Contents of this file:

Values assigned to parameters of the Fast-Marching Algorithm (FMA) in SKS and short description.

Introduction

In the table below we provide the values assigned to parameters of the Fast-Marching Algorithm (FMA). The given parameters are assigned to each medium in the model (Aquifers, Aquitards, Faults & Fractures), so that the FMA in SKS can compute how fast the propagation front can travel through each medium. The result is a time or speed map. SKS then assumes that the karst conduits follow the quickest propagation path in the model. The greater the contrast between the mediums, e.g., Aquifers > Aquitards or Fractures > Aquifers, the more strongly that medium will attract the conduits. They have no physical units, and the values are varied during the first simulations to get a feel of the model before they are fixed for all subsequent simulations. For more information see chapter 5 in Borghi (2013).

Parameter	Description	Value
codeAquifere	FMA value of the aquifer layer	10
	(karstifiable formations)	
codeAquiclude	FMA value of the aquiclude layer	1
	(non-karstifiable formations)	T
FMvalFrac	FMA value of fractures	60
FMvalFaults	FMA value of faults	30
multiplicatorConduits	FMA value of the conduits, computed as	
	a multiplication of the FMvalFrac value	1.3
	with this multiplicator	

Table: Values assigned to parameters of the Fast-Marching Algorithm (FMA).

Reference

Borghi, A. (2013). 3D Stochastic Modeling of Karst Aquifers using a pseudo-genetic methodology. Université de Neuchâtel. RERO DOC. urn:nbn:ch:rero-004-111673.