA. (from
[Hir00])

Lorentz force.

In order to take into account the effect of a perpendicular magnetic field B in the simulations
the expression for the current density j has to be modified [Kun97a]:

j � j
0
� µB < j

0

1 �=� µB � 2 . (6.1)

Here j
0

is the current density in the case of absence of an external magnetic field as in eq. (2.8).

The calculated temporal evolution of a filament in a Corbino disk with contact radii R1 �
0 � 2 mm and R2 � 1 � 05 mm and an applied voltage of U0 � 1 � 95 V is depicted in Figs. 6.2 (a)
through (h) for different values of B. For comparison Figs. 6.2 (a1) – (a3) show the case with no
magnetic field (B � 0): several streamers develop into pre-filaments, one of which subsequently
emerges as the winner of the competition mediated by the global coupling.

With an additional perpendicular magnetic field present, that basic process still holds. With
increasing B however, we observe that the radially expanding streamers already start to get
more and more twisted around the central contact as an effect of the Lorentz force acting on
them. The subsequent pre-filaments that extend between the two contacts on the other hand are
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only slightly bent. One explanation could be that the current flow favors a short path between
the two contacts. We also observe that with increasing magnetic fields the process of filament
formation gets notably faster, and for sufficiently high B the first streamer to hit the outer
electrode already carries that much current that the other ones immediately start to recombine
(note that the current density snapshots are taken at different times t for different B).

Once a fully developed filament has formed it starts to broaden in the direction of the Lorentz
force. That azimuthal expansion is the faster the higher the applied magnetic field. The broad-
ening of the filament is brought about by the shift of the one filament wall (on the side to which
the Lorentz force points) into the adjacent low-conducting sample region, while the opposite
wall remains in place. That behavior is different from the results of one-dimensonal simu-
lations of a filament under the influence of a perpendicular magnetic field where both walls
have been found to move in the direction given by the Lorentz force [Hüp93c, Hüp93a], but
similar to the asymmetric widening of filaments found by KUNIHIRO for two point contacts
[Kun96a, Kun97b, Kun97a]. As in chapter 5 one might speculate whether this is an effect of
the boundary conditions at the contacts, which in a spatially one-dimensional simulation cannot
be taken into account.

In Fig. 6.3 four different sequences (a) through (d) of filament formation in a Corbino disk with
radii R1 � 0 � 2 mm, R2 � 1 � 05 mm are shown for different combinations of the directions of
the applied bias U0 and of the perpendicular magnetic field B. We see that the direction of the
twisting of the streamers as well as the bending and expansion of the subsequently remaining
filament depends on the sign of both U0 and B. This is expected since the Lorentz force is
linear in both the magnetic field and in the velocity of the carriers. That result corresponds to
measurements of the bending of a current filament in a Corbino disk under the influence of an
applied voltage and a magnetic field normal to the sample surface, which also depends on the
sign of both of them (Fig. 6.4).

That latter comparison, however, also points out a seemingly significant discrepancy between
the results of the experiments and of the simulations. While in experiments stable bent filaments
are observed in a Corbino sample under the influence of a magnetic field, in all simulations a
newly created filament has been found to expand in direction of the Lorentz force. We try
to resolve that problem by considering a longer simulation of that transient process, which is
depicted in Fig. 6.5. Again, after the evolution of a single, fully developed filament its one
boundary azimuthally expands into the direction of the Lorentz force while the opposite one
remains pinned. The “leading” boundary starts circling around the central contact sweeping
into the low-conducting region of the sample (Figs. 6.5 (e) – (i)). With expanding area of the
filament its current density on the trailing side declines siginificantly but is still higher than in
the rest of the Corbino disk.

Within about 23 ns the leading boundary has completed one full circle, hitting the pinned back
of the filament, which brings it to a stop. Since in a narrow region directly behind the boundary
the current density is still of the order found in a corresponding filament without magnetic field
we again have a narrow high conducting channel embedded in a region of significantly lower
conductivity (Figs. 6.5 (j) – (l)).

Whether or not that filament actually remains stable over much longer timescales, or whether



CHAPTER 6. CORBINO DISKS IN A TRANSVERSAL MAGNETIC FIELD 73

-7.0
-2.5
-2.0
-1.6
-1.2
-1.0
-0.8
-0.4
0.0
0.5
1.0
3.0

lo
g 1

0(
j [

A
/c

m
2 ]

)

0.1

0.0

0.2

x 
[c

m
]

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

Figure 6.2: Temporal evolution of a current filament in a Corbino disk of radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm under different orientation of bias U0 � 1 � 95 V and perpendicular magnetic field
B of different strength: a1 – a3: without magnetic field (B � 0); b1 – b3: B � 30 mT; c1 – c3:
B � 50 mT; d1 – d3: B � 90 mT. a1: t � 8 � 9 
 10 � 10 s, a2: t � 1 � 4 
 10 � 9 s, a3: t � 2 � 0 
 10 � 9 s, b1:
t � 8 � 9 
 10 � 10 s, b2: t � 1 � 4 
 10 � 9 s, b3: t � 2 � 0 
 10 � 9 s, c1: t � 8 � 2 
 10 � 10 s, c2: t � 1 � 5 
 10 � 9 s,
c3: t � 2 � 0 
 10 � 9 s, d1: t � 7 � 3 
 10 � 10 s, d2: t � 1 � 2 
 10 � 9 s, d3: t � 2 � 0 
 10 � 9 s. Equipotential
lines are spaced by 0 � 2 V. (continued on the next page)
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Figure 6.2: Temporal evolution of a current filament in a Corbino disk of radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm under different orientation of bias U0 � 1 � 95 V and perpendicular magnetic field
B of different strength: e1 – e3: B � 125 mt; f1 – f3: B � 150 mT; g1 – g3: B � 200 mT; h1 – h3:
B � 250 mT. e1: t � 5 � 6 
 10 � 10 s, e2: t � 1 � 1 
 10 � 9 s, e3: t � 2 � 0 
 10 � 9 s, f1: t � 6 � 4 
 10 � 10 s,
f2: t � 8 � 8 
 10 � 10 s, f3: t � 2 � 0 
 10 � 9 s, g1: t � 4 � 8 
 10 � 10 s, g2: t � 6 � 4 
 10 � 10 s, g3:
t � 2 � 0 
 10 � 9 s, h1: t � 4 � 4 
 10 � 10 s, h2: t � 5 � 6 
 10 � 10 s, h3: t � 2 � 0 
 10 � 9 s. Equipotential
lines are spaced by 0 � 2 V. (continued from previous page)
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Figure 6.3: Temporal evolution of a current filament in a Corbino disk of radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm under different orientation of bias U0 ��> 1 � 95 V and perpendicular magnetic
field B �?> 100 mT: a): U0

� 0 (central contact is anode), B � 0; b): U0
� 0, B @ 0; c): U0 @ 0

(central contact is cathode), B � 0; d): U0 @ 0, B @ 0. a1: t � 4 � 0 
 10 � 10 s, a2: t � 6 � 0 
 10 � 10 s,
a3: t � 1 � 00 
 10 � 9 s, b1: t � 4 � 0 
 10 � 10 s, b2: t � 6 � 0 
 10 � 10 s, b3: t � 1 � 00 
 10 � 9 s, c1: t �
7 � 6 
 10 � 10 s, c2: t � 1 � 16 
 10 � 9 s, c3: t � 1 � 84 
 10 � 9 s. d1: t � 7 � 6 
 10 � 10 s, d2: t � 1 � 24 
 10 � 9 s,
d3: t � 2 � 00 
 10 � 9 s,
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Figure 6.4: Experimental photoluminescence images of a current filament in a Corbino disk
sample for different orientations of the perpendicular magnetic field B and electric polarity
(inner contact radius 0 � 04 mm, outer contact radius 1 � 05 mm, magnetic field B � 152 mT,
thickness of the epitaxial layer 3 � 0 µm). (a): total current I � 0 � 11 mA, B �A� 170 mT, (b):
I � 0 � 20 mA, B � 170 mT, (c): I �B� 0 � 13 mA, B �C� 77 mT. (d): I �%� 0 � 11 mA, B � 100 mT.
(from [Hir00])
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it might start circling around the central contact would require even much longer simulation
times to determine. Since the oscillation frequencies for rotating filaments in a Corbino sample
observed experimentally are of the order of 10 kHz, i. e. one cycle takes about 100 µs, one
presently cannot hope to resolve that process with the simulation methods used here.
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Figure 6.5: Nascence of a current filament in a Corbino disk sample with radii R1 � 0 � 2 mm,
R2 � 1 � 05 mm with bias voltage U0 � 2 � 05 V under the influence of a magnetic field B � 50 mT
normal to the thin-film sample surface: (a): t � 0 � 07 ns, (b): t � 0 � 98 ns, (c): t � 1 � 89 ns, (d):
t � 2 � 24 ns, (e): t � 2 � 80 ns, (f): t � 4 � 90 ns, (g): t � 10 � 0 ns, (h): t � 16 � 0 ns, (i): t � 23 � 8 ns,
(j): t � 26 � 3 ns, (k): t � 31 � 0 ns, (l): t � 35 � 0 ns.



Chapter 7

Conclusions

In this work the process of current filamentation based on the low-temperature impurity break-
down in n-doped GaAs has been theoretically investigated for thin-film samples with two
concentric circular contacts, so-called Corbino disks. The research had been motivated by
spatially-resolved measurements of current density pattern formation in such samples by PRETTL

and coworkers. The formation process of a current filament, i. e. a channel of high current den-
sity embedded in region of low conductivity, has been resolved with the help of numerical
simulations based on a rate equation model for the generation-recombination processes of the
electrons which gives rise to an S-shaped stationary current density-field relation. In the cal-
culations the results of a Monte Carlo simulation of the microscopic scattering processes for
the respective material system have been used as expressions for the generation-recombination
coefficients. The constitutive dynamical semiconductor equations have been solved on a two-
dimensional spatial domain using a sophisticated numerical finite elements code.

It was found that the formation of a current filament in a Corbino disk occurs as a multi-stage
process: initially, a radially symmetric impact ionization front forms at the central conctact
where the field is the highest due to the geometry of the sample. It subsequently expands to-
wards the outer ring electrode, acquiring more and more an azimuthal modulation. It dissolves
into a number of finger-like current density structures which head towards the outer contact.
Upon reaching it those “streamers”, as we have come to call them due to their geometrical and
conceptional similarity to respective transient structures known in a variety of other systems,
each constitutes a pre-filament as it had previously been observed in numerical simulations of
current filamentation in samples with two point contacts. As a result of the global coupling via
the external circuit a process of competition between the pre-filaments sets in. We have found
a “winner-takes-all” dynamics where one pre-filament prevails and grows to a fully-developed
filament, while the remaining ones decay. In the Corbino geometry the nucleation of a fila-
ment constitutes a symmetry breaking process and therefore represents a qualitatively different
degree of self-organization than in previously investigated samples with two point contacts.

We have investigated the propagation mechanism of the impact ionization front whose velocity
is significantly faster than the single carrier drift velocity and have demonstrated that it inher-
ently relies on the finite radius of the sample as well as on the circular geometry which gives
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rise to a monotonically descending radial electric field profile even in the electrically neutral
state. Due to screening of the electric field by free electrons created through impact ionization
around the peak of the field distribution the part of the sample across which the applied voltage
drops steadily shrinks, resulting in a motion of the field profile towards the outer electrode. It is
that mechanism of propagation that justifies our choice of the term “streamers” for the finger-
shaped current density patterns which evolve out of the propagating impact ionization front1.
While a qualitative argument for the instability of that radially symmetric front with respect to
azimuthal fluctuations has been given it turned out that due to the importance of the monotoni-
cally descending radial field profile a respective linear stability analysis around a homogeneous
state does not yield any mode selection mechanism that would explain the specific number of
streamers observed in the simulations.

It was not until very recently that, inspired by our contribution at the HCIS-11 conference,
Kyoto 1999 [Sch99b], the transient process of filament formation has actually been observed
experimentally in a Corbino disk GaAs sample by AOKI [Aok01b, Aok01a]. Using triggered
imaging of quenched photoluminescence it was possible to identify five pre-filaments, three of
which subsequently developed into full stable filaments. The same technique has previously
been used by that author to experimentally resolve the nucleation process of a single filament
between two point contacts [Aok98]. In those experiments a significantly longer nucleation
time was observed than in the two-dimensional numerical simulations. Whether this indicates
a quantitative weakness of the model or of the generation-recombination parameters would
require further independent measurements to assess.

One interesting phenomenon found both in the experiment and in the simulations of the low
temperature impact ionization regime in doped GaAs Corbino disks is the occurrence of a
multistable global current-voltage characteristic based on a simple bistable microscopic current
density-field relation In this respect current filamentation in GaAs bears a lot of similarity to
sequential tunneling through semiconductor multi quantum well structures, which is governed
by an N-shaped (thus also bistable) local current density-field relation, but in a certain voltage
regime, though domain formation, can lead to a multistable global current-voltage relation,
too [Pre94, Kas94, Ama01]. There, however, multistability is brought about by the fact that
the space charge that forms the wall between the two electric field domains can be centred
in a quantum well at different locations for a given total voltage. The global current-voltage
characteristic is thus closely related the spatial discretization and artificial periodicity of the
sample (and in fact, the measured global current-voltage characteristic in turn can be used as
a probe of the specific microscopic structure of a sample, identifying local deviations from
periodicity [Sch96b, Sch96a, Sch98b]).

In contrast, multistability in GaAs Corbino disks is not guided by any spatial constraints in the
sample but is an effect of self-organization which results from the different number of stable
current filaments that can form and coexist for a given total current through the Corbino sample.
Our simulations of current filamentation in a Corbino sample subject to a quasi-static bias ramp
have yielded the consecutive nucleation of multiple stable filaments, in good agreement with
experimental results. In the global current-voltage characteristic each additional filament ap-

1Some authors in literature even use that term for a corresponding planar front as well.
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pearing with rising bias manifests itself by a discontinuity because of the spontaneous increase
of the total current and the resulting drop of the sample voltage due to the load resistance.
In the simulations new filaments have been found to always appear through a nucleation pro-
cess, while there is experimental evidence that a splitting process of an already existing filament
should take place at least in some cases. A possible explanation might be an insufficient numer-
ical treatment of the boundary conditions representing the contacts. For a descending voltage
ramp we have found a hysteretic behavior.

In simulations involving an additional external magnetic field normal to the sample surface a
twisting of the expanding streamers around the central contact due to the Lorentz force has
been observed. It was found that the presence of a magnetic field accelerates the process of
competition among the different pre-filaments. One boundary of the fully-developed filament
under the influence of the perpendicular magnetic field starts to move in azimuthal direction
around the central contact, expanding the filament until that boundary hits the back of the
filament and it covers the entire Corbino sample. However, since that process happens on a
nanosecond time scale it should not be relevant to experimental observation. After cycle one
has been completed we again find one channel of significantly higher conductivity than in the
rest of the sample since the current density in the inner regions of the filament has dropped
as a result of its spatial expansion. Our simulation times have not been sufficiently long to
assess whether that structure remains stable or even might start rotating on the much slower
time scales expected from corresponding experiments.

In summary, the numerical simulations have been successful in reproducing and explaining
many of the effects observed experimentally, such as the spontaneous symmetry breaking by
the nucleation of a filament in a sample with Corbino geometry, as well as multistability and
hysteresis in the current-voltage characteristic. Those results demonstrate the general applica-
bility of the underlying simple generation-recombination model for an appropriate description
of the phenomena of self-organization and pattern formation in doped GaAs thin-film samples
at low temperatures. For a better comparison of some effects a more refined modeling of some
of the sample details such as the treatment of the contacts might be required.

Although both the experimental and the theoretical investigation of current filamentation in
doped thin-film GaAs samples have been aimed towards the study of the basic phenomena
of pattern formation some of the findings might hold a potential for application. A system
exhibiting multistability can, in principle, be used to build a data storage device which can
hold more than one bit of information within a single “memory element”. The advantage
over a comparable bistable, i.e. binary, memory device is a higher storage density and thus
potentially faster switching time due to shorter signaling paths. Because of the comparably
long nascence and extinction times of the filaments and the rather large size of the samples, let
alone the requirement of very low temperatures for impact ionization to dominate over thermal
excitation, GaAs Corbino samples can of course by no means be expected to become a match
to existing, well established memory technology.

A probably more promising feature for application is the superfast impact ionization front. In
fact, in other semiconductor devices such as Silicon diodes that phenomenon is used to achieve
sharpening of pulse signals and to build fast electrical power switches. Streamers on the other
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hand have come to interest in recent years in the growing field of environmental pollution
control technology: there superfast impact ionization streamers in gases are used to quickly
produce a high amount of energetic electrons which generate active radicals that can suitably
react with pollutants rendering them intoxic [Vit93]. The efficiency of those processes have
turned out to highly depend on the details of the streamers’ shapes, which are thus subject of
ongoing research.
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Appendix A

Material parameters

The following material parameters were used in the simulation of current filamentation in n-
GaAs [Gaa94, Gaa96b]:

material parameter symbol value
lattice temperature TL 4 � 2 K
donor concentration ND 7 
 1015 cm � 3

acceptor concentration NA 2 
 1015 cm � 3

effective impurity concentration N �D � ND � NA 5 
 1015 cm � 3

relative dielectic constant εr 10 � 9
electron mobility µ 105 cm2

Vs
diffusion constant D � µkBTL � e 36 � 2 cm2

s
load resistance RL 10 kΩ
sample thickness d 3 µm
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Appendix B

Analytical representations of the GR
coefficients

The following analytical representations of the GR coefficients, which have been derived by
GAA [Gaa94, Gaa95, Gaa96b] from the results of the Monte Carlo simulations for GaAs
[Keh95], are used in the numerical simulations:

T up
e
�
E �D� 1

γ0 E a1 � a2

1 � exp
�
a3 � a4γ2E � � a5γ2E F (B.1)

T lo
e
�
E �D� 1

γ0 E b1 � b2

1 � exp
�
b3 � b4γ2E � � b5γ2E F (B.2)

X1
�
Te �D� γ3 c1 exp E c2

1 � exp
�
c3 � c4γ0 Te � � c5γ0 Te F (B.3)

X �1 � Te �D� γ3 d1 exp E d2

1 � exp
�
d3 � d4γ0 Te � � d5γ0 Te F (B.4)

T Sup
1

�
Te �D� γ3 e1 exp

�
e2
�
γ0 Te � e4 � e3 � (B.5)

T S lo
1
�
Te �D� γ3 f1 exp 2 f2

�
γ0 Te � f3 5 (B.6)

with the following parameters

i � 1 i � 2 i � 3 i � 4 i � 5
ai 2 � 336 18 � 111 2 � 896 140 � 5 57 � 967
bi 3 � 417 1 � 689 6 � 098 678 � 9 63 � 191
ci 1 � 16110 � 5 6 � 687 5 � 928 0 � 694 6 � 10410 � 2

di 7 � 53010 � 3 0 � 458 4 � 657 1 � 030 2 � 83610 � 2

ei 4 � 97910 � 6 9 � 726 � 0 � 278 2 � 143
fi 6 � 13810 � 3 � 0 � 265 1 � 254

and scaling parameters γ0 � 1 � TL � 0 � 238 K � 1, γ2 � 1 � 54810 � 0 m
V , γ3 � 2 � 55410 � 9 m3

s .

For numerical reasons the Heaviside functions Θ have been approximated by smooth functions:
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Te
�
n � E �G� Θ

�
n � nth � T up

e
�
E �H� Θ

�
nth � n � T lo

e
�
E �$ 1

2 I 2 T up
e
�
E �H� T lo

e
�
E � 5 � tanh

�
log10

�
n � nth � 2 T up

e
�
E ��� T lo

e
�
E � 5KJ (B.7)

T S
1
�
n � Te �L� Θ

�
n � nth � T up

e
�
Te �H� Θ

�
nth � n � T lo

e
�
Te �$ 1

2 I 2 T Sup
1

�
Te �M� T S lo

1
�
Te � 5 � tanh

�
log10

�
n � nth � 2 T Sup

1

�
Te ��� T S lo

1
�
Te � 5KJ

(B.8)

with a threshold value for the free electron density nth � 0 � 1 N �D.

The remaining three GR coefficients are treated as constants: X S
1 � 1 � 17 
 106 s � 1, X � � 3 � 36 


103 s � 1, T �N� 4 � 10 
 107 s � 1.



Appendix C

Calculation of the steady state

One important property of the two-level rate equation model for low temperature impact ion-
izations from shallow impurities derived by SCHÖLL [Sch87] is the fact that none of the
generation-recombination coefficients depends on the carrier concentration in the impurities,
n1 and n2. This can be used to directly calculate the steady-state expressions for those concen-
trations as functions of the local free electron density n and electric field E (the dependence of
the dynamic variables on time and space is being omitted here for brevity).

With the formal vector nt � � n1 n2 � T eqs. (2.2), (2.5), (2.6) can be written as

ṅt � E φ1

φ2
F� E � X � � X1n T �� T S
1 n � X � � XS

1 � T S
1 n � X �1 n � T � F E n1

n2
F � E 0

T S
1 nND

F
: � Bnt � c . (C.1)

B and c are functions of n and E . Eq. C.1 can be solved for the steady-state solution of nt , nst
t ,

by inverting B:

nst
t ��� B � 1c � T S

1 nND

detB E T �
X � � X1n

F . (C.2)

One thus obtains an analytical expression for the steady state charge density ρ � e
�
N �D �

n1
�
n � E ��� n2

�
n � E ��� n � as a function of n and E , which serve as parameters in this local

steady state analysis of the generation-recombination terms. The roots of ρ
�
n � E � can be solved

numerically in the E -n plane (cf. Fig. 2.6).
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Appendix D

A linear stability analysis

We present a linear stability analysis similar to the ones carried out in [Sch87] and [Gaa96e]
for cylindrical filament breathing and longitudinal waves, respectively. We will start with the
simpler one-dimensional case with one spatial coordinate z, which is the direction of the current
flow, and subsequently see what is different in a two-dimensional circular geometry expressed
by cylindrical coordinates r, φ.

Apart from the localized generation-recombination kinetics the two equations governing our
system are Gauss’s law (2.10), which links the local electric field to the local carrier concen-
trations, and the drift-diffusion equation (2.8), which defines the (particle) current density j for
the electrons. With the help of Maxwell’s equation for the electric field H, ∇ < H � � e j � εĖ ,
we arrive at the following expression for the total current density Jtot defined as the sum of the
conduction current density of the electrons and the Maxwellian displacement current density:

0 � ∇ 
 Jtot � ∇ 
O, εĖ � enµE � eD∇n - . (D.1)

We now introduce small spatial fluctuations δE , δn around a homogeneous steady state char-
acterized by E 0, n0. For those fluctuations we assume proportionality to a factor exp

�
Λt � ikz � ,

with i being the imaginary unit. That ansatz expresses a damping (or a growth) and an oscilla-
tory behavior of the fluctuations in time through the real and imaginary parts of Λ, respectively,
as well as a longitudinal spatial modulation with wave number k. For the fluctuation of the total
current density we obtain from eq. (D.1), which is already linear,

0 � ∇ 
 δJtot� ε∇ 
 δĖ � en0µ∇ 
 δE � e∇δn 
 µE0 � e∇n0 
 µδE � eδnµ∇ 
 E0 � eD∆δn .

(D.2)

Since we are linearizing around a homogeneous state ∇ 
 E 0 and ∇n0 both vanish, and by
carrying out the temporal derivative we arrive at

0 � � εΛ � en0µ � ∇ 
 δE � eµE 0 
 ∇δn � eD∆δn . (D.3)

88



APPENDIX D. A LINEAR STABILITY ANALYSIS 89

As demonstrated in appendix C, the steady-state values of the trapped electron densities n1

and n2 can be expressed analytically as functions of n and E . By linearizing those dependen-
cies fluctuations in those two variables and thus fluctuations of the charge density, δρ, can be
expressed through δE , δn [Sch87, Gaa96e]. A further simplification of the system can be ob-
tained by directly considering the function ρ

�
n � E � obtained for the steady state and using that

in the linear stability analysis instead of the full generation-recombination kinetics. This ap-
proximation is equivalent to an assumption that n1, n2 adapt quickly, virtually instantaneously,
to any changes in the local free electron density n and electric field E , i. e. the dynamics of
the donor electron densities is enslaved. Although that way the GR rates have formally been
eliminated from the system their essence is now contained in the nonlinear function ρ

�
n � E � .

In that approximation one can write Gauss’s law (2.10) for the fluctuations as

ε∇ 
 δE � δρ
�
n � E ��� ∂ρ

∂n
δn � ∂ρ

∂E
E 0

E0

 δE . (D.4)

Here it was used that the GR coefficients and hence ρ do not depend on the direction but just
on the strength of the electric field E .

Replacing δE by the negative gradient of the electric potential fluctuation, δΨ, and carrying
out the spatial derivates in eq. (D.4) we get

εk2δΨ � ∂ρ
∂n

δn � ∂ρ
∂E

E0 9P9
E0

ikδΨ (D.5)

which can be solved for δn:

δn � E ∂ρ
∂n
F � 1 E εk2 � ∂ρ

∂E
E0 9:9
E0

ik F δΨ (D.6)

with E0 9:9 the longitudinal component of E 0, i. e. the projection of E 0 on the unit vector in
longitudinal direction.

Inserting this into (D.3) yields �
εΛ � en0µ � k2δΨ � eDk2δn � eµE0 9:9 ik δn � 0�

εΛ � en0µ � kδΨ � , eDk � ieµE0 9P9 - δn � 0Q �
εΛ � en0µ ��� , eDk � ieµE0 9P9 - E ∂ρ

∂n
F � 1 E εk � i

∂ρ
∂E

E0 9:9
E0
FSR kδΨ � 0 (D.7)

and finally

Λ ��� 1
τM
� E ∂ρ

∂n
F � 1 E eDk2 � eµ

ε
∂ρ
∂E

E0 F � ik E ∂ρ
∂n
F � 1 E eD

ε
∂ρ
∂E

E0 9:9
E0
� eµE0 9:9 F (D.8)

with τM � ε � � en0µ � the Maxwellian relaxation time.
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Figure D.1: Critical wave vector kc above which the homogeneous state becomes unstable
against respective longitudinal fluctuations as a function of the stationary free electron density
n0.

We can split up Λ into a real and an imaginary part Λ � λ � iω. The system is linearly stable
for λ � 0 and linearly unstable for λ @ 0. Since for the given GR kinetics ∂ρ

∂E is always non-

negative, the sign of ∂ρ
∂n determines whether there exists a minimum wave number kc so that

λ
�
k � becomes positive for k @ kc. The condition ∂ρ

∂n @ 0 for linear instability is met exactly on
the negative differential intermediate branch of the stable E -n characteristic (Fig. 2.6), which
is expected from topological considerations as well1. On the unstable branch, one finds that
∂ρ
∂n n0 is always greater than ∂ρ

∂E E0, thus

kc � µ
Dε E ∂ρ

∂n
n0 � ∂ρ

∂E
E0 F . (D.9)

1the fact that in [Gaa96e] the region of instability extends somewhat into the positive differential conductivity
branch is a result of considering the full dynamics of the trapped electron densities as well as an external capacity
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Figure D.2: Critical (angular) frequency ω
�
kc � as a function of the stationary free electron

density n0.

In Fig. D.1 the critical wave number kc is drawn along the negative differential conductivity
branch of the steady states parameterized by the free electron density n0. We find values of
the order of 106 cm � 1. That value lies slightly below the upper edge of the range of insta-
bility for k that GAA had found in a comparable linear stability analysis for GaAs which did
not eliminate the dynamics of the trapped electrons and included a field-dependent mobility µ
[Gaa94, Gaa96e].

From eq. (D.8) one can directly read off the (angular) freqency (the imaginary part of Λ) at the
critical wave number, ω

�
kc � , which is depicted in Fig. D.2. We read off a value of 5 
 1015 to

about 1016 s � 1. Those values are above the maxium ω
�
kc � of about 3 � 4 
 1012 obtained by GAA

[Gaa94, Gaa96e], which is not surprising if one considers that ω
�
k � is linear in k and the values

kc obtained here are somewhat too high compared to the results of Refs. [Gaa96c, Gaa96e].

At the edges of the negative differential conductivity range corresponding to the holding and

threshold fields, Eh and Eth, respectively, ω has poles because of the factor 2 ∂ρ
∂n 5 � 1

. This

clearly shows that there the approximation of enslaving n1, n2 breaks down and that their dy-
namics plays an important role at those two transition points.
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Unlike in the calculations by GAA [Gaa94, Gaa96e] this analysis yields no upper bound for k
above which the system is stable again. This is not surprising if one considers that for large
k the oscillations expressed through ω

�
k � will get very fast, thus rendering pointless the initial

assumption of the donor concentration kinetics being adiabatically eliminated. As a check of
consistency it should be mentioned that in (D.8) λ

�
k � is an even (symmetric) fuction in both k

and E 9:9 , whereas ω
�
k � is odd (asymmetric) in both k and E 9:9 .

In order to transfer those results to the case of a circular geometry we assume transversal, or
more precisely azimuthal fluctuations δn � δn

�
r � exp

�
imφ � Λt � (and analogously for δΨ)2.

Due to the circular condition in φ m must be an integer. Strictly speaking, there exists no
homogeneous, electrically neutral stationary state since in cylindrical coordinates we get a 1 � r
dependence for the electric field, hence E and the GR coefficients (or ρ

�
n � E � ) differ along the

sample radius3. If, however, the dependence of ρ on E is weak we can neglect that effect and
assume, as a stationary state to linearize about, a spatially constant n0. The condition of local
charge neutrality ρ

�
n0 � E0 �T� 0 yields ∇ 
 E 0 � 0, which in a radially symmetric geometry with

eq. (2.10) gives

d E0

d r
� E0

r
� 0 � (D.10)

Solving eq. (D.10) one obtains E0
�
r ��� c0

r . The integration constant c0 is given by the sample
voltage U as follows: since U � U R2

R1
E dr must hold this yields U � c0 ln

�
R2 � R1 � , or

c0 � U
ln
�
R2 � R1 � � (D.11)

The ansatz of a spatially constant n0 is consistent with the steady-state continuity equation,
0 � ∇ 
 j � n0µ∇ 
 E , since ∇ 
 E � 0 holds.

We can solve eq. (D.4) for ∆δΨ �V� ∇ 
 δE and insert that expression into eq. (D.2) (the two
equations do not assume any specific coordinates). We obtain, after taking the temporal deriva-
tive,

2 Λ � en0µ
ε 5 ∂ρ

∂n
δn � eD∆δn � eµE 0 
 ∇δn � 0. (D.12)

Inserting the specific expressions for cylindrical coordinates r, φ into eq. (D.12) we get

eD E ∂2

∂r2 � 1
r

∂
∂r
� m2

r2 F δn � eµ
c0

r
∂
∂r

δn � 2 Λ � en0µ
ε 5 ∂ρ

∂n
δn � 0 (D.13)

and finallyW
r2 ∂2

∂r2 � 2 1 � µc0

D 5 r
∂
∂r
� E Λ

eD
� n0µ

εD
F ∂ρ

∂n
r2 � m2 X δn � 0. (D.14)
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Figure D.3: Roots of the Bessel function of the first kind, Jm
�
x � , for arguments x around 100

and small m. The dots are examples of Jm
�
x ��� 0 for small integers m and x $ 100.

If µc0 � D is small against 1 eq. (D.14), which represents the eigenvalue problem of the stability
analysis, is precisely a Bessel equation, and the solutions δn

�
r � are the Bessel functions of

first and second kind Jm
�
k r � , Ym

�
k r � , respectively4, for a given azimuthal modulation number

m with longitudinal wave vector k �ZY , Λ
eD � n0µ

εD
- ∂ρ

∂n . For general µc0 � D eq. (D.14) has a
complicated combination of different Bessel functions as the solution for δn

�
r � . The important

point to note here is that the solution of eq. (D.14) does not yield any dependence of Λ on m.

The selection of azimuthal modes, i. e. which m lead to a positive real part of Λ, could still come
from boundary conditions via the selection of the allowed values for k. If we assume Dirichlet
boundary conditions at the two contacts δn

�
r � must vanish at both R1 and R2. Since for a given

m the general solution for δn
�
r � is a linear combination of Jm and Ym, one boundary condition,

say the one at R1, can always be fulfilled (if one assumes that R1 is vanishingly small δn
�
r � will

become identical to just Jm). The outer contact radius R2 is typically of the order of 10 � 1 cm.
2in the spatially two-dimensional case it is important to consider fluctuations of the electrical potential Ψ

instead of the electrical field so that δE � * ∇δΨ still holds.
3a similar problem already exists in a finite rectangular system if one tries to take into account boundary

conditions at the contacts.
4here again we have made use of the approximation that ρ [ n \ E ] does not change too much across the sample

radius.
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The instability regime for the k vectors, which for n-GaAs can, for this simple estimate, be
taken from the results of [Gaa94], lie in the range of approximately 103 to 5 
 106 cm � 1. Thus
the arguments of the Bessel functions x � kr must be from a range of 102 to 5 
 105. For large
arguments x the Bessel functions approximate the trigonometric function of sin and cos, which
means that their roots occur every ∆x � π. For small m (say up to m � 20) this holds already to
a high precision for arguments of x � 100 or above. Moreover, with large x the roots tend to be
at the same values xi for all even and for all odd m, respectively. This is visualized in Fig. D.3
where the roots of Jm

�
x � are plotted for x around 100 (as an example) and small m (here only

integer values of m are of relevance). So even if one had an entirely unrealistically thin k-band
of instability (and has a very precise value for R2) one would find an allowed solution for any
(or at least every second) m. Thus even taking into account boundary conditions the linear
stability analysis does not select any specific azimuthal modes.
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[Sch96a] G. Schwarz, F. Prengel, E. Schöll, J. Kastrup, H. T. Grahn, and R. Hey. Electric field
domains in intentionally perturbed semiconductor superlattices. Appl. Phys. Lett.,
69(5), 626–628, 1996.

[Sch96b] G. Schwarz, A. Wacker, F. Prengel, E. Schöll, J. Kastrup, H. T. Grahn, and K. Ploog.
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