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Abstract

We extend the modeling framework of port-Hamiltonian descriptor systems to include
under- and over-determined systems and arbitrary differentiable Hamiltonian functions.
This structure is associated with a Dirac structure that encloses its energy balance prop-
erties. In particular, port-Hamiltonian systems are naturally passive and Lyapunov stable,
because the Hamiltonian defines a Lyapunov function. The explicit representation of in-
put and dissipation in the structure make these systems particularly suitable for output
feedback control. It is shown that this structure is invariant under a wide class of non-
linear transformations, and that it can be naturally modularized, making it adequate for
automated modeling. We investigate then the application of time-discretization schemes to
these systems and we show that, under certain assumptions on the Hamiltonian, structure
preservation is achieved for some methods. Relevant examples are provided.

1 Introduction

The port-Hamiltonian (pH) structure [11] is very appealing for modeling, simulation and control
of complex multiphysics systems. PH systems generalize classical Hamiltonian systems and gra-
dient systems by including energy dissipation and interaction with the environment (represented
by ports). Implicit formulations for pH systems enclosing their properties are given through
objects from differential geometry, known as Dirac structures. Similarly as pure Hamiltonian
systems, pH systems also gain from the application of geometric integration methods [3], like the
Gauss-Legendre collocation schemes. With additional requirements imposed on the form of the
Hamiltonian function, structure preseration can be achieved, by a proper discretization of the
Dirac structure [4].

The energy concept can be used as a common language, to interconnect different pH systems
while mantaining the structure, even when they originate in different physical domains, that
may include mechanical, mechatronic, fluidic, thermic, hydraulic, pneumatic, elastic, plastic
or electric components. The explicit incorporation of constraints, often inavoidable when us-
ing modeling packages such as Modelica (https://www.modelica.org), Matlab/Simulink
(https://www.mathworks.org) or Simpack (http://www.simpack.com), produce differential-
algebraic equations (DAEs), also referred to as descriptor systems, which may contain hidden
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constraints, consistency requirements for initial conditions and additional regularity require-
ments. A definition for linear time-varying pH descriptor systems (pHDAEs) has been given in
[1]. While including many interesting examples, that description falls short of fully extending
conventional pH systems, since it is restricted to quadratic Hamiltonian functions and finite di-
mensional states, where the dimension is the same as the number of equations, and the matrix
coefficients are independent from state.

In this paper we extend the definition of pHDAEs to include arbitrary differentiable Hamilto-
nian functions and systems with a different number of states and equations. The new definition
extends to the case of infinite-dimensional states and time- and space-varying coefficients. We
also give a new definition of Dirac structure, so that we can always associate one to our pHDAEs.
We generalize the results in [4] to the case of pHDAEs, so that we can apply structure-preserving
time discretization to port-Hamiltonian descriptor systems.

The paper is organized as follows. In Section II, we introduce our new definition of pHDAEs,
and we investigate its properties. In Section III, we study the application of collocation schemes to
pHDAEs and conditions for which structure preservation is achieved. In Section IV, we illustrate
a simple example of a pHDAE from the electrical circuit domain, we exploit the pH structure
to apply control to the system and we present numerical experiments using Gauss-Legendre
collocation.

2 Port-Hamiltonian descriptor systems

2.1 Formulation

Definition 1 (pHDAE). Let us consider a time interval I ⊆ R, a state space X ⊆ Rn and the
extended state space S = I×X . A port-Hamiltonian descriptor system (or pHDAE ) is a system
of differential (-algebraic) equations of the form

E(t, x)ẋ+ r(t, x) = (J(t, x)−R(t, x))z(t, x) + (B(t, x)− P (t, x))u,

y = (B(t, x) + P (t, x))T z(t, x) + (S(t, x)−N(t, x))u,
(1)

associated with an Hamiltonian function H ∈ C1(S,R), where x(t) ∈ X is the state, u(t), y(t) ∈
Rm are the input and output, E ∈ C(S,R`,n) is the flow matrix, r, z ∈ C(S,R`) are the
time-flow and effort functions, J,R ∈ C(S,R`,`) are the structure and dissipation matrices,
B,P ∈ C(S,R`,m) are the port matrices and S,N ∈ C(S,Rm,m) are the feed-through matrices.
Furthermore, the following properties must hold:

1. The extended structure and dissipation matrices Γ,W ∈ C(S,R`+m,`+m), defined as

Γ :=

[
J B
−BT N

]
, W :=

[
R P
PT S

]
(2)

satisfy Γ = −ΓT and W = WT ≥ 0 pointwise.

2. The gradient of the Hamiltonian satisfies ∂xH = ET z and ∂tH = zT r pointwise.

This definition can be extended to the case of weak solutions and state spaces with infinite
dimension. In particular, this framework can be also used to describe partial-differential-algebraic
equations (PDAEs). For simplicity, the results and examples presented in this paper will be
limited to the finite-dimensional case.
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Remark 1. The definition of pH system often includes extra conditions on the Hamiltonian,
e.g. that it is a convex function, or that it is always non-negative [1]. While these conditions are
not necessary in general, they are often satisfied, and they strengthen the stability properties
derived from the pH structure.

2.2 Properties

Port-Hamiltonian descriptor systems as defined in (1) satisfy many useful properties. We list
and prove some of these in the following.

2.2.1 Dissipation inequality

Any port-Hamiltonian system must satisfy some kind of dissipation inequality, expressing its
passivity, i.e. energy cannot be created within the system.

Theorem 1 (dissipation inequality). Let us consider a pHDAE of the form (1). Then the power
balance equation (PBE)

d

dt
H(t, x(t)) = −

[
z
u

]T
W

[
z
u

]
+ uT y (3)

holds along any solution x, for any input u. In particular, the dissipation inequality

H(t2, x(t2))−H(t1, x(t1)) ≤
∫ t2

t1

u(τ)T y(τ)dτ (4)

holds.

Proof. The pHDAE (1) can be written as[
Eẋ+ r

0

]
= (Γ−W )

[
z
u

]
+

[
0
y

]
,

in particular

d

dt
H(t, x(t)) = ∂tH+ ∂xHT ẋ = zT (Eẋ+ r) =

[
z
u

]T [
Eẋ+ r

0

]
=

=

[
z
u

]T (
(Γ−W )

[
z
u

]
+

[
0
y

])
= −

[
z
u

]T
W

[
z
u

]
+ uT y,

which is (3). By time integration, since W = WT ≥ 0, we immediately get (4).

Note that, with no input (u = 0), if the Hamiltonian H is locally positive-definite in an
equilibrium point x∗ (up to shifting it by a constant), then H is a Lyapunov function and the
system is stable.

2.2.2 Variable transformations

This class of pHDAEs is closed under many variable transformations:
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Theorem 2. Consider a pHDAE of the form (1). Let X̃ ⊆ Rñ be a second state space, let
S̃ := I × X̃ , let x = ϕ(t, x̃) ∈ C1(S̃,X ) be a local diffeomorphism (with respect to x̃) and let
U ∈ C(S̃,R`,`) be pointwise invertible. Consider the input-output DAE

Ẽ ˙̃x+ r̃ = (J̃ − R̃)z̃ + (B̃ − P̃ )u,

y = (B̃ + P̃ )T z̃ + (S −N)u,
(5)

with Ẽ = UT (E ◦ ϕ)∂x̃ϕ, J̃ = UT (J ◦ ϕ)U , R̃ = UT (R ◦ ϕ)U , B̃ = UT (B ◦ ϕ), P̃ = UT (P ◦ ϕ),
z̃ = U−1(z◦ϕ) and r̃ = UT (r◦ϕ+(E◦ϕ)∂tϕ), where we denote (F ◦ϕ)(t, x̃) = F (t, ϕ(t, x̃)) for any
F ∈ C(S, ·), and let H̃(t, x̃) := (H◦ϕ)(t, x̃). Then (5) is a pHDAE with Hamiltonian function H̃,
and to any solution (x̃, u, y) of (5) corresponds a solution (x, u, y) of (1) with x(t) = ϕ(t, x̃(t)).
Furthermore, if ϕ(t, ·) is a global diffeomorphism for all t ∈ I, then the two systems are equivalent.

Proof. The transformed DAE system is obtained from (1) by setting x = ϕ(t, x̃), pre-multiplying
with UT and inserting UU−1 in front of z in the first equation. It is then clear that if (x̃, u, y)
is a solution of (5), then (x, u, y) is a solution of the original system. If ϕ(t, ·) is a global diffeo-
morphism, then we can apply the inverse tranformation (ϕ−1, U−1), where ϕ−1 is to intended as
ϕ(t, ϕ−1(t, x)) = x, and get a solution (x̃, u, y) for any solution (x, u, y) of the original system,
making the two systems equivalent.

To show that (5) is still a pHDAE, we must check that conditions 1 and 2 in the definition
are satisfied.

1. By substitution, we get

W̃ =

[
R̃ P̃

P̃T S

]
=

[
UT (R ◦ ϕ)U UT (P ◦ ϕ)
(P ◦ ϕ)TU S ◦ ϕ

]
=

=

[
U 0
0 I

]T
(W ◦ ϕ)

[
U 0
0 I

]
≥ 0.

2. By substitution, we get

∂H̃
∂x̃

(t, x̃) =
∂ϕ

∂x̃

T (∂H
∂x
◦ ϕ
)

=
∂ϕ

∂x̃

T (
ET z ◦ ϕ

)
=

=
∂ϕ

∂x̃

T

(ET ◦ ϕ)UU−1(z ◦ ϕ) = ẼT z̃

and

∂H̃
∂t

(t, x̃) =
∂H
∂t
◦ ϕ+

(
∂H
∂x
◦ ϕ
)T

∂ϕ

∂t
=

= zT r ◦ ϕ+
(
zTE ◦ ϕ

) ∂ϕ
∂t

=

= (z ◦ ϕ)T
(
r ◦ ϕ+ (E ◦ ϕ)

∂ϕ

∂t

)
=

= z̃TUTU−T r̃ = z̃T r̃.

This concludes the proof.
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2.2.3 Autonomous form

Any DAE can be made autonomous by adding time as a state. In particular, any pHDAE can
be made autonomous without destroying the structure:[

E r
0 1

] [
ẋ
ṫ

]
=

[
J −R 0

0 0

] [
z
0

]
+

[
B − P 0

0 1

] [
u
1

]
,[

y
0

]
=

[
B + P 0

0 1

]T [
z
0

]
+

[
S −N 0

0 0

] [
u
1

]
.

(6)

Note that condition 2 becomes simply ∇x̃H̃ = ẼT z̃, where the tilde denotes the quantities in
the autonomous system.

2.2.4 Structure-preserving interconnection

Let us consider two autonomous pHDAEs of the form

Eiẋi = (Ji −Ri)zi + (Bi − Pi)ui,
yi = (Bi + Pi)

T zi + (Si −Ni)ui,

with Hamiltonian Hi, for i = 1, 2, and assume that the aggregated input u = (u1, u2) and output
y = (y1, y2) satisfy a linear interconnection relation Mu+Ny = 0 for some M,N ∈ C(S,Rk,m).
Then the aggregated system can be written as a pHDAE of the form

E 0 0
0 0 0
0 0 0
0 0 0


ẋ˙̂u

˙̂y

 =

 Γ−W 0 0
Im −MT

0 −Im
0 M

0 −NT

N 0



z
û
ŷ
0

+


0
0
Im
0

u,
y = ŷ,

with Hamiltonian H = H1 +H2, where we have introduced new state variables û, ŷ ∈ Rn that
copy u, y, and we aggregated E = diag(E1, E2), x = (x1, x2), z = (z1, z2), m = m1 + m2,
Γ = Π diag(Γ1,Γ2)ΠT and W = Π diag(W1,W2)ΠT , where Π ∈ R`+m,`+m is the permutation
matrix

Π =


I`1 0 0 0
0 0 I`2 0
0 In1 0 0
0 0 0 In2

 .
Note that, in general, we may not be able to reduce the number of inputs and outputs. If we

also assume that the interconnection is energy-preserving (e.g. if Mu + Ny = 0 defines a Dirac
structure for (y, u)), then index reduction [5] and row operations can usually be applied to make
the system smaller.

2.3 Dirac structure

Port-Hamiltonian systems are ofter described through differential geometric structures known as
Dirac structures [11]. We present first the basic definitions.

Definition 2 (linear Dirac structure). Let F be a linear space and E := F∗ its dual space. Let
〈〈·, ·〉〉 be the bilinear form on F × E defined as

〈〈(f1, e1), (f2, e2)〉〉 := 〈e1 | f2〉+ 〈e2 | f1〉,
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where 〈· | ·〉 denotes the duality pairing. A Dirac structure on F × E is then a linear subspace
D ⊆ F × E , such that D = D⊥⊥.

In particular, in finite dimension, one only needs to prove dimD = dimF and 〈e | f〉 = 0 for
all (f, e) ∈ D. If (f, e) ∈ D, then f and e are called flow and effort, respectively. In [11], the
more general definition of modulated Dirac structure over X is also presented, as a subbundle
of TX ⊕ T ∗X , that denotes the Whitney sum between the tangent and cotangent bundles of X .
To introduce a Dirac structure for pHDAEs, we need to extend this further.

Definition 3. Consider a state space X and a vector bundle V over X with fibers Vx. A Dirac
structure over V is a subbundle D ⊆ V ⊕ V∗ such that, for all x ∈ X , Dx ⊆ Vx × V∗x is a linear
Dirac structure.

Note that modulated Dirac structures are a special case of our definition, where V = TX . To
associate a Dirac structure to our pHDAE system, we first prove the following lemma:

Lemma 1. Let D ⊆ V ⊕ V∗ be a vector subbundle with fibers defined by

Dx = {(f, e) ∈ Vx × V∗x : f + J(x)e = 0} ,

where J : X → L(V∗x ,Vx) is a skew-symmetric operator. Then D is a Dirac structure.

Proof. For generic (f, e) ∈ Dx and (f ′, e′) ∈ Vx × V∗x ,

〈〈(f, e), (f ′, e′)〉〉 = 〈e | f ′〉+ 〈e′ | f〉 =

= 〈e | f ′〉 − 〈e′ | Je〉 = 〈e | f ′ + Je′〉.

We show that (f ′, e′) ∈ Dx if and only if 〈e | f ′ + Je′〉 = 0 for all (f, e) ∈ Dx. On one hand, if
(f ′, e′) ∈ Dx, then 〈e | f ′+Je′〉 = 0 holds for any e ∈ E . On the other hand, if (f ′, e′) /∈ Dx, then
f ′ + Je′ 6= 0 and so ∃e ∈ E such that 〈e | f ′ + Je′〉 = 1, but (f, e) ∈ Dx with f = −Je.

We can now associate a Dirac structure to our pHDAE system in the following way:

Theorem 3. Given an autonomous pHDAE, let us define the flow fiber Vx = Fsx × Fpx × Fdx
for all x ∈ X , where Fsx := E(x)TxX ⊆ R` is the storage flow fiber, Fpx := Rm is the port flow
fiber and Fdx := R`+m is the dissipation flow fiber. Let us partition f = (fs, fp, fd) ∈ V and
e = (es, ep, ed) ∈ V∗. Then the subbundle D ⊆ V ⊕ V∗ with

Dx =

{
(f, e) ∈ Vx × V∗x

∣∣∣∣∣ f +

[
Γ(x) I`+m
−I`+m 0

]
e = 0

}

is a Dirac structure over V. Furthermore, the system of equations

fs = −E(x)ẋ, es = z(x),

fp = y, ep = u,

ed = −W (x)fd, (f, e) ∈ Dx
(7)

is equivalent to the original pHDAE, and 〈e | f〉 = 0 represents the power balance equation.

Proof. D is a Dirac structure because of Lemma 1. Note that the pHDAE can be written in
compact form as [

E(x)ẋ
−y

]
= (Γ(x)−W (x))

[
z(x)
u

]
.
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The condition (f, e) ∈ Dx can be written as[
−fs
−fp

]
= Γ(x)es + ep, fd = (es, ep),

that together with the conditions (7) is equivalent to[
E(x)ẋ
−y

]
= (Γ(x)−W (x))

[
z(x)
u

]
,

f =

(
−E(x)ẋ, y,

[
z(x)
u

])
,

e =

(
z(x), u, −W (x)

[
z(x)
u

])
,

which is exactly the compact form of the pHDAE, plus the definition for the flow and effort.
Finally, note that the equation 〈e | f〉 = 0 can be written as

0 = 〈z(x) | − E(x)ẋ〉+ 〈u | y〉+ 〈−W (x)

[
z(x)
u

]
|
[
z(x)
u

]
〉 =

=
d

dt
H(x) + yTu−

[
z(x)
u

]T
W (x)

[
z(x)
u

]
,

which is the power balance equation.

Note that, if we want to retrieve a pHDAE system from a Dirac structure, the additional
conditions (7) and the definition of H(x) are needed. These can also be lifted to a geometric
interpretation, by the means of a Lagrangian submanifold and of a dissipative structure [12].

3 Time discretization

Let us consider a finite-dimensional pHDAE of the form (1). Under some regularity assumptions
[5], many classes of Runge-Kutta methods can be applied to compute time-discretizations of
differential-algebraic equations. An important class of Runge-Kutta methods is the class of
collocation methods. We extend the results from [4] to pHDAEs, proceeding in a similar way.

3.1 Collocation methods for DAEs

Assume that an input function u : I×X → Rm, depending on time and possibly space, is given.
Given a time interval I = [t0, tf ] of length h = tf−t0, and a consistent initial condition x0 at time
t0, we approximate the solution x(t) of the pHDAE on I with a polynomial x̃(t) ∈ R[t]s, where
R[t]s denotes the vector space of polynomials of degree at most s. The polynomial is chosen such
that x̃(t0) = x0, and that it satisfies the differential-algebraic equation in s collocation points
ti = t0 + hγi with γi ∈ [0, 1] for i = 1, . . . , s.

Let `i denote the i-th Lagrange interpolation polynomial with respect to the nodes γ1, . . . , γs,
i.e.,

`i(τ) :=

s∏
j=1
j 6=i

τ − γj
γi − γj

.
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Then we can write

˙̃x(t0 + τh) =

s∑
i=1

ẋi`i(τ),

x̃(t0 + τh) = x0 + h

s∑
j=1

ẋj

∫ τ

0

`j(σ)dσ,

for certain ẋi = ˙̃x(ti) that we have to compute, and also

xi := x̃(ti) = x0 + h

s∑
j=1

αij ẋj ,

xf := x̃(tf ) = x0 + h

s∑
j=1

βj ẋj ,

where αij :=
∫ γi
0
`j(σ)dσ and βj :=

∫ 1

0
`j(σ)dσ. In particular, the constants αij , βj , γi ∈ R for

i, j = 1 . . . s are the coefficients of the Butcher diagram of the associated Runge-Kutta method
[3].

3.2 Dirac structure associated to discretization

Consider for simplicity the autonomous case. The non-autonomous case is similar, with a more
cumbersome notation. Let Dx be the Dirac structure associated to (6) (as in Theorem 3). We
define the Dirac structure associated to the time-discretization as {Dxi : i = 1, . . . , s}, i.e.,

Dxi
=

{
(f i, ei) ∈ Vxi

× V∗xi

∣∣∣∣∣ f i +

[
Γ(ti, xi) I`+m
−I`+m 0

]
ei = 0

}
,

with f i = (f is, yi, f
i
d) and ei = (eis, ui, e

i
d). Taking (f i, ei) ∈ Dxi

, together with

xf = x0 + h

s∑
i=1

βiẋi, (8a)

xi = x0 + h

s∑
j=1

αij ẋj , (8b)

f is = −E(xi)ẋi, (8c)

eis = z(xi), (8d)

eid = −W (xi)f
i
d, (8e)

ui = u(xi), (8f)

we get a system that is equivalent to applying the collocation method and computing the discrete
input and output ui, yi, for i = 1, . . . , s. Let us define the collocation flows, efforts, input and
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output in R[t]s−1 as

f̃s(t0 + hτ) =

s∑
i=1

f is`i(τ), ẽs(t0 + hτ) =

s∑
i=1

eis`i(τ),

f̃d(t0 + hτ) =

s∑
i=1

f id`i(τ), ẽd(t0 + hτ) =

s∑
i=1

eid`i(τ),

ỹ(t0 + hτ) =

s∑
i=1

yi`i(τ), ũ(t0 + hτ) =

s∑
i=1

ui`i(τ).

Note that, by construction, (f̃s, ỹ, f̃d; ẽs, ũ, ẽd) ∈ Dx̃ in all collocation points ti. Let us consider
the evolution of the Hamiltonian H along the collocation polynomial x̃(t). In particular, let
H(t) := H(x̃(t)): we can then write

H(t)−H(t0) =

∫ t

t0

Ḣ(s)ds.

In the collocation points, the PBE is satisfied:

Ḣ(ti) = ∇H(xi)
T ẋi = z(xi)

TE(xi)ẋi =

= −〈eis | f is〉 = 〈eid | f id〉+ 〈yi |ui〉,

for i = 1, . . . , s. In particular, if we apply the quadrature rule associated to the collocation
method, we get

H(tf )−H(t0) = h

s∑
j=1

βjḢ(tj) +O(hp+1) =

= −h
s∑
j=1

βj〈ejs | f js 〉+O(hp+1) =

= h

s∑
j=1

βj〈ejd | f
j
d〉+ h

s∑
j=1

βj〈yj |uj〉+O(hp+1),

where p ∈ N is the degree of exactness of the quadrature rule. We observe that, for the same
reason,

h

s∑
j=1

βj〈ejd | f
j
d〉 =

∫ tf

t0

〈ẽd | f̃d〉+O(hp+1), (9a)

h

s∑
j=1

βj〈yj |uj〉 =

∫ tf

t0

〈ỹ | ũ〉+O(hp+1), (9b)

so

H(tf )−H(t0) =

∫ tf

t0

(
〈ẽd(s) | f̃d(s)〉+ 〈ỹ(s) | ũ(s)〉

)
ds+O(hp+1).

We note that, if p ≥ 2s − 2, then equations (9a) and (9b) are exact. Furthermore, if βj ≥
0 for j = 1, . . . , s (and this is the case for many collocation methods), we can deduce that
h
∑s
j=1〈e

j
d | f

j
d〉 ≤ 0, thus the dissipation component retains its qualitative behaviour.
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3.3 The quadratic Hamiltonian case

Let us consider the case where the Hamiltonian H(x) is a polynomial of degree (at most) 2, i.e. it
can be written as

H(x) =
1

2
xTQx+ vTx+ c,

for some Q = QT ∈ Rn,n, v ∈ Rn and c ∈ R. Since x̃ ∈ R[t]ns , we also have H = H ◦ x̃ ∈ R[t]2s
and Ḣ ∈ R[t]2s−1. It is known that the maximum degree of exactness for quadrature rules
with s nodes is 2s − 1, and that it is attained only with Gaussian quadrature rules, that are
associated with Gauss-Legendre collocation methods. In particular, if we apply such a method,
the integration of Ḣ will be exact, i.e.

H(tf )−H(t0) = h

s∑
j=1

βj〈ejd | f
j
d〉+ h

s∑
j=1

βj〈yj |uj〉 =

=

∫ tf

t0

(
〈ẽd(s) | f̃d(s)〉+ 〈ỹ(s) | ũ(s)〉

)
ds.

In particular, since we always have βj ≥ 0 for Gauss-Legendre collocation, the dissipation term
is always non-positive, and we can write the discrete dissipation inequality

H(tf )−H(t0) ≤ h
s∑
j=1

βj〈yj |uj〉 =

∫ tf

t0

〈ỹ(s) | ũ(s)〉ds.

Thus, in the quadratic Hamiltonian case the pH structure is preserved, in the sense that the
PBE and the dissipation inequality have an exact discrete version.

4 Examples

4.1 A basic DC power network example

Let us consider as a toy example the linear electrical circuit represented in Fig. 1, where
RG, RL, RR > 0 are resistances, L > 0 is an inductor, C1, C2 > 0 are capacitors and EG is
a controlled voltage source. This can be interpreted as a basic representation of a DC generator
(EG,RG), connected to a load (RR) with a transmission line (the π model given by C1, C2, L,RL).
By means of Kirchhoff’s circuit laws, this system can be naturally written as the following DAE:

−
+EG

RG

IG

L
I

RL

RR

IR

C1V1

I1

C2 V2

I2

Figure 1: Basic DC power network example
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Lİ = −RLI + V2 − V1,
C1V̇1 = I − IG,
C2V̇2 = −I − IR,

0 = −RGIG + V1 + EG,

0 = −RRIR + V2.

(10)

The energy in the system can be stored in the inductor and in the two capacitors, giving the
Hamiltonian

H(I, V1, V2) =
1

2
LI2 +

1

2
C1V

2
1 +

1

2
C2V

2
2 . (11)

The system can then be written equivalently as an autonomous pHDAE of the form

Eẋ = (J −R)x+Bu, (12a)

y = BTx, (12b)

with x = (I, V1, V2, IG, IR), E = diag(L,C1, C2, 0, 0), B = e4, u = EG, y = IG and

J =


0 −1 1 0 0
1 0 0 −1 0
−1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0

 , R =


RL 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 RG 0
0 0 0 0 RR

 .
The power balance equation reads as

Ḣ = −RLI2 −RGI2G −RRI2R + IGEG;

in particular, if we shut down the generator (EG = 0), the Hamiltonian will decrease and converge
to a solution such that Ḣ = 0, that is, I = IG = IR = 0. The only state compatible with (10)
that satisfies that condition is x = 0, so the system will always converge to that asymptotically
stable point.

4.2 Controlling the circuit

Suppose now that RR represents a consumer, that requires a fixed amount of power P = RRI
2
R

to be delivered to them. We would like then to control the voltage of the generator EG, so that
the state of the system will converge to IR = I∗R := −

√
P/RR. If we assume that a solution

with IR ≡ I∗R exists, then we also get I = IG ≡ −I∗R, V1 ≡ (RR + RL)I∗R, V2 ≡ RRI
∗
R and

EG ≡ −(RR +RL +RG)I∗R.
This can be interpreted in the following way, exploiting the port-Hamiltonian framework: let

x∗ =


I∗

V ∗1
V ∗2
I∗G
I∗R

 :=

√
P

RR


1

−RR −RL
−RR

1
−1


denote the desired state. By applying the change of variables x̃ = x − x∗ to (12), we get the
equivalent pHDAE

E ˙̃x = (J −R)(x̃+ x∗) + e4u, (13a)

y = eT4 (x̃+ x∗), (13b)
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with the same Hamiltonian. Since our goal is having x̃ ≡ 0 as an asymptotically stable solution,
and (J−R)x∗ = −

√
P/RR(RR+RL+RG)e4 =: −e4u∗, by construction, we write the equivalent

system

E ˙̃x = (J −R)x̃+ e4ũ, (14a)

ỹ = eT4 x̃, (14b)

with ũ = u− u∗ and ỹ = y − eT4 x∗ = IG − I∗G, which is again a pHDAE, but with Hamiltonian

H̃ =
1

2
L(I − I∗)2 +

1

2
C1(V1 − V ∗1 )2 +

1

2
C2(V2 − V ∗2 )2. (15)

As before, this shows that choosing ũ = 0 (i.e. u = −u∗) would make the system converge to the
desired state, that will be asymptotically stable. On the other hand, this is not the only input
that would satisfy this goal. If we want to speed up the convergence, we have to increase the
dissipation. To do so, we can for example apply some linear feedback of the form ũ = −αỹ for
some α > 0 (i.e. u = u∗−α(IG−I∗G)): in this way, the dissipation inequality can be strengthened,
since

˙̃H = −RLĨ2 − (RG + α)Ĩ2G −RĨ2R ≤
≤ −RLĨ2 −RGĨ2G −RĨ2R.

From another point of view, if we apply a feedback of the form u = u∗ − α(y − I∗G) + û, then
(14) can be written as

E ˙̃x = (J −Rα)x̃+ e4û, (16a)

ỹ = eT4 x̃, (16b)

with Rα = R+ αe4e
T
4 > R.

4.3 Numerical simulations

We present numerical simulations on the toy example (10). We choose as constants L = 2,
C1 = 0.01, C2 = 0.02, RL = 0.1, RG = 6 and RR = 3. This choice is not based on real world
data, but it is made to reflect the usual assumption that, for transmission lines, L � RL � C.
We discretize the system with respect to time, using the midpoint rule, which is the Gauss-
Legendre collocation method with s = 1 stages and order p = 2 for ODEs. Since (10) is a
semi-explicit DAE with index 1, the chosen method will also give convergence order 2 (see [5,
Theorem 5.16]).

First, we apply the time discretization to a system without control (EG = 0), starting from
consistent non-zero initial values (see Fig. 2). The evolution of the state and of the Hamiltonian
show the expected qualitative behaviour: after some time, they all converge to zero. Furthermore,
while in the first half of the simulation the state oscillates, the Hamiltonian always decreases
monotonically, following the discrete dissipation inequality.

As a second example, we apply control to the system, starting from almost-zero consistent
initial values, with the goal of delivering P = 10 power to the consumer. This corresponds to
the desired state

x∗ =


I∗

V ∗1
V ∗2
I∗G
I∗R

 :=

√
10

3


1
−3.1
−3
1
−1

 ≈


1.8257
−5.6598
−5.4772

1.8257
−1.8257

 ,
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Figure 2: Evolution of state and energy with no control. The solid lines represent the state. The
dashed line represents the Hamiltonian H.

and to the control value u∗ = 9.1
√

10/3 ≈ 16.614. To simulate the fact that the change of input
does not happen instantly, we actually choose as control

u(t) = u∗
(

arctan
(
5(t− 0.5)

)
+ 0.5

)
,

so that the input increases smoothly and rapidly from 0 to u∗. In Fig. 3 one can see that, after
some initial oscillations, the state quickly converges to the desired values, represented by the
dotted lines. At the same time, the second Hamiltonian H̃ decreases monotonically, converging
to zero, while the first Hamiltonian H, representing actual energy in the system, converges to a
positive value H∗.

5 Conclusions and future works

5.1 Conclusions

We have presented a new definition for port-Hamiltonian descriptor systems, generalizing the
one from [1] to include a larger class of equations. Extension to weak problems and to partial
differential equations is also possible. We verified that this definition satisfies several properties,
in particular a dissipation inequality, invariance under a large class of variable transformations,
and structure-preserving interconnection. We generalized the definition of Dirac structure and
we associated one to every system included in our formulation. We extended the results from
[4] to apply structure-preserving collocation schemes to port-Hamiltonian differential-algebraic
equations. Finally, we illustrated a simple example from the domain of electrical circuits that
can be written with our formulation, and we presented some numerical experiments.
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Figure 3: Evolution of state and energy with control. The solid lines represent the state of the
system. The dotted lines represent the desired state. The cyan and purple dashed lines (H and
H1) represent the first and second Hamiltonian H and H̃, respectively.

5.2 Future Works

Ongoing work is on the analysis of a larger class of numerical methods applied to pHDAEs,
including more general Runge-Kutta schemes and partitioned methods, in particular in the case of
semi-explicit DAEs with index 1. Structure-preserving model reduction and space discretization
for PDEs are also being considered. Future work will include further analysis of the properties
of pHDAEs, in particular the extension of the results from [7] and possibly the characterization
of controllability and observability of pH systems.
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